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ABSTRACT OF THE THESIS  

BORON NITRIDE NANOTUBE REINFORCED TITANIUM COMPOSITE WITH 

CONTROLLED INTERFACIAL REACTIONS BY SPARK PLASMA SINTERING 

by 

Jenniffer Bustillos 

Florida International University, 2019 

Miami, Florida 

Professor, Arvind Agarwal, Co-Major Professor 

Professor Benjamin Boesl, Co-Major Professor 

In this study, Boron Nitride Nanotube (BNNT) reinforced Titanium matrix composites are 

synthesized by Spark Plasma Sintering. Two main challenges directly affecting the 

mechanical performance of BNNT-metal matrix composites are addressed:(i) 

Homogenous dispersion of high surface energy BNNTs, and (ii) Controlling interfacial 

reactions at the metal/nanotube interface. High affinity of acetone with BNNTs and high 

energy ultrasonication induced the mechanical dispersion  and stability of BNNTs in their 

dispersion. The sintering of Ti (99% relative density) was achieved at 50% less processing 

temperature than those used in conventional sintering to minimize interfacial reactions 

when reinforced with BNNTs. The reduction of temperatures in addition to the reduction 

(by 91%) in processing times was shown to control reaction phases. Bulk compressive 

yield strengths of Ti-BNNT sintered at low (750oC) and high (950oC) temperatures were 

improved by 21% and 50% respectively, as compared to Ti alloy without reinforcement. 

Twin boundaries, pinning of dislocations by BNNTs, and crack bridging were 

strengthening mechanisms identified in the composites.  
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CHAPTER I: Introduction 

The increasing demand for structural materials capable of combining high strength 

and lightweight is the driving factor for the engineering of high-performance nanoparticle 

reinforced metal matrix composites. The automotive, aerospace, and naval industries are 

some of the many industries whose contending objective is to enhance the performing 

efficiency of emerging technologies1. Meeting this objective entails a significant decrease 

in the mass of structures while maintaining mechanical functionality of the metal. 

 Boron Nitride Nanotubes (BNNTs) have proven great potential as reinforcing 

nanoparticles in low melting point metal matrices (i.e., Aluminum) by providing high 

strength-to-weight ratios2–5. The main challenge revolving the reinforcement of higher 

melting point metal matrices such as Titanium lies in the survival of the reinforcing 

nanoparticles. The thermal stability of BNNTs to up to 900oC in the air prove their potential 

to reinforce Titanium matrices6–8.  

The overall objective of this thesis is to synthesize high strength, and low-density 

Boron Nitride Nanotube (BNNT) reinforced Titanium composites by Spark Plasma 

Sintering. The objective will be achieved by addressing two main challenges in the 

introduction of BNNTs to the Titanium matrix: (i) The homogenous dispersion of high 

surface energy boron nitride nanotubes in the Ti matrix. And, (ii) the development of 

BNNT reinforced Titanium composites by powder metallurgy with controlled interfacial 

reactions.   
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1. Motivation 

1.1 Demand for lightweight and high strength structural materials  

Across all engineering industries, the ever-growing quest for maximizing the 

efficiency of operations while minimizing the environmental footprint has become the 

primary goal. Reducing structural weight while maintaining mechanical performance 

presents a challenge to commonly found materials4,6,9. The exhaustive conditions attained 

in the automotive, aerospace and naval applications including high mechanical loadings, 

wear, elevated temperatures, and oxidizing settings have prompted the need for materials 

with properties exceeding those of currently used metals and alloys2,5,6,10. Titanium and its 

alloys possess excellent thermo-mechanical stability, corrosion resistance, and high 

specific strength6,11. Yet, its mechanical performance does not meet the requirements in its 

entirety to present a solution to the design criteria.  

The increasing interest to produce lightweight materials with superior structural 

properties required in automotive, aerospace and naval applications, has prompted the 

development of novel nanoparticle reinforced metal matrix composites1. Technological 

advancements in MMCs have demonstrated their potential to substitute conventional 

metals and alloys by achieving materials with enhanced specific strengths, wear resistance, 

and the advantage of tailorable properties1,12. A limiting factor in the reinforcement of 

Titanium matrices lies in the high reactivity of the reinforcing particles with the metal 

during processing involving elevated temperatures1,6. Hence, it is important that the 

reinforcing nanoparticle possesses thermal and chemical stability to withstand the elevated 

processing temperatures used in Ti matrices.  
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1.2 Boron Nitride Nanotubes (BNNTs): Potential reinforcement of Ti-matrices 

Boron Nitride Nanotubes (BNNT), a structure analogous to the well-researched 

carbon nanotubes (CNT), are comprised of boron and nitrogen atoms arranged in a 

hexagonal and layered fashion (h-BN)7,8. Its atomic configuration renders nanostructures 

combining a wide range of properties suitable for structural, electronic and energy 

applications3,7,8,13:  

• Excellent thermal stability up to 900o C in the air without experiencing structural 

or chemical modifications 

• Ultra-low density (true density of ~1.4 g/cm3)  

• Superior mechanical stiffness with elastic modulus >1 TPa, and strength of ~60 

GPa  

• High thermal conductivity (200-350 W/mK) and piezoelectricity 

Owing to their tubular nature, the introduction of BNNTs as a reinforcing material 

in metal matrix composites results in strengthening of the structures by load transfer 

mechanisms4. Due to polarized B-N bonds, a permanent dipole allows properties such as 

piezoelectricity to make this material fascinating for radiation shielding and energy 

harvesting applications8. The thermal and oxidation stability of BNNTs (up to 900oC in the 

air) make these nanostructures favored over its carbon analogous (CNT) to reinforce metal-

matrices as their processing is often carried out at elevated temperatures (>500oC)7,13. 
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2. Research Objectives 

The overall objective of this work is to synthesize high strength, and low-density 

Boron Nitride Nanotube (BNNT) reinforced Titanium composites by Spark Plasma 

Sintering. The following are specific approaches to achieve the objective of this thesis:  

• Homogenous dispersion of high surface energy BNNTs in the Ti-matrix to impart 

effective reinforcement of the composite – Surfactant-assisted, and high energy 

induced dispersion routes are used to establish a suitable method for the SPS of Ti-

BNNT composites. 

• Ti-BNNT composites synthesized with high densification and controlled interfacial 

reaction products are a requirement to improved mechanical properties –  

a. Low-temperature sintering of Ti-BNNT composites is introduced as a promising 

technique to minimize thermodynamically feasible reactions at Ti/nanotube 

interface. 

b. Spark Plasma Sintering as a fast (~10 min) consolidation technique is used to 

limit the kinetics of reactions at the Ti/BNNT interface. Also, grain growth is 

arrested, resulting in enhanced mechanical characteristics. 

• Evaluation of the bulk mechanical properties of as-sintered Ti-BNNT composites is 

evaluated under compressive loads – Fundamental understanding of the hierarchical 

stress-transfer and strengthening mechanisms between nanotubes and Ti-matrix. 

The subsequent chapter, Chapter 2, provides an overview of the physical 

characteristics of BNNTs and recent efforts in the integration of BNNTs to metallic 

matrices. The advantages and lessons learned from their addition to low melting point 
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metallic matrices such as Aluminum, and limited efforts in Titanium matrices are 

discussed.  Chapter 3 outlines the detailed materials and experimental procedures utilized 

in the synthesis, processing, and evaluation of the Ti-BNNT composites. Chapter 4 

discussed extensively and in great detail, the experimental results and implications to the 

strengthening mechanisms in the Ti-BNNT composites. Finally, Chapter 5 outlines the 

significant conclusions arrived at through this work and present recommendations for the 

future investigations of Ti-BNNT composites.  
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CHAPTER II: Literature Survey 

1. Boron Nitride Nanotubes (BNNTs): A mechanically, chemically, and thermally 

stable nanoparticle 

The physical, mechanical, and thermal properties of the one-dimensional Boron 

Nitride Nanotubes (BNNTs) are the main motivation for their implementation as 

reinforcement particles in this study. Since its predicted existence around 1994, and shortly 

followed by its first experimental synthesis in 1995 via arc discharge method14, BNNTs 

have attracted significant attention due to the exciting combination of functional properties. 

Figure 1 demonstrates the rising interest of BNNT research inspiring further scientific 

advances for this nanomaterial.  

 
Figure 1 Statistical representation of a number of research papers focused on BNNTs 

and their areas of significant interest14.  

Up to date, the fundamental physical, chemical, and mechanical properties of the 

nanotubes have been extensively researched through theory providing the foundation for 

BNNT related research. Experimental research of BNNTs has been limited primarily due 

to the extreme conditions required for the manufacturing of the nanotubes yielding small 
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quantities. Hence, giving rise to research focused on the growth and manufacturing of 

nanotubes meeting structural, and purity requirements. Significant efforts in recent years 

have allowed the emergence of synthesis route yielding large quantities of high-quality 

BNNTs.  

1.1 Physical, chemical and mechanical properties 

The atomic structure of BNNTs consists of alternating Boron and Nitride atoms 

arranged in a hexagonal fashion (h-BN). The networks of h-BN atoms can be thought as 

rolled into cylindrical tubes to give the characteristic arrangement of nanotubular structures 

(Figure 2). These tubular nanostructures are often found possessing multilayers as a result 

of the interactions among neighboring BN layers. The walls in multiwalled BNNTs are 

known to have interlayer spacings of ~ 0.34 nm, characterizing the d-spacing of h-BN along 

the 002 plane (d002). Depending on their synthesis process, BNNTs may have diameters 

ranging from 2 – 40 nm and lengths of up to 1 μm. The covalently bonded sp2 and partially 

ionic BN bonds in BNNTs are responsible for imparting the excellent mechanical strength, 

thermal stability, piezoelectricity, and even high neutron absorption15.  

 
Figure 2 Atomic representation of 2D Hexagonal Boron Nitride (h-BN) as the building 

block for Boron Nitride Nanotubes (BNNTs), and TEM showing the morphology of 

multiwalled BNNTs16. 
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The partially ionic B-N bonding in BNNTs is a result of the high electronegativity 

of N (3.04) atoms as compared to B (2.04). This provides BNNTs with electrical insulating 

properties and band gaps between 5-6 eV7,17–19, making this nanomaterial an excellent 

candidate for optoelectronics19. The ability of BNNTs to transform from their electrically 

insulating nature to that of a semiconductor under exerted mechanical deformation has 

been experimentally assessed by Bai et al20. This phenomenon is known as piezoelectric 

behavior. In which, mechanical stimuli are bound to result in electrical discharge or vice 

versa. Bai et al.20 demonstrated for the first time experimentally the decreased in electrical 

resistance of BNNTs to up to 97 % with increasing bending curvatures (curvature 1=12 

GΩ vs. curvature 5=0.26 GΩ )20.  

Also, the structural similarity of BNNTs to the well-researched Carbon Nanotubes 

(CNTs), renders them with comparable thermal conductivity (200-350 W/mK), the elastic 

modulus of ~ 1 TPa, and mechanical strengths of ~ 60 GPa17,19,21. The rising interest of 

BNNTs as a reinforcing nanostructure lies in their unique chemical stability and thermal 

stability to up to 900 oC. Hence, making them excellent candidates to reinforce materials 

which undergo high-temperature processes and/or applications requiring the thermo-

mechanical stability of BNNTs.  

1.2 Synthesis-dependent morphology of BNNTs: Bamboo vs. smooth 

The synthesis of BNNTs has been a subject of interest since the experimental 

discovery of these nanostructures. The morphology, diameter, and length of BNNTs are 

contingent on the synthesis process from which the BNNTs are obtained. Three 
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characteristic morphologies have been identified: (i) nanotubes with capped ends, (ii) 

nodular (bamboo-like), and (iii) smooth cylindrical nanotubes7.  

The first reported synthesis of BNNTs was performed by arc discharge method in 

199522. The process required the use of a BN precursor enclosed in a conductive tungsten 

anode. The arc plasma generated between the copper cathode and anode lead to the 

vaporization of the BN-containing anode. In which, interactions between B-metal/N-metal 

forming nitrides and borides are considered as catalysts for the growth of the nanotubes14,23. 

The BNNTs synthesized by Chopra et al.22 using arc discharge method had multiple walls, 

diameters between 1-3nm, and lengths of up to 200 nm22. Owing to the high temperatures 

used during arc discharge processes (~ 3000 K), synthesized BNNTs are considered to 

have high crystallinity. Although this method proved the ability to experimentally 

produced carbon-free nanotubes, the produced nanotubes were characterized by having 

metallic capped ends as a result of the metal catalyst used and are confined to small 

volumes. Adaptations to this method include the use of conductive boron-containing 

compounds (HfB2, YB2, YB6, etc.) as catalysts as opposed to the insulating BN, and N2 as 

a protective gas and nitrogen source in the process.  

In the quest to find the ideal synthesis method suitable for large scale production of 

BNNTs, the following have been explored:  

Ball milling: A promising technique for the synthesis of BNNTs due to its ability to yield 

high volumes of BNNTs and potential for industrialization7. Figure 3 outlines the overall 

process to reach the BNNTs via a ball-milling process. The synthesis is based on the 

introduction of defects and/or amorphous structures in the initial precursor powder. Boron 
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or h-BN precursor powders are often used for this process. In the case were a boron 

precursor is used as opposed to h-BN, NH3 gas is introduced as a protective gas and 

nitrogen source. The mechanical energy transferred during the ball milling process and the 

induced defects are responsible for allowing the high yield of BNNTs. Ease of modulating 

synthesis parameters such as time and RPM make this technique attractive for industrial 

production. Chen et al.24 demonstrated the use of long milling periods as critical to 

stimulate the nitration between boron and the NH3 gas. Thus, producing a larger number of 

nucleation structures aiding nanotube formation. The ball milling process is followed by 

annealing of the ball milled powder at temperatures between 1000 – 1300oC in nitrogen 

containing environments to allow the growth of nanotubes21. The process does not require 

a catalyst; however, the presence of Fe species is noted as a result of the stainless-steel jars 

often used for the ball milling process25.  

 

Figure 3 (a) Ball milling experimental process to synthesize high yield BNNTs7. (b) A 

TEM micrograph of resulting BNNTs synthesized by ball milling process yielding 

nanotubes with bamboo-like morphologies25.  
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BNNTs synthesized by ball milling method are often found to have diameters of 25 – 50 

nm (annealed at 1000oC), lengths of up to 1 mm24. More interestingly is the resulting 

morphology of the BNNTs which exhibit cylindrical segments with nodules along the 

length, assimilating a bamboo.   

Chemical Vapor Deposition (CVD): A commonly used method for the synthesis of the 

analogous CNTs, CVD presents advantages over other methods due to the ability to control 

the growth mechanism of the nanotube and have a high yield of crystalline BNNTs. The 

growth of BNNTs by CVD process uses a liquid or solid boron and boron nitride sources26.  

The use of metal catalysts (i.e., nickel boride) was shown by Lourie et al.26 in a CVD 

process carried out at temperatures of 1000-1100 oC to result in multiwalled nanotubes 

with lengths of up to 5 μm from a borazine precursor (B3N3H6)
26. The synthesized 

nanotubes were characterized by exhibiting irregular cap morphologies, mainly attributed 

to the root growth mechanism of BNNTs. The root growth characterizes the morphology 

of BNNTs synthesized by CVD processes implementing catalysts. This growing process 

initiates by the diffusion of Boron atoms into the catalyst particles and the concurrent 

decomposition of N on the surface of the catalyst. This is followed by the layer-by-layer 

precipitation of precursors to form BNNTs21. Hence, forming nodules during the growth 

of BNNTs and displaying bamboo-like morphologies.  

Laser ablation: A technique that allows the synthesis of BN nanotubes with perfect 

crystallization, consists of the heating of cubic BN or h-BN target by a CO2 laser to produce 

single-walled or multi-walled BNNTs24. The process is carried out at high nitrogen 

pressures between 5-15 GPa, and heating of the target by the laser reaches temperatures > 
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5000 K in 1 min. The produced nanotubes are characterized by achieving diameters of up 

to 15 nm yet limited by short lengths of < 100nm27. Also, BN nanoparticles (i.e., cones, 

amorphous B, etc.) as impurities in the BNNTs are often a disadvantage of this technique.  

Pressurized vapor/condenser method (PVC): A similar technique to laser ablation, the 

PVC method was introduced as a promising scalable technique for the synthesis of high-

quality BNNTs without introducing catalysts28. The high-temperature technique consists 

of the condensation of the BN precursor at temperatures >4000oC to produce boron plume. 

In the presence of N2 gas pressurized at 0.7 – 1.4 MPa, the vaporized boron generates a 

narrow plume, and homogenous nucleation of B droplets are triggered upon introduction 

of a condenser (cooled metal wire)28. The already diffused N2 in the B plume and the 

presence of B droplets acting as nuclei sites allow the growth of BNNTs, forming clusters 

and fibrils of BNNTs21,28. The novelty of this technique lies in the extremely high yielding 

rate of BNNTs of ~ 120 mg/h with high crystallinity. The BNNTs synthesized by the PVC 

(Figure 4) method are reported to have 2 -5 walls, lengths of at least 100 μm and diameters 

between 2 – 10 nm28,29.  
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Figure 4 (a) BNNT fibril synthesized via a pressurized vapor/condenser method 

yielding 200 mg. (b) A TEM micrograph of BNNTs with 1, 3 and 5 well defined 

parallel walls signaling their highly crystalline nature28.     

1.3 Boron Nitride Nanotube-reinforced composites 

Taking advantage of the excellent mechanical, optical, electronic, thermal, and 

chemical properties of the BNNTs has been a continuous pursuit and challenge. The 

integration of BNNTs to different material matrices to produce nanocomposites with 

multifunctional properties has demonstrated noteworthy success. Significant efforts have 

demonstrated the potential and suitability of these nanotubes to enhance the mechanical 

and thermal properties of polymeric, and ceramic matrices.  

The high thermal stability of BNNTs (up to 900o) as compared to its analogous 

CNTs (oxidize at 500oC), allow their integration in ceramic matrices undergoing high-

temperature processes (often > 1000oC). It is the reported thermal and chemical stability 

of the BNNTs which place this nanomaterial as a potential reinforcement to highly reactive 

metal matrices.  
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1.3.1 BNNT reinforced polymer composites 

Table 1 displays a summary of studies where the introduction of BNNTs has 

resulted in the simultaneous improvement of mechanical and thermal properties of the 

otherwise ductile and insulating polymer matrix. The degree of reinforcement in the 

polymeric matrices is highly contingent on the quality of dispersion of the high surface 

energy nanotubes within the polymer matrix. Lahiri et al.30 demonstrated the strong 

bonding interactions between BNNTs with a Polylactide–polycaprolactone matrix (PLC). 

In which, the preferred wetting of the BNNTs by the polymer (contact angle=71.5o) is a 

result of the molecular units of the polymer forming helical coils imparting strong π-π 

interactions31,32. This phenomenon has been observed in a wide array of polymer matrices 

such as PLC30, Polyaniline33, Polysterene29, etc. The extent of strengthening in PLC 

matrices reinforced by BNNTs is of up to 109% the strength of the matrix30.  These 

findings outline the requirement for the effective mechanical reinforcement of BNNTs in 

polymer matrices as: (i) homogenous dispersion of nanotubes, and (ii) interfacial bonding 

(matrix/nanotube). Fulfilling the two aforementioned requirements would ideally 

maximize the shearing strength between the matrix and the nanotube, as described by the 

shear lag model of fiber reinforced polymer composites given the correct aspect ratio. In 

addition to mechanically stable BNNT-based polymer composites, the introduction of 

BNNTs results in the development of thermally-conductive networks within the insulating 

polymer matrices. For instance, a high content PMMA reinforced matrix (24 wt.% BNNT) 

was found to yield thermal conductivities 21× larger (3.16 Wm-1K-1) than that of its 

polymer matrix. Hence resolving the potential of BNNT reinforced polymer composites 

for applications demanding strength and faster heat-releasing rates properties.  
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Table 1 Literature review summary of Boron Nitride Nanotube-reinforced polymer composites           

Polymer 

Matrix 

BNNT 

wt.% 

Morphology of 

BNNTs 
Method 

Processing 

conditions 
Main Properties Ref. 

Epoxy 2-32 
Smooth, 

Buckypaper 

Infiltration, 

chemical 

functionalization 

Oven cured at 

120oC for 2 hrs. 

Young’s modulus: 4.1 -7.7 GPa 

(41-100 % reinforcement) 

Tensile Strength: 42 MPa (60% 

reinforcement) 

Strain at failure: 0.6 % 

34–37 

Polyurethane 

(PU) 
75 

Smooth, 

Buckypaper 

One-step 

infiltration 

Cured at room 

temperature 

Young’s modulus: 0.5 GPa 

Tensile Strength: 5 MPa 

Strain at failure: 1.8 % 

34 

Polystyrene 

(PS) 
1 - 35 

Smooth, 

diameter: 40-50 

nm, length 10 

μm 

Solvent 

dispersed 

Cured at 60 oC 

for 4 hrs., hot 

pressing at 80oC, 

60 MPa for 2 hrs. 

Young’s Modulus: 2.57 -2.90 GPa 

(7-20 % reinforcement) 

Tensile Strength: 19 - 20.4 MPa 

Thermal conductivity: 3.61 Wm-1K-

1 (20× increase) 

29,38 

Polymethyl 

methacrylate 

(PMMA) 

24 

Smooth, 

diameter: up to 

50 nm, length: 

4-10 μm 

Solvent 

dispersed 

Hot pressing at 

80oC, 60 MPa for 

2 hrs. 

Thermal conductivity: 3.16 Wm-1K-

1 (21× increase) 
38 

Polylactide–

polycaprolacto

ne (PLC) 

2-5 

diameter: 32–

145 nm, length: 

0.43–5.8 μm 

Bath 

sonication/solve

nt dispersed 

Cured at room 

temperature for 

24 hrs. 

Young’s Modulus: 0.16-1.19 GPa 

(100-1370 % increase) 

Tensile strength: 4.98-5.59 MPa 

(87-109 % increase) 

Strain at break: 240 % 

30 

Polyimide 2 

Smooth, 

diameter: 1–10 

nm, length: 

In-situ 

polymerization 

under shear and 

sonication 

Cured at 100oC – 

250oC in N2 

Young’s modulus: 2.5 GPa (8 % 

increase) 

70% transparence in 650 nm 

wavelengths 

39 
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Polymer 

Matrix 

BNNT 

wt.% 

Morphology of 

BNNTs 
Method 

Processing 

conditions 
Main Properties Ref. 

Polyvinyl 

butyral (PVB) 
18 

Smooth, 

diameter: 40-50 

nm, length 10 

μm 

Solvent 

dispersed 

Hot pressing at 

80oC, 60 MPa for 

2 hrs. 

Thermal conductivity: 1.81 Wm-1K-

1 (7.5× increase) 

Microhardness: 36.29 MPa 

38 

Poly (ethylene-

vinyl acetate) 

(PEVA) 

37 

wt.% 

Smooth, 

diameter: 40-50 

nm, length 10 

μm 

Solvent 

dispersed 

Hot pressing at 

80oC, 60 MPa for 

2 hrs. 

Thermal conductivity: 2.50 Wm-1K-

1 (14.7× increase) 

Microhardness: 138.3 

38 

Polyvinyl 

alcohol (PVA) 

1-10 

wt.% 
Not reported 

H2O2 

functionalization

, aqueous 

dispersion 

Electrospinning 
Thermal conductivity: 0.17-0.38 

Wm-1K-1 (6-137 % increase) 
40 
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1.3.2 BNNT reinforced ceramic composites 

Few studies have explored the potentials of introducing BNNTs into ceramic 

matrices (Table 2). The thermal stability of BNNTs (up to 900oC in the air) presents a 

significant advantage to carbon-based nanofillers in the reinforcement of ceramic matrices. 

The analogous carbon-based nanoparticles (CNTs) are found to experience degradation at 

temperatures below 500oC and hence considered not suitable for the reinforcement of 

ceramic matrices.  

The introduction of BNNTs to ceramic matrices has been limited to Al2O3, Si3N4, 

Hydroxyapatite (HA), Barium calcium aluminosilicate glass (BCAS) and Silicon 

oxycarbide (SiOC) 41–46. The noticeable improvement to the toughness and flexural 

strength of the composites with BNNTs is mainly attributed to the grain size reduction 

observed. Hall-Petch relationship is a well-known mathematical relationship which relates 

the increase in yield strength and/or hardness of a material with the decrease in grain size. 

The reduction in grain size in BNNT-ceramic composites was attributed to the ability of 

nanotubes to constrain the diffusion of mass among grains of the ceramic matrix (Figure 

5).  
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Figure 5 TEM micrograph of an Al2O3 reinforced matrix showing BNNTs segregation 

at the grain boundaries hindering the growth of ceramic grains (0.5 wt.% BNNT)41. 

Strengthening mechanisms such as crack bridging by BNNTs in a 4 wt.% BNNT 

reinforced HA matrix, inset shows the Vickers indent with crack propagation signs44.   

Given the inertness of the species involved, bonding between the ceramic matrix 

and the nanotubes is purely by Van der Waals bonds. Hence, strengthening is dominated 

by the interfacial lattice arrangement (nanotube/ceramic), controlling the work required to 

separate the nanotube from the matrix. Lahiri et al.44 showed interfacial strengths between 

0.35 – 3 GPa in a BNNT reinforced HA ceramic matrix. Where the energy required for a 

BNNT to be pulled-out from the HA matrix is 2 -100× greater than that for fracture of HA 

to occur44. The ability of the nanotubes to bear a high level of stresses were observed by 

crack bridging and deflection of cracks mechanisms, widely known as high energy 

dissipating mechanisms for reinforced matrices (Figure 5).   
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Table 2 Literature summary of reported ceramic matrix composites reinforced by BNNTs. 

Ceramic 

Matrix 

BNNT 

wt.% 

Morphology of 

BNNTs 
Method 

Processing 

conditions 
Main Properties Ref. 

Al2O3 0.5-2.5 
Diameter: 60 nm, 

length: >10 μm 

polyvinylpyrr

olidone (PVP) 

aided 

dispersion 

SPS at 1500oC 

for 3 min, hot 

pressed 

Young’s modulus: 359-379 GPa 

Microhardness: 14.5-19.1 (10.4 % 

reinforcement) 

80% grain size reduction 

Flexural strength: 436.1-532.1 MPa 

41–43 

Si3N4 0.5 
Diameter: 60 nm, 

length: >10 μm 

polyvinylpyrr

olidone (PVP) 

aided 

dispersion 

SPS at 1600oC 

for 5 min 

Young’s modulus: 273 GPa 

Microhardness: 15.5 GPa 
41 

Hydroxyapatite 

(HA) 
4 

Bamboo type, 

diameter: 10–145 

nm, length: 0.43–

5. 8 μm 

Ultrasonicatio

n dispersed 

SPS at 1099.85 
oC and 70 MPa 

for 5 min 

Young’s modulus: 205 GPa (20% 

increase) 

Hardness: 12 GPa (129% 

reinforcement) 

Fracture toughness: 1.6 MPa m0.5 

(86% higher) 

Crack bridging by BNNTs 

44 

Barium calcium 

aluminosilicate 

glass (BCAS) 

4 

Diameter: 10 – 40 

nm, length: >10 

μm 

Ball milled for 

24 hrs. 

Hot pressed at 

630oC and 10 

MPa for 15 min 

Flexure strength: 92 MPa (90% 

reinforcement) 

Fracture toughness: 0.69 MPa (35% 

increase) 

45 

Silicon 

oxycarbide 

(SiOC) 

0.25-2 

Diameter: 10 – 40 

nm, length: >10 

μm 

Dissolve 

BNNTs in 

cross-linked 

solution 

Pyrolysis of 

tetravinyl 

cyclotetrasiloxa

ne at 1000oC for 

10 hrs. 

Efficiency of electrode: 46.9-50% 

Charge capacity: 410 mAhg−1  

Specific capacitance: 78.93 Fg−1  

86% cyclic retention after 185 

cycles 

46 
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1.4 BNNT reinforced metal composites 

The resistance of BNNTs to experience oxidation in the presence of temperatures 

(~ 900oC) exceeding those of the comparable carbon nanotubes (500oC), displays their 

potential as reinforcing nanoparticles of metallic matrices with elevated processing 

temperatures involved (>600oC). The extremely low density of the BNNTs (~1.4 g/cm3) in 

combination with the excellent mechanical properties and thermal stability have prompted 

their addition to metallic matrices. With the continuous desire to develop a generation of 

materials capable of retaining mechanical strength and low densities, a matrices of interest 

include Aluminum, Magnesium, and Titanium. Aluminum has been the metal under 

continuous scrutiny, due to its low melting point (~660oC), has demonstrated the feasibility 

of the integration of BNNTs to the metallic matrix. Recent studies47,48, have introduced 

Titanium as a matrix with a high melting point in efforts to evaluate the suitability of 

BNNTs in highly reactive metals undergoing elevated temperature processes.  

Structural stability of BNNTs 

Processing routes involving several thermal schedules, high energy bombarding, 

and high pressures have been some of the exhaustive thermo-mechanical processes 

withstood by BNNTs in the manufacturing of Aluminum-BNNT (Al-BNNT) composites.  

Novel routes for the manufacturing of Al-BNNT composites included the 

deposition of metallic particles by high energy bombardment as it is in ion implantation, 

and magnetron sputtering. Obraztsova et al.49,50 evaluated the structural changes 

experienced by CVD-synthesized BNNTs after implantation of Al particles via high energy 

(acceleration voltage: 10 – 30 kV) ion implantation methods. The processing route is 
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presented as a promising synthesis technique in which the degree of defects and coating 

quality are a function of acceleration voltage used. Three implantation regimes were 

identified during processing (Figure 6):  

 
Figure 6 Graphical representation of ion implantation regimes in the deposition of Al 

to produce Al-BNNT composites. (a) Demonstrates the crystalline nature (parallel 

lines represent walls) of the as-received BNNTs before implantation. (b) High energy 

regime (3) imparting the deposition of Al on the surface and inner tubular structure 

of BNNTs. (c) Medium energy regimes (2) shown by the formation of uniform Al 

coating on the BNNT. (d) Low energy regimes (1), in which defects are introduced to 

the structure49,50. 

(1) Low acceleration voltage (10 kV), induces numerous defect in the walls of the 

nanotubes forming partially amorphous structures.  

(2) Low-medium acceleration voltage (10 – 20 kV), results in the uniform coating 

of BNNTs by Al metal.  

(3) High acceleration voltage (30 kV), induces the implantation of metal particles 

on the surface and inside the nanotube as a result of high irradiated energy 

causing the rupture of BNNT walls. 
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Under low-medium regime conditions (10-20kV, 10 mA), Obraztsova et al.49,50 

demonstrated the capability of the technique to produce uniformly coated BNNTs. In 

addition to ion implantation, Yamaguchi et al.51 demonstrated the structural stability of 

BNNTs after been bombarded by high energy Al particles in a magnetron sputtering 

process. The flexible and robust structure of BNNTs, capable of withstanding high stresses, 

was retained after sputtering producing composites with polycrystalline Al coatings with 

thicknesses of up to 200 nm (Figure 7). The study demonstrated that even after 

experiencing high levels of energy, no interfacial reactions were introduced during the 

sputtering process51.  

 
Figure 7 (a)TEM micrograph of BNNT after magnetron sputtering with Al, resulting 

in polycrystalline coatings of ~ 200 nm. (b) Evidence of retained structural integrity 

in BNNT after Al sputtering51.  

Similarly, processing of Al-BNNT composites by spark plasma sintering (SPS), hot 

rolling, and high-pressure torsion have been adopted4,52,53. Powder metallurgy techniques 

such as spark plasma sintering present an advantage over high-energy implantation 

techniques due to the ease of powder preparation and short periods (10 – 30 min) required 

for densification. SPS is a widely used technique for the rapid consolidation of powders by 
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introducing simultaneous heat and high pressures. The technique was explored by Lahiri 

et al.53, Nautiyal et al.4, and Yamaguchi et al.52 in which nanotubes were able to withstand 

thermo-mechanical stresses (up to 600oC, 80 MPa, 1 h) induced by SPS and retain their 

structural integrity. The integrity of the nanotubes was further evidenced at even higher 

pressures of ~ 2.5 GPa at room temperature during high-pressure torsion52. 

 Moreover, the performance of the nanotubular structures was challenge by Nautiyal 

et al.54 in synthesizing Al-BNNT composites via Plasma spray technique. In which, a 

combination of the high temperatures induced by the plasma promotes the melting of the 

metal composite powder and produces a coating upon striking a metallic substrate. The 

solidification of the imparted splats is reported to occur in a non-equilibrium fashion. The 

nanotubes are found to retain their tubular structures. Similarly, Nautiyal et al.55 proved the 

nanotubes suitable for equilibrium solidification processes such as casting.    

Interfacial interactions between BNNT and metal 

Contingent with the structural stability of the nanotubes, the chemical reactivity of the 

nanotubes with the metal during processing is a critical factor to imparting effective 

mechanical reinforcement. A significant drawback in the addition of CNTs to metallic 

matrices is their low-temperature stability (~500oC), and high reactivity with metal 

matrices resulting in the partial or complete transformation to brittle carbide species.  

The involved problem with the development of interfacial reactions between the 

metal and the BNNTs lies in the formation of defects and brittle species inducing lattice 

strains. Although interfacial reactions are considered to pose a negative outcome in the 

reinforcement of metal matrices, this is limited by the thickness of the reaction products. 
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Thick layers of reaction products (>100 nm) have shown their detrimental effect on the 

mechanical properties and premature failure in CNT-metal composites, and more recently 

in Al-BNNT composites. On the other hand, thin reaction layers not exceeding 20 nm in 

thickness have been sought for as beneficial to the wetting of the nanotubes with the metal. 

Thus, reducing the hydrophobic nature of the nanotubes and improving the interfacial 

adhesion of the nanotube to the metal matrix.  

The requirement of minimized chemical reactions at the nanotube/metal interface 

is highly dependent on the thermal processing in the manufacturing of BNNT-based metal 

matrix composites. The thermal decomposition of the nanotubes to form interfacial 

reactions with Al during thermal processes such as casting, conventional and spark plasma 

sintering and plasma spray has been shown in previous studies. The formation of AlN, 

AlB2, and Al(BNO) species are a result of thermodynamically feasible conditions present 

during processing. This thermally activated phenomenon is limited by the kinetics of 

reactions (long periods required), and the morphology of BNNTs (smooth vs. 

bamboo/segmented). Lahiri et al.25 demonstrated the formation of a thin reacted layer 

(0.35–2.3 nm) only after exposure of the Al-BNNt (5 wt.%) to temperatures of 650oC for 

1 hour (Figure 8).  
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Figure 8 (a) Reacted layer on the surface of a nanotube with bamboo-like morphology 

after exposure to 650 oC for 1 hour. (b) Nucleation of reaction phases in the presence 

of a defective, broken BNNT wall25.  

The reacted layer revealed the formation of AlN and AlB2 crystals at the interface 

as a result of diffusion of N (AlN) into the Al matrix and Al into the BN (AlB2). Also, 

morphological features and defects in the surface of the nanotubes were found to act as 

nucleation sites for the reactions to occur.  

This was later corroborated by Nautiyal et al.4,54,55 in the manufacturing of Al-

BNNT composites by plasma spray conditions, casting and spark plasma sintering. In 

which, solidification by plasma spray resulted in localized reactions of AlB2 and AlN as a 

result of the rapid thermal exposure (<1 ms) (Figure 9 a)30. On the contrary, the casting of 

the BNNT composite provided a kinetically feasible condition for reactions to occur and 

form a uniform AlN layer of ~ 4-5 nm thick55. The feasibility of reactions was also 

observed in pressure aided sintering processes, where the fracture surface demonstrated the 

brittle cracking of the reacted species (Figure 9b)4.  
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Figure 9 (a) TEM micrograph of a single nanotube showing localized reacted species 

(AlN and AlB2) on the surface after undergoing plasma spraying54. (b)Brittle fracture 

of reaction phases at the interface of an Al-BNNT mat composite manufactured by 

spark plasma sintering4. 

Enhanced mechanical properties 

The significance of the limited reaction products at the interface of the nanotube 

and the matrix is portrayed in the mechanical properties of the composites. Theoretically, 

the inclusion of BNNTs to metallic matrices is bound to result in effective properties higher 

than those of the ductile matrix. However, imparting such characteristics necessitates for 

ideal interfacial bonding conditions. The presence of a reacted uniform layer of AlN on the 

surface of a BNNT enhances the interfacial bonding with the metal. While Al is found to 

have a contact angle of ~ 140 – 160 oC, characterizing the poor wettability of the nanotube 

with the molten metal. Conversely, the interaction between the molten Al and the AlN layer 

is found to result in contact angles between 40 – 60 oC (Figure 10 a). The improved 

wettability between the reacted phase (AlN) as compared to the unreacted BN surface is a 

result of the high surface tension (660 mN/m) providing favorable conditions for 

wetting55,56. Improved wetting conditions between the metal matrix and the nanotube was 

found to impart increments in elastic modulus of the Al matrix by 2× (134 GPa), with 
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effective transfer of load mechanisms such as crack bridging, nanotube pull-out, etc4,53–55 

(Figure 10 b and c).  

 
Figure 10 (a) Schematic representation of the interactions between molten Al and the 

unreacted BNNT vs. the improved wetting in the presence of an AlN layer. (b) 

Strengthening mechanism in Al-BNNT in the presence of interfacial reactions, 

showing BNNTs acting as bridges. (c)  4,53–55 

In addition to the strengthening imparted by strong interfacial interactions between 

the nanotube and the metal matrix, BNNTs have shown to effectively serve as sites for 

dislocations to pile up and restrict gliding of the same57,58. Dislocation pile-ups along the 

length of BNNTs were found to increase elastic modulus by up to  16% with merely 0.045 

wt% BNNT content58. This novel strengthening mechanism is often not accounted for by 

stiffening mathematical models and presents the potential of the nanotubes to reinforce 

matrices58(Figure 11).  
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Figure 11 (a) Stress-strain curves of Al-BNNT composite manufactured by the hot 

rolling process with strengthening mechanisms dominated by (b) BNNTs ability to 

restrain grain growth and promote the pile-up of dislocations along its length5.  

1.5 BNNT reinforced Titanium matrix composites 

Owing to the structural and thermal advantage of Titanium as a metal with high 

specific strength as compared to other light metals (Al, and Mg), their reinforcement is 

often sought for in the automotive, aerospace, and naval industries. A common necessity 

in these applications is their ability to withstand extreme conditions including elevated 

temperatures, high stresses, prominent oxidation environments. 

1.5.1 Titanium: A suitable metal for extreme environments  

Titanium and its alloys have found applications in applications often experiencing 

corrosive and thermo-mechanically demanding conditions. Their preference is a result of 

their high strength to weight ratio (Tensile Strength ~950 MPa), their corrosion resistance, 

and their ability to maintain their mechanical strength even at elevated temperatures (400-

500oC)(Figure 12).  
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Figure 12 Comparative chart demonstrating the specific strength of multiple 

structural metals as a function of increasing temperatures12,59–61. 

While the consumption of Titanium is often found in small quantities across all 

suitable applications, their use is limited to critical regions experiencing higher mechanical 

stresses and elevated temperatures. The excellent mechanical characteristics of Titanium 

can be understood from an atomic perspective. Ti is characterized by having a Hexagonal 

closed packed (HCP) crystal structure (α-phase) at a temperature below ~882oC (Figure 

13) 12,59–61. Upon reaching temperatures higher than 1200oC (β transus temperature), Ti 

experiences phase transformation from a stiff HCP to a ductile body-centered cubic (β-

phase) 12,59–61.  
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Figure 13 (a) Phase diagram of pure Titanium as a function of increasing pressure 

and temperature, displaying the presence of three phases: low temperature (α-phase), 

high temperature (β-phase) and metastable ω-phase requiring high pressures. (b)  

Crystal structures of α- phase Ti showing HCP crystal structure and β-phase Ti with 

BCC crystals12,59–61.  

The versatility of Ti to tailor its properties by the addition of alloying elements (i.e., 

Al, V, O, H, etc.) has been long investigated. The addition of α- alloying elements such as 

O, Al, N, B, etc. induces the stiffening of the metal and imparts superior creep resistance. 

α- alloying involves the diffusion of alloying atoms taking place in the interstices of the α-

phase12,59–61. Thus, resulting in a tightly packed structure with restricted atom movement 

for deformations. Although, superior strength is desired in the metal, the intrinsic ductility 

and formability of the BCC β-phase is also required. The addition of β-stabilizers such as 

V, Cr, Fe, among others induces a shift in the β-transus temperature and allowing β-phase 

formation at lower temperatures.  

It is evident that the presence of both phases in the Ti metal would allow the ideal 

structural metal capable of combining the stiff nature of the α-phase and the ductility of the 

β-phase. α-β alloys are Ti-based alloys combining α and β stabilizers allowing the stability 

of both phases at lower temperatures (i.e., room temperature)12,59–61.Ti6Al4V is the most 

widely used α-β alloy across all applications due to its combined mechanical strength 
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(Yield strength: 830 MPa, Tensile Strength: 900 MPa) and ductility12,59–61. In which, the 

contributions from each phase can be modified by subjecting the alloy to thermal processes.  

The microstructure of α-β alloys is illustrated in Figure 14. In which, primary α- 

grains are surrounded by β-phase containing grain boundaries and α-β colonies with 

lamellar morphology. The lamellar morphology of α-β colonies is a result of the nucleation 

and growth of α grains (secondary α) within the β-phases.  

 
Figure 14 (a) Phase diagram of an α-β alloy with 6 wt.% Al and V as alloying elements, 

the segmented line represents the phase transformation path of Ti6Al4V alloy59,61.  

Although Ti6Al4V, exhibits good performance in structural applications and is 

50% lighter than steel, their mechanical performance is far unsuitable for the replacement 

of many structural steels. Thus, reinforcement of the alloy by nanoparticle addition is 

observed as a potential alternative.  

Suitability of nanoparticle reinforcement in Titanium matrices 

Titanium’s high melting point ~1600oC requires the processing of the metal in 

processes involving high temperatures. Common processing routes include casting, 

sintering, hot forging, and direct powder extrusion. Two significant limitations in the 
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reinforcement of Ti matrices by the addition of secondary phases (i.e., CNTs, Al2O3, SiC, 

TiB, TiC, etc.) have been identified: (i) thermal expansion of the matrix and/or nanoparticle 

causing residual stresses. (ii) Thermal stability and reactivity of the nanoparticle with the 

Ti at processing temperature (often >900 oC). The high reactivity of the metal with CNTs 

as reinforcing nanoparticles has been widely reported in literature62–64. In which, the rapid 

precipitation of brittle TiC occurs at temperatures of 800oC during solid-state reaction. 

Owing to the low thermal stability of CNTs (oxidizes at ~500oC), the microstructures are 

often dominantly reacted TiC phases remarkably affecting the mechanical properties of the 

composite63.      

1.5.2 Integrating Boron Nanotubes in a Titanium Matrix  

  The thermal stability of BNNTs to up to 900oC in air and chemical inertness, pose 

an advantage to their addition to the Ti-metal matrix. The structural and thermal stability 

of the nanotubes was evidenced in their addition to Al matrices, were thin reaction layers 

aided in the reinforcement of the composite. Recently, Bhuiyan et al.47,48 have pioneered 

the inclusion of BNNTs to the Titanium matrix. In two separate studies, the authors outline 

the feasibility of the nanotubes to reinforcing Ti matrices, and the effective reinforcement 

the BNNTs impart on the composite.   

The requirement of a thin reaction layer between the nanotube and the metal matrix 

was broadly observed in Al-BNNT composites to depend on morphological features of the 

nanotube and feasibility for reactions. Thus, providing enough interactions to have strong 

bonding without being detrimental to the nanotube structure. At the atomic level, density 

functional theory (DFT) calculations, demonstrated the interactions of Titanium atoms 
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with BNNTs and B/N vacancy defects potentially present in the nanotubes65. Findings of 

this study showed the strong Ti interactions with BNNTs by displaying high binding 

energies of ~ -1.22 eV as compared to Al (-0.74 eV)65. This highlights the importance of 

defect-free BNNTs to achieve moderate interactions between the Ti and the nanotubes. 

Thus, nanotubes with smooth morphology obtained by high-pressure vapor/condenser 

method are desirable and will be used in this study.  

The thermodynamically feasible reactions and transformations experienced between Ti and 

BN phases are identified in Figure 15 at processing temperatures > 1000oC11,66:  

Ti + BN = TiB2 + TiN         (1) 

Ti + TiB2 = TiB         (2) 

 

 
Figure 15 Gibb’s free energy of formation of various Ti and BN reactions11,66. 
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Previous studies have explored the thermodynamic feasibility of reactions, including that 

of TiB2 with the lowest Gibbs free energy of formation (∆G = -62 kcal/mole)66.  Bhuiyan 

et al.47,48 described the formation of TiB2 nanoparticles on the surface of BNNTs after 

exposing the composite powder to 800o for a period of 30 min48. The TiB2 reaction is 

expected to occur at the direct interface between the Ti and the nanotube due to the higher 

localized B concentration. The reaction is driven by the diffusion of released N atoms into 

Ti forming a solid solution in the matrix.  

Although TiB formation is a less thermodynamically favorable reaction, the 

kinetics governing the diffusion of boron in TiB2 and the growth of TiB results in the 

presence of TiB whiskers. After exposure of the Ti-coated nanotubes to 900oC for 1 hour, 

TiB2 is shown to grow radially into the hollow nanotube producing elongated plate-like 

structures48. The decreased localized B concentration and thermal energy induce the 

formation of TiB phases in the form of whiskers, as describe by equation 2. Thus, observing 

the TiB2 phase as a transition phase for the formation of TiB given the B concentration in 

the reaction interface to be between 18 to 18.5%48. Such findings serve as a guideline in 

the selection of processing conditions to control the reactions between Ti-matrix and 

BNNTs.  
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Figure 16 (a)TEM micrograph showing TiB2 reaction phases at the surface of a single 

nanotube coated Ti and exposed to 800oC for 30 min. (b)Formation of TiB2 

nanoparticles and TiB needle/whiskers after exposure of Ti-coated nanotubes to 

900oC for 1 hour48.  

Improved mechanical performance 

To the author’s knowledge, a single study has evaluated the mechanical properties 

imparted by the BNNTs in reinforcing a Titanium matrix47. In which, conventional 

sintering of a Ti-BNNT (4 vol.%) composite powder was performed at temperatures of 

800-100oC for 1-3 hours. The BNNTs with bamboo-like morphology used by Bhuiyan et 

al.47 demonstrated to be stable to temperatures of 800oC and heating periods of 1 hour by 

retaining their conical structure and tubular structure. Strengthening of the Ti matrix was 

observed to up to 45 % (984 MPa) as compared the pure Ti sintered at similar conditions 

(678 MPa) 34. The strengthening was mainly attributed to the ability of BNNTs to restrain 

dislocation movement with nanotubes effectively bearing larger stresses. Moreover, 

sintering of the composites at 1000oC for 3 hours was found to result in the complete 

transformation of BNNTs to sharp and brittle TiB phases (Figure 17) 34.  
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Figure 17 Fracture surface of Ti-BNNT composite (a) sintered at 800oC for 1 h after 

experiencing compressive fracture showing TiB2 as primary reaction phases and 

survived BNNTs, (b) composite sintered at 1000oC for 3 h showing abundant TiB 

whiskers as a result of Ti-BNNT reactions34.    

1.5.3 Current challenges: 

It is clear from the previous efforts32,47,48,50,55,57,67 that the addition of BNNTs to the 

Titanium matrix hold great potential as structural materials with significant increments in 

mechanical properties. The studies have been limited by the use of nanotubes synthesized 

via ball milling and annealing processes rendering them with bamboo-like morphologies.  

Thereby having intrinsic defect sites favorable for the nucleation and growth of undesirable 

reaction products.  

Therefore, the main objective of this thesis is to synthesize Titanium reinforced 

BNNT composites by implementing long (100-200 µm) BNNTs. The surface 

characteristics (smooth) of the BNNTs used in this study are expected to restrict the 

evolution of interfacial reactions as compared to bamboo-shaped BNNTs used by earlier 

researchers46. Bhuiyan et al. concludes that the reactivity of BNNTs with the Ti matrix can 

be addressed by limiting the kinetics46. Hence, Spark Plasma Sintering as a fast 

consolidation technique is used to impart short consolidation periods (10 – 30 min) that 

will minimize formation of TiB2, TiB, and TiN phases. 
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Powder metallurgy routes such as SPS are techniques which require an initial 

feedstock material in the form of a powder. The homogenous dispersion of BNNTs has 

been previously attained by ball milling processes, and solvent assisted dispersion 

routes44,47,54,68. The first is known to introduce contaminants and potential defects in the 

tubular structure. While the dispersion of BNNTs in solvents has been implemented in prior 

studies, the distinct length (100-200 µm) of nanotubes introduced in this study present an 

added entanglement to the high surface energy BNNTs. Two dispersion techniques will be 

implemented in the dispersion of BNNTs to determine their suitability to the SPS 

processing of the composite:  

(1) Dispersion by wet chemistry route: Ionic and non-ionic surfactants have shown 

potential in reducing the surface tension between the nanotubes and the aqueous 

dispersion media69–71.  

(2) High-energy induced dispersion: The use of tip sonication has shown the 

effective dispersion of reinforcing nanoparticles 1D and 2D structures (i.e. 

CNTs, Graphene nanoplatelets, BN sheets, etc.). The high energy vibrations 

induced by the sonication are capable of breaking agglomerates and rendering 

composites with uniform dispersions54,72–74.   
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CHAPTER III: MATERIALS & EXPERIMENTAL METHODS 

This chapter outlines the materials and experimental procedures involved in the 

dispersion of BNNTs by wet chemistry and high energy route in the synthesis of Boron 

Nitride Nanotube-reinforced Titanium composites. The experimental details to evaluate 

the microstructural and mechanical properties of the synthesized composite are also 

outlined.   

1. Materials:  

1.1 Boron Nitride Nanotubes 

Boron Nitride Nanotubes (BNNTs) synthesized via a pressurized vapor/condenser 

method (PVD) were obtained from BNNT, LLC (Newport News, VA). The nanotubes 

were obtained in a purified state with <1% BN impurities in the form of fibril balls (Figure 

18)75.  

 
Figure 18 As received (a) BNNT fibril balls synthesized by PVC method75, (b) SEM 

micrograph of entangled long and ultrafine BNNTs. Inset shows the smooth 

morphology of a single nanotube.  
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Purified BNNTs with the absence of catalyst impurities and minimal BN 

nanoparticles are desirable in the manufacturing of composites undergoing high-

temperature processes due to the high reactivity of impurities relative to the BNNTs. The 

acquired BNNTs are characterized by having long (100-200 µm) and ultra-fine (5-10 nm) 

morphologies with typically 1-5 walls75. The strengthening of fiber-reinforced composites 

has been theoretically modeled by the shear lag model4,53. 

𝑙𝑐 =
𝜎𝑓𝑑

𝜎𝑚
          (3) 

The model assumes strengthening in the composite is a function of the shear 

generated between the fiber (𝞼f) and the matrix (𝞼m).  In which, effective load transfer 

between the matrix to reinforcing particles occurs if the reinforcing fibers exceed a critical 

length (lc), generating maximum shearing stress between the fiber and the matrix. 

Therefore, it is expected that the long BNNTs used in this study will render composites 

with enhanced mechanical strength 

1.2 Titanium Alloy: Ti6Al4V 

A commercially available Titanium alloy (Ti6Al4V) with principal elements in the 

composition of 6 wt.% Al, and 4wt.% V was obtained from TEKNA, Sherbrooke, Canada. 

Ti6Al4V is a two-phase (α-β) Titanium alloy with balanced strength and ductility widely 

used in the aerospace, marine, and automotive industries. The Ti6Al4V powder used in 

this study is of spherical morphology with an average particle size of 8.25 ± 4 µm and 4.5 

g/cm3 density Figure 19.  
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Figure 19 As-received Ti6Al4V with spherical morphology and average particle size 

of 88.25 ± 4 µm 

Table 3 elemental composition of the as-received Ti6Al4V powder obtained by 

Energy Dispersive Spectroscopy (EDS) analysis. The absence of Oxygen in the table is 

evidence to the extremely low content of O2 in the powder during its processing incapable 

of being detected by the instrument. The high affinity of Ti6Al4V to Oxygen is known to 

result in the rapid oxidation of the powder if exposed to O2 rich environments. Limiting the 

O2 intake of the powder is of high importance to the densification by sintering, this was 

achieved by maintaining the powder in a protective Ar environment.     

Table 3 Elemental composition of as-received Ti6Al4V powder obtained from EDS 

analysis 

Element Al (K) Ti (K) V (K) Fe (K) 

Atom % 8.4 ± 0.8 87.6 ± 2.4 3.3± 0.8 0.7 ± 0.4 

2. Synthesis of Ti-BNNT composite 

The synthesis of the BNNT reinforced Ti matrix composites entailed the 

homogeneous dispersion of BNNTs in an aqueous media and subsequent attachment to 
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Ti6Al4V powder particles. The composite powder was finally consolidated by powder 

metallurgy route.  

2.1 Dispersion techniques 

Two distinct dispersion routes were used in the dispersion of BNNTs to evaluate 

their suitability to the Spark Plasma Sintering processing and their ability to produce a 

homogenous distribution of nanotubes over the Ti matrix. A wet chemistry method and 

high energy induced tip sonication were introduced to the entangled and agglomerated 

nanotubes. 

2.1.1 Dispersion of BNNT by wet chemistry route 

The hydrophobic nature of BNNTs poses a challenge to their homogenous 

dispersion in the aqueous medium. In this study, a non-ionic surfactant (Pluronic) is 

introduced to assist in the dispersion of the high surface energy nanotubes. Non-ionic 

surfactants have shown to be the most effective surfactants to allow the effective dispersion 

of nanotubes, yielding high concentrations of individual BNNTs55,76. The amphiphilic 

nature of surfactants allows them to possess both hydrophobic and hydrophilic properties. 

In their introduction to a nanotube-aqueous mixture, they reduce the surface tension 

between BNNTs and aqueous media by their adsorption to the nanotubes. This process 

entails the adherence of surfactant molecules containing apolar (hydrophobic) tails to the 

hydrophobic surface of the nanotubes, leaving the polar (hydrophilic) molecules to interact 

with the aqueous medium55,69,74. Their advantage to other surface functionalization 

techniques is their ability to stabilize BNNTs in an aqueous medium without disturbing the 

sp2 hybridization of the BNNTs76. The surfactant-assisted dispersion was carried out in a 
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DI water suspension. The non-ionic surfactant (Pluronic) was introduced to the BNNT/DI 

water mixture in a 1:3 BNNT to surfactant ratio. The higher concentration of Pluronic over 

BNNTs is desirable to allow the solution to reach the critical micelle concentration in 

which surface tension reduction process occurs. The aqueous mixture (BNNTs/Pluronic/DI 

water) was bath sonicated for a period of 72 – 96 hours to promote the dissolution of 

surfactant molecules in the aqueous media and allow the adherence to the nanotubes. The 

addition of surfactant, nanotubes, and DI water was performed continuously throughout 

the dispersion process. The dispersion was considered as complete when no evident 

agglomerates were observed. The final concentration of BNNTs in the solution was of 10 

mg/ml of DI water. 

Following the stable dispersion of BNNTs, Ti6Al4V powder was added to the 

BNNT solution to obtain a 1 wt.% BNNT concentration. To promote the adherence of 

BNNT onto the Ti powder particles, the solution was magnetically stirred for a period 15 

min. The final solution was subsequently oven dried under vacuum conditions at 70oC to 

minimize powder oxidation. The composite powder was subjected to final heating at 200oC 

for 2 hours to evaporate residual surfactant in the powder.  

2.1.2 High energy induced dispersion by tip sonication 

Ultrasonication has been a reliable method for the dispersion and exfoliation of 

CNTs and other nanoparticles73,77–79. The imparted high energy cavitation is capable of 

producing strong shear forces to disentangle and disperse agglomerates. Although the high 

energy introduced during ultrasonic cavitation, careful consideration of sonication 

parameters should be taken. Exceeding sonication limits could lead to the introduction of 
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surface defects on the nanotubes and increase their reactivity during thermal 

processing73,77–79. The success in the dispersion of BNNTs by high energy induced 

sonication is highly dependent on73,77–79: 

(i) The properties governing the solvent (i.e., vapor pressure, viscosity, interactions with 

the nanoparticles); maximized dispersion by cavitation induced dispersions were found 

to occur in solvents with vapor pressures <10 mm Hg due to the high energy release 

(ii) Intensity of sonication; higher sonication intensity is bound to produce higher acoustic 

amplitudes and thus produce collapsing of bubbles with higher force 

(iii)Time of sonication; increasing time of sonication will result in higher energy input into 

the dispersion. 

This study introduces ultrasonic cavitations in the dispersion of high surface energy 

BNNTs. A tip sonication system Vibra-Cell VCX750 (Sonic & Material, Inc., Newtown, 

CT) with 19 kHz frequency, 750 W power, and a ¾ high gain sonotrode were used. The 

dispersion was carried out in acetone solvent under 70% amplitudes (~ 47.2 μm) and a 

period of 45 min. Due to the high energy released in the form of heat during the sonication 

process, the solution was kept enclosed by an ice bath to prevent significant temperature 

changes. The final dispersion had a BNNT concentration of 0.09 mg/ml of acetone. The 

solution was subsequently bath sonicated for 1 hour to maximize the stability and 

dispersion of nanotubes in the solution.  

Finally, Titanium powder was introduced in the solution (1 wt. % BNNT) and 

magnetically stirred for 1 hour to promote the adherence of BNNTs on the surface of 
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powder particles. The solution was then oven dried at 50oC in vacuum conditions to 

minimize the oxidation of the composite powder.   

2.2 Pressure-assisted powder metallurgy  

Consolidation of the dispersed BNNTs in Ti-matrix was performed by Spark 

Plasma Sintering (SPS) in a Thermal Technologies model 10-4 spark plasma sintering 

apparatus (Thermal Technologies, LLC, Santa Rosa, CA). The rapid densification allowed 

during the SPS process is attributed to the simultaneous applied pressure and heat to result 

in the sintering of the powder. SPS presents advantages to the processing of Ti-BNNT 

composites due to their short sintering times (10-30 min), limiting the kinetics of interfacial 

reactions. Thus, the synthesis of Ti-BNNT composites with minimal interfacial reactions 

(Ti/BNNT) and grain growth is expected. To address the thermally activated reaction 

challenge between the BNNT and Titanium, two sintering temperature schedules were 

investigated. Sintering of Ti-BNNT composites was evaluated at both (1) low (600 – 

750oC) and (2) high (950oC) temperature regimes to evaluate their suitability in the 

processing of Ti-BNNT composites. 

2.2.1 Low-temperature sintering  

Systematic experimentation was performed to identify optimum sintering 

conditions that would allow the densification of pure Ti6Al4V and ideally the 

consolidation of Ti-BNNT composites. The yielding of elevated temperatures to sinter 

Titanium was traded by the introduction of high pressures (>300 MPa) to induce sufficient 

plastic deformation and promote sintering mechanisms to evolve.  
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Table 1 describes the parameters under study to obtain a near fully dense composite. 

Owing to the elevated pressures involved, a 15 mm Tungsten Carbide (WC) die was used 

as opposed to the common graphite. Graphite foil was used to prevent fusion and 

interactions between the die and the sintered powder in addition to facilitating the removal 

process.  

Table 4 Sintering parameters used for low-temperature sintering of Ti6Al4V 

Temperature 

(°C) 
Pressure 

(MPa) 
Heating rate 

(°C/min) 
Hold Time 

(min) 

600 300 50 10 

600 500 50 10 

600 555 50 10 

750 555 100 10 

2.2.2 High-temperature sintering  

Sintering of pure Ti6Al4V and Ti-BNNT composites was performed at 

temperatures of 950oC, pressures of 60 MPa and 100oC/min heating rates. Sintering was 

performed in periods of 10 min to minimize interfacial reactions between the nanotube and 

the Ti-matrix. Sintering conditions were chosen by considering temperatures below the β-

transus temperature of Ti6Al4V which occurs at ~1000oC. Maintaining sintering 

temperature below the β-transus reduces the residual β-phase in the composite and results 

in a well-balanced strong yet ductile alloy. Sintering was performed using a 20 mm graphite 

die and graphite foil lining the powder and punches for ease of pellet removal.  
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The continuous displacement of the sintering punches in contact with the sintered 

powder was recorded and analyzed by determining the corresponding instantaneous 

relative density (𝜌𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠) of the samples:  

𝜌𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 = (
𝐿𝑓

𝐿
) 𝜌𝑓        (4) 

In which, L corresponds to the thickness of the sample throughout the SPS process 

and is time dependent. Similarly, Lf and ρf  are the final thickness of the sample and the 

final densification achieved. The instantaneous relative density curve as a function of time 

is known to provide insights on the mechanism of densification occurring throughout the 

SPS process.  

3. Microstructural Characterization  

The graphite foil was removed from the as-sintered Ti and Ti-BNNT samples by 

using SiC grinding paper. Densification of the sintered specimens was evaluated by the 

apparent density of the specimen obtained via Archimedes density method:  

𝜌𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝑚𝑎𝑖𝑟

(𝑚𝑎𝑖𝑟−𝑚𝑤𝑎𝑡𝑒𝑟)
        (5) 

The relationship (4) relates the mass of the sintered specimen in air conditions (mair) 

and is inversely proportional to the difference in mass of the pellet in air and water (mwater). 

The apparent density of the as-sintered specimens was compared to the theoretical density 

of Ti6Al4V (4.5 g/cm3) and that of a Ti-BNNT composite with 1 wt.% BNNT. The 

theoretical density of the Ti-BNNT composite was estimated by implementing the general 

rule of mixtures80:  



47 

 

𝜌𝑇𝑖−𝐵𝑁𝑁𝑇 = 𝜌𝐵𝑁𝑁𝑇 ∗ 𝑉𝐵𝑁𝑁𝑇 + 𝜌𝑇𝑖 ∗ 𝑉𝑇𝑖      (6) 

In which, the 𝜌𝐵𝑁𝑁𝑇 , 𝑎𝑛𝑑 𝑉𝐵𝑁𝑁𝑇 correspond to the density (1.4 g/cm3) and volume 

fraction of the BNNT (~ 0.031) in the composite and ρTi (4.5 g/cm3),VTi (0.968) to those of 

the Ti6Al4V. Rule of mixtures is a widely accepted mathematical relationship that allows 

the estimation of mechanical characteristics of composites. The relationship is based under 

the assumption that the effective mechanical properties of a composite are a weighed 

contribution by the filler and matrix. Although, not implemented in this study for the 

prediction of mechanical properties, its derivation was used to estimate the theoretical 

density of the composite with 1 wt.% BNNT as 4.40 g/cm3.  

3.1 X-ray Diffraction: Identification of phases in consolidated Ti-BNNT composites 

Controlling the resulting interfacial phases during sintering and post-processing are 

of outmost importance, as it will directly affect the mechanical characteristics of the 

composite. High strength interphase between nanotube/metallic matrix has shown to be 

beneficial in the efficient transfer of loads. Thus, identification of phases present in the Ti 

and Ti-BNNT specimens after sintering was performed by X-ray Diffraction (XRD) at a 

scan rate of 2o/min using Cu Kα radiation (λ=1.542 Å). A Bruker D5000 X-ray 

diffractometer (Billerica, MA) was used to obtain diffraction patterns at an operating 

voltage of 40 kV and 35 mA current.  

Owing to the high pressures involved in low-temperature sintering, analysis of the 

obtained patterns was performed to identify changes in the crystal structure. Bragg’s Law 

(Eq. 7)was used to obtain d-spacing of at least 6 peaks in the diffraction pattern, and 
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geometrical relationships of an HCP crystal (Eq. 8) were used to obtain lattice parameters 

(a, c). 

𝜆 = 2𝑑 sin (𝜃)         (7) 

1

𝑑2 =
4

3
(

ℎ2+ℎ𝑘+𝑘2

𝑎2 ) +
𝑙2

𝑐2        (8) 

In which, λ corresponds to the wavelength of the x-ray source, θ is the diffraction 

angle, and  (h, k, l) represent the Miller indices of the planes reflected in the diffraction 

pattern. Such analysis would allow us to investigate potential residual strains introduced 

during the high pressure assisted sintering of Ti and Ti-BNNT at low temperatures.  

3.2 Metallography: Microstructural evolution as a function BNNT addition 

Microstructural characterization was performed to evaluate the effect of BNNTs on 

the grain size, and β-phase distribution of the composite as a function of sintering 

conditions. Reinforcement of metal matrices by reduction of grain size is a well- 

established mechanism. The introduction of secondary phases can lead to the restriction of 

grain growth. 

The pure Ti and Ti-BNNT samples were prepared following metallographic 

standards to minimize surface roughness and remove the surface imperfection. Samples 

were ground using SiC paper up to 1200 grit and polished using Al2O3 media with up to 

0.5 μm particle size. The chemical etching was performed to the polished surfaces to reveal 

microstructural features including grains, pores, etc. Kroll’s reagent with main components 

as DI water, fluoric acid and nitric acid in a 100:3:6 ratio respectively. Characterization of 

the etched surfaces was evaluated using a ZEISS Axioscope (Jena, Germany) optical 
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microscope and ImageJ (NIH) software was implemented for grain size measurements. At 

least 40 – 50 grain measurements were obtained per sample to obtain significant statistical 

data.   

3.3 Electron microscopy: Morphology of interfacial interactions of BNNT/metal 

Field Emission Scanning Electron Microscopy (FE-SEM) JEOL JSM-6330 

(Peabody, MA) was used in the evaluation of the fracture surface of ti and Ti-BNNT 

composites. Given the thermodynamically feasible reactions in the Ti-BN system to 

include TiB, TiB2, and TiN. For which the precipitation of TiB2 phases result in irregularly 

shaped nanoparticles, and TiB phases are portrayed as sharp needle structures. The 

morphology of potential reactions present at the interface of the BNNT/metal was imaged 

to serve as evidence of their presence or lack thereof. Energy Dispersive Spectroscopy 

(EDS)  was implemented to identify the elemental distribution of phases present in the 

composite.  

Transmission Electron Microscopy (TEM) was performed in the Ti-BNNT 

specimens to obtain an understanding of the reaction phases interacting at the interface 

between the nanotube and the metal. Electron transparent specimens were prepared via 

Focused Ion Beam machining (dual beam JEOL JIB-4500 focused ion beam/SEM, Tokyo, 

Japan). Assessment of bonding mechanisms and reactions during the processing were also 

evaluated by conventional TEM (FEI/Philips CM-200T, Hillsboro, OR) and high-

resolution scanning TEM (TECNAI F20, Thermo Scientific, MA) energy dispersive X-ray 

spectroscopy (EDX) maps of the specimens.  
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4. Mechanical Characterization: Strengthening induced by BNNTs 

The strengthening observed in BNNT reinforced metal composites is highly 

dependent on the interfaces between the nanotubes and the metal matrix. This has led to 

stress transfer mechanisms evidenced by pull-out of BNNTs from the matrix. The 

mechanical performance of the composites at multiple length scales was probed by 

indentation and compression techniques. Evaluating the deformation mechanisms in the 

composite will be performed by optical and scanning electron microscopy to obtain an 

understanding of the hierarchical stress-transfer and strengthening mechanisms in the Ti-

BNNT composite. 

In-situ and ex-situ nanoindentation techniques were used to probe the localized 

mechanical characteristics of the composite as a function of microstructural distributions. 

Depth-sensing nanoindentation by a Triboindenter (TI 900) (Hysitron Inc., Minnesota, 

MN), equipped with a diamond Berkovich tip (100 nm radius) was used to performed 25 

indents per region of interest. Quasi-static indentation with a maximum load of 8500 μN 

was introduced with a 5 s hold to minimize creep effects and avoid nosing effects in the 

curve. The mechanical characteristics in the presence of BNNTs as compared to its matrix 

were evaluated, and the Elastic modulus (E)  and  Nanohardness (H) were obtained. Oliver 

Pharr method was used in the analysis of load-displacement curves. In which, E values 

serve as an indirect measure of the matrix-nanotube bond strength, and nanohardness 

increments display the ability of nanotubes to pin dislocations. Also, in-situ mechanical 

investigations were carried out inside the SEM by implementing a Picoindenter (Hysitron 

PI 87, Minnesota, MN). A sharp cube corner tip (40 nm radius) was used in to induce 
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maximum localized stresses that would allow visualizing BNNT related strengthening 

mechanisms. Quasi-static indentation loading was performed in displacement control with 

maximum displacements of 1-10 μm and experienced deformations were captured in-real 

time for further analysis. Up to 10 indentations per region were performed for statistical 

analysis.  

Vickers’ microhardness was used to evaluate the resistance to plastic deformations 

at the micro-scale length. In which, larger areas of interaction between the probe and the 

specimen will display collective reinforcement of nanotubes, interfaces, and matrix. 

Microhardness was performed using a LECO LM910AT (Saint Joseph, MI) tester with a 

diamond Vickers indenter. Loads of 300 gf and dwell time of 10 seconds were used to 

make at least 10 indents.  

To evaluate the bulk mechanical properties of the Ti-BNNT composite, macro-

scale compression experiments were performed. Wire EDM machined cylinders with 2 

mm diameter and 3-4 mm height out of the sintered pellets were used as the test samples 

(Figure 20). Four samples for each studied condition were compressed using an MTI 

SEMtester (Albany, USA) with a 4000 N capacity load cell at compression rates of 500 

μm/min. 
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Figure 20 Experimental set-up used to evaluate the bulk compressive properties  
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CHAPTER IV: RESULTS AND DISCUSSION 

This chapter describes the experimentally obtained results, followed by a detailed 

discussion in the synthesis of the composites, reacted phases role and the strengthening 

mechanisms at play. Two challenges in the synthesis of Titanium reinforced BNNT 

composites are addressed: (i) The dispersion of high surface energy BNNTs to produce 

composites with homogenous distribution of BNNTs. (ii)The manufacturing of composites 

with significantly controlled interfacial reactions to aid in the strengthening of the Ti-

matrix. Analysis and discussion based on the challenges addressed will be detailed based 

on reinforcement achieved and deformation/strengthening mechanisms involved. 

1. Addressing Challenges: Dispersion of high surface energy BNNTs 

A significant challenge in the integration of BNNTs as a reinforcement phase is 

their hydrophobic nature. The lack of a suitable dispersion route for the nanotubes without 

destructing its tubular morphology limits its applicability and processing. The ultra-fine 

diameters (5-10 nm) and extended lengths (up to 200 μm) of the nanotubes are responsible 

for the high surface energy leading to their easy aggregation via strong van der Waals 

forces. Hence, limiting their dispersion in most aqueous media. This study introduces two 

methods for the dispersion of BNNTs in aqueous media. Assessment of each method will 

be performed based on their suitability to the subsequent processing route (SPS) the 

composite powder will be subjected to. 

1.1 Chemical dispersion of BNNTs and synthesis of composite powder 

The dispersion of the nanotubes in aqueous media (DI water) was performed by the 

introduction of a non-ionic surfactant. The as-received BNNT fibrils consisted of highly 
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agglomerated and entangled BNNTs (Figure 21). Introduction of the BNNTs to the 

aqueous media resulted in their segregation and non-wetting by the media, as shown in 

Figure 21.  

 
Figure 21 Pictorial representation of the as-received BNNT fibrils in the form of balls, 

the subsequent introduction to the aqueous medium resulted in their segregation and 

non-wetting as a result of the highly hydrophobic nature of BNNTs 

Achieving a homogenous and uniform dispersion of BNNTs within the Ti matrix 

is of crucial importance to the resulting mechanical properties of the composite81. Also, to 

poor sintering, agglomerates within the structure are often found as nucleation sites for the 

failure of the composite81. Owing to the observed high hydrophobicity of BNNTs to DI 

water, a non-covalent dispersion route is used. As opposed to covalent dispersions, which 

include the introduction of chemical bonds between the nanotube wall and the 

functionalization agent, noncovalent agents introduce the adhesion of polymer-based 

molecules to the surface of the nanotubes82. The later method is preferred due to their 

ability to retain the crystallinity and integrity of the nanotube.  
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1.1.3 Role of surfactant in the dispersion of BNNTs 

The dispersion of BNNTs encompasses the achievement of three main aims: (i) 

Reduction of surface tension between the nanotube and aqueous media, promoting wetting 

of the nanotubes; (ii) disentanglement and destruction of agglomerates of long BNNTs by 

ultrasonic assisted route; and (iii) achieving a stable dispersion of BNNTs inhibiting re-

agglomerates76.  

The hydrophobic nature of the nanotubes in aqueous media can be described by the  

equilibrium contact angle between the nanotubes and water55,83:  

cos 𝜃 =
𝛾𝑠−𝛾𝑠/𝑙 

𝛾𝑙
         (9) 

For which, cos 𝜃 described the angle between the surface of the solid being wetted and the 

liquid. This relationship between solid and liquid interfaces is a function of the surface 

energy of the solid (𝛾𝑠), the surface tension of the liquid (𝛾𝑙), and the solid-liquid surface 

tension (𝛾𝑠/𝑙). The interactions between the solid surfaces been wetted and the, liquid are 

characterized by their angle of wetting (𝜃). Higher wetting angles (>90o) are characteristic 

of poor wetting between the liquid and solid, while angles ≥90o represent good wetting.   

Thus, it is intuitive to conclude from Eq. 9 that higher 𝛾𝑠 values will result in higher wetting 

angles and; hence, result in preferred wetting of the surface. The surface tension of the 

solvent in use (DI water) has been reported as 72.7 mN/m83, whereas the surface energy of 

BNNTs is of ~ 27 mN/m55. The significantly lower 𝛾𝑠 of BNNTs are responsible for the 

hydrophobic nature observed in Figure 21. 
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To address the poor wettability of the nanotubes in the media introduced, non-ionic 

surfactants are employed to reduce the surface tension between the nanotube and the 

solvent. A poly(ethylene oxide)(PEO), poly-propylene oxide (PPO) tri-block copolymer 

(PEO-PPO-PEO), commercially known as Pluronic is introduced as a non-ionic surfactant 

to the BNNT/DI water solution. Non-ionic surfactants are amphiphilic copolymers which 

contain both hydrophobic (apolar) and hydrophilic blocks (polar) 84–86. Their high 

solubility in water solutions and their ability to adsorb to solid hydrophobic interfaces 

makes them suitable for the stabilization of colloidal solutions. The mechanism by which 

stabilization of the BNNT dispersion occurs is driven by micellization of the surfactant 

(Figure 22)76.  

 
Figure 22 Schematic representation showing the mechanism by which a non-ionic 

surfactant introduced in the BNNT/DI water solution results in the reduction of 

surface tension between the nanotube and the aqueous media.  
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Upon introduction of Pluronic particles into the aqueous solution, energy induced 

by bath ultrasonication promotes the solubility of pluronic in DI water. Initial reactions 

induce the formation of unimers (subunits of micelles) in the solution due to its low 

concentration. Exceeding a critical micellization composition (CMC) of Pluronic in the 

solution will induce the formation of micelles76. The CMC value is reported as 0.28 -0.8 

wt. % for Pluronic F127 used in this study85,86. The final concentration of the solution in 

this study demonstrates this value is exceeded in experimentation (~ 3wt.% ) and therefore, 

the formation of micelles is assumed to be attained84. PPO groups present in the copolymer 

are responsible for the hydrophobic chains in the micelles, while PEO groups render the 

hydrophilic chains85. The hydrophobic chains (PPO) are assumed to interact with the 

hydrophobic surface of the nanotubes using mutual π-π interactions84–86. The adherence of 

the hydrophobic micelle molecules to the surface of the nanotubes exposes the hydrophilic 

tails (PEO chains) to the solvent. Thus, reducing the surface tension of the nanotubes and 

promoting their stability by steric forces76. Lin et al.84 has demonstrated the adsorption of 

Pluronic micelles to the surface of hydrophobic carbon black nanoparticles to increase 

surface thicknesses to up to ~26 nm in a 1 wt.% pluronic addition. Hence, the stabilization 

process is understood as the wrapping of polymer chains onto the surface of the 

hydrophobic solids and has a two-fold advantage: (i) reducing interfacial surface tension 

between the nanotube and the aqueous media, and (ii) induction of high repulsive forces 

among dispersed BNNTs preventing their re-agglomeration.84 As observed in Figure 22, 

the clear solution obtained signaled the dispersion of BNNTs without significant 

agglomerates (visible at the naked eye).  
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1.1.4 Homogeneity and dispersion of BNNTs in composite powder 

The dispersion of BNNTs in aqueous media was soon followed by the addition of 

Ti6Al4V spherical powder. The adherence of dispersed BNNTs on to the surface of Ti 

particles was aided by a magnetic stirring process for at least 15 min. The aqueous solution 

was then oven dried, and 2-hour heating to 200oC was used to remove the organics from 

the surfactant. 

Removal of residual surfactant from the composite powder is of crucial importance 

owing to the elevated temperatures involved in the sintering of composites. The presence 

of residual surfactants could lead to increased defects within the structure. Thus, post-

purification processes are often introduced, such as vacuum filtration and acid washing. 

While vacuum filtration coupled with repeated washing routines have shown potential in 

the removal of residual surfactant in a colloidal solution, this process entails the re-

agglomeration of nanoparticles. Also, the adsorption of surfactant derived micelles on the 

surface of the BNNTs make impossible their complete mechanical removal. On the other 

hand, the introduction of acids as purifying agents has often resulted in the introduction of 

surface defects on the nanoparticles. Thus, showing undesirability for their use.  

Thermal annealing of the composite powder was introduced in this study as an 

alternative route to remove the organic surfactant from the powder. Given that the melting 

point of the non-ionic surfactant is of ~55oC and its boiling point >149oC, an annealing 

temperature of 200oC and a 2-hour heating period were chosen for the evaporation of 

organics and removal of surfactant from the composite powder. Figure 23a shows the 

resultant composite powder after the annealing process was completed. A large number of 
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localized agglomerates are encountered throughout the powder mixture. Closer observation 

of the powder particles (Figure 23b) reveals the presence of agglomerated nanotubes in 

companion to residual surfactant particles.  

 
Figure 23 (a) Resultant Ti-BNNT composite powder after drying and thermal process 

was completed showing residual surfactant. (b) EDS mapping of the composite 

powder revealed the presence of Carbon as a result of residual surfactant 
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Although an exhaustive thermal annealing step was introduced in the processing of 

the composite powder, the surfactant was still present as aggregates throughout the surface 

of the Ti powder encapsulating large BNNT agglomerates. The large presence of surfactant 

clusters precipitated on the composite powder was evidenced by the carbon content (~22 

at. %) in EDS analysis. This anomaly can be attributed to the surfactant’s behavior in the 

presence of heat. The micellization process of Pluronic has been reported to exhibit 

dependence on the temperature of the solution at which it is exposed87. Low surfactant 

concentrations (< 50 mg/mL) experienced increasing growth of micelles into 

spherical/ellipsoidal particles above ~52oC87. Jebari et al.87 reached to the conclusion that 

although temperatures above >45oC allowed a larger degree of micellization of the 

surfactant. The process could also entail to a larger number of PPO hydrophobic chains 

associating with other micelles, thus, generating clusters and swelling of micelles. 

In this study, the high energy introduced during the dispersion of the nanotubes via 

bath sonication can be considered as the source of heat in the solution. The dissipation of 

ultrasonic waves, often at frequencies >20 kHz, is known to induce the formation of 

cavities in an aqueous solution88. After experiencing continuous expansion and retraction, 

cavities in the solution experience collapsing. Such a process has been largely reported to 

result in localized heating to temperatures up to 5000 K and pressures of ~ 2 atm88. 

Although these extremely high temperatures are experienced at the local centers of cavities, 

their contribution to the solution can extend to around 200 nm from the surface of the cavity 

with temperatures of up to 2000 K88. This process has been reported to have durations of 

< 2μs, and hence reduce the direct impact of high temperatures on the solution88. Hence, 
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heat derived from the bath sonication process can be deduced as responsible for the micelle 

growth and agglomerated clusters found in the final composite powder.   

On the other hand, evidence of individual nanotubes wrapped on the surface of Ti 

particles was also observed (Figure 24). It is understood from the micellization mechanism 

described above, that the critical micelle composition was exceeded and allowed the 

dispersion of nanotubes to take place. Increased thickness of nanotubes as observed in 

Figure 24 a and b serve as evidence of the wrapping of nanotubes by the copolymer 

molecules introduced.  

 
Figure 24 (a) Titanium powder particle with individual BNNTs adhered at the surface 

of the powdered particle. (b) Evidence of BNNTs interfacing with the powder 

particles and surfactant 

Survival of BNNTs after been subjected to long periods of high energy sonication 

can be attested in the synthesis of the composite Ti-BNNT powder. The mechanical 

stability of the nanotubular structure is still of interest and could represent a reinforcement 

to the matrix. Although complete dispersion of nanotubes was hindered by micellar 

aggregates in the presence of localized heat, the subsequent sintering of the composite 

powder was performed, and the suitability of the surfactant-assisted dispersion is discussed.  
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1.1.5 Effect of surfactant during consolidation 

Assessment of the fracture surface of sintered Ti-BNNT composites obtained via 

surfactant assisted route is shown in Figure 25. Sintering of the composite powder was 

performed at maximum temperatures of 950oC to evaluate the suitability of the dispersion 

route to high-temperature processing. The sintered composite resulted in specimens with a 

high relative density of ~ 98%. Although high relative densities were achieved, fracture 

surface evaluation demonstrated the presence of large BNNT agglomerates within the 

matrix. The presence of agglomerates in the composite is attributed to the poor dispersion 

achieved in the introduction of surfactants. High energy-induced heating of the solution 

leading to the swelling and aggregation of surfactant micelles were deduced as the primary 

source of poor BNNT dispersions. Also, agglomerates in the composite are found to act 

preferential sites for the presence of cracks. In the presence of agglomerates, nanotubes 

found away from the Ti/BNNT interfaces render lower interactions between the nanotubes 

and the Ti matrix. Thus, inhibiting the bearing of stresses and promoting more significant 

deformations as a result of non-covalent shearing between nanotubes. 

Moreover, elemental analysis of the fracture surface via EDS demonstrated 

agglomerate sites as carbon-rich regions. In which, residual free-surfactant and that 

strongly wrapped within the nanotubes experience calcination during sintering of the 

composite.  
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Figure 25 EDS mapping of the as-sintered fracture surface of the Ti-BNNT composite 

synthesized via surfactant assisted route. Carbon as an impurity is encountered 

The calcination process can be described by the nature of the surfactant’s thermal 

decomposition. Thermogravimetric analysis (TA) of the Pluronic surfactant was performed 

by exposing the initial powder to temperatures up to 600oC (Figure 26). Evaluation of the 

curve resolves major losses in weight to occur between 250 – 400oC. For which, the 

decomposition of organics and polymeric chains takes place, resulting in residual carbon 

of ~ 1.5% the initial weight. The presence of carbon as a contaminant in the composite is 

considered detrimental due to the thermodynamic feasibility to form TiC reaction products 

within the composite. The poor solubility of carbon within Ti at elevated temperatures (> 

500oC) is known to result in the precipitation of TiC phases in its interaction with α and β 

phases of the matrix. 
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Figure 26 TGA curve of the Pluronic F127 used in the dispersion of BNNTs, curve 

demonstrates major thermal degradation to occur between 200 – 400oC with residual 

Carbon on 1.5 % of its initial weight. 

Although the carbon concentration is considerably low (~1.5 %), the major losses 

in weight of the surfactant upon exposure to elevated temperatures result in the origination 

of defects in the microstructure. Figure 27 shows the microstructure of the Ti-BNNT 

composite after sintering was completed. The microstructure reveals large voids 

throughout the microstructure. Defect sites (i.e., voids) are a result of the evaporation of 

volatile organic components within the surfactant during sintering. Spark plasma sintering, 

as a consolidation route, entails a constrained sintering process limiting the escape of gases. 

Hence, resulting in the presence of large voids throughout the microstructure.  
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Figure 27 Optical micrographs of polished and etched surfaces of the as-sintered Ti-

BNNT composites synthesized via surfactant-assisted route showing the significant 

presence of voids as a result of volatile organics in residual surfactant. 

It is therefore concluded that the dispersion via surfactant addition is not suitable 

for the manufacturing of Ti-BNNT composites. Specifically, manufacturing of composites 

via powder metallurgy route is deemed to not benefit from the surfactant-assisted 

dispersion, unless a more appropriate surfactant removal process is introduced. In light of 

the poor dispersion and contaminants (residual Carbon) encountered in the synthesis of the 

composite, a dispersion process averting the use of surfactants as dispersion aids will be 

further pursued. 

1.2 High energy induced dispersion of BNNTs by tip sonication 

An alternative route is introduced for the dispersion of BNNTs in an organic 

solvent. Acetone is introduced as a solvent due to its high affinity to the nanotubes and 

ability to generate a protective layer for oxidation in the Ti particles. Owing to the high 

energy transfer during the ultrasonic wave propagation, ultrasonication by tip sonication 

has been the desired technique in the dispersion of high surface energy nanoparticles.  
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The advantage of introducing a sonicating probe into the solution includes the 

ability to reduce dispersion times by ~ 128 × of the required time in a surfactant/bath 

sonication dispersion. Also, the reduced damage to the nanotubes was reported by Caneba 

et al.72 in the dispersion of CNTs. Figure 28 shows the steps carried out in the dispersion 

of BNNTs by ultrasonication vibrations. First, entangled BNNTs are observed in the form 

of fibrils. Introducing a sonication probe for 45 min with frequencies of 19kHz and 

amplitudes of ~ 47.2 μm resulted in the dissociation of entangled BNNTs and allowed their 

stable dispersion (shown by cloudy solution). Ti6Al4V powder particles were later 

introduced into the stable BNNT/acetone solution, and magnetic stirring was performed. 

The complete adherence of dispersed BNNTs onto Ti particles was achieved after 1 hour 

and is evidenced by the clear supernatant in Figure 28. After evaporation of volatile acetone 

via oven drying, evaluation of the composite powder took place. The distribution of 

BNNTs was found to be homogeneous throughout the Ti powder. In which, individual 

nanotubes are observed on the surface of the powder particles, as well as small bundles.  
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Figure 28 Pictorial representation of the high energy induced dispersion of high 

surface energy BNNTs in acetone. The resultant composite powder shows the 

integrity of the nanotubes to high energy sonication and the achieved dispersion.   

1.2.6 Role of ultrasonic waves and cavitation in breaking agglomerates and 

dispersion of BNNTs 

The enhanced dispersion of high surface energy BNNTs in the composite powder 

can be attributed to the mechanical and chemical disturbances introduced during the 

ultrasonication process. The propagation of ultrasound through a liquid is known to result 

in the induction of positive and negative pressures within the liquid72,73. Physical break 

down of the liquid is then the nuclei of voids when large negative pressures are 

experienced. The process by which the propagation of waves generates voids within a 

liquid is known as acoustic cavitation72,73,88. The importance of the cavities for the 

dispersion of nanoparticles and specifically BNNTs lies in their ability to be a carrier of 

high energies and gases derived from the solvent used that will interact with the dispersing 

particles. At frequencies >19kHz, acoustic cavitation experiences growth and sudden 
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collapsing after reaching critical sizes of ~ 170 μm72,73. The collapsing of high energy 

carrier cavities is known to result in the localized heating (up to 5000 K) present for short 

periods of ~2 μs72,73,88. In the presence of solid-liquid solutions, acoustic cavities are 

capable of imparting high accelerations to the solid nanoparticles capable of imparting 

enough energies to dissociate nanoparticles.  

The recurrence of a large number of cavities is highly dependent in the intensity of 

the acoustic vibrations introduced72,73,88,89:  

𝐼 =
1

2
𝜌𝑐(2𝜋𝑓𝐴)2         (10) 

The mathematical relation between the density of the liquid medium (ρ), the speed 

of sound within the liquid (c), the frequency (f) and the amplitude of vibrations, will 

ultimately dictate the degree of collapsing cavities in the solution. In this study, acetone is 

characterized by having a density of  0.78 g/cm3 and dissipates sound in speeds of ~ 1170 

m/s89. Thus, the intensity of acoustic vibrations in the acetone/BNNT solution is computed 

as 1457.13 W/cm2. The high intensity of cavitation introduced in the solution is then 

responsible for the acceleration of entangled nanotubes driving them with speeds of up to 

400 km/h89. The high acceleration induced to the nanotubes is proposed as the main driving 

mechanism for the mechanical dissociation of entangled BNNTs. In addition to providing 

enough energy for the mechanical propulsion of nanotubes, the high energy carried by the 

cavities are known to induce chemical effects on the solvent72,73,88,89.  

 In the presence of high energies, the localized heating and pressure induced by 

exploding cavities is known to result in the formation highly reactive species. Thus, 



69 

 

evaluating the potential species present during the sonication of the acetone/BNNT would 

allow us to understand the mechanisms by which the highly hydrophobic BNNTs are 

wetted and dispersed. The introduction of high frequency (>19 kHz) acoustic cavitation in 

acetone (C3H6O) has been reported to result in the formation of Hydrogen atoms, Hydroxyl 

radicals, and even carbon-centered radicals72,73,88,89. Free radicals are highly reactive 

species that are present in higher concentration nearing the surface of cavities. However, 

the escape of free radicals to the bulk solution is known to result in reactions between the 

compounds within the solvent (i.e., BNNTs). Free radicals are highly reactive species 

introduced during cavitation that are bound to interact with defects on the surface of 

BNNTs.  

The dissociated hydroxyl radicals (-OH) from acetone as a result of the high energy 

imploded cavities can be responsible for the improved wetting of the BNNTs in aqueous 

solutions. The in-situ functionalization of hydrophobic BNNTs by -OH radicals result from 

the ability of free radicals present to interact covalently with electron deficient sites (i.e., 

Boron) in the BN structure (defect sites)90,91. Plasma treatments and hydrothermal reactions 

have been shown as alternative routes for the functionalization of nanotubes via formation 

of -OH radicals91,92. Hydroxylation is further promoted by the open atmosphere in which 

the dispersion takes place, allowing for O2 species to interact with the solution. Similar to 

the hydroxylated process observed in the sonication assisted dispersion of BNNTs, the 

sonication of h-BN sheets in water has resulted in their hydrolysis92. Lin et al93. 

demonstrated that BN bonds nearing defect sites were prone to the attack of O2 atoms 

derived from water molecules resulting in their dissociation and fragmentations. A similar 

mechanism by which hydroxyl groups derived from free radicals impart hydrophilic nature 
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in initially hydrophobic BNNTs91. The energetically favorable interaction between the 

hydroxyl radicals and the nanotube surface has been reported to give binding energies of ~ 

0.93 eV between acetone derived molecules and B sites in interaction79.  

The significance of surfactant-free dispersion of BNNTs with high surface energy 

and highly hydrophobic nature lies in the scalability of the technique and the ease of 

volatilization of the solvent from the composite powder. Thus, mitigating the contaminants 

and defects encountered in the surfactant-assisted dispersion of BNNTs. Following the 

successful dispersion of BNNTs on the Ti powder, challenges concerning the 

thermodynamics of reactions are addressed for the sintering of the composite.  

2. Addressing Challenges: Controlling thermodynamically feasible reactions 

The high reactivity of Titanium during thermal processing in the presence of 

nanoparticles has posed a challenge in the manufacturing of composites. The chemical 

inertness and thermal resistance to up to 900oC of BNNTs, suggests the potential of these 

nanostructures to serve as reinforcing nanoparticles of metals. In this study, the low-

temperature sintering (<900oC) of Titanium alloys is introduced as an alternative route to 

high-temperature processing (>900oC) commonly used in the manufacturing of bulk Ti 

pieces.  

2.1 Low-Temperature sintering of Ti64Al4V  

Processing of Ti6Al4V via the pressureless, hot press, hot isostatic pressing, and 

pressure assisted sintering (SPS) has been widely investigated.  Figure 29 presents a visual 

summary of the sintering techniques currently used for the sintering of Ti6Al4V pre-

alloyed powders94–99. The graph differentiates and clearly states the high temperatures 
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required in pressureless sintering processes to achieve scattered degrees of densification 

(62 – 99%). The scattered data points in pressureless sintering, are a result of the various 

sintering conditions often used, where extremely long sintering periods (up to 90 min) and 

temperatures of ~ 1371oC are required to achieve nearly fully dense structures. While lower 

temperatures (1250oC)  for periods of 2 hours results in merely 62% relative density100,101.  

Some efforts to reduce the sintering periods have introduced hot-pressing, and HIP 

techniques with potential to achieve full densification of the alloy by the introduction of 

additional compacting pressure processing steps. In which, isostatic pressures of ~ 800 

MPa are introduced by the continuous supply of inert gas and heating of the Ti powder 

containing chamber95,99. Although this process has shown potential in the sintering of fully 

dense Ti structures (up to 99 % densification), the technique still extends the processing 

periods to 3 hours. Moreover, the simultaneous pressure and heating during the sintering 

of metallic powders have been investigated via Spark Plasma Sintering routes. In which, 

near net shape structures are manufactured in periods between 10 – 30 min44,52,53,94,96,98. 

This signifies a reduction in sintering times by up to 4× that required in other sintering 

routes.  

Outlining the several processes used in literature for the sintering of Ti6Al4V as a 

function of temperature clearly shows two temperature-dependent regimes:  

• Sintering rule of thumb (>1000oC); chosen temperatures follow sintering’s rule of 

thumb where sintering temperatures are 70% of the melting temperature (Tm) of the 

metal. 
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• Pressure-assisted sintering (800-100oC); mild sintering temperatures are chosen as the 

reduction in porosity is achieved by pressure assisted methods.  

Close observation of the comparative graph (Figure 29) distinguishes a third regime 

denominated as “processing gap” at temperatures <800oC. In which, sintering of pre-

alloyed Ti6Al4V has not been explored. Keeping in mind that the ultimate goal of this 

study is to achieve the manufacturing of reinforced Titanium-BNNT composites with 

control interfacial reactions. This study introduces the concept of low-temperature 

sintering: where sintering temperatures below 800oC are chosen in combination with 

elevated sintering pressures (300 – 555 MPa) to achieve full densification of Ti6Al4V and 

ultimately the sintering of Ti-BNNT. Sintering of the BNNT reinforced Ti composite at 

common SPS conditions of ~ 950oC exposes the nanotubes to temperatures exceeding the 

experimentally observed oxidation, as well as presents thermodynamically feasible 

conditions for the formation of reaction products within the interfaces. Hence, exploring 

lower temperature regimes, well below the oxidation of BNNTs, could result in composites 

with minimal reaction products as desired.  
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Figure 29 Comparative chart of pressureless and pressure assisted sintering routes 

used in the past for the densification of Ti6Al4V. A processing gap is identified and 

investigated with potential advantages for Ti-BNNT composites 

2.1.7 Densification and microstructural evolution  

Owing to the promising advantages of low-temperature sintering of Ti, sintering of 

Ti6Al4V was carried out at temperatures between 600 – 650oC and pressures of up to 

555MPa. Table 5 describes the resulting properties of the T6Al4V samples sintered at 

different temperatures and pressures.  
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Table 5 Summary of microstructural characterization of low temperature sintered 

Ti6Al4V 

Temperature 

(°C) 

Pressure 

(MPa) 

Relative Density 

(%) 

Grain size                 

(µm) 

Hardness 

(GPa) 

600 300 93.1 9.6 ± 3.1 2.7±0.11 

600 500 98 10.6 ± 3.7 3.7 ±0.02 

650 555 98.9 11.73 ± 2.7 3.7 ± 0.04 

950 60 98.65 
Long.: 7.4 ± 2.6 

Trans.: 2.3 ± 0.9 
3.2 ±0.09 

 

It is important to highlight the high level of densification (~98%) achieved by 

merely 600oC and exerting 500 MPa. In which, relative densification values of specimens 

sintered at 300 vs. 500 MPa suggest a dependence on the deformation required for powder 

particles to consolidate. A subsequent increase in sintering temperature by 50oC (650oC) 

and small increases in pressure by 5MPa (555MPa) resulted in a further increase in the 

relative density by at least 1 % to almost 99% relative density.  

To understand the mechanisms by which densification of the Ti6Al4V occurs at 

low temperatures and high pressures, densification curves were studied as a function of 

temperature (Figure 30).  
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Figure 30 Densification curves of low temperature sintered Ti6Al4V showing three 

distinct regimes of densification 

Densification curves are of prime importance as they can provide real-time 

densification phenomena occurring to the specimen during sintering. Three densification 

regimes are identified in Figure 30 to play a role in the densification of the alloy. The first 

stage, between temperatures of RT – 150oC, where the packing and rearrangement of the 

powder particles take place102. At the same time pressure starts increasing, allowing 

packing densities to reach up to 75-80% densification. Increasing packing density before 

any sintering occurs in the powder decreases the inter-particle distance allowing for 

diffusion to occur at a much faster rate.  

Soon after, the second sintering regime occurs between 150oC -500oC. For which 

the rate of densification is the lowest (~0.3 %/ min). During this regime, necking and plastic 

deformation of particles is presumed to occur with minimal impact in the densification of 

the sample given that stresses are low. Figure 31 demonstrates the fracture surface of a 

Ti6Al4V specimen sintered at 600oC and 300 MPa. In which, the poor relative density 
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achieved can be attributed to the poor sintering obtained at the selected sintering 

conditions. Sintered specimens demonstrate outcomes described in the second sintering 

regime, where initial necking and deformation of particles can be observed.  

 
Figure 31 Fracture surface of the Ti6Al4V sample sintered at 600oC and 300 MPa, 

showing poor interparticle interactions with signs of surface diffusion (necking). 

The notion that sintering of materials occurs under the simultaneous effect of heat 

and plastic deformation provides the guideline to the understanding of sintering 

mechanisms undergone in this study. For successful densification of Ti6Al4V to occur at 

low temperatures, the effective stress exerted during SPS must exceed the yield strength of 

the Ti102. That is, pressure assisted densification can be achieved if the sintering pressure 

is enough to induce yielding of the powder particles. The temperature dependence of the 

yielding strength of Ti6Al4V has been well reported over a wide range of temperatures. 

Literature has reported this value for Ti6Al4V to be between 550 – 680 MPa at 

temperatures of 600oC102. Thus, the low pressures used are not enough to induce particle 

yielding and densification in the specimen. This intermediate mechanism is denominated 

as surface diffusion, where pressures are not significant enough to induce major plastic 

flow required102.  
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Increasing temperatures above >500oC gives rise to the third regime. In which, the 

hold periods at constant max. Temperature and pressure induce the self-diffusion of Ti 

particles and allowed densification to occur. This third regime is observed to occur at rates 

of about 2%/min and is achieved by specimens sintered at 600oC-500 MPa and 650oC-

555MPa. Figure 32 shows the fracture surface of both specimens sintered at 600oC-500 

MPa and 650oC-555MPa. Features such as dimples within the fracture surface are 

characteristic of a ductile fracture and serve as evidence of near full densification achieved. 

The increase in pressure to 500 and 555 MPa near the reported yielding of Ti is responsible 

for allowing mass transport and moderate diffusion as densification mechanisms to 

occur102. The significance of this finding lies the ability to reduce sintering temperatures 

by ~40% that of conventional SPS conditions and ~50 % of non-pressure assisted sintering 

techniques. Moreover, it is important to highlight that the full densification of the Ti6Al4V 

was achieved in merely 10 min of sintering. Hence, reducing sintering times and 

temperatures for what was considered a thermally exhaustive routine.  
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Figure 32 SEM micrographs of as-sintered Ti6Al4V at (a) 600oC and pressures of 555 

MPa, as well as (b) 650oC and 555 MPa. Improved interparticle interactions showed 

near full densification of the Ti alloy. 

Evaluating the microstructural evolution of the as-sintered Ti6Al4V specimens is 

of crucial importance in determining the morphological characteristics that will influence 

the mechanical performance of the alloy. Figure 33 shows the polished and etched surface 

of Ti6Al4V specimens sintered using sintering conditions described above. Low sintering 

temperatures used between 600-650oC and high pressures between 300 – 555MPa have 

shown to result in equiaxed globular microstructures. Where the recrystallization of Ti 

during sintering is partial, inhibiting the precipitation of large β-phase deposits. Sintering 

of α-β alloys near the β-transus temperature is known to result in increased β-phase 

concentrations and microstructures dominated by elongated α grains with residual β-phase 

along the grain boundaries. Thus, Figure 33 the predominantly globular grains within the 

microstructure of low temperature sintered Ti6Al4V are of α-phase composition with 

minimal β-phase. Metals with uniform globular microstructures are often desired over 
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elongated grains for load-bearing applications due to their ability to exhibit isotropic 

mechanical properties. The microstructure of sintered specimens at temperatures of 600oC 

and pressures of 300 MPa show the presence of several voids along particle boundaries 

signaling the lack of mass transport preventing full densification. While prominent pores 

are still present, increasing temperatures by 650oC and pressures to 555 MPa reduces 

overall porosity in the metal while maintaining the globular microstructure. Grain growth 

by ~10% is experienced with minimal increments in pressure and temperature signaling 

the improved plastic flow and mass transport.  

Interestingly, the increase in sintering pressures during sintering results in the 

formation of shear-like features along the grains of the Ti6Al4V microstructure (Figure 33 

b and c). The observed features are signaling to the presence of activated twin planes during 

the high pressure assisted sintering and will be discussed in detail in the following section. 

Achieving near full densification of Ti6Al4V, a metal often subjected to temperature and 

time exhaustive processes presents a clear advantage to the ultimate goal of this study 

“manufacturing of Ti-BNNT composites with control interfacial reactions.”  
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Figure 33 Optical micrographs of the polished and etched surfaces of Ti6Al4V 

sintered at low-temperature conditions.  

2.1.8 Deformation driven densification: 

The significant decrease in the surface area experienced by Ti particles during high-

pressure sintering is understood as the driving force for the decrease in free energy between 

solid-void interfaces to soli-solid particles interfaces allowing for near full densifications. 
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Mechanisms by which densification is attained were explored by evaluating the 

crystallographic changes in the alloy. Figure 34 compares the X-ray diffraction pattern of 

all sintered Ti6Al4V specimens at increasing pressures of 300, 500, and 555 MPa.  

 
Figure 34 X-ray Diffraction pattern of as-sintered Ti6Al4V sample as a function of 

sintering conditions. Shifting of peaks as a result of high sintering pressures are 

observed. 

Primary peaks corresponding to α-phase of the Ti alloy were characterized. No 

peaks corresponding to the β- phase were identified and represent their extremely low 

concentration (<9%) within the sintered alloy. A shift experienced by all major peaks of α-

Ti towards lower 2θ angles signaled to distortions in the crystal lattice. Prominent peak 

shifts are observed in the specimens sintered at highest pressure (555MPa) as compared to 

300MPa. The shift of primary peaks corresponding to (100), (002) and (101) planes 
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towards lower diffraction angles correspond to the compressive strain in the crystal lattice 

as a result of high sintering pressures exerted. The degree of deformation experienced by 

the lattice was evaluated using crystallite size and residual micro-strains. Analysis of the 

XRD pattern allows us to explore the significance of the mild peak broadening experienced 

with increasing sintering pressures. Peak broadening in XRD profiles is known to be a 

result of instrumentation effect, decrease in crystallite size, and lattice strains. In this study, 

the Williamson-Hall method is used to estimate the average crystallite size and 

microstrains of the as-sintered Ti6Al4V specimens103.   

𝐵 𝑐𝑜𝑠𝜃 =  
𝐾𝜆

𝐷
 + 𝜂 𝑠𝑖𝑛𝜃        (11) 

Where B corresponds to the full width at half maximum (FWHM) obtained from 

fitting of the experimental XRD curve with R2 > 90 representing the good fit of the data, D 

as the average crystallite size, η being microstrain (lattice distortions), and λ is the 

wavelength of the Cu-Kα source ~0.15 nm. The model assumes isotropic nature, in which 

uniform strains across crystallographic directions is the same and comparison of the curve 

to a linear curve of the form y= b + mx allows extraction of crystallite size (intercept) and 

microstrain (slope). Table 6 summarizes the results obtained by the analysis of 

experimentally obtained XRD patterns. A slight increase in the average crystallite size of 

specimens sintered at 600oC with pressures varying from 300 to 500 MPa signal to the low 

thermal energy supplied to contribute to grain growth. The opposite is observed in samples 

sintered at 650oC and pressures of 555 MPa, where the increase in internal energy of the 

grains permits their growth by 2× that of specimens sintered at 600oC.  
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Moreover, compressive strain induced by high sintering pressures is observed to 

increase microstrains. The significant increase (up to 76 %) in lattice strain of samples 

sintered at pressures of 500 and 555MPa is attributed to the larger number of defects 

introduced in the microstructure. An increase in volume defects such as dislocations and 

twins observed in both samples tends to exert lattice strains in the crystal103.   

Table 6 Summary of computed average crystallite size and microstrain using 

Williamson-Hall method. 

Sample Average crystallite size 

(nm) 

Microstrain 

600oC - 300 MPa 46.31 1.66 ×  10−3 

600oC - 500 MPa 55.62 2.05 ×  10−3 

650oC - 555 MPa 110.83 2.86 ×  10−3 

 

The role of crystal lattice defects induced by high sintering pressures in the 

restriction of dislocation movement and strengthening of the metal is evidenced by 

performing transmission electron microscopy (TEM) of the specimens sintered at 650oC -

555MPa. The mechanism by which a metal experiences plastic deformations are 

commonly understood to be driven by dislocation movement. Upon experiencing 

increasing stresses, dislocations are continuously generated in the metal and begin to 

migrate towards pile-up zones104. Grain boundaries are the most commonly available 

barriers to restrict dislocation movements. Hence, the pile-up of dislocations near grain 

boundaries requires higher stresses for deformation to occur. The sudden increase in 

dislocation density often experienced would fail a typical metal. The activation of twins in 
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the Ti6Al4V specimen sintered at low temperatures and high pressures extends the 

strengthening of the metal by introducing an additional barrier for dislocations to 

move105,106. The presence of twins in the microstructure of Ti6Al4V not only represent a 

strengthening of the metal but also are presumed to improve the ductility.  

Figure 35 shows a TEM micrograph of the sintered Ti6Al4V at temperatures of 

650oC and sintering pressures of 555 MPa. In which, the dense dislocation microstructure 

can be evidenced as described by optical investigation and XRD analysis. The presence of 

slip bands with dislocations trapped within the boundaries of the bands can be observed. 

The activation of slip planes in Ti6Al4V alloys with α rich phases has demonstrated to be 

dependent on the critical resolve shear stress105,106. Exceeding the prescribed shearing 

stress would indicate the initiation of a slip in the alloy. Critical resolve shear stresses for 

slips to occur within the prismatic and basal <a> direction of the HCP grains is of 340 MPa, 

while that for pyramidal is of 680 MPa105,106. Therefore, it can be presumed that the slip 

bands observed in Figure 35 belong to either basal, or prismatic <a>, for which the yield 

stress has been far exceed by the sintering pressure (555 MPa). The critical resolve shear 

stress is highly dependent on temperature and should further reinforce the proposed 

mechanism of activation105,106. 
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Figure 35 Transmission electron micrograph of Ti6Al4V specimen sintered at 750oC 

and 555 MPa showing slip bands and twin boundaries as hosts for dislocations. 

The presence of twins in the microstructure of the Ti and ultimately the Ti-BNNT 

composites are considered beneficial to strengthening. Twin boundaries in the alloy can be 

considered as added sources for dislocations upon experiencing deformations. Interactions 

between dislocation and twin boundaries could lead to an increase in stresses required for 

plastic deformation to occur due to their ability to pin dislocations. Thus, considering them 

as a secondary zone for dislocations to pile-up in addition to grain boundaries. 

2.2 High-Temperature sintering of Ti6Al4V 

In light of the achieved success in sintering near fully dense Ti6Al4V specimens 

by sintering at low temperatures (650oC), sintering of the alloy was also performed at high 

temperatures to describe its potential in the manufacturing of Ti-BNNT composites. 

Although sintering temperatures of 950oC are above the oxidation temperature of BNNTs 

(900oC in the air), the rapid densification provided by the SPS technique could prove 

beneficial to restricting the kinetics of reactions between the nanotubes and the matrix.  

Figure 36a compares the densification curves of both low temperature (650oC-

555MPa) and high temperature (950oC -60 MPa) sintering of the alloy as a function 

temperature. Sintering at significantly higher temperatures has shown to result in similar 
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densification (~98.6 %) as that achieved by using low-temperature regimes (~98.9%). This 

observation further strengthens the potential of the low temperature sintering technique 

described in the previous section. Similarly, as it was detailed in the low-temperature 

sintering of the alloy, three regimes are identified for the densification of the alloy. 

However, it is clear from the curve that the first regime is highly dependent on the sintering 

pressure used. Sintering pressures of 60 MPa result in merely 62.5% packing as compared 

to the almost 80% achieved by pressures of 555MPa. This clear variation has a collateral 

effect with the secondary regime (300oC – 600oC), which is observed to be extended by at 

least 100oC in the absence of high pressure. In which, surface diffusion occurs, and minor 

densification takes place, while necking via transferring of Ti atoms occurs at the particle-

particle interface. Finally, densification of the alloy by lattice diffusion takes place at a 

temperature higher than 600oC. The steep rise in densification as a function of temperature 

until reaching the maximum sintering temperature prescribed at 950oC characterizes the 

diffusion and recrystallization of grains occurring. Recrystallization effects are shown by 

the resulting microstructure with elongated α-grains and residual β-phase within grain 

boundaries. Upon cooling of the alloy, transformation of β to α-phase takes place by the 

nucleation of α-phase within transformed β, giving rise to the plate-like lamellar α-β 

colonies. Also, primary α-grains with elongated morphology interface with residual β-

phases minimizing interfacial energy due to its difference in chemical composition (α-Al-

rich, β-V rich). Consideration of the fracture surface of Ti6Al4V sintered at 950oC resolves 

largely ductile dimples characterizing the increased ductility as a result of higher ductile β-

phase present in the specimen. 
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Figure 36 (a) Densification curves comparing sintering mechanisms of high-

temperature sintering and low-temperature sintering of Ti6Al4V. (b) Optical 

micrograph of the etched and polished surface of the alloy sintered at 950oC with 

characteristic elongated α-grains. (c) and (d) fracture surface of the alloy sintered at 

high temperatures showing ductile dimples.  

2.3 Low vs. High-temperature sintering of the alloy 

In the sintering of Ti6Al4V, previously explored sintering routes have shown to 

involve high temperatures and time-consuming processes which could represent a 

challenge in the manufacturing of Ti reinforced composites. Owing to the high reactivity 

of the metal to the BNNTs at elevated temperatures, one of the objectives of this study is 

to present suitable manufacturing of Ti-BNNT with minimal reaction products. To address 

the thermodynamic challenge, low-temperature sintering of the alloy is introduced. The 

proven potential of the technique yielded similar densifications of 98.9% at 650oC as 
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compared to commonly used high-temperature sintering conditions. The potential of the 

technique lies in the sintering temperatures implemented been at least 30% below 

temperatures reported for the oxidation of BNNTs in the air (900oC). Table 7 outlines the 

advantages and disadvantages presented for both low and high-temperature sintering. 

Throughout this study, 650o and 555 MPa, as well as 950oC and 60 MPa are sintering 

conditions that will be used for the sintering of Ti-BNNT composites to establish a 

comparative study. The suitability of both techniques by considering their effect on 

reaction products and effective strengthening of the composite will be performed.  

Table 7 Comparison between low and high-temperature sintering of Ti6Al4V alloys 

and their contribution to the manufacturing of composites 

Low-temperature sintering High-temperature sintering 

✓ Relative density up to 98.9% 

✓ Globular grains (mechanically 

isotropic) 

✓ Twins and grain boundaries as a barrier 

for dislocations 

✓ Hardness ~3.7 GPa 

✓ Temperature 30% below BNNT’s 

thermal oxidation 

✓ Plastic flow drove densification 

✓ Relative density up to 98.6% 

✓ Elongated α-grains, α-β colonies, 

residual β-phase (easy shearing at α/β 

interfaces) 

✓ Grain boundaries as barriers for 

dislocations 

✓ Hardness ~3.2 GPa 

✓ Lattice diffusion driven densification 
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3. Consolidation of Ti-BNNT composites 

Sintering conditions for the BNNT reinforced Titanium composites were 

determined as follows:  

✓ Low-temperature sintering: 650oC – 555MPa, chosen based on near full 

densification achieved in the sintering of pure Ti6Al4V.  

✓ High-temperature sintering: 950oC – 60 MPa, temperatures below the β-

transus (~1000oC) to prevent excessive residual β-phase in the 

microstructure. 

3.1 Low vs. High-temperature sintering of Ti-BNNT composites 

The potential of low temperature and high-temperature sintering techniques to manufacture 

BNNT reinforced Ti composites with controlled interfacial reactions were evaluated. 

Densification mechanism, thermodynamic limitans and resulting mechanical properties of 

the composites are discussed.  

3.1.1 Low-temperature sintering of Ti-BNNTs  

3.1.1.1 Role of BNNTs in restricting the plastic flow  

Sintering of Ti-BNNT composites with 1 wt.% BNNT concentration was 

performed at optimum conditions identified for the sintering of  Ti6Al4V within low-

temperature regime (650oC – 555MPa). Figure 37a shows a low magnification SEM 

micrograph of the fracture surface in the as-sintered Ti-BNNT composite. It is evident by 

the notable particle boundaries that sintering of the composite has not occurred reached 

completion given the sintering conditions.  Grain boundary (particle-particle interactions) 
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are observed as host sites for BNNTs (Figure 37b and c). In which, they can be understood 

to behave as inhibitors for deformation driven densification at the interfaces. Interfacial 

interactions between the Ti-matrix and the nanotubes can be observed to be primarily by 

adhesion forces and not covalent bonding as it has been reported in prior works (Figure 

37c). Where the interactions between the BNNTs and the metallic matrix result in limited 

chemical interactions responsible for strong bonding. The segregation of BNNTs at the 

grain boundaries without prevalent chemical interactions at the metal/nanotube interface is 

considered detrimental to the mechanical performance of the composite. Weak van der 

Waal forces are considered to be governing interactions among BNNTs and those 

interfacing the metal. In which, increasing stresses promote shearing among agglomerated 

nanotubes and promote the catastrophic failure of the structures. Although low-temperature 

sintering conditions of 650oC and 555 MPa resulted in the successful densification and 

sintering of Ti6Al4V, BNNTs were observed to behave as barriers requiring higher 

activation energies to induce plastic flow during sintering.  
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Figure 37 Fracture surface of as-sintered Ti-BNNT composite at 650oC and 555 MPa 

pressures (a) showing poor sintering and particle-particle interactions, (b)restricted 

plastic flow by BNNTs located at the interface of the Titanium grain boundaries 
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Sintering of metals and composites is a process driven by diffusion of atoms. In 

which, pure elements experience self-diffusion, and the presence of other compounds could 

introduce vacancy dominated and/or interstitial dominated mechanisms. The diffusion 

Boron and Nitrogen atoms into the Titanium matrix to form covalent bonds is driven by 

interstitial diffusion as a result of the small atomic size as compared to Ti atoms. 

Dominating reactions expected to occur within the Ti-BNNT system include (referenced 

from Chapter II):  

2Ti + BN = TiB2 + TiN        

 (1) 

Ti + TiB2 = 2TiB         (2) 

For which, Nitrogen is expected to diffuse into the Ti matrix and form solid 

solutions and precipitates of TiB2 and TiB can result from thermodynamically feasible 

environments. These reactions are of prime importance for the sintering of Ti-BNNT 

composites, as they will dictate the strength of interfacial interactions. Thus, impacting the 

sintering of the specimen and mechanical properties.  

Given the dependence of densification and sintering of the Ti-BNNT on the 

formation of reaction products between the matrix and nanotube, Thermo-Calc software 

was implemented to estimate the Gibs free energy of reactions in the Ti-BN system. 

Evaluation of thermodynamic reactions at sintering temperatures of 650oC of the 

Ti-BN system containing 1 wt.% BNNT, resulted in ΔG=-38.9 kJ/mol. The required 

activation energy for the diffusion of Boron into Ti has been reported to be of 38.28 
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kJ/mol107. It is noted that the estimated Gibbs free energy of the system at 650oC is within 

limits for activating diffusion of B into the Ti matrix. However, computed thermochemical 

reactions estimate this to result in merely 0.098 mass percentage diffusion of B into the 

largely Ti matrix. It is essential to highlight that the minimal mass percentage of B diffused 

into Ti is well below the required composition for precipitation of TiB2 and/or TiB phases. 

This is experimentally evidenced in Figure 37c, where interactions between the Ti and 

BNNTs are weak, and no evidence of TiB or TiB2 precipitates are observed.  

3.1.1.2 Improved interfacial interactions at 750oC – 555MPa 

In the continuation of this study, sintering conditions ruling the low-temperature 

sintering of Ti-BNNT composites were chosen as 750oC and 555MPa.  The increase in 

thermal energy in combination with high pressures, is expected to improve the interfaces 

of the Ti-BNNT composites. The fracture surface of the sintered Ti-BNNT composites at 

750oC and 555 MPa is shown in Figure 38. Dimple morphology within the fracture surface 

sintered to the improved interactions between powder particles. The improved sintering 

was also observed by the increased relative densification of ~ 97.8%. As compared to a 

pure Ti6Al4V sintered at similar conditions which achieved a relative density of 98.4%, 

the composite shows partial sintering where BNNTs are encountered. Improved 

metal/nanotube interfaces can be observed in Figure 38b. Higher temperatures induced 

during sintering in addition to high sintering pressures have allowed improved plastic flow 

for Ti particles-particles to interact and enhance their interfaces. However, the plastic flow 

phenomena described is not observed to be uniform across the fracture surface of the 
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specimen. Figure 38c shows instances where nanotubes located at the grain boundaries 

have inhibited diffusion mechanisms from taking place.  

 
Figure 38 (a) Improved fracture surface of Ti-BNNT composites sintered at 750oC 

and 555 MPa with (b) enhanced interfacial interactions and (c) no reaction products 

Evaluation of phases present in the composite sintered at 750oC and 555 MPa was 

performed by analysis of the corresponding XRD pattern. Figure 39 displays a comparison 

of XRD curves corresponding to pure Ti6Al4V and Ti-BNNT composite sintered at 

stipulated low-temperature sintering conditions (750oC and 555 MPa). While the fracture 

surface showed no evident interfacial reactions in the form of TiB nanoparticles or TiB2 

needles/whiskers, XRD can provide insights on their presence if any. Peaks identified 

correspond to primarily α-Titanium. Close observation of the XRD pattern of the 

composite within 2θ diffraction angles of 25 – 45o revealed no presence of peaks 

corresponding to interfacial reactions. Thus, evidencing their minimal concentration within 

the sintered composite, if any present.  
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Figure 39 XRD pattern of as-sintered composite and control specimen at 750oC and 

555 MPa with primary peaks corresponding to α-Ti and no reaction phases identified 

In a similar fashion to samples sintered at 650oC, thermodynamically feasible 

reactions in the Ti-BN system were performed at 750oC  using Thermo-Calc software. For 

which, sintering conditions of 750oC resulted in Gibs free energies of ΔG=-45.18 kJ/mol. 

It is important to highlight that the estimated calculations do not account for pressure 

induced mechanisms aiding in the diffusion by minimizing interparticle distance. The 

improved interfacial interactions between the Ti and BNNTs can be deduced to be a 

combination of the thermally activated diffusion and high pressure aiding the diffusion 

mechanisms to take place.  

Figure 40a depicts the microstructure of the etched surface of the as-sintered Ti-

BNNT at 750oC. The low temperature sintered specimen is characterized by having 



96 

 

globular grains with BN rich phases sitting at the grain boundaries. Indication of the phases 

been BNNT rich and not voids as observed in samples sintered at 650oC are shown in 

Figure 40b and c, where the survival of nanotubes to high pressures and their improved 

interactions with the matrix are evidenced. The presence of nanotubes at the grain 

boundaries are responsible for grain growth suppression and restriction to deformations. 

Thus, a microstructure as that displayed in Figure 40 can be considered as beneficial to the 

strengthening of Ti matrices given improved interfacial interactions.  

 
Figure 40 (a) Optical micrograph of the polished and etched surface of the Ti-BNNT 

composite sintered at low temperatures and high pressures with globular 

morphologies. (b) and (c) Presence of BNNTs across grain boundaries without 

morphological changes.  

High-resolution transmission electron microscopy of the Ti-BNNT sample 

uncovered the presence of twin boundaries in its microstructure (Figure 41). The presence 

of twins within the microstructure is a significant defect activated by high-pressure 

sintering of the Ti6Al4V. The large presence of twins was also evidenced in the pure Ti 

metal described in the previous section. The significance of twins in the microstructure of 
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the composite lies in their ability to act as pile-up zones for dislocations. In this manner, 

preventing dislocation movement and requiring higher stresses to induce deformations. In 

addition to the strengthening mechanism intrinsic to the microstructure of low temperature 

sintered alloy, BNNTs have reported their strengthening effect in the form of dislocation 

barriers. Therefore, the strengthening of the composite can be considered to have three 

main mechanisms by which dislocation movement will be restricted: Grain boundaries, 

twin boundaries, and BNNT reinforcements. 

 
Figure 41 (a) High resolution (HR) Transmission electron micrograph of the Ti-

BNNT composites sintered at 750oC and 555MPa with evidence of twin boundaries 

(b) corresponding SAED pattern showing diffraction planes of twins 

  

3.1.2 High-temperature sintering of Ti-BNNTs 

3.1.2.1 Phases present and BNNT survival  

Sintering at elevated temperatures of 950oC and pressures of 60 MPa was 

performed to evaluate the ability of BNNTs to resist high-temperature processes. The 

challenge concerning the processing of BNNT reinforced metallic composites lies in the 
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high reactivity of the metallic matrices with the nanotubes at elevated temperatures. 

Exposure of the nanotubes to higher temperatures has shown to result in the formation of 

undesirable reaction phases of brittle nature. Spark plasma sintering has shown potential 

over the manufacturing of BNNT reinforced Al matrices. Where reaction phases with 

thickness below 20 nm are found to interface the nanotubes and result in strong interactions 

with the Al matrix54. Thus, the control of interfacial reactions is of prime importance. This 

study implements SPS as a processing technique due to its ability to reach structures with 

near full densification in periods below 30 min. In this manner, aiming to restrict the 

kinetics of reactions occurring at the interface of the Ti and BNNTs. Figure 42 shows XRD 

patterns for pure Ti6Al4V and Ti-BNNT composite sintered at 950oC. Analysis of the 

curves demonstrates the indexing of primary α-Ti phases with the absence of h-BN or Ti-

BN reaction phases. The absence of peaks corresponding to h-BN and potential reaction 

phases are attributed to the detection limit of the equipment to detect small concentrations 

within the composite. Hence, it can be deduced that sintering of the composite even at 

temperatures of 950oC has resulted in minimal reaction products.  The Ti-BNNT composite 

is characterized by exhibiting 97.5 % relative density as compared to pure Ti6Al4V 

sintered at similar conditions which achieve relative densities of 98.7 %.   
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Figure 42 X-ray diffraction pattern of the as-sintered Ti-BNNT composite at high 

temperatures of 950oC with no presence of reacted phases in the pattern due to small 

quantity if any. 

Further evaluation of the sintered composite was performed by scanning electron 

microscopy. Figure 43 shows the fracture surface of the Ti-BNNT composite after been 

subjected to sintering temperatures of 950oC. The fracture surface of the composite reveals 

predominantly dimple structures characterizing the interactions between Ti grains and 

signaling the ductility of the composite. Sintering at temperatures of 950oC and above are 

known to result in the recrystallization of Titanium grains, in which transformed β-phases 

during sintering process serve as nucleation sites for the growth of secondary α-phases. 

The growth of secondary phases within the β-phases gives rise to α-β colonies with plate-

like structures. Also, grain boundaries surrounding primary α-grains are known to provide 

increased ductility to the Ti matrix.  
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Figure 43a shows the present of voids outlined by the dashed yellow marker. A 

closer look at these regions demonstrated the presence of long nanotubes with smooth 

surface proving their survival to elevated sintering temperatures and pressure. Well 

interfaced BNNTs within the Ti-matrix can be observed in  Figure 43c. In which, the 

combination of sharp needle structures and smooth nanotubes represent the interfacial 

control reactions. Sharp needle structures, as shown in Figure 43c, represent TiB reaction 

products. As it was shown in previous sintered specimens at low temperatures (<750oC) 

and reported in the literature, the lack of interfacial interactions in the form of reaction 

products is considered detrimental to the reinforcement of composites in the ease of 

shearing of weakly interfaced BNNTs/metal matrix. On the other hand, the excess of 

interfacial reactions (thickness >100 nm) represents the complete reaction of nanotubes 

and result in brittle structures.  
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Figure 43 Fracture surface of the (a) Ti-BNNT composites sintered at high-

temperature conditions, (b) and (c) survived BNNTs with some partial reactions of 

straight needle features. 

3.1.2.2 Thermodynamics of reactions 

The thermodynamic transformations in the Ti-BN system have been explored previously 

in the manufacturing of in-situ TiB reinforcements within a Ti matrix. While the 

mechanisms by which the phase reactions occur are still valid to this study, the morphology 

of the reactants (nanotubes) will influence the transformations experienced.  

Figure 44 demonstrates the partial and non-uniform reactions that the nanotubes 

have experienced as a result of exposure to elevated sintering temperatures. Needle-like 

structures characterizing the TiB phase reactions are predominantly found as compared to 

other reactions (i.e., TiB2). Although the TiB2 reaction has been found as the more 

thermodynamically feasible reaction with Gibbs free energy of ΔG=-292.88 kJ/mol as 
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compared to the TiB phase (ΔG=167.36 kJ/mol) at temperatures of 950oC, the kinetics of 

reactions dominate the transformations. 

 
Figure 44 (a) Polished and etched the surface of the high temperature sintered Ti-

BNNT composite showing microstructural features. (b) and (c) Strong interactions 

between the BNNTs and the matrix with some reacted TiB phases near the grain 

boundaries. 

 The reactions can be described by the initial diffusion of Nitrogen atoms into the 

Ti matrix. The high solubility of Nitrogen atoms within interstitials of Ti atoms results in 

the formation of solid solutions (TiN) and give rise to the diffusion of Boron atoms within 

the walls of BNNTs47,48. Evidence of TiN solid solution is shown in Figure 45a, in which 

a line scan shows the phase concentration of Ti and Nitrogen along with the matrix of the 

composite.  
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Figure 45 (a) EDX line mapping of the surface of the Ti-BNNT composite sintered at 

high temperatures, with evidence of TiN as a solid solution. (b) The interface of 

nanotube walls with d-spacing of ~ 0.3 -0.4 nm and potential reaction layer on its 

surface. 

Diffusion of Boron is the predominant in the Ti matrix. Bhuiyan et al.48 describe 

the process by which precipitation of TiB2 and TiB phases occurs. Owing to the initially 

high localized concentration of Boron at the interface between the nanotube and the Ti 

matrix, nucleation of the most thermodynamically feasible phase (i.e., TiB2) occurs in the 

form of precipitates along the surface of the nanotubes47,48.  

The rapid diffusion of Boron atoms at elevated temperatures is responsible for the 

decreased in the localized concentration of Boron experienced at the interface of the 

nanotube and the Ti. Thus, resulting in the subsequent reaction between the nucleated TiB2 

phase and the Ti- matrix to form TiB needles by consuming the inner surface of the 

nanotube47,48. It is evident Figure 44 b and c that the reaction of nanotubes to form TiB 

needles has been achieved to a certain degree. However, the presence of intact nanotubes 

well interfaced within the Ti-matrix can be considered as partial reactions. Figure 45b 

shows a TEM micrograph of the surface of a BNNT wall with d-spacing of ~0.3-0.4 nm 
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characteristic of h-BN, with what appears to be a reaction layer of thicknesses between 3 

– 5 nm.  

3.2 Evaluation of mechanical properties of Ti-BNNT composites under compressive 

loadings 

3.2.3 Mechanical properties of Ti-BNNT composites under compression 

The mechanical properties of the composite were investigated under compressive 

forces. Cylindrical structures with diameters of 2 mm and thicknesses between 3 – 4 mm 

were machined by wire EDM from as-sintered specimens to evaluate the mechanic 

properties as a function of sintering temperature and BNNT addition in the Ti-matrix. 

Compression of pure Ti6Al4V (Ti64) and Ti-BNNT composites sintered at 650 oC, 750 

oC and 950oC were subjected to compressive loads to up to 75% compression of its 

height.  Table 8 displays a summary of the yield strength, compressive strength, and 

failure strain for all samples. It should be noted that values of compressive strength and 

failure strain of pure Ti6Al4V at all conditions were not achieved under compressive 

strains prescribed (75%) and therefore not reported. 

Table 8 Summary of compressive properties of Ti-BNNT composites sintered at high 

and low temperatures 

 650oC – 555 MPa 750oC – 555 MPa 950oC – 555 MPa 

 Ti64 Ti-BNNT Ti64 Ti-BNNT Ti64 Ti-BNNT 

Yield 

Strength 

(MPa) 

6.1 5.17 10.33 12.47 31.84 47.85 

Compressive 

strength 

(MPa) 

- 244.2 ± 20 - 
291.9 ± 

20.6 
- 

282.3 ± 

16.5 

Strain at 

break (%) 
- 46 ± 4 - 66 ± 2 

Buckled 

at 40% 
51.8 ± 1 
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The corresponding stress-strain curve describing the compression behavior of the 

samples sintered at 750oC and 555 MPa are shown in Figure 46a. It is evident that the 

addition of 1 wt.% BNNT in the Ti-matrix resulted in ~21 % increase of the yield strength 

of the Ti-matrix.  

 
Figure 46 (a) Stress vs. Strain curve of Ti-BNNT and control (Ti64) specimens 

sintered at 750oC. (b) the fracture surface of the composite evidencing crack-bridging 

by BNNTs as stress dissipation mechanism, (c) TEM micrograph showing the 

presence of shear band allocating dislocations and restricting their motion. 

The ability of nanotubes to restrict plastic deformation in addition to the dense 

dislocation structure induced by high sintering pressures result in the reinforcement of the 

matrix. Strengthening of the matrix with the addition of BNNTs to the matrix results in 

compressive strengths of ~292 MPa. Also, a closer look at the stress-strain curve of the 

composite as compared to the pure Ti6Al4V unravels the ability of the composite to bear 

stresses of up to 50% higher value than the pure Ti.  Figure 46b shows the fracture surface 

of the Ti-BNNT composite after experiencing a sudden fracture, where nanotubes are 

shown to interface the Ti-Ti particles and result bridging of the structure. Bridging is a 
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common strengthening mechanism observed in composites reinforced by nanotubular 

structures. The extremely long morphology of nanotubes used in this study (up to 200 μm) 

is responsible for allowing to impart strong shearing forces restricting further deformations 

from occurring. Macroscale deformations undergone throughout the experimentation were 

captured via optical microscopy in real-time. A snapshot is shown in the inset of Figure 

46a at a time point right before a catastrophic fracture of the Ti-BNNT composite occurs. 

Deformation of the composite is led by the initial formation of shear bands along a 20o 

angle; increasing stresses are then responsible for causing fracture of the composite along 

with the shearing angles. The nature of the low temperature sintered Ti6Al4V evidenced 

the presence of shear bands representing the activation of slip planes along with the basal 

and prismatic directions. Where the presence of slip band boundaries act as barriers for 

dislocations by entrapment of the same (Figure 46c).  Evaluating the fracture surface of the 

composites after experiencing catastrophic fracture during compression experiments is 

crucial to the understanding of deformation mechanisms governing the plastic deformation 

of the composite under stresses. The ability of the BNNTs to result in the reinforcement of 

the bulk structure was attested under compressive forces. The fracture surface of the 

composite is primarily governed by elongated dimpled features signaling the ductile 

shearing of the matrix (Figure 47). Ripple-like features can be observed at the surface along 

the direction of shearing (Figure 47a). Ripple features can be considered as barriers 

encountered during shear-dominated deformations. A closer look at the structures reveals 

the presence of nanotubular structures (BNNTs) at the grain boundaries (Figure 47c). In 

which, overcoming BNNT barriers to induce severe plastic deformation results in the pile-

up of plastically deformed Ti/BNNT interfaces.  
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Figure 47 Fracture surface micrographs showing (a) the sheared failure surface of 

the composite with ripple-like features, (b) plastic shearing of Ti metal and (c) 

inducing plastic flow at the Ti/BNNT interfaces 
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In a similar fashion Ti6AL4V and Ti-BNNT specimens sintered at 950oC and 60 

MPa were subjected to axial compression loadings. The strong interfacial interactions 

observed in the evaluation above of the fracture surface of the composite will result in 

interesting energy and stress transfer mechanisms25,54. Figure 48 displays the characteristic 

stress vs. strain curve of Ti-BNNT composites and control specimen. Under increasing 

compressive load, the ductile nature of the Ti6Al4V specimen sintered at 950oC 

experiences buckling at approximately 40% strain. On the other hand, Ti-BNNT 

composites experience a catastrophic fracture at around 51.8 % strain. The decreased 

fracture strain observed in the Ti-BNNT composite sintered at 750oC as compared to low 

temperature sintered specimens is attributed to the larger diffusion mechanisms 

experienced. Increasing temperatures result in the increase of diffusion coefficient of B 

(~2.62×10-4
 m

2/s) to the Ti matrix. The diffusion of Boron atoms is known to occur via 

interstitials acting as an α-phase stabilizer. Thus, resulting in the strengthening of the 

tougher and stiffer phase of Ti6Al4V.  
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Figure 48 (a) Stress vs. Strain curve of Ti-BNNT and control (Ti64) specimens 

sintered at 950oC. (b) and (c) TEM micrographs showing the presence of shear bands 

and dense dislocation microstructure with arrested dislocations at the interface of the 

BNNT and Ti 

Plastic deformations experienced by the composite under compressive loads show 

yielding along a shear plane of ~ 20-26 o as that observed in samples sintered at lower 

temperatures. The enhanced yield strength in the composite by almost 50% as compared 

to the pure Ti6Al4V sintered at similar conditions. The enhanced restriction to plastic 

deformation observed in the composite is attributed to the ability of nanotubes restricting 

dislocation movements. Figure 48 b and c show the presence of grown-in dislocations form 

by the collection of <c+a> dislocations and <a> dislocations been restricted at the interface 

of the Ti matrix and the nanotube105,106. The large presence of dislocations in the 

microstructure of the composite can be attributed to the activated slips induced by thermal 

stresses in the high temperature sintered samples. The elevated sintering temperatures of 

the specimens entails the phase transformation during cooling of secondary α grains within 

the transformed β-phases (attained during heating). The semi-coherency of interfaces 
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between the α and β phases gives rise to the dislocations driven by misfits between the two 

phases108. The increase of compressive stresses is then shown to result in the fracture of 

the composite resulting in compressive strengths of 282.3 MPa. It is important to highlight 

that the compressive strength of the composite sintered at higher temperatures is 

comparable to that achieved in low temperature sintered composites ~292 MPa and within 

the margin of error.  

Further evaluation of the deformation mechanisms undergone by the Ti-BNNT 

composite under compressive forces was performed by evaluating the fracture surface 

shown in Figure 49. The fracture surface of the sintered specimens presents a mix mode 

fracture. The shearing of the metal matrix is observed in addition to dimple detachment 

from the surface. A closer look at sheared regions uncovers the presence of nanotubes been 

sheared along the direction of fracture Figure 49c and d. Thereby evidencing the strong 

interfacial interactions between the nanotubes and the titanium matrix. Regions where the 

pile-up is observed like that in Figure 49b display nanotubes that have experienced 

deformations as a result of high localized compressive forces. The flexibility attained by 

the nanotubes as a result of its morphological attributes allows for bending of nanotubes to 

occur without experiencing a fracture of the nanotube. 

 



111 

 

 

Figure 49 (a) Fracture surface of compressive failure experienced by the Ti-BNNT 

composite sintered at 950oC, (b) BNNT/Ti interfaces with deformed BNNTs attesting 

the flexible nature of the nanotubes. (c) and (d) show the strong interfacial 

interactions between the nanotube and the Ti-matrix with sheared nanotubes.   

3.2.4 Nano- and Microscale strengthening of composites 

To gain an understanding of the microscopic deformation mechanisms and individual 

contributions of the BNNTs within the Ti-matrix, instrumented indentation at the nanoscale 

is explored. For which, the defect-free cross-sectional surface of each Ti-BNNT specimens 

sintered at low temperature and high-temperature sintering conditions were explored. 

Nanoindentation techniques have proven to be a powerful method for obtaining the 

mechanical characteristics of specimens with two or more phases4,53. Owing to the 
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extremely small volumes interacting with the indenter, obtaining elastic modulus and 

nanohardness of specific phases is possible. The importance of the technique lies in the 

ability to obtain the contribution of the BNNTs to the reinforcement of the Ti-matrix as it 

was observed at a macro-scale in compression experiments. Figure 50 shows the 

characteristic load-displacement response of the Ti-BNNT samples sintered at different 

temperatures and pressures. The properties of the composites were extracted by indenting 

the surfaces with maximum loads of 8500 μN. A constant load hold was maintained at 

maximum load to allow sufficient time for creeping mechanisms not to influence the 

unloading portion of the curve.  

 
Figure 50 Load-displacement curves of Ti-BNNT composites as a function of sintering 

conditions.  

A summary of the properties extracted for each composite samples and reference 

Ti6AL4V specimens is shown in Table 9.  
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Table 9 Summary of mechanical properties obtained by nanoindentation technique 

 

 

It is evident from the curve that samples sintered at 650oC and 555 MPa pressures, 

as a result of the poor densification and decreased bonding between the nanotubes and Ti-

matrix result in maximum deformations of up to 250 nm and elastic modulus of 137.5 ± 

5.8 GPa. The slight decrease in elastic modulus of ~3 % as compared the pure Ti6Al4V 

sintered in similar conditions,  accounts for the weak bonding interactions at the interface 

of the metallic matrix and nanotubes. The opposite is observed in comparing the 

nanohardness experienced with the addition of BNNT. In which, an 11% percent increase 

in nanohardness as compared to pure specimens sintered at 650oC characterize the ability 

of nanotubes to restrict dislocations and serving as additional barriers, even in the absence 

Description 

Relative 

Density (%) 

Microhardness 

(GPa) 

Er 

(GPa) 

Nanohardness 

(GPa) 

Ti64 

650 °C - 555 MPa 
98.9 3.7 ± 0.04 142.2 ± 3.4 4.75 ± 0.3 

Ti-BNNT 

650 °C – 555 MPa 
98.3 3.6 ± 0.08 137.5 ± 5.8 5.27 ± 0.3 

Ti64 

750 °C - 555 MPa 
98.4 3.66 ± 0.07 141.1 ± 8.5 4.75 ± 0.5 

Ti-BNNT 

750 °C – 555 MPa 
97.8 3.1 ± 0.06 132.4 ± 8.7 4.93 ± 0.6 

Ti64 

950°C – 60 MPa 
98.7 3.9 ± 0.02 142.5 ± 8.0 4.65 ± 0.5 

Ti-BNNT 

950°C – 60 MPa 
97.5 

(i): 4.8 ± 0.5 150.5 ± 7.5 5.6 ± 0.5 

BN rich region 

950°C – 60 MPa 
(ii): 3.5 ± 0.2 151.8 ± 8.0 7.22 ± 0.8 
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of ionic or covalent bonding. It is essential to highlight that the distinction of properties as 

a function of phases present is not captured in large scale indentation techniques such as 

that of microhardness. For which, a larger volume in contact is probed, and the effect of 

micro voids and microstructural defects have less impact on the mechanical characteristics 

of the composite. Thus, resulting in values similar to those of the pure Ti6Al4V, failing to 

capture poor sintering effects.   

Increase in the sintering temperature to induce densification of the composite and 

overcome the BNNTs barrier for diffusion at temperatures of 750oC and pressures of 555 

MPa was used. Elastic modulus was observed to decrease by ~6 % as compared to the 

control specimen sintered at similar conditions. In which a similar observation can be made 

as a function of weak bonding interaction between the nanotubes and the metal matrix. The 

slight increase in hardness observed by ~ 4% in the composite can serve as evidence for 

the mechanism of reinforcement by which addition of BNNTs is governed.  

Owing to the minimal chemical interactions resulting in ionic or covalent bonding 

at the Ti and nanotubes interface as it was observed by XRD, SEM and TEM analysis, 

strengthening of the composite is governed by the work of adhesion. In which, Van der 

Waal forces dictate the interactions between the nanotubes and the metal upon 

experiencing stresses. Strength at the interfaces is then a function of shear stresses (τ) and 

presents an inverse relationship with the radius of nanotubes(𝑅𝐵𝑁𝑁𝑇):44  

𝜏 𝛼
1

𝑅𝐵𝑁𝑁𝑇
 , 𝐴𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒         (12) 
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Similarly, the relationship establishes a direct proportionality to the effective surface area 

(Aeffective) of the nanotube interacting with the matrix. The intrinsically small diameters of 

the nanotubes (up to 10 nm) and extremely long (up to 200 μm) present and advantage to 

the interfacial strength of the composite. Where even in the absence of interfacial reaction 

phases, the strengthening of the composite can be deduced by the shearing interactions with 

the matrix.  

Moreover, the mechanical characterization of high temperature sintered specimens 

was evaluated. The presence of interfacial reaction phases and partially reacted BNNTs 

was found to exhibit the largest increase in bulk compressive properties. Where the 

diffusion of Boron atoms into the Ti matrix to form TiB2 and TiB phases aid in the 

improvement of interfacial bonding48,54. The bimodal microstructural features observed in 

the composite were evaluated using elastic modulus and nanohardness in Figure 51. Region 

1 is denominated as regions where evident agglomerates of nanotubes are not observed. 

These regions are primarily composed by α- and β- phases with few nanotubes 

homogenously distributed along with the matrix. While, region 2 is considered as BN-rich 

regions, where the combination of reacted BNNTs and non-reacted BNNTs are present in 

larger volumes as compared to region 1. Elastic modulus within region 1 resulted in elastic 

modulus improvement by 5% and regions 2 of about 7% as compared to the pure Ti64. 
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Figure 51 (a)Load-displacement curves of Ti-BNNT composite and Ti6Al4V control 

specimen showing the bimodal characteristics in the presence of (b) Ti dominant 

region and (c) BN rich region. 

Although, small increments in elastic modulus are observed the predominantly 

higher values of nanohardness in region 2 of the Ti-BNNT composite of 7.22 GPa, signals 

the ability of nanotubes to restrict plastic deformations. At the nanoscale, their ability to 

pin dislocation from movement upon experiencing stresses. Thus, requiring much higher 

stresses to overcome barriers. The means by which stress transfer occurs from the ductile 

Ti-matrix to the stiff nanotubular reinforcements can be deduced by relating the energy 

required for fracture of the Ti matrix to happen and that required by the nanotube to 

dissociate from the matrix. Equation 12 describes the shear strength between the nanotube 

and the matrix by assuming the absence of chemical interactions between the nanotube and 

the Ti matrix. Upon experiencing high stresses, the chemically reacted BNNTs forming 

TiB phases will be responsible for the strengthening of the matrix. By which transfer of 
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loads to the brittle TiB will occur via shearing at the interface of the nanotube/reaction 

phase and the metal matrix. Sun et al109. have reported the alignment of TiB phases along 

the direction highest shear stress upon experiencing compressive forces. Thus, bearing high 

stresses that are later transferred to the nanotubular BN109.  

The mechanical reinforcement of Ti matrices by the addition of ultra-long and fine 

nanotubular structures has been shown across multiple length scales. Where the adhesion 

bonding predominantly by weal Van der Waals forces at the interface of nanotubes and Ti-

matrix governed the strengthening observed in low temperature sintered composites. On 

the other hand, the controlled chemical reactions between the nanotube and the Ti-matrix 

attained after experiencing sintering at elevated temperatures resulted in strong interfacial 

interactions and strengthening of the matrix. The presence of reaction phases at the 

interface of the BNNT composites are considered as beneficial to the reinforcement of the 

matrix and crucial for reinforcing mechanisms to take place.  
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CHAPTER V: CONCLUSIONS 

In this study, Boron Nitride Nanotubes were introduced in the Titanium matrix to 

manufacture a composite with controlled interfacial reactions and improved mechanical 

properties. The sintering of Titanium at temperatures ~50% less than those used in the 

conventional sintering is introduced for the first time to minimize interfacial reactions. The 

resulting morphological and mechanical evaluation was performed. The major findings of 

this study are summarized below:  

✓ Ultrasonication induced dispersion of BNNTs in acetone was proven to be an effective 

route for the mechanical disentanglement of BNNTs by inducing -OH functionalization 

and high energies introduced during sonication.  

✓ Surfactant-assisted BNNT dispersion was found not suitable due to entrapment of gases 

of volatile residual organics resulting in voids and residual Carbon impurities at high 

sintering temperature 

✓ Near full densification (~98.9%) of Ti6Al4V was achieved using low sintering 

temperatures of 650oC and high sintering pressures of 555 MPa.  

o Morphological characteristics showed predominantly globular microstructures 

with the presence of a dense dislocation structure. Evidence of shear bands serving 

as entrapments for dislocation movement was also observed. This study proved that 

Ti could be sintered to a near full density at a much lower temperature. 

✓ Successful sintering of Ti-BNNT composites at low-temperature regimes at 

temperatures of 750oC and pressures of 555MPa was shown (~97.8 %): 

o At the macroscale compressive yield strength was found to increase by ~21%.  
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o Twin boundaries, crack bridging and BNNT pinning dislocations are found as 

mechanisms restricting the plastic deformation of the Ti-BNNT composite. 

✓ Successful sintering of Ti-BNNT composites at high sintering temperatures of 950oC 

with minimal interfacial reactions as a result of the kinetically restricted process was 

performed. 

o Bulk mechanical properties of the Ti- matrix are improved by up to 50% in its yield 

strength.  

o At the nano-scale, a BN-rich region is identified with a high concentration of 

partially reacted BNNTs and non-reacted BNNTs with very high nanohardness of 

7.22 GPa as compared to the pure Ti alloy which exhibits merely 4.65 GPa  

o Strengthening of the composite is attributed to improved interfacial interactions by 

the formation of a thin layer of reacted phases which restrict dislocations 

movement.  
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CHAPTER VI: RECOMMENDATIONS & FUTURE WORK 

This study proves the potential of BNNTs as a reinforcement to relatively high-temperature 

metals such as Titanium. The primary challenge of dispersing BNNTs with high surface 

energy was achieved via high energy tip sonication in acetone, which introduced free 

radicals that aids in their dispersion. Following recommendations are made for the future 

work, which could further the scientific understanding of Metal-BNNT composites. 

Dispersion of BNNTs 

✓ Evaluating the effect of parameters in high energy ultrasonication (i.e. amplitude, time, 

and power) to the evolution of defects on the surface of BNNTs and quality of BNNT 

dispersion in aqueous medium. 

✓ Exploring the high energy ultrasonication induced dispersion of BNNTs with organic 

solvents and medium other than acetone could provide insights on the interaction of 

free radicals and potential functionalization of BNNTs.  

Low-Temperature Consolidation of Metal-BNNT composites 

✓ The introduction of low-temperature sintering with high pressures could be extended 

to other metals such as Al and Mg to obtain BNNT reinforced composites. Low 

temperatures sintering as compared to conventional sintering represents a significant 

decrease in the energy and time required for the processing of metal-BNNT composites.  

Understanding Interfacial Behavior between Ti and BNNT at the atomic level  

✓ High-resolution TEM evaluation to understand dislocation interactions with twin 

boundaries, which are characteristic of low temperature sintered Ti6Al4V and BNNTs 

to understand plastic deformation mechanisms undergone.  
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✓ X-ray photoelectron spectroscopy (XPS) analysis coupled with EDS to understand 

chemical interactions at Ti/BNNT interface and the nature of the bonds formed between 

Titanium and Boron to form TiB and TiB2. Such analysis will provide in-depth 

investigation of the degree of diffusion achieved by B and N atoms within the Ti-matrix 

to establish a correlation between phases contributing to the strengthening. 
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