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ABSTRACT OF THE DISSERTATION 

FLORIDA’S PILLAR CORAL (DENDROGYRA CYLINDRUS):  

THE ROLES OF THE HOLOBIONT PARTNERS IN BLEACHING, RECOVERY, AND 

DISEASE PROCESSES  

by 

Cynthia Fairbank Lewis 

Florida International University, 2018 

Miami, Florida 

Professor Mauricio Rodriguez-Lanetty, Major Professor 

The iconic pillar coral, Dendrogyra cylindrus, is one of five Caribbean species 

listed in 2014 under the US Federal Endangered Species Act because of its extreme low 

abundance and continued decline in US waters. Until recently, little was known about the 

demographics or genetic diversity of Florida’s D. cylindrus population. This study 

represents the first time two holobiont partners (coral animal and associated 

photosynthetic algal endosymbionts) have been closely examined, spatially and 

temporally, in this little-studied species. The aim was to explore the influences of coral 

animal genotypes, mutualistic photosynthetic algal strains, and hyperthermal stress on 

bleaching and disease processes, resistance, and recovery through two consecutive 

hyperthermal events on the Florida Reef Tract (FRT) in 2014 and 2015. 

Through geographically stratified, triannual assessments and tissue sampling of 

D. cylindrus colonies across three regions of the FRT from April 2014 to April 2016, I 

compared genotypic identities of the coral animal to bleaching and disease status and 

recovery. Additionally, I characterized the algal endosymbionts (Symbiodiniaceae 
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family) in D. cylindrus between regions of the FRT using Illumina amplicon sequencing 

of the partial chloroplast 23S rDNA Domain V gene and correlated them to differential 

responses during bleaching and recovery. Finally, I examined the effects of hyperthermal 

stress on disease prevalence and changes in disease susceptibility in D. cylindrus 

throughout two consecutive hyperthermal events in 2014 and 2015. 

Genotypic differences in D. cylindrus were associated with full or partial 

bleaching and/or disease resistance associated with some genets. Additionally, this study 

characterized unexpected diversity in the Symbiodiniaceae community within D. 

cylindrus and a site-specific, species-level switch in endosymbionts associated with 

acquired bleaching resistance during the 2015 hyperthermal event. Finally, this study 

demonstrated that two consecutive hyperthermal events were associated with an increase 

in prevalence of white plague in D. cylindrus and contributed to its susceptibility to black 

band disease, documented for the first time on the FRT. 

Through understanding the response of the D. cylindrus holobiont partners to 

biotic and abiotic stressors, such as hyperthermal bleaching and associated diseases, we 

gained valuable insights into how this threatened species may respond to a changing 

climate.  
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CHAPTER 1: General Introduction 

Coral reefs world-wide have experienced dramatic declines in recent decades 

because of natural and anthropogenic factors (1-4). An estimated 20% of the world’s 

reefs have been lost in the last 50 years and it is projected that more than 60% of the 

world’s reefs may be gone by 2030 (5-7). These projections have accelerated following 

the 2014-2016 El Niño Southern Oscillation (ENSO), one of the strongest events on 

record, which caused staggering losses to coral reefs worldwide as a result of consecutive 

bleaching events, including within the Greater Caribbean and the Florida Reef Tract (8). 

In the Caribbean, declines in live coral cover since the 1970s is estimated at more than 

80%, leaving less than 5% live coral cover on many reefs (1, 3, 9, 10). Increased 

frequency and intensity of tropical storms (10), bleaching events (11-13), and disease 

outbreaks now affecting 33 of the 61 endemic Caribbean coral species have further 

affected these reefs (14-18).  The Florida Reef Tract (FRT), stretching nearly 320 km 

from Biscayne Bay to the Dry Tortugas, with additional unconsolidated coral habitat 

extending northward to Martin County, is the only living barrier reef in the continental 

United States and has experienced alarming declines in live coral cover and diversity (19-

21). In light of these dramatic declines in coral reefs, concerns for maintaining and 

preserving population connectivity and genetic diversity to enhance resilience, as well as 

reproductive success and potential for adaptation, have become major foci (5, 22-25).  

1.1 The importance of the coral holobiont 

The existence of coral reef ecosystems worldwide depends on the complex 

functions of the coral holobiont (coral animal, photosynthetic algae, bacterial community, 

protozoans, fungi, and viruses) and their critical symbiotic relationships, balancing 
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cellular respiration, photosynthesis, and nutrient recycling (26-28). The heterotrophic 

host (coral animal) captures and ingests zooplankton and dissolved organic nutrients from 

the water column to fuel its own cellular metabolism. By-products of cellular metabolism 

(ammonium, CO2) are available to the photoautotrophic symbiotic algae 

(Symbiodiniaceae), which metabolize ammonium as a nutrient source for their own 

cellular growth, excreting organic nitrogenous compounds (amino acids) back to the coral 

animal. Nitrogen recycling between the holobiont partners allows for effective retention 

of this important nutrient for cellar growth in a typically oligotrophic environment (29). 

Recent investigations have shown that the coral microbiome also contributes to the 

function of the holobiont through carbon fixation, nitrogen metabolism, and sulfur 

cycling, as well as antimicrobial activity (30). Cyanobacteria, especially intracellular 

types, have been found to fix nitrogen (an energy costly process), converting N2 to 

ammonium (NH4+), which is then used by the non-nitrogen fixing  endosymbionts for 

cellular growth (31, 32). Nitrogen availability within the coral animal can affect 

Symbiodiniaceae growth and density, while disruption of the microbial nitrogen cycling 

may be linked to coral bleaching and disease (33). Nitrification, the chemo-lithotrophic 

oxidation of ammonium (NH4+) and nitrite (NO2-) to nitrate (NO3-) by autotrophic 

bacteria and Archaea, is commonly carried out by members of the coral microbiota. 

However, ammonium is the preferred source of dissolved inorganic nitrogen by the algal 

endosymbionts and thus nitrification may compete for the nitrogen available for 

endosymbiont growth (34, 35). The photosynthetic algal symbionts capture energy from 

sunlight to oxidize water with CO2 as the electron acceptor, producing 

photosynthetically-fixed carbon (glycerol, glucose, and amino acids) as well as O2 for use 
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by the coral host for cellular respiration and growth (36). This critical photosynthetic 

process not only provides all of their own energy needs for the algal symbiont, but often 

up to 95% of the nutritional needs of their host corals (37, 38). In addition, O2 produced 

during photosynthesis enhances coral calcification (39) which is critical to reef-building 

corals and the accretion of coral reefs.  

1.2 Symbiodiniaceae diversity and function in hyperthermal stress 

Most reef-building corals form an obligate symbiosis with photosynthetic algal 

endosymbionts (family Symbiodiniaceae). Initially it was thought that these symbiotic 

dinoflagellates belonged to a single genus (Symbiodinium spp.). Work by Rowan and 

Powers (1991) determined distinct taxonomic lineages or clades within the genus using 

small ribosomal subunit RNA (18S ss-rRNA) and restriction fragment length 

polymorphisms  (40-42) that correlated with   differential environmental tolerances (43-

45). Thus far, nine phylogenetic clades or lineages of these photosynthetic dinoflagellates 

have been described (43, 46, 47). Previously designated by clade letters, seven of these 

clades have recently been described as distinct genera (48) (Table 1.1). Buddemeier and 

Fautin proposed the Adaptive Bleaching Hypothesis (49) which posited that 

endosymbionts respond differently to environmental stressors and that adult corals could 

acquire new more thermally-tolerant symbionts after bleaching (i.e., expulsion of 

endosymbionts), allowing the coral host to adapt in the short-term, to environmental 

changes. Development of additional molecular markers (nuclear ribosomal interstitial 

transcribed spacers [ITS-1, ITS-2], chloroplast large subunit ribosomal DNA [cp23S 

rDNA], and mitochondrial DNA [Cyt b]) allowed researchers to further differentiate 

symbiont types within each newly recognized genus  (50-55). It is now accepted that 



 

4 
 

inter- and intra-generic diversity display clear physiological differences (45, 56, 57) and 

provide differential environmental tolerances and sensitivities to the symbiotic 

partnership (58-60), including bleaching resistance and susceptibility (61-63). Seminal 

work by Berkelmans et al. in 2006 (64) showed shuffling of symbionts between genera 

(formerly clades) provided increased thermal tolerance and bleaching resistance. High 

throughput amplicon sequencing now allows even finer scale resolution of endosymbiont 

communities within genera, which have also identified additional thermally tolerant 

symbiont species with improved survivorship during hyperthermal bleaching events (65, 

66). Recent studies have also revealed far greater diversity within the cryptic 

endosymbiont community (67-71), however these cryptic symbionts have been 

considered transient and assumed to be of little ecological importance thus far (72). 

1.3 The role of the coral animal genotype on resistance and resilience to thermal 

bleaching and disease processes 

Biodiversity is considered the cornerstone of healthy ecosystems, buffering and 

providing resilience in the face of environmental disturbances and stressors, allowing 

ecosystems to return to their functional integrity (73-75). Additionally, high diversity and 

species richness at the ecosystem level can ensure diversity of necessary functional 

groups, providing ecological services to the ecosystem and allowing coral reefs to absorb 

disturbances and resist unhealthy phase shifts. As a consequence of its biogeographic 

isolation, the Caribbean has historically been far less diverse than the Great Barrier Reef, 

containing only 28% of the fish species diversity and 14% of the coral species diversity 

(73, 76) and thus may be more vulnerable to ecosystem disturbances. 
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At the species level, genetic diversity provides the ability for organisms to adapt 

to their environment by providing genetic variability for natural selection to act upon. It 

has been shown that successful sexual reproduction in coral is often enhanced by a 

diverse genetic population and low diversity has been shown to decrease fertility and 

subsequent recruitment (77). Loss of genetic diversity can increase the risk and likelihood 

of gamete incompatibility or self-fertilization within populations, leading to reduced 

success of sexual reproduction due to low fertility rates and recruitment (22, 77-79). 

However, it has been shown that larvae produced by surviving genotypes in stressed 

environments may actually be more thermally tolerant and better able to survive changing 

conditions. Additionally, it has been shown that some Acroporid genotypes are more 

thermally tolerant despite having the same dominant endosymbiont type (80), and yet 

other Acroporid genotypes have been shown to be disease resistant (81). Hence, the 

importance of retaining diversity at all levels, which may provide yet-unknown resistance 

and resilience in a changing climate, cannot be overlooked.  

1.4 Thermal stress and the disruption of the holobiont 

Disruption of the mutualistic relationships within the coral holobiont, as occurs in 

hyperthermal bleaching and disease processes, can have devastating effects on the 

stability of the holobiont itself and affect the long-term survival of the reef ecosystem. 

Collateral damage of heat stress impacts biological, immunological, and physiological 

functions in the coral animal (82-85). Thermal bleaching and the loss of algal symbionts 

can deprive the coral animal of necessary nutrients, leaving it in a weakened state and 

susceptible to diseases (16, 86-89). Additionally, many marine pathogens are known to 
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proliferate or have increased pathogenicity or virulence at elevated temperatures (90-92) 

and hyperthermal stress has been linked to increases in disease (16-18, 88, 89, 92-96). 

Thus far, the mechanisms linking patterns of recurrent bleaching, recovery, and 

disease remain relatively unexplored, in large part because such studies depend on the 

contingency of natural bleaching events.  Recent recurrent thermally-induced bleaching 

and subsequent disease events occurring Caribbean-wide presented unique time-sensitive 

opportunities to explore the holobiont partners and mechanisms underpinning the patterns 

of recurrent coral bleaching, recovery, and disease.  

1.5 Study organism background: Dendrogyra cylindrus 

The target species for the current research was the iconic but little-studied pillar 

coral, Dendrogyra cylindrus (Ehrenburg, 1834; Figure. 1.1), a slow-growing gonochoric 

broadcast spawner (male and female colonies), typically found in low abundance 

throughout its Caribbean range. Recent work (97) has shown hermaphrodism in this 

species to be more prevalent than previously known (i.e., simultaneous hermaphrodism, 

with male and female gametes released from the same colony, and sequential 

hermaphrodism, with alternating sexes between years of the same colony). This species is 

a monospecific member of the family Meandrinidae (Linnaeus, 1758). While widely 

distributed throughout the Caribbean, D. cylindrus is rarely considered an important reef 

builder, yet its unique columnar growth form provides important vertical structure and 

habitat complexity wherever it occurs. The columnar growth form of this species 

predisposes it to asexual fragmentation as pillars break off and are displaced during 

storms. These broken pillars or ‘ramets’ are often able to stabilize and form a ‘new’ 

separate colony, yet genetically identical to the parent colony (i.e., same genet). 
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Dendrogyra cylindrus has been categorized as ‘vulnerable’ because of its susceptibility to 

bleaching, disease (especially white plague), and habitat degradation (98) under the 

International Union for the Conservation of Nature (IUCN) Red List since 2008. This 

coral species is of special concern on Florida’s reefs and was federally listed under the 

US Endangered Species Act as ‘threatened’ in 2014 (99) as a consequence of its rare 

occurrence and rapidly declining, critically fragmented population on the Florida Reef 

Tract (FRT). Surveys of the D. cylindrus population along the FRT in 2013 and 2014 

documented 745 live colonies at 155 sites. More than two-thirds of these sites contained 

single colonies, often separated by tens of kilometers, further contributing to its low 

recruitment success (unpublished data). Dendrogyra. cylindrus is typically found on 

shallow, gently-sloping back-reefs (5m to 15m depths) and thus may be particularly 

sensitive to declining water quality as well as environmental stressors associated with 

climate change, including thermal bleaching. The dominant endosymbiont thus far 

reported in D. cylindrus is a unique Breviolum species (formerly clade B1 phylotype (48); 

ITS2 type B1-4k; (52)) which  may contribute to its bleaching sensitivity.  Dendrogyra 

cylindrus is also susceptible to white plague (WP), a highly destructive disease effecting 

more than 40 coral species world-wide (100, 101), and especially the more virulent form 

white plague type-II (WP-II), which swept through the FRT in 1995 (102-104). These 

multiple factors (climate change, declining near-shore water quality and susceptibility to 

bleaching and disease) have contributed to the alarming decline in this critically 

threatened and little-studied species on Florida’s reefs.  

It is important to understand the decline of D. cylindrus in the context of other 

corals on Florida’s reefs. The FRT has shown marked decline in live coral cover, as well 
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as declines in species diversity, since the mid-1970s but decline has escalated since the 

1997-98 El Nino event as well as other lesser thermal events and severe hurricanes (20, 

105). Historically, Orbicella annularis was the spatially dominant reef-building coral 

species on the FRT. By 1999 it accounted for only 1.4% of the live cover, and by 2009 

had further declined to 0.6 % (105). Acropora cervicornis and A. palmata, while not 

considered reef-building species, historically created the predominant framework on 

Caribbean reefs (106, 107). Precipitous declines have been documented in these two 

species since the mid-1970s (108), largely as a result of disease, as well as natural and 

anthropogenic disturbances (109). By the mid-1990s the acroporid species accounted for 

10% to 20% of the coral cover on the FRT but further declined to <2% by 2001 (110). 

The decline of these and other coral species is typically measured in terms of percent of 

live coral cover across a reef. By comparison, D. cylindrus is rarely if ever captured in 

survey information, and only by chance, in annual reef-wide monitoring efforts due to its 

extremely low abundance (21, 105, 111, 112). Its population is measured not on the scale 

of percent cover on a reef but by the actual number of individual colonies. As mentioned 

above, in 2014 there were an estimated 745 live D. cylindrus colonies on the entire FRT; 

by 2018 there were fewer than 50 colonies (unpublished data). The catastrophic loss of 

these colonies in this dwindling population is cause for concern as each colony may 

represent the last of a unique genotype on the FRT (113). The current research reported 

here helps to provide a better understanding of resistance and resilience to environmental 

and biotic stressors, critical to resource managers in their efforts to stabilize and preserve 

the remaining D. cylindrus population and develop future restoration strategies.  

1.6 Dissertation objectives, hypotheses and organization 
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The impetus of the doctoral dissertation was to explore the influences of coral 

animal genotypes, mutualistic photosynthetic algal strains, and hyperthermal stress on 

bleaching and disease processes, resistance, and recovery. To achieve this, I focused on 

the Caribbean pillar coral, Dendrogyra cylindrus, to determine if there are differences in 

resistance or resilience to bleaching or disease within the Florida population and if these 

differences are associated with specific sites or regions within the Florida Reef Tract 

(FRT). I had a rare opportunity to closely document patterns of bleaching, recovery, and 

disease processes within the framework of a natural experiment involving two 

consecutive mass bleaching events, occurring in August-September 2014 and 2015 (114).  

I explored two of the holobiont partners (coral animal and algal endosymbionts) to 

determine their contributions to greater resistance or more rapid recovery from bleaching 

or disease occurrence. Finally, I examined the cumulative effects of consecutive 

hyperthermal stress experienced on the Florida Reef Tract in 2014 and 2015 to determine 

the impact on bleaching resistance and resilience and prevalence of disease in D. 

cylindrus. 

Chapter two describes the experimental design and methodology used to answer 

these research questions in the context of the two consecutive hyperthermal bleaching 

events on D. cylindrus on the Florida Reef Tract (FRT).  

Chapter three focuses on the role of coral animal genetics in bleaching susceptibility 

and recovery and disease resistance and resilience in D. cylindrus on the FRT by 

addressing the following questions and hypotheses:  
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Do Dendrogyra cylindrus genotypes, and their associated physiological differences, 

affect the response to thermal bleaching, recovery, and disease resistance between corals 

within a site, between sites, or between regions of the FRT?  

• H-3.1 Dendrogyra cylindrus genotypes affect the response to thermal bleaching 

and recovery between colonies within a site, between sites, and/or between 

regions of the Florida Reef Tract. 

• H-3.2 Dendrogyra cylindrus genotypes affect the response to disease resistance 

and resilience within the Florida Reef Tract. 

Chapter four focuses on the role of endosymbiotic algae (family Symbiodiniaceae) in 

bleaching resistance, recovery, and disease resistance. The following questions and 

hypotheses are addressed:  

Are there differences in the baseline pre-bleaching Symbiodiniaceae assemblages 

between sites or between regions of the Florida Reef Tract? Is the response to 

hyperthermal stress and bleaching within and between sites and regions along the Florida 

Reef Tract correlated to the Symbiodiniaceae community within D. cylindrus? 

• H-4.1 Symbiodiniaceae assemblages in D. cylindrus colonies are different 

between sites and/or between regions of the Florida Reef Tract. 

• H-4.2 The response to hyperthermal stress and bleaching observed within and 

between sites and regions along the Florida Reef Tract are correlated to the 

Symbiodiniaceae community within D. cylindrus colonies. 

Chapter five focuses on the relationship between hyperthermal stress on Dendrogyra 

cylindrus and white plague disease prevalence and susceptibility on the Florida Reef 

Tract (FRT). The following questions and hypothesis are addressed:  
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How does hyperthermal stress effect the prevalence of white plague in D. cylindrus? 

Are there differences in disease prevalence in D. cylindrus between regions of the Florida 

Reef Tract? Is disease prevalence or incidence in D. cylindrus exacerbated by the 

cumulative effects of consecutive hyperthermal events?  

• H-5.1 There are differences between regions of the Florida Reef Tract in baseline 

pre-bleaching disease prevalence in D. cylindrus prior to anomalous hyperthermal 

events. 

• H-5.2 Hyperthermal stress and bleaching in D. cylindrus is correlated with 

increased disease prevalence or incidence, with differences between sites or 

between regions along the FRT (2014).  

• H-5.3 Increases in disease prevalence and/or incidence in D. cylindrus colonies is 

exacerbated by the cumulative effects of consecutive hyperthermal events on the 

FRT (2014 & 2015).  

Chapter six documents for the first time, black band disease in Florida’s 

Dendrogyra cylindrus and describes the temporal dynamics of this disease during two 

consecutive hyperthermal events on the FRT in 2014 and 2015. 

Chapter seven provides overall conclusions and synthesis of the research 

presented here. 
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1.7 Figures and Tables 

 

Figure 1. The iconic and unique Caribbean pillar coral, Dendrogyra cylindrus. 

Dendrogyra cylindrus occurs in low abundance throughout the Greater Caribbean. Its 
unique columnar structure provides important habitat complexity. (photo: C Lewis) 

Table 1.1. Seven genera within the family Symbiodiniaceae. 

Newly described genera for photosynthetic endosymbiotic dinoflagellates 
(‘zooxanthellae’) in the family Symbiodiniaceae (48). 

Genus    Etymology   Former clade designation 

Symbiodinium   living together, whirling clade A 
Breviolum  short & small   clade B 
Cladocopium  branch & plenty  clade C 
Durusdinium  tough & whirling  clade D 
Effrenium  living unrestrained  clade E 
Fugacium  ephemeral   clade F 
Gerakladium  old & branch   clade G
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CHAPTER 2: Experimental Design, Sampling Strategy, and Characterization of 

Thermal Profiles Along the Florida Reef Tract (2014-2016)  

Chapter two presents in detail the over-arching experimental design and sampling 

strategy used to address the aims and hypothesis for all subsequent data chapters 

(chapters three through six). Tri-annual monitoring and assessments (every four months) 

characterized the broader seasonal fluctuations in Florida’s Dendrogyra cylindrus 

population. Monthly assessments and sampling at three sites representative of the three 

regions of the reef tract (Upper, Middle, and Lower) allowed for more fine-scale 

inspection of bleaching recovery and disease processes in D. cylindrus following two 

consecutive hyperthermal bleaching events in 2014 and 2015. 

2.1 Experimental Design 

The questions and goals to be addressed in the current research were answered by 

rigorous field sampling, designed as a natural experiment, and conducted along the 

Florida Reef Tract (FRT) over the two-year period (April 2014 to April 2016). The 

approach allowed for comparisons of bleaching and disease susceptibility and resistance 

associated with the two hyperthermal events on the FRT. To explore the roles of the coral 

holobiont partners in the context of these stress events, the three hydrologically distinct 

regions within the FRT were considered as experimental variables (Figure 2.1: Upper, 

Middle and Lower regions (1-4)).  Potential differences among sites and among each 

region were also analyzed. The first time point, April 2014, was considered the baseline 

for both bleaching and disease, fully realizing that the FRT is not a pristine reef system 

and has experienced multiple stressors in recent decades, including previous hyper- and 
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hypothermal bleaching (5-7) and disease events (8-13). The present study marks the first 

time Florida’s D. cylindrus populations have been selectively targeted and extensively 

assessed to establish critical baseline information. Prior to 2014, the most recent 

hyperthermal bleaching observed in D. cylindrus on the FRT occurred in 2011 (pers. 

obs.). Bleaching was localized and not reef-wide, however D. cylindrus observed on 

recreational dives in the Lower Keys were severely bleached. Normal, beached, and pale 

status comprised the three categories in the bleaching parameter of the current natural 

experiment. Coloration was scored categorically using the CoralWatch Coral Health 

Chart as a reference (Figure 2.2; (14)). Additionally, disease status (healthy, diseased, 

and recovered from disease) was as a second factor within the natural experiment. As a 

result of consecutive hyperthermal events occurring in 2014 and 2015, differences 

between the two years were also compared, in the context of cumulative effects of 

disturbance and potential changes in resistance and resilience in terms of bleaching and 

disease factors. 

2.2 Colony assessment and field sampling 

To facilitate the experimental design, 96 D. cylindrus colonies were selected and 

identified for geographically stratified sampling at 18 sites throughout the Upper, Middle 

and Lower regions of the Florida Keys (32, 30, and 34 colonies respectively) (Figure 

2.1). To increase replicates within each region (number of sites and colonies assessed), an 

additional ten sites (67 colonies) were assessed at each time point, but not sampled to 

comply with permit restrictions. Selected sites ranged in depth from 4m to 10m. Colonies 

at all sites were mapped and photographed to create field identification sheets for each 
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colony to facilitate accurate repeated assessments and coral tissue sampling on 

subsequent visits.  

2.2.1 Tri-annual assessment and sampling of Dendrogyra cylindrus at 28 sites 

All 28 sites (143 colonies) were assessed three times per year, every four months 

(April/May, September, January) to capture seasonal variation in response to variables. 

The selected 96 colonies at 18 sites were also sampled for coral tissue total DNA analysis 

at each time point. Three of these sites were considered high-density sites defined as 

more than 20 colonies within a site (PCF: 174 colonies, site area 30m x 200m; Pickles: 

107 colonies, site area 25m x 200m; Coffins: 55 colonies, site area 40m x 150m; Figure 

2.1). A sub-set of colonies spatially distributed across each of the high-density sites was 

selected for sampling and marked with numbered plastic tags nailed to the substrate to 

assure positive identification of the colony for repeat sampling and assessments (PCF n= 

26, Pickles n=24, Coffins n=24).  

2.2.2 Monthly assessment and sampling during bleaching recovery at three sites 

To observe the post-bleaching recovery process at a finer scale between tri-annual 

assessments, additional sampling time points were added at a sub-set of the original 28 

sites (October, November, and December 2014, March, October, November 2015, and 

April 2016; Table 2.1) focusing on one representative site from each of the three regions 

of the Florida Keys (Upper: Pickles, Middle: Coffins, Lower: Marker 32; Fig 2.1). A total 

of 61 colonies were assessed but only 37 colonies were sampled for coral tissue during 

these targeted assessments to comply with our permits (Pickles n=12, Coffins n=12, 
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Marker 32 n=13). All originally selected and tagged colonies were assessed for bleaching 

and disease (Pickles n=24, Coffins n=24, Marker 32 n=13). 

2.2.3 Coral tissue sampling for total genomic DNA coordinated in conjunction with tri-

annual and targeted monthly assessments 

Tri-annual assessments and sampling of the selected D. cylindrus colonies 

commenced in April 2014 and continued through January 2016 (Table 2.1). Targeted 

monthly assessments and sampling, beginning in October 2014 and October 2015, 

followed the same assessment and sampling protocols described. Tissue sampling 

consisted of three to four polyps suctioned from each colony (either healthy, bleached, 

and/or diseased tissue) with a 35cc syringe as described in the Kemp micro-sampling 

method (15) and modified by Correa (16), to minimize damage to the colonies from 

repeated sampling over the duration of the study. Samples were transported back to shore 

on ice, filtered using 3.0µm and 0.2µm glass fiber filters, and preserved in 95% EtOH 

from which DNA was extracted using the DNeasy Plant Mini kit (Qiagen). All coral 

samples were collected under Florida Keys National Marine Sanctuary permit #FKNMS-

2014-004-A2. Preliminary tests of the syringe micro-sampling technique yielded 

satisfactory DNA extractions and PCR amplification so that more-invasive core sampling 

methods were not necessary. Comparative sampling of several colonies and multiple 

locations within the same colony (top, middle, and base) determined that only a single 

sample per colony for each tissue status (normal, pale, bleached, healthy, and diseased) 

would be necessary to capture the DNA signature of each colony (17). Total genomic 

DNA samples from these 96 sampled colonies was also included in a collaborative 
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project to determine genetic diversity of Florida’s D. cylindrus population (State Wildlife 

Grant SWG-13059: Florida Fish & Wildlife Research Institute; Dr. Iliana Baums, 

Pennsylvania State University; (17).  

At each sampling time point, colonies were also assessed for live coral tissue 

(visual estimate of percent live, percent old mortality, percent recent mortality). 

Bleaching status was determined using the CoralWatch Coral Health Chart developed by 

Siebeck et al. (14) (Figure 2.2), scaled from 1 (white) to 6 (heavily pigmented). This 

colorimetric chart served as proxy for symbiont density and chlorophyll a content.  

Disease status was determined by visual estimate of percent disease impact on 

colony. All sites were also assessed for presence of disease or bleaching in other coral 

species within two meters of each colony, but not quantified at the community level.  

2.3 Characterization of thermal profiles at Dendrogyra cylindrus sites 

Temperature data loggers (Onset HOBO Inc., Bourne, Massachusetts USA), 

secured to the base of colonies D. cylindrus colonies at 12 of the 28 sites along the FRT, 

recorded hourly temperatures between April 2014 and April 2016. Temperature data were 

used to calculate mean daily, mean monthly, and maximum weekly sea temperatures. 

Archived temperature data for 2004-2013 at Molasses Reef C-MAN station MLRF1, (18) 

(Figure 2.1) were used as a proxy to calculate ten-year mean monthly and mean monthly 

maximum sea temperatures in the Upper region of the  FRT. As a result of defunding and 

lack of maintenance of C-man stations in the Middle and Lower Keys since 2009, 

continuous data from these sites were unavailable for much of the 2004-2013 time period 
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used to calculate ten-year means on the FRT. Using the calculated mean monthly 

maximum temperatures at MRLF1, degree heating weeks (°C-weeks) were calculated for 

each site for July, August, and September 2014 and 2015 (19). 

2.4 Hyperthermal anomalies on the Florida Reef Tract in 2014 and 2015  

One of the strongest El Niño Southern Oscillation (ENSO) events on record 

occurred from May 2014 to June 2016 (20), causing staggering losses to coral reefs 

worldwide, as a consequence of consecutive bleaching events and subsequent disease 

outbreaks, including the FRT (21, 22). During August-September 2014 and 2015, 

unprecedented hyperthermal events occurred along the FRT (23) (Figure 2.3), resulting in 

mass coral bleaching. These events offered a unique opportunity not only to document 

the cumulative effects of hyperthermal disturbance in the context of spatial and temporal 

incidence of bleaching, post-bleaching recovery, and disease in the D. cylindrus 

population, but also allowed the exploration of the influences of the coral holobiont 

partners on differential bleaching and disease susceptibility and subsequent recovery in 

the context of cumulative disturbances on resistance and resilience.   

Florida’s reefs exceeded 5°C-weeks (degree heating weeks) during the summers 

of 2014 and 7°C-weeks in 2015, using NOAA’s Coral Reef Watch 50-km Satellite 

Monitoring (24, 25). Data loggers at study sites recorded sea water temperatures which 

exceeded the FRT bleaching index of 30.5°C (23), for 8 weeks in 2014 and 11 weeks in 

2015. Mean daily sea temperatures at study sites exceeded 29.0°C in early June 2014 and 

2015, considered the threshold temperature for many marine pathogens (26-28). By mid-

July 2014 and 2015, mean daily sea temperatures exceeded 30.5°C (Figure 2.3A). Mean 
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monthly temperatures during these two events exceeded the ten-year mean monthly 

temperatures (+ 1 std dev) recorded at Molasses Reef (MLRF-1) 2003-2013 (Figure 

2.3B).  

The following data chapters will address the observations, patterns, and results of 

this natural experiment in the context of two consecutive hyperthermal events on the 

FRT. 
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2.5 Figures and Tables 

 

Figure 2.1. Study sites on the Florida Reef Tract where monitoring and sampling were 
conducted on the pillar coral Dendrogyra cylindrus.  

In April 2014, the Florida population of D. cylindrus was comprised of approximately 
745 live colonies at 155 known sites along the Florida Reef Tract (FRT; grey and yellow 
circles). Geographically stratified tri-annual monitoring and sampling at 28 of these sites 
began April 2014 through April 2016 (yellow circles). Some locations labeled here 
represent multiple sites: All colonies were sampled at SAND – Sand Key SPA & Sand 
Key north; Marker 32 – MRK 32-1, MRK 32-2, MRK 32-3; BHP – Bahia Honda Pillars 
1-5; SOMB – Sombrero SPA1 & SPA2, Sombrero Out; CRIT; LKLD – LKLD-1 & 
LKLD-2. Three high-density sites were partially sampled: PCF (18 of 174 colonies), 
Pickles (PICK3:14 of 107 colonies), Coffins (24 of 55 colonies). Pickles (Upper Keys), 
Coffins (Middle Keys), and Marker 32 (Lower Keys) sites (red stars) were sampled and 
assessed monthly during bleaching recovery in 2014 and 2015. *MLRF1 – location of 
Molasses Reef C-man buoy used to calculate 10-year mean monthly temperatures 
(N25.012 W80.376). 
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Figure 2.2 Coral Health Chart used to calculate the 
level of bleaching of Dendrogyra cylindrus colonies 
monitored between 2014 and 2016.  

Coloration of live tissue was determined by comparing 
with the gradient of color on the Coral Health Chart 
(https://www.projectaware.org) (14). Color scores were 
further broken down (0.5) if color appeared between 
two values. Percent of each color value on an 
individual colony was estimated visually. Chart score 
(column A) was multiplied by estimated proportion of 
colony live tissue (column B) to calculate colony score for each chart score value 
(column C). All colony scores for each coloration value (column C) were added to 
determine Total Colony Coloration Score. 

Calculation example: 

Bleach 
Status 

(A) 
Coral Health Chart 

Score 

(B) 
Estimated proportion of 
total live tissue on colony 

(C) 
Colony Score 
(col A x col B) 

Bleached 1.0 .20 1.0 x 0.20 = 0.20 
1.5 0 0 

 
Pale 

2.0 .30 2.0 x 0.30 = 0.60 
2.5 0 0 
3.0 0 0 

Healthy 3.5 .50 3.5 x 0.50 = 1.75 
4.0 0 0 

Total Colony Coloration Score 1.00 2.55 
 

https://www.projectaware.org/
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Figure 2.3. Water temperatures at three sites in the Florida Keys recorded from April 
2014 to April 2016.  

(A) Mean daily temperatures from in situ HOBO data loggers at three sites (B) Mean 
monthly water temperatures at three sites. Red dotted line (30.5°C) indicates the 
bleaching threshold for the FRT. Black dashed line (29°C) indicates optimal temperature 
threshold for many marine pathogens. Black dotted line is calculated 10-year mean 
monthly water temperatures (+ 1 std dev) for Molasses Reef 2004-2013 (MLRF1, 
National Data Buoy Center). Gaps in data are due to lost or corrupted data loggers. 
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Table 2.1. Timeline of sampling and assessments conducted from 2014 to 2016.  

Tri-annual sampling and assessments (green) of all 96 colonies at 18 sites, plus 10 
assessment only sites, across the FRT. Hyperthermal bleaching events (yellow) in 
August/September 2014 and 2015. Post-bleaching recovery sampling and assessments 
(orange) at three targeted sites (Marker 32: Lower Keys, Coffins: Middle Keys, Pickles: 
Upper Keys). A final assessment of the three targeted recovery sites in April 2016. 

2014 
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 
       bleaching    

2015 
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 
       bleaching    

2016 
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 
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CHAPTER 3: The Role of the Coral Animal Genotype in Bleaching and Disease 

Resistance in Florida’s Dendrogyra cylindrus. 

3.1 Abstract 

 Population genetic diversity on reef ecosystems may ultimately be the key to 

survival for many organisms faced with biotic and abiotic stressors in the Anthropocene. 

Differential physiological performance is often associated with genotypic diversity of the 

organism. Here we explored the genetic diversity within Florida’s Dendrogyra cylindrus 

population and potential associations with resistance to bleaching and disease and 

potential resilience during recovery, through two consecutive hyperthermal events on the 

Florida Reef Tract in 2014 and 2015. Florida’s D. cylindrus population largely consisted 

of single unique genets not shared between sites, with most sites consisting of fewer than 

five colonies (1). Few sites contained colonies belonging to more than one unique genet 

however, three high-density sites (>20 colonies) appeared to be clonal, each comprised of 

single unique genets, likely a result of asexual fragmentation. A sub-set of 28 D. 

cylindrus sites was assessed every four months for bleaching and disease status. Colonies 

associated with four genets showed full or partial resistance to both bleaching and 

disease. Colonies associated with six genets were resistant to disease following both 

hyperthermal events in 2014 and 2015 but showed variable bleaching resistance in both 

years. Colonies belonging to two disease-susceptible genets were bleaching-resistant 

during the second hyperthermal event. It is hoped that identifying genets associated with 

bleaching and/or disease resistance within the D. cylindrus population will help to inform 
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management strategies for conservation and restoration of this critically threatened 

species. 

3.2 Introduction 

 Genetic diversity is the cornerstone to ecosystem health and resilience, especially 

when faced with biotic and abiotic stressors associated with a changing climate (2-4). As 

coral reefs worldwide are pushed to the limits of their tolerances, it is hoped that pockets 

of genetic diversity will survive to provide hope for the future of these critical ecosystems 

(5). As with many marine organisms, genetic diversity in the coral animal is often 

essential for successful sexual reproduction and recruitment locally, and dependent on 

connectivity and larval transport for reseeding neighboring reefs after disturbances (6-

10). While live coral cover and genetic diversity on many reefs is declining as a result of 

environmental disturbances, at least some surviving corals may produce more 

thermotolerant larvae, perhaps better adapted to the changing climate (11-14). Coral 

animal genotypes have been linked to thermotolerance and bleaching resistance despite 

having the same dominant endosymbiont type or without changing their photosynthetic 

algae (15-17). Thermotolerance has also been associated with thermal priming affecting 

gene expression (18). Additionally, host genotype has played a role in differential disease 

resistance (19, 20). Thus, it is imperative to maintain or enhance genetic diversity in coral 

reef ecosystems which may provide a source for yet-unknown resistance and resilience in 

a changing climate. 

 The aim of chapter three, building on the work of Chan et. al. which defined the 

genetic identities and population structure of Florida’s D. cylindrus (1), was to determine 

if some genotypes were associated with bleaching and/or disease resistance. Such 
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information will be invaluable in future restoration efforts for this species, such as 

guiding propagation of resistant genets, understanding differential growth rates between 

genets, and determining genet compatibility for successful sexual reproduction. 

3.3 Methods 

 Experimental design and sampling strategy to achieve the aims of this chapter 

were described at length in Chapter 2. Specifically, a sub-set of Florida’s D. cylindrus 

population (143 colonies at 28 sites distributed along the FRT) were selected for tri-

annual assessments of bleaching and disease status beginning in April 2014 (Chapter 2: 

Figure 2.1). Following hyperthermal bleaching events in August-September 2014 and 

2015, three of these sites were selected as representative of the three regions (Upper, 

Middle, and Lower Keys) where 61 colonies were assessed monthly, in between triannual 

assessments, to capture bleaching recovery processes at a finer scale (Pickles n=24, 

Coffins n=24, and Marker 32 n=13; indicated by red stars Figure 2.1). All D. cylindrus 

colonies at selected sites were assessed for bleaching status (normal, pale, bleached) and 

disease status (healthy, diseased, recovered) as described in chapter 2. Colonies were 

considered ‘recovered’ if no signs of active disease were present, but disease had been 

observed in the previous assessment. Colonies were removed from analysis if more than 

three assessments were missing from the data set, leaving 131 colonies at 27 sites for 

analysis (Table 3.1). 

3.3.1 Determining genotypic identity and genetic diversity in Florida’s Dendrogyra 

cylindrus population. 

In conjunction with assessments and monitoring field work, coral tissue was also 

collected and preserved from 51 sites (n=217 colonies) in a collaborative effort to 
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determine genetic diversity of Florida’s D. cylindrus population (Florida Fish & Wildlife 

Research Institute; Dr. Iliana Baums, Pennsylvania State University) (1), including the 28 

tri-annual assessment sites. Coral tissue samples were later collected from the remaining 

100 sites to complete the population genetics analysis for Florida’s D. cylindrus. As 

described in Chan et al., 11 microsatellite loci were developed using next-generation 454 

sequencing of genomic DNA from D. cylindrus (1). Microsatellites and their flanking 

regions were identified using SciRoKo perl script and primers designed in Primer 3 (21). 

Samples were screened using multiplex PCR reactions, visualized on the ABI3730 

(Applied Biosystems) automated DNA sequencer, and then analyzed using GeneMapper 

Software 5.0 (Applied Biosystems). 

3.3.2 Statistical analysis 

 Little was known about the genetic diversity or structure of D. cylindrus prior to 

planning experimental design and implementing assessments and sampling for this study. 

Because of the unexpected nature of the genetic structure of Florida’s D. cylindrus 

population (1), analysis of data associated with genotypes often lacked statistical power 

because of the lack of replication (typically one colony per genet and one genet per site). 

Thus, results for bleaching and disease resistance or susceptibility for each genet were 

primarily descriptively interpreted on the basis of repeated monitoring and assessments of 

individually identified D. cylindrus colonies. 
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3.4 Results 

3.4.1 Demographics of Dendrogyra cylindrus population and genetic diversity along the 

Florida Reef Tract 

 In 2014, Florida’s D. cylindrus population was comprised of 745 colonies at 155 

known sites (Chapter 2: Figure 2.1; and Neely & Lewis, in prep). Chan et al. identified 

162 unique genets within the population. Most sites consisted of one to fewer than ten 

colonies and usually represented a single unique genet. The few high-density sites (>20 

colonies), located in the Upper and Middle Keys, while not sampled exhaustively to 

comply with permits, were assumed to be clonal or consisting of single unique genets, 

likely due to centuries of asexual fragmentation and scattering of ramets from a single 

parent colony. As described in Chapter 2 Experimental Design, a sub-set of the total 

Florida D. cylindrus population was selected for tri-annual bleaching and disease status 

assessments from April 2014 through April 2016 (Table 3.1 and Table 3.2; 131 colonies 

at 27 sites, representing 32 genets). The Lower Keys region consisted of more known D. 

cylindrus sites and therefore more genets (typically one unique genet per site and usually 

a single colony per site), but all sites had fewer than 12 colonies i.e., no large high-

density clonal sites.  

3.4.2 Bleaching resistant genets associated with Dendrogyra cylindrus during two 

hyperthermal bleaching and recovery events 2014-2016. 

 Colonies associated with thirty-two unique D. cylindrus genets were observed for 

differential bleaching responses to hyperthermal events in 2014 and 2015. In September 

2014, colonies belonging to 24 genets bleached, however three genets were scored as 

pale, perhaps indicating partial resistance to thermal bleaching (Figure 3.1A indicated by 
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[*], Table 3.3). These partially bleaching-resistant genets were each represented by a 

single D. cylindrus colony; two located in the Middle Keys and one in the Lower Keys. 

These colonies returned to normal coloration by January (Figure 3.1B, Figure 3.3). The 

same three genets showed differential bleaching responses during the second 

hyperthermal event in 2015. The colony belonging to genet D1066 bleached while 

singleton colony D1079 (Looe Key West) was again only pale (Figure 3.1D) and all had 

once again recovered normal coloration by January and April 2016 (Figure 3.1E & F). 

Additionally, singleton colonies associated with five genets bleached during the first 

hyperthermal event in September 2014 (Figure 3.1A, indicated by [^]) and only paled 

during the second event in 2015 (Figure 3.1D; Table 3.3), returning to normal coloration 

in January 2016 (Figure 3.1E).  

Three high-density sites, each represented by unique genets, also bleached in 

September 2014 (Figure 3.1A; Coffins, PCF, Pickles). However, colonies belonging to 

two genets (D1131 Coffins [Middle Keys], D1259 Pickles 3 [Upper Keys]) returned to 

normal coloration by January 2015 while most colonies belonging to genet D1198 (PCF-

Pillar Coral Forrest, Upper Keys) were still pale and one colony was dead (Figure 3.1B). 

At the April 2015 assessment, many colonies of these genets experienced spring paling or 

loss of coloration (Figure 3.1C). During the second hyperthermal event in September 

2015, most colonies belonging to D1131 (Coffins) were scored as only pale (20 of 24) 

while 14 colonies associated with genet D1259 (Pickles 3) did not bleach and 10 colonies 

were scored as only pale (Figure 3.1D). Colonies of genet D1198 (PCF) once again 

bleached in September 2015 (one colony was pale). By January and April 2016, all genet 
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D1131 and D1259 had returned to normal coloration, as had most of the genet D1198 

colonies (Figures 3.1E & F).  

3.4.3 Disease resistant genets associated with Dendrogyra cylindrus during two 

hyperthermal bleaching and recovery events 2014-2016. 

 A baseline for disease in Florida’s D. cylindrus population was established in 

April 2014. Four genets had colonies with active white plague (WP; Figure 3.2 marked 

with [v]) and occurred in all three regions (Table 3.2; Upper: D1259, D1198; Middle: 

D1105; Lower: D1170). During the 2014 hyperthermal event on the FRT, ten additional 

genets had colonies with disease in September 2014 (Table 3.3A), while colonies 

associated with ten genets remained disease-free through January 2015 (Figure 3.3B, 

Table 3.3). Colonies associated with six of these genets remained healthy i.e., disease-

resistant, through April 2016 (Figure 3.3A-F, marked with [*]). Colonies associated with 

these disease-resistant genets were located within all regions of the FRT (Upper: D1376; 

Middle: D1055, D1172; Lower: D1079, D1120, D1194; Table 3.2 and Table 3.3). Some 

diseased colonies recovered, showing no signs of disease, but had active disease at 

subsequent assessments, indicating no acquired immunity to WP (Figure 3.3A-F).  

Three high-density sites, composed of three unique genets, had some colonies 

with active disease in September 2014, while some colonies had recovered from disease 

since April 2014 (Figure 3.3A; D1131: Coffins, D1198: PCF, D1259: Pickles). Disease 

persisted in colonies at PCF and Pickles (Upper Keys) through April 2016, however all 

colonies at Coffins were disease free in April 2015 (Figure 3.3C). During the 2015 

hyperthermal bleaching and recovery, colonies associate with all three genets at the high-
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density sites had active disease in September 2015 (Figure 3.3D) which persisted until 

April 2016 (Figure 3.3F). 

3.4.4 Dendrogyra cylindrus sites with more than one unique genet showed highly variable 

bleaching and disease resistance. 

 Five sites, located in all three regions of the FRT, contained colonies associated 

with eleven different genets (Table 3.4). No genets were shared between sites and often 

only represented by one or two colonies within that site. Evaluating bleaching and disease 

resistance between genets within a single site allowed some limited comparisons, 

eliminating site-specific environmental factors. The Crocker Reef 4 site in the Upper 

Keys had one colony identified as genet D1376 and two colonies identified as genet 

D1377. Genet D1376 was disease-resistant both in Year 1 and Year 2 however bleaching 

status was not assessed in September 2014 or 2015 (Figure 3.3A-F, Table 3.4). Genet 

D1377 was partially disease-resistant, with no disease evident in this colony in Year 1 but 

active disease in Year 2 after the second hyperthermal event. Sombrero SPA2 site in the 

Middle Keys had two colonies identified as genet D1172 and one colony identified as 

D1055 (Table 3.2 and Table 3.4). Genets D1172 and D1055 were disease resistant 

throughout both hyperthermal events, however, colonies were not assessed in September 

2014 (Figure 3.3A) and both colonies bleached in September 2015 (Figure 3.3D, Table 

3.4).  

Three Lower Keys sites were found to have more than one unique genet within 

each site. At the Bahia Honda Pillar site, seven colonies were identified as D1028 and a 

single colony was identified as D1248 (Table 3.2). Genet D1028 was not resistant to 

bleaching or disease through either hyperthermal event (Figure 3.3A-F, Table 3.4). The 
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colony identified as genet D1248 bleached both years (Figure 3.3A and 3.3D) and was 

disease resistant throughout the first hyperthermal recovery 2014 but had active disease 

during the second hyperthermal event in September 2015 (Figure 3.4A-F). The Sand Key 

SPA site had 10 colonies identified as genet D1229 and a single colony as genet D1187 

(Table 3.2). Genet D1229 and D1187 colonies were not resistant to bleaching or disease 

in Year 1 or Year 2 (Figure 3.3A-F; Table 3.4). Three unique genets were identified at 

the Marker 32-3 site (Table 3.2). Two colonies were identified as genet D1170 and three 

colonies identified as genet D1109 were not resistant to bleaching or disease (Figure 

3.3A-F, Table 3.4). Two colonies identified as genet D1120 within this site were not 

bleaching resistant in either September 2014 or 2015 (Figure 3.3A and 3.3D), however 

they appeared to be disease-resistant through April 2016 (Table 3.4). It was noted that 

one of the colonies identified as genet D1120 was dead by April 2015, apparently the 

result of bleaching, as no signs of disease were observed in this colony (Figure 3.3C). 

3.4.5 Bleaching and disease resistance in Dendrogyra cylindrus colonies associated with 

some genets on the FRT through two hyperthermal events in 2014 and 2015. 

Colonies associated with six different genets were resistant to disease (WP) 

through two hyperthermal bleaching and recovery events on the FRT in 2014 and 2015 

(Figure 3.3A-F marked by [*]), Table 3.3; Upper: D1376; Middle: D1172, D1055; 

Lower: D1079, D1120, D1194). Three additional genets were resistant to disease in Year 

1 but were not disease-resistant in Year 2 (Upper: 1377; Lower: D1248, D1246). 

Colonies associated with six genets bleached in September 2014 but were pale in 

September 2015 (Figure 3.1A and 3.3D marked by [^]; Table 3.3). Four of these partially 

bleaching-resistant genets were not disease-resistant and occurred across all regions of 
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the FRT (Upper: D1188, Middle: D1131, Lower: D1109, D1170). One of the six partially 

bleaching-resistant genets was not disease-resistant in Year 1 but resistant in Year 2 

(Lower: D1102) and the sixth partially bleaching-resistant genet was disease-resistant in 

both Year 1 and Year 2 (Lower: D1194; Table 3.3). And finally, one Lower Keys colony 

associated with genet D1079 was partially resistant to bleaching and only paled in both 

Year 1 and Year 2 and was also disease-resistant both years. 

Two genets at two high-density sites (Coffins and Pickles) did not show 

indications of disease resistance in either year yet had very different bleaching status 

between two consecutive hyperthermal events (Figure 3.5 and Figure 3.3A and 3.3D). 

Genet D1259 was identified in 24 of the 107 colonies at the Pickles-3 site (Upper Keys). 

It is likely that all other colonies at this site also belonged to the same genet as a result of 

asexual fragmentation. While all colonies bleached in September 2014 (Figure 3.1A), 

half of the assessed colonies were scored as pale (partially bleaching-resistant) and the 

other half were normal coloration (bleaching-resistant) in September 2015 and two 

colonies were dead (Figure 3.1D).  Genet D1131 was identified in 24 colonies at the 

Coffins site (Middle Keys). Another clonal site of 55 colonies, all colonies bleached in 

September 2014 (Figure 3.1A), but most colonies only paled in September 2015 (partially 

bleaching-resistant) and were more susceptible to disease in Year 2 (Figure 3.1D). 

3.5 Discussion 

Population demographics and genetic diversity have never before been 

investigated in D. cylindrus because of its historically low abundance throughout its 

Caribbean range. Chan et al (2018) developed microsatellite markers to determine the 

genetic structure of Florida’s D. cylindrus population concurrent with the monitoring and 
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assessments in the present study. The findings from Chan and collaborators demonstrated 

a unique single-genet-per-site structure of this population as well as the unique single-

genet clonal identities of those few existing high-density sites (1). A clearer 

understanding of how these sites may have been established over centuries of asexual 

fragmentation and dispersal from the founding parent colony was supported by 

observations of pillars toppled and displaced up to 50m during a single hurricane 

(Hurricane Irma - September 2017; pers. obs.). 

3.5.1 Evidence of partial bleaching resistance in Dendrogyra cylindrus colonies 

associated with some genets during two consecutive hyperthermal events in 2014 and 

2015 

 Genotypic differences of the host have been associated with thermal tolerance and 

bleaching resistance in other coral species but not always associated with shifts in their 

algal symbiont community (16, 17). Dendrogyra cylindrus colonies associated with these 

32 genets showed highly variable responses to one or both hyperthermal events in 2014 

and 2015 and may provide insights into different mechanisms for resistance. 

Transcriptomic studies have shown evidence of genomic stress response resulting in 

physiological resilience to thermal stress (18, 22). Other studies have shown that corals 

exposed to more variable thermal histories may be more resistant to future thermal stress 

events, in the context of intervening normal years allowing for full recovery (22-24). In 

scenarios when thermal stress is followed by years of normal temperatures, extended 

periods of non-stressful conditions may allow the coral animal to respond and recover 

important biological functions more fully. Annual hyperthermal stress events, as occurred 

on the FRT in 2014 and 2015, may have exceeded the capacity of the coral to fully 
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recover, or in fact caused irreparable thermal damage to physiological processes. Here we 

show that some genets were associated with complete bleaching one or both years, while 

other genets only paled (partial bleaching-resistance) in Year 1 but bleached in Year 2, 

supporting the hypothesis that the ability of the coral animal to adapt and recover may 

have been exceeded with annual hyperthermal stress. In other genets, the bleaching 

response was reversed, and genets associated with bleaching in Year 1 were partially 

(i.e., pale) or fully resistant to bleaching (i.e., normal) in Year 2. And finally, one genet 

was associated with partial bleaching resistance in both years. These observations may 

indicate acclimatization or resistance to recurrent hyperthermal events.  

As none of these bleaching-resistant genets were shared between sites, variable 

bleaching resistance between years may also have been a result of variable thermal 

stresses at each site, either intensity or duration i.e., number of days water temperatures 

exceed the bleaching threshold, or maximum daily temperatures. Temperature loggers 

were not deployed at many of these single colony sites so direct comparisons between 

sites could not be made. Additionally, bleaching resistant genets were associated with 

colonies at sites within all regions of the FRT, although six of the ten genets were located 

at sites in the Lower Keys region. Other environmental stressors, such as fluctuations in 

turbidity, water clarity, salinity, and pH were not measured in the present study, but may 

also have been factors contributing to perceived resistance or susceptibility. Another 

explanation of variable bleaching resistance may also lie within another member of the 

holobiont, the algal endosymbiont community, which will be explored further in Chapter 

four. 
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3.5.2 Evidence of disease resistance in Dendrogyra cylindrus colonies associated with 

some genets during two consecutive hyperthermal events in 2014 and 2015. 

 Host genotypic differences have been associated with disease resistance in some 

coral species (19, 20). Muller et al. (2018) demonstrated in a laboratory setting that some 

Acropora cervicornis (staghorn coral) genets may lose their disease resistance with 

hyperthermal stress and bleaching (25). Additionally, it has been reported that A. palmata 

(elkhorn coral) may be more susceptible to disease after a bleaching event (26). 

Conversely, Merselis et al. (2018) have shown that A. cervicornis genets that bleached 

because of thermal stress may actually be more resistant to disease, hypothesizing that 

immune suppression by the host to maintain symbiosis may be temporarily diverted in 

bleached corals to enhance immune response and therefore disease resistance (27). The 

innate immune response may also play a role by allowing the coral to adapt to thermal 

stress to become more disease resistant (28-30). Dendrogyra cylindrus colonies 

associated with these genets again showed highly variable susceptibility to disease 

following one or both hyperthermal events in 2014 and 2015. Six genets showed no 

disease-resistance either year. Three genets were initially resistant to disease in Year 1 

but became susceptible following the second hyperthermal event in 2015, while six other 

genets were disease-resistant both years (Table 3.3). Three D. cylindrus genets that 

bleached one or both years were disease-resistant, further supporting the work of 

Merselis et al. (2018). However, one genet associated with a single Lower Keys colony 

was both partially bleaching-resistant (i.e., pale) and disease-resistant in both Year 1 and 

Year 2. As noted above, other environmental parameters may have contributed to these 

observations. The Lower Keys site with the single bleaching and disease resistant colony 
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did not have a separate temperature logger to compare water temperatures to other sites. 

Of note, this single resistant Lower Keys colony was not near other conspecifics to 

exchange pathogens, either water-borne or by vector transport.  

Other factors may contribute synergistically to disease susceptibility. Thermally 

stressed corals that paled or were partially bleached might not have been as nutritionally 

compromised as fully bleached coral, which also may contribute to disease-resistance on 

the part of the coral animal. Consecutive thermal stress events, as experienced on the 

FRT in 2014 and 2015, may not have allowed sufficient recovery time for the biological 

functions of the coral animal and its associated protective microbiome to return to pre-

bleaching status. Elevated water temperature has been shown to impact pathogenicity of 

disease-causing organisms, further contributing to disease susceptibility (31-36). Thus, 

we should expect increased pathogenicity with more frequent scenarios of recurrent or 

annual hyperthermal events. 

3.5.3 Comparisons of differential bleaching and disease resistance within a single site 

containing multiple unique Dendrogyra cylindrus genets. 

In a living reef environment, it is often difficult to control for all variables to 

determine direct cause and effect. As a consequence of the single-genet-per-site structure 

of the Florida D. cylindrus population, confounded by typically single-colony-per-genet, 

elimination of between site variables was often difficult. A lower Keys site (Marker 32-3) 

contained corals with three different unique genets (Table 3.4). Two genets were 

associated with corals that were not bleaching or disease resistant in either 2014 or 2015. 

However, the third genet was associated with two colonies that were disease resistant in 

both years despite sensitivity to consecutive bleaching. Disease resistance in these two 
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colonies at Marker 32-3, in spite of their lack of thermal tolerance, may truly indicate a 

disease resistant genet, when compared to the other two genets at this site, while all 

experiencing similar environmental conditions. While the response of the single genet to 

hyperthermal stress at the Marker 32-3 site may support the findings of Merselis et al. 

(2018), colonies of the other two genets at this site, sharing the same environmental 

conditions, did not.  

Other factors to consider in disease resistance among these and other genets may 

also include the age and/or size of the colony. Large and presumably older colonies, may 

experience senescence and lowered immunity with age, decreasing their ability to resist 

disease. Younger colonies, if not ramets of an existing genet, may be a result of 

successful sexual recombination and recruitment, resulting in a genet better adapted to 

more recent environmental conditions. Baums et al. (2012) suggests that more thermally-

tolerant larvae can be the product of surviving parent colonies adapted to more recent 

conditions (14). Younger, smaller colonies may also expose less surface area to 

pathogens in the water column, providing refuge, and perhaps disease resistance, by size 

class. 

3.5.4. Genets resistant to bleaching and/or disease and the management implications for 

conservation and restoration of Florida’s Dendrogyra cylindrus 

 Identifying unique genets that show indications of resistance to environmental 

stressors is of critical importance for future conservation and restoration efforts. The 

resilience of the colonies associated with such genets is often the cornerstone for 

establishing a restoration program adapted to a changing reef ecosystem. However, even 

less-resistant genets are important to maintain and propagate, and thus preserve, genetic 
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diversity in a population. As there appears to be no clear-cut genotypic winners and 

losers, at least in the context of recurrent hyperthermal events, each genet may provide 

some unique and as yet unexplored adaptive advantage to future generations of D. 

cylindrus. Through successful propagation and reintroduction efforts of multiple genets, 

sexual reproduction can provide a more well-rounded self-sustaining ecosystem. Through 

genetic diversity, sexual recombination may result in even more tolerant genets better 

adapted to a changing climate. 
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 3.6 Figures & Tables 

 

Figure 3.1. Bleaching status of genets associated with D. cylindrus colonies through two 
consecutive hyperthermal events on the FRT 2014-2016.  

All colonies associated with these genets had normal coloration at the time of initial 
baseline assessments in April 2014 (A) The first hyperthermal event occurred in August-
September 2014. Colonies associated with 24 genets bleached (cream bars) while 
colonies associated with three genets were considered pale or partially bleaching resistant 
(light green bars and marked with [*]). Unique genets found in colonies at high-density 
sites (Coffins: Middle Keys; PCF and Pickles: Upper Keys) were all bleached. (B) In 
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January 2015, colonies associated with the three partially bleaching-resistant genets (*) 
had recovered normal coloration (dark green bars), however many colonies remained 
pale. Colonies associated with three other genets remained bleached. (C) In April 2015, 
several colonies, including one of the three partially bleaching-resistant colonies (*), was 
again pale. (D) The second hyperthermal event occurred in August-September 2015. 
Singleton colonies associated with six genets were pale or partially bleaching-resistant 
(light green bar marked with [^]) in September 2015 but bleached in September 2014. 
One of the partially bleaching-resistant genets in September 2014 (*) was again pale 
during the second hyperthermal event in 2015. Coffins and Pickles colonies associated 
with their site-specific genets were partially (light green) or fully bleaching-resistant 
(dark green) during the 2015 hyperthermal event. Colonies associated with most genets 
had recovered by (E) January 2016 and (F) April 2016. Four genets were associated with 
colony mortality. 

 

 

Figure 3.2. April 2014 baseline disease status of genets associated with D. cylindrus 
colonies on the Florida Reef Tract.  

Colonies associated with four genets had signs of active white plague (WP) in April 2014 
(golden bar marked with [v]). Some colonies sharing single unique genets at each site 
(PCF and Pickles) showed signs of active disease while other colonies were healthy (dark 
green bar). 
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Figure 3.3. Disease status of genets associated with D. cylindrus colonies through two 
consecutive hyperthermal events on the FRT 2014-2016.  

Asterisk (*) indicates disease -resistant genets. (V) indicates genets with active disease at 
the time of April 2014 baseline assessments. (A) During the 2014 hyperthermal event, 
colonies associated with 13 genets showed signs of active disease (golden bar). Some 
colonies previously diseased in April 2014 (marked with [v]) had recovered (no active 
disease, light blue bar). Colonies associated with six genets (marked with [*]) remained 
healthy through (B) January 2015 and (C) April 2016. (D) During the 2015 hyperthermal 
event, colonies associated with six genets showed signs of disease in September 2015 but 
were healthy in September 2014 (partial disease resistance). Colonies associated with the 
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six disease-resistant genets in 2014 remained disease free in (E) January 2016 and (F) 
April 2016. 

 

Table 3.1. Summary of thirty-two D. cylindrus genets within three regions of the Florida 
Reef Tract assessed for bleaching and disease resistance.  

Thirty-two genets, located at 27 sites across the three regions, were associated with 131 
D. cylindrus colonies. While 154 colonies at 28 sites were initially selected for 
assessment, sites and/or colonies were eliminated from analysis if more than three 
assessment data points were missing. 

FRT Region  # Sites # genets # colonies 
Upper Keys 6 7 53 
Middle Keys 7 8 33 
Lower Keys 14 17 45 

total 27 32 131 
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Table 3.2. Twenty-seven sites containing thirty-two unique genets identified in D. 
cylindrus colonies, within three regions of the Florida Reef Tract.  

A sub-set of Florida’s 155 D. cylindrus sites were selected based on experimental design. 
Twenty-seven sites distributed amongst three regions of the Florida Reef Tract (FRT) 
were sampled and assessed tri-annually. Eighteen of these sites, represented by only one 
or two colonies, were unique genets. Five sites with three to eleven colonies had multiple 
genets, unique to each site. Three high-density sites (>20 D. cylindrus colonies) were 
sub-sampled within each site and identified as single genets unique to each site. (a) High-
density sites that were sub-sampled. (b) Sites targeted for monthly assessments October, 
November, and December during bleaching recovery 2014 and 2015. 

Florida Keys 
Regions 

Sites 
# colonies at site 

(# assessed) 

Coral Animal Genets 

# colonies Genet ID* 

Upper Keys 

Conch Reef 4 1 1 D1042 

Crocker Reef 3 2 1 D1103 

Crocker Reef 4 3 
2 D1377 

1 D1376 

Elbow Reef 3 1 1 D1188 

Pickles Reef 3a, b 107 (25) 25 D1259 

Pillar Coral Forrest a 174 (21) 21 D1198 

Middle Keys 

Coffins Patch Pillars a, b 55 (25) 25 D1131 

Critter Ridge 1 1 D1105 

Long Key Ledge 1 1 1 D1076 

Long Key Ledge 2 1 1 D1072 

Sombrero Out 1 1 D1240 

Sombrero SPA 1 1 D1066 

Sombrero SPA 2 3 
2 D1172 

1 D1055 

Lower Keys 

Bahia Honda Pillars 8 
7 D1028 

1 D1248 

Bahia Honda Pillars 2 2 2 D1061 

Bahia Honda Pillars 3 2 2 D1183 

Bahia Honda Pillars 4 1 1 D1128 

Bahia Honda Pillars 5 1 1 D1245 

Looe Key West 1 1 D1079 

Marker 32-1 b 7 1 D1092 

Marker 32-2 b 1 1 D1402 
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Marker 32-3b 7 
2 D1170 

3 D1109 

2 D1120 

Middle Sambos 1 1 D1404 

Sand Key North 1 1 D1102 

Sand Key SPA 11 
10 D1229 

1 D1187 

Western Dry Rocks 1 1 D1246 

Western Dry Rocks 2 1 1 D1194 
*Chan et al. 2019                            

Table 3.3 Colonies associated with bleaching and disease-resistant genets through two 
consecutive hyperthermal events in 2014 and 2015 on the Florida Reef Tract.  

Colonies associated with 16 genets varied in their response to hyperthermal stress during 
two consecutive hyperthermal events on the FRT. One genet showed bleaching resistance 
in both September 2014 and 2015 however one genet showed partial bleaching resistance 
as its colony paled in 2014 but bleached in 2015. Colonies associated with seven genets 
bleached in 2014 and only paled in 2015, indicating possible acquired bleaching-
resistance. Colonies associated with ten genets were disease-resistant during the first year 
of recovery from the 2014 hyperthermal bleaching event. Colonies associated with three 
of the genets showed partial disease-resistance and were no longer disease-resistant 
following the second hyperthermal event in 2015. Unk - unknown bleach status; Asterisk 
(*) indicates genets with full or partial bleaching and disease resistance. 

 Bleaching Resistant Disease Resistant 

Genet Region Site # 
colonies Sep-14 Sep-15 Year 1 Year 2 

D1188 Upper ELBO3 1 no partial no No 
D1259 Upper PICK3 24/107 no   yes no No 
D1377 Upper CROC4 2 unk unk yes no 
D1376 Upper CROC4 1 unk unk yes yes 
D1131 Middle Coffins 24/55 no   partial no no 
D1066 Middle SOMB SPA1 1 partial no no no 
D1172 Middle LKLD2 2 unk no yes Yes 
D1055 Middle SOMB SPA2 1 unk no yes Yes 
D1109 Lower MRK 32-3 3 no partial no No 
D1170 Lower MRK 32-3 2 no partial no No 
D1248 Lower BHP 1 no   no yes No 
D1079* Lower LOOE-W 1 partial partial yes Yes 
D1120 Lower MRK 32-3 2 no no yes Yes 
D1102* Lower SAND-N 1 no partial no Yes 
D1194* Lower WDRY2 1 no partial yes yes 
D1246* Lower WDRY1 1 partial unk yes no 
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Table 3.4 Five sites with multiple D. cylindrus genets showed variable bleaching and 
disease resistance between colonies.  

Five sites on the FRT contained colonies associated with eleven unique genets. All genets 
at these sites showed no indication of bleaching resistance during hyperthermal events in 
both September 2014 and 2015. Colonies associated with four genets showed disease 
resistance in both Year 1 and Year 2 of hyperthermal recovery. Colonies associated with 
two genets were no longer disease resistant following the second hyperthermal event. unk 
- unknown bleach status. 

Multiple genets per site Bleaching Resistant Disease Resistant 

genet region Site # 
colonies Sep-14 Sep-15 Year 1 Year 2 

D1376 Upper CROC4 1 unk unk yes yes 
D1377 2 unk unk yes no 
D1172 Middle SOM SPA2 2 unk no yes yes 
D1055 1 unk no yes yes 
D1028 Lower BHP 7 no no no no 
D1248 1 no no yes no 
D1229 Lower SAND SPA 10 no no no no 
D1187 1 no no no no 
D1170 

Lower MRK 32-3 
2 No no no no 

D1109 3 No no no no 
D1120 2 No no yes yes 
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CHAPTER 4: Recurring Episodes of Thermal Stress Shift the Balance from a 

Dominant Host-Specialist to a Background Host-Generalist Zooxanthella in the 

Threatened Pillar Coral, Dendrogyra cylindrus. 

 

Chapter four consists of the original manuscript submitted to Frontiers in Marine 

Science, 18 August 2018. This body of work was accepted 23 September 2018, revised 

08 January 2019, and published 23 January 2019. The publication is included in the 

Appendix. 
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episodes of thermal stress shift the balance from a dominant host-specialist to a 

background host-generalist zooxanthella in the threatened pillar coral, Dendrogyra 

cylindrus. Frontiers in Marine Science, 6, 5.  

 

4.1 Abstract  

Most scleractinian corals form obligate symbioses with photosynthetic 

dinoflagellates (family Symbiodiniaceae), which provide differential tolerances to their 

host. Previously, research has focused on the influence of symbiont composition and the 

dynamic processes of symbiont repopulation during single episodes of hyperthermal 

events, followed by years of less-stressful conditions. In contrast, this study characterized 

for the first time, the role of Symbiodiniaceae species changes in response to annually 

recurring hyperthermal events, a scenario soon expected to become the norm. 

Consecutive hyperthermal events during summer 2014 and 2015 along the Florida Reef 



 
 

63 
 

Tract offered a unique opportunity to study bleaching susceptibility and recovery under 

recurrent annual hyperthermal scenarios (Figure 4.0 graphical abstract). We utilized 

Illumina amplicon sequencing of the chloroplast 23S DNA region to assess with fine 

resolution the Symbiodiniaceae diversity associated with pillar coral, Dendrogyra 

cylindrus. Our findings show diverse assemblages of Symbiodiniaceae species and that 

some cryptic members are not transient associates but persistent and ecologically 

relevant, especially during recurrent annual warming events. This was evidenced by 

changes in relative abundance from the typically dominant endosymbiont, Breviolum 

dendrogyrum, to B. meandrinium a species common to corals in the family Meandrinidae 

but occurs at background densities in most colonies of D. cylindrus. The rise in 

abundance of B. meandrinium associated strongly with bleaching resistance in the coral 

host during two consecutive hyperthermal events. In some cases, host-compatible 

background symbionts can rapidly increase in abundance during episodes of stress and 

may impart physiological resilience to rapid environmental change; and thus, represents a 

potentially important ecological process by which symbiotic corals acclimatize to 

changing ocean conditions. 

4.2 Introduction 

Coral reefs worldwide have experienced dramatic declines in recent decades due 

to natural and anthropogenic factors (1-3). Global impacts of climate change, resulting in 

hyperthermal coral bleaching events (loss of symbiotic photosynthetic algae), have 

become more frequent in recent decades and are projected to be annual events by 2050, 

or sooner on some reefs (2, 4, 5). One of the strongest El Niño Southern Oscillation 

(ENSO) events on record occurred from May 2014 to June 2016 (6), causing staggering 
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losses to coral reefs worldwide, including the Florida Reef Tract, due to consecutive 

bleaching events and subsequent disease outbreaks (3, 7).  

Most scleractinian corals form obligate symbiotic relationships with 

photosynthetic dinoflagellates within the family Symbiodiniaceae. This partnership is 

critical for coral health and vital to enhanced calcification in reef-building corals (8, 9). 

Understanding the role of Symbiodiniaceae diversity in bleaching susceptibility and 

recovery, and the physiological constraints and advantages they confer on their coral 

hosts has become of increasing importance with escalating climate change (10-12). 

Currently there are seven described genera and a similar number of other divergent 

lineages requiring generic names (13). Inter- and intra-generic diversity displays clear 

physiological differences (14-19) and provide differential environmental tolerances and 

sensitivities to the symbiotic partnership (20-22). Seminal work by Berkelmans and van 

Oppen (23) demonstrated experimentally that corals can acquire increased thermal 

tolerance as a direct result of changes in the symbiont genus dominating their tissues by 

shuffling existing types already present within the coral host (24).  

Molecular approaches to Symbiodiniaceae diversity and community assemblages 

now allow us to further investigate the functional significance of genetic diversity within 

genera, thus prompting further questions into the roles of the symbionts during 

environmental stressors (18, 25). Using higher resolution DNA markers, it has become 

apparent that there is a very large number of species in this family (14, 26-31). 

Additionally, advances in high-throughput amplicon sequencing technology have allowed 

fine-scale exploration of the Symbiodiniaceae community composition by discovering 

more cryptic, previously undetected symbiont types occurring at abundances less than 
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0.01% (32-37). While various kinds of Symbiodiniaceae can be detected in trace amounts 

from host tissues, interpreting the ecological and functional significance of these requires 

caution (38). Still reef corals are often compatible with more than one symbiont species 

and differences in their physiological tolerances maybe shift population dynamics 

allowing for a symbiont at low abundances to proliferate within the coral animal thus 

changing the composition of the symbiont population to one that is better adapted to 

prevailing environmental conditions (23, 24, 39-41).  

Studies conducted over the last two decades have been fundamental in gauging 

the response and the ability of corals to acclimatize to increased temperature extremes 

under scenarios in which isolated thermal anomalies have been followed by years of non-

bleaching temperatures. However, the 2014-2016 ENSO phenomenon led to a recurrent 

thermal stress scenario, resulting in mass coral bleaching which detrimentally impacted 

coral reefs worldwide, including the Florida Reef Tract, during the summers of 2014 and 

2015 (42). These consecutive hyperthermal events, not experienced on Florida’s reefs 

since the 1997-1998 ENSO (43), offered a unique opportunity to document spatial and 

temporal bleaching and post-bleaching recovery under conditions not frequently seen, but 

expected to become the norm in the near future based on current predictions (2, 4, 44).  

This study targeted the rare and iconic pillar coral, Dendrogyra cylindrus 

(Ehrenburg, 1834), a slow-growing columnar species typically found in low abundance 

throughout its Caribbean range (Fig. 4.1). This species is currently categorized as 

‘vulnerable’ under the International Union for Conservation of Nature (IUCN) Red List 

criteria (45) and listed as ‘threatened’ under the US Endangered Species Act (46) due to 

its susceptibility to bleaching, disease, and habitat degradation. We focused on three 
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representative sites distributed geographically along the Florida Reef Tract (Fig. 4.2). For 

this study we used Illumina amplicon sequencing of the chloroplast 23S hyper-variable 

region (cp23S-HV) to characterize for the first time with fine resolution, the 

Symbiodiniaceae community assemblage associated with D. cylindrus colonies at three 

sites and their temporal dynamics through recurrent hyperthermal events over a two-year 

period. We detected the presence of low abundance background Symbiodiniaceae genera; 

and, at one location, observed changes in the symbiont population from the normal host-

specialist species, Breviolum dendrogyrum, to a sibling species common to corals across 

the family Meandrinidae. The dramatic increase in abundance of this species 

corresponded to enhanced colony recovery from bleaching and resistance to consecutive 

hyperthermal events. 

4.3 Methods 

4.3.1 Field assessments and sampling 

Geographically stratified monitoring and field sampling of 163 D. cylindrus at 29 

sites across the Florida Reef Tract (FRT), conducted every four months from April 2014 

to April 2016, allowed for comparison before, during and after the occurrence of two 

consecutive hyperthermal bleaching events in 2014 and 2015. Three of these sites 

(Pickles: Upper Keys, N=107 colonies; Coffins: Middle Keys, N= 55 colonies; Marker 

32: Lower Keys, N=16 colonies; represented by stars in Fig 4.2) were selected spatially 

to represent each region and logistically due to the greater number of D. cylindrus 

colonies present at each site for replication of observations. These sites were targeted for 

more frequent sampling to more closely observe changes during bleaching and recovery 
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(2014: September, October, November, and December; 2015: January, March, April, 

September, October, and November; and 2016: January and April). Sites ranged in depth 

from 4m to 8m. Colonies at all sites were mapped and photographed to create field 

identification sheets for each colony to facilitate accurate repeat assessment and 

sampling. Pendant data loggers (Onset HOBO Inc., Bourne, Massachusetts USA), 

secured to the base of colonies at Pickles, Coffins, and Marker 32 sites, recorded hourly 

temperatures between April 2014 and April 2016 (Figure 4.3). Temperature data was 

used to calculate mean daily, mean monthly, and maximum weekly sea temperatures at 

each site. Archived temperature data for 2004-2013 at Molasses Reef C-MAN station 

MLRF1 (Figure 4.2), located in the Upper Keys 4.2 kilometers from Pickles site (47), 

was used as a proxy to calculate ten-year mean monthly and mean monthly maximum sea 

temperatures on the FRT (Table 4.1). Using the calculated mean monthly maximum 

temperatures at MRLF1, degree heating weeks (°C-weeks) were calculated for each site 

for July, August, and September 2014 and 2015 (48). 

At each sampling time point, D. cylindrus colonies were assessed for live coral 

tissue (visual estimate of percent live, percent old mortality, percent recent mortality i.e., 

bright white, recently-exposed skeleton), and coral bleaching status. Colony color scores 

were assigned using the CoralWatch Coral Health colorimetric chart developed by 

Siebeck et al (49) and scaled from 1 (white) to 6 (heavily pigmented; Fig. 4.4), served as 

proxy for symbiont density and chlorophyll a content. The CoralWatch Health Chart was 

not utilized as a color reference until September 2014, therefore, colony coloration scores 

for April 2014 were estimated after reviewing colony photos. Colonies were sampled at 
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each time point using a low-impact syringe micro-sampling technique (50) to minimize 

damage to the colonies from repeated sampling (sampling: Pickles n=10 colonies, 

Coffins n=10 colonies, Marker 32 n=12 colonies). Briefly, tissue from three to five 

polyps per colony was aspirated using a 30cc syringe, transported back to shore on ice, 

then filtered through a 13mm Swinnex filter system (Millepore Corporation, Billerica, 

Massachusetts, USA), using a 3.0 µm filter disk (A/D glass fiber filter, Pall Corporation, 

Port Washington, New York USA). Each filter disk was preserved in 95% molecular 

grade ethanol.  

4.3.2 Total genomic DNA extraction 

DNA was extracted using modified DNeasy Plant Mini kit protocols (Quiagen 

Corporation, Valencia, California USA) (26). Briefly, half of each sample filter was 

placed in 400µl supplied lysing buffer and ground with a sterile pestle. Sterile acid-

washed glass beads (425-600µm; Sigma-Aldrich, Saint Louis, Missouri, USA) were 

added and shaken for 3-5 minutes to disrupt symbiont cell walls, followed by the addition 

of 20µl proteinase K (Promega Corporation, Madison, Wisconsin USA) and incubated at 

56°C for 1-2 hours. Standard kit protocols were then followed for the remainder of the 

extraction.  

4.3.3 Cp-23S-HV parallel amplicon sequencing and Symbiodiniaceae community 

analysis 

Amplicon sequencing diversity assays of the Symbiodiniaceae communities was 

performed on Illumina MiSeq platform with 2x300bp paired-end read capability, utilizing 

length variation in Domain V of large sub-unit rDNA chloroplast 23S hyper-variable 
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region (cp-23S-HV (51); Table 4.2) at the Molecular Research LP sequencing facility 

(MR DNA; Shallowater, Texas UAS). Resulting raw sequence data (Read1 & 

Read2.fastq file format) were processed using MR DNA pipeline analysis. Briefly, 

paired-end sequence reads (r1 and r2) were joined after quality control (Q25) trimming of 

the ends, barcoding was removed, and sequences with <150 base pair overlap were 

discarded. Remaining sequences were de-noised, OTUs were generated, and chimera 

sequences were removed. Clustering of OTUs was determined at 97% similarity (3% 

divergence) across all samples. Resulting OTUs were taxonomically classified using 

BLASTn against a selected database created from cp23S Symbiodiniaceae sequence data 

from NCBI (www.ncbi.nlm.nih.gov) to determine relative abundance of Symbiodiniaceae 

types in D. cylindrus. To confirm identities of the most abundant OTUs, a BLAST-search 

of GenBank was performed (https://www.ncbi.nlm.nih.gov/genbank). Further 

identification of the two most abundant B1 symbiont type OTUs was independently 

verified using Symbiodiniaceae microsatellite analysis (B7Sym15 primers, Table 4.2)  

(52). Briefly, selected samples (dominant OTU ≥70% relative abundance) were PCR-

amplified using the B7Sym15 primers and visualized on ABI 3100 Genetic Analyzer. 

Peaks were identified in each sample and compared to known Symbiodiniaceae samples 

in the LaJeunesse Lab (31). 

4.3.4 Statistical analysis 

Repeated measures analysis of variance (repeated measures two-way ANOVA, 

α=0.05) was used to compare water temperature profiles between the three sites (Pickles, 

Coffins, and Marker 32) through two consecutive bleaching and recovery periods (April 

http://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/genbank
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2014 through April 2016). CoralWatch bleaching scores for colonies at the three sites 

were also analyzed, using repeated measures ANOVA (α=0.05; Pickles n=10, Coffins 

n=10, Marker 32 n=12), to compare bleaching and recovery differences between sites and 

between years. Symbiodiniaceae community dynamics at the three sites, represented by 

the relative abundance of OTUs generated by amplicon sequencing of the cp23S-HV 

region, were also compared to water temperatures between sites and between bleaching 

events during this same period, using three-way ANOVA (α=0.05; Pickles n=6, Coffins 

n=6, Marker 32 n=6).  

4.4 Results 

4.4.1 Baseline Symbiodiniaceae community diversity in Dendrogyra cylindrus  

Illumina amplicon sequencing of the cp23S-HV gene region showed a single 

OTU (or phylogenetic species) within the genus Breviolum (formerly clade B; (13) to be 

the dominant Symbiodiniaceae in D. cylindrus pre-bleaching (April 2014), ranging from 

75% to 81% relative abundance across sites (Table 4.3). Members within Symbiodinium, 

Cladocopium, and Durusdinium (formerly clades A, C, and D respectively; (13) were 

also detected in cryptic low abundance (<0.1%). Amplicon diversity analysis yielded 266 

OTUs (0.97% similarity cut-off). All but fourteen OTUs were taxonomically classified as 

genus Breviolum (formerly clade B Symbiodinium). Moreover, the combined relative 

abundance of all 252 Breviolum OTUs represented >99% of the Symbiodiniaceae 

community at all three representative sites along the Florida Reef Tract (Pickles, Coffins, 

and Marker 32). Two hundred thirty-two Breviolum OTUs were rare members of the 

Symbiodiniaceae community detected at <0.01% relative abundance. The two most 

abundant OTUs accounted for >80% of the symbiont community at all three sites. These 
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two sequences were both identified as sub-genera Breviolum type cp-23S B184 (or ITS2 

type B1) phylotypes in GeneBank. Using Symbiodiniaceae microsatellite analysis 

(B7Sym15 primers, Table 4.2), the identity of these two sequences was verified as ITS2 

types B1-4k and B1-3 (species novo: Breviolum dendrogyrum and B. meandrinium, 

respectively; (13, 31). There was no difference in relative abundances of B. dendrogyrum 

or B. meandrinium compared between sites in April 2014 prior to bleaching (two-way 

ANOVA α=0.05 p>0.05).  

Ninety-four OTUs belonging to the genus Symbiodinium (formerly clade A) were 

detected in cryptic low abundance at Pickles, Coffins, and Marker 32 in April 2014 

(Table 4.3). These OTUs were confirmed by BLAST-search as belonging to 

Symbiodinium strains A2, A3, and A13 (strain A13, putatively S. necroappetens). Three 

cryptic Cladocopium OTUs (formerly clade C) were detected only at Pickles and Marker 

32 sites. A single OTU, classified as Durusdinium (strain D1a, putatively D. trenchii), 

was only detected at Marker 32 in April 2014.  

4.4.2 Consecutive hyperthermal bleaching on the Florida Reef Tract in 2014 and 2015 

Florida’s reefs exceeded 5°C-weeks (degree heating weeks) during the summers 

of 2014 and 7°C-weeks in 2015, based on NOAA’s Coral Reef Watch 50-km Satellite 

Monitoring (53, 54) (Table 4.1B). Data loggers at the three study sites recorded sea water 

temperatures which exceeded the FRT bleaching index of 30.5°C (42) (Fig. 4.3), causing 

severe bleaching in most coral species across the FRT (pers. obs. and (7). Maximum 

weekly temperatures in 2014 exceeded the FRT bleaching threshold (30.5°C) 10 weeks at 

Coffins and 8 weeks at Marker 32 (Figure 4.3, Table 4.1A). Data loggers were lost at the 
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Pickles site from April to September 2014 and thus meaningful temperature analysis 

could not be included. In 2015, maximum weekly temperatures exceeded the bleaching 

threshold 12 weeks at Pickles and 13 weeks at both Coffins and Marker 32. Using mean 

maximum monthly calculations from MRLF1, degree heating weeks at Coffins (Middle 

Keys) exceeded 7°C-weeks in 2014 and 5°C-weeks in 2015. Degree heating weeks at 

Marker 32 (Lower Keys) was nearly 3°C-weeks in 2014 and 4°C-weeks in 2015. Degree 

heating weeks at Pickles (Upper Keys) as 0°C-weeks in 2015 (no data from 2014). 

Utilizing the FRT bleaching threshold (30.5°C), calculated DHW was greater at the three 

sites (Table 4.1A). The number of weeks maximum water temperatures exceeded the 

bleaching threshold were greater in 2015. Summarizing water temperatures from May 

through October (i.e., warmest summer months) in 2014 and 2015 shows similar 

temperature characteristics between sites (Figure 4.4). Interquartile temperature ranges, 

medians, and maximums were not remarkably different. 

4.4.3 Differential bleaching resistance and resilience  

The CoralWatch Coral Health colorimetric chart developed by Siebeck et al 

(2006) was used to determine the bleaching status of colonies. Healthy, non-thermally 

stressed colonies ranged in color between 3.5 and 4.5 on this chart (Figure 4.5). Colonies 

with scores between 1.5 and 3.5 were considered pale, while colonies with scores <1.5 

were considered bleached.  

In response to hyperthermal events in 2014 and 2015, patterns of bleaching and 

recovery differed between sites as well as between years (Figure 4.6). During the first 

bleaching event on the FRT (August-September 2014), all D. cylindrus colonies, 
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including at Pickles, Coffins, and Marker 32 sites were severely bleached (Figure 4.6, 

Table 4.4). Colonies at Marker 32 were the most severely bleached, followed by Coffins 

colonies and finally Pickles (two-way ANOVA; p<0.01 α=0.05). Pickles and Coffins 

colonies regained normal coloration by December 2014 and January 2015. From January 

to April 2015, colonies at these two sites paled (two-way ANOVA, p<0.01 α=0.05). 

Marker 32 colonies recovered slowly, remaining pale through April 2015 (Figure 4.6, 

Table 4.4).   

During the second hyperthermal event in August-September 2015, site-specific 

differences in bleaching and recovery were observed. Colonies at Coffins and Marker 32 

again bleached, although Coffins colonies were less severely bleached than September 

2014, indicated by higher coloration scores (two-way ANOVA, p<0.01 α=0.05; Figure 

4.6, Table 4.4).  However, unlike these two sites, Pickles colonies were more resistant to 

bleaching in 2015, with no significant change in colony coloration from April to 

September 2015 (two-way ANOVA, p=0.82 α=0.05). While there was not bleaching 

observed in these colonies during the hyperthermal event, there was an increase of colony 

coloration from September to October (p=0.01 α=0.05) which remained constant through 

January 2016 (Figure 4.6, Table 4.4). Coffins colonies also recovered normal coloration 

by January 2016. Both Pickles and Coffins colonies again paled during the 2016 winter-

spring transition (p=0.01 α=0.05). Although many colonies at Marker 32 remined pale 

after September 2015, they appeared to recover slightly when compared with the 

previous year, indicated by near-normal coloration scores in November 2015 and January 

2016 (mean scores: 3.46 ±0.33 and 3.76 ±0.33; two-way ANOVA, p<0.01 α=0.05). 
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Colonies at Marker 32 were considered pale again in April 2016 (mean score: 3.01 ±1.13; 

one-way ANOVA p=0.06 α=0.05; Figure 4.6, Table 4.4). 

4.4.4 Breviolum species switched dominance associated with hyperthermal events  

The Symbiodiniaceae community in D. cylindrus was dynamic in response to 

hyperthermal bleaching and the subsequent recovery processes following two 

consecutive bleaching events. Relative abundance of the endosymbionts varied between 

three representative sites, especially the two species within Breviolum described above 

(Figure 4.7). At the Pickles site (Upper Keys) and associated with the August-September 

2014 hyperthermal event, previously cryptic B. meandrinium (<10% relative abundance) 

became the dominant endosymbiont species in October 2014 and persisted through April 

2015 while B. dendrogyrum declined in relative abundance through December 2014 to 

20.60% but then slowly increased to 33.35% through April 2015, (Figure 4.7A, Table 

4.3A), but not to pre-bleaching abundance of 75.68% in April 2014. At the Coffins site 

(Middle Keys), B. dendrogyrum remained dominant through bleaching and recovery in 

2014. Breviolum meandrinium remained at low abundance but showed a slight but 

significant increase from October to December 2014 (two-way ANOVA p=0.01 α=0.05), 

reaching maximum 20.15% relative abundance in April 2015 (Figure 4.7B, Table 4.3B). 

Similar to the Coffins site, B. dendrogyrum remained the dominant species at Marker 32 

(Lower Keys; Figure 4.7C, Table 4.3C).  

In response to the second hyperthermal event in August-September 2015, the two 

most abundant Breviolum species were again dynamic and site-specific. At the Pickles 

site, fluctuation in dominance was again detected in which B. dendrogyrum briefly 

increased in abundance and re-established dominance by September 2015 (53.41%; two-
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way ANOVA, p=0.02, α=0.05) however, this was short-lived. Relative abundance of B. 

meandrinium slowly declined through September 2015 to 30.28% but then quickly 

increased during the recovery months to persist as the dominant endosymbiont through 

April 2016 (51.55%).  From September 2015 to April 2016, B. dendrogyrum slowly 

declined to 29.97% (Figure 4.7A, Table 4.3A). At the Coffins site, B. dendrogyrum 

remained the dominant species throughout the second bleaching and recovery (2015) and 

returned to similar abundance observed in April 2014 baseline (Figure 4.7B, Table 4.3B). 

Breviolum meandrinium reached a maximum abundance of 20.39% in September 2015 at 

this site and declined to 0.12% in January 2016, remaining unchanged through April 

2016 (two-way ANOVA p<0.01). And finally, at the Marker 32 site, relative abundance 

of B. dendrogyrum and B. meandrinium did not change from April to September 2015 or 

thereafter, and B. meandrinium remained cryptic through April 2016 (Figure 4.7C, Table 

4.3C). 

4.4.5 Bleaching resistance and resilience  

The magnitude of change in relative abundance of dominant Breviolum 

dendrogyrum and cryptic B. meandrinium during two consecutive hyperthermal 

bleaching events was site specific and closely associated with differential resistance and 

resilience to bleaching and recovery. Colonies at the Pickles site (Upper Keys) bleached 

severely during August-September 2014 and then recovered by December 2014 (Figure 

4.6, Table 4.4). Concurrently, the relative abundance of dominant endosymbiont, B. 

dendrogyrum, declined while cryptic B. meandrinium increased to become the dominant 

symbiont. Relative abundance of these two species did not return to pre-bleaching levels 

(Figure 4.7A, Table 4.3A).  During the second hyperthermal event in August-September 
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2015, while B. dendrogyrum briefly regained dominance by September, B. meandrinium 

once again became the dominant species, persisting through recovery until April 2016. 

This change was closely associated with the observation that the colonies at Pickles did 

not bleach during the second hyperthermal event (Figure 4.6, Table 4.4), indicating 

acquired resistance to annual thermal stress (water temperatures exceeding 30.5°C, 

Figure 4.3). This resistance was strongly associated with a fluctuation in 

Symbiodiniaceae species, specifically an increase and persistence in abundance of B. 

meandrinium as it became the dominant species.  

Colonies at the Coffins site (Middle Keys) also bleached severely in August-

September 2014 (Figure 4.6, Table 4.4). As normal colony coloration returned in 

December 2014, cryptic B. meandrinium slightly increased in abundance, reaching 

20.15% by April 2015 (Figure 4.7B, Table 4.3B). Although B. meandrinium never 

became the dominant Breviolum species at Coffins, colonies did not bleach as severely 

the second year and recovered quickly to normal coloration by January 2016 (Figure 4.6, 

Table 4.4). This strongly suggests at least partial resistance to bleaching associated with 

an increased relative abundance in cryptic B. meandrinium. Colonies at Marker 32 

(Lower Keys) bleached severely both in 2014 and 2015 (Figure 4.6, Table 4.4) while B. 

meandrinium remained at cryptic low levels throughout, reaching a maximum abundance 

of only 2.60% in September 2014 (Figure 4.7C, Table 4.3C).  

4.4.6 Symbiodinium, Cladocopium, and Durusdinium persisted at cryptic low abundance 

Although Breviolum (formerly clade B) remained the dominant genus in D. 

cylindrus through two consecutive bleaching and recovery events, cryptic Symbiodinium, 

Cladocopium, and Durusdinium species (formerly clades A, C, and D, respectively) were 
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also detected and often persisted through recovery (Table 4.3). Symbiodinium spp. were 

detected in cryptic low abundance (<0.01% to 5.38%) from April 2014 through 

December 2014 and then not thereafter at Pickles site (Upper Keys). At the Coffins site 

(Middle Keys), Symbiodinium spp. were detected intermittently through both bleaching 

and recovery events. At Marker 32 (Lower Keys), Symbiodinium spp. were detected in 

April 2014 and persisted at cryptic low abundance though April 2016 (≤0.2%).  

Cladocopium spp. were only detected from April to October 2014 and then not 

after at the Pickles site (Table 4.3). Cladocopium spp. were detected at Coffins after the 

first bleaching in September 2014 and persisted intermittently during recovery until 

November 2015. At Marker 32, Cladocopium spp. were detected at cryptic levels in the 

April 2014 baseline sampling and persisted through April 2016. 

A single OTU, classified as Durusdinium sp. and identified by BLAST-search as 

type D1a (putatively D. trenchii, formerly S. trenchii), was first detected in cryptic low 

abundance at Pickles and Coffins sites in October 2014 after the 2014 bleaching event 

and then intermittently through the second bleaching and recovery period until January 

2016 (Table 4.3). At Marker 32, Durusdinium sp. was detected pre-bleaching in April 

2014 and then intermittently throughout both bleaching and recovery periods through 

April 2016.   

4.5 Discussion 

Research over the last two decades has documented the influence of the symbiont 

composition and the dynamic processes of symbiont repopulation during the coral 

response to single episodes of hyperthermal stress events, followed by years of normal 

environmental conditions (55, 56). Our study characterized changes in symbiont species 
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within some colonies of Dendrogyra cylindrus in response to a consecutive hyperthermal 

event. This study contributes to further understanding how coral-algal mutualisms may 

respond through shifts in partnerships under long-predicted environmental scenarios 

(annual bleaching)  (24, 57), which coral reefs worldwide are now experiencing (3). Our 

findings show unexpectedly diverse assemblages of Symbiodiniaceae associated with 

Dendrogyra cylindrus, and that one low abundant host-compatible species was not 

transient associates but persistent and ecologically relevant symbionts that play a role 

during thermal stress. Furthermore, site-specific shifts in Symbiodiniaceae species 

dominance were associated with greater bleaching resistance during consecutive 

hyperthermal events. 

4.5.1 Symbiodiniaceae community dominated mainly by a single symbiont along with a 

diverse assemblage of cryptic associates 

By revealing a Symbiodiniaceae community represented by 266 OTUs, with the 

majority in very low relative abundances (<0.1%), our findings indicate that past studies 

have considerably underestimated the actual diversity of endosymbionts associated with 

D. cylindrus, and likely many other coral species, although at least some of these rare and 

cryptic OTUs may in fact be sequencing artifacts (32). Most symbiont types detected in 

our study (>99%) belonged to the genus Breviolum spp. (formerly Clade B). Three other 

genera, Symbiodinium, Cladocopium, and Durusdinium (formerly clades A, C, and D, 

respectively) were detected at extremely low levels (0.001% - 5.38%) in D. cylindrus. 

Discovery of the tremendous sequence diversity within the genus Breviolum associated 

with D. cylindrus opens new questions regarding whether these symbiont types are the 

reflection of population variability within species or are indeed independent evolutionary 
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lineages (i.e., species). Symbiont assemblages across sites and within individual D. 

cylindrus colonies were dominated by a single Breviolum species of endosymbiont. Using 

single copy microsatellite markers (see Methods), it was confirmed that this symbiont 

corresponds to the recently described Breviolum dendrogyrum. Furthermore, low 

concentrations of Breviolum meandrinium, which was also identified and confirmed with 

the use of diagnostic microsatellites, increased in relative abundance as a function of 

environmental stress. Breviolum meandrinium is common to corals in the family 

Meandrinidae from shallow habitats (1-10 m) across the Greater Caribbean. Dendrogyra 

cylindrus is one notable exception of the family in that it harbors a unique host-specialist, 

which appears adapted to associating only with this host. These findings highlight how a 

host-generalist, B. meandrinium, normally rare in D. cylindrus, can proliferate in colonies 

subjected to severe stress.  

4.5.2 Changes in balance among host-compatible Symbiodiniaceae during recurrent 

environmental stress 

It has been suggested that most cryptic Symbiodiniaceae are transitory and likely 

provide minimal ecological significance for their coral hosts (38). However, recent 

studies have challenged the transitory insignificance and suggested that rare symbionts 

tend to be non-random clusters of coral host-symbiont communities and may provide 

environmental resilience for the coral holobiont (58, 59).  In agreement with changing 

views of the importance of the rare symbiont communities, our data show a clear 

association between a site-specific increase and persistence in relative abundance of the 

low abundance background B. meandrinium and the overall stability of the host–

symbiont community during subsequent hyperthermal stress. At the Pickles site in the 
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Upper Keys region of the Florida Reef Tract, B. meandrinium increased in relative 

abundance during the first hyperthermal bleaching event in 2014 and rapidly switched to 

become the dominant symbiont during the first seven months of recovery (Figure 4.7A, 

Table 4.3). After the first hyperthermal event in 2014, the change in the relative 

abundances of the two species persisted for at least eleven months, but by September 

2015 under normal condition, B. dendrogyrum displaced B. meandrinium as the dominant 

symbiont. This reversal of endosymbiont assemblages to pre-bleaching abundances is 

consistent with other studies that have monitored changes before and after non-recurrent 

hyperthermal events, where changes in symbiont during bleaching episodes reverted to 

the original state after several months or even years (18, 24, 60, 61). Nevertheless, the 

reversion to the normal symbiont was short-lived as B. meandrinium again become the 

dominant symbiont species among colonies at the Pickles reef in response to the second 

hyperthermal event in August-September 2015. These host-symbionts combinations 

persisted and, at the time of the last sampling for this study in April 2016, B. 

meandrinium remained the dominant species (Figure 4.7A, Table 4.3A). Importantly, 

corals at this site did not lose color during this second event (Figure 4.6); the relative 

abundance of B. meandrinium was 3-4 times higher during the onset of the 2015 

hyperthermal event in comparison to pre-bleaching levels in April 2014. Under scenarios 

of annual hyperthermal bleaching events, impacted coral communities may not have 

sufficient time to fully recover their stable host-symbiont pairings. 

The Adaptive Bleaching Hypothesis posits that when corals bleach, they expel 

less thermally tolerant endosymbionts and then acquire new, more favorable 

endosymbionts, allowing them to acclimatize and adapt to environmental stressors (62-
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64). Berkelmans & van Oppen (2006) demonstrated that thermal stress may induce 

changes in the dominant symbionts among experimental corals, thus providing thermal 

tolerance and decreased mortality to the coral animal, supporting the hypothesis that the 

presence of a thermally tolerant endosymbiont, even in low abundance, may impart an 

ecological advantage to their coral host (61). Sampayo et al. (2009) demonstrated that 

shifts in dominance between closely related species in the genus Cladocopium can also 

impart differential thermal tolerance and, ultimately, differential colony survival. 

However, unusual host-symbiont partnerships that emerge during bleaching events revert 

to the original state after normal environmental conditions return(65). 

It appears that during a scenario of hyperthermal stress events, followed by 

multiple years of less-stressful environmental conditions, new host-symbiont 

combinations that appear following the bleaching event are short-lived and the 

Symbiodiniaceae community eventually reverts back to its original state (18, 23). 

Reverting back to the original pre-bleaching Symbiodiniaceae community is likely as 

normal host-compatible symbionts are more effective a growing inside their hosts under 

non-stressful conditions (20). However, under sustained disturbance events, such as 

annually recurring hyperthermal events, new thermally-tolerant partner pairings may be 

longer-lived and maintain higher relative proportions within the Symbiodiniaceae 

community as the period of less-stressful environmental conditions between disturbances 

becomes shorter (24). Such was the case at the Pickles site where relative abundance of 

B. meandrinium remained near 50% and, while trace amounts of Durusdinium persisted 

through April 2016, Symbiodinium sp. and Cladocopium sp. disappeared altogether 

(Table 4.3A). Our data did not show a shift in dominance at the other two sites (Figures 
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4.7B & 4.7C) and, unlike Pickles colonies, they bleached again during the second 

hyperthermal event in August-September 2015 (Figure 4.6). However, at the Coffins site 

(Middle Keys), we detected an increase in relative abundance of B. meandrinium to 

20.39% during the second hyperthermal event (August-September 2015; Figure 4.7B, 

Table 4.3B), which was associated with only paling in most colonies at this site (Figure 

4.6, Table 4.4). While B. meandrinium did not become the dominant Symbiodiniaceae 

species, perhaps some threshold abundance may also impart at least partial bleaching 

resistance for the coral animal (25), as was observed at the Coffins site. The Lower Keys 

site (Marker 32) showed minimal fluctuation in the endosymbiont community but also 

bleached more severely and recovered more slowly after both bleaching events.  

This difference across sites between 2014 and 2015 seems not linked to different 

temperature profiles during the two hyperthermal events, since all sites experienced 

similar exposure to elevated temperatures above the 30.5°C bleaching threshold for the 

FRT (Figures 4.3 and 4.4). While we cannot explain why the shift of Symbiodiniaceae 

assemblages did not occur across all sites, it is important to note that baseline abundance 

of the cryptic B. meandrinium prior to the first hyperthermal event in April 2014 was 

higher in Pickles colonies than the other two sites (Table 4.3). Perhaps some critical 

minimum abundance may be required for a rare symbiont to out-compete dominant 

symbionts when the opportunity arises, such as during bleaching and recovery. However, 

the relative abundance of B. meandrinium in Coffins colonies was higher (20.15%) prior 

to the second hyperthermal event and still we did not see a shift in symbiont assemblages 

during the second bleaching and recovery event at this site. The increase in abundance of 

B. meandrinium in 2015 but no switch in dominance suggests the existence of other site-
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specific factors influencing the dynamics and competition processes of symbiont 

repopulation after environmental stressors. Alternatively, genotypic differences in the 

coral animal may contribute to the observed differential symbiont flexibility, but their 

role is thus far unknown. Recent work on genetic diversity in Florida’s D. cylindrus 

population indicates that each of these three sites is represented by unique coral 

genotypes (66). All colonies at the Pickles site comprised one genotype, indicating a high 

level of clonality at this local. The same pattern of clonality was also detected for 

colonies at the Coffins site. The Marker 32 site had the most genetic diversity, composed 

of five different coral animal genotypes, and yet was the population most affected by 

these hyperthermal events. Continued work on the role of genetic diversity in the coral 

host and its symbiont requires further investigation. 

It has been proposed that colonies exposed to moderate thermal stress are better 

conditioned to dealing with episodes of severe thermal stress (67, 68). Thermal profiles 

show a pre-bleaching spike in water temperatures, followed by a recovery period of 

cooler temperatures, prior to a hyperthermal event, reducing the severity of bleaching. 

Temperature profiles at the three targeted sites show a similar sub-bleaching spike in 

water temperatures in June 2014 and May 2015 (Figure 4.3B), however severe bleaching 

occurred in August-September both years. This may be due to the recovery period being 

too short or the ensuing hyperthermal stress was too severe (i.e., temperatures exceeding 

the bleaching threshold for too many weeks, Table 4.1), exceeding the capacity of the 

thermally-primed corals. As predicted by Ainsworth et al. (68), climate change leading to 

annual bleaching and excessive thermal stress may indeed disable this protective thermal 

priming scenario. 
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4.5.3 Persistent cryptic communities as a source of more thermally-tolerant strains for 

acclimatization and adaptation 

Our data support that under certain circumstances, a low abundant symbiont may 

emerge during thermal bleaching and/or  recovery to enhance acclimatization of the coral 

host (56). Durusdinium sp. known to be opportunistic in certain Caribbean corals exposed 

to stress (61) remained as trace levels (<0.03%) during the 2014 and 2015 bleaching and 

recovery events on the FRT. Due to the high resolution of this study, this is the first 

reporting of Durusdinium trenchii in Dendrogyra cylindrus, suggesting an expansion of 

this invasive, more thermally tolerant species into another Caribbean coral host. (21, 69, 

69, 70, 70). Durusdinium trenchii (formerly Symbiodinium trenchii) is a stress-tolerant 

species within the genus Durusdinium, commonly found in the Indo-Pacific and known 

to impart thermal tolerance and bleaching resistance to its coral host (71). This species is 

considered invasive in the Greater Caribbean and has been increasingly found in corals 

inhabiting marginal habitats or under high environmental stress, particularly after 

bleaching events (71).  

One of three cryptic Symbiodinium OTUs detected in D. cylindrus and identified 

putatively as Symbiodinium necroappetens (strain A13), is considered an opportunist, 

emerging transiently to associate with thermally stressed or diseased corals (72). Our data 

show that Symbiodinium spp. were part of the cryptic community in D. cylindrus even 

prior to the 2014-2015 thermal events (April 2014, Table 4.3). At sites showing an 

increased abundance of B. meandrinium in response to annual thermal events (Pickles 

and Coffins), Symbiodinium and Cladocopium genera were not detected, and may have 

been displaced as B. meandrinium approached 20% relative abundance.  Alternatively, 
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the occurrence and persistence of cryptic symbionts in D. cylindrus and other Caribbean 

corals may also be an indicator of long-term physiological stress due to deteriorating 

environmental factors, e.g. water quality (73-75) and pulsed thermal events (i.e., previous 

Florida Reef-wide bleaching events in 1987, 1990, 1997, 1998, 2005, as well as other 

localized bleaching episodes (76). 

4.5.4 Conclusions 

While it is encouraging to substantiate that coral symbioses respond ecologically 

and thus “acclimatize” to a changing climate through shifts in the dominant symbiont 

partner, it may not be enough for their long-term survival in the Anthropocene.  As 

annual thermal bleaching is predicted to become more prevalent on many reefs in the 

coming decades, the collateral damage to biological, physiological, and immunological 

functions of the coral holobiont (77, 78) may negate their innate ability to acclimatize. It 

is imperative that we address the issues of environmental stressors in the hopes that at 

least some reef ecosystems will be able to acclimatize and survive in a changing climate. 

Even this glimmer of hope for survival may prove to be ‘too little, too late’ as alarming 

coral losses due to escalating disease outbreaks in warming oceans may overcome these 

slow-growing monarchs of the reef more quickly than they can adapt. 

4.5.5 Nomenclature 

• cp23S-HV primers - utilize length variation in Domain V of large sub-unit rDNA 

chloroplast 23S hyper-variable gene region  

• ENSO - El Niño/ La Niña Southern Oscillation is characterized by oscillating 

changes from expected sea surface temperatures in the eastern and central 

equatorial Pacific Ocean (El Niño – warm phase, and La Niña – cool phase) 
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• FRT – Florida Reef Tract 

• Illumina Mi-Seq platform – high resolution parallel amplicon sequencing 

diversity assay 

• Family Symbiodiniaceae (13) - photosynthetic endosymbiotic dinoflagellates 

o Symbiodinium spp. (living together, whirling) - formerly Clade A  

o Breviolum spp. (short & small) – formerly Clade B 

o Cladocopium spp. (branch & plenty) - formerly Clade C 

o Durusdinium spp. (tough & whirling) – formerly Clade D 
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4.6 Figures and Tables 

Figure 4.0 Graphical abstract 

Acquired site-specific bleaching resistance 
associated with a switch in dominant Breviolum 
species during two consecutive hyperthermal 
bleaching events (photos: C Lewis). 
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Figure 4.1. The iconic pillar coral, Dendrogyra cylindrus.  

This species occurs in historically low abundance throughout the Greater Caribbean. Its 
unique columnar structure provides important habitat complexity to the reef ecosystem 
where it does occur. (photo: C Lewis) 
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Figure 4.2. Study sites on the Florida Reef Tract where monitoring and sampling was 
conducted on the pillar coral Dendrogyra cylindrus.  

Geographically stratified tri-annual monitoring and sampling at 28 sites April 2014 to 
April 2016 (yellow circles). Pickles (Upper Keys), Coffins Middle Keys), and Marker 32 
(Lower Keys) sites (red stars) monthly during bleaching recovery in 2014 and 2015. 
*MLRF1 – location of Molasses Reef C-man buoy used to calculate 10-year mean 
monthly temperatures. 
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Figure 4.3. Water temperatures at three sites in the Florida Keys recorded between April 
2014 to April 2016.  

The Florida Reef Tract (FRT) in the Florida Keys is divided into distinct regions based 
on hydrologic influences, represented here by three sites:  Pickles - Upper Keys, Coffins - 
Middle Keys, and Marker 32 - Lower Keys. Red dashed lines indicate the local bleaching 
threshold for the FRT (30.5°C). Gaps in data are due to lost or damaged temperature 
loggers. (A) Mean monthly water temperature data. Dotted black line is the calculated 
10-year mean monthly water temperature (error bars + 1 SD) for Molasses Reef 2004-
2013 (MLRF1, National Data Buoy Center). (B) Mean daily water temperature data.  
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Figure 4.4. Summary of water temperature profiles at three sites during two 
hyperthermal events on the Florida Reef Tract 2014 and 2015.  

Five-number summary of temperature profiles at three sites (Pickles: Upper, Coffins: 
Middle, Marker 32: Lower) along the Florida Reef Tract. Hourly water temperatures 
from pendant data loggers were used to create temperature profiles from June through 
October 2014 and 2015. Box plots indicate interquartile temperature ranges (Q2-Q3) and 
median temperatures. ‘Whiskers’ show maximum and minimum water temperature 
during this time period. Solid grey triangles indicate lost data loggers, outlined grey 
triangles indicate incomplete temperature profiles due to data logger malfunctions. 
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Figure 4.5.  Coral Health Chart used to calculate the level of bleaching on Dendrogyra 
cylindrus colonies monitored between 2014 and 2016.  

Coloration of live tissue was determined by comparing 
with the gradient of color on the Coral Health Chart 
(https://www.projectaware.org)  (49). Color scores 
were further broken down (0.5) if color appeared 
between two values. Percent of each color value on an 
individual colony was estimated visually. Chart score 
(column A) was multiplied by estimated percent of 
colony live tissue (column B) to calculate colony score 
for each chart score value (column C). All colony 
scores for each coloration value (column C) were 
added to determine Total Colony Coloration Score. 

Calculation example: 

Bleach 
Status 

A 
Coral Health Chart Score 

B 
Estimated proportion  

of total live tissue on colony 

C 
Colony Score 
(col A x col B) 

Bleached 1.0 .20 1.0 x 0.20 = 0.20 
1.5 0 0 

 
Pale 

2.0 .30 2.0 x 0.30 = 0.60 
2.5 0 0 
3.0 0 0 

Healthy 3.5 .50 3.5 x 0.50 = 1.75 
4.0 0 0 

Total Colony Coloration Score 1.00 2.55 
 

https://www.projectaware.org/
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Figure 4.6. Mean bleaching index based on coloration scores of Dendrogyra cylindrus 
colonies at three sites on the FRT between 2014 and 2016.  

The coloration scores were determined using the CoralWatch Coral Health Chart for 
colorimetric reference (version: Project Aware https://coralwatch.org; (49)). Coloration 
ranges for D. cylindrus based on triannual assessments of 168 colonies: healthy 3.5-4.0; 
pale:  2.0-3.0; bleached: 1.0-1.5. Dashed grey line represents trajectory of estimated 
colony scores from April 2014. Pickles (n=12) Upper Keys; Coffins (n=12) Middle Keys; 
Marker 32 (n=11) Lower Keys. Error bars ±1 standard deviation. 

 

https://coralwatch.org/
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Figure 4.7 Relative abundance of Symbiodiniaceae symbionts from the genus Breviolum 
associated with Dendrogyra cylindrus on the Florida Reef Tract between 2014 and 2016.  

The dynamics of Breviolum dendrogyrum (blue) and B. meandrinium (green) between 
three sites and between years, by percent relative abundance of Breviolum spp. OTUs. B. 
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meandrinium increased in relative abundance during bleaching and recovery, becoming 
the dominant symbiont species at the Pickles site in 2014 and 2015. (A) Pickles (n=6) 
Upper Keys (B) Coffins (n=6) Middle Keys (C) Marker 32 (n=6) Lower Keys. ‘All other 
Breviolum’ (blue-grey) represents 250 OTUs combined.  Asterisk (*) indicates bleaching 
months. 
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Table 4.1. Summary of thermal profiles from three sites on the Florida Reef Tract 2014-
2016.  

HOBO data loggers recorded hourly water temperatures at three sites (Pickles: Upper, 
Coffins: Middle, Marker 32: Lower) 2014-2016 along the Florida Reef Tract (FRT). (A). 
Maximum weekly and maximum annual temperatures were recorded at each site. 
Number of weeks maximum water temperatures exceeded the FRT bleaching threshold 
(30.5°C) were calculated. for each site. (B). Ten-year mean monthly maximum (MMM) 
water temperatures were calculated for July, August, and September from archived C-
man Station data at Molasses Reef (MRLF1) 2004-2013. Degree heating weeks (DHW, 
°C-weeks) were calculated for each site using the mean monthly maximum temperatures 
for July, August, and September and compared to NOAA Coral Reef Watch DHW. 
Degree heating weeks were also calculated at each site using the FRT bleaching threshold 
for comparison. Weeks where DHW were <1°C-weeks were not counted, as per standard 
protocols. ND represents insufficient data for meaningful calculations. 

 A. 2014 2015 
  Pickles* Coffins Marker 32 Pickles Coffins Marker 32 
DHW using MMM ND 7.48 2.8 0.00 5.21 4.07 
DHW -using 30.5°C ND 13.82 8.65 5.88 13.96 10.59 
# weeks >30.5°C ND 10 8 12 13 13 
max temperature °C 30.36 33.01 32.50 31.88 32.39 32.50 

*data loggers were lost at Pickles site from 4/1/2014-9/12/2014 
 

 B.   10-yr Mean Monthly Maximum 2014-2013 at 
Molasses Reef (MRLF1) 

Month temperature (°C) 
July 30.80 
Aug 31.31 
Sept 30.78 

FRT bleach threshold 30.50 
  

  NOAA Coral Reef Watch 50-km Satellite 
Degree Heating Weeks (DHW) for FRT  
2014 2015 

5°C-weeks 7°C-weeks 
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Table 4.2. Primers used for cp23S amplicon sequencing and microsatellite genotyping 
analysis in Symbiodiniaceae. 

Primer name Primer Sequence Reference 
cp23S hyper up (forward) TCA GTA CAA ATA ATA TGC TG Santos et al 2003 
cp23S hyper down (reverse) TTA TCG CCC CAA TTA AAC AGT 
B7Sym15 forward CTC ACC TTG AAA TCA GTA GCC A Pettay & LaJeunesse 

2007 B7Sym15 reverse CGT AGC TTC TGA AGG TAC GAC AC 
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Table 4.3. Mean relative abundance of Symbiodiniaceae genera in Dendrogyra cylindrus at three sites on the Florida Reef Tract 
2014-2016. 

 Percent mean relative abundance (± standard deviation) of operational taxonomic units (OTU0.03). Asterisk (*) indicates bleaching 
months. (A) Pickles (n=6 colonies sampled) Upper Keys (B) Coffins (n=6 colonies sampled) Middle Keys (C) Marker 32 (n=6 
colonies sampled) Lower Keys. 

(A) Pickles n=6 
Upper Keys 

Year 1 Year 2 

Apr-14 *Sep-14 Oct-14 Dec-14 Apr-15 *Sep-15 Nov-15 Jan-16 Apr-16 
B. dendrogyrum 
1 OTU 

75.68 
(16.15) 

45.47 
(25.91) 

25.35 
(14.73) 

20.60 
(19.67) 

33.35 
(14.18) 

53.41 
(19.15) 

33.29 
(12.77) 

31.63 
(14.65) 

29.97 
(8.02) 

B. meandrinium 
1 OTU 

8.75 
(0.88) 

29.53 
(22.06) 

48.74 
(3.24) 

53.49 
(5.79) 

49.37 
(11.82) 

30.28 
(13.02) 

49.60 
(10.35) 

51.10 
(12.12) 

51.55 
(6.58) 

all other 
Breviolum         
243 OTUs 

15.56 
(1.79) 

25.23 
(9.47) 

25.90 
(5.11) 

25.90 
(4.34) 

17.27 
(2.38) 

16.31 
(6.16) 

17.11 
(2.44) 

17.27 
(2.54) 

18.48 
(1.59) 

all Symbiodinium  
94 OTUs 

0.01 
(0.01) 

5.38 
(13.85) 

0.001 
(0.004) 

0.002 
(0.002) 0 0 0 0 0 

all Cladocopium  
3 OTUs 

0.001 
(0.001) 

0.001 
(0.001) 

0.01  
(0.03) 0 0 0 0 0 0 

all Durusdinium  
1 OTU 0 0 

0.001 
(0.002) 0 

0.001 
(<0.001) 

0.0003 
(0.0007) 

0.001 
(<0.001) 

0.001 
(<0.001) 0 
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(B) Coffins n=6 
Middle Keys 

Year 1 Year 2 
Apr-14 *Sep-14 Oct-14 Dec-14 Apr-15 *Sep-15 Nov-15 Jan-16 Apr-16 

B. dendrogyrum 
1 OTU 

80.57 
(6.54) 

77.60 
(5.60) 

78.58 
(3.68) 

76.50 
(5.46) 

66.78 
(0.66) 

65.54 
(0.56) 

78.26 
(12.71) 

88.87 
(0.53) 

88.87 
(0.17) 

B. meandrinium 
1 OTU 

0.88 
(0.12) 

0.94 
(0.14) 

3.24 
(1.92) 

5.79 
(5.05) 

20.15 
(0.14) 

20.39 
(0.40) 

10.02 
(11.42) 

0.12 
(0.01) 

0.15 
(0.02) 

all other Breviolum         
243 OTUs 

18.52 
(6.45) 

19.34 
(2.91) 

18.18 
(3.01) 

17.71 
(2.24) 

13.07 
(0.62) 

14.04 
(0.20) 

11.58 
(1.46) 

10.77 
(0.53) 

10.73 
(0.20) 

all Symbiodinium 
94 OTUs 

0.02 
(0.01) 

2.12 
(0.01) <0.001 

0.003 
(0.01) 0 0 <0.001 

0.003 
(0.002) 

0.003 
(<0.001) 

all Cladocopium 
3 OTUs 0 

0.003 
(0.01) <0.001 <0.001 0 0 

0.14 
(0.16) 0 0 

all Durusdinium 
1 OTU 0 0 <0.001 0 <0.001 

0.03 
(0.06) 

0.002 
(0.002) 

0.004 
(0.002) 

0.003 
(0.003) 

 
 

(C) Marker 32 n=6 
Lower Keys 

Year 1 Year 2 
Apr-14 *Sep-14 Oct-14 Dec-14 Apr-15 *Sep-15 Nov-15 Jan-16 Apr-16 

B. dendrogyrum 
1 OTU 

81.09 
(2.24) 

66.26 
(11.33) 

65.58 
(15.69) 

70.33 
(6.90) 

87.82 
(0.44) 

86.80 
(1.05) 

87.43 
(0.87) 

88.34 
(0.39) 

87.60 
(0.30) 

B. meandrinium 
1 OTU 

0.76 
(0.08) 

2.60 
(4.55) 

1.44 
(0.54) 

3.71 
(3.04) 

0.08 
(0.04) 

0.17 
(0.08) 

0.11 
(0.05) 

0.08 
(0.02) 

0.06 
(<0.01) 

all other Breviolum         
243 OTUs 

18.07 
(2.21) 

31.03 
(9.98) 

32.76 
(15.43) 

25.96 
(5.34) 

11.80 
(0.45) 

12.72 
(1.00) 

12.23 
(0.88) 

11.32 
(0.39) 

12.12 
(0.31) 

all Symbiodinium  
94 OTUs 

0.02 
(0.01) 

0.01 
(0.01) 

0.20 
(0.54) 

0.003 
(0.005) 

0.002 
(0.001) 

0.007 
(0.01 

0.003 
(0.001) 

0.003 
(0.001) 

0.002 
(0.002) 

all Cladocopium  
3 OTUs 

0.03 
(0.07) <0.001 0 <0.001 

0.29 
(0.01) 

0.29 
(0.01) 

0.22 
(0.02) 

0.25 
(0.02) 

0.21 
(0.02) 

all Durusdinium  
1 OTU 

0.002 
(0.005) 0 0 0 

0.006 
(0.003) 

0.009 
(0.005) 

0.005 
(0.001) 

0.005 
(0.001) 

0.01 
(0.007) 
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Table 4.4. Mean colony coloration scores at three sites on the Florida Reef Tract 2014-2016.  

Mean colony coloration scores (±1 standard deviation) at three sites on the Florida Reef Tract April 2014 to April 2016. 
CoralWatch Coral Health Chart (version: Project Aware) was used to determine a score for each colony. See Figure 4.5 for 
calculating colony coloration scores. NA = no data. Colorimetric chart was not utilized during April 2014 assessments; coloration 
scores were later estimated by reviewing colony photographs (estimated mean coloration scores 3.75). 

  Year 1 Year 2 
Apr-14 Sep-14 Oct-14 Nov-14 Dec-14 Jan-15 Mar-15 Apr-15 Sep-15 Oct-15 Nov-15 Jan-16 Apr-16 

Pickles 
 n=10 
Upper Keys NA 

1.29 
(0.16) 

2.19 
(0.16) 

3.45 
(0.60) 

3.87 
(0.20) 

3.98 
(0.08) 

3.93 
(0.11) 

3.48 
(0.24) 

3.52 
(0.49) 

3.98 
(0.07) 

4.00 
(<0.01) 

4.00 
(<0.01) 

3.60 
(0.52) 

Coffins  
n=10 
Middle Keys NA 

1.45 
(<0.01) 

2.09 
(0.22) 

3.23 
(0.41) 

3.80 
(0.14) 

3.95 
(0.14) 

3.43 
(0.19) 

3.35 
(0.24) 

2.20 
(0.21) 

3.28 
(0.24) 

3.50 
(<0.01) 

3.98 
(0.10) 

3.84 
(0.24) 

Marker 32 
n=12 
Lower Keys NA 

1.12 
(0.07) 

1.23 
(0.12) 

1.48 
(0.31) 

1.70 
(0.38) 

2.08 
(0.39) 

2.47 
(0.47) 

2.57 
(0.39) 

1.48 
(0.62) NA 

3.46 
(0.33) 

3.76 
(0.33) 

3.08 
(1.13) 
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CHAPTER 5: The Effects of Annual Hyperthermal Stress on White Plague Disease    

Prevalence and Susceptibility in Dendrogyra cylindrus. 

 

5.1 Abstract 

Global climate change has led to escalating occurrences of hyperthermal stress on 

coral reefs worldwide. Increasing frequency and duration of these events have been 

linked to observations of pathogenicity and virulence contributing to disease expansion 

into more coral species, as well as increased numbers of newly described diseases. The 

aim of this chapter was to determine the relationship between hyperthermal stress on 

Dendrogyra cylindrus and white plague (WP) disease prevalence and susceptibility in 

this coral species on the Florida Reef Tract (FRT).  

The FRT experienced consecutive hyperthermal bleaching events in 2014 and 

2015 associated with the global El Niño Southern Oscillation (ENSO). Using a 

geographically stratified design, D. cylindrus sites were selected across three regions of 

the FRT for triannual bleaching and disease assessments. Additionally, three of these 

sites were selected for monthly assessments to more closely follow recovery after 

hyperthermal events in 2014 and 2015. 

 This study establishes a baseline for white plague (WP) disease in Florida’s D. 

cylindrus population prior to the 2014 hyperthermal event and shows increased 

prevalence of WP in D. cylindrus subsequent to hyperthermal stress in 2014. Cumulative 

effects of two consecutive hyperthermal events resulted in greater susceptibility to WP 

and further increased prevalence of WP in 2015, including a disease epidemic 
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documented at a Middle Keys site. These findings portend serious ramifications for this 

critically threatened species under predicted scenarios of ocean warming. 

5.2 Introduction 

Global impacts of climate change, and especially increases in ocean temperatures, 

have become of great concern in recent decades (1-3). Hyperthermal bleaching events are  

projected to become annual occurrences by 2050, or sooner in some regions  (4-6). 

Recent analysis of sea surface temperatures in the Caribbean from 1982 to 2012 reveal an 

increasing trend, most pronounced in the last 15 years (7). These trends show likely 

correlation with El Niño and the Southern Oscillation (ENSO). One of the strongest 

ENSO events on record occurred from May 2014 to June 2016 (8), causing staggering 

losses to coral reefs worldwide, including the Florida Reef Tract (FRT), due to 

consecutive bleaching events and subsequent disease outbreaks (3, 9). These 

hyperthermal events cause collateral damage to biological, physiological, and 

immunological functions of the coral holobiont (10). 

Increases in coral diseases in recent decades have largely been attributed to 

environmental stressors, especially increasing sea temperatures associated with climate 

change (11-17). Hyperthermal stress has been linked to increases in disease (11, 16, 18-

25). One consequence of thermal stress is often coral bleaching. The resulting loss of 

algal symbionts can deprive the coral animal of essential nutrients, leaving it in a 

weakened state and potentially more susceptible to diseases (11, 20, 22, 26, 27). 

Enhanced pathogenicity has been shown in many marine microbes at temperatures 

exceeding 29°C (26, 28, 29). Additionally, prolonged elevated sea temperatures, as 
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occurs during hyperthermal anomalies, may also increase pathogenicity and virulence in 

the microbial community, further enhancing increases in disease prevalence and 

epidemics (12, 16, 30, 31). 

White plague (WP) disease has been a major contributor to the loss of live coral 

cover in Florida and throughout the Caribbean (Figure 5.1). It is a highly destructive 

disease affecting more than 40 coral species worldwide, including Florida’s D. cylindrus 

(32, 33). White plague first appeared on the FRT in the 1970s (34) and emerged again, 

but in epidemic proportions, in June 1995 in the Upper Keys. First appearing in the 

elliptical star coral (Dichoceonia stokesi, also a member of the Meandrinidae family), this 

more virulent form, termed white plague type-II (WP-II), spread throughout the FRT, 

effecting 16 of the 43 reef-building coral species, including D. cylindrus (35, 36). 

Seasonally occurring from June to November, it is typically characterized by a rapidly 

moving line of freshly exposed coral skeleton adjacent to apparently healthy tissue, 

advancing at rates up to 2cm per day. A causative gram-negative bacterial pathogen was 

successfully isolated from Dichoceonia stokesi in 1995, satisfying Koch’s postulate, and 

later identified as Aurantimonas coralicida, a novel member of Sphingomonas (order 

Rhizobiales, class Alphaproteobacteria) (37).  

The aim of chapter five is to examine the role of hyperthermal stress on the 

incidence and prevalence of WP disease in Florida’s pillar coral, Dendrogyra cylindrus, 

focusing on the upper, middle, and lower regions of the Florida Keys Reef Tract. While 

low background levels of WP disease have become common on many reefs, the 

biological hypothesis for this chapter is that hyperthermal stress and resulting coral 

bleaching is correlated to increased prevalence and incidence of disease and exacerbated 
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by the cumulative effects of consecutive hyperthermal events. First, I characterized WP 

disease associated with D. cylindrus and determine the baseline or background 

prevalence of disease in the Florida Keys population. Additionally, I determined 

differences in prevalence between sites and between regions of the FRT. Secondly, I 

characterized the incidence and prevalence of WP in D. cylindrus during hyperthermal 

bleaching and recovery in 2014 and determine differences between sites or regions. And 

finally, I explored the cumulative effects of annual hyperthermal stress on WP in D. 

cylindrus during bleaching and recovery in 2015. 

5.3 Methods 

Experimental design and field sampling methodologies were fully described in chapter 

two.  

5.3.1 White plague prevalence and incidence in Dendrogyra cylindrus on the Florida 

Reef Tract 

Baseline white plague (WP) prevalence were established from the first assessment 

time point in April 2014, prior to the first hyperthermal bleaching in August-September 

2014 (but see Chapter two, page 22-23). Prevalence of WP (percentage of diseased 

colonies) was calculated within sites when applicable (i.e., high-density sites), within 

regions, and for the overall FRT (Upper, Middle, and Lower regions combined) from 

April 2014 through April 2016 triannual assessments (n=154 total colonies). Monthly 

assessments during bleaching recovery periods from October to December 2014 and 

2015 at three representative sites (Pickles n=24: Upper Keys, Coffins n=24: Middle Keys 

n=13; Marker 32: Lower Keys) allowed observation of WP prevalence at greater 

resolution in D. cylindrus in the Florida Keys. Monthly progression of WP through two 
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consecutive hyperthermal events at the Coffins site was tracked by assessing 24 

individually tagged colonies. Incidence of disease (the first occurrence of disease in a 

colony) following bleaching and during recovery in 2014 and 2015 was also determined 

from monthly assessment data at the Coffins site for each time point. 

5.3.2 Statistical analysis 

Fisher’s Exact Test for Count (α=0.05) was used to compare baseline prevalence 

of disease between regions (Upper, Middle and Lower Keys). A pairwise test for 

Nominal Independence was used to compare healthy and diseased colonies between 

regions at each time point and, because of the small number of variables, the adjusted 

Fisher p-value was used to determine significance. Pearson’s Χ2 Test for Independence 

(α=0.05) was then used to determine significance of observed differences between 

regions. Differences in disease prevalence between regions and between time points 

compared between years were determined using Fisher’s Exact Test (α=0.05) and Χ2 Test 

(α=0.05).  Disease incidence for the FRT was compared between hyperthermal events in 

Year 1 (April 2014-March 2015) and Year 2 (April 2015-April 2016) using Ch2 Test 

(α=0.05).  

5.4 Results 

 Initial April 2014 complete assessments of all 414 D. cylindrus at 28 sites were 

considered to be the baseline or background disease prevalence for the Florida Keys D. 

cylindrus population prior to the hyperthermal stress event in 2014. Background 

prevalence of WP in April 2014 was 2.7% in all regions combined (Figure 5.2) and was 

the only disease associated with D. cylindrus. Background WP prevalence was greater in 
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the Upper Keys (17.0%) than either the Middle (3.3%) or Lower Keys (2.4%) in April 

2014 (Figure 5.3; Fisher’s Exact Test, p=0.009).  

5.4.1 Changes in white plague prevalence in Dendrogyra cylindrus on the Florida Reef 

Tract over two consecutive hyperthermal events 

During the first hyperthermal bleaching event in 2014, WP prevalence on the FRT 

increased from baseline background levels of 2.7% to 18.8% in September 2014 (n=154; 

Figure 5.2; Χ2 α=0.05, p=0.001). At the three targeted sites, disease prevalence increased 

to 32.0% in November 2014 (n=61) and then declined to 3.9% in March 2015 (n=61 

colonies; Figure 5.2). At the triannual assessment in April 2015, WP prevalence was 

9.4% (n=154), nearly four times greater than the pre-bleaching baseline in April 2014 

(p<0.001, Table 5.1). With the onset of the second hyperthermal bleaching in September 

2015, disease prevalence for all regions increased to 21.3% (p=0.001, Figure 5.2, Table 

5.2), primarily driven by a white plague outbreak in the Middle Keys and significantly 

higher than September 2014 (18.8%, Χ2 α=0.05; p=0.016). White plague reached greatest 

prevalence at the three targeted sites in October 2015 (25.0%, n=61), one month earlier 

than the previous year (Figure 5.2). During bleaching recovery from September 2015 to 

January 2016, disease prevalence declined over all on the FRT to 13.9% (p=0.001), 

especially in the Middle and Lower regions (Figure 5.2 and Figure 5.3; p=0.032 and 

0.017 respectively, Table 5.2). After two consecutive hyperthermal events, WP 

prevalence in April 2016 did not return to April 2014 baseline levels and was nearly ten 

times greater (Figure 5.2; Χ2 α=0.05; p<0.001, Table 5.1). 
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5.4.2 Differences in white plague prevalence among regions of the Florida Reef Tract 

2014-2016. 

To determine differences between regions of the FRT, prevalence of WP was 

calculated from triannual assessments at 28 sites through two consecutive hyperthermal 

events (Upper Keys: 12 sites, n=56 colonies; Middle Keys: 6 sites, n=32 colonies; Lower 

Keys: 10 sites, n=44 colonies). Within regions, disease prevalence increased in the Upper 

and Lower Keys (Figure 5.3; p=0.006 and p=0.008 respectively; Table 5.2) but remained 

relatively unchanged in the Middle Keys. White plague prevalence did not significantly 

change within regions during bleaching recovery from September 2014 to January 2015 

prevalence (p>0.2, Table 5.2), remaining elevated in the Upper and Lower regions 

(Figure 3.3). Additionally, disease prevalence in the Upper Keys region increased from 

28.0% in January 2016 to 47.1% in April 2016 (Χ2 α=0.05; p=0.048; Figure 5.3).  

5.4.3 Progression and dynamics of white plague during recurrent hyperthermal 

bleaching and recovery at a Middle Keys site 

 All 55 D. cylindrus colonies at the Coffins site (Middle Keys) were mapped and 

assessed in April 2014, showing no signs of active WP disease (Figure 5.4). 

Microsatellite analysis of 24 of these 55 colonies targeted for assessments determined this 

site was likely a single unique genotype (Chapter 3, (38), due to centuries of asexual 

fragmentation and displacement of pillars from the original parent colony, establishing 

new genetically identical colonies or ramets along this patch reef). Florida’s reefs 

exceeded 5°C-weeks (degree heating weeks) during the summers of 2014, based on 

NOAA’s Coral Reef Watch 50-km Satellite Monitoring (39, 40) (Table 4.1B). Data 
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loggers at assessment sites recorded sea water temperatures which exceeded the FRT 

bleaching index of 30.5°C (41) (Fig. 4.3) and all D. cylindrus were severely bleached 

(presented in Chapter 4). White plague was first observed in a single D. cylindrus colony 

at the southernmost end of the Coffins site in September 2014 (Figure 5.5). One month 

later, seven more colonies, also on the southern end of the reef, showed active WP. By 

November, an additional four D. cylindrus colonies on the northern end of the reef had 

active WP (Figure 5.5). Colony assessments in January, March, and April 2015 showed 

no signs of active WP at the Coffins site (Figure 5.6A). However, following the second 

hyperthermal event in August-September 2015, when the FRT experienced seven DHW 

(40), monitoring in September 2015 revealed 20 of the 24 regularly assessed D. cylindrus 

colonies throughout the Coffins site with signs of active WP (Figure 5.7). While all D. 

cylindrus colonies were severely bleached in September 2014, eight of the colonies 

interspersed throughout the site appeared resistant to the active WP in nearby colonies 

(Figure 5.5). However, in 2015, with the recurrence of hyperthermal stress in August-

September, all nine apparently-resistant colonies became diseased following the second 

hyperthermal event. Prevalence of WP in the 24 assessed colonies reached 88% in 

October 2015 (Figure 5.6A). As with the previous year (November 2014) and concurrent 

with cooling winter water temperatures, active disease declined in November 2015 to 

13% prevalence in assessed colonies. Deviating significantly from January 20 15, white 

plague remained active in eight of the assessed colonies in January 2016 (p=0.004) and 

seven colonies in April 2016 (p=0.002) at this Middle Keys site (Figure 5.6A and Figure 

5.7).  
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 Incidence of WP at the Coffins sites (number of new colonies with active disease 

each month) showed a different profile between hyperthermal events in 2014 and 2015 

(Figure 5.6B). White plague appeared in the first D. cylindrus colony in September 2014 

(Figure 5.5). In October 2014, seven new colonies had active disease and in November 

2014, seven additional new colonies were actively diseased. White plague persisted in 

many of these colonies between months through December 2014 (Figure 5.6A). During 

the second hyperthermal event in August-September 2015, the first two colonies with 

active disease were observed in August, a month earlier than in 2014. In September 2015, 

16 new colonies had active disease (Figure 5.6B and Figure 5.7). Unlike in December 

2014, WP continued to appear in new colonies at this site into January 2016, but active 

disease persisted in many colonies until April 2016. 

5.5 Discussion 

 The increasing frequency and intensity of global thermal events have had 

profound impacts on marine ecosystems (3). The biological stresses associated with these 

occurrences, impacting cellular and immunological functions, gene expression, and the 

microbial community, are often the precursors to increased disease susceptibility,  

incidence, prevalence and epidemics (16, 22, 24). 

5.5.1 Greater prevalence and incidence of white plague disease in Dendrogyra cylindrus 

during recurrent hyperthermal events 

Recurrent hyperthermal stress and associated bleaching events in 2014 and 2015 

on the Florida Reef Tract (FRT) was associated with greater WP prevalence in D. 

cylindrus within the Florida Keys, although some differences were observed among 
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regions and between years. While all regions of the FRT experienced similar prolonged 

elevated sea temperatures exceeding the bleaching threshold for the FRT (42) (Figure 

4.4), localized differences between sites may have also contributed to differential disease 

susceptibility (i.e., salinity, turbidity, pH, dissolved nutrients not tested for in this study). 

White plague prevalence on the FRT remained elevated through recovery April 2016 and 

did not return to baseline disease prevalence (April 2014), highlighting another aspect of 

cumulative effects of annual hyperthermal events. It has been shown that recovery from 

bleaching events may require years for the coral holobiont to re-establish normal 

endosymbiont assemblages (43-46) as well as their microbial community (47). Annually 

recurring hyperthermal events may not allow the holobiont adequate time to fully recover 

before being faced with additional stressors, further increasing their susceptibility to 

pathogens. These findings further substantiate links between hyperthermal stress and 

subsequent increases in disease prevalence (11, 20, 22, 24).  

Unexpectedly, the Lower Keys region showed a decline in disease prevalence 

during the second hyperthermal bleaching and recovery (Figure 5.3). The non-significant 

increase in disease prevalence from April 2015 to September 2015 (Χ2 test α=0.05, 

p=0.918) was followed by a significant decline in disease prevalence from September 

2015 to January and April 2016 (p=0.017). The Lower Keys region also experienced 

higher mortality due to severe bleaching loss and disease (pers. obs., Neely and Lewis, 

unpublished data) and this may have contributed to the perceived decline in disease 

prevalence by eliminating previously diseased colonies from later assessments. 
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Monthly monitoring during recovery at three representative sites in 2014 and 

2015, which tracked individual marked colonies during recurrent hyperthermal events, 

allowed finer resolution of WP disease dynamics and seasonal fluctuations in disease 

prevalence. Highest disease prevalence was in November 2014 following the first 

hyperthermal event and in October 2015 following the second hyperthermal event, 

peaking a month earlier during the second year. Additionally, regular and frequent 

monitoring and assessments of the D. cylindrus population determined a more accurate 

seasonal incidence and prevalence of WP in D. cylindrus following consecutive 

hyperthermal events.  

5.5.2 Progression and dynamics of white plague during recurrent hyperthermal 

bleaching and recovery 

Recurrent thermal stress, which resulted in severe annual bleaching in 2014 and 

2015, was strongly associated with an outbreak of WP at a Middle Keys site. White 

plague progressed through a large stand of D. cylindrus colonies at the Coffins site during 

the 2014 hyperthermal bleaching and post-bleaching recovery, appearing again during the 

2015 hyperthermal bleaching and post-bleaching recovery. These findings support the 

findings that bleaching may contribute to disease outbreaks and cause the loss of disease 

resistance (21, 23). Due to the high density of this site dominated by 55 D. cylindrus 

colonies, this is especially relevant to studies showing an association with disease and 

live coral cover (48). Disease appeared to advance from offshore at this site, spreading 

from one colony to the next, but leaving some colonies untouched in its progression. 

Observations of disease-resistant colonies during the 2014 hyperthermal bleaching event 
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support work by Merselis et al (49) indicating that loss of algal symbionts during 

bleaching may actually allow the coral animal to divert energies to enhanced disease 

immunity. However, these eight colonies became susceptible to WP following the second 

hyperthermal event in August-September 2015, suggesting the immune system was 

unable to accommodate consecutive hyperthermal stress events. Alternatively, work by 

Muller et al. showed that some disease-resistant genotypes lost their disease resistance 

after bleaching (50). Initially it was thought that the eight colonies resistant to disease 

belonged perhaps to more disease-resistant genotypes, however it was later determined 

that all assessed colonies, and perhaps the entire site, was clonal, likely due to centuries 

of asexual fragmentation, and comprised of a single unique genotype (38). The lack of 

genetic diversity in this large clonal stand of D. cylindrus may have contributed further to 

its susceptibility to WP under thermal stress. Alternatively, the disease progression 

suggests the pathogen may be water-born, however daily tides, currents, and wave action 

are too variable at this site to support this hypothesis. Due to its apparent linear 

progression through the site, the pathogen may also be transmitted by a vector, such as 

common corallivores, including the ubiquitous butterfly fish (family Chaetodontidae) and 

sergeant majors (Abudefduf saxatilis, a species of damselfish) frequently found nesting on 

portions of old dead colony skeletons. It has previously been shown that gall crabs 

(family Cryptochiridae) and corallivorous snails (Coralliophila abbreviata) can be 

potential vectors for WP (51, 52). Butterfly fish have been associated with the spread of 

BBD (19). Concern for divers as vectors of disease cannot be overlooked as well. Caution 

was exercised to avoid unnecessary contact with colonies and rigorous biosecurity 

protocols included disinfecting all dive gear and sampling syringes between uses.  
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As was observed at several other D. cylindrus sites on the FRT, active WP ceased 

during the cooler winter and spring months at the Coffins site in 2014-2015 (36, 53-55). 

With the onset of a second hyperthermal bleaching event in August-September 2015, 20 

of 24 assessed colonies at Coffins immediately showed active WP in August and 

September 2015, compared with only one colony the previous year (Figure 5.7). 

Additionally, WP remained active at this site throughout the cooler winter months 

(December 2015, January 2016) until April 2016. This strongly suggests cumulative 

effects of annual thermal stress and increased disease susceptibility associated with the 

second hyperthermal event in 2015. It is also likely that the microbial community did not 

have time to fully recover from the 2014 hyperthermal event and had not regained its 

typical probiotic assemblages, making the coral holobiont more susceptible to disease 

with annually occurring thermal stress (56). Increased pathogenicity of the WP-causing 

organism(s) due to prolonged elevated water temperatures and consecutive hyperthermal 

stress events may also have contributed to increased disease susceptibility and 

prevalence. Additionally, the pathogen load may have persisted in the local environment 

near threshold levels (sediments, algal turf, etc.) as well as within the coral holobiont 

microbial community in very low numbers, allowing WP to activate more quickly during 

the second hyperthermal event when conditions became more favorable for the pathogens 

and the corals were again stressed. 
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5.5.3 First indications of the new scleractinian tissue loss disease in Dendrogyra 

cylindrus in the Upper Keys in early spring 2016 

Marine diseases have been associated with seasonal changes in water 

temperatures, often subsiding during the cooler winter and spring months. However, data 

from this research show increased prevalence of WP following a second hyperthermal 

event in 2015, extending through the winter months to April 2016 (Figure 5.2). 

Especially noteworthy is the increase in disease prevalence from January 2016 to April 

2016 in the Upper Keys region (Figure 5.3). This is likely the first indicator of the ‘new’ 

scleractinian (stony coral) tissue loss disease (SCTLD) extending into the Upper Keys 

and south along the Florida Reef Tract (9). This disease of unknown etiology was first 

observed in the Miami area during Fall 2014 and spread north more than 160 kilometers 

by Summer 2017 (57). Disease assumed to be this new tissue loss disease was reported in 

Biscayne National Park in Fall 2015. At this writing, it has now spread along the FRT 

into the Lower Keys (Summer 2018) effecting 22 different reef-building coral species. 

This disease is characterized by rapid tissue loss associated with a rapidly progressing 

band of exposed dead coral skeleton, not unlike white plague. It also can manifest in 

some species as multifocal areas of sloughing tissue that coalesce over time. Dendrogyra 

cylindrus is considered one of the most susceptible species to the disease and its 

Meandrinidae family members (Meandrina meandrites and Dichoceonia stokesi) are 

often the first species to show signs of this disease on the reef. Stony coral tissue loss  

disease, associated with recent hyperthermal stress events on the FRT, has greatly 

contributed to the near total collapse of Florida’s D. cylindrus population (pers. obs., 
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Neely and Lewis unpublished data) with the few remaining colonies located only in the 

Middle and Lower Keys. 

The present study demonstrates a strong association between hyperthermal stress 

and disease in Florida’s D. cylindrus. There appear to be cumulative effects of 

consecutive hyperthermal events causing increased disease prevalence and susceptibility 

impacting this species through April 2016. While WP is considered seasonal and 

typically associated with warmer water temperatures of summer and early fall in the 

Florida Keys, no previous monitoring of D. cylindrus has ever been conducted at this 

scale to determine background levels of disease in non-bleaching years for comparison or 

to fully understand the dynamics and impacts of disease on Florida’s D. cylindrus. 

Through the present research, we have gained a better understanding of the impacts of 

hyperthermal stress associated with a changing climate, leading to the catastrophic 

collapse of Florida’s D. cylindrus population, which may result in its local extinction 

within the next decade. 
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5.6 Figures and Tables 

 

Figure 5.1. Dendrogyra cylindrus colony with active white plague 

Classic signs of white plague in D. cylindrus, demonstrating the rapidly-advancing 
disease line of freshly-exposed white coral skeleton adjacent to apparently healthy live 
tissue (upper left, golden-brown). Dark, overgrown coral skeleton (lower right) is old 
dead, from months to years. Insert: 30cc sampling syringe for size reference, 5cc ~ 1cm. 
(photos: C Lewis) 
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Figure 5.2. Prevalence of white plague in Dendrogyra cylindrus in the Florida Keys. 

White plague (WP) prevalence was determined in D. cylindrus at 28 sites in the Florida 
Keys (Upper, Middle, and Lower regions combined) during two consecutive 
hyperthermal events (August-September 2014 and 2015). April 2014 was considered the 
initial baseline assessment of 414 colonies at 28 sites to determine ‘normal’ background 
disease levels. The remaining tri-annual assessments (September, January, April) 
evaluated 154 D. cylindrus colonies at these 28 sites. Additional assessments at a sub-set 
of three representative sites (Pickles, Coffins, Marker 32; n=61 total colonies) occurred in 
October, November, December 2014 and March, October, November, December 2015. 
(*) indicates hyperthermal bleaching events.  
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Figure 5.3. Regional differences in white plague prevalence in Dendrogyra cylindrus in 
the Florida Keys.  

White plague (WP) prevalence in D. cylindrus was compared between three regions of 
the Florida Reef Tract through two consecutive hyperthermal events on the Florida Reef 
Tract (2014 and 2015). Upper Keys (12 sites, 56 colonies), Middle Keys (6 sites, 32 
colonies), Lower Keys (10 sites, 44 colonies). Bars indicate standard error. 
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Figure 5.4. Spatial distribution of Dendrogyra cylindrus at the Coffins site (Middle 
Keys). 

Fifty-five D. cylindrus colonies were mapped at the Coffins site, located within the 
Coffins Patch Special Preservation Area in the Florida Keys National Marine Sanctuary. 
This large stand of 55 D. cylindrus colonies is the dominant species along this patch reef. 
In April 2014, baseline assessment of all 55 colonies showed no signs of disease. Green 
circles indicate the colonies that were selected and marked for assessment (green = no 
disease). Small grey circles mark the location of other D. cylindrus colonies at this site 
not included in assessments. 
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Figure 5.5. Monthly progression of white plague at the Coffins site from September 
through December 2014.  

Twenty-four of 55 D. cylindrus were monitored for disease each month (green circles – 
assessed but no disease; small grey circles – unassessed colonies). White plague (WP) 
first appeared in a single colony (yellow circle, colony-04) at the southernmost extent of 
the Coffins site in September 2014, during the first hyperthermal bleaching event. All 
other D. cylindrus colonies appeared healthy. White plague progressively spread through 
this site in October, reaching the northernmost colonies by November 2014 and persisted 
in many colonies through December 2014. There were no signs of disease during 
January, March, and April 2015 assessments. Red circles indicate eight colonies that did 
not show signs of active disease in 2014 however, were all later identified as the same 
genet unique to this site (38). 
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Figure 5.6. Prevalence and incidence of white plague in Dendrogyra cylindrus at Coffins 
site 2014-2016.  

(A) Changes in prevalence of WP in D. cylindrus colonies at Coffins site (Middle Keys) 
on the FRT, beginning in April 2014, prior to the August-September hyperthermal event. 
D. cylindrus colonies at this site were assessed monthly during recovery from thermal 
bleaching. No active disease was observed from January through April 2015 at this site. 
Prevalence increased in September and October 2015 after the second hyperthermal event 
and persisted through Aril 2016. (B) Incidence of disease in 24 of the 55 marked colonies 
at the Coffins site was recorded through two hyperthermal events (new colonies with 
disease each month within each year). The first signs of disease were observed one month 
earlier (August 2015) during the second hyperthermal event. Incidence of disease was 
greater, and disease continued to appear in new colonies through January 2016.   
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Figure 5.7. Progression of white plague at the Coffins site September 2015 through April 
2016.  

A second hyperthermal bleaching event occurred on the Florida Reef Tract in August-
September 2015. Twenty of the 24 targeted D. cylindrus distributed throughout the site 
showed signs of active white plague (WP) at the September 2015 assessment (yellow 
circles). While some colonies appeared to recover by November 2015 and January 2016 
(green circles), active WP persisted throughout the site through April 2016. Small grey 
circles – unassessed colonies, green circles – no disease at that assessment. 
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Table 5.1. Pearson’s Χ2 test p-values for disease prevalence in Dendrogyra cylindrus 
between years on the Florida Reef Tract 2014-2016. 

Pearson’s Χ2 test of independence (α=0.05) for changes in disease prevalence in D. 
cylindrus on the FRT and by region, comparing months and years. Green p-values 
indicate significant increase in disease between months. Red p-values indicate significant 
decrease in disease between months. 

Pearson’s Χ2 Test p-values 

 df=1 

All 
Regions 
n=130 

Upper 
n=44 

Middle 
n=33 

Lower 
n=53 

Apr-14 Apr-15 0.000 0.070 0.555 0.557 
Apr-15 Apr-16 0.000 0.135 0.131 1.000 
Apr-14 Apr-16 0.000 0.001 0.046 0.557 
Sep-14 Sep-15 0.000 1.000 0.000 0.787 
Jan-15 Jan-16 0.000 0.666 0.005 0.007 

 

Table 5.2. Pearson’s Χ2 test p-values for changes in disease prevalence between months 
regions of the Florida Reef Tract 2014-2016. 

Pearson’s Χ2 test of independence (α=0.05) for disease prevalence in D. cylindrus on the 
FRT and by region, comparing changes in disease between assessment months. Green p-
values indicate significant increase in disease between months. Red p-values indicate 
significant decrease in disease between months. 

Pearson’s Χ2 Test p-values 

 df=1 
all regions 

n=130 
Upper 
(n=44) 

Middle 
(n=33) 

Lower 
(n=53) 

Apr-14 Sep-14 0.001 0.006 0.554 0.008 
Sep-14 Jan-15 0.980 0.257 0.922 0.256 
Jan-15 Apr-15 0.093 0.833 1.000 0.329 
Apr-15 Sep-15 0.001 0.235 0.000 0.918 
Sep-15 Jan-16 0.001 0.095 0.032 0.017 
Jan-16 Apr-16 0.447 0.048 0.099 0.557 
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Table 5.3. Pearson’s Χ2 test p-values comparing white plague prevalence in Dendrogyra 
cylindrus at Coffins site 2014-2016. 

Pearson’s Χ2 test of independence (α=0.05) comparing white plague prevalence in 24 of 
55 assessed Dendrogyra cylindrus at Coffins site (Middle Keys) between Year 1 and 
Year 2. Green p-values indicate significant increase in disease between months. Red p-
values indicate significant decrease in disease between months. 

Pearson's Χ2 Test (df=1) 

Year 1 Year 2 p-
values 

Apr-14 Apr-15 0.004 
Sep-14 Sep-15 0.000 
Oct-14 Oct-15 0.000 
Nov-

14 
Nov-

15 0.005 

Jan-15 Jan-15 0.002 
Apr-15 Apr-16 0.004 
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CHAPTER 6: Temporal Dynamics of Black Band Disease Affecting Pillar Coral 

(Dendrogyra cylindrus) Following Two Consecutive Hyperthermal Events on the 

Florida Reef Tract. 
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6.1 Abstract 

Black band disease (BBD) affects many coral species worldwide and is considered a 

major contributor to the decline of reef-building coral. On the Florida Reef Tract BBD is 

most prevalent during summer and early fall when water temperatures exceed 29 °C. 

BBD is rarely reported in pillar coral (Dendrogyra cylindrus) throughout the Caribbean, 

and here we document for the first time the appearance of this disease in this species on 

Florida reefs. The highest monthly BBD prevalence values in the D. cylindrus population 

were 4.7% in 2014 and 6.8% in 2015. In each year, BBD appeared immediately 
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following a hyperthermal bleaching event, which raises concern as hyperthermal 

seawater anomalies become more frequent. 

6.2 Introduction 

The increase in coral diseases in recent decades has largely been attributed to 

environmental stressors, especially increasing sea temperatures associated with climate 

change (1-5). One such coral disease, black band disease (BBD), is now found 

worldwide, affecting 42 coral species (6). In the Greater Caribbean, 19 scleractinian 

species, in particular massive reef-building forms, and six octocoral species are known to 

be susceptible (7). The background prevalence of BBD throughout the Caribbean is 

typically between 1% and 4% at the community level but can be higher for individual 

species (1, 8, 9). 

BBD is a complex polymicrobial disease dominated by cyanobacteria and is 

characterized by a migrating mat or dark band that moves across infected corals at rates 

3–10 mm d-1 (10). Sulfide produced within the band acts synergistically with the 

cyanotoxin microcystin to cause lysis of coral tissue (11, 12). Environmental factors, 

including elevated temperatures, nutrients, and light intensity, affect the rate of BBD 

progression (13-15). Although it can persist year-round in some areas of the Caribbean 

(8, 16), on Florida reefs, BBD tends to be seasonal and most active during the warmer 

summer and early fall months, especially once temperatures exceed 29 °C (10, 17-19). 

In 2014 and 2015 the Florida Reef Tract (FRT) experienced sustained 

hyperthermal sea temperatures that exceeded the FRT bleaching index of 30.5 °C (20) for 

8 and 11 weeks respectively (Fig. 6.1). Mean monthly temperatures during these two 

events exceeded the 10-yr mean monthly temperatures (±1 SD) recorded at Molasses 
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Reef (MLRF-1) from 2003 to 2013. NOAA’s Coral Reef Watch sea surface temperature 

models reported five degree heating weeks for the summers of 2014 and 2015 on reefs of 

the Florida Keys (http://coralreefwatch.noaa.gov). Both hyperthermal anomalies resulted 

in consecutive bleaching events (21), severely affecting many species of coral along the 

FRT, including the pillar coral Dendrogyra cylindrus (Ehrenburg, 1834). 

Dendrogyra cylindrus is a slow-growing gonochoric broadcast-spawner typically 

found in low abundance throughout its Caribbean range. While this species is rarely 

considered an important reef builder, its unique columnar growth form provides 

important vertical structure and habitat complexity. It was categorized as ‘vulnerable’ in 

2008 under the IUCN Red List criteria because of its susceptibility to bleaching, disease 

(especially white plague), and habitat degradation (22). Dendrogyra cylindrus was 

federally listed in the US as ‘threatened’ in 2014 (23) due to its rare occurrence and 

rapidly declining, critically fragmented population. Surveys of the D. cylindrus 

population along the FRT in 2013–2014 documented fewer than 600 live colonies at 106 

sites, with two-thirds of these sites consisting of single colonies, often separated by tens 

of kilometers, contributing to low recruitment success. Dendrogyra cylindrus was once 

anecdotally reported to have BBD throughout its Caribbean range (24). Here we 

document for the first time the occurrence of BBD in D. cylindrus along the FRT in the 

context of the hyperthermal bleaching events of 2014 and 2015. 

6.3 Materials and Methods 

Between April 2014 and April 2016, 163 D. cylindrus colonies at 28 sites located 

along the FRT (Fig. 6.2) were assessed tri-annually (April/September/January) for health 

status. Data loggers (Onset HOBO Inc., Bourne, MA, USA) were secured at each 
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assessment site to record hourly temperatures. During the monitoring period, two 

hyperthermal bleaching events occurred (August/September 2014 and 2015). After the 

2014 event, 64 of the 163 colonies were selected from three of the 28 geographically 

stratified sites (Pickles, Coffins, and Marker 32; Fig. 6.2) to document the dynamics of 

bleaching recovery. Recovery monitoring was carried out in October, November, and 

December (2014 and 2015) and March 2015 to quantitatively track bleaching, disease, 

and recovery. Assessments tracked individual D. cylindrus colonies for bleaching and 

recovery using the CoralWatch Coral Health Chart (25). Disease presence and 

progression were also documented for each colony. The presence of bleaching and 

disease were noted, but not quantified, for other coral species at each site. Mean daily and 

monthly water temperatures and number of days per month that mean daily sea 

temperatures exceeded 29.0 °C and 30.5 °C were calculated for each site. Archived 

temperature data for 2004–2013 at Molasses Reef C-MAN station MLRF1 (25.012 N 

80.376 W; NOAA National Data Buoy Center; 

http://www.ndbc.noaa.gov/station_page.php?station=mlrf1) were used to calculate 10-yr 

mean monthly sea temperatures. 

6.4 Results and Discussion 

Active BBD was first observed on a single D. cylindrus colony at an Upper 

Florida Keys site in August 2014 (marked with a star in Fig. 6.2). During the September 

tri-annual survey, we observed three additional colonies with BBD among the 28 sites. 

Subsequent, repeated monitoring in 2014 and 2015 documented increased BBD 

prevalence in both years (Fig. 6.3), with maximum values of 4.7% (7 of 163 colonies) in 

2014 and 6.7% (11 of 163 colonies) in 2015. BBD was observed to progress 15 cm in 
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five weeks (October to November 2014) on one closely monitored colony (Fig. 6.4). 

Monitoring also revealed that nearly all 163 D. cylindrus colonies were severely bleached 

in 2014, scoring C1 on the Coral Watch Coral Health Chart, while in 2015, 64% of 

colonies were severely bleached and the remainder were partially bleached or pale. 

Bleaching events occurred during each year, in both cases two weeks after the 

temperature maximum for that year was reached (Fig. 6.1). During the larger tri-annual 

assessment conducted in January 2015, active BBD was no longer evident on any D. 

cylindrus colony; however, one Montastraea cavernosa colony at Coffins remained 

infected. BBD was not observed in D. cylindrus or any other susceptible species in 

March, April, May or December 2015. 

Background prevalence of BBD throughout the Caribbean is typically <4% in 

susceptible species and is normally present during the warmer months of each year (1, 8, 

9). Because BBD is rarely, if ever, reported in D. cylindrus throughout the wider 

Caribbean (24), this species may be relatively resistant to BBD. BBD was not observed in 

D. cylindrus during the initial fieldwork to locate live colonies at 106 sites on the FRT 

leading up to this monitoring effort (summer 2013 to spring 2014). 2013 was a non-

bleaching year on these reefs. The quantitative documentation of zero BBD signs on the 

163 D. cylindrus colonies identified in 2013, together with the fact that prior to 2014 

there were no reports of BBD on D. cylindrus on these reefs while BBD was reported in 

other species, may serve as a tentative baseline for BBD in this species on the FRT. 

Furthermore, the increase from zero BBD in the D. cylindrus population in 2013 

compared to BBD prevalence values of 4.7% and 6.7% in the following years, 

immediately after two hyperthermal events, suggests a relationship between anomalously 
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elevated water temperatures (and associated thermal stress), bleaching, and disease for D. 

cylindrus. Differences in other water quality parameters at each site, not measured in this 

study, may also be driving the apparent susceptibility to BBD of D. cylindrus. 

Additionally, coral animal genotypes, the D. cylindrus microbiome, and the microbiota in 

the surrounding environment may play roles in differential BBD susceptibility and/or 

resistance. 

The impacts of bleaching are known to include a nutritionally compromised 

health status of the affected corals due to the loss of their Symbiodinium-derived nutrients 

(26, 27). Potential synergy of thermal and nutritional stress may have contributed to the 

vulnerability of D. cylindrus to BBD pathogens (1, 28, 29). However, it was not possible 

to separately address these stressors in a natural setting. Additionally, prolonged elevated 

sea temperatures may have increased the pathogenicity of the polymicrobial community 

associated with BBD. Enhanced pathogenicity occurs in these and many other marine 

microbes at temperatures exceeding 29 °C (10, 17-19). 

BBD has rarely been reported in D. cylindrus, perhaps due to the relatively low 

abundance of this little-studied species throughout its Caribbean range or perhaps also 

due to its relative resistance to this particular disease. This study presents the results of 

the first quantitative monitoring of D. cylindrus on the FRT for health, bleaching status, 

and disease, and includes the first report of BBD for this species in this region. This data 

set is the first step in potential management of this recently listed threatened species. The 

observed persistent advance of BBD (progressing up to 0.5 cm d-1; Fig. 5.4) on this slow-

growing coral, the pattern of increased BBD prevalence following two consecutive 

hyperthermal events, and escalating environmental stressors due to predicted climate 
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change, all suggest that BBD may play a more prominent role in the decline of D. 

cylindrus and other susceptible reef-building species, lending urgency for management 

and restoration efforts. 
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6.5 Figures and Tables 

 

Figure. 6.1 Mean monthly sea temperature profiles from April 2014 to April 2016 at 
three sites: Pickles, Coffins, and Marker 32.  

Dotted black line represents mean monthly water temperatures (± SD) recorded at 
Molasses Reef 2003–2013 (National Data Buoy Center, MLRF1). Dotted red line 
indicates bleaching threshold for the Florida Reef Tract (30.5 °C). Dashed black line 
indicates optimal temperature for black band disease microbial community (29.0 °C). 
Gaps in data are due to lost or broken HOBO data loggers. 
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Fig. 6.2 Dendrogyra cylindrus tri-annual assessment sites along the Florida Reef Tract. 

Black dots: D. cylindrus sites with no observations of black band disease (BBD). Black 
star; site where BBD was first observed in D. cylindrus. Black crosses: all other sites 
where BBD was observed on D. cylindrus between April 2014 and April 2016 (includes 
three bleaching recovery sites: Marker 32, Coffins, and Pickles). Open circles: sites 
where BBD was observed on other coral species at D. cylindrus assessment sites. 
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Fig. 6.3 Prevalence of black band disease (BBD) in Dendrogyra cylindrus on the Florida 
Reef Tract (FRT) from April 2014 to December 2015.  

Tri-annual assessments (*) occurred in April/May, September 2014, and January, 
April/May and September 2015. Additional assessments at three sites occurred in 
October, November, December 2014 and March, October, November, December 2015 to 
document the dynamics of bleaching recovery after the hyperthermal events in 
August/September 2014 and 2015. Solid black line: number of days per month that mean 
daily sea temperatures exceeded 29.0 °C, the optimal temperature for active BBD. 
Dashed black line: number of days per month that mean daily sea temperatures exceeded 
30.5 °C, the bleaching threshold for the FRT. 
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Fig. 6.4 Black band disease (BBD) in Dendrogyra cylindrus.  

(A) BBD on bleached D. cylindrus demonstrating the characteristic dark band and 
adjacent freshly-denuded coral skeleton. (B) Progression of BBD on a single D. cylindrus 
pillar—BBD was not observed on this colony in September 2014, although the colony 
was severely bleached, but first appeared in October 2014, displaying a BBD lesion 
approximately 2 cm in diameter. By November 2014, the active band had progressed 
upwards approximately 15 cm and expanded laterally (calculated 0.5 cm d-1). Four weeks 
later, the active band had slowly progressed approximately 5 cm to the top of the pillar. 
Active BBD was no longer visible in January 2015 but reoccurred on the same pillar in 
September 2015. Photos: C Lewis. 
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CHAPTER 7: Final Conclusions and Synthesis 

The research aim of this dissertation was to gain better understanding of the coral 

holobiont partners, specifically the coral animal and the mutualistic photosynthetic algal, 

and their contributions to the processes of bleaching, recovery, and disease resistance. 

The present study focused on the threatened pillar coral, Dendrogyra cylindrus, on the 

Florida Reef Tract (FRT). Through rigorous field monitoring and sampling, the 

cumulative effects of hyperthermal stress were evaluated in the context of two 

consecutive hyperthermal events which occurred in the summers of 2014 and 2015 on the 

FRT.  

Embarking on a collaborative effort to map Florida’s D. cylindrus and determine 

the population structure, Chan et al. (1) established the genetic framework of the D. 

cylindrus population along the FRT, which allowed me to associate coral host genotypes 

with observations of bleaching, recovery, and disease processes. Although coral animal 

genotypes primarily consisted of single colonies representing single unique genets at 

most sites, it was observed that some genets exhibited partial bleaching resistance and 

while other genets showed resistance to disease (i.e., white plague) either as a result of 

inherent variability or perhaps adaptation to thermal stress at the genomic level of the 

coral animal (2, 3). It was also hypothesized that resistance observed in isolated colonies 

was related to site-specific environmental factors or individual adaptations to unique 

micro-habitats at each site, rather than host genotype. Alternative hypotheses were that 

these lone D. cylindrus colonies, often separated by many kilometers from con-specifics, 

were not exposed to sufficiently high pathogen loads in the water column to cause disease 

or that these colonies did not experience the same thermal stress that caused severe 
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bleaching at other sites along the FRT. Further sequencing of archived D. cylindrus tissue 

samples from these sites may reveal changes in the Symbiodiniaceae community to also 

explain these observations. 

Regardless, the potential for thermal tolerance and/or disease resistance in some 

D. cylindrus has important implications for future restoration efforts of this species. 

Propagation of these and other genets of interest through asexual fragmentation will 

allow us to verify bleaching or disease resistance through controlled ex situ experiments. 

Future propagation and out-planting of resilient genets offers some hope of restoring D. 

cylindrus to the Florida Reef Tract in the Anthropocene. Ongoing efforts to enhance 

sexual recombination of resilient genets using controlled breeding will result in new 

genets perhaps more suited to survival under future environmental conditions and guide 

restoration efforts towards establishing a self-sustaining D. cylindrus population on 

Florida’s reefs. 

 Understanding the resilience of the endosymbiotic algal community within D. 

cylindrus is also vital to understanding the complex coral holobiont. The present research 

revealed far greater diversity in the cryptic Symbiodiniaceae assemblages than previously 

known (4), which has implications as a potential source for stress-tolerant endosymbiont 

species or strains capable of allowing the coral holobiont to acclimatize and adapt to 

changing conditions (5-10). This capability was demonstrated by the site-specific switch 

from the host-specialist symbiont, Breviolum dendrogyrum, to the host-generalist, B. 

meandrinium, which was associated with observations of bleaching resistance when 

exposed to consecutive hyperthermal events (4). At this time, neither of these algal 

endosymbiont species have been successfully cultured to allow further exploration of the 
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tolerances they may bring to the partnership. To that end, further attempts are currently 

being made to culture these algal endosymbiont species. It is also unknow what trade-offs 

in physiological processes may occur with a switch in dominant species. Endosymbiont 

communities in D. cylindrus did not return to pre-bleaching baseline abundances prior to 

the onset of the second hyperthermal event, supporting other findings that have shown it 

may require several years for the coral holobiont to recovery from a single hyperthermal 

event (11-13). Under sustained disturbance events, such as annually recurring 

hyperthermal events, new thermally-tolerant holobiont assemblages may be longer-lived 

and maintain higher relative proportions within the Symbiodiniaceae community as the 

period of less-stressful environmental conditions between disturbances becomes shorter. 

Replacing the closely co-evolved symbiosis between the coral host Dendrogyra cylindrus 

and its algal symbiont partner Breviolum dendrogyrum, with another more thermally-

tolerant photosynthetic algal species, may have long-term detrimental impacts on growth, 

reproduction and/or disease resistance. Understanding the physiological tolerances and 

limitations of the tightly co-evolved D. cylindrus/B. dendrogyrum partnership, as well as 

the sibling species B. meandrinium, will help to clarify their roles in bleaching and 

disease resistance and resilience. With the recent alarming decline and collapse of 

Florida’s D. cylindrus population since 2014, also comes the reality that we may be 

witnessing the local extinction of not one but two unique species (D. cylindrus and B. 

dendrogyrum), within the next five years. 

Hyperthermal bleaching events are  projected to become annual occurrences by 

2050, or sooner in some regions  (14-16). It would appear from this body of work that 
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Florida’s reefs may already be experiencing this annual phenomenon of thermal stress 

and bleaching. Persistent hyperthermal events can cause collateral damage to biological, 

physiological, and immunological functions of the coral holobiont (17-20) and have been 

linked to increases in disease (21-30) and enhanced pathogenicity (31-33). Establishing a 

baseline disease prevalence in Florida’s D. cylindrus population, such as the April 2014 

population assessments in the present study, is critical to managing this species, although 

it is likely that D. cylindrus has already experienced decades of chronic environmental 

stress. White plague was first described in the 1970’s (34) but emerged again in 1995 in 

the Upper Keys and spread throughout the reef tract affecting 16 reef-building species, 

including D. cylindrus (35, 36). In the present study, the Upper Keys sites initially had a 

higher prevalence of white plague than the other two regions which may be related to 

land-based sources of pollution (i.e., proximity to South Florida’s rapidly expanding 

population), but increased prevalence was observed in all regions following the first 

hyperthermal event in August/September 2014, including new susceptibility to black 

band disease (37). The cumulative effects of annual hyperthermal events was 

demonstrated by further increases in disease prevalence in the D. cylindrus population 

following the second hyperthermal event in 2015, including an outbreak of white plague 

at a Middle Keys site. These data suggest that the ability of the coral holobiont to 

acclimatize to thermal stress was outpaced by the compounded damages caused by 

recurrent hyperthermal events. It is likely that the hyperthermal events of 2014 and 2015 

acted synergistically with decades of declining water quality on the Florida Reef Tract, 

associated with the increase in land use development and population of South Florida and 

the Florida Keys since the 1980’s (38, 39). Inadequate sewage treatment, agricultural and 
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urban run-off, and reduced flow of fresh water to Florida Bay have all contributed to the 

chronic stress on the reef ecosystem.  

 The current research presented here has contributed significantly to the body of 

knowledge for this unique and little-studied coral species, Dendrogyra cylindrus. It has 

also advanced a better understanding of the complex coral holobiont and its response to 

hyperthermal stress, bleaching, recovery and disease processes, applicable to corals 

worldwide. Future work will include the characterization of the microbial community 

associated with D. cylindrus to gain insights into how these communities respond to 

bleaching and disease processes.  

Many aspects of the present research have led directly to management decisions 

to preserve and restore this critically threatened coral. The lack of smaller D. cylindrus 

colonies within the population signaled decades of poor reproductive success and 

recruitment and the conclusion that Florida’s population of D. cylindrus is likely already 

reproductively extinct as a result of the declining and fragmented population. Regular 

monitoring and assessments beginning in 2014 revealed the dramatic decline and 

accelerated loss in the population following consecutive hyperthermal bleaching events in 

2014 and 2015. With science to support recommendations to management, the D. 

cylindrus Genetic Rescue Project was proposed and implemented in January 2016, 

creating a living genetic bank in temperature-controlled ex situ nurseries (Keys Marine 

Laboratory, Florida Aquarium, Mote Marine Laboratory, Coral Restoration Foundation). 

Collaboration with partners at NOAA’s National Ocean Service Coral Health and 

Disease facility in Charleston, NC, led to successful disease treatments (white plague) in 
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the race to preserve D. cylindrus genets from extinction. With the approval of state and 

federal agencies (FWC, NOAA, FKNMS, FDA Center for Veterinary Medicine/Minor 

Use Minor Species,), additional collaborations have led to the implementation of pilot 

disease treatment trials in the wild D. cylindrus population, in hopes of forestalling the 

local extinction of this species.  

Concurrent with the 2014 and 2015 hyperthermal events, a new disease 

(scleractinian or stony coral tissue loss disease, SCTLD) appeared on Florida’s reef-

building corals. The disease of unknown etiology now affects 22 of the 43 reef-building 

coral species found on the Florida Reef Tract, spreading quickly and with high mortality. 

Dendrogyra cylindrus has proven to be one of the most-susceptible of these species and 

often the canary-in-the-mine-shaft marking the progression of SCTLD along the Florida 

Reef Tract. Successful disease treatments first developed for D. cylindrus as a direct 

result of the present dissertation research, have been further tested in other reef-building 

coral species affected by SCTLD and approved for application on Florida’s reefs since 

May 2018 with encouraging success rates. 

In large part due to the comprehensive information on the population genetics of 

Florida’s D. cylindrus (1), we have been able to rescue a total of 88 of the original 162 

Florida genets and currently house nearly 400 fragments at five different facilities. 

Asexual propagation techniques are being tested and refined for D. cylindrus to prepare 

for future restoration efforts. Genets of special interest, particularly bleaching and/or 

disease resistance, will be further tested in controlled laboratory settings. New research in 

the coming months will explore genotypic differences in growth rates ex situ, 
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contributing valuable insights for restoration efforts. With so many D. cylindrus genets 

safely held in ex situ seawater systems, it has been possible to facilitate successful 

spawning, fertilization and settlement at the Keys Marine Laboratory, resulting in more 

than 150 new D. cylindrus recruits in 2018, now held at Florida Aquarium Center for 

Conservation (Apollo Beach, FL) to add to the genetic diversity of the genetic bank. In 

conjunction with the 2018 spawning event, partners from the South-East Zoo Alliance for 

Conservation (SEZARC) attempted cryopreservation of D. cylindrus sperm for the first 

time in 2018. As these techniques are refined it is hoped that cryopreserved sperm can be 

banked for the future to perpetuate D. cylindrus and other coral species.  

From the present body of work comes the hope for the future of this unique and 

iconic species we affectionately refer to as ‘unicorns’, referring to the columnar growth 

form as well as their uncommon and elusive nature. We have become the Guardians of 

the Last Unicorns.  
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Abstract Black band disease (BBD) affects many coral

species worldwide and is considered a major contributor to

the decline of reef-building coral. On the Florida Reef

Tract BBD is most prevalent during summer and early fall

when water temperatures exceed 29 �C. BBD is rarely

reported in pillar coral (Dendrogyra cylindrus) throughout

the Caribbean, and here we document for the first time the

appearance of the disease in this species on Florida reefs.

The highest monthly BBD prevalence in the D. cylindrus

population were 4.7% in 2014 and 6.8% in 2015. In each

year, BBD appeared immediately following a hyperthermal

bleaching event, which raises concern as hyperthermal

seawater anomalies become more frequent.

Keywords Black band disease � Coral bleaching �
Dendrogyra cylindrus � Florida Reef Tract

Introduction

The increase in coral diseases in recent decades has largely

been attributed to environmental stressors, especially

increasing sea temperatures associated with climate change

(Croquer and Weil 2009; Harvell et al. 2009; McLeod et al.

2010; Hoegh-Guldberg 2012; Randall and van Woesik

2015). One such coral disease, black band disease (BBD),

is now found worldwide, affecting 42 coral species

(Sutherland et al. 2004). In the Greater Caribbean, 19

scleractinian species, in particular massive reef-building

forms, and six octocoral species are known to be suscep-

tible (Weil et al. 2006). The background prevalence of

BBD throughout the Caribbean is typically between 1 and

4% at the community level but can be higher for individual

species (Kuta and Richardson 1996; Bruckner and Bruck-

ner 1997; Croquer and Weil 2009).

BBD is a complex polymicrobial disease dominated by

cyanobacteria and is characterized by a migrating mat or

dark band that moves across infected corals at rates

3–10 mm d-1 (Rützler and Santavy 1983). Sulfide pro-

duced within the band acts synergistically with the cyan-

otoxin microcystin to cause lysis of coral tissue (Viehman

et al. 2006; Richardson et al. 2009). Environmental factors,

including elevated temperatures, nutrients, and light

intensity, affect the rate of BBD progression (Kaczmarsky

et al. 2005; Voss and Richardson 2006; Boyett et al. 2007).

Although it can persist year round in some areas of the

Caribbean (Edmunds 1991; Kuta and Richardson 1996), on

Florida reefs, BBD tends to be seasonal and most active

during the warmer summer and early fall months, espe-

cially once temperatures exceed 29 �C (Rützler and San-

tavy 1983; Kushmaro et al. 1997; Ben-Haim et al. 2003;

Richardson and Kuta 2003).
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In 2014 and 2015 the Florida Reef Tract (FRT) expe-

rienced sustained hyperthermal sea temperatures that

exceeded the FRT bleaching index of 30.5 �C (Manzello

et al. 2007) for 8 and 11 weeks, respectively (Fig. 1). Mean

monthly temperatures during these two events exceeded

the 10-yr mean monthly temperatures (±1 SD) recorded at

Molasses Reef (MLRF-1) from 2003 to 2013. NOAA’s

Coral Reef Watch sea surface temperature models reported

five degree heating weeks for the summers of 2014 and

2015 on reefs of the Florida Keys (http://coralreefwatch.

noaa.gov). Both hyperthermal anomalies resulted in con-

secutive bleaching events (Precht et al. 2016), severely

affecting many species of coral along the FRT, including

the pillar coral Dendrogyra cylindrus (Ehrenburg, 1834).

Dendrogyra cylindrus is a slow-growing gonochoric

broadcast spawner typically found in low abundance

throughout its Caribbean range. While this species is rarely

considered an important reef builder, its unique columnar

growth form provides important vertical structure and

habitat complexity. It was categorized as ‘vulnerable’ in

2008 under the IUCN Red List criteria because of its

susceptibility to bleaching, disease (especially white pla-

gue), and habitat degradation (Aronson et al. 2008). Den-

drogyra cylindrus was federally listed in the US as

‘threatened’ in 2014 (NOAA Fisheries 2014) due to its rare

occurrence and rapidly declining, critically fragmented

population. Surveys of the D. cylindrus population along

the FRT in 2013–2014 documented fewer than 600 live

colonies at 106 sites, with two-thirds of these sites con-

sisting of single colonies, often separated by tens of kilo-

meters, contributing to low recruitment success.

Dendrogyra cylindrus was once anecdotally reported to

have BBD throughout its Caribbean range (Ward et al.

2006). Here we document for the first time the occurrence

of BBD in D. cylindrus along the FRT in the context of the

hyperthermal bleaching events of 2014 and 2015.

Materials and methods

Between April 2014 and April 2016, 163 D. cylindrus

colonies at 28 sites located along the FRT (Fig. 2) were

assessed tri-annually (April/September/January) for health

status. Data loggers (Onset HOBO Inc., Bourne, MA,

USA) were secured at each assessment site to record hourly

temperatures. During the monitoring period, two hyper-

thermal bleaching events occurred (August/September

2014 and 2015). After the 2014 event, 64 of the 163

colonies were selected from three of the 28 geographically

stratified sites (Pickles, Coffins, and Marker 32; Fig. 2) to

document the dynamics of bleaching recovery. Recovery

monitoring was carried out in October, November, and

December (2014 and 2015) and March 2015 to quantita-

tively track bleaching, disease, and recovery. Assessments

tracked individual D. cylindrus colonies for bleaching and

recovery using the CoralWatch Coral Health

Chart (Siebeck et al. 2006). Disease presence and pro-

gression were also documented for each colony. The

presence of bleaching and disease were noted, but not

quantified, for other coral species at each site. Mean daily

and monthly water temperatures and number of days per

month that mean daily sea temperatures exceeded 29.0 and

30.5 �C were calculated for each site. Archived tempera-

ture data for 2004–2013 at Molasses Reef C-MAN station

Fig. 1 Mean monthly sea temperature profiles from April 2014 to

April 2016 at three sites: Pickles, Coffins, and Marker 32. Dotted

black line represents mean monthly water temperatures (±SD)

recorded at Molasses Reef 2003–2013 (National Data Buoy Center,

MLRF1). Dotted red line indicates bleaching threshold for the Florida

Reef Tract (30.5 �C). Dashed black line indicates optimal tempera-

ture for black band disease microbial community (29.0 �C). Gaps in
data are due to lost or broken HOBO data loggers
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MLRF1 (25.012 N 80.376 W; NOAA National Data Buoy

Center; http://www.ndbc.noaa.gov/station_page.php?sta

tion=mlrf1) were used to calculate 10-yr mean monthly sea

temperatures.

Results and discussion

Active BBD was first observed on a single D. cylindrus

colony at an Upper Florida Keys site in August 2014

(marked with a star in Fig. 2). During the September tri-

annual survey, we observed three additional colonies with

BBD among the 28 sites. Subsequent, repeated monitoring

in 2014 and 2015 documented increased BBD prevalence

in both years (Fig. 3), with maximum values of 4.7% (7 of

163 colonies) in 2014 and 6.7% (11 of 163 colonies) in

2015. BBD was observed to progress 15 cm in five weeks

(October to November 2014) on one closely monitored

colony (Fig. 4). Monitoring also revealed that nearly all

163 D. cylindrus colonies were severely bleached in 2014,

scoring C1 on the Coral Watch Coral Health Chart, while

in 2015, 64% of colonies were severely bleached and the

remainder were partially bleached or pale. Bleaching

events occurred during each year, in both cases two weeks

after the temperature maximum for that year was reached

(Fig. 1). During the larger tri-annual assessment conducted

in January 2015, active BBD was no longer evident on any

D. cylindrus colony; however, one Montastraea cavernosa

colony at Coffins remained infected. BBD was not

observed in D. cylindrus or any other susceptible species in

March, April, May or December 2015.

Background prevalence of BBD throughout the Car-

ibbean is typically\4% in susceptible species and is nor-

mally present during the warmer months of each year (Kuta

and Richardson 1996; Bruckner and Bruckner 1997; Cro-

quer and Weil 2009). Because BBD is rarely, if ever,

reported in D. cylindrus throughout the wider Caribbean

(Ward et al. 2006), this species may be relatively resistant

to BBD. BBD was not observed in D. cylindrus during the

initial fieldwork to locate live colonies at 106 sites on the

FRT leading up to this monitoring effort (summer 2013 to

spring 2014). 2013 was a non-bleaching year on these

reefs. The quantitative documentation of zero BBD signs

on the 163 D. cylindrus colonies identified in 2013,

Fig. 2 Dendrogyra cylindrus tri-annual assessment sites along the

Florida Reef Tract. Black dots: D. cylindrus sites with no observations

of black band disease (BBD). Black star; site where BBD was first

observed in D. cylindrus. Black crosses: all other sites where BBD

was observed on D. cylindrus between April 2014 and April 2016

(includes three bleaching recovery sites: Marker 32, Coffins, and

Pickles). Open circles: sites where BBD was observed on other coral

species at D. cylindrus assessment sites
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together with the fact that prior to 2014 there were no

reports of BBD on D. cylindrus on these reefs while BBD

was reported in other species, may serve as a tentative

baseline for BBD in this species on the FRT. Furthermore,

the increase from zero BBD in the D. cylindrus population

in 2013 compared to BBD prevalence values of 4.7% and

6.7% in the following years, immediately after two

hyperthermal events, suggests a relationship between

anomalously elevated water temperatures (and associated

thermal stress), bleaching, and disease for D. cylindrus.

Differences in other water quality parameters at each site,

not measured in this study, may also be driving the

apparent susceptibility to BBD of D. cylindrus. Addition-

ally, coral animal genotypes, the D. cylindrus microbiome,

and the microbiota in the surrounding environment may

play roles in differential BBD susceptibility and/or

resistance.

The impacts of bleaching are known to include a

nutritionally compromised health status of the affected

corals due to the loss of their Symbiodinium-derived

nutrients (Muscatine and Porter 1977; Muller et al. 2009).

Potential synergy of thermal and nutritional stress may

have contributed to the vulnerability of D. cylindrus to

BBD pathogens (Croquer and Weil 2009; Rogers et al.

2009; Kuehl et al. 2011). However, it was not possible to

separately address these stressors in a natural setting.

Additionally, prolonged elevated sea temperatures may

have increased the pathogenicity of the polymicrobial

community associated with BBD. Enhanced pathogenicity

occurs in these and many other marine microbes at

Fig. 3 Prevalence of black band disease (BBD) in Dendrogyra

cylindrus on the Florida Reef Tract (FRT) from April 2014 to

December 2015. Tri-annual assessments (*) occurred in April/May,

September 2014, and January, April/May and September 2015.

Additional assessments at three sites occurred in October, November,

December 2014 and March, October, November, December 2015 to

document the dynamics of bleaching recovery after the hyperthermal

events in August/September 2014 and 2015. Solid black line: number

of days per month that mean daily sea temperatures exceeded

29.0 �C, the optimal temperature for active BBD. Dashed black line:

number of days per month that mean daily sea temperatures exceeded

30.5 �C, the bleaching threshold for the FRT

Fig. 4 Black band disease (BBD) in Dendrogyra cylindrus. a BBD

on bleached D. cylindrus demonstrating the characteristic dark band

and adjacent freshly denuded coral skeleton. b Progression of BBD on

a single D. cylindrus pillar—BBD was not observed on this colony in

September 2014, although the colony was severely bleached, but first

appeared in October 2014, displaying a BBD lesion approximately

2 cm in diameter. By November 2014, the active band had progressed

upwards approximately 15 cm and expanded laterally (calculated

0.5 cm d-1). Four weeks later, the active band had slowly progressed

approximately 5 cm to the top of the pillar. Active BBD was no

longer visible in January 2015 but reoccurred on the same pillar in

September 2015
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temperatures exceeding 29 �C (Rützler and Santavy 1983;

Kushmaro et al. 1997; Ben-Haim et al. 2003; Richardson

and Kuta 2003).

BBDhas rarely been reported inD. cylindrus, perhaps due

to the relatively low abundance of this little-studied species

throughout its Caribbean range or perhaps also due to its

relative resistance to this particular disease. This study pre-

sents the results of the first quantitative monitoring of D.

cylindrus on the FRT for health, bleaching status, and dis-

ease, and includes the first report of BBD for this species in

this region. This data set is the first step in potential man-

agement of this recently listed threatened species. The

observed persistent advance of BBD (progressing up to

0.5 cm d-1; Fig. 4) on this slow-growing coral, the pattern

of increased BBD prevalence following two consecutive

hyperthermal events, and escalating environmental stressors

due to predicted climate change, all suggest that BBD may

play amore prominent role in the decline ofD. cylindrus and

other susceptible reef-building species, lending urgency for

management and restoration efforts.
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Most scleractinian corals form obligate symbioses with photosynthetic dinoflagellates
(family Symbiodiniaceae), which provide differential tolerances to their host. Previously,
research has focused on the influence of symbiont composition and the dynamic
processes of symbiont repopulation during single episodes of hyperthermal events,
followed by years of less-stressful conditions. In contrast, this study characterized for the
first time, the role of Symbiodiniaceae species changes in response to annually recurring
hyperthermal events, a scenario soon expected to become the norm. Consecutive
hyperthermal events during summer 2014 and 2015 along the Florida Reef Tract
offered a unique opportunity to study bleaching susceptibility and recovery under
recurrent annual hyperthermal scenarios. We utilized Illumina amplicon sequencing of
the chloroplast 23S DNA region to assess with fine resolution the Symbiodiniaceae
diversity associated with pillar coral, Dendrogyra cylindrus. Our findings show diverse
assemblages of Symbiodiniaceae species and that some cryptic members are not
transient associates but persistent and ecologically relevant, especially during recurrent
annual warming events. This was evidenced by changes in relative abundance
from the typically dominant host-specialist endosymbiont, Breviolum dendrogyrum, to
B. meandrinium a host-generalist species common to corals in the family Meandrinidae
but occurs at background densities in most coral colonies of D. cylindrus. The rise
in abundance of B. meandrinium associated strongly with bleaching resistance in the
coral host during two consecutive hyperthermal events. In some cases, host-compatible
background symbionts can rapidly increase in abundance during episodes of stress and
may impart physiological resilience to rapid environmental change and thus, represents
a potentially important ecological process by which symbiotic corals acclimatize to
changing ocean conditions.

Keywords: pillar coral, bleaching resistance, host-specialist zooxanthella, Dendrogyra cylindrus, Florida Reef
Tract, Symbiodiniaceae
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BACKGROUND

Coral reefs worldwide have experienced dramatic declines
in recent decades due to natural and anthropogenic factors
(Gardner et al., 2003; Van Hooidonk et al., 2016; Hughes
et al., 2017). Global impacts of climate change, resulting
in hyperthermal coral bleaching events (loss of symbiotic
photosynthetic algae and/or chlorophyll), have become more
frequent in recent decades and are projected to be annual events
by 2050, or sooner on some reefs (Hoegh-Guldberg et al., 2007;
Van Hooidonk et al., 2015, 2016). One of the strongest El Niño
Southern Oscillation (ENSO) events on record occurred from
May 2014 to June 2016 (Lian et al., 2017), causing staggering
losses to coral reefs worldwide, including the Florida Reef Tract,
due to consecutive bleaching events and subsequent disease
outbreaks (Precht et al., 2016; Hughes et al., 2017).

Most scleractinian corals form obligate symbiotic
relationships with photosynthetic dinoflagellates within the
family Symbiodiniaceae. This partnership is critical for coral
health and vital to enhanced calcification in reef-building corals
(Muscatine and Porter, 1977; Mallela, 2013). Understanding
the role of Symbiodiniaceae diversity in bleaching susceptibility
and recovery, and the physiological constraints and advantages
they confer on their coral hosts has become of increasing
importance with escalating climate change (Cunning and Baker,
2012; Silverstein et al., 2012; Logan et al., 2014). Currently
there are seven described genera and a similar number of
other divergent lineages requiring generic names (LaJeunesse
et al., 2018). Inter- and intra-generic diversity displays clear
physiological differences (Rodriguez-Lanetty et al., 2004, 2006;
Rodriguez-Lanetty, 2003; Rowan, 2004; Warner et al., 2006;
Abrego et al., 2008; Sampayo et al., 2008; Fitt et al., 2009) and
provides differential environmental tolerances and sensitivities
to the symbiotic partnership (Jones and Berkelmans, 2010;
LaJeunesse et al., 2014; Hume et al., 2015). Seminal work by
Berkelmans and Van Oppen (2006) demonstrated experimentally
that corals can acquire increased thermal tolerance as a direct
result of changes in the symbiont genus dominating their tissues
by shuffling existing types already present within the coral host.

Molecular approaches to Symbiodiniaceae diversity and
community assemblages now allow us to further investigate the
functional significance of genetic diversity within genera, thus
prompting further questions into the roles of the symbionts
during environmental stressors (Sampayo et al., 2008; Bay et al.,
2016). Using higher resolution DNA markers, it has become
apparent that there is a very large number of species in this family
(Rodriguez-Lanetty et al., 2001, 2004; Rodriguez-Lanetty, 2003;
LaJeunesse, 2002; Sampayo et al., 2009; LaJeunesse and Thornhill,
2011; Thornhill et al., 2014; Wilkinson et al., 2015; Lewis
et al., 2018). Additionally, advances in high-throughput amplicon
sequencing technology have allowed fine-scale exploration of
the Symbiodiniaceae community composition by discovering
more cryptic, previously undetected symbiont types occurring
at abundances less than 0.01% (Arif et al., 2014; Green et al.,
2014; Quigley et al., 2014; Thomas et al., 2014; Boulotte
et al., 2016; Cunning et al., 2017). While various kinds of
Symbiodiniaceae can be detected in trace amounts from host

tissues, interpreting the ecological and functional significance of
these requires caution (Lee et al., 2016). Still reef corals are often
compatible with more than one symbiont species and differences
in their physiological tolerances may shift population dynamics
allowing for a symbiont at low abundances to proliferate
within the coral animal thus changing the composition of the
symbiont population to one that is better adapted to prevailing
environmental conditions (Berkelmans and Van Oppen, 2006;
LaJeunesse et al., 2009a; Baums et al., 2014; Grottoli et al., 2014;
Parkinson and Baums, 2014).

Studies conducted over the last two decades have been
fundamental in gauging the response and the ability of corals to
acclimatize to increased temperature extremes under scenarios in
which isolated thermal anomalies have been followed by years
of non-bleaching temperatures. However, the 2014–2016 ENSO
phenomenon led to a recurrent thermal stress scenario, resulting
in mass coral bleaching which detrimentally impacted coral
reefs worldwide, including the Florida Reef Tract, during the
summers of 2014 and 2015 (Manzello, 2015). These consecutive
hyperthermal events, not experienced on Florida’s reefs since the
1997-1998 ENSO (Causey, 2001), offered a unique opportunity
to document spatial and temporal bleaching and post-bleaching
recovery under conditions not frequently seen, but expected to
become the norm in the near future based on current predictions
(Hoegh-Guldberg et al., 2007; Altizer et al., 2013; Van Hooidonk
et al., 2016).

This study targeted the rare and iconic pillar coral, Dendrogyra
cylindrus (Ehrenburg, 1834), a slow-growing columnar species
typically found in low abundance throughout its Caribbean
range (Figure 1). This species is currently categorized as
‘vulnerable’ under the International Union for Conservation
of Nature (IUCN) Red List criteria (Aronson et al., 2008)
and listed as ‘threatened’ under the US Endangered Species
Act (NOAA Fisheries, 2014) due to its susceptibility to
bleaching, disease, and habitat degradation. We focused on three
representative sites distributed geographically along the Florida
Reef Tract (Figure 2). For this study we used Illumina amplicon
sequencing of the chloroplast 23S hyper-variable region (cp23S-
HV) to characterize for the first time with fine resolution,
the Symbiodiniaceae community assemblage associated with
D. cylindrus colonies at three sites and their temporal dynamics
through recurrent hyperthermal events over a 2-year period.
We detected the presence of low abundance background
Symbiodiniaceae genera and, at one location, observed changes in
the symbiont population from the normal host-specialist species,
Breviolum dendrogyrum, to a sibling species, B. meandrinium,
common to corals across the family Meandrinidae. The dramatic
increase in abundance of this species corresponded to enhanced
colony recovery from bleaching and resistance to consecutive
hyperthermal events.

MATERIALS AND METHODS

Field Assessments and Sampling
Geographically stratified monitoring and field sampling of 163
D. cylindrus at 29 sites across the Florida Reef Tract (FRT),
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FIGURE 1 | The iconic pillar coral, Dendrogyra cylindrus. This unique species
occurs in historically low abundance throughout the Greater Caribbean. Its
unique columnar structure provides important habitat complexity to the reef
ecosystem where it does occur (Photo: C. Lewis).

conducted every 4 months from April 2014 to April 2016, allowed
for comparison before, during and after the occurrence of two
consecutive hyperthermal bleaching events in 2014 and 2015.
Three of these sites (Pickles: Upper Keys, N = 107 colonies;
Coffins: Middle Keys, N = 55 colonies; Marker 32: Lower Keys,
N = 16 colonies; represented by stars in Figure 2) were selected
spatially to represent each region and logistically due to the
greater number of D. cylindrus colonies present at each site
for replication of observations. These sites were targeted for
more frequent sampling to more closely observe changes during
bleaching and recovery (2014: September, October, November,
and December; 2015: January, March, April, September, October,
and November; and 2016: January and April). Sites ranged in
depth from 4 to 8 m. Colonies at all sites were mapped and
photographed to create field identification sheets for each colony
to facilitate accurate repeat assessment and sampling. Pendant
data loggers (Onset HOBO Inc., Bourne, MA, United States),
secured to the base of colonies at Pickles, Coffins, and Marker
32 sites, recorded hourly temperatures between April 2014
and April 2016 (Figure 3). Temperature data was used to
calculate mean daily, mean monthly, and maximum weekly sea
temperatures at each site. Archived temperature data for 2004–
2013 at Molasses Reef C-MAN station MLRF1, located in the
Upper Keys 4.2 km from Pickles site (NOAA National Data Buoy

Center, 2016), was used as a proxy to calculate 10-year mean
monthly and mean monthly maximum sea temperatures on
the FRT (Supplementary Table 1B). Using the calculated mean
monthly maximum temperatures at MRLF1, degree heating
weeks (◦C-weeks) were calculated for each site for July, August,
and September 2014 and 2015 (Liu et al., 2006) (Supplementary
Table 1A).

At each sampling time point, D. cylindrus colonies were
assessed for live coral tissue (visual estimate of percent live,
percent old mortality, percent recent mortality, i.e., bright
white, recently exposed skeleton), and coral bleaching status.
Colony color scores were assigned using the CoralWatch Coral
Health colorimetric chart developed by Siebeck et al. (2006) and
scaled from 1 (white) to 6 (heavily pigmented; Supplementary
Figure 1), served as a proxy for symbiont density and chlorophyll
a content. The CoralWatch Health Chart was not utilized
as a color reference until September 2014, therefore, colony
coloration scores for April 2014 were estimated after reviewing
colony photos. Colonies were sampled at each time point
using a low-impact syringe micro-sampling technique (Kemp
et al., 2008) to minimize damage to the colonies from repeated
sampling (sampling: Pickles n = 10 colonies, Coffins n = 10
colonies, Marker 32 n = 12 colonies). Briefly, tissue from three
to five polyps per colony was aspirated using a 30 cc syringe,
transported back to shore on ice, then filtered through a 13 mm
Swinnex filter system (Millepore Corporation, Billerica, MA,
United States), using a 3.0 µm filter disk (A/D glass fiber filter,
Pall Corporation, Port Washington, NY, United States). Each
filter disk was preserved in 95% molecular grade ethanol.

Total Genomic DNA Extraction
DNA was extracted using modified DNeasy Plant Mini kit
protocols (Quiagen Corporation, Valencia, CA, United States)
(LaJeunesse, 2002). Briefly, half of each sample filter was placed
in 400 µl supplied lysing buffer and ground with a sterile pestle.
Sterile acid-washed glass beads (425–600 µm; Sigma-Aldrich,
Saint Louis, MO, United States) were added and shaken for
3–5 min to disrupt symbiont cell walls, followed by the addition
of 20 µl proteinase K (Promega Corporation, Madison, WI,
United States) and incubated at 56◦C for 1–2 h. Standard kit
protocols were then followed for the remainder of the extraction.

Cp-23S-HV Parallel Amplicon
Sequencing and Symbiodiniaceae
Community Analysis
Amplicon sequencing diversity assays of the Symbiodiniaceae
communities was performed on Illumina MiSeq platform
with 2 × 300 base pairs paired-end read capability, utilizing
length variation in Domain V of large sub-unit rDNA
chloroplast 23S hyper-variable region (cp-23S-HV, Santos et al.,
2003; Supplementary Table 2) at the Molecular Research LP
sequencing facility (MR DNA; Shallowater, TX, United States).
Resulting raw sequence data (Read1 & Read2.fastq file format)
were processed using MR DNA pipeline analysis. Briefly,
paired-end sequence reads (r1 and r2) were joined after
quality control (Q25) trimming of the ends, barcoding was
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FIGURE 2 | Study sites on the Florida Reef Tract where monitoring and sampling was conducted on the Pillar Coral Dendrogyra cylindrus. Geographically stratified
tri-annual monitoring and sampling occurred at 28 sites April 2014 to April 2016 (yellow circles). Pickles (Upper Keys), Coffins (Middle Keys), and Marker 32 (Lower
Keys) sites (red stars) were monitored and sampled monthly during bleaching recovery in 2014 and 2015. ∗MLRF1 – location of Molasses Reef C-man buoy used to
calculate 10-year mean monthly temperatures.

removed, and sequences with <150 base pair overlap were
discarded. Remaining sequences were de-noised, OTUs were
generated, and chimera sequences were removed. Clustering
of OTUs was determined at 97% similarity (3% divergence)
across all samples. Resulting OTUs were taxonomically classified
using BLASTn against a selected database created from cp23S
Symbiodiniaceae sequence data from NCBI1 to determine relative
abundance of Symbiodiniaceae types in D. cylindrus. To confirm
identities of the most abundant OTUs, a BLAST-search of
GenBank was performed2. Further identification of the two most
abundant B1 symbiont type OTUs was independently verified
using Symbiodiniaceae microsatellite analysis (B7Sym15 primers,
Supplementary Table 2) (Pettay and Lajeunesse, 2007). Briefly,
selected samples (dominant OTU ≥ 70% relative abundance)
were PCR-amplified using the B7Sym15 primers and visualized
on ABI 3100 Genetic Analyzer. Peaks were identified in each
sample and compared to known Symbiodiniaceae samples in the
LaJeunesse Lab (Lewis et al., 2018).

Statistical Analysis
Repeated measures analysis of variance (repeated measures
ANOVA, α = 0.05) was used to compare water temperature
profiles between the three sites (Pickles, Coffins, and Marker
32) through two consecutive bleaching and recovery periods

1www.ncbi.nlm.nih.gov
2https://www.ncbi.nlm.nih.gov/genbank

April 2014 through April 2016. CoralWatch bleaching scores for
colonies at the three sites were also analyzed, using repeated
measures ANOVA with post hoc Tukey and Bonferroni correction
(α = 0.05; Pickles n = 10, Coffins n = 10, Marker 32 n = 12),
to compare bleaching and recovery differences between sites
and between years. To determine the relationships between
coral bleaching and changes in the Symbiodiniaceae community
between sites, multivariate analysis of variance (MANOVA
α = 0.05) was used to compare colony bleaching index (colony
scores) to the relative abundance of OTUs generated by amplicon
sequencing of the cp23S-HV region (Pickles n = 6, Coffins n = 6,
Marker 32 n = 6).

RESULTS

Baseline Symbiodiniaceae Community
Diversity in Dendrogyra cylindrus Before
2014 and 2015 Hyperthermal Events
Illumina amplicon sequencing of the cp23S-HV gene region
showed a single OTU (or phylogenetic species) within the
genus Breviolum (formerly clade B; (LaJeunesse et al., 2018)
to be the dominant Symbiodiniaceae in D. cylindrus pre-
bleaching (April 2014), ranging from 75 to 81% relative
abundance across sites (Supplementary Table 3). Members
within Symbiodinium, Cladocopium, and Durusdinium (formerly
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FIGURE 3 | Water temperatures at three sites in the Florida Keys recorded between April 2014 and April 2016. The Florida Reef Tract (FRT) in the Florida Keys is
divided into distinct regions based on hydrologic influences, represented here by three sites: Pickles, Upper Keys; Coffins, Middle Keys; and Marker 32, Lower Keys.
Red dashed lines indicate the local bleaching threshold for the FRT (30.5◦C). Gaps in data are due to lost or damaged temperature loggers. (A) Mean monthly water
temperature data. Dotted black line is the calculated 10-year mean monthly water temperature (error bars +1 SD) for Molasses Reef 2004-2013 (MLRF1, National
Data Buoy Center). (B) Mean daily water temperature data.

clades A, C, and D respectively; (LaJeunesse et al., 2018) were
also detected in cryptic low abundance (<0.1%). Amplicon
diversity analysis yielded 266 OTUs (0.97% similarity cut-
off). All but fourteen OTUs were taxonomically classified as
genus Breviolum (formerly clade B Symbiodinium). Moreover,
the combined relative abundance of all 252 Breviolum OTUs
represented > 99% of the Symbiodiniaceae community at all
three representative sites along the Florida Reef Tract (Pickles,
Coffins, and Marker 32). Two hundred thirty-two Breviolum
OTUs were rare members of the Symbiodiniaceae community
detected at <0.01% relative abundance. The two most abundant
OTUs accounted for >80% of the symbiont community at all
three sites. These two sequences were both identified as sub-
genera Breviolum type cp-23S B184 (or ITS2 type B1) phylotypes

in GeneBank. Using Symbiodiniaceae microsatellite analysis
(B7Sym15 primers, Supplementary Table 2), the identity of these
two sequences was verified as ITS2 types B1-4k and B1-3 (species
novo: Breviolum dendrogyrum and B. meandrinium, respectively;
LaJeunesse et al., 2018; Lewis et al., 2018). There was no difference
in relative abundances of B. dendrogyrum or B. meandrinium
compared between sites in April 2014 prior to bleaching (two-
way ANOVA α = 0.05, p > 0.05).

Ninety-four OTUs belonging to the genus Symbiodinium
(formerly clade A) were detected in cryptic low abundance at
Pickles, Coffins, and Marker 32 in April 2014 (Supplementary
Table 3). These OTUs were confirmed by BLAST-search as
belonging to Symbiodinium strains A2, A3, and A13 (strain A13,
putatively S. necroappetens). Three cryptic Cladocopium OTUs
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(formerly clade C) were detected only at Pickles and Marker
32 sites. A single OTU, classified as Durusdinium (strain D1a,
putatively D. trenchii), was only detected at Marker 32 in April
2014.

Consecutive Hyperthermal Bleaching on
the Florida Reef Tract in 2014 and 2015
Florida’s reefs exceeded 5◦C-weeks (degree heating weeks) during
the summers of 2014 and 7◦C-weeks in 2015, based on NOAA’s
Coral Reef Watch 50-km Satellite Monitoring (NOAA Coral
Reef Watch, 2000), updated twice-weekly; NOAA OSPO, 2018)
(Supplementary Table 1A). Data loggers at the three study
sites recorded sea water temperatures which exceeded the
FRT bleaching index of 30.5◦C (Manzello, 2015) (Figure 3),
causing severe bleaching in most coral species across the FRT
(personal observation and Precht et al., 2016). Maximum weekly
temperatures in 2014 exceeded the FRT bleaching threshold
(30.5◦C) 10 weeks at Coffins and 8 weeks at Marker 32 (Figure 3
and Supplementary Table 1B). Data loggers were lost at the
Pickles site from April to September 2014 and thus meaningful
temperature analysis could not be included. In 2015, maximum
weekly temperatures exceeded the bleaching threshold 12 weeks
at Pickles and 13 weeks at both Coffins and Marker 32. Using
mean maximum monthly calculations from MRLF1, degree
heating weeks at Coffins (Middle Keys) exceeded 7◦C-weeks
in 2014 and 5◦C-weeks in 2015 (Supplementary Table 1B).
Degree heating weeks at Marker 32 (Lower Keys) was nearly
3◦C-weeks in 2014 and 4◦C-weeks in 2015. Degree heating
weeks at Pickles (Upper Keys) was 0◦C-weeks in 2015 (no data
from 2014). Utilizing the FRT bleaching threshold (30.5◦C),
calculated DHW was greater at the three sites (Supplementary
Table 1B). The number of weeks maximum water temperatures
exceeded the bleaching threshold were greater in 2015. Summary
of water temperatures from June through October (i.e., warmest
summer months) in 2014 and 2015 show differences in
temperature characteristics between sites and between years
(Figure 4; repeated measures ANOVA p < 0.04), except for
July 2015 (p = 0.076). While all sites experienced temperatures
exceeding the bleaching threshold, Coffins experienced the
highest temperatures in August 2014, however, Marker 32
was warmer (maximum and median temperatures) than the
other two sites in September 2014 (p < 0.01). During the
second hyperthermal event in 2015, Coffins and Marker 32 sites
experienced warmer temperatures than Pickles site (maximum
and median temperatures; p < 0.01).

Differential Bleaching Resistance and
Resilience
The CoralWatch Coral Health colorimetric chart developed by
Siebeck et al. (2006) was used to determine the bleaching status
of colonies. Healthy, non-thermally stressed colonies ranged
in color between 3.5 and 4.5 on this chart (Supplementary
Figure 1). Colonies with scores between 1.5 and 3.5 were
considered pale, while colonies with scores < 1.5 were considered
bleached.

In response to hyperthermal events in 2014 and 2015, patterns
of bleaching and recovery differed between sites as well as
between years. During the first bleaching event on the FRT
(August–September 2014), all D. cylindrus colonies, including
at Pickles, Coffins, and Marker 32 sites were severely bleached
(Figure 5 and Supplementary Table 4). Colonies at Marker 32
were the most severely bleached, followed by Coffins colonies
and finally Pickles (two-way ANOVA; p < 0.01). Pickles and
Coffins colonies regained normal coloration by December 2014
and January 2015. From January to April 2015, colonies at these
two sites paled (two-way ANOVA, p < 0.01). Marker 32 colonies
recovered slowly, remaining pale through April 2015 (Figure 5
and Supplementary Table 4).

During the second hyperthermal event in August-September
2015, site-specific differences in bleaching and recovery were
observed. Colonies at Coffins and Marker 32 again bleached,
although Coffins colonies were less severely bleached than
September 2014, indicated by higher coloration scores (two-
way ANOVA, p < 0.01; Figure 5 and Supplementary Table 4).
However, unlike these two sites, Pickles colonies were more
resistant to bleaching in 2015, with no significant change in
colony coloration from April to September 2015 (two-way
ANOVA, p = 0.82). While there was no bleaching observed
in these colonies during the hyperthermal event, there was
an increase in colony coloration from September to October
(p = 0.01) which remained constant through January 2016
(Figure 5 and Supplementary Table 4). Coffins colonies also
recovered normal coloration by January 2016. Both Pickles
and Coffins colonies again paled during the 2016 winter-spring
transition (p = 0.01). Although many colonies at Marker 32
remined pale after September 2015, they appeared to recover
slightly when compared with the previous year, indicated by near-
normal coloration scores in November 2015 and January 2016
(mean scores: 3.46 ± 0.33 and 3.76 ± 0.33; two-way ANOVA,
p < 0.01). Colonies at Marker 32 were considered pale again in
April 2016 (mean score: 3.01 ± 1.13; one-way ANOVA p = 0.06;
Figure 5 and Supplementary Table 4).

Breviolum Species Switched Dominance
Associated With Hyperthermal Events
The Symbiodiniaceae community in D. cylindrus was dynamic
in response to hyperthermal bleaching and the subsequent
recovery processes following two consecutive bleaching events.
Relative abundance of the endosymbionts varied between three
representative sites, especially the two species within Breviolum
described above (Figure 6). At the Pickles site (Upper Keys) and
associated with the August-September 2014 hyperthermal event,
previously cryptic B. meandrinium (<10% relative abundance)
became the dominant endosymbiont species in October 2014 and
persisted through April 2015 while B. dendrogyrum declined in
relative abundance through December 2014 to 20.60% but then
slowly increased to 33.35% through April 2015 (Figure 6A and
Supplementary Table 3A), but not to pre-bleaching abundance
of 75.68% in April 2014. At the Coffins site (Middle Keys),
B. dendrogyrum remained dominant through bleaching and
recovery in 2014. Breviolum meandrinium remained at low
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FIGURE 4 | Summary of water temperature profiles at three sites on the Florida Reef Tract during summer 2014 and 2015. Five-number summary of temperature
profiles at three sites (Pickles: Upper, Coffins: Middle, Marker 32: Lower) along the Florida Reef Tract. Hourly water temperatures from pendant data loggers were
used to create temperature profiles from June through October 2014 and 2015. Box plots indicate interquartile temperature ranges (Q2–Q3) and median
temperatures. ‘Whiskers’ show maximum and minimum water temperature during this time period. Gray triangles indicate incomplete temperature profiles due to
lost data loggers.

abundance but showed a slight but significant increase from
October to December 2014 (two-way ANOVA p = 0.01), reaching
maximum 20.15% relative abundance in April 2015 (Figure 6B
and Supplementary Table 3B). Similar to the Coffins site,
B. dendrogyrum remained the dominant species at Marker 32
(Lower Keys; Figure 6C and Supplementary Table 3C).

In response to the second hyperthermal event in August-
September 2015, the two most abundant Breviolum species were

again dynamic and site-specific. At the Pickles site, fluctuation
in dominance was again detected in which B. dendrogyrum
briefly increased in abundance and re-established dominance by
September 2015 (53.41%; two-way ANOVA, p = 0.02) however,
this was short-lived. Relative abundance of B. meandrinium
slowly declined through September 2015 to 30.28% but then
quickly increased during the recovery months to persist as
the dominant endosymbiont through April 2016 (51.55%).
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FIGURE 5 | Mean bleaching index based on coloration scores of D. cylindrus colonies at three sites on the FRT between 2014 and 2016. The coloration scores
were determined using the CoralWatch Coral Health Chart for colorimetric reference (version: Project Aware https://coralwatch.org; Siebeck et al., 2006). Coloration
ranges for D. cylindrus based on triannual assessments of 168 colonies: healthy 3.5–4.0; pale: 2.0–3.0; bleached: 1.0–1.5. Dashed gray line represents trajectory of
estimated colony scores from April 2014. Pickles (n = 12) Upper Keys; Coffins (n = 12) Middle Keys; Marker 32 (n = 11) Lower Keys. Error bars ± 1 standard
deviation.

From September 2015 to April 2016, B. dendrogyrum slowly
declined to 29.97% (Figure 6A and Supplementary Table 3A).
At the Coffins site, B. dendrogyrum remained the dominant
species throughout the second bleaching and recovery
(2015) and returned to similar abundance observed in April
2014 baseline (Figure 6B and Supplementary Table 3B).
Breviolum meandrinium reached a maximum abundance
of 20.39% in September 2015 at this site and declined
to 0.12% in January 2016, remaining unchanged through
April 2016 (two-way ANOVA, p < 0.01). And finally, at the
Marker 32 site, relative abundance of B. dendrogyrum and
B. meandrinium did not change from April to September 2015
or thereafter, and B. meandrinium remained cryptic (<0.1%
abundance) through April 2016 (Figure 6C and Supplementary
Table 3C).

Bleaching Resistance and Resilience
The magnitude of change in relative abundance of dominant
Breviolum dendrogyrum and cryptic B. meandrinium during
two consecutive hyperthermal bleaching events was site specific
and closely associated with differential resistance and resilience
to bleaching and recovery. Colonies at the Pickles site
(Upper Keys) bleached severely during August-September
2014 and then recovered by December 2014 (Figure 5 and
Supplementary Table 4). Concurrently, the relative abundance of
dominant endosymbiont B. dendrogyrum declined while cryptic
B. meandrinium increased to become the dominant symbiont.
Relative abundance of these two species did not return to pre-
bleaching levels (Figure 6A and Supplementary Table 3A).

During the second hyperthermal event in August-September
2015, while B. dendrogyrum briefly regained dominance by
September, B. meandrinium once again became the dominant
species, persisting through recovery until April 2016. This change
was closely associated with the observation that colonies at
Pickles did not bleach during the second hyperthermal event
(Figure 5 and Supplementary Table 4), indicating acquired
resistance to annual thermal stress (water temperatures exceeding
30.5◦C, Figures 3, 4). This resistance was strongly associated with
a fluctuation in Symbiodiniaceae species, specifically an increase
and persistence in abundance of B. meandrinium as it became
the dominant species in D. cylindrus colonies at the Pickles site
(MANOVA p < 0.001).

Colonies at the Coffins site (Middle Keys) also
bleached severely in August-September 2014 (Figure 5 and
Supplementary Table 4). As normal colony coloration returned
in December 2014, cryptic B. meandrinium slightly increased
in abundance, reaching 20.15% by April 2015 (Figure 6B and
Supplementary Table 3B). Although B. meandrinium never
became the dominant Breviolum species at Coffins, colonies
did not bleach as severely the second year and recovered
quickly to normal coloration by January 2016 (Figure 5 and
Supplementary Table 4). This strongly suggests at least partial
resistance to bleaching associated with an increased relative
abundance in cryptic B. meandrinium (MANOVA p = 0.068).
Colonies at Marker 32 (Lower Keys) bleached severely both in
2014 and 2015 (Figure 5 and Supplementary Table 4) while
B. meandrinium remained at cryptic low levels throughout,
reaching a maximum abundance of only 2.60% in September
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FIGURE 6 | Relative abundance of Symbiodiniaceae symbionts from the genus Breviolum associated with D. cylindrus on the Florida Reef Tract between 2014 and
2016. The dynamics of Breviolum dendrogyrum (blue) and B. meandrinium (green) between three sites and between years, by percent relative abundance of
Breviolum spp. OTUs. B. meandrinium increased in relative abundance during bleaching and recovery, becoming the dominant symbiont species at the Pickles site
in 2014 and 2015. (A) Pickles (n = 6) Upper Keys, (B) Coffins (n = 6) Middle Keys, (C) Marker 32 (n = 6) Lower Keys. ‘All other Breviolum’ (blue-gray) represents 250
OTUs combined. Asterisk (∗) indicates bleaching months.
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2014 (Figure 6C and Supplementary Table 3C; MANOVA,
p = 0.981).

Symbiodinium, Cladocopium, and
Durusdinium Persisted at Cryptic Low
Abundance
Although Breviolum (formerly clade B) remained the dominant
genus in D. cylindrus through two consecutive bleaching
and recovery events, cryptic Symbiodinium, Cladocopium, and
Durusdinium species (formerly clades A, C, and D, respectively)
were also detected and often persisted through recovery
(Supplementary Table 3). Symbiodinium spp. were detected in
cryptic low abundance (<0.01–5.38%) from April 2014 through
December 2014 and then not thereafter at Pickles site (Upper
Keys). At the Coffins site (Middle Keys), Symbiodinium spp. were
detected intermittently through both bleaching and recovery
events. At Marker 32 (Lower Keys), Symbiodinium spp. were
detected in April 2014 and persisted at cryptic low abundance
though April 2016 (≤0.2%).

Cladocopium spp. were only detected from April to October
2014 and then not after at the Pickles site (Supplementary
Table 3). Cladocopium spp. were detected at Coffins after the first
bleaching in September 2014 and persisted intermittently during
recovery until November 2015. At Marker 32, Cladocopium spp.
were detected at cryptic levels in the April 2014 baseline sampling
(<0.001%) and persisted through April 2016 (0.21% abundance).

A single OTU, classified as Durusdinium sp. and identified
by BLAST-search as type D1a (putatively D. trenchii, formerly
S. trenchii), was first detected in cryptic low abundance at Pickles
and Coffins sites in October 2014 after the 2014 bleaching
event and then intermittently through the second bleaching and
recovery period until January 2016 (Supplementary Table 3).
At Marker 32, Durusdinium sp. was detected pre-bleaching in
April 2014 and then intermittently throughout both bleaching
and recovery periods through April 2016.

DISCUSSION

Research over the last two decades has documented the influence
of the symbiont composition and the dynamic processes of
symbiont repopulation during the coral response to single
episodes of hyperthermal stress events, followed by years of
normal environmental conditions (Edmunds et al., 2014; Kemp
et al., 2014). Our study characterized changes in symbiont species
within some colonies of Dendrogyra cylindrus in response to a
consecutive hyperthermal event. This study contributes to further
understanding how coral-algal mutualisms may respond through
shifts in partnerships under long-predicted environmental
scenarios (annual bleaching) (Hoegh-Guldberg, 1999; Grottoli
et al., 2014), which coral reefs worldwide are now experiencing
(Hughes et al., 2017). Our findings show unexpectedly diverse
assemblages of Symbiodiniaceae associated with Dendrogyra
cylindrus, and that one low abundant host-compatible species was
not a transient associate but persistent and ecologically relevant
symbionts that plays a role during thermal stress. Furthermore,
site-specific shifts in Symbiodiniaceae species dominance were

associated with greater bleaching resistance during consecutive
hyperthermal events.

Symbiodiniaceae Community Dominated
Mainly by a Single Symbiont Along With
a Diverse Assemblage of Cryptic
Associates
By revealing a Symbiodiniaceae community represented by
266 OTUs, with the majority in very low relative abundances
(<0.1%), our findings indicate that past studies have considerably
underestimated the actual diversity of endosymbionts associated
with D. cylindrus, and likely many other coral species, although
at least some of these rare and cryptic OTUs may in fact be
sequencing artifacts (Arif et al., 2014). Most symbiont types
detected in our study (>99%) belonged to the genus Breviolum
spp. (formerly clade B). Three other genera, Symbiodinium,
Cladocopium, and Durusdinium (formerly clades A, C, and
D, respectively) were detected at extremely low levels (0.001–
5.38%) in D. cylindrus. Discovery of this tremendous sequence
diversity within the genus Breviolum associated with D. cylindrus
opens new questions regarding whether these symbiont types
are the reflection of population variability within species or
are indeed independent evolutionary lineages (i.e., species).
Symbiont assemblages across sites and within individual
D. cylindrus colonies were dominated by a single Breviolum
species of endosymbiont. Using single copy microsatellite
markers (see Materials and Methods), it was confirmed
that this symbiont corresponded to the recently described
Breviolum dendrogyrum (Lewis et al., 2018). Furthermore,
low concentrations of Breviolum meandrinium, which was
also identified and confirmed with the use of diagnostic
microsatellites, increased in relative abundance as a function
of environmental stress. Breviolum meandrinium is common
to corals in the family Meandrinidae from shallow habitats
(1-10 m) across the Greater Caribbean. Dendrogyra cylindrus
is one notable exception of the family in that it harbors a
unique host-specialist, which appears adapted to associating only
with this host. These findings highlight how a host-generalist,
B. meandrinium, normally rare in D. cylindrus, can proliferate in
colonies subjected to severe thermal stress.

Changes in Balance Among
Host-Compatible Symbiodiniaceae
During Recurrent Environmental Stress
It has been suggested that most cryptic Symbiodiniaceae are
transitory and likely provide minimal ecological significance for
their coral hosts (Lee et al., 2016). However, recent studies have
challenged this view and suggested that rare symbionts tend to
be non-random clusters of coral host-symbiont communities and
may provide environmental resilience for the coral holobiont
(Ziegler et al., 2015, 2017). In agreement with this, our
data show a clear association between a site-specific increase
and persistence in relative abundance of the low abundance
background B. meandrinium and the overall stability of the host–
symbiont community during subsequent hyperthermal stress.
At the Pickles site in the Upper Keys region of the Florida
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Reef Tract, B. meandrinium increased in relative abundance
during the first hyperthermal bleaching event in 2014 and
rapidly switched to become the dominant symbiont during the
first 7 months of recovery (Figure 6A and Supplementary
Table 3). This change in the relative abundances of two species
persisted for at least 11 months under normal conditions, but
by September 2015, B. dendrogyrum displaced B. meandrinium
as the dominant symbiont. This reversal of endosymbiont
assemblages is consistent with other studies that have monitored
changes before and after non-recurrent hyperthermal events,
where changes in symbionts during bleaching episodes reverted
to the original state after several months or even years (Thornhill
et al., 2006; Sampayo et al., 2008; LaJeunesse et al., 2009b;
Grottoli et al., 2014). Nevertheless, the reversion to the normal
symbiont in D. cylindrus was short-lived as B. meandrinium
again become the dominant symbiont species among colonies
at the Pickles site in response to the second hyperthermal event
in August–September 2015. These host-symbiont combinations
persisted and, at the time of the last sampling for this study
in April 2016, B. meandrinium remained the dominant species
(Figure 6A and Supplemental Table 3A). Importantly, corals at
this site did not lose color during this second event (Figure 5);
the relative abundance of B. meandrinium was 3–4 times higher
during the onset of the 2015 hyperthermal event in comparison
to pre-bleaching levels in April 2014. Under scenarios of annual
hyperthermal bleaching events, impacted coral communities may
not have sufficient time to fully recover their stable host-symbiont
pairings.

The Adaptive Bleaching Hypothesis posits that when corals
bleach, they expel less thermally tolerant endosymbionts and
then acquire new, more favorable endosymbionts, allowing
them to acclimatize and adapt to environmental stressors
(Buddemeier and Fautin, 1993; Baker et al., 2004; Buddemeier
et al., 2004). Berkelmans and Van Oppen (2006) demonstrated
that thermal stress may induce changes in the dominant
symbionts among experimental corals, thus providing thermal
tolerance and decreased mortality to the coral animal, supporting
the hypothesis that the presence of a thermally tolerant
endosymbiont, even in low abundance, may impart an ecological
advantage to their coral host (LaJeunesse et al., 2009b). Sampayo
et al. (2009) demonstrated that shifts in dominance between
closely related species in the genus Cladocopium can also impart
differential thermal tolerance and, ultimately, differential colony
survival. However, unusual host-symbiont partnerships that
emerge during bleaching events revert to the original state after
normal environmental conditions return (Stat et al., 2009).

It appears that during a scenario of hyperthermal stress
events, followed by multiple years of less-stressful environmental
conditions, new host-symbiont combinations that appear
following the bleaching event are short-lived and the
Symbiodiniaceae community eventually reverts back to its
original state (Berkelmans and Van Oppen, 2006; Sampayo
et al., 2008). This is likely as normal host-compatible
symbionts are more effective at growing inside their hosts
under non-stressful conditions (Jones and Berkelmans, 2010).
However, under sustained disturbance events, such as annually
recurring hyperthermal events, new thermally tolerant partner

pairings may be longer-lived and maintain higher relative
proportions within the Symbiodiniaceae community as the
period of less-stressful environmental conditions between
disturbances becomes shorter (Grottoli et al., 2014). Such
was the case at the Pickles site where relative abundance of
B. meandrinium remained near 50% and, while trace amounts
of Durusdinium persisted through April 2016, Symbiodinium sp.
and Cladocopium sp. disappeared altogether (Supplementary
Table 3A). Our data did not show a shift in dominance
at the other two sites (Figures 6B,C) and, unlike Pickles
colonies, they bleached again during the second hyperthermal
event in August-September 2015 (Figure 5). However, at the
Coffins site (Middle Keys), we detected an increase in relative
abundance of B. meandrinium to 20.39% during the second
hyperthermal event (August–September 2015; Figure 6B and
Supplementary Table 3B), which was associated with only
paling in most colonies at this site (Figure 5 and Supplementary
Table 4). While B. meandrinium did not become the dominant
Symbiodiniaceae species, perhaps some threshold abundance
may also impart at least partial bleaching resistance for the coral
animal (Bay et al., 2016), as was observed at the Coffins site. The
Lower Keys site (Marker 32) showed minimal fluctuation in the
endosymbiont community but also bleached more severely and
recovered more slowly after both bleaching events.

This difference across sites seems not linked to different
temperature profiles during the two hyperthermal events, since
all sites experienced similar exposure to elevated temperatures
above the 30.5◦C bleaching threshold for the FRT (Figures 3, 4).
While we cannot explain why the shift of Symbiodiniaceae
assemblages did not occur across all sites, it is important to
note that baseline abundance of the cryptic B. meandrinium
prior to the first hyperthermal event in April 2014 was higher
in Pickles colonies than the other two sites (Supplementary
Table 3). Perhaps some critical minimum abundance may
be required for a rare symbiont to out-compete dominant
symbionts when the opportunity arises, such as during
bleaching and recovery. However, the relative abundance of
B. meandrinium in Coffins colonies was higher (20.15%)
prior to the second hyperthermal event and still we did
not see a shift in symbiont assemblages during the second
bleaching and recovery event at this site. This suggests the
existence of other site-specific factors influencing the dynamics
and competition processes of symbiont repopulation after
environmental stressors. Alternatively, genotypic differences in
the coral animal may contribute to the observed differential
symbiont flexibility, but their role is thus far unknown. Recent
work on genetic diversity in Florida’s D. cylindrus population
indicates that each of these three sites is represented by unique
coral genotypes (Chan et al., 2018). All colonies at the Pickles
site comprised one genotype, indicating a high level of clonality
at this local. The same pattern of clonality was also detected
for colonies at the Coffins site. The Marker 32 site had the
most genetic diversity, composed of five different coral animal
genotypes, and yet was the population most affected by these
hyperthermal events. Continued work on the role of genetic
diversity in the coral host and its symbiont requires further
investigation.
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It has been proposed that colonies exposed to moderate
thermal stress are better conditioned to dealing with
episodes of severe thermal stress (Oliver and Palumbi, 2011;
Ainsworth et al., 2016). Thermal profiles showing a pre-
bleaching spike in water temperatures, followed by a recovery
period of cooler temperatures, prior to a hyperthermal event,
reduced the severity of bleaching. Temperature profiles at our
three study sites show a similar sub-bleaching spike in water
temperatures in June 2014 and May 2015 (Figure 3B), however,
severe bleaching occurred in August–September both years. This
may be due to the recovery period being too short or the ensuing
hyperthermal stress was too severe (i.e., temperatures exceeding
the bleaching threshold for too many weeks, Supplementary
Table 1), exceeding the capacity of the thermally primed corals.
As predicted by Ainsworth et al. (2016), climate change leading
to annual bleaching and excessive thermal stress may indeed
disable this protective thermal priming scenario.

Persistent Cryptic Communities as a
Source of More Thermally Tolerant
Strains for Acclimatization and
Adaptation
Our data support that under certain circumstances, a low
abundant symbiont may emerge during thermal bleaching and/or
recovery to enhance acclimatization of the coral host (Kemp
et al., 2014). Durusdinium sp., known to be opportunistic in
certain Caribbean corals exposed to stress (LaJeunesse et al.,
2009b), remained at trace levels (<0.03%) during the 2014
and 2015 bleaching and recovery events on the FRT. Due to
the high resolution of this study, this is the first reporting
of Durusdinium trenchii (formerly Symbiodinium trenchii) in
Dendrogyra cylindrus, suggesting an expansion of this invasive,
more thermally tolerant species into another Caribbean coral
host (LaJeunesse et al., 2010, 2014; Wham et al., 2011).
Durusdinium trenchii is a stress-tolerant species within the genus
Durusdinium, commonly found in the Indo-Pacific and known to
impart thermal tolerance and bleaching resistance to its coral host
(Pettay and Lajeunesse, 2009). This species is considered invasive
in the Greater Caribbean and has been increasingly found in
corals inhabiting marginal habitats or under high environmental
stress, particularly after bleaching events (Pettay and Lajeunesse,
2009).

One of three cryptic Symbiodinium OTUs detected in
D. cylindrus and identified putatively as Symbiodinium
necroappetens (strain A13), is considered an opportunist,
emerging transiently to associate with thermally stressed or
diseased corals (LaJeunesse et al., 2015). Our data show that
Symbiodinium spp. were part of the cryptic community in
D. cylindrus even prior to the 2014–2015 thermal events
(April 2014; Supplementary Table 3). At sites showing an
increased abundance of B. meandrinium in response to
annual thermal events (Pickles and Coffins), Symbiodinium
and Cladocopium genera were not detected, and may have
been displaced as B. meandrinium approached 20% relative
abundance. Alternatively, the occurrence and persistence of
cryptic symbionts in D. cylindrus and other Caribbean corals

may also be an indicator of long-term physiological stress due
to deteriorating environmental factors, e.g., water quality (Boyer
et al., 1999; Boyer and Jones, 2002; Wagner et al., 2010) and
pulsed thermal events (i.e., previous Florida Reef-wide bleaching
events in 1987, 1990, 1997, 1998, 2005, as well as other localized
bleaching episodes (Manzello et al., 2007).

CONCLUSION

While it is encouraging to substantiate that coral symbioses
respond ecologically and thus “acclimatize” to a changing climate
through shifts in the dominant symbiont partner, it may not be
enough for their long-term survival in the Anthropocene. As
annual thermal bleaching is predicted to become more prevalent
on many reefs in the coming decades, the collateral damage
to biological, physiological, and immunological functions of the
coral holobiont (Bellantuono et al., 2012; Pinzón et al., 2015) may
negate their innate ability to acclimatize. It is imperative that we
address the issues of environmental stressors in the hopes that at
least some reef ecosystems will be able to acclimate and survive
in a changing climate. Even this glimmer of hope for survival
may prove to be ‘too little, too late’ as alarming coral losses due
to escalating disease outbreaks in warming oceans may overcome
these slow-growing monarchs of the reef more quickly than they
can adapt.

NOMENCLATURE

• cp23S-HV primers - utilize length variation in Domain V
of large sub-unit rDNA chloroplast 23S hyper-variable gene
region

• ENSO - El Niño/ La Niña Southern Oscillation is
characterized by oscillating changes from expected sea
surface temperatures in the eastern and central equatorial
Pacific Ocean (El Niño – warm phase, and La Niña – cool
phase)

• FRT – Florida Reef Tract
• Illumina Mi-Seq platform – high resolution parallel

amplicon sequencing diversity assay
• Symbiodiniaceae Family (LaJeunesse et al., 2018) –

photosynthetic endosymbiotic dinoflagellates

◦ Symbiodinium spp. (living together, whirling) –
formerly Clade A

◦ Breviolum spp. (short and small) – formerly Clade B
◦ Cladocopium spp. (branch and plenty) - formerly Clade

C
◦ Durusdinium spp. (tough and whirling) – formerly

Clade D
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Graphical abstract:  

Acquired site-specific bleaching resistance 

associated with a switch in dominant Breviolum 

species during two consecutive hyperthermal 

bleaching events. Photos represent a single colony 

at Pickles site during two hyperthermal bleaching 

and recovery events in 2014 and 2015. (photos: C 

Lewis) 
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SUPPLEMENTAL FIGURES & TABLES 

 

Supplemental Figure 1.  Coral Health Chart used to calculate the level of bleaching on 

Dendrogyra cylindrus colonies monitored between 2014 and 2016.  

Coloration of live tissue was determined by comparing 

with the gradient of color on the Coral Health Chart 

(https://www.projectaware.org)  (Siebeck et al. 2006). 

Color scores were further broken down (0.5) if color 

appeared between two values. Percent of each color 

value on an individual colony was estimated visually. 

Chart score (column A) was multiplied by estimated 

percent of colony live tissue (column B) to calculate 

colony score for each chart score value (column C). All 

colony scores for each coloration value (column C) 

were added to determine Total Colony Coloration 

Score. 

Calculation example: 

Bleach 

Status 

A 

Coral Health Chart 

Score 

B 

Estimated proportion  

of total live tissue on colony 

C 

Colony Score 

(col A x col B) 

Bleached 1.0 .20 1.0 x 0.20 = 0.20 

1.5 0 0 

 

Pale 

2.0 .30 2.0 x 0.30 = 0.60 

2.5 0 0 

3.0 0 0 

Healthy 3.5 .50 3.5 x 0.50 = 1.75 

4.0 0 0 

Total Colony Coloration Score 1.00 2.55 

 

 

Supplemental Table 1. Summary of thermal profiles from three sites on the Florida Reef 

Tract 2014-2016.  

HOBO data loggers recorded hourly water temperatures at three sites (Pickles: Upper, 

Coffins: Middle, Marker 32: Lower) 2014-2016 along the Florida Reef Tract (FRT). (A). 

Maximum weekly and maximum annual temperatures were recorded at each site. 

Number of weeks maximum water temperatures exceeded the FRT bleaching threshold 

(30.5°C) were calculated. for each site. (B). Ten-year mean monthly maximum (MMM) 

water temperatures were calculated for July, August, and September from archived C-

man Station data at Molasses Reef (MRLF1) 2004-2013. Degree heating weeks (DHW, 

°C-weeks) were calculated for each site using the mean monthly maximum temperatures 

https://www.projectaware.org/
https://www.projectaware.org/
https://www.projectaware.org/


Lewis et al. 2019 Shift from dominant host-specialist zooxanthella 
 

 

for July, August, and September and compared to NOAA Coral Reef Watch DHW. 

Degree heating weeks were also calculated at each site using the FRT bleaching threshold 

for comparison. Weeks where DHW were <1°C-weeks were not counted, as per standard 

protocols. ND represents insufficient data for meaningful calculations. 

 

 A.   10-yr Mean Monthly Maximum 2014-2013 at 
Molasses Reef (MRLF1) 

month temperature (°C) 

July 30.80 

Aug 31.31 

Sept 30.78 

FRT bleach threshold 30.50 

  

  NOAA Coral Reef Watch 50-km Satellite 
Degree Heating Weeks (DHW) for FRT  

2014 2015 

5°C-weeks 7°C-weeks 

 

 B. 2014 2015 

  Pickles* Coffins Marker 32 Pickles Coffins Marker 32 

DHW using MMM ND 7.48 2.8 0.00 5.21 4.07 

DHW -using 30.5°C ND 13.82 8.65 5.88 13.96 10.59 

# weeks >30.5°C ND 10 8 12 13 13 

max temperature °C 30.36 33.01 32.50 31.88 32.39 32.50 

*data loggers were lost at Pickles site from 4/1/2014-9/12/2014 

 

Supplemental Table 2. Primers used for cp23S amplicon sequencing and microsatellite 

genotyping analysis in Symbiodiniaceae. 

Primer name Primer Sequence Reference 

cp23S hyper up (forward) TCA GTA CAA ATA ATA 

TGC TG 

Santos et al 2003 

cp23S hyper down 

(reverse) 

TTA TCG CCC CAA TTA AAC 

AGT 

B7Sym15 forward CTC ACC TTG AAA TCA 

GTA GCC A 

Pettay & LaJeunesse 

2007 

B7Sym15 reverse CGT AGC TTC TGA AGG 

TAC GAC AC 
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Supplemental Table 3. Mean relative abundance of Symbiodiniaceae genera in D. cylindrus at three sites on the Florida Reef 

Tract 2014-2016.  

Percent mean relative abundance (± standard deviation) of operational taxonomic units (OTU0.03). Asterisk (*) indicates bleaching 

months. (A) Pickles (n=6 colonies sampled) Upper Keys (B) Coffins (n=6 colonies sampled) Middle Keys (C) Marker 32 (n=6 

colonies sampled) Lower Keys 

(A) Pickles n=6 

Upper Keys Year 1 Year 2 

 Apr-14 *Sep-14 Oct-14 Dec-14 Apr-15 *Sep-15 Nov-15 Jan-16 Apr-16 

B. dendrogyrum 

1 OTU 

75.68 

(16.15) 

45.47 

(25.91) 

25.35 

(14.73) 

20.60 

(19.67) 

33.35 

(14.18) 

53.41 

(19.15) 

33.29 

(12.77) 

31.63 

(14.65) 

29.97 

(8.02) 

B. meandrinium 

1 OTU 

8.75 

(0.88) 

29.53 

(22.06) 

48.74 

(3.24) 

53.49 

(5.79) 

49.37 

(11.82) 

30.28 

(13.02) 

49.60 

(10.35) 

51.10 

(12.12) 

51.55 

(6.58) 

all other Breviolum         

243 OTUs 

15.56 

(1.79) 

25.23 

(9.47) 

25.90 

(5.11) 

25.90 

(4.34) 

17.27 

(2.38) 

16.31 

(6.16) 

17.11 

(2.44) 

17.27 

(2.54) 

18.48 

(1.59) 

all Symbiodinium  

94 OTUs 

0.01 

(0.01) 

5.38 

(13.85) 

0.001 

(0.004) 

0.002 

(0.002) 0 0 0 0 0 

all Cladocopium  

3 OTUs 

0.001 

(0.001) 

0.001 

(0.001) 

0.01  

(0.03) 0 0 0 0 0 0 

all Durusdinium  

1 OTU 0 0 

0.001 

(0.002) 0 

0.001 

(<0.001) 

0.0003 

(0.0007) 

0.001 

(<0.001) 

0.001 

(<0.001) 0 
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(B) Coffins n=6 

 Middle Keys 

Year 1 Year 2 

Apr-14 *Sep-14 Oct-14 Dec-14 Apr-15 *Sep-15 Nov-15 Jan-16 Apr-16 

B. dendrogyrum 

1 OTU 

80.57 

(6.54) 

77.60 

(5.60) 

78.58 

(3.68) 

76.50 

(5.46) 

66.78 

(0.66) 

65.54 

(0.56) 

78.26 

(12.71) 

88.87 

(0.53) 

88.87 

(0.17) 

B. meandrinium 

1 OTU 

0.88 

(0.12) 

0.94 

(0.14) 

3.24 

(1.92) 

5.79 

(5.05) 

20.15 

(0.14) 

20.39 

(0.40) 

10.02 

(11.42) 

0.12 

(0.01) 

0.15 

(0.02) 

all other Breviolum         

243 OTUs 

18.52 

(6.45) 

19.34 

(2.91) 

18.18 

(3.01) 

17.71 

(2.24) 

13.07 

(0.62) 

14.04 

(0.20) 

11.58 

(1.46) 

10.77 

(0.53) 

10.73 

(0.20) 

all Symbiodinium  

94 OTUs 

0.02 

(0.01) 

2.12 

(0.01) <0.001 

0.003 

(0.01) 0 0 <0.001 

0.003 

(0.002) 

0.003 

(<0.001) 

all Cladocopium  

3 OTUs 0 

0.003 

(0.01) <0.001 <0.001 0 0 

0.14 

(0.16) 0 0 

all Durusdinium  

1 OTU 0 0 <0.001 0 <0.001 

0.03 

(0.06) 

0.002 

(0.002) 

0.004 

(0.002) 

0.003 

(0.003) 
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(C) Marker 32 n=6 

Lower Keys 

Year 1 Year 2 

Apr-14 *Sep-14 Oct-14 Dec-14 Apr-15 *Sep-15 Nov-15 Jan-16 Apr-16 

B. dendrogyrum 

1 OTU 

81.09 

(2.24) 

66.26 

(11.33) 

65.58 

(15.69) 

70.33 

(6.90) 

87.82 

(0.44) 

86.80 

(1.05) 

87.43 

(0.87) 

88.34 

(0.39) 

87.60 

(0.30) 

B. meandrinium 

1 OTU 

0.76 

(0.08) 

2.60 

(4.55) 

1.44 

(0.54) 

3.71 

(3.04) 

0.08 

(0.04) 

0.17 

(0.08) 

0.11 

(0.05) 

0.08 

(0.02) 

0.06 

(<0.01) 

all other Breviolum         

243 OTUs 

18.07 

(2.21) 

31.03 

(9.98) 

32.76 

(15.43) 

25.96 

(5.34) 

11.80 

(0.45) 

12.72 

(1.00) 

12.23 

(0.88) 

11.32 

(0.39) 

12.12 

(0.31) 

all Symbiodinium  

94 OTUs 

0.02 

(0.01) 

0.01 

(0.01) 

0.20 

(0.54) 

0.003 

(0.005) 

0.002 

(0.001) 

0.007 

(0.01 

0.003 

(0.001) 

0.003 

(0.001) 

0.002 

(0.002) 

all Cladocopium  

3 OTUs 

0.03 

(0.07) <0.001 0 <0.001 

0.29 

(0.01) 

0.29 

(0.01) 

0.22 

(0.02) 

0.25 

(0.02) 

0.21 

(0.02) 

all Durusdinium  

1 OTU 

0.002 

(0.005) 0 0 0 

0.006 

(0.003) 

0.009 

(0.005) 

0.005 

(0.001) 

0.005 

(0.001) 

0.01 

(0.007) 
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Supplemental Table 4. Mean colony coloration scores at three sites on the Florida Reef Tract 2014-2016.  

Mean colony coloration scores (±1 standard deviation) at three sites on the Florida Reef Tract April 2014 to April 2016. CoralWatch 

Coral Health Chart (version: Project Aware https://www.projectaware.org) was used to determine a score for each colony. See Figure 

4.5 for calculating colony coloration scores. NA = no data. Colorimetric chart was not utilized during April 2014 assessments; 

coloration scores were later estimated by reviewing colony photographs (estimated mean coloration scores 3.75). 

  Year 1 Year 2 

Apr-14 Sep-14 Oct-14 Nov-14 Dec-14 Jan-15 Mar-15 Apr-15 Sep-15 Oct-15 Nov-15 Jan-16 

 
Apr-16 

Pickles 

 n=10 

Upper Keys NA 

1.29 

(0.16) 

2.19 

(0.16) 

3.45 

(0.60) 

3.87 

(0.20) 

3.98 

(0.08) 

3.93 

(0.11) 

3.48 

(0.24) 

3.52 

(0.49) 

3.98 

(0.07) 

4.00 

(<0.01) 

4.00 

(<0.01) 

3.60 

(0.52) 

Coffins  

n=10 

Middle Keys NA 

1.45 

(<0.01) 

2.09 

(0.22) 

3.23 

(0.41) 

3.80 

(0.14) 

3.95 

(0.14) 

3.43 

(0.19) 

3.35 

(0.24) 

2.20 

(0.21) 

3.28 

(0.24) 

3.50 

(<0.01) 

3.98 

(0.10) 

3.84 

(0.24) 

Marker 32 

n=12 

Lower Keys NA 

1.12 

(0.07) 

1.23 

(0.12) 

1.48 

(0.31) 

1.70 

(0.38) 

2.08 

(0.39) 

2.47 

(0.47) 

2.57 

(0.39) 

1.48 

(0.62) NA 

3.46 

(0.33) 

3.76 

(0.33) 

3.08 

(1.13) 

 

 

 

https://www.projectaware.org/
https://www.projectaware.org/
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