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ABSTRACT OF THE DISSERTATION

NON-INTRUSIVE AFFECTIVE ASSESSMENT IN THE CIRCUMPLEX

MODEL FROM PUPIL DIAMETER AND FACIAL EXPRESSION

MONITORING

by

Sudarat Tangnimitchok

Florida International University, 2019

Miami, Florida

Professor Armando Barreto, Major Professor

Automatic methods for affective assessment seek to enable computer systems to

recognize the affective state of their users. This dissertation proposes a system that

uses non-intrusive measurements of the users pupil diameter and facial expression

to characterize his /her affective state in the Circumplex Model of Affect. This

affective characterization is achieved by estimating the affective arousal and valence

of the users affective state.

In the proposed system the pupil diameter signal is obtained from a desktop eye

gaze tracker, while the face expression components, called Facial Animation Param-

eters (FAPs) are obtained from a Microsoft Kinect module, which also captures the

face surface as a cloud of points. Both types of data are recorded 10 times per sec-

ond. This dissertation implemented pre-processing methods and fixture extraction

approaches that yield a reduced number of features representative of discrete 10-

second recordings, to estimate the level of affective arousal and the type of affective

valence experienced by the user in those intervals.

The dissertation uses a machine learning approach, specifically Support Vector

Machines (SVMs), to act as a model that will yield estimations of valence and

arousal from the features derived from the data recorded.
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Pupil diameter and facial expression recordings were collected from 50 subjects

who volunteered to participate in an FIU IRB-approved experiment to capture their

reactions to the presentation of 70 pictures from the International Affective Picture

System (IAPS) database, which have been used in large calibration studies and

therefore have associated arousal and valence mean values. Additionally, each of

the 50 volunteers in the data collection experiment provided their own subjective

assessment of the levels of arousal and valence elicited in him / her by each picture.

This process resulted in a set of face and pupil data records, along with the expected

reaction levels of arousal and valence, i.e., the labels, for the data used to train and

test the SVM classifiers.

The trained SVM classifiers achieved 75% accuracy for valence estimation and

92% accuracy in arousal estimation, confirming the initial viability of non-intrusive

affective assessment systems based on pupil diameter and face expression monitor-

ing.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Affective Computing was first introduced by Rosalind Picard [P+95] in 1997. It

proposes that interactions between humans and computers can take place at an af-

fective level. To be more specific, it aims to enable a computer to understand its

user’s emotion and be able to respond appropriately or even sympathize with its

user’s affective state. Some might challenge the benefit of such goal, pointing out

that maybe it is not necessary for the computer to have emotional abilities since

a computer is just a tool and it is fine to keep it as a rigid tool. The argument is

logical and reasonable; however, there are some situations where human-computer

interaction at an affective level can improve the user’s experience significantly by

adding the user’s emotional information, such as frustration, interest, displeasure,

and etc., to the process implemented in the computer so it can respond in an ap-

propriate way. Here are some of the applications in which we can apply affective

computing to enhance a user’s experience.

• Lessen the User’s Frustration

Many users, over time, show a lot of frustration toward computers. ”A widely-

publicized 1999 study by Concord Communications in the U.S. found that

84% of help-desk managers surveyed said that users admitted to engaging in

violent and abusive behavior toward computers” (Quote from [Pic99]). This

fact is one of the reasons why Human-Computer Interaction (HCI) researchers

strive to lessen users’ frustration during their interaction with a computer via

1



the interface design but, unfortunately, the frustration is bound to happen in

some way or another. As an alternative way to deal with the user’s frustration,

computers should learn how to lessen the user’s frustration or displeasure. An

example to reduce the user’s frustration could make the system play relaxing

music when it detects some certain threshold of stress from its user.

• Online-Based Education

E-Learning is an innovative way of learning via electronic resources, typically

on the internet. Students can choose freely what contents to consume com-

pletely at their own pace and time. Due to the flexibility that E-learning

provides, it has become increasingly popular as time passed. However, Online

courses have one big disadvantage, which is the lack of interaction between

the teacher and the student, because it is difficult for the teacher to prop-

erly monitor his/her student reactions when the class is conducted remotely.

Hence, a good example of how affective computing system can be useful in the

addition of affective abilities to the online classroom system, where a computer

can monitor the level of student’s engagement and stress during the lectures,

especially with younger students.

• Online-Based Services

Online-Based services will undoubtedly be used by service providers in the

future. We have seen many service providers start to integrate online-based

services to give more flexible options to their customers. For instance, some

health providers now offer E-therapy, i.e., online-based health consultations,

to patients so they do not have to travel to a hospital in person, or in an

2



emergency case, the health provider can provide the advice right away, in

real-time. Another relevant example is the increasing use of online customer

service. Most recently, a new practice that many big companies have adopted

is the use of customer Service Bots, which automate their customer service

with AI chatbots 1 to solve a simple routine problem that does not involve

complicated tasks that could require human intelligence. This way of dealing

with customers provides resilience capacities for companies to deal with the sit-

uation when a lot of customers phone in at the same time. Even though an AI

chatbot is a very efficient way to provide customer support, a robot is simply a

robot. Currently, robots cannot interact at an emotional level with customers.

Incorporating affective abilities to the chatbot will enhance customer experi-

ence significantly. Besides, companies are also interested in collecting data of

customer feedback so an ability to detect the customer’s satisfaction during

the service will be highly valuable to companies for improving their services.

• Assistive Technology

Individuals suffering from autism who tend to have a social-emotional com-

municative impairment that makes it difficult to interact with other people.

Using computers or assisting technology to communicate with non-autistics

may help in easing this difficulty by allowing an autistic person to commu-

nicate non-verbally with others. Affective technology can help autistics to

identify non-autistics’ affective states which are often difficult for the autistic

person. Additionally, current intervention techniques suggest that intensive

and progressive training can help autistics to improve their social-emotional

1Artificially Intelligent chatbot
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skills and in recognizing other people’s emotion. That is why affective technol-

ogy can help to assist autistics to develop their social-emotional capabilities.

Human has strived to develop intelligent systems. However, most of the time,

the emotional aspects of intelligence are ignored, as they are seen as less critical.

However, this topic is also very important to balance the way humans interact

with computers. HCI researchers should always keep this thought in mind while

researching a better way of enhancing a user’s experience with computers.

1.2 Affective Computing

The idea of enabling a computer to generate empathy and be able to be empathetic

to its user is a very challenging goal. The difficulties associated with the actual

implementation of an affective computing system might be best appreciated if one

considers the 3 fundamental tasks that must be performed to fully animate the

performance of an affective computing system (affective computer), as outlined by

Hudlicka [Hud03]: These tasks can be described as (See Figure 1.1):

1. Affect Sensing and Recognition

2. User Affect Modeling / Machine Affect Modeling

3. Machine Affect Expression

The affective sensing and recognition tasks aim at making the machine aware

of the affective state of the human user. This will require sensing some observable

manifestations of that affective status and recognizing (or cataloging) the state, so

that, then, the machine may determine (by following some pre-programmed inter-

play guidelines) which affective state it should adopt in response, and, further, the

type of affective expression that it should present to the user. Those initial stages

4



Figure 1.1: Simplified diagram showing the interaction between the key processes
in affective computing identified in [Hud03]. (Diagram reproduced from [Bar08]

of the process, however, may involve some of the major challenges that must be

overcome for the implementation of a fully-functional affective computing system.

In fact, Picard identified Sensing and recognizing emotion as one the key challenges

that must be conquered to bring the full promise of affective computing concepts

to fruition [Pic03] and this topic is what this dissertation is focusing on to improve

the emotional-perception capabilities of computers. Although the topic of affective

computing was introduced two decades ago, the progress in this field is not as ad-

vanced as compared to other fields in artificial intelligence, due to many reasons,

for example, the lack of interest or previous lack of the necessary real-time compu-

tational power. Nonetheless, recent developments in related fields, such as machine

learning, big data, and computer vision have reached a level where it is possible to

attempt the actual implementation of affective systems. Especially, correct machine

learning advances have significantly re-defined how to automate computers to learn

by themselves.
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In the pursuit of solutions for that important challenge, there have been many

approaches proposed. Specifically, a wide variety of mechanisms have been suggested

for affective sensing. Some research groups have attempted the assessment of user

affective states using streams of data that are commonly available in contemporary

computing systems, such as video from the users face, audio from the users voice

and text typed by the user on the keyboard. Zeng et al. [ZPRH09], provided an

interesting survey of relevant systems that use video and/or audio, to estimate the

users affective state. Most vision-driven approaches are based in the known changes

that occur in the geometrical features (shapes of the eye, mouth, etc.) [CHFT06] or

facial appearance features (wrinkles, bulges, etc.) [GD05] of the subject, according

to different affective states. Cowie et al. associated acoustic elements to prototypical

emotions [CDCT+01]. Some other groups explored the coordinated exploitation

of audio-visual clues for affective sensing [CDCT+01]. Liu et al. focused on the

utilization of text typed by the user for affective assessment [LLS03]. Approaches

in this area of work include Keyword Spotting (e.g., [Ell]); Lexical Affinity (e.g.,

[AOC03]); Statistical Natural Language Processing (e.g., [GSH+00]); etc.

Other groups have attempted to identify the physiological modifications that

are directly associated with the affective states and transitions in human beings,

and have proposed methods for sensing those physiological changes in ways that are

noninvasive and unobtrusive to a computer user. The reconfiguration experimented

by a human subject as a reaction to psychological stimuli is controlled by the Au-

tonomic Nervous System (ANS), which innervates many organs and structures all

over the body. The ANS can promote a state of restoration in the organism, or, if

necessary, cause it to leave such a state, favoring physiologic modifications that are

useful in responding to the external demands. In our case, the AffectiveMonitor

system , which is the focus of this dissertation, is our attempt to achieve the goal

6



of empowering computers to recognize the user’s emotion analyzing his/her facial

expression and pupil diameter changes.

1.3 Research Questions and Hypotheses

Question: Will the proposed method provide a useful assessment of the users affec-

tive state, enabling it to react appropriately to it?

Hypothesis: By estimating the level of arousal and valence of the computer user via

pupil diameter and facial expression, the computer will be able to place the users

affective state in the Circumplex Model of Affect. Based on that estimation, a ma-

chine learning model could be used to synthesize an appropriate affective response

by the computer to decrease, if necessary, the users negative feelings.

1.4 Outlines

This dissertation starts by explaining the methodology as well as the necessary

background to understand the chosen approach in Chapter 2. Then the process of

data acquisition will be outlined and details on how the human-subject experiment

will be provided in Chapter 3. Chapter 5 will describe the AffectiveMonitor system

in depth, including the details of its software, all its integrated features, the modules

for data acquisition. Chapter 6 and 7 explain the method followed to build the model

to classify the affective state of the user. Subsequently, the results and performance

of the model will be reviewed in Chapter 8. Lastly, Chapter 9 will suggest future

work and possible alternative ways to utilize the data collected for this research.
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CHAPTER 2

METHODOLOGY

This chapter outlines the fundamental topics required as background knowledge

for the explanation of the approaches developed for the method we propose for

intrusive affect recognition in a computer user. The chapter starts by explaining the

model of emotion called the Circumplex Model of Affect, which can be described

briefly as a two-dimensional plot of representing arousal as a vertical axis and valence

as a horizontal axis. Accordingly, in this model of affect, the affective state can

simply be represented as a location specified by two parameters: arousal and valence.

The rest of the chapter introduces background information on the mechanisms that

might be used to determine those two parameters that characterize erg affective state

of a computer user. The description will also outline the challenges encountered in

assessing the affective parameters, and how this research sought to circumvent those

challenges.

2.1 Model of Emotion

Early on, a persons affective state was typically mapped to a discrete system with a

limited set of basic emotions and each emotion was considered independent of one

another. Nowlis [NN56] reported his investigation and concluded that he thought

there are between six to twelve monopole factors, based on the observation that

those core emotions such as anger, fear, sad, happy, and so on can be distinguished

separately by people regardless of their ethnic, age, or sex. Neurophysiologists be-

lieved that affective states can be treated as if they are each in a different dimension

because each affective state has its own unique neural pathways in the Central

Nervous System (CNS). Although theories of basic emotions were dominant in psy-

chiatric and neuroscience research, the theory itself is based on speculation rather
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than on empirical observations. For example, one might assume that the emotion

of sadness has an uncorrelated relationship with the feeling of happiness. However,

there are some situations in which this theory of discrete emotion cannot give a clear

explanation of how one feeling separates from another. For instance, the feelings

of worry and fear are somewhat different but somewhat similar, at the same time.

Thus, this theory still requires more substantial evidence to support it.

Later, Russell developed a theory that explains the affective state in more em-

pirical terms. Russell has proposed The Circumplex Model of Affect [Rus80] as a

model of the affective state of a human. The model is based on the fundamental

idea that each affective state arises from the product of the interaction between

two independent neurophysiological systems: arousal and valence. One good thing

about Russells work is that he used the statistical tool of factor analysis in various

psychological assessments he performed when he was conducting his experiments,

and the results showed consistent outcomes that strengthen the support of his hy-

pothesis. Russell had studied that English words used to refer to different type

of emotions can be placed in scales to rate the degree of pleasure-displeasure and

degree-of-arousal that they convey. He also found out that these dimensions are

bipolar and each affective state could be arranged on the circumference of a circle in

a two-dimensional space; which he named The Circumplex Model of Affect. In his

model the pleasure-displeasure dimension is placed as the horizontal axis, where its

negative pole represents displeasure and its positive pole is regarded as pleasure, On

the other hand, the degree-of-arousal dimension is positioned as the vertical axis,

where its negative pole corresponds to low in arousal and the positive pole is as-

signed to high in arousal. The arrangement of the affective states in the circumplex

model depends on the way an affective word, is projected in the circumplex model

of affect. For example, The word Bored appears to be projected near the center of
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Figure 2.1: Direct circular scaling coordinates for 28 affect words (Figure from
[Rus80])

the bipolar dimension of pleasure-displeasure (valence); and the same word appears

to be placed in a region toward the negative pole of the degree-of-arousal dimension

(arousal).

In his well-known study [Rus80] published in 1980, he proposed the placement

of 28 affective words in the circumplex model of affect as shown in Figure 2.1. The

first quadrant in includes locations with angles between 0◦and 90◦and the angles

are considered to increase in the counterclockwise direction. Each quadrant can be

briefly named according to the relationship between arousal and valence.

In this dissertation, we have chosen Russell’s Circumplex model of affect as our

hypothetical model, serving as the basis for affect characterization pursued in this

study.
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2.2 Assess the affective state

So far, we have explained the Circumplex Model of Affect where the location of each

affective state is defined by two parameters: arousal and valence. The goal to assess

the affective state of a computers user can be achieved if we can estimate these two

parameters. One way to estimate the level of arousal and the level of valence from a

computers user is to observe the changes of his/her bio-signal indicators which are

directly affected by arousal and valence. Two indicators that we selected to observe

are Pupil Diameter (PD) for arousal assessment and Facial Expression for valence

assessment.

2.2.1 Arousal Assessment by Pupil Diameter

There are have been numerous studies in the neuroscience field that produced strong

evidence for the identification of the segment of the nervous system which directly

influences our reactions to psychological stimuli (e.g., arousal). This is the Auto-

nomic Nervous System (ANS) (Figure 2.2).

The Autonomic Nervous System (ANS) coordinates the cardiovascular,

respiratory, digestive, urinary and reproductive functions according to the interac-

tion between a human being and his/her environment, without instructions or inter-

ference from the conscious mind [Riz15]. According to its structure and functional-

ity, the ANS is studied as composed of two divisions: The Sympathetic Division and

the Parasympathetic Division. The Parasympathetic Division stimulates visceral ac-

tivity and promotes a state of rest and repose in the organism, conserving energy and

fostering sedentary housekeeping activities, such as digestion [Riz15]. In contrast,

the Sympathetic Division prepares the body for heightened levels of somatic activ-

ity that may be necessary to implement a reaction to stimuli that disrupt the rest
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Figure 2.2: Autonomic Nervous System (ANS) (Picture from [Low])

and repose of the organism. When fully activated, this division produces a flight or

fight response, which readies the body for a crisis that may require sudden, intense

physical activity. An increase in sympathetic activity generally stimulates tissue

metabolism, increases alertness, and, from a global point of view, helps the body

transform into a new status, which will be better able to cope with a state of crisis.

Parts of that re-design or transformation may become apparent to the subject and

may be associated with measurable changes in physiological variables. Variations

in sympathetic and parasympathetic activation produce physiological changes that

can be monitored through corresponding variables, providing, in principle, a way to
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assess the affective shifts and states experienced by the subject. Parasympathetic

and sympathetic activations have effects that involve numerous organs or subsys-

tems, appearing with a subtle character in each of them. Therefore, one approach to

affective sensing might be based on monitoring the changes in observable variables

that are brought about by an imbalance in the sympathetic-parasympathetic equi-

librium introduced by sympathetic activation. These changes can then be matched

to the fundamental types of states for which each of these divisions of the Auto-

nomic Nervous System prepares us (The sympathetic response prepares us for fight

or flight, whereas the parasympathetic response sets us up for rest and response).

Accordingly, the predominance of sympathetic activity can very well be taken as an

indicator of arousal, represented on the vertical axis of Russells Circumplex Model

of Affect [Rus80]. It is, indeed, common to experience acceleration of our heart rate

(evidence of sympathetic activation) both, while we take a crucial test and when

our favorite sports team is winning a match.

Much of previous work at the FIU DSP Laboratory has focused on signal pro-

cessing methods to estimate a level of sympathetic activation using data recorded

from non-invasive physiological sensors, such as Electro-Dermal Activity (EDA),

also referred to as Galvanic Skin Response (GSR), and, most promising due to its

complete unobtrusiveness, Pupil Diameter (PD) monitoring, using infrared video

analysis (commonly used in eye gaze tracking, EGT equipment). Our approach to

assessing the level of arousal experienced by the subject is through the monitoring

of the pupil diameter, measured, in real time, by many eye gaze trackers (EGTs).

This approach, in fact, targets the estimation of sympathetic activation (and simul-

taneous parasympathetic deactivation) in the Autonomic Nervous System (ANS).

Previously, the FIU DSP Lab group has explored the monitoring of pupil diame-

ter from a computer user, utilizing an ASL-504 eye-gaze tracker, which reports the
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estimated pupil diameter in pixels (integer values), for the assessment of affective

states in the user [BZRG07]. This approach has a strong anatomical and physiologi-

cal rationale. The diameter of this circular aperture is under the control of the ANS

through two sets of muscles. The sympathetic ANS division, mediated by posterior

hypothalamic nuclei, produces enlargement of the pupil by direct stimulation of the

radial dilator muscles, which causes them to contract [SSCP04]. On the other hand,

pupil size decrease is caused by excitation of the circular pupillary constriction mus-

cles innervated by the parasympathetic fibers. The motor nucleus for these muscles

is the Edinger-Westphal nucleus located in the midbrain. Sympathetic activation

brings about pupillary dilation via two mechanisms:

(i) An active component arising from activation of radial pupillary dilator muscles

along sympathetic fibers.

(ii) A passive component involving inhibition of the Edinger-Westphal nucleus

[BrEu].

The rationale for arousal assessment on the basis of pupil diameter monitoring

is also supported by other independent experiments in which pupil diameter has

been found to increase in response to stressor stimuli. Partala and Surakka used

sounds from the International Affective Digitized Sounds (IADS) collection [LBC99]

to provide auditory affective stimulation to 30 subjects, and found that the pupil

size variations corresponded to affectively charged sounds [PS03]. In our previous

work from the FIU DSP lab group [GBA09a], it was verified that an enlargement of

the pupil diameter is observed when the subject experiences sympathetic activation

from exposure to stressor stimuli (incongruent Stroop word presentations), therefore

providing further support for the rationale of the combined system described in

this dissertation. Figure 2.3 shows some of the results obtained. In Figure 2.3,
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Figure 2.3: (From [GBA09a]) The bottom panel shows the increased in the Processed
Modified Pupil Diameter (PMPD) signal, which correspond to application of stressor
(Incongruent Stroop) stimuli, IC1, IC2 and IC3.

the elevations in the processed signal (PMPD), other than the initial transient at

the beginning of the record, are seen to correspond with the intervals labeled IC1,

IC2 and IC3, which were the intervals of the experiment when the subject was

presented with incongruent Stroop word presentations. In conclusion, the pupil

becomes dilated when a person experiences sympathetic activation (stress, aroused)

while conversely, the pupil is constricted when his /her affective state is dominated

by parasympathetic activation (peaceful, calm).

2.2.2 Valence Assessment by Facial Expression

In term of valence, psychologists define it as ”any relatively brief conscious experi-

ences characterized by intense mental activity and a high degree of pleasure or dis-
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pleasure” (Quote from [Mat01b]). the elevations in the processed signal (PMPD),

other than the initial transient at the beginning of the record, are seen to cor-

respond with the intervals labeled IC1, IC2 and IC3, which were the intervals of

the experiment when the subject was presented with incongruent Stroop word pre-

sentations. In conclusion, the pupil becomes dilated when a person experiences

sympathetic activation (stress, aroused) while conversely, the pupil is constricted

when his /her affective state is dominated by parasympathetic activation (peaceful,

calm). [Dam05]. By observing transitions in the activity of organs of the human

body, such as facial muscles, which occur as a result of emotional stimuli, we can

classify human expressions of emotion or, in this case, identify the valence of those

emotions. It has been proposed that the most basic and distinctive signs of experi-

encing emotions are the corresponding changes in facial expression. Even before we

attempt to identify a person affective state from what he/she says, we instinctively

observe another persons facial expression to determine what will be the appropri-

ate interaction toward that person. In other words, we use our eyes to observe the

changes in facial muscles that define facial expressions and then we interpret that

expression based on the patterns we have seen in previous instances. Ekman noticed

this fact and implemented the Facial Action Coding System (FACS) [EFA80], which

provides a strong foundation for later studies in the affective computing field.

The Facial Action Coding System deconstructs the anatomic components of a

facial expression into the specific Action Units (AU), and, accordingly, makes it

possible to code the facial expressions of known affective significance on the basis of

the contraction and relaxation of facial muscles. These associations can be leveraged

in recognizing affective states from facial gestures. Humans do this through their

intrinsic visual perception. For example, we may infer that a person is happy by

observing the way the corners of his/her mouth are lifted, or the shape of his/her
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Figure 2.4: Examples of Action Units (AU) from Facial Action Coding System
(FACS) (Picture from [EFA80])

eyes becomes narrower when a person smiles.

FACS provides a systematic way to encrypt the facial expression in an objective

and compact set of standard parameters. By monitoring how the behavior of Action

Units changes, corresponding to the different facial expressions, we can extract some

unique patterns that can be used to classify types of facial expression. Ekman also

suggests that the combination of the units can accurately make an inference about

which kind of emotion the face is reflecting. Additionally, there have been extensive

studies, conducted through decades, which reinforce this idea. Matsumoto et al.

[Mat01b] have compiled a listing of the AUs typically activated in expressing 8 basic

emotions (Table 2.1). In Figure 2.4, shows an example of the muscle activation

that are used to define each Action Unit (AU). For example, AU4 (a.k.a. Brow

Lowerer) represents the movement of facial muscles (Depressor Glabellae, Depressor
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Supercilli, Corrugator), where the muscles constrict to attachment points (the places

where the circular labels with the number 4 are. Notice that there are three muscles

involved, hence there are 3 circular labels with the number 4 in them). The line

extended from the circle refers to the placement of facial muscles associated with

this AU.

Table 2.1: Action Units typically activated for 8 emotions. The numbers appearing
in the table are referring to the index of Action Unit (AU) (Table is modified from
[Mat01b])

Emotion AUs from Darwin’s work AU’s from other human
experiments

Anger 4; 5; 24; 38 4; 5 or 7; 22; 23; 24
Contempt 9;10;22;41;61 or 62 12 ; 14
Disgust 10; 16; 22; 25 or 26 9 or 10; 25 or 26
Fear 1; 2; 5; 20 1; 2; 4; 5; 20; 25 or 26
Happiness 6; 12 6; 12
Joy 6; 7; 12 6; 12
Sadness 1; 15 1; 4; 15; 17
Surprise 1; 2; 5; 25 or 26 1; 2; 5; 25 or 26

Figure 2.5 summarizes the approaches that are followed in this research to char-

acterize the affective state of a computer user. The research described in this dis-

sertation pursues the assessment of the affective state of a computer user from two

types of measurements. It will seek to estimate his/her arousal level and valence level

by observing his/her pupillary response, influenced by the ANS, and by monitoring

that persons facial expression, respectively. The following chapters, will explain in

detail how this strategy was implemented practically.
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CHAPTER 3

DATA ACQUISITION

The goal of this research is to build a supervised machine learning model to

classify the computer users state of affect. One of the initial steps towards that

goal is the identification of the types of data required for this task. The target data

has to be able to reflect the changes of arousal and valence level of the user but, in

addition, it is necessary that the data acquisition process should not interfere with

the interaction between the user and the computer. Based on the Circumplex Model

of Affect, there are two parameters we have to estimate to assess a users affective

state: arousal and valence.

It is known that the pupillary response is influenced by the Autonomic Nervous

System (ANS). The pupil is dilated (larger pupil diameter) when the user is in a

high arousal state. Conversely, the diameter is constricted (smaller pupil diameter)

when the user is in a low arousal state. Therefore, we can estimate the arousal level

through the changes in the pupil diameter. Pupil diameter monitoring is also a good

choice in terms of its non-intrusiveness during data acquisition.

For the assessment of valence case, the facial expression has long been considered

a primary way for a human to observe another humans emotional changes, as well

as a fundamental way in which humans express their emotion. We tend to conclude

if the person we observe is happy if he or she is smiling and we can see that the

person is sad if he or she is crying. Emotion is defined as the complex actions of

a group of organs that are influenced by the mental activities and an associated

high degree of pleasure/displeasure [Mat01a]. In our case, the group of organs that

we are monitoring for affective valence assessment is the facial muscles. Therefore,

pleasure/displeasure, i.e., affective valence, can be approximately estimated by mon-

itoring of the subjects facial expression. The Facial Action Coding System (FACS)
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provides an empirical and systematic method to define the changes of facial muscles

by detecting which Action Units (AUs) are activated during the changes in facial

expression. In this research, the detection of facial changes is derived from changes

in the 3D coordinates of the surface of the face. The data acquisition can be per-

formed in a non-intrusive way by using the capabilities of the Kinect sensor module

developed by Microsoft [Rah17].

Having identified the user variables to be monitored (pupil diameter and facial

expression changes) the design of the data collection process plays an extremely im-

portant role to obtain appropriate data for the development of the affect recognition

system. Thus, an experiment has been set up where human subjects will be pre-

sented with images from the International Affective Picture System (IAPS)[LP05] to

elicit from them affective reactions, manifested through their involuntary changes in

pupil diameter and in their facial expressions. In addition, subjects while also report

the subjective assessment of their reactions through the Self-Assessment Manikin

(SAM)[BL94].

During the recording sessions, a Kinect sensor was used to collect the 3D facial

coordinates and the Facial Animation Parameter Units (FAPUs)[AA01] from the

subjects face, as well as an estimate of the illumination level in the area around the

eyes of the subject. Simultaneously, an Eye Gaze Tracking (EGT) system was used

to record the pupil diameter in the eyes of the subject. The self-reports of arousal

and valence marked by the subject in SAM for each IAPS image were also recorded

into the dataset for later use.

The next section provides an explanation of the International Affective Picture

System used as the stimulus for elicitation of affective responses in the subjects.
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3.1 The International Affective Picture System

The International Affective Picture System (IAPS) is a large set of color photographs

that elicit shifts in the subjects arousal and valence. IAPS contains a wide variety

of stimulus types for more than 1,000 exemplars of human experience such as joyful,

sad, fearful, attractive, angry, simple objects, scenery, etc. The idea is to present the

subject with visual stimuli to modify his/her affective state while recording his/her

reaction. The IAPS has been used across various fields of study to investigate emo-

tion and attention worldwide and it is well-known for its replication and robustness.

Pictures from IAPS are rated with arousal, pleasure, and dominance mean values,

based on reactions from men and women, which make them suitable to be used

as stimuli in this study. More in-depth information about IAPS can be found in

[LP05].

For this research, IAPS provides both the stimuli (pictures) and the labels for the

levels of arousal and valence needed for the design of a classifier under the supervised

machine learning paradigm. IAPS provides us the mean and the standard deviation

of arousal, valence, and dominance values, according to the ratings that thousands of

subjects gave to the pictures in previous characterization studies. This means that

the number of mean arousal and mean valence that comes with each picture has

already reduced the potential bias of the rating by an individual, which may react

differently based on their personal background, religion, culture, and etc. The mean

values represent how the majority of people react to each particular picture. The

IAPS documentation also provides the means and the standard deviations calculated

for separate genders which could be very useful in case we include the gender as one

of our features for training a predictive model.
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Figure 8.4: Scatter plot of PQR features without applying illumination compensa-
tion technique
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Figure 8.5: Scatter plot of PQR features applied by illumination compensation
technique
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Human Factor

The emotional mechanisms experienced by human beings are complex and frequently

modulated by highly individual factors. This makes it difficult to attach a definitive

label to the levels arousal or valence that can be expected as the response of a given

experimental subject to the presentation of a pictorial stimulus (e,g., a picture from

the IAPS database). As we have described, there are discrepancies between the plot

of the expected arousal responses obtained as the means of arousal in the IAPS

repository and the plot drawn from the averaged arousal rankings of the 50partic-

ipants in our experiment (see Figure 7.5a). The plots show that these two sets of

expected arousal responses are frequently not consistent with each other. There

are many factors behind this observed effect. One factor that may be contributing

to the discrepancy observed may relate to the different gender ratios in the sub-

ject populations that generated those arousal mean values. Participants of different

genders may exhibit heightened arousal in response to different pictorial themes.

Also, we observed that the self-awareness of each participant regarding the level of

arousal reached may vary from individual to individual, which could cause further

ambiguity in the definition of arousal labels for the pictures. Another factor possibly

contributing the difficulty in establishing robust arousal labels might be the impact

of the cultural background of the individuals on their reaction to the images used.

These were some of the main reasons why the decision was made to only use IAPS

images that had consistency in their expected arousal levels as defined from both

information sources.

Depth Intolerance

Although our experimental subjects were asked to remain as still as possible, position

shifts and adjustments were frequently observed through the experiment (which
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Figure 8.6: Plot of one sample of pupil diameter signal that is corrupted by the test
subject’s movement

lasted about 45 minutes). These movements introduced artifacts and scaling factors

in both the pupil diameter and the face surface that caused some parts of the

recorded signals to be discarded. For example, one sample of pupil diameter signal

is shown in Figure 8.6. The artifacts introduced in this pupil diameter record,

for example, resulted in having to discard it, because the relative sizes of ∆QR and

∆PQ in the sample are abnormal, likely due to the introduction of depth variations.

Device Limitation

The eye-gaze tracker device used in this study is attractive because of its portability

and size. However, it does not offer very high resolution in the pupil diameter
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measurements that are obtained from it. This may have been part of the reason

for the presence of noise in the pupil diameter signals recorded. As described in

Chapter 6, digital signal processing techniques were utilized to try to minimize the

impact of that noise in the feature extraction process, but those are no substitute

for a cleaner original signal, which would be highly desirable.

Ethical Limitation

We relied on the expectation that the stimulus pictures from the IAPS database

would effectively elicit perceivable emotional responses in our experimental subjects.

However, in deciding which subset of the IAPS images to use for the experiment

the desire to potentially use images with the highest arousal mean values within

the database, to provide powerful stimuli and prospectively elicit strong responses,

had to be counterbalanced by the commitment to the safety and well being of the

experimental subjects. Accordingly, this study did not use some images that had

high arousal levels in the IAPS database but could have resulted too shocking for

our experimental subjects (for example, headless body). Preserving this level of

moderation in the strength of the stimuli may have resulted in an inability to fully

explore the spectrum of emotional reactions of the subjects, but that was a conscious

decision made for the reasons stated above.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

This final chapter will provide a retrospective summary of the development of this

project, emphasizing the conclusions that can be reached on the basis of the ex-

perimental results and their analysis. This chapter will also reflect on suggestions

for future development and improvement that emerge from the outcomes of this

dissertation.

9.1 Conclusion

The motivation for the research reported in this dissertation was the definition of

an unobtrusive approach for the assessment of the affective status of a computer

user. The Circumplex Model of Affect, with its dimensions of arousal and valence,

was chosen as the frame of reference for the estimation of the users affective state.

Further, it was decided that the affective assessment of the user would be attempted

on the basis of information extracted from the pupil diameter, monitored with an

eye-gaze tracker and the facial expression, monitored using a Kinect module. The

information obtained from the user would be processed following a machine learn-

ing approach to yield estimates of the affective arousal and affective valence levels

experienced by the computer user.

The pupil diameter is known to be an indicator of arousal in humans since the

pupil size is influenced by Autonomic Nervous System (ANS) which controls the

arousal level. Unfortunately, the pupillary response is also affected by the pupillary

light reflex which is the bodys mechanism to regulate the amount of light that

reaches the retina. To address this issue, specific modifications, controlled by the
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estimated illumination level, were inserted in the feature extraction process applied

to the measured pupil diameter signal.

As it is speculated that the pupil diameter is not reflective of the valence of

the affective state of the subject, it was necessary to extract this parameter from

the users facial expression, monitored using the Kinect module. In particular, this

dissertation proposed the embedding of the facial expression information into Facial

Animation Parameter (FAP) vectors to detect the activation of Action Units (AU)

that can be used as features for affective valence estimation. The FAP vectors have

the added attribute to be face-size independent, as they are unitless.

In the pursuit of the goal mentioned above, the AffectiveMonitor system was

developed, which involves to hardware sub-systems (Primary Side and Secondary

Side) and the software that controls both of the sub-systems. The AffectiveMonitor

system controls both instruments used for data acquisition (eye gaze tracker and

Kinect module) and performs all the pre-processing and feature extraction tasks,

following the procedures detailed in this dissertation. Furthermore, this system has

multiple modes of operation. One of its modes allows the recording of features

derived from pupil diameter and facial expression measurements gathered while

experimental subjects are presented with pictures from the International Affective

Picture Systems (IAPS) database that are meant to shift the viewers affective state

to arousal and valence levels assessed in previous experiments performed by the IAPS

developers. This mode of the AffectiveMonitor system was used to collect data for

the development of the machine learning predictive model for affective assessment.

The contribution of this research work extends beyond the development of the

AffectiveMonitor platform into the adaptation of techniques and algorithms to ac-

commodate the processing challenges encountered in the pursuit of the affective

assessment goal.
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It was found, for example, that in multiple instances there are significant discrep-

ancies between the mean values of arousal and valence published with each IAPS

image and the averages obtained through self-reporting by the 50 experimental sub-

jects enrolled in the data collection process completed for this dissertation (with

FIU Institutional Review Board approval). It was then necessary to set discard

data collected from presentation of images with large discrepancies in their arousal

mean levels.

Similarly, an alternative procedure for illumination compensation (embedded in

the feature extraction stage) had to be devised when it became apparent that the

illumination compensation process used in previous research from the FIU DSP

Laboratory was not practical for application to data collected in short intervals (10

seconds) as recommended by the authors of the IAPS database.

This research also addressed the challenge of locating the changes in pupil di-

ameter and in facial expression to specific intervals within the 10-second recording

window that followed the presentation of each one of the IAPS images to the sub-

jects. The automated procedure devised for this purpose was necessary to account

for the variable latency at which facial expression changes occur for different sub-

jects.

The machine learning model developed as a result of this dissertation used the

Support Vector Machine (SVM) architecture in a cascade configuration which esti-

mates the affective valence first, based on Kinect data and supplements the assess-

ment with an estimation of the arousal level in a second step. 10-fold cross validation

processes yielded estimation accuracies of 75% for the assessment of valence level

and 92% for the assessment of arousal level.

It was also observed that the inclusion of the illumination compensation in the

feature extraction process for the pupil diameter signals played, as expected, an
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important role in enhancing the arousal accuracy recognition by compensating the

effect from the Pupillary Light Reflex (PLR).

Overall, this work has completed the development of the hardware and software

integration of a novel non-intrusive system for the automated assessment of a com-

puter users affective state (in terms of valence and arousal), using an off-the-shelf

portable eye tracking module and a standard Microsoft Kinect module. The de-

velopment and verification of this original system created on the basis of ordinary

off-the-shelf sensors has provided a new avenue for the prospective development of

affective sensing systems that could be practically deployed to ordinary computer

setups, as they will not involve intrusive interactions with the users or the require-

ment for highly specialized and elaborate sensing instruments that are not usually

available to the ordinary computer user.

9.2 Future Work

In its current state, the system developed in this study, classifies the affective arousal

and valence of the user to place it in one of the quadrants of the Circumplex Model

of Affect. Future developments will likely pursue the classification of each one of

the attributes (arousal and valence) with a finer granularity, to be able to locate the

affective state of the computer user to more specific regions within the circumplex

model (see Figure 9.1).

As the potential benefits of Deep Learning approaches in machine learning so-

lutions become better understood, it is tempting to envision the development of an

affective assessment system like the one developed in this dissertation along the lines

of Deep Learning principles. In particular, this would imply that the first layers of

the Deep Learning system could, to some extent, define, in a data-driven fashion
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Figure 9.1: Fine-scale regions in the Circumplex model of affect

the best feature extraction approach, operating directly on aggregates of raw data

or only lightly-reduced data. This prospect, however, has to be considered in the

context of the much larger amounts of training data that are usually necessary to

build Deep Learning models. In the arena of affective assessment this amounts to a

daunting data collection process that would probably have to involve large numbers

of human subjects completing very specific experimental protocols.

Lastly, it may be of interest to explore the monitoring of the pupil diameter

signal through the use of compact and affordable eye gaze tracking models that

are now emerging in the market as a consequence of the significant advances in

high-definition digital camera modules. Some of those devices could be considered

to propose an even less specialized and costly set of instruments for an affective

assessment system. However, the affordability and compactness of the modules

chosen should always be secondary to the need to have high resolution and low

noise levels in pupil diameter signals collected.
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