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an external stimulus. However, each cortex only works with restricted signals: cortical

cells respond to lines in specific orientations, while the auditory cortex wakes up when a

particular frequency is received.

For example, in Figure 1.2, there are two video clips containing different semantic

concepts. The upper clip records a briefing session discussing a current disaster situation

while the lower one shows a flooded street with nature sounds, such as water flowing

and wind blowing. Individuals with non-functioning visual or auditory cortices find ways

of coping with their disabilities and leading full lives, but they inevitably miss out on

important stimuli that most would prefer to experience. Restricting out analysis of data to

single modalities of data when multimodal data is available is akin to artificially imposing

a disability upon ourselves. It is more challenging to extract enough information from a

scene using auditory stimuli. In some cases, having only one modality to react requires

significant change before we notice it. For instance, by listening to the dialog in the

conference room we may immediately realize that it is a briefing and identify the topic,

but the sound of flowing wind and water alone may not make the flooding conditions

immediately apparent.

Figure 1.2: An example illustrates when the auditory cortex wakes up
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In a multimedia system, using various data types can significantly improve the final

detection and retrieval performance, especially when there are errors or missing values

in one or more modalities. In nature, a human brain can glean concepts from a video

not only by visualizing the spatiotemporal data but also by listening to the audio and

reading its description. Despite the multimodality of data, traditional Machine Learning

(ML) and data mining studies mainly focused on a single modality, usually textual in-

formation [6]. However, elements in Web data such as typing errors, special characters,

and abbreviations may cause difficulty in semantic detection and information understand-

ing [7]. Therefore, the need for multimodal data analysis has become apparent. As mul-

timodal data generation and collection grows, more reliable and cutting-edge techniques

are required to reap the benefits of obtaining new knowledge.

Cross-modal Semantic Gaps: More recently, multimodal deep learning techniques

have been introduced to enhance the performance of deep models that focus solely on

a single modal data type. By distributing tasks to each model, a multimodal framework

gains the ability to handle multiple data sources and take the data analysis tasks to the

next level. This type of integration framework establishes astounding performance for

specific modalities and aggregates the outcomes to provide high-level semantic concepts.

Although each data modality has its strengths and associated deep learning approaches,

there are still some limitations. For example, when considering multiple modal inputs,

the mixed semantic meanings might confuse the computer model when detecting and

classifying complex semantics. Traditional data fusion techniques usually include early

fusion, late fusion, and middle fusion. Contrary to early fusion, which learns the shared

representation from different modalities before using a single classifier to handle cross-

modal features, late fusion, also known as decision fusion, integrates the prediction results

from several classifiers to generates a comprehensive result. In this case, each classifier

only processes the features representing a particular modality. Both early and late fusion
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Figure 1.3: Early and late fusion strategies apply to multimodal fusion approaches

strategies can be utilized towards multimodal fusion as depicted in Figure 1.3. Topics of

existing studies include, but are not limited to, video (audio-visual) analysis [8], biomed-

ical and healthcare [9, 10], social networks [11], and human-computer interaction [12].

1.2 Proposed Solutions

In this dissertation, a systematic and integrated framework is presented to solve the prob-

lems described above. Without loss of generality, a domain-specific (i.e., disaster) dataset

is used as a test bed for evaluating the major components of the proposed framework. The

analytical procedures are detailed below.

Data Analysis: Various approaches have been developed to convert low-level fea-

tures into high-level semantic concepts, including feature selection [13, 14], feature ex-

traction [15, 16], and classifier selection [17, 18]. Feature selection reduces the dimen-

sionality of the feature space in order to efficiently speed up the learning process without
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compromising the quality of the results. Multilayer Perceptron (MLP) neural networks

are the basis of deep learning architectures. These architectures provide a complex func-

tion to determine the feature values in the feedforward direction. However, there is still

ample room for improvement. Compared to deep learning models, shallow learning mod-

els memorize rather than understand features. Many ML and data mining approaches

seek to understand the precious information in the raw data, while other methods attempt

to fill the gap between low-level features and high-level semantic concepts. Beyond shal-

low learning methods, deep neural networks like stacked MLPs target complex learning

tasks in order to understand the data in greater detail. In a recent study, Genetic Convolu-

tional Neural Network [19] was proposed to learn the structure of deep neural networks

automatically using a Genetic Algorithm (GA). To that end, the authors introduced new

encoding scheme that uses a fixed-length binary sequence to indicate the network struc-

ture. Finally, the F1 score on a reference set is used as a fitness function to determine the

quality of each individual in a population.

Multimodal Deep Representation Learning: Real-world applications usually in-

volve data with various modalities, each containing valuable information. In order to

enhance the performance of these applications, it is essential to adequately analyze all

of the information extracted from the different data modalities. However, most of the

existing learning models ignore some data types focusing instead on a single modality.

Recent advances in multimedia research have sparked interest in improving the detec-

tion and classification of data in closely related modalities. Early attempts to classify

human actions in videos utilized spatial and temporal features procured using detectors

and descriptors, which were later processed through a bag-of-features approach using

Support Vector Machines [20]. A recently proposed novel approach [21] leverages the

advantages of a hybrid framework that learns features from both static data (images) and

optical flows. Automatically learning the structure of neural networks has likewise been
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studied for many years [22, 23]. Researchers have paid significant attention to GA-based

approaches to tune the network structure. In the model proposed by Ijjina et al. [24],

a GA is used to determine the optimal weight initializations of deep neural networks.

Specifically, this approach applied to a Convolutional Neural Network (CNN) to recog-

nize human actions and avoid getting stuck in a locally optimal solution.

Semantic Concept Detection and Multimodal Fusion: Decision fusion is com-

monly used at the last stage before generating conclusive classification results from differ-

ent classifiers. Non-linearly weighted summation is a popular methodology for exploring

the interdependencies among multiple classifiers. Decision fusion schemes are widely

employed to improve the performance in multimodal, multi-temporal, and multi-spatial

feature classification problems. In a multimodal data analysis framework, it is impor-

tant to efficiently leverage the learned feature representations from different modalities,

in order to achieve maximum performance and harvest relevant information.

1.3 Contributions

The major contributions of this dissertation are the following:

• A Feature Affinity-based Multiple Correspondence Analysis and Decision Fusion

(FA-MCADF) framework is proposed to extract useful semantics from a disaster

dataset. The proposed framework achieves improved concept detection results by

utilizing the selected features and their affinities/ranks in each of the feature groups.

Moreover, the decision fusion scheme further improves the accuracy performance.

• A framework of Multiple Correspondence Analysis-based Neural Network (MCA-

NN) is presented to address the challenges in shallow learning. This framework in-

tegrates the Feature Affinity-based Multiple Correspondence Analysis (FA-MCA)

models into one large neural network model. The proposed semantic concept detec-
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tion framework is used in place of frame-based classification in order to determine

the video concept. Furthermore, the process of deciding the neural network module

is automatic. The most important parameters for building the network are obtained

from the output of the FA-MCA models and the corresponding statistical informa-

tion.

• A new genetic algorithm for deep learning optimization and model selection is pro-

posed. Specifically, the proposed genetic encoding can automatically select the best

deep feature model from the population. Instead of manually defining an adaptive

network that considers many characteristics of the datasets, the framework inte-

grates Evolutionary Algorithms (EA) and other techniques to support the automated

searching process. The hyperparameters of a new neural network for one specific

task are determined after the best individual is selected.

• A multimodal deep learning framework that incorporates sequential information

from both audio and textual models is proposed to assist the disaster-related video

classification. For the audio model, an effective and efficient deep learning model

is utilized to extract the most discriminative and high-level feature representations

that is extended through a time distributed fully connected layer and the subsequent

Long-Short-Term-Memory (LSTM) layers. For the textual model, a pre-trained

word embedding layer is used with a stacked LSTM model to generate the video-

level concepts and a novel two-stage fusion technique is proposed based on the

frame-level image, audio, and video-level information by building a CNN model.

Most notably, the image model predictions are incorporated into the audio model

to adjust the classification ranking scores based on the reliability of the different

predicted sound classes.

• A multimodal deep learning framework is proposed that utilizes different sources

of information including visual, audio, and textual data. Unlike conventional fusion
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techniques such as early and late fusion, a two-stage modality fusion approach is

proposed to first analyze the temporal information from both visual and audio data

and then combine the textual information with the results from the first stage.

1.4 Scope and Limitations

The proposed framework has the following assumptions and limitations:

• Some of the parameters are determined empirically, such as the learning rate that

affects the weight updates during backpropagation in the MCA-NN algorithm.

• The proposed framework specifically focuses on improving the performance of se-

mantic concept detection on multimedia data. It is necessary to further expand the

proposed ideas into broader research topics in other domains of data analytics.

1.5 Outline

The organization of this dissertation is as follows: Chapter 2 presents the literature review

in the areas of feature analysis, multimodal deep representation learning, semantic con-

cept detection and multimodal fusion. Chapter 3 provides an overview of the proposed

multimodal data analytics and fusion framework. Each component of the framework are

introduced in details. Chapter 4 discusses semantic data representation solutions, es-

pecially the feature analysis method. Chapter 5 presents the deep learning approaches

for semantic concept detection crossing multiple modalities. Chapter 6 introduces the

proposed fusion approaches based on the statistic distributions and multimodal character-

istics. Finally Chapter 7 provides conclusions along with proposed future work.
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CHAPTER 2

RELATED WORK

In this chapter, the related work in the areas of data analysis, multimodal deep rep-

resentation learning, and multimodal fusion for semantic concept detection will be re-

viewed.

2.1 Feature Analysis

2.1.1 Low-Level Feature Correlation Analysis

Multimedia data analysis has been widely used in a variety of application domains that

need to process and manage huge amounts of raw multimedia data, typically represented

by a group of low-level features [3, 4, 5, 25, 26]. The low-level features are image de-

scriptors of the visual properties that are extracted directly from the images without any

object description [27, 28]. The features are converged into a single form for the sacks of

storage with diversified representatives and can assist the content analysis afterward. On

the other hand, high-level features or concepts that contain the semantic information can

be acquired from the low-level features using some data analytic approaches. In order to

utilize these low-level features to characterize high-level semantic concepts, various ap-

proaches have been developed, including feature selection [14, 29, 30], classifier selection

[18, 31, 32, 33], and decision fusion [34, 35].

Thanks to the technological advances that greatly enhance the quality of the recorded

multimedia data, higher resolution data is widely used to further improve the analysis

outcomes. However, the more features learned from the data, the more computational

time it will need, which slows the analysis process. For most of the multimedia applica-

tions, especially in the current big data era, the dimension of the features is very high and
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thus feature selection is commonly applied to reduce the feature dimension to make the

learning more efficient [36, 37].

After the feature selection step, many ML algorithms can be used to detect the high-

level semantic concepts. Some examples include Artificial Neural Network (ANN), Deci-

sion Tree (DT), Support Vector Machine (SVM), and Multiple Correspondence Analysis

(MCA) [38, 39, 40, 41]. MCA has been used as a classifier which calculates the correla-

tions between the features and the classes. DTs that use information gain to generate the

tree structure are another commonly used classifier. However, while building the branch

for each decision direction, the features are considered independently. SVMs can bound

the generalization error and build consistent estimators from the data.

2.1.2 Deep Learning

Traditional ML heavily relies on feature engineering, an approach that generates repre-

sentative handcrafted features for a specific task. Given the task at hand, the feature engi-

neering process requires the comprehensive domain knowledge to transform raw data into

valuable features. The algorithm will then take those generated features to build models

that can differentiate the observations into distinct concepts. The modern world has de-

veloped new ways to consistently collect and store vast amounts of data. However, when

relying on feature engineer, a major difficulty is how to find the most representative fea-

tures given most of the data collected is unstructured. Therefore, multimedia data which

is the most significant source of unstructured data, requires the use of more advanced

artificial intelligence techniques. For instance, when it comes to processing heteroge-

nous data such as images and video, a lot of time is consumed by the feature engineering

process to reduce the dimensionality of the data by identifying a cohesive subset of at-

tributes that best represent the data. In essence, deep learning is a new technique that has
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proven to be appropriate in advancing the field of AI. It has considerably simplified the

modeling process by incorporating both feature engineering and conceptual learning to

directly process raw data then generate the final, conclusive results [42]. Studies from

different research fields have shown how deep learning eases the research work by re-

quiring less task-specific manual process. Some notable frameworks that have leveraged

deep learning into real-world applications include recommender systems [42], answer

selection [43, 44], and medical image analysis [45]. Compared to the traditional indepen-

dent feature engineering effort, deep learning models have better capability to generalize

unseen combinations of features by embedding sparse inputs when solving large-scale

regression and classification problems.

In recent years, several extensions of successful deep learning models are introduced

such as ResNetXT [46], Inception-v3 [47], and Inception-ResNet [48]. These models

and their pre-trained weights on very large-scale datasets (e.g., ImageNet) have been

widely utilized in different research and applications. More specifically, recent studies

have shown the importance of the deep features extracted from the pre-trained models

using transfer learning over traditional handcrafted features [49, 50].

2.1.3 Transfer Learning

Based on the No Free Lunch Theorems [51], there is no single form of machine learning

approach could solve all the problems. Thus, a large group of deep learning architec-

tures has been successfully developed to fit appropriately with commonly used datasets.

Generally, CNNs are designed following a hierarchical architecture that consists of both

linear and non-linear layers. Primarily, CNNs were intended to be utilized for basic image

recognition, which made them standout amongst the most well-known and broadly uti-

lized deep learning methods. Different from traditional Artificial Neural Network (ANN)
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models such as Multiple Layer Perceptrons (MLPs), which isolate the feature layers com-

pletely, CNN models take a raw image as input with a two-dimensional structure and share

the feature weights among local neuron connections. This change significantly reduced

the number of parameters and made the model simpler and easier to learn.

Many CNN models are built and trained on ImageNet, a large scale public image

dataset, and can be utilized in transfer learning to tackle visual data classification tasks in

a broader target domain. For this purpose, instead of training an entire CNN model from

scratch, many researchers run the pre-trained reference models as the feature extractors

to construct new feature sets. This process is called transfer learning, and the reference

models are pre-trained on very large-scale datasets, such as ImageNet.

• InceptionV3 [47]; is an updated version of GoogleNet, which introduced a deeper

and wider network [48, 52]. It is the first model that has the convolutional and

pooling layers separated in parallel. Altogether, it consists of twenty-two layers of

a deep system, which conserve both power and memory through the use of extra

sparse layers. The main piece of this network is identified as “Inception” which

generates more optimal locality and repeats it spatially. Since only a small number

of neurons are effective, the width/number of the convolutional filters of a particular

kernel size is kept small. Also, it uses convolutions of different sizes to capture the

details at varied scales (5× 5, 3× 3, 1× 1). The module also has a bottleneck layer

(the 1× 1 convolutions). This is beneficial since it aids in massive reduction of the

computation requirement.

• Residual Networks (ResNet) [53]: Generally, ResNet overcomes the potential

overfitting and vanishing gradient issue by constructing residual modules, which

increase the depth of the model. Similar to InceptionV3, it uses a global aver-

age pooling followed by the classification layer.Through the changes mentioned,

ResNets were learned with network depth of as large as 152.
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• MobileNet: MobileNet [54] is an efficient lightweight CNN model for mobile and

embedded vision applications. The standard convolutions are factorized into point-

wise convolutions and depthwise convolutions. The core layer of MobileNet is

depthwise separable filters, named as Depthwise Separable Convolution [54]. The

network structure is another factor to boost the performance. Finally, the width

and resolution can be tuned to tradeoff between latency and accuracy. Depthwise

separable convolutions which are a form of factorized convolutions which factor-

ize a standard convolution into a depthwise convolution and a 1 × 1 convolution

called a pointwise convolution. In MobileNet, the depthwise convolution applies a

single filter to each input channel. The pointwise convolution then applies a 1 × 1

convolution to combine the outputs the depthwise convolution.

• DenseNet: Proposed by Huang et al. in 2016 [55], DenseNet built the network

structure which connects every layer to every other layer in a feedforward fash-

ion. This modification obtains significant improvement by strengthening the fea-

ture propagation and encouraging the reuse of feature, which substantially reduce

the number of parameters.

• VGG16: This architecture is from the VGG group in Oxford [56]. It makes the

improvement over AlexNet by replacing large kernel-sized filters (11 and 5 in the

first and second convolutional layers, respectively) with multiple 3×3 kernel-sized

filters one after another. With a given receptive field (the effective area size of

the input image on which output depends), multiple stacked smaller size kernel is

better than the one with a larger size kernel because multiple non-linear layers in-

creases the depth of the network which enables it to learn more complex features,

and that too at a lower cost. There are blocks with same filter size applied mul-

tiple times to extract more complex and representative features. This concept of

blocks/modules became a common theme in the networks after VGG. The VGG

14



convolutional layers are followed by 3 fully connected layers. The width of the

network starts at a small value of 64 and increases by a factor of 2 after every sub-

sampling/pooling layer. While VGG achieves a phenomenal accuracy on ImageNet

dataset, its deployment on even the most modest sized GPUs is a problem because

of huge computational requirements, both in terms of memory and time. It becomes

inefficient due to large width of convolutional layers.

2.1.4 Search and Optimization Algorithms

Both genetic algorithms and evolutionary programming are population-based optimiza-

tion algorithms that incorporate many biological evolution operations to improve the qual-

ity of the solutions iteratively [57]. The operations include reproduction, mutation, re-

combination (a.k.a. crossover), and selection. A fitness function is defined to evaluate the

health of each individual during the evolution process. Generally, a genetic algorithm is

used to find precise solutions to both optimization and search problems, including finding

either the minimum or the maximum function [58]. Compared to traditional methods, a

genetic algorithm progresses from a population of candidate solutions, hence minimiz-

ing the chances of finding a local optimum. They can function under a noisy, nonlinear

space, and are flexible to adjust. Recently, researchers have seen working on ways in

which genetic algorithms can be used with evolutionary computation such as neural net-

works. Evolutionary programming is used in evolution simulation and to maximize the

suitability of multiple solutions within an objective function. It relies on a known gradient

within the search space when applied to design problems whose objective is the creation

of new entities [59]. The recombination operation is eliminated from evolutionary pro-

gramming because it considers each individual as an independent species. However, its

advantage is the same as that of genetic algorithms, where no assumption is made about
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the underlying fitness landscape. Compared to other methods, they perform well on ap-

proximating solutions for nearly all types of problems and act efficiently when combined

with neural networks.

Grid search is used to perform hyperparameter tuning to determine the optimal value

for a specific model. Compared to genetic algorithms, grid search helps to find near-

optimal parameter combination within specified ranges, such as support vector machine

parameter optimization [60]. Gradient-based optimization can be applied to the optimiza-

tion of neural network’s learning rate separately for every iteration and layer. Compared

to manual tuning, it enhances the ability to learn completely new data sets. However, the

main disadvantage is that backpropagation across the entire training procedure requires a

lot of time.

Random search algorithms are used to randomly select a representative samples from

a given search space in order to identify the optimal value in the sampling [61, 62]. It does

not require derivatives to search in a continuous domain. Compared to grid search, the

chances of finding optimal parameters are higher because of the random search pattern.

Random search is faster than exhaustive search, but it is unreliable in determining the

optimal solution.

A Bayesian optimization algorithm is a powerful tool when it comes to joint optimiza-

tion design choices due to its ability to increase both product quality and productivity of

human beings through an enhanced automation capacity [63]. It has been popularly used

in many application domains, including interactive user-interfaces, environmental moni-

toring, automatic network architecture configuration, and reinforcement learning. Primar-

ily in reinforcement learning, Bayesian optimization is used to tune the parameters of a

neural network policy automatically, and to learn value functions at advanced levels of the

reinforcement learning hierarchy. The technology can also be used to determine attention

policies within image tracking with the use of deep neural networks. Compared to man-
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ual tuning methods, this approach can be used to tune many parameters simultaneously,

which is essential for machine learning systems. The disadvantage with this technol-

ogy, however, is that it is independent and relies on an optimizer to search the surrogate

surface. Different from the general problem domains that we have observed, Bayesian

optimization attains a superior performance, the relationship between each layer’s feature

performance for a specific CNN model is unknown. Since Bayesian optimization assumes

that the solution space reflects the posterior probability distribution, it is uncertain if it is

a good fit of Bayesian optimization for deep learning model selection.

2.1.5 Automated Neural Network Construction

Many existing deep learning models have been successfully applied for different tasks.

However, an automated approach to select the best model for each dataset and each do-

main is not available. To address this challenge, Long et al. [64] introduced Joint Adap-

tation Networks (JAN) that is based on a Joint Maximum Mean Discrepancy (JMMD)

criterion to learn a transfer network by aligning multiple domain-specific layers (layer

fc7 in AlexNet and layer pool5 in ResNet).

In [65], the authors proposed a Genetic Algorithm (GA) approach using transfer learn-

ing to enhance the performance of the CNN model in the image classification tasks.

Deep features were generated from four pre-trained CNN models, which are ResNet50,

Inception-v3, VGG16, and MobileNet. The experimental results showed that the pro-

posed GA method can improve the performance of the baselines. However, while a

straightforward genetic algorithm method can select the primary data representation model,

it needs to be extended to enable deep neural network construction for specific tasks.

Moreover, genetic algorithms will not scale here, or in natural evolution. What is needed

are heuristic accelerators. Such heuristics can be learned and applied in a network con-
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figuration of neural networks. This provides coherency, a guiding necessary AI principle,

and self-reference. The latter provides us with insight. Just as one of AIs failings led to

the field of ML, so too does the failing of deep learning lead to the need for heuristics and

heuristic acquisition. To fix the architecture of a hidden-layer neural network is to unnec-

essarily restrict that, which can and needs to be learned. Furthermore, it is argued that

neural-based symbolic representations need to be enabled. It is well-known that modus

ponens cannot be achieved without a symbolic representation. The creation of heuristics

and their transfer-extension follows suit. The over-arching implication here is that today’s

deep learning architectures are not of sufficient Kolmogorov complexity to hold and learn

to generalize strong knowledge. Both of these capabilities are inherent to not only real-

world functionality, but commonsense reasoning as well. Commonsense reasoning has

evaded capture by symbolic and neural AI alike. These are complex concepts; and, it will

take some time to realize them in practice.

Automatically learning the structure of neural networks has been studied for many

years [22, 66]. Many researchers have utilized the GA-based approaches to tune the net-

work structure. Specifically, Leung et al. [67] proposed a method to handle both network

structure and its parameters simultaneously. In that work, many network parameters were

selected manually or fixed to a specific number due to the high computation costs of GA

and hardware limitation. Tsai et al. [22], on the other hand, proposed a more robust

method using the Hybrid Taguchi-Genetic Algorithm (HTGA) to enhance the traditional

GA for better and faster convergence. The authors in [62, 68] discussed the advances

in image classification with hyper-optimization. Computer clusters with large processing

capacity GPUs allow trails and tests to be run. The researchers used hyper-optimization

for training neural networks and deep belief networks, by optimizing hyperparameters

with random searches and two greedy sequential methods. Sequential algorithms were

applied to complex deep belief learning problems and improved results were obtained.
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The researchers validated the Gaussian Process Analysis (GPA) approach with a random

sampling of the Boston housing data for a regression task. The dataset has 13 scaled

input variables composed by 506 points to obtain a scalar regression output. An MLP

network was trained with 10 hyperparameters. The hyperparameters included the hidden

layer size, learning rate, iteration times, the Principal Component Analysis (PCA) prepro-

cessing, and others. Sampling was used for the first 30 iterations, differentiated random

samples were used for training, and the whole set up had 20 repetitions. Five GPUs were

used; and, the test was run for 24 hours. The results would help other researchers to

develop ML with hyper optimization and genetic algorithm.

Recent research focuses on evolving the deep neural networks parameters or struc-

tures with GAs [69, 70]. In [71], an improved genetic algorithm was proposed to tune the

structure and parameters of a 3-layer FFNet. Unlike deep neural networks that contain

more complex structures, this network has a relatively simple structure which contains

only one hidden layer. Therefore, there were few combinations of the available hyperpa-

rameters. So the best choice can be easily identified in advance.

In recent years, by the advent of deep learning algorithms, researchers have stud-

ied the possibility of learning parameters [69, 72], network structures [73], and hyper-

parameters [23] in deep neural networks using the GA algorithms. Young et al. [23] pro-

posed a method called Multi-Evolutionary Neural Networks for Deep Learning (MEN-

NDL) to optimize hyper-parameters in CNNs using GA. The fitness function used in that

work is simply the testing error on the dataset after a specific number of iterations. The

hyperparameters include the kernel size and the number of filters in each CNN layer.

In another work, GA algorithm was used to optimize the parameters in Deep Belief

Neural Networks (DBNN) for object recognition [70]. In particular, parameters such as

the number of epochs, learning rates, and hidden units in DBNN are optimized to decrease

the training time and error rate of the object recognition task. In the work proposed by
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Ijjina et al. [24], GA was used to determine the optimum weight initializations of deep

neural networks. Specifically, it was applied to a CNN classifier for the task of human

action recognition in order to avoid getting stuck in a local optimum solution. In a recent

work, Genetic CNNs [73] were proposed to learn the structure of deep neural networks

automatically. The suggestion is to use GAs, since the network structures tend to rise

exponentially with the number of layers. To serve this purpose, a new encoding scheme

was suggested, which used a fixed-length binary sequence to indicate the network struc-

ture. Then, the accuracy on a reference set was used as the fitness function to determine

the quality of each individual in a population. For each generation, the standard genetic

operations were defined and these include the crossover and selection mutation needed

to develop outstanding individuals while rejecting weaker ones. A standalone training

method was used to identify the competitiveness. The genetic process was carried out

on CIFAR10 with a small dataset to examine the capability to identify high quality struc-

tures. The output of the learned powerful structures was transferred to the ILSVRC2012

data that can be used for large visual recognition.

An alternative method of hyperparameter optimization for deep neural networks is

presented in [74]. It compares the proposed approach, named Covariance Matrix Adapta-

tion Evolution Strategy (CMS-ES), with the state-of-the-art Bayesian optimization algo-

rithms for tuning hyperparameters of a CNN network. In their work, only two optimizers

such as Adam and AdaDelt can be selected, which makes the expected performance more

narrow.
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2.2 Multimodal Deep Representation Learning

2.2.1 Neural Networks

Essentially, ANNs are inspired by the behavior of different types of neurons in a biolog-

ical system. A group of neurons that share the same properties will be responsible for

the tasks related to a certain level, for example, detecting bright colors. The first level

neurons’ outputs will become a collection of inputs for the next level’s neurons. ANNs

can learn and recognize the observed patterns from this procedure. The first and simplest

development in ANN is the Feed-Forward Neural Network (FFNet). It is described as a

collection of associated neurons with comparative properties of the neural system located

in an aminal’s brain. which is a set of inter-connected neurons with similar property of

the neural structure found in an animal’s brain. FFNet provides the capacity for every

neuron to receive signals, process the signals, and also send the accompanying output sig-

nals. For every neuron linking, there is a load factor to demonstrate the significance of the

neural links. Since it is based on feed forward, the data transferred between the neurons

only move towards one direction. Multi-Layer Perceptron (MLP) was introduced to ad-

dress the challenge of classifying nonlinearly separable inputs [75]. In an MLP, neurons

are placed in a network of multiple layers - one input layer, multiple hidden layers, and

one output layer. The main objective for the hidden layers is to modify the input in a

format that the output layer can use. The MLPs are used as the base of the deep learning

architectures, which provide a complex function to determine the feature values in the

feedforward direction. Deep learning refers to the learning process that involves more

than one non-linear feature transformation step [76]. Along with transforming the low-

level features into mid-level and high-level features, the level of abstraction increases with

the hierarchical representations. There is no clear differentiation between recently favored

deep learning networks and traditional MLP networks. However, deep learning models
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