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ABSTRACT OF THE DISSERTATION 

ESSAYS ON ECONOMIC VALUATION OF WATER RESOURCES 

by 

Christina Estela Brown 

Florida International University, 2019 

Miami, Florida 

Professor Mahadev Bhat, Major Professor 

Increased potential of flooding caused by heavy precipitation events and sea level rise, as 

well as growing risk of drought that are likely changes in the frequency and spatial 

distribution of climatic conditions, pose particular challenges to water management in 

coastal areas. Extreme events are expected to increase the complexity of managing scarce 

water resources for competing water users. South Florida, which is characterized by a 

mosaic of urban settlements, agricultural areas and natural areas, is served by a highly 

human-engineered water management system grappling to meet multiple objectives, 

including urban and agricultural water supply, flood control, and environmental 

restoration. Climate-induced water shortage or excess often tests the limits of the water 

management engineering system. While the Everglades suffers a lack of freshwater 

inflows, heavy precipitation and flooding events in the U.S. and worldwide in recent 

years have greatly damaged crop production. If model projections of increased weather 

extremes are realized, the cost of crop losses could increase drastically. These costs may 

be borne directly by the farmers impacted or transferred to private insurers or 

governmental disaster relief programs. The present research quantifies monetary values 

of lost recreational fishery ecosystem services due to reduced freshwater flow in the 
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Everglades using a survey-based discrete choice methodology, estimated at over $25 

million annually. Examining survey respondents’ willingness to pay for ecosystem 

services in light of their perceptions and preferences regarding the risks posed by climate 

change and sea level rise, when willingness to pay values were adjusted for risk 

perception the annual overall ecosystem service valuation (benefit) of users was 40.03% 

higher than the annual benefits estimated using non-adjusted willingness to pay. The 

economic value of crop flooding indemnity claims is also be estimated at a county level 

using a Stackelberg game-theoretic model, finding that in many years total indemnity far 

exceeds premiums, which are set at levels below farmers’ maximum willingness to pay. 
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1. Introduction 

The Intergovernmental Panel on Climate Change (IPCC) report outlines changes in the 

frequency, spatial distribution, and magnitude of several climatic conditions and extreme 

events that are likely to occur in the not too distant future that could pose significant risks 

to human well-being (IPCC, 2014). Among such changes are an increased potential of 

flooding caused by increased heavy precipitation events and sea level rise, as well as 

increased risk of drought, and pose particular concern to coastal communities and 

agricultural production. South Florida is among the areas of the U.S. most vulnerable to 

inundation (Dolan & Walker, 2006; Erwin, 2009; Gornall et al., 2010; Scavia et al., 

2002). In addition to inundation, rising sea level can cause shoreline erosion and inland 

migration, and increase salinity of freshwater ecosystems and aquifers (Scavia et al., 

2002). These extreme events are in turn expected to further increase the complexity of 

managing scarce water resources for competing water users. Specifically South Florida, 

which is characterized by a mosaic of urban settlements, agricultural areas and natural 

areas, is served by a highly human-engineered water management system (Harwell et al., 

1996). Management agencies grapple with managing water to meet multiple objectives, 

including urban and agricultural water supply, flood control, and environmental 

restoration. Climate-induced (flood, drought, sea level rise) water shortage or excess 

often tests the limits of this engineering system. 

The Everglades National Park, including Whitewater Bay, Tarpon Bay, and Florida Bay, 

is renowned for its world-class recreational fisheries, generating more than $1.2 billion in 

annual economic activity (Fedler, 2009). The timing, quantity, and quality of freshwater 

inflows can greatly affect salinity and water quality regimes in south Florida coastal bays. 
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Freshwater flows are a key determinant of habitat and fisheries resource productivity 

(Rudnick, Ortner, Browder, & Davis, 2005; Stabenau, Engel, Sadle, & Pearlstine, 2011; 

Walters, Gunderson, & Holling, 1992), making the recreational fishing industry in the 

area a direct beneficiary of improved and sustained fishery habitat. 

Historically, water flowed south from Lake Okeechobee into a broad, slow moving 

shallow river of water. At present, these flows are constrained by a dike and levy system 

and occupy less than half of their original areal extent, relegating the Everglades to part 

of a complex watershed management system regulated primarily for agriculture, flood 

control, and consumptive uses (Ogden, Davis, Jacobs, Barnes, & Fling, 2005; F. H. Sklar, 

Fitz, Wu, Van Zee, & McVoy, 2001; Sklar et al., 2005). As a result, the flow of 

freshwater through the Everglades has been reduced, channelized, and otherwise 

modified such that salinity regimes, biota, and a variety of ecosystem services in the 

coastal Everglades have dramatically changed (Perry, 2008; Rand & Bachman, 2008).  

While the Everglades suffers a lack of freshwater inflows, heavy precipitation and 

flooding events in the United States and worldwide in recent years have greatly damaged 

crop production. If model projections of increased weather extremes are realized (IPCC, 

2014; National Park Service, 2009), the cost of crop losses could increase drastically. 

Recent studies have attempted to simulate the effect of plant damage from excess soil 

moisture in order to estimate crop production loss, finding that losses under current 

climatic conditions may double in the next thirty years to an estimated $3 billion annually 

(Rosenzweig, Tubiello, Goldberg, Mills, & Bloomfield, 2002). These costs may be borne 

directly by the farmers impacted or transferred to private insurers or governmental 

disaster relief programs. 
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The following research will quantify monetary values of lost recreational fishery 

ecosystem services caused by reduced freshwater flow in the Everglades, as well as the 

economic value of crop flooding indemnity claims at a regional or county level.  With the 

risk of future losses increasing because of the uncertainty of extreme events and the 

effects of climate change and sea level rise, quantifying these values is essential to 

evaluating potential policy or management responses.  Ultimately, my research will use 

these estimated economic values within a penalty function framework to simulate 

potential climate or policy scenarios.   
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2. Ecological-Economic Assessment of the Effects of Freshwater Flow in the Florida 

Everglades on Recreational Fisheries 

 

2.1 Introduction 

Everglades National Park (ENP), at the southern end of the Florida peninsula at 

1.5 million acres, comprises the largest subtropical upland to marine ecosystem in North 

America. Everglades National Park contains a range of freshwater sloughs, seasonally 

flooded marl prairies, tropical hardwood hammocks, pine rocklands, and mangrove and 

seagrass-dominated estuarine habitats (Gunderson, 1994; Richardson, 2010; Saha et al., 

2012). The Everglades, as an important migratory corridor, provides breeding and 

foraging habitats for over 400 species of birds, but also water storage and recharge for the 

Biscayne aquifer, the principal source of freshwater for regional human consumption 

(Lorenz, 2014; Saha et al., 2012).  

South Florida’s regional ecosystem is characterized by two distinct seasons, a wet 

season (generally from May-October) and a dry season (generally from November-April) 

(Saha et al., 2012; Brandt et al., 2012). While the average annual rainfall exceeds 60 

inches, variation in tropical weather systems may result in wide seasonal variation and 

large year-to-year fluctuations (1901-2000 standard deviation of 11 inches in the Miami-

Dade area) (Abetew and Huebner, 2001; National Park Service, 2009). Brandt et al. 

(2012) report that approximately 77% of the total annual rainfall occurs during the wet 

season, and remaining 23% during the dry season. 

Prior to the development of the large freshwater drainage system in South Florida 

in the early and mid-20th century, water flowed south from Lake Okeechobee into a 
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broad, slow-moving, shallow river of water. In the post-development period, these flows 

are constrained by a dike and levy system and occupy less than half of their original areal 

extent, relegating the Everglades to part of a complex watershed management system 

regulated primarily for agriculture, flood control, and consumptive uses (Ogden et al., 

2005; Sklar et al., 2001, 2005). As a result, the flow of freshwater through ENP has been 

reduced, diverted, channelized and otherwise modified such that salinity regimes, biota, 

and a variety of ecosystem services in the coastal Everglades have dramatically changed 

(Perry, 2008; Rand & Bachman, 2008).  

As a large, subtropical estuary averaging in depth from 6 to 9 feet, Florida Bay 

provides critical habitat for a variety of species, including seagrasses and coastal 

mangrove communities (Bachman & Rand, 2008). It serves as a nursery for larvae and 

juveniles of many critical species, including fish and wading birds (Lorenz, 2014).  

The ENP, encompassing Whitewater Bay, Tarpon Bay, and Florida Bay, is 

renowned for its world-class recreational fisheries. Commercial fishing has been banned 

in Park waters since the 1980s. Recreational fishing in the greater Everglades area 

generates more than $1.2 billion in annual economic activity, with largemouth bass, red 

drum, snook, Atlantic tarpon, gray snapper and bonefish providing the largest economic 

impact (Fedler, 2009). Timing, quantity, and quality of freshwater inflows can greatly 

affect salinity and water quality regimes in south Florida coastal bays (Wang et al. 2003). 

Freshwater flows are a key determinant of habitat and fisheries resource productivity 

(Rudnick et al., 2005; Stabenau et al., 2011; Walters et al., 1992), making the recreational 

fishing industry in the area a direct beneficiary of improved and sustained fishery habitat.  
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Surface water stage (water depth relative to a given datum) and salinity gradients 

are strongly influenced by the amount of freshwater released through water management 

structures along the northern boundary of ENP (Stabenau et al., 2011; Childers and 

Leonard, 2005). These flows are regulated by the South Florida Water Management 

District (SFWMD) through massive canals and water-control structures. The SFWMD 

determines monthly water delivery targets for the Everglades wetlands on the basis of the 

historical water flow levels (South Florida Water Management District, 2014). However, 

in the recent years, average monthly deliveries have fallen short of these regulatory flow 

targets by more than 80% in some months. Managers are interested in understanding the 

potential ecological and economic impacts associated with water deliveries relative to the 

pressing demands of non-environmental sectors (e.g., agriculture, urban needs, etc.).  

The goal of our paper was to develop a systems approach to systematically 

measure the economic impacts to changes in Everglades recreational ecosystem services 

relative to changes in freshwater management. We developed an integrated ecological-

economic methodology by linking the Everglades hydrology to fisheries production and 

then modeled the effects of freshwater flows on several robust biological indicators. We 

quantified various attributes of the recreational fishing experience, and, finally, link the 

hydrology-influenced anglers’ fishing experience to economic values.  

 Following Johnston et al. (2011; 2012), economic values are developed using a 

stated preference discrete choice experiment, taking care to provide respondents with the 

relevant ecological and hydrological knowledge essential for making informed choices to 

ensure valid willingness to pay estimates. At the end, this integrated methodology allows 

us to estimate losses in economic welfare caused by missing monthly freshwater delivery 



8 
 

targets in the Everglades. These welfare losses are simply the foregone benefit or penalty 

of failing to meet exogenously determined freshwater flow targets. These penalty 

estimates serve as useful decision-support metrics for water resource managers making 

regional water resource allocations. While the conceptual model of the penalty function 

has been used in hydro-economic optimization (Harou et al., 2009; Jenkins et al., 2004; 

Newlin et al., 2002), its application to ecosystem services in terms of recreational 

fisheries is novel. In particular, the flexibility of the penalty function approach lends itself 

to applications to management scenario analysis and evaluation of potential restoration 

projects. This study advances ecosystem services valuation methods through its 

integrated hydrological-ecological-economic model.  

 

2.2 Methods 

2.2.1 Delineation of the Study Area 

The geographic focus of the study is the ENP watershed, in particular the Shark 

River Slough (SRS) (Figure 1). Our goal is to assess the economic value of managing 

water through the Northern boundary of ENP. The relevant water structures involved in 

these flows are S12A-D, S333, and S334, located along Tamiami Trail (U.S. 41) at the 

northern boundary of ENP. The SRS region is bounded by state road U.S. 41 to the north, 

Gulf of Mexico to the southwest, Miami Rock Ridge to the east, and marl prairies to the 

west. The areal extent of the slough considered in this study is approximately 1700 km2 

(Saha et. al., 2012). At the western end of the slough is an estuarine zone including 

mangrove forests that extends approximately 30 km inland from the Gulf of Mexico. On 

the northern end, a ridge and slough landscape dominates, with sawgrass marshes and 
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tree islands along the ridges, and floating and submerged aquatic macrophytes in the 

sloughs (Saha et. al., 2012; Price, 2008).  

 The majority of the inflow going through the above hydrological structure and 

into the ENP (70%) flows through Shark River Slough, with the remaining inflows 

reaching Taylor Slough to the southeast (Price, 2008). More than 90% of the flow 

through SRS region discharges into the Gulf of Mexico through five major rivers along 

the southwest coast (Levesque, 2004), corresponding to zones 4, 5, and 6 of ENP (Figure 

1). Lostmans River contributes 33% of mean annual discharge, Harney River 32%, Broad 

River 17%, Shark River 14%, and North River 3%. While salinity fluctuates seasonally, 

there is an observed salinity gradient with Lostmans River at the north being saline and 

North River at the south being brackish (Woods, 1994).  

 The region’s climate is seasonal subtropical, with wet and dry seasons, and it 

rarely experiences freezing temperatures. The dry season is November through April 

(Price et al., 2008; Saha et al., 2012), during which some parts of the slough are dry. 

Average water depth during the wet season of May through October is 1 m in the 

northern extent, and increases to about 3 m in the channels draining into the Gulf of 

Mexico (Saha et al., 2012). 

2.2.2 Conceptual Model 

Figure 2 is a schematic representation of our integrated model that captures the 

relationship between the freshwater flow and the periodic total monetary value of 

recreational ecosystem services enjoyed by anglers. The model first recognizes that 

freshwater discharges that flow into the coastal creeks are a key determinant of the 

overall health of the ecosystem in general and the fishery habitat in particular. Thus, the 
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key indicators of the Everglades natural habitat quality including stage, primary fishery 

productivity, diversity, and location of fish depend on the freshwater flows (Higman, 

1967). The model then recognizes that anglers who fish in ENP value various fishery and 

non-fishery attributes as part of their fishing experience, including catch per effort and 

enjoying a healthy natural area. That is, the overall recreational value of a fishing trip to 

ENP is assumed to be comprised of multiple attributes of anglers’ experience: fishing-

specific attributes (catch rate, size of the largest keeper, fishing travel time, etc.) and 

experiencing a healthy ecosystem (Johnston et al., 2012). Finally, the model monetizes 

the average individual fishing experience by using their mean willingness to pay as a 

proxy for their recreational value and then extrapolates the same to the entire population 

of anglers. The final stage of the modeling is to develop an aggregate penalty function 

that captures the recreational ecosystem values lost as a result of maintaining periodic 

water flows below the targets. The following sub-sections explain various hydrological, 

ecological, and economic sub-components of the model. 

Hydro-ecological models 

We first developed models that link hydrology with fishery productivity and 

overall ecosystem health. We linked the fishery catches with the managed S12 structures 

flow in two steps: (i) fish productivity in SRS coastal estuaries was assumed to be a 

function of SRS freshwater outflow into coastal streams and season (see equation 1 

below) (Rudnick et al., 2005; Stabenau et al., 2011; Walters et al., 1992); and (ii) 

freshwater outflow was modeled as a function of S12 managed flow along with other 

hydrological variables related to the SRS watershed (see equation 2 below) (Saha et al., 

2012). That is, the managed flow at the northern boundary of the SRS watershed 
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indirectly affects the fish catches in the coastal areas through its effect on the freshwater 

outflows. 

Following Rudnick et al. (2005) and Stabenau et al. (2011), we assumed that 

natural freshwater outflows into the coastal creeks and overall climatic conditions 

represented by the season were the key determinants of fish productivity. We recognize 

that the relationship between fish catch and freshwater flow is complex. While the 

freshwater flow could affect the distribution of certain species, and in turn, its catch, the 

anglers that are loyal to that species may follow those fish by changing their fishing 

location, traveling longer distance, and/or spending more time fishing. As a result, they 

may not see a fall in the amount of actual catch in relation to freshwater flow. 

Unfortunately, historical data on anglers’ response in terms fishing location and travel 

distance appear to be unavailable. We partially address the data problem by defining fish 

productivity by CPUE, a measure of how many fish an angler caught per hour of fishing 

time, whether it was kept or not. In response to reduced freshwater flow, if anglers had to 

travel greater distances or spend more time to acquire a target amount of catch, the 

corresponding catch per unit effort (fishing time) would be lower than usual. 

The CPUE is calculated for each of the following five species: Snook 

(Centropomus undecimalis), Red Drum (Sciaenops ocellatus), Tarpon (Megalops 

atlantica), Gray Snapper (Lutjanus griseus), and Spotted Seatrout (Cynoscion nebulosus). 

These five species were selected after consultation with ecologists and were also among 

the top species targeted by anglers surveyed (see subsequent sections for anglers’ 

survey). We considered fishery productivity for the ENP fishing areas north of Flamingo 

and south of Chokoloskee, comprising zones 4, 5, 6S, 6C, and 6N. These zones include 
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Whitewater Bay, Shark River, Harney River, Broad River, Tarpon Bay, and Lostmans 

River.  

 𝐶𝑚 = 𝑎11𝑂𝑚 + 𝑎12𝑆1 + 𝑎13𝑆2 + 𝑎14𝑆3 + 𝜀1,   (1) 

where Cm is the catch in numbers of fish per unit of fishing effort in month m; O is the 

total surface water outflow from the SRS watershed to the southwest ENP coastal 

tributaries (KAF); 

The variables S1, S2, and S3 are the dummy variables representing the four seasons of the 

year (Winter, Spring, Summer, and Fall). As the model used time series data, the error 

term was expected to be auto-correlated. Notice that equation (1) is a simple additive 

model linking fish catches with management-induced freshwater outflows of the SRS 

estuaries. Alternative statistical relationships including logistic, double-log, saturation 

function, and quadratic forms did not fit the data as well as the linear model. One possible 

reason the logistic or other non-linear models were not a good fit was that, except during 

a handful of months, the flows during the model study period (1991-2005) were far from 

the “natural” flow targets. 

 Saha et al. (2012) computed SRS daily water surplus as a net effect of inflows, 

precipitation, and surface water losses caused by outflows, percolation, seepage, and 

evapotranspiration. The SFWMD (2005) also uses a similar daily water balance equation 

to simulate various monthly surface and ground water inputs and outputs. The purpose of 

our analysis was to link the SRS surface water outflow along western boundary (O) with 

the SRS surface inflows along the northern boundary. Childers and Leonard (2005) opine 

that the freshwater inflow through the S12 structures is the dominant factor that 

influences the freshwater discharges into the SRS coastal tributaries. Slightly modifying 
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the water balance equations in Saha et al. (2012) and SFWMD (2005), we adapted the 

following simplified hydrological equation to link coastal freshwater outflow with the 

managed inflow of freshwater along the SRS northern boundary,  

𝑂𝑚 = 𝑎21𝐹𝑚−1 + 𝑎22𝑅𝑚−1 + 𝑎23𝐿𝑚−1 + 𝜀2     (2) 

Where F is the surface water inflows from the SRS northern boundary, R is the 

precipitation, and L is the sum total of water losses from the watershed that result from 

surface outflows towards the east and south, evapotranspiration, and percolation. The 

inflow F in our model closely relates to the structural inflow from the S12 and S333 

hydrological structures, which is the decision variable that SFWMD regulates. Childers 

and Leonard (2005) found that the velocity of the freshwater flow varied between seasons 

and between slough and sawgrass ridges. They estimated the mean velocities of 0.50 cm 

sec-1 and 0.34 cm sec-1, respectively. At these velocities, we expected one to two-month 

lag between the freshwater inflow at the northern boundary and the coastal freshwater 

discharges. We estimated the coefficients of the SRS freshwater outflow equation in (2) 

with different lag periods, but found the one-month lag model to be the best fit. 

 By plugging (2) into (1), we can directly link the fishery productivity in the SRS 

coastal area with the managed SRS structural inflows (i.e., combined S12 and S333 

structural inflows) along the northern boundary of SRS. That is, we can easily show that  

𝐶𝑚 = 𝑓(𝐹𝑚−1)        (3) 

Creel surveys, taking their name from the wicker baskets anglers use to hold fish, 

target recreational anglers in a given fishery to estimate total catch and effort. The ENP 

agents have been interviewing randomly selected recreational anglers over the last 50 

years at Flamingo and Chokoloskee/Everglades City boat launch sites upon return from 
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fishing trips on weekends and on some weekdays. Data gathered include the area fished, 

number of fish kept and released, time expended, and species preference (Osborne et al., 

2006). Using this data, we computed CPUE by taking the ratio of the number of fish 

caught by each angler to effort expended by that angler in hours. Specifically, the CPUE 

was computed as the total number of fish caught (kept and released) by all anglers in a 

trip divided by total time expended (hours fished by those anglers). That is, 

𝐶𝑃𝑈𝐸 =
𝐾𝑒𝑝𝑡 +  𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑

𝐻𝑜𝑢𝑟𝑠 𝑓𝑖𝑠ℎ𝑒𝑑 ×  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑔𝑙𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑖𝑝
 

Finally, C for a given species and month was computed by taking the average of 

species-specific CPUEs of all the anglers surveyed during that month. 

The data on hydrological variables in equation (1) and (2) were obtained by 

running the South Florida Water Management Model (SFWMM) exclusively for the SRS 

watershed. SFWMM is a physically-based regional-scale simulation model that combines 

the hydrology and management aspects of water resources from Lake Okeechobee to 

Florida Bay (South Florida Water Management District, 2005). The model is often 

referred to as the 2x2, as it has a 2-mile by 2-mile fixed-resolution grid system covering 

an area of 7,600 square miles. Major components of South Florida’s hydrologic cycle are 

simulated on a daily continuous mode using climatic data for the 1965-2005 period-of-

record. Components include rainfall, evapotranspiration, surface and groundwater flow, 

seepage, and percolation.  

Previous recreational studies (Johnston et al., 2011; Schultz, Johnston, Segerson, 

& Besedin, 2012), our own consultation with user groups, and our preliminary survey of 

ENP anglers revealed that recreational anglers do value the overall health of the natural 

area. But as may be expected, there is no single indicator that fully captures the health or 
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integrity of an entire ecosystem and thus could function as a metric of restoration success. 

For instance, Ogden et al. (2014) recommended using the abundance of a suite of 

waterbirds as an indicator of ecosystem health in the coastal marine environment of 

South Florida, while Harvey et al. (2012) and Mazzotti et al. (2008) concluded that 

American alligator abundance is “an indicator of ecosystem responses to Everglades 

restoration because it is sensitive to hydrology, salinity, and system productivity, all 

factors that are expected to change as a result of restoration.” The Science Coordination 

Team of the South Florida Restoration Task Force established by the U.S. Congress has 

recommended eleven system-wide ecological indicators in order to understand how the 

ecosystem is responding to management efforts under the CERP 

(http://141.232.10.32/pm/recover/perf_ge.aspx). These indicators include abundance of 

crocodilians, fish and macroinvertebrates, periphyton invasive species, and aquatic 

vegetation, among others (Brandt et al., 2012; Doren et al., 2009). While there appears to 

be considerable disagreement among scientists as to which indicator, or group of 

indicators, best describes the ecosystem responses, there is certainly agreement on the 

fact that all of these indicators have strong dependencies on hydrological conditions, 

particularly the extent, duration, and timing of marsh flooding (Holling et al., 1994; 

Ogden et al., 2005). The dependency is captured by the inundation pattern or hydroperiod 

of wetlands, as told by marsh depth. For instance, the availability of water during both the 

wet and dry seasons seems to be the limiting factor for species sustainability and recovery 

of oysters, spoonbills, pink shrimp, submersed aquatic vegetation, and crocodilians 

(Brandt et al., 2012). Insufficient water and rapid reversals in water height either during 

marsh flooding or draining have kept many of the eleven indicators below targets.  
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For lack of a single comprehensive ecological benefit-relevant indicator, we used 

the water depth (Dm) as a proxy for the overall ecosystem health. Further, in order to keep 

the model simple, we considered the above depth-ecohealth relationship only for below-

target flow levels, although excess water level could also disrupt wildlife habitat (Brandt 

et al., 2012). Depth variable data from four observation stations along SRS was averaged 

using a data set extending from January 2002 to December 2014. Depth was assumed to 

be the function of surface water inflows through the hydrological structures along the 

northern SRS boundary (Fm); rainfall (Rm); and the sum total of various losses (Lm) 

including lateral outflows of the SRS watershed in all directions, evapotranspiration, and 

percolation. Unlike CPUE (Equation [3]), depth is modeled using seasonal (quarterly) 

time series variables, thus no lag is assumed. Formally, 

𝐷𝑚 = 𝑎31𝐹𝑚 + 𝑎32𝑅𝑚 + 𝑎33𝐿𝑚 + 𝜀3,     (4) 

where m here refers to quarter.  

 The depth variable in the above equation refers to the level of the water surface 

with respect to a given gage datum, in this case NAVD 88. The datum is used as a zero 

point for measurement of water level. The zero point may not correspond exactly to the 

ground surface elevation at a given location (Holmes Jr. et al., 2001). For example, a 

location may have an elevation of 4.01 ft above NAVD 88, and a stage of 4.65 ft. 

Consequently, water depth is calculated as the difference between water level and 

elevation. Daily median water depth for four stations along Shark Slough (MO-215, 

NP206, P33, and P34) was averaged and used to calculate mean monthly water depth.  
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We detected the presence of first-order autocorrelation in the error terms of all the 

three hydro-ecological models (equations 1, 2, and 4). We resolved the autocorrelation 

problem by using the Cochrane-Orcutt Procedure (Cochrane and Orcutt, 1949). In all but 

one case, the serial correlation was removed after the first round of transformation of 

model variables. Only in the case of equation 4 (the depth-flow model), we had to apply 

the Cochrane-Orcutt transformation twice. 

Penalty function development   

The penalty in our study is defined as the periodic loss in the recreation-related 

ecosystem services suffered by anglers when the freshwater inflows in SRS falls below 

certain target levels (a management decision or natural shortage of water), or because of 

changes in natural factors such as rainfall, evapotranspiration, and outflows in the SRS 

watershed itself. Since the focus of our study is the effect of managing inflows at the SRS 

northern structures (S12+S333), we construct the penalty function in relation to the flow 

shortages at those structures in relation to certain target flows. These target flows are 

derived from the Natural System Model (NSM) (VanZee, 1999), a simulation model that 

is maintained and run by the South Florida Water Management District (SFWMD) to 

characterize pre-development hydrologic conditions of the Everglades system. The NSM-

based target flows therefore mimic natural hydrologic conditions prior to channelization 

projects and associated hydrologic alterations in the area in the early 1900s. Later in the 

paper, we will see that the targets are significantly higher than the average flows since 

1990s and even larger than the average flows in much recent years (2012-14). 

Let 𝐹𝑚
𝑘 be the current monthly SRS inflow at S12+S333 structures, and 𝐶𝑚

𝑘  be the 

current levels of fish catch. Express the flow-induced catch rate 𝐶𝑚 = 𝑓(𝐹𝑚−1) of a 
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species during a given month as percent change from its current level of catch 𝐶𝑚
𝑘  as, 

 ∆𝐶𝑚 = 100 [
𝐶𝑚(𝐹𝑚−1)−𝐶𝑚

𝑘  

𝐶𝑚
𝑘  

]       (5) 

Define 𝑤𝑐 as the marginal WTP of anglers for a percent change in catch, which will be 

described later in the discrete choice model. Then  

∆𝑌𝑐,𝑚 = 𝑤𝑐∆𝐶𝑚,        (6) 

where 𝑌𝑐,𝑚 is the hypothetical monetary value of the overall recreational fishery catch 

and ∆𝑌𝑐,𝑚 is the monetary value of the change in catch rate ∆𝐶𝑚 valued at $𝑤𝑐 per 

percent change. 

The variable ∆𝑌𝑐,𝑚 can also be interpreted as the additional price that an average angler 

would be willing to pay over and above the value that he or she is enjoying at the current 

catch rate (𝑌𝑐
𝑘). That is, 

∆𝑌𝑐,𝑚 = 𝑌𝑐,𝑚 − 𝑌𝑐
𝑘        (7) 

Equating (6) and (7), substituting in (5) for ∆𝐶𝑚, and simplifying the results, we obtain, 

𝑌𝑐,𝑚(𝐹𝑚−1) = 𝑌𝑐
𝑘 − 100𝑤𝑐 +

100𝑤𝑐

𝐶𝑚
𝑘 𝐶𝑚(𝐹𝑚−1)    (8) 

Let 𝑎𝑚be the number of anglers’ trips in month m and 𝑍𝑐,𝑚 the total recreational fishery 

catch value from all trips. Therefore, we express 𝑍𝑐,𝑚 as,  

𝑍𝑐,𝑚(𝐹𝑚−1) = 𝑎𝑚𝑌𝑐,𝑚(𝐹𝑚−1)      (9) 

Note that 𝑍𝑐,𝑚 is an increasing function of freshwater inflow. We can now formulate the 

total fishery catch penalty [𝑃𝑐,𝑚(𝐹𝑚−1)] of not meeting the monthly target flow as,  

 𝑃𝑐,𝑚(𝐹𝑚−1) = 𝑍𝑐,𝑚(𝐹𝑚−1
𝑡 ) − 𝑍𝑐,𝑚(𝐹𝑚−1),     (10) 

where 𝐹𝑚−1
𝑡  is the flow target in m-1. Figure 3 represents equation (10) where in the 

amount total penalty decreases as the volume of flow increases, and the penalty reaches 
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zero when the inflow volume reaches the monthly target. We assume zero penalty for 

𝐹𝑚−1 > 𝐹𝑚−1
𝑡 . 

By substituting (8) into (9) and the results into (10), we can further simplify fishery catch 

penalty function as,  

𝑃𝑐,𝑚(𝐹𝑚−1) = 100𝑎𝑚𝑤𝑐 [
𝐶𝑚

𝑡 (𝐹𝑚−1
𝑡 )−𝐶𝑚(𝐹𝑚−1)

𝐶𝑚
𝑘 (𝐹𝑚−1

𝑘 )
]    (11) 

Note that 𝑃𝑐,𝑚(𝐹𝑚−1) is the difference between catch rates at the target flow (𝐹𝑚−1
𝑡 ) and 

the actual flow (𝐹𝑚−1) for a given month, weighted by the catch rate at the current flow 

(𝐹𝑚−1
𝑘 ), and multiplied by the value of a percent change in catch (𝑤𝑐) and the number of 

total trips (𝑎𝑚) for the given month. Penalty is lagged by a period because of the lagged 

catch-flow relationship in (3). Also, the flow-induced shortage in catch in (11), 

𝐶𝑚
𝑡 (𝐹𝑚−1

𝑡 ) − 𝐶𝑚(𝐹𝑚−1), is above weighted by the current catch rate 𝐶𝑚
𝑘 (𝐹𝑚−1

𝑘 ). 

Weighting is done because the WTP value in the above equation, 𝑤𝑐, reflects the average 

angler’s willingness to pay for a percent improvement in catch from the current fish catch 

rate. 

While anglers target different species during fishing trips, their preference may 

vary from species to species. As there are five major species, 𝑖 = 1,2, … ,5, we can obtain 

the aggregate catch penalty function [𝑃𝑐,𝑚
𝑎 (𝐹𝑚−1)] as a weighted average of individual 

species catch penalties, 

𝑃𝑐,𝑚
𝑎 (𝐹𝑚−1)  = ∑ 𝜔𝑖 {100𝑎𝑚𝑤𝑐 [

𝐶𝑖,𝑚
𝑡 (𝐹𝑚−1

𝑡 )−𝐶𝑖,𝑚(𝐹𝑚−1)

𝐶𝑖,𝑚
𝑘 (𝐹𝑚−1

𝑘 )
]}5

𝑖=1 ,   (12) 

where 𝜔𝑖 is the weight of the species i in terms of anglers’ preference given to it during 

the fishing trip. We require that 

∑ 𝜔𝑖
5
𝑖=1 = 1          
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 As mentioned before, the water depth in ENP is the key driver of the overall 

health of the ecosystem. A change in the 𝐷𝑚 variable from the target condition is 

considered as an indication of change in ecosystem health. Recall equation (4) which 

connects the water depth [𝐷𝑚(𝐹𝑚)] to water management, i.e., managed flow variable, 

𝐹𝑚. We used this equation (4) to link reductions in managed flow from the target level to 

proportionate changes in the depth variable, and in turn, to proportionate changes in 

overall ecosystem health using the ratio, 
𝐷𝑚

𝑡 (𝐹𝑚
𝑡 )−𝐷𝑚(𝐹𝑚)

𝐷𝑚
𝑘 (𝐹𝑚

𝑘 )
. We recognize that this is a 

simple and broad measure of ecological outcome of a management action. In actuality, 

indicators of overall ecosystem health may vary from turbidity and seagrass density to 

presence of particular species of wading birds and alligators and healthy mangroves 

(Brandt et al., 2012). Further, the above ratio is only a linear and instantaneous 

representation of ecohealth-flow response while the actual ecosystem response could be 

non-linear, especially over the long term. Measurement and valuation of more complex 

ecological functions and service outcomes of management flow are beyond the scope of 

our study. As the focus of our analysis was the valuation of ecosystem services that were 

relevant to common users like recreational anglers, it was necessary to keep the measure 

simple and meaningful to foster better grasp of the measure by the anglers and others. 

Following Johnston et al. (2012) and Mitchell and Carson (1989), to quantify both 

intermediate and final ecosystem services, overall ecosystem health was included as a 

“holistic measure of the ecosystem condition in survey scenarios to quantify this final 

ecosystem service.”  

The ecosystem health penalty [𝑃𝑒,𝑚(𝐹𝑚)] is expressed as the dollar value of the 

percentage change in the depth variable [𝐷𝑚(𝐹𝑚)], i.e.,  
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𝑃𝑒,𝑚(𝐹𝑚) = 100𝑎𝑚𝑤𝑒 [
𝐷𝑚

𝑡 (𝐹𝑚
𝑡 )−𝐷𝑚(𝐹𝑚)

𝐷𝑚
𝑘 (𝐹𝑚

𝑘 )
],    (13) 

where 𝑤𝑒 is the average angler’s willingness to pay in dollars for a percent improvement 

in the overall ecosystem health (e) from the current level. 

 Combining equations (12) and (13), we compute the total penalty for the fisheries 

ecosystem services as the sum total of the penalties for lost fish catch and the lost overall 

ecosystem health due to reduced SRS inflows. That is, 

 𝑃𝑇,𝑚(𝐹𝑚) = 𝑃𝑐,𝑚+1(𝐹𝑚) + 𝑃𝑒,𝑚(𝐹𝑚)     (14) 

Non-market Valuation of Anglers Recreational Attributes  

In order to estimate the anglers’ WTP values for changes in recreational fishery 

attributes, we adapted a discrete choice model (Vojáček and Pecáková 2010), which 

complies with utility maximization and random utility theory (Lancaster 1966; de Palma 

2008). Beginning with a standard random utility specification, an angler is asked to 

choose among three hypothetical restoration scenarios (r = N, R1, R2) for ENP ecosystem 

service restoration. These include a status quo (N) option with no restoration and low or 

no cost and two restoration options (R1, R2). Each scenario is characterized by a vector of 

variables, Q = [X1 . . . XJ], representing scenario outcomes. X1 . . . XJ-1 are defined as 

variables representing ecological outcomes of restoration, A represents unavoidable cost, 

and S represents a vector of demographic variables. Following standard notation, that the 

utility agent derives from option r can be represented as  

 𝑈𝑟(𝑄, 𝐼 − 𝐴, 𝑆) = 𝑉𝑟(𝑄, 𝐼 − 𝐴, 𝑆) + 𝜀𝑟     (15) 

where I is the disposable income of angler; Vr(.) is a function representing the empirically 

measurable component of utility; and 𝜀𝑟 is the unobservable stochastic component of 

utility modeled as econometric error. When presented with a set of scenarios r = R1, R2, 
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an agent is assumed to choose the one from which he or she derives the greatest expected 

utility (Train 2009). That is, an agent would say YES to paying an amount A for an 

environmental improvement if  

 𝑉1(𝑄1, 𝑌 − 𝐴, 𝑆) + 𝜀1 ≥ 𝑉0(𝑄0, 𝑌 − 𝐴, 𝑆) + 𝜀0    (16) 

An agent’s WTP is determined by a variety of socioeconomic factors including income, 

education, and knowledge and use of the resource in question. Thus an important 

consideration with stated preference is the respondent’s information set, which consists of 

both endogenous factors because of experience or familiarity with the resource and 

exogenous factors as a result of explicit information presented in the survey instrument 

(Cameron and Englin 1997; Bergstrom 1990; Freeman 1994). To help ensure agents 

made informed decisions, a number of multimedia tools were used within the anglers’ 

survey in our study. Two videos, each approximately 1 minute in length, were employed, 

as were maps of the Everglades and Florida Bay, graphic illustrations, photographs, and 

text descriptions. 

Following the theoretical model, the structure of the discrete choice experiment 

had respondents choose from three scenarios (r = N, R1, R2) for restoration of freshwater 

flow. The questionnaire was developed and tested over one year in a collaborative 

process that included the participation of economists, ecologists, hydrologists, and 

members of stakeholder groups, ensuring that relevant attributes were considered 

(Johnston et al. 2012, Schultz et al. 2012). Respondents were presented with a choice 

card in which they were asked to select their preferred scenario, valuing percent changes 

in various fishery attributes and the overall ecological condition from the current level. 

Johnston et al. (2012) stress the need that a stated preference survey include a 
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comprehensive set of indicators representing both direct and indirect outcomes of 

management policy that would contribute to respondents’ welfare. Failure to do so 

conveys an ‘ambiguous’ ecological description of services to the survey respondents. The 

misrepresentation is characterized as a violation of content validity (Mitchell and Carson, 

1989), which could lead respondents to conflate or over speculate the welfare values of 

those direct indicators (e.g., fish catch, travel distance, etc.) included in the survey 

(Johnston et al., 2012). To avoid such conflating effect, the choice options in our survey 

included three attributes characterizing fishing-specific experience (catch rate, size of the 

largest keeper, and travel distance for fishing) and one attribute representing the overall 

ecological effect of restoration. We also had the usual price attribute characterizing 

individual per-trip cost. The combination of distinct fishery-specific and broader 

ecological indicators will allow respondents to value each of them distinctly. On all 

choice cards, Scenario I represented the status-quo at low or no additional cost, and 

Scenarios II and III represented maintaining or improvement of current levels at an 

increased cost. 

Levels for each attribute in the experimental design were assigned using feasible 

outcomes identified by ecological models and expert consultations. Choice scenarios 

represented each attribute in relative terms with respect to current conditions, 

representing a percent change. Table 1 presents different levels chosen for each attribute. 

A fractional factorial experimental design was used to minimize correlation for a choice 

model covariance matrix, and the final design consisted of 180 choice profiles blocked 

into 60 cards (Kuhfeld, 2010; Kuhfeld and Tobias, 2005; Johnston et al., 2013). The  
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survey was implemented using the online Qualtrics platform, and analysis included 600 

completed surveys.  

The parameters of the random utility discrete choice model in (16) was estimated 

using the simulated-likelihood mixed logic with Halton draws. As respondents had 

multiple responses, the model was specified to allow for correlation across their 

respective responses in the panel data (Johnston et al., 2012). Fixed coefficients were 

those for catch rate and overall ecosystem health, while size of the largest keeper, travel 

distance, and additional cost were specified to have random coefficients. Alternative 

specifications of fixed and random coefficients were attempted before choosing the final 

model. For instance, we tried a nested logit model as well as models with demographic 

variables interacting with various attributes. None of those models yielded significant 

results for the cost parameter. Using the estimated model parameters, we were able to 

compute the mean WTP of ENP anglers for percent improvements in fish catch (𝑤𝑐) and 

overall ecosystem health (𝑤𝑒). Following standard practice (Hole, 2006; Johnston et al., 

2013), the WTP estimates were expressed as the ratios of attribute coefficients to the cost 

coefficient. Further, the ENP anglers online survey also provided other useful 

information such as anglers’ preference for various species, from which we estimated 

species weights (𝜔𝑖) and used in aggregating the catch-related penalties of model species 

in equation (12).   

Estimation of Monthly Recreational Trips 

The penalty function in (9) requires the latest (2015) estimate of the fishing effort 

in terms of the number of fishing vehicles in the ENP. Osborne et al. (2006) provided 

historical fishing trip data from 1978 through 2005 in areas 1 to 6 of the ENP, which 
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mostly overlap our study recreational area. During 1978 through 2005 the number of 

annual recreational vehicles (A) ranged from 32,000 (1978) to 38,500 (2005) for the 

above ENP management areas. In order to estimate 2015 value of A, we estimated the 

following annual vehicle trip model, representing the fishing effort. The variable A was 

assumed as a function of the number of registered recreational vessels in the region 

(RRV) and the U.S. consumer confidence index (CCI). Formally, the estimating equation 

for annual ENP fishing vessel trip was, 

𝐴 = 𝑎40 + 𝑎41𝑅𝑅𝑉 + 𝑎42𝐶𝐶𝐼 + 𝜀4     (17) 

The RRV is an indicator of the overall demand for recreational activities in the region, 

which we measure using the annual number of recreational vessels registered in Miami 

Dade, Broward, Palm Beach, Monroe, and Collier counties. These data are available from 

the Florida Department of Highway Safety and Motor Vehicles (FDHSMV, 2017). The 

CCI variable represents the people’s overall financial ability to engage in recreational 

activities. The University of Michigan (2017) develops this index and makes it available 

through the Federal Reserve of St. Louis website. We also tried including Florida’s 

population, which was highly correlated with RRV and therefore was dropped from the 

model. The Durbin-Watson test statistic showed that the error term 𝜀4 was serially 

correlated. We corrected the model from autocorrelation using the Cochrane-Orcutt 

Procedure. The estimated model was used to project the annual number of trips for 2015. 

Total annual fishing trips were further distributed to different months using the seasonal 

recreational boat distributions estimated by Ault et al. (2008) using an aerial survey of 

recreational vessels and trailers in ENP waters and parking lots, respectively. 
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2.3 Results 

2.3.1 Shortage in freshwater delivery, depth, and CPUEs. 

The current water delivery fell short of the target significantly in the recent years 

(2012-2014) and the deficit was the highest during the months of March through May 

(68.3%) and the lowest during the months of September through November (46.1%) 

(Table 2 and Figure 4). The lowest and highest deficits were found to occur during the 

months of October and April, respectively. Throughout the study period of 1991 to 2014, 

actual flow typically came closest to target flow during the wet season, in line with the 

increased precipitation during those months. The only months in which flow exceeded 

the target in any year were January 1995, February 1993 and 1995, May 1993, October 

1995, and December 1994. The years 1993 and 1995 had the highest levels of flow 

averaging across all months. The average water depth estimated at the recent average 

SRS inflows (2012-2014 levels) consistently fell short of the depth to be expected if the 

freshwater SRS inflow were to be maintained at the target levels. The shortage varied 

from 82.5% during the months of December through February to 94.5% during the 

months of September through November.  

 The estimated catch per unit effort (in fish h-1) were the highest during the 

summer season (June through August) for all five model species, with 0.37 for snook, 

0.29 for redfish, 0.22 for tarpon, 0.77 for snapper, and 0.72 for seatrout. Ault et al. (2008) 

estimated that the total number of fishing vehicles found in the ENP during the same 

season was the lowest of all seasons, i.e., only 13.3 percent of the total annual 

recreational vehicles estimated for the National Park. It was interesting to note that the 

highest fish productivity was observed when the fishing intensity was the lowest. 
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However, anglers had suffered deficits in CPUEs for all model species and for all seasons 

when comparing the model based CPUE at target flow levels to current conditions. The 

lowest estimated deficits were in the summer months (June through August), probably 

the result the more than average monthly rainfall during these months compared with the 

rest of the year in addition to lower fishing intensity. On average, seatrout had 

experienced the lowest CPUE deficit (27%) while redfish had suffered the highest deficit 

(41%). 

The CPUEs for most study species were fairly constant from 1991 to 2002 across 

both wet and dry seasons, when snook saw a nearly threefold increase from 2002 until 

2009. An extreme cold event in 2010 led to a die-off of snook, with a corresponding 

increase in CPUE for red drum, possibly caused by decreased predation of juveniles by 

snook (Boucek and Rehage, 2013; Hallac et al., 2010) or possibly because anglers 

switched their effort to red drum. By 2013, all species were returning to previous CPUE 

with a slight upward trend for snapper. 

2.3.2 Catch-flow and Stage-flow Relationships 

  The results of the hydro-biological models are presented in Table 3. All of the 

model coefficients were statistically significant and had expected signs. The measure of 

goodness of fit (R2 value) was higher than 0.4 for all models. The catch-flow model 

results indicate that surface water discharges from the SRS into the coastal tributaries are 

the strong determinant of the productivities of the model species. The catch variables 

were also found to be strongly influenced the seasonal dummy variables. The fall season 

was used as a trap variable. The catches in all other seasons were significantly higher 
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than the fall season catches. These results are fairly consistent with results from previous 

studies (Rutherford et al., 1989a, 1989b; Tilmant et al., 1989). 

As expected, the SRS freshwater inflow was found to have a positive influence on 

the average water depth in the downstream watershed. Other variables in the model, 

rainfall, and all types of losses (i.e., evapotranspiration, percolation, and all lateral 

outflows combined) also significantly affected the water depth. Finally, the hydrological 

model, SRS outflow-inflow function, also showed strong results. The effects of SRS 

inflow and precipitation on SRS discharges were found to be positive, while the 

relationship between all watershed losses (i.e., evapotranspiration, percolation, and lateral 

surface water losses) was found to be negative. Again, these results are consistent with 

the wetland hydrology in general (Dolan et al., 1984) and SRS hydrology in particular 

(Saha et al, 2014). By combining the results of the last model [equation (4)] with those of 

catch-flow functions [equation (1)], we can link the fish productivity in the coastal SRS 

creeks with the SRS northern freshwater inflow, the main management variable of our 

interest. The integration of the two models will allow us to analyze the effects of changes 

in freshwater management in SRS on fishery ecosystem system services.  

2.3.3 Discrete choice model and annual fishing trips 

 Table 4 presents the results of the mixed logit random utility discrete choice 

model of recreational preference. The coefficients of catch and overall ecosystem health 

were specified as fixed whereas the coefficients of other three attribute variables were 

specified as random with a normal distribution. We had tried several alternative 

specifications with different combinations of fixed and random coefficients (Johnston et 
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al., 2012), but chose the one that gave the best results based on statistical significance. 

All estimated coefficients statistically significant with signs as hypothesized.  

As specified in our choice experiment, the coefficients of all attribute variables 

except the cost variable represent the marginal utility of anglers of increasing or 

decreasing the attribute levels by a percentage point from their respective reference 

levels, which in our study reflect the levels for the period when the anglers’ survey was 

conducted, i.e., 2014-2015. The study results indicated that the marginal utility of overall 

ecosystem health was positive and the greatest of all experiment attributes, followed by 

the marginal utility of percent change in the size of the keeper or harvest. It is not 

surprising that sports fishery anglers would care about the size of their keepers (Osborne 

et al., 2006). The results also showed that the longer the distance that the anglers had to 

travel for fishing, the less likely that they would choose that plan. That is, anglers 

suffered disutility with increase in travel distance. Finally, the sign of the coefficient of 

the cost variable was consistent with our expectation indicating that a restoration plan 

with increased freshwater was less likely chosen if the costs were higher. 

 Table 4 also presents the marginal willingness to pay (MWTP) or implicit price of 

model choice attributes that are associated with increasing freshwater flow in ENP. 

Marginal willingness to pay can be calculated by taking the ratio of the coefficient of a 

given attribute variable to the coefficient of the cost variable. As expected, an average 

angler was willing to pay the highest amount for improving the overall ecosystem health 

at $3.44 per percent improvement, given all other variables constant. The $3.44 was 

followed by the MWTP for percent improvement in the size of the keepers ($1.64), a 

percent reduction in travel distance ($1.58), and a percent improvement in catch ($1.28). 
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Note that these implicit price estimates of recreational attributes were derived from 

clearly and unambiguously specified ecological characteristics with quantitative 

measurements (i.e., in percent changes). The survey had asked anglers if they would pay 

a given bid amount for a specific (quantitative) percent of improvement in the overall 

ecosystem health. Therefore, these estimates are likely to be more precise and reliable 

(Johnston et al., 2012). However, we do recognize the limitation of this method in that 

anglers were not told what a given percentage improvement in the ecosystem health 

meant in terms of detailed specifications of system-wide ecosystem indicators (Brand et 

al., 2012). Anglers were left to make their own subjective judgement of the ecosystem 

improvement. 

 The annual fishing trip model which was estimated using the ENP fishing trip 

data that was available from 1978 to 2005 (Table 3). Both RRV and CCI variables were 

highly significant determinants of the annual fishing trips. In recent years, both these 

variables have increased. Using the model parameters and the available estimates of the 

2015 registered recreational vessels and reported US confidence index numbers, we 

estimated the annual 2015 trips at 44,627. This estimate indicated a moderate 16 percent 

increase in annual trips over the ten-year period beginning in 2005, which saw 38,284 

trips. Based on aerial survey data given by Ault et al. (2008) for weekend and weekday 

samples of fishing boats, we estimated the seasonal distribution of total annual fishing 

trips to ENP at 17.47% for Fall, 33.04% for Winter, 36.20% for Spring, and 13.29% for 

Summer. We then equally allocated one-third of each season’s percent of fishing trips to 

each of the three months of that season. The 2015 estimated annual trip of 44,627 was 
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further allocated to all 12 months of the year. Accordingly, the three Summer months had 

the lowest number of trips and the three Winter months had the highest number of trips.  

2.3.4 Fisheries penalty functions 

 We used equations (12) to (14) to generate the monthly penalty values with 

respect to varying levels of freshwater flow at SRS norther boundary through S12 and 

S333 structures. Table 5 presents the monthly functions. The penalty values are the lost 

dollar values in recreational experience as a result of shortage in freshwater delivery into 

SRS in relation to monthly target levels. The penalty reaches zero at the monthly target 

level. The height of the penalty function varies across the months. During the dry months, 

November through April, the penalty was found to be high for any given level of flow, 

whereas during the wet months, May through October, the penalty was found to be 

smaller than it was in the dry season. Three factors contributed to this variation. During 

the wet season, the reduction in water shortages in relation to the target delivery reduced 

the penalty. Also during those months, especially in the Fall, the total number of monthly 

fishing trips declined. On the contrary, during the rest of the years, either the flow 

shortage, the number of trips or both were relatively lower than the levels in the dry 

season.  

 The slope of the downward sloping penalty curve represents the implicit marginal 

cost of reducing the water delivery or reallocating the water for upstream uses. The same 

can be interpreted as the marginal value of increasing the water delivery into ENP in 

terms of avoided loss in recreational value, i.e., the marginal value of water use for 

recreation and fishery habitat protection. The monthly recreation marginal value of water 

ranged from a lowest amount of $11.88 per acre-feet (AF) to $112.11 AF-1 (Table 5). 
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Basically, they mirrored the extent of seasonal water shortage and the seasonal recreation 

demand. The mean annual marginal value (or implicit price) of water was estimated to be 

$41.08 AF-1. The major portion of the value can be attributed to the value that anglers 

attach to overall ecosystem health ($39.36 AF-1), while a significantly small portion can 

be attributed to the value anglers attach to fish catch.  

The implicit values of water for various uses are not readily available. Frederick 

et al. (1997) reported water prices in different US economic sectors in 1994 US$. By 

inflating those values to 2015 using a cumulative inflation rate of 59.9%, we found that 

their mean estimate of water price for recreation was $76.77 AF-1 in 2015 US dollars. 

This value was within the range of the monthly water price estimates obtained in this 

study. Frederick et al. came up with higher values of water for agriculture ($119.95 AF-1), 

industry ($451.00 AF-1), and domestic ($310.27 AF-1) uses than for recreational uses 

($76.77 AF-1). Our current study was a part of a broad regional research on water 

resources allocation in South Florida (Mirchi et al., 2018). Two other studies under this 

broad regional project looked at the value of water for urban and agriculture uses in 

South Florida. Takatsuka et al. (2018) estimated a much larger value of water at $280 AF-

1 for agricultural production, whereas Weisskoff (2018) estimated a marginal price of 

$2,000 AF-1 for urban uses at about 10% shortfall. South Florida sub-tropical agriculture 

is known for commercial cash crops such as nurseries, fruit crops, winter vegetables, 

sugarcane, and citrus. Therefore, one can expect a much higher marginal value of water 

for use in agriculture than in recreation. Similarly, the fast-growing urban population, real 

estate, and other businesses tend to push up the value of urban water use. 

 



33 
 

2.3.5 Simulation of water management scenarios 

Table 6 presents the total annual losses in recreational values under alternative 

water management scenarios. We estimated the total annual penalty values under the 

baseline and six alternative scenarios. The baseline scenario occurs when the monthly 

water delivery continues under the current flow rates, which amounted to annual total 

delivery of 754 KAF. The total penalty was estimated at $25.74 million. The total value 

is decomposed into two recreational attributes of fish catch at $4.16 million and overall 

ecosystem health at $21.57 million. We also estimated penalties under six other 

alternative water delivery scenarios. If the freshwater delivery were to be increased by 

50% during all the months (scenario 1), the total annual penalty would be lowered to 

$22.13 million (a 13.23% reduction in the penalty).  

Oftentimes, water management delivery decisions are made for a shorter period of 

time. Therefore, the next two scenarios considered increase in water flow only a half of 

the year. Under scenario 2, we increased the flow by 50% only during the dry season, 

which resulted in the reduction of the losses to $63.37 million, representing 7.92% 

improvement in avoided losses. Whereas under scenario 3, if we increased water delivery 

during wet season by 50%, the reduction in recreational losses was much smaller, i.e., 

penalty was reduced to $65.12 million, representing only 5.37% gain from the baseline 

penalty. This supports our observations made earlier in the paper that water is more 

valuable in dry season in terms of providing recreational services.  

Two other scenarios 4 and 5 were explored for increasing the monthly freshwater 

flows to the historical levels (an annual total of 1040 KAF) and by 100 percent of the 

baseline level (an annual total of 1509 KAF), respectively. While target flow levels are 
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ideal levels to achieve, these two scenarios, along with scenarios 1, 2, and 3, simply 

reflect incremental policy changes in the quest towards the target flows. Annual flow 

level of 1991-2005 (simulation 4) is in fact slightly higher than the baseline (2012-14) 

level (754 KAF) and drastically lower than the target (2,594 KAF). The annual total 

penalties were reduced to $21.52 million (15.75% improvement) and $18.55 million 

(26.58% improvement) under scenarios 4 and 5, respectively. By default, if the water 

delivery were to be restored at the target levels (i.e., to the annual total of 2590 KAF) 

under scenario 6, the penalty would be completely eliminated. This shows that how far 

away the current and even the historical water deliveries were from the target, and the 

respective losses in recreational value were quite substantial on an annual basis. 

However, we must note that the target levels, determined by the water management 

agencies, reflect the pre-development water flows. On the other hand, the post-

development levels used in the above analysis (scenario 4) refer to the monthly and 

annual averages for the last 25 years. While the actual flow levels in some of the months 

during the last 25 year period had reached the respective target levels, restoring the flow 

to pre-development (target) levels seems unrealistic under the current natural and 

political environment (i.e., due to the competition from other sectors). The target levels 

therefore represent at best historic reference levels rather than realistic management 

goals. For this reason, the comparison of penalties between various management 

scenarios, all of which have the same reference (i.e., target) levels, makes more 

meaningful. 
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2.4 Discussion and Conclusion 

An important practical insight became evident from the WTP estimates of various 

attributes. ENP anglers attached the highest value to improvements in the overall 

ecosystem health. The case for restoration of freshwater flow in ENP is not just important 

for improving the fishery habitat (Davis et al., 2005; Chen and Twilley, 1999; Ross et al., 

2000). Everglades National Park provides a host of ecosystem services including 

groundwater recharge, wildlife habitat, carbon sequestration, and mangroves-related 

services, among others (Richardson et al., 2014; Jerath et al., 2016). Our study clearly 

shows that recreational anglers do attach highest value on non-fishing related attributes. 

While the primary focus of anglers during fishing trip may be to catch and harvest as 

many fish and travel only a reasonable distance to do so, they enjoy other attributes that 

are indicative of a healthy ecosystem.  

As Johnston et al. (2012) note, one of the major limitations of past discrete choice 

or contingent valuation studies of recreational fisheries is to grossly oversimplify other 

ecological improvements of a restoration plan (e.g., defining the improvements in low, 

medium, and high levels). By doing so, the estimates of WTP for fishery improvements 

could be overestimated as respondents may bundle their value for other ecological 

aspects of improvements with fishery improvements. Johnston et al. (2012), therefore, 

used a single composite ecohealth index in addition to fish catch, access, and economic 

attributes. The WTP for the catch variable turned out be very insignificant upon including 

the ecohealth indicator variable in their survey. In our study, we used the depth variable 

as a proxy for ecohealth. Anglers were asked to value percent increase in ecohealth, 

without being given specific details on the improvements of eleven system-wide 
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ecological indicators (Brandt et al., 2012). Interestingly, with a quantitative value 

attribution to the overall ecosystem health variable, the WTP value for fishery catch 

turned out to be small but significant in our analysis. All in all, we find our estimates to 

be ecologically unambiguous and quantitatively more precise than it would have been 

without the ecohealth attribute. 

The integrated hydro-ecological-economic model developed in our study is 

probably the first attempt at linking water management variables with Everglades 

ecosystem services relevant to humans. Although our study considers a single ecosystem 

service component of ENP, and thus, may seem limited in scope, the approach has 

potential to assess management decisions in an incremental fashion (Fulford et al., 2016). 

Past valuation studies on the Everglades ecosystem restoration projects have attempted to 

measure a larger number of ecosystem services as a bundle of outcomes resulting from 

large single investment decisions (Richardson et al., 2014; McCormick et al., 2010). 

While such studies do provide management-relevant information, linking users’ 

preference and behavior explicitly with decision variables yields a powerful management 

tool. Our model, therefore, has a variety of management applications for water 

management, not only in ENP, but in other ecosystems dependent on water delivery. The 

model outcome also lends itself to being an integral component of larger multi-sector 

optimization models that examine the trade-offs among competing water uses such as 

environmental restoration; urban use and flood control; and agricultural use. (Mirchi et 

al., 2018). Further, modeling the avoided losses in economic benefit resulting from 

incremental increases in freshwater flow allows for evaluation and comparison of 

restoration scenarios, contributing to benefit-cost analyses.  
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For instance, SFWMD had considered a number of alternative water delivery 

plans for South Florida in recent years. In the case of the 2008 Modified Water Deliveries 

to ENP, Tamiami Trail Modifications, Limited Reevaluation Report (LRR) plan, a 1-mile 

bridge, other road improvements, and modifications to increase head in the L-29 canal 

would allow peak freshwater flows into the park at 47% higher rates than current 

conditions (National Park Service, 2012). The LRR bridge project was completed in 

2013. At a 47% increase from the current flow level of 1,848 cubic feet per second (cfs) 

(National Park Service, 2012) to the project goal level of 4,000 cfs, the penalty value of 

the recreational fishing experience would be lowered by 13% (derived from the scenario 

1 analysis). 

One of the significant contributions of this study is to quantify implicit prices of 

water for recreation and habitat protection. To our knowledge, such information is very 

scare in the literature. See Frederick et al. (1997) for a most comprehensive list of water 

prices, which are more than 20 years old. We consider the price estimates in our study to 

be very conservative since we were able to account for only one major ecosystem value, 

i.e., anglers’ preference for fishing and habitat protection. Other ecosystem service values 

must be measured and linked to freshwater delivery in order for this price to be complete. 

However, the price of recreational water use that we developed is comparable to 

previously available estimate (Frederick et al., 1997). 

Our study shows that the total valuation of recreational ecosystem services is 

sensitive to various ecological, economic, and management factors. The total value of 

lost recreation benefits is influenced by climatic factors such as rainfall, 

evapotranspiration, and other hydrological factors. The estimated hydrological equations 
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show statistically significant relationships between these factors and fish productivity. 

Therefore, future changes in climate could have a significant impact on the valuation of 

fishery ecosystem services. Biological factors that might affect fish abundance, catch and 

size of keepers could all significantly affect anglers’ preferences, and in turn, the total 

valuation. Similarly, the future Florida population and anglers’ confidence about the 

economy will have a direct bearing on the future valuation of recreational services. 
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Tables 

Table 2.1. Attribute Levels in Choice Experiment Design 

Variable Levels 

Catch rate  40% lower than the current level1 

 20% lower than the current level1 

 10% lower than the current level1,2 

 Same as the current level1,2 

 10% higher than the current level2 

 20% higher than the current level2 

 40% higher than the current level2 

Size of the largest keeper  20% smaller1 

 10% smaller1,2 

 Same size as the current largest keeper1,2 

 10% larger2 

 20% larger2 

Boat travel distance for 

fishing 

 40% increase in the distance1  

 20% increase in the distance1 

 10% increase in the distance1,2 

 Same as the current distance1,2 

 20% decrease in the distance2 

 40% decrease in the distance2 

Overall ecosystem health  40% worse1 

 20% worse1 

 Same as the current health1,2 

 20% better2 

 40% better2 

Cost  $0 cost per trip1 

 $10 cost per trip1,2 

 $20 cost per trip2 

 $30 cost per trip2 

 $40 cost per trip2 

 $50 cost per trip2 

1Scenario 1, 2Scenarios 2 and 3 
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Table 2.2. Baseline and target level total regulated freshwater delivery at ENP node (S12 and S333 structures), estimated 

average depth, and catch per unit effort of model recreational species1   

 Season 

SRS Inflows at 

S12+S333 (KAF) 

Estimated Average  

Water Depth (ft) 

Average Catch Per Unit Effort (Per Hour) 

Snook Redfish Tarpon Snapper Seatrout 

  Current Target 

Deficit 

from 

Target 

(%) 

At 

Current 

Flow 

At 

Target 

Flow 

Deficit 

from 

Target 

(%) Current 

Deficit 

from 

Target 

(%) Current 

Deficit 

from 

Target 

(%) Current 

Deficit 

from 

Target 

(%) Current 

Deficit 

from 

Target 

(%) Current 

Deficit 

from 

Target 

(%) 

Dec-Feb 258.4 593.3 56.4 0.98 2.55 61.7 0.25 44.4 0.24 38.9 0.16 37.4 0.63 34.3 0.58 30.3 

Mar-May 141.9 447.9 68.3 0.26 1.94 86.5 0.24 38.2 0.17 40.2 0.19 28.4 0.55 31.2 0.57 25.2 

Jun-Aug 251.2 655.7 61.7 0.77 2.80 72.4 0.23 35.7 0.20 32.8 0.22 22.6 0.62 25.6 0.61 21.1 

Sep-Nov 481.7 893.2 46.1 1.22 3.20 61.9 0.16 48.1 0.12 48.1 0.08 48.1 0.25 48.1 0.20 48.1 

Baseline levels are based on estimated average historical values. 
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Table 2.3. Estimated models of catch-flow and depth-flow relationships 
Model Variable Coefficient Std Error Adj R2 N Durbin-Watson  

Snook catch [equation (1)]   0.40 179 1.8298 

 SRS West Outflow 0.00290* 0.00038    

 Winter 0.14883* 0.02875    

 Spring 0.19960* 0.03094    

 Summer 0.15909* 0.02871    

Red Drum catch [equation (1)]   0.49 179 1.8652 

 SRS West Outflow 0.00222* 0.00027    

 Winter 0.16244* 0.02041    

 Spring 0.13772* 0.02193    

 Summer 0.14623* 0.02038    

Tarpon catch [equation (1)]   0.44 179 1.9654 

 SRS West Outflow 0.00142* 0.00031    

 Winter 0.11465* 0.02919    

 Spring 0.16529* 0.02787    

 Summer 0.18110* 0.02854    

Gray Snapper catch [equation (1)]   0.58 179 1.9768 

 SRS West Outflow 0.00476* 0.00067    

 Winter 0.46159* 0.05544    

 Spring 0.47467* 0.05677    

 Summer 0.49576* 0.05513    

Spotted Seatrout catch [equation (1)]   0.68 179 1.9271 

 SRS West Outflow 0.00367* 0.00052    

 Winter 0.45322* 0.04401    

 Spring 0.51085* 0.04456    

 Summer 0.51841* 0.04368    

SRS Outflow [equation (2)]   0.79 489 1.8992 

 SRS North Inflow (m-1) 0.36999* 0.01525    

 Rainfall (m-1) 0.11899* 0.01211    

 
Evaporation + Percolation + 

South Outflow (m-1) 
-0.10740* 0.01832    

Water Depth [equation (4)]   0.79 59 1.8224 

 Intercept 0.65464** 0.12955    

 SRS North Inflow 0.00436* 0.00057    

 Rainfall 0.00142* 0.00036    

 All Losses  -0.00292* 0.00076    

Annual Fishing Trips [equation (17)]   0.49 27 1.5604 

 Intercept 8594.26 3040.01    

 
Registered recreational 

vessels 
0.09624* 0.03503    

 US consumer confidence 193.24* 63.34    

 2015 estimated # annual trips 44,627     

* p < 0.01; ** p < 0.05; *** p < 0.10 
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Table 2.4. Mixed logit models of discrete choice experiment and willingness to pay 

for ENP fishery recreational attributes 

Variable Coefficient Std. Error 

Catcha  0.008138*   0.002580      

Ecosystem Healtha  0.021800** 0.002896      

Keeper Sizeb  0.010381** 0.004273      

Travel Distanceb -0.009992* 0.002653     

Costb -0.006344** 0.003184     
   

Chi-square 17.49  
n 3468  

 

Attribute Willingness to Pay Std. Error 

Catch   1.28** 0.67437 

Ecosystem Health   3.44** 1.68306 

Keeper Size   1.64*** 0.93548 

Travel Distance -1.58*** 0.85609 

 
aFixed, bRandom;  *p < 0.01; ** p<0.05, ***p<0.10 
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Table 2.5. Monthly penalty or lost values recreational ecosystem services due to unmet target delivery at S12 and S333 

structures along the SRS northern boundary 
Freshwater 

Flow 

(KAF) Jan Feb Mar April May June July Aug Sept Oct Nov Dec 

 (Million $) 

0 2.15 1.51 7.45 6.83 3.26 0.74 1.26 1.87 1.44 1.58 1.81 2.98 

50 1.58 0.93 5.50 4.86 1.38 0.47 1.01 1.51 1.14 1.31 1.55 2.45 

100 1.02 0.35 3.54 2.89 0 0.20 0.76 1.16 0.84 1.05 1.29 1.91 

150 0.46 0 1.59 0.91 0 0 0.51 0.81 0.55 0.78 1.03 1.38 

200 0 0 0 0 0 0 0.26 0.45 0.25 0.51 0.77 0.84 

250 0 0 0 0 0 0 0.01 0.10 0 0.25 0.52 0.30 

300 0 0 0 0 0 0 0 0 0 0 0.26 0 

350 0 0 0 0 0 0 0 0 0 0 0 0 

Marginal 

value 

($/AF) 

 

28.46  

 

28.73   111.79  

 

112.11  

 

110.26   13.79   13.39   15.46  

 

12.63  12.03  

 

11.88  

 

27.91  

Mean marginal value (Min – Max) ($/AF) 41.54 (11.88 - 112.11) 

Mean marginal value for ecosystem health only (Min – Max) 

($/AF)  39.36 (10.05 - 109.05) 

Value of water in the US ($/AF) [Source: Frederick et al., (1997)]: In 1994 US $ In 2015 US $a 

  Recreation/habitat 48.00 76.77 

  Irrigation  75.00 119.95 

  Industrial 282.00 451.00 

  Domestic use 194.00 310.27 

  Thermal power 34.00 54.38 

  Hydropower 25.00 39.98 
aAssumed a cumulative inflation rate of 59.9% between 1994 and 2015. 
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Table 2.6. Effects of alternative water management on losses in recreational 

ecosystem service values   

Regulated Water Flow Scenarios 

Annual 

Delivery 

(KAF) 

Penalty 

(Million $) 

Gain in Recreational 

Value from the 

Baseline (%) 

Baseline 754 25.72 0.00 

Increase by 50% all months (scenario 1) 1132 22.13 13.96 

Increase by 50% dry months (scenario 2) 766 23.70 7.85 

Increase by 50% wet months (scenario 3) 1043 24.14 6.14 

Increase to historical flow (scenario 4) 1040 21.52 16.33 

Increase by 100% all months (scenario 5) 1509 18.55 27.88 

Target level delivery (scenario 6) 2590 0.00 100.00 

  
 

Percent of  

Baseline Total 

Baseline – ecosystem health only  754 21.57 93.96 

Baseline – recreational fishing only 754 4.15 6.04 

Baseline 754 25.72 100.00 

 

Figures 

Figure 2.1. Map of Everglades National Park: Shark River boundary, the location of 

S12 and S333 hydrological structures and the southwest outflow tributaries  

 
 (Source: https://sofia.usgs.gov/publications/papers/swdis_salmon/images/fig1x.gif) 
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Figure 2.2. Integrated framework for developing ecological-economic penalty 

function for managing freshwater flows in the Florida Everglades    

 
 

 

Figure 2.3. Total economic recreational catch value in relation to flow 
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Figure 2.4. Three Year Average Current Flow and Target Flow at the ENP Node 

(S12+S333 Structures) 
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3. Valuing Ecosystem Services Under Climate Risk: A Case of Recreation in the 

Florida Everglades  

 

 

3.1. Introduction 

3.1.1 Effects of sea level rise on the Florida Everglades 

The Intergovernmental Panel on Climate Change (IPCC) report outlines changes 

in the frequency, spatial distribution, and magnitude of several climatic conditions and 

extreme events that are likely to occur in the not too distant future and could pose 

significant risks to human well-being (IPCC, 2014). Among such changes is accelerated 

sea level rise (SLR), posing particular concern to coastal communities. South Florida is 

among the areas of North America most vulnerable to inundation (Dolan & Walker, 

2006; Erwin, 2009; Gornall et al., 2010; Scavia et al., 2002). In addition to inundation, 

rising sea level can cause shoreline erosion and inland migration, altered salinity and 

water quality regimes in coastal bays, and increased salinity of freshwater ecosystems 

and aquifers (Scavia et al., 2002).  

Increasing threat of SLR and other adverse environmental phenomena (pollution, 

etc.) inflict significant losses on society. In the context of SLR and Florida residents, 

Meng (2016) shows that people are willing to implement and support adaptation plans. 

However, the extent of their support to adaptation plans depends on, among other factors, 

their perception of SLR risks, where they live, and whether they are residents or not. 

Obviously, the more concerned people are about future climate, flood and pollution risks, 

the more eager they are to support and value an adaptation plan (Hunter et al., 2012; Lee 

& Cameron, 2008; Meng, 2016; Schaafsma, Brouwer, & Rose, 2012). Studies also show 
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that resource users attach significant non-market benefits to climate adaptation plan, for 

instance increasing freshwater flows in the Everglades in terms of recreational and 

commercial fisheries (Brown et al., 2018), groundwater improvements (C. J. Richardson, 

2010; L. Richardson et al., 2014), and carbon storage (Jerath et al., 2016).  

However, studies that explicitly link the users’ perception of climate change and 

other risks to their welfare value estimates are limited. A few notable exceptions that link 

environmental risk perception and welfare estimation include Viscusi and Zeckhauser 

(2006) and Lee and Cameron (2008) in the case of climate risk reduction. Using a choice 

experiment, Brouwer and Schaafsma (2012) showed that homeowners’ willingness to pay 

for flood insurance depends on where people live (along the coast or the river) and their 

perceptions about flood risks. Birol et al. (2009) also showed that local residents in their 

study were found to be willing to accept an increase in local taxation to reduce flood 

risks. Remoundou et al. (2015) found that in Northern Spain, people concerned about 

SLR and ocean temperature were willing to pay higher values to protect biodiversity and 

recreation opportunities. 

On the contrary, a recent study in Science by Stern et al. (2016) notes the presence 

of a certain degree of neoskepticism about climate risks, generally accepting the 

existence of anthropogenic climate change but "advocat[ing] against urgent mitigation 

efforts," which can be a major challenge for resource managers to gain public support for 

mitigation (Moser & Ekstrom, 2010). Neoskeptics who defend business as usual may not 

necessarily disbelieve in climate change, but may want to see more scientific evidence 

than what is available, think it is not happening during their lifetimes, or defer 

responsibility to the government or the future. Understandably, neoskeptics may not 
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readily support public or private actions for mitigation and see such as an economic 

burden. 

The purpose of the current paper is to first develop estimates of various 

psychometric risk measures that characterize people’s risk perception (RP), risk concern 

(RC), and risk-reduction action (RR), and then to test how their risk perception affects 

their willingness to pay for risk reduction. The case in point is recreational fisheries in the 

Florida Everglades and the non-market benefit that anglers derive from increasing 

freshwater flow as a measure to mitigate the effects of SLR on the coastal ecosystem. The 

study also aims to assess if there is an element of risk skepticism present among the 

recreational resource users of the study ecosystem. The present study follows Hunter et 

al. (2012) in modeling psychometric measures of RP, RC and RR and then incorporates 

those measures into conventional utility-theoretic model of non-market valuation. The 

study makes two noteworthy contributions to the climate-related risk valuation literature 

and its management. First, current research on the effects of climate risk perception on 

adaptation and valuation is rather limited particularly in the context of SLR and coastal 

resource protection. The study sheds light on how different psychological phases of risk 

evolution—RP, RC, and RA—influences the environmental value construct (willingness 

to pay). Second, although certain stakeholders may be apathetic to climate risks, the 

impacts those risks will have on society are real. Understanding the demographic and 

other differences in people’s risk perception and valuation could aid resource 

management agencies in targeting stakeholders and designing programs that would 

improve climate risk literacy and awareness, and in turn, their support for climate risk 

mitigation (Vignola, Klinsky, Tam, & McDaniels, 2013).  
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3.1.2 Estimating the benefits of improved recreational fisheries 

Lancaster’s theory of value provides the conceptual microeconomic framework 

for choice modeling (Hanley, Mourato, & Wright, 2001; Hoyos, 2010), which centers 

upon the assumption that an agent’s utility or net benefit received from a good can be 

decomposed into utilities for the good’s composing characteristics (Lancaster, 1966). 

That is, an individual received utility not from the good itself, but from the characteristics 

or attributes of said good.  

The discrete choice experiment (DCE) methodology elicits individual’s 

preferences through constructing a hypothetical market scenario using a questionnaire. 

Respondents are presented several choice sets consisting of mutually exclusive 

alternative descriptions of a good from which they select their most preferred alternative 

(Hanley et al., 2001). Consumer decisions can be separated into a discrete choice, i.e., 

which good to consume, and a continuous choice, i.e., how much of that good to 

consume. Discrete choice experiments are constructed to isolate the discrete choice, 

making the methodology ideal for valuation of non-market goods such as ecosystem 

services in that the quantity of these goods are fixed for all agents (Hanemann, 1984). By 

their very nature DCEs force individuals to weigh the trade-offs of present costs or 

benefits, which are known with certainty, against risky future outcomes (de Palma et al., 

2008). When the price of a good is included as an attribute, willingness to pay (WTP) for 

changes in attribute levels can be recovered (Hoyos, 2010).  

The authors adapted a discrete choice model (Vojáček & Pecáková, 2010) 

complying with utility maximization and random utility theory (de Palma et al., 2008; 

Lancaster, 1966) to estimate resource users’ WTP for improved recreational fishery 
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ecosystem services. Following a standard random utility specification, a resource user is 

asked to select one of three hypothetical scenarios, two of which are restoration options at 

a higher cost than the low or no cost status-quo option. Outcomes of each scenario are 

characterized by a vector of variables (Q), and the utility a resource user derives from 

option r can then be represented as 

𝑈𝑟(𝑄, 𝐼 − 𝐴, 𝑆) = 𝑉𝑟(𝑄, 𝐼 − 𝐴, 𝑆) + 𝜀𝑟     (1) 

where I is the resource user’s disposable income, A is the unavoidable cost the resource 

user would be willing to pay for the improved environmental quality, and S is a vector of 

demographic variables. The observable, or empirically measurable, component of utility 

is represented by 𝑉𝑟(∙), while the unobservable stochastic component is represented by 𝜀𝑟 

and modeled as econometric error. A resource user is assumed to choose the scenario 

from which they derive the greatest utility (de Palma et al., 2008). That is, they would be 

willing to pay an amount A if, 

𝑉1(𝑄1, 𝐼 − 𝐴, 𝑆) + 𝜀1 ≥ 𝑉0(𝑄0, 𝐼 − 𝐴, 𝑆) + 𝜀0    (2) 

While socioeconomic factors including income and education are determinants of an 

individual’s WTP, it is also influenced by their perceptions of and preferences for risk 

(Bartczak, Mariel, Chilton, & Meyerhoff, 2013; O’Connor, Bord, & Fisher, 1999). 

Following Johnston et. al (2013), alternative-specific constants indicating improved 

environmental quality scenarios are used in model estimation. 

Additionally, a resource user’s knowledge of the resource, both endogenous and 

exogenous, also has a bearing on their WTP, thus any respondents who had not fished in 

the Everglades within the previous three years were screened out of the survey, 

guaranteeing at least a minimum level of experience and endogenous familiarity with the 
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resource. To ensure respondents were making informed choices, additional information 

about the Everglades area was presented in the survey (Bergstrom, 1990; Cameron & 

Englin, 1997; Freeman, 2003), including maps, graphic illustrations, text descriptions, 

and videos.  

Simulated-likelihood mixed logit was used to estimate the parameters of the 

random utility discrete choice model. Using these estimated model parameters, the 

authors calculated the mean WTP of ENP anglers for percent improvements in fish catch 

(𝑤𝑐) and overall ecosystem health (𝑤𝑒), expressed as the ratios of the attribute 

coefficients to the cost coefficient (Hole, 2006; Johnston et al., 2013).  

3.1.3 The effect of risk perception on WTP 

Individuals may value ES for a range of reasons. Pure non-use value, or existence 

value, is an individual’s WTP for simply knowing that a resource exists even if no use is 

indented. Utilitarian, or use value, is the usage of an ecosystem for amenities or products 

that derive both present and future benefits. For example, consumptive products such as 

timber and amenities such as recreation are considered use values (Costanza, Farber, & 

Maxwell, 1989). Where existence and use values have more than a modicum of certainty 

attached, option value is a function of uncertainty (Pearce & Turner, 1990). Because 

individuals are uncertain about future demand, one may be willing to pay now for the 

option of using a resource in the future (Hein, van Koppen, de Groot, & van Ierland, 

2006). The option value is a premium that an individual will pay above the expected use 

value, resulting from uncertainty about either an individual’s preferences or the price or 

availability of the resource in the future, and is conditional upon the individual being at 
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least to some degree risk averse (Costanza et al., 1989; Hein et al., 2006; Pearce & 

Turner, 1990). 

Individual risk perceptions may be influenced by the context in which individuals 

make a decision (James & Meek, 1976; Slovic, 1987). Context can correspond to past 

experience, anticipatory feelings regarding some future state, or even to the way in which 

decision outcomes are presented (Cohen, Etner, & Jeleva, 2008; Tversky & Kahneman, 

1986). Stone and Gronhaug (1993) classified the components of perceived risk as: 

financial, psychological, social, performance, physical, and time-related. Berk and 

Fovell’s (1999) study on public perceptions of climate change presented a sample of Los 

Angeles residents with sets of empirically possible and historically plausible hypothetical 

climate scenarios to estimate their WTP to prevent significant climate change. Among the 

findings were that respondents were more concerned with use value than existence value, 

and that it would take very large climate changes from a scientific perspective to generate 

even modest changes in WTP. Respondents’ perceptions of climate change were found to 

be relative, as evidenced by valuation of future climate change being a function of the 

respondent’s current climate. Ultimately, they found that within the range of climate 

scenarios considered, individuals would be willing to incur at least some costs to prevent 

change (Berk & Fovell, 1999).  

An understanding of public perceptions of climate change risk is critical in order 

to avoid social barriers and garner public support for mitigation and adaptation policy 

implementation (Vignola et al., 2013). In the context of health risk, Mitchell (1998) finds 

that beyond a certain threshold or tolerance level of perceived risk, individuals will 

employ risk-reduction strategies to lower the perceived risk to or below the tolerance 
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level. The argument that a higher perceived risk leads to a higher motivation to adapt to 

climate change is also supported by Osberghaus et al.’s (2010) study on information and 

risk perception, which builds on the socio-psychological model of Protection Motivation 

Theory. The approach the authors chose in the present study to examine perceived risk is 

the psychometric paradigm, wherein individuals make quantitative decisions regarding 

the current and desired risk levels of certain hazards, their desired level of regulation of 

each (Fischhoff, Slovic, Lichtenstein, Read, & Combs, 1978; Slovic, 1987; Slovic, 

Fischhoff, & Lichtenstein, 1984), and express their willingness to pay for risk reduction 

(Hunter et al., 2012; Sukharomana and Supalla, 1998; Georgiou et al., 1998). Following 

Fischhoff et al. (1978) and others, the authors assume that those who perceive climate-

related risks to be real and high, become more concerned about its adverse impacts on 

their future availability of certain ecosystem services that they enjoy currently. 

Concerned users will further show higher willingness to take certain actions to mitigate 

the risks. Such actions may be to push for more regulation and public investments for risk 

mitigation and willingness to make their own contributions for ecosystem improvements, 

expressed as increased welfare values (see Figure 3.1). 

3.2. Study area 

The largest subtropical wetland ecosystem in North America, ENP comprises 

approximately 1.5 million acres on the southern tip of the Florida peninsula, including 

Florida Bay. Containing both subtropical upland and marine ecosystems, freshwater 

slough and seasonally flooded marl prairie, tropical hardwood hammock forest, pine 

rockland, and mangrove and estuarine habitats (Gunderson, 1994; C. J. Richardson, 2010; 

Saha et al., 2012), ENP’s aquatic communities support a variety of seagrasses, freshwater 
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benthic plants, and aquatic organisms. Not only does the Everglades provide vital 

breeding and foraging habitat for over 400 species of birds, functioning as an important 

migratory corridor, it is also critical for water storage and recharge of the Biscayne 

aquifer, the principal source of freshwater for south Florida (Lorenz, 2014; Saha et al., 

2012).  

Everglades National Park and its surrounding bays, including Whitewater Bay, 

Tarpon Bay, and Florida Bay, generate more than $1.2 billion in annual economic 

activity from its world-class recreational fisheries (Fedler, 2009). Recent annual fishing 

reports estimate that over 90% of boaters in ENP participate in recreational fishing, with 

boaters launching primarily from Flamingo and Chokoloskee (Ault et al., 2008). Brown 

et. al. (2018) estimated the number of unique fishing trips in ENP at 44,627 in 2015, a 

16% increase over the preceding ten-year period. This estimate is a function of the 

number of registered vessels and consumer confidence, both of which have been 

increasing in recent years. Based on aerial surveys, the seasonal distribution of fishing 

trips peaks in winter (33.04%) and spring (36.2%), falling in summer (13.29%) and fall 

(17.47%) (Ault et al., 2008). 

3.3. Survey design 

3.3.1 Survey instrument 

Data for this study were gathered from responses to an online questionnaire 

administered in November and December 2015. The questionnaire was developed and 

tested over one year in a collaborative process, including the participation of ecologists, 

hydrologists, economists, and stakeholders, ensuring that relevant attributes were 

considered (Johnston, Schultz, Segerson, Besedin, & Ramachandran, 2012; Schultz, 
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Johnston, Segerson, & Besedin, 2012). Screener questions were employed to ensure 

respondents were at either full- or part-time residents of the state of Florida and had 

visited ENP for recreational fishing at least once in the previous three years. A total of 

3,354 questionnaires were attempted, of which 2,949 (87.92%) were completed. Of those, 

600 (20.34%) were usable, with the remainder discarded because of nonresponse to 

specific questions (e.g., choice experiment).  

The questionnaire was structured into three sections. The first section explained 

the motivation and purpose of the survey, along with an assessment of respondents’ 

knowledge and use of the Florida Everglades, including questions about how often they 

fish in the Everglades, where they fish, and what species they target. The second section 

provides a non-technical explanation of climate change, SLR, and the possible effects of 

both on the Everglades ecosystems and the fish populations. This explanation sets the 

context for the discrete choice experiment, also in the second section, with respondents 

each receiving two randomized choice cards. The third section explores respondents’ 

perceptions of and concern about climate change and SLR, both in general and regarding 

the Everglades in particular, along with their attitudes toward control or regulation of 

these risks. These eleven items, following the psychometric paradigm (Slovic, 1987), 

were rated on a five-point Likert scale. The first set of three questions evaluated 

respondents’ perception of the risk of SLR [Risk Perception (RP) variables]. The second 

and third sets of four questions each evaluated respondents’ concern [Risk Concern (RC) 

variables] about specific risks and attitudes toward control or regulation [Risk Reduction 

or Regulation (RR) variables], respectively. The data were tested for internal consistency 

of the questions in each group. Cronbach alpha values for RP, RC, RR groups and all 
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questions combined were 0.4, 0.9, 0.6 and 0.8, respectively. The authors recognize that 

the RP questions may have failed the internal consistency test with alpha = 0.4 < 0.6. 

However, other groups are found to be consistent and it is not believed the above issue 

has affected the Factor Analysis results to be discussed later. The final section also 

included a series of demographic questions (e.g., age, education, gender, income). 

3.3.2 Valuation scenarios 

Following the theoretical model, the structure of the discrete choice experiment 

had respondents choose from three scenarios for restoration of freshwater flow. See 

Brown et al. (2018) for detailed description of the scenario designs used in the 

experiment. The survey presented respondents with two sequential randomized choice 

experiments, each consisting of one choice card in which they were asked to select their 

preferred of three scenarios in terms of percent change from the current level in five 

attributes of the recreational fishing experience. Three of these attributes were fishery-

specific (catch rate, size of the largest keeper, and travel distance for fishing) and one 

attribute represented the overall ecological effect of restoration in order to provide a 

comprehensive array of direct and indirect indicators of management outcomes (Johnston 

et al., 2012). The final attribute was price, characterizing the individual per-trip cost. All 

choice cards included a “status-quo” Scenario I, representing no changes to water 

management at low or no additional cost, with Scenarios II and III representing 

conditions at least as good or better than the current level at a higher cost (Brown et al., 

2018). 

Attribute levels were assigned after expert consultation to determine feasible 

outcomes. Each attribute is represented as a percent change relative to current conditions. 
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Attribute levels for catch rate were: no change, 10%, 20%, and 40% higher and lower. 

Levels for size of the largest keeper were: no change, 10%, and 20% bigger or smaller. 

Levels for boat travel distance for fishing were: no change, 10%, 20%, and 40% decrease 

or increase. Levels for overall ecosystem health were: no change, 20%, and 40% better or 

worse. The additional per-trip cost ranged from $0 to $50 in increments of $10. To 

minimize correlation for a choice model covariance matrix, a fractional factorial design 

was used, resulting in 180 unique choice profiles blocked into 60 choice cards. The 

survey was conducted online using the Qualtrics platform, and 600 completed surveys are 

analyzed in this study.  

3.3.3 Econometric model specification 

Following previous studies (Berk & Fovell, 1999; Hanley et al., 2001; Hoyos, 

2010; Hunter et al., 2012; Johnston et al., 2012; Vojáček & Pecáková, 2010), in the 

analysis of the responses the random utility models were estimated using simulated-

likelihood mixed logit with Halton draws in preference-space, allowing us to consider the 

coefficients as independent and randomly distributed for all the attributes except Cost. 

Following the random utility model described in equation (2), a respondent’s probability 

of saying yes to paying amount A is 

𝑃𝑟𝑜𝑏(𝑌𝑒𝑠 𝑡𝑜 𝐴) = 𝑃𝑟𝑜𝑏[𝑉1(𝑄1, 𝑌 − 𝐴, 𝑆) + 𝜀1 ≥ 𝑉0(𝑄0, 𝑌 − 𝐴, 𝑆) + 𝜀0]  

 (3) 

    = 𝑃𝑟𝑜𝑏[𝑉1(𝑄1, 𝑌 − 𝐴, 𝑆) − 𝑉0(𝑄0, 𝑌 − 𝐴, 𝑆) ≥ 𝜀0 − 𝜀1] 

 (4) 

    = 𝐹𝑛(𝑛)       

 (5) 
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    = 𝐹𝑛(∆𝑉)       

 (6) 

Where 𝑛 = 𝜀0 − 𝜀1 and ∆𝑉 = 𝑉1(𝑄1, 𝑌 − 𝐴, 𝑆) − 𝑉0(𝑄0, 𝑌 − 𝐴, 𝑆), ∆𝑉 is the 

difference in utility, and 𝐹𝑛(∆𝑉) is the cumulative probability density function. Per the 

logit model,  

𝐹𝑛(∆𝑉) =
1

1+𝑒−∆𝑉        (7) 

𝐹𝑛(∆𝑉(𝐴)) =
1

1+𝑒−∆𝑉(𝐴)
       (8) 

The observable component of utility 𝑉𝑟 for each individual i is specified to be 

linear in parameters, such that  

𝑈𝑟𝑖 = ∑ 𝛽𝑟𝑖𝑘𝑋𝑟𝑖𝑘𝑘 + 𝜀𝑟𝑖       (9) 

where 𝑋𝑟𝑘 is a vector of K choice-related characteristics consisting of individual 

characteristics and observed attributes, and 𝛽𝑟𝑘 is a vector of K parameters to be 

estimated. 

In the present study, respondents make a choice among three alternatives: one 

status quo, and two with some level of restored freshwater flow and improved services 

compared to the status quo. The restoration can be realized at a cost to be paid in 

increased boat launch fee per fishing trip, and the cost of no restoration is negligible or 

zero. Using this, equation (9) can be generally formulated as, 

𝑈𝑟𝑖 = 𝛼 + 𝛽𝑓𝐹𝑟𝑖 + 𝛽𝑐𝐶𝑟𝑖 + 𝛽𝑠𝑆𝑟𝑖 + 𝜀𝑟𝑖     (10) 

where 𝛼 is the alternative specific constant (ASC), 𝛽𝑓 is the vector of coefficients to 

recreational fishery choice attributes F, 𝛽𝑐 is the coefficient to cost attribute C, and 𝛽𝑠 is 

the vector of coefficients to sociodemographic factors and risk attitudinal attributes S. 
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Five specifications of this model were estimated to explore the effects of individuals’ risk 

perceptions on WTP in a step-wise fashion. Model 1 is specified as an “attribute-only” 

model to set a baseline for testing interaction effects, 

 𝑈𝑟𝑖 = 𝛼 + 𝛽𝑓𝐹𝑟𝑖 + 𝛽𝑐𝐶𝑟𝑖 + 𝜀𝑟𝑖      (11) 

Models 2 and 3 then interact the ASC with a vector of risk attitudes and 

sociodemographic factors, respectively, 

𝑈𝑟𝑖 = 𝛼 + 𝛽𝑓𝐹𝑟𝑖 + 𝛽𝑐𝐶𝑟𝑖 + 𝛽𝐴𝑝𝑒𝑟𝐴𝑟𝑖𝑃𝑒𝑟𝑖 + 𝛽𝐴𝑐𝑜𝑛𝐴𝑟𝑖𝐶𝑜𝑛𝑖 + 𝛽𝐴𝑟𝑒𝑑𝐴𝑟𝑖𝑅𝑒𝑑𝑖 + 𝜀𝑟𝑖

 (12) 

𝑈𝑟𝑖 = 𝛼 + 𝛽𝑓𝐹𝑟𝑖 + 𝛽𝑐𝐶𝑟𝑖 + 𝛽𝐴𝑎𝑔𝑒𝐴𝑟𝑖𝐴𝑔𝑒𝑖 + 𝛽𝐴𝑒𝑑𝑢𝐴𝑟𝑖𝐸𝑑𝑢𝑖 + 𝛽𝐴𝑖𝑛𝑐𝐴𝑟𝑖𝐼𝑛𝑐𝑖 + 𝜀𝑟𝑖

 (13) 

where A is ASC, 𝛽𝐴𝑝𝑒𝑟 is the vector of coefficients to the interaction of ASC and Risk 

Perception attributes, 𝛽𝐴𝑐𝑜𝑛 is the vector of coefficients to the interaction of ASC and 

Risk Concern attributes, 𝛽𝐴𝑟𝑒𝑑 is the vector of coefficients to the interaction of ASC and 

Risk Reduction attributes, 𝛽𝐴𝑎𝑔𝑒 is the coefficient to the interaction of ASC and Age, 

𝛽𝐴𝑒𝑑𝑢 is the coefficient to the interaction of ASC and Education, and 𝛽𝐴𝑖𝑛𝑐 is the 

coefficient to the interaction of ASC and Income. 

 Models 4 and 5 interact individual Risk Perception factors with fishery attributes 

to test the influence of these factors on WTP versus an attribute-only model described in 

equation (11). 

𝑈𝑟𝑖 = 𝛼 + 𝛽𝑐𝐶𝑟𝑖 + 𝛽𝑅𝑃𝑐𝑎𝑡𝑐ℎ𝑅𝑃𝑖𝐶𝑎𝑡𝑐ℎ𝑟𝑖 + 𝛽𝑅𝑃𝑘𝑒𝑒𝑝𝑅𝑃𝑖𝐾𝑒𝑒𝑝𝑟𝑖 +

𝛽𝑅𝑃𝑑𝑖𝑠𝑡𝑅𝑃𝑖𝐷𝑖𝑠𝑡𝑟𝑖 + 𝛽𝑅𝑃𝑒𝑐𝑜𝑅𝑃𝑖𝐸𝑐𝑜𝑟𝑖 + 𝜀𝑟𝑖       

 (14) 
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𝑈𝑟𝑖 = 𝛼 + 𝛽𝑓𝐹𝑟𝑖 + 𝛽𝑐𝐶𝑟𝑖 + 𝛽𝑅𝑃𝑐𝑎𝑡𝑐ℎ𝑅𝑃𝑖𝐶𝑎𝑡𝑐ℎ𝑟𝑖 + 𝛽𝑅𝑃𝑘𝑒𝑒𝑝𝑅𝑃𝑖𝐾𝑒𝑒𝑝𝑟𝑖 +

𝛽𝑅𝑃𝑑𝑖𝑠𝑡𝑅𝑃𝑖𝐷𝑖𝑠𝑡𝑟𝑖 + 𝛽𝑅𝑃𝑒𝑐𝑜𝑅𝑃𝑖𝐸𝑐𝑜𝑟𝑖 + 𝜀𝑟𝑖       

 (15) 

where 𝛽𝑅𝑃𝑐𝑎𝑡𝑐ℎ is the coefficient to the interaction of Risk Perception and the Catch 

attribute, 𝛽𝑅𝑃𝑘𝑒𝑒𝑝 is the coefficient to the interaction of Risk Perception and the Size of 

the Largest Keeper attribute, 𝛽𝑅𝑃𝑑𝑖𝑠𝑡 is the coefficient to the interaction of Risk 

Perception and the Travel Distance for Fishing attribute, and 𝛽𝑅𝑃𝑒𝑐𝑜 is the coefficient to 

the interaction of Risk Perception and the Overall Ecosystem Health attribute. Each of the 

above models was estimated using mixed logit procedure in STATA software.  

3.4. Results 

3.4.1 Descriptive statistics 

Sample demographics are shown in Table 3.1. The average age of respondents 

was 38.31 with a median of 35, somewhat lower than Florida’s population median age of 

41.8. Median household income was very similar to the wider population. Respondents’ 

distribution of race and ethnicity was also very similar to the Florida population, although 

those identifying as Hispanic were slightly underrepresented in the sample. 

Most respondents launched their recreational fishing vessels from either 

Everglades City (45.02%) or Flamingo (41.24%), with the remainder launching from the 

Florida Keys (13.75%). The majority of respondents reported fishing in both Everglades 

backcountry and bay waters (65.88%), with 19.83% restricting their fishing to the bays 

(brackish or saltwater), and 14.29% to the backcountry (primarily freshwater). The top 

three fish species targeted by anglers (indicating they frequently or always target them) 

were Gray Snapper (Lutjanus griseus), Red Drum (Sciaenops ocellatus), and Snook 
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(Centropomus undecimalis). 56% of respondents considered “being able to see other 

wildlife” very or extremely important. Sixty percent reported being “very much 

concerned” regarding the Everglades overall ecosystem health. 

3.4.2 Respondents’ risk perception, concern, and reduction 

Results of the array of psychometric questions are presented in Table 3.2a. 

Respondents indicated they were most concerned about the overall ecosystem health and 

future fish abundance in the Everglades, with mean scores of 4.38 and 4.23, respectively. 

Results indicate that while respondents believe that the predicted SLR will happen in 

their lifetime and they have a moderately high level of concern about SLR in the 

Everglades, they do not believe that the relevant public agencies will manage freshwater 

flow effectively without their contribution to the effort. Overall, results suggest high 

support for regulatory action (average score of 4.12) as well as a strong sense of personal 

responsibility for contributing toward actions to minimize impacts of SLR (4.07). 

It is interesting to note that survey respondents scored an average value of 2.77 or 

lower on all the questions that conveyed a sense of skepticism toward SLR-related risks, 

i.e., “I can live with the negative impacts of SLR (statement #2; mean = 2.35), “it is too 

early to worry about SLR…” (statement 3; mean = 2.32), and “the relevant public 

agencies will manage the freshwater flow (statement #10, mean = 2.77). These results 

indicated that, on average, sample respondents disagreed with the above statements, 

signifying a lower level of skepticism about climate risk. That is, they feel they would not 

want to live the negative impacts of SLR, that it is time to worry about SLR, and that they 

do not want to simply shun mitigation responsibilities to relevant public agencies. 
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Table 3.2b presents the differences in anglers’ risk attitude and perception across 

different demographic groups. Earlier studies of general Florida population about climate 

risks and ecosystem restoration (Sikder, 2016) indicate that there could be significant 

variation among residents of Florida living at different distances from the coast. That 

study also found some minor differences across people of different demographic groups. 

The results of this study show that anglers fishing in the Everglades have uniform risk 

perception and risk mitigation attitudes across wide demographic groups. The only 

exceptions were as a function of gender and income regarding RC questions, and across 

marital status, education, and income with respect to RP questions.  

Further, responses to psychometric questions were subjected to principal 

component factor analysis. Kaiser-Meyer-Olkin values indicated that all variables were 

suitable for inclusion, and a varimax (orthogonal) rotation was performed. Two 

meaningful factors with eigenvalues > 1 were extracted and loading on a given factor was 

assumed if loading > 0.5. Each factor represents a certain underlying (latent) attitude 

towards climate risks. The statements or variables associated with these factors were 

labeled “Positive Risk Perception (PRP)” and “Risk Skepticism (RSK) about risk posed 

by SLR” (Stern et al., 2016) for factors 1 and 2, respectively. Measured (observed) risk 

variables used in the factor analysis and their corresponding loadings are presented in 

Table 3.3. These extracted factors closely matched the three sets of psychometric 

questions presented to respondents in the survey. That is, Factor 1 carried those risk 

questions that were worded as having concern for the changing environment (e.g., 

concerns about SLR and its impacts on the Everglades, fish abundance and freshwater), 

and showed a positive willingness to act for addressing those changes (e.g., both personal 
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support and desire for public support of restoration). On the contrary, all three measured 

variables that were loaded into Factor 2 reflected a certain degree of skepticism in that 

respondents did not believe the said environmental changes would be real, could live with 

the negative impacts, and/or did trust the government would take care of the problem. 

Although the survey was set up with three sets of risk questions (RP, RC and RR), they 

were loaded into only two factors, representing the two underlying latent variables, 

Positive Risk Perception and Risk Skepticism. All the four RC variables, one RP variable 

(i.e., the perception that SLR will happen during one’s life) and two RR variables (i.e., 

that “government must take action” and that “I am also responsible to take action”) had 

large, positive loadings (>0.5206) on positive risk perception factor (PRP). That is, PRP 

factor describes variations in those seven variables (Table 3.3) adequately. Similarly, 

three negatively meaning RSK variables (“I can live with negative impacts…”, “it is too 

early to worry…”, and “government will take action…”) had large, positive loadings 

(>0.6972). So, the RSK factor described variation in the three measured statements that 

signify lack of belief in climate risk, apathy and shunning of responsibility to the 

government. 

To support the paradigm described in Figure 3.1, the coefficients of correlation 

between the pairs of the three sets of psychometric questions were estimated. That is, the 

average of scores of all the variables within each of the risk categories were computed 

first, i.e., RP, RC and RR corresponding to each of the first three boxes in Figure 3.1, 

respectively. The average scores are described in Table 3.2a and the results of the factor 

analysis in Table 3.3.  
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The authors then estimated the Pearson’s correlation coefficient between RP and 

RC, and the correlation between RC and RR. Both these correlation coefficients (0.463 

and 0.631, respectively) were positive and statistically significant at a 0.01 level. These 

correlation coefficients support the authors’ hypothesis that the respondents who possess 

strong (high) perception about SLR and the possible impacts on the ecosystem will be 

concerned about the said risk and as a result, might provide strong support for appropriate 

mitigation action and express high willingness to pay for such action. Furthermore, 

authors found positive and statistically significant correlation between RP and RR 

variables. That is, people who perceive climate risk to be real and happening in their 

lifetime were more likely to support risk reduction policies. 

3.4.3 Respondents’ WTP and the influence of risk perception 

Five different random utility choice models were estimated, the results of which 

are presented in Table 3.4, with descriptions of variables presented in Table 3.5. Because 

discrete choice models require alternative-specific variables, case-specific variables are 

interacted. Model 1 simply examined the effects of attributes on the choice outcome for 

all respondents. Model 2 is an extended model in order to test whether respondents were 

likely to respond differently to three climate risk perception, concern and reduction 

variables under business as usual scenario vs. the  two improve scenarios. Model 3 is an 

extended model accounting for socio-demographic heterogeneity. Model 4 is an 

interaction model to compare the interaction risk terms against Model 1. Model 5 is an 

extension of Model 4, examining the interaction terms as well as the original attributes.  

In the basic attribute only model, ASC was positive and significant, indicating 

that respondents had some preference toward choosing an improve scenario (moving 
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away from status quo). The coefficients for the choice attributes of Catch and EcoHealth 

were significant with expected signs, and Cost had a negative sign as expected, implying 

that a scenario is less likely to be chosen if the cost is higher (Brown et al., 2018). The 

Keeper and Distance attributes were found to be insignificant. In the basic model, the risk 

perception variable is implicit and subsumed in ASC. In the model that introduces socio-

demographic variables interacted with ASC, Catch, EcoHealth, and Cost are significant 

with expected signs, while the only significant socio-demographic variable is Education, 

with a positive coefficient. 

Models that introduce risk perception, concern, and reduction (terms interacted 

with attributes) had a positive and significant ASC, again indicating that respondents had 

some preferences toward choosing improve scenarios. As hypothesized the coefficient of 

the cost variable was negative and statistically significant across all the five models. The 

catch and overall ecosystem health variable coefficients were also positive and significant 

in all but one model as expected. Overall, Chi-Square values of all the estimated models 

suggested that they fit the data well. 

Willingness to pay (WTP) of respondents can be computed using the following 

formula: 

𝑊𝑇𝑃 = −
𝛽̂𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

𝛽̂𝐶𝑜𝑠𝑡
        (16) 

Where 𝛽̂𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 is the model-estimated coefficient for the attribute parameter in 

question, and 𝛽̂𝐶𝑜𝑠𝑡 is the model-estimated coefficient of the cost parameter. 

Table 3.6 presents the estimates of WTP of respondents for two ecosystem 

services (fish catch and overall ecosystem health) under different levels of risk 
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perception. For comparison, estimated coefficients of attribute-only model (model 1) and 

coefficients of model with risk-perception (model 5) were used to compute WTP 

estimates. Individual-specific perceptions of the risks posed by SLR were positively 

related to WTP, indicating that those who viewed it as a higher risk were willing to pay 

more. For every one percent improvement in fish catch due to increased freshwater flow 

(a climate mitigation strategy), WTP ranged from $0.25 at the risk perception level of 3 

(measured on Likert scale) to $1.00 at the risk perception level of 5. Similarly, the WTP 

value for a percent improvement in the overall ecosystem health increased from $0.32 at 

the risk perception score of 3 to $2.07 at the risk perception of 5. Authors ignored the 

model-estimated WTP values for risk perception at Likert scale of 1 and 2 as they were 

negative. Finally, RP-adjusted weighted WTP was calculated using the sample average 

percent of respondents that expressed different levels of agreement to risk attitude 

questions as weights. On average, 4.29% strongly disagreed (Likert scale = 1), 7.51% 

somewhat disagreed (2), 19.27% neutral (3), 31.88% agreed (4), and 37.04% strongly 

agreed (5) to the eleven risk questions. The risk-adjusted WTP values for percent 

improvement in catch and ecosystem health were $0.62 and $1.21, respectively.  

3.5. Discussion and Management Implications 

3.5.1 Nonmarket benefits of increasing managed freshwater inflows 

Historically, water flowed south from Lake Okeechobee through the Everglades 

in a broad, slow-moving shallow river. Since development of a comprehensive freshwater 

drainage system in South Florida beginning in the early 1900s, these flows have been 

constrained by a dike and levee system and by urban and agricultural water demands, 

occupying less than half of their original areal extent and relegating the Everglades to 
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part of a complex watershed management system (Ogden et al., 2005; Sklar et al., 2001, 

2005). Because the Everglades watershed is managed primarily for agriculture, flood 

control, and consumptive uses (Sklar et al., 2005), the flow of freshwater through the 

Everglades has been reduced, channelized, and otherwise modified, resulting in dramatic 

changes to biota, salinity regimes, and a variety of ecosystem services in the coastal 

Everglades (Perry, 2008; Rand & Bachman, 2008).  

Large, subtropical bays and estuaries within ENP provide critical habitat for a 

variety of species, including seagrasses and coastal mangrove communities (Bachman & 

Rand, 2008). They serve as nurseries for larvae and juveniles of many critical species, 

including highly sought-after sport fish and wading birds (Lorenz, 2014). Freshwater 

flows are a key determinant of habitat and fisheries resource productivity (Rudnick, 

Ortner, Browder, & Davis, 2005; Stabenau, Engel, Sadle, & Pearlstine, 2011; Walters, 

Gunderson, & Holling, 1992), making the recreational fishing industry in the area a direct 

beneficiary of improved and sustained fishery habitat (e.g., Boucek & Rehage, 2013). 

3.5.2 The importance of risk perception 

Overall, the study results provide evidence for the fact that the anglers perceive a 

high level of climate-related to risks and their impact on the Everglades ecosystem 

services. More than 68% of the respondents believe risk is real, support mitigation 

actions and express a high degree of willingness to pay for mitigation. As with other 

studies, the individual-specific perceptions and attitudes varied across the sample 

respondents, reflecting underlying heterogeneity in interpreting and understanding the 

risks posed by climate change and SLR (Hunter et al., 2012). This heterogeneity was 

most pronounced in RP across gender and income, and in RC across marital status, and 
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income. Interestingly, there was no difference across sample respondents as far as RR 

attitude was concerned.  

The models developed in this study demonstrate that the determinants of WTP for 

recreational ecosystem services in light of the risks posed by climate change and SLR are 

complex. While individual socio-demographic and economic factors tend to be important 

determinants of public preferences and WTP (Halkos & Matsiori, 2012), our study points 

to education as the single most influential socio-demographic variable (model 3, Table 

3.4). The relationship between individuals’ education and their responses to risk items 

were both positive and significant.  

3.5.3 Implications for water resource management 

Management and policy decisions involving complex ecological systems such as 

the Everglades are well served by employing an integrated framework combining natural 

and social sciences to achieve sustainable and welfare-optimizing solutions (Turner et al., 

2000). This study provides water managers with insight into the associated economic 

benefits of improved fishery ecosystem services vis-à-vis increased freshwater inflows, 

particularly under the looming threat of SLR and its potential impacts on the Everglades 

ecosystems, and addresses some of the classic challenges of ecosystem management: 

uncertainty about the future need for action, lack of current political support, and 

financial burden. Results of this study indicate that the public believes the predicted SLR 

and attendant negative impacts on the Everglades will occur during their lifetime. 

Additionally, that they cannot live with the negative impacts suggests a desire for public 

agencies to act to mitigate the impacts, although results also suggest that people believe 

that agencies alone cannot solve the problem without some assistance from the public.  
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Results also indicate that respondents have a moderately high level of concern 

about the loss of freshwater and the ensuing effects on recreational fishery productivity 

and their recreational experience. This high level of concern regarding freshwater and 

SLR may contribute to why respondents overwhelmingly express a desire for some 

government action to be taken against these future risks, and why they also feel that they 

as resource users should be responsible for contributing toward future restoration efforts.  

As mentioned previously, this study found the presence of strong risk perception 

and concern about climate change and SLR. Results also provide a clear indication of the 

significant influence of risk perception on users’ valuation of ecosystem services. The 

authors used the  hydro-bio-economic model developed by Brown et al. (2018) to 

estimate the impact of risk perception of valuation. This model allows for monetizing the 

ecosystem service benefits of restoring freshwater flow from the past monthly average 

levels (usually low) to their respective environmental flow targets (high). These benefits 

were estimated using RP-adjusted WTP values as well as non-RP-adjusted values (see 

Table 3.7). When the WTP values were adjusted for Risk Perception (Table 3.6), the 

annual overall ecosystem service valuation (benefit) of users was 40.03% higher than the 

annual benefits estimated using non-RP-adjusted WTP. Similarly, if WTP were held at 

the highest level of RP, the annual total ecosystem benefits would be 136.69% higher 

than the estimate without RP-adjusted WTP. Thus, if freshwater managers are to 

implement any management policies (e.g., water allocation or user fees for restoration 

purposes), it’s worthwhile to consider the appropriate WTP estimates, particularly ones 

which are adjusted for risk perception. When ecosystem services are lost, individuals who 

are more risk concerned lose more in terms of the value they place on those key 
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ecosystem services than they would otherwise (i.e., with very low or no perception or 

concern toward the risk).  

The immediacy of the resource users’ experience with the ecosystem services 

considered in this study (at least once in the past three years) lends itself to their having a 

higher degree of RP, RC, and RA, and consequently 40% higher WTP. Thus, these 

members of the public, the users of impacted ecosystem services, do not demonstrate a 

high degree of environmental neoskepticism, which could impact environmental 

managers and public agencies. In keeping with the classic “user pay principle” 

(Muradian, O’Connor, & Martínez Alier, 2002), managers and agencies should first go 

after the users who are more engaged and have a higher RP and in turn WTP, but should 

be cautious not to unfairly burden them with excessively high user fees. Ultimately, these 

ecosystem services are public goods, which need to be paid for by the general public, 

regardless of intensity of use. 

3.6. Conclusion   

Results of this study indicate that resource users attach positive and significant 

values to the Everglades recreational fisheries, and the higher levels of WTP suggest they 

would see an increase in the nonmarket benefits for improved restoration efforts. The 

impact of their risk perception, concern, and attitude toward risk reduction actions on 

WTP are particularly salient for water resource managers as they develop plans for future 

restoration in terms of public support for and public funding of these efforts. Public 

perception of freshwater decline and SLR, concern for future risk, and strong feelings of 

personal responsibility could all be significant drivers of stronger political support for 

restoration and mitigation actions by public agencies, including water allocation 
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decisions that prioritize Everglades restoration, new user-based financing options, and 

programs to increase public awareness of how freshwater management addresses climate 

risks. 
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Tables 

Table 3.1. Respondent Demographics 

 Sample (600) 

 n Mean Median Std. Dev. Min Max 

Age 597 38.31 35 14.53 18 85 

Household size 594 2.90 3 1.31 1 10 

Household income ($) 566 64,434 50,000 42,002 20,000 240,000 

Married n %     

 Yes 303 50.67     

 No 295 49.33     

Gender n %     

 Female 339 56.59     

 Male 260 43.41     

Race/Ethnicity n %     

 White 454 71.16     

 Hispanic 91 14.26     

 Black or African-American 55 8.62     

 American Indian or Alaska Native 15 2.35     

 Asian or Pacific Islander 10 1.57     

 Other 13 2.04     

Education n %     

 Less than high school 14 2.34     

 High school / GED 118 19.70     

 Some college 145 24.21     

 College degree  226 37.73     

 Graduate degree 63 10.52     

 Professional degree 33 5.51     
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Table 3.2a. Risk Perception, Concern and Attitude towards Risk Reduction 

Perception of risks n Mean Std. Dev. 

 
(1) I believe that the predicted SLR will happen during my 

lifetime 
599 3.57 1.10 

 
(2) I can live with the negative impacts of SLR on the 

Everglades fisheries and my recreational experience 
599 2.45 1.18 

 
(3) It is too early to worry about SLR and the future generation 

will know how to handle the situation better 
599 2.32 1.22 

Concern about specific risks n Mean Std. Dev. 

 (4) Regarding the SLR in the Everglades 600 3.90 1.07 

 (5) Regarding declining freshwater flow and increasing salinity 600 4.11 0.99 

 (6) For future fish abundance in the Everglades 600 4.23 0.93 

 (7) Regarding the overall ecosystem health 598 4.38 0.93 

Risk Reduction or Regulation  n Mean Std. Dev. 

 
(8) Government agencies must start to take actions to increase 

the freshwater flow in the Everglades 
600 4.12 1.03 

 
(9) As a citizen or resource user, I am also responsible for 

contributing towards the actions to minimize the impacts of SLR 
600 4.07 0.96 

 
(10) The relevant public agencies will manage the freshwater 

flow effectively without my contribution to the effort 
597 2.77 1.25 

 
(11) Any human activities that adversely influence the quality of 

the Everglades health should be regulated 
600 4.05 0.99 
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Table 3.2b. Risk Perception, Concern and Reduction Preferences across Different 

Demographic Groups1 

Demographic 

Characteristics Levels n 

Risk Perception 

(Out of a Max 

Score of 15) 

Risk Concern 

(Out of a Max 

Score of 20) 

Risk Reduction 

(Out of a Max 

Score of 20) 

Florida resident Yes 570 10.8 16.6 15.5 

 No 6 11.3 17.8 16.6 

F   0.296 0.759 0.83 

P   0.586 0.384 0.363 

Married Yes 295 11 16.7 15.4 

 No 303 10.6 16.5 15.5 

F   3.892 0.703 1.22 

P   0.021 0.495 0.296 

Gender Female 260 10.6 16.3 15.4 

 Male 379 11 16.9 15.5 

F   2.056 3.097 1.475 

P   0.129 0.046 0.23 

Race White 422 10.9 16.8 15.6 

 Hispanic 85 10.5 16.4 15.2 

 

African 

American 55 10.6 16.2 15.1 

 

American 

Indian 14 11.3 15.9 14.8 

 

Asian or 

Pacific 

Islander 10 10.4 16.9 15.1 

 Other 13 11 15.8 15.2 

F   0.571 0.722 0.797 

P   0.722 0.607 0.552 

Education  

Less than 

high school 12 10.2 15.4 15.5 

 

High 

school/GED 110 10.4 16.3 15.1 

 

Some 

college 136 10.6 16.5 15.5 

 

College 

degree 218 11 16.9 15.8 

 

Graduate 

degree 58 11.2 17.1 15.3 

 

Professional 

degree 30 11.3 16.9 15.3 

F   2.12 1.052 0.848 

P   0.062 0.386 0.516 

Income2      

F   2.145 1.72 1.274 

P   0.011 0.053 0.224 
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1
In this table, the original respondents’ scores of statements that reflect skepticism towards risk (statement 

# 2, 3 and 10 of Table 2a) are reversed on the scale of 1 to 5 before being grouped with other statements in 

the respective category and the average value for the group is computed.  
2
For brevity, only F statistic values are reported.  

 

Table 3.3. Results of Explanatory Factor Analysis  

Shaded boxes show items loading on each factor with loadings > 0.5. 

Variable 

Factor 1 

(Positive Risk 

Perception) 

Factor 2 

(Risk 

Skepticism) 

Concern about SLR and its impact in the Everglades 0.7832 -0.0210 

Concern about SLR and declining freshwater flow and increasing 

salinity 
0.8409 -0.0428 

Concern about SLR and its impact on future fish abundance in the 

Everglades 
0.8237 -0.0967 

Concern about SLR and its impact on overall ecosystem health 0.8073 -0.0453 

I believe that the predicted SLR will happen during my lifetime 0.5206 -0.2866 

Government agencies must start to take actions to increase the 

freshwater flow in the Everglades 
0.7766 -0.1019 

As a citizen or resource user, I am also responsible for contributing 

towards the actions to minimize the impacts of SLR 
0.7266 -0.0738 

Any human activities that adversely influence the quality of the 

Everglades health should be regulated 
0.6674 -0.2352  

I can live with the negative impacts of SLR on the Everglades 

fisheries and my recreational experience 
0.3481 0.7180 

It is too early to worry about SLR and the future generation will 

know how to handle the situation better 
0.4009 0.6972 

The relevant public agencies will manage the freshwater flow 

effectively without my contribution to the effort 
0.1011 0.7731 

Eigenvalue 4.79053 1.76617 
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Table 3.4. Results of Mixed Logit Model 

 Model 1 Model 2 Model 3 Model 4 Model 5 

ASC 
2.5661*** 

(0.40324) 

-5.0811*** 

(0.9900) 

0.6338 

(0.0268) 

2.189*** 

(0.3955) 

2.4309*** 

(0.3851) 

Cost 
-0.0200*** 

(0.0041) 

-0.0181*** 

(0.0036) 

-0.0203*** 

(0.0039) 

-0.0185*** 

(0.0036) 

-0.0204*** 

(0.0041) 

Catch 
0.0095*** 

(0.0037) 

0.0085** 

(0.0032) 

0.0095** 

(0.0036) 
 

-0.0177 

(0.0160) 

Keeper 
0.0015 

(0.0049) 

0.0024 

(0.0044) 

0.0025 

(0.0049) 
 

-0.511 

(0.0226) 

Distance 
0.0006 

(0.0030) 

-0.00002 

(0.0027) 

0.0011 

(0.0029) 
 

0.0356** 

(0.0136) 

EcoHealth 
0.0174*** 

(0.0045) 

0.0151*** 

(0.0038) 

0.0172*** 

(0.0043) 
 

-0.0472** 

(0.0174) 

ASC*Perception  
1.0753*** 

(0.2573) 
   

ASC*Concern  
0.5912** 

(0.2450) 
   

ASC*Reduction  
0.2960 

(0.2292) 
   

ASC*Age   
0.0268 

(0.0179) 
  

ASC*Education   
0.3847* 

(0.2315) 
  

ASC*Income   
0.0199 

(0.1563) 
  

Perception*Catch    
0.0026** 

(0.0009) 

0.0076* 

(0.0043) 

Perception*Keeper    
0.0014 

(0.0012) 

0.0145** 

(0.0061) 

Perception*Distance    
-0.0006 

(0.0007) 

-0.0097*** 

(0.0037) 

Perception*EcoHealth    
0.0052*** 

(0.0010) 

0.0179*** 

(0.0049) 

Observations 578 578 578 578 578 

LR chi2 82.73 52.98 86.40 61.94 65.30 

Log-likelihood -1094.227 -1062.1834 -1082.9052 -1088.7186 -1066.0773 

Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 3.5. Regression Variables 

Variable Description 

ASC Alternative specific constant 

Cost Additional per-trip cost 

Catch Catch rate 

Keeper Size of the largest keeper 

Distance Travel distance for fishing 

EcoHealth Overall ecosystem health 

Perception Perception of the risks posed by SLR and climate change 

Concern Level of concern about specific risks 

Reduction Attitudes and preferences toward risk reduction and regulation 

Age Respondent age (in years) 

Education Level of education 

Income Annual household income 

 

Table 3.6. Marginal WTP Results at Various Levels of Risk Perception 

 

Model 1 

Attributes 

only 

Model ($) 

Model 5 

 

Attributes-Interacted with Risk Perception Model 

 

Risk Perception  
𝑅𝑃̅̅ ̅̅  = 

3.6 
1a 2a 3 4 5 

Risk-

weighted 

Average 

WTPb 

Catch WTP $0.47 $0.47 $0.00 $0.00 $0.25 $0.62 $1.00 $0.62 

EcoHealth WTP $0.87 $0.85 $0.00 $0.00 $0.32 $1.20 $2.07 $1.21 
a
Computed WTP values were negative at risk perception levels of Likert scale 1 and 2. Since negative 

WTP values (disutility from improved attributes) seem unrealistic, authors discard those values and assume 

WTP values to be zero at risk perception levels of 1 and 2. 
bRisk-weighted average WTP values are computed by using average percent of respondents expressing 

different levels ( 1 to 5) of agreement to all risk questions as weights. On an average, 4.29% strongly 

disagreed (Likert scale = 1), 7.51% somewhat disagreed (2), 19.27% neutral (3), 31.88% agreed (4), and 

37.04% strongly agreed (5) to the eleven risk questions.   
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Table 3.7. Effect of accounting for risk perception on the anglers’ estimated benefit 

from improved recreational services in ENP 

 

Estimated Recreational Benefits from 

Restoring Freshwater Flow at Quarterly 

Target Levels Using 

 

Risk-

unadjusted 

WTP 

Risk-

adjusted 

WTP 

Highest Risk 

Perception 

Level WTP 

Fish WTP ($/% additional catch)  0.47  0.62  1.00  

EcoHealth WTP ($/% improvement)  0.85  1.21  2.07  

 

Quarterly benefits: 

Dec - Feb  1,502,326  2,089,681 3,514,415 

Mar - May  3,803,337  5,372,410 9,139,190 

Jun - Aug  704,106  975,280  1,635,025  

Sep - Nov  845,053  1,161,589  1,936,027  

Sum  6,854,822  9,598,960  16,224,657  

Difference between risk perception-

adjusted and unadjusted ($)   

2,744,138  

(40.03%) 

9,369,835  

(136.69%) 

 

 

Figures 

Figure 3.1. Psychometric risk perception-concern-mitigation paradigm adapted 

from Fischoff et al. (1978) 

 

  



89 
 

4. A Game-Theoretic Model of Crop Flood Indemnity in South Florida 

 

4.1. Introduction 

Changes in the frequency, spatial distribution, and magnitude of several climatic 

conditions and extreme events are likely to occur in the not too distant future and could 

pose significant risks to human well-being (IPCC 2014). Among such changes are an 

increased potential of flooding due to increased heavy precipitation events and 

accelerated sea level rise, posing particular concern to coastal communities and 

agricultural production. South Florida is among the areas of the U.S. most vulnerable to 

inundation (Gornall et al. 2010; Erwin 2009; Dolan and Walker 2006; Scavia et al. 2002). 

In addition to inundation, rising sea level can increase salinity of freshwater ecosystems 

and aquifers (Scavia et al. 2002). A mosaic of urban settlements, agricultural areas, and 

natural areas, South Florida is served by a highly human-engineered water management 

system (Harwell et al. 1996). Management agencies grapple with managing water to meet 

multiple objectives, including urban and agricultural water supply, flood control, and 

environmental restoration. Climate-induced (e.g., flood, drought, sea level rise) water 

shortage or excess often tests the limits of this engineering system, and extreme events 

are in turn expected to further increase the complexity of managing water resources for 

competing users. 

Heavy precipitation and flooding events in the United States and worldwide in recent 

years have greatly damaged crop production. If model projections of increased weather 

extremes are realized (National Park Service 2009; IPCC 2014), the cost of crop losses 

could increase drastically. Recent studies have attempted to simulate the amount of plant 
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damage from excess soil moisture in order to estimate crop production loss, and found 

that these losses under current climatic conditions might double in the next thirty years to 

an estimated $3 billion annually (Rosenzweig et al. 2002). In 2017, up to 7,000 acres of 

agricultural land in the southern portions of Florida experienced storm surge with salt 

water inundation during Hurricane Irma, with the Florida Department of Agriculture and 

Consumer Services estimating losses at over $30 million (Alvarez 2017). The costs of 

this and other losses may be borne directly by the farmers impacted or transferred to 

private insurers or governmental disaster relief programs. 

As the expected level and intensity of flood and heavy precipitation events increase, the 

amount of indemnities paid upon losses due to these events would also increase. Thus, 

crop insurance claims can serve as a metric of the climate-related vulnerability of 

agriculture. To develop such a metric, it is necessary to study how crop insurance 

decisions are made. Participation patterns have shifted as new insurance products have 

expanded farmers’ choices of types and levels of coverage, and the literature shows a 

variety of factors influencing farmers’ choices among available crop insurance products 

(Makki and Somwaru 2006, 2001; Sherrick et al. 2004; Smith and Baquet 1996; 

Moschini and Hennessy 2001). Chief among these factors is the level of risk, followed by 

the cost of insurance, and the level of premium subsidy.  

Frameworks for evaluating farmers’ crop insurance decisions typically employ the 

standard assumption that farmers will maximize the utility of their net revenue subject to 

physical and technical constraints (Bar-Shira, Just, and Zilberman 1997; Sherrick et al. 

2004; Smith and Baquet 1996; Shaik and Atwood 2017; O. Mahul 1999; Keith H. Coble 

and Knight 2002).  These studies show that the levels of insurance premium and 
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government subsidy are the two key determinants of farmers’ participation.  

Nevertheless, these two rates are policy decisions made by Risk Management Services 

(RMS) of USDA each year.  RMS grapples with the actuarial decision of optimizing 

insurance and subsidy rates such that net insurance premium creates enough incentive for 

farmers to purchase insurance protection, while private crop insurers are able to 

indemnify crop losses year after year adequately.  This would require that either 

premiums, farmers’ participation, or both are high enough to generate enough premium 

income to cover losses.  However, farmers’ participation level varies inversely with the 

premium. Furthermore, as the expected level and intensity of flood and heavy 

precipitation events increase, the amount of indemnities paid upon losses due to these 

events would also increase. Therefore, ultimate solvency of crop insurance market and 

climate-related crop risk reduction depend on the interactive decisions of RMS, farmers, 

and private insurers, under increasing level of climate-induced crop perils.  

This paper links the occurrence of flooding events and crop insurance indemnity claims 

by simulating farmers’ decision behavior of whether to purchase crop insurance and their 

choices among alternative products, considering varying risk of perils due to climate 

change and sea level rise. Government agricultural policy development and farmer 

response are modeled as a hierarchical Stackelberg leader-follower game-theoretic 

decision process (Bhat, Alexander, and English 1998; Bulut 2017). Hierarchical games 

are multi-level games with at least two players at each level. Such games can be either 

cooperative, in which negotiation between players is permitted, or non-cooperative, in 

which players make decisions independently. In our model, government is assumed to be 

the dominant player, or leader, choosing an optimal crop insurance premium and subsidy 
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in order to optimize the participation response of the subordinate player, or follower, in 

this game represented by farmers. Ultimately, this paper seeks to understand the 

implications of funding insurance subsidies, how subsidy policies can influence 

participation rates, and setting premium prices for adequate participation by farmers and 

on private insurers’ underwriting ability. The model is applied to two specialty crops in 

South Florida, which is predominant in sub-tropical agriculture, prone to tropical storms, 

and one of the least studied regions from a crop insurance point of view.  

4.1.1. Crop Insurance 

Due to a host of stochastic factors, including climatic conditions, agricultural production 

and specifically crop production has been characterized as volatile and risky (van 

Asseldonk, Meuwissen, and Huirne 2003; Joy Harwood et al. 1999). Dismukes (2002) 

states that “its economic returns are subject to events beyond a farmer’s control,” citing 

the examples of market conditions as well as rainfall, temperature, other weather 

conditions, plant disease, and insect infestations. The U.S. government has instituted 

various policies and programs in an attempt to assist farmers in managing these risks, 

starting as early as the 1930s, making payments to farmers in times of low prices and 

providing disaster assistance payments and crop insurance (Glauber and Collins 2002; 

Smith and Goodwin 2006; Dismukes 2002). 

Since the 1930s, the federal crop insurance program has been an important agricultural 

policy instrument (Serra, Goodwin, and Featherstone 2003). The U.S. Federal Crop 

Insurance Corporation (FCIC) operates the federally subsidized Multiple Peril Crop 

Insurance (MPCI) Program. The 1980 Federal Crop Insurance Act overhauled the MPCI 

program with the intention to reduce the need for large-scale ad hoc disaster relief 
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programs, expanding coverage access across crops and regions and establishing a target 

participation rate of 50% of planted acreage (Smith and Baquet 1996). The Federal Crop 

Insurance Reform Act of 1994 and the Agricultural Risk Protection Act of 2000 again 

restructured the crop insurance program, increasing premium subsidies mainly at lower 

insurance coverage levels then at higher coverage levels, respectively. The Food, 

Conservation, and Energy Act of 2008 further increased premium subsidy rated for 

certain insurable units of land. According to Collins and Bulut (2011), these progressive 

increases in premium subsidies stimulated higher and more diverse participation over 

time, improving the MPCI program’s actuarial performance by “reducing adverse 

selection and enhancing underwriting and ratemaking.” According to Coble (2002), high 

participation rate reflects farmers’ acceptance of MPCI, and “has been a priority of policy 

makers and program administrators… [due to] the widely held belief that MPCI cannot 

effectively substitute for other forms of federal crop disaster relief unless a large 

proportion of farmers are insured.” 

Bulut (2017) cites four reasons for government support of crop insurance. Because crop 

insurance risks are systemic, they may result in missing markets (Duncan and Myers 

2000). This discourages government use of ad hoc disaster payments, which discourage 

the purchase of crop insurance (United States Government Accountability Office 2014; 

van Asseldonk, Meuwissen, and Huirne 2003; Innes 2003). Additionally, asymmetric 

information, causing moral hazard and adverse selection problems, can lead to 

underinsurance market failure (Nelson and Loehman 1987). Lastly, farmers may be 

optimistically biased, systematically underestimating the risk of losses such as those 
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caused by natural disasters (D. R. Just 2002; Oliver Mahul and Stutley 2010; K. H. Coble 

and Barnett 2013). 

Knight and Coble (1997) undertook a survey of crop insurance literature from 1980 

through 1997, examining econometric research conducted at both farm and aggregate 

levels. Farm-level models of demand for crop insurance, following Calvin (1992), 

typically strive to explain farmers’ decision of whether to purchase insurance, or, 

following Smith and Baquet (1996), study the decisions of both whether to purchase and 

how much to insure. When taking an aggregate approach, such as at the county- or state-

level, as in Goodwin (1993), studies generally seek to explain the proportion of either 

land coverage or farmers choosing to insure. Recent studies, such as Richards (2000), 

have examined not only how much land a farmer chooses to insure but also the level of 

coverage they purchase. 

Studies at the farm level have taken a variety of approaches to incorporate some measure 

of return to or cost of insurance. For example, while Calvin (1996) and Coble et al. 

(1996) incorporated the expected return to insurance, Just and Calvin (1990) calculated 

the quasi-rent resulting from insurance. Both Goodwin and Kastens (1993) and Smith and 

Baquet (1996) follow Goodwin (1993) in incorporating the MPCI premium, as does this 

study. These previous studies using premium rate found negative effects on participation 

and quantity of coverage. 

While our study incorporates the MPCI premium to analyze participation, we do so using 

aggregate county-level data to estimate MPCI participation, following similarly to 

Gardner and Kramer (1986), and Barnett, Skees, and Hourigan (1990). Gardner and 

Kramer (1986) found that at the aggregate level, the expected rate of return to insurance 



95 
 

[(expected indemnity – premium) / (premium)] had a significant positive effect on 

participation. This is consistent with Cannon and Barnett, who found a negative effect of 

change in the net cost of insurance on crop insurance participation. 

Studies about MPCI purchase decisions since Knight and Coble’s 1997 survey have 

tended to focus on a host of other factors, including risk characteristics and farm income 

level  (Makki and Somwaru, 1999), revealing a relationship between risk and choice of 

insurance contract. Makki and Somwaru (2001) went on to analyze longitudinal crop 

insurance purchase decision data from 1995 to 1999, identifying factors that influenced 

farmers’ choices of crop insurance purchase to varying degrees: risk level, premium 

price, premium subsidy, expected indemnity payoffs, availability of alternative insurance 

products, and various insurance contract characteristics. A study by Changnon (2004) on 

the effects of drought forecasts on crop insurance decisions, based on a survey of 

Midwestern (Illinois, Indiana, Iowa, Nebraska, and Ohio) farmers, found that 40% of 

respondents changed their coverage based on the drought forecasts. In terms of risk 

characteristics, Sherrick et al. (2004) found that farmer-specific reservation insurance 

premiums depended on expected rates of return with and without insurance, as well as 

farmer-specific levels of risk aversion. Considering data from a 1989 survey, Just, Calvin, 

and Quiggin (1999) concluded that “risk aversion is a relatively weak incentive for 

participation… [suggesting] that farmers’ asymmetric informational advantages lead to 

insuring those operations with higher expected indemnities” (Ramirez and Scott 

Shonkwiler 2017). 

An analysis of the effect of increased insurance subsidies on land use by Claassen, 

Lubowski, and Roberts (2005) determined that in some areas, as crop insurance subsidies 
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rose, a greater amount of land was put into production. A study by Babcock and Hart 

(2005) specifically examined what effect the subsidy changes related to the 2000 

Agriculture and Risk Protection Act (ARPA) had on insurance purchase decisions, 

comparing coverage levels before and after ARPA and concluding that purchases of 

coverage levels above 65% more than doubled. More recent studies examine the effect 

and magnitude of premium subsidies on insurance participation decisions. O’Donoghue 

(2014) found that corn insurance demand (measured as liability per acre) increases by 

0.13%, nearly doubling depending on region, per percent increase in subsidy per acre. 

Similarly, Yu et al. (2018) found that a 10% increase in subsidy per dollar of liability 

induced a 0.43% increase in planted acreage. 

Much of the literature on crop insurance focuses on participation. While this type of 

analysis provides insight about farmers crop insurance purchase decisions and behavior 

considering crop insurance subsidies, it fails to reveal much about the strategic 

interaction between government (who provides said subsidies) and farmers. More 

recently, however, efforts to analyze this in a theoretical framework have been 

undertaken (Bulut 2017). This study continues such efforts by examining the interaction 

with an empirical analysis of the cases of two specialty crops in South Florida, fresh 

market sweet corn and fresh market tomatoes. This study extends the crop insurance 

literature in several ways. It casts the three-way strategic interactions between farmers, 

insurers and government using a refined theoretical framework, Stackelberg leader-

follower game. To our knowledge, this is the first empirical application of such model to 

crop insurance literature. Second, this study addresses a key policy relevant question that 

agricultural risk management agencies grapple with. Confronted with uncertain climate, 
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farmers do need an affordable crop insurance program to keep their farming solvent. 

Unless there is adequate participation by farmers, insurance program can neither be 

affordable nor solvent. Their participation rate, in turn, directly depends on net premium 

they pay relative to their reservation premium (i.e., the maximum net premium they are 

willing to pay such that they are indifferent to purchase insurance or not). This 

reservation premium could depend on farmers’ expectations about climate and business 

risks in general. Therefore, it is important for the risk management agency to set premium 

and subsidies such that they do not exceed farmers’ reservation premium, in order to 

ensure a sustained farmers’ participation in the program. The reservation premium and 

subsidy serve as respective ceiling and floor amount, respectively. The model presented 

in this develops a rule for empirically estimating such reservation values under varying 

climate risk scenario. Third, past research on insurance for specialty crops in the tropics 

is limited. South Florida specialty crops provide a unique geographic and insurance 

context given that the region is prone to increasing climate risk and crops involved are 

high value crops. 

4.2. Methods 

4.2.1. Delineation of the study area 

This study focuses on two specialty crops, fresh market corn and fresh market tomatoes, 

in Miami-Dade and Palm Beach counties in South Florida. According to Ligon (2011), 

“Specialty crops, particularly fruits and vegetables, differ in several important respects 

from traditional commodity crops in ways which may affect both demand for insurance 

and the difficulty of supplying insurance.” For example, spatial shocks (e.g., heavy 

precipitation events) which affect production within a relatively small geographical area 
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will have a greater effect on aggregate supply than the same shock for a cereal crop, 

which is storable and has more geographically dispersed production (Ligon 2011).  

The insured liability of specialty crops has been trending upward in recent years (Collins 

2012). In 2011, specialty crops accounted for approximately 2.6 percent of total insured 

acres, but approximately 10.3 percent of total insured liability. This is due in part to 

specialty crops’ high value per acre. Collins (2012) goes on to describe various 

challenges in expanding insurance coverage for specialty crops, including the small 

acreages of some specialty crops, accurately assessing the effects of weather on crop 

production for loss adjustment, and the usual insurance problems of adverse selection and 

moral hazard. 

As of 2016, Florida ranked first in value of production of fresh market tomatoes, 

accounting for 40% of the total U.S. value, and second in value of production of fresh 

market sweet corn, accounting for 24% of the total U.S. value (Florida Department of 

Agriculture and Consumer Services 2017).  

Having a subtropical to tropical climate with a wet (warm) season and a dry (cool) 

season, cropping season in South Florida for these vegetables typically coincides with the 

dry season of October through May. Precipitation patterns in general as well as extreme 

precipitation events (in South Florida are found to be significantly correlated with large-

scale climate effects, including the Atlantic Multidecadal Oscillation (AMO), with a 55-

70 year periodicity; the Pacific Decadal Oscillation (PDO), with a 20-30 year periodicity; 

and the El Niño Southern Oscillation (ENSO), with a 3-7 year periodicity (Gunn 2010; 

South Florida Water Management District 2011; Wong et al. 2014). During El Niño 

years, the polar jet stream takes a more southerly flow which allows more frontal systems 
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to reach Florida, increasing precipitation particularly in the dry season (South Florida 

Water Management District 2011). For the study period of 1989 to 2017, El Niño years 

are 1991-92, 1994-95, 1997-98, 2002-07, 2009-10, and 2014-16 (NOAA). The 2014-16 

El Niño was particularly strong compared to the rest of the US states (Figure 1), leading 

to nearly $3 million in sweet corn and tomato losses in Miami-Dade and Palm Beach 

counties.  

4.2.2. Game-theoretic models 

Game-theoretic methods, both cooperative and non-cooperative, have been widely used 

to simulate the strategic behaviors of agents in the contexts of manufacturing (Zhao et al. 

2012), engineering (Liu, Ji, and Jiao 2013), environmental policy (Bhat, Alexander, and 

English 1998; Sinha et al. 2013; Hong et al. 2017), and   

in insurance markets, e.g., natural disaster and crop insurance markets (El-Adaway et al. 

2015; O. Mahul 1999; Bulut 2017).  Hierarchical market solutions, first introduced by 

Heinrich von Stackelberg in 1934, have been employed to simulate sequential decision-

making in situations in which one agent has dominating power over the others (von 

Stackelberg 1952). Now known as a Stackelberg equilibrium, this sequential game 

solution concept involves players with asymmetric roles, one a leader and the other 

following. The leader announces their action and the follower responds by choosing their 

optimal response given that announcement. The leader, knowing the follower’s objective 

function and anticipating the response, chooses the action that optimizes their own 

performance given the follower’s rational response. Followers, in order to maximize their 

own objective function, decide whether to take certain action.  In a crop insurance 

market, for instance, farmers as followers would decide which insurance product to 
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purchase given the price of insurance premium, their risk factors, and a vector of 

economic variables. Government, knowing farmers’ optimal decision, sets the premium 

and subsidy levels. The farmers’ dynamic problem will first be developed, and all 

necessary conditions derived. These conditions will then be included as constraints in the 

development of the government’s dynamic problem, in which it attempts to balance the 

income from and flood indemnity claims paid to farmers’ insured crops by insurers. 

Interaction between government and farmers is assumed to be non-cooperative, which 

can still result in a socially efficient decision strategy under certain possible conditions 

(Bhat, Alexander, and English 1998). To this end, a sequential hierarchical game 

becomes particularly relevant for simulating the decision behavior of the government as a 

price-setter for both premiums and subsidies, and farmers as followers aiming to 

maximize their profits given the likelihood of perils. 

4.2.2.1 The farmers’ model 

We consider a large number (𝑁) of farmers. The farmers’ objective is to maximize net 

revenue from agricultural production (market return less production cost), subject to 

stochastic peril. Following Duncan and Myers (2000), a typical farmer n of the 

population faces the prospect of a loss with probability 𝜃 and no loss with probability 

(1 − 𝜃). Farmers are assumed to lack the ability to influence the government’s policy 

decision once it is made. Alternatively, they attempt to optimally make their decisions 

regarding insurance purchase in response to the government’s decision variable. It is 

assumed that farmers are price takers and are in a climatologically homogenous region.   

Without the purchase of insurance, an individual farmer n’s total net revenue (TR) is 

𝑇𝑅 = 𝐴(1 − 𝜃)𝑅        (1) 
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where A is planted acres, R is net revenue per acre, and θ is the expected probability that 

a certain peril will occur. With the purchase of insurance, the farmer’s TR will be lowered 

by the net premium paid as below, 

𝑇𝑅𝑗 = 𝐴[𝜃𝑅𝑗 − (𝑃𝑗 − 𝑆𝑗)]       (2) 

where P is the cost of insurance premiums, S is the subsidy for purchase of insurance, and 

subindex j is the specific insurance product purchased by the farmer. Following the crop 

insurance decision framework of Sherrick et al. (2004), a farmer will decide to purchase 

insurance product j if their expected TR (or utility) with insurance is at least as much as 

without the insurance. Formally, 

𝑃𝑟𝑜𝑏(𝑦𝑒𝑠 𝑡𝑜 𝑗) = 𝑃𝑟𝑜𝑏{𝐴[𝜃𝑅𝑗 − (𝑃𝑗 − 𝑆𝑗)] ≥ 𝐴(1 − 𝜃)𝑅}  (3) 

The above inequality can be solved for either the farmer’s maximum willingness to pay 

(WTP) for insurance (𝑃𝑗
∗) or the minimum subsidy (𝑆𝑗

∗) a farmer is willing to accept 

(WTA) to participate in the insurance market. Solving the inequality, the probability that 

(𝑇𝑅 − 𝑇𝑅𝑗) ≥ 0 is assumed to yield a linear probability function, 

𝑃𝑟𝑜𝑏(∆𝑇𝑅𝑗 ≥ 0) = 𝛼𝑋       (4) 

where X is a vector of Pj, Sj, Mj, and CCI, and where M represents prior participation and 

CCI represents general market conditions. Logit and probit models were also considered, 

and ultimately rejected in favor of a linear probability model using a censored Tobit 

estimator. 

4.2.2.2 The government’s model 

Adapting Bulut (2017), a two-stage strategic interaction between the government and 

farmers is considered. In the first stage, the government announces the ex ante premium 
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and subsidy rates. In the second stage, farmer n makes their insurance purchase decision 

by taking these rates as given. Following this, stochastic events unfold, and a loss does or 

does not occur. Thus, in this scenario, the government is the natural Stackelberg leader, 

making the farmer the follower. In the first stage, the leader (government) solves the 

problem of setting premium and subsidy rates by determining how the follower (farmers) 

will respond in the second stage.  

With symmetric information, the government, the leader of this game, is assumed to set 

the price of the premium at the optimal participation price 𝑃𝑗
∗, knowing that the farmer-

followers will optimally decide their participation rate as in (Eq. 4) in response to the 

leader’s optimal insurance rate decision and given level of subsidy. That is, the leader 

attempts to set the premium 𝑃𝑗
∗∗ at a rate that implicitly equates the total premium 

payment with expected indemnity payment. Formally, 𝑃𝑗
∗∗ can be determined by solving,  

𝐶𝑗𝑃𝑗 − 𝐶𝑗𝜃𝑅𝑗 = 𝐶𝑗(𝑃𝑗 − 𝜃𝑅𝑗) = 0       (5) 

Subject to (Eq. 4), where 𝐶𝑗 is the extent of area covered by insurance and is a function of 

𝑃𝑟𝑜𝑏(𝑦𝑒𝑠 𝑡𝑜 𝑗), or 𝑃𝑟𝑜𝑏𝑗
∗ and total acres (𝐴̅).  

That is, 𝐴̅𝑃𝑟𝑜𝑏𝑗
∗(𝑦𝑒𝑠 𝑡𝑜 𝑗)(𝑃𝑗 − 𝜃𝑅𝑗) = 0, or, 

𝐴̅𝑃𝑟𝑜𝑏𝑗
∗(𝑃𝑗 , 𝑆𝑗 , 𝑀𝑗 , 𝐶𝐶𝐼)(𝑃𝑗 − 𝜃𝑅𝑗) = 0     (6) 

From (6) above, we can develop a function for the optimal premium 𝑃𝑗
∗∗ which will then 

determine the optimal participation rates of farmers for insurance product j. 𝑃𝑗
∗∗ is the 

most that farmers would be willing to pay (reservation premium) at which their return 

with and without insurance would be the same. Formally, 

𝑃𝑗
∗∗ = 𝛽0 + 𝛽1𝐼𝑡−1 + 𝛽2𝐶𝑟𝑜𝑝𝑃𝑟𝑖𝑐𝑒 + 𝛽3𝑅𝑎𝑖𝑛𝐸𝑣𝑒𝑛𝑡   (7) 
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 4.2.3. Estimation of willingness to pay and willingness to accept 

Probability of participation (Eq. 4) was estimated as a censored Tobit model, with a lower 

limit of 0 and upper limit of 1. Following standard practice (Johnston et al. 2013), the 

estimates of WTP (P*) and WTA (S*) were expressed as the ratios of the variable 

coefficients to participation coefficient as in (Eq. 4). Formally, 

𝑃∗ =
𝛽̂0+𝛽̂2𝑆̅+𝛽̂3𝑀̅+𝛽̂4𝐶𝐶𝐼̂

𝛽̂1
       (8) 

And, 

𝑆∗ =
𝛽̂0+𝛽̂1𝑃̅+𝛽̂3𝑀̅+𝛽̂4𝐶𝐶𝐼̂

𝛽̂2
       (9) 

Crop insurance and loss data were retrieved from the United States Department of 

Agriculture (USDA) Risk Management Agency. Crop production and value data were 

retrieved from the USDA Census of Agriculture. Sources of weather and climate data 

include the National Oceanic and Atmospheric Administration (NOAA) National Centers 

for Environmental Information Climate Data Online and NOAA National Weather 

Service Climate Prediction Center. Data were aggregated into a county-level format for 

each of the two selected crops, and monthly and annual means were calculated for the 

study period. Dollar variables are deflated to 2017 values. All analysis was conducted 

using Stata13. 

4.3. Results and analysis 

4.3.1 Participation 

At sample mean levels, estimated likelihood of participation for farmers growing fresh 

market sweet corn was 0.7523. Estimates for likelihood participation were higher in 

Miami-Dade County than in Palm Beach County, at 0.7821 and 0.7278, respectively. 
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Farmers growing fresh market tomatoes were approximately half as likely to participate 

in the insurance market, with overall likelihood at 0.3485. Similarly to sweet corn 

farmers, Miami-Dade tomato farmers had a higher likelihood of participation than those 

in Palm Beach, at 0.4041 and 0.2498, respectively. Results from Tobit model estimations 

of insurance market participation are described in Table 4.1.  

Coefficients for premium and subsidy were significant and with expected signs, and for 

both sweet corn and tomatoes the subsidy coefficient is nearly twice that of the premium, 

indicating that the level of government subsidy is a stronger driver of insurance purchase 

decisions than the premium price. Subsidies are on average 55% and 58% of the premium 

price over the study period for sweet corn and tomatoes, respectively, and the model 

reflects this relationship. Insurance participation in the previous period was positive and 

significant, and for both sweet corn and tomatoes was the most influential variable. The 

coefficient for CCI was also positive and significant, although more than double for 

tomatoes versus sweet corn. 

The sample mean per-acre premium price across the study period of 1995 to 2017 for 

fresh market tomatoes was $444.56 per acre (in 2017 U.S. dollars), more than quadruple 

that of fresh market sweet corn ($100.21 per acre). Sample mean of subsidy in dollar per 

acre for sweet corn and tomatoes, deflated to 2017 U.S. dollars, are $55.49 (55.37% of 

the average premium) and $258.99 (58.26% of the average premium), respectively.   

For fresh market sweet corn, farmers’ maximum WTP for premium was $401.09 in 

Miami-Dade and $264.03 in Palm Beach, and $325.84 across both counties. Minimum 

subsidy WTA was $29.77, $86.15, and $60.72 across Miami-Dade, Palm Beach, and both 
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counties, respectively. The percent of reservation subsidy to premium in Miami-Dade 

was 7.42% and in Palm Beach was 32.63%, and 18.63% overall across both counties. 

Farmers of fresh market tomatoes similarly had a higher WTP for premium in Miami-

Dade than in Palm Beach, at $1023.35 versus $907.14, and $962.12 overall. Miami-Dade 

tomato farmers were WTA a minimum subsidy of $91.33, while in Palm Beach the 

minimum was $0. The percent of reservation subsidy to premium was 8.92% in Miami-

Dade and 0% in Palm Beach, and 3.11% overall. 

4.3.2 Leader’s actuarial premium model estimation 

Various model specifications for each fresh market sweet corn and fresh market tomatoes 

are described in Table 4.2. Variables in the models reflect those that RMA considers for 

its derivation of actuarially fair premiums, including expected crop price, expected 

participation, expected losses, and expected peril (in this case the specific peril is extreme 

precipitation). The optimal fresh market sweet corn premium estimated at the sample 

average using Model C2 was $126.79. Using Model T1, the estimated per-acre premium 

for maximum participation of fresh market tomato farmers was $508.32. 

Maximum WTP and minimum WTA were estimated for premium and subsidy, 

respectively, for each county individually as well as for sweet corn and tomatoes overall 

and are described in Table 3.  

At the reservation premium, or maximum WTP for insuring sweet corn, there is only one 

crop year, 2010, in which per-acre indemnity exceeds the per-acre reservation premium 

(Figure 4.2). However, the per-acre indemnity exceeds the average annual actual crop 

premium several years during the study period. On the contrary, the actual crop premium 
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stays much below the maximum reservation premium. For tomatoes, the per-acre 

indemnity twice exceeds the maximum per-acre premium, in 2002 and 2012 (Figure 4.3). 

The percent of reservation subsidy with respect to premium for sweet corn and tomatoes 

overall were 18.63% and 3.11%, respectively. In Miami-Dade, the percent of subsidy was 

7.42%, compared to Palm Beach’s 32.63%. This suggests that Palm Beach farmers 

demand higher subsidy rates than do Miami-Dade farmers, and Miami-Dade farmers may 

be more risk-averse. For tomatoes, however, this is reversed, with Miami-Dade farmers 

demanding a higher subsidy rate of 8.92% to 0% for Palm Beach, indicating that Palm 

Beach farmers are willing to insure even without subsidies. 

4.3.2 Policy and climate simulations 

The U.S. Government Accountability Office (2014) found that reducing premium 

subsidies could potentially save hundreds of millions of dollars in the federal budget, 

Tables 4 and 5 illustrate the effects this action would have on participation rates. Holding 

per-acre premium prices constant, reducing subsidies by 20% lowers participation from 

75% to 68% and from 35% to 28% for sweet corn and tomatoes, respectively, at the 

highest level of reduction (Table 4). Nearly all years in which per-acre indemnity exceeds 

per-acre premiums coincide with occurrences of El Niño (Figures 4.2 and 4.3). 

4.4. Conclusions 

The existing literature primarily looked at farmers’ participation behavior (i.e., response 

to insurance premium or subsidy), without looking at the policymaker’s decision. Our 

paper is the first to empirically capture the simultaneity of farmers’ and government 

decisions through a hierarchical strategic leader-follower game model. Farmers’ crop 

insurance participation decision was driven mainly by prior participation and the levels of 
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premium and subsidy. The government’s decision was affected by participation levels, 

crop price, prior indemnity, and peril, and varied by county. The models yielded optimal 

WTP for premium and WTA for subsidy, which have been above the government-set 

premium rates.  

Actual indemnities from flood and excess moisture have exceeded crop premiums in 

several years, and maximum WTP in one year, while per-acre premiums consistently 

stayed well below maximum WTP.  

As evidenced in Figures 4.2 and 4.3, mean per-acre indemnity resulting from excess 

moisture or precipitation sometimes exceeded the mean per-acre premium for both sweet 

corn and tomatoes, while the per-acre premium has remained consistently well below 

farmers’ maximum WTP. The RMA has been able to set the premium at a low enough 

price to encourage participation, while also keeping subsidy rates at a fairly consistent 

level, which has caused the per-acre indemnity to exceed the actual premium a number of 

times. This demonstrates that the government must be cautious in setting premiums in 

response to expected perils. Any government decision to reduce subsidies may adversely 

affect the farmers’ decisions and destabilize the overall crop insurance market. 

Particularly as climate risks continue to increase, this situation may not sustain the crop 

insurance market in the long term, and since the reservation premiums for both sweet 

corn and tomatoes are much higher than the actual observed premiums, farmers may be 

able to handle higher premium prices than what they are currently paying. However, that 

means that RMA must bear a higher subsidy burden, which may be an inevitable policy 

choice RMA may have to make in an effort to keep the insurance market afloat. 
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A trend analysis by the South Florida Water Management District (2011) from 1950-

2008 shows a general decrease in wet season precipitation, possibly due to a shortening 

or delay of the wet season, but an increase in the number of wet days during the dry 

season. Coupled with sea level rise and the attendant need for flood control, a series of 

strong El Niño years could prove catastrophic not only for farmers but for insurers. 

Reductions in subsidies may also negatively impact insurers. As subsidy rates decline, so 

do the corresponding participation rates for a given insurance product. 
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Tables 

Table 4.1. Tobit regression results, insurance market participation in Miami-Dade 

and Palm Beach counties 

 Fresh Market Sweet Corn Fresh Market Tomatoes 

Observations 51 45 

Log-Likelihood 44.0313 31.5504 

Variable Coefficient (P-value) Coefficient (P-value) 

Per-Acre Premium -0.0033 (0.00) -0.0006 (0.03) 

Per-Acre Subsidy 0.0064 (0.00) 0.0012 (0.05) 

Previous Year Participation 0.5499 (0.00) 0.7343 (0.00) 

Consumer Confidence Index 0.0017 (0.02) 0.0037 (0.00) 

Constant 0.1151 (0.30) -0.3473 (0.02) 
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Table 4.2. Premium regression results 

Fresh Market Sweet Corn 

 Model C1 Model C2 Model C3 Model C4 

Adjusted R Square 0.93 0.87 0.88 0.22 

Observations 36 36 36 36 

Variable 
Coefficient 

(Std. Error) 

Coefficient 

(Std. Error) 

Coefficient 

(Std. Error) 

Coefficient 

(Std. Error) 

Intercept  
-42.5014 

(65.6348) 

-36.7346 

(61.8134) 

-166.8853 

(155.1799) 

Per-Acre Indemnityt-2 
0.06236 

(0.03778) 

0.06248 

(0.03814) 

0.06207 

(0.03755) 

0.26203 

(0.08745)** 

Crop Pricet-1 
0.0384 

(0.0080)* 

0. 0452 

(0. 0132)* 

0.04592 

(0.0128)** 

0.04896 

(0.0327) 

Extreme Rain Eventt-1 
0.10545 

(0.9153) 

0.2892 

(0.9666) 
  

Participationt-1 
53.18154 

(21.8593)** 

72.8229 

(37.5099)** 

70.4319 

(36.1067)** 

126.1255 

(91.1857) 

County Dummy (PB=1) 
-123.7143 

(9.683)* 

- 123.3320 

(9.7931)* 

-122.4839 

(9.2354)* 
 

Fresh Market Tomatoes  

 Model T1 Model T2 Model T3 Model T4 

Adjusted R Square 0.73 0.74 0.01 0.04 

Observations 36 36 36 36 

Variable 
Coefficient 

(Std. Error) 

Coefficient 

(Std. Error) 

Coefficient 

(Std. Error) 

Coefficient 

(Std. Error) 

Intercept   
790.0440 

(311.0084)** 

811.7306 

(291.4989) 

Per-Acre Indemnityt-2 
0.1537 

(0.0902)*** 

0.16188 

(0.0836)*** 

0.1138 

(0.0796) 

0.1081 

(0.0743) 

Crop Pricet-1 
0.02007 

(0.0167) 

0.02398 

(0.0081)* 

-0.0264 

(0.02123) 

-0.0266 

(0.0209) 

Extreme Rain Eventt-1 
2.4297 

(9.0430) 
   

Participationt-1 
104.85 

(174.2490) 

93.67687 

(166.7427) 

-57.4941 

(165.2168) 

-76.3857 

(140.5113) 

County Dummy (PB=1) 
80.6564 

(97.4179) 

89.0560 

(90.9182) 

20.0152 

(88.3249) 
 

*p<.01, **p<.05, ***p<.10 
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Table 4.3. Maximum premium WTP and minimum subsidy WTA for participation 

in crop insurance market, 2017 U.S. $ 

 Overall Miami-Dade Palm Beach 

Fresh Market Sweet Corn    

Maximum premium WTP $325.84 $401.09 $264.03 

Minimum subsidy WTA $60.72 $29.77 $86.15 

Percent of reservation subsidy to 

premium 
18.63% 7.42% 32.63% 

Fresh Market Tomatoes    

Maximum premium WTP $969.12 $1023.35 $907.14 

Minimum subsidy WTA $30.06 $91.33 $0 

Percent of reservation subsidy to 

premium  
3.11% 8.92% 0% 

 

 

Table 4.4. Participation at various levels of subsidy reduction for Sweet Corn in 

Miami-Dade and Palm Beach Counties, 2017 

Fresh Market Sweet Corn     

% Reduction in subsidy 5% 10% 15% 20% 

$/acre Reduction in subsidy 2.77 5.54 8.32 11.09 

New subsidy per acre $52.71 $49.94 $47.16 $44.39 

Participation rate 73.43% 71.64% 69.84% 68.04% 

 

 

Table 4.5. Participation at various levels of subsidy reduction for Tomatoes in 

Miami-Dade and Palm Beach Counties, 2017  

Fresh Market Tomatoes     

% Reduction in subsidy 5% 10% 15% 20% 

$/acre Reduction in subsidy 12.94 25.89 38.84 51.79 

New subsidy per acre $246.04 $233.09 $220.14 $207.19 

Participation rate 33.29% 31.72% 30.16% 28.61% 
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Figures 

Figure 4.1. Percent of average precipitation compared to 1981-2010 average, 

January 1996 

 
(Source: https://www.climate.gov/maps-data/data-snapshots)  
 

6Figure 4.2. Per-acre indemnity vs. premium, Fresh Market Sweet Corn 1990-2017 
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Figure 4.3. Per-acre indemnity vs. premium, Fresh Market Tomatoes 1991-2017 
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