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ABSTRACT OF THE DISSERTATION 

ROLE OF WITHAFERIN A AS A NEUROPROTECTANT AGAINST BETA AMYLOID 

INDUCED TOXICITY AND ASSOCIATED MECHANISM 

by 

Sneham Tiwari 

Florida International University, 2019 

Miami, Florida 

Professor Madhavan Nair, Major Professor 

Neurological disorders are the biggest concern globally and ageing contributes in 

worsening the disease scenarios. In AD or AD like diseases, there is abnormal 

accumulation of extracellular amyloid beta produced due to abnormal processing of the 

transmembrane amyloid precursor protein, by β and γ-secretases. It spreads in the cortical 

and limbic regions of the brain leading to neuronal toxicity, impairment in memory and 

neurological functions. Aβ deposition in the CNS is common in aging HIV patients. 

Neurotoxic protein Tat, results in increased Aβ in combination with drugs of abuse 

cocaine. We examined the role of Withaferin A, against Aβ induced neurotoxicity. Our in-

vitro dose optimization study demonstrates that lower concentrations (0.5–2 μM) of WA 

significantly reduce the Aβ40, without inducing cytotoxicity in the APP plasmid transfected 

SH-SY5Y cells (SHAPP). We demonstrate that Aβ secretion is increased in the presence 

of Tat (50 ng/ml) and coc (0.1 μM), WA reduces the Tat and coc induced increase in Aβ40. 

Additionally, we studied the role of WA against NF-kB mediated neuroinflammation, and 

observed that WA inhibits the expression of NFkB2 and RELA transcription factors, which 

play a major role in the expression of inflammatory chemokines. Further, to address the 

issue of minimal drug bioavailability in the CNS, we developed the WA loaded liposomal 
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nanoformulation (WA-LNF) and characterized its size (499+/-50nm),  toxicity and drug 

binding efficacy (28%). Our in-vitro 3D BBB transmigration of WA-LNF demonstrated 

~40% transmigration efficiency. Furthermore, it was imperative for us to understand the 

mechanism of action of WA, therefore we studied the molecular mechanism of interaction 

of WA with Aβ protein by in-silico molecular dynamics simulations. We demonstrated that 

WA binds to the middle region of Aβ protein and the amino acid motif involved were 

FAEDVGS highlighting the mid-region Aβ capture by WA. 3 Hydrogen bonds were formed 

between WA and the amino acids, ASN17, GLY15 and SER16. This study reports WA as 

a potent neuroprotectant against amyloid induced neurotoxicity. Our study may have an 

immense therapeutic potential to target Aβ in the CNS, in the ageing patients and/or 

PLWH and/or ageing drug abusers. 
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CHAPTER 1: ALZHEIMER ’S DISEASE: PATHOGENESIS, DIAGNOSTICS AND 

THERAPEUTICS 

Parts of this chapter will appear in the International Journal of Nanomedicine, 2019 

(Acknowledgements to Dove Medical Press as the original publisher of the article) 

 

1.1 Introduction 

Alzheimer’s Disease (AD) is a neurodegenerative and prominent protein conformational 

disorder (PCD) [1, 2] primarily caused by the aberrant processing and polymerization of 

normally soluble proteins [3]. The process of protein folding in the cell is tightly regulated, 

which encompasses various proteins, proteases, molecular chaperones that play a vital 

role in folding and clearance of misfolded protein along with regulation. However, genetic 

or sporadic environmental factors can alter this proof reading mechanism compromising 

the efficiency of protein folding process and resulting in non-native misfolded, 

dysregulated, destabilized, and aggregated proteins. This leads to PCD, in which the 

altered protein conformations contribute to cell toxicity, functional insufficiency and 

negative regulation. Protein misfolding is responsible for several neurological and 

metabolic disorders [2]. Proteins need to be folded into their final active state, 

corresponding to a particular conformation and have to be stable in that state for their 

proper functioning. A misfolded protein can undergo self- aggregation. Soluble neuronal 

proteins when misfolded attain altered conformations due to genetic mutation, external 

factors or ageing, and aggregate leading to abnormal neuronal functions and loss [4]. AD’s 

discovery as a neurodegenerative disease is attributed to Alois Alzheimer, a German 

neurologist, who made first discovery when he examined a 51-year-old woman named 

Auguste Deter who was suffering with loss of memory, language issues, disorientation 

and hallucinations. Her autopsy revealed plaques and tangles in the cerebral cortex [5], 
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which convinced him that this was unusual than typical dementia. His discovery was 

followed by further research which disclosed the presence of neuritic Amyloid Beta (Aβ) 

plaques in dementia patients [6]. Young onset of the disease is attributed to predisposition 

to Presenelin 1 (PS1) genetic mutation, which is rare but a potent cause [7]. Other 

neurodegenerative diseases associated with abnormal protein conformations, are 

Parkinson’s disease (PD), Creutzfeldt- Jacob disease (CJD), Huntington’s disease (HD), 

Machado-Joseph disease (MJD), which are caused due to abnormalities in α-synuclein, 

normal and pathological isoforms of prion protein (PrPc and PrPSc), Huntingtin and Ataxin 

3 proteins respectively. Here we have focused on understanding factors associated with 

AD pathogenesis, mechanisms, state of ART diagnostics and therapeutics available 

currently (Figure 1.1).  

 

 

Figure 1.1 An overview of the fields of research that need to be 

elucidated to understand the pathophysiology of AD and therapeutic 

strategies to combat AD. 



   3 
 

1.2 AD Pathogenesis 

AD is a highly complex and progressive neurodegenerative disease [8]. It is one of the 

leading cause of dementia cases globally. In US alone, approximately 5.3 million 

Americans have AD, out of which 5.1 million are 65 years or older and 200,000 have 

younger onset of AD [9]. Commonly studied histopathological characteristics of AD are 

extracellular aggregates of Aβ plaques and intracellular aggregations of neurofibrillary 

tangles (NFTs), made of hyperphosphorylated microtubule-associated Tau protein. Aβ 

plaques develop initially in the basal, temporal and orbitofrontal neocortex regions of brain 

and in later stages progress throughout the neocortex, hippocampus, amygdala, 

diencephalon and the basal ganglia. In critical cases, Aβ is found throughout the 

mesencephalon, lower brainstem and cerebellar cortex. This concentration of Aβ triggers 

Tau tangles formation, in the locus coeruleus, transentorhinal and entorhinal areas of 

brain. In critical stage, it spreads to the hippocampus and neocortex [10]. Aβ and NFTs 

are the major players in the AD progression.  

 

1.3 Key events in the pathogenesis of AD 

The amyloid pathogenesis starts with the altered cleavage of Amyloid Precursor Protein 

(APP), an integral protein on the plasma membrane, by β-secretases (BACE-1) and -

secretases to produce non-soluble Aβ fibrils. Aβ then oligomerizes and diffuses into 

synaptic clefts and interferes with the synaptic signaling [11, 12]. Consequently, it 

polymerizes into insoluble amyloid fibrils that aggregate into plaques. This polymerization 

leads to activation of kinases, which lead to hyperphosphorylation of the microtubule-

associated protein, tau, and its polymerization into insoluble NFTs. The aggregation of 

plaques and tangles is followed by microglia recruitment near plaques. This promotes 

microglial activation and local inflammatory response and contributes to neurotoxicity. 
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1.3.1 Structure and function of amyloid precursor protein 

APP belongs to a family of associated proteins including mammalian amyloid precursor 

like proteins (APLP1 and APLP2) and amyloid precursor protein-like (APPL) in Drosophila. 

It is an integral transmembrane protein with extracellular domains (Figure 1.2). APP, in 

diseased state, generates amyloidogenic fragments, by differential cleavage by enzymes 

[7]. The physiological functions of APP are still less understood, studies with transiently 

transfected cell lines show that APP moderates cell survival, growth and motility, along 

neutraneutrnnwith neurite outgrowth and functions, which are attributed to release of 

soluble ectodomains upon normal cleavage of APP [13, 14]. The importance of APP has 

been highlighted by studies where neuronal abnormalities have been reported in animals 

injected with APP RNA interference (APP-RNAi) [15] and APP ectodomain intracerebral 

injections show improved cognitive function and synaptic density [16]. APP encodes type 

1 transmembrane glycoprotein which is cleaved either via non-amyloidogenic pathway 

(normal state) or via amyloidogenic pathway (diseased state) [17]. APP releases various 

polypeptides which arise possibly due to alternative splicing, glycosylation, 

phosphorylation or complex proteolysis [18, 19]. 

  

 

Figure 1.2 An overview of Aβ pathogenesis hypothesis  

This figure demonstrates the amino acid sequence of the Aβ fragment and 

the location of action of α, β and  secretases in diseased neurons during 

amyloidogenic diseased pathway.  



   5 
 

APP comprises of 770 amino acids, out of which Aβ includes 28 residues and additional 

14 residues from the transmembrane domain of APP. At cleavage site, α-secretase 

cleaves and secretes large soluble ectodomain APPs-alpha (APPsα) into the medium and 

C-terminal fragment (C83) is retained in the membrane, cleaved by - secretase at residue 

711 releasing soluble p3 peptide. Alternatively, in diseased state abnormal cleavage is 

done by β-secretase releasing truncated APPsβ and C-terminal fragment (C99) is retained 

in the membrane which is further cleaved by -secretase releasing insoluble Aβ peptides. 

Cleavage of both C83 and C99 by -secretase releases the APP intracellular domain 

(AICD) into the cytoplasm which is soluble and translocates to nucleus for further gene 

expression function [5].  

 

1.3.2 Non-amyloidogenic pathway  

APP undergoes constitutive and regulated cleavage. Enzyme α-secretase, cleaves APP 

at residue16-17 of Aβ domain and yield soluble and nonpathogenic precursors. In 

neurons, ADAM10 and ADAM 17 (metalloproteases) are the major α-secretases. 

Processing by α-secretase and -secretase generate, a small hydrophobic fragment p3, 

which is soluble and has role in normal synaptic signaling, but its exact functions are not 

well elucidated. Cell-surface APP may get endocytosed resulting in endosomal production 

of Aβ, which leads to extracellular release, and aggregation of Aβ. The α-secretase 

processing releases large soluble ectodomain APPsα that acts a neuroprotective factor 

and has a role in cell substrate adhesion. The presence of APPsα associates with normal 

synaptic signaling and adequate synaptic plasticity, learning and memory, emotional 

behavior and neuronal survival. Further, sequential processing releases AICD which 

translocates into nucleus and facilitates nuclear signaling and gene expression and 

regulation pathways [20].  
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1.3.3 Amyloidogenic pathway 

APP is differently cleaved in case of the diseased state. Aβ  is released from APP through 

sequential cleavages by β-secretase, a membrane-spanning aspartyl protease with its 

active site situated in lumen and -secretase, an intramembrane aspartyl protease which  

is made up for four proteins;  presenilin, nicastrin, Aph-1 and Pen-2 complexed together 

[21]. This complex attributes to the activity of  secretase, which produces insoluble and 

neurotoxic Aβ fragments. β secretase cleavage is first and rate-limiting step, making a cut 

at N terminus of Aβ. It removes the majority of the extracellular portion of the protein, 

leaving the C-terminal of APP [22], which is cleaved at C- terminus of Aβ resulting in 

formation of Aβ oligomers, which further polymerizes forming the aggregated plaques 

(Figure 1.3).  

 

 

There are two main types of Aβ polymers, which contribute in plaque formation and induce 

neurotoxicity; Aβ40 and Aβ42 isoforms. Aβ40 is abundant and neurotoxic when compared 

to Aβ42, which is less abundant, insoluble and severely neurotoxic, more aggregation-

Figure 1.3 Alternative splicing of APP and the amyloidogenic and non-

amyloidogenic pathways.  

Cleavage by α and  secretase in normal state and alternative cleavage by 

β and  secretase in diseased state. 
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prone and acts as toxic building fraction of Aβ assembly. Aβ40 is also neurotoxic and 

easily detectable in in-vitro studies. Aβ40/42 aggregation results in blocked ion channels, 

altered calcium homeostasis, increased mitochondrial oxidative stress, diminished energy 

metabolism and glucose regulation, which contributes to deterioration of neuronal health 

and eventually cell death.  

 

1.4 Hyperphosphorylation of Tau and AD 

In addition to Aβ, another central pathological hallmark of AD are the NFTs. These tangles 

are the result of hyperphosphorylation of the microtubule-associated protein Tau and its 

intracellular aggregates. NFTs are fragments of paired and helically wound protein 

filaments (PHF) in the cell cytoplasm of neurons and in their processes. Tau protein is a 

member of the microtubule-associated proteins (MAP) family, important for microtubular 

assembly and equilibrium in neuronal cells. Tau has a microtubule-binding domain and it 

co-assembles with tubulin to form mature and stable microtubule [23, 24]. It has the 

Figure 1.4 Tau hyperphosphorylation 

Tau phosphorylation leads to instability of the microtubule and finally 

microtubule subunits fall apart leading to formation of insoluble and big 

Neurofibrillary Tangles.  
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capability of forming interconnecting cross bridges between contiguous microtubules to 

form a proper stable network of microtubules and to hold them together. When the Tau 

protein encounters the kinases released due to abundance of Aβ in the environment, it 

gets hyperphosphorylated. Its hyperphosphorylation leads to its dissociation from 

microtubules, the tubule gets unstable due to dissociation of tubule subunits and fall apart. 

These destabilized structures then convert into big chunks of tau filaments, which further 

aggregate into NFTs. These NFTs are straight, fibrillar and highly insoluble patches in the 

neuronal cytoplasm and processes, leading to abnormal loss of communication between 

neurons and signal processing and finally apoptosis in neurons [25] (Figure 1.4). 

Extracellular Tau aggregates from neurons spread the neurodegeneration in prion-like 

mechanism [26]. It has been reported that soluble Aβ controls cleavage and 

phosphorylation of Tau for NFT generation [7]. 

 

Further, phosphorylation of tau is regulated by several kinases, including glycogen 

synthase kinase 3 (GSK3β) and cyclin-dependent kinase 5 (CDK5), activated by 

extracellular Aβ. Even though GSK-3 and CDK5 are primarily responsible kinases for Tau 

hyperphosphorylation, other kinases like Protein kinase C (PKC), Protein kinase A (PKA), 

Erk2 a serine/threonine kinase, caspase 3, and caspase 9 have prominent roles too, which 

may be activated by Aβ [27].  

 

1.5 GSK3Β and CDK5 in AD 

GSK-3 regulates the cleavage of APP carboxy-terminal fragments.  It has been showed 

that lithium and kenpaullone (GSK-3 inhibitors), prevent GSK-3 expression, and contribute 

to the inhibition of Aβ production [28]. Hence, GSK-3 inhibitors might indirectly interfere 

with the generation of both Aβ plaques and Tau tangles in AD. GSK3β activity in the 
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mitochondria has been associated with increased oxidative stress [29]. Abnormal 

processing of APP leads to secretion of Aβ, which affects GSK-3 kinases leading 

phosphorylation of Tau protein. This leads to aggregation of Tau filaments which are 

insoluble and finally formation of huge masses of NFTs in the neurons [30].Thus, GSK3β 

plays a significant role in AD pathogenesis attributing to Aβ production and Aβ-mediated 

neuronal death by increasing tau hyperphosphorylation. Additionally, Aβ and CDK5 

interactions affect Tau phosphorylation. This interaction leads to cleavage of adjacent 

proteins releasing cleaved peptides with lower solubility and longer half-lives; they may 

also phosphorylate distant proteins. Several studies focusing on identifying and classifying 

kinases accountable for pathogenic Tau hyperphosphorylation point towards primary 

pathogenic kinases GSK3β and CDK5, in addition to mitogen-activated protein kinase 

(MAPK), Erk 1 and 2, MAP kinase (MEK), microtubule affinity-regulating kinase (MARK), 

c-Jun NH(2)-terminal kinases (JNKs), p38, PKA, etc. [31, 32].   

 

1.6 Genetic mutations: Presenelin-1 mutation and AD 

APP is not the only gene associated with AD, presenilin gene (PS1 and PS2) which are 

part of  secretases may also undergo mutation [33]. Moreover AD patients may be 

predisposed to PS1 mutation leading to familial AD at young age [34].  The γ-secretase 

complex encompasses four proteins: PS1, presenilin enhancer-2 (Pen-2), anterior 

pharynx-defective (Aph-1), and nicastrin. PS, an aspartyl protease, attributes to catalytic 

core of the complex. Pen-2 facilitates the maturation of PS, whereas Aph-1 stabilizes the 

complex [35]. Nicastrin acts as a receptor for γ-secretase substrates. There are 

179 PSEN1 and 14 PSEN2 gene mutations that participate in early-onset of autosomal 

dominant AD. These mutations favor production of more toxic form of amyloid; Aβ42 

compared to Aβ40 which contributes in disease progression [36].  
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1.7 Epigenetics and AD 

Epigenetics is the field which focuses on the  interactions between genes, expression of 

the genotypes and various molecular pathways which modify genotype expression into 

respective phenotype [37]. Epigenetics exploring the neurological diseases, called as 

neuroepigenetics has developed fairly well and has been widely studied in the CNS 

associated diseases comprising of learning, motor, behavior and cognition pathologies 

and disorders [38, 39]. Epigenetics is important to understand the depth of effect of 

environment or paternal genes, nutritional habits, trauma, stress or learning disabilities, 

exposure to chemicals or drug addiction, on the DNA and resulted structural disturbances, 

mutations or changes [40, 41]. The involvement of epigenetics has recently been explored 

in case of AD [42]. The onset of AD and its progress involves complex interplay of various 

factors like ageing, genetic mutations, metabolic and nutritional disorders, exposure to the 

environment and involvement of social factors [43]. There are fair chances that additional 

factors in addition to ageing, for examples, hypertension, disorders like diabetes and 

obesity, and inflammatory disorders may be inducing epigenetic changes and may induce 

AD-like pathogenesis in young age.  DNA methylation patterns in brain and aging is 

possible [44]. From the studies involving various regions of the brain, an association 

between DNA methylation and ageing was reported [45]. Since DNA epigenetic 

mechanisms have a role in memory formation and its maintenance, like decrease in DNA 

methylation deteriorates neuronal plasticity, leading to memory loss, it is speculated that 

understanding of epigenetic mechanism is important to understand ageing and associated 

complexities in AD patients [46]. In addition to DNA methylation, histone modifications 

may also play an important role. Studies have explored histone acetylation in 

APP/presenilin1 double mutant transgenic mice, where impairment in associative learning 

was connected to H4K14 histone acetylation reduction [47]. Additionally, HDAC inhibitors 
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(HDACIs) are believed to have effect on Aβ production and aggregation in AD mice. 

Therefore, the studies involving their inhibitors like trichostatin A (TSA), valproic acid 

(VPA), and vorinostat (SAHA) are important to target HDAC associated epigenetic 

mechanism involved with ageing, to target AD [48]. 

 

1.8 Microglial infiltration during plaque formation: leading to neurodegeneration  

There are extensive evidences that associate neuroinflammation with AD progression. In 

addition to extracellular Aβ plaques and NFTs, microglial infiltration in response to these 

aggregates exacerbates AD pathogenesis. The extracellular and intracellular Aβ and 

tangles cause extreme toxicity, which results in synaptic damage, increased reactive 

oxidative stress, leading to increased microglial infiltration in vicinity to the plaques. 

Microglia are the resident phagocytes in the CNS, and play vital role as immune cells, in 

Figure 1.5: Aβ and microglial infiltration 

The extracellular and intracellular Aβ and tangles cause extreme toxicity, which 

results synaptic damage, increased reactive oxidative stress that then leads to 

microglial infiltration around the plaque areas. 
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the maintenance of neuronal plasticity and synapse remodeling [49]. Microglia get 

activated by protein accumulation which act as pathological trigger, and they migrate to 

the location and initiate an innate immune response [50] (Figure 1.5).  

 

In neurotoxic or neurodegeneration scenario, abnormal amounts of aggregated Aβ 

plaques activate Toll-like receptors on microglia leading to microglial activation leading to 

secretion of pro-inflammatory cytokines and chemokines [50].  In AD, microglia can bind 

to Aβ via cell-surface receptors, including SCARA1 (scavenger receptor A-1), CD36, 

CD14, α6β1 integrin, CD47, RAGE (receptor for advanced glycation end products) and 

Toll-like receptors [51, 52]. SCARA-1 is associated with Aβ clearance of, whereas CD36 

and RAGE contribute in microglial activation by Aβ [53]. Upon receptor binding of Aβ, 

microglia endocytose Aβ oligomers and NFTs fibrils, which are eliminated by 

endolysosomal degradation. Microglial proteases like neprilysin and insulin-degrading 

enzyme (IDE) play major roles in the degradation [54]. However, in severe cases of AD, 

microglial clearance of Aβ is inefficient due heavy Aβ load and increased localized 

cytokine concentrations which downregulate the expression of Aβ phagocytosis receptors, 

leading to minimal Aβ clearance [55]. One of the factors behind compromised AD 

clearance by microglia is mutation in triggering receptor expressed on myeloid cells 2 

(TREM2). TREM2 mutations are associated with increased AD severity. TREM2 is a cell-

surface receptor of the Ig-superfamily highly expressed on microglia and involved in 

mediating phagocytic clearance of neuronal debris. It also binds anionic carbohydrates, 

bacterial products and phospholipids, and transmits intracellular signals through the 

associated transmembrane adaptor DAP12 (Figure 1.6) and further phosphorylation of 

downstream mediators [56].  
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During AD, a rare Arginine-47-Histidine (R47H) mutation of TREM2 is reported which 

plays a potent role in aggravating the risk [57]. This mutation leads to inability of the 

receptors to clear Aβ from the CNS contributing to Aβ accumulation and further 

intensification of pathogenesis in AD patients. TREM2 mutations in microglia contribute 

towards Aβ induced toxicity. 

 

Figure 1.6 Aβ clearance by microglia via triggering receptor expressed on 

myeloid cells 2 (TREM2) 
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1.8.1 Microglia and Aβ clearance 

Microglia or resident macrophages of the CNS are derived from  embryonic yolk sac and 

later enter into CNS [58]. The role of microglia is important with respect to protection and 

maintenance against the neurodegenerative disorders and their pathogenesis in the CNS 

[59-62]. The primary role of microglia in a normal state is to infiltrate at the pathogenesis 

site and alters its receptor expression based on the pathogenesis factors, and perform 

both pro- or anti-inflammatory activity, including clearance of Aβ [63]. Due to Aβ 

chemotactic effect, microglia infiltrate and gather near the dense and insoluble amyloid 

plaques [64]. During excessive load of Aβ, microglia gets outnumbered and their clearance 

mechanism does not work efficiently, instead this leads to more microglial infiltration which 

then via pro-inflammatory cytokines (Interleukin-1 (IL-1), tumor necrosis factor (TNF-α)) 

and nitric oxide (NO) result in heightened levels of Aβ aggregation [65]. IL-1β is also 

released due to Aβ accumulation [66]. Furthermore, the classical microglial activation is 

associated with degradation and clearance of Aβ peptides through phagocytosis [67], and 

clearance through G protein-coupled receptor (GPCR)-mediated signaling [68, 69]. 

 

1.9 Aβ and HIV-1 associated neurological disorders  

Currently, disease associated neurological disorders are the biggest area of concern. In 

this era of Anti-Retroviral Therapy (ART), with the increase in the aged Human 

Immunodeficiency Virus (HIV) patients, the incidences of dementia or other neurocognitive 

functions are increasing in the aged patients when compared to younger patients. HIV-1-

associated dementia risk in these patients is three times higher than in younger people 

[70]. In AD, there are neurological dysfunctions due to abnormal accumulation of 

extracellular Aβ produced by alternate cleavage of the APP. The Aβ deposition is also 

reported to occur in the cortex of HIV patients when compared to age matched non-HIV 



  15 
 

controls [71-74]. The studies to explain the increased AD like indications, with increase in 

Aβ levels, during the HIV infection are in embryonic stage. It is hypothesized that Aβ 

deposition may be a common factor which aggravates in HIV-1 infection thus contributing 

towards HIV associated neurocognitive disorders (HAND) and causing subtle 

neurodegeneration especially in hippocampal neurons.  Additionally, increased Aβ in HIV-

1-infected brains may affect the brain vascular functions contributing to Blood Brain Barrier 

(BBB) dysfunction. If Aβ is the common factor between AD and HIV-1 disease scenarios, 

it becomes imperative to address the targeting of Aβ pathway with a single and efficacious 

drug molecule.  

 

1.10 State of Art: AD Therapeutics 

In AD, there are constant studies going on towards targeting various stages of 

neurotoxicity by inhibiting the production and aggregation of the misfolding proteins Aβ 

and Tau, their spread and induced toxicity [75]. The majority of AD therapeutic approaches 

are focused on reducing levels of toxic forms of Aβ and Tau, the broad scope of 

neurodegenerative processes underlying both early- and late-stage AD. Several drugs 

have been analyzed and reached Phase 1, 2 and 3 of clinical trial levels. A detailed table 

summarizes the drugs specific to amyloid, which are studied and target sufficiently 

fundamental and proximate degenerative mechanisms [76, 77] (Table 1.1).  

 

However, all these current therapeutics (e.g. rivastigmine, galantamine and donepezil) 

target dementia associated secondary features and do not directly involve against specific 

AD characteristics. Therapy failure frequently occurs due to the unfavorable 

pharmacokinetics and pharmacodynamics of drugs. Pharmacotherapy failure is the result 

of inadequate physical chemistry of drugs (such as hydrophobicity), unfavorable 
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absorption by biological membranes, unfavorable pharmacokinetic parameters (such as 

intense and plasma metabolism), instability of drugs (oxidation, hydrolysis, or photolysis), 

and toxicity to tissues (hepatotoxicity, neurotoxicity, or kidney toxicity).  

 

Several therapeutic strategies have been proposed and attempted for the reduction in 

abnormal levels of Aβ. Further, several drugs were tested for targeting Aβ degradation, 

but majority showed promising results in in-vivo studies, and unfortunately, were not able 

to clear the human clinical trials. This failure creates an urgent need to develop strategies, 

which are soluble, stable, target specific, to AD associated hallmarks, and potent to pass 

the human clinical trials. Many of the available drugs lose their efficacy while crossing the 

Table 1.1: Drugs specific to amyloid that are studied and target 

sufficiently against fundamental and proximate degenerative 

mechanisms 
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BBB and are minimally bioavailable in the brain. This requires a new area of study, which 

expands into efficacious neuroprotective strategies, specific to the brain. Nanoparticles 

are intriguing candidates for this purpose because of their potential for multi-

functionalization, mimicking the physiological mechanisms of transport across the BBB, 

which is a semipermeable barrier protecting the brain from potential hazardous 

substances in the blood flow; however, it also prevents the passage of vital 

neurotherapeutics. 

 

1.11 Diagnostics for AD: Labeling and imaging  

The current AD diagnostics are primarily based on the neuropsychological testing. Clinical 

diagnosis of AD requires neuroimaging methods and monitoring accepted biomarkers e.g. 

concentrations of Aβ peptides (Aβ1-42 / Aβ1-40 ratio) as well as of total (T-Tau) and 

hyperphosphorylated tau (P-tau) proteins in the cerebrospinal fluid (CSF). Amyloid 

oligomers and plaque accumulation can be imaged by 1 florbetapir F-18 (or alternative C-

11 Pittsburgh compound B, PiB ligand) Positron Emission Tomography (PET) but 

nonlinear association between Aβ content in CSF and PET scan remains of concern. 

However, CSF sampling is relatively invasive and is not always well tolerated or feasible 

for elderly patients. Noninvasive imaging methods such as Fluoro-2-deoxy-Dglucose 

(FDG)-PET, which gives insights into the brain metabolism, are of great clinical utility. 

Certainly, altered cerebral metabolism (both hyper- and hypo-metabolism) has been 

associated with different stages of AD.  Magnetic resonance imaging (MRI) at increased 

field strength and resolution is another helpful, non-invasive approach for identification of 

the functional abnormalities. MRI is utilized for detection and identification of amyloid 

plaques utilizing Iron oxide nanoparticles (Fe2O3-NPs) as contrast agents or tagged with 

fluorescent probes to make the detection efficient [78]. The Fe2O3-NPs are reported to 
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bind to N terminal of Aβ, aiding in better imaging. Additionally, non-fluorescent or 

fluorescent rhodamine tagged γFe2O3-NPs have been reported to label Aβ fibrils 

selectively and remove them, by employing external magnetic field [79, 80]. In addition to 

Fe2O3-NPs, there are reports of polystyrene-block-poly (n-butyl cyanoacrylate) (PS-b-

PnBCA) NPs encapsulating Thioflavin T, to be able to interact and target Aβ  [81, 82]. 

Gold nanoparticles for their use in MRI as contrasting agents to study structural stages of 

Aβ self-assembly [83] and Fluorescent semiconductor nanocrystals (quantum dots) for 

labeling [84].  

 

For sensing the soluble forms of Aβ in the CSF, the ultrasensitive NPs-based bio-barcode 

system detecting soluble oligomers with the aid of oligonucleotide (DNA barcode)-

modified gold nanoparticles (AuNPs) and magnetic microparticles (MMPs), functionalized 

with monoclonal/polyclonal antibodies [85] are utilized. Additionally, electrochemical 

sensing utilizing click chemistry, which involves AuNPs and assembled monolayers on it, 

to interact with Aβ peptide are promising [86]. Ultrasensitive electrical detection method 

for Aβ42 by scanning tunneling microscopy (STM) are currently employed [87]. These 

recently introduced technological and conceptual achievements considerably provide 

improved AD diagnosis strategies. Upon AD diagnosis, the therapeutic and treatment 

strategies can be tactfully designed. The diagnostics and imaging techniques include, for 

example, nanoparticle based sensitive early phase detection of AD biomarkers in the CSF 

samples from the patients. Nanomaterials can also be used as contrast agents for imaging 

Aβ aggregated plaques, this highlights a very important quality of the nanmaterials which 

upgrade their usage in the research experiments. It is imperative to understand the role of 

nanoparticles in increasing the efficacy and bioavailability of the drug across the BBB into 

the CNS.  
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1.12 Need of nanotechnology as Therapeutic strategy 

There are promising drugs against Aβ toxicity [88], but these drugs fail to cross and are 

not available in pharmacologically significant concentrations in the CNS. Typically, 

pharmaceuticals consist of small molecules, which do not cross the BBB on their own, 

therefore, the nanocarriers to boost drug delivery are required. Availability of drugs in the 

CNS is the major issue faced in the field of therapeutics against AD. The main reason is 

the presence of a fully functional semi permeable BBB, which poses as an obstacle for 

transmigration of neurotherapeutic molecules (like drugs, peptides, vectors, molecules) 

across it, into the CNS.  

Figure 1.7 The Semipermeable Blood Brain Barrier and transmigration 

route of the Nanoparticles 
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In addition, the BBB also negatively affects drug efficacy and tolerance, because large 

doses of drugs are needed to reach levels above the minimum effective concentration in 

the brain. Nanoparticulate systems offer an opportunity to overcome such problems and 

can be used as Trojan systems for transporting active molecules across the BBB (Figure 

1.7), thus reducing toxicity and improving therapeutic efficacy [89, 90].  

 

The use of drugs in nano-platforms or nanodevices results in the enhancement of their 

pharmacokinetics and pharmacodynamics, as well as reduces the toxicity. It is 

advantageous in an essential aspect in nanomedicine for delivery and controlled release 

of drugs onto targeted disease sites. Thus, the effectiveness of a treatment can be 

increased by incorporating nanotechnology-based drug delivery systems. Some of these 

new platforms, which aim to improve the bioavailability, pharmacokinetics, and 

pharmacodynamics of drugs while reducing their side effects, are well studied. Recent 

nanotechnology advancements propose effective diagnostic and therapeutic options. 

Targeted drug delivery with the aid of nanoparticles (100nm in size) can effectively 

increase the drug bioavailability cross the BBB into the CNS with minimal or no side 

effects. Furthermore, these nanomaterials are designed to be biocompatible hence 

reducing the toxicity, and with the modifications in their magnetic and optical properties, 

they may be an efficient alternative agents for an early diagnosis [91]. For example, a 

study shows the delivery of Saxagliptin (SAX); a dipeptidyl peptidase-4 enzyme inhibitor 

molecule, which is explored for its activity in the therapy of AD, with the aid of the chitosan-

L-valine conjugate used to prepare nanoparticles encapsulating SAX. These 

nanoparticles were stable and crossed the BBB efficiently [92]. In Chapter 4 of thesis, we 

will have discussed about the importance of nanotechnology in effective drug delivery 

across the BBB and the importance of Liposomal Nanoformulations. 
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1.13 Conclusion and Future perspectives 

Aβ was first sequenced from the meningeal blood vessels of AD patients and individuals 

with Down’s syndrome nearly 20 years ago [93-95]. Aβ peptide was recognized as the 

primary component of the senile (neuritic) plaques of AD patient brain tissue [96]. These 

discoveries marked the beginning of research on AD. The cloning studies of APP gene 

and its localization to chromosome 21 [97-99] in addition to the fact that trisomy 21 leads 

to AD neuropathology [100] highlighted that the Aβ accumulation is the primary event in 

AD pathogenesis. Additionally, mutations in the APP gene which cause hereditary 

cerebral hemorrhage and amyloidosis also, may cause Aβ deposition in the AD brain [101, 

102] [103-106]. AD is one of the most common neurodegenerative diseases  today, but 

unfortunately there is no cure available currently [107]. Several therapies are currently 

employed to combat with the cognitive and behavioral deficits associated with AD. 

Development of a targeted efficacious therapeutic approach against AD is still in its 

developmental stage, thus the need of the hour is to look upon the cellular factors closely 

associated with disease pathogenesis and target them for improvement of the quality of 

life for AD patients. Cellular factors discussed in this project like Aβ, APP, and β and γ-

secretases, could be a key target for designing the therapeutic approach. It is utmost 

important to understand the limitations of drug bioavailability in the CNS due to the tightly 

controlled permeability of BBB. Nanomedicine offers an attractive approach for delivering 

drugs across the BBB [108-111]. Nanotechnology pertains to nano sizes of drug and their 

efficient delivery and controlled release in the brain by external magnetic field, which could 

be a promising factor in therapeutics for AD. Nannotechnology is also important for 

characterizing and visualization of the drug bound with nanomaterials, which makes it 

easier to track and confirm their targeting efficacies. Need of the hour is to unravel the  

mechanisms of the pathogenesis of AD, its early detection using state-of -the-art 
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biosensing devises, specific targeting of the molecules associated with the disease 

manifestation, and efficient delivery of optimum drugs to the brain using novel 

nanotechnology approaches.  Further, studies of comorbidities of AD with other diseases 

or viral infections are important for betterment of therapeutic approaches. 
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CHAPTER 2: WITHAFERIN A SUPPRESSES BETA AMYLOID IN APP EXPRESSING 

CELLS: STUDIES FOR TAT AND COCAINE ASSOCIATED NEUROLOGICAL 

DYSFUNCTIONS 

Parts of this chapter appear in the journal Frontiers in Aging Neuroscience. Published 

online 2018 Sep 27. doi: 10.3389/fnagi.2018.00291  

 

2.1 Introduction 

The overall life expectancy of people living with HIV (PLWH) has increased moderately 

due to introduction of effective anti-HIV therapies [112]. As per WHO Number of AIDS 

related death decreased from 1.5 million (2010) to 1.1 million (2015) globally [113]. Longer 

drug (anti-retroviral) consumption and virus living cycle leads to increased prevalence of 

HAND [114]. Additionally, PLWH (~2 million as per World Health Organization, 2018) are 

more prone to the risk of developing neurological diseases like AD and (AD)-like 

neurocognitive problems [115]. HIV-infection and associated neurological disease 

synergism has become a pressing health issue to be managed, globally’ because HIV-

Figure 2.1 Disease scenario 

Aβ is a common factor between HIV associated neurocognitive 

dysfunctions and AD. Drug of abuse also contribute towards disease 

pathogenesis. 
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infection progression facilitates AD like pathology [116, 117] (Figure 2.1). However, 

neurological disorders are irreversible but investigating novel therapies of better efficacy 

to manage these serious disorders without side effects are urgently required.  

 

As discussed in Chapter 1, AD is a prominent neurodegenerative disease, characterized 

as a progressive impairment of memory and neurocognitive functions due to abnormal 

accumulation of extracellular Aβ and intracellular neurofibrillary tangles (NFTs) [118-121]. 

Alternative or abnormal cleavage of integral membrane APP by β and γ secretases [122, 

123] lead to abnormal Aβ processing, resulting into insoluble Aβ aggregation [124, 125] 

into extracellular insoluble senile plaques [123, 126, 127]. This Aβ accumulation leads to 

decreased neuronal health and stability, increased deterioration, synaptic depression 

[128-130], oxidative stress [131-133], augmented neuronal dysfunctions and inflammation 

[134, 135] [136].  

 

Studies support that impairments caused by Aβ aggregation, become worst with HIV-1 

infection [137, 138] and drugs of abuse. HIV patients have augmented Aβ plaques 

deposition in the brain compared to HIV negative individuals [70-72]. Moreover, Aβ 

aggregations are studied to be increased in cortex of HIV brains when compared to age 

matched non-HIV controls [139, 140]. In other words, Aβ may be considered as a common 

factor between HIV and AD associated neurological dysfunctions. HIV induced Aβ 

neurotoxicity could be due to either the entire HIV, or mainly due to the presence of 

neurotoxic Tat (transactivator of transcription) protein [141]. Even though ART targets all 

the active HIV, Tat could still be produced by the provirus in the viral reservoirs, such as 

the brain [142]. Tat protein as a neurotoxin, plays a prominent role in HIV 

neuropathogenesis as it gets secreted extracellularly and has the ability to cause 
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neurotoxicity in the healthy cells [143, 144]. Tat may have specific reaction with the Aβ in 

the CNS and facilitate Aβ aggregation, in the CNS [145].  

 

Neurotoxic HIV-1 Tat protein may be affecting amyloidogenesis through various indirect 

mechanisms and can have direct interactions with Aβ fibers and plaques. Tat is capable 

of increasing Aβ aggregation and may provide increased rigidity and mechanical 

resistance to the fibrils [145]. Whereas the indirect action of Tat activity can be supported 

by its interaction with human neprilysin, which is reported to function in Aβ degradation, 

including both monomeric and pathological oligomeric forms of Aβ [146]. HIV-Tat inhibits 

the activity of Neprilysin from degrading the amyloid oligomers into inert fragments [142]. 

 

Another factor that augments the Aβ aggregation induced pathogenesis, are the drugs of 

abuse [147, 148]. These powerfully addictive stimulant drug molecules have been studied 

to have an exaggerating effect during HIV infection [149]. Cocaine (coc), a very common 

abused drug within PLWH, exerts malicious effects on the CNS [150-152]. Therefore, our 

hypothesis is based on the concept that in the presence of coc, the additive effect of HIV-

Figure 2.2 Cocaine and Aβ40 secretion 

Cocaine has a short half-life of only about an hour but its effects, predominantly 

on the CNS is strong, it may contribute in Cell damage and toxicity, and also 

increase the oxidative stress, therefor contributing more towards disease 

pathogenesis. 
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1 Tat and coc may increase Aβ aggregation, which is a common factor in aging and HIV 

associated neurological disorders. Cocaine has a short half-life of only about an hour but 

its effects, predominantly on the CNS, is strong and deteriorating (Figure 2.2). Therefore, 

investigating therapies for targeting coc abusing aging PLWH population is one of the 

main requirements to manage neurological disorders. 

 

 

In this chapter, we have focused on elucidating the therapeutic properties of Withaferin A 

(WA) against multiple disease-associated factors including Aβ, HIV-1 Tat and drug of 

abuse, coc. WA is an active purified drug moiety extracted from ASH, isolated from the 

root extract of a medicinal plant Withania Somnifera [119, 120]. WA is a steroidal lactone, 

by its chemical nature, and its parent compound ASH has been traditionally used in 

ayurvedic medicine from ancient times in countries like India. WA is the first member of 

the withanolide class of ergostane type product to be discovered [153]. The beneficial 

effects of WA has been studied in the field of tumor inhibition [154], antiangiogenic activity 

[155-157], and against angioproliferative and malignant diseases like pancreatic cancer 

[158], leukemia, breast cancer and colon cancer [159]. It is also studied for its anti-

metastasis [160] and anti-carcinogenic properties [161]. WA is also explored in the field of 

apoptosis and adipogenesis inhibitor in 3T3-L1 adipocytes [162]. However, the therapeutic 

ability of WA against neurological disorders, is not well studied yet. Therefore, according 

to our hypothesis, we propose that WA is a neuroprotectant, which reduces Aβ40 induced 

toxicity in human neuroblastoma cell lines in-vitro. Therefore, we planned a systematic 

study, to explore for the first time the neuroprotective role of WA against Aβ secretion and 

aggregation, and exaggerating effects of HIV-1 Tat and Coc, in-vitro.  
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2.2 Methodology 

2.2.1 Chemicals and Reagents 

WA was commercially purchased from Sigma Aldrich (Cat# W4394 SIGMA). 

Methylthiazolyldiphenyl-tetrazolium bromide (MTT; Cat# M2003) and paraformaldehyde 

was purchased from Sigma Aldrich. HIV-1 clade B recombinant Tat protein (86-amino 

acid) was obtained from NIH AIDS research and reference reagent program (Cat# 2222). 

 

2.2.2 Cell Culture 

The cell type used in this study are SHAPP which is a human neuroblastoma cell line 

stably over-expressing human APP751 (kind gift from Dr. Jonathan Geiger, University of 

North Dakota, Grand Forks, ND, USA). SH-APP cells were cultured in Dulbecco Eagle’s 

minimum essential medium (DMEM; Gibco®; Life Technologies, Grand Island, NY, USA) 

supplemented with 10% fetal bovine serum, 100 U/ml penicillin/streptomycin, nonessential 

amino acids, and sodium pyruvate (1mM) at 37°C in 5% CO2.  

 

2.2.3 Cell Viability Assay 

SHAPP cells were plated at a density of 1×104 cells per well into 96-well plates and 

maintained at 37°C for 24hrs. Cells were treated with various concentrations of WA for 48 

hrs. Fresh medium containing 50μL of MTT solution (0.5 mg/mL) was added to each well. 

After 3hrs of incubation, the MTT formazan crystals were dissolved in dimethyl sulfoxide 

(DMSO) and viable cells were detected by measuring the absorbance at 570 nm using a 

microplate reader (Molecular Devices, Sunnyvale, CA, USA). 

 

For Tat and coc toxicity study on cell viability, we performed cell viability test using 0.4% 

Trypan Blue Solution (T8154) live-dead screening. 10µl of cells were taken from the pellet 
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resuspended in fresh media, after centrifugation at 1500 rpm for 5 mins, and was mixed 

with 10μl of Trypan blue dye (1:1 ratio). The cells were then loaded on a cell counting slide 

and counted for live count on a cell counter (BioRad TC20™ Automated cell counter). 

 

2.2.4 Tat and Coc Treatment of SH-APP Cells 

SHAPP cells (1×106 cells) were cultured overnight in T-25 flasks in complete DMEM 

media. After 48 hrs, the SHAPP cells were treated with different concentrations of HIV-1 

Tat (5–100 ng/ml) and coc (0.1–10 μM) and the cells and supernatant were collected after 

48 hrs after the treatment. The optimized dose of Tat and coc were selected based on 

their effect on increasing Aβ levels significantly compared to untreated controls. In further 

experiments, 1 × 105 SH-APP cells were seeded in six wells plates and were cultured for 

48 hrs. Cells were treated with optimized concentrations of HIV-1 Tat1–72 and/or coc. 

2.2.5 Quantification of Aβ40 Levels 

Secreted Aβ levels were measured using human Aβ40 ELISA kit as per the manufacturer’s 

protocol (Thermo Fisher Scientific, Catalog# KHB3481). For secreted Aβ measurements, 

SH-APP cells were cultured in six well plates and after 48 h, cells were treated with HIV-

1 Tat/coc in combination with WA. After 24, 48 and 72 hours the supernatant from cultured 

cells were collected and protease inhibitor was added. The supernatant was analyzed by 

human Aβ40 ELISA kit, as per the specific reagents and protocol provided with the kit. 

Each sample was analyzed in duplicate. Cells were used for flow cytometry studies to 

estimate intracellular Aβ40 level. Additionally, for studies including Tat and coc, we added 

Tat and Cocaine to the SHAPP cells (80% confluent) and then after 24 hours, WA was 

added to the wells (in Tat+WA and Coc+WA wells). Since WA showed best efficacy at 48 

hours (established from our previous study), we collected supernatant after 48 hours to 

be analyzed by Aβ40 ELISA. 
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2.2.6 Flow Cytometry 

Cells treated with various combinations including Tat alone, coc alone, Tat+/-WA, Coc+/-

WA were analyzed by flow cytometry studies to demonstrate changes in cellular Aβ40 

levels, in SH-APP cells after treatment with various concentrations of WA, Tat and coc.  

1×106 SH-APP cells were stained with primary anti-human Aβ40 (#PA3–16760) and 

secondary anti-rabbit Fluorescein isothiocyanate (FITC)-labeled antibody (catalog 

#AP187F, Millipore). Auto fluorescence of the cells was based on the unstained cells. 

Cells were gated based on the secondary antibody. Accuri BD flow and Amnis® Imaging 

Flow Cytometers were used for acquisition. Analysis was conducted by Flow Jo software. 

 

 

2.2.7 Single-Cell Flow Cytometry 

The SHAPP cells were treated with different concentrations of WA and harvested after 

48hrs of treatment, washed and counted. Equal amounts of cells (1× 106) were aliquoted 

in 1.5ml Eppendorf centrifuge tubes in 250μl 1X PBS. Cells were analyzed by 

ImageStreamX Imaging Flow Cytometer (Amnis Corporation, Seattle, WA, USA). A 

magnification of 60X was employed for all readings. Ten-thousand cells (events) were 

analyzed for each sample. FITC and DAPI were excited with a 100 mW of 488 nm argon 

laser. FITC and DAPI fluorescence was collected on channel two (505–560 nm) and 

channel seven (560–595 nm), respectively. Intensity adjusted bright field images were 

collected on channel one. Bright field area and total fluorescence intensity were calculated 

using IDEAS software. Data analysis was performed using the IDEAS software (Amnis 

Corporation), with proper data compensation with respect to singly stained samples. The 

compensated data was then gated to eliminate cells that were out of field of focus and 

doublets or debris was eliminated too. 
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2.2.8 Immunofluorescence Staining and Analysis for Studying Beta Amyloid 

Aggregation 

To study the effect of WA on the morphology aggregation, we conducted 

immunofluorescence imaging experiment. The cells were cultured to 80% confluence on 

the 4-well microscopy slides and were then exposed to HIV-1 Tat+/− WA. After 48hrs, the 

supernatant was discarded and the cells were fixed in 4% PFA. PFA embedded slides 

were then immunostained by using Aβ40 primary antibody (1:100) and GFP secondary 

antibody (1:100). Immunohistochemically stained sections were captured using the 

Keyence microscope. The images were captured at a magnification of 10X. 

 

 

2.2.9 Immunofluorescence Staining for Studying Effect of WA on Neuronal 

Morphology 

To study the effect of WA on the neuronal morphology, we conducted 

immunofluorescence-imaging experiment. The cells were cultured to 80% confluence on 

the 4-well microscopy slides and were then treated with coc +/− WA. After 48hrs, the 

supernatant was discarded and the cells were fixed in 4% PFA. PFA embedded slides 

were then washed and immunostained using MAP2 primary antibody (1:100) and anti-

FITC secondary antibody (1:100).  

 

2.2.10 Congo red staining for staining Aβ 

SH-APP cells were grown in 2 chamber slides at a concentration of 5.0 x 103/ ml for 48 

hrs. The cells were then treated with optimized concentration of WA (1µM) for further 48 

hrs. Cell culture supernatant was discarded and cells were stained for Congo-red. For WA 

additions, DMSO served as the vehicle to dilute the compound at a final concentration of 
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1 µM. Control cultures were left untreated. After 48 hours, cells were washed with PBS, 

fixed in 4% formalin for 15 min at room temperature. Again cells were washed with PBS 

and then stained with a fresh alkaline solution of 0.5% filtered Congo red (Sigma-Aldrich) 

at room temperature for 5 min. The cells were then washed with deionized water carefully, 

and the slides were mounted in DAPI Fluoromount-G® (Southern Biotech, Catalogue No. 

0100-20) and then observed through Keyence microscope. The images were captured at 

a magnification of 10X. 

 

2.2.11 Beta secretases ELISA   

The effect of WA on the β secretases was studied in-vitro by measuring β secretases 

levels using BACE-1 human ELISA kit as per the manufacturer’s protocol (Thermo Fisher 

Scientific, Catalog# EHBACE1). For β secretases measurements, SH-APP cells were 

cultured in six well plates and after 48hrs, cells were treated with WA compared to 

untreated controls. The supernatant from cultured cells was collected and protease 

inhibitor was added to it. The supernatant was analyzed for their β secretase levels.  Each 

sample was analyzed in duplicate, and was repeated three times. 

 

2.2.12 Gamma secretases ELISA   

The effect of WA on the Gamma secretases was studied by ELISA. γ secretases levels 

were measured using γ secretase human ELISA kit as per the manufacturer’s protocol 

(My bio Source, Catalog# MBS704513). For γ secretases measurements, SHAPP cells 

were cultured in six well plates and after 48hrs, cells were treated with WA compared to 

untreated controls. The supernatant from cultured cells was collected and protease 

inhibitor was added to it. The supernatant was analyzed for their γ secretase levels. Each 

sample was analyzed in duplicate.  
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2.2.13 Data Analysis 

Results in this study are representative of three or more independent experiments. 

Statistical significance was analyzed using Graph Pad Prism5 software, La Jolla, CA, USA 

by performing ANOVA or the Student’s t-test for unpaired observations. The values are 

presented as mean ± SEM. 

 

2.3 Results 

2.3.1 WA dose optimization and Aβ decreasing efficacy studies in SH-APP cells  

To optimize the non-toxic dose of WA, different concentrations of WA (0.5–10 μM) were 

treated to SH-APP cells. The dose-dependent and time-dependent (data not shown) 

ELISA study demonstrated that 2μM concentration of WA at 48 hours reduces the 

secreted Aβ40 in SH-APP cells significantly when compared to non-treated control, 

(Figure 2.3 A) without causing cytotoxicity (Figure 2.3 B). Further, results were confirmed 

with the flow cytometry and showed (Figures 2.4 A–C) dose dependent reduction in the 

Aβ40 levels and the maximum reduction was reported at 2μM WA concentration without 

causing cellular toxicity. Additional single cell flow cytometry and imaging also showed the 

same trend highlighting the effective role of 2μM WA against Aβ40 (Figures 2.5 A,B). 
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Figure 2.3 Effect of Withaferin A (WA) on amyloid beta (Aβ) secretion 

(A) Cells were treated with different dose of WA and the supernatants were 

collected 48 h after treatment. The supernatant collected were analyzed by 

Aβ40 ELISA that demonstrated that at an optimum dose of 2μM WA, the levels 

of secreted Aβ40 showed significant decrease compared to control untreated 

samples. (B) The dosage of WA used for this experiment were also analyzed 

for the associated cellular toxicity. The cell toxicity assay showed that the lower 

doses of WA were not toxic to cells. Optimum dose of 2μM, WA did not cause 

any loss in cell viability or toxicity in SHAPP cells. 
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Figure 2.4 WA inhibits Aβ40 in concentration dependent manner  

Panel (A) shows histograms of Aβ secretion by the SHAPP cells upon 

treatment with varying dose of WA. Panel (B) shows the layover of the peaks 

in one histogram, and (C) shows the quantification of the same. The cells 

were treated with WA concentrations, and after 48hrs of treatment were 

analyzed by Flow cytometry for determining Aβ40 levels. Flow cytometry was 

used to demonstrate the expression of Aβ40 in SH-APP cells after treatment 

with three different concentrations of WA. 1×106 SH-APP cells were stained 

with primary anti-human Aβ40 (#PA3–16760) and secondary anti-rabbit 

Fluorescein isothiocyanate (FITC)-labeled antibody (catalog #AP187F, 

Millipore). Auto fluorescence of the cells was based on the unstained cells. 

Cells were gated based on the secondary antibody. Accuri BD flow and 

Amnis® Imaging Flow Cytometers were used for acquisition. Analysis was 

conducted in Flow Jo software and Amnis® FlowSight® Imaging Flow 

Cytometer and analysis by IDEAS® Image software. For each experiment, 

from all events collected, FITC positive cells were gated from single cells. 
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2.3.2 Effect of HIV-Tat protein on Aβ production in SH-APP cells 

Human Aβ40 ELISA was performed with the supernatant collected from control and WA 

treated SHAPP cells to evaluate the efficacy of WA in reducing the HIV-Tat and coc 

induced increase in Aβ40 levels. SHAPP cells were treated with different concentrations 

of Tat (5–50 ng/ml). Figure 2.6 shows that the SHAPP cells treated with Tat exhibited up-

regulation of Aβ40 secretion compared to untreated control (Figures 2.6 A,B). Effective 

dose of Tat (50 ng/ml) when treated with 2μM WA, showed significant decrease in Aβ40 

(Figure 2.6C). Further, the results were also confirmed by the flow cytometry using Aβ40 

specific primary antibody. The dose of 50 ng/ml Tat most significantly increased the Aβ 

levels when compared to control (Figure 2.7 A,B).  

Figure 2.5 WA inhibits Aβ production  

Single cell flow Cytometry was used to identify the expression of Aβ40 

protein in SHAPP cells after treatment with different concentration of WA. 

(A) Bar graph representing the mean ± standard error of percent of mean 

fluorescence intensity. (B) Representative single cell images. We have 

observed significantly reduced Aβ with WA exposure dose dependently. 
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Figure 2.6 Tat induces increase in secreted Aβ40 levels  

(A). Human Aβ ELISA analysis showing that Tat (5–50 ng/mL) increased the 

secreted Aβ40 significantly in SHAPP cells. (B) Cellular toxicity assay showing 

viability of the cells in the Tat treated samples. (C) 2μM WA reduced the Tat 

levels significantly when compared to Tat (50 ng/mL) only treated samples. 1× 

106 SHAPP cells were seeded in 6-well plates and were grown for 48hrs and 

then treated with Tat protein in different doses and the cells were then incubated 

for 48hrs at 37°C. The supernatant from the culture was collected and treated 

with protease inhibitor (1μl/ml) and analyzed by Aβ40 ELISA (Sigma). The 

results are from three independent experiments and the statistical significance 

was calculated by Student’s t-test. Cell viability study was performed by Trypan 

blue live dead screening, to study the toxicity levels of various Tat dose. Dose 

selected for Tat treatment for further experiment was elected based on increase 

in Aβ40 secretion levels and correlated with cell viability. 
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2.3.3 Effect of HIV-Tat protein and Cocaine on Aβ production in SH-APP cells 

Additionally, Human Aβ40 ELISA was performed with the supernatant collected from 

control and WA treated SHAPP cells, to evaluate the efficacy of WA in reducing the coc 

induced Aβ secretion. SHAPP cells were treated with different concentrations of coc (0.1–

10μM). We studied the effect of coc in the similar study pattern, and observed the increase 

in Aβ40 secretion (Figures 2.8 A,B). We report that 0.1μM coc showed most significant 

up-regulation in Aβ40 levels compared to untreated controls. Effective dose of coc (0.1μM) 

when treated with 2μM WA, showed significant decrease in Aβ40 (Figure 2.8 C). This 

result was further confirmed by the flow cytometry studies which showed a coc induced 

increase in Aβ levels (Figures 2.9 A,B). 

 

 

Figure 2.7 Dose response 

(A) Histograms showing Tat (5–100 ng/mL) increases the Aβ40 levels. SHAPP cells 

were treated with different concentrations of Tat and after 48hrs of treatment were 

analyzed by Flow cytometry for studying the cellular Aβ40 levels. (B) Quantification 

representation of the percent positive cells. 
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 2.3.4 Tat and coc Induced Increase in Aβ40 Levels, in combination 

An optimized dose of Tat (50 ng/mL) and coc (0.1μM) alone or in combination were used 

to study the decreasing efficacy of WA (2μm) in SH-APP cells. Results showed the 

Figure 2.8 Coc induces increase in secreted Aβ40 levels  

Similar study pattern of ELISA and flow cytometry, like in the case of HIV-1 

Tat, was performed with various concentrations of coc to choose an optimized 

dose of coc for further studies. (A) Coc increases Aβ40 secretion. Coc (0.1–

10μM) increased the secreted Aβ40 but the significant increase was found in 

the samples treated with 0.1 μM coc. (B) Cellular toxicity assay showing 

viability of the cells in the coc treated samples. (C) 2μM WA reduced the coc 

(0.1μM) induced Aβ40 levels significantly when compared to coc only treated 

samples. 

Figure 2.9 Dose response  

(A) Histograms showing coc (0.1–10μM) increases the Aβ40 levels. The cells 

were treated with different concentrations of coc and after 48 h of treatment 

were analyzed by flow cytometry for determining the Aβ40 levels. (B) 

Quantification representation of the percent positive cells (**p ≤ 0.01; ****p ≤ 

0.0001; ns, not significant). 
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combined effect of Tat and coc together in increasing the Aβ1–40 levels. (Figures 2.10 

A,B). Individual optimized dose of Tat (50 ng/mL) and coc (0.1μM) were used for further 

WA decreasing efficacy studies. 

 

2.3.5 WA reverses Tat and Cocaine induced Amyloid aggregates in-vitro 

Immunocytochemistry studies showed that WA was able to reduce the amyloid 

aggregation when compared to the untreated control SHAPP cells. The cells were grown 

in the microscopic slides (eight wells) and after 24hrs of growth, the wells were treated 

individually with Tat+/− WA and coc+/− WA for 48hrs and control wells were replaced with 

fresh media. The cells were collected, fixed and stained with primary Aβ40 antibody 

(1:100) and GFP secondary antibody (1:100). We observed that the cells exposed to Tat 

and coc had strong signals for Aβ aggregation, which was mitigated by WA treatment as 

observed in the Tat+WA and coc+WA, when compared to control well (Figure 2.11 A–G). 

Figure 2.10 Effect of Tat and coc combination.  

(A) Tat (50 ng/mL) and coc (0.1μM) individually and in combination increase 

the Aβ40 levels. The cells were treated with selected Tat and coc 

concentrations and combination of both, and after 48hrs of treatment were 

analyzed by flow cytometry for determining the Aβ40 levels. (B) Quantification 

representation of the percent positive cells. 
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2.3.6 WA may decrease Cocaine induced neurotoxicity 

To demonstrate the effects of coc and WA treatment on the SHAPP cells morphology, we 

conducted immunofluorescence imaging experiment. Cultures of SHAPP cells were 

grown in the chambered imaging slides for 48 hrs, and then were treated with coc+/-WA. 

The cells were allowed to grow and were then washed and stained with the neuronal 

marker anti-MAP2 primary antibody and then with anti-rabbit FITC-labeled antibody. We 

observed that the cells exposed to coc exhibited dendritic beading (indicated by yellow 

arrows) and cytoplasmic vacuoles (Figure 2.12 C) when compared to the untreated control 

Figure 2.11 WA inhibits HIV-1 Tat induced Aβ-production, respectively 

SH-APP cells were treated with HIV-1 Tat (50 ng/mL; C) coc (0.1μM; E) +/− WA 

(2μM; (D,F) respectively) were compared to Control (A) and only WA treated cells 

(B). After 24 h, cells were fixed and stained with Anti-Human Aβ40 overnight. Cells 

were washed and stained with secondary anti-rabbit FITC-labeled antibody (catalog 

#AP187F, Millipore). Images were acquired using Keyence All in one microscope 

(10×). WA significantly suppressed Tat and coc induced Aβ-secretion, respectively. 

Florescent intensity of these stained cells was quantified using the ImageJ software 

(G) (***p ≤ 0.001; ****p ≤0.0001). 
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(Figure 2.12 A) and WA only treated SHAPP cells (Figure 2.12 B) which showed no 

abnormal beading or thickening of the dendrites. Upon treatment with WA, in coc exposed 

cells (Figure 2.12 D), we observed reduced dendritic beading and more pronounced and 

elongated dendrites, communicating with other neuronal cells. We quantified the numbers 

of healthy dendrites (green) (excluding the distorted dendrites with dendritic beading) and 

number of vacuoles like distortions in the cell cytoplasm (purple). Our quantification 

demonstrated that WA treated coc exposed cells showed enhanced healthy dendrites and 

less vacuoles when compared to coc treated cells only (Figure 2.13). There were no 

Figure 2.12. WA reverses coc induced dendritic beading and cytoplasmic 

vacuoles 

SH-APP cells were treated with coc (0.1μM) +/− WA (2μM). Cells were fixed and 

stained with MAP2 primary antibody overnight. Cells were washed and stained with 

secondary anti-rabbit FITC-labeled antibody. (A) Control SHAPP cells and (B) WA 

only treated cells showed no abnormal beading or thickening of the dendrites when 

compared to (C) coc exposed SHAPP cells which exhibited heavy dendritic 

beading (yellow arrows), measure of the cells being in drug-induced stress, (D) WA 

treated coc exposed cells on the other hand displayed reduced dendritic beading 

and elongated dendrites. 
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significant changes observed in the number of cells with distorted cytoplasm between the 

different treatments. This indicates that coc induces the stressed environment in the cell 

culture system, which leads to neuronal damage and WA may reduce the damage caused 

by coc exposure. 

 

 

 

 

 

 

 

 

 

 

Fig 2.13 Quantification studies  

Our quantification studies demonstrated that WA treated Coc exposed cells 

A) showed enhanced healthy dendrites and B) decreased vacuoles when 

compared to Coc treated cells only. There were no significant changes 

observed in the number of cells with distorted cytoplasm between the 

different treatments (The quantification is done from n=4 experiments). 
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2.3.7 Congo red stain based quantification of Aβ in WA treated cells 

We studied the effect of WA on Aβ by staining the cells with Congo red (CR) Stain. As 

Figure 2.14 (20X resolution) and Figure 2.15 (10X resolution) shows, cell cultures treated 

with WA alone showed reduced amyloid staining (specific to with the toxic Aβ peptide) 

than in untreated SHAPP cell controls. CR also called as Amyloid stain was utilized for 

histological visualization of amyloid in the cell culture, which is also termed as indicator of 

amyloidosis (deposition of amyloid in tissues or cell culture). The principle behind the 

staining is that CR dye forms nonpolar hydrogen bonds with the amyloid peptides and red 

staining is visible when viewed by confocal microscopes due to the alignment of dye 

molecules with the linearly arranged amyloid fibrils. The high pH or alkaline environment 

improves the non-polar hydrogen bonding of CR with the amyloid. CR tags the Aβ peptide 

Figure 2.14 Congo red staining for Amyloid shows decreased amyloid 

in WA treated cells.  

Control and WA treated SHAPP cells were stained by Congo red and 

observed by confocal microscopy; lens 20x. We observed that Cells treated 

with WA show less amyloid (red) compared to controls. Merged images show 

overall visualization of cell nuclei (blue), amyloid (red), and overlap (pink). 

Images are from one representative experiment of three independent 

experiments.  
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and stains them red when untreated SHAPP cells expressing Aβ were stained whereas 

cells treated with WA had reduced levels of Aβ, therefore less staining was observed in 

these control cells. We observed the cells at 10x and 20x resolutions. This study aligns 

with our prior results that WA has the ability to reduce Aβ in-vitro.   

 

 

2.3.8 WA effect on Gamma secretases levels  

In order to understand the mechanism, behind WA’s role against amyloid induced toxicity, 

we studied the effect of WA on the γ secretases. The human γ secretases ELISA study 

showed that WA did not have any effect on the level of γ secretase levels in the WA treated 

SHAPP cells when compare to untreated cells, in-vitro. An optimized dose of WA (2µM) 

Figure 2.15 Congo red staining for amyloid shows decreased amyloid 

in WA treated cells.  

Control and WA treated SHAPP cells were stained by Congo red and 

observed by confocal microscopy; lens 20x. We observed that Cells treated 

with WA show less amyloid (red) compared to controls. The mass pointed 

by yellow arrows are the aggregated amyloid. Merged images show overall 

visualization of cell nuclei (blue), amyloid (red), and overlap (pink). Images 

are from one representative experiment of three independent experiments.  
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was used to treat the SHAPP cells for 48 hours and the cell supernatant were used for γ 

secretase ELISA. We found that the level of γ secretases in treated SHAPP cells remained 

same and showed no significant changes (Figure 2.16).   

 

 

2.3.9 WA effect on Beta secretases levels  

We studied the effect of WA on the β secretases. ELISA results demonstrated no change 

in the levels of β secretases, in the WA treated cells when compared to control. An 

optimized dose of WA (2µm) was used to treat the SHAPP cells for 48hrs and the 

supernatant was then collected and used for the ELISA experiment. We found that WA 

was not able to reduce the levels of β secretases in treated SHAPP cells, which could be 

due to low detection limit of the β secretases from the supernatant samples in-vitro (Figure 

2.17).    

 

 

 

Figure 2.16 WA effect on the gamma secretases 

No significant difference was observed in the levels of γ secretases in the 

supernatant from WA treated cells when compared to non-treated control. 
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2.4 Discussion 

Neurological disorders are the biggest concern globally. Out of ~36 million HIV positive 

people about 30-60% exhibit neurological disorders including dementia and AD like 

pathology. In AD or AD like neurological disorders, the pathogenesis is mainly due to the 

abnormal accumulation of extracellular Aβ in the CNS and is a major factor contributing 

towards neurodegeneration [73]. The introduction of HAART gives a longer life span, 

giving a major opportunity for developing age related disorders in these recovering 

patients [163-165]. The currently available drugs against Aβ aggregation, for example, 

Memantine (N-methyl-D-aspartic acid (NMDA) receptor antagonist), helps in repair of 

damaged neurons [166], but does not aid in overall cure for neurological issues. Another 
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Figure 2.17 WA effect on the Beta secretases 

No significant difference was observed in the levels of β secretases in WA 

treated cells when compared to untreated control. 
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drug which is very well studied for its anti-inflammatory, antioxidant and neuroprotective 

properties is Cucurmin/Curcuminoid, obtained from the roots of a plant Curcuma longa 

[167]. It has been reported that Curcuma may have potential role in AD treatment by 

targeting Aβ aggregates and associated toxicity in the neuronal cells [168, 169]. 

Unfortunately, Curcuma is weakly stable and easily hydrolyzed, and gets photodegraded 

and even oxidized. This makes it very challenging and leads to its minimal bioavailability 

in the CNS [170]. 

 

Currently, there is no direct cure available for AD or AD-like neurodegenerative symptoms. 

Since plant based products are non-toxic and easily available, we planned to study the 

plant derived drug for this project. Therefore, here we have focused on a drug compound 

WA, and studied its role as a neuroprotective agent against Aβ induced neuronal toxicity. 

Our in-vitro studies showed for the first time that a small sized active moiety of Withania 

root extract, WA decreases secreted Aβ40, in the SHAPP cells without causing 

cytotoxicity. With the help of the microscopy studies, we were able to demonstrate the 

protective role of WA in the SHAPP cells, which showed healthy growth in the presence 

of WA. We observed that WA treatment reduced dendritic beading and cytoplasmic 

vacuoles in the SH-APP cells, conferring towards protective role of WA. Our observations 

on the role of WA, coincides with other studies, utilizing whole root extracts or parent 

compound ASH, which show that W. somnifera whole root extract treatment promotes 

neuronal health by inducing dendrite formation in-vitro [171, 172]. Moreover, our lab, in 

the previous studies, has also demonstrated the role of ASH towards decreasing Aβ in the 

neuronal cells in-vitro. ASH showed the reduction of Aβ in treated cells significantly when 

compared to untreated controls, suggesting anti-amyloid role of ASH. Nevertheless, even 

though ASH is capable of reducing the secreted Aβ, the understanding of ASH’s efficacy 
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in the CNS across the BBB is minimum, as ASH molecule is big in size, and it is highly 

unlikely for it to cross the BBB to reach the brain. Therefore, the systematic delivery of the 

drug into the CNS and increasing bioavailability becomes a pressing issue. This urged a 

need to find potent smaller molecular weight molecules with similar properties. Systematic 

chromatographic studies show the various components, upon breakdown of ASH 

molecule. This gave us an opportunity to study small molecule WA and assess its ability 

as a neuroprotectant to target the Aβ levels. 

 

In addition to studying the role of WA in decreasing Aβ, we wanted to target Tat protein 

and drug of abuse, coc, induced increase in secreted Aβ levels. Deposition of the Aβ 

plaques in the CNS is one the major phenomenon in ageing HIV patients. Neurotoxic 

protein Tat is present in the brain even after ART administration and its interaction with 

Aβ results in further increased levels of Aβ [173-175]. Our study demonstrates the effect 

of WA on induced Aβ production upon the exposure of HIV-1 Tat. Therefore, we analyzed 

the effect of HIV-1 Tat protein on the Aβ secretion in SHAPP neuronal cells and found 

significantly increased Aβ production in- vitro. Our results are in agreement with other 

studies, which have reported the role of Tat protein in increased neuronal Aβ secretion 

[176-178]. The mechanism through which Tat increases Aβ toxicity, is still not well 

understood, but some studies propose that Tat may have a direct interaction with the Aβ 

fibrils, resulting in induced aggregation of monomers, towards plaques [145, 179]. This 

hypothesis is supported by the Immunocytochemistry studies, which show dense 

accumulation of Aβ, in the cell medium exposed to HIV-1Tat (50 ng/ml). The human Aβ40 

ELISA studies, demonstrated increased concentration of Aβ40 in Tat treated samples. 

This lead us to a conclusion that Tat is extremely neurotoxic with an ability to interact with 

Aβ, increasing the overall toxicity, and contributing to increased aggravation of Aβ.   
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Furthermore, drugs of abuse as cocaine is known to aggravate the toxic effects induced 

by HIV and associated products. Amongst the most abused drugs PLWH, coc abuse has 

been one of the major contributors towards the increased severity of neurocognitive 

disorders in the patients [180-182]. Additionally, the percentage of drug abusers in the HIV 

positive population and aging population is very high. Drug abuse/addiction and HIV/AIDS 

are linked since the beginning of the HIV/AIDS epidemic. People who inject drugs 

accounted for about 6% of HIV diagnoses in 2015 (CDC, 2018). Even though the 

association of coc is shown with the exaggeration in HIV neuropathogenesis, the 

underlying mechanisms remain unclear. We elucidate the mechanism, in this study, for 

the first time, we observed the increased levels of Aβ production by coc. We observed in 

the Immunocytochemistry experiments that coc affects neuronal morphology and 

communications, and aggregation of Aβ in the SHAPP cells, in-vitro. This verifies the toxic 

effect of coc on the neuronal cells, which contribute in the increased accumulation of the 

amyloids. Coc alone and in combination with HIV-1 Tat is highly neurotoxic. These results 

coincide with various in-vivo studies done by other research groups which show that the 

peritoneal injection of coc in rats stimulates hyperphosphorylation of tau and neurofilament 

in cortex, hippocampus and caudato-putamen regions of brain, indirectly contributing to 

the Aβ toxicity [183]. These observations indicate that coc addiction may be associated 

with neurofibrillary degeneration. Therefore, here we report that coc in addition to HIV-1 

Tat increases Aβ secretion in vitro. To target the Tat and coc induced Aβ secretion, we 

have proposed a potent bi-functional molecule WA that may act as a neuro-protectant 

against Aβ neurotoxicity. Our findings suggest that HIV-1 Tat and coc introduce cellular 

toxicity and cause neuronal dysfunctions by increasing amyloid secretion and modulating 

neuronal morphology and communications. Moreover, accumulation and deposition of Aβ 

in the brain of HIV patients (active infection or latent infection) drive the pathogenic 
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cascades of neurological disorders, contributing towards aging or associated dementias 

[74]. Therefore, we have proposed that Aβ deposition is induced by the presence of Tat 

and Cocaine and WA is potent in reducing the secreted Aβ and induced neurotoxicity. Our 

study provides new opportunities for exploring the pathophysiology and targeting the 

neurological disorders. Targeting Aβ secretion will have a translational significance in the 

treatment of HIV coc abusers and other neurological disorders like AD. 

 

Further, in order to understand the mechanism of action of WA, we wanted to study the 

effect of WA, if any, on the enzymes involved in the Aβ induced disease pathway. In our 

in-vitro studies, upon performing the ELISA studies with the cell supernatants, we did not 

observe any changes in the β and γ secretases levels. This could be due to low amounts 

of these enzymes produced by the transfected SHAPP cells, which went undetected by 

the ELISA, in-vitro. In order to have a better understanding, we are currently performing 

in-silico studies to observe the structural interactions between β and γ secretases and WA 

if any, and we plan to do in-vivo studies to understand the effect of WA on these enzymes.  
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CHAPTER 3: WA AND CRID3 AGAINST Aβ INDUCED INFLAMMATION 

 

3.1 Introduction 

AD is caused by the buildup of intracellular neurofibrillary tangles made of tau protein and 

extracellular amyloid-β plaques [184]. As discussed in Chapter 1, APP is cleaved by β and 

𝛾 secretases and produces Aβ peptides that locate and aggregate into the extracellular 

space. The formation of hydrophobic Aβ plaques cause neuronal damage by contributing 

to cell death and affecting the synapses between neurons in cortical and limbic regions of 

the brain. There are various aspects which add to the severity of AD pathogenesis, which 

can be collected under wide constellation of medical risk factors comprising of 

cardiovascular diseases, heart failure, hypertension and high cholesterol [185-190], 

psychiatric risk factors like depression  and anxiety [191], head injury [192, 193], stroke 

[194, 195], environmental factors or lifestyle factors like smoking or alcohol consumption 

[196-198] and pharmacological factors [199, 200]. Out of these contributing factors, 

inflammation is a potent threat towards AD pathogenesis. AD associated 

Inflammation and alterations in inflammatory markers (interleukins, cytokines), worsen the 

disease progression [201], correlating with all the associated neuropathological issues like 

neuronal degeneration, neuroinflammation, microglial activation, dysfunctions in BBB 

morphology and function, and finally cognitive deterioration and decline. 

 

Therefore, it becomes important to understand the causes and the mechanism of 

inflammation with respect to AD pathogenesis. Inflammation recruits more cellular 

elements to deteriorate the disease progression. There have been studies focusing on the 

inflammation aspects in AD, and several mechanisms have been proposed on the role of 

inflammation leading towards AD [202-204].  
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One of the main factors in inflammation is microglial infiltration, microglia play an important 

role against pathogenic protein aggregates, because they normally engulf Aβ fibrils and 

produce the pro-inflammatory cytokines and chemokines in response to a protection 

mechanism. However, prominent microglial dysfunctions and associated imbalance 

between cytokines production and Aβ clearance might be an additive factor towards AD 

pathogenesis. The imbalance starts with the abnormal concentration of Aβ, moreover, the 

neuritic plaques are extracellular residues made of highly insoluble fibrillary Aβ core 

containing protein fragments of about 39-42 amino acids. The aggregation of these 

plaques contribute to neurotoxicity, and boost immune response resulting in attracting 

microglial cells, reactive astrocytes, and dystrophic neurites fabricated by degenerating 

neuronal processes [205]. The aggregated plaques trigger series of cellular events, which 

prompt host immune response. High plaque density reflects heavy Aβ accumulation, and 

this accumulation in contribution with resident cells migration, stimulates acute and chronic 

inflammatory responses inducing reactive oxygen species (ROS), nitric oxide (NO), and 

pro-inflammatory cytokines (Tumor necrosis factor-α, Interleukin-1β and Interleukin -6), 

which lead to toxicity and consequent neuronal death [206-209] and aggregation of further 

more Aβ. Overall, there is a relationship between neuroinflammation caused by Aβ 

plaques and neurodegeneration in the CNS.  

 

Furthermore, the process of production of the pro inflammatory cytokine IL-1β is an 

extremely controlled process and is sensitive to several contributing factors. Primarily, it 

starts with the processing of Pro-IL-1β, which is a biologically inactive form, to produce 

the active IL-1β. This processing of Pro-IL-1β to active IL-1β is regulated by caspase-1 

enzyme. This enzyme requires processing and activation to be converted to an active 

enzyme, to perform its function, and its activation is mediated by high molecular weight 
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protein complexes called as inflammasomes [210]. This happens via interaction of the 

Nod-like receptor protein (NLRP3) with the adapter molecule apoptosis-associated speck-

like protein to initiate inflammasomes production. Upon interaction, inflammasomes lead 

to caspase activation [211]. The NLRP3 are able to sense a distinct range of pathogens, 

insoluble factors, cellular stress and endogenous moieties like insoluble fibrils [212]. They 

are not directly activated but can sense intermediate processes or intermittent species like 

ROS [213]. NLRP3 protein expression levels are also a limiting step in inflammasome 

activation. IL-1 increasing in AD patients could be linked to Aβ formation [214]. IL-1 is 

produced by microglial cells surrounding the neuritic plaques and contribute to initiate 

dystrophic neurite formation in Aβ deposits [215, 216]. Additionally, elevated IL-1 

promotes an increase in P38 mitogen-activated protein (p38-MAP) kinases activity, 

leading to Tau hyperphosphorylation [217, 218]. 

 

Considering the significance of inflammation as a potent factor towards disease 

progression, therefore, in this project we studied the efficacy and role of WA and CRID3 

(Cytokine Release Inhibitory Drug also termed as CP-424,174 and CP-412,245) against 

Aβ induced inflammation. In literature, CRID3 have been studied to target ASC 

oligomerization in the NLRP3 inflammasomes [219]. Therefore, one of the main 

hypothesis of this chapter is that CRID3 acts as a neuroprotectant and may be able to 

target IL-1β. Targeting IL-1β is extremely important, as IL-1β reduction and blockade 

decreases Aβ, associated Tau phosphorylation leading to decrease in neurotoxicity, and 

promote neurogenesis. We wanted to study the role of CRID3 as an anti-caspase and 

anti-IL-1β drug. We demonstrated the function of CRID3 as inhibitors of IL-1β production.  
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Additionally, we have discussed the role of WA in Chapter 2, for decreasing A40, but in 

this chapter, we wanted to focus on the role of WA against inflammation. We wanted to 

analyze the role of WA against nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB) to understand the mechanism of WA action. NF-κB is a protein complex that 

has a role in controlling DNA transcription, cytokine production and cell survival. It has 

been established that the Aβ aggregates activate microglia via TLRs and RAGE receptors. 

These receptors activate NF-κB, which induce the ROS production and the expression of 

inflammatory cytokines (IL-1, IL-6, TNF). These inflammatory factors additionally stimulate 

the astrocytes, amplifying the pro-inflammatory signals, leading to neurotoxicity [220].  

 

In response to Aβ induced microglial infiltration, in addition to increased inflammation and 

excess production of inflammatory cytokines, the NF-κB pathway is activated. The role of 

NF-κB in the expression of pro-inflammatory genes including cytokines, chemokines, and 

adhesion molecules has been studied [221]. Activated NF-κB is found predominantly in 

neurons and glial cells surrounding Aβ plaques which induce an up-regulation of NF-κB 

activity and its translocation to the nucleus. NF-κB exerts effects on almost all cell types, 

playing an important function in inflammatory responses, therefore in this project, we have 

analyzed the effect of WA against NF-κB mediated inflammatory response. Our 

hypothesis is that WA may have a role in inhibiting the NF-κB mediated inflammatory 

response by inhibiting NF-κB expression during neurological disorders (Figure 3.1). 
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In addition to analyzing the role of WA and CRIDS individually, we have also explored the 

importance of developing a combination drug cocktail with the aid of nanotechnology, 

which can target inflammation caused by Aβ in the brain. Here, we have designed a 

liposomal nanoformulation of CRID3 and analyzed its characteristics and efficacy to cross 

the BBB. We have also combined both the drugs into one liposome, and characterized 

the nanoformulation. Our future studies are designed to evaluate the functional efficacy of 

these developed combination liposomes. 

 

 

 

Figure 3.1 Hypothesis of WA and CRID3 against inflammation 

The increased aggregation of Aβ leads to series of events, which contribute in  

Inflammation and NF-κB plays an important role in AB associated inflammation  

which can be targeted by WA. Additionally, according to our hypothesis, CRID3  

may reduce Caspase -1 enzyme activity, therefore may decrease active IL-1β  

levels during inflammation, therefore acting as anti-inflammatory drug 
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3.2 Methodology 

3.2.1 Cells, Chemicals and reagents  

SHAPP were received as a gift from Dr. Jonathan Geiger, University of North Dakota. WA 

was commercially purchased from Sigma Aldrich (Cat # W4394 SIGMA), CRID3 was 

purchased commercially from Sigma Aldrich (Catalog no. PZ0280). 

 

3.2.2 Cell culture 

The cell type used in this study are SHAPP cells and were cultured in complete DMEM 

(explained in Methodology section of Chapter 2). We performed mixed cultures where the 

SHAPP cells were co-cultured with CHME5 microglial cell lines. CHEM5 also require 

DMEM for their growth, therefore, it was easier for us to culture these cells together. 

 

3.2.3 Cellular Toxicity assay  

CHME5 and SH-APP cells were grown separately in 96 well plates (20,000 cells/well) and 

incubated for 24hrs. Cells were treated with different concentrations of WA (0.5-2µM), 

CRID3 (25nM-100nM) and MTM (0.1-1µM) and after 24hrs of incubation, the MTT cell 

viability assay was carried out. Wells were given with the media change with one 100 µl 

medium and 10 µl MTT (100 mg MTT / 20 ml PBS) was added for each well and incubated 

at 37°C for 2-3 hours. After that, one volume (110µl) of stop solution was added and 

incubated with mild shaking for 3 hours. The optical density of the solubilized formazan 

was determined spectrophotometrically measuring the absorbance at 550 nm. The optical 

density of formazan in each well is directly proportional to the cell viability and utilized for 

calculations. 
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3.2.4. Treatment with CRID3 and estimation of Caspase-1 and IL-1β levels 

SH-APP cells and CHME5 were co-cultured (2:1 ratio) in 6 well plates for 48hrs, and 

treated with optimized concentration of CRID3 and incubated for further 48hrs. Cell 

supernatant was discarded and cells were trypsinized and centrifuged at 1500 rpm for 5 

mins, the cell pellets were collected in 1.5ml Eppendorf. Protein and RNA was isolated 

from these cells using the standard protocol from RNA and protein isolation kits. Protein 

samples were used to measure Caspase-1 and IL-1β levels by the western blot assay 

using anti-Caspase-1 primary antibody (Thermo Fischer, Catalogue number PA1-37232) 

and anti-mature IL-1β antibody (Abcam) respectively. 

 

3.2.5 Estimation of NF-kB mediated neuroinflammatory genes on WA treatment 

SH-APP cells and CHME5 were co-cultured (2:1 ratio) in 6 well plates for 48hrs, and 

treated with optimized concentration of WA and incubated for further 48hrs. Cells pellet 

was collected after trypsinization and centrifugation, Cells were lysed by Lysis buffer and 

RNA was isolated using the Qiagen Mini Easy RNA isolation kit using the protocol 

illustrated by the kit. 1µg of RNA was used for the first strand cDNA synthesis using 

SABiosciences's RT2 First Strand Kit (Cat # 330401) as per supplier's protocol. Genomic 

DNA elimination step was performed before performing reverse transcription. RT² 

Profiler™ PCR Array Human NF-κB Signaling Pathway kit (Qiagen Cat # PAHS-025ZA-

12) was used to measure 84 key genes related to NF-κB mediated signal transduction. 

The array included genes that encode members of the Rel, NF-κB, and IkB families, NF-

κB responsive genes, extracellular ligands and receptors that activate the pathway, and 

kinases and transcription factors that propagate the signal. 
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3.2.6 Estimation of inflammasome mediated genes expression on CRID3 

treatment 

From CRID3 treated cells, RNA was collected using the standard protocol. One microgram 

of RNA was used for the first strand cDNA synthesis using SABiosciences's RT2 First 

Strand Kit (Cat # 330401) as per supplier's protocol. Genomic DNA elimination step was 

performed before going for reverse transcription. The Human Inflammasomes RT² Profiler 

PCR Array (Qiagen Cat # PAHS-097Z) was used to estimate the expression of 84 key 

genes involved in the function of inflammasomes, protein complexes involved in innate 

immunity, as well as general NOD-like receptor (NLR) signaling. 

 

3.3 Results 

3.3.1 CRID3 and WA do not cause cellular toxicity 

Before utilizing CRID3 to test its role against inflammation, we tested the toxicity of CRID3 

on the SHAPP and CHME5 cell types that we used for the experiments. We treated 

CHME5 microglial cell lines and SH-APP human neuroblastoma cells for 24 hours and 

observed that the range of CRID3 (5nM -2µM) was not toxic to both the cell types and did 

not effect the cell viability compared to untreated controls (Figure 3.2). Based on MTT 

assay, we selected the minimal concentration of CRID3 to be utilized for further 

experiments.  



  60 
 

 

3.3.2 WA inhibits inflammatory regulated genes associated with NF-kβ pathway 

To analyze the efficacy of WA on the inflammatory factors, SHAPP cells and CHME5 

Microglial cell lines were co-cultured for 24hrs and incubated with WA. After 48hrs of 

treatment, cells were analyzed for the expression of NF-κB mediated inflammatory 

response mediators using the Human NF-κB Signaling Pathway PCR Array. We observed 

that WA inhibited the expression of NF-κB (Nuclear Factor Kappa β Subunit 2) and RELA 

transcription factors which plays a major role in the expression of inflammatory 

chemokines and cytokines. We also observed the IKBKB and IKBKG up-regulation 

(depletion of these protein activates the NF-κB) and JUN and STAT gene down-regulation. 

Furthermore, we observed down-regulation of IL-1β, which plays a major role in the NF-

κB mediated neuroinflammation (Table 3.1). 

Figure 3.2 MTT Cell Viability Assay 

SH-APP cells and microglial cells were exposed to different 

concentrations of WA (50nM-1µM) and CRID3 (5 nM -2 µM). After 24 

hours of incubation, cell viability was analyzed by MTT assay. We 

observed no cytotoxicity with WA and CRID3 up to 2µM. 



  61 
 

 

 

3.3.3 CRID3 inhibits inflammatory regulated genes associated with NLRP3 pathway  

The co-culture was exposed to 100nM concentration of CRID3 (100nM concentration 

chosen based on cell viability studies). After 48hrs of incubation, cells were harvested, 

RNA was isolated and Human Inflammatory Cytokines & Receptors PCR Array was 

performed. Results showed that CRID3 significantly down-regulated various chemokines 

Table 3.1 WA inhibits NF-kβ mediated inflammatory response related genes 

expression array 

Human microglia and SHAPP cells were co-cultured (microglia: neuron ratio of 

1:2) and exposed to WA (2μM). After 48hrs of incubation, we observed significant 

down-regulation of transcription factors, pro-inflammatory cytokines and 

apoptosis inducing gene expression in the culture indicate the NF-Κb mediated 

anti-inflammatory activity of WA. 
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and cytokines like Complement component 5 (C5), Chemokine (C-C motif) ligand 20 

(CCL20), Chemokine (C-C motif) ligand 26 (CCL26), Chemokine (C-C motif) ligand 5 

(CCL5) and receptors like Chemokine receptor 6 (CCR6), Interleukin 8 receptor, beta also 

known as CXCR2. It also down-regulated IL-1β inflammatory cytokine gene expression 

and Interleukin 33 (IL-33) pro-inflammatory cytokines Additionally, Interferon Gamma 

(IFNG) gene expressing IFNγ was observed to be up-regulated (Table 3.2). This indicates 

towards the anti-inflammatory property of CRID3 as it inhibits IL1- β. According to the 

result from this array, we have further analyzed the effect of CRID3 on the IL1-β and its 

processor Caspase-1 activities. 
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3.3.4 CRID3 inhibits Caspase-1 and IL-1β protein expression 

Caspase-1 (interleukin-1 converting enzyme) and consequently released mature IL-1 

production plays a major role in the neuroinflammatory response in the AD patients. In this 

study, we have used various concentrations of CRID3 (25nM-100nM) to measure its 

efficacy in inhibiting caspase-1 activation and IL-1 production in SHAPP cells co-cultured 

with CHME5 microglia cell line (microglia: neuron ratio of 1:2). This co-culture was 

Table 3.2: CRID3 inhibits inflammatory gene expression 

 Human microglia and SHAPP were co-cultured (microglia: neuron ratio of 

1:2) and treated with 100nM CRID3. After 48hrs of incubation, we observed 

significant down-regulation of chemokines and pro-inflammatory cytokines 

gene expression, and cytokine receptors, in the cells, indicating towards the 

anti-inflammatory activity of CRID3 and indicating towards CRID3 as 

important molecule against Beta amyloid associated inflammation. 



  64 
 

incubated for 48hrs in the presence of the CRID3 (100nM). After 48 hours, the cells were 

harvested and the protein was isolated by lysing the cells in RIPA buffer. The isolated 

protein was estimated for its concentration by Bradford protein estimation method. Using 

western blot analysis, we analyzed the expression of both Caspase-1 and mature IL-1 

protein expression. Data showed significant down-regulation of both Caspase-1 and 

mature IL-1 protein levels in the samples treated by 100nM CRID3 (Figure 3.3 A, C) 

compared to other concentrations of CRID3 and untreated control. The decreased levels 

of Caspase-1 and mature IL-1 indicates towards potential therapeutic role of CRID3 in 

the prevention of neuronal inflammation due to the accumulation of A in AD patients. We 

also quantified the protein using image J software which shows significant decrease of 

Caspase-1 and mature IL-1 in 100Nm CRID3 treated samples compared to untreated 

controls (Figure 3.3 B, D). 
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3.3.5 Liposomal Nanoformulation of CRID3  

Having studied the importance of CRID3 against IL-1β via inhibiting Caspase-1, 

henceforth inhibiting amyloid associated inflammation. It became utmost important for us 

to increase the bioavailability of hydrophilic CRID3 in the CNS, across the BBB. Therefore, 

in this project we have attempted to design a nanoformulation for the effective 

Figure 3.3 CRID3 inhibits Caspase-1 and IL-1β protein expression 

SH-APP cells were co-cultured with microglia (microglia: neuron ratio of 

1:2) in the presence of CRID3 (25-100nM) for 48h. Cells were harvested 

and cell pellet was used in western blot for Caspase-1 (A) and IL-1β (C) 

analysis. Relative protein expression was calculated using ImageJ and 

observed significant inhibition of Caspase-1 (B) and IL-1β (D) protein 

expression at 100nM CRID3 concentration compared to the untreated 

control cells (**, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001). 
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transmigration of CRID3 across the in-vitro 3D blood brain barrier, and to analyze the drug-

binding efficacy to the liposomal nanoformulation. CRID3 before being used for the 

liposomal nanoformulation was studied for it toxicity on the SHAPP cells. We found that 

CRID3 was not toxic to the cells.  We designed the liposomes by the combination of Egg 

PC, Cholesterol and Chloroform as an organic solvent. Upon utilizing the dehydration 

method of liposomal preparation and loading an initial concentration of 100µg/ml CRID3 

in the lipid cocktail, we were able to extrude the single bi-layered liposomes with the loaded 

CRID3. According to the DLS studies, the developed CRID3 liposomes were 

characterized as 480+/-30nm in size and had 78.94% drug loading efficacy (Figure 3.4).  

 

 

 

 

Figure 3.4 Designed CRID3 Liposomal Nanoformulation (CRID3-LNF) 

and its characterization. 

The designed and produced liposome had a hydrodynamic size of 480nm and 

effectively carried approximately 78.94% of hydrophilic CRID3 drug in its 

hydrophilic core, and it was non-toxic to the cell culture.  
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3.3.6 Liposomal CRID3 and its transmigration across BBB 

The transmigration of CRID3-LNF across the BBB caused no effect on TEER values 

indicating towards no deteriorating effect on BBB resistance (Figure 3.5) and the 

transmigration efficiency was approximately 50% (Figure 3.6). CRID3 being a hydrophilic 

drug, is trapped in the hydrophilic core of the bi-layered liposomal nanoformulations 

(Figure 3.4). The successful transmigration of CRID3-Liposomal Nanoformulation across 

the BBB make it important for the drug delivery strategies. CRID3 has showed to be 

decreasing IL-1β via decreasing Caspase-1 activity. In addition, aiding it transmigration 

across BBB to increase its bioavailability into the CNS is a promising step towards battling 

amyloid induced inflammation.  

 

Figure 3.5 In-vitro effect of NF on the integrity of 3D BBB model 

3D in-vitro BBB model was established and NFs were added on top of the BBB 

and incubated for 24h at 37C to facilitate the transmigration across the BBB and 

the internalization of the liposome. Integrity of BBB was determined by measuring 

the Trans endothelial electrical resistance of the membrane by using TEER 

measuring gauge.  
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Hence, the developed CRID3-LNF were stable and crossed the BBB with 50% 

transmigration efficiency without causing any deteriorating effect on the resistance of the 

BBB membrane. The nanoformulation has acceptable hydrodynamic size and aided 

efficient transmigration of CRID3 across the BBB. Liposomes were made of egg-PC 

(phosphatidylcholine) therefore, they were biocompatible and non-toxic to the barrier cells. 

 

3.4 Discussion 

Amyloid plaques, built of the Aβ protein, are the hallmark neuropathological features in 

the full-blown AD brain [134, 222, 223]. Aβ in addition to causing neuronal toxicity also 

plays a very crucial role in activating innate immune system and attracting microglial 

infiltration leading to induction of inflammation [224, 225]. Aβ is considered as an inducer 

of microglial activation and neuroinflammation, and poses as an underlying factor in the 

Figure 3.6 In-vitro NF transmigration across the 3D BBB model 

3D in-vitro BBB model was established and NFs, free drugs, and HIV-1 Tat 

were added on top of the BBB under magnetic field exposure for 24h to facilitate 

the transmigration across the BBB and the internalization of the liposome. The 

percentage of NF transmigration across the BBB was measured using the 

FITC-labelled liposome. 
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development of AD [204]. Microglia have dual role in AD pathogenesis, they are involved 

in AD pathogenesis as when coming in contact with Aβ peptides, they release 

inflammatory mediators such as inflammatory cytokines, complement components, 

chemokines, and free radicals like ROS which subsidize further Aβ production and its 

aggregation into big and insoluble plaques [226].  There is continuous dependent 

relationship between Aβ, microglial infiltration, production of inflammatory mediators and 

induction of inflammation (Figure 3.7).  

 

 

 

Figure 3.7 The interdependent relationship between between Aβ, 

Microglial infiltration, production of inflammatory mediators and finally 

inflammation. 
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This interdependent pathogenesis pathway requires combination drugs cocktail to target 

inflammation and Aβ induced toxicity. Aβ aggregation activates microglia via TLRs and 

RAGE receptors and in turn these receptors activate NF-κ B. Increased activity of NF-κ B 

induce ROS production and the expression of inflammatory cytokines [227]. Therefore, in 

this chapter, we have studied the drugs WA and CRID3 for their roles against Aβ and Aβ 

induced inflammation.  

 

The nuclear factor NF-κB pathway is a pro-inflammatory signaling pathway, inducing 

expression of pro-inflammatory genes including cytokines, chemokines, and adhesion 

molecules [221]. The NF-kB pathway includes Nuclear factor-κB (NF-κB)/Rel proteins 

include NF-κB2 (p52/p100), NF-κB1 (p50/p105), c-Rel, RelA/p65, and RelB proteins. 

These proteins together play role as dimeric transcription factors regulating innate and 

adaptive immunity, inflammation and stress response associated gene expressions. NF-

κB/Rel proteins are bound and inhibited by nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor (IκB) proteins. But with the introduction of pro-inflammatory 

cytokines, Lipopolysaccharides, fibrillar antigens etc. there is an activation of an I kappa 

B kinase (IKK) complex (IKKβ/IKKα), which then phosphorylates IκB proteins leading to 

IκB ubiquitination and proteasomal degradation, and releasing the NF-κB/Rel complexes. 

Active NF-κB/Rel complexes undergo post-translational modifications and translocate to 

the nucleus where, with the help of other factors like Stat, induce target gene expression. 

In the alternative (or non-canonical) NF-κB pathway, NF-κB2(p100)/RelB complexes are 

inactive in the cytoplasm and activate IKKα that phosphorylate NF-κB2 p100 leading to its 

ubiquitination and proteasomal processing to NF-κB2 p52 which then translocates to the 

nucleus and induces target gene expression [228-230]. 
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Since a wide array of diseases, including cancer, are rooted in inflammation, there is a 

surge in interest in understanding the mechanistic regulation of inflammatory responses.  

NF-κB activation is widely implicated in inflammatory diseases like rheumatoid arthritis, 

Atherosclerosis, Asthma, Multiple sclerosis, chronic obstructive pulmonary disease etc. 

[231] and therefore development of anti-inflammatory drugs targeting NF-κB are currently 

in focus [232]. Aβ aggregation may indirectly result in elevated NF-κB. We here 

hypothesized that WA may be able to inhibit NF-Kb associated inflammation. With the NF-

kB signaling array studies, we observed that WA inhibits inflammatory regulated genes 

associated with NF-kB pathway. The NF-κB assay experiment demonstrated that WA was 

able to inhibit the expression of NF-κB2 (Nuclear Factor Kappa B Subunit 2). NF-kB2 

encodes a subunit of the transcription factor complex NF-kB. The NF-kB complex is 

expressed in numerous cell types and functions as a central activator of genes involved 

in inflammation and immune function [233]. Several studies have shown the regulation of 

the NF-ΚB2 (p100) in response to the inflammatory cytokines and have shown that IL-1, 

induces p100 expression at mRNA and protein level [234]. Therefore, if WA is down-

regulating NF-ΚB2 that means it may be equally capable of indirectly down-regulating IL-

1. NF-kB is composed of NF-ΚB1 or NF-ΚB2 bound to either REL, RELA, or RELB. The 

amplest form of NF-kB is NF-ΚB1 complexed with the product of this gene, RELA (also 

known as p65), which is a REL-associated protein participating in NF-κB heterodimer 

formation, aiding nuclear translocation and its activation [235]. We also observed the 

down-regulation of RELA transcription factor which plays a major role in the expression of 

inflammatory chemokines and cytokines. NF-κB activity at inflammation sites activates the 

canonical pathway and RelA containing complexes. Therefore, down-regulation of RelA 

indirectly down-regulates NF-kB. In addition to these, we have also observed the IKBKB 

(Inhibitor of nuclear factor kappa-B kinase subunit beta) and IKBKG (NF-kappa-B 
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essential modulator) up-regulation. IKBKB phosphorylates components of the NF-kB 

signaling pathway including IKBKG, NF-kB subunits RELA and NF-ΚB1, as well as IKK-

related kinases TBK1 and IKBKE. This phosphorylation may help in preventing the 

overproduction of inflammatory mediators, highlighting the role of WA against NF-κB 

regulation, proving its anti-NF-κB potency. Furthermore, we have observed up-regulation 

of NF-ΚBIA (NF-kappa-B inhibitor alpha) which inhibits the activity of dimeric NF-κB /REL 

complexes by trapping REL dimers in the cytoplasm [236] and NF-ΚBIE or IKBE (NF-

kappa-B inhibitor epsilon) which Inhibits NF-κB by complexing with and containing it in the 

cytoplasm [237]. Additionally, most importantly we observed that WA was able to 

downregulate IL-1β significantly compared to untreated controls. IL-1β is a potent pro-

inflammatory cytokine and its production includes CASP1 activation, pro-IL-1β processing 

and secretion of the active IL-1β leading to inflammasome assembly [238]. We showed 

that WA treatment modulates the level of multiple factors in co-cultured cells, associated 

with NF-κB down-regulation. Therefore, a reduction in IL1-β may be associated with the 

inhibition of NF-κB by WA treatment. Studying NF-κB is important, as some In-

silico studies have showed the promoter regions of IL-1β to be possessing NF-κB 

transcription factor sites. Therefore NF-κB down-regulation may be connected to IL-1β 

down-regulation [239] All these factors assert the important role of WA against 

inflammation and WA inhibits NF-kB mediated neuro-inflammation. 

 

In addition to WA, we have also deciphered the role of CRID3. Microglial cells produce 

inflammatory cytokines in response to various stimuli like insoluble toxic protein Aβ [240].  

The inflammation array studies demonstrate that increased inflammation increases the 

inflammatory cytokines/chemokines levels, but CRID3 reduced Aβ 

induced inflammatory mediators and cytokine production, including IL-1β and Caspase-1. 
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However, we could not observe its effect on intracellular ROS in SHAPPs, but it could be 

a restriction of in-vitro experiments. We will try to look at ROS production in our ongoing 

in-vivo studies. Upon analyzing the array data, we found that CRID3 down-regulated IL-

1β significantly compared to untreated controls. To assess the potency of CRID3 against 

IL-1β, we performed protein quantification by utilizing western blot technique and 

observed the down-regulation of IL1-β and Caspase-1 protein expression upon treatment 

with CRID3. The cytokine cascade in inflammatory processes is complex that involves 

stimulants, glial cells, neuronal cells and immune system. IL-1β is one of the important 

factors, it is a pro-inflammatory cytokine that has been associated in inflammation and 

pain [241]. The IL-1 cytokine family is primarily associated with acute and chronic 

inflammation [242]. To better understand the inflammatory responses it is important to 

understand the role of inflammasome complex proteins like IL-1β which has main role in 

inflammasome activation [243, 244]. We saw the reduction in IL-1β, in WA and CRID3 

treated samples that could be due to reduced pro IL-1β and reduced active caspase-1. 

Although IL-1β secretion and reduction might depend on various factors [245], but 

according to our study it may be due to NF-κB  reduction and anti-inflammasome role of 

WA and CRID3. 

 

The cytosolic segment of IL-1 receptor contains the Toll-IL-1-receptor domain that is 

common in Toll-like receptors, which respond to external factors like viruses or microbial 

factors. IL-1β is studied to be a therapeutic target against inflammatory diseases and its 

decrease is important for disease reduction [246]. Further, the assay demonstrated that 

CRID3 down-regulates various chemokines and cytokines like Complement component 5 

(C5), Chemokine (C-C motif) ligand 20 (CCL20) also called as Macrophage Inflammatory 

Protein-3 (MIP3A), Chemokine (C-C motif) ligand 26 (CCL26) also called as Eotaxin-3 or 
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Macrophage inflammatory protein 4-alpha (MIP-4), Chemokine (C-C motif) ligand 5 

(CCL5) also known as RANTES (regulated on activation, normal T cell expressed and 

secreted) which have been studied for their chemotactic properties. It also down-regulated 

the receptors like CCR6 and CXCR2. Our studies highlight that CRID3 has role against 

IL-1β in lower concentrations and causes no cytotoxicity.  

 

Therefore, in conclusion it is important to say that the chronic deposition of Aβ stimulates 

the persistent activation of microglia and results in increased IL-1β levels (IL-1β requires 

caspase-1 for activation). Caspase-1 activity is controlled by inflammasomes. The NLRP3 

inflammasome can sense inflammatory crystals and aggregated proteins, including Aβ. 

Therefore, inhibition of NF-kB mediated inflammatory response and inhibition of NLRP3 

mediated inflammatory response is important. We introduce cytokine release inhibitory 

drugs or CRIDs as inhibitors of secretion of IL-1β. Therefore, in this study, use of CRID3 

will be useful for the prevention of NLRP3 mediated inflammatory response induced by 

Aβ. These amyloid peptides in turn lead to increased oxidative stress and increased 

inflammation [247]. Microglia release pro-inflammatory cytokines and (TNFα) that up-

regulate β and γ secretases and lead to increases in Aβ42, therefore a cocktail of anti-

amyloid and anti-inflammatory drug and its delivery to the CNS was the most important 

aim of this project. 

 

Having studied the importance of CRID3 against Aβ associated inflammation, the next 

important and pressing issue is the bioavailability of the drug CRID3 across the BBB into 

the CNS. For this, we devised the strategy of the development of liposomal 

nanoformulation of CRID3 separately and as a combined cocktail formulation with WA. 

Liposomes are one amongst the common, efficient, biocompatible and well-studied 
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nanocarriers for the drug delivery with increased efficacy and improved targeted delivery. 

Liposomes are exploited for their ability to stabilize drugs, increase cellular and tissue 

uptake, and refining and increasing the bioavailability and bio distribution of therapeutic 

drugs [248-251]. Based on these benefits of liposomes, we decided to design liposomes 

as a carrier for CRID3. The developed liposomes were loaded with CRID3, which being 

hydrophilic was packed in the hydrophilic core of the liposome. The drug was loaded in 

the liposome with great efficacy and did not contribute in increasing the hydrodynamic size 

of the liposomal complex. CRID3 loaded liposomal nanoformulation transmigrated across 

the cellular layer of the in-vitro BBB model which was measured by the transendothelial 

electrical resistance (TEER) measurement method [252]. Measuring TEER ensures that 

the developed nanoformulation is not toxic to the BBB and passes through the without 

effecting the permeability or the stability of the membrane. The designed liposome based 

on its efficacy can be of immense therapeutic importance against inflammation and toxicity 

caused by Aβ. Moreover, we have developed a nanoformulation with both WA and CRID3 

to act as one formulation, multiple effects strategy. Incorporation of WA in the hydrophobic 

and CRID3 in the hydrophilic part of liposomes, will help us target Aβ and inflammation 

associated with Aβ with just one nanoformulation. This study is ongoing and is part of our 

future perspectives to evaluate its efficacy in-vivo. This strategy could be of immense 

therapeutic potential against Aβ induced inflammation in AD or AD- like diseases.   
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CHAPTER 4: LIPOSOMAL NANOFORMULATION OF WITHAFERIN A AS A 

PROMISING NANOCARRIER AGAINST AMYLOID BETA  

 

4.1 Introduction 

The ageing population is prone to age-related neurological disorders, including motor 

disorders, memory deficit, dementia and various other neurological issues [253, 254]. 

[255].The most fatal and complex of neurological diseases is AD or AD like pathology 

[256] characterized by progressive loss of synapses and neurons, due to buildup of 

amyloid plaques, and neurofibrillary tangles, and associated inflammatory factors leading 

to excessive toxicity in the CNS [257]. The presence of cerebral amyloid deposition are 

confirmed by studies using positron emission tomographic (PET) brain scans with the aid 

of amyloid tracers, which also suggest that Aβ may pose as one of the important target for 

AD detection and therapeutics [258]. This hypothesis has currently lead to a current 

surplus of drugs being investigated and developed against AD or AD-like diseases 

targeting Aβ as one of the potential biomarkers. The researchers are continuously looking 

for new options to treat AD and associated dementia.  

 

Drug developing field faces a major challenge, in the areas of methods development for 

increasing the bioavailability of the drugs in the CNS to the physiologically relevant levels. 

The shortcoming of the current drug strategies are the minimalistic availability of the drugs 

in the patient brain. The presence of semi-permeable BBB at the brain-blood junction 

makes it nearly impossible for the drug molecules to penetrate through and reach the brain 

[259-262].  Preliminary strategies to overcome the transportation issues involved passive 

diffusion of small lipophilic molecules but it was not acceptable, as this strategy could not 

include the vast majority of potential therapeutic molecules. Nevertheless, next approach 
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was to develop water soluble small molecular size drugs, to facilitate their transport across 

BBB via paracellular diffusion pathway, but these molecules failed to penetrate past the 

tight junctions of endothelial cell layers [263]. Therefore, since the drugs do not reach the 

brain in the efficacious concentration, it has become urgent for the employment of the 

emerging technologies to aid in effective delivery of anti-amyloid drugs across the BBB 

effectively into the CNS. 

 

Currently, nanotechnology has gained tremendous interest over the past several decades 

in the field of drug delivery. Nanotechnology employs various targeted nanosystems as 

drug carriers, which are highly capable in increasing therapeutic efficacies as they have 

effective role in regulating the bio distribution, circulation time, stability and solubility of the 

drugs. All these factors are immensely important for a successful therapeutic 

advancement [264-266]. Smart nano-systems are being currently designed for effective 

delivery of the drugs to the unapproachable body parts like brain and spleen. These 

nanoparticles are in range from 50-500 nano-meter and can be tagged by fluorescent 

factors to help with the visualization purposes upon the administration of the Nanoparticles 

in the targeted areas. They can be targeted to the respective areas where it is required 

the most and the drug binding stability and on-demand release of the drugs contribute as 

positive add-ons to the emerging nanotechnological advances.  

 

There are various nanoformulations, which are being developed and tested for their 

efficacy in drug delivery. Out of them, liposomal nanoformulations have been investigated 

as effective drug delivery agents. Liposomes have the ability to co-encapsulate the drug 

of interest (hydrophobic or hydrophilic) in addition to the contrast agents. These contrast 

agents can help in tracking the drug and its distribution towards the target area [267-269].  
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The BBB is a sensitive biological dynamic barrier made up of tight junctions (TJs) between 

endothelial cells lining the blood vessels, end-feet of astrocytes, and a basement 

membrane. Role of pericytes is also important in increasing the stability of the membrane 

and the tight junctions. Together these cells regulate the CNS milieu and are essential to 

maintain the uncontaminated microenvironment of the brain [269-271]. The barrier is so 

tightly packed that it leaves immensely little chance for an alien molecule to pass through. 

The transport properties of the semi permeable BBB is limited to cells, water and ions, 

and is extremely selective to solutes, nutrients, therapeutic agents and drug carriers. TJs 

have a regulating effect, and reduce the ion and other hydrophilic solutes permeation by 

paracellular pathway, therefore contributing as the physical barrier [272]. Nonetheless, 

BBB also poses as a barrier against the delivery of the vital drugs, which are of immense 

importance to treat CNS associated diseases. Therefore, it requires serious efforts to 

devise nano-carriers for the improvement of drug delivery across the BBB to target and 

treat neuropathological conditions like dementia, AD, Parkinson’s, and HIV associated 

dementia. 

 

Amongst various strategies for increasing drug delivery including physical methods like 

focused ultrasound [273], chemical modifications like modifying a drug into a prodrug to 

enhance lipophilicity [274] and biological modifications like tagging drugs 

with  macromolecules (proteins and peptides to aid BBB transmigration by endocytosis) 

[275], the strategy of nanoparticles based drug-delivery system is competent and more 

efficacious and promising [276]. 

 

With concern to efficacious hydrophobic drug delivery across the BBB, the most feasible, 

promising and targeted drug delivery system against AD are Liposomes. Liposomes are 
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biocompatible and flexible in nature, and have the potential to carry multiple therapeutic 

molecules across the BBB. In the early 1960s the development and therapeutic 

prospective of liposomes was studied 1961, but their importance as effective nanocarriers 

has been understood very recently in the field of neuroscience [277, 278]. Liposomes are 

bi-layered lipid entities  which incorporate hydrophilic or lipophilic therapeutic agents, 

where hydrophilic drugs are entrapped in the aqueous core, and lipophilic compounds are 

contained in the hydrophobic region of the lipid bilayer [279, 280]. 

 

There are various studies where liposomes are employed as the career for the drug 

delivery [281]. Liposomes demonstrate high efficiency for nose-to-brain transport, for a 

promising strategy for drug delivery in the brain [282, 283]. The current study incorporates 

the design of modified targeted liposomes, which are efficient across BBB and can focus 

on the specific molecular targets in the CNS concerning AD (Figure 4.1). 

 

Studies suggest that liposomes are able to penetrate in the cells [284] through,  either with 

the aid of phospholipid bilayer of the liposomes on its own which might enable 

transportation or by taking benefit of the negative charge of the BBB. The lipids 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), Phosphatidylcholines (PC) and 

cholesterol component of liposomes help enhance the cellular uptake [285]. Therefore, 

they serve as great research alternative approaches for drug delivery in case of CNS 

diseases. The approach in this chapter is based on liposomal delivery of the 

neuroprotectant WA, which is discussed in previous chapters, decreases Aβ induced 

toxicity and inflammation. Our laboratory has previously studied the importance and 

mechanisms of nanoparticles and theranaustics in the field of drug delivery [264]. Here 

we have focused on liposomes, which have been widely researched for diverse medical 
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applications including hydrophobic or hydrophilic drugs delivery, non- toxicity and easy 

release of the drugs at the target, allowing for immense potential in various biomedical 

applications. 

 

In the present in-vitro study, we have focused on the drug binding properties of liposomal 

nanoformulation with WA, to aid its transmigration across the BBB and increase WA’s 

bioavailability. This may be a promising strategy for AD, AD-like pathology and HIV 

associated dementia patients. Our approach started with the liposomal synthesis process 

employing multiple combinations of lipids versus cholesterol ratios and then the final 

developed drug loaded liposomal products were characterized for their properties. Special 

care was taken to investigate the subsequent effect of each condition on the morphology 

of the liposomes, and the best-suited dehydration time, hydration temperature and lipid 

ratios were confirmed. Developed liposomes were characterized and studied for their 

transmigration and efficacy across BBB.  
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4.2 Materials and methods  

4.2.1 The 3D in-vitro BBB model 

Primary human brain microvascular endothelial cells (HBMESs), human astrocytes (HAs) 

and human pericytes (HPs) cells were cultivated as per the provider’s recommendations 

(ScienCell Research Laboratories, CA, USA). The BBB model was established as 

described by Persidsky et al. [286]. In brief, the in-vitro BBB model was developed in a bi-

compartmental trans-well culture plate (product 3415; Corning Life Sciences, Mexico). The 

upper chamber of this plate is separated from the lower chamber by a 10μm thick 

polycarbonate membrane possessing 3.0μm pores. In a sterile, 24-well cell culture plate 

with a pore density of 2×106 pores/cm2 and a cell growth area of 0.33 cm2. 2×105 HBMEC 

were grown and 1×105 each of HA and HP were grown to confluence on the upper 

Figure 4.1 The flow-plan of the strategy to increase the bioavailability 

of the drugs in to the CNS across the BBB 
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chamber and underside of the lower chamber, respectively. The trans-wells were flooded 

with the combination media (ECM: AM: PM=2:1:1), the upper chamber can hold up to 

600μl media, and lower chamber can hold 500μl of media. After the cells were adhered to 

the transwell inserts, these inserts were transferred to 24 wells plate. This setup was 

cultured at 37°C and the media was changed every 48 hours. The 3D in-vitro BBB was 

used for further experiments after 5 days. Intactness of the in-vitro 3D BBB model was 

determined by measuring the TEER, using Millicell ERS microelectrodes (Millipore) on the 

5th day after the initial seeding.  

 

4.2.2 BBB transmigration assay 

Transmigration study of drug-loaded WA liposomes was conducted on the 5th day of the 

BBB culture, when ideal integrity of the membrane was achieved, as established by TEER 

measurement experiment. To assess the effect of liposomal nanoformulation on the 

integrity of the in-vitro BBB model, transmigration assay was performed to measure 

paracellular transport of FITC-dextran [287]. 100 mg/mL FITC-dextran (Sigma-Aldrich, St 

Louis, MO, USA) was added to the upper chamber of the inserts and further incubated for 

6 hours. Samples were collected from the bottom chamber after 6 hours, and relative 

fluorescence was measured at excitation wavelength 485 nm and emission wavelength 

520 nm, using a Synergy HT multimode microplate reader (BioTek Instruments, Inc., 

Winooski, VT, USA) multimode microplate reader instrument. FITC-dextran transport was 

expressed as percentage FITC-dextran transported across the BBB into the lower 

compartment compared with negative (untreated) control. WA liposomal nanoformulation 

was added to the apical chamber and incubated at 37°C for 48 hours. Supernatant were 

collected from the lower chambers and percentage of transmigration was analyzed at 

different points, using an ammonium thiocyanate-based photometric assay [288].  
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4.2.3 Synthesis of WA Liposomal Nanoformulation  

For the experiments, we used fluorescent and non-fluorescent liposomes. The liposomes 

were synthesized using the dehydration method. For the preparation of Multilamellar 

Liposomes (LMV), the seed solution was prepared by adding 80µL of egg-PC lipid, 20µL 

of Fluorescent egg-PC (100µL of egg-PC in case of non-fluorescent liposomes), 0.5mg/ml 

of Cholesterol, and was made up to total volume of 200µL by dissolving the lipids in 

Chloroform, in a clean and dry glass tube. The solution was then mixed well for 1 minute 

and loaded in the vacuum Rotary evaporator system (Yamato RE-201 Rotary Evaporator, 

BM-200) for the evaporation of the organic solvent chloroform. The tube was dipped in the 

hot water bath, and water temperature was maintained at 40°C. The setup was set at mild 

rotations, for facilitating proper mixing and dehydration of the chloroform. After 30 minutes 

of dehydration, the tube was checked for the dried up thin and translucent film at the base 

of the glass tube. 1ml of fresh PBS (1ml) was added to the glass tube. The solution was 

carefully vortexed for a couple of minutes until the film dissolved completely in the PBS 

and the mouth of the tube was sealed with parafilm to avoid contamination. The tube was 

kept in water bath for 1 hour with regular vortexing intervals at every 20 minutes. The 

temperature of the water bath was maintained at 40°C. These LMVs were extruded into 

large unilamellar Vesicles (LUVs). Meanwhile the mini- extruder setup was placed on a 

hot plate (502-P, PMC Industries, Inc., San Diego, CA, USA) for approximately 30 mins. 

A thermometer was inserted into the well provided in the heating block, and was allowed 

to reach the temperature of 50°C. After rehydrating the LMVs for 1 hour, and once the 

sample was fully hydrated, we loaded the sample into one of the gas-tight syringes and 

carefully place into one end of the Mini-Extruder. Second empty gas-tight syringe was 

placed into the other end of the Mini-Extruder set-up. The fully assembled extruder 

apparatus was inserted into preheated extruder stand. The LMV sample was pushed 
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across the 0.2µm membrane by gently pushing the plunger of the filled syringe until the 

lipid solution is completely transferred to the alternate syringe via porous membrane and 

the membrane filter. The step was repeated 5 times making 10 passes through membrane 

as more the passes though the membrane, the more homogenous the lipid solution 

becomes. The final extrusion filled up the alternate syringe, and the solution was collected 

from there into the Eppendorf 1.5 ml tubes (Figure 4.2) [289-291]. The filtered solution 

was then ultra- centrifuged at 100,000 g for 1 hour at 4°C. The supernatant was collected 

(unbound drug) and the pellet (Drug bound LUVs) was re-suspended in 1 mL of PBS. The 

drug binding was calculated indirectly by subtracting total drug from the unbound drug, 

measure by spectrometer.    

 

 

 

Figure 4.2 Preparation of Liposome Nano formulation 

Liposome was prepared by hydration method using variant ratios of lipids  

dispersed in organic solvent Chloroform 
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4.2.4 Characterization of liposomes size and bound drug calculation 

A zetasizer was used to calculate the average size of the developed liposomes. The drug 

bound liposomes from the pellet of the centrifuged liposomal samples were redispursed 

in PBS and measured for their size. The amount of unbound drug was predicted by 

analyzing the concentration of unbound drug in the supernatant at 230nm and hence 

indirectly the amount of bound drug was calculated by subtracting unbound drug from the 

initial drug concentration. The drug binding was calculated in percentage by keeping initial 

concentration of the drug as 100%. All these concentrations were calculated based on the 

standard curve, which was prepared using different concentration of WA read at 230nm 

wavelength. 

 

4.2.5 Toxicity studies: Trypan Blue Cell viability test 

The cells were grown at the concentration of 0.1x106/2 ml and were incubated for 48 hours 

at 37°C. After 48 hours, the cells were trypsinized and collected. The cells were 

centrifuged and the pellet was re-suspended in 1ml of fresh media. 10µl of cells 

suspension was mixed with 1X Trypan blue dye in the ratio of 1:1 and was loaded onto 

the slides and read by viable cell counter. The control was considered as 100% and the 

viability of other samples were calculated with respect to control. 

 

4.2.6 AB40 ELISA with Liposomal NF  

Secreted Aβ levels were measured using human Aβ40 ELISA kit as per the manufacturer’s 

protocol (Thermo Fisher Scientific, Catalog# KHB3481). For secreted Aβ measurements, 

the SH-APP cell supernatant were collected from the basal side of the BBB. Protease 

inhibitor was added to the supernatant to avoid protein degradation. The supernatant was 

utilized as samples for the AB40 ELISA as per the specific protocol provided with the kit. 
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4.2.7 WA Drug release kinetics from the Liposome by Dialysis membrane method 

WA Liposomes were prepared and were re-dispersed in final volume of 1ml PBS. 500μl 

of WA Liposomal solution was then loaded to the micro Float-A-Lyzer with the help of 1ml 

syringe. The micro Float-a-Lyzer (The Spectra/Por Micro Float-A-Lyzer) has an ultrapure 

Biotech Grade Cellulose Ester (CE) tubular membrane with a volume size of 400 - 500 µl 

with the Molecular weight cut off range of 3.5-5kD. The set up was placed in a glass flask 

of 200ml volume filled with 60ml of dissolution medium Phosphate buffer (pH 7.4). The 

speed of rotation for this setup was 2000rpm and the temperature was maintained at 25 

± 0.5⁰C. Aliquot of 1 mL at each time points were withdrawn and replaced with 1mL of 

phosphate buffer pH 7.4 (Time Points:0, 0.5,1,1.5,2,4,8,10,17, 18, 19, 23and 48 hours). 

The samples were analyzed by UV spectrophotometry analytical method at 230nm, and 

the drug released was calculated based on WA standard curve. The percent release was 

calculated accordingly.   

 

4.2.8 Data Analysis 

The experiments were repeated at least three times and the values obtained were 

averaged. All the results were expressed as mean ± standard error of the mean. Statistical 

analysis of two groups was performed by Student’s t-test, while more than two groups 

were analyzed using one-way ANOVA. Data analysis was performed with the Statistical 

Program, Graph Pad Prism software (La Jolla, CA, USA). 

 

4.3 Results 

4.3.1 In-vitro 3D Blood Brain Barrier model 

The in-vitro 3-D Blood brain barrier was made with the primary human CNS cells; HBMEC, 

HA and PA. The intactness of the blood brain barrier was measured by measuring TEER 
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values which were +/- 230 indicating towards, intactness of the BBB membrane. This intact 

BBB was used further for the treatment with the nanoformulations and for the 

transmigration experiments. Figure 4.3 is the representative diagram of the developed in-

vitro 3D model of the BBB.  

 

4.3.2 Development and characterization of NF 

Schematic representation of the developed liposomes loaded with neuroprotectant drug 

WA is shown in Figure 4.4. The bi-layered liposomes were prepared and characterized 

for their size, toxicity and drug binding efficiency.  

 

Figure 4.3 Developed in-vitro 3D BBB model demonstration 

This figure demonstrates the strategy of designing the in-vitro 3D BBB model. The 

Endothelial cells are grown at the apical side and Astrocytes and Pericytes were grown 

at the basolateral side. The cells were allowed to grow and firmly attach to the 

membrane in the trans-well insert. The media used was a combination media of AM: 

PM: ECM in a ratio of 1:1:1. The BBB was allowed to grow at 37°C and 5%CO2 and 

then the inserts with attached cells were transferred in the new wells with SH-APP 

growing at the base of these wells. The TEER was measured after 5 days, to assess 

the intactness of the BBB. 
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The developed WA-liposomal nanoformulation (WA-LNF) demonstrated the average 

size of approximately 400 ± 50nm diameter (as they were only bath sonicated and not 

probe sonicated), and they were uniform in size and shape as studied by Dynamic light 

scattering (DLS) analysis used for hydrodynamic size analysis, as shown in Table 4.1. 

The loading efficiency of liposomes were calculated indirectly by estimating unbound 

drug in the supernatant after ultracentrifugation of the prepared liposomal solution. We 

found that the developed liposomes had a bound drug concentration of 14.14 µg/ml, 

which was approximately 28% drug binding efficacy when compared to the initial 50 

µg/ml loaded drug concentration while preparing the liposomes.  To encapsulate the 

Figure 4.4 Schematic liposome structure 

The figure demonstrating the phospholipid bilayer, consisting of hydrophilic 

head and hydrophobic tail. The entrapment of hydrophobic drug WA by the 

lipid bilayer is also demonstrated. 
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hydrophobic WA in the liposome, different solvent combinations (Chloroform or 

Chloroform to Ethanol in 90:10 or 50:50 ratios) were used for the synthesis of 

liposomes. Table 4.1 highlights the characterization of nanoformulations with respect 

to drug loading, bound percentage and hydrodynamic size of the liposome. For the final 

assembled liposome nanoformulation, we used Chloroform to Ethanol in 50:50 ratio as 

WA is easily soluble in Ethanol. 

 

 

 

 

Table 4.1: Characterization of developed Liposomal Nanoformulation 

The developed WA Liposomal NF is stable, non-toxic and shows efficient 

drug binding and transmigration across the in-vitro 3D BBB trans-well 

model 
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4.3.3 Liposomal Nanoformulations are not toxic 

To evaluate the in-vitro cytotoxicity of the developed WA-LNF, we performed Trypan 

blue cell viability assay from the collected SHAPP cells treated with various 

concentrations WA-LNF. Our cell viability studies show that the Blank and drug loaded 

liposomes did not cause cytotoxicity, as the percentage of viable cells, were similar to 

untreated control up to 48 hrs of treatment. They did not obstruct the cell viability and 

did not cause any toxicity to the cell cultures (Figure 4.5). Thus, signifying that all the 

tested doses of liposome NF were nontoxic and developed NF will not have any 

biocompatibility issues as the liposomes are made of biocompatible constituents.  

 

 

Figure 4.5 Cell viability test 

The trypan blue viability test showed that the prepared liposomal nanoformulation 

were not having any effect on cell viability 
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4.3.4 Liposomal Nanoformulations transmigrate across the BBB 

The developed WA-LNF were added to the in-vitro BBB 3D model on the apical side of 

the trans-well. This setup was then incubated for 24 hours, TEER values were 

measured to insure that the WA-LNFs did not harm or distort the membrane integrity. 

FITC Dextran studies show that the % of transmigration was approximately 45% after 

the WA-LNF treatment. This ensured that the WA-LNF was able to transmigrate through 

the BBB (Figure 4.6).  

 

 

4.3.5 Functional Efficacy of the WA-LNF upon BBB transmigration (ELISA) 

The efficacy analysis of the WA-LNF with respect to the cellular uptake and functional 

efficacy was performed. As explained before, the basal side of the BBB had SHAPP cells 

grown to full confluency. The SHAPP cells were harvested from the basal side of the 

transwells, the supernatant was collected after 24 hours of WA-LNF treatment. Control  

wells were treated by PBS. Supernatant were then analyzed by Human Aβ40 ELISA kit 

and compared to control. The standard curve was generated by utilizing different 
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Figure 4.6 In-vitro WA Liposome transmigration and effect on BBB 

integrity compared to control 



  92 
 

standards (different concentrations) and was utilized to calculate the concentration of 

Aβ40 in the sample supernatant. We observed approximately 40% reduction in the 

secreted Aβ40 levels in the WA-LNF treated cell cultures compared to untreated control 

(Figure 4.7) 

 

 

4.3.6 WA release study by membrane dialysis method 

Here we show a release pattern of the hydrophobic drug WA from liposomal 

Nanoformulation. The liposomes prepared were loaded with 100mg/ml WA initially, and 

upon analyzing the unbound drug, we found that the drug bound to the liposomes was 

~29% (29mg/ml). Upon performing the membrane dialysis experiment with the drug-

loaded liposomes, we demonstrate that the cumulative release of WA was found to be 

Figure 4.7 Effect of Liposomal WA across the BBB 

WA-LNF decrease the Aβ40 levels across the BBB in the SH-APP cells, 

compared to untreated BBB associated SHAPP cells  
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29.73µg/ml until 24 hours. In this study, the surge of WA release was observed between 

1-2 hours of the release, where a maximum of 4.5mg/ml drug release was observed. 

Further, show that our liposomal nanocarrier displays a prolonged release pattern of 

2+/1mg/ml of WA until 48 hours (Figure 4.8).  

Fig 4.8 Drug release profile of WA  

A) The graph demonstrates the concentration of WA release over the time of 48 

hours. The surge of drug release was observed between 1-2 hours and later a 

prolonged release until 48 hours was observed. B) Cumulative drug release until 

48 hrs. 
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This design of liposomal delivery system for the hydrophobic drug molecule WA is 

promising as it has improved the encapsulation efficiency and enriched the drug retention 

time within the liposome. Therefore, it becomes utmost necessary to validate the release 

studies of WA from the liposome and the factors leading the encapsulation and retention/ 

release of WA. This membrane dialysis experiment shows an effective way of and release 

method using dynamic dialysis to study the liposomal membrane permeability of 

hydrophobic compounds.  

 

4.4 Discussion 

In-vitro cell culture based studies, ex-vivo studies and clinical studies with respect to AD 

or AD-like neurological diseases indicate towards the heavy load of Aβ deposition in the 

aged patients [292-295]. Amyloid deposition during disease progression covers almost the 

entire brain [296-299]. Aβ plaques are reported to be heavily toxic to the CNS cells. The 

neuronal cells lose their communications, undergo oxidative stress and eventually lose 

their functions contributing towards disease pathogenesis. Therefore, targeting Aβ in the 

brain could be of significant therapeutic advantage. The major shortcoming pertaining to 

CNS targeting drugs is the BBB, which restricts the transport of most of the potential and 

vital drugs. Considering this problem, nanotechnology shows a promising potential in 

delivering drugs and targeting specific regions in the brain [109, 300, 301]. The field of 

nanotechnology is gaining more attention and is able to address more drug delivery and 

drug targeting challenges. The major attributes of nanomaterials and their conjugates like 

magnetic nanoparticles, magnetic-electronanoparticles, metallic nanomaterials, gold and 

silver nanoparticles, polymeric nanomaterials, metal-polymer nanocomposites, nanotubes 

etc. is their small size (in the range of nanometers). The inciting growth and clinical 

adoption of nanotechnology in the field of medicine is termed as nanomedicine. The 
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important elements of nanotechnology are the minute size range, significant measurement 

and transformation at nanoscale and nanoscale specific functions over micro and bulk 

drug particles. The development of nanomedicine to the succession into clinical stage is 

very sensitive and complex process. Extreme preciseness and expertise is required to 

synthesize and characterize the developed nanoparticles, then studying its functional 

efficacy in-vitro and in-vivo, preclinical studies in non-human primates and then finally 

clinical trials. The nanomedicine or nanoparticles against diseases can be broadly 

categorized into (i) Polymer and liposome nanomedicine [302] and (ii) metal based 

nanomedicine [303-305]. Nanomedicine or nanotherapeutics is utilized against imbalance 

and abnormal disease factors in neurological disorders. Nanomedicine could be used for 

disease diagnostics as well as against neuropathological diseases, promotion of 

functional regeneration of damaged neurons, provide neuroprotection and facilitate drug 

delivery across the BBB. 

 

Our laboratory is working in the field of nanomedicine delivery against infectious disease 

from several years and has demonstrated that anti-HIV drug loaded magnetic nanoparticle 

under the influence of external magnetic field can transport the anti-HIV drug across the 

BBB and can achieve the desired antiviral efficacy without inducing any cytotoxicity [108, 

287, 288, 306]. The need of nanotechnological intervention in the field of drug 

development and delivery is extremely pressing in the current scenario. With the advent 

of various nanotechnological methods. 

 

In this project, we have focused towards organic nanomaterials based medicine carriers 

i.e. liposomes to emphasize their advantages in context of therapeutics. Development of 

liposomes was intended primarily towards therapeutics and major attention was given 
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towards their controlled size, stability, drug entrapment efficacy and sustained drug 

release [307]. The rationale behind utilizing liposomes in this study was to exploit the 

advantage of liposomal neuronal cells entry through the endocytic pathway [308-310]. We 

have employed liposomes as our drug delivery vectors due to the major qualities of the 

Liposomes. Liposomes are lipid bi-layered entities [311-313] and have an advantage over 

other nanoparticles as they can be loaded with both hydrophobic and hydrophilic drugs. 

The lipid bilayer of the liposomes captures the hydrophobic drug molecules. The 

liposomes are made up of biocompatible constituents like lipids and cholesterol. In this 

study, we are studying a novel formulation of phospholipid-based liposomes, which are 

made of egg α-phosphatidylcholine (amphiphilic molecule having a hydrophilic head and 

two hydrophobic polar chains) which is highly biocompatible, adaptable, stable, and forms 

bi-layered membranes when dispersed in aqueous or saline environment. Cholesterol, the 

second important constituent of developed liposomes, can facilitate the preferential transit 

of liposomal carrier through BBB and can be easily taken up by neuroblastoma cells. 

Liposomes are ideal drug carrier systems as their morphology is comparable to the cellular 

membranes, plus they can incorporate major variety of drugs. 

 

Moreover, since various nanoparticles have large surface areas and have potential for 

drug delivery, the challenge arises during efficient loading of hydrophobic drugs, or high 

amounts of combination drugs on a single nanoparticle. Liposomes are promising, as 

loading hydrophobic drugs as well as combination drugs is easier and efficient in 

liposomes due to their hydrophobic as well as hydrophilic components. The liposomes can 

enter the cells in three ways, firstly they can be adsorbed by cell membrane and then 

lipase enzymes degrade their lipid bilayers and the active drug molecules are released 

and are diffused in cell membrane as well as cytoplasm. Secondly, liposomal membrane 
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can directly fuse with the cell plasma membrane, releasing drugs into cytoplasm, and 

thirdly via receptor mediated endocytosis. 

 

In this study, we were able to encapsulate the hydrophobic drug WA in the liposomes by 

dehydration method. Our results in this study demonstrate that WA-LNF had a 

hydrodynamic size of ~450nm in size and showed 28% drug binding capacity, with no 

cellular toxicity. The charge carried by the developed liposome was positive, therefore 

there was no aggregation of liposomes and due to positive ζ-potential, and it was easier 

for the liposomes to interact with the cells.  We also studied the BBB integrity by measuring 

the TEER and paracellular permeability using FITC-dextran transmigration of the 

developed NF. We demonstrated that the developed WA-LNF showed almost 50% 

transmigration across the BBB and did not disrupt the integrity of the 3D in-vitro BBB 

model. Next, we wanted to analyze the efficacy by which the liposomes entrap the drug 

and the continuous and sustained release of WA from the liposomal complex into the 

release medium. Our membrane dialysis study showed that the drugs start releasing from 

the liposomal complex within couple of hours and the dug release is continuous and 

stable. These liposomes cross the BBB either by absorptive-mediated transcytosis or 

receptor-mediated transcytosis, facilitated by the electrostatic communication between 

liposomal positive (cationic) charge and endothelial cells membrane’s negative (anionic) 

charge [314]. WA liposomes could be of promising therapeutic importance. Therefore, in 

order to take this developed NF to further clinical levels, several optimization studies 

regarding the stability and toxicity plus efficient BBB transmigration, are needed. These 

liposomal nanoparticles are promising in applications such as age related or 

neuropathological diseases, which require the delivery of the drug across the blood brain 

barrier. The drugs available towards neurological issues are rejected due to 



  98 
 

pharmacotherapy failures like inadequate physical chemistry, minimal absorption, 

unfavorable pharmacokinetic parameters, instability and toxicity. This urges the need of 

the alternate medicine/nanomedicine. Further in vivo efficacy and drug delivery 

mechanistic studies are necessary to explore WA’s therapeutic role in neurological 

disorders like HIV associated neurocognitive disorders and AD. Therefore, the WA 

Liposomal synthesized in our study have the potential of a combined therapy as a 

neuroprotectant and anti-inflammation molecule. It requires further studies to explore more 

in this field. 
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CHAPTER 5: MOLECULAR BASIS FOR MID-REGION Aβ CAPTURE BY LEADING 

ALZHEIMER’S DISEASE IMMUNOTHERAPIES: MECHANISM STUDIES 

 

5.1 Introduction 

There is a constant speculation and scientific discrepancy behind the selection of main 

disease mechanism or the causal factor of AD but the amyloid hypothesis is the most 

important and accepted one. In the amyloid hypothesis, AD is caused by excessive 

accumulation of the Aβ peptide leading to the plaques. Amyloidogenesis has been 

associated with a broad spectrum of diseases in which amyloid protein is invariably 

misfolded and deposited [1] [315, 316] [317]. The monomers react with neurotoxic 

oilgomers and aggregate into multimers, fibrils and finally fibrillary aggregates (Figure 5.1). 

The multiple structural forms of Aβ interact and associate together forming big and 

insoluble plaques. Therefore, in order to understand and evaluate the ability of WA 

chemical structure to physically interact with Aβ protein structure (monomeric and 

multimeric), in this chapter, we have focused on the physical interactions of Aβ with WA 

to understand the mechanism of WA working in the disease pathway. 
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Before studying the interaction of Aβ directly with WA, we focused on elucidating the role 

of WA and its effect on the enzymes involved in Aβ processing, i.e. β and γ secretases. 

These enzymes are extremely important in APP processing during amyloidogenesis, to 

release Aβ that is why we speculated that WA might have a direct effect on these enzymes 

as well. We designed an experimental study to have a deeper understanding towards 

mechanism of action of WA by measuring its effect on β and γ secretases. Even though 

we were able to demonstrate the role of WA in decreasing the secreted Aβ in our 

preliminary in-vitro study, we were not able to observe effect of WA on β and γ secretases 

enzymes. This could be due to low amounts these enzymes secreted by the SHAPP cells, 

which went undetectable by the ELISA technique. We plan to do in-vivo and in-silico 

studies to address this question. Therefore, in this thesis currently, we hypothesize that 

that the main target of WA is Aβ monomers and aggregates, and WA may be highly 

interactive with the specific regions of Aβ proteins, for which we further performed in-silico 

studies to support our hypothesis.  

 

Figure 5.1 The stages of amyloid fibril formation and the associated 

cellular toxicity 
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Aβ peptide is a sticky peptide which is abundant in the brain plaques, and its abnormal 

accumulation of Aβ in CSF and plasma [19, 318] result due to biochemical abnormalities 

caused by APP mutations [292]. This concept has been well reported by study 

incorporating 3D human neural cell culture model to demonstrate Aβ accumulation [319]. 

 

There are various strategies studied by researchers globally, where the popular approach 

towards AD is the targeting strategy of the various antibodies being developed as 

immunotherapies. Antibodies are considered amongst the most promising approaches for 

the treatment and prevention of AD and AD related diseases. The promising Solanezumab 

(Eli Lilly) and crenezumab (Genentech) were humanized monoclonal antibodies targeting 

the mid-region of the neurotoxic Aβ peptide [320] an early biomarker of AD pathology and 

the major component of plaques found in AD-affected brain. Results of large-scale phase-

III clinical trials of solanezumab, and clinical anti-Aβ antibody called bapineuzumab 

(Pfizer, Johnson & Johnson) in patients with mild to moderate AD were reported in 2014. 

Both studies concluded that treatment did not improve clinical outcomes in AD patients.  

 

Unlike solanezumab, bapineuzumab demonstrated target engagement in ApoE4 carriers, 

lowering brain amyloid and hyperphosphorylated-tau (the constituent of tangles) and total 

tau levels in cerebral spinal fluid relative to placebo [321]. The failure of bapineuzumab 

and solanezumab to improve clinical outcomes is considered by many to be a question of 

treatment window since deposition of amyloid in the brain can predate symptomatic 

dementia by decades [322]. Thus, clinical trials examining anti-Ab antibody treatment in 

at-risk, asymptomatic individuals are planned or underway. These include the antibodies 

solanezumab (in the Anti-Amyloid treatment in Asymptomatic Alzheimer’s disease (A4) 

trial [323] in the Dominantly Inherited Alzheimer Network (DIAN) trial [324]), crenezumab 
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(in the Alzheimer Prevention Initiative (API) trial [325]) and gantenerumab 

(Chugai/Hoffmann-La Roche – in the DIAN trial).  

 

The murine parent antibody of the humanized monoclonal antibody solanezumab, 266 is 

reported to target Aβ within residues 13–28. It becomes important to understand Aβ 

engagement with the clinical candidates for facilitating the development of active Aβ-

directed therapies that can be drug therapy (naturally acquired plant based drugs like ASH 

and Curcumin) or it can be immunotherapy (vaccines). Studies demonstrating the 

involvement of mid region of Aβ employed crystallized recombinant solanezumab Fab 

fragment complexed to the mid-region of the Ab peptide and determined its structure to a 

resolution of 2.4 A˚[326]. This study showed the conformation adopted by the Ab peptide 

in the antibody-binding site. They observed unambiguous electron density across Aβ 

residues 16–26 (KLVFFAEDVGS) in the most complete model of solanezumab. 

 

Earlier, anti-N-terminal antibody holding Aβ in an extended coil over the first eight residues 

were reported [327-330] Antibody like bapineuzumab and its murine parent 3D6, showed 

the N-terminal five residues of Aβ captured [331]. Additionally, ponezumab (Pfizer) 

antibody with specificity for the C-terminus of Aβ40, was demonstrated to attach to the 

highly hydrophobic region in an extended coil conformation [332]. The structural studies 

of anti-Aβ structures, provides a foundation for the designing of upcoming and next 

generation immunotherapies to lower cross-reactions and more interaction with the 

peptides. The understanding of peptide or protein structures may also help in the 

identification of alternative mechanisms of action of immunotherapies or drug therapies, 

by exploiting the proteins sharing elements of the Aβ epitope.  
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The majority of patients with AD suffer from impaired cerebral circulation. Aβ multimerizes 

and interacts with Aβ fibrils and Aβ oligomers act as seed to further accumulate the fibrils 

into multimers and clump, forming clearance-resistant abnormal aggregates or plaques. 

Since immunotherapy candidates like solanezumab, and crenezumab failed the clinical 

trials. It becomes imperative to unfold and dig new tangents of therapy. The natural 

components derived from the plants and plant products become important candidates in 

targeting Aβ during AD pathogenesis. Therefore, we chose as a neuroprotectant and 

studied its interaction with the middle region of Aβ, like Immunotherapy candidates like 

solanezumab. Current advances in bioinformatics and drug development made it easier 

for us to strategize the in-silico experiments. Upon understanding the Aβ hypothesis and 

we were interested in understanding the targeting mechanisms of the WA drugs against 

Aβ. We assessed WA’s interaction with the peptide and focused on analyzing the targeting 

specificity to strengthen the importance of WA as a promising drug candidate against the 

Aβ fibrils and their aggregated complex and insoluble structure.  

 

The in-silico molecular dynamics structural studies capable of designing protein 3D 

models and estimating drug binding with the antigens or the protein of interest is currently 

one of the most desirable techniques. In the field of drug discovery and targeting, the 

method of finding the best-suited drug to aim at target protein is termed as molecular 

fishing (Figure 5.2). There are experimental methods of direct molecular fishing developed 

for identification of potential partners of protein–protein and protein–peptide interactions. 

The experiments are based on surface plasmon resonance technology (SPR) studies of 

the molecules, size exclusion and affinity chromatography techniques and identification of 

proteins by employing mass spectrometry (LC-MS/MS). However, in this project there 

was no requirement of the molecular fishing as we already have established the role 
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of WA against Aβ and we performed in-silico molecular simulation to support our 

results and elucidate the mechanism involved.  

 

 

Further, we have demonstrated the structure of the Aβ42 protein molecule in the water 

environment. Every protein exists in a particular environment, and can reach its maximum 

stable structure within a medium or an environment like saline or water. Here we 

demonstrate that the PDB model when generated and visualized in a water environment 

takes proper structure of Aβ42 protein (Figure 5.3). 

 

 

Figure 5.2 Molecular Fishing 

The study of deducing best-fit drugs against a target protein or antigen based 

on their structural interactions. The drug candidate interacting with the target 

utilizing the least energy structural modifications are chosen to be the best-

suited drug molecule against the protein 
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In this study, we investigate the structural details of the Aβ-WA interaction. We identified 

the middle region of Aβ42 as the most critical region for the interaction, which can be 

targeted by drugs. WA binding to this region may block further aggregation or addition of 

new peptides or may break the mature insoluble plaques. Overall, our study elucidates 

the Aβ-WA interaction and clarifies the mechanism by which WA binding depletes Aβ 

aggregation and further plaque formation. These results may facilitate the effective 

therapeutics against plaque aggregation leading to the treatment of neurotoxicity and 

cerebrovascular abnormalities in AD. 

 

Figure 5.3 Molecule in a water environment. 

The figure demonstrates the 3D crystal structure of A molecule in water environment 
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5.2 Materials and methods 

5.2.1 Estimation of Protein Structure  

The human crystal structure of Monomorphic A42 amyloid Fibrils (PDBIDs: 5KK3) [333] 

was retrieved form the Protein Data Bank (PDB) (http://www.rcsb.org). Additionally, A 

monomer protein was modelled by Amber Molecular Dynamics Software, Version 14. The 

energy minimization of target proteins was conducted by using online tool Sander package 

of AMBER14 resolve the stearic clashes from protein structures. By using, 3D structure of 

Alzheimer's A Chain A of monomorphic A 42 (5kk3.A.pdb) as a template with an E-

value of 4.3e-16 and a score of 63, we modelled this protein structure. 

 

5.2.2 Candidate Structure 

The steroid lactone WA was selected as the drug of interest for present study. The 2D 

structure of WA drug was derived from Pubchem Open Chemistry Database the 

ACD/ChemSketch tool. (Pubchem ID: 265237). A detailed compound summary of 

chemical and physical properties and of WA were retrieved from PubChem database. 

 

5.2.3 Molecular Docking of WA with A42 

Further, WA was docked with A42 by Rosetta, a software suite that includes algorithms 

for computational modeling and analysis of protein structures. The avenger binding affinity 

of WA cluster of 100 decoys in the common binding pocket was calculated to be 

approximately -8.12 REU. 

 

5.2.4 Molecular Dynamics Simulation 

To investigate the role of WA on destabilization of A fibrils, we performed extensive µS-

length all-atom molecular dynamics (MD) simulations using NAMD [334] with Charmm36 

http://www.rcsb.org)/
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force field [335]. We performed extensive µS-length simulations to investigate the fibril 

disruption and growth inhibition by WA. The A fibrils exist in several polymorphs with 

different interfacial interactions between protofilaments [336-339]. Because of the different 

local arrangements A have potential implications for biological activities [340], therefore, 

we have considered different fibrillar structures of both A1-42 (pdb codes 5OQV, 5KK3, 

2NAO) and A40 (pdb id 2M4J, 2LMP, 2MVX). To incorporate local fluctuations in fibril 

conformations, we implemented a short 100-ns MD simulation for each of these fibril 

structures.  From each run, about 1,000 conformations were sampled, making a pool of 

6,000 A fibril conformations. WA was screened against these sampled A conformations 

using AutoDock Vina [341] and custom scripts [342]. About 100 top-ranked WA-A fibril 

complexes from the docking results were analyzed to filter and identify consensus best-

ranked binding poses. About ten complexes thus identified were used to set up MD 

simulations.  

 

5.2.5 Protein Structure Visualization and analysis 

The generated protein structures from the Docking experiment were complex and 

visualized by Chimera X protein structure visualization software, which shows the 3D 

structure of the protein and the specific regions of drug binding. This tool provides several 

command tools to view the protein structures, their surfaces, and the intra and inter 

bonding between protein-protein or protein-drug interactions. 

  

5.3 Results 

As we have established in this thesis, that WA has a direct effect on A levels, we wanted 

to further investigate the mechanism of underlying process by which WA might be 
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interacting with the Amyloid protein. It was important to address the WA binding/interaction 

with Aβ42 and the precise region of binding, and structural modification in protein, if any.   

 

5.3.1 Physical and Chemical properties of WA compound 

WA is purified compound derived from from root extract of the medicinal plant Withania 

Somnifera known for its importance in the field of Ayurveda medicine. WA molecule is a 

size-excluded product from parent compound ASH, and is small in size. WA has been 

studied well in various fields research and medicine field including cancer and 

angiogenesis. In order to utilize WA for the in-silico study, we focused on detailed 

characteristics of WA’s physical and chemical properties, which are available at Pubchem 

website (Table 5.1) 

 

 



  109 
 

 

 

 

Table 5.1 Characteristics of Withaferin A 
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5.3.2 Structural studies 

Our structural studies showed that WA has the capacity to interact and bind to the 

hydrophobic middle region of the Aβ42. This middle region is reported to be interactive by 

various other studies, which reported the interaction of clinical immunotherapy agents/ 

antibodies promising for immunotherapy, with the middle region of Aβ [320, 343] (as 

discussed in Section 5.1). Upon docking the neuroprotectant drug WA with the generated 

structure of Aβ42, we established that WA binds to the Aβ protein firmly in the middle 

region of the protein (Figure 5.4). The drug sits precisely in the hydrophobic pocket of 

Aβ42 protein. This interaction of WA with Aβ42 did not distort the chemical structure of 

WA, as it maintained the stability of the WA drug. The amino acid motif involved in the 

binding with the WA molecule was “VFAEDVGS” which constructs the mid-region Aβ. This 

result was fascinating as WA is a hydrophobic drug, we were expecting its obvious 

interaction with the hydrophobic part of the protein, to acquire safe hydrophobic 

environment, which will not distort its chemical structure. The representative figure of 

protein structure complexed with WA shows position of single amino acids (one letter code 

labelled) and shows the placement of WA near the FAEDVGS motif (Figure 5.5). Amino 

acids in the hydrophobic core are sequenced as VFAEDVGS (F=Phenylalanine, A= 

Alanine, E=Glutamic acid, D=Aspartic Acid, V=Valine, G=Glycine, S=Serine).  These 

amino acids help in facilitating the interaction between protein and drug, leading to potent 

protein-drug interactions.  
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Figure 5.4 Visualization of protein structure interacting with WA  

Visualization of the generated protein drug complex with the help of Chimera X, 

visualization software. The pdb file generated by the docking experiment was 

uploaded in the ChimeraX software. This figure demonstrates the Mesh view of 

the Aβ42 protein (golden ribbon) with WA (Red, Blue and Gold sticks chemical 

structure). 

Figure 5.5 Visualization of the amino acid labelled protein drug complex 

The pdb file generated by the docking experiment was uploaded in the ChimeraX 

software. This figure demonstrates the Mesh view of the Aβ42 protein (golden ribbon) 

labelled with one-letter amino acid code, and its interaction with Withaferin A (Red, Blue 

and Gold sticks chemical structure). 

(Sequence:DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA 
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5.3.3 Aβ has an interactive hydrophobic motif 

Upon deriving, the interaction site of WA with the hydrophobic middle region of the protein 

(Figure 5.6) and labeling the amino acids in the hydrophobic core sequenced as 

VFAEDVGS. The figure demonstrates the mesh view of the Aβ42 protein (golden ribbon) 

labelled with one-letter amino acid code, and the highlighted (Teal) mid-region of the 

protein. It shows the interaction of WA (Red, Blue and Gold sticks chemical structure) with 

the mid- region (Teal) (hydrophobic pocket) of the Aβ42 protein. It is a clear representation 

of protein-drug interaction. Aβ capture by the neuroprotective agent is explained here with 

the reported mid-region Aβ-WA complex of the generated drug-protein in-silico structure. 

Additionally, the protein surface view presentation (Figure 5.7) shows that WA interacts 

with the hydrophobic pocket which has minimal stearic hindrance. The minimal stearic 

hindrance provides a potent area or a sort of pocket for WA to bind, without loosing its 

benzene rings, or getting distorted. Visualization of the generated protein drug complex 

with the help of Chimera X visualization software, demonstrates the surface view of the 

Aβ42 protein (golden ribbon) labelled with one-letter amino acid code, and its interaction 

with WA (Red, Blue and Gold sticks chemical structure). WA interacts with the mid- region 

(Orange arrows) (hydrophobic pocket) of the Aβ42 protein. 
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Figure 5.6 Mesh view of the Aβ42 protein (golden ribbon) and its interaction with 

WA  

Red, Blue and Gold sticks represent the WA chemical structure and the highlighted 

Teal colored section shows the hydrophobic middle region of the Aβ42 protein, which 

contains FAEDVGS motif 

Figure 5.7 Surface view of the Aβ42 protein (golden ribbon) and its 

interaction with WA Red and Gold sticks represent WA and show its interaction 

with the mid- region (Orange arrows) (hydrophobic pocket) of the golden surface 

of Aβ42 protein 
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5.3.4 Drug-protein interactions via Hydrogen bonding and the binding is stable and 

specific 

Furthermore, we wanted to study the type of bonding if any between these two moieties. 

Upon selecting the probable hydrogen bonds by the Chimera software interface, made 

between drug and protein, we were able to show the presence of 3 significant Hydrogen 

bonds made by WA with Aβ42. The best-docked energy complexes were further deep 

analyzed based on hydrogen and hydrophobic interactions pattern between ligand and 

target protein. The active binding region of Aβ was hypothesized to be the middle region 

based on literature involving immunotherapies and their interaction with amyloid peptides. 

Focusing on the hypothesis when we ran our experiments, our results proved our 

hypothesis and showed that WA binds within the active region of target protein by forming 

couple of hydrogen bonds. Figure 5.8 A,B demonstrate the closer look of the mid region 

of Aβ42 protein and show three specific hydrogen bond interaction of WA with the amino 

acids ASN17, GLY15 and SER16 of the protein, from a slightly different angle. The 

structure activity relationship (SAR) analysis shows that WA forms three hydrogen bonds 

at specific residues (ASN17, GLY15 and SER16) with target protein. The OH- (anions) 

(hydroxyl group) had a strong interaction with the H+ (cations) of the three amino acids 

namely ASN17, GLY15and SER16 (Figure 5.8 A, B) These interacting residues Asn 

(C4H8N2O3), Gly(C2H5NO2) and Ser (C3H7NO3) have molar masses of 131.12g/mol, 

75.07 g/mol and 105.09 g/mol respectively. They are studied to be significant in the 

downstream signaling pathways. 



  115 
 

 

 

 

 

Figure 5.8 Demonstration of Hydrogen bonding between Aβ42 and WA 

A) Three Hydrogen bonds are formed between WA and the Aβ (Yellow lines) giving 

stability to the binding structures, B) The figure in the zoomed-in area of the mid 

region of Aβ42 protein and shows three specific hydrogen bond interaction of WA 

with the amino acids ASN17, GLY15 and SER16 of the protein. 
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5.3.5 Dynamic modelling: Speculating the mechanism of action of WA 

Our preliminary computational work on WA binding to A fibril has shown that WA binds 

in two physiologically relevant sites and affects the fibril growth and stability. Specifically, 

WA can successfully recognize and insert through the loop segment between residues 

24-33 in the A fibril. This insertion of WA into the A fibril destabilizes the fibril, suggesting 

that it can potentially destabilize the fibrillar structures. Another binding site is on the fibril 

interface and this can potentially inhibit the fibril growth. We will perform extensive µS-

length simulations to investigate the fibril disruption and growth inhibition by WA (Figure 

5.9). 

 

 

 

 

Figure 5.9 Two proposed mechanisms of WA’s interaction with A42 fibrils 
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5.3.6 Protein drug binding is stable and specific with time lapse 

Upon the time-lapse study of the interaction of two representative WA molecules with the 

matured fibrils of Aβ42, we report constant movement of WA between the fibrils and then 

eventually settling down in the middle portion of the proteins, behaving similar to what we 

showed in our monomer structure depiction studies (Figure 5.10). 

 

 

 

5.4 Discussion 

In the era of increasing neuropathological issues and complexities and lack of efficient 

drug targets, it becomes important to understand the structure and function of the target 

disease causing protein to generate the minimal free energy structures and identify the 

most potent target in-silico before attempting the in-vivo or clinical attempts of testing the 

drug efficacy. The advantage of in-silico study is that it gives us an opportunity to explore 

thousands of drug candidates and study their interaction with the target proteins, enzymes 

Figure 5.10 WA interaction with A42 is stable 

These structures are the stills from the time-lapse video of interaction of WA 

molecules with A42 protein, which shows that WA remains interacting with 

the protein for a longer duration, and with stability 
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or receptors, virtually in a saline or water environment. In-silico study are extremely 

efficient, accurate and financially minimal, and saves valuable time of the researchers. 

The experiments deliver top 5 or 10 minimal free energy protein structures and potent 

drug candidates to initiate the studies, giving ample opportunities to the researchers to 

design experiments, elucidate drug targets, mechanisms and risk before testing them in-

vitro or in-vivo. Computational interpretation or simulation of drug candidates or molecular 

compounds and demonstrating their binding analysis in the active region of target proteins 

opens pharmaceutical opportunities and the chance for the research laboratories to test 

the efficacy of drugs [344]. In this project, as shown in Chapter 2, WA is capable in 

decreasing the toxic effects of secreted A40. Upon establishing that WA has 

neuroprotective properties, we wanted to elucidate the mechanism underlying behind the 

neuroprotective action of WA. Therefore, we were interested in molecular simulation 

studies to support our hypothesis of WA interaction with A structure, resulting in 

morphological changes in the protein aggregates, which may prevent the further insoluble 

aggregation of A into plaques. In our in-silico approach, we have tested WA against AD 

pathogenesis and after employing multiple online drug analysis computational tools and 

servers to predict the efficacy of WA compound, we showed WA as a potent compound 

against A induced AD pathogenesis. 

 

In this chapter, we examined the structure of Aβ and studied its interaction with the 

neuroprotectant WA. There are multiple forms of amyloid, from single Aβ peptide to 

interacting monomers, which further aggregate into multimers, protofibrils and then into 

mature fibrils. These mature fibrils aggregate with the help of seed oligomers, into 

insoluble aggregates of A plaques. Our drug candidate WA targets on A by two possible 

mechanisms. First, it interacts with single fibers and does not allow the fibrils to mature 
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retaining their morphology and secondly it inhibits the aggregation, thereby reducing or 

inhibiting plaque formation (Figure 5.11). These results are important as therapeutic 

strategies as they show promising towards targeting amyloidogenesis has been 

associated with multiple and extensive range of neurological diseases. In AD specifically, 

abnormally misfolded amyloid is escaping immune clearance and their deposits in cells 

leads to conditions like memory loss, dementia and motor deficits [345].  

 

Our molecular simulation studied demonstrate that WA perfectly binds with the middle 

region of Aβ42 protein by forming 3 distinct and stable hydrogen bonds. The mid region 

of Aβ42 protein shows interaction and formation of hydrogen bonds between WA structure 

Figure 5.11 Working hypothesis of mechanism of WA 
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and specific amino acids ASN17, GLY15 and SER16 of the Aβ42 protein. Our preliminary 

computational study on WA binding to A fibril has shown that WA binds in two 

physiologically relevant sites on A  which are loop segment of the protein and the fibril 

interface, which affects both fibril growth and fibril stability. Aβ is one of the important 

player leading to plaque formation is of important therapeutic concern and WA binds to 

the hydrophobic motif of amyloid beta and the binding is specific and stable, and is one 

step towards AD therapeutics. Many further studies are definitely required in this field to 

explain dynamic modelling interactions, stable environment, aggregated fibrillary toxicity, 

water coefficient, angle of the Hydrogen bonds and the bond strength. It is also important 

to run simulation for longer durations to ensure the stability of WA molecules in the amyloid 

complex, to avoid re-integration of the aggregates in the diseased scenario. 

 

Our future in-silico studies will be focused on studying interaction of β-secretases with 

WA, to analyze if β-secretases can be potent therapeutic target for AD treatment or not. A 

variety of BACE1 inhibitors with promising properties have been identified with structure-

based drug design strategies, leading to clinical development of selected inhibitors. 

Despite the clinical potential exhibited by several inhibitors, an effective FDA approved 

BACE1 inhibitor is still lacking. Therefore, we will investigate the role of WA as a potential 

BACE1 inhibitor. Several x-ray crystal structures of BACE1 with or without inhibitors are 

available (e.g. pdb id: 1FKN, 3DM6, 3KYR, 2G94, 2VKM, 1XS7), showing slight 

conformational variability in BACE1-compound complexes. Therefore, we will generate 

diverse array of conformations by performing >100 ns MD simulations of BACE1 and 

sample about 1,000 conformations for docking/screening with WA. About top five WA-

bound complexes will be selected for performing MD simulations to examine the stability 

of the complex. Due to the similarity of the active site binding pockets in BACE1 and 
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BACE2, selectivity of the BACE1 inhibitor can be limited. To differentiate the binding of 

WA between BACE1 and BACE2, we will perform similar screening analysis of WA against 

conformations of BACE2. The top-scoring binding poses that are different in WA-BACE1 

compared to WA-BACE2 will be selected for further MD simulations.  
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CHAPTER 6: FINAL CONCLUSIONS AND FUTURE DIRECTIONS 

Parts of this chapter appear in the journal Biosensors & Bioelectronics. Published online 

2016 Jun15. doi: 10.1016/j.bios.2016.01.065. 

 

AD is described as the progressive and irreversible neurodegenerative disorder, 

characterized by the presence of abnormal extracellular and insoluble Aβ peptide ([346-

348] which aggregate into neuritic plaques [349-351]. Aβ protein deposition in the human 

brain is one of the key component in possible theories of the AD pathogenesis [292]. The 

presence of hyperphosphorylated tau protein in the brain resulting in the formation of NFTs 

is reported [352, 353]. Other theories propose the role of the APOE ϵ4 allele [354] which 

may pose as a risk factor in AD pathogenesis [355, 356]. The continuous accumulation of 

the plaques and tangles in the brain result into toxicity leading to cognitive impairments 

[357]. Aβ is produced from a transmembrane APP through abnormal cleavage by the β 

and γ secretases [14, 318]. Aβ proteins can occur in soluble and fibrillary forms, and the 

senile plaque which are typical in AD pathogenesis are aberrant  plaques which are dense 

and insoluble comprised of Aβ fibrils and toxic oligomers [358]. Furthermore, Aβ 

production triggers abnormal Tau processing, linking Aβ accumulation and tau protein 

phosphorylation [359] which are also believed to be an important contributor in AD 

pathogenesis. NFTS are constitutive of Tau which is a microtubule-associated protein and 

in diseased scenario Tau phosphorylates and leads to distortion in the microtubular 

conformations, implicating towards in the pathological progression of AD [360]. There are 

varied opinions towards the pathological features behind AD mechanism, and amongst 

them Aβ hypothesis is the most accepted one, associated with the onset and progression 

of AD. Aβ is found in two main isoforms (amino acid chain length are different); namely 

Aβ40 and Aβ42 [361, 362] where Aβ42 is more toxic but less abundant compared to Aβ40 
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which is reported in high concentrations in the AD brain. These peptides undergo self and 

spontaneous association leading to supramolecular aggregated assemblies of dense and 

insoluble. Plaque formation leads to deteriorated neuronal synapses and communication, 

therefore producing more neurotoxicity. The Aβ aggregation leads to release of ROS and 

NO, contributing to neurotoxicity, altering immunological responses, boosting abnormal 

secretion of pro-inflammatory cytokines, formation of soluble neurotoxic oligomers and 

aggregating fibrils leading to severe neuropathological conditions, contributing towards 

poor neuronal communications, memory deficits, motor disorientations and dementia. The 

Aβ oligomers attach with the neuronal lipid bilayer and induce abnormal alterations, 

depolarization, Ca ion up-regulation and increase in ROS levels [363]. In our future 

studies, we intend to study the effect of WA on the Ca ions regulation and function which 

will give us better insight into WA action mechanism as these Aβ associated 

neurodegenerative pathological changes damage the neuronal network by altering 

synaptic structure and functionality resulting in the spatial memory weakening linked with 

neuronal dysfunctions. 

 

We also want to study the effect of WA on the mitochondrial dysfunctions caused by Aβ 

load as a result of altered energy homeostasis and insulin signaling pathways. Most 

deteriorating Aβ neurotoxic mechanisms comprise oxidative stress and mitochondrial 

damage. It has been reported that the perivascular accumulation of Aβ harms the BBB, 

including microbleedings, damaged neuronal network, and abnormal inflammatory 

reactions [364]. Therefore, in our future studies we want to study WA as the endothelial 

protective drug by lowering oxidative damage and vascular dysfunction, favoring healthy 

BBB. 
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As a response to abnormal concentrations of Aβ plaques and NFTs aggregation, 

microglial infiltration at the site has been reported which plays a vital role in triggering 

innate immune response against the aggregation. Additionally, the increase in release of 

inflammatory cytokines attracts microglia towards the plaque-populated regions, therefore 

worsening the situation and contributing towards intense neuro-inflammation [365-369]. 

The link between microglia and AD is well studied and it has been reported that microglia 

tend to accumulate near the senile plaques in the AD brain [370]. Aβ aggregation induce 

microglial infiltration and induce neuroinflammation by binding with microglial innate 

immune receptors (G-Protein-Coupled Receptors), which initiate an inflammatory cascade 

[371]. In AD, synaptic impairment and associated neuronal death prompted by Aβ peptide 

are in part due to microglial and astrocyte cells activation. Microglial activation results in 

pro-inflammatory cytokines and ROS production towards chronic inflammatory process. 

Additionally, astrocytes are involved with neuroinflammation, too, and are activated by Aβ 

load, pathogens, and oxidative stress, producing inflammatory cytokines cyclooxygenase-

2 enzyme, augmenting Aβ production [366, 372, 373].  

 

Several studies indicate towards some correlations of Aβ to decreased memory scores 

[374, 375] and difficulty of patients to perform memory tasks [293, 376]. Therefore, in our 

understanding it becomes utmost important to study the effect of drugs which can target 

Aβ without causing cytotoxicity in neuronal cells. Therefore, in this study we introduced 

WA, and explored its potential in decreasing Aβ. WA is a purified steroidal lactone, derived 

from the parent component Ashwagandha (from W. Somnifera). Our previous study has 

shown that the most evident and abundant component of ASH are Withanolides, and WA 

is an active moiety of Withanolides with significant Aβ decreasing properties [119]. 
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In the current study, we demonstrated the neuroprotective role of WA against Aβ40 

toxicity. We have also shown that Aβ40 associated toxicity is boosted by the presence of 

HIV-1 Tat and drug of abuse Cocaine in-vitro. We have shown that WA is able to reduce 

the A Aβ levels induced by HIV-1 Tat and Cocaine. WA reduces associated neurotoxicity 

and boosts synaptic plasticity and neuronal communications, by promoting synaptic 

plasticity associated gene expression and aiding in dendritic length and communication in 

cultured neurons, which we have discussed in Chapter 2.  

 

In case of amyloidogenic diseased pathway the APP protein is abnormally cleaved by γ 

and β secretases leading to the production of Aβ peptides [247], which then aggregate 

and form insoluble plaques [35, 377-379]. Therefore, we wanted to look at the mechanism 

by which WA could be working. Upon performing γ and β secretases targeting ELISAs, 

from the WA treated cell supernatants, we found that WA showed no effect on the levels 

of γ secretases. Additionally, we also wanted to look at the effect of WA on the β 

secretases, but we were not able to detect differences in β secretases by the in-vitro 

ELISA studies, which may be due to undetectable amount of β secretases in the SHAPP 

in-vitro cell cultures. This definitely requires future in-vivo studies where we can work with 

APP/PS1 mice models to learn more about the effect of WA on β secretases, if any. Even 

though, cohesive studies including systematic Aβ clearance by targeting mechanism and 

related molecules are scarce, we believe that γ and β secretases may be potential drug 

targets. We believe that targeting AD should not only be approached by targeting Aβ only 

in CNS, but targeting signaling enzymes and factors may be impotent therapeutic 

approach as well.   
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In continuation to the effect of WA on Aβ, we also wanted to venture in the field of Aβ 

associated inflammation, and effect of W on inflammation, if any.  As discussed in Chapter 

3, inflammation is one of the associated atrocities during Aβ associated neurotoxicity, and 

there is a need of drug or combination of drugs to target inflammation. In order to address 

the inflammation due to Aβ accumulation, we have shown that WA inhibits NF-κB 

associated neuroinflammation, as Our NF-κB assay showed that WA was able to inhibit 

the expression of NF-κB2 and down-regulated RELA transcription factors, which plays a 

major role in the expression of inflammatory chemokines and cytokines. Our second drug 

of interest CRID3 was shown to downregulate various chemokines like C5, CCL20, 

CCL26, CCL5 and receptors like CCR6 and CXCR2. Additionally, CRID3 targets IL1-β by 

reducing the levels of Caspase-1 enzyme, which converts pro- IL1-β to active e IL1-β. 

These results are very important to target inflammation during Aβ neurotoxicity and 

microglial infiltration. In summary, our study highlights the mechanism by which WA 

modifies and inhibits NF-κB activity. We also show the role of CRID3 in targeting 

inflammasome activation as it targets IL-1β and down-regulation of IL-1β could be of 

potential importance in targeting inflammasome activation. Future studies can focus more 

on studying the effect of WA and CRID3 individually at major cytokines associated with 

inflammation at gene and protein expression levels. This will give us a clear insight on the 

targets of WA and CRID3 in inflammation, which could be of immense therapeutic 

potential against Aβ induced inflammation in AD or AD- like diseases. 

 

Having learnt the importance of WA against Aβ induced neuronal toxicity and anti-

inflammatory role, the next question that we needed to address was the availability of 

hydrophobic WA across the BBB into the CNS. The BBB is a structural and 

functional obstruction between the CNS and the peripheral, it maintains the CNS milieu 
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that is necessary for neural function. It consists of network of endothelial cells, pericytes, 

and astrocytes packed together forming Tight Junctions, which regulates minimal 

transmigration of molecules from the blood side to the brain across the BBB [380]. The 

major issue in targeting drugs to CNS is the presence of BBB, therefore it is utmost 

important to tackle BBB transmigration, without distorting the stability and functionality of 

BBB and increasing the drug bioavailability on to the CNS. To overcome the 

transmigration shortcoming, nanotechnology has been a promising candidate. Utilizing the 

role of nanoparticles as efficient drug carriers, we have utilized liposomes as drug carrier 

here as liposomes have an advantage over other nanoparticles. They can be loaded with 

both hydrophobic and hydrophilic drugs, because the lipid bilayer of the liposomes 

captures the hydrophobic drug molecules, which aid in delivering hydrophobic drugs 

efficiently and targeting specific regions in the brain for different CNS disease treatments. 

We modelled the 3D in-vitro BBB model utilizing primary human endothelial cells, 

astrocytes and pericytes grown on a trans-well insert with a membrane, which mimics the 

physiological BBB. This developed BBB has constant and stable TEER and is stable [252, 

381]. In Chapter 4 we have shown the development of the WA-loaded liposomes (WA-

LNF), and characterized them for their size and drug binding and transmigration efficiency. 

We report that developed WA-LNF had a hydrodynamic size of ~450nm in size and 

showed 28% drug binding capacity, with no cellular toxicity. We also studied the BBB 

integrity by measuring the trans-endothelial electrical resistance (TEER) and paracellular 

permeability using fluorescein isothiocyanate (FITC)-dextran transmigration of the 

developed NF and reported that WA-LNF showed almost 50% transmigration and did not 

disrupt the integrity of the 3D in-vitro BBB. 
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Finally, we wanted to elucidate the basic mechanism of WA’s interaction with the Aβ 

protein. Aβ monomer comprises of 40-42 amino acid depending on the isoforms of 

amyloid. We were interested in demonstrating the structural conformation of the Aβ 

protein, and wanted to study if WA binds or interacts with amyloid protein, and if yes, then 

where exactly and with what stability. Our molecular simulation studies demonstrate that 

WA perfectly binds with the middle region of Aβ42 protein by forming 3 distinct and stable 

hydrogen bonds. The mid region of ab42 protein shows ionic interaction and formation of 

hydrogen bonds between WA constituents and specific amino acids ASN17, GLY15 and 

SER16 of the Aβ42 protein. Our preliminary computational study on WA binding to Aβ fibril 

has shown that WA binds in two physiologically relevant sites on Aβ, which are loop 

segment of the protein and the fibril interface, which affects both fibril growth and fibril 

stability. Future directions in continuation to this study is Amyloid protein crystal structure 

assessment via NMR and Mass spectrometry. Crystallization of pure protein derived from 

the brain lysates of animal models, and studying them via Nuclear Magnetic Resonance 

studies depicting the structure and binding potential of the protein with the WA drug 

candidate will give us more clear understanding of the mechanism of action of WA. We 

also want to look at the effect of WA on various isoforms of the Amyloid, as at clinical level, 

AD brains have multiple isoforms of amyloids reported.  

 

There are many options for future studies to advance the work presented here [382]. The 

entire work presented here is in-vitro as this is preliminary work in this field. Major 

advanced studies at in-vivo level are required with respect to study the role of WA against 

Alzheimer’s disease. Our focus in future is to design a magneto-liposomal 

Nanoformulation towards increasing the efficacy of NFs to higher percentage of drug 

loading within the liposome (without increasing overall size of NF), and optimization of 
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magnetic treatment (time v/s field strength) for better and longer therapeutic efficacy. We 

plan to develop and characterize magneto electric liposomal containing multiple drugs 

including WA (anti-amyloid and anti-inflammation), CRID3 (anti-inflammation) & BD1063 

(anti-cocaine) and study the cargo’s non-invasive BBB transmigration, controlled release 

and therapeutic efficacy in the animal models.  

 

In future, we plan to study the therapeutic efficacy, cytotoxicity and on-demand controlled 

release of nanoformulations in a cocaine-injected double transgenic (APP/PS1 and Tat) 

HAND mouse model. APP/PS1 and Tat double transgenic mouse model exhibit 

remarkable elevation of Aβ production associated with certain behavioral abnormalities as 

well as HAND pathology in the brain. The objective of this study will be to validate the 

outcome of the pre-screening studies using HAND mouse model and to evaluate the 

transmigration of the NFs across the BBB under the influence of an external magnetic 

field, on demand controlled release on a.c. magnetic stimulation and study the efficacy of 

the developed NFs in APP/PS1- Tat mouse model. We will study therapeutic efficacy, 

toxicity and in vivo efficacy of the developed NF and will perform immunohistochemistry 

experiments to study Aβ deposition. In addition, we will analyze neurobehavioral aspects 

in NF injected animals including changes in locomotor activity, motor strength, ability, 

balance, and coordination skills, fear-motivated avoidance, novel object recognition, 

spatial learning and memory ability, compared to untreated control mice models by 

utilizing neurobehavioral tests like Locomotor Sensitization, Rotarod Test, Fear 

Conditioning/Active Avoidance, novel object recognition test and Morris Water Maze. 

These experiments will provide us basic understanding about the efficacy of the individual 

drugs as well as the NF cargo, and drug targeting, delivery and sustained release. Our 

developed nanoformulation will be a potent therapeutic cargo towards combating AD and 
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AD-like diseases. We believe that successful delivery of our NF will lead to the inhibition 

of Tat and cocaine induced Aβ and associated neuro-inflammation that will result in the 

improved neuro-cognitive functions in HIV-infected cocaine abusing and aging patients. 
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