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ABSTRACT OF THE DISSERTATION  

DYNAMICS OF FALLING DROPLET UNDER EFFECTS OF ELECTRIC FIELDS  

by  

Esmaiil Ghasemiahebi 

Florida International University, 2019  

Miami, Florida  

Professor Cheng-Xian Lin, Major Professor  

Physical properties and especially the size of drops are important parameters in many industrial 

and medical applications. High voltage electric field is one of the effective means to control the 

final size of drops during the fabrication process which could greatly influence the quality of the 

product. Therefore a detailed study of electric field effect on a liquid drop is very important. In this 

work, the deformation and fragmentation of a falling droplet under gravity and electric forces have 

been studied numerically and analytically. The electric force is used as an effective external 

controlling mechanism to influence the deformation of a drop. The three-dimensional deformation 

of a falling droplet is studied numerically using an open-source volume-of-fluid solver, Gerris, with 

dynamic adaptive grid refinement and direct numerical simulation (DNS). The current numerical 

results are compared with previously published analytical and experimental data in the literature, 

and excellent agreements between the results are obtained. In addition, the numerical results are 

comapared with the current alanalytical solution developed in this work. The results are presented 

for a broad range of Bond numbers (Bo) from low Bond numbers (drop with small deformation) to 

large Bond numbers (drop breakup and fragmentation). The results revealed that the electric field 

can be used as a powerful controlling tool in delaying and expediting the falling drop breakup 

process. The results also showed that falling drop deforms severely by increasing Bo number which 
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leads to the breakup and fragmentation as compared to the cases of low Bo number in which the 

drop deforms mildly without breakup. The numerical results are presented for various values of 

density ratios and electrical conductivity and permittivity. Within the investigated parameter 

ranges, the comparison of the results shows a great agreement between the analytical solutions and 

the direct numerical simulation (DNS) results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

TABLE OF CONTENTS 

CHAPTER                                                                                                                                           PAGE 

1 Chapter 1: Introduction to Falling Drop ................................................................................... 1 

1.1 Motivation and Hypothesis ............................................................................................... 1 

1.1.1 Motivation ................................................................................................................ 1 

1.1.2 Hypothesis ................................................................................................................ 3 

1.2 Literature Review ............................................................................................................. 3 

1.3 Research objectives .......................................................................................................... 8 

1.4 Outline of the Dissertation ................................................................................................ 9 

2 Chapter 2: Governing Equations ............................................................................................ 11 

2.1 Numerical method .......................................................................................................... 15 

3 Chapter 3: Numerical Modeling and Validation .................................................................... 17 

3.1 Problem definition and geometry ................................................................................... 17 

3.2 Numerical method .......................................................................................................... 18 

3.3 Grid Study ....................................................................................................................... 18 

3.4 Validation of numerical results obtained by Gerris for fluid flow field ......................... 19 

3.5 Validation of numerical results obtained by Gerris for the electric field ....................... 23 

3.6 Numerical results for low Bo and Ga number ................................................................ 27 

3.7 Numerical simulation for high Bo and Ga number ........................................................ 31 

4 Chapter 4: Analytical Solution ............................................................................................... 36 

4.1 Drops under electric field ............................................................................................... 37 

4.2 Steady drop deformation................................................................................................. 59 

4.3 Transient droplet deformation: ....................................................................................... 66 

4.4 Falling drops ................................................................................................................... 73 

5 Chapter 5: Coalescence of Two Falling Drops ....................................................................... 90 

5.1 Coalescence of two falling without electric field effects................................................ 90 

5.2 Coalescence of two falling drops under electric field effects ......................................... 91 

5.2.1 Distance effects ....................................................................................................... 91 

5.2.2 Electric field strength effects .................................................................................. 93 

5.3 Near Wall Deformation of Falling Droplets under the Effect of Electric Field ............. 94 

6 Chapter 6: Conclusion and recommendations ........................................................................ 99 

6.1 Conclusion ...................................................................................................................... 99 



ix 

6.2 Recommendations......................................................................................................... 102 

VITA ............................................................................................................................................. 108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

LIST OF TABLES 

TABLE                                                                                                                                     PAGE  

Table 1. Electrical properties related to Figure 20. ........................................................................ 65 

Table 2. The three studied cases (systems). .................................................................................... 72 

Table 3. Analytical relationships obtained up to this section ......................................................... 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

LIST OF FIGURES 

FIGURE                                                                                                                                    PAGE 

Figure 1. The interface of two fluid mediums. ............................................................................... 13 

Figure 2. Schematic of the problem and the boundary conditions. ................................................ 17 

Figure 3. Grid independence study of the model for the falling drop; cross section at t=3. .......... 19 

Figure 4. Comparison of current numerical results and previously published experimental        

data [38] for various values of Reynolds and Bond numbers. ........................................................ 20 

Figure 5. Comparison of current numerical results and previously published experimental         

data [38]  for various values of Reynolds and Bond numbers. ....................................................... 21 

Figure 6 . Drop deformation for different density ratios for Ga = 40, Bo = 5 and 
r  = 10. ......... 22 

Figure 7. The computational domain for the study of the EHD deformation on the droplet. ........ 23 

Figure 8. Comparison of the numerical results and the theoretical prediction at conductivity    

ratio C=5. ........................................................................................................................................ 24 

Figure 9. Comparison of the numerical results and the theoretical prediction when 
ECa  = 0.2  

and Q= 2. ........................................................................................................................................ 25 

Figure 10. Drop deformation under effect of electric field (a) Q=10, (b) Q=1, and (c) Q=20        

for C=5 and 
ECa = 0.2. .................................................................................................................. 26 

Figure 11. Deformation of the drop for various values of electric capillary number at   

permittivity ratio Q=5. .................................................................................................................... 27 

Figure 12. Effects of EHD on drop for, Ga = 40, Bo = 5 ECa =0.11, r =2, r =10 for (a)     

Q=25, C= 5 and (b) Q=5, C= 15 from t=1 to t=6. .......................................................................... 28 

Figure 13. Effects of EHD on drop for, Ga = 40, Bo = 5 ECa =0.11, r =5, r =10 for (a)   

Q=25, .............................................................................................................................................. 29 

Figure 14 . Effect of EHD force on terminal velocity for Ga = 40, Bo = 5, ECa =0.028,              

r =1.1,........................................................................................................................................... 30 

Figure 15 . Effect of EHD force on terminal velocity for Ga = 40, Bo = 5, ECa =0.11,                 

r =1.1,........................................................................................................................................... 30 

Figure 16. Initial deformation of the drop into bag shape for Bo=98, Ga= 24 and r =10. .......... 31 

Figure 17. Time sequence deformation of the falling drop for =0.028. ................................. 35 ECa



xii 

Figure 18. Schematic of a droplet under electric field.................................................................... 36 

Figure 19. Different areas associated with the deformation of the drop at a critical frequency. .... 65 

Figure 20. Deformation form with increasing frequency for different areas. ................................ 66 

Figure 21. Total deformation function in terms of time for R=100, 0.1 = ,aw=1E4,..................... 71 

Figure 22. Deformation rate of the field in two modes of zero and 60 (left) and deformation     

ratio at each frequency to deformation at a frequency of 60 (right). .............................................. 72 

Figure 23. How to move the fluid around and inside the droplet for system 2 based on the 

increase of the dimensionless number W. ...................................................................................... 84 

Figure 24. Movement of fluid around and within the droplet for system 3 based on the       

increase of the dimensionless number W. ...................................................................................... 86 

Figure 25. Drop deformation in the two systems, effects of EHD and falling. .............................. 87 

Figure 26. Comparison of the analytical solution calculated in this study against the current    

direct numerical solution using Gerris. ........................................................................................... 88 

Figure 27. The number of necessary series terms to reach the converted solution for the 

deformation function ...................................................................................................................... 89 

Figure 28. The geometry for two drops. ......................................................................................... 90 

Figure 29. The coalescence of two falling drops without the electrical field effects. .................... 91 

Figure 30. The coalescence of two falling drops under electric fields at different distances       

from each other at ECa = 0.4 and t=2. ........................................................................................... 92 

Figure 31. The coalescence of two falling drops under electric fields at different distances       

from each other at ECa = 0.4 and t=2 to t=6. ................................................................................. 93 

Figure 32. The coalescence of two falling drops under electric fields at different distances      

from each other at different electric fields, d=0.5r and t=2 to t=6. ................................................ 93 

Figure 33. The coalescence of two falling drops under different electric fields at d=r and t=4. .... 94 

Figure 34. The schematic of the problem and the boundary conditions. ........................................ 95 

Figure 35. The Effects of EHD on drop for, Ga = 40, Bo = 5 ECa =0.11, r =2, r =10 for        

(a) wall boundary condition applied and (b) Q=25, C= 5 from t=1 to t=6. .................................... 96 

Figure 36. The effects of EHD on drop for, Ga = 40, Bo = 5 ECa =0.11, r =5, r =10 for        

(a)  for (a) wall boundary condition applied and (b) Q=25, C= 5 from t=1 to t=6.. ....................... 97 



xiii 

Figure 37. Deformation of the falling drop under (a) wall effect and no EHD force (b) EHD  

force. ............................................................................................................................................... 98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

ABBREVIATIONS AND ACRONYMS 

Bo Bond number 

Ga Gallilei number 

ECa  Electric capillary number    

C  Ratio of the inner to the outer conductivity 

Q  Ratio of the inner to the outer permittivity 

D          Analytical total deformation 

t  Tangent vectors to the free surface  

n


 Normal vector with respect to the interface 

E


 Electric field 

 p Pressure (Pa) 

eF


 Volume electric force (N/C) 

s  Dirac delta 

t Time (s) 

u          Velocity vector (m/s) 

T   Viscous stress tensor 

D   Deformation tensor 

Greek Letters 



xv 

           Viscosity (Pa.s) 

 ρ           Fluid density (kg/m3) 

e  Volumetric charge density 

           Ratio of the inner to the outer viscosities 

J          Vector current density 

           Electric potential (V) 

            Curvature 

           Surface tension coefficient (N/m) 

Subscripts or Superscripts 

*    Provisional value 

1    Liquid 1 (drop) 

2    liquid 2 (outside medium)  

 

 

 

 

 



1 

1 Chapter 1: Introduction to Falling Drop 

1.1 Motivation and Hypothesis 

1.1.1 Motivation 

As will be discussed and concluded in the literature review section, the main focus of many 

researchers on this subject was the drop deformation that is surrounded in a medium with a similar 

density in a stagnant form without considering the effect of gravity for the falling drop which in 

reality may be an important factor. To this date, a majority of the research is based on the 

development of empirical models and production of laboratory experimental results. The literature 

review reveals that there are very few mathematical models published and most of them are semi-

empirical approaches for capturing and analyzing the drop deformation especially at the early 

stages of their deformations. Another challenge is related to how accurately the drop deformation 

is analyzed for a broad range of density and viscosity, which could be extremely lengthy and 

complex to be modeled if they are subjected to gravitational and electric fields. 

Developing and implementing a numerical tool for modeling the drop deformation is always a 

significant challenge. This is because tracking a free surface that changes topology is a difficult 

task to accomplish for an accurate investigation and analysis of an underlined two-phase flow.  

Multiphase flow, including atomization, has significant applications in science and engineering and 

plays an important role in a broad range of industries such as aeronautics applications (rockets and 

aircraft), automotive engineering, pharmaceutical industry, power generation, petro-chemical 

industry, manufacturing, agriculture and meteorology. Although atomization is widely used and 

drives the performance of many systems, characterizations of the spray produced still require more 

detailed research in terms of size and dispersion. Since the prediction of fuel sprays in gas turbines 

is of critical importance for aero-engine manufacturers to improve the injection process, 

implementing a mechanism that maximizes the combustion efficiency and reduce the aviation 
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emissions is very significant. Other concerns are the fuel-air mixing as well as emissions of 

greenhouse gas and its effect on global warming. As the production of NOX and CO2 in gas turbines 

is affected by the fuel-air mixing in combustion chambers, aero-engine manufacturers are facing 

challenges finding a tool to reduce the emissions of greenhouse gas through the optimization of the 

fuel injection. The fuel-gas mixing is primarily driven by the atomization that involves both the 

initial fragmentation of the bulk liquid into droplets (primary breakup) and the transport and further 

fragmentation of the drops (secondary breakup). Whereas the secondary breakup is fairly well 

predicted by the current numerical methods, the accurate simulation of the droplet still remains one 

of the toughest challenges in computational fluid dynamics (CFD).  

Motivated by the limits of existing analytical and numerical methods, in this dissertation an 

accurate numerical method in CFD will be implemented to capture and predict the two-phase flow 

nature of drop deformation under both gravitational and electric fields. It is expected these fields 

will have a significant effect on the shape and location of the droplets. In this work, to analyze and 

study the real world problem the dynamics of the drop fragmentation have been investigated under 

gravitational force wherein almost all the application such as fuel injection, metal coating and 3D 

printing, the droplet is moving and is not stagnant (surrounded by a medium with the same density). 

The gravitational and electric forces have been implemented in DNS solution to model the real-life 

physical phenomena to study the behavior of the droplet. It is expected that, under gravitational 

force, the droplet undergoes various deformations before it eventually reaches fragmentation and 

is converted to much smaller drops. Moreover, a practical and comprehensive analytical model for 

the assessment of small deformation of the droplet will be developed for a much quicker way of 

predicting the drop deformation rather than relying on a complicated, expensive and time 

consuming experimental work. This analytical solution for a falling drop under electric field 

provides an excellent tool for faster and easier prediction of the small drop deformation. With an 

accurate CFD modeling using the capability of a powerful numerical tool such as DNS, the 
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aeronautical industry would not have to rely solely on comprehensive and expensive experimental 

test apparatus and thus the design of efficient devices would be more cost-effective. Also, with the 

recent progress in experimental measurements of the multiphase flows, the combination of the 

numerical tool with the experimental approach would allow the manufacturers to improve the 

combustion efficiency. The research of this dissertation would address significant concerns and 

challenges regarding the quality of fuel sprays in gas turbines to maximize the combustion 

efficiency, reduce aviation emissions, and related the emissions of greenhouse gases, and lower the 

fuel consumption, by boosting the fuel-air mixing in combustion chambers.  

1.1.2 Hypothesis 

In dealing with the above crucial concerns and challenges, it is hypothesized that the size of the 

drops and their dispersion can be optimized and improved by an auxiliary mechanism such as an 

extra force imposed on the fluid flow system. It is also hypothesized that an external force such as 

an electric force can be an applicable controlling mechanism to impact the drop deformation. 

Preliminary research and case studies of this dissertation have supported the hypothesis by 

comparing the data of the preliminary study with some previously published experimental work. 

Another hypothesis is that DNS modeling is a powerful numerical tool to model the drop 

deformation in the present studies.  

1.2 Literature Review 

As noted above, the physics and particularly the dynamics of two-phase flow have grown into a 

major scientific domain with crucial fundamental issues as well as many practical and industrial 

applications. Fields of interest include drop impact phenomena involved in the study of rain on 

soils or foliage, inkjet printing and combustion chambers. In particular, atomization processes play 

an important role in combustion studies. In-depth understanding of physics and dynamics of 

multiphase flow and in particular two-phase flow is very crucial due to its broad and practical 
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applications in science and industry and also because of its complexity in scientific research with 

essential fundamental issues. These applications include atomization in the aerospace industry for 

modeling the fuel injection in combustion chambers over the gas turbine, different types of 

combustion processes, drug delivery inside the body, engines with diesel fuels, ink-jet coating 

process, spray painting and drying, microfluidic applications, heat exchangers evaporation-based, 

desalination, emulsification, etc. Taylor [1]  studied a drop in a fluid field with high velocity to 

investigate the drop shape and its acceleration. The results showed that equilibrium can only be 

established in a drop when circulations are set up both in the drop and its surroundings; moreover, 

his results found a relation between the ratios of the conductivity, viscosity and dielectric constant 

for the drop and surrounding fluid which permits the drop to remain spherical when subjected to a 

uniform field. Pilch and Erdman [2] studied the size of a drop during breakup which was influenced 

by acceleration using the data for the time during which breakup occurs and also the history of the 

data for velocity. Hinze [3] studied the dispersion procedures to investigate the hydrodynamic 

principals for particle splitting in which he found out that the splitting of globules is an important 

phenomenon during the final stages of disintegration processes. Giffen E and Muraszew [4] studied 

the liquid fuel atomization and Faeth et al. [5] investigated the structure and breakup of sprays. 

Villermaux [6] thoroughly studied the atomization process and examined the drop, jets and liquid 

sheets fragmentations and bursting phenomena. Contrary to a lot of studies on drop deformation, 

very few studies have been done on a mechanism to control the drop behavior. One of these 

methods is applying an external force such as the electric field. A drop suspended in a viscous 

liquid undergoes complicated behaviors such as abrupt transitions, breakup, deformation which 

depends on the magnitude of the electric field and also the properties of the fluids such as surface 

tension, electrical conductivity, viscosity, and permittivity. Electrohydrodynamics (EHD) field is 

used as an effective external controlling force to influence the drop's deformation in order to have 

a much better and more efficient distribution due to their importance in atomization, raindrop size 
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distribution many other problems of industrial importance. EHD is a multidisciplinary subject that 

deals with the complicated interaction between fluid mechanics and electric fields in which the 

coupling between electrostatic and hydrodynamic forces are studied. Melcher [7] provided a 

thorough review of electrohydrodynamics. EHD can improve the control over spray mechanism to 

have a much better and finer atomization which is significantly important for the small compact 

combustion engines and therefore the fuel injection schemes can be developed economically at a 

much lower price. EHD increases the heat and mass transfer rates and is implemented in inkjet 

printing and electrowetting which is a driving mechanism for a wide range of fluidic and electro-

optic applications for modifying the surface tension of liquids on a solid surface. EHD efficiently 

improves the atomization of the hydrocarbon fuel which benefits a much wider range of engines 

and other types of non-combustion applications in the pharmaceutical industry, such as 

pharmaceutical coating and micro/nano-thin-film deposition. Ryan et al. [8] studied that EHD 

atomization enhances the breakup of liquid fuel at lower pressures which produce high-quality 

atomization in which there is no more fuel injection at high pressure required. Bio-fuels are one of 

the alternatives to the diesel with higher viscosity and water content that requires high pressures to 

atomize the fuel in the combustion chamber; because of that larger and less efficient engines are 

required for these types of fuels. EHD atomization is an applicable method for use in small 

combustion engines which reduces the high fuel injector pressures required by these engines to 

atomize the bio-oils fuels with high viscosity  [9]. Another advantage of the enhancement of the 

fuel atomization is to more likely have complete combustion during the burn cycle resulting in a 

better burning and less emission[10]. Moreover, the electric fields in the engine exhaust direct the 

burn residue such as soot, NOX to easily cleanable containers as the EHD atomization keep these 

residues charged[11]. Paknemat et al. [12] studied the effect of electric field on three different types 

of the drop using a level set method. They conducted their numerical results for a different range 

of capillary number to observe different modes of breakup under the effect of the DC electric field. 
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Notz and Basaran [13] numerically investigated the effect of electric field on the formation and 

deformation of a perfectly conducting drop form a capillary. After validation of their results with 

the previous analytical and experimental works, they have studied the effect of an electric field 

with variable strength for the zero-flow rate case. They showed that for small values of change in 

the strength of the electric field the results of transient calculations are in a good agreement with 

the previous works. Jung et al. [14] numerically studied the deposition of droplets from a spray 

under the effect of an electric field. They used a three-dimensional Lagrangian model to study the 

application of electric fields on the characteristics of deposition pattern such as the spatial 

distribution and the average thickness distribution. The results of simulations showed that in 

general for the case with the electric field the deposition thickness in the intervening region of spray 

is less than the core region for all the control parameters such as moving speed of the nozzle. Van 

Poppel et al. [15] numerically studied the EHD effect on a high Reynolds number (Re) multiphase 

regime of a liquid kerosene jet. They used a fully three-dimensional model to simulate the 

atomization process of a charged liquid jet and compared their results with the previous data. 

López-Herrera et al. [16] developed a conservative scheme for electrohydrodynamic (EHD) of two-

phase problems incorporating the Volume-of-Fluid (VOF) method. They implemented their 

scheme in a free and open-source software Gerris. They also compared the results obtained from 

the proposed scheme with the available analytical solution for droplet surrounded by conducting 

environment which showed a great agreement between the outcomes. Baygents et al. [17] studied 

the motion of two leaky dielectric drops under the effect of a uniform electric field. They observed 

a significant deformation near drop contact because of the local enhancement of the electric field. 

The deformation and burst of the drop are caused by electrical stresses at the drop surface due to 

the difference between the dielectric properties of the fluids. Up to the pioneering studies by Taylor 

[18], it was commonly perceived that the fluids are either infinitely conducting or perfect dielectric 

(insulator). According to the electrostatic theory in either case of infinitely conducting or perfect 
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dielectric drop suspended in a surrounding perfect dielectric, the net electric stresses at the interface 

are normal to the interface pointed from the fluid with higher conductivity or permittivity to the 

one with lower mentioned properties; in this case the drop takes the prolate (large deformation in 

electric field direction) form due to distribution of these stresses. There is no fluid flow exists at 

steady state as inequality in tangential electric stresses is excluded in electrostatic theory. Allan and 

Mason [19] did an extensive experimental study for a broad range of fluid systems in which they 

showed that conducting drops took the prolate form while some other dielectric drops deformed 

into oblate (large deformation direction in the perpendicular direction to the electric field) shape. 

Later, inspired by similar observations of Allan and Mason [19], Taylor [18] mentioned that the 

fluids should be given finite permittivity and conductivity instead of considering them as either 

perfect dielectrics or perfect conductors for the free charge gathering at the interfaces of fluid. The 

effect of electric field on this charge results in unbalance normal and tangential stresses which leads 

to oblate deformation. At equilibrium, the hydrodynamics stresses have to be balanced by the 

imbalance in the electrical shear stresses and therefore fluid motion forms inside and outside of the 

drop due to the hydrodynamic shear stresses. From then on, Taylor’s theory has been known as the 

leaky dielectric theory. By using this theory, Taylor could explain the experimental data of Allan 

and Mason [19] by solving the electrohydrodynamic equations for the creeping flow. Although, 

further experimental results obtained by Torza et al. [20] revealed some disagreements between the 

theory and the experimental data. This theory has been improved by including the higher order 

terms to Taylor’s linearized theory by Ajayi [21]. The electrokinetic effects issue stated by Torza 

et al. [20] has been investigated by Baygents et al. [22] by replacing the leaky-dielectric model by 

an electrokinetic one but these modifications did not improve the deformation of the drop 

significantly. These outcomes demanded more experimental studies by Vizika and Saville [23] to 

carry out new sets of experimental investigations for obtaining the data in closer agreements with 

the theory. In spite of existing some discrepancy, generally, it is considered that the theory of leaky-
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dielectric is the correct ‘‘lumped-parameter ”model when there is no net charge the drop [23]. The 

interest in this topic rooted from the raindrops breakup and deformation [24] and the aerosol 

deformation effect on optical studies [25]. This interest increased over time due to its various 

important applications in chemical engineering [26], nuclear physics [27], materials processing 

[28]. Recently this interest is in the area of microfluidic systems such as liquid jets atomization 

influenced by electric field in inkjet printing [29], controlling the drop breakup in electrowetting 

[30], electrorheological fluids [31], pharmaceutical industry, such as pharmaceutical coating and 

micro/nano-thin-film deposition and improvements of the atomization of the hydrocarbon fuel and 

many more. Study of stability and deformation of a drop under electric field is therefore an 

important and ongoing research area. Melcher and Taylor [32] and other researchers [33] and [34], 

provided a thorough review of governing electro-hydrodynamics laws and their solution for planar 

interface separating two fluids, a suspended drop in quiescent and creeping flows 

1.3 Research objectives 

As explained above, detailed knowledge of the droplet’s dynamics and behavior is significant for 

industrial applications.  In this work, the Direct Numerical Simulation (DNS) method using Gerris 

has been used which can model the droplet break up in detail without any simplification in the 

physics of the problem. And also for having more optimized and efficient droplet’s distribution, 

the EHD force has been applied on the falling droplet to be able to control the droplet’s dynamics 

for better and optimized dispersion. Literature review shows that very few researches have been 

conducted on complete CFD based simulation of the droplet in detail for various wide ranges of 

density and viscosity under the electric field. In this research, we will study the dynamics of a 

droplet in details and the controlling of its behavior by applying the electric field. The main 

objectives of the present research are controlling the dynamics of a falling droplet by implementing 

EHD force that incorporated into the fluid flow equations as an external force. The EHD as an 
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external force has been implemented to the open-source volume-of-fluid solver, Gerris, using direct 

numerical simulation (DNS). Extensive case studies have been performed using different turbulent 

CFD models in order to come up with a powerful numerical tool that is able to simulate this 

complicated problem precisely by other researchers. However, turbulence modeling is a big 

challenge. Another concern regarding modeling the EHD flows with a proper CFD model is the 

number of grids and computational time which must be considered methodically. A thorough case 

study examining different CFD models considering their meshing algorithm and computational 

time has been done. It has been shown that it is possible to use DNS that has the dynamic adaptive 

grid refinement feature providing a notable reduction of computational cost for controlling the drop 

behavior. 

 In this work, an analytical solution of falling drops under the effect of electric field has been 

provided and the results have been compared with our numerical DNS data for verification and 

validation. Validation of the current numerical results of EHD field and falling drop have been 

investigated by comparing the data with the previously published analytical, experimental  and 

numerical solutions in the literature. In addition the numerical results are also comapared with the 

present alanalytical solution developed in this work. 

1.4 Outline of the Dissertation 

The remaining chapters of this dissertation are organized as follow: 

• In chapter 2 governing equations of the incompressible fluid flow are described along with 

numerical methods  

• Chapter 3 presents the numerical modeling and validation, definition of the problem 

studied in this work, explanation of the computational domain and the grid independence 

study for the falling droplet. Moreover, the validation of numerical results obtained by 

Gerris for fluid flow and electric fields has been explained. 
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• In chapter 4, analytical solutions of the problem have been provided in detail for a variety 

of cases.  

• In chapter 5, the coalescence of two falling drops for cases in which the drops are affected 

with and without external electric fields is provided. Moereover the effects of distances 

that separated the two drops and also the strength of the electric field have been investigated 

on the coalescence of the drops. At the end of the chapter the near wall deformation of 

falling droplets under the effect of the electric field has been studied. 

• Chapter 6 presents a summary of the dissertation and the conclusions. 
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2 Chapter 2: Governing Equations 

The continuity and momentum equations of incompressible fluid flow are, 

 ,0= u


     (1) 

 ( ) ( ). .t s eu u u p T n F   +  =  +  + +      (2) 

where ),,( wvuu =


is the velocity vector, and ( )tx,


 =  and ( )tx,


=  are the local fluid density 

and dynamic viscosity, respectively. 2T D= is the viscous stress tensor in which 

( ) 2ij i j j iD D u u= =  + is the deformation tensor. The Dirac delta s states the fact that the 

surface tension term is concentrated on the interface.  is the surface tension coefficient, while 

and n


 are the curvature and normal vector with respect to the interface, respectively. Maxwell’s 

electromagnetic equations are required to calculate volume electric force, which is
eF


. In EHD 

flows, as mentioned by Saville [33], the equations for electrostatic gives an accurate approximation 

and the effects of the magnetic field is ignored. The characteristic time for the magnetic phenomena 

2

m Mt K  where M is the magnetic permeability, K is the conductivity and the characteristic 

length. This time is many order of magnitude smaller than the electric relaxation time et K . 

The relaxation time is the characteristic time for electric phenomena where ε is the electric 

permittivity. Thus we have: 

 ( )Ee


 .=      (3) 

The electric field E


 is assumed to be irrotational. 0= E


. In this equation E is the electric 

field, where e  is the volumetric charge density. In terms of the electric potential, gives 
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 ( ) e −=.      (4) 

The bulk-free charge should be implemented for the conservation equation of the, 

 . 0e J
t


+ =


     (5) 

where J is electric charge flux defined as: 

 
eJ KE u= +      (6) 

The ohmic charge conduction is the first term and the second term is from convection of charges. 

Considering the Eq. (3), Eq. (5) can be written as 

( )e
e e

K K
u E K

t


  

 

  
+ = − +   − 

  
     (7) 

For homogeneous K and ε, it gives 

 ( )e
e e

K
u

t


 




+ = −


     (8) 

The electrostatic Maxwell stress tensor is used to calculate the volumetric electric forces in the 

bulk
eF .  

 
2

e

E
T EE I

 
= − 

 
     (9) 

Implementing divergence operator gives 

 ( )21

2
ee eF T E E = = −       (10) 

The first term presents the electric forces applied on the free charges in fluid, and the electric forces 

applied on the electric dipoles induced in dielectric mediums is the second term. Figure 1 shows 

the two-phase flows, media 1 and 2, where the interface separates the immiscible mediums. 
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Figure 1. The interface of two fluid mediums.  

 The position of the interface is defined as ( ), 0F x t = which moves freely. The normal and tangent 

vectors to the free surface are n and t respectively. Kinematic condition governs the evolution of 

the interface  

 0.
F

u F
t


+  =


     (11) 

The electric field’s tangent component, ∥Et∥ = 0, the potential of electric field ∥ϕ∥ = 0 and the 

velocity.  In the tangent direction following should be satisfied for balance of stress at the interface. 

∥ ∥ represents the jump across the interface  

 0v et T n t T n  +   =      (12) 

And in the normal direction 

 
total sensible latentQ Q Q= +      (13) 
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 .v ep n T n n T n +   +   =      (14) 

On the interface, the pressure discontinuous and this is because of the normal components of the 

electric stresses and also the surface tension. On the interface,
nE E n=  , the normal electric field, 

is also not continuous 

 
nE q =      (15) 

where q stands for the gathering of free charge on the interface (charge/unit area). Following 

equation expresses the tangent component of electrical stress on the interface  

 ( )1 1 2 2e n n t tt T n E E E qE   = − =      (16) 

And the normal component on the interface 

 ( )
1 2

2 2 2

1 2 1 2

1

2 n n ten T n E E E      = − − −       (17) 

 Following equation satisfies the charge density q  

 ( ) 0s n

q
u q qn n u KE

t


+  −    + =


     (18) 

The 2nd term is surface charge convection, surface divergence is shown by ∇s, the 3rd term is the 

dilation of the interface and the last term shows how ohmic conduction adds a net charge to the 

bulk or withdraws the net charge from the bulk. 
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2.1 Numerical method 

For the numerical solution an open-source solver is used for modeling of the incompressible fluid 

motion. This software is called Gerris which uses the finite volume method. Popinet [35] and [36] 

developed the software that implements the  Volume of Fluid (VOF) method for simulation of the 

two-phase fluid flows. Using the VOF method the Navier-Stokes equations give 

 

( ) ( )
( )

( ) ( )

( ) ( )

0,

. . 2

. 0,

1

1

t s e

t

i o

i o

u

u u u p D n g F

c cu

c c c

c c c

     

  

  

 =

 +  =  +  + + +

 +  =

= + −

= + −

     (19) 

where c stands for volume fraction, ( )txc ,


. For the surface tension stress , the Continuum-Surface-

Force (CSF) method [37]  is implemented. 

Second order staggered-in-time discretization combined with a time-splitting projection method is 

used in Gerris. Time stepping is  

 ( )1/2 1/2 0n n
nn

c c
c u

t

+ −−
+ =


     (20) 

 
( ) ( )

( )1/2 1/2
1/21/2 0

e en n
nne nn

u K E
t

 
+ −

−−

−
 +  + =
 

     (21) 

 ( ) ( )1/2 1/2 1/2n n e n
 + + +

   = −        (22) 

 
( )( )

( ) ( )

1/2 1/21/2 1/2

1/2 1/2

n
nn nn n

es
n n

u u
u u D D

t

n F

 






+ ++ +

+ +

 −
+ + =  + 

 

+ +

     (23) 

 
1/2

1

1/2
n

n

n

t
u u p




+
+

+


= −       (24) 
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 1 0nu + =      (25) 

* shows the provisional variables. If the Eq. (24) combine with Eq. (25), they result in 

1/2

1/2
n

n

t
p u




+

+

 
  = 

 
     (26) 

Therefore the Eq. (23) can be written gives: 

( )

( ) ( ) ( )

1/2
1/2

1/2 1/21/2 1/2
1/2 1/2

n
n

n
n e n nn s n

n n

u D
t

u
D n F u u

t




  




+
+

+ ++ +
+ +

− =


 
  + + + −  = 

 

     (27) 

The expression 1/2 1/2n nu u+ + , advection velocity, is calculated by [36].  
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3 Chapter 3: Numerical Modeling and Validation 

 

3.1 Problem definition and geometry 

Figure 2 shows the computational domain used in the current work along with the boundary 

conditions. The dimensions of the domain and drop are shown in the figure. The width of the 

computational domain is 40R with the height of 160R and R is the radius of the drop. A spherical 

droplet with density and viscosity of
1 ,

1 and radius R falls under the action of gravity g. The 

initial velocity of the drop is zero. The surrounding medium has a viscosity of 
2 and density of

2 . Index 1 refers to drop and 2 is for the outside medium The initial location of the drop and also 

the size of the computational domain are considered such that the boundaries have a negligible 

effect on the falling droplet break-up process. Symmetry boundary conditions are applied on the 

boundaries and the drop falling down under effects of external EHD force which has been applied 

on the side boundaries.  

 

 

Figure 2. Schematic of the problem and the boundary conditions.  



18 

 

 

3.2 Numerical method 

The open-source solver Gerris has been used [35] and [36]. The VOF is combined with an adaptive 

quad/octree spatial discretization in Gerris for solving the two-phase incompressible fluid flows. 

The numerical code solves the governing equations, combining a quad/octree spatial discretization, 

a projection method, and a multilevel Poisson solver. Advection terms are discretized using the 

robust second-order upwind scheme. For more detailed the readers are referred to Popinet [35] and 

[36]. 

  

3.3 Grid Study 

Figure 3 shows the grid independence study for the falling droplet for three different grid levels of 

9, 10 and 11 [35] and [36]. The figure shows the cross-sectional of 3-D drop at t=3. The initial grid 

level is 6 which means Gerris initially creates a regular Cartesian grid with cells in each dimension. 

The levels 9, 10 and 11 are the maximum refinements of the grids near the interface. The smallest 

grid size is equal to 1/8, 1/16 and 1/32 of the initial grid for grid levels of 9 (coarse), 10 (medium) 

and 11 (fine), respectively. It is concluded that grid convergence is achieved for simulations having 

the medium grid level of 10. Thus all the three-dimensional simulations have been conducted using 

this grid size. And the non-dimensional time and velocity are ( ) ,t V R t V V gR= = . 
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Figure 3. Grid independence study of the model for the falling drop; cross section at t=3. 

 

 

3.4 Validation of numerical results obtained by Gerris for fluid flow field 

Presented in Figure 4, the numerical results have been compared with previously published 

experimental data [38] for bubble deformation as shown in Figure 4. The results show the bubble 

deformation for different values of Bond and Reynolds numbers and for more detail the readers are 

referred to [38]. The results shown here are just for the purpose of the validation of the current 

numerical solution against previously published experimental data [38].  

 

 

 

 

 

Bo = 116, Re =6.546 

(a) 

 

 

 

 

 

 

 

Bo = 116, Re =8.748 

(b) 
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Bo = 116, Re =13.95 

(c) 

 

 

 

 

 

 

Bo = 116, Re =23.06 

(d) 

 

  

 

 

 

Bo = 116, Re =33.02 

(e) 

 

 

 

 

 

 

 

 

 

Bo = 116, Re =62.36 

(f) 

Figure 4. Comparison of current numerical results and previously published experimental data 

[38] for various values of Reynolds and Bond numbers. 

 

Also in Figure 5 more comparison between the current numerical results obtained by Gerris and 

the previously published experimental data [38]. Here the results are presented for different Re and 

Bo numbers. As the figure shows there is a good agreement between the results qualitatively which 

confirms the accuracy of the current numerical model by Gerris.  
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Bo = 8.67, Re =0.979 

(a) 

 

 

 

 

 

 

 

Bo = 17.7, Re =1.671 

(b) 

 

 

 

 

 

 

 

 

Bo = 32.2, Re =79.88 

(c) 

 

 

 

 

 

 

 

Bo = 243, Re =15.24 

(d) 

Figure 5. Comparison of current numerical results and previously published experimental data 

[38]  for various values of Reynolds and Bond numbers. 

 

The validity of the numerical results is also studied by comparison of the current results (yellow 

color) for drop deformation with those by [39] (green color) shown in Figure 6. Results show the 

drop deformations for a broad range of density ratios for Bond number, Bo= 2

o gR   of 5 and 

the Gallilei number, Ga= 3 2 1 2

o oR g   of 40. The results are in excellent agreement with 

previous results obtained in [39].  As it is shown in the table, the drop remains almost spherical at 

low ratios of density but it deforms into a dimpled ellipsoidal shape for slightly greater density 

ratios. The drop tends to take an upward opening cup-like structure for higher values of density 

ratio. At density ratios r i o  = approximately higher than 20, the surrounding medium tends to 
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shear off a thin portion of the drop resulting in a thin skirt-like structure which originates from drop 

periphery. This shearing might happen over the surface of the drop at several locations, resembling 

a Kelvin-Helmholtz like instability which is more noticeable at greater density ratios r . For the 

values of density ratios of 100 or larger, a severe breakup might happen to result in multiple drop 

fragmentations. These regimes might change which is dependent on other parameters such as Ga, 

Bo and r i o  = . 

       t 

       r            
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Figure 6 . Drop deformation for different density ratios for Ga = 40, Bo = 5 and r  = 10. 
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3.5 Validation of numerical results obtained by Gerris for the electric field 

In this section, the numerical results obtained by Gerris for electric field is validated against the 

analytical data. As shown in Figure 7 the spherical drop either transforms into prolate or oblate 

depending on properties of the involved fluids as stated by Hua et al. [40]. Liquid 1 and liquid 2 

refer to drop (i) and medium (o) respectively.  

 

Figure 7. The computational domain for the study of the EHD deformation on the droplet. 

 

Taylor [41] characterizes the total deformation of the droplet by   

 
ba

ab
D

+

−
=      (28) 

where, b and a are the sizes of the spherical in parallel and perpendicular directions to the electric 

field respectively. D > 0 represents the prolate spheroids while D < 0 shows the oblate. Taylor [41] 

also gave the following equation for D : 
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( )

( ) 

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




+

+
−+−+

+
=





1

32

5

3
21

216

9 2

2
QCQC

C

Ca
D E      (29) 

where
i oC  = , i oQ  = and i o  = represent the ratio of the inner to the outer 

conductivities, permittivities and viscosities, respectively.
ECa is the electric capillary number   

2

E oCa E R = . 

In Figure 8 the numerical results have been compared to Taylor’s deformation theory for different 

permittivity ratios. The numerical results are in good agreement with the analytical data, especially 

for the region when the droplet deformation is small (Taylor’s theory is valid in this region). For 

large deformations, the numerical results start to deviate from the analytical data, in agreement with 

previous numerical studies in [40] and [42]. Saville [33] mentioned that for deformations |D| > 0.07 

numerical results are more accurate than Taylor’s theory. 

 

 

Figure 8. Comparison of the numerical results and the theoretical prediction at conductivity 

ratio C=5. 
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Figure 9 shows a comparison of the deformation predicted in the numerical simulation and 

analytical results by Taylor’s theory. For a conductivity ratio of C=1, the deformation is nearly 

zero.  

 

Figure 9. Comparison of the numerical results and the theoretical prediction when 
ECa  = 0.2 

and Q= 2. 

Figure 10 shows the streamlines (Red) and the velocity vectors (Black) for the droplet shape for 

different permittivity ratios. Figure 10a shows the results for the permittivity ration of Q =10. At 

this ratio, drop takes a prolate form. As the permittivity of the droplet increase its shape changes to 

an oblate form, and for a permittivity ratio of Q =1 the droplet stays almost undeformed as shown 

in Figure 10b.  As can be seen in Figure 10c, for a permittivity ratio greater than 10 (Q > 10) the 

droplet’s shape deforms into an oblate form, for Q=20. As depicted in Figure 10 the dynamics of 

the two-phase flow is in agreement with Taylor’s theory shown in Figure 8. In Figure 10, the 

corresponding locations of the drop shown in Figure 8 are numbered in 1, 2 and 3 which are 

correspondent to permittivity ratios of 1, 10 and 20 respectively. The results for the flow fields are 

also in agreement with the numerical results of Hua et al. [40]. Leaky dielectric fluids have been 

considered in this study [27]. According to the results shown in Figure 8-Figure 10, it is concluded 
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that the model presented accurately predicts the electro-hydrodynamic forces on a leaky dielectric 

droplet immersed in a leaky dielectric fluid. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 10. Drop deformation under effect of electric field (a) Q=10, (b) Q=1, and (c) Q=20 for 

C=5 and ECa = 0.2. 
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In Figure 11 numerical simulation has been compared to the analytical results of Sherwood [43] 

which shows the relationship between the droplet deformation and the
ECa number. The numerical 

results are in excellent agreement with analytical theory.  

 

Figure 11. Deformation of the drop for various values of electric capillary number at 

permittivity ratio Q=5. 

 
3.6 Numerical results for low Bo and Ga number 

Figure 12 depicts the applicability of EHD as a controlling method to affect the deformation of the 

falling droplet under gravity. The figure displays time evolution of the falling drop and includes 3 

columns in which the results obtained for Ga = 40, Bo = 5, r =2, r =10. Figure 12a displays the 

timely sequence of the falling drop without being under EHD. The EHD force keeps the drop in 

ellipsoidal oblate form which is in agreements with previous results mentioned above. EHD delays 

the deformation of the drop into a bowl-like form. As it is explained later in the current work, the 

break up the drop initiates by bag formation which generates after becoming the bowl-like shape.  

In contrast, Figure 12b shows how EHD can expedite the deformation of the drop into bag form by 

stretching it into the prolate form which is again in agreements with previous findings. 
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Figure 12. Effects of EHD on drop for, Ga = 40, Bo = 5 ECa =0.11, r =2, r =10 for (a) 

Q=25, C= 5 and (b) Q=5, C= 15 from t=1 to t=6. 

 

In Figure 13 the more results are shown to present the effects of EHD on the falling drop for 

different density ratio. Similarly, as shown in Figure 13a, the EHD delays the deformation of the 

drop into a stretched bowl-like shape and contrary to that EHD speeds up the process of bowl like 

formation by stretching the drop into the prolate form along the applied electric field.   
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Figure 13. Effects of EHD on drop for, Ga = 40, Bo = 5 
ECa =0.11, 

r =5, 
r =10 for (a) Q=25,  

C= 5 and (b) Q=5, C= 15 from t=1 to t=6. 

 

Figure 14 shows the effect of EHD force on terminal velocity’s variation compared to the case that 

drop is not influenced by the electric field. Initially, there is not much of a difference between the 

velocity values and this difference increases as the drop gradually deforms into oblate form. The 

terminal velocity occurs when the sum of the drag force and the buoyancy is equal to the downward 

force of gravity acting on the object. Since the drag force heavily depends on the shape and as the 

area (projected area) of the drop reduces by deforming to oblate shape, therefore, the drag force 

reduces resulting in higher terminal velocity.   

https://en.wikipedia.org/wiki/Drag_(physics)
https://en.wikipedia.org/wiki/Buoyancy
https://en.wikipedia.org/wiki/Gravity
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Figure 14 . Effect of EHD force on terminal velocity for Ga = 40, Bo = 5,
ECa =0.028, 

r =1.1, 

r =10 for Q=5, C=25. 

Similarly, for the results shown in Figure 15, the drop takes the prolate form under the influence of 

the electric field which results in a larger projected area and therefore the magnitude of the drag 

force increase. The higher the drag force the lower the terminal velocity and as seen in the figure 

the terminal velocity reduces as the area of the drop increases. 

 

Figure 15 . Effect of EHD force on terminal velocity for Ga = 40, Bo = 5, ECa =0.11, r =1.1,  

r =10 for Q=25, C= 5. 
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3.7 Numerical simulation for high Bo and Ga number 

Figure 16 and Figure 17 show the numerical results of the time evolution of the drop deformation 

for Bo=98 and Ga=24. As shown in Figure 16, initially, the rear part of the drop starts deforming 

softly caused by the pressure difference as the vertical velocity of top of the drop is greater than the 

other parts. Therefore, as the front side stays rounded, the rear side of the drop changes to a flat 

surface. As the falling drop is under constant gravitational force the deformation increases. Thus 

the drop takes a bowl shape which is the beginning of the bag formation.  
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t=2.3 

 

t=2.5 
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t=3 
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Figure 16. Initial deformation of the drop into bag shape for Bo=98, Ga= 24 and r =10. 

 

The first column, Figure 17a shows the serial shot of droplet deformation and fragmentation when 

the electric force is not applied to the boundary of the computational domain. At the early stages, 

falling drop deforms to an oblate ellipsoid form from its initial spherical shape and then into a bag 

formation.  This deformation is caused by the hydrodynamic pressure which is distributed non-

uniformly around the drop that is set into motion by gravity [44]. The surface tension resists the 

deformation but it is not strong enough to keep the drop un-deformed in its initial stable shape.  
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Then the bag-shape grows and breaks and after ligaments, liquid bridges and droplets form.  During 

the process of the atomization different types of instabilities such as capillary wave instabilities, 

Rayleigh–Taylor, and Rayleigh–Plateau take place. This atomization process continues with 

fragments’ break-up until reaching a stable condition.  The similar process of drop deformation is 

seen in an experimental study by Cao et al.[45]. During the breakup process the bag bursts forming 

droplets, filaments, the rim on top and a core (The core here is stated as a considerable volume of 

the original drop is left). During the falling process, the liquid columns in forms of either straight 

or rounded decompose and form smaller fragments. Instability analysis investigates the bursting 

and retraction of a liquid sheet analytically. Bermond and Villermaux [46] presented a non-

dimensional dispersion relation in which they showed that the film modifies its thickness and 

afterward is punctured by many holes in different positions which depends on the value of 

acceleration and the thickness. The holes formed at the interfaces because of the capillary force 

grow in radial directions as the capillary force acts radially and then attach to the neighbor’s 

punctures. The process of merging of the punctures leads to a network of attached ligaments which 

thereafter Bermond and Villermaux [46] into many droplets. The deformation of the falling drop 

into the bag shape has a similar procedure as those explained by Bermond and Villermaux [46].  In 

the present study, multiple holes are formed on the bag and then grow generating ligaments and 

these ligaments then decompose and form small fragments in which they are mostly stable. And at 

the end, the remaining unstable fragments collapse shortly. The holes are formed mostly closer to 

the rim at the top the bag which is thinner in the high curvature region compared to the other area 

and that causes the holes generated close to the torus on top. Afterward, the holes grow until 

filaments create between them. By development of the punctures, the filaments transform to liquid 

bridges, linking the core of the drop to the torus on top. Finally, these liquid bridges decompose 

into small, stable fragments. At this moment, the bag is entirely broken up and a new stage of 

breakup starts. Compared to the liquid sheet breakup study by [46] there is a notable similarity to 
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the bag breakup of a droplet. Multiple holes (punctures) perforates the bag then they grow and then 

the net of ligaments is generated. After the bag breakup, the rim on top, the core and the fragments 

generated between them remain. Following the bag breakup, a core of the primary drop remains. 

As shown the interface of the core starts to rupture for the bag breakup caused by the instabilities 

earlier. A network of ligaments is generated again and disconnected quickly afterward. Because of 

the fast growth of the capillary waves the ligaments are extremely unstable and therefore a thicker 

area in the ligament forms leading to creating a neck. By forming necks, the pinch-off mode 

generates over the ligaments resulting in detaching droplets from them. Fig. 14b shows the results 

for the falling drop under the electric field for Q=25, k=5. As seen, by applying EHD force the 

process of breaking up slows down compared to the case of no EHD force. Until t=3 the electric 

field causes some twist and turn in the shape of the falling drop. As seen from this figure, at t=4 the 

upper rim has not been separated distinctly yet, the fewer number of holes forms, the rupture slows 

down and still much thicker and stronger ligament exists between the core and the upper rim. And 

as the time goes on (from t=5 to t=8), the process of forming holes to perforates the bag, growing 

and generating the ligament occurs with a slower pace which can be seen at t=7. At this time, there 

is still a noticeable portion of the core left and at t=8 the drop structure consists of thick, stronger 

ligament and bridges which take much longer to be broken in smaller fragmentation and droplets 

compared to the case of no EHD force. In Fig. 14c electric field (EHD force) expedites the 

formation of the breakup. Initially, at t=1 the spherical shape of the drop takes ellipsoidal form. At 

t=2, it takes a strong twist and after transform into a basket form which is completely different from 

the bowl-like shape compared to the previous cases. It should be mention that all of these 

deformations depend on the fluid properties and magnitude of the electric field. At t=4 much more 

holes formed and grow faster; as seen a large portion of the drop transforms into filaments as the 

process of merging of the punctures speeds up leading to a network of attached ligaments. At t=5, 

only a small portion of the core is left and this amount reduces more and more as time goes on from 
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t=6 to 7. The structure of the breakup becomes much more uniform with smaller fragmentations. 

The results show that the electric field can be used as a powerful tool in controlling the deformation 

of the drop.  
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Figure 17. Time sequence deformation of the falling drop for =0.028. 
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4 Chapter 4: Analytical Solution 

In this section, detailed analytical solutions of falling drop under effects of electric field have been 

presented and compared with DNS solution. Figure 18 shows a spherical droplet. The drop is 

centered and the spherical coordinate system ,r  is at the center of the drop. The motion of the 

droplet caused by the application of the electric field is negligible and the center of the mass of the 

drop remains unchanged.  

 

 

Figure 18. Schematic of a droplet under electric field. 

 

Considering the radial distance from the center (r) and the polar angle ( ) which the positive value 

is measured in the counterclockwise direction and in relation to the direction of the electric field, 

we are now trying to solve the problem in the spherical coordinate system. An analytical solution 

has been presented for defining the deformation of the falling drop under the electric field.  



37 

It is worth mentioning that determining the deformation of a droplet under electric field requires 

the balance of net normal stresses by curvature effect. Here it should be noted that we used the 

formula which already presented in [20] and [47] to find the stresses induced by the electric field 

and falling respectively. Before using these relationships, a detailed derivation of these 

relationships is presented to give a better understanding the way how these stresses were obtained 

in [20] and [47] and also their physical effect on the governing physic. Then finally we used a 

balance of stresses to find the profile of the droplet. 

4.1 Drops under electric field 

In order to investigate the deformation of the droplet in the alternating current state, we first rectify 

the equations and boundary conditions again to find the potential electric field. So that the electric 

field is cos( ) , 2oE E wt w = = . Eo is the maximum value of the electric field and  the angular 

frequency. When  is zero the uniform field of DC electric field. The dielectric constant properties 

k1, k2, and the electrical resistance
1 2,   are independent of the frequency. In the absence of the 

electric charge in the environment, the potential equation in both the droplet and oil phase holds, 

therefore 

2 0.0 ,( 1,2)j j  = =      (30) 

Followings are the assumptions: 

• The amount of electrical potential inside the droplet is limited. 

• cos( )oE E wt= in far field (infinite). 

• The surface charge density  is equal to the difference in electrical displacement D. 

• On the interface 1 2 =  . 
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• Current transfer on the interface is negligible and the increase rate  is equal to the net flow of 

the charge from the interface. 

We introduce the complex electric potential iV  and oV  to begin solving so that the real and virtual 

part of it both applies to the Laplace equation. 

Re( ) Re( )

Re( ) Re( )

iwt

i i i

iwt

o o o

V V e

V V e





 = =

 = =
     (31) 

,i oV V 
mixed functions are not time dependent. 
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 

−
= = − → =


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

 =  = =  =

     (32) 

For solving the potential equations we have: 

2 2

2 2

2 2

1 1
( ) (sin( ) )

sin( )
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( ) (sin( ) ) 0.0
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r
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r
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  


  
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   

     (33) 

Using Separation Variable method [48] gives: 
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Two equations are obtained in terms of radius and angle. To solve the first equation we will have: 
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The solution of the second equation is: 
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where subscript m is even, Rm (x) is a polynomial of degree m, which contains paired powers up to 

xm, and Sm (x) remains an infinite series, and when m is odd, Sm (x) is a polynomial of degree m 

and only contains the powers of odd values to xm, and Rm (x) remains an infinite series. Here we 

use the change of variable )cos(=x so that we have a Legendary Polynomial [48] according to

cos( ) . The result is 

2

0 1 2

2
1 2 2 3

0 0 1 1 2 2
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Since, given the first condition of the first potential, the electrical potential must be limited, 

therefore 0iB = , with respect to the external potential boundary condition in infinity results in: 
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Electric conductivity causes the electric charge to accumulate over time on the interface. If J the 

surface density and  represents a charge on the surface, it gives the following: 
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Assuming Re[ ]iwt

f e  = , the two sides of the equation can be simplified as 
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The phrase A is an imaginary phrase. 
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If the frequency is zero, then
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In this case, the result of the zero frequency is exactly the same as the solution obtained from the 

solution above. Next, the electrical stresses on the droplet environment, around, and also on the 

interface are calculated. 
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In order to obtain electrical stress on the interface we need to substitute r = b in the above relations. 
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Therefore, tangential tensions on the interface for droplets and oils are the same that indicates the 

correct voltage setting on the interface. To calculate the electric charge distribution on the interface, 

 is calculated as 
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For zero frequency we have the following expression, which indicates that the solution is correct. 
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The term A decomposes into two real and imaginary parts therefore 
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As we have proved in the DC current discussion, the electrical stresses are calculated as. 



45 

2 2 2 2

0

2 2 2 20 2

1 1
( ) ( )

2 2

( ) ( )
2

e

rr no to i ni ti

e

rr no to ni ti

T E E E E

k
T E E q E E

 



= − − −

= − − −

     (57) 

0 2 0 1 0 2 ( )e

nt no to ni ti t ro riT k E E k E E k E E qE  = − = −      (58) 

As the electric charge relationship indicates, the overall charge on the interface is zero and 

decreases with increasing frequency of electric charge on the interface. Also, in the case where Rq> 

1, the portion of the droplet encountered with positive voltage is positive and the negative electrode 

is negatively charged, while for Rq <1, the reverse happens. When Rq = 1, the electric charge on 

the interface is zero. The pure electric stresses on the interface will have a stable portion and a 

transient portion. Based on the results obtained for electrical potential and tangential and normal 

stresses, 
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We already know that A is conjugate of A and A is divided into two real and imaginary parts, 

whose components are known. Therefore, if A iB= + , then it will be A iB= − and

2 2 , 2AA B A A = + + = . We already obtained , B . By placing in the above relations, we 

will have a constant normal stress part. The droplet radius is shown with b. 
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The transient part of the normal stress is: 
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As the relations above indicate, r steadyT  changes sign in Rq = 1, and as a result, the flow of fluid on 

both sides of the interface is affected by this sign change. As mentioned earlier, in Rq = 1, the 

tangent electric stress’s constant is zero. When the DC current is used, the resultant electrical 

stresses on the interface, which indicate the electrical forces applied to the droplet border, are: 
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Due to the fact that the stresses of the electric field by the stresses on the hydrodynamic must be 

neutralized, therefore: 
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In order to obtain the function F, we must solve the Cauchy-Euler equation [48]. The results is: 
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Since the inside velocity of the droplet must be limited, A = B = 0 for the droplet inside and, also 

to limit the tangential and normal velocities at infinity it is required to C = D = 0. 
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By determining the form of the flow function, the tangential and normal velocities in and out of the 

droplet are: 
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In order to obtain the velocity constants, we consider boundary conditions as DC solutions, 

therefore 
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Before we apply the two further boundary conditions, we must first obtain ,h h

rr rT T  . 
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As we know: 
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In fact, velocity is divided into two parts. The part that is relevant to 
e

rT  and the part that includes 

e

rrT and interface fluctuation and thus creates a fluctuating current. So far the velocity related to 

e

rT   has been specified. The pressure difference associated with this velocity is obtained through 

the following relationships. 
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It should be noted that the same results would be achieved if the momentum equation was used in 

a radial direction. To obtain the pressure outside the droplet, we repeat the process above using 

external tangential and normal velocities. 
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The difference in pressure on the interface is calculated as: 
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Given the coefficients in terms of maximum tangential velocities, the hydrodynamic stresses are: 
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In order to obtain curvature, the total hydrodynamic stress on the interface is required. So that: 
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The velocities resulting from the fluctuation of the interface are obtained through the correction of 

boundary conditions. So that: 
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Since the general deformation is in two parts, Ds + Dt for small deformation, one can write: 
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For calculating the velocity constants the boundary conditions above are applied which result in 
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All constants are obtained as a function of A: 
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The tangent velocities inside and outside the drop are: 



58 

4 4 4

4 4

2
2 4 3

5

4

sin (2 ) (2 3 ) ( 3) sin(2 )

6 sin( )cos( ) (2 3 )

cos( )sin ( ) sin(2 )
(3 5 ) (3 5 )

sin( ) 2

(19 16 )
:(3 ) 3. .

3 (2 3 )

(19 16
. (2 3 ) (3)

II

o T

II

o T

i

o i

o i

II o i
T

u Ar b m U r

u U b r m

u Cr Dr Cr Dr
r

A
part I Cr r

b

r b m U







 

 

  



 

 

 

− −

−

= = + −

= − +

−
= + = − +

− +
= =

+

+
+

5

1

3 3

7

3 4

7

3 3

1 3 3

)

(2 3 )

3(19 16 )

(3 2 )
:(5 ) 5

(2 3 )

(3 2 )
5 (2 3 ) ( 3)

(2 3 )

15 . (3 2 )

3(19 16 ) 15(3 2 ) sin( )cos( )

o i

II

T

o i

o i

IIo i
T

o i

II

T

II

i T

b

U m b r

A
part II Dr r

b

r b m U
b

U b r m

u U m b r m b r

 

 

 

 

 

 

−

−

− −

+

+

+
= =

+

+
+ − =

+

− +

 = − + − +
 

     

(95) 

The normal velocities inside and outside the drop are: 
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The resultant normal electric stress on the interface due to the droplet fluctuation is: 
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The hydrodynamic pressure inside and outside the droplet and consequently the pressure 

difference on the interface are: 
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The total hydrodynamic stress perpendicular to the interface is: 
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4.2 Steady drop deformation 

To study the deformation of the droplet in a stable state, the equilibrium of normal stresses can be 

investigated (Capillary equation): 
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In order to find the deformation, we consider steady stresses terms on the left side of the equation 

(time-dependent stresses have no stable term). The droplet radius r is defined as ( )r R  = + , then 

the curvature relation for the sphere is obtained from the following equation. Below ( ) ( )Rf x  =

and cos( )x = are the assumptions. 

2 2

2

2 2 1 1
(sin( ) )

sin( )

1
2 2 (1 )

k
R R R

d df
k f x

R dx dx

 


  

  
= − −  

  

  
= − − −  

  

     (101) 



61 

The above equation is the second order Legendre equation r. To solve this equation with respect to 

the power series, it is assumed that the answer to the problem is in a form of
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Given that there is no x4 on the right side, 
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The radius of the droplet in the form of Legendre polynomials is defined as 
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For frequency of zero, the frequency response for the zero frequency should be calculated and also 

the sum of the responses should be introduced as zero frequency. Therefore, we will have a total of 

two to 9/32 or 16.9, so with the replacement of 2E E=  ,Ds is achieved. By doing this, it is not 

necessary to calculate the frequency part at w = 0 to get the answer at zero frequency. The 

deformation function changes in frequency when   is zero, so D = 0 and as a result of the shape 

of the droplet remains spherical. Therefore, the droplet will oscillate around its spherical shape in 

terms of frequency w. The droplet remains spherical in a specific frequency. In order to obtain this 

critical frequency, the expression  is equal to zero. So that: 
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The condition for the existence of an answer to the critical frequency of the positive is the phrase 
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When q = 1, that is, the electrical diffusivity of the droplet and the surrounding area is the same and 

more frequencies are needed to keep the droplet in a spherical state. Also, when Rq> 1, the increase 

in the frequency the deformation of the droplet increases. In Rq = 1 and ( )
2

1 2q q = − +  indicates 

that the drop shape is independent of the applied frequency. As the obtained relation for the critical 

frequency shows, three different classes for the fluids under investigation can be defined (through 

the drawing of q diagram in R). According to Figure 19, three types of areas are defined as 
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As seen in the figure, in the very high electrical conductivity ratio, q is toward 5(1 ) (16 19 )m m+ +  

and the AB line towards zero is desired. For both AB and BC lines, BC leads to infinity in a low 

conductivity resulting in q goes toward infinity. Therefore, the rate of deformation of the droplet 

depends on the ratio R, q and . But the effect of m  is negligible, so that between the zero viscosity 

and the infinity, the difference is very small in the BC line. The deformation rate is obtained at zero 

and infinite frequencies as follows: 
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Figure 19. Different areas associated with the deformation of the drop at a critical frequency. 

 

 

Table 1 shows the electrical properties related to the graphs displayed in Figure 20. 

Table 1. Electrical properties related to Figure 20. 

System R q m  0    

a 0.1 3 0.1 
0.72 

0.16 

b 10 0.2 0.1 
0.10987 

0.1322 

c 100 1 0.1 
-0.55491 

0 

d 100 3 0.1 
-2.16603 

0.16 

 

As shown in Figure 20, the a diagram, which belongs to the A-domain, always has the prolate shape 

and decreases with increasing frequency of deformation. The b diagram, which belongs to region 

B, has the same trend, but at lower frequency has smaller deformation compared to region A. The 

graphs c, d both belong to region C, where the droplet is oblate at a zero frequency, but as the 

frequency increases, the deformation decreases until finally reach zero. This point is the same as 
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the critical frequency. As the frequency increases, the amount of deformation from  0  goes to 

0  , indicating that the droplet is prolate and increases along the path with increasing 

deformation frequency. 

 

 

Figure 20. Deformation form with increasing frequency for different areas. 

 

 

4.3 Transient droplet deformation: 

To investigate general deformation and oscillatory deformation, it is necessary to neutralize the 

general oscillatory normal stress on the interface by surface tension. Considering transient parts, 

we will have normal stresses as 
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where Dt is a function of H * and e2iwt, none of which is a function of the angle, and since we have 

a derivative of the curvature with respect to the angle, then Dt has the same form as Ds. To acquire 

a relationship for Dt, 
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The dimensionless number K represents the oscillatory hydrodynamic stress ( 0w  ) and 
b

 the 

Capillary pressure on the surface of the droplet. When 
b

 is constant and the frequency goes to 
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infinity, the value 
t sD D goes to zero, which indicates that the drop does not respond to radial 

oscillation stresses. Figure 21 shows the overall deformation relative to wt. For higher K values, 

the oscillation of interface is very low, and, conversely, for smaller values, the general deformation 

takes a more oscillating state, so that in e mode it is greater than Ds and the droplet fluctuates 

between the prolate and the oblate states. Drop oscillation is twice the voltage fluctuation. When K 

approaches zero (eg, c), the maximum and minimum oscillation values occur where the electric 

field is maximized and minimized. Meanwhile, Tu 
 has a phase difference of 90 degrees with Dt. 

It should be noted that for conductive drops in the dielectric field, the electrical resistivity of the 

droplet is very small and the electrical resistance of the surrounding fluid is very high, thus R = 0, 

X2 = ∞ and the electric charge on the droplet is: 
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If the conductive drop is placed in the alternating field with a frequency of zero, then the rate of 

deformation of the droplet in a stable state is: 

0 23 cos( )k E  =      (120) 

In the above relationship, moving electrical charge on the interface due to the flow of fluid flow 

and the electrical conductivity of the interface layer is not considered. From this relations, we 

obtained the stable deformation of the droplet as follows: 
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Figure 21. Total deformation function in terms of time for R=100, 0.1 = ,aw=1E4, 

 a) k=10, b) k=1, and  c) k=0.1 , d) aw=1E2 , k=10 , e) aw=1E2 , k=1 

. 

 

As mentioned earlier, for Rq <1, the environment is silicon oil (system 1) as shown in Table 2. An 

increase in frequency reduces the deformation of the droplet. As the frequency increases to 60 Hz, 

the drop deformation decreases compared to that of zero frequency. For a conductive drop (system 

2), water that comes with an additive, there is no difference between the frequency of 60 and zero, 

and the shape of the drop is prolate. In (system 3), where Rq> 1, for example, a droplet of silicone 

oil, then the deformation of the droplet at a zero frequency is oblate and at a frequency of 60, the 

prolate. According to the relations obtained in this system, there is certainly a critical frequency in 

which the degree of deformation is zero. If the ratio
60m m

 is plotted in terms of the frequency for 

system 3 then 1.6063c Hz =  is obtained in which the droplet remains in a spherical state (Figure 

22), and after almost frequency of 5 results in infinite frequency, which has the same deformation 

as that in the frequency of 60. In addition, the proposed relationship for the critical frequency 

indicates that this frequency does not depend on the diameter of the droplet. An increase in the 

electric field causes an increase in the deformation of the droplet until the other surface tension is 

able to balance the normal stresses and the moment of separation begins. 
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Table 2. The three studied cases (systems). 

R a(s) 1( )m  q K2 m 
1( )Nm − phasesD/C 

N.System 

(NM3) 

<0.03 2.4E-2 1E9 2.3 2.77 1.2 5.5E-3 (NM3) 1 

65( / )kg ms = 20.98 /gr cm = N:  oxidized castor oil 

54( / )kg ms = 20.98 /gr cm = M3:  siliconoil(200F) 

R a(s) 1( )m  q K2 m 
1( )Nm − phasesD/C 

N.System 

(YN) 

1E-5 5.6E-7 1E4 12.7 6.30 1E-4 13E-3  (YN) 2 

1 6( / )E kg ms = − 21 /gr cm = Y:  distilled water 

65( / )kg ms = 20.98 /gr cm = (N):  oxidized castoroil  

R a(s) 1( )m  q K2 m 
1( )Nm − phasesD/C 

N.System 

(M1T) 

14 1.6 3E10 0.46 6.04 3E-2 3.9  (M1T) 3 

0.5( / )kg ms = 21 /gr cm = M1:  siliconoil(500F) 

174( / )kg ms = 21.04 /gr cm = (T):  sextolphthalete  

 

 

Figure 22. Deformation rate of the field in two modes of zero and 60 (left) and deformation 

ratio at each frequency to deformation at a frequency of 60 (right). 
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4.4 Falling drops 

The relationships presented in previous sections are true for stationary droplets, considering the 

probability of errors such as: 

1. Assumptions in the boundary conditions. 

2. The effect of free current in space that is set to zero but may in fact still exist in the environment. 

3. The effect of the ion distribution layer on the interface. 

4. Error in electric and hydrodynamic constants such as electrical conductivity, diffusibility, surface 

tension and etc. 

5. The effect of the convection term on the Navier Stokes equation. 

When the drop falling or bubble is rising, the fluid hydrodynamics of the surrounding area and the 

electric field affect them together. This means that in the absence of an electric field, it is possible 

to imagine the deformation of the droplet, vortex, and fluid rotation. It should be noted that in the 

equations in this chapter, if the viscosity ratio is very high, it can be an indication of a particle, and 

if the viscosity ratio is to zero, it should have a bubble. For a falling drop, we can solve the problem 

from the point of view (coordinates corresponding to the drop). That is, assume that the droplet is 

constant, but the surrounding fluid in the infinity moves upward; as a result: 
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(122) 

In Stokes regime, thus 4 0 = . Given the form of the received external stream function, it is 

justified to assume that the stream function is assumed to be 2( )sin ( )G r = .  
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The above equation is a Cauchy-Euler equation which according to the roots obtained, the bases of 

the answer are as follows. 
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Due to the fact that the velocity inside the droplet must be limited, therefore, C and D are zero for 

the internal stream function. Meanwhile, when we move away from the droplet, the speed must be 

limited so that the coefficient A is zero for the external stream function. 
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According to the obtained form for the flow and velocity function, we will have: 
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Now boundary conditions are applied: 
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Three unknowns are obtained as a function of Ai: 
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It should be noted that the tangential electric stress on the interface is zero and the tangential 

hydrodynamics stresses are: 
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Therefore, internal and external flow functions are obtained for falling drops without affecting 

EHD, and the sum of these functions with electrohydrostatic steam functions results in the general 

formula of the flow function. Therefore, the second stream function is related to the case that we 

have falling but not an electric field and the drop falls. And the first one is for a state that we have 

just an electric field. 
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We continue calculations based on the AC current and considering its steady state, but before that, 

a summary of the relationships is presented in Table 3. 

 

 

 

 

 

 

 

Table 3. Analytical relationships obtained up to this section 
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With the above relations, we now look at the normal hydrodynamic stress on the interface
h

rr
 . To 

do this, we first specify the normal hydrodynamic stresses for the inside and outside of the droplet 

as well as the pressure gradient on the interface. 
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The hydraulic stress is: 
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Introducing the dimensionless number w, the ratio of the maximum effect of the electric field 

velocity due to the electric field and the steady-state velocity which results in the falling drop and 

the form of the flow function is expressed as 
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Calculating the pressure on the interface for inside the drop: 
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Calculating the pressure on the interface for outside the drop: 
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Calculating the pressure difference on the interface: 
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Calculating the resultant hydrodynamics on the interface: 
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To obtain a droplet shape, we use the balance of normal stresses by the force of the capillary. So 

that: 
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If it is not Falling, then B = 0 and consequently a3 = 0, and all the coefficients inside the series are 

zero and the iteration is not repeated. Of course, when B is not zero, we have a cut-off cutoff error, 

and all the coefficients inside the series are dependent on B. 
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W=0.0                                                  W=1.0 

 

W=1.5                                                       W=2.0 

 

W=4.0                                                         W=8.0 
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W=12                                                     W=30 

 

W=70                                                       W=150 

 

W=300                                                      W= ∞ 

Figure 23. How to move the fluid around and inside the droplet for system 2 based on the 

increase of the dimensionless number W. 
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As stated, W is a non-zero number that represents the importance of the ratio of the electric field to 

the motion of the droplet. Figure 23 and Figure 24 show this dependence. In very high W numbers, 

the electric field is dominant and in low numbers the effect of the electric field is negligible. The 

positive value of this number means the movement of the fluid from the poles to the corners and 

for the negative values is reversed. For W>10, the shape of the vortexes within the drop is not much 

different from the state of the electric field. In Figure 23, two vortexes are initially formed within 

the droplet. As w increases, the vertex center moves from the center of the droplet and shifts to the 

higher. Because Rq <1, the electric current seeks to move the fluid from the corners toward the 

pole. So in the upper hemisphere, the droplet behaves like a falling drop, while in the lower 

hemisphere EHD seeks to move fluid from 2,3 2  = to = . The fall of the droplet causes the 

fluid to flow from the bottom up and these two behave in the opposite of each other. And this is a 

factor for creating a negative gradient at the bottom of the drop and thus forming a vertex. With 

increasing w or the electric field, the power of the current flowing from the EHD has increased and 

the center of the vectors is shifted to the outside. Ultimately, the electric field is overcome, and the 

vertexes are converted to open vortex. Figure 24 is for Rq> 1. The results are exactly the same as 

the previous one. 
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W=1.5                                           W=4.0 

 

W=30                                            W=70 

 

W=150                                           W= ∞ 

Figure 24. Movement of fluid around and within the droplet for system 3 based on the increase 

of the dimensionless number W. 

 

Figure 25 shows the shape of the deformed droplet in three cases. The figure on left shows the pure 

electric field effect, the figure on the right shows the pure falling effect and the figure in the middle 

shows both effects. Figure 26 shows that the form obtained from the analytical solution corresponds 

to numerical results. Figure 27 shows the comparison of the number of polynomials considered in 

the power series to solve the curvature equation, and therefore, 80 sentences seem to be sufficient 

to examine the shape of the droplet. 
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Ufall=3E-4 Ufall=1E-4 Ufall=1E-6 

System 2,Cae=0.2 

 
 

 
Ufall=1E-4 Ufall=5E-5 Ufall=1E-6 

0.0==0.4,e,Ca3System  

   

Ufall=5E-5 Ufall=1E-5 Ufall=1E-6 

60.0 ==0.4,e,Ca3System  

Figure 25. Drop deformation in the two systems, effects of EHD and falling. 
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C=5 and Q=5 

 

C=5 and Q=10 

 

C=20 and Q=10 

Figure 26. Comparison of the analytical solution calculated in this study against the current 

direct numerical solution using Gerris. 



89 

 

 

 

 

Figure 27. The number of necessary series terms to reach the converted solution for the 

deformation function 

. 
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5 Chapter 5: Coalescence of Two Falling Drops 

As presented in Figure 28, the coalescence of two falling drops has been studied numerically to 

investigate the effects of the electric field on their interactions compared to those of without the 

electric field effects. 

 

Figure 28. The geometry for two drops. 

 

 

5.1 Coalescence of two falling without electric field effects 

In the first case, the coalescence of two falling drops has been studied without considering the 

electrical field effects. The two falling drops descend without having any effects on each other as 

they are not influenced by an external electric field. As can be seen in Figure 29 the two drops 

falling down up to the end of the domain with no influence on each other’s behavior  
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Figure 29. The coalescence of two falling drops without the electrical field effects. 

 

 

5.2 Coalescence of two falling drops under electric field effects 

5.2.1 Distance effects 

The coalescence of two falling drops has been influenced by external electrical field effects. The 

drops fall at different distances from each other. As shown in Figure 30 the drops at the shorter 

distances from each other have more effect on each other and coalescence is a shorter time as here 

the results are shown at t=2.  
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d=2r 

    

d=1.5r 

 

d=r 

                                                           

d=0.5r 

Figure 30. The coalescence of two falling drops under electric fields at different distances from 

each other at ECa = 0.4 and t=2. 

 

 

Figure 31 shows the coalescence of two falling drops under electric fields at different distances 

and different time sequences. As seen the two drops located closer to each other initially 

coalesces stronger under electric field compared to those at the further distance at the beginning.   
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                                                     d=0.5r                             d=1.5r 

Figure 31. The coalescence of two falling drops under electric fields at different distances from 

each other at 
ECa = 0.4 and t=2 to t=6. 

5.2.2 Electric field strength effects 

Figure 32 depicts the coalescence of two falling drops under electric fields at different distances 

from each other at various electric fields at two electric fields. As the results show, by increasing 

the electric field the two drops influence on each other so strongly so that at t=3 upward they start 

merging each other which shows the much stronger coalesce of the drops under stronger electric 

field although they were located at the same distance apart from each other initially.  

 

                                                  

                    

                 

                    

                     

                                                 ECa = 0.4                        ECa = 0.6 

Figure 32. The coalescence of two falling drops under electric fields at different distances from 
each other at different electric fields, d=0.5r and t=2 to t=6. 

. 

 

Figure 33 displays the coalescence of two falling drops under different electric fields which are 

initially separated from each at d=r at t=4. As seen from the results as the strength of the electric 
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field grows, the two drops coalesce much stronger up to the point they get completely merged into 

each other.  

 

 

  

ECa = 0.2  

 

ECa = 0.4 

 

ECa = 0.6 

                                                                 

ECa = 0.8 

Figure 33. The coalescence of two falling drops under different electric fields at d=r and t=4. 

 

 

5.3 Near Wall Deformation of Falling Droplets under the Effect of Electric Field  

Figure 34 shows the computational domain used in the current work along with the boundary 

conditions. The dimensions of the domain and drop are shown in the figure. The width of the 

computational domain is 40R with the height of 160R. A spherical droplet with density and 

viscosity of 1  , 1  and radius R falls under the action of gravity g. The initial velocity of the drop 

is zero. The surrounding medium has a viscosity of 2 and density of 2 . The subscript 1 refers to 
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drop and 2 is for the outside medium. Wall boundary conditions are on left and right sides of the 

domain and symmetry boundary conditions are applied on the rest of the boundaries. 

 

 

Figure 34. The schematic of the problem and the boundary conditions. 

 

 

Figure 35 depicts the wall effect on the falling droplet for Ga = 40, Bo = 5, r =2, r =10. 

Figure 35a shows that the drop feels the repulsive force from the wall due to the wall shear and as 

a result, the right side of the drop pushed upward. The drop is compressed horizontally (along larger 

diameter) deforms toward oblate shape compared to the ellipsoidal form that drop has under 

symmetrical boundary condition. As seen the wall boundary condition slows down the process of 

drop deformation toward the bowl-like shape which is the beginning of the drop breakup. Figure 

35b shows the results of the falling drop deformation with wall boundary conditions under the 

electric field. As seen under EHD force the falling drop takes the oblate shape which is tilted 

because of wall shear. Wall repulsive force on drop push the right side of the drop upward which 
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will be combined by the EHD force compressed drop more and deform it toward initial spherical 

shape which noticeably delays the transformation of the drop to bowl-like shape and after drop 

breakup.  

 

 
 

Figure 35. The Effects of EHD on drop for, Ga = 40, Bo = 5 ECa =0.11, r =2, r =10 for (a) 

wall boundary condition applied and (b) Q=25, C= 5 from t=1 to t=6. 

. 

 

Figure 36 shows the wall effect on the falling droplet for Ga = 40, Bo = 5, r =5, r =10. Again 

similarly, the drop is compressed horizontally and its right side pushed upward under the shear wall 

which takes an oblate form and after this behavior slows down and becomes volatile as at t=5 and 

6 the right side tilts downward. Figure 36b shows the drop influenced by the electric field and as 

seen the drop takes the oblate form and also becomes tilted due to the wall effects improving the 

oblate form and after t=4 the deformation changes and the drop side faces the wall pulls downward.   
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Figure 36. The effects of EHD on drop for, Ga = 40, Bo = 5 
ECa =0.11, 

r =5, 
r =10 for (a) 

for (a) wall boundary condition applied and (b) Q=25, C= 5 from t=1 to t=6.. 

 

Figure 37 shows the results for the falling drop under wall effect (Figure 37b) and electric field for 

Q=25, k=5 (Figure 37c). In Figure 37b, at t=5 the drop slightly tilted by the repulsive force from 

the wall boundary. At t=6, the drop’s side faced to the wall pushed away from the wall as the 

symmetry shape of the drop under symmetry boundary condition distorted. Because of the wall 

effect the core of the drop becomes less perforated which delays the breaking up process. At t=7 

and 8 also the drop feels the wall repulsive force due to the wall shear as the side faced the wall is 

pushed away toward the symmetrical shape the drop structure at those times deflected. Under wall 

effect, the higher portion of the drop core is left less perforated with thicker and stronger ligament 

which again slows down the process of the further drop breakup toward small fragmentation and 

then small droplets.  Figure 37c shows the breaking up process under wall affects and EHD force. 

The electric field combined with wall shear effect the drop becomes distorted with the higher rate 

as the multiple holes grow rapidly forming a network of attached ligaments which thereafter into 
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many droplets. Also, the drop structure pushed stronger away from the wall and the ligaments and 

bridges form closer to the wall transform into smaller droplet faster as the regions near the wall 

more drops and weaker ligaments form.  

 

 
Figure 37. Deformation of the falling drop under (a) wall effect and no EHD force (b) EHD 

force. 
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6 Chapter 6: Conclusion and recommendations  

6.1 Conclusion 

In this dissertation, a three-dimensional study of the deformation of a single falling droplet 

surrounded by another liquid under the effect of the electric field has been studied analytically and 

numerically. In addition, the effects of EHD on the coalescence of two falling drops have been 

investigated and their interactions under influence of EHD force have been studied numerically. An 

open-source volume-of-fluid solver, Gerris has been used for numerical modeling using direct 

numerical simulation (DNS). The analytical solutions have been compared for various values of 

electrical conductivity and permittivity against DNS results. The comparison of the analytical 

solutions and the numerical results show a great agreement between them. The analytical modeling 

of drop deformation has been presented in detail and also the DNS results are compared for both 

electric and fluid fields against analytical and previously published experimental data [38].  

Extensive numerical studies have been performed in order to come up with a powerful numerical 

method that not only can capture the complicated physical nature of the two-phase-flow falling 

drop deformation but also to be computationally cost-effective. To avoid issues of turbulence 

modeling, DNS has been used for simulation of this complicated problem as it solves the whole 

computational domain directly without any simplification for accurate results. Using Gerris 

provides a significant tool in investigating the EHD-multiphase problems as it uses the adaptive 

mesh and a smaller number of grids for capturing the drop’s deformation perfectly and is 

tremendously cost-effective in terms of computational cost. 

Contrary to most of the previously published work that studied the drop deformation surrounded in 

a medium with a similar density, the gravitational force has been implemented to the Gerris code 

in this study; the drop deformation has also been studied under the gravitational effect to represent 
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the real-life problems. As the results showed, under the effect of gravity, the drop undergoes various 

deformations before it goes to fragmentation. These deformations can be managed by using the 

external electric force in order to speed up or slow down its behavior.   

The analytical solution has been developed for modeling the small deformation of the falling drop 

under the effect of the electric field. This analytical method provides an easy, fast, accurate and 

cost-effective solution in analyzing the drop behavior for small deformation. The developed 

analytical method produced a user-friendly solution for prediction of the drop deformation rather 

than performing a complex, high-cost and time consuming experimental study. In addition, the 

analytical solution can be used for investigating the deformation for various physical parameters 

much easier and quicker compared to the limited cases of experimental work that makes the 

investigation much more difficult as each change in physical parameters needs a new set-up for 

measuring the data. 

The wall effect is also studied in order to investigate its influence on the falling drop behavior. The 

results have been presented for the drop deformation under the wall effect with and without 

combination with the external electric field. Results revealed that the shear wall effects impose a 

force on drop behavior which causes the drop to form the oblate and prolate shapes, which results 

in speeding up and slowing down its bowl-shape formation. This shear force can be reinforced by 

its combination with the electric force which significantly affects the drop deformation in 

expediting and delaying its deformation toward final fragmentation.  

The coalescence and interaction of the two drops under gravity and electric force have been studied 

numerically. As the results showed, without an EHD force the two falling drops have no interaction 

with each other as they descend toward the bottom of the computational domain in spite of their 

deformations. The application of the EHD force showed that the two falling drops start interacting 

with each other which leads to their coalescence. The interaction and coalescence are affected 

significantly by the strength of the electric field. Within the investigated parameter range, it was 
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found, as the strength of the electric field grows, the two drops’ coalescence becomes much stronger 

up to the point that they get completely merged into each other. In addition, the effects of the 

distance on their coalescence and interaction have been presented using the numerical solution; the 

two drops which are initially at a farther distance from each other have a weaker effect on each 

other compared to those that are in a closer distance from each other and this interaction can be 

improved by using the electric force. 

The results showed that electric force can be a significant external force in controlling the drop 

deformation and fragmentation. The numerical results revealed that the electric field can expedite 

or delay the bowl-like shape formation of the drop which is the initial stage of the drop to go to the 

bag formation stage and eventually to its fragmentation.  

A main focus of the work was on the contribution of an electric field, which induces a deformation, 

to the behavior of a falling drop since falling/rising of a drop itself can deform the drop. It was 

found that the latter is dependent on the hydrodynamic properties of both continuous and dispersed 

phases while the former is hinged to the electrical properties of these distinct phases. The results 

reveal that depending on the direction of the imposed electric field, deformation can be halted or 

promoted with respect to the different flow regimes. While a drop can turn into a cup shape due to 

falling, the electric field can be strong enough to generate sufficient electrical stresses to revert the 

drop to its initial shape. Comparing the electrical stresses contours around the interface of the drop 

as well as viscous stresses, it is found that pressure gradient can be determinative factors in 

assessing at which conditions electrical behavior is dominant compared to solely hydrodynamic 

induced deformation. While in a low Reynolds number or a low Weber number analytical results 

specify the different forces implemented on the interface, a high Weber or Reynold number results 

specify the Plateau–Rayleigh instability arising at the tips of the drop results in rupturing the drop, 

resulting in rupturing the drop and generating satellite drops.  
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It was found that DNS has the potential to resolve the mechanism in a short timescale. It is worth 

mentioning that circulation inside the droplet, as a result of balancing viscous and electrical 

stresses, plays a significant role in drop behavior particularly in the turbulent regime; in turbulent 

flow regime, vortices inside and outside the drop undergo sever time-dependent interaction, which 

are the phenomena difficult to be captured by the available analytical techniques. 

 

6.2 Recommendations 

Following the importance of electric field on deformation, coalescence or rupturing of the droplet, 

which depends on different parameters, more investigations are needed for practical applications 

such as emulsions which consist of the population of droplets (rather than a single droplet case) 

within the continuous phase e.g., water in oil emulsions as follows : 

1- Check the effect of electricity on the stability of the emulsion.  

2- Conducting a numerical simulation to see how one/two droplets or multiple drops interact 

with each other inside the dialect medium to give an idea of how the droplets (suppose 

conductive ones-water) behave in the emulsion. 

3-  How much they can be deformed,  

4- How much they are likely to attract each other because of the dipole-dipole attraction,  

5- How EHD-induced vortexes can change the motion of these droplets and become them 

closer together and addresses many important issues in terms of the rheology of droplets 

in an emulsion. 

6- Improving and extending the analytical solution for a high range of Capillary number 

This work definitely improves the idea behind making an emulsion. Effect of the electric field for 

making an emulsion can be explained as below. Today’s research regarding the emulsion synthesis 

can be divided into parts 1) size of the dispersed droplet (making nano-emulsion by the typical 
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processes such as homogenizer, microfluid or porous membrane have limitation. In the case of 

homogenizer, where shear forced is used to break the droplet (dispersed phase), it depends on many 

factors (viscosity of the continuous phase, rotational speed, turbulent energy, or in case of 

membrane /microfluidic, the limitation in terms of the manufacturing process to make nano-sized 

channel or pores and so on ). The electric field is a promising technique which enables us to break 

the dispersed phase to satellite droplets (the same was done for electrospinning [49] or even mixing 

the two viscous oils). If one considers the two oils where one is less dense than the second, we can 

have two layers of oils. When we apply the electric field on the interface between these two liquids, 

the instability propagates as a wave which finally leads to mixing one into another. One can replace 

one of that oil by water phase to make w/o or o/w emulsions. Depending on the applied electric 

field and properties (hydrodynamic, electrical, and chemical) of those two phases, different types 

of emulsion can be made. Note that, after breaking the dispersed phases to tiny droplets, these 

droplets want to coalescence again to reduce the free energy and decreasing the surface area, then 

stabilizers (surfactant or particles) are used to hold these droplets inside the continuous phase and 

prevent merging ( break up of emulsion-separation). Here how electric field can affect the interface 

by the presence of a surfactant or in another scenario charged particles is another important thing 

which has not been investigated yet. Even neutral hydrophobic/hydrophilic particles at the interface 

of o/w show charges which create Columbic force or dipole-dipole interaction, for which the 

amount of each force needs to be measured.  
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