
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-24-1993

Fault tolerant and integrated token ring network Fault tolerant and integrated token ring network

Thomas Christopher Gilbar
Florida International University

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Gilbar, Thomas Christopher, "Fault tolerant and integrated token ring network" (1993). FIU Electronic
Theses and Dissertations. 3935.
https://digitalcommons.fiu.edu/etd/3935

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3935&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.fiu.edu%2Fetd%2F3935&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3935?utm_source=digitalcommons.fiu.edu%2Fetd%2F3935&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY
Miami, Florida

Fault Tolerant and Integrated Token Ring Network

thesis submitted in partial satisfaction of the requirements for the degree of

Master of Science in Computer Engineering

by

Thomas C istopher Gilbar

1993

To: Dean Gordon R. Hopkins
College of Engineering and Design

This thesis, written by Thomas Christopher Gilbar, and entitled, Fault Tolerant an
Integrated Token Ring Networks having been approved in respect to style an
intellectual content, is referred to you for judgement.

We have read this thesis and recommend that it be approved.

Jo C. Comfort

Malcolm L. Heimer

Kang K. Yen

Wunnava V. Subbarao, Major Professor

Date of Defense: June 24, 1993

The thesis of Thomas Christopher Gilbar is approved.

Dean Gordon R. Hopkins
College of Engineering and Design

Dr. Richard L. Campbell
Dean of Graduate Studies

Florida International University, 1993

ii

©Copyright 1994 by Thomas Christopher Gilbar

All rights reserved

iii

To my family and friends

for their love and support

iv

ACKNOWLEDGEMENTS

I would like to acknowledge the efforts of Margaret Rose Dabdoub for

spending countless hours helping me put this work together. I would also like to

acknowledge Isidro Alvarez and Carol Levay for lending me their expertise and

advice.

My tha s to Dr's Subbarao, Comfort, Yen, and Heimer for being so patient

and sharing their knowledge with me.

I am indebted to Marbeth Cochran, Lei Lani Boney, and Pat Brammer for

their support and for keeping me going.

I would like to thank Mike Urucinitz, Hamid Ghassemi, and Dr. James Story

for helping me get the equipment I needed.

Thank you also to Pablo Perez, Irma Fernandez, Peter Hoo, Mark Williams,

and Oscar Rios for listening to my rambling and telling me what I needed to do.

Finally, I would like to thank my family for their support and love over the

past 25 years.

V

ABSTRACT OF THE THESIS

Fault Tolerant and Integrated Token Ring Networks

by

Thomas Christopher Gilbar

Florida International University, 1993

Miami, Florida

Professor Wunnava Subbarao, Major Professor

This thesis is a study of communication protocols (token ring, FDDI, and ISDN),

microcontrollers (68HC 1EVB), and fault tolerance schemes. One of the major

weaknesses of the token ring network is that if a single station fails, the entire

system fails. A scheme involving a combination of hardware and timer interrupts

in the software has been designed and implemented which deals with this risk.

Software and protocols have been designed and applied to the network to reduce the

chance of bit faults in communications. ISDN frame format proved to be

exceptional in its capacity to carry echoed data and a large variety of tokens which

could be used by the stations to test the data. By its very nature, the token ring

supplied another major fault detection device by allowing the data to be returned and

tested at its source. The resulting network was successful.

vi

TABLE OF CONTENTS

Page

Chapter 1 Introduction 1

1.0 Brief History of Microcomputers, Networks, and Fault Tolerance 1
1.0.1 Development of the Computer 1
1.0.2 Networks 4
1.0.3 Token Ring 8
1.0.4 Fault Tolerance 8

1.1 Introduction to This Docuent 9

1.2 Chapter Organization 13

Chapter 2 Design Concepts for a Token Ring Network 14........ 1

2.0 Introduction 14

2.1 Concept of Ring Networks 14

2. 1.1 Topologies 14

2.1.2 Ring Repeater 22
2.1.3 Brief Introduction to the Token Ring 23

2.2 Token Ring Protocols 25

2.2.1 General Token Ring Protocol 25

2.2.2 Priority Schemes 29

2.3 Design of Token Ring System 30

2.4 Comparison of Token Ring to Other Networks 32

2.5 Concept of Fault Tolerance 35
2.5.1 Introduction 35
2.5.2 General Fault Tolerance Schemes 35
2.5.3 Fault Tolerance in Token Ring Network 40

2.6 Possible Fault Tolerant Schemes for This Project 45

2.7 Considerations for Token Rings and Other LAN's 47

Chapter 3 System Hardware 53

VI1

3.0 Introduction 53

3.1 The 68HC1 1 Microcontroller Unit 53
3.1.0 Introduction 53
3.1.1 General Information 55
3.1.2 68HC11 Registers 58
3.1.3 6 H 11 Ports 61
3.1.4 68HC11 Failure Statistics 6.................... 5

3.2 The R -232C 66
3.2.0 Basic Information 66
3.2.1 Splitting the RS-232C 70

3.3 IBM PC As a Workstation 71

3.4 Network Gateway By Microcontrollers 72

Chapter 4 Communications Protocols 74

4.0 Introduction 74

4.1 Other Communications Protocols 74
4. 1.0 Inr -oduction 74

4.1.1 IEEE 802.5 Token Ring 75
4.1.2 FDD I 7

4.2 Protocols Used in This Work 78
4.2.1 The ISDN Protocols 78

4.2.2 Fault Tolerant, Token Ring, and Other Protocols . 82

Chapter 5 System Software 85.........

5.1 Token Ring Inner HC11 Software 8........... 5

5.1.1 Inner HC11 Main Program 86
5.1.2 Input from Terminal 86
5.1.3 Output to Terminal 88
5.1.4 Output to Network 90
5.1.5 Receiving Data from the Network 9............... 1

5.1.6 Fault Tolerance Software in the Inner HC 1 98

viii

5.2 Token Ring Outer HC11 Software 100
5.2.0 Introduction 100
5.2.1 Outer HC11 Input from the Network 101
5.2.2 Output to the Inner HC11 102
5.2.3 Fault Tolerance in the Outer HC1 1 105

5.3 Terminal to Microcontroller Communications 108

Chapter 6 Applications of a Fault Tolerant Token Ring Network ... 109

6.0 Introduction 109

6.1 Medical Network 109
6.1.0 Introduction 109
6.1.1 The Benefits of the Medical Network 110

6.2 Student-Teacher Network 118
6.2.0 Introduction 118
6.2.1 Networking in Multimedia 120

6.3 Network in the Office 123

6.3.0 Introduction 123

6.3.1 Description of an Office Network 125

Chapter 7 Results and Conclusions 128

7.0 Introduction 128

7.1 Results 128

7.1.0 Introduction 128

7.1.1 Speed of the System 129

7.1.2 Efficiency of the Network . 134

7.2 Conclusions and Recommendations for Future Study 135
7.2.1 Hardware Recommendations and Conclusions 135
7.2.2 Protocol Conclusions and Recommendations 138
7.2.3 Software Conclusions and Recommendations 141
7.2.4 Final Remarks 142

1ibhiography 44..

Appendix: Program Listings 146

ix

List of Figures:

1.1 Computer Accessing a Printer Through Another Computer 7
1.2 Computer Accessing a Printer by Seizing Control of a Common Line 7
1.3 256 Station Token Ring Network 12

2.1 Example of a Star Topology 19
2.2 Example of a Tree Topology 20
2.3 Example of a Ring Topology 21
2.4 Repeater in the Listening State 24
2.5 Repeater in the Bypass State 24

2.6 Repeater in the Transmit State 24
2.7 Free Token Circulates on a Token Ring Network 26
2.8 Sl Captures the Token Then Sends a Packet to S3 27
2.9 S1 Places the Free Token Back on the Network After

It Receives the Acknowledgement from S3 28
2.10 Star-Ring Network 43
2.11 Star-Ring Network with Bridge 44

3.1 Network Design for This Experiment 57

3.2 Registers of the 68HC11 60

3.3 Station Hardware Design 62

3.4 RS-232 Pin Layout for the HC11 6...... 69

4.1 IEEE 802.5 Frame Format 76

4.2 FDDI Frame Format 78

4.3 ISDN Frame Format 80

5.1 Queue Pointers for the Output to Network Queue 99

6.1 Patient to Doctor Network Connection 112

6.2 Conceptual Integrated Medical Network 117

6.3 Interactive and Intelligent Electronic Classroom 119
6.4 Network Diagram for an Electronic Classroom 122
6.5 Five Station Office Token Ring Network 124
6.6 Diagram of an Office Token Ring Network 127

x

List of Tables:

2.1 2 Bit Hamming Code 38
2.2 3 Bit Haming Code 39

3.1 Summary of HC11 Register Functions 60
3.2 RS-232C Lines Used by 68HC1 1EVB 68

4.1 Bits Used in IEEE 802.5 Frame 76
4.2 Bits Used in FDDI Frame .. , 78

4.3 Bits Used in ISDN Frame 80
4.4 Tokens and Their Functions 84

5.1 Tokens and Their Functions in the Inner HC 11's 94
5.2 Tokens and Their Functions in the Outer HC11's 104

7.1 Execution Time for Various Modes 131

7.2 Time to Transverse the Network 132

7.3 Illustration of Communications Overlap on a Nine Frame Packet . 133

xi

List of Symbols:

BRI Basic Rate Interface
FDDI Fiber Distributed Data Interface
IEEE Institute of Electrical and Electronics Engineers
ISDN Integrated Services Digital Network
PRI Primary Rate Interface

xii

ABSTRACT OF THE THESIS

Fault Tolerant and Integrated Token Ring Networks

by

Thomas Christopher Gilbar

Florida International University, 1993

Miami, Florida

Professor Wunnava Subbarao, Major Professor

This thesis is a study of communication protocols (token ring, FDDI, and ISDN),

microcontrollers (68HC 11EVB), and fault tolerance schemes. One of the major weaknesses

of the token ring network is that if a single station fails, the entire system fails. A scheme

involving a combination of hardwae and timer interrupts in the software has been designed

and implemented which deals with this risk. Software and protocols have been designed and

applied to the network to reduce the chance of bit faults in communications. ISDN frame

format proved to be exceptional in its capacity to carry echoed data and a large variety of

tokens which could be used by the stations to test the data. By its very nature, the token ring

supplied another major fault detection device by allowing the data to be returned and tested at

its source. The resulting network was successful.

Chapter 1

Introduction

A Brief History of Microcomputers, Networks, and Fault Tolerance:

1.0.1 Development of the Computer

Computers, or things that can be loosely defined as a computer,

have been around for over a hundred years. Changes in semiconductor

technology in the past three decades have allowed the development first

of small scale integration (SSI), then medium scale integration (MSI),

large scale integrat on (LSI), and finally very large scale integration

(VLSI). These developments have allowed more and more transistors,

diodes, and resistors to be placed on a single chip, thus giving rise to

microcomputers. A simple lap top computer now has more computing

power than a computer which would have taken up an entire roor in

the 1950's.

Intel Corporation developed a 4 bit progra able device called

the Intel 4004 using the new semiconductor technology. This

microprocessor was replaced with the Intel 8008, an 8-bit processor,

which was, in turn, replaced with the Intel 8080. The Intel 8080 was

used in control applications and as the CPU in small computers in the

mid-1970's. This was the advent of what is now referred to as the

1

microcomputer.

Motorola followed the example of the Intel 8080 by releasing

the 6800 a few years later, a microprocessor designed with a different

architecture and instruction set than its Intel equivalent, the 8085. Both

the 8085 and the 6800 were vastly superior to the 8080 in computing

power. These new microprocessors were no longer used as simple

programmable logic devices, they were now considered CPU's.

The VLSI technology led to the development of even more

powerful microprocessors. Intel and Motorola developed 16-bit, 32-

bit, and now even 64- bit microprocessors. These developments led to

the single board microcomputer, which in turn led to cheaper

microcomputers which were accessible by almost any person who

desired to have a computer. Motorola released the MC68HC11, a

powerful 2 MHz, 8-bit microcomputer with advanced on chip

peripheral capabilities. Later Motorola released a microcomputer with

the MC68020 for a CPU. The 68020 is a 33MHz, 32-bit

microprocessor.

In the mid 1970's, IBM developed the 801 minicornputer, a

computer with a microprocessor whose main function is to reduce the

data path cycle time, regardless of whatever else it may need to

2

sacrifice. This was the first of what is called Reduced Instruction Set

Computers (RISC) processors. RISC processors are known for their

speed. To achieve high speeds during processing, they have several

special characteristics. First, they have simplified instructions and

addressing modes. The RISC processors have a reduced instruction

set, which results in some of the more basic, and most common,

processor functions, such as loads and stores, being optimized. Next,

multiple execution units allow parallel processing. The RISC machines

also have a pipelined architecture. Finally, the RISC processors utilize

a larger set of registers to minimize the usually time consuming

memory accesses. However, with the reduced instruction set comes

the need for compilers which are more complex.

Another type of processor recently developed is called the

Digital Signal Processor. These devices lean more toward speeding up

arithmatic functions rather than reducing data input/output time. The

faster computation insures that the processing rate is limited only by

the speed of data transfer between the processor and memory. DSP's

have been optimized for high speed execution of signal processing

functions such as dot products and Fast Fourier Transforms. To

achieve the faster arithmetic, the DSP's include fast hardware

multipliers and totally independent data and program storage areas.

They also have fast interrupt switches for more efficient task switching.

3

Multiple ports allow for the design of efficient parallel processing

architectures. A steady flow of data will allow a DSP to run as fast as

a RISC machine. However, any break in the data path can result in

performance loss.

1.0.2 Networks

With the proliferation of computers came the need to allow

communications between computers. Users needed to share software,

data, and other forms of information, whether it was between

computers on opposite sides of the world or between computers on the

same desk.

No doubt the ideal way to communicate between computers

would be to supply communications and control lines from every

computer to every other computer in the world. However, setting up

these dedicated lines would be expensive, time consuming, and would

take up too much room. For example, stringing a dedicated line

between two computers which are several thousand miles apart would

be very expensive. Also, most computers require access to

peripherals such as printers, hard drives outside of their own

computers, modems, etc. However, these peripherals are expensive.

If the user only needs to use these peripherals occasionally, the expense

may be excessive.

4

A solution to this problem is to attach a computer to a network,

so that while a user may not have a direct connection to a needed

device, s/he can establish a connection by one of two ways:

1. First, by going through another computer on the same network

that may have a direct connection with the device. For

example, Figure 1.1 at the end of this section shows station 1

passing through station 2 to gain access to its printer.

2. By "borrowing" a line shared by several computers which

accesses the device. In the case illustrated in Figure 1.2 (again

at the end of this section), station 1 is accessing a printer by

taking control of a shared line.

These solutions lead to other problems, however. In either

case, the computers must share a common connection. The single line

cannot handle more than one communication at a time. A scheme must

be developed to decide who controls the line at any given moment.

Further, each station on the network deserves its fair share of access

time to the network.

In the 1970's and 1980's, computer science and data

communications combined to come up with networking schemes.

Protocols and computer communication architectures were designed to

meet the needs of various users. Ring, bus, and star topology networks

were developed.

To/From A Device

To/From Network To/From Network

-- Station 1 Statin2

[Printer

Figure 1.1: Computer Accessing a Printer Through Another
Computer

teer

tStation 4 Station 3 ter

Station 1 Stton tto

Plotter Sanner

Figure 1.2: Computer Accessing a Printer By Seizing Control of a
Cormon Line

7

1.0.3 Token Ring

One scheme is the token ring network. Proposed in 1969, this

is the oldest of the ring network schemes. The concept of the token

ring is relatively simple: A token, a small packet of infom ation

different from any data that might be sent, is placed on the network.

Only one of these tokens may be present on the network at a given

time. If a station wishes to send data, it must wait for the token to

arrive at its node on the network. The station removes the token from

the network and sends its message. By removing the token from the

network, no other station can receive the token, and therefore no other

station can send data. Once the station finishes with its da

transmission, it places the token back on the ring, potentially enabling

further communications. By forcing a station to wait for the token

before it can send a message, the token ring network removes the

possibility of data corruption and collision. A more detailed

description of the token ring will come later in this document.

1.O. Fault Tolerance

One major problen in any network is ensuring that the

information received is exactly the information sent. Any number of

problems can occur in a system. The wrong address can be supplied,

8

thus sending the data to the wrong place. Both the sender and the

receiver need to have ways to find this out. The data may get

scrambled while it is on the line. One of the stations on the network

may go down while the data is being sent, causing part or all of the

message to be lost.

The solution to these and other problems is to make the

networks fault tolerant. In other words, there must be a way to detect

and correct errors in transmission. Several methods, or combinations

of methods, may be used: Coding (Huffman, Hamming, parity

generation and checking, etc), hardware modular redundancy,

acknowledgement signals, etc. Several methods will be reviewed later

in this document.

.L1 Introduction to this document

The main objective of this thesis is to develop a communications

network which improves a popular LAN protocol by making it more fault

tolerant and adapting it to modem technology. The token ring network is the

basic protocol that will be used in this work. This topology was chosen for

several of its characteristics, including that it is one of the three major LAN's,

the innate security which comes from its circular layout, and the difficulty of

creating a token ring network which does not completely fail when any of its

stations fail. To develop this network, a variety of software and hardware

techniques will be altered and combined. The result should be a more fault

tolerant network which has been altered to compatible with modern protocols.

As stated above, the advent of computers led to the need to

communicate between computers as well as computer peripherals. Si1ply

connecting every computer to every other computer and to its own peripherals

is too expensive and unrealistic. Therefore, fast, efficient networks must be

developed and implemented.

This document will show the step by step process of designing one such

network: The Token Ring. Microcontrollers such as the motorola

MC68HC1 will be used for modeling and testing the system. The ring

designed can consist of up to 256 stations (256 distinct addresses)(see Figure

1.3 on the following page). The actual model developed will have three such

stations. IBM PC's will be used to emulate the stations. Programming for the

HC 11's will be in assembly language for efficiency and speed of operation.

Simply building a token ring network is not enough. The token ring

network must also be highly fault tolerant. This will be achieved through a

variety of methods: address testing, encoding schemes, ac owledgements,

etc. This document will focus on the best way or combination of ways to

10

create a fault tolerant token ring network. Criteria for choosing the best way

will include speed, efficiency, difficulty in installing, and of course, ultimate

reliability. The concepts here can be extended to major fault tolerant data and

computer communications.

11

3

a

>e

r ,

, V11 r

g _

3

o

e o

ti t ".mac

1
why

s

a

w3 ``14

ITI, h ONEW

F Y

nn

f

i.

i'

1

1.2 Chapter Organization

This document will be divided into 8 chapters and two appendices.

Following the introduction, Chapter 2 will contain a detailed look at the

considerations in the design of the system, which will include a discussion of

the token ring network concepts and design and fault tolerance techniques.

Chapter 3 will contain a discussion of the hardware used in this research. This

will include a description of the 681C11 board, the IBM PC's, and how the

network was developed with the microcontrollers. Chapter 4 will be a

discussion of the system integration techniques, including protocols and

methods. Chapter 5 will be a description of the software developed for this

project. It will include a discussion of the particular needs of software for the

token ring network (including fault tolerance) and the software needed to

achieve communications between the various hardware elements of the system.

Chapter 6 will show a variety of applications for the token ring network that

will be developed. Chapter 7 will be the conclusions and will discuss areas

for future study and experimentation as well as design alternatives and system

enhancements. Diagrams and the software source code routines will be

including in the appendices.

13

Chapter 2

Design Concepts for a Token Ring Network

2.0 Introduction

Chapter 2 presents a study of the concepts used to develop the

network for this thesis. Sections 2.1 through 2.4 of this chapter discuss the

token ring network. Topics include the basic concept of token ring networks,

official CCITT protocols, factors and methods used to design the token ring,

and a comparison of the token ring network to other types of networks.

Sections 2.5 and 2.6 of this chapter discuss fault tolerance. First, the basic

concepts of fault tolerance will be discussed, including what it is, why it is

necessary, and some basic fault tolerant schemes. Next, various fault tolerant

schemes that could be used in this project will be discussed in detail.

2.1 Concept of Ring Networks

2.1.1 Topologies

Networking computers has created some problems for

designers. Directly connecting two or three computers is a relatively

easy matter. Connecting four computers is a little more difficult, but

still can be done. However, when the number of terminals increases

14

to five or more, there are just too many connections to be made.

Also, with more connections, more intelligence is required. Each

terminal needs to know exactly which connection leads to which

terminal and needs to be able to listen in to all of the lines to see if

data is being sent to its location. Intelligence and massive amounts

of connections are both time consuming and expensive.

For these reasons, several networking topologies have been

developed over the past couple of decades. The majority of the

schemes fall under three basic topologies: The Star, Tree, and Ring.

A special type of Tree, called a Bus topology, is also used quite often.

As seen in Fig. 2.1, the terminals in the star network

communicate through a switching element. This element establishes

a dedicated path between the receiving terminal and the transmitting

terminal. The star networks are easy to expand and require very few

connections (each terminal has only one network connection, which

is to the central node). Most of the intelligence is based in the central

element, leaving very little for the terminals to do when it comes to

networking. Since each ter inal has its own line, the bandwidth

requirements of the lines are quite small. The most difficult part of

developing this topology is in developing ways of preventing data

collisions. Data collisions occur when two or more terminals

15

simultaneously attempt to send a message on the same line. The

messages will meet and the result will be the loss of data and the

possible destruction of all messages. Two or more terminals can not

simultaneously send data to a third terminal without risking the loss

of some or all of the information. If anything but a full duplex line

(a line which can send data in both directions concurrently) is being

used, a terminal cannot transmit at the same time it is receiving. The

more transmitters which are allowed to send simultaneously, the more

intelligence and memory is required in the central element.

Acknowledgement, request to send, and/or time division multiplexing

schemes can be developed to alleviate these problems. A major

weakness for this topology is the dependance on the central node. If

it fails, the entire system will fail along with it.

Figure 2.2 shows a typical Tree topology. The bus topology

is similar, but it does not have branches. Instead, it has one single

"trunk" on which all of the stations are connected. For these

topologies, a multi-point medium must be used. That is, several

stations share the same transmission medium. Unfortun ately, with

only one communications medium, only two terminals can

communicate at a time. Data collisions are difficult to avoid. A

transmitting station must seize control of the line to keep other

stations from attempting to communicate simultaneously. Again,

16

acknowledgement and request-to-send schemes must be developed.

The required number of connections is minimized. Intelligence is

located at the terminals; however, since each terminal has to watch

only one line, the required intelligence is less than if every terminal

was connected to every other terminal.

The topology which is the most inportant to this thesis is the

Ring (Figure 2.3). Terminals are connected to the network through

a repeating element. The network itself is a closed loop. This

increases security by making it difficult for an unauthorized station

to break into the network. Data circulate through the network using

connections between the repeaters until it reaches the receiver. The

receiver makes a copy of the data, and continues to forward it. The

transmitter uses the returned message as a form of acknowledgernent.

When the message returns to the source, the transmitter removes it

from the network. Control of the network is then sent on to another

station. Problems with this type of topology include setting up the

order of the stations for sending messages, and removing a packet

from circulating through the network, especially in the case of errors

in addressing. These problems are solved by creating some type of

control protocol. Another potential problem with the ring topology is

that any break in the ring, or a failure of a repeater, will cause a

failure in the whole network. Also, adding another terminal to a ring

17

network can be difficult because it involves finding two close stations

that are connected, breaking their connection, and then connecting

each of them to the new station. Changes must be made in the basic

ring design to deal with these problems.

18

r

i

3
5

7

Q
s

S

i

v{

i

i i
i

a
q

C e nt,.a
xg

r t, r

S

i

P

i

t

j.

b

e

WAY ,
h

P,

e

l

4

`r

5

f

ee

l

f

s

2
c

s

figure 2A c-4 a Stir i op(;Icgy

1

s

s

x

i
r

6 s

3

t t'k

z ;

Lot

r

3 e

-
-All

i

k

k

2

3

i

y

k

F

t

h

.. m...- ... ,.-. 6. .,-. ,r ,.,.......

2

E
k

pf3

4

3
i

3A

L

y
{

b
x

b

p

l

R Tie. eaters

j

4

5 ti

1

I

'

r

-
S

i

3

s

i

1

a

f1gu r to 2.3 E Y= o pie c op iog ;y

21

2.1.2 The Ring Repeater

The intelligence for this topology is mainly in the repeaters. For

this thesis, the Motorola 68HC1 's will be used as the repeaters. These

will be used for data encoding, storing data until it can be sent, error

detection/correction, etc. Notice that any similar microcontroller, such

as the Intel 8051, could be used with similar results. The reasons for

choosing the 68HC 11 will be outlined later in this chapter.

Repeaters have three possible states: Listening, Transmitting,

and Bypassing. In the listening state (Fig 2.4), the repeater receives

data from the network, copies it, then puts it back on the network,. This

creates a slight delay. At the beginning of a message, the repeater tests

the destination address. If the repeater detects its own address, it

remains in the listening state. If the destination address does not belong

to the terminal, there is no longer any need for the repeater to copy the

data for the station. It will transfer into the bypass state (Figure 2.5).

In this state, the data is passed directly on to the next station on the

network, removing the delay. The final state is the transmit state

(Figure 2.6). In this state, the repeater listens in one direction and

sends in the other. The listening side is picking up the message that the

transmitting side is sending, but with at least a one bit delay (the

ammount of delay depends on the transmission flow). This serves as an

acknowledgement. Sometimes certain bits are modified by the

22

receiving station to show that the packet was, indeed, copied.

2.1.3 Brief Introduction to the Token Ring

One control protocol is called the token ring. This technique

was first proposed in 1969 (it was called the Newhall ring at the time),

making it the oldest ring protocol. This protocol was developed to

remove the risk of data collisions, increase ring efficiency, and to

supply a means of determining the order in which the stations will be

allowed to access the network. In the next section, a detailed

description of how this is done is presented.

23

p v

w

k an

f `"Ng
f

(F+,f'1SM S ' `1 :

5 lire"
'

o
g \

G

4i
4

j]

9
3

1
h1

" Y

..,.. _.e.F..,. ., ...e .-.. »..,,..M,.. .. ,..,...- ,... .- ,. <,.m ... , ,a,..... ... , .. R :........ .. .<.. me- -,.,...... s, ,.. ., .o,.. _--. n _. - , o .a,..A.r. , a _ ,.. . e.c-.m. s

Figure ".".. R:l,.-peat ' in the Lh;terni_,,,y SL,,.-.-e
}

i

-. '00,091,
ow .:

S

s

F

Y

rL

in we bypass Late

`s

Rt e a t
fi From
! Q A = I

Q r hr i.

f S . k Cc or k

a -4

s a

R _ f

t k ;l

1 111' . v ` _ r in "the fax . ti. _ , L ` ,

24

2.2 Token Ring Protocols

2.2.1 General Token Ring Protocol

To solve some of the problems of a general ring network, the

token ring circulates a small packet, called a token, around the ring.

When a station receives the token, it tests to see if there is a message

waiting to be sent from that station. If not, it sends the token on to the

next station on the ring (Figure 2.7). If there is a message, the station

changes the token to warn other terninals that the network is busy, and

sends out the message immediately following the changed token (Figure

2.8). All of the stations test the address on the packet. If the packet

was sent to the terminal, the repeater will make a copy of the complete

message and will send some type of acknowledgement (a separate

packet, the whole packet itself with certain bits changed, part of the

packet, etc.). Once the source has received an acknowledgement, the

station changes the token back to its original form, and will send it to

the next station on the network (Figure 2.9). Since there is only one

token, it is only on the ring if there is no message being sent, and a

terminal cannot send unless it is holding the token, two terminals

cannot send messages simultaneously.

25

6

k
i
i

e

S

i

gS

E

8

5

J

a

d

7

z
P Fi

S
s a

7 Fin N IP
't

!
1

av I

l9

i I

I

i
g i

Iz,
v

s

n

3

S2
9

E

aj
.

lhreee is

F

('1

5

i d
a - t

F

3

i t

dk

l
c

{

3

1

j

x

F

Y

.7 t° To"-,,:_n arc " . . I°

26

e

a

y

F

e
3

i

3

L

B

Na

I

v

5E
'e
p P

F

k9

3

3 f

s

7 9

8
,

i
222 ' " 3 !sells

.t~d' 3. ,mom,

Ink M. not
a

00S I
11 %2,0,0'c ,to < 'busy ,mt + to_ r aa, i

c£ ri . sit 1 f I

3 s

u_ g t a next stadon
1

9

q

n

tile net Nvork,
j 4

P ?

Y
k

f

S

B7

f,

e

1

i

s.o....a.,.m.. .. ,.. A....,..-.... . .,,,s,..n

gv-. ' S! Captures the `I"_' t `>.

27

n

s

s
A

fi

4

1

a!

I \ o&
i

v 1 E
w

F

3

71

t: .F - `u

g

}
P

u
i

p p

t

a

back k
h

Il

Y

i
Y

t

tii

v

e

3

k

if

ti
i!

v

a

k

lS

F*,gure 2,,9 9
4
n

3....,... e,o.,...,w..,...-m....m....a.., .,.......,. _...,d..,...-.o~ ,,..-,,,,.. , ~z. .,F ti-....enaaTn _ c = .,.v_-..., ,.. _..,=..,.,. . ,....- ,»..,.... :.. ., -.,d , y.,d. a

Placi s ty Fri 01 .i°pc %l,, 13:7, ft- r ke
Acknowledgement from

2

2 Priority Schemes

There are several priority schemes possible for the token ring.

The easiest, of course, is to allow each station to send out one packet

of a specified size or smaller, then pass the token on to the next

station in the ring. This ensures that all of the stations have equal

access to the ring. However, quite often some type of priority scheme

is desired.

One such priority scheme is the IEEE 802 Ring LAN Standard.

For this standard, the token is a packet of data which includes a byte

(or more) for priority and a byte (or more) used to reserve the token.

A station wishing to send a message waits for a free token with a

priority less than its priority. Once it gets this, it can send its

message, along with a busy token. While a station is waiting for a

free token, it can reserve a passing busy token by setting the reserve

field to its priority. By doing this, a station with a lower priority

cannot take a free token before the station with a higher priority. If

the reserve field has already been set to some value, the station tests

that value and compares it to its priority. If the priority in the reserve

field is less than its priority, the station clears the old priority and sets

the reserve to its priority. However, if it is higher, it cannot set the

reserve field and must wait for the higher priority station to send its

message. When the busy token returns to the source, the source will

29

clear out the priority bit and then sends the now free token back on

the network. The free token will circle the network until a station with

a priority equal to or higher than the reserve priority picks it up, clears

the reserve field, and sends a message. If the token is not reserved,

any station can grab it and send a message. See Chapter 4 for more

details on this protocol.

Another standard for prioritizing packets is the Fiber

Distributed Data Interface (FDDI) Ring High Speed LAN standard.

This method is very similar to the IEEE standard, but it is designed

to utilize the high speed of the fiber more efficiently. The FDDI uses

a timing algorithm which allows the stations to send larger packets.

This algorithm takes into account the length of time that the station

had to wait before it received the free token. With this method, the

source is restricted by a time frame rather than a packet length. This

allows larger, or more, packets to be sent, increasing the efficiency of

the network.

2.3 Design of Token Ring System

There are several major considerations when designing a token ring

network. A major one of these is fault tolerance. The biggest stumbling

block for token ring, at least with the software, is improper maagement of

30

the token. If a station does not return the free token to the network, or does

not return ANY token to the network, the result can be disastrous. Methods

for avoiding this problem are discussed later. Fault tolerance on the hardware

side is more difficult, but must be considered.

Other considerations include choosing an appropriate protocol to

follow. For example, there are several priority schemes that can be followed.

The designer must decide which is the closest to the design specifications.

The designer needs to know if one station has higher priority than the others,

or if certain types of messages have higher priority than others. If priority

is necessary, the best way for it to be implemented while still giving fair

access to other stations must be investigated.

Commnunication protocols rust be chosen. Frame format, encoding

techniques, etc. must all be chosen and standardized throughout the network.

Data rates must be chosen. All of these will be discussed in Chapter 4.

Hardware is another important factor. The design of the stations must

be set. The functions of the repeaters, and the hardware used for those

repeaters, must be chosen. Software must be written so that a large variety

of hardware can access the network using it. For example, a good network

should be able to handle both the Motorola and the Intel families of

microprocessors, as well as allowing printers, plotters, etc. to be accessed by

31

any of the stations.

Still another consideration is the structure of the token ring itself. The

traditional token ring consists of a single, unidirectional path. Newer token

rings, however, are bidirectional, or have more than one ring. The second

direction or line can be used to choose the shortest path from the source to

the destination, or for acknowledgements. Hardware and software limitations

come into play when choosing the basic design of the token ring.

The specifics for the token ring which will be built for this project

will be discussed in later sections and/or chapters.

2.4 Comparison of Token Ring to Other Networks

There are many other types of networks. This section will describe

just a few of those to help outline the strength and weaknesses of the token

ring network.

To begin with, consider the token bus. It is very sirilar to the token

ring in its design, so more attention will be paid to it than the other network

types. One of the major differences is the connections required. A bus needs

a multi-point medium which can support any of a large number of devices.

For the token ring, only point-to-point connections must be considered. Each

32

station needs only worry about the next station in the ring. This gives the

designer more choices when it comes to designing the connections.

Unfortunately, the point-to-point connections mean that there where will be

a longer delay for a message sent on the token ring. For the token bus, the

only delay that the sender needs to worry about is caused by propagation

delay of the connections and distance between stations. A ring must deal

with this delay, and also delays as the data is sent through all the other

stations on the network. Each station adds at least one bit delay. Also, the

message may have to travel a greater distance through a token ring since the

token ring is unidirectional. Since all stations are connected to the same

element on a token bus, the instant the message is sent it will go in all

directions at once. For the token ring, if it needs to communicate with the

station just before it in the network, the message will have to travel all the

way around the ring.

The single direction of the token ring does have its advantages. It

makes some forms of fault tolerance easier to implement than on the bus.

For the bus, all stations have easy access to the same transmission line. This

increases the odds of an error occurring, because two stations are trying to

control the network simultaneously. The stations on the ring have such a set

path and such limited access to the network that data collisions are f less

frequent. Also, since each station on the token ring has two lines one for

input, and one for output, the stations can more readily send and receive

33

simultaneously without causing problems with the network. The same is not

true for the bus. Unless a full duplex line is used, only one station can

transmit at a time.

Another network is the pure ALOHA technique. This technique was

designed to allow widely scattered terminals to access one central mainframe.

To do this, the ALOHANET has two channels: One channel from the

terminals to the mainframe, and another chanel from the mainframe to the

the and t. When a station has a packet to be sent, it does so. This creates

a free-for-all on the transmission line. The ALOHA technique is very simple,

and the intelligence is minimized. However, the occurrence of data collision

is astronomical compared to the token ring. Token rings are more difficult

to implement, require more time, energy, and money, but the savings in fault

tolerance and in transmission time due to increased throughput makes it well

worth the effort.

Finally, consider the Carrier Sense Multiple Access with Collision

Detection (CSMA/CD). This is the most commonly used control method

used for bus topologies. This system is better than the ALOHA in that when

a collision is detected, transmission is instantly terminated. This saves time

in sending messages that are not going anywhere anyway. However, it still

suffers from a great deal of collisions, again making it weaker than the token

ring in that sense. Like the ALOHA, the CSMA/CD method is easier to

34

implement than the token ring, and messages that actually make it through

get to the destination faster.

2.5 Concept of Fault Tolerance

2.5.1 Introduction

Fault tolerance is a major concern for any system, whether it

is part of a larger network or a simple terminal working on its own.

Designers have been working on ways of building systems which can

sustain small errors without losing the whole system, or errors can be

made without losing data or passing on bad data. Many methods have

been developed for both error detection and error correction. Some

possible problems and a few possible fault tolerant solutions will be

discussed in this section.

2.5.2 General Fault Tolerant Schemes

In more complicated systems, one piece of hardware having a

fault can t e the entire system off line. Sometimes diagnosing the

problem is difficult, and fixing it is nearly impossible. One solution

for a hardware fault is called Triple Modular Redundancy (TMR).

This fault correction technique involves running three identical units

simultaneously in parallel. The output of the units are then sent to a

voter, and the voter outputs the majority decision. Some added

35

hardware can also supply a warning that one of the its has become

faulty so that the user is aware of the problem. This system has two

benefits: first, the system will not automatically go down, giving the

user time to get in and fix the problem while the system is still up and

running. Second, the odds of two units having simultaneous faults are

much smaller than of any single unit having a fault; therefore, the

efficiency of a system increases as a whole. For more important

pieces of a system, five, or even seven, redundant systems can be

running simultaneously, further bringing down the odds of a fault

occurring. The one major weakness of redundancy lies in the cost and

the space taken up by adding the extra hardware. The importance of

the unit and the cost of redundancy must be balanced before action is

taken.

Another major concern for network faults is in accuracy of the

transmission. In the time between the source sending the data and the

destination receiving the data, many things can occur to cause errors

to appear in the data. Methods for the destination to test data and to

inform the source that the right data was received (or even that ANY

data was received) must be developed. First, ways of checking (and

possibly correcting) faulty data will be discussed. A second layer of

TMR can be added to the output of three voters to deal with faults in

the voter.

36

Parity generation and detection is probably the most popular

error detection/correction method. In this method, the bits in a field

of data (a byte, word, long word, etc.) are compared and used to

generate an extra bit of data which is then added to the field. At the

receiving end, the parity bit is regenerated using the data. If it

matches the parity bit sent, the destination can be certain that at least

a single bit error has not occurred. Unfortunately, a single parity bit

can only detect a single error in the field. To increase the chances of

detecting an error, rmultiple parity bits can be added by comparing

certain bits within the field, rather than every bit with every other bit.

Each added parity bit increases the chance of detecting multiple faults,

and can even eventually be used for error correction. A second layer

of parity can also be added. This second layer checks the other parity

bits, fut her increasing the chance of detecting errors, this time in the

parity generation itself. Of course, there is a cost. The more parity

bits that need to be sent, the less information is sent in each field of

data. This decreases the throughput of the communication system.

Communication time is increased and more equipment is needed to

create and test the parity. Again, the number of parity bits, and the

benefits of error detection/correction, must be weighed against the

cost. A single parity bit for a byte of data may not be used for

correcting the data, but it will wam the user about single bit faults

(the most common fault), and can be used to ask for a retransmission

37

of the data. The fewest number of bits that the code words differ by

is called the Hamming Distance. The more bits used in the coding,

the larger the Hamming Distance possible.

For example, assume that a system needs to encode two

choices, A and B, and two-bit code words are chosen. Since only two

words need to be encoded, then only two combinations are necessary,

say 00 and 11. The following table results:

E Table 2.1: 2 Bit Hamin Cod

Possible Codes Encoded Message

00 A

01 None

10 None

11 B

Notice that the chosen combinations differ by two bits;

therefore, the Hamming Distance for this coding scheme is two. That

is why 00 and 11 were chosen. Any other choice of combinations

would result in only a one-bit difference. Single bit errors can now

be detected. If the word 01 is received, the destination address knows

that an error occurred. This is not a valid code. However, the

destination address does not know if the right code was 00 or 11.

38

By increasing the Hamming Distance, errors can be corrected.

For example, if 3 bits are now used, there are eight possible

combinations. The following table results:

Table 2.2 3 Bit Hamming Code

Possible Codes Encoded Message

000 A

001 None

010 None

011 None

100 None

101 None

110 None

111 B

By choosing 000 and 111, the new Hamming Distance is three.

If the receiver now receives 001, he not only knows that there has

been error, but also that the input was supposed to be 000,

assuming single bit errors (111 would be a double bit error). Like

parity coding, the more bits the better chance of error

detection/correction, but it also takes longer to send the message thus,

throughput goes down.

A major problem in any network is finding a way to indicate

39

to the source that the data has been received, or if the appropriate

person received the data. One way to do this is to come up with an

acknowledgement scheme ack owledgement can be anything from

a single bit, to a byte, to an entire packet sent by the receiver back to

the source once the transmission is completed. Sometimes the entire

packet is sent back to the source with a single bit changed to indicate

that it has been received. This has the added benefit of sending the

exact same message back to the source so that the source can test for

errors in transmission itself. If there is an error, the message can be

resent. Of course, the larger the acknowledgement, the more time it

takes for a transmission to be completed. Again, a balance must be

struck. Longer transmissions sometimes need multiple

acknowledgements, requiring the source to stop for a while, wait for

the acknowledge, than resume sending. This takes up even more time.

2.5.3 Fault Tolerance in Token Ring New orks

Faults can occur in many places in a ring network. In this

section, one of the worst of these will be discussed: If one of the

stations on the ring goes down, the entire ring can be brought to an

abrupt halt. A traditional solution will be discussed, and will be

compared to the solution which will actually be implemented later in

this chapter.

40

One traditional solution to this problem is to change the

architecture of the ring itself. The ring can be made into what looks

like a star ring. In this case, rather than connecting each station

directly to the surrounding stations, the connections can be made to

a central intelligence (Figure 2.10). In other words, a station will send

its data to a central station, which will than send the data to the next

station on the ring, which will then send the data back to the central

station, etc. Other than the central station, the network works

identical to the token ring. The strength of this set up is that if a fault

occurs, the central office will see it, know where it occurred, and skip

over that station to send directly to the next station. Also, connection

to the central intelligence allows for easier expansion, another serious

problem with ring networks.

There are several weaknesses to this method. First, if the

central intelligence fails, the whole system will probably also fail.

Also, if any one station goes down, it may still create a delay or even

temporarily disable the entire network. Finally, the single central

intelligence adds delay to the network and may require a lot of extra

cable to connect it to the other stations. However, unlike the pure star

network, the central intelligence does not need to be very intelligent.

To help with these problems, added changes can be made. The

41

ring can be broken down into smaller rings, and the smaller rings are

connected by what is called a bridge (Figure 2.11). With this added

step, if one central intelligence, or a station, goes down, the entire

network will not be affected. Delay and amount of cable may be

reduced. However, the bridges must be quite intelligent to deal with

the switching, and more central intelligence may be required.

42

3
s

1

l

5

yF

iY

i

f

i
7

3
I

l
Z

E

F

} }

ti
0

£

s

i

3

4

i

n

a

s

z r

j

p

R

i
i

k

S

E

i

.L .A .. _a 4.5. 'I}.. l rv v TjW .t .. ' _

g 'z re _ S, 7 R,'

4

I,
i
j

i

a
g

s

d

K

a
Q

et

t

S

8

6

1

E r1 e

I

r

J

M qa.

c j
J

i

R

j

3

A! AWL

lZMA
p

g j £

s
s

a

d

s

i

`s

4

s

1

3

3
3
i

q yp. + yFigure 2.11 ,7
6` X 1 *.

44

2.6 Possible Fault Tolerant Schemes in This Project

Problems with errors in received messages are relatively easy to deal

with. Choosing an appropriate coding scheme will deal with any problems

with bit errors. ISDN frame format will be put to use to deal with bit errors

(See Chapter 4). The ISDN frame has two bytes of a Bl channel, two bytes

of B2, and four bits of D. The BI channel will have the original data being

sent. The B2 channel bytes will be a negated echo of the B1 channel bytes.

The stations will be able to compare the data on B1 to the data on B2 to test

for bit errors. This decreases throughput by about half, but it also greatly

reduces the chances of bad data being received.

As mentioned earlier, the very nature of the token ring adds an extra

measure of fault tolerance. The ISDN frame will be passed all the way

through the network and return to the transmitting station. This will give the

transmitting station the chance to test to make sure that all data received was

the same as the data sent. Special tokens will deal with errors in the data

sent. These will be described in later chapters.

To deal with problems with the token, a ring monitor system will be

established. The first monitor will be the one defined as station 0. It will

send out the start up token on a timed schedule. The time between these

tokens will be based on a timer interrupt. The timer will be set to a time

45

based on the number of stations, data rate, number of bits in the frame (48),

and a small amount of time added to offset processing time at each station.

This process will be used to deal with the possibility that not all stations will

come on line simultaneously.

After the initialization token has been passed around, station 0 will no

longer be the monitor. The system will be policing itself. Using timer

interrupts, the stations will be able to determine if it has been too long since

the last byte of data has passed through the network. Warning and error

tokens will be used to determine if the failure was caused by a simple fault

such as the last transmitting station failing to send a token or a station failing

to pass a bye to the next station, or if a more serious hardware fault has

occurred. Hardware faults c then be dealt with by skipping the station that

has experienced the problem. The process will be described in more detail

in later chapters.

To keep a station from sending messages that are too long and are

unfairly tying up the network, the transmitting and receiving stations will

both count the number of bytes or frames being sent. If the packet becomes

too large, the transmitting station will be forced to stop sending. This will

be done by using a special token. If this fails to stop a station, or if it is not

the station that is transmitting that is sending out the endless message, a

second timer interrupt, based on the time between new message tokens, will

46

be set. In a procedure similar to that of a network which has gone quiet, this

timer interrupt scheme will track down the station which is generating the

data and skip over it. Again, see the software chapter for more details.

2.7 Considerations for Token Rings and Other LANS

Requirements of networks have been steadily increasing over the past

several years. By 1995, audio and video will become just another data type.

Multimedia is becoming more and more desirable, and networks need to keep

up with the increased derad. Multi-media will require much more memory,

storage capability, network bandwidth, and processing rates. 100 Mbps will

become the baseline for networks, especially those requiring multi-media

applications.

Early LAN schemes, such as Token Rings, FDDI, and Ethernet, were

not designed to handle the requirements of multimedia. However, voice is

not necessarily a constant stream of data. It is actually a mixture of

talksp s and silent periods. This allows for packetizing and sending of the

data. Token Rings can take advantage of this fact. There are three current

methods for voice-data integration on a Token Ring network.

First, distributed control can be used on the Token Ring. one such

method removes the need for centralized control by giving each station a

47

window in which it can transmit. If a station does not receive the token

within this window, it is not allowed to send its packet. This allows the

synchronous transmission of voice. This window can be either a fixed value,

or can be based on the previous transmission.

Secondly, centralized control can be used. In this case, stations can

be divided up into two categories: the ones which send only voice, and the

ones that send only data. The central node sends out priority tokens at

regular intervals. This token is sent around the ring to give all of the voice

stations a chance to send a single voice packet. Once every station has had

a chance, the central station sends out the regular token. If the regular token

is busy, the central station must wait until a free token is sent before it can

send the priority token.

Finally, a dual ring can be used. Once again a central station is used.

In this case, three tokens are used. One is a null token to warn the stations

that a new service cycle is beginning The second token is used to indicate

that only voice stations can send. The third token is used to indicate that

only data stations can send.

Compared to other LAN's, Token Rings are preferable when trying

to deal with the voice/data integration. For example, carrier-sense multiple

access with collision detection (CSMA/CD), another major LAN, has rmany

48

disadvantages. One of these disadvantages is that making the necessary

changes to the CSMA can be very expensive. Another disadvantage is that

high utilization of this type of network causes the performance to degrade

very quickly. Also, access delay is not guaranteed to be bounded for CSMA,

causing probable real time delivery of voice packets and making CSMA not

suitable for voice transmission.

Eventually, Asynchronous Transfer Mode, a special switch, will be

used to integrate data, voice, and video. However, in the interim engineers

have developed other methods of sending video. Video can presently be

added to a network using a videoserver. This usually utilizes one or more

computers to compress the frames of video signals so that the video can be

integrated onto the network. Because it must handle both A/D conversion

and data compression, a videoserver must have quite a bit of specialized

hardware.

With the need for higher bandwidth on networks has come an increase

in the development of viable options to make faster networks. Today's

networks are on the verge of broadband (4 Mbps for Token Ring and 16

Mbps for Ethernet). Higher speeds are needed though. Proposals for new

networks include 16 Mbps for Token Rings and 100Mbps FDDI (Fiber

Distributed Data Networks).

49

One method of increasing speed on networks is the Broadband ISDN.

BISDN can use ATM to perform high speed switching (45Mbps to

155Mbps). The push for this type of speed comes from the need to send

large files and animated graphics over large distances. BISDN is also being

used for basic consumer use in the form of high definition television

(HDTV).

With the advent of ATM, variable length data frames becomes a very

important and viable option to increasing network efficiency. The network

will no longer have to wait on dummy information that had to be sent to

fulfil the synchronous requirements. In older networks, the other stations had

no way of determining when a transmitting station was finished, so that

packet had to be a definite length. This is a waste of valuable bus time. In

this project, variable length packets will be allowed. The maxim will be

256 bytes due to space restrictions on the 68HC11 board, but a pakcket can

be any size less than that. The use of tokens will allow the stations to realize

when the last frare of a transmission is arriving.

Frame relay, or the sending of variable length units of data through a

network, was originally designed as a service for ISDN. Now extensive

effort is being put into trying to make it a technical solution viable for any

type of service.

50

Speed is not the only factor in developing technology. Fault tolerance

must also be considered. Fault tolerance is not an all or nothing

consideration. Each LAN must weigh the options and decide just how much

fault tolerance is required. Network fault tolerance is dependent on three key

aspects: equipment, design, and installation.

Fault tolerance by design is very complicated. In the design,

consideration must be given to how to mix networks, hubs, protocols, and

media. The scope of the network and importance of individual parts of the

network should be taken into consideration. Splitting up a network into sub

networks can help keep the entire network from failing when a single user

fails. Parts of the network with more vital functions may require the extra

cost and equipment necessary on developing a redundant system; however,

this does not mean that every part of the network must use redundancy.

An example of fault tolerance by design is in the choice of network

topology. By decreasing the number of hops (connection between networks)

between links and workstations, a topology can decrease the chances of

something going wrong in the transfer of data.

The network backbone is a prime candidate for redundancy since it is

the link which ties subnetworks together. Redundancy can be accomplished

by including a second cable which ensures that if one of the cables is broken,

51

the network will still be able to communicate. Also, adding an extra, simple,

redundant hub can keep separate hubs and subnetworks communicating when

one fails.

Since most errors in a network occur in the hardware, equipment is

also an important choice when considering fault tolerance in a network.

Power supplies are appropriate places for adding redundancy to network

components. There must also be equipment included which will allow

switching of control when a fault occurs.

Of course, fault tolerance on the network level is useless without fault

tolerance on the station level. More modern techniques can target specific

areas or devices for fault tolerance. For example, faults in control computers

can be monitored using band limiting filters. These filters are employed to

monitor the propagation of a signal through the device. By comparing the

signal to a signal from a another source, the system can detect if the signal

has exceeded a threshold. This would indicate a possible fault in the system.

52

System Hardware

3.0 Introduction

In this chapter, the key element of this project, the chosen hardware,

will be discussed. The first section of the chapter will cover the architecture

of the 68HC11 EVB board. After that will be a discussion of the RS-232C

and its hardware. The next section will discuss the PC's which will be used

as terminals on the network. The final section will be a discussion of using

microcontrollers to make network gateways.

3.1 The 68HC11 Microcontroller Unit

3.1.0 Introduction

In choosing the hardware for the repeaters, there are several

considerations. The first consideration is the intelligence required.

The most important function of these repeaters will, of course, be the

sending and receiving of messages. This means dealing with source

and destination addresses, changing the token between free token and

busy token, dealing with priority schemes (if any), etc.. The repeaters

for this project must deal with the possibility of being a monitor,

which means that they must be given timing schemes and instructions

53

on skipping the next station if a fault is detected. They will also

probably be used for coding d parity generation. For all of these

reasons, the repeaters need to be reasonably intelligent.

The next factor is cost, reliability, and availability. The

repeater must be made with accessible materials to make the network

worthwhile. Designing with excessively high priced or hard to find

materials would make building the network next to impossible for

almost everyone who wishes to build it.

The final factors in choosing the hardware for the repeaters are

convenience and flexibility. The hardware chosen should be relatively

well known and user friendly. This helps with maintaining and

managing the network. The more familiar a user is with the hardware

the easier it will be to fix small problems with the network or to make

any necessary changes to the network to make it fit the user's needs

The user will not want to have to call in an expert for every problem

that occurs.

The Motorola 68HC11 is well suited to implement this

network. Introduced in the late 1970's, it has become one of the

leading and standard microcontrollers in the industry. The 68HC11

is intelligent enough to deal with all of the functions that will be

54

required of the network's repeaters. The microcontroller has 108

instructions, plus several versions of many of the instructions. This

makes it very flexible and easy to program. Fu rthermore, the 68HC11

is easily obtained and is relatively inexpensive. As of the Spring of

1993, the 68HC11 sells for just over $130 for a single unit. When

bought in quantity, the cost can drop to $79 per unit. Since it has

been around for almost two decades, the 68HC11 has been tested and

updated enough to remove most of the major bugs. The 68HC11 is

a common microcontroller, so many software and hardware Engineers

have had at least some experience with it. Even without any

experience, the 68HC11 is user friendly enough that anyone who has

had any experience with microprocessor boards should not have

much trouble in learning the system. Again, its age benefits by

having reference material for the 68HC 11 not only readily available,

but also accurate and quite thorough.

1 General Information

The MC68HC1 1A8, the 68HC1 1 being used, is an 8-bit

microcontroller with the ability to simulate some 16-bit functions (see

the next section for details). The microcontroller is capable of

average bus speeds of 2 Megahertz; however, it is also capable of bus

speeds down to DC levels. This fact, combined with its HCMOS

(high-density complementary metal-oxide semiconductor) VLSI

55

design, means that the 68HC11 consumes little power compared to

other microcontrollers. For on board memory, the MC68HC11A8 has

8 kilobytes of ROM (read-only memory), 256 bytes of RAM (random-

access memory), and 512 bytes of EEPROM (electrically erasable

programmable ROM). The board itself has an additional sixty-four

kilobytes of address space, which can be used for storing programs,

stacks, queues, etc.

The 68HC11 comes with some of its own on-board fault

tolerance. There is an illegal operation code (opcode) circuit designed

to detect any illegal opcodes and to cause a nonmaskable interrupt in

case one is found. In case something happens to the clock, a monitor

system is available to reset the system. Protection from software

failures is provided by a watchdog system.

The diagram on the next page shows the general layout of the

token ring designed for this experiment. Each station will consist of

two HC 11's. The first will be connected to the user's computer and

will also act as an input to the network from the station. This will be

referred to as the inner HC 11. The second HC11 has no direct

contact with the computer and serves as the input to the station

from the network. This will be referred to as the outer IC 11.

56

3

i

c _

t

fe

d

1

f,

r[u
F

f

1

H

! ,Ili! v e'

al
r

I

iy

Aw

I

3
3

p

9
S

F

R

1

57

The outer HC11's basic function is as an intelligent

multiplexer. When the input from the ACIA RS-232C input (referred

to as the primary line), connected to the previous station, is either bad

or nonexistent, the outer HC11 will begin listening to its host RS-

232C input (referred to as the secondary input), which is connected to

the station before the previous station. This will cause the network to

skip over the previous station. How this will be done is described in

detail in the software chapter.

.2 68HC11 Registers

The 68HC11 has seven registers (see Figure 3.2). This

includes two 8-bit accumulator registers, called registers A and B.

For many instructions, these accumulators can be combined to create

a single 16- bit register, called the D register. This allows added 16-

bit functions even though the 68HC 11 actually has an 8-bit

architecture.

In addition to the two accumulators, the 68HC11 has two 16

bit index registers, IX and IY, The second register helps to speed up

the process by reducing the number of times the index register must

be saved. These registers c be moved into the D register for 16-bit

arithmetic operations.

58

The final three registers are a 16-bit stack pointer, a 16-bit

program counter, and a standard 8-bit condition code register. The

bits in the condition code register are defined as follows: zero (Z),

negative (N), stop disable (SD), X interrupt mask (XI), I interrupt

mask (IM), carry (C) and half carry (HC), and overflow bits (0).

59

7 A 0 7 B Combined
MakeD
(16 bit)

15 IX

15 Stack Pointer 0

15 ProgramCounter 0

Figure 3.2 Registers of the 68HC11

Table 3.1: Summary of HC11 Register Functions

Register Name Function

A, B Two 8-bit accumulators. Combine to
make one 16-bit accumulator (D).

IX, IY Two 16-bit index registers.

Stack Pointer A 16-bit register which points to the
current working stack.

Program Counter A 16-bit register which points to the next
line of a program to be executed.

Status Register 8-bit register which holds important
execution data.

60

3.1.3 68HC11 Ports

The ICi1 EVB board has a total of 7 ports. Of these, four

factor into this thesis: Port A, Port C, and the two RS232C ports

(ACIA and Host). These four ports will be discussed in this section.

All registers to utilize the ports are memory mapped. This means that

the progra er must manipulate certain addresses on the EVB board

in order to use the ports. See Figure 3.3 on the following page for

connections between the boards.

The ACIA is one of two asynchronous serial I/O ports. It is

utilized with software by manipulating two registers: The ACIA

status and data registers. If a byte of data has been input into the

ACIA port, the first bit (LSB) of the ACIA status register will be

changed to a logic 1. The data is read into the microprocessor by

reading the ACIA data register. The first bit of the ACIA status

register will remain a 1 until the status register and then the data

register have been read. These registers are located at address

locations 9800 and 9801 (hex), respectively. To output from this

register, the second bit must be tested. If it is a zero, the port is not

ready to output. If the second bit is a logic 1, the user can write to

the data register and the data will be sent. For the inner HC11, this

port will be used to communicate with the host computer. On the

Outer board, the ACIA will act as the primary input from the network.

61

s

5
s e

g

d >xfl
.. , Zy

P ?-k R

mu _.
g `

P

c

i

F

¢k
.g

C

S<s r x

tiv N

61 f °
4t

_

'All

CIO

Oll

a ,

i

is

b f

.
."a g

, fi ia Ba.4 "~i:. ',-` I.Q. 1 'u'1i
.. W 9=43 1,., 2,+'l8

2

The host port is the second asynchronous I/O port. It is

utilized in a similar manner as the ACIA port. The registers used are

the SCSR (Serial Communication Interface (SCI) Status Register),

located at address 102E (hex), and the SCDR (SCI Data Register),

located at address 102F (hex). The SCDR is actually two separate

registers. One is used only on a read, and the other is used only on

a write. If there has been input to the host since the last read of

the data register, the sixth bit (from the LSB) will be set. If the po

is ready to send, the eighth bit (MSB) will be set.

The C and A ports will be used to communicate between the

inner and outer MC68HC11EVB boards. A will be used for

handshaking, C will be used to send the actual data.

The C port is an 8-bit parallel port which can function as either

input or output, depending on the contents of the DDRC (Data

Direction Register for port C). The DDRC is located at address 1007

(hex). The programmer can make a certain bit of the C register to be

an input by writing a 0 to the appropriate bit of the DDRC. A logic

1 is used to make a bit an output. For example, writing hex OF to the

DDRC will make the first 4 bits (LSB's) outputs and the other four

inputs.

63

The C port has two data registers: The PORTC and PORTCL.

The PORTCL data register actually latches the data after a clock edge

(negative or positive edge can be chosen by the programmer) is

applied to the STRA pin. The PORTC register changes along with

the port C pins. PORTC is located at the address 1003 (hex),

PORTCL at 1005.

The PIOC register is the control register for the C port. To

determine if a byte has been latched into PORTCL since the last read,

the programmer can test the most significant bit of this register. If it

is a logic 1, fresh data is in the latch. Otherwise, there are no new

data.

Data will be transferred between the HC11's using the

PORTCL register. The inner HC11 will have its C register set to

input, the outer HC11 will use the C register as output.

Finally, the A register is half input, half output. The first three

pins are input pins, the next four are output pins, and the last pin is

an input or output, depending on the data direction register for A.

Two output and one input pin will be used for the outer EVB. One

input and one output will be used by the inner EVB. Reading or

writing to these ports is accomplished t ough the data register for

64

port A, located at address 1000 (hex).

3.1.4 68HC11 Failure Statistics

Motorola supplies failure rate statistics for its microcontrollers

and microprocessors in the Motorola Microprocessor, Microcontroller,

and Peripheral Data data book. In this section, a very brief summary

of these results will be supplied. See the bibliography for information

on the data book.

Motorola runs several tests on its microprocessors for this

report. One of these is the data retention test on the EPROM and

EEPROM. This is a test of the EPROM and EEPROM's abilities to

hold a charge over an extended period of time. The 68HC11A8

showed a failure rate of about 0.34% for up to 1008 hours at 150°C.

Another test is the thermal shock test, in which the chip is

tested by moving it directly from a fluorocarbon bath at -65°C to a

bath of 150°C. This test the stress caused by sudden changes in

temperature as well as the increased conductivity due to a liquid

environrent. This resulted in a failure rate of 0.13% for the HCMOS

family of chips.

The third test is the high temperature operating life test, which

65

is performed to accelerate the failures due to the application of

extreme conditions, including high input voltage and temperature.

Tests ran for a maximum of 1008 hours with a voltage of 5.5 volts

and temperature of 125°C. These resulted in a failure rate of about

0.036% for the MC68HCI 1.

The EEPROM read/write cycling test measures EEPROM cell

operation over an expected lifetime. After running the 68HC1 1 at 5.5

volts and 85°C, a failure rate of 0.87% was found.

There are several other test results available in the data book,

but they all point to the same thing: The 68HC11 has a small failure

rate even under extreme conditions.

3.2 The RS-232C

3.2.0 Basic Information

Obviously a vital part of any network is the means by which

the devices on the ne ork will be connected together. For inter-

connection between stations on the network designed for this project,

the RS-232C was chosen because it is the most common interface

standard. In signaling, the RS-232C uses two voltage levels: A

twelve (12) volt level is used to represent a logic 0, and a negative

66

twelve (-12) volt is used to represent logic 1. In reality, voltage is

lost as a signal passes through the connection line. Therefore,

anything above three (3) volts is considered a logic 0, and anything

below (more negative than) negative three (-3) volts is considered

logic 1.

The RS-232C lines are generally good for signals up to

20Kbps. Furthermore, distances traversed by a single RS-232C line

should not be greater than 15 meters. Voltage levels begin to drop

too far and signals begin to get garbled for signals faster than 20Kbps

or for distances greater than 15 meters. Distances can be made

greater by boosting the signal at points along the line. Faster data

rates can be achieved with good design, including data compression

techniques. The data rate limit is the reason for the 16Kbps data rate

limit of the HC11.

The basic RS-232C connector has 25 pins; however, most

applications do not require all of these pins. The HC11 RS-232C

ports use only a few of these pins for comrunications. Figure 3.4

illustrates the pins used by the HC11's two RS-232C ports. Table 3.1

briefly describes the use of each of these pins.

67

Table 3.2: RS-232C Lines Used by the HC11EVB

Name: Function:

GND - Protective Ground Attached to machine frame or some external ground

RXD Received Data Serial Data Output Line

TXD - Transmitted Data Serial Data Input Line

CTS - Clear To Send Output Signal Used to Indicate that the Device is
Ready

to Transfer Data.

DSR - Data Set Ready An Output Line Used to Indicate that the Device
is Ready to Transfer Data

SIG-GND - Signal Ground A Line Used to Provide a Common Ground Between
Devices

DCD - Data Carrier Detect An Output Line Used to Indicate that an Input Signal
Has Been Detected

DTR - Data Terminal Ready An Input Line Used to Indicate
On-Line/In-Service/Active Status

68

._

i

i

,

a

,. 2F p , i
a A1. CN-I
4

F

f

3

d

3
C

Q

1
C

g4

y

DSR
E

-ND
ow: m- mm"m}

i

k

1

I

5 gg the -~ -...... ,._.ti..._... _ ...,,,. , m. ,,.. , m. _ -.,.a,..,..nm - a. .. -.v.i..,.. .n.sa.,.. .moa

69

3.2.1 Splitting the RS-232C

The most important fault tolerant characteristic of this design

is the ability to skip a station which is no longer able to communicate.

To do this, the output signal of each station's HC11 must go to two

separate stations: The station directly after the present station, and the

station after the next station (allowing the system to skip the next

station if necessary).

Splitting the output of the host po of the inner HC11 will be

achieved using a device called Multi-port. This device has 1 male/3

female connections, all wired in parallel. Up to two input connections

can be connected directly to any one output connection. Any more

than that creates too much loading on the output port.

Also, one of the ports that the output host por must be

connected to is another host port. In order to do this, the and Tx

lines must be crossed to match the input to the output of the ports.

This will be done using a device called a reverser.

70

3.3 IBM PC As a Workstation

As stated earlier, IBM Personal Computers will be used as the

workstations on the network. Their main function will be to send data and

programs to the 68HC1 's, which will be the repeaters of the system.

Programs for the 68HC11 (network, coding, etc.) were written using

some type of word processing program. The programs were assembled on

an assembler designed for the IBM PC by Motorola. Using a

communications program, the assembled programs were then downloaded

into the 68HC11. The final network function of the IBM workstation will be

to start the network program on the 68HC1I running. Specific programs

that will be used for communications and word processing will be discussed

in the next chapter.

After this was done, the computers were used purely for data

input/output. The PC's are used as dumb terminals; data are not sent into

their memories; however, the data are echoed to the screen so the user can

see what is being typed. Data are downloaded to the 68C1 I's through the

same com ications program mentioned above. Data are sent directly frorn

the Personal Computers' keyboards to the 68HC11 through one of the serial

(COM) ports supplied on the PC's. Data received from other terminals are

dealt with by the 68HC1 1 's, then echoed on to the personal computers'

screens.

71

3.4 Network Gateways By Microcontrollers

As stated earlier, the 68C lI's act as repeaters, which serve as the

network gateways for the stations. This is accomplished by done using the

two RS-232C compatible serial ports on the 68HC11 board. These were

chosen instead of the other ports (there are five other ports on the 68HC11)

because RS-232C is commonly used in computer communications.

One of these ports is used to connect the 68HC 11 to the IBM

Personal Computers. The communications is set at 9.6 Kilobits per second.

Communications software on the IBM PC is utilized to establish and hold the

link. Information on the communications software, exactly what the 68HC11

does with the IBM PC, etc. will be discussed in the next chapter.

The second serial port is used for communications between the

68H-C 11's. It can be seen from the token ring schematic in Chapter 2 that the

repeater has to be connected to the network in two directions: One direction

for data transmission, the other direction for data reception. For

communications on the network, however, there is only one RS-232C port

available. Therefore, this one po has to be divided into two. A discussion

of how this is done can be found in section 3.2.1 Splitting the RS-232C. The

data are sent through the network at the safest rate for RS-232C

com unications on the 68HC11, i.e. 9.6 Kilobits per second.

72

For the most part, the rest of the functions of the 68HC1 will be

accomplished using software. These will be discussed in Chapter 5, which

is the software chapter.

73

Chapter 4

Communication Protocols

4.0 Introduction

There are certain requirements which are vital to the development of

any network. One of these is the need for some type of protocol to keep the

system from dissolving into anarchy. Another requirement is some type of

fault tolerance scheme to keep the network up and running. After all, if the

data received on the network are suspect, the network itself is useless. These

requirements can be met using hardware, software, or combinations of both.

This chapter will discuss these vital elements and how they have been met

in this experiment. The discussion will include both references to methods

used in other systems and the methods used in this experiment.

4.1 Other Communications Protocols

4.1L0 Introduction

In order for a network to be successful, all stations on the

network must adhere to a common set of rules and standards. These

protocols define everything from data format to the number of bytes

which can be sent during any transmission. This section will discuss

74

typical protocols used in token rings.

4.1.1 IEEE 802.5 Token Ring

One protocol designed for a token ring network is the IEEE

802.5 token ring. Special features of this protocol include a variable

length frame, bits set aside for priority, and it allows reservation of

the token by a station which wants to send a token.

Figure 4.1 shows the basic frame format of the IEEE 802.5

token ring. The token bit is a 0 if it is a token and a 1 if it is a free

frame. The monitor bit is used to keep a frame from continuously

circulating around the ring. The priority bits show the priority of the

station which is taking the token. Only a station of higher priority

may take the token. The reservation bits are for a station with higher

priority to set aside the next free token. Once the previous message

has been sent, the reservation bits are moved into the priority bit

location so that only stations of higher or equal priority can take the

token. The rest of the bits are self-explanatory. The IEEE 802.5

protocol delays transmission of the free token until the transmitting

station has received the header of message. The token consists of a

sequence of starting delimiter, access-control field, and ending

delimiter. The information field begins with a header.

75

Figure 4.1 IEEE 802.5 Frame Format

TaT 4.1: Bits sed in IEEE 802.5 Frame

[Term Definition

SD Starting Delimiter

PPP Priority Bits

T Token

M Mode

RRR Reservation Bits

FC Frame Control

DA Destination Address

SA Source Address

Info Variable Length Information Field

FCS Frame Check Sequence

ED Ending Delimiter

FS Frame Status

The strength of this system is that a priority scheme can be

designed. However, it also lends itself to the indefinite postponement

of a message for those who are not fortunate enough to have a high

priority. Limits should also be set on the information area of the

frame to keep one station from keeping the line tied up for too long.

76

4.1.2 FDDI

A second protocol is the Fiber Distributed Data Interface,

designed for a High-Speed Local Network (HSLN). This protocol is

designed to take advantage of the high speeds that fiber networks can

attain (100 MHZ).

For this protocol, limits on the data sent are determined by

timing rather than size in bits. An agreed upon time limit is placed

on sending. If a message goes beyond this time, the message is not

cut-off. It is simply taken away from the station until the time is

made up. Thus, the message length time averages out to be the time

limit set.

Below is the frame format. Notice that it is similar to the

frame format of the IEEE 802.5. There are no access control bits,

however. The preamble is a sequence of idle symbols used for

clocking purposes by the receiving stations.

Prable S CD SA o FS ED PS

Figure 4.2 FDDI Frame Format

77

Table 4.2: Bits Used in FDDI Frame

Preamble Idle Characters for Timing

SD Starting Delimiter

FC Frame Control

DA Destination Address

SA Source Address

Info Variable Length Information Field

FCS Frame Check Sequence

ED Ending Delimiter

FS Frame Status

4.2 Protocols Used in This Work

4.2.1 The ISDN Protocols

This experiment is designed to work on the ISDN frame

format. This section will be a description of ISDN protocol.

The primary concept behind ISDN is allowing several channels

on one line. Basic Rate Interface (BRI) consists of two "B" channels

and one "D" channel. The B channels (referred to as B1 and B2)

each run at 64 Kbps and are used for data, voice, etc. transfer. The

78

D channel runs at 16Kbps and is usually used for control information

but can also be used to send data. This gives a basic rate of 144kbps.

Another 48Kbps is required to compensate for overhead bits, resulting

in a final data rate of 192Kbps.

The basic frame format is shown below. The frame consists

of two bytes of Bi data, two bytes of B2 data, four bits of D, and

twelve overhead bits. Most of the overhead bits are for voltage level

testing which is not necessary for this experiment. However, the bits

were left in the frame to simulate the ISDN protocol as much as

possible.

F and Fa are the framing and auxiliary framing bits. They are

described as being positive zero. Without a negative zero, this does

not really make sense. Since the RS-232C uses +12 volts for a logic

0, this bit was set to be a logic 0.

79

Figure 4.3 ISDN Frame Format

Table 4.3 Bits Used in ISDN Frame

[Term Definition

D Single bit of D-Channel Data

B1 Byte of B1-Channel Data

B2 Byte of B2-Channel Data

L DC Biasing Bit

F Framing Bit

F Auxiliary Framing Bit

The L bits are DC balancing bits and should be the opposite

voltage of the F bits, which means that they are generally negative

zeros.

The B1 and B2 channels can be used to send data (packet or

circuit switched) to separate destinations. For example, one line may

be connected to a fax and the other to a phone. In this case, the user

can be receiving a fax from one location while speaking on the phone

to another location.

80

For this work, the B1 channel will be the primary data link.

The B2 will be used for sending a negated echo of the data on the B1

channel. In the frame format, the data on the B1 channel will be

echoed on the B2 channel irmediately following it.

The D channel will be used to carry the token. This gives four

bits for tokens. This provides for a maximum of sixteen different

tokens. These will be listed in the token ring protocol section.

Limits of the HC1 1 keep this network from running at the

192Kbps. The network will be designed to run at 9.6Kbps, which

breaks down to 800hz for the D, 3.2Kbps for each B, and 2.4Kbps

overhead maximum data rate. This slow rate is one of the weaknesses

of this model, but the data rate can be increased by using a different

microcontroller board (see recommendations in chapter 7).

Another weakness of using the ISDN frame format is that the

large amount of overhead further reduces the rate of the channels.

This is especially bad since these bits are unnecessary for a non-ISDN

system. However, this system could eventually be converted to

communicate directly with another ISDN system.

The strength of the frame format is that each data frame sent

81

has its own control information. With the other protocols, the data are

sent in one big clump. If there is an error in the data, it can propagate

throughout the message and could lead to the entire message needing

to be re-sent. For this system, there is no risk of this happening. The

error can be spotted and re-sent before a pileup of data occurs. Also,

since there are two channels, the system could eventually be

developed to send two separate messages between two different pairs

of stations simultaneously (see recommendations in chapter 7).

4.2.2 Fault Tolerant, Token Ring, and Other Protocols

This network follows the traditional rules of the token ring

network. No station can send a message until it receives a free token,

thus keeping more than one station from sending at a time. Each

station inputs from one direction and outputs in the other. The entire

network is a closed system and cannot be broken into once it is

running.

Some of the features added to this system include a special

"boot up" token which provides several special functions. When a

station receives the token for the first time, it takes the nuber in the

first byte of B1 in the frame and increments it. It then stores this

value as its address. Since the data travels through both HCl1 's in

each station, both HC11's can find out their address in this without

82

having to directly communicate. Next, each station knows the number

of the previous station and the next station. This helps later on in the

fault tolerance software. The start-up station (station 0) sends the

token around a second time. Since the token had the stations counting

off, this second trip around will provide the stations with the total

number of stations on the network, which c help with the timer

calculations (see software chapter) and can be used for security

purposes.

Another feature incorporated is the use of several different

tokens (which actually act as control bits). This helps with software

and fault tolerance. The following table lists all of the possible tokens

and a brief description of what each does. These tokens will be

described in greater detail in the software chapter.

Messages will be limited in two ways. First, the packet length

for the messages will be 256 bytes, or 128 frames. This will be

maintained by counters in both the transmitter and the receiver.

However, retransmissions will not be counted in the byte/frare

counters. Therefore, to keep a station from continuously sending

and/or retransmitting, the stations will also have a certain time limit.

Transmitting stations will be cut off if they go beyond either the byte

or time limits. To see how this will be done, see the software chapter.

83

Table 4.4: ToesadTherFncin

Token Meaning of Tokens
(binary)

0000 Free Token

0001 Busy Token, Source in first byte B1, destination in second byte B1

0010 Warning token ... Something maybe wrong with the network (someone
sending too much, or network has gone silent). Address of Discovering

Station on first byte Bl.

0011 Warning: Sent too many bytes of data. Stop Transmitting.

0100 Received busy token acknowledgement.

0101 Error token. Cut station out of network (Station address + 1 in byte B1)

0110 Initialization Token. Has address and number of stations data on B1.

0111 Busy Token: Broadcasting to whole network.

1000 Received good data acknowledgement.

1001 Data being sent to Receiver.

1010 Retransmitted data after request.

1011 Last byte of transmission.

1100 Retransmit request from receiver.

1101 Retransmission from transmitter. Error in returned data. Frame number in
Bl.

1110 Last 2 bytes of transmission.

1111 Retransmission received.

84

Chapter 5

System Software

5.0 Introduction

Chapter 5 presents a study of the software modules necessary for this

thesis. Topics will include communications between a station's inner and

outer C1I's, between the inner HC iI of one station to the outer HC11 of

the next (the actual network) and PC to HCi1 communications.

5.1 Token Ring Inner HC11 Software

5.1.0 Introduction

Since they act as the repeaters in the token ring, the heaviest

part of the communications is dealt with by the inner C1 i's. For

this reason, the most complicated and longest programs are written for

the 68MC1 microcontrollers. Since the Random Access Memory

(RAM) space in these units is limited, the routines were written in

assembly code (writing directly into assembly code makes for rmore

efficient code than writing in a higher level language and compiling).

In this section, the modules for each function of the inner C1 I's will

be described in detail.

85

5.1.1 Inner HC11 Main Program

The inner HC I's, which are the microcontrollers between the

network MC11's and the computer, have the longest and most

complicated programs of the system. The HC i 1's are programmed

to loop in a main routine which polls the ACIA for input, polls the C

po for data from the network, tests to see if something needs to be

sent to the screen, and polls to see if something needs to be sent to

the network. When any of these functions are applicable, the MC11

program then proceeds to appropriate sub-routine. These functions

will be described in detail in the following sections.

5.1.2 Input From Terminal

Once the network programs start up, the personal computers

used in this thesis basically act as dumb terminals, doing very little on

their own. Therefore, one of the main functions of the HC 11 's is to

gather the data from the terminal and store it until it can be sent on

to the network.

This part of the program uses polling of the ACIA to input

from the keyboard. When the terminal serial port (ACIA) receives

data in its buffer, it sets the first bit of its status register. The

character is then read from the data register of the ACIA. If it is the

first character taken since the last queue was sent using the "control

86

z," or not sent using the "control x," character (see below), the

character is considered to be an integer and is used as the address of

the destination of a message. Otherwise, depending on the data, the

C 11 then performs one of several possible functions: Put the data

into one of the two output queues after echoing it to the screen, ready

the data for sending on to the network and wait for a free token

before sending it, or "lose" the data (if the message has been aborted).

If the input is a character, the byte is added to a queue. As

stated earlier, there are two output queues. The HC11 alternates

between the two queues for storage. Since the MC11 must have the

free token before it can send a message, there may be a short wait

before the message can be sent. The two queues allow the user to

begin a second message while the MC11 is waiting to send the first.

Queues were chosen (as opposed to a queue) because of their First In,

First Out (FIFO) system: The first character placed into the queue is

the first character sent onto the network.

If the character is a "control z" (control button and z pressed

simultaneously) the MC11 goes into Output to the Network mode.

This is discussed in more detail in a later section. Meanwhile, the

active queue moves to the second queue to deal with any further input

from the terminal.

87

The third possibility is that the input is a "control x", which is

the abort message signal. The HCI 1 places the head and tail of the

queue to the same address, thus erasing the queue, and resets all

functions so that it will be ready for the next message.

The final possibility is the back space character. If this

character is typed, the last character placed in the queue is removed

by moving the tail of the queue up one address. This character, of

course, is not saved in the queue.

The inner HC 11 is also used to set up the station's screen.

The screen is split in half: The top half displays data from the station

going to the network, the bottom half of the screen displays data

coming in from the network. The screen setup is accomplished using

the ANSI codes to place the cursor.

513 Output to Terminal

The HC 11 is also responsible for the output of a received

message to the screen. When a message is received, it is placed into

a special queue set aside for network input (more on this queue later).

As long as the data are valid, the HC 11 begins removing the

characters from the queue and sending them to the terminal.

88

Most of the network input is dealt with in the outer HC 1.

This Ci I uses the C port to pass the contents of the D and BI

channels to the inner HC 1, which then proceeds to perform the

function specified by the D control nibble. If the station is receiving

and the data are valid, the D nibble may represent a 9, 11, 14, or 15.

This indicates that the HC 11 should add the 2 byes of the B1 channel

to the queue. In the case of the B d E control nibbles, the HC 11 is

programmed to set a special control variable which places the program

into Output to Terminal mode, which prints the contents of the queue

to the screen for the user to read.

Certain error messages (see fault tolerance section on the inner

C 11 for details on these errors) can also be sent to the screen using

the Output to Terminal mode of operation.

The ACIA output also uses polling. When the ACIA is ready

to output the next byte, it sets the second bit of its status register.

When this bit is set, the C 11 sends the next character to the queue

to the ACIA data register, then move back into the main program. If

the bit is not set, the C 11 returns to the main routine to perform any

other functions.

89

5.1.4 Output to Network

Data on the network is sent from the transmitting station's

inner HCI 's host port. When this port is ready to send something,

the most significant bit of the SCSR status register is set to a 1.

Therefore, the HC11 is programmed to first test to see if something

needs to be sent onto the network using a special variable set aside for

that purpose. Then, if there is something to be sent, test the first byte

of the SCSR to see if the host port is ready to send something. If the

bit is not set, the program waits for it to be set before sending. If

they are set, the data are placed in the host data register, the SCDR

and then the program moves back to the main routine.

If the station has a message to send and has received the free

token (0 on the D nibble), it proceeds to Output to Network mode.

First, it sends a frame consisting of a 1 on the D the source address,

and the destination address. After receiving the same data back as a

positive acknowledgement (D nibble of 4) it begins sending it the

data. The data are placed into ISDN frame format and then sent a

byte at a time. As stated in the previous chapter, the ISDN frame is

six bytes long and each frame carries two bytes of data. The entire

message is be sent out in this way. Once the output queue is empty

and all of the data have been tested (see fault tolerant protocols later

in this chapter), the HC11 builds and sends a free token frame.

90

If the HC I belongs to the receiving station, it converts the

recently received data into ISDN frame format using a D nibble of 8.

Then the station moves temporarily into Output to Terminal mode and

send the frame back to the sender.

If the HC 11 belongs to neither the trasmitter nor the receiver,

it receives the data from the network as an ISDN frame, become a

tr smitter temporarily, and sends the data on to the next station.

5.1.5 Receiving Data from the Network

The inner HC11 receives data from the network through the C

port. The C port is a general purpose parallel input/output 8-bit port.

For the inner HC11, it is set to input only using the data direction

register, DDRC. Port A, with pins A2 - AO inputs, pins A6 - A3

output, and pin A, input or output, is used for handshaking between

the two MC11's.

By placing a logic 1 on pin A6, the inner MC11 indicates to the

outer MC11 that it is ready to receive from the C port. This pin is

connected to the Ao pin of the outer HC11. As long as this pin is 0,

the outer HC11 does not send to the inner MC11.

Pin AO of the MC11 is connected to pin A5 of the outer MC11.

91

This pin is used to indicate if the byte sent is D and B 1 data (a logic

0) or ISDN frame format (logic 1). If the data do not affect the

station, the outer HC11 sends the data directly through to the inner

HC11 as an ISDN frame so that the inner HC11 does not have to

waste time converting the B and D data back into frame format.

Finally, the STRA pin of the inner HC11I is connected to the

A n pin of the outer HC11. When this pin receives a negative clock,

the data on the C port is latched into the port C latch register

(PORTCL).

After receiving the data and determining if it is ISDN frame

format or D and B1 data, the inner HC11 performs the appropriate

functions on the input. In the case of ISDN frame format, the Ci I

reads the six bytes in, puts them into a queue, then goes to Output to

Network mode to send them out. If it is not ISDN mode, the CI1

is programmed to test the first byte (which is the D nibble) sent over

to determine the function it must perform. There e three queues for

the input from the C port: One which holds the last complete

message (waiting to be sent to the screen), one to hold the latest

incoming message, d one small queue to hold a 6 byte ISDN frame

which is passing through the inner HC11.

92

A summarized description of the tokens can be found in Table

5.1 on the following page. The following is a detailed description of

each token and the action taken when each token is received.

If the D is a 0 (free token), the HC11 determines if there is a

message to be sent. If there is, the HC11 puts itself into Output to

Network mode, sends out a busy token frame with the source and

destination addresses, and begins sending its message. If there is no

message to be sent, it sends the free token out.

If the D is a 1 (busy token), the HC1 1 will prepare its input

queue to receive data from the network, including pushing the address

of the source into the first byte of the queue. Notice that the outer

HCI1 does not send this busy token to the HC I unless it is for this

station's address. The inner HC11 does not need to check the

address. The HC 11 then makes a frame with a D of 4 (busy token

received, proceed) and BI's containing source and destination address.

This frame is then sent onto the network. If the transmitting station

receives the 1 token back (signifying an error and that the intended

receiver never picked the frame up), it retransmits the same frame and

continue sending again.

93

Table 5.1: Tokens and Their Functions in the Inner HC11's

Token Functions Performed Because of Tokens
(binary)

0000 Test if something to send. No: pass on the free token. Yes: pass on busy
token and address information.

0001 Receiver readies the station (including queues) for input. Send 0100 token.
Transmitter re-sends busy token and begins transmitting again.

0010 Pass it on. Originating station puts its address to byte 1. If station gets it
back, sends free token.

0011 Present transmitting station clears queues and sends out a busy token.

0100 Inner HC1 1 never receives it.

0101 Receiver which matches one less than station number on byte 1 sends error
message to user then shuts down.

0110 First pass: increment byte 1, then store as address. Second pass: store as
number of stations. Pass on to next station.

0111 Receivers: ready for input. Transmitter: begin sending data.

1000 Transmitter tests bytes with what was sent. If they match, does nothing. If
not, sends the 1101 token and the number of bytes to move back, sets error

variable, then begins retransmitting.

1001 Receiver stores bytes in input queue, then sends 1000 token.

1010 Receiver adds bytes to queue then sends 1111 token and clears error.

1011 Receiver puts first byte in the input queue, prepares to output to screen, and
sends 1000 token.

1100 Transmitter moves pointer back to last byte received back from the receiver,
then begins retransmitting using the 1010 token for the first byte. Receiver

sets error variable.

1101 Receiver moves its queue pointer back the number of bytes specified in the
first B1.

1110 Receiver stores both bytes, readies output to screen, and passes on 1000
token.

1111 Similar to 1000, but also clears error variable.

94

If the D is a 3 (sent too many bytes or took too long, stop

sending), the HC 11 clears the queue and sends an error message to the

screen (see inner HC11 fault tolerance for more). The HC11 then

sends a free token onto the network.

If the D is a 4 (warning token), the HC11 creates a frame. The

frame will have the 4 as the token and its address as the first byte. If

the sending HC11 receives this frame back, it knows then that the

system is operating and sends a free token onto the network.

If the D is a 5 (error, being removed from the network), the

HC11 sends a message to the user and then shut down.

If the D is a 6 (start-up token), the HC11 tests to see if it is the

first time it has received this frame. If it is the first time, increment

the number in the first B1 byte, store it as the station's address, then

pass it on to the next station. If it is the second time, store the first

B1 byte as the number of stations, then pass it along. If the station

is station 0, it will take the 6 token off of the network after the second

pass and send out a free token.

If the D is a 7 (broadcast mode), the input queues will be

95

prepared and the HC1I is set to receive a ressage. The source

address (on the first byte of B1) is placed into the queue and the same

frame will be sent on to the next station. If the station is the station

which sent the 7 token, the outer HC11 removes the token from the

network. Meanwhile, the inner HCl 1 is sending the data.

If the D is an 8 (data received, send next two bytes), the

receiving station compares the two bytes in the B1 channel to the

bytes sent. If they do not match, the error variable is set causing any

frames with a token of 8 to be ignored and the number of bytes to

move back is sent on the first B1 byte with an error token (12)

followed by the retransmission of the bytes. If they do match, the

secondary queue pointer is incremented to point to the next two bytes

on the output queue. For more information on the secondary queue

pointer, see the fault tolerance section in this chapter.

If the D is a 9 (data transmit two bytes), the data is added to

the input queue, then a frame consisting of the two B I bytes and

token 8 is made and sent onto the network.

If the D is a 10 (retransmit upon request of the receiver), the

data are added to the input queue and a frame with token 15 and the

two bytes is made and sent onto the network. The error byte

96

(described later) is cleared to indicate to the receiver that it can begin

listening to the network again.

If the D is an 11 (last frame, first byte only), the receiver

queues the first byte of B1, goes to Output to Screen mode, and sends

the 8 token frame back to the transmitter.

If the D is a 12 (error at receiver, retransmit), the transmitting

station moves back the queue pointer to the secondary pointer and

begins retransmitting. The first frame has a token 10 the rest will go

back to a token of 9. This token is sent if the B 1 and B2 bytes of the

frame do not match. See Fault Tolerance section for more details.

An error variable is set to indicate that the receiver should ignore any

data flowing in until the retransmitted token (10) arrives.

If the D is a 13 (error at transmitter, retransmit), the receiving

station moves back the number of bytes in its input queue specified

by the first BI byte. The retransmitted data writes over the old. If a

transmitter receives this token, it calculates the number of frames to

move back, places that in byte one of B 1, stores its secondary queue

pointer into its primary queue pointer, then sends out the frame. The

error variable is set to indicate to the transmitter that it should no

longer check any returning data since the queue pointer is no longer

97

up to the right point.

The 14 token (last frame, both bytes) is similar to the 12 token,

except that the receiver t-kes both of the B l's instead of only the first.

The last token, 15 (retransmitted data received) is sent to the

transmitter to indicate that the first frame of retransmitted data was

received. This is used by the transmitter to clear out the error

variables, which in turn signals the transmitter to star paying attention

to the data that are passing through the network again.

.1.6 Fault Tolerance Software in the Inner HC11

There are several fault tolerance schemes designed into the

program of this system. One of these is the ability of the transritter

to check the data as they return. To do this, the sending queue has

two tail pointers: One which points to the next character to be sent

(primary queue pointer), and one to point at the last character received

back from the network. This allows the transmitter to make sure that

what was sent is what was received. See Figure 5.2 for a diagram of

the queue pointers (bad data received by the sender will be discussed

with the outer HC11's). Several of the tokens are designed to allow

for retransmission of bad data, thus making sure that the data

98

transmitted matches the data received.

Output (Send to N ork) Queue

Secondary Queue
Last Character from ork Pointer

- (SASTAIL)

- --- Primary Queue

(AST)

Queue Head
Last Character from Screen .. Pointer

(ASHEA)

Figure 5.1 Queue Pointers for the Output to Network Queue

The system has three methods of keeping a station from

sending a packet which is too large. The first is a count in the

transmitter's program. If the sender tries to type in too many

characters (more than 256), the HC 11 sends a warning message and

refuses to take any more characters until it receives a back space,

control z, or control x. If this fails, the receiver also counts the

number of frames (of good data, retransmitted data not counted) sent.

If the transmitter sends more than 128 frames (not counting the busy

token frame), the receiver sends the 3 token to force it to stop

sending. If both of these fail, a timer interrupt is set at both the

99

receiver and transmitter, which is discussed in section 3.2.2.

Communication stopping completely on the network is handled

by a timer on the outer HC11 (described later). The inner HC11 uses

the error token to warn the user that he is being taken off of the

systen and shut down.

Using multiple queues for the input functions (from port C and

from the ACIA) can also be considered fault tolerance devices since

they allow communication to continue and keep the data from being

written over.

5.2 Token Ring Outer HC11 Software

5.2.0 Introduction

The main purposes of the inner HC ls are to conmunicate

with the network user and to output to the network. The functions of

the outer HC 11 are to act as an intelligent multiplexer, to accept input

from the network, as sensors, and as watchdogs to make sure that the

network keeps busy. In this section, how these functions are

performed on a software level is discussed.

100

1 Outer HC11 Input from the Network

The outer HC11's are the direct link of the stations to the

network. All input from the network must pass t ough these stations

first. This sets them up as natural editors for the iner HC II's. This

saves time and programming space for the inner HC11 by dividing the

function tasks, passing some of the most basic tasks onto a piece of

hardware which is necessary for multiplexing purposes anyway.

The outer HC11 keeps track of the present function of the

station using a function variable. This variable lets the HC11 know

if the station is sending, receiving, or doing neither. This is important

to know because the function of various tokens depends on this.

The outer C11 takes the input from one of its two RS-232C

ports (which will be discussed later in this chapter) in ISDN frame

format. If the HC11 is in Skip mode, it moves to the second byte of

the frare to test the first bit of the D nibble (see previous chapter for

frame set up). All tokens which only deal with sending ad receiving

begin with a binary 1, so if the bit is a one, it can be sent straight to

the inner HC11 in ISDN format. Since the frame does not concern

the station, there is no need to break it down to the D and B channels.

If the bit is a 0, the frame contains data which are important to all

stations. In this case, and in the case of the station sending and

101

receiving, the outer HC11 gets the D nibble and decides what to do

depending on the value.

5.2.2 Output to the Inner HC11

Once the Outer HC11 receives the data from the network, it

must pass all necessary information on the inner HC11. As described

in the previous section, the HG1 's communicate using the C port for

data and the A port for handshaking. The outer HC11 uses the token

on the D channel to decide what it must pass on to the inner HC11.

The table on the next page describes the function that the

HC11 performs for each token. Since most of the more complicated

functions are shared by more than one of the tokens, the more detailed

descriptions of the special routines focus on the function rather than

the token.

For the receiving functions (D = 9, 10, 11, and 14), the B1's

are taken from the ISDN frame format and compared with the B2

bytes, which should be a negated echo of the B1's. If they do not

match, the retransmit token (12) is sent to the station to be passed on

to the transmitter. Transmitting function (D = 8) is also tested. If

there is no match, the transmitting error token (13) is passed to the

station to be dealt with and sent on to the receiving station. The busy

102

token (D = 1) is also tested and passed on if there is no match.

If the token does not apply to the station (Skip mode and

nibble token beginning with a logic 1) the ISDN frame is not broken

down to its B1, B2, and D components. In some cases (D = 0, 3, 15

and 12) only the D is needed, so the HC 1 will not find the B

channels. In most of the other cases, all B's and D's are found with

an ISDN break do subroutine.

103

Table 5.2: Tokens and Their Functions in the Outer HC11's

Token Functions Performed Because of Tokens
(binary)

0000 Pass D to the inner HCI11

0001 Pass D and the first byte B1 (source address) to the inner HC11 and change
function to receive if second byte contains station address. If source

address is station address, pass D to station. Otherwise, pass on as ISDN
frame and change function to skip.

0010 Pass D and first byte B1 to inner HC11. See fault tolerance for more
description.

0011 Pass D to inner HC11 and change function to skip if transmitting.
Otherwise, pass it on.

0100 If first byte B 1 (source address) is station address, set fuction to sending.
If not, pass on as ISDN.

0101 All stations except station which is one less than the address on the
receiving station pass it on as ISDN. See fault tolerance section for outer

HC11 for description.

0110 First pass: increment byte 1, then store as address. Second pass: store as
number of stations. If number of stations = address, then station is 0. Pass

D and first byte B1 to station.

0111 Compare address in first byte B 1 to station address. Not the same: change
function to receive. Same: change function to sending. Pass D and first

byte to station.

1000 If sending, then pass D and both bytes B1 to station.

1001 If receiving, pass D and both bytes B1 to station.

1010 If receiving, pass D and both bytes BI to station.

1011 If receiving, pass D and first byte B1 to station. Change function to skip.

1100 If transmitting, pass D to station.

1101 If receiving, pass D and first byte B1 to station.

1110 If receiving, pass D and both B2 bytes to station. Change function to skip

1111 If Tr smitting, send D and both bytes B1 to station.

104

Data are transmitted to the station through the C port as

described in the section 5.1.5. For a better description of the warning

token (D = 2) and the error token (D = 5), see the next section (5.2.2).

5.2.3 Fault Tolerance in the Outer HCi1

The most critical part of this experiment is the network's

ability to continue functioning even after a station has failed. This, as

mentioned before, is accomplished by having each station connected

to not only the previous station, but also the station before the

previous station. This allows the network to skip over a problem

station. This will be accomplished using two timer interrupts as

described in the following paragraphs.

The first timer interrupt is based on the amount of time a

device has been transritting. This timer is set to a value based on the

number of stations, the baud rate, the maximum number of bits that

can be sent (which includes an allowance for up to 20 retransmitted

frames) and a small amount of time to allow for processing of the

data at each station. The timer is set whenever a station receives a 0,

1 2, 4, 5, 6 or 7 token (the tokens which indicate that a new message

is starting or someone has recognized an error in the system). This

means that the station immediately following the station which is

sending too much (even if it is not the station presently officially

105

transmitting) is the first to have its timer go off. If the new message

token does not arrive by the time the timer goes off, the station then

sends a warning token with its address as byte 1 of B 1 and listens to

both its secondary and primary input. If the warning returns on the

primary input before the next timer interrupt, the station sends out a

free token. If it hears the warning on the secondary channel, it sends

out an error token with its address and starts listening on the

secondary input. If it gets nothing but garbage, it assumes that it has

an error and shuts itself do by sending out error token with the

next station's address.

Meanwhile, the station immediately following the one sending

out the warning listens to its secondary input. If it gets the warning

token back from the secondary input and receives the error token from

the previous station on its primary input anyway, it remains on the

secondary input and increases the address on the warning frame to its

address. If it gets a free token on its primary, it goes back to listening

to the primary input.

The second timer interrupt will be based on the time between

receiving any pair of data bytes . The amount of time between these

interrupts is calculated similar to the factor for the timer listed above,

but now it is based on only one byte of data. If a byte does not arrive

106

within the specified time the timer interrupts go off, begiming wit

the station immediately following the station which received the last

byte of data (which is the station which is no longer sending). The

steps that are taken are the same as those outlined in the previous

paragraphs.

These interrupts are carefully planned so that the station which

has the hardware problem is the one removed from the network and

to make sure that it is tracked down as soon as possible. The next

station is checking its secondary input so that it can determine if the

previous station is receiving garbage or is not receiving or if the

station before the previous has actually stopped sending or is sending

garbage, which is a very important difference.

These two interrupts allow the software to enact the

multiplexing fault tolerance which is the central concept behind the

network designed in this experiment. However, the outer HC 1 also

has other fault tolerance capabilities. Foremost of these is the ability

to check if the B2 bytes are the negated echo of the Bl bytes. This

design is similar to the concept of parity, but it allows each bit to

have its o check. These cause a lot of overhead and reduces

throughput, but it greatly reduces the chances of a bad piece of data

passing undetected. The negation of the data (as opposed to a simple

107

echo) is performed to detect stuck at zero or one faults which would

run through all the bytes of the data without otherwise being detected.

5.3 Terminal to Microcontroller Communications

Terminal to microcontroller (68HC11) communications is

accomplished using the Terminal program in Windows". The programs are

written on the PC, assembled, and the Terminal software is used to download

the code to the memory of the microcontroller. Commands written directly

into the software specify where to put the programs in the microcontroller

memory.

The Terminal software takes care of all other functions. When the

software is running, all data input to the terminal by the keyboard are

automatically moved on to the microcontroller. The speed of transfer is

determined at connection time by choosing one of the setups available in the

Terminal program. Parity, word size, etc. between the terminal and the HC11

can also be chosen at this time.

108

Chapter 6

Applications of a Fault Tolerant Token Ring Network

6.0 Introduction

This chapter will be a study of systems which could be possible

applications of a network similar to the one developed in this research.

Included in the study will be a description of what the system is, the benefits

of using this network (including the use of the ISDN format), and some general

outlines of how the systems will work. The three systems that will be

discussed are: A medical network, teacher to students multimedia network, and

a general office network.

6.1 Medical Network

6.1.0 Introduction:

Lack of communications is probably one of the leading factors

in the problems with the United States' present medical system.

Patients, especially the elderly and the employed, have trouble getting

to their doctors. Ph acies have trouble determining if the voice on

the other side of the line is really a Doctor or a person trying to get

his/her hands on drugs. Ambulance drivers and paramedics are

109

hampered by the time it takes to determine any possible allergies or

other illnesses in a patient, and may still end up having to guess in the

end and hope that they are not wrong. Cormuni ation with insurance

companies is slow and involves too much paper work. People on

vacation have trouble getting to prescriptions or getting in touch with

their Doctors.

The list goes on, but the result is the same: The lack of a strong

network between Doctors, hospitals, pharmacies, ambulances, insurance

companies, and patients handicaps the American medical system.

6.1.1 The Benefit of the Medical Network

A single network which connects all of the major participants in

the medical system (pharmacies, Doctors, patients, etc.) would greatly

improve the system.

A patient to Doctor network would allow the patient to get

follow ups to tests without having to go back to the Doctor. The ISDN

format would allow for several channels, each one carrying a different

type of information. For example, with the basic ISDN BRI format, 3

channels are available. One channel could be used for the voice. The

second channel could be used to send graphics (X-rays, CAT scans,

etc.) to a patients with ISDN format and a computer. The third

110

channel (the D channel) could be used for communications overhead

and other data. This third channel can also be used for security. Some

type of medical card can be designed whi h will have specific

information about the patient so that the Doctor can be sure that the

patient is who s/he claims to be.

Figure 6.1 on the following page illustrates this connection. The

patient's computer, card reader/writer, and ISDN phone can be put into

ISDN frame format by the network connector. The network connector

will also send the message on to the token ring. Since there will be a

large number of people on the network and token ring networks get

slower with the number of stations, sever token ring networks can be

tied together. One of the stations on the ring can act as a gateway to

another token ring network. It will have the same opportunity to

receive and send as any of the other stations on the network.

On the receiving end, the Doctor will have his/her phone and

computer. The Doctor's network connector will take the ISDN

formatted data and separate it out into phone and computer data

sending it to the appropriate place.

1ll

bI

W Ni

R S S

11

Another benefit of this ISDN system is that the computer to

computer communications will allow the deaf to communicate with

their Doctors.

In emergencies, time is of the essence Ambulance personnel

should have access to a patient's records at their finger tips. They

could then almost instantly know allergies, medical history, and any

other information that is necessary to determine the appropriate

treatment. Again a medical card may be useful in looking up a

patient's records. Presently, the medical alert bracelets and necklaces

are really the only contact that the paramedics have with a patient.

These alerts, however, can not hold very much information, and they

can not be easily changed with a patient's changing history. Data on

this network can be changed automatically, so paramedics will be sure

that they are getting the most up to date information about the patient.

This also helps Doctors keep better records on their patients.

Every visit to a hospital, a different doctor, a ph acy, or, for Doctors

with multiple offices, a visit to a different office can be placed directly

into the patient's records.

The network can add security to the prescrip tion process.

Presently, Doctors call the pharmacies and use a code number read to

113

the pharmacist to leave a prescription. There are three problems with

this: Anyone can call a pharmacy, once someone finds out a Doctor's

code there is no way to find out that the code has been compromised

or ack the culprit down and many pharmacists/clerks are too busy to

check the code.

The first benefit of the network de igned in this research is that

token ring networks are notoriously difficult to break into. Also, the D

channel allows Doctors to send specific security codes automatically,

adding more security to the system and speeding up the system a a

whole. Pharmacists no longer need to take the time to answer the

phone becau se the data can be sent straight to a computer screen. Each

time a pres ription is refilled, the pharmacist can update the patients

records, letting the Doctor know the length of time between refills. For

drugs which run out of refills, the pharmacist can send the information

and requests for more refills directly to the Doctor without having to

make the phone call.

Insurance companies can also be added to the network. This

will allow claims to be instantly filed, speeding up the process and

decreasing the wait before the Doctor, hospital, or pharmacy is

compensated or the patient is reimbursed. Since a large percentage of

health care cost comes as a result of adrnist ative costs, m ing the

114

system more efficient would make health care more affordable.

Figure 6.2 shows the total network connections, including

hospitals, Doctors, ph acies, patients insurance companies, and

ambulances. These will all work similar to the patient to Doctor

network described earlier Again, the large number of stations would

probably result in the need for several separate ring networks. Each

station is given its own network in the drawing, but this does not

necessarily have to be true. For example, a patient may be on the same

network as his/her Doctor depending on the location. Hospitals may

want their own network so that communications between its labs,

Doctors, pharmacy, nurses, etc. may be faster. The ambulance can be

connected to the network through a wireless communications scheme,

giving them access to the patients records.

To increase security, each station can be given different security

clearance. For example, Patient's may not be able to contact a

pharmacy by computer at all. Meanwhile, the pharmacy may be able

to access only information pertaining to medication, and then only to

update prescription dates, not change the medication itself. Security

methods can be achieved on the D channel, saving the two B channels

for sending data (voice and computer data).

115

At the present time, most people do not have access to this type

of equipment. However, the price of computers and ISDN equipment

should eventually drop to a level which will make them affordable to

most people.

116

i

M

z

5

s

'if

i

._ c if

vr 'dnm ;

1 -- 1

Afi

AA .;

s

Ei

. R
lay

i

t

E

r

i

117

6.2 Student-Teacher Network

6.2.0 Introduction

With all of the advances in technology, the chalk board lecture

method of teaching is out of date. Computer graphics, CD ROM, laser

disc players, sound blasters, etc. can mae learning faster, easier, and

more entertaining. The combination of visual and auditory stimulus in

learning increases student comprehension and retention. Computer

learning programs greatly increase student interaction in the learning

process, which in turn sparks more interest and concentration in what

it being taught.

New classes which consist of the mixture of visual and auditory

stimulus, called electronic classrooms, are being developed (Figure 6.3).

Students will work from their own PC. These PC's will be able to run

lessons which combine computer graphics, sound, and live action video.

Multi -media also allows for more graphic illustration of subjects. For

example, instead of having a teacher at empt to describe a cube by

drawing it on a two dimensional black board and then making odd hand

movements, an electronic classroom would be able to use three

dimensional graphics to bring the cube to life, spinning it around and

more effectively showing the students just what a cube is.

118

i

1

i s

}
i

S
s

i

i

i

} 1

I

i
i

". __ _ ._ _ _ .____ ' ate. r4`

i F TOM

ry r . ,
3

r`zs t I
.`I --------------

w

f

i

ii
.

y,
.. r n f R

I 1

I

S

1

{

3

i

I

i

1

f

[I

E '

i

i

i

i

19

6.2.1 Netorking in Multimedia

Probably one of the most important uses of networking in multi-

media is to allow the teacher to evaluate the progress of the students.

Using the network, teachers will be able to go into a student's

"account" to see the student's scores on the exercises in the lesson.

Information on how the students are per orming in cerai areas of the

lesson can assist teachers in determining where there are we anesses in

the program, or at the very least indicate to a teacher which topics need

to be further explored.

A student could also send messages and questions to the teacher

if s/he needs individual attention. This is especially beneficial in cases

where teachers may not be in the same room, or even the same state or

country, as the student. This gives students flexibility in when and

where they study the lessons. For example, students who work during

the day can perform the lessons by going to the classroom or logging

on the network from home in the evenings. Any questions can be sent

to the teacher through the network, to be answered at the instructor's

convenience.

The network also allows ins tu tors to create lessons which

require interaction between two or more students. This allows students

at different locations to interact in solving difficult problems and/or

120

doing problems which focus on increasing their teamwork skills.

Figure 6.4 illust ates the token ring network as a tool in an

electronic classroom. Notice that any station can also be a remote

station set up on some type of modem. Since most multi-media

applications take up so much memory space, a single mainframe with

a large amount of memory on the network can reduce the amount of

memory required at the individual stations.

Security is important when it comes to students' grades and

scores. Again, token ring networks are by nature relatively secure.

Along with this, the network can allow students to have individual

accounts, protected by password s, which will store these scores and the

present location of the student in the lessons. Teachers can be given

special codes which will allow them to gain access to the students'

records to evaluate scores on the various exercises.

121

i

i

i

1

a , qa

1

* ni

1 1 l _ 1 1 '1

V NEW

i

0

f

f

I

3

i
i

1 'uli r,

t

I
1

I
I

i

s

s

e
i

i

122

6.3 Network in the Office

6.3.0 Introduction

Inter-activity between workers in an office environment is often

vital to the smooth operation of the office. Traditional methods of

sending memos create piles of paper which are wasted and can get lost.

The need for quick access to data makes some type of electronic

interaction even more desirable.

For example, imagine if one secretary goes on vacation and the

boss suddenly needs a paper/letter/etc. that the absent secretary typed

on the computer. Searching through the secretary's desk hoping to find

the disk which contains the necessary document can be time consuming

and fruitless. A network (and a well organized filling system of course)

can make finding this missing paper much easier.

Figure 6.5 shows a typical office setting with the token ring set

up. The wires can be run in the walls as much as possible to reduce

the amount of hanging wires.

123

1
i

i

9

i

i

s

i

Zt

5 ea ',
i x

5 _

j M

i
t

i

4 _..._ .__. ... ` j i

j q

i 1{ w. nr-. I*memo

E SST, j i Z

t

i

i

i
i

i

I

i

s

1

i

i
1

i
3

i c "`, A, ". N 6.J 4v8 b ,

124

6.3.1 Description of an Office Network

A fault tolerant token ring network would fit into a typical office

format quite easily. The network would allow the free flow of data

between the employees. Security can be added as needed to keep

unauthorized employees from sensitive documents by creating levels of

security clearance.

There are several uses for this network To begin with, papers

or letters written by a secretary or receptionist can be sent to one of the

other employees for proof reading without having to waste paper by

printing the document. Next, an electronic mailing system would be

easy to set up after the network is already in place. This would allow

messages to be passed between employees. Third, sever people can

work on the same paper simultaneously. For example, the Boss may

be working on the economic side of a proposal while the Engineer is

putting together the technical aspects of the same proposal. Once they

are finished, the papers can be put on the network, sent to one of the

two, and combined.

Figure 6.6 is a conceptual diagram of the token ring for the

office shown in Figure 6.5. Notice that there is an added station which

is a gateway to further networks outside of this one. Since these

employees probably work together more often than with other

125

employees outside of this immediate office or someone outside of the

company all together, they can be given their own sub-network with

which to work. This will speed up their communications to each other

and isolate them from other sub-networks in case some part of the

system elsewhere in the company goes down.

126

--------- --- -------

r

i

-__-
t Bo

CO"

i

i E

"h w

ti 'jam

1
e

ova yy

\E

i

r

45

S l, -, y

rT. F-9
- c j

1

i

e

i

i

t
1

t

l

1

1

1

c - 4 tice c ` it ? °'.. .

127

Chapter 7

Results and Conclusions

7.0 Introduction

This chapter is a final discussion of this experiment. A discussion

of the performance of the resulting network follows the first section. The

conclusions and recommendations are in the final section. The

recommendations and conclusions are divided into hardware, software, and

communications protocols.

7.1 Results

7.1.0 Introduction

This section is a discussion of the performance of the designed

network. Topics will include speed and efficiency resulting from the

combination of the protocols, software, and hardware. Most of the

data are difficult to confirm. For example, the number of instructions

that need to be executed for each fuction is difficult to determine

because looping and polling can create many unce ainties. However,

the numbers used in this section came from close study of the final

program.

128

7..1 Speed of the System

The HC1 1 ports were set to 9600 baud. This is the maximum

baud for reliable communications between the PC and the ACIA.

Greater speeds begin to increase the corruption of data sent. To

remain consistent, the entire system, including the host ports, was set

to 9600 baud. Greater baud rates can be achieved through changes in

registers and hardware, but this baud rate served its purpose.

The RS-232 ports send one byte of data at a time. Along with

this data, the ports send a start bit and a stop bit. This increases each

transmission to ten bits, and each frame to sixty bits. Therefore, one

frame takes approximately 6.25 ms (60bits/9600 baud) to move from

one HC11 to another on the network. Therefore, a frame would have

n*6.25 ins, where n is the number of stations, of travel time to work

its way through the network. For example, the network built has three

stations. This means that a frame would take 18.75 ms of travel time

to move through the network.

This, however, does not include execution time at each station.

Each type of token can mean different things to on outer HC1 1. In

fact, each frame of data can mean different things to different stations

on the network. For example, if station 1 is sending to station 3,

station 2 should be in skip mode. Station 1 must pull the data from

129

the queue, put it into ISDN frame format, and send it. Meanwhile, it

must also listen to the network waiting for the acknowledgement, test

the returned data for errors, then either retransmit or move on to the

next test. Station 3 must decode the D channel, decode the B

channels, test for errors, queue the data (including incrementing

counters), insert the appropriate acknowledgement token, put the

frame into ISDN frame format, and send the frame. Station 2,

however, will pass the data straight through its system as an ISDN

frame format. This means that station 2 has a shorter execution time

than the other two stations.

Table 7.1 shows some approximate execution times. The

number of instructions executed is an approximation based on careful

study of the program. An average of 4 cycles per command was

chosen because much of the program consists of loads and stores of

immediate numbers (2 cycles each), load and store effective address

(4 cycles each) decrements and increments (mostly 2 but sometimes

3 cycles, depending on the register), branches (3 cycles), jumps and

returns (6 cycles and 5 cycles), and load index registers (5 cycles).

The HCI1 has a clock of about 2 MHz.

130

Table 7.1 Execution Time for Various Modes

Mode of Operation Number of Instructions Execution Time
to Execute (msec)

Skip Station 200 0.40

Transmit 450 0.90

Receive Last Bytes 600 1.20

Notice that all of these times are quite a bit smaller than the

6.25 ms transmission time. This shows that the stations are done

processing d sending out the frame before the next frame arrives at

the station. This results in overlapping of execution time and

transmitting time, which reduces the amount of time that the system

sees for sending a packet of information. This means the frames

themselves take the same amount of time, but with the overlap the

packet as a whole moves faster.

Table 7.2 shows the approximate transmitting time, from the

transmitting station back to the transmitting station, of frames/packets

through the system. This is based on packet size, three stations, and

the assumption that only the first and the last execution times are seen

by the network due to the function overlap. Free tokens are assumed

to take about 200 instructions to execute.

131

Table 7.2 Time to Travers the Network

Circumstance Time
(msec)

Free Token 19.95

1 Frame in a packet 22.05
Broadcast

1 Frame in a Packet 21.25
Non-broadcast

129 (maximum) Frame 934.85
Packet

The broadcast mode takes more time because all stations are

receiving. Non-broadcast has at least one station which is skipped.

Notice that the transfer time of a whole packet is much less than the

sum of its parts. The table below illustrates the overlap and how it

cuts down the transrnission time.

132

Table 7.3: Illustration of Communications Overlap on a 9 Frame Packet

Time Frame at Frame at Frame at
Station 1 Station 2 Station 3

2 F2 F1

3 F3 F2 F1

4 F4 F3 F2

5 F5 F4 F3

6 F6 F5 F4

7 F7 F6 F5

8 F8 F7 F6

9 F9 F8 F7

10 F9 F8

11 F9

Notice that although there are 9 frames sent to 3 stations, only

11 transmission times are seen rather than 27. This is a great saving

in time.

133

7.1.2 Efficiency of the Network

For every 6 byes (frame) sent, only 2 of those bytes are actual

data. This means that only 33% (16/48) of the information sent is

data. When the start and stop bits of the RS-232 ports are added, this

percentage drops even further to about 27% (16/60). This gives an

actual data rate of only 2592 bps. For free token frames, the

percentage drops even more since the only necessary data is on the D

channel (4/60 = 7%).

However, these numbers are a little misleading. For each

frame, 20 bits c be considered used for fault tolerance (20/60 =

33%). Since one of the focuses of this research is on fault tolerance,

this loss is worthwhile. The only actual, unused bits are the twelve

overhead bits of the ISDN frame and the stop and start bits of the RS-

232, which totals twenty four of the sixty bits, or about 40%.

Un o uneatly, to keep with ISDN frame format and RS-232, this large

percentage must be endured.

For any network, efficient use of the line is desirable. The

least efficient time for the ring network is when the token is traveling

through the network. In this case, the line is used for 18.75 msec in

the 19.95 msec it takes the token to travel around the network. This

leaves the line idle for 1.2 msec, or about 6% of the time. When the

134

percentage of actual data rate is figured in, this drops the network

down to carry wort hwhile data about 6.2% of the time.

The network becomes more efficient when a packet is being

sent. As seen earlier, the overlap makes the network move smoothly

so that there is almost always something on the line, The larger the

packet, the more the line idle percentage drops toward 0.0%. This

means that the RS-232 line is busy nearly all of the time. When the

percentage of useful data is factored in, this gives a total efficiency of

about 60% if fault tolerant bits are factored in, or about 20% if they

are not.

7.2 Conclusions and Recommendations for Future Study

7.2.1 Hardware Recommendations and Conclusions

In the early stages of this research, the choice of

microcontroller to use to implement the network design was a major

decision. In the end, materials available became the strongest

argument for the 68C1 1EVB board. As the work progressed and

more was learned about the board, the pros and cons of the

68HC11EVB became more apparent.

The 68HCIEVB microcontroller is very flexible and

135

performed well in this experiment. Debugging programs can be

difficult, especially for the outer 68HC 11EVB. With no direct contact

to the outer, the limited debugging abilities of the board became very

apparent. However, researchers would probably have problems

debugging an outer board regardless of the microcontroller.

One feature on a microcontroller that a future researcher may

want to look for is more RS-232 ports on a single board. A

microcontroller with four RS-232 ports would be ideal. These ports

would supply the two inputs from the network, one output to the

network, and one port to communicate with the computer. This would

eliminate the need for an outer microcontroller and save the

programmer quite a bit of work.

More advanced microcontrollers, such as the MVME133 VME

board (68020 microprocessor based mircocomputer), would add a few

benefits to the system. The 68020VME is a 32-bit microcontroller

with a coprocessor. With its eight 32-bit data registers and 7 address

registers, the 68020 processor is more flexible than the 68HC11 with

its two 8-bit accumulators and two sixteen bit index registers. These

added registers would make the programming much easier and faster.

By giving some of the variables which are most often used their own

accumulators, the expanded register set would reduce the need for

136

loads and stores.

The benefits of the register set of the 68020 is outweighed by

its limited number of ports. Also, the HC1I instruction set is good

enough to perform all of the functions for this experiment. It is

doubtful that an expanded instruction set would simplify the program.

Due to limits in communication rates with PC's, a 9600 baud

rate was chosen for all communications. With the limited number of

stations and small packets allowed, this baud rate was enough.

However, a network designed with a higher baud rate would be

desirable for larger networks. Transmission time through the RS-232

prts takes most of the packet communication time. Compared to the

transmission time, the instruction execution was very small. This

means that the frames could be sent continuously and processing

could occur between frames. However, at higher baud rates this may

not be true. Eventually, the HC11 would not be able to keep up with

the transmissions and delays would have to be added. Therefore, for

higher baud rates a faster microprocessor is desirable.

However, for this experimental network, the 68HClIEVB

turned out to be a good choice. Increased knowledge of

microcontrollers in general and the 68HC11EVB in paicular resulted

137

from implementing the network. Efficient use of ports, instruction

code, and registers were three of the benefits. Also, the importance

in timing for networks became apparent. Theoretical research often

downplays the importance of timing. Building the network showed

just how important timing actually is.

The hardware used to skip a station proved adequate to the

situation The reverser and the rulti-port devices performed even

better than expected. The outer HC11 worked well as a software

driven multiplexer, again justifying its use in this project.

722 Protocol Conclusions and Recommendations

With an experimental network such as this, a mixture of many

protocols can be achieved. In this case, the ISDN frame forrnat was

combined with the token ring protocol and a very modified version of

the FDDI timing protocol. This turned out to be a good mixture. It

supplied all the necessary components to result in a successful

network.

Since one of the purposes of this research was to learn more

about the protocols used, these recommendations concentrate more on

applying the protocols chosen in different ways than in applying other

protocols.

138

The ISDN frame format fulfilled its purpose well. The three

channels naturally supplied capability for a large variety of tokens (D

channel) and fault tolerance in the form of echoing the data (the B2

channel). The overhead made it a little inefficient, but the benefits far

outweighed this.

One of the benefits of ISDN is the ability to send to two

separate stations simultaneously. This ability could also be applied

here. The frame could be broken up into its two channels: B1 going

to one station, B2 to another. For example, byte one of B 1 in an

ISDN frame would carry data from station 1 to station 3. Byte two

of B1 could be used for the negated echo. If less fault tolerance is

acceptable, it could be used for a second byte of data. Meanwhile, B2

could perform the same function for a communication being sent from

station 2 to station 1. The software for this would be much more

complicated. The D channel would have to be split if it were to still

hold token information. Two bits would be used for one channel, two

for the other. This would limit the variety of tokens allowed and

further decrease fault tolerance. However, the ability of ISDN to send

several communications simultaneously would be exploited.

In designing and building the token ring, its strengths and

weaknesses had to be completely explored. Designing the software

139

for the network illustrated that the token ring is much more

complicated than it sounds. Keeping track of the token and keeping

the ring running is difficult. However, once it is running, it is very

naturally fault tolerant. The concept of the token proved to be an

effective method for keeping the network from dissolving into a free-

for-all. The circular nature of the ring creates a serious risk of a byte

or frame of data endlessly looping through the network. This makes

program ing more difficult, but the single direction of the token ring

compensated for this. The final organized network made the effort

worthwhile.

The timing methods which are very loosely based on the FDDI

protocol should prove very effective in isolating and overcoming

faults. These methods keep the time that a network is down due to

a station fault to a minimum. Also, they are effective in keeping any

one station from tying up the line. Any station which does not abide

by the rules can be removed from the network.

These three protocols turned out to be complementary. By

taking what was necessary, an effective protocol was developed and

implemented. Without a strong protocol, the entire network would

have fallen apart.

140

23 Software Conclusions and Recommendations

This project supplied excellent opportunity to learn how to

write code which must be a strong combination of speed and efficient

use of memory.

The limited RAM space of the HC1 1 and the amount of room

that was necessary for the queues made limiting the program a major

objective. Loops and sub routines were used wherever possible to

decrease the amount of repeated code. The programs turned out to be

well within the RAM limits of the HC11. The assembly coding kept

the code efficient. However, for future study, programming in a

higher level language such as C would be less time consuming.

As with any other network, execution speed of the code is

important. Most of the code was limited to comands which took

very few cycles. Loading and storing accumulators are probably the

two most com on functions, taking up between three and five cycles

depending on addressing used.

Interrupts were kept to a minimum to make the progr easier

to follow. However, for faster networks interrupt schemes for the

ACIA and the host ports of both the inner and outer HC1 's should

be implemented. This would increase the speed of execution. The

141

timing interrupt would be an excellent method for minimizing the

threat of failure. Future research should study the possibility of

implementing this timing method. With the 68HC11, the host and

ACIA ports have different handshaking requirements; therefore,

implementing the timing proved too difficult. Other microcontrollers

may not have this problem.

Other than this, the code worked well. The programming was

a good learning experience. For example, converting to and from

ISDN was a wonderful exercise for using the logical shift commands.

It was also a good exercise in alternating between the A and B

accumulators and the D accumulator.

7.2.4 Final Remarks

This project turned out to be a good exercise in programming,

applying the HCl1 to a situation, designing and building a network,

and designing fault tolerant schemes.

The greatest benefits came from studying a network as close

as was required. This exercise increased awareness of how

complicated and fascinating networking methods are.

Also, the great amount of time spent considering fault tolerant

142

options made the project worthwhile. The experiment led to greater

understanding of both the traditional methods of fault tolerance and

applying software and hardware (such as the multi-port and the timer

interrupts) to come up with new methods.

143

Bibliography:

1. A'i, M. Ifran, "Frame Relay in Public Networks," IEEE
Communications Magazine, January, 1991.

2. Byrne, William R., Et Al, "Evolution of Metropolitan Area Networks
to Broadband ISDN," IEEE Communications Magazine, January, 1991.

3. Bux, Werner, "Token-Ring Local Area Networks and Their
Performance," Proceedings of the IEEE Vol. 77, No. 2, February
1989.

4. Child, Jeffrey, "RISC Chips Continue Conquest of Embedded Realm,"
om uter Design Vol. 32, May, 1992.

5. Corbin, M.J., and Jones, J.G. "Method for Monitoring Faults in a
Control Computer Using Band-Limiting Filters," IEE Proceedings, Vol.
137, Pt. D, No. 2, March, 1990.

6. Fowler, David, "Perpetual Networks," Bte August 1991.

7. Gaitonde, S, S., Jacobson, D. W., and Pohm, A. V., "Bounding Delay
on a Multifarious Token Ring Network," Communications of the ACM,
Vol 33, No. 1, January, 1990.

8. Gao ar, Ramesh, Mi roprocessor chitecture, Programming and
Applications, Second Edition, Macmillan Publishing Company, New
York, 1989.

9. Huwicz, Michael, "FDDI: Not Fastest But Still Fit," Datarnation, Vol.
39, Apr. 1, 1993.

10. Johnson, Barry, Design and Analysis of Fault Tolerant Digital Systems,
Addison Wesley Publishing Company, New York, 1989.

11. Jung, W. Y., "Analysis of Throughput and Delay of a High-Speed
Slotted Ring Based on Lumped Modeling," IEEE Trsctionso
Communications, Vol. 40, May 1992.

12. Kubat, Peter, A Digital Circuit Per ormance Analysis for tandem
Burst-Error Links in an ISDN Environment," IEEE Transactions on

Communications, Vol. 37, Oct. 1989.

144

13. Motorola, HX1, 6 1 eference anual, Prentice Hall,
Englewood Cliffs, New Jersey, 1989.

14. Motorola, Microprocessor, Microcon oiler, and Peripheral Data Vol.
1, Motorola Inc., USA, 1988.

15. Motorola, M68HC11EVB Evaluation Board User's Manual, First
Edition, Motorola, Inc., USA, 1986.

16. Qu, Yaoshuang and Landweber, Lawrence, "Parallelring: A Token
Ring LAN with Concurrent Multiple Transmissions and Message
Destination", IEEE Transactions on Communications Vol. 40, No. 4,
April 1992.

17. Silios, Charles B., Jr., "An Approximate Method for the Performance
of Playthrough Rings," ransactions on omuters, Vol. 41, Sept
1992.

18. Stallings, William, Data and Computer Communications, Second
Edition, Macmillan Publishing Company, New York, 1988.

19. Stallings, William, ISDN and Broadband ISDN Second Edition,
Macmillan Publishing Company, New York, 1992.

20. Subbarao, Wunnava, 16/32-Bit Microprocessors 68000/68010/68020
Software Hardware and Desi n Applications, Macmillan Publishing
Company, New York, 1991.

21. Weiss, Ray, "68HC 11 Adapts to 3.3V Designs," EDN, Vol. 37, May 7,
1992.

22. Wilson, Dave, "Is RISC or DSP Best for Your Application?", Computer
Design, Vol. 32, April, 1992.

145

Appendix:

Program Listings

146

* This is the program for the inner HC 11

* Setting constants for various port addresses
PORTA EQU $1000
PORTCL EQU $1005
ACIA EQU $9800
PIOC EQU $1002
DDRC EQU $1007
DDRD EQU $1009
BAUD EQU $102B
SCCR1 EQU $102C
SCCR2 EQUJ $102D
SCSR EQU $102E
SCDR EQU $102F

* Setting constants for various ASCI character codes

LF EQU $OA
CR EQU $OD
QT EQU $18
ET EQU $1A
BS EQU $08
CL EQU $19

* Setting starting address for the program

ORG $CO

* Initializing stack pointers

LDS #STACK
LDX #QUEUE1
STX AITAIL
STX AIHEAD
LDX #QUEUE2
STX ASTAIL
STX ASHEAD
LDX #QUEUE3
STX INCHEAD
STX INCTAIL
LDX #QUEUE4
STX TOSCREENT
STX TOSCREENH
LDX #ISDN
STX ISDNHEAD

147

STX ISDNTAIL

* Iniatializing ACIA port for poling

LDAA #$16
STAA ACIA

* Clearing counters and function indicators

LDAA #$00
STAA BROADCAST
STAA SENDING
STAA ERROR
STAA ERRMESS
STAA OUT2SC
STAA SCOUNT
STAA SENDSING
STAA SCCR1
STAA DESTINATION
STAA NOSTATS
STAA INFRAME
STAA COUNT

* Setting other ports

STAA DDRC
STAA PIOC
LDAA #$40
STAA PORTA
LDAA #$OA
STAA SCCR2
LDAA #$30
STAA BAUD

* Setting basic address to FF to start

LDAA #$FF
STAA MYADDRESS

* Setting the stations to receiving to start

LDAA #$01
STAA RECEIVING

148

* Startup routine ... Asks user if they are station 0

STARTUP EQU *
JSR CLEARSC
LDY #MSG1
LDAA #$01
STAA BRESS
JSR WAITUP
BRA ANSWER

WAITUP EQU *
JSR PRINTSCREEN
LDAA ERRMESS
BNE WAITUP
RTS

* Clears the screen

CLEARSC EQU *
PSHA
PSHB
LDY #CLEAR
LDAA #$01
STAA ERRMESS
JSR WAITUP
PULB
PULA
RTS

* Waiting for an answer Yes (Y) station 0, or No (N) not station 0.

* Otherwise, wait for a valid answer

ANSWER EQU *

LDAA ACIA
BITA #$01
BEQ ANSWER
LDAA ACIA+l
JSR CLEARSC
CMPB #'Y'
BNE ISNO
CLR MYADDRESS
LDAA #$06
STAA DC

149

CLR BYTE1
LDAA #$FF
STAA BYTE2
JSR MAKEFRAME
LDAA #$01
STAA SENDSING
BRA MAIN

ISNO EQU *
CMPB #'N'
BEQ MAIN
BRA STARTUP

* Main loop

MAIN EQU *

* Test for input from the ACIA (from user)

LDAA ACIA
BITA #$01
BNE INACIA1

* Test for input from port C (outer HC11)

LDAA PIOC
BITA #$80
BNE INCi

* Test to see if sending a single byte of data

LDAA SENDSING
BNE SENDONE

* Test to see if sending a packet

LDAA SENDING
BITA #$O1
BNE SEND1

* Test to see if in the process of sending an error message

LDAA ER ESS
BNE SENDERROR

150

* Test to see if presently sending to the screen from the network. If not,
* all tests done so return to beginning of loop. Otherwise, output
* next character to screen if screen buffer not full.

LDAA OUT2SC
BEQ MAIN
LDX TOSCREENT
LDAB 0,X
LDAA ACIA
BITA #$02
BEQ MAIN
STAB ACIA+1
CMPB #CR

* If output to screen is carriage return, add a line feed

BEQ ADDLINE
INX

* Move output to screen queue, if it is empty, signal no longer outputing,
* otherwise, continue loop

STX TOSCREENT
CPX TOSCREENH
BNE MAIN
CLR OUT2SC
BRA MAIN

* Subroutine to output a line feed

ADDLINE EQU *
LDAB #LF
STAB O,X
BRA MAIN

* Sends program to sub routine which deals with an input from the ACIA

INACIA1 EQU *
JSR INACIA
BRA MAIN

* Sends program to sub routine which deals with an input from C, then
* sends message to outer HC11 that data has been received

151

INCI EQU *
JSR INC
LDAA #$40
STAA PORTA
BRA MAIN

* Sends program to sub routine which sends a single byte on to network

SENDONE EQU *
JSR SCHAR
BRA MAIN

* Continues sending an error message

SENDERROR EQU *
JSR PRINTSCREEN
BRA MAIN

* Sends program to sub routine which deals with continuing output of a packet

SEND1 EQU *
JSR SEND
BRA MAIN

* Sub routine to clear the screen

CLSC EQU *
LDAA #$O1
STAA ERRESS
LDY #CLEAR
RTS

* Sub routine which gets an input from the ACIA (User)

INACIA EQU *

LDAB ACIA+1

* Test input

CHECK EQU *
CMPB #QT
BEQ DUMP
CMPB #ET
BEQ BEGINSEND
CMPB #BS

152

BEQ REMOVE
CMPB #CL
BEQ CLSC
LDAA SENDING
BEQ DESADD

* If not a special character, test counter. Too many characters, send error
* message. Otherwise, add to queue, increment appropriate counters,
* echo character to screen, and return to main program.

ADDTOQ EQU *
LDAA SCOUNT
CMPA #$FF
BEQ ERRORMESS
LDX AIHEAD
STAB O,X
INX
STX AIHEAD
INC SCOUNT

PSC EQU *
JSR ECHO
CMPB #CR
BEQ LINEF
RTS

* Add a line feed it it is a character return being echoed

LINEF EQU *
LDAB #LF
BRA PSC

* If it is a back space, clear previous character, echo to screen decrement
* counters, and return to main program

REMOVE EQU *
LDX AIHEAD
DEX
STX AIHEAD
DEC SCOUNT
JSR ECHO
RTS

153

LDAA ACIA
BITA #$02
BEQ ECHO
STAB ACIA+I
RTS

* If too many characters (>256) input, ready approp. error message

ERRORMESS EQU *
LDY #MSG2
LDAA #$01
STAA ERESS
JSR PRINTSCREEN
RTS

* If it is the first character in a message, it is the destination address.

DESADD EQU *
SUBB #$30
STAB DESTINATION
LDAA #$01
STAA BRRESS
LDY #CLEARIN
LDAA #$08
STAA SENDING
RTS

* If it is the quit character, clear input queue, counters, and function
* indicator, then return to main program

DUMP EQU *
LDX AITAIL
STX AIHEAD
CLR SCOUNT
CLR SENDING
CLR DESTINATION
RTS

* If it is exit character, set the system up to send the message

BEGINSEND EQU *

154

* If nothing to send, ignore the exit command

LDX AIHEAD
CPX AITAIL
BEQ NOTDONE

* If the previous message is still being sent, ignore the exit command

LDX ASHEAD
CPX ASTAIL
BNE CANT

* If everything is okay, clear counter and move ACIA input queue to
* network output queue and vice versa

CLR SCOUNT
LDX AIHEAD
STX TEMPAl
LDX AITAIL
STX TEMPA2
CPX #QUEUE1
BNE SWAP
LDX #QUEUE2

* Swaps queue pointers

SWAP EQU *
STX AIHEAD
STX AITAIL
LDX TEMPAl
STX ASHEAD
LDX TEMPA2
STX ASTAIL
STX SASTAIL

* Indicating ready to send in function indicator

LDAA #$04
STAA SENDING
RTS

* Send error message is can't send yet

CANT EQU *
LDY #MSG3

155

LDAA #$01
STAA ERRMESS
JSR PRINTSCREEN

NOTDONE EQU *
RTS

* Make first frame with approp. D, source address in B1, and destination
* address in B2. If destination address greater than the number of
* addresses, send as broadcast.

MAKEFIRST EQU *
CLR RECEIVING
LDAA #$01
STAA DC
LDAA MYADDRESS
STAA BYTE1
LDAA DESTINATION
CMPA NOSTATS
BLT MAKEBUSY
LDAB #$07
STAB DC
LDAA #$02
STAA BROADCAST
LDAA #$FF

* Make frame, then return to main program

MAKEBUSY EQU *
STAA BYTE2
JSR MAKEFRAME
RTS

* If function indicator indicates that in the process of sending, send character

SEND EQU *
LDAB SENDING
BITB #$F6
BEQ SCHAR

* Testing where station is in sending

DEALTOKEN EQU *

156

* If there is still more of an ISDN frame to send, send next byte

LDX ISDNTAIL
CPX ISDNHEAD
BNE SENDIT

* If last byte of free token just sent, clear sending function

CMPB #$03
BEQ THATSALL

* Otherwise, make free token d prepare to send it

CLR DC
LDAA #$FF
STAA BYTEl
STAA BYTE2
JSR MAKEFRAME
LDAA #$06
STAA SENDING
RTS

* Send next byte of ISDN frame

SENDIT EQU *
LDAB ,X
INX
STX ISDN AIL
JSR HOST
RTS

* When host RS-232 ready, send a byte

HOST EQU *
JSR DELAY
LDAA SCSR
BITA #$80
BEQ HOST
STAB SCDR
RTS

* After last byte of free token sent, clear out everything and return to main

THATSALL EQU *
CLR SENDING

157

LDX #ISDN
STX ISDNTAIL
STX ISDNHEAD
RTS

* This sub routine sends ISDN frames from the Host RS-232

SCHAR EQU *

* Load and send next byte in ISDN queue

LDX ISDNTAIL
LDAB ,X
JSR HOST
INX
STX ISDNTAIL
CPX ISDNHEAD
BNE OUTTAHERE

* If there is no more bytes in the ISDN frae, test if sending single frame

LDAA SENDSING
BNE ALLDONE

* If not sending single frame, test if resending

LDAA SENDING
CMPA #$09
BEQ MOVINGBACK

* If not resending, get next character and put into B1

LDX ASTAIL
LDAB O,X
STAB BYTEl
INX
CPX ASHEAD
BEQ LASTONE

* If not last character in queue, get next character in queue and put in B2

LDAB ,X
STAB BYTE2
INX
CPX ASHEAD

158

BEQ LASTTWO

* If that is not the last character, set D to 9

LDAB #$09
STAB DC
BRA ALLSET

* If moving back, set continue sending

MOVINGBACK EQU *
LDAA #$01
STAA SENDING
JSR MAKEFRAME
RTS

* If last character, set B2 to FF and D to 11 (indicating last character being sent)

LASTONE EQU *
LDAB #$FF
STAB BYTE2
LDAB #$0B
STAB DC
LDAB #$05
STAB SENDING
BRA ALLSET

* If last two characters, set D to 14

LASTTWO EQU *
LDAB #$OE
STAB DC
LDAB #$05
STAB SENDING

* Make frame with B 1, B2, and D set in above routines, then return to main

ALLSET EQU *
STX ASTAIL
JSR MAKEFRAME
RTS

* When finished sending a single frame, reset pointers and return to main

ALLDONE EQU *

159

LDX #ISDN
STX ISDNTAIL
STX ISDNHEAD
CLR SENDSING

OUTTAHERE EQU *
RTS

* This routine rmakes BI, B2 and D into an ISDN frame format

MAKEFRAME EQU *

* First byte of ISDN

LDX #ISDN
STX ISDNTAIL
STX ISDNHEAD
LDAA BYTE1
LDAB #$00
LSRD
LSRD
ORAA #$40
JSR STORE

* Second byte

TBA
LDAB DC
BITB #$08
BEQ OTHER
ORAA #$3A
BRA FBYTE2

OTHER EQU *
ORAA #$2A

FBYTE2 EQU *

* Getting B1 to put into second byte of B1

LDAB BYTE1
EORB #$FF
LSRA
LSLD
JSR STORE

160

* Third byte

ORAB #$01
TBA
JSR STORE

* Fourth byte
LDAA DC
LSRA
ORAA #$O1
LDAB BYTE2
LSRD
LSRD
TBA
JSR STORE

* Fifth byte
LDAA BYTE2
CLRB
LSRD
LSRD
TBA
LDAB DC
ANDB #$02
BNE OTHER2
ORAA #$28
BRA FBYTE5

OTHER2 EQU *
ORAA #$38

FBYTE5 EQU *
LDAB BYTE2
EORB #$FF
LSRA
LSRA
LSRA
LSLD
LSLD
LSLD
JSR STORE

* Last byte

161

LDAA DC
BITA #$01
BEQ OTHER3
ORAB #$07
BRA FBYTE6

OTHER3 EQU *
ORAB #$05

FBYTE6 EQU *
TBA
JSR STORE
RTS

* Routine to store byte into ISDN frame

STORE EQU *
LDX ISDNHEAD
STAA ,X
INX
STX ISDNHEAD
RTS

* This routine takes care of an input from C

INC EQU *

* If A is 0, then input it in B1, B2, and D form

LDAA PORTA
BITA #$O1
BNE ISDNFORM

* Load first byte, store it in D, and signal to outer IC11 that data is read

LDAA PORTCL
CLR PORTA
STAA DC
BNE COMP1

* If D =0 (free token), test if there is something to send

LDAA SENDING
CMPA #$04
BNE ELSE1

162

* If there is, make the first frame and begin sending

LDAA #$01
STAA SENDING
JSR MAKEFIRST
RTS

* Otherwise, send free token back on to network

ELSE1 EQU *
LDAA #$FF
STAA BYTE1
STAA BYTE2
JSR MAKEFRAME
LDAA #$01
STAA SENDSING
RTS

* If A not 0, then the data being sent is in ISDN form. Send it straight on,
* not for this station

ISDNFORM EQU *
JSR ISDNFORM1
RTS

COMPI EQU *

* If MSB of D is a one, go to upper test (8 thru 15)

BITA #$08
BNE GOCOMP8

CMPA #$01
BNE COMP3

* If D = 1 (busy token), test if this station is sending. If it is, an error has occured

LDAA SENDING
CMPA #$01
BEQ NOONEGOT

* If this station is not sending, it must be a message for this station.
* Load acknowledgement (D = 0), this station's address into B2, and
* get source address from port C (put into input from network stack)

163

LDAA #$04
STAA DC
LDAA MYADDRESS
STAA BYTE2
JSR GETBYTE
STAA BYTE1
ADDA #$30
JSR ADDINC
RTS

* If noone got the first busy token, send it again and begin resending
* everything sent so far.

NOONEGOT EQU *
LDAA MYADDRESS
STAA BYTE1
LDAA DESTINATION
STAA BYTE2
LDAA #$01
STAA DC
LDAA #$09
STAA SENDING
LDX SASTAIL
STX ASTAIL
RTS

* Adds source address taken in from C po into appropriate Queue, sets
* appropriate counters, and sends acknowledgement

ADDINC EQU *
LDX INCHEAD
STAA O,X
INX
STX INCHEAD
CLR INFRAME
JSR MAKEFRAME
LDAA #$O1
STAA SENDSING
STAA RECEIVING
RTS

* Goes to compare upper D's

GOCOMP8 EQU *
JMP COMP8

164

* Takes a byte in from port C

GETBYTE EQU *
LDAA #$40
STAA PORTA

WAIT EQU *
LDAA PIOC
BITA #$80
BEQ WAIT
LDAA PORTCL
CLR PORTA
RTS

* If D = 3, sent too many bytes. Clear sending queue, send error message
* to screen send free token

COMP3 EQU *
CMPA #$03
BNE COMP5
LDY #MSG4
LDAA #$01
STAA ERRMESS
LDX ASTAIL
STX ASHEAD
STX SASTAIL
CLR DC
LDAA #$O1
STAA SENDSING
LDAA #$FF
STAA BYTE 1
STAA BYTE2
LDX ISDNHEAD
CPX ISDNTAIL
BNE WAITALLDONE
CLR SENDING
JSR MAKEFRAME
RTS

* If ISDN fr e has not been completely sent, wait until it is finished
* to stop sending

WAITALLDONE EQU *
LDAA #$09
STAA SENDING

165

RTS

* If D = 5, send error message to screen, then shut down from network

COMP5 EQU *
CMPA #$05
BNE COMP6
LDY #MSG5

WAITDONE EQU *
JSR PRINTSCREEN
LDAA ERRMESS
BNE WAITDONE
END

* If D = 6, startup token

COMP6 EQU *
CMPA #$06
BNE COMP7
JSR GETBYTE
STAA BYTE1
LDAA MYADDRESS
BEQ ZERO
LDAA #$02

ZERO EQU *
ORAA COUNT
BEQ LTCOMP
CMPA #$01
BNE NXCOMP

* If this is the second time station 0 has gotten the startup token, send free token

LDAA #$00
STAA DC
LDAA #$FF
STAA BYTE1
STAA BYTE2
BRA ALLDONE2

* If this is the first time a non-0 station has gotten startup, get B from
* port C, increment the value, and put that number into address.

NXCOMP EQU *

166

CMPA #$02
BNE LTCOMP
LDAA BYTE1
INCA
STAA BYTE1
STAA MYADDRESS
BRA ALLDONE2

* If second time non-O or first time for station 0, get B1 and store it as
* the number of stations

LTCOMP EQU *
LDAA BYTE 1
INCA
STAA NOSTATS

* Make a frame and send it out

ALLDONE2 EQU *
JSR MAKEFRAME
LDAA #$01
STAA COUNT
STAA SENDSING
RTS

* If D 7, broadcast mode. Ready for input

COMP7 EQU *
LDAA #$FF
STAA BYTE2
JSR GETBYTE
STAA BYTE1
ADDA #$30
JSR ADDINC
LDAA #$01
STAA BROADCAST
RTS

* If D 8, then get B1 and B2 that were received and compare to what was sent

COMP8 EQU *
BITA #$04
BNE GOCOMP12
CMPA #$8

167

LDAA ERROR
BNE RET2
JSR GETBYTE
STAA Bi
JSR GETBYTE
STAA B2

COMPARETOSEND EQU *
LDX SASTAIL
LDAA ,X
CMPA B1
BNE NOTSAME
INX
STX SASTAIL
CPX ASHEAD
BEQ SENDFREE
LDAA ,X
CMPA B2
BNE NOTSAME
INX
STX SASTAIL
CPX ASHEAD
BNE RET2

* Once the last byte or two bytes come back, send free token

SENDFREE EQU *
LDAA #$03
STAA SENDING
CLR BROADCAST

RET2 EQU *
RTS

GOCOMP12 EQU *
JMP COMP12

* If sent does not equal received, send the error token and begin resendin
* from last byte received back

NOTSAME EQU *
LDAA #$OD
STAA DC
JSR MOVEBACK

168

RTS

MOVEBACK EQU *
LDX SASTAIL
LDAA 0,X
STAA BYTE1
INX
LDAA ,X
STAA BYTE2
INX
STX ASTAIL
INC ERROR
LDX ISDNHEAD
CPX ISDNTAIL
BNE NOTYET
JSR MAKEFRAME
RTS

* If in the middle of sending a frame, wait before resending

NOTYET EQU *
LDAA #$09
STAA SENDING
RTS

* If this station is sending, broadcast, and a 9 is received, treat it as an 8

IMSEND EQU *
LDAA #$08
BRA COMP8

* If D = 9, data being sent. Get B1 and B2 from port C. If not in error mode,

* add to Queue. If broadcast, send data out with D = 9, if not, send

* data out with D 8.

COMP9 EQU *
CMPA #$09
BNE COMP1O
LDAA BROADCAST
CMPA #$02
BEQ IMSEND
JSR GETBYTE
STAA BYTE 1
JSR GETBYTE
STAA BYTE2

169

LDAA #$08
ADDA BROADCAST
STAA DC
LDAA ERROR
BNE IGNORE
JSR ADD2Q
JSR MAKEFRAME
LDAA #$01
STAA SENDSING
RTS

IGNORE EQU *
RTS

* Adds data from port C to input Queue. If too many characters sent,
* send error token

ADD2Q EQU *
LDX INCHEAD
LDAA BYTE1
STAA 0,X
INX
LDAA BYTE2
STAA 0,X
INX
STX INCHEAD
LDAA INFRAME
INCA
STAA INFRAME
CMPA #$80
BNE IGNORE
LDAA #$03
STAA DC
RTS

* If D = 10, data resent. Begin getting data again. Send okay token.

COMP1O EQU *
CMPA #$0A
BNE COMPil
JSR GETBY E
STAA BYTE1
JSR GETBYTE
STAA BYTE2
CLR ERROR

170

LDAA #$OF
STAA DC
JSR ADD2Q
JSR MAKEFRAME
RTS

* If D = 11, sent last byte

COMP11 EQU *
LDAA BROADCAST
CMPA #$02
BEQ IMSEND2
JSR GETBYTE
STAA BYTE1
CLR BYTE2
JSR READYOUT
RTS

* If I'm sending broadcast, test what was sent to what was received.

IMSEND2 EQU *
CLR BROADCAST
JSR GETBYTE
STAA B1
JMP COMPARETOSEND

* If this station is receiving, begin outputing to screen

READYOUT EQU *
CLR RECEIVING
JSR ADD2Q
LDAA #$O1
STAA OUT2SC
STAA ERRMESS
LDY #CLEARREC
LDX INCHEAD
STX TOSCREENH
LDX INCTAIL
STX TOSCREENT
CPX QUEUE3
BNE MOVE
LDX QUEUE4

* Move around queues to begin inputing again, and send okay token

171

MOVE EQU *
STX INCTAIL
STX INCHEAD
LDAA BROADCAST
BNE FINISH
LDAA #$08
STAA DC

* Make appropriate token and send it out.

FINISH EQU *
JSR MAKEFRAME
LDAA #$01
STAA SENDSING
CLR INFRAME
CLR BROADCAST
RTS

* D = 12, begin retr asmitting

COMP12 EQU *
CMPA #$OC
BNE COMP13
LDAA RECEIVING
BNE SE
LDAA #$O1
STAA ERROR
STAA SENDSING
JSR MAKEFRAME
RTS

SE EQU *
LDAA #$OA
STAA DC
JSR MOVEBACK
RTS

* If D = 13, error. If receiving, nove back and cut out appropriate characters.

COMP13 EQU *
CMPA #$OD
BNE COMP14
LDAA RECEIVING
BEQ TRANS

172

JSR GETBYTE
LDAB INFRAME
STAA INFRAME
LDX INCTAIL

MB EQU*
DEX
DECA
BNE MB
STX INCTAIL
LSR INFRAME
SUBB INFRAME
STAB INFRAME
RTS

* If transmitting, get a new frame together with the number of bad frares that
* have been sent

TRANS EQU *
LDD ASTAIL
SUBD SASTAIL.
STAB BYTE1
LDAA #$FF
STAA BYTE2
LDX SASTAIL
STX ASTAIL
LDAA #$09
STAA SENDING
RTS

* If D = 14, broadcast, and I ar sending, stop sending and treat as D = 8

IMSEND3 EQU *
LDAA #$08
CLR BROADCAST
JMP COMP8

* If D = 14, get last 2 bytes and finish

COMP14 EQU *
CMPA #$OE
BNE COMP15
LDAA BROADCAST
CMPA #$02

173

BEQ IMSEND3
JSR GETBYTE
STAA BYTE1
JSR GETBYTE
STAA BYTE2
JSR READYOUT
RTS

* If D = 15, clear error and begin transmitting again

COMP15 EQU *
CLR ERROR
LDAA #$08
JSR COMP8
RTS

* If data coming in ISDN form, get 6 bytes, put into ISDN queue, and send it on

ISDNFORM1 EQU *
LDAA #$40
STAA PORTA
LDAA #$06
STAA COUNT
LDX #ISDN
STX ISDNHEAD
STX ISDNTAIL

GETIN EQU *
LDAA PIOC
BITA #$80
BEQ GETIN
LDAA PORTCL
CLR PORTA
JSR STORE
LDAA #$40
STAA PORTA
DEC COUNT
BNE GETIN
LDAA #$01
STAA SENDSING
RTS

* Outputing message to screen

PRINTSCREEN EQU *

174

PSHA
PSHB
LDAB O,Y
CMPB #'$'
BNE CHECK1
CLR ERRMESS

GOON EQU *
PULB
PULA
RTS

* Test to see if ACIA ready for next output character

CHECKi EQU *
LDAA ACIA
BITA #$02
BEQ GOON
STAB ACIA+1
INY
PULB
PULA
RTS

* Short delay

DELAY EQU *
PSHA
LDAA #$10

DELAYl EQU *
DECA
BNE DELAY1
PULA
RTS

* Variables:

MYADDRESS RMB 1
SENDING RMB I

ERRMESS RMB 1
OUT2SC RMB 1
SCOUNT RMB 1
SENDSING RMB 1
COUNT RMB 1

RECEIVING RMB 1

175

DC RMB 1
BYTE1 RMB 1
BYTE2 RMB I
DESTINATION RMB 1
NOSTATS RMB 1
INFRAME RMB 1
B1 RMBl1
B2 RMB 1
ERROR RMB1
BROADCAST RMB 1

* Pointers:

AITAIL RMB2
AIHEAD RMB 2
ASTAIL RMB 2
ASHEAD RMB 2
INCHEAD RMB 2
INCTAIL RMB 2
TOSCREENT RMB 2
TOSCREENH RMB 2
ISDNHEAD RMB 2
ISDNTAIL RMB 2
TEMPA1 RMB 2
TEMPA2 RMB 2
SASTAIL RMB 2

* Setting up bytes necessary for clearing screen:

CLEAR FCB $1B
FCC '[2J'
FCB $1B
FCC '[3;0H$'

* Clear receiving side:

CLEARREC FCB $1B
FCC '[16;OH'
FCB $1B
FCC '[K'
FCB $1B
FCC '[17;OH'
FCB $1B
FCC '[K'
FCB $1B

176

FCC '[18;OH'
FCB $1B
FCC '[K'
FCB $18
FCC '[19;OH'
FCB $18
FCC '[K'
FCB $18
FCC '[20;O '
FCB $18
FCC '[K'
FCB $18
FCC '[21;OH'
FCB $18
FCC '[K'
FCB $18
FCC '[22;0H'
FCB $18
FCC '[16;OH$'

* Clearing input side:

CLEARIN FC8 $18
FCC '[3;OH'
FCB $18
FCC '[K'
FCB $18
FCC '[4;OH'
FCB $18
FCC '[K'
FCB $18
FCC '[5;OH'
FCB $18
FCC '[K'
FCB $18
FCC '[6;OH'
FCB $18
FCC '[K'
FCB $18
FCC '[7;OH'
FCB $18
FCC '[K'
FCB $18
FCC '[8;''
FCB $18

177

FCC '[K'
FCB $1B
FCC '[9;OH'
FCB $1B
FCC '[3;OH$'

* Setting up bytes for messages:

MSG1 FCB $1B
FCC '[10;20H'
FCC 'AM I STATION 0 (Y OR N)? $'

MSG2 FCB $1B
FCC '[10;20H'
FCC 'YOU HAVE REACHED THE END OF THE

BUFFER$'
MSG3 FCB $1B

FCC '[10;20H'
FCC 'CAN'T SEND MESSAGE YET.$'

MSG4 FCB $1B
FCC '[10;20H'
FCC 'SENT TOO MANY BYTES. ABORTING

TRANSFER$'
MSG5 FCB $1B

FCC '[10;20H'
FCC 'SYSTEM ERROR. BEING REMOVED FROM THE

NETWORK.$

* Setting up roor for queues:

QUEUE 1 RMB 257
QUEUE2 RMB 257
QUEUE3 RMB 257
QUEUE4 RMB 257

* setting up room for ISDN queue:

ISDN RMB 256

* Setting up stack for system:

STACK RMB 1

178

* This is the program for the outer HC11's

* Inititializing port addresses:

PORTA EQU $1000
PORTCL EQU $1005
ACIA EQU $9800
PIOC EQU $1002
DDRC EQU $1007
DDRD EQU $1009
BAUD EQU $102B
SCCR1 EQU $102C
SCCR2 EQU $102D
SCSR EQU $102E
SCDR EQU $102F

* Initializing constants

LF EQU $0A
CR EQU $0D

* Starting program at $COOO in memory

ORG $C000

* Initializing stack pointers

LDS #STACK
LDX #ISDN
STX HEAD
STX TAIL

* Initializing ports:

LDAA #$16
STAA ACIA

* Clearing variables and initializing ports:

LDAA #$00
STAA SECOND
STAA NOSTATS
STAA SCCR1
STAA PIOC
STAA PORTA

179

STAA COUNT
STAA DC

Initializing function to skip:

LDAA #$02
STAA FUNCTION

Initializing ports:

LDAA #$0D
STAA SCCR2
LDAA #$30
STAA BAUD

Clearing ISDN bytes:

LDAA #$FF
STAA DDRC
STAA BYTElA
STAA BYTEiB
STAA BYTE2A
STAA BYTE2B

Main loops

MAIN EQU *

Test and input from network

LDAA ACIA
BITA #$0l
BEQ MAIN
LDAB ACIA+l
LDX HEAD
STAB 0,X
INX
STX HEAD
LDAA COUNT
INCA
STAA COUNT

If all 6 bytes of a frame have not been received, loop back to main

180

CMPA #$06
BNE MAIN
LDAA FUNCTION
CMPA #$2

* If sending or receiving, send test input

BNE TESTD1
LDX TAIL
INX

* If first bit of D = I and skip mode, loop back to main. Otherwise, test D

LDAA ,X
DEX
BITA #$10
BEQ TESTD1
JSR SENDISDN
BRA MAIN

* Get D, test it, etc. Return by cleaning out queue and counter and return to main
* loop

TESTD1 EQU *
JSR TESTD
LDX #ISDN
STX HEAD
STX TAIL
CLR COUNT
BRA MAIN

* Pull D out of ISDN frame and test it to do appropriate functions

TESTD EQU *
JSR GETD
LDAA DC
BITA #$08
BEQ ZERO
JMP COMP8

ZERO EQU *
BITA #$04
BNE COMP4

* If D 0, Send D only to inner HC1 1 and put self into skip mode

181

CMPA #$00
BNE COMPI
JSR SENDCHAR
LDAA #$02
STAA FUNCTION
RTS

* If D = 1, get B1 and 82, then test to see if it is to this station

COMPI EQU *
CMPA #01
BNE COMP3
JSR GETBS
LDAA BYTE2A
CMPA MYADDRESS
BNE DUMPIT
JSR COMPARE
LDAA DC
CMPA #$01
BNE DUMPIT2

* If message is to this station, send D and source address to inner HC 1

JSR SENDCHAR
LDAA BYTE1A
JSR SENDCHAR
CLR FUNCTION
RTS

* If not to this station, go into skip mode

DUMPIT EQU *
LDAA #$02
STAA FUNCTION

* And send to inner HC 1 in ISDN frame format

DUMPIT2 EQU *
JSR SENDISDN
RTS

* If D = 3, too many characters sent. If sending, go into skip mode and pass
* Don to inner HC11.

182

LDAA FUNCTION
CMPA #$01
BNE NOTMINE
LDAA DC
JSR SENDCHAR
LDAA #$02
STAA FUNCTION
RTS

* If D = 4, test to see if this station is sending the message. If yes, set to
* sending mode. If no, pass it on

COMP4 EQU *
CMPA #$04
BNE COMP5
JSR GETBS
LDAA BYTE1A
CMPA MYADDRESS
BNE NOTMINE
LDAA #$01
STAA FUNCTION
RTS

* If message does not concern this station, pass it on as an ISDN frame

NOTMINE EQU *
JSR SENDISDN
LDAA #$02
STAA FUNCTION
RTS

* If D = 5, go to receiving mode

COMPS EQU *
CMPA #$05
BNE COMP6
CLR FUNCTION
RTS

* If startup token, get B1. If first time getting 6, increment and store
* as my address. If second time, increment and store as number of

* stations. Pass both on to inner Hell

COMP6 EQU *

183

CMPA #$06
BNE COMP7
JSR GETBS
LDAA DC
JSR SENDCHAR
LDAA BYTE1A
JSR SENDCHAR
LDAA SECOND
BNE SECONDTIME
LDAA #$01
STAA SECOND
LDAA BYTE1A
INCA
STAA MYADDRESS
RTS

SECONDTIME EQU *
LDAA BYTE1A
INCA

* If number of stations = ry address, this station must be station

STAA NOSTATS
CMPA MYADDRESS
BNE RETURN
LDAA #$OO
STAA MYADDRESS
STAA SECOND

RETURN EQU *
RTS

* If D = 7, test if it belongs to me. If it does, go to send mode

COMP7 EQU *
JSR GETBS
LDAA BYTEIA
CMPA MYADDRESS
BNE NOTMINE2
LDAA #$01
STAA FUNCTION
BRA THATSIT

* If not, go to receive

184

NOTMINE2 EQU *
CLR FUNCTION
LDAA DC
JSR SENDCHAR
LDAA BYTE1A
JSR SENDCHAR

THATSIT EQU *
RTS

* If D = 8, test bytes for accuracy. Send D and both B's on to inner Hcll1

COMP8 EQU *
BITA #$04
BNE G012
CMPA #$08
BNE COMP9
JSR GETBS
JSR COMPARE
LDAA DC
JSR SENDCHAR
LDAA DC
CMPA #$08
BNE RETURN
LDAA BYTEIA
JSR SENDCHAR
LDAA BYTE2A
JSR SENDCHAR
RTS

G012 EQU *
JMP COMP12

* If D = 9, check accuracy then send D, B1 and B2 to inner if okay.

* If not, only send D

COMP9 EQU *
CMPA #$09
BNE COMP1O
JSR GETBS
JSR COMPARE
LDAA DC
JSR SENDCHAR
LDAA DC
CMPA #$09

185

BNE OUTTAHERE
LDAA BYTElA
JSR SENDCHAR
LDAA BYTE2A
JSR SENDCHAR

OUTTAHERE EQU *
RTS

* If D = 10, check accuracy of B's. Send D to inner. If accuracy okay, send both
* B's to inner

COMP1O EQU *
CMPA #$0A
BNE COMP11
JSR GETBS
JSR COMPARE
LDAA DC
JSR SENDCHAR
CMPA #$0A
BNE OUTTAHERE
LDAA BYTE1A
JSR SENDCHAR
LDAA BYTE2A
JSR SENDCHAR
RTS

* If D = 11, test B's. Send D. Send B1 if okay.

COMP11 EQU *
JSR GETBS
JSR COMPARE
LDAA DC
JSR SENDCHAR
LDAA DC
CMPA #$0B
BNE RET
LDAA BYTE1A
JSR SENDCHAR
LDAA #$02
STAA FUNCTION

RET EQU *
RTS

186

* If D = 12, send D to inner and test B's. If B's okay, send first to inner.

COMP12 EQU *
BITA #$02
BNE COMP14
JSR GETBS
JSR COMPARE
LDAA DC
JSR SENDCHAR
CMPA #$OC
BNE RET
LDAA BYTElA
JSR SENDCHAR
RTS

* If D = 14, test B's. Okay, send all 3. Otherwise, send only D.
* Go to skip mode

COMP14 EQU *
CMPA #$OE
BNE COMP15
JSR GETBS
JSR COMPARE
LDAA DC
JSR SENDCHAR
LDAA DC
CMPA #$OE
BNE GONE
LDAA BYTElA
JSR SENDCHAR
LDAA BYTE2A
JSR SENDCHAR
LDAA #$02
STAA FUNCTION

GONE EQU *
RTS

* If D 15, test B's. okay, send all three, otherwise, send only D

COMP15 EQU*
JSR GETBS
JSR COMPARE
LDAA DC
JSR SENDCHAR

187

CMPA #$OF
BNE GONE
LDAA BYTElA
JSR SENDCHAR
LDAA BYTE2A
JSR SENDCHAR
RTS

188

DELAY EQU *
PSHA
LDAA #$10

DELAY2 EQU *
DECA
BNE DELAY2
PULA
RTS

* Does the handshaking and sends characters between inner and outer HC11's

SENDCHAR EQU *
LDAB PORTA
BITB #$01
BEQ SENDCHAR
LDAB #$40
STAA PORTCL
STAB PORTA
JSR DELAY
CLR PORTA

LOOPY EQU *
LDAA PORTA
BITA #$01
BNE LOOPY
RTS

* Gets B1 and B2 from the ISDN frame

GETBS EQU *
LDX TAIL
LDD ,X
LSLD
LSLD
STAA BYTE1A
LSRB
LSRB
TBA
INX
INX
LDAB ,X
LSRD
STAB BYTEi1B
INX

189

LDD 0,X
LSLD
LSLD
STAA BYTE2A
LSRB
LSRB
TBA
INX
INX
LDAB 0,X
LSRD
LSRD
LSRD
STAB BYTE2B
RTS

* Compares the first byte of B1 to the second byte of B1 to make sure
* they are opposites. Does the same for B2 bytes. Changes D if
* there is an error.

COMPARE EQU *
LDAB BYTElA
BITB BYTEIB
BNE MISTAKE
LDAB BYTE2A
BITB BYTE2B
BNE MISTAKE
RTS

MISTAKE EQU *
LDAA #$OC
ADDA FUNCTION
STAA DC
RTS

* Pulls the 4 bits of D from the ISDN frame

GETD EQU *
LDX TAIL
INX
LDAA O,X
ANDA #$10
LSRA
STAA DC
CLRA

190

INX
INX
LDAB O,X
ANDB #$80
LSLD
LSLD
LSLD
ORAA DC
STAA DC
INX
LDAA O,X
ANDA #$1O
LSRA
LSRA
LSRA
ORAA DC
STAA DC
IN X
LDAA ,X
ANDA #$02
LSRA
ORAA DC
STAA DC
RTS

* Sends the 6 bytes of ISDN frame to inner HC11

SENDISDN EQU *
LDX TAIL
LDAA #$06
STAA COUNT

SENDISDN1 EQU *
LDAA PORTA
BITA #$01
BEQ SENDISDN1
LDAB O,X
INX
LDAA #$60
STAA PORTA
STAB PORTCL
JSR DELAY
LDAA #$20
STAA PORTA

191

WAIT EQU *
LDAA PORTA
BITA #01
BNE WAIT
LDAA COUNT
DECA
STAA COUNT
BNE SENDISDN1
LDX #ISDN
STX HEAD
STX TAIL
CLR PORTA
RTS

* Variables:

SECOND RMB 1
MYADDRESS RMB 1
NOSTATS RMB 1
COUNT RMB 1
FUNCTION RMB I
DC RMB 1
BYTElA RMB 1
BYTE2A RMB 1
BYTE1B RMB 1
BYTE2B 1

* Pointers:

HEAD RMB 2
TAIL RMB 2

* Room for ISDN queue

ISDN RMB 256

* Room for system stack:

STACK RMB 1

192

	Fault tolerant and integrated token ring network
	Recommended Citation

	tmp.1556651988.pdf.JEzed

