
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

FIU Electronic Theses and Dissertations University Graduate School 

4-1990 

Data-parallel programming with multiple inheritance on the Data-parallel programming with multiple inheritance on the 

connection machine connection machine 

Sanjay Girimaji 
Florida International University 

Follow this and additional works at: https://digitalcommons.fiu.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Girimaji, Sanjay, "Data-parallel programming with multiple inheritance on the connection machine" (1990). 
FIU Electronic Theses and Dissertations. 3940. 
https://digitalcommons.fiu.edu/etd/3940 

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It 
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU 
Digital Commons. For more information, please contact dcc@fiu.edu. 

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3940&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F3940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3940?utm_source=digitalcommons.fiu.edu%2Fetd%2F3940&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


ABSTRACT

DATA PARALLEL PROGRAMMING WITH MULTIPLE INHERITANCE ON

THE CONNECTION MACHINE

by

Sanjay Girimaji

The demand for computers is oriented toward faster computers and newer com-

puters are being built with more than one CPU. These computers require sophis-

ticated software to program them. One such approach to program the multiple

CPU machines is through the use of object-oriented programming techniques. An

example of such an approach is the use of C* on the Connection Machine.

Though C* supports many of the object-oriented concepts, it does not support

the concept of software reuse through inheritance. This thesis introduces a new

language called C*±+ , an extension of C* language to support inheritance. We

also discuss the issues invloved in the implementation of multiple inheritance in

programming languages.

This thesis describes the differences betweeu C** and C* . It also discusses

the various issues involved in the design and implementation of the translator from

C** to C* . It also illustrates the advantages of programming in C*++ through

an example. Since C*++ is designed to support software reuse which allows the

users to create quality software in shorter time, it is anticipated that C*+ will have

widespread use in programming the Connection Machine.
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1 INTRODUCTION

The rise in demand for computers has been phenomenal. In the recent past the

demand has been oriented toward faster computers with larger memories. With the

sequential computers reaching almost their physical limits, researchers have turned

toward other approaches to achieve speed in computation.

This has lead to the development of multiple CPU machines. Instead of one pro-

cessor solving the problem, multiple CPUs combine to solve the problem. Intuitively

this leads to faster solutions to the problem being solved. Some examples of multiple

CPU machines are ILLIAC 4, N Cube, IBM RP3 and the Connection Machine. To

program such hardware, sophisticated software is needed.

Software evolution, on the other hand, has been evolving towards faster develop-

ment and higher levels of abstraction and specification. These advances have lead to

object-oriented methodology, the methodology in which an object models an instance

of an abstraction of a real world concept. An object combines with other objects to

solve a real world problem. Some examples of object-oriented languages are Smalltalk

80 [Go84] and C + [Lip89]. The terminologies for an object and related information

may vary among these languages, but the underlying concepts remain the same.

The mapping between object-oriented language and multiple CPU machines seems

to be natural. Each object can be mapped to a CPU in solving the real world problem.

For the generation of multiple CPU machines, object-orient d languages seems to be

one of the natural choices. An example of such a culmination of multiple CPU machine



with an object-oriented language is the usage of C* on the Connection Machine. There

are other object-oriented languages which support parallel programming. Languages

like concurrent C++ {YT87], concurrent Smalltalk [YT87], ACTOR [Agh86] and SINA

[YT87] support object-oriented concepts for concurrent computation . Even though

these languages can support SIMD computation, they were primarily designed for

MIMD computations. On the other hand C* was primarily designed to support

parallel computation on a specific parallel machine, the Connection Machine. C*

makes efficient usage of the Connection Machine architecture and is more suitable

than any other general purpose concurrent object-oriented programming language.

This efficiency is at the cost of portability. Since speed is the major criteria in

multiple computing, C* has a major advantage over other general purpose concurrent

object-oriented language. *Lisp is another programming language which can be used

on the Connection Machine [Gro89]. *Lisp which supports parallel processing and

interprocess communication between processors, directly relates most of its parallel

instructions to the underlying mechanism. Hence *Lisp programs are faster on the

Connection Machine than C* programs. However higher levels of abstractions can be

specified better by using C* . So to use object-oriented concepts on the Connection

Machine, C* seems to be the most logical choice with its blend of object-oriented

concepts and speed of execution of C* programs on the Connection Machine.

Though possessing many of the object-oriented principles, C* does not have the

properties of information hiding and software reuse through inheritance. One of the
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major means of rapid software development is lost in C* because of the lack of software

reuse. This thesis is an attempt to address the problem of software reuse through

inheritance. In this approach we introduce a new language called C*++ , which is an

extension of C* . C*++ allows the specification of subclasses and by using subclasses

we can reuse software. C*++ supports multiple inheritance of classes and the user has

the flexibility of reusing many more classes. Because of multiple inheritance, conflicts

regarding naming arise and such conflicts have to be resolved before execution. One

method of resolving such conflicts is by allowing the user to resolve all conflicts before

execution and C*+ follows such a methodology. The user has the ability to rename

ancestral data and also to selectively inherit functions from the ancestral classes.

(Ancestor is used synonymously with parent in this thesis). We also provide with a

translator for converting C*** programs to C* programs which can then be compiled

and executed on the Connection Machine.

The thesis is organized as follows. In section 2 we discuss the approaches used

to achieve multiple CPU computing while in section 3 we discuss the object-oriented

Concepts. With the necessary background information, we describe in section 4 the

programming environment on the Connection Machine. Section 5 describes the C*++

language, its differences with C* and the translation of C*+* programs to equivalent

C* programs. We also illustrate the differences between C*±* and C* through an

example. In the final section we discuss our conclusion and suggest ideas for further

research and development.



2 PARALLEL COMPUTATION

Flynn [Sto8O] classified computers based on the instruction and the data streams.

The single instruction and a single data stream computers were the conventional Von

Neumann machines and were called the SISD machines. MISD machines are those in

which there are multiple instruction streams and a single data stream. In both these

architectures there is only one computational engine. However for faster computations

multiple computational engines are needed.

In parallel computation, the basic concept is to have multiple computational en-

gines operating on a problem. By using multiple engines, it is possible to solve a

given problem faster than by using only one computational engine. Flynn proposed

two more architectures which supported parallel computation in principle. They re

are Single Instruc ion Multiple Data (SI D) type and Multiple Instruction Multiple

Data (MIMD) type of machines (Sto80]. We will study each of them briefly

2.1 SIMD Machines

In SIMD machines a single instruction is executed by many different processors simul-

taneously. In this case there is only one instruction executed by all the processors on

multiple data, Fig. 1 depicts the architecture of the machine which supports SIMD

type of computation. The major components in SIMD machines are the control unit,

instruction bus, the processors and the interconnection network.

In Fig. 1, the control unit is the front-end of the SIMD machine in which the
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Interconnection Network

Figure 1: Graphical Representation Of SIMD type Processing



program resides. The control unit sends the instructions to the processors through the

instruction bus. Each processor, which has its own memory, executes the instruction

provided. It communicates with the other processors through the interconnection

network. The interconnection network can be of any topology like the cube or mesh

connection. At the beginning of each instruction, all the processors evaluate a boolean

guard to check if they have to execute the instruction. If the guard is true, then the

processor executes the instruction, else the processor waits until the beginning of the

next instruction at which point all the processors are synchronized again. Hence in

SIMD type of computing all the processors execute in a step-lock fashion.

SIMD type of computing is a simple model in which synchronization of processors

is built-in. The program is stored in the central control unit and need not be copied

into all the processors. The processor's memory can be used for storing the data

associated with that processor. SIMD machines are fast and memory efficient for

data-parallel programs, programs which are parallel in data and scalar in control.

Programs which simulate propagation of heat through metals, sound through water

and pressure through structures are examples of data-parallel programs.

The Connection Machine is an example of a SIMD machine. Let us analyze the

solution to the problem of heat flowing through metal using the Connection Machine.

In the case of heat flowing through metal, the metal sheet can be represented as a

grid. Each element of the grid can be associated with a processor which contains

information about temperature at that point (each object is mapped to a processor).
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The temperature in each of the processors is proportional to the temperatures in its

neighboring processors (namely to the north, east, west and south of the processor).

So whenever there is a change in temperature in an object, the temperature in the

neighboring objects is also affected. The heat is transmitted to all other parts till equi-

librium is reached. During the time taken to attain the equilibrium, the temperature

at a given instant in all the processors can be evaluated simultaneously on a SIMD

machine like the Connection Machine. To evaluate the temperatures, thousands of

processors could be iterating for hundreds of times till equilibrium of temperature is

reached in all of them, The computational complexity of this algorithm would be

O(Man) (M is the number of iterations while N is the number of processors used in

SIMD approach) on a sequential machine while it is O(M) on a SIMD machine.

Based on the temperature changes in the processors to reach equilibrium and the

time taken to reach it, it is possible to evaluate the intensity of the temperature and

its origin. In this approach the control mechanism for all the processors is the same

while the data can be different (data parallel) and such programs are best suited to

SIMD type of computation. SIMD machines are not efficient if the programs are not

data-parallel in nature.

2.2 MIMD Machines

In MIMD machines, multiple processors exec te multiple control program on multiple

data. The control program and the data can be different for each of the processor
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Figure 2 Graphical Representation Of MIMD type Processing

in this mechanism. Let us study the architecture of a MIMD machine to see how

such computations can be achieved.In MIMD type machines, the major components

are the processing element and the interconnection network. The processing element

consists of the processor and the memory. Unlike in SIMD machines, each processor

stores the program in its own memory.

In the interconnection network any processor can be connected to every other

processor or they can be connected in a mesh or a hypercube like connection. Each

processor executes asynchronously (with other processors) and communicates with

other processors in solving the problem. If the communication is through shared

memory, then different machines could try to access the same data and data access

conflicts could arise. Such conflicts have to be resolved. However if the memory is



local to each processor and the communication is done through the inter-connection

network, then there are no memory access conflicts.

The main advantage of an MIMD machine is its flexibility. The flexibility offered

by MIMD machines is at the cost of overheads involved in the communication between

processors. Because of its flexibility, MIMD computers can solve a wide range of

problems. MIMD type computers are not memory efficient since each processor has its

own copy of the program. MIMD machines are suitable for control parallel programs,

programs in which the control is different for each processor. An example of such

a situation is a rule based expert system, in which actions are triggered by certain

conditions being met. For a given condition many different actions can be triggered.

Each of these different actions can be executed by a different processor. Expert system

and Prolog programs are some examples of control parallel programs in which a goal

can be reached by using different premises. By following different paths of execution,

the same goal can be reached at, and all of them can be executed concurrently. Each

such path of execution could be executed on a different processor and the solution

could be reached faster.

A simple example of a control parallel program is a Proplog program [MW88]

that is used to check if a student can register for advanced study in computer science.

A student satisfies the criteria if he/she has completed three basic courses and one

course in a special group or two basic courses and two special courses. The rules for

the program are given below.

advancedCS grouplAl1, rou2One .
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advancedCS group1Two, group2Two.

grouplAll : compilers, opSys, arch.

group20ne fileStruct. group20ne :- dbms.
group20ne : progLang. group20ne : comp Comm.
group20ne ai. group20ne graphics.
group20ne : research. group20ne micros.

group1Two compilers, opSys.
groupiTwo compilers, arch.
group1Two :- arch, opSys.

group2Two fileStruct, progLang.
group2Two fileStruct, dbms.

group2Two fileStruct, micros.

/* All combinations of two group2Two courses
/* are declared before. */

The goal is to check if the student has an advanced degree in Computer Science.

The computer checks if the user satisfies grouplAll criteria or the group2One criteria.

These checks can be done in parallel. The algorithm to check these conditions has

parallel branches and parallel branches can be executed concurrently. When a prob-

lem involves multiple control programs (and multiple data too), then MIMD machines

are ideally suited in solving such problems.

2.3 Comparison

MIMD machines are more flexible than SIMD machines because they do not impose

any restriction on the order of execution. Also the interconnection network in MIMD
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machines are more complex than those of SIMD machines. This flexibility of the

interconnection is at the cost of speed of execution. However the selection of one of

these architectures is based on the problem to be solved. If the problem is data-parallel

in nature then SIMD machines are better suited. If the problem is control-parallel in

nature then MIMD machines are better suited.

In the presence of "if-then else" instruction, MIMD machines are faster than SIMD

machines. We will analyze the reason below.

2.3.1 If-then-else construct

Let us consider the execution of a program segment with an "if-then-else" statement

by both SIMD and MIMD machines, as shown below

if (score > 50)
update gpa( O;

else

print-score (;

nextinstruction

Consider Fig.3 in which each circle represents a processor and to the left of the

"steps" we have the SIMD machines and to the right of it we have the "MIMD"

machines. In step 1, all the processors test the boolean condition. In step 2, only

the "true" processors execute the function "update-gpa" in SIMD machines while the

"false" processors wait. Since MIMD machines do not impose any restriction on the

synchronicity, some processors execute the function "update-gpa" while others exe-

cute the function "print-score". In step 3, in SIMD machines, the "false" computers
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SIMD Step MIMD
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UG updategpa W: wait

R R R 4 S print-score R resync

Figure 3: If-Then-Else construct
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execute the function "print score", while the "true" computers wait until the begin-

ning of the next instruction. In MIMD machines all the processors execute the next

instruction in step 3. In step 4, all the SIMD processors are resynchronized and they

execute the next instruction. As can be seen, all the processors in a SIMD machine

have to be synchronized at the end of each instruction, which slows down the overall

execution time of the program. The same analysis holds true for the case statement

too, and in this case SIMD machines are even slower.

MIMD machines, however use more memory than SIMD machines. This is be-

cause of multiple copies of the program, one in each of the processors. Also the

interconnection network is more complex in the case of MIMD machines and hence

the communication overhead is greater in MIMD machines. On the other hand de-

bugging programs is easier on SIMD machines than on MIMD machines because

execution can be reproduced in SIMD machines (because of their synchronicity). Ex-

ecution is asynchronous in MIMD machines and hence they are difficult to reproduce

which makes debugging harder.

MIMD machines seem to be more attractive than SIMD machines for multiple

CPU computing. However the complications of reliable and fast interconnection net-

work and the problem of synchronization have not been solved efficiently to make

commercially viable MIMD machines. On the contrary there are SIMD machines

with thousands of processors commercially available now and the Connection Ma-

chine is one such example. So SIMD machines seem to be an attractive solution for

multiple CPU computing now. Let us study an application of multiple CPU machines

used to solve real world problems.

Consider the following algorithm which is used to analyze the propagation of sound

through water. The sound intensity at different points in the ocean are studied for
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known sound intensities and range. These measurements are used to evaluate the

intensity or range or the type of sound.

The methodology followed is as shown: The ocean is divided into grids and each

element of the grid is assigned to a processor (The number of rows in this grid is

assumed to be N). An initialization matrix (size NxN), is calculated based on em-

pirical studies. A psi vector (size Nx1) is calculated based on the intensity of sound

and its origin in the ocean. This psi vector is mapped to the leftmost column in

the grid. The sound is then propagated to all the processor in the grid through a

function called "Marching function". The value of sound intensity in each processor

is modified based on the marching of sound which can be represented by the following

function:

X =AX~

where

X : psi vector in column i

A : the initialization matrix

X~j : psivector in column il1

These calculations are repeated over a period of time on all the elements of the grid.

So the number of matrix multiplication are thousands in number. Such multiplications

which take O(NxN) time on sequential machines, can be executed in 0(N) time on

the Connection Machine. If there are M columns in the grid, then all the columns can

execute their multiplication in parallel. So each iteration of matrix multiplication in

a SIMD takes O(N) time. In a sequential machine, the same problem would have the

computational complexity of the order O(NxNxM). Since the number of iterations is
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high, it can be seen that SIMD machines are faster in such computations.

Based on the value of the sound in each processor in each iteration, graphs can

be drawn to represent the propagation of sound through water. This process can be

repeated for different initial psi vectors

When the intensity and source of sound has to be computed, measurernents are

taken in certain points of the grid. By using the existing data and the measurements

taken, it is possible to evaluate the source and the intensity of sound. [Lis90].

So SIMD machines are more suitable for data-parallel programs than control-

parallel programs. So in general the nature of the problem dictates the selection of

the architecture (SISD, SIMD or MIMD) used in its solution.
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3 OBJECT-ORIENTED CONCEPTS

Increase in software size, difficulties in maintaining large software and an attempt to

decrease the increasing software costs are among the various reasons that have led to

advances in software technology. The evolution of software through the processes of

design, development and implementation became more structured and the transition

between stages smoother. One of the results of the evolution has been the development

of software based on objects. The notion of what an object is, varies. Smalltalk

[Gol84], C++ [Lip89}, Actors [Agh86], Ada [Boo86], etc have their own concept of an

object, but in general an object is an instantiation of an abstraction of a concept.

To solve a problem, these objects perform computations, and may also interact with

each other through message passing. An object can be assigned to a processor and

each processor can combine with other processor in solving the problem. An object

is self contained and has the properties of abstraction, modularity, encapsulation,

information hiding, software reusability and inheritance and these can be implemented

in each of the processors with hardware and software support. So multiple CPU

computing seems to match the requirements of object-oriented programming. In the

following section we present the object-oriented terms used in this thesis and the

semantics associated with them.

3.1 Terminology

Since different languages have different interpretations of object-oriented terms, we

now define our understanding of some object-oriented terms used in this thesis.

Object
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An object is a combination of data and functions (procedures) that represents

an instance of an abstraction. In conventional programming, an object can be

viewed as a variable with associated functions.

Class

A class is a description of a collection of objects with the same data and func-

tionality. A class can specify some data and functionality as private and others

as public. By private we mean that the data or function can be accessed only

by the object and not other objects. If data or function are public, then other

objects can also access it. In this thesis, class, domain and module represent

the same concept and hence can be used interchangeably unless specified oth-

erwise. The data associated with an object is (are) also called as the instance

variable(s) of a class.

Function and Message

A functionality can be defined for an object, called "function". This is the

same as method or procedure in some object-oriented languages. A function is

invoked when an object receives a message sent by another object. The sender

object transmits the function name and if needed, arguments, as a message.

The receiver object executes the function called and returns the result to the

sender.
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3.2 Software Engineering and Object-Oriented Program-

ming

In this section we discuss how object-oriented programming support the basic prin-

ciples of software engineering. The concepts discussed are abstraction, modularity,

information hiding and software reuse through inheritance.

3.2.1 Abstraction

Abstraction is the technique by which a user can specify how to solve a problem at a

certain high level without worrying about the lower level details. In object-oriented

programming abstractions can be specified as classes and in C* they can be specified

as domains.

3.2.2 Modularity

By using structured design, software can be divided into different addressable elements

called the modules. These modules can be coupled to solve a problem. Good software

should be modular, where different modules co-operate with each other to solve a

problem. Modules can be mapped to classes in data parallel programming language .

3.2.3 Information hiding

By following modular design and development, one can obtain independent modules

which cooperate with each other. When solving a problem, different modules may

have to interact. In such cases the modules should depend only on the functionality

of other modules and not on their internal details. This is supported by the con-

cept of object communicating with other objects only through messages sent to its
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(object's) methods. The internal details in a module should be local to that mod-

ule and should be hidden from other modules. This property reinforces the ideas of

modularity and abstraction and helps in maintaining and modifying modules with

little or no changes to other modules. In a parallel machine this can be supported

by the hardware which allows interprocess communication through message passing

only and not through memory accesses. It can also be supported by the software if

the data parallel programming language supports interprocess communication only

through message passing.

3.2.4 Software reusability

Using existing modules to create new modules is the basic idea of this concept. Instead

of "reinventing the wheel", by using software already developed, used and tested, we

can create new software. By reusing software, not only can a user concentrate more

on design of the software than its implementation, but also produce software with

minimum effort. This can be supported by the concepts of classes and subclasses

and the inheritance of data and methods from the ancestral classes in object-oriented

programming . If the data parallel programming language supports the specification

of classes and subclasses, then software can be reused in that language.

3.3 Inheritance

A technique to achieve reusability is called inheritance. Reusability is achieved by

creating new modules based on the existing modules with few additions. The in-

heritance relationship is hierarchical in structure. All the functions offered by the

existing modules do not have to be repeated in the new modules. Instead, the user
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can concentrate on the newer concepts and functions only.

Inheritance is essential for software reusability in any object-oriented program-

ming language or environment. A module can inherit from one or more modules.

All the public variables ( variables that can be seen by the descendant classes) and

functions offered by the ancestral modules are available to the current module. The

user can inherit from these modules and modify them to his/her needs, While the

consistency of the ancestral modules is maintained (because the user cannot change

them), extension to those modules is supported by the language. Consistency of a

module is very essential because other modules could depend on the definition of the

functions offered by the module and if they (functions) are not consistent, the whole

system may not be consistent. Inheritance can not only be viewed as extension to

a module, but also as a specialization of a module. The parent module can be a

generalization while the child could be a special case of the parent. As an example,

consider a module "integer" which offers the functions of addition, subtraction, divi-

sion and multiplication. Another module called "small integer" can be defined as the

child of the module "integer". "small integer" is obviously a special case of "integer"

which inherits all the functions offered by "integer".

Graphical representation The inheritance relationship between modules can be

represented as a directed acyclic graph with the nodes representing the different

modules and the arcs representing the relationships between them. It should be noted

that the graph has to be acyclic since the inheritance relationship is hierarchical in

structure.

In Fig. 4, Person is a module which has some data and functionality associated

with it. Among its submodules is the module Student. Student can be viewed as a
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Figure 4: Graphical Representation Of Inheritance
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special case of a Person. Student can add its own data and functions in addition to

those inherited. Similarly Grad-student is a submodule of Student and hence, inherits

all the data and functions of Student. Grad.student can be viewed as a Student with

information about the thesis associated with it and also as an extended Student.

3.3.1 Multiple Inheritance

In this section we will study the concept of multiple inheritance and its advantages to

understand the implications of introducing multiple inheritance in C* . Inheritance

is the technique by which a class can inherit all the functionalities and data offered

by the ancestral class and it is more so in the case of multiple inheritance. Multiple

inheritance can be depicted as directed acyclic graph as shown in Fig. 5.

The Fig. 5 is similar to Fig. 4 with the addition of the class Faculty as a superclass

of the class Grad-student. Grad-student is viewed as a Student who teaches. It

inherits from the class Student and also from the class Faculty. If Grad-student

is viewed based on the functionality it offers, then inheritance can be viewed as a

specialization of a class. If Grad-student is viewed as a data type, then inheritance

can be viewed as an extension of a class.

Multiple inheritance, while possessing many useful properties, has some inherent

problems associated with it. We will now consider the advantages and the problems

associated with multiple inheritance.

Advantages

Reuse of software Inheritance, multiple inheritance in particular, allows for

extensive software reuse, The user has to define only the extensions to and specializa-
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Figure 5: Graphical Representation Of Multiple Inheritance

tions of existing classes. This not only increases productivity, but also allows the user

to concentrate only on the design and development of the changes. If the existing

classes have been used and tested, inheritance helps in debugging software because

bugs are isolated to a smaller part of the code.

Code size Multiple inheritance allows for greater amount of code to be reused.

This decreases the size of the source code. The object code size could also decrease

based on the linking mechanism. Linking of inherited classes can be either static or
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dynamic. In the case of static linking, all the methods for certain specified class(es)

are linked to form the executable file. Using dynamic linking, only those methods

used in that application are linked during run-time. In C++ we support the static

linking mechanism.

Dynamically linked programs are usually smaller in size (object code) than stat-

ically linked programs. However statically linked programs execute faster than dy-

namically linked programs. In parallel computers, like SIMD type of computers, the

size of memory is typically less than in conventional computers. The advantage of

shared code is considerable in such cases. In our example, the class Gradstudent

inherits from both Student and Faculty classes. Only a few additional data and func-

tions can be defined while reusing existing code, and only one copy of Student and

Faculty classes will be maintained.

Disadvantages

Name clashes A class and its ancestors can have the same names for data used

and/ or the functions offered by them. The conflicts in the names have to be resolved

and there are different approaches to solve the problem. One approach could be the

prevention of any name clashes and force the user to name data and functions so that

there are no clashes. Another approach could be that the user can rename data and

functions if there are any clashes. Yet another approach could be to build a hierarchy

of names and data and to use the most recent definition (the first definition reached

when going from bottom to top and left to right) in the hierarchy as the default. The

renaming approach is very useful because it not only resolves the naming conflicts,

but also enhances the readability of the modules by specifying which data or function
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is being used. The inheritance approach, while resolving the conflict, does not specify

the data or function being used and the programs are less readable. So the user has

to follow the hierarchy to comprehend which data or function is being used.

In our example both Faculty and Student can define a variable called "courseno"

In the class Faculty, "courseno" could denote the course being taught while in the

class Student, "courseno" could denote the course being attended. The "courseno"

is a variable with multiple definitions in the class Grad-student and the conflict

has to be resolved. The class Grad-student might have the need for both the an-

cestral "courseno" definitions and has to be specified without conflict in the class

Grad-student.

Redefinition The functions inherited from the ancestors may be too general

and hence could be defined again in the current module because of efficiency consid-

erations. Redefinition could be used for resolving name conflicts and for readability.

However, there is a distinct difference between renaming and redefining functions.

Consider the Fig. 6 in which a function "init" is defined for the class Student.
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Class Grad-student can either rename or redefine the function "init". When a function

is renamed from "init" to "stuinit" in the Grad-student and "stuinit" is used in

Grad-student, then the code specified for "init" (in class Student) is used. So there

is only one copy of the function init.

When the function "init" is redefined as "stuinit" in Grad-student and "stu-init"

is used in the Grad-student class, then the new definition specified for "stu-init" is

used. There are two separate functions, one defined in the class Student and the

other defined in the class Grad student. This is depicted in Fig. 7. The definition of

"init" in the class Student is different from the definition in the class Grad-student

which is more suitable for that class. Hence, redefinition can be used as a method to

achieve specialization.

Common ancestor Most of the languages resort to renaming and redefining

to resolve conflicts. This however, does not resolve all the problems. Consider the

following situation depicted pictorially in Figure 5. Module Grad-student inherits
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from the modules Student and Faculty, which in turn inherit from the module Person.

All the data and functions defined in module Person are available to the modules

Student and Faculty. Module Grad-student inherits the data and functions defined

in module Person twice, through the modules Student and Faculty. There will be

conflicts in the names and hence have to be resolved. But the problem is because of

the existence of a common ancestor and there should be no conflicts to be resolved.

This problem must be solved by the compiler (interpreter) which should analyze and

conclude that the conflicts are due to the common ancestor.

Scope rules Objects are uniquely identifiable. Within an object a special vari-

able is defined to reference the object itself (e.g. self, current, this). In the context

of inheritance, the meaning of such a self reference in a function becomes ambiguous.

If a function containing a self reference is inherited by a subclass, then it is not clear

whether it refers to the object at the subclass or the superclass level. The possible

ambiguities are even greater in the presence of multiple inheritance. In addition, some

languages allow the specification of a self reference at a superclass level (e.g. super).

To resolve such ambiguities languages like C++ allow the user to specify the domain

to which the function is to be associated with. An example is given below:

student::inito; /* specifies that init is to be associated */
/* with the class Student. */

Person::init(; /* specifies that init is to be associated */

/* with the class Person.

So in the context of the child class Grad student, the "init" function can be asso-

ciated with the one defined in the class "student" or in class "Person" by explicit

specification.
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Type checking Type checking is another important issue in multiple inheri-

tance. Let us suppose that "var var2" is an assignment (like in Eiffel [Mey88])

in a function of a class where the types of "varl" and "var2" could be known only

at execution time. If the function is inherited by another class, the types of "varn"

and "var2" have to match. The rules for matching are more than the typical type

checking rules used in conventional languages and the additional rules for matching

can be specified by the language. The language can also specify when the checks for

matching are carried out, either at compile time or run time.

Hence when we introduce multiple inheritance in C* , all these conflicts have to

be resolved in the extension of C* to C++ .
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4 PROGRAMMING ON THE CONNECTION

MACHINE

The Connection Machine is an SIMD type computer system in which data-parallel

programs can be executed. In this system each data element is assigned to a processor

(either physical or virtual). This should reduce the execution time of the program

and the decrease in time is usually proportional to the number of physical processors

used.

4.1 Hardware Layout

The major components of the Connection Machine are the control unit, sequencer,

instruction bus, processing elements, scalar memory bus, global result bus, intercon-

nection network and I/O controllers [Gro89]. This is represented pictorially is Fig.

8.

4.1.1 Control Unit

The control unit is the front-end of the Connection Machine in which the program

resides. All the serial code is executed in the front-end and the parallel instructions

are passed to the sequencer. The front-end in the existing Connection Machines are

either a VAX, a SUN, or a Symbolics system

4.1.2 Sequencer

The sequencer receives the parallel instructions from the front-end. It interprets the

instructions and produces a series of "nanoinstructions" which are broadcast to all
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the processors through the instruction bus . The sequencer can also communicate

with the back-end through the scalar memory and global result buses.

4.1.3 Processing Element

Each processing element consists of a, processor and a memory associated with it. The

ALU in each processor can operate on variable length operands. The memory is either

64K or 256K bits in existing Connection Machines. The processing elements, whose

number in a Connection Machine can vary, communicate with each other through the

interconnection network and with the sequencer through the instruction, scalar and

global result buses.

4.1.4 Interconnection Network

The three mechanisms of interconnection between processors supported by the Con-

nection Machine are

Router

This is the most general mechanism in which every processor can access the

memory of every other processor. These memory accesses are simultaneous and

could result in runtime errors (called collisions) if more than one processor tries

to access the same memory location.

North East West South: NEWS

This is a faster and a structured mechanism in which processors are intercon-

nected in a grid. NEWS supports upto 31 dimensions in the grid. There is no

restriction on the number of processors in each dimension. However the product

of the number of processors in each dimension should be equal to the number
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of physical processor in the system. For example, if the number of processors

in the Connection Machine is 64K, then 64x1024, 8x8x1024, 16x16x16 are some

valid grid sizes. Special hardware makes NEWS communication faster than

Router mechanism.

Scanning

This mechanism combines both communication and computation. Scanning

could operate simultaneously on each row. The operations include addition,

subtraction, multiplication and division. These operations are supported by

special hardware related to the NEWS mechanism.
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4.2 C*

C* (pronounced C star) was designed with two important design factors[JG89]. One

was to support data-parallel programming and the other was to be compatible with

C. So C was extended to accommodate the specification of data-parallel program-

ming. Some additional statement and operators were introduced to aid data-parallel

programming.

C* introduces a data type to specify parallel data and functions called the "do-

main" and associated keywords to distinguish between scalar and parallel information

(data as well as code). It also introduces a new statement to initiate parallel execu-

tion.

4.2.1 Domain Specification

The data type "domain" is used to specify parallel data and functions C* . These

data and the functions are valid only when referred within the context of the domain.

The following is an example of the declaration of a domain (data and function

associated with it) and the declarations of instances of the domain.

The domain specified models a student. Each student has a social security number,

a list of courses taken (through all the semesters) and a list of courses taken in the

current semester which is represented in C* as follows:

/* The following is the domain specification of a student. */

/* Data variables are declared for socsec, GPA and courses */

/* taken. An index for the array defined is also used. */

domain student
{

int ssn;

int gpa;

int current-grades [CURRENT] ;
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int current_courses[CURRENT];

int INDEX;

/* This function initializes the local variables. */
void init()

{
INDEX = 0;
ssn = 0;

gpa = 0;
for(i=0; i<CURRENT; i++)

{
current-grades[i] = 0;
currentcoursesi} = 0;

}
}

/* This function updates the GPA based on semester GPA. */
int updategpa(int sem-gpa)

{
gpa += semgpa;

return gpa;

}

/* This function calculates the semester GPA. */
int calculate_ssmgpa()

{
int i, semgpa, semcredit;

sem gpa = 0;

sem_credit = 0;
for(i=0; i<CURRENT; i++)

{
semgpa += current-grades[i] * currentcourses[i];
sem_-credit += 1;

}

semgpa = semgpa / semcredit;
return sem.gpa;

}
}

The domain student has five data members and three functions associated with it.

More functions associated with this domain can be defined with the following syntax:
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/* The scope of the function set-current grades is */
/* restricted to the domain student.

void student:: set-currentgrades (nt grade)
{

current grades[INDEX] = grade ;
INDEX += 1;

}

Once we have defined the domain, we should be able to specify the instances of

the domain. Instances of the domain are declared by the following statement:

domain student twenty-students [20];

This statement declares twenty instances of student with each instance assigned to a

processor (virtual or physical).

An experienced C++ programmer can note the similarities between C++ and C*

. The development of C* from C was based on the extensions used by C++ .'The

declaration of a domain, specifying data and functions associated with the domain,

creating instances of a domain and specifying the scope of domains and associated

functions are all similar in C* and C++ . however ++ supports more object-oriented

concepts than C* . C++ supports encapsulation of information in classes through the

use private, public and protected variables [Lip89]. It also breaks the encapsula-

tion through the use of friends specification. C++ also supports the dynamic binding

of a function to an object through the use virtual keyword. C* does not support

any of the previously mentioned principles [JG89] but is best suited to program the

Connection Machine.
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4.2.2 Parallel Statenent

A statement is introduced in C*++ to direct the compiler to begin execution of parallel

code. The syntax is described below:

/* totalgpa contains the sum of all the GPA's of all students */
mono int totalgpa;

totalgpa = 0;

[domain student] {

init ( ;
set_currentgrade(4); /* Sets the grade to 4 pts */
set-currentgrade(3); /* Sets the grade to 3 pts */

totalgpa += calculatesemgpa(); /* Semester gpa is calc */
/* Then all the semester GPAs are added. */
/* The sum is added by the += operator */

updategpa(calculate-semgpa(); /* Update overall GPA */
}

[domain student]. is the compiler directive to begin parallel execution. The func-

tions are executed only on all active instances of the domain student and the code

they execute is called the "parallel code".

4.2.3 Additional Keywords

In C* , code is divided into serial and parallel. Serial code is executed by the front-

end while the parallel code is executed by the active instances of the domain under

consideration. Data is divided into scalar and parallel data, represented by two

additional keywords " mono " and " poly ". Within the serial code, the default
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type of data is "mono" while in the parallel code it is "poly". "Poly" variables used

in serial code are accessed sequentially. In the example seen before, " totaLgpa" is a

scalar value and because it is used in parallel context it has to be declared as "mono"

. In the case of "ssn", it is a parallel value declared in a parallel conitext and hence it

is a "poly" value by default. It can also be declared in the domain Student as

poly int ssn;

4.3 Software Engineering in C*

In this section we will study how some software engineering and object-oriented con-

cepts are supported in C* and why certain other concepts are not. The concepts

considered are abstraction, modularity, encapsulation, software reuse through inher-

itance and information hiding.

Real world concepts can be abstracted as domains in C* . So C* allows the pro-

grammer to specify concepts as abstractions. Also modules can be represented as

domains in C* . Different domains can be combined with each other in solving the

problem and hence modular programs can be developed in C* . The concepts of ab-

straction and modularity are supported by C* since domains and functions associated

with those domains can be specified in * . These functions can be invoked by the

function calls (message to the function).

In C* each instance of a domain (a processor) communicates with other instances

of domain (processors) through the interconnection network. In this interconnection

mechanism, any processor can access the memory of any other processor, which is

contradictory to the concept of information hiding in object-oriented programming.

It is the hardware of the Connection Machine which is wired this way and hence,



38

information hiding cannot be supported without changes to the hardware.

Software reuse is the major strength of inheritance. Dynamic binding of functions

to domains is another advantage of inheritance. Because of dynamic binding, different

instances of the same domain can be executing different functions simultaneously.

This howev er cannot be supported by the Connection Machine because all instances

of the same domain have to be executing the same instruction.

So C* while supporting abstraction and modularity, does not support the concepts

of information hiding and inheritance. We will now study a mechanism to introduce

partial inheritance in C* .
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5 INTRODUCING INHERITANCE IN C*

In the previous section we have seen why C* does not support inheritance.

Software reuse is essential for fast and efficient development of programs. On

the Connection Machine the high level language which supports some object-oriented

concepts is C* . So if we could extend C* to include inheritance, then it is possible

to combine the power of SIMD computing with software reuse.

So to extend C* to allow for software reuse, the language has to support the

concepts of subclasses and specifications of the same. With the presence of subclasses,

conflicts could arise. These conflicts can either be resolved by the user or by the

compiler. In our approach we allow the user to specify subclasses and also allow the

user to resolve the conflicts.

A translator from the extended language to C* has to be developed to compile and

execute the programs in the extended language. In this thesis we develop a translator,

called "csp", to translate programs written in the extended language to an equivalent

C* program, which can then be compiled and executed on the Connection Machine.

5.1 C*: The Extended C*

We want to introduce "Inheritance" in C* , which necessitates the extension of the

syntax and semantics of C* . In the design of C*++ , we wanted to modify existing

structures in C* instead of creating new ones.

In the extended language, the user should be able to specify the classes from

which to inherit. These classes are called "superclasses" or "superdomains". Since

inheritance can result in naming conflicts, the user should be able to resolve the

naming conflicts in data and functions. The user should also be able to selectively
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inherit from the superdomains. Following these principles, C*-* has to be extended

from C* to support the following:

1. To specify superdomain(s)

2. Selectively inherit functions from parent domains.

3. To rename the data inherited from parent domains.

To support the above points, few new reserved words were introduced. They are

1. NEWDOMAIN (to specify the C*++ domain).

2. SUPERCLASS (to specify the parent domain).

3. ALIAS (to rename the data inherited from the parent).

4. REDEFINE (to disinherit functions from the parent).

Let us now study the syntax of domain definition in C* and C*+.

5.1.1 C*

The YACC-like grammar for the definition of a domain in C* is as follows:

domain : DOMAIN /* Reserved word domain */

classname /* Variable name for domain */
block /* Data & functions for domain */

We have already seen an examnple of a definition of a domain in C*
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5.1.2 Syntax of C*

The major extension from C* to C*+ is in the definition of the domain. The syntax

of C*+ can be specified in an YACC-like grammar as given below:

newdomain : NEWDOMAIN /* Reserved word newdomain */
classname /* Variable name for dontain */

ancestor /* List of ancestors & changes */
IS /* Reserved word is */
block /* Data & functions for domain */

classname : VARIABLE /* Var name recognized by LEX */

ancestor : /* empty ancestor */

| SUPERDOMAIN class /*Reserved word superclass*/
/* followed by the classname and changes */

class classname classi /* Classname and changes */

class class /* Used for recursive def*/

classi /* empty */
I {change} /* Changes in parentheses*/

change ALIAS aliaslist changel /* Rename variable*/

REDEFINE list changel /* Redefine funct */

changel : /* empty */

I change /* Used for recursion */

list : VARIABLE listi /* Variable list in redefine*/

listi : /* Used in recursion. */
I list /* Recursion of list */
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aliaslist :VVARIABLE ARIABLE aliaslisti
/* Alias oldname newname followed by recursion*/

aliaslisti ; /* Separate aliases by ;
I ; aliaslist /* Recursion of aliases */

Here NEWDOMAIN, IS, VARIABLE, REDEFINE, SUPERCLASS and ALIAS

are all tokens. VARIABLE is any standard variable name while all other tokens are

just lower case strings (like "newdomain" for "NEWDOMAIN"). The definition for

the "block" in C*+* is the same as that C* . The differences, as can be seen, are in

the use of "ancestor" and "IS" symbols in the domain definition to allow for multiple

inheritance definition.

The following is an example of a domain specification in C*A* . The domain

Grad-student is specified as a child domain of the "student" domain specified earlier

in the thesis.

newdomain gradstudent
superdomain student {redefine nit ; alias gpa stu gpa;}

is

{
int thesiscode;

int thesisrating;

init (
{

int i;

i = 0;

thesiscode = 6000;

thesis-rating = 5;

ssn = 100000000;

stu gpa = 3;

for (i=0; i<CURRENT; i++)

{
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current-grades[i] = 0;
currentcourses[i] = 0;

}
}

}

In the above example, the function "init" is not inherited from the student domain.

And the data variable "gpa" is called as "stugpa" in the domain grad-student. All

other data and functions of student are inherited without any changes.

5.2 Translation

In the previous sections we have seen how multiple inheritance can be specified in

**+ However there is no compiler for C*+ One approach to execute the code

written in C**+ on the Connection Machine would be to translate the C*+ programs

into equivalent C* programs. These transformed equivalent programs can then be

compiled with the C* compiler and then executed on the Connection Machine. In this

thesis we use such an approach. In this section we will study about the translation of

C**+ to C* . The program specified in C*** is translated into C* by the preprocessor

"esp" The code generated is then compiled with C* compiler "cs". The translator

(csp) uses the information about "superdomains", "aliases" and "redefines" specified

by the user in the C*++ program to create an equivalent C* program.

In C*++ , for each new domain a list of superdomains can be specified. The trans-

lator maintains a list of these superdomains for each domain. In this new domain,

data and functions inherited from the ancestral domains can be renamed. The new

domain can also disinherit functions from the ancestral domains. So for every new do-

main, the translator maintains a list of data and functions renamed and the functions



44

disinherited for every ancestral domain. At the end of all definitions, the translator

has information about every new domain defined and all the ancestral domains and

the relevant information about renaming and redefinition. Once the translator has

all this information, it then starts to build the domains which are C* compatible.

In C* , the data and the executable statements have to be separated. So for every

new domain with ancestral classes, the data definitions from the ancestral domains

have to be redefined in the new C* compatible domain (CC domain) followed by the

executable statements. So in the expansion of the new domain to a CC domain, the

data definition for each superdomain (with necessary aliasing) is redefined. Then the

data defined in the C*++ domain is copied into the CC domain. At this point the

data definition for the new expanded CC domain is complete. Then the executable

statements from each of the superdomains are copied onto the CC domain (all the

aliased variables have their new names in the CC domain). However redefined func-

tions are not copied into it. Finally the functions of the new domain defined in C*++

are copied onto the CC domain. At this point the definition of the new expanded

CC domain is complete. The same process is carried out on all the new domains till

there are none. The rest of the C*** program is copied without any changes to the

CC domain. This approach is depicted if Fig. 9.

The translator "csp" parses the C*±+ program for building information about the

ancestors for every new domain and the relevant renaming and redefining information.

The translator also checks for syntax and detects most of the syntactic errors. Once

a syntax error is detected, the translator gives a suitable error message and stops

execution. The translator does not carry out any semantic checking and all the

semantic errors are detected by the C* compiler.

The translation process, depicted in Fig.ln, shows the translation from C*++ pro-
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gram to an expanded C* program which is then compiled into object code. A more

suitable approach would be to translate from C*++ to object code which should reduce

the size of the object code. This translation however cannot support dynamic binding

of a function to an object (a back-end processor) on the Connection Machine. This

constraint is because of the single instruction restriction imposed by the architecture

of the Connection Machine.

We illustrate the benefits of using C*++ over C* to develop software on the Con-

nection Machine through an example.

5.2.1 Example

We use the program of the propagation of sound through water as our example. The

ocean can be divided into a grid and each element in the grid can be assigned to

a processor. Each processor contains information about the volume or the intensity

of sound at that point. The value of sound in each processor is dependent on the

value of sound in the neighboring processors i the left (say). We can create a sound
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Figure 11: Graphical Representation of Marching of Sound

in the leftmost column in the grid (This can be achieved by modifying the value of

sound in all the processors in the leftmost column) and study the propagation of it

through water. Since the volume of sound in each processor is dependent on its left

neighbors and since we have modified the volume of sound in the leftmost column, the

volume of sound in each processor changes. The parameters which affect the volume

of sound are the functions on which the propagation is based on and the number of

neighboring processors which affect it. As a result of following a modular approach in

developing software, we can create two domains to reflect our analysis. One domain

could implement the methods to get values from the neighboring processors while

another domain could evaluate the intensity of sound at a point. We can then create a

new domain which would inherit from both these domains and implements additional

methods (if needed) to analyze the propagation of sound through water.

This can be implemented in C*+ as three different domains. This is depicted in

the Fig. 11. The first domain specifies the methods associated with getting values

from the neighboring processors while the second domain specifies methods regarding

the actions (or functions) used to siulate the marching of sound through water.
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As can be seen, software is developed by following the principles of abstraction and

modularity. We can then create a new domain, which inherits from the two domains

defined, to fully analyze the propagation of sound. Again, we follow the principle of

software reuse through inheritance. So program development in C*++ easily follows

the principles of software engineering and object-oriented programming .

We now define the various domains in C*+ . The domain "getvals" defines the

methods for getting values from the neighboring processors.

/* This domain defines all the get indices */

/* Defines few vars and funcs to get vals *1
/* from the left, left top, left bottom */

/* and all in the left col. */
DOMAIN getvals procs[NO-PROCS];

NEWDOMAIN getvals IS

{
INT leftind, lefttopind;

INT left_bot_ind, selfid;
/* These are pointers to the indices of the elements on /

/* the left, left top and the left bottom. there is also a

/* self pointer */

/* Function initializes all vars /

VOID init()

{
leftind = -1;
lefttop_ind = -1;

left_bot_ind = -1;
selfid = this - &procs[0]

}

/* Gets val from the left element in grid */

VOID get-left()

{
INT index;

index = selfid - 1;

IF (index >= 0 && (((index + 1) '/, COLS) ! 0))

leftind = index;
ELSE
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leftind = -1;

}

/* Gets val from the left top element in grid */
VOID getleft-top()

{
INT index;

index = selfid - COLS - 1;

IF (index >= 0 && (((index + 1) X COLS) != 0))
left-topind = index;

ELSE

left-top_ind = -1;
}

/* Gets val from the left bottom element in grid */
VOID geteft-bottom()

{
INT index;

index = selfid + COLS - 1;
IF (index < (ROWS * COLS) && (((index + 1) X COLS) != 0))

left-bot-ind = index;

ELSE

left_botind = -1;

}

We can now define the domain which defines the methods of calculating the march-

ing function. In this domain, it is assumed that all the necessary values from neigh-

boring processors are available. The following is the definition in C* ++

DOMAIN actions procacs[N -PROCS];

/* This domain defines the function to evaluate the */

/* neighbors or all in the left col. /
NEWDOMAIN actions is
{

INT value, leftval, left-topval, left_bot_val, leftall;
INT lind, ltind, lbind;
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/* initializes the value 0 */
VOID init()
{

value = 0;
}

/* The value of sound at a point is 3/4 its old value */
/* and the average of the value of the elements on the */
/* left, left top and left bottom only */
/* Evaluates the local val based on neighbors only */
VOID evalneigh()

{
value = 3 * value / 4;

IF (lind >= 0 && (lind < (ROWS *COLS)))
leftval = proc-acs[lind] .value;

IF (ltind >= 0 && (ltind < (ROWS *COLS)))
lefttop-val = proc-acs[ltind] value;

IF (lbind >= 0 && (lbind < (ROWS * COLS)))

left_bot_val = proc-acs[lbind] .value;

value += (leftval + left-top val + leftbot-val) / 3;

}

/* Value at a point is 3/4 its old value plus the average */

/* of all the values in the left column */

VOID eval_all()

{

INT index , column, i;

leftall = 0;
column = ((this - &proc-acs[O) X COLS) - 1;

for (i=O; i<ROWS; i++)

{

index = (i * COLS) + column;
IF (lind >= 0)

IF (index < (ROWS * COLS) )
leftall += procacs[index]value;

}
value = 3 * value / 4;

value += leftall / ROWS;

I

};
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We can now define a new domain which inherits from both the domains defined.

It combines the values obtained from the neighboring processors and combines with

the marching function to analyze the propagation of sound. It also defines the main

function. In the main function, the domains are executed and the values are printed

in each step of the iteration.

DOMAIN ocean underwater[NO.PROCS];
/* Declares NOPROCS instances of the domain ocean
/* This domain inherits from getvals and actions */

/* It aliases the procs var in getvals */
/* It aliases all the local data in actions */
/* This is because we want to use the vals obtained*/

/* from the domain getvals */
/* It defines two func to eval the sound

NEWDONAIN ocean SUPERCLASS
getvals { ALIAS procs underwater;}

actions { ALIAS value vos; REDEFINE init;
ALIAS proc-acs underwater;

}
IS

{
INT var;

/* This function matches the indices */
/* between the 2 parent domains. /

VOID matchindices()
{

lind = leftind;

ltind = left-topind;

lbind = left_bot_ind;

/* Evaluates based on the neighbors */

VOID restricted-eval(INT loop)

{
INT i;

FOR(i=O; i< loop; i++)

{
eval-neigh();

}
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}

/* Evaluates based on the left column */
VOID alleval(INT loop)

{
INT i;

FOR(i=0; i< loop; i++)

{
evalall();

}
}

};

/* This is the main loop, Some vals are assigned */
/* to the leftmost column. Then the vals are /
/* printed. eval is done 10 times & vals are /

/* printed again. /
main()

{
INT i, j, tmp;

[DOMAIN ocean]. {
FOR(i=0; i< ROWS; i++)

underwater[i*COLS] vos = i * 1000;
}

FOR(i=0; i<ROWS; i++)

{
FOR (j=0; j<COLS; j++)

printf (" %d ", underwater [i*COLS+j] . vos) ;

printf ("\n");

[DOMAIN ocean] .{
init();
get-left()
getlefttop();
getleft_bottom();

matchindices();

}
FOR (tmp=0; tmp<LOOPCOUNT; tmp++)
{
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[DOMAIN ocean] .{

restricted eval(1);

}
FOR(i=O; i<ROWS; i++)

{
FOR(j=O; j<COLS;j++)

printf(" /, ", underwater[i*COLS+j] .vos);
printf ("\n") ;

}
printf ("\n\n ") ;

We defined only the minimum number of functions for the domain "ocean". We

can also define different propagation functions as superclasses of the domain "ocean"

and inherit from all of them. Then we can separate different functionality into differ-

ent domains which follows the principles of abstraction and modularity. This helps

in the processes of design and development. Since minimum amount of new software

has to be written, the process of software development is faster in time and better

in quality. The processes of debugging and testing also become faster. To illustrate

these advantages we present the expanded version of the domain "ocean".

DOMAIN ocean underwater[NOPROCS];
/* This DOMAIN inherits from getvals and actions */

/* It aliases the procs var in getvals

/* It aliases all the local data in actions /
/* This is because we want to use the vals obtained*/

/* from the DOMAIN getvals
/* It defines two func to eval the sound /

/* ocean CSP DOMAIN BEGINS */

DOMAIN ocean

{

INT leftind, left to ind:
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INT left_bot_id, selfid;

INT vos, leftval, left-topval, leftbotval, leftall;
INT lind, ltind, lbind;

INT var;

VOID init() /* BEGIN CSP nit */

{
leftind = -1;
left-topind = -1;

left_bot_ind = -1;
self id = this - &underwater[0];

} /* END CSP FUNCTION */

/* Gets val from the left element in grid */
VOID getleft() /* BEGIN CSP getjleft */

{
INT index;

index = self id - 1;

IF (index >= 0 && (((index + 1) % COLS) != 0))

leftind = index;
ELSE

leftind = -1;

} /* END CSP FUNCTION */

/* Gets val from the left top element in grid */

VOID getleft-top() /* BEGIN CSP getlefttop *

{
INT index;

index = selfid - COLS - 1;
IF (index >= 0 && (((index + 1) X COLS) != 0))

left-topind = index;

ELSE

lefttop_ind = -1;

} /* END CSP FUNCTION */
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/* Gets val from the left bottom element in grid */
VOID get-left_bottom() /* BEGIN CSP get leftbottom */

{
INT index;

index = selfid + COLS - 1;
IF (index < (ROWS * COLS) && (((index + 1) X COLS) != 0))

left.botind = index;
ELSE

left_bot_ind = -1;
} /* END CSP FUNCTION */

/* Evaluates the local val based on neighbors only */

VOID eval_neigh() /* BEGIN CSP eval_neigh */

{
vos = 3 * vos / 4;

IF (lind >= 0 && (lind < (ROWS *COLS)))
leftval underwater[lind].vos;

IF (ltind >= 0 && (ltind < (ROWS *COLS)))

left-top-val = underwater [ltind] .vos;

IF (lbind >= 0 && (lbind < (ROWS * COLS)))
leftbotval = underwater[lbind] .vos;

vos += (leftval + lefttopval + leftbot_val) / 3;
} /* END CSP FUNCTION */

/* Evaluates the local val based on the val in the */

/* left column. *

VOID evalall() /* BEGIN CSP eval-all */

{

INT index , column, i;

leftall = 0;
column = ((this - underwater[ O) %A COLS) - 1;
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FOR (i=O; i<ROWS; i++)
{

index = (i * COLS) + column;
IF (lind >= 0)

IF (index < (ROWS * COLS) )
leftall += underwater[index].vos;

}
vos 3 * vos / 4;
vos += leftall / ROWS;

} /* END CSP FUNCTION */

VOID match_indices() /* BEGIN CSP match_indices */

{
lind = leftind;
ltind = left-top-ind;
lbind = left_bot_ind;

} /* END CSP FUNCTION */

/* Evaluates based on the neighbors */

VOID restrictedeval(INT loop) /* BEGIN CSP restricted-eval */

{
INT i;

FOR(i=0; i< loop; i++)
{

eval-neigh();
}

} /* END CSP FUNCTION */

/* Evaluates based on the left column */
VOID all-eval(INT loop) /* BEGIN CSP all-eval */

{
INT i;

FOR(i=0; i< loop; i++)
{

evalall();
}

} /* END CSP FUNCTION */
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/* ocean DOMAIN ENDS */

/* This is the main loop, Some vals are assigned */
/* to the leftmost column. Then the vals are

/* printed. eval is done 10 times & vals are /

/* printed again.

main()

{
INT i, j, tmp;

[DOMAIN ocean] .{
FOR(i=0; i< ROWS; i++)

underwater [i*COLS] .vos = i * 1000;
I

FOR(i=0; i<ROWS; i++)

{
FOR (j=0; j<COLS ;j++)

printf(" %d ", underwater[i*COLS+j] vos);
printf ("\n") ;

}

[DOMAIN oc an] .{

init () ;
get-left(;
get_lefttop();

get left-_bottom;
matchindices() ;

FOR (tmp=0; tmp<COLS; tmp++)

{
[DOMAIN ocean].{

restricted eval(1);
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}
FOR(i=0; i<ROWS; i++)
{

FOR (j=0; j<COLS ;j++)
printf(" Xd " , underwater[iC0LS+j] .vos);

printf ("\n") ;A

r}

}

5.2.2 Sanple Run

The above C*'+ program was translated using the translator "csp". The command

used was as follows:

% sp < filenam e

where "filename" is the C*+ program. The output is produced in the file "cspgen" in

the working directory. The generated program was then transferred to the front-end

of the Connection Machine. The converted C* program was then compiled on the

front-end of the Connection Machine by using the following command:

% es filename.es

where "filename.cs" is the C* program generated by the translator "csp".

After the compilation the object code was executed on the Connection Machine.

This is done by first "attaching" to the Connection Machine through the command

% cimattachi -b

(-b is an option for the cmattach command). Once attached to the Connection

Machine, it is possible to execute the object code. The example program was run

on the Connection Machine with 32 processors (4x8) for 15 iterations. The initial

value in the leftmost column are 0, 1000, 2000 and 3000. The value in all the other

elements is zero, In each step of the execution, the value at any element is based on
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the algorithm specified before. The output of a sample run is presented below.

0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0
2000 0 0 0 0 0 0 0
3000 0 0 0 0 0 0 0

0 250 0 0 0 0 0 0
750 750 0 0 0 0 0 0

1500 1500 0 0 0 0 0 0
2250 1250 0 0 0 0 0

0 374 249 0 0 0 0 0
562 1124 624 0 0 0 0 0

1125 2249 874 0 0 0 0 0
1687 1874 687 0 0 0 0 0

0 420 560 218 0 0 0 0
421 1264 1404 436 0 0 0 0
843 2529 1966 546 0 0 0 0

1265 2107 1545 390 0 0 0 0

0 420 841 654 163 0 0 0
315 1263 2106 1309 299 0 0 0
632 2527 2948 1637 342 0 0 0
948 2106 2316 1169 233 0 0 0

0 393 1050 1226 612 115 0 0

236 1183 2631 2454 1123 200 0 0

474 2368 3684 3069 1284 218 0 0

711 1974 2895 2192 875 143 0 0

0 353 1180 1839 1378 519 78 0

177 1064 2958 3681 2528 904 133 0

355 2131 4144 4603 2891 983 140 0

533 1776 3256 3288 1971 646 90 0
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0 308 1239 2413 2412 1365 413 52
132 930 3104 4830 4426 2377 700 87
266 1863 4350 6041 5060 2584 738 90
399 1553 3418 4316 3450 1699 474 57

0 264 1238 2894 3619 2732 1244 317
99 796 3103 5795 6639 4756 2106 527

199 1596 4348 7247 7591 5171 2217 544
299 1330 3416 5178 5176 3401 1425 344

0 222 1193 3255 4886 4613 2805 1074
74 671 2991 6518 8962 8029 4743 1786

149 1346 4191 8151 10247 8729 4993 1844
224 1121 3293 5824 6988 5741 3210 1168

0 184 1117 3486 6107 6920 5263 2691
55 558 2802 6981 11201 12044 8899 4473

111 1120 3927 8731 12808 13095 9368 4619
168 933 3085 6238 8734 8613 6024 2926

0 151 1022 3593 7196 9516 8688 5558
41 459 2566 7196 13199 16561 14688 9236
83 923 3597 9001 15093 18006 15463 9536

126 768 2826 6430 10292 11844 9944 6042

0 123 918 3590 8094 12235 13035 10012

30 374 2307 7192 14846 21291 22036 16636

62 754 3234 8996 16975 23149 23199 17175

94 628 2541 6427 11576 15229 14920 10882

0 99 812 3498 8765 14910 18157 16276

22 302 2042 7008 16078 25946 30695 27044

46 611 2863 8767 18384 28210 32315 27919

70 509 2250 6263 12537 18558 20784 17690

0 79 709 3336 9199 17392 23830 24419

16 242 1783 6685 16876 30265 40287 40574
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34 492 2502 8363 19297 32906 42414 41887
52 409 1966 5975 13159 21648 27279 26541

0 63 611 3124 9404 19562 29786 34343
12 193 1540 6261 17252 34040 50355 57062
25 394 2161 7834 19727 37011 53014 58909
39 327 1699 5597 13453 24349 34097 37328

As we can see, the sound propagates from left to right and the volume of sound

changes for each iteration. The same program can be executed for different marching

functions and for different number of iterations.

The classes specified here can be reused in other cases. For example, we could

specify a different "action" domain while maintaining the same "getvals" domain. In

such a case only ONE new domain has to specified while the other domains can be

reused. Similarly the "getvals" domain can be changed while maintaining the same

"actions" domain. These domains can also be used in other applications like the

analysis of flow of heat in sheet metal. By reusing domains, minimum amount of new

software has to be rewritten and this is the main advantage of programming in C*+

than in C*
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6 CONCLUSION

In this thesis we have discussed the need for multiple CPU computing. We have also

seen how object-oriented programming closely matches the concepts of multiple CPU

computing.

C* on the Connection Machine is an example of such a matching between object-

oriented programming and multiple CPU computing. However C* does not support

the concepts of information hiding and software reuse. We have seen the advantages

of software reuse, especially in a parallel programming environment. This thesis

introduces extensions to C* to include multiple inheritance in the language to make

use of advantages of software reuse. Such an extension to C* is our language C*+

. It is our belief that C*+ is a very useful language with substantial advantages

over other languages to program the Connection Machine. It makes the process of

designing newer domains easier. Since the amount of software to be written is smaller,

the production time of quality software is lesser. New software to be written is smaller

and this decreases the chances of bugs. The debugging process also gets easier because

the bugs could be confined to a smaller part of the code.

To execute C*+ programs on the Connection Machine we also introduced a trans-

lator from C*++ to C*** in this thesis. The translator however makes the user re-

sponsible for understanding information about the data and functions inherited. The

user is responsible for resolving the conflicts in data and functions in the classes. So a

knowledge about the domains inherited is needed and hence information about ances-

tral domains is not totally hidden from the descendant domains. And the object size

is not proportional to the size C*+ program and is based on the size of the translated

C* program.
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C * , though a extension to C* , is not a complete extension. More features

can be added to C*++ and as a part of the future work, the current translator could

be made more user-friendly. The current translator makes the user responsible for

resolving the conflicts. In resolving those conflicts, the translator could work inter-

actively with the user, Further advances are possible when the Connection Machine

is made multiuser (as being currently examined). In such a case, different instances

of the same domain can execute different functions simultaneously which could make

the processing even faster. C*++ would be even more powerful if different instances

of different domains can execute simultaneously. It would then be feasible to create

objects dynamically and also to support dynamic binding of functions to objects on

such an architecture. This architecture is similar to the partitioned SIMD machine (it

is an SIMD machine which is divided into many sub-SIMD machines. Each sub-SIMD

machine executes its own instruction in parallel and all such sub-SIMD machines ex-

ecute concurrently). It is our belief that C*++ would be very efficient to program such

machines too.
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8 APPENDIX

The source programs (the LEX and the YACC specifications) are submitted sepa-

rately. The C*+* programs for the simulation of the propagation of sound through

water are also submitted separately.
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