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ABSTRACT OF THE DISSERTATION

A NEW STUDY OF APPLYING COMPLEXITY THEORETICAL TOOLS IN

ALGORITHM DESIGN

by

Shuai Xu

Florida International University, 2019

Miami, Florida

Professor Ning Xie, Major Professor

Given n vectors x0, x1, . . . , xn−1 in {0, 1}m, how to find two vectors whose pairwise Ham-

ming distance is minimum? This problem is known as the Closest Pair Problem. If these

vectors are generated uniformly at random except two of them are correlated with Pearson-

correlation coefficient ρ, then the problem is called the Light Bulb Problem. In this work,

we propose a novel coding-based scheme for the Closest Pair Problem. We design both ran-

domized and deterministic algorithms, which achieve the best-known running time when

the length of input vectors m is small and the minimum distance is very small compared to

m. Specifically, the running time of our randomized algorithm isO(n log2 n·2cm ·poly(m))

and the running time of our deterministic algorithm is O(n log n · 2c′m · poly(m)), where c

and c′ are constants depending only on the (relative) distance of the closest pair. When ap-

plied to the Light Bulb Problem, our result yields state-of-the-art deterministic running time

when the Pearson-correlation coefficient ρ is very large. Specifically, when ρ ≥ 0.9933,

our deterministic algorithm runs faster than the previously best deterministic algorithm

(Alman, SOSA 2019).
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CHAPTER 1

INTRODUCTION

1.1 Background

We consider the following classic Closest Pair Problem: given n vectors x0, x1, . . . , xn−1

in {0, 1}m, how to find the two vectors with the minimum pairwise distance? Here the

distance is the usual Hamming distance: dist(xi, xj) = |{k ∈ [m] : (xi)k 6= (xj)k}|, where

(xi)k denotes the kth component of vector xi. Without loss of generality, we assume that

dmin = dist(x0, x1) is the unique minimum distance and all other pairwise distances are

greater than dmin.

The Closest Pair Problem is one of the most fundamental and well-studied problems in

many science disciplines, having a wide spectrum of applications in computational finance,

DNA detection, weather prediction, etc. For instance, the Closest Pair Problem has the

following interesting application in bioinformatics. Scientists wish to find connections

between Single Nucleotide Polymorphisms (SNPs) and phenotypic traits. SNPs are one of

the most common types of genetic differences among people, with each SNP representing a

variation in a single DNA block called nucleotide [FBC+07]. Screening for most correlated

pairs of SNPs has been applied to study such connections [ARL+05, CNG+98, Cor09,

MSL+07]. As the number of SNPs in humans is estimated to be around 10 to 11 million,

for problem size n of this size, any improvement in running time for solving the Closest

Pair Problem would have huge impacts on genetics and computational biology [MSL+07].

In theoretical computer science, the Closest Pair Problem has a long history in compu-

tational geometry, see e.g. [Smi97] for a survey of many classic algorithms for the prob-

lem. The naive algorithm for the Closest Pair Problem takes O(mn2) time. When the

dimensionm is a constant, either in the Euclidean space or `p space, the classic divide-and-

conquer based algorithm runs in O(n log n) time [Ben80]. Rabin [Rab76] combined the
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floor function with randomization to devise a linear time algorithm. In 1995, Khuller and

Matias [KM95] simplified Rabin’s algorithm to achieve the same running time O(n) and

space complexity O(n). Golin [GRSS95] used dynamic perfect hashing to implement a

dictionary and obtained the same linear time and space bounds.

When the dimension m is not a constant, due to a well-know phenomenon called curse

of dimensionality, this problem becomes much harder. The first subquadratic time algo-

rithm for the Closest Pair Problem is due to Alman and Williams [AW15] for m as large

as log2−o(1) n. The algorithm is built on a newly developed framework called polynomial

method [Wil14a, Wil14b, AWY15]. In particular, Alman and Williams first constructed a

probabilistic polynomial of degreeO(
√
n log 1/ε) which computes the MAJORITY func-

tion on n variables with error at most ε, then applied the polynomial method to design an

algorithm which runs in n2−1/O(s(n) log2 s(n)) time where m = s(n) log n, and computed the

minimum Hamming distance among all red-blue vector pairs1 through polynomial evalua-

tions. In a more recent work, Alman [ACW16] unified Valiant’s fast matrix multiplication

approach [Val15] with that by Alman and Williams [AW15]. They constructed probabilis-

tic polynomial threshold functions (PTFs) to obtain a simpler algorithm which improved to

randomized time n2−1/O(
√
s(n) log3/2 s(n)) or deterministic time n2−1/O(s(n) log2 s(n)).

1.2 The Light Bulb Problem.

A special case of the Closest Pair Problem, the so-called Light Bulb Problem, was first

posed by L. Valiant in 1988 [Val88]. In this problem, we are given a set of n vectors in

{0, 1}m chosen uniformly at random from the Boolean hypercube, except that two of them

are non-trivially correlated (specifically, have Pearson-correlation coefficient ρ, which is

1The actual problem solved in [AW15] is the so-called Bichromatic Hamming Closest Pair Prob-
lem; see discussion in Section 2.3 below.
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equivalent to that the expected Hamming distance between the correlated pair is 1−ρ
2
m),

the problem then is to find the correlated pair.

Paturi [PRR95] gave the first non-trivial algorithm, which runs2 in Õ(n2−log(1+ρ)).

In 2010, Dubiner [Dub08] proposed a Bucketing Coding algorithm which runs in time

Õ(n
2

1+ρ ). The well-known locality sensitive hashing scheme of Indyk and Motwani [IM98]

performs slightly worse than Paturi ’s hash-based algorithm but recent data-dependent

LSH [ALRW17] matches the running time of Dubiner’s. Roughly speaking, a family of

hash functions H is called (r, cr, p1, p2)-sensitive if, for any two points p and q in a metric

space (X, d), a randomly chosen hash function fromH hashes p and q into the same bucket

with probability at least p1 if they are close (i.e., when d(p, q) ≤ r) and with probability at

most p2 if they are far apart (i.e., when d(p, q) ≥ cr), where c > 1 is the approximation fac-

tor and p1 > p2. Indyk and Motwani [IM98] proved that such a family of LSH can be used

to construct a data structure solving the c-approximate Nearest Neighbor Search problem.

Specifically, for a data set consisting of at most n points from X , the data structure uses

Õ(n1+%) space (and Õ(n1+%) preprocessing time) and supports Õ(m·n%) query time, where

m is the dimension of the space and % := log 1/p1
log 1/p2

basically quantifies the quality of the

LSH. When (X, d) is the Hamming space, the original work of Indyk and Motwani [IM98]

achieved % ≤ 1/c, while the current best result is % = 1/2c − 1 by Andoni [ALRW17],

under the framework of data-dependent LSH. Applying LSH to the Light Bulb Problem,

we have m = O(log n), c ≥ 1
1−ρ with high probability, and we need to pay the one-time

preprocessing time and n queries for each vector to search for its nearest neighbor in the

data set. Therefore LSH solves the Light Bulb Problem in time Õ(n2−ρ) using the original

data-independent scheme of Indyk and Motwani, and can be improved to Õ(n
2

1+ρ ) using

the data-dependent scheme in [ALRW17]. As ρ gets small, all these three algorithms have

running time Õ(n2−cρ) for various constants (When ρ goes to zero, the exponent in the

2We adopt the common notation Õ(nk) to denote nk · polylog(n).
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running time of Paturi [PRR95] is 2 − log(e) · ρ + O(ρ2).) Comparing the constants in

these three algorithms, Dubiner and data-dependent LSH achieve the best constant, which

is Õ(n2−2ρ), in the limit of ρ → 0. Asymptotically the same bound was also achieved by

May and Ozerov [MO15], in which the authors used algorithms that find Hamming closest

pairs to improve the running time of decoding random binary linear codes.

The breakthrough result of Valiant [Val15] is a fast matrix multiplication based algo-

rithm which finds the “planted” closest pair in timeO(n
5−ω
4−ω+ε

ρ2ω
) < n1.62·poly(1/ρ) with high

probability for any constant ε, ρ > 0 and m > n
1

4−ω /ρ2, where ω < 2.373 is the exponent

of fast matrix multiplications. The most striking feature of Valiant’s algorithm is that ρ does

not appear in the exponent of n in the running time of the algorithm. Karppa [KKK16]

further improved Valiant’s algorithm to n1.582. Very recently, Alman [Alm19] combined

techniques in [Val15] with the polynomial method to give a very elegant and simple al-

gorithm which matches Karppa ’ bound. Moreover, Alman derandomized his algorithm

and improved on the previously best deterministic running time by Karppa [KKKC16].

Note that Valiant, Karppa and Alman achieved runtimes of n2−Ω(1)(m/ε)O(1) for the Light

Bulb Problem, which improved upon previous algorithms that rely on the Locality Sensi-

tive Hashing (LSH) schemes. The LSH based algorithms only achieved runtime of n2−O(ε)

for the Light Bulb Problem.

We remark that all the above-mentioned algorithms (except May and Ozerov’s work)

that achieve state-of-the-art running time are based on either involved probabilistic polyno-

mial constructions or impractical O(nω) fast matrix multiplications3, or both.

3Subcubic fast matrix multiplication algorithms are practical for Strassen-based ones [BB15,
HRMvdG17] and are practical for very large input sizes up to ω = 2.7734 (see e.g. the sur-
vey [Pan18]). However, all other theoretically more efficient algorithms, such as recent devel-
opments [Sto10, Wil12, LeG12], are superior to the trivial cubic algorithm only for matrices of
colossal sizes.
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1.3 Overview of our main results.

In this work, we propose a new coding-based scheme for the Closest Pair Problem. We

design both randomized and deterministic algorithms, which achieve the best-known run-

ning time when the length of input vectors m is small (m = O(log n)) and the minimum

distance is very small compared to m. Specifically, the running time of our randomized al-

gorithm is O(n log2 n · 2cm · poly(m)) and the running time of our deterministic algorithm

is O(n log n · 2c′m · poly(m)), where c and c′ are constants depending only on the (relative)

distance of the closest pair; see Chapter 3 for precise statements. Since the running time

of our algorithms are exponential in m, they are subquadratic-time algorithms only when

m ≤ α log n for some constant α > 0. When applied to the Light Bulb Problem, our de-

terministic algorithm achieves state-of-the-art running time when the Pearson-correlation

coefficient ρ is very large.
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CHAPTER 2

PRELIMINARIES AND RELATED WORK

Let m ≥ 1 be a natural number, we use [m] to denote the set {1, . . . ,m}. All logarithms in

this paper are base 2 unless specified otherwise.

The binary entropy function, denoted H2(p), is defined as H2(p) := −p log p − (1 −

p) log(1− p) for 0 ≤ p ≤ 1.

Let Fq be a finite field with q elements (When q = 2, we use F2 and {0, 1} interchange-

ably throughout the paper.) andm ≥ 1 be a natural number. If x ∈ Fmq is anm-dimensional

vector over Fq and i ∈ [m], then we use (x)i to denote the ith coordinate of x. The Ham-

ming distance between two vectors x, y ∈ Fmq is the number of coordinates at which they

differ: dist(x, y) = |{i ∈ [m] : (x)i 6= (y)i}|. For a vector x ∈ Fm and a real number

r ≥ 0, the Hamming ball of radius r around x is B(x, r) = {y ∈ Fm : dist(x, y) ≤ r}.

The weight of a vector x, denoted wt(x), is the number of coordinates at which (x)i 6= 0.

The distance between two vectors x and y is easily seen to be equal to wt(x− y).

We also need the following bounds on binomial coefficients, see e.g. [MS77, p. 309].

Lemma 2.0.1. Let n be a natural number and λn be an integer, where 0 < λ < 1. Then

1√
8nλ(1− λ)

2nH2(λ) ≤
(
n

λn

)
≤ 1√

2πnλ(1− λ)
2nH2(λ).

2.1 Error correcting codes

Definition 2.1.1 (Error correcting codes). Let Fq be a finite field with q elements1 and let

m ≥ 1 be a natural number. A subset C of Fmq is called an (m,K, d)q-code if |C| = K

1In fact, error correcting codes, as well as constructing new codes out of existing codes by
concatenations to be discussed shortly, can be defined more generally over an arbitrary set of q
distinct elements called alphabet of the code. For the purpose of designing algorithms in this paper,
restricting to finite fields is simpler and sufficient.
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and for any two distinct vectors x, y ∈ C, dist(x, y) ≥ d. The vectors in C are called

codewords of C, m the block length of C, and d the minimum distance of C.

Normalized by the block length m, κ(C) := (logqK)/m is known as the rate of C and

δ(C) := d/m is known as the relative distance of C. If C is a linear subspace of Fmq of

dimension k, the code is called a linear code and denoted by [m, k, d]q. It is convenient to

view such a linear code as the image of an encoding function E : Fkq → Fmq , and k is called

message length of C. This can be generalized to non-linear codes as well where we view

blogqKc as the effective message length. We usually drop the subscript q when q = 2.

Definition 2.1.2 (Covering radius). Let C ⊆ Fmq be a code. For any x ∈ Fm, define the

distance between x and C to be dist(x,C) := miny∈C dist(x, y) (clearly, dist(x,C) = 0 if

and only if x is a codeword ofC). The covering radius of a codeC, denotedR(C), is defined

to be the maximum distance of any vector in Fmq from C, i.e., R(C) = maxx∈Fmq dist(x,C).

2.1.1 Unique decoding

Given an (m,K, d)-code C, if a vector (aka received word) x ∈ Fmq is at a distance r ≤

bd−1
2
c from some codeword w in C, then by triangle inequality, x is closer to c than any

other codewords in C. Therefore x can be uniquely decoded to the codeword c ∈ C. Such

a decoding scheme2 is called unique decoding (or minimum distance decoding) of code C,

and we shall call bd−1
2
c the (unique) decoding radius of C.

2.1.2 Gilbert-Varshamov bound and Gilbert’s greedy code

The Gilbert-Varshamov bound asserts that there is an infinite family of codes C (essentially

random codes or even random linear codes meet this bound almost surely) that satisfy

2 Strictly speaking, the procedure described here is error correcting instead of decoding, where
the latter should return the inverse of codeword c of the encoding function.
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κ(C) ≥ 1 − H2(δ(C)). In particular, the following greedy algorithm of Gilbert [Gil52]

finds a (non-linear) binary code C of block length m and minimum distance d and satisfies

that 1
m

logK ≥ 1 − H2(d/m) − ε for any ε > 0 for all sufficiently large m. Start with

S = Fm2 and C = ∅; while S 6= ∅, pick any element x ∈ S, add it to C and remove all the

elements in B(x, d) from S. We denote such a code by GVm,d.

We will need the following simple facts about GVm,d

Lemma 2.1.3. The greedy algorithm of Gilbert can be implemented to run in O(2m) time,

and produces a decoding lookup table that supports constant time unique decoding. That

is, for any x ∈ Fm2 , if there is a codeword w ∈ GVm,d with dist(x,w) ≤ bd−1
2
c, then the

lookup entry of x is w; otherwise the entry is a special symbol, say, ⊥. Moreover, the code

GVm,d constructed by Gilbert’s greedy algorithm satisfies that R(GVm,d) ≤ d.

2.1.3 Reed-Solomon codes

Definition 2.1.4 (Reed-Solomon codes). Let Fq be finite field, k and m be integers satisfy-

ing k ≤ m ≤ q. The encoding function for Reed-Solomon code from Fk to Fm is the fol-

lowing: First pick m distinct elements α1, . . . , αm ∈ Fq; on input (a0, a1, . . . , ak−1) ∈ Fkq ,

define a degree-k − 1 polynomial P : Fq → Fq as P (x) =
∑k−1

i=0 aix
i; finally output

the evaluations of P (x) at α1, . . . , αm, i.e. the codeword is (P (α1), . . . , P (αm)). We will

denote such a code by RSq,m,k.

Theorem 2.1.5. The Reed-Solomon code defined above is an [m, k,m−k+1]q linear code.

Theorem 2.1.6 ([WB86]). There exists an efficient unique decoding algorithm for Reed-

Solomon codes which runs in time poly(m, log q).

Reed-Solomon codes are optimal in the sense that they meet the Singleton bound, which

states that for any linear [m, k, d]q-code, k ≤ m− d+ 1.
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2.1.4 Concatenated codes

The most commonly used way to transform a nice code which has constant rate and con-

stant relative distance over a large alphabet to a similarly nice code over binary is concate-

nation, which was first introduced by Forney [For66].

Definition 2.1.7 (Concatenated codes). Let C1 be an (m1, K1, d1)Q-code and let C2 be an

(m2, K2, d2)q-code with K2 ≥ Q. Then the code obtained by concatenating C1 with C2,

denoted by C = C1 � C2, is an (m,K, d)q-code defined as follows. Let φ by any mapping

from FQ onto C2. Then the codewords of C1 � C2 are obtained by replacing each element

in FQ of any codeword w = ((w)1, . . . , (w)m1) ∈ C1 with the corresponding codeword in

C2 defined by φ; namely C = {φ((w)1) ◦ · · · ◦ φ((w)m1) : w ∈ C1}, where each φ((w)j)

consists ofm2 elements in Fq and ◦ denotes string concatenation. Note that each codeword

in C is an element in Fm1m2
q and there are K1 such codewords, therefore m = m1m2 and

K = K1. Usually C1 is called the outer code and C2 is called the inner code.

It is well-known that the minimum distance of C is d1d2, and the rate of C is κ(C) =

κ(C1)κ(C2). Another useful fact is that C can be efficiently decoded as long as both C1

and C2 can be efficiently decoded.

Fact 2.1.8. Suppose C1 is an (m1, K1, d1)Q-code with a decoding algorithm A1 running in

p1(m1, logQ) time, C2 is an (m2, K2, d2)q-code, whereK2 ≥ Q, and a decoding algorithm

A2 running in p2(m2, log q) time. If C is the concatenated code C = C1 � C2, and then

there is a decoding algorithm A for C which run in time p1(m1, logQ) + m1p2(m2, log q)

by first decoding m1 received words of C2 each consisting of m2 elements in Fq, and then

decode the m1 concatenated elements in FQ as a received word of C1.

9



2.1.5 Codes used in our algorithms

Some of the codes to be employed in our algorithm are a family of codes constructed by

concatenating Reed-Solomon codes with certain binary non-linear Gilbert’s greedy codes

meeting the Gilbert-Varshamov bound. It is well-known that concatenated codes such con-

structed can be made to meet the so-called Zyablov bound3

κ(C) ≥ max
0<κ(C2)<1−H2(δ(C))

κ(C2)

(
1− δ(C)

H−1
2 (1− κ(C2))

)
(2.1)

Suppose we want a binary (m,K, d)-code for our algorithms, where m and d are fixed

and our goal is to maximize K, conditioned on that the code is efficiently decodable. We

pick a Reed-Solomon code C1 = RSq,m1,k1 and a Gilbert’s greedy code C2 = GVm2,d2

with the following constraints: m1m2 ≤ m (m1m2 should be as close to m as possible),

d1d2 ≥ d,K2 = 2m2κ(C2) ≥ q > m1, and 2m2 ≤ poly(m1). It is easy to check that there are

large ranges of values form1 andm2, and optimizing the choice of d2 (and therefore δ(C2))

makes our concatenated code C = C1 �C2 both meets the Zyablov bound in Eqn.(2.1) and

can be decoded in poly(m) time.

We will denote the maximum rate as a function of the relative distance δ given by the

Zyablov bound by κZ(δ), and similarly denote the maximum rate given by the Gilbert-

Varshamov bound by κGV (δ) (i.e. κGV (δ) = 1−H2(δ)). Note that κZ(δ) ≤ κGV (δ) for all

0 ≤ δ ≤ 1/2, and the reason we use codes achieving only κZ(δ) is because such codes can

be generated and decoded in poly(m) time.

3In fact, a stronger bound called Blokh-Zyablov bound can be achieved by applying multilevel
concatenations (see e.g. [Dum98] for a detailed discussion on multilevel concatenations of codes);
however, as the improvement is minor, we only use single level concatenation in our code construc-
tions to make the algorithms simpler.
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2.2 The Closest Pair Problem

Given n vectors x0, x1, . . . , xn−1 in {0, 1}m, the Closest Pair Problem is to find two vectors

whose pairwise Hamming distance is minimum. For ease of exposition and without loss of

generality, we will assume throughout the paper that there is a unique pair, namely x0 and

x1, that achieves the minimum pairwise distance dmin. We will use d2 to denote the second

minimum pairwise distance, where d2 ≥ dmin + 1. In the most general case, we do not

make any assumption about m, dmin or d2.

2.3 Related Work

2.3.1 The Nearest Neighbor Search problem.

The Closest Pair Problem is a special case of the more general Nearest Neighbor Search

(NNS) problem, defined as follows. Given a set S of n vectors in {0, 1}m, and a query

point q ∈ {0, 1}m as input, the problem is to find a point in S which is closest to q. The

performance of an NNS algorithm is usually measured by two parameters: the space (which

is usually proportional to the preprocessing time) and the query time. It is easy to see that

any algorithms for NNS can also be used to solve the Closest Pair problem, as we can try

each vector in S as the query vector against the remaining vectors in S, and output the pair

with minimum distance.

Most early work on this problem is for fixed dimension. Indeed, when m = 1 the

problem is easy, as we can just sort the input vectors (which in this case are numbers),

then perform a binary search to find the closest vector to the input query. For m ≥ 2,

Clarkson [Cla88] gave an algorithm with query time polynomial in m log n, and space

complexity O(ndm/2e). Meiser [Mei93] designed an algorithm which runs in O(m5 log n)

time and uses O(nm+ε) space for arbitrary ε > 0. By far, all efficient data structures for
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NNS have dimension m appear in the exponent of the space complexity, due to the curse

of dimensionality.

This motivated people to introduce a relaxed version of Nearest Neighbor Search called

the (1 + ε)-Approximate Nearest Neighbor Search ((1 + ε)-Approximate NNS) Problem in

the 1990s. The problem now is, for an input query point q, find a point p in S such that the

Hamming distance is:

dist(p, q) ≤ (1 + ε) min
p′∈S

dist(p′, q).

We call such a p as a (1 + ε)-approximate nearest neighbor of input query q.

The (1+ε)-Approximate NNS Problem has been studied extensively in the last two decades.

In 1998, Indyk and Motwani [IM98] used a set of hash functions to store the dataset such

that if two points are close enough, they will have a very high probability to be hashed into

the same buckets. As a pair of close points have higher probability than a pair of far-apart

points to fall into the same bucket, the scheme is called locality sensitive hashing (LSH).

The query time of LSH is O(n
1

1+ε ), which is sublinear, and the space complexity of LSH

is O(n1+ 1
1+ε ), which is subquadratic. After Indyk and Motwani introducing the locality

sensitive hashing, there have been many improvements on the parameters under different

metric spaces, such as `p metric [KOR98, DIIM04, AI08, OWZ14, MNP06]. Recently, An-

doni [ALRW17] gave tight upper and lower bounds on the time-space trade-offs of (data-

dependent) hashing based algorithms for the (1 + ε)-Approximate NNS Problem. This is

the first algorithm that achieves sublinear query time and near-linear space, for any ε > 0.

For many results on the Approximate NNS problem in high dimension, see e.g. [AI17] for

a survey. Some algorithms for the low dimension problem are surveyed in [AM05].

In 2012 Valiant [Val15] leveraged fast matrix multiplication to obtain a new algorithm

for the (1 + ε)-Approximate NNS Problem that is not based on LSH. 4 The general setting

4In fact, Valiant’s algorithm can handle polynomially many “outlier” pairs.
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of Valiant’s results is the following. Suppose there is a set of points S in m-dimensional

Euclidean (or Hamming) space, and we are promised that for any a ∈ S and b ∈ S, 〈a, b〉 <

α, except for only one pair which has 〈a, b〉 ≥ β (which corresponds to the closest pair,

and β is known as the Pearson-correlation coefficient), for some 0 < α < β < 1. Valiant’s

algorithm finds the closest pair in n
5−ω
4−ω+ω log β

logαmO(1) time, where ω is the exponent for fast

matrix multiplication (ω < 2.373). Notice that, if the Pearson-correlation coefficient β is

some fixed constant, then when α approaches 0 the running time tends to n
5−ω
4−ω , which is less

than n1.62. Valiant applied his algorithms to get improved bounds5 for the Learning Sparse

Parities with Noise Problem, the Learning k-Juntas with Noise Problem, the Learning k-

Juntas without Noise Problem, and so on. More recently, Karppa [KKK16] improved upon

Valiant’s algorithm and obtained an algorithm that runs in n
2ω
3

+O( log β
logα

)mO(1) time.

Note that, in general, algorithms for the (1 + ε)-Approximate NNS can only be ap-

plied to the gapped version of the Closest Pair Problem; for non-gapped version, as the

minimum distant and the second minimum distant can differ by 1, which means that the

approximation parameter ε tends to zero if the minimum distance is large, the running time

will approach to quadratic. However, our non-gapped version algorithm still runs in truly

subquadratic time in this case.

2.3.2 Decoding Random Binary Linear Codes.

In 2015, May and Ozerov [MO15] observed that algorithms for high dimensional Near-

est Neighbor Search Problem can be used to speedup the approximate matching part of

the information set decoding algorithm. They designed a new algorithm for the Bichro-

matic Hamming Closest Pair problem when the two input lists of vectors are pairwise

independent, and consequently obtained a decoding algorithm for random binary linear

5All these results are due to the fact that Valiant’s algorithms are much more robust to weak
correlations than other algorithms. Our algorithms therefore do not give improved bounds for these
learning problems in the general settings.
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codes with time complexity 20.097n. This improved upon the previously best result of

Becker [BJMM12] which runs in 20.102n.

2.3.3 The Bichromatic Hamming Closest Pair problem.

In fact, the problem studied in [AW15, ACW16, MO15] is the following Bichromatic Ham-

ming Closest Pair Problem: we are given n red vectors R = {r0, r1, · · · , rn−1} and n blue

vectors B = {b0, b1, · · · , bn−1} from {0, 1}m, and the goal is to find a red-blue pair with

minimum Hamming distance. It is easy to see that the Closest Pair Problem is reducible

to the Bichromatic Hamming Closest Pair Problem via a random reduction. In fact, our

algorithm for the Closest Pair Problem can also be easily adapted to solve the Bichromatic

Hamming Closest Pair Problem as follows. Run the decoding part of our algorithm on both

sets R and B to get R̃ = {r̃0, r̃1, · · · , r̃n−1} and B̃ = {b̃0, b̃1, · · · , b̃n−1}, sort R̃ and B̃

separately (without comparing the original vectors for adjacent pairs in the sorted lists),

then merge the two sorted lists into one, and compute the distance between the original

vectors for each red-blue pair of vectors that are compared during the merging process.

On the other hand, the Bichromatic Closest Pair Problem is unlikely to have truly sub-

quadratic algorithms under some mild conditions. Assuming the Strong Exponential Time

Hypothesis (SETH), for any ε > 0, there exists a constant c such that when the dimension

m = c log n, then there is no 2o(m) · n2−ε-time algorithm for the Bichromatic Closest Pair

Problem [AW15, ARW17, Wil18].
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CHAPTER 3

OUR RESULTS

3.1 Methodology

Algorithm 1: General Idea of Main Algorithm
input : A set of n vectors x0, . . . , xn−1 in {0, 1}m and dmin

output: Two vectors and their distance

1 generate a binary code C ⊆ {0, 1}m
2 pick a random y ∈ {0, 1}m
3 for j ← 0 to n− 1 do
4 decode y + xj in C, and denote the resulting vector by x̃j
5 end
6 sort x̃0, . . . , x̃n−1

7 for each of the n− 1 pairs of adjacent vectors in the sorted list do
8 compute the distance between the two original vectors.
9 end

10 output the pair of vectors with the minimum distance and their distance

We propose a simple, error-correcting code based scheme for the Closest Pair Problem.

Apart from achieving the best running time for certain range of parameters, we believe that

our new approach has the merit of being simple, and hence more likely being practical

as well. In particular, neither complicated data structure nor fast matrix multiplication is

employed in our algorithms.

The basic idea of our algorithms is very simple. Suppose for concreteness that x0 and x1

are the unique pair of vectors that achieve the minimum distance. Our scheme is inspired by

the extreme case when x0 and x1 are identical vectors. In this case, a simple sort and check

approach solves the problem inO(mn log n) time: sort all n vectors and then compute only

the n − 1 pairwise distances (instead of all
(
n
2

)
distances) of adjacent vectors in the sorted

list. Since the two closest vectors are identical, they must be adjacent in the sorted list and

thus the algorithm would compute their distance and find them. This motivates us to view
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the input vectors as received messages that were encoded by an error correction code and

have been transmitted through a noisy channel. As a result, the originally identical vectors

are no longer the same, nevertheless are still very close. Directly applying the sort and

check approach would fail but a natural remedy is to decode these received messages into

codewords first. Indeed, if the distance between x0 and x1 is small and we are lucky to have

a codeword c that is very close to both of them, then a unique decoding algorithm would

decode both of these two vectors into c. Now if we “sort” the decoded vectors and then

“check” the corresponding original vectors of each adjacent pair of vectors1, the algorithm

would successfully find the closest pair. How to turn this “good luck” into a working

algorithm? Simply try different shift vectors y and view y + xi as the input vectors, since

the Hamming distances are invariant under any shift. The basic idea of our approach is

summarized in Algorithm 1.

Figure 3.1 illustrates the effects “bad” shift vectors and “good” shift vectors on the

decoding part of our algorithm. In Figure 3.1a, our shifted target vectors y′+x0 and y′+x1

are decoded into two different codewords, so y′ is a bad shift. In Figure 3.1b, our shifted

target vectors y + x0 and y + x1 are decoded into the same codeword, therefore we can

apply the sort-and-check approach to find the closest pair.

Figure 3.2 illustrates what happens if we sort the vectors directly and why sorting de-

coded vectors works.

Making the idea of decoding work for larger minimum pairwise distance involves bal-

ancing the parameters of the error-correcting code so that it is efficiently decodable as well

as having appropriate decoding radius. The decoding radius r should have the following

properties. On one hand, r should be small to ensure that there is a codeword c such that

only x0 and x1 will be decoded into c (therefore x0 and x1 will be adjacent in the sorted

array and hence will be compared with each other). On the other hand, we would like r to

1Actually, we only need to “check” when the two adjacent decoded vectors are identical.
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Figure 3.1: Decoding with good and bad shift vectors
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(b) Sorting decoded vectors

Figure 3.2: Difference between sorting input vectors directly and sorting decoded vectors.
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be large so as to maximize the number of “good” shift vectors which enable both x0 and x1

decoding to the same codeword. As a result, our algorithms generally perform best when

the closest pair distance is very small.

Our simple error-correcting code based algorithm can be applied to solve the Closest

Pair Problem and the Light Bulb Problem.

3.2 The Closest Pair Problem

Our main result is the following simple randomized algorithm for the Closest Pair Problem.

Theorem 3.2.1 (Main). Let x0, x1, . . . , xn−1 in {0, 1}m be n binary vectors such that x0

and x1 is the unique pair achieving the minimum pairwise distance dmin (and the sec-

ond smallest distance can be as small as dmin + 1). Suppose2 we are given the value of

dmin and let δ := dmin/m. Then there is a randomized algorithm running in O(n log2 n ·

2(1−κZ(δ)−δ)m · poly(m)) which finds the closest pair x0 and x1 with probability at least

1 − 1/n2. The running time can be improved to O(n log2 n · 2(H2(δ)−δ)m · poly(m)), if

we are given black-box decoding algorithms for an ensemble of O(logm/ε) binary error-

correcting codes that meet the Gilbert-Varshamov bound.

Here κGV (δ) and κZ(δ) are functions derived from the Gilbert-Varshamov (GV) bound

and the Zyablov bound respectively (see Section 2.1.5 for details). Specifically, κGV (δ) =

1−H2(δ), and both κGV (δ) and κZ(δ) are monotone decreasing functions for δ ∈ [0, 1/2],

with function values ranging from 1 to 0; see e.g. Figure 9.2 in [GRS18] for an illustration.

The running time of our algorithm depends on — in addition to the number of vectors

n — both dimension m and δ := dmin/m. To illustrate its performance we choose two

2In fact this assumption can be easily removed with a small overhead in the running time; see
the discussion below and Section 3.4
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Table 3.1: Running time of our algorithm when vector length m and relative distance δ
meets the Hamming bound and GV bound

Hamming bound GV bound

δ
length of vector

(m/ log n)
exponent (γ′)

length of vector
(m/ log n)

exponent (γ′)

0.01 1.0476 1.0742 1.0879 1.0770
0.025 1.1074 1.1591 1.2029 1.1728
0.05 1.2029 1.2844 1.4013 1.3313
0.075 1.2999 1.4021 1.6242 1.5024
0.1 1.4013 1.5171 1.8832 1.6949

0.125 1.5090 1.6316 2.1909 1.9170
0.133 1.5449 1.6684 2.3064 1.9989

typical vector lengths m, namely those corresponding to the Hamming bound3 and the

Gilbert-Varshamov (GV) bound, and list the exponents γ′ in the running time of the GV-

code version of our algorithm as a function of dmin (in fact δ) in Table 3.1. Here, we write

the running of the algorithm as Õ(nγ
′
), where Õ suppresses any polylogarithmic factor of

n. One can see that our algorithm runs in subquadratic time when δ is small, or equivalently

when the Hamming distance between the closest pair is small. For instance, when δ = 0.05,

and the length m = 1.4013 log n, then the running time is O(n1.3313) if we use GV bound.

In the setting of m = c log n for some not too large constant c, Alman [ACW16] gave

a randomized algorithm which runs in n2−1/O(
√
c log3/2 c) time for the Closest Pair Problem.

As it is very hard to calculate the hidden constant in the exponent of their running time, it

is impossible to compare our running time with theirs quantitatively.

3.3 Deterministic algorithm.

By checking all shift vectors up to certain Hamming weight, our randomized algorithm can

be easily derandomized to yield the following theorem.

3The Hamming bound, also known as the sphere packing bound, specifies an upper bound on
the number of codewords a code can have given the block length and the minimum distance of the
code.
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Theorem 3.3.1. Let x0, x1, . . . , xn−1 in {0, 1}m be n binary vectors such that x0 and x1

is the unique pair achieving the minimum pairwise distance dmin (and the second smallest

distance can be as small as dmin + 1). Suppose we are given the value of dmin and let

δ := dmin/m. Then there is a deterministic algorithm that finds the closest pair x0 and x1

with running time O(n log n · 2H2(1−κZ(δ))m · poly(m)), where H2(·) is the binary entropy

function. Moreover, if we are given as black box the decoding algorithm of a random

Varshamov linear code with block lengthm and minimum distance dmin+1, then the running

time is O(n log n · 2H2(H2(δ))m · poly(m)).

3.4 Searching for dmin.

If we remove the assumption that dmin is given, our algorithm can be modified to search for

dmin first without too much slowdown; more details appear in Section 3.4.

Theorem 3.4.1. Let x0, x1, . . . , xn−1 in {0, 1}m be n binary vectors such that x0 and x1

is the unique pair achieving the minimum pairwise distance dmin. Then for any ε > 0,

there is a randomized algorithm that runs in O(ε−1n log2 n · 2(1−κZ((1+ε)δ)−δH2( 1−ε
2

))m ·

poly(m)) which finds the dmin (and the pair x0 and x1) with probability at least 1 − 1/n,

The running time can be improved to O(ε−1n log2 n · 2(H2((1+ε)δ)−δH2( 1−ε
2

))m · poly(m)), if

we are given black-box decoding algorithms for an ensemble of O(logm/ε) binary error-

correcting codes that meet the Gilbert-Varshamov bound.

3.5 Gapped version.

Intuitively, if there is a gap between dmin and the second minimum distance, the Closest

Pair Problem should be easier. This is reminiscent of the case of the (1 + ε)-Approximate
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NNS Problem versus the NNS Problem. However, as we still need to find the exact solution

to the Closest Pair Problem, the situation here is different.

Theorem 3.5.1 (Gapped version). Let x0, x1, . . . , xn−1 in {0, 1}m be n binary vectors

such that x0 and x1 is the unique pair achieving the minimum pairwise distance dmin.

Suppose we are given the values of dmin as well as the second minimum distance d2.

Let δ := dmin/m and δ′ := d2/m. Then there is a randomized algorithm running in

O(n log2 n · 2(1−κZ(δ′)−δ−(1−δ)H2( δ′−δ
2(1−δ) ))m · poly(m)) which finds the closest pair x0 and x1

with probability at least 1 − 1/n2. Moreover, the running time can be further improved to

O(n log2 n · 2(H2(δ′)−δ−(1−δ)H2( δ′−δ
2(1−δ) ))m · poly(m)), if we are given the black box access to

the decoding algorithm of an (m,K, d)-code which meets the Gilbert-Varshamov bound.

Our gapped version algorithm uses d2/2 instead of dmin/2 as the decoding radius. This,

however, does not always give improved running time as illustrated in Figure 3.3. In Fig-

ure 3.3, we set δ′ = (1 + ε)δ and write the running time as O(n log2 n · 2γm · poly(m)) for

both the gapped version (the blue line) and the non-gapped version (the green line). One

can see that using d2/2 as the decoding radius does not always yield the best running time.

Indeed, this is the case only when ε is small enough. Our numerical calculations show that

there exists an optimal decoding radius dopt/2 (which corresponds to the minimum point in

the blue line) slightly larger than dmin/2 such that whenever d2 ≥ dopt using dopt/2 as the

decoding radius will achieve the fastest running time. Unfortunately we do not know how

to calculate this dopt/2 analytically.

3.6 The Light Bulb Problem

Applying our algorithms for the Closest Pair Problem to the Light Bulb Problem easily

yields the following theorem.
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Figure 3.3: The range of ε in which gapped version outperforms non-gapped version

Theorem 3.6.1. There is a randomized algorithm for the Light Bulb Problem which runs

in time

O(n · poly(log n)) · 2(1−κZ( 1−ρ
2

)− 1−ρ
2

) 4 ln 2·logn
ρ2

(1+o(1))

and succeeds with probability at least 1− 1/n2. The running time can be further improved

to

O(n · poly(log n)) · 2(H2( 1−ρ
2

)− 1−ρ
2

) 4 ln 2·logn
ρ2

(1+o(1))
,

if we are allowed a one-time preprocessing time4 of n2.773/ρ2 to generate the decoding

lookup table of a random Gilbert’s (m,K, (1 − ρ)m/2)-code. Similar results can also be

obtained for deterministic algorithms.

Our deterministic algorithm for the Light Bulb Problem performs faster than Alman’s

deterministic algorithm [Alm19] when the Pearson-correlation coefficient ρ is very large.

Moreover, we believe that our algorithms are very simple and therefore are likely to out-

perform other complicated ones for at least not too large input sizes.

4This is because the block length of the code is m = 4 ln 2 log n/ρ2 < 2.773 log n/ρ2 and
preprocessing the code requires O(2m) = O(n2.773/ρ2) time.
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CHAPTER 4

MAIN ALGORITHM FOR THE CLOSEST PAIR PROBLEM

4.1 Main Algorithm

We now present our Main Algorithm for the Closest Pair Problem. For ease of exposition,

we make a somewhat unnatural assumption that the value of dmin is given. However, as we

show in Section 3.4, the algorithm can be modified to get rid of this assumption, with only

a slight slowdown in running time.

Theorem 4.1.1 (Non-gapped version). Let x0, x1, . . . , xn−1 in {0, 1}m be n binary vectors

such that x0 and x1 is the unique pair achieving the minimum pairwise distance dmin (and

the second smallest distance can be as small as dmin + 1). Suppose we are given the value

of dmin and let δ := dmin/m. Then there is a randomized algorithm running in O(n log2 n ·

2(1−κZ(δ)−δ)m · poly(m)) which finds the closest pair x0 and x1 with probability at least

1− 1/n2.

Proof. Our Main Algorithm for the Closest Pair problem is described in Algorithm 2, and

the decoding subroutine Dec(C, r, x) is illustrated in Algorithm 3. Note that we choose the

minimum distance of C to be dmin + 1, hence the decoding radius of C is dmin/2 (without

loss of generality, assume that dmin is even).

For the correctness of the algorithm, first note that our algorithm will output the correct

minimum distance if and only if x0 is ever compared against x1 for computing pairwise

distance, and this happens if and only if x0 and x1 are adjacent in the sorted array after

decoding. A sufficient condition for the latter is that the decoded vectors of x0 and x1 are

identical and they are different from any other decoded vectors.

How many shift vectors y ∈ {0, 1}m in Algorithm 2 satisfy this condition? We will call

such vectors good vectors. Denote the set of vectors lying at the “middle” between x0 and
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x1 by

MID = {z ∈ {0, 1}m : dist(x0, z) = dist(z, x1) = dmin/2}.

Note that any vector y that shifts a vector z ∈ MID to a codeword c ∈ C would be a good

vector. To see this, first note that after such a shift, y + z is a codeword in C, and both

y + x0 and y + x1 lie within the decoding radius of y + z, and therefore will be decoded to

y + z. Moreover, the shifted vector of any other input vector y + xi, 2 ≤ i ≤ n − 1, lies

outside the decoding radius of y + z. This is because if it does, then by triangle inequality

and the fact that the decoding radius of C is dmin/2,

dist(x0, xi) = dist(y + x0, y + xi)

≤ dist(y + x0, y + z) + dist(y + z, y + xi)

≤ dmin/2 + dmin/2 = dmin,

contradicting our assumption that x0 and x1 is the unique pair achieving the minimum

distance.

How many such good vectors? There are in total
(
dmin
dmin/2

)
vectors exist in MID, and all

their pairwise distances are at most dmin. Let c1, c2 be two distinct codewords in C. By

our choice of the minimum distance of C, dist(c1, c2) > dmin. Consider any two distinct

vectors z1 and z2 in MID. Clearly applying these two shift vectors to the same codeword

gives two distinct vectors, namely c1 + z1 and c1 + z2. Moreover, applying two distinct

vectors in MID to two distinct codewords also results in two distinct shift vectors, because

dist(c1 + z1, c2 + z2) = wt(c1 + c2 + z1 + z2) > 0,

since wt(c1 + c2) ≥ d > dmin but wt(z1 + z2) = dist(z1, z2) ≤ dmin.

Recall that C is a (m,K, d)-code and hence there are K codewords in C. It follows

that there are in total K ·
(
dmin
dmin/2

)
good vectors of this kind. Therefore

Pr(a random y succeeds in finding the closest pair) ≥
K ·

(
dmin
dmin/2

)
2m

,
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and hence repeatedly selecting

2 lnn
2m

K ·
(
dmin
dmin/2

) = O

(
log n

√
δm2m

2κZ(δ)m2δm

)

= O(2(1−κZ(δ)−δ)mm1/2 log n)

independent y’s will succeed with probability at least 1 − 1/n2, where in the last step we

use the bound
(
n
n/2

)
= O( 2n√

n
), a special case of Lemma 2.0.1.

Finally, note that each choice of shift vector y requires n · poly(m) time decoding as

well as O(n log n ·m) sorting and comparing adjacent vectors, so the total running time of

the algorithm is O(n log2 n · 2(1−κZ(δ)−δ)m · poly(m)).

Algorithm 2: Main Algorithm for the Closest Pair Problem
input : A set of n vectors x0, . . . , xn−1 in {0, 1}m and dmin

output: Two vectors and their distance

1 generate a binary (m,K, d)-code C with d = dmin + 1

2 for i← 1 to O(2(1−κZ(δ)−δ)mm1/2 log n) do
3 pick a random y ∈ {0, 1}m
4 for j ← 0 to n− 1 do
5 x̃j ← Dec(C, bdmin/2c, y + xj)

6 end
7 sort x̃0, . . . , x̃n−1

8 (suppose the sorted sequence is x̃s0 , . . . , x̃sn−1 , where {s0, . . . , sn−1} is a
permutation of {0, 1, . . . n− 1})

9 for j ← 1 to n− 1 do
10 compute dist(xsj−1

, xsj)

11 end
12 end
13 output the pair of vectors with minimum distance ever found and their distance

If we assume further that a decoding algorithm for some binary (m,K, d)-codeC which

meets the Gilbert-Varshamov bound is given as a black box, then the running time in The-

orem 4.1.1 can be improved to O(n log2 n · 2(H2(δ)−δ)m · poly(m)). Note that this is not a

totally unrealistic assumption, as for most interesting settings, m = c log n for some small
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Algorithm 3: Dec(C, r, x)

input : A binary (m,K, d)-code C, a decoding radius r < d/2, and a vector
x ∈ {0, 1}m

output: A vector x̃ ∈ {0, 1}m

1 run the (efficient) decoding algorithm for C on input vector x, and let the output
vector be x̃

2 if dist(x, x̃) ≤ r then
3 output x̃
4 else
5 output x
6 end

constant c.1 Therefore, greedily searching for a binary code of block length m that meets

the Gilbert-Varshamov bound is tantamount to running anO(nc) time preprocessing, which

can be reused for any problem instance with the same vector length and minimum closest

pair distance.

If there is a gap between d2 and dmin (this roughly corresponds to the approximate clos-

est pair problem in [Val15]), then we can improve the running time of the Main Algorithm

in Theorem 4.1.1 by exploiting an error correcting code with larger decoding radius.

Theorem 4.1.2 (Gapped version). Let x0, x1, . . . , xn−1 in {0, 1}m be n binary vectors

such that x0 and x1 is the unique pair achieving the minimum pairwise distance dmin.

Suppose we are given the values of dmin as well as the second minimum distance d2.

Let δ := dmin/m and δ′ := d2/m. Then there is a randomized algorithm running in

O(n log2 n · 2(1−κZ(δ′)−δ−(1−δ)H2( δ′−δ
2(1−δ) ))m · poly(m)) which finds the closest pair x0 and x1

with probability at least 1 − 1/n2. Moreover, the running time can be further improved to

O(n log2 n · 2(H2(δ′)−δ−(1−δ)H2( δ′−δ
2(1−δ) ))m · poly(m)), if we are given black box access to the

decoding algorithm of an (m,K, d)-code which meets the Gilbert-Varshamov bound.
1As in the settings of random vectors, e.g. the Light Bulb Problem, m = c log n is both the

information theoretical lower and upper bounds to distinguish n stochastic bit sequences.
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Proof. The proof follows a similar structure as the proof of Theorem 4.1.1. The main

difference is now we pick a binary error correcting code of minimum distance d2 + 1,

thereby decoding radius r = d2/2 = 1
2
δ′m (once again, for simplicity, we assume d2 is

even).

Accordingly, the “middle point” set is now defined as

MIDG = {z ∈ {0, 1}m : dist(x0, z) ≤ r and dist(x1, z) ≤ r}.

We now give a lower bound on the size of MIDG.

Without loss of generality, we assume x0 = 0m and let T = {i ∈ [m] : (x1)i = 1}.

Clearly |T | = dmin. Let i = |{k ∈ T : (z)k = 0}| and j = |{k ∈ [m] \ T : (z)k = 1}|.

Then dist(x0, z) ≤ r is equivalent to dmin − i+ j ≤ r, and dist(x1, z) ≤ r is equivalent to

i+ j ≤ r. Therefore

|MIDG| =
∑
i+j≤r

∑
dmin−i+j≤r

(
dmin

i

)(
m− dmin

j

)
≥
(
dmin

dmin/2

)(
m− dmin

r − dmin/2

)

= Θ

 2δm√
δm

2(1−δ)H2( δ′−δ
2(1−δ) )m√

(1− δ)m

 ,

where the last step follows from Lemma 2.0.1. The rest of the proof is identical to that of

Theorem 4.1.1, and therefore is omitted.

4.2 A deterministic variant of the Main Algorithm

One can turn our randomized Main Algorithm into a deterministic one by exhaustively

searching for all possible shift vectors y ∈ Fm2 . A simple observation is that it suffices to

check for all vectors in the Hamming ball of radius equals to the covering radius of the

code C.
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Theorem 4.2.1. Let x0, x1, . . . , xn−1 in {0, 1}m be n binary vectors such that x0 and x1

is the unique pair achieving the minimum pairwise distance dmin (and the second smallest

distance can be as small as dmin + 1). Suppose we are given the value of dmin and let

δ := dmin/m. Then there is a deterministic algorithm that finds the closest pair x0 and x1

with running time O(n log n · 2H2(1−κZ(δ))m · poly(m)). Moreover, if we are given as black

box the decoding algorithm of a random Varshamov linear code with block length m and

minimum distance dmin + 1, then the running time is O(n log n · 2H2(H2(δ))m · poly(m)).

Proof. Let δ := dmin/m. It is well-known that for any linear [m, k, d]q-codeC, the covering

radius of C satisfies that R(C) ≤ m − k. It follows that for Reed-Solomon code RSq,m,k,

R(RS) ≤ m − k < d. We can either generate a random linear Varshamov code [Var57]

similar to that described in Section 2.1.5 that meets the Gilbert-Varshamov bound and con-

catenate it with a Reed-Solomon code so that the resulting binary code is a linear code.

Then the covering radius of this concatenated code satisfies that R(C) ≤ (1 − κZ(δ))m.

Or, if preprocessing is allowed, we may simply generate a random linear Varshamov code

of block lengthm, whose covering radius satisfies thatR(C) ≤ (1−κGV (δ))m = H2(δ)m.

Now the deterministic algorithm for finding the closest pair is similar to the Main

Algorithm, except that instead of picking random shift vector y, the algorithm checks

every y ∈ B(0m, R(C)). It follows directly that the running time of the algorithm is

O(n log n · poly(m) ·Vol(B(0m, R(C)))). Here Vol(B(0m, R(C))) denotes the number of

vectors within the Hamming ballB(0m, R(C)), which is 2H2(1−κZ(δ))m for the concatenated

code, or 2H2(H2(δ))m for the random Varshamov linear code.

The correctness of the algorithm follows that, by the same argument of the correctness

of Algorithm 2, any vector z ∈ MID is at most R(C) away from some codeword c ∈ C,

namely dist(z, c) = wt(z + c) ≤ R(C). When vector z + c, which lies in B(0m, R(C)), is

chosen as the shift vector y, x0 and x1 will be the only two vectors decoded to c, therefore

the algorithm successfully finds the closest pair.
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We remark that our covering radius argument seems to be too rough, as there are many

vectors in MID. Getting a more efficient deterministic algorithm, or derandomizing the

Main Algorithm is an interesting open question of combinatorics in nature.
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CHAPTER 5

THE LIGHT BULB PROBLEM

5.1 Algorithm for the Light Bulb Problem

In this section, we apply our new algorithms for the Closest Pair Problem to a special case

of it, namely the Light Bulb Problem.

In the Light Bulb Problem, we are given n sequences of bit strings X0, X1, . . . , Xn−1.

All bits are generated independently, uniformly at random from {0, 1}, except that two

strings, say X0 and X1, are generated with non-zero linear correlation ρ; that is, indepen-

dently for each i, Pr((X0)i = (X1)i) = 1+ρ
2

and Pr((X0)i 6= (X1)i) = 1−ρ
2

. The problem

is to find this correlated pair of sequences.

First note that we may assume the Pearson correlation ρ is positive, as there is a simple

randomized reduction from the negative ρ case to the positive ρ case: given an instance of

the Light Bulb Problem with ρ < 0 randomly pick n/2 sequences and flip all the bits in

these sequences. Then with probability 1/2, the correlated pair become −ρ correlated.

To apply our algorithms for the Closest Pair Problem to the Light Bulb Problem, the

following theorem provides a randomized reduction from the latter to the former.

Theorem 5.1.1. If we pick m = 4 ln 2·logn
ρ2

(1 + o(1)) bits at random from X0, X1, . . . , Xn−1

to obtain n vectors x0, x1, . . . , xn−1 in {0, 1}m, then with constant probability, x0 and x1 is

the unique closest pair among these n vectors.

Proof. For each pair of vectors xi and xj , 0 ≤ i < j ≤ n − 1, define m indicator random

variables {(Ii,j)k}k∈[m] such that (Ii,j)k = 1 if and only if (xi)k 6= (xj)k. Note that for any

pair i < j, {(Ii,j)k}k∈[m] are m independent and identically distributed random variables,

and dist(xi, xj) =
∑

k∈[m](Ii,j)k. Specifically, Pr((I0,1)k = 0) = 1+ρ
2

and Pr((I0,1)k =

1) = 1−ρ
2

; and Pr((Ii,j)k = 0) = Pr((Ii,j)k = 1) = 1/2 for all other i < j pairs.
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Note that each pairwise distance dist(xi, xj) is a binomial random variable. In par-

ticular, dist(x0, x1) is a B(m, 1−ρ
2

) random variable and all others are B(m, 1/2) random

variable. To argue about the distribution of distance between x0 and x1, we need the fol-

lowing fact:

Fact 5.1.2 ([KB80]). Binomial distribution B(n, p) has median bnpc or dnpe.

Let dt := E(dist(x0, x1)) = (1−ρ)m/2. Then by Fact 5.1.2, Pr(dist(x0, x1) ≥ dt) ≤ 1/2.

On the other hand, for any other pair xi and xj ,

Pr(dist(xi, xj) < dt) = Pr (dist(xi, xj) < E(dist(xi, xj))− ρm/2)

< e−(ρm)2/2m = e−mρ
2(1−o(1))/2

≤ 1

2n2
,

by a simple application of the Chernoff bound (e.g. Theorem A.1.1 in [AS08]). Now

applying a union bound over all xi and xj pairs, we have that with probability at least 1/4,

dist(x0, x1) < dt and for all other pairs dist(xi, xj) ≥ dt, i.e., x0 and x1 is the unique

closest pair among these n vectors.

Note that Theorem 5.1.1 implies that if we samplem = 4 ln 2·logn
ρ2

(1+o(1)) bits from the

n random sequences, then with constant probability, we get an instance of the Closest Pair

Problem with dmin < (1 − ρ)m/2. Now, by repeatedly running our randomized algorithm

for Closest Pair Problem O(log n) times, each time taking independent samples from the

input vectors, and then take a majority vote, then by combining a simple application of the

Chernoff bound, Theorem 4.1.1 and Theorem 5.1.1, we obtain the following

Theorem 5.1.3. There is a randomized algorithm for the Light Bulb Problem which runs

in time

O(n · poly(log n)) · 2(1−κZ( 1−ρ
2

)− 1−ρ
2

) 4 ln 2·logn
ρ2

(1+o(1))
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and succeeds with probability at least 1− 1/n2. The running time can be further improved

to

O(n · poly(log n)) · 2(H2( 1−ρ
2

)− 1−ρ
2

) 4 ln 2·logn
ρ2

(1+o(1))
,

if we are allowed a one-time preprocessing time of n2.773/ρ2 to generate the decoding lookup

table of a random Gilbert’s (m,K, (1− ρ)m/2)-code.

Numerical calculations show that our new algorithm performs better than the improved

Valiant’s fast matrix multiplication algorithm [KKK16] (which runs in n1.582) when ρ ≥

0.9967 (equivalently when δ ≤ 0.00165). Moreover, if an n2.773/ρ2-time preprocessing is

allowed, then our algorithm runs faster for all ρ ≥ 0.9310 (equivalently for all δ ≤ 0.0345).

5.2 Deterministic algorithm.

Following [KKKC16], we say a deterministic algorithm solves the Light Bulb Problem if it

is correct on almost all instances, i.e., if the algorithm fails on a randomly picked instance

with probability at most 1/poly(n). Following a similar proof that of the randomized

algorithm shown before, we have the following theorem on deterministic algorithm for the

Light Bulb Problem

Theorem 5.2.1. There is a deterministic algorithm for the Light Bulb Problem which runs

in time

O(n · poly(log n)) · 2H2(1−κZ( 1−ρ
2

)) 4 ln 2·logn
ρ2

(1+o(1))

and succeeds with probability at least 1− 1/n2. The running time can be further improved

to

O(n · poly(log n)) · 2H2(H2( 1−ρ
2

)) 4 ln 2·logn
ρ2

(1+o(1))
,

if we are allowed a one-time preprocessing time of n2.773/ρ2 to generate the decoding lookup

table of a random Gilbert’s (m,K, (1− ρ)m/2)-code.
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Note that, like the randomized algorithm, our deterministic algorithm also needs to draw

O(m log n) bits from each of the n sequences. However, the algorithm uses no random bits

and the success probability is over the random instance the algorithm gets from the input.

As mentioned earlier, Alman [Alm19] gave the currently best deterministic algorithm

for the Light Bulb Problem, which runs inO(n1.582) time. Unsurprisingly, the deterministic

version of our algorithm outperforms the one in [Alm19] when the Pearson correlation is

very large. Specifically, by numerical calculation, our deterministic algorithm runs faster

than Alman’s when ρ ≥ 0.999948. Moreover, if an n2.773/ρ2-time preprocessing is allowed,

then when ρ ≥ 0.9933 (equivalently when δ ≤ 0.0033), we may take the vector length

m ≤ 2.8101 log n so that our deterministic algorithm runs in at most O(n1.581).
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CHAPTER 6

CONCLUDING REMARKS AND OPEN PROBLEMS

We propose a simple approach, namely a decoding-base method, to solve the classic Closest

Pair Problem. Our results leave open several interesting questions. The way we derandom-

ize our randomized algorithm is by a simple brute-force search. Is there a smarter and more

efficient way to derandomize? Valiant’s fast matrix multiplication method [Val15] for the

Light Bulb Problem is the only known algorithm that makes good use of the availability of

larger amount of data. Is it possible to leverage the data size to improve the running time

of our decoding approach? Another interesting open question is to study the Closest Pair

Problem in the streaming model, as many real-life situations of the problem — such as in

cyber security — are in fact in this setting.
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