
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

4-11-2019

Best Probable Subset: A New Method for Reducing Data Best Probable Subset: A New Method for Reducing Data

Dimensionality in Linear Regression Dimensionality in Linear Regression

Elieser Nodarse
Florida International University, enoda006@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Applied Statistics Commons, Multivariate Analysis Commons, Probability Commons,

Social Statistics Commons, Statistical Methodology Commons, and the Statistical Models Commons

Recommended Citation Recommended Citation
Nodarse, Elieser, "Best Probable Subset: A New Method for Reducing Data Dimensionality in Linear
Regression" (2019). FIU Electronic Theses and Dissertations. 4280.
https://digitalcommons.fiu.edu/etd/4280

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F4280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.fiu.edu%2Fetd%2F4280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/824?utm_source=digitalcommons.fiu.edu%2Fetd%2F4280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/212?utm_source=digitalcommons.fiu.edu%2Fetd%2F4280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1275?utm_source=digitalcommons.fiu.edu%2Fetd%2F4280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/213?utm_source=digitalcommons.fiu.edu%2Fetd%2F4280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.fiu.edu%2Fetd%2F4280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/4280?utm_source=digitalcommons.fiu.edu%2Fetd%2F4280&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

BEST PROBABLE SUBSET: A NEW METHOD FOR REDUCING DATA

DIMENSIONALITY IN LINEAR REGRESSION

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

STATISTICS

by

Elieser Nodarse

2019

ii

To: Dean Michael R. Heithaus

 College of Arts, Sciences, and Education

This thesis, written by Elieser Nodarse, and entitled Best Probable Subset: A New Method

for Reducing Data Dimensionality in Linear Regression, having been approved in respect

to style and intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Sneh Gulati

Golam Kibria

Zhenmin Chen

Hassan Zahedi, Major Professor

Date of Defense: April 11, 2019

The thesis of Elieser Nodarse is approved.

Dean Michael R. Heithaus

College of Arts, Sciences, and Education

Andrés G. Gil

Vice President for Research and Economic Development

And Dean of the University Graduate School

Florida International University, 2019

iii

DEDICATION

I dedicate this thesis to my family: Maria T. del Cristo, Orlando Nodarse, Orlando Nodarse

Jr., Ernesto Carnota, and Shadow Nodarse. This thesis would not have been possible

without your love and support. I love all of you, always.

iv

ACKNOWLEDGMENTS

I would like to thank my Major Professor, Dr. Hassan Zahedi, for guiding me throughout

my professional career during my years at FIU. I would also like to thank the rest of my

committee members and other professors who helped throughout the process of my thesis,

Dr. Sneh Gulati, Dr. Golam Kibria, Dr. Zhenmin Chen, Dr. Florence George, and Professor

Sergio Perez. Thank you for your guidance and support. Finally, I am grateful to the

Department of Mathematics and Statistics and Florida International University for giving

me the opportunity to study and excel in what I love.

v

ABSTRACT OF THE THESIS

BEST PROBABLE SUBSET: A NEW METHOD FOR REDUCING DATA

DIMENSIONALITY IN LINEAR REGRESSION

by

Elieser Nodarse

Florida International University, 2019

Miami, Florida,

Regression is a statistical technique for modeling the relationship between a dependent

variable Y and two or more predictor variables, also known as regressors [1]. In the broad

field of regression, there exists a special case in which the relationship between the

dependent variable and the regressor(s) is linear. This is known as linear regression.

The purpose of this paper is to create a useful method that effectively selects a subset of

regressors when dealing with high dimensional data and/or collinearity in linear regression.

As the name depicts, high dimensional data occurs when the number of predictor variables

is far too large to use commonly known methods. Collinearity, on the other hand, occurs

when there exists a linear relationship amongst one or more pairs of independent variables.

This paper is divided into three main section: an introduction, which reviews key concepts

that are needed for a full understanding of the paper; the methodology, which guides the

reader, step-by-step, through the process of the newly devised method; results, which

thoroughly explain and analyze any findings and propose further ideas to be studied.

 Professor Hassan Zahedi, Major Professor

vi

TABLE OF CONTENTS

CHAPTER PAGE

INTRODUCTION………………………………………………………………………... 1

RESEARCH PURPOSE………………………………………………………….. 1

GENERAL INFORMATION………….…………………………………………. 1

CHAPTER I………………………………………………………………………………. 3

LITERATURE REVIEW………………………………………………………… 3

Regression…………………………………………………………………3

Least Squares Estimation………………………………………………….6

Violation of the LS Assumptions………………………………………….7

Quality of Fit of the Model……………………………………………… 10

High Dimensional Data…………………………………………………..13

Subset Selection…………………………………………………………. 14

Regression Trees and Random Forest…………………………………....19

CHAPTER II……………………………………………………………………………..25

 NEW SUBSET SELECTION METHOD ……………………………………….25

 An Overview…………………………………………………………….. 25

 Step One: The Linear Relationship Pool………………………………... 29

 Step Two: Selection of Predictor Variables……………………………... 32

 Step Three: Choosing the Model with the Best 𝑙 Regressors…………… 35

 Step Four: Determining the Best Subset Size 𝑙…………………………..36

 High Dimensional Data and Stopping Rules……………………………. 38

 Best Probable Method Algorithm……………………………………….. 40

CHAPTER III ……………………………………………………………………………41

 DATA SIMULATION…………………………………………………………...41

 DATA COLLECTION………………………………………………………….. 43

CHAPTER IV…………………………………………………………………………… 46

 COMPARISONS AND RESULTS……………………………………………... 46

CHAPTER V……………………………………………………………………………. 69

 CONCLUSIONS AND REMARKS..…………………………………………... 69

REFERENCES………………………………………………………………… ……….. 71

APPENDIX….…………………………………………………………………………...72

vii

LIST OF TABLES

TABLE PAGE

Table 1: Correlation Matrix – Dataset # 1………………………………………………. 47

Table 2: Regression Coefficients – Dataset # 1………………………………………….47

Table 3: Best Probable Subset of Size 𝑙 – Dataset # 1…………………………………...48

Table 4: Best Probable Subset LS Estimates – Dataset # 1……………………………...49

Table 5: Subset Selection Methods 𝑅𝑎𝑑𝑗
2 Comparisons – Dataset # 1…………………...49

Table 6: Random Forest Summary – Dataset # 1………………………………………..50

Table 7: Regression Coefficients – Dataset # 2………………………………………….51

Table 8: Best Probable Subset of Size 𝑙 – Dataset # 2…………………………………...52

Table 9: Best Probable Subset LS Estimates – Dataset # 2……………………………... 52

Table 10: Subset Selection Methods 𝑅𝑎𝑑𝑗
2 Comparisons – Dataset # 2………………….53

Table 11: Random Forest Summary – Dataset # 2………………………………………54

Table 12: Regression Coefficients – Dataset # 3………………………………………...55

Table 13: Best Probable Subset of Size 𝑙 – Dataset # 3………………………………….56

Table 14: Best Probable Subset LS Estimates – Dataset # 3…………………………….57

Table 15: Subset Selection Methods 𝑅𝑎𝑑𝑗
2 Comparisons – Dataset # 3………………….58

Table 16: Subset Selection Methods 𝑅2 Comparisons – Dataset # 3……………………59

Table 17: Random Forest Summary – Dataset # 3………………………………………59

Table 18: Regression Coefficients – Dataset # 4………………………………………...60

Table 19: Best Probable Subset of Size 𝑙 – Dataset # 4………………………………….62

Table 20: Best Probable Subset LS Estimates – Dataset # 4……………………………. 62

Table 21: Subset Selection Methods 𝑅𝑎𝑑𝑗
2 Comparisons – Dataset # 4…………………. 63

Table 22: Random Forest Summary – Dataset # 4……………………………………… 63

Table 23: Best Probable Subset of Size 𝑙 – Dataset # 5………………………………….66

Table 24: Regressor Numbers and Names – Dataset # 5………………………………...66

Table 25: Best Probable Subset LS Estimates – Dataset # 5…………………………….67

viii

Table 26: Subset Selection Methods 𝑅𝑎𝑑𝑗
2 Comparisons – Dataset # 5………………….68

Table 27: Random Forest Summary – Dataset # 5………………………………………68

ix

LIST OF FIGURES

FIGURE PAGE

Figure 1: Schematic for Statistical Models……………………………………………….. 3

Figure 2: A visual representation of a Linear Model……………………….…………….. 5

Figure 3: Linearity assumption not met…………………………………………………... 8

Figure 4: Constant-Variance assumption not met…………………………………………9

Figure 5: Splitting of a regressor space (left) and the creation of regions in the

response variable (right)…………………………………………………… …… ……… 21

Figure 6: A visual of a Random Forest using two trees……………………………….....23

Figure 7: Diagram of the Best Probable Subset (BPS) method…………………………. 28

Figure 8: Step One: Creating the Linear Relationship Pool (LRP)……………………... 29

Figure 9: Step One: Alternative sampling plan…………………………………………..30

Figure 10: Step Two: Selecting a subset of 𝑙 regressors using the preferred and

alternative sampling plans and a comparison between the two…..……………………... 33

Figure 11: Step Three: Selecting the model with the best subset of size 𝑙……………… 35

Figure 12: Adjusted R-Squares vs. Subset Size Plot – Dataset # 1……………………... 48

Figure 13: Adjusted R-Squares vs. Subset Size Plot – Dataset # 2……………………... 51

Figure 14: Adjusted R-Squares vs. Subset Size Plot – Dataset # 3……………………... 56

Figure 15: Adjusted R-Squares vs. Subset Size Plot – Dataset # 4……………………... 61

Figure 16: Residuals vs. Fitted Values – Dataset # 5…………………………………… 64

Figure 17: Adjusted R-Squares vs. Subset Size Plot – Dataset # 5……………………... 65

1

INTRODUCTION

RESEARCH PURPOSE

The principal purpose of this paper is to present a new method that deals with high

dimensional data and/or collinearity in linear regression.

GENERAL INFORMATION

Regression Analysis is a statistical technique used for modeling and analyzing the

relationship between a response variable 𝑌 and one or more predictor variables 𝑋1,

𝑋2, … , 𝑋𝑘 [1]. When the relationship between 𝑌 and each of the predictors 𝑋1, 𝑋2, … , 𝑋𝑘 is

known or assumed to be linear, we use a linear approach, commonly known as Linear

Regression. Some of the main purposes of linear regression analysis include data collection

as well as fitting and estimating the regression parameters of a linear regression model,

which can provide us with useful information about the relationship between the response

variable and one or more predictor variables. Data collection is very essential, as “any

regression analysis is only as good as the data on which it is based” [1].

A very popular method for estimating the regression parameters of a linear model is known

as Least Squares Estimation (LSE) [2]. However, the LSE method cannot be used when

the number of regressors equals or exceeds the number of observations in the data, a

phenomenon known as high dimensionality [3]. Using the LSE can overfit the data when

the number of predictors equals the number of observations, which means that the data will

follow the error too closely. There are some existing solutions to data having high

dimensionality, including Principal Component Analysis, which transforms the data,

deriving a low-dimensional set of orthogonal variables [3].

2

In the present paper we focus on methods for reducing the dimensions of data sets without

having to transform the data set. Most of the methods that we will discuss belong to the

Subset Selection class, which select a smaller subset of regressors [3]. After thoroughly

exploring these methods, we define and propose a new subset selection method, which we

call Best Probable Subset (BPS) in hopes of fitting linear regression models containing

only those predictor variables that contribute to the model while keeping unnecessary

variables out of the model.

3

CHAPTER I

LITERATURE REVIEW

A Statistical Model is a quantity in which we relate a set of input variables to an output

variable, along with some variability [4] (Figure 1). We begin this paper by reviewing a

specific type of statistical models –

Linear Regression model – and

reviewing some of the most widely

used techniques to estimate and

analyze these models.

Regression

Regression is a statistical technique for modeling the relationship between a response –

sometimes called dependent– variable 𝑌 and one or more predictor variables, or regressors.

Regression Analysis deals with finding and modeling the best relationship between 𝑌 and

the regressor(s), quantifying the strength of said relationship, and predicting future

response values for a given set of values of the regressors [6]. Amongst all regression

models, a special case exists in which the relationship between the dependent variable 𝑌

and the regressors is linear; this is known as Linear Regression [1]. Linear regression can

be further divided into two commonly known cases. The first case involves a response

variable 𝑌 and only one predictor variable 𝑋. This is known as Simple Linear Regression

[1] and it has the general model:

𝑌 = 𝛽0 + 𝛽𝑋 + 𝜀 (1)

where 𝛽0 and 𝛽 are unknown parameters known as regression coefficients. Specifically,

𝛽0 is known as the 𝑌-Intercept –the value that 𝑌 assumes when 𝑋 is zero, if it can be zero–

Figure 1: Schematic for Statistical Models. (Reproduced and

updated from Methods and Applications of Linear Models,

Hocking, 2nd ed.)

4

and 𝛽 is the slope, which determines how 𝑌 changes with every unit change in 𝑋 [1]. One

of the purposes of linear regression analysis is to estimate those parameters. Lastly, 𝜀

(epsilon), distributed as (0, 𝜎2), is a random variable that accounts for the error, or

difference, between the linear function of 𝑋 –𝛽0 + 𝛽𝑋– and the observed values of the

variable 𝑌[1]. Also, it is assumed that 𝜎2 is unknown [5]. Here we can see that linear

regression models can be viewed as having a predictable part, 𝛽0 + 𝛽𝑋, and an

unpredictable part, 𝜀 [7]. There are some assumptions that must be met for us to perform

any linear regression analysis on the regression model. These assumptions are formally

listed here for the convenience of the reader:

1. The relationship between the predictor variable(s) and the response variable must

be linear [7].

2. The error term 𝜀 is distributed as 𝑁(0, 𝜎2) [7]

3. The errors of the response variable are independent of each other [7]

4. Predictor variables are independent of each other (i.e. no collinearity) [7]

 For each value of 𝑥, there is a population of possible values, 𝑌|𝑥, for the response variable,

which follows the model:

𝑌|𝑥 = 𝛽0 + 𝛽𝑥 + 𝜀 (2)

We use the notation 𝑌|𝑥 to indicate the population of values for the variable 𝑌 given a

value of 𝑥, and 𝑦 to indicate an observed value of 𝑌|𝑥. Figure 2 shows a visual

representation of the model 𝑌|𝑥 = 𝛽0 + 𝛽𝑥 + 𝜀. Note that there is a distribution for the

population of possible values in 𝑌|𝑥, when 𝑋 assumes a value 𝑥. The 𝑌|𝑥 population has a

mean equal to the linear model at a given value of 𝑥 and a constant variance 𝜎2. This occurs

5

because the value 𝑥 is fixed and 𝜀~𝑁(0, 𝜎2), so the mean of 𝑌|𝑥 is a linear function of the

𝑥 [2], and the variance equals the variance of 𝜀:

𝐸(𝑌|𝑥) = 𝛽0 + 𝛽𝑥 𝑎𝑛𝑑 𝑉(𝑌|𝑥) = 𝜎2

The other case of linear regression involves a response variable and two or more predictor

variables, which is known as Multiple Linear Regression [1] and the multiple linear

regression model follows the format:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 + 𝜀 (3)

In (3), 𝑌 is the

response variable

while 𝑋1, 𝑋2, … , 𝑋𝑘

are the predictor

variables. Parameter

𝛽0 is known as the 𝑌-

intercept –the value of

𝑌 when all regressors

are assumed to have a

value of zero, if it

makes sense for them

to be zero– and parameters 𝛽1, 𝛽2, … , 𝛽𝑘 are the regression coefficients, which determine

how regressors 𝑋1, 𝑋2, … , 𝑋𝑘, respectively, influence 𝑌. Like simple linear regression, 𝜀 is

the random variable accounting for the difference between the model and the observed

values of the variable 𝑌, and it is distributed as 𝑁(0, 𝜎2) [1]. In equation (3), the response

variable depends on variables 𝑋1, 𝑋2, … , 𝑋𝑘. Similar to simple linear regression, for a set

Figure 2: A visual representation of a Linear Model. (Figure taken from

Mathematical Statistics with Applications, Wackerly, 7th ed.)

6

of fixed values 𝑥1, 𝑥2, … , 𝑥𝑘, the response variable 𝑌|𝑥1, 𝑥2, … , 𝑥𝑘 has a population of

possible values. Essentially, the response variable 𝑌|𝑥1, 𝑥2, … , 𝑥𝑘 follows the model:

𝑌|𝑥1, 𝑥2, … , 𝑥𝑘 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜀 (4)

Since the set of values 𝑥1, 𝑥2, … , 𝑥𝑘 are fixed and 𝜀~𝑁(0, 𝜎2), the mean of 𝑌|𝑥1, 𝑥2, … , 𝑥𝑘

is a linear function of the regressors, and the variance equals the variance of 𝜀 [1]. In other

words:

𝐸(𝑌|𝑥1, 𝑥2, … , 𝑥𝑘) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 𝑎𝑛𝑑 𝑉(𝑌|𝑥1, 𝑥2, … , 𝑥𝑘) = 𝜎2

In order to model the relationship between the response variable 𝑌 and the predictor

variable(s), we must first estimate the regression parameters 𝛽0, 𝛽1, … , 𝛽𝑘, which brings us

to the next section.

Least Squares Estimation

The Method of Least Squares (LS) is used to estimate the regression coefficients in both

simple and multiple linear regression. For simplicity purposes, let us consider this method

in simple linear regression first and then in multiple linear regression.

Suppose we have 𝑛 pairs of data (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛). Note that here we only

have one predictor variable and one response variable. The subscripts from 1 to 𝑛 simply

define the different data sets. The Method of Least Squares estimates the parameters

𝛽0 𝑎𝑛𝑑 𝛽1 and generates a fitted linear regression model Ŷ = 𝑏0 + 𝑏1𝑥, where 𝑏0 𝑎𝑛𝑑 𝑏1

are unbiased Least Squares Estimators (LSE) of 𝛽0 𝑎𝑛𝑑 𝛽1, respectively, making Ŷ an

unbiased estimator of the model, so 𝐸(𝑌|𝑥) = 𝛽0 + 𝛽𝑥 [2]. For each given value 𝑥1,

𝑥2, … , 𝑥𝑛, the fitted model generates a corresponding fitted value ŷ
1

, ŷ
2

, … , ŷ
𝑛

 [1]. Without

diving into the formulas and computations used by the method of least squares, we only

7

need to know that said method provides us with estimates that minimize the sum of squares

of the difference between the observations 𝑦1, 𝑦2, … , 𝑦𝑛 and the fitted values ŷ
1

, ŷ
2

, … , ŷ
𝑛

[1]. Let us note here that the difference between an observed value 𝑦𝑖 and a fitted value ŷ
𝑖
,

both corresponding to the same x1, is known as a residual e𝑖 [3].

The LS method follows the same idea for multiple linear regression: It provides us with

estimates for 𝛽1, 𝛽2, … , 𝛽𝑘 which minimize the sum of squares of the residuals e𝑖 = y𝑖 −

 ŷ𝑖 , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 [1]. For the purpose of the current paper, we will review the estimates

of the regression parameters in matrix form. Suppose that we have 𝑛 observations on a

response variable 𝑌|𝑥 and 𝑘 predictor variables:

(𝑥11, 𝑥12, … , 𝑥1𝑘, 𝑦1), (𝑥21, 𝑥22, … , 𝑥2𝑘, 𝑦2), … , (𝑥𝑛1, 𝑥𝑛2, … , 𝑥𝑛𝑘 , 𝑦𝑛)

We define the following matrices:

𝒚 = [

𝑦1

𝑦2

⋮
𝑦𝑛

], 𝑿 = [

1 𝑥11 𝑥12 … 𝑥1𝑘

1 𝑥21 𝑥22 … 𝑥2𝑘

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑘

], 𝜷 = [

𝛽0

𝛽1

⋮
𝛽𝑘

], 𝜺 = [

𝜀1

𝜀2

⋮
𝜀𝑛

]

The solution for finding the estimates of the correlation coefficients is given by:

𝒃 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚 (5)

The proof and specifics for obtaining the least squares estimates 𝒃 are covered in Douglas

C. Montgomery’s Introduction to Linear Regression Analysis or any Regression book

cited in this paper.

Violation of the LS Assumptions

The Least Squares estimates 𝒃 will have low bias provided that the true relationship

between the predictor variable(s) and the response variable 𝑌 is linear. Furthermore, if the

number of observations 𝑛 is much larger than the number of regressors 𝑘, the least squares

8

estimates tend to have a low variance [3]. In fact, if this and the rest of the assumptions

presented earlier in the previous section are met, the Least Squares estimator is known to

have the minimum variance amongst all unbiased estimators. Such estimators are known

as the Minimum Variance Unbiased Estimators (MVUE) [2]. However, these assumptions

are not always met and can bring along many problems. Here are some of the violated

assumptions along with their respective outcomes:

Non-linearity of the Data

When the data are not from linear,

the conclusions that we draw from

the fitted model are suspect for

inaccuracy. A good way to check if

this assumption is met is to plot a

Residuals vs. Fitted values plot. If

a pattern is visible, the data might

not be linear. Figure 3 shows an

example of a non-linear dataset.

When this assumption is violated, a

simple transformation –such as

√𝑋, log(𝑋) , 𝑜𝑟 𝑋2– could be appropriate for fitting a model [3].

Correlation of Error Terms

One of the assumptions to linear regression analysis is that the error terms of different

observations are uncorrelated to each other. If this assumption is not met, the estimated

Figure 3: Linearity assumption not met. (Image taken

from Gareth James’ An Introduction to Statistical

Learning with Applications in R.)

9

standard errors of the estimated regression coefficients will underestimate the true standard

errors, which will affect any confidence and prediction intervals that are constructed [3].

Non-constant Variance of Error Terms

The assumption that we have a

constant variance for all error terms

is important when making

confidence intervals and hypothesis

tests. If the assumption of equal

variance is violated, such intervals

and tests might be inaccurate. We

can check this assumption by

plotting the Residuals vs. Fitted

values and keeping an eye for any

changes in the sparsity of the

Residuals vs Fitted Values plot. Figure 4 shows an example of a dataset in which the

variance 𝜎2 is not constant. The non-constant variance problem can usually be solved by

applying a transformation to the response variable 𝑌, such as log(𝑌)𝑜𝑟 √𝑌 [3].

Collinearity

A measure of “closeness” or dependency between two variables, whether dependent or

independent, is known as the correlation between those variables. Collinearity occurs

when two predictor variables are closely related to each other [3]. The phenomenon of

collinearity reduces the accuracy of the estimates of the regression coefficients and

Figure 4: Constant-variance assumption not met. (Image

taken from Gareth James’ An Introduction to Statistical

Learning with Applications in R.)

10

increases their standard error. Consequently, the t-statistics used for testing each individual

coefficient is also reduced and the power of the hypothesis tests declines. Collinearity can

be detrimental when fitting a model. Some ways to detect it include looking at the

correlation matrix of all regressors or computing the variance inflation factor (VIF) [3].

When looking at the VIFs, we can drop one of the regressors that yield the highest VIF and

check if the collinearity has been reduced or eliminated [4]. The details of VIFs are beyond

the scope of this paper, but more information can certainly be found in Hocking’s Methods

and Applications of Linear Models, 3rd Ed.

Quality of Fit of the Model

We have explored the Method of Least Squares when estimating the regression coefficients

of a linear model. However, we cannot fit a regression model and hope that it will be a

good estimate of the regression parameters. We need a way to measure how well the fitted

values do at predicting the observed data. We present some statistics used for measuring

the quality of fit of a fitted mode.

Mean Squared Error

The most commonly used measure of fit is known as Mean Squared Error (MSE) [3]. Like

the name indicates, the MSE measures the average of the square of the errors between the

observed data and the predicted values of that same data. The formula for the MSE is

provided here:

MSE =
1

𝑛
 ∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1 (6)

11

where 𝑦𝑖 is the 𝑖th observation of the data containing 𝑛 observations and ŷ𝑖 is the

corresponding 𝑖th predicted value. Logically, we expect the value of MSE to be large if the

predicted values are far off the observed ones. The quantity ∑ (𝑦𝑖 − ŷ𝑖)
2𝑛

𝑖=1 , without the

term
1

𝑛
 being multiplied by it, is known as the Sum of Squares of the Errors (SSE). The

SSE quantity is a measure of the variability in 𝑦 after the predictor variable(s) have been

considered [1].

Coefficient of Determination: R-Squared

The quantity R-Squares (R2) is known as the coefficient of determination and it is a

measure of the variability of the response variable 𝑦 that has been explained by the

predictor variable(s) [1]. When we have a simple regression model – only one predictor

variable – the 𝑅2 is known as the squared of the correlation between the predictor variable

and the response variable [3]. The measure of variability can be obtained using the

following equation:

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ (ŷ𝑖− ȳ)2𝑛
𝑖=1

∑ (𝑦𝑖− ȳ)2𝑛
𝑖=1

 (7)

where SSR is known as the Sum of Squares of Regression (SSR) and SST is the Total Sum

of Squares (TSS). While SSE is the measure of variability in 𝑦 after the regressors have

been considered, RSS is the variability of 𝑦 that is explained by the regressors. These two

measurements make up the total variability in 𝑦, known as TSS. Naturally, these three

measures make up the equation:

𝑇𝑆𝑆 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 (8)

12

While MSE and R-Squared are both measures of variability in 𝑦, they offer different

information. A low value in the MSE would be an indication of a good fitted model while

a large value would indicate a bad fit. On the other hand, a small value of 𝑅2 indicated a

model with poor fit while a large value indicated a good fit [3]. This is because MSE

measures the variability in the model not explained by the regressors while 𝑅2 explains the

variability explained by the regressors. Naturally, if we add one more predictor variable to

a model, the MSE will decrease while the 𝑅2 will decrease, whether slightly or

considerably. As a result of the added predictor variable, it is best to use these two

measurements of variability when comparing fitted models with the same number of

regressors.

So which one should we use? This question cannot be answered directly, but we

recommend using the 𝑅2. While the MSE can be as large as we can imagine, 𝑅2 is a fraction

that can only take on values between 0 and 1, where a value close to 1 indicates that the

fitted model explains a large portion of the variability in the response variable [1]. This

allows us to understand how good a fitted model is in general.

Adjusted R-Squared

As mentioned above, the value of 𝑅2 of an already existing fitted model can only increase

with the addition of another predictor variable while the MSE can only decrease. However,

having a larger 𝑅2 when the model has an extra regressor does not mean that one model is

better with such inclusion. In fact, it could be better with or without it. So how do we know

if the inclusion of another regressor improves the model? This question can be answered

using other measurements. Particularly, we focus on a statistic known as the Adjust R-

13

Squared (𝑅2
𝑎𝑑𝑗) which is a modified version of 𝑅2 that pays a price for the addition of

unnecessary regressors in the model [3]. The formula for finding the adjusted R-Squared

is provided here:

𝑅2
𝑎𝑑𝑗 = 1 −

𝑆𝑆𝐸

(𝑛−𝑘−1)
𝑇𝑆𝑆

(𝑛−1)

 = 1 −
(1−𝑅2)(𝑛−1)

(𝑛−𝑘−1)
 (9)

where 𝑘 is the number of regressors in the model. Like the 𝑅2 statistic, 𝑅2
𝑎𝑑𝑗 can only take

on values less than 1 [3]. However, unlike the non-adjusted version, 𝑅2
𝑎𝑑𝑗 can decrease

beyond zero with the addition of unnecessary predictor variables. The adjustment provides

us with a tool to compare fitted models involving different numbers of regressors. While

there are many more statistics used for comparing fitted models, they are beyond the scope

of the present paper and we only focus on the ones mentioned above.

High-Dimensional Data

We mentioned earlier that the Least Squares Estimate is known to be the MVUE if all the

assumptions are met. However, we may not be able to always find the LSE for all data sets,

as it requires the number of observations 𝑛 to be much larger than the number of predictor

variables 𝑘. A problem occurs when 𝑛 is not much larger than 𝑘. If 𝑛 is only slightly larger

than 𝑘, there can be too much variability in the least squares estimates, leading to possibly

overfitting the data and poorly predicting future observations [3]. What is worse, if 𝑘 is

larger than 𝑛, the variances of the estimates are infinite, and the least squares method can

no longer be used [3]. Data that fall under any one of these two scenarios are known to

have high dimensionality.

14

Multiple approaches exist when dealing with high dimensional data. Subset selection and

Shrinkage are two common classes of methods used when dealing with high dimensionality

[3]. Subset selection involves identifying a subset of the 𝑘 predictor variables that are

related to the response 𝑌. Once the subset is identified, we fit a reduced model using the

Method of Least Squares [8]. Shrinkage, on the other hand, involves using all 𝑘 original

predictors. The 𝑘 estimated regression coefficients are “shrunken” towards zero, relative

to the LSE. Some methods of shrinkage include Ridge Regression and the Lasso method

[3].

While we focus on subset selection as a primary class of methods for dimension reduction

in the present paper, more information on the shrinkage class can be found in

Montgomery’s Introduction to Linear Regression Analysis, 5th Ed. and Rawlings’ Applied

Regression Analysis: A Research Tool, 2nd Ed. Another class approach used when dealing

with high dimensional data involves Tree-Based methods. Tree-based methods are not as

common as the other two mentioned above. However, we consider one method called

Random Forest, which takes on a very different approach by selecting a subset of

regressors for each split, or node, that occurs in any of the trees. We go more in depth into

the subset selection class and the random forest method in the next few sections.

Subset Selection

Inside the Subset Selection class there are some useful methods that are commonly used

when reducing the dimensions of a dataset. Here we present a summary and the algorithm

for some of these methods.

15

Best Subset Selection

Best subset selection can guarantee that we will find the best possible combination of the

𝑘 predictor variables [3]. The disadvantage of the best subset selection method is that we

would have to fit a LS regression model for each of the 2𝑘 possible combinations of the 𝑘

predictors, whether the model contains only one predictor or the original 𝑘 [3]. Best subset

selection method can be very useful when the number of regressors is very small, so that

we only have a small number of possible fitted models. However, it can be computationally

inefficient. When the number of possible regressors is 10, we already have 102 = 100

fitted models to consider; when there are 32 possible regressors, there are over 1000

possible fitted models to consider. The algorithm for this method can be found in from

Gareth James’ An Introduction to Statistical Learning with Applications in R, 7th Printing,

but we summarize and present it here for your convenience:

1. Let 𝑀0 represent the null model with no predictors and 𝑀1, 𝑀2, … , 𝑀𝑘 represent models

with 1, 2, … , 𝑎𝑛𝑑 𝑘 predictor variables.

2. For 𝑙 = 1, 2, … , 𝑘, fit all possible (𝑘
𝑙
) models that contain exactly 𝑙 regressors. Pick the

best model among each group of (𝑘
𝑙
) and call it 𝑀𝑙.

Note: The “best” model amongst all models with the same number of predictors 𝑙

is the one having the largest 𝑅2.

3. Select the single best model among the 𝑘 + 1 models 𝑀0, 𝑀1, 𝑀2, … , 𝑀𝑘 using any of

the 𝐶𝑝 (𝐴𝐼𝐶), 𝐵𝐼𝐶, 𝑜𝑟 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 statistics.[3]

Note: The 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 statistic is explained in a previous section.

16

Forward Stepwise Selection

Forward Stepwise Selection is a computationally efficient method compared to subset

selection as it does not involve checking every possible fitted model. Rather, the method

only considers a maximum of
𝑘(𝑘+1)

2
+ 1 possible fitted models, where 𝑘 is the number of

regressors in the full model. A major disadvantage of Forward stepwise selection is that it

does not consider the possibility that a predictor variable that has already been selected for

the fitted model might no longer be significant with the addition of another predictor, so it

might not yield the single best possible fitted model.

The method starts with the null model 𝑀0 and considers the regressor that best contributes

to the model, if there is any that contributes to it in a significant way. A “significant”

addition is one that yields a partial 𝐹 statistic greater than a pre-selected value 𝐹𝐼𝑁 for

“taking in” a new regressor [7]. A review on the 𝐹 distribution can be found in Lyman

Ott’s An Introduction to Statistical Methods and Data Analysis, 7th Ed. or any other

referenced book that covers elementary Statistics. However, the textbook Introduction to

Statistical Learning with Applications in R, used as a reference in this paper, presents an

algorithm that avoids the calculation of the partial F-statistic. The Forward selection

algorithm is summarized here:

1. Begin by fitting the null model, 𝑀0.

2. For 𝑙 = 0, 1, … , 𝑘 − 1, consider every 𝑘 − 𝑙 fitted model that adds a single predictor

variable not already present in 𝑀𝑙. Choose the model that yields the highest 𝑅2 and call

it 𝑀𝑙+1.

17

3. Select the single best model among the 𝑀0, 𝑀1, 𝑀2, … , 𝑀𝑘possible models using any of

the 𝐶𝑝 (𝐴𝐼𝐶), 𝐵𝐼𝐶, 𝑜𝑟 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 statistics [3].

Backward Stepwise Elimination

Backward Elimination also has the computational advantage over Best Subset Selection,

as it considers a maximum of
𝑘(𝑘+1)

2
+ 1 possible fitted models [3].

We begin the procedure with the full model, 𝑀𝑘, instead of the null model, 𝑀0. We then

eliminate the least significant regressor in the model, if there is any that is not statistically

significant according to a criteria, which is whether the partial F-statistic is smaller than

the cut-off point 𝐹𝑂𝑈𝑇 for “kicking out” an already present regressor [8]. For simplicity

purposes, we summarize an algorithm here that does not involve the partial F-statistic. Like

the previous subset selection methods, the Backward elimination algorithm was taken from

Introduction to Statistical Learning with Applications in R and summarized here:

1. Begin by fitting the full model, 𝑀𝑘.

2. For 𝑙 = 𝑘, 𝑘 − 1, … , 1, consider every of the 𝑙 possible fitted model that has one less

predictor variable than 𝑀𝑙. Choose the model that yields the highest 𝑅2 and call it 𝑀𝑙−1.

3. Select the single best model among the 𝑀0, 𝑀1, 𝑀2, … , 𝑀𝑘 possible models using any

of the 𝐶𝑝 (𝐴𝐼𝐶), 𝐵𝐼𝐶, 𝑜𝑟 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 statistics [3].

Stepwise Regression

Stepwise Regression combines both forward selection and backward elimination to create

a procedure that keeps the computational advantages of these two methods while

mimicking a close approach to the best subset selection method. In this procedure, we have

18

two cut-off F-statistics, 𝐹𝐼𝑁 𝑎𝑛𝑑 𝐹𝑂𝑈𝑇, for “taking in” a new regressor into the model or

“kicking out” an already present regressor, respectively. The value of 𝐹𝐼𝑁 is typically

chosen to be larger than 𝐹𝑂𝑈𝑇 so that it is more difficult to add a new regressor to the model

than to delete one [1]. An algorithm for the stepwise regression method is not provided in

Introduction to Statistical Learning with Applications in R. However, we still summarize

the procedure here, as it is explained in An Introduction to Statistical Methods and Data

Analysis, 7th Ed.

1. Begin by fitting the null model, 𝑀0, with no predictor variables.

2. Add to the model the predictor that yields the largest simple correlation with the

response variable 𝑦.

3. For 𝑙 = 1, … , 𝑘 − 1:

a. Consider every 𝑘 − 𝑙 fitted model that adds a single predictor variable not

already in the 𝑀𝑙 model. If any of the 𝑘 − 𝑙 models that have a partial 𝐹 statistic

greater than a pre-selected value 𝐹𝐼𝑁, select the one that has the highest partial

𝐹 statistic and name it 𝑀𝑙+1. If none of the models have a partial 𝐹 statistic

exceeding 𝐹𝐼𝑁, then 𝑀𝑙 is the final model.

b. Once the 𝑀𝑙+1 model is obtained, check if any of the predictors already in the

model yield a partial 𝐹 statistic lower than 𝐹𝑂𝑈𝑇. If so, remove the predictor

with the lowest partial 𝐹 statistic. Continue repeating this process until all

irrelevant predictor variables have been removed.

c. Repeat steps (a) and (b) until no more regressors are added or removed [8].

19

Disadvantages of Subset Selection Methods in High Dimensional Data

The subset selection methods mentioned above have their own advantages and

disadvantages when dealing with low-dimensional data. But what if the number of

observations 𝑛 is larger than the number of predictor variables 𝑘? Best subset selection

considers all possible models, so it cannot be used in high dimensional data because some

models would be overfitting the data or the variances of the estimates would be infinite.

Backward elimination starts with all regressors in the model, so it cannot be used in high

dimensional data either. Forward selection, on the other hand, starts with the null model,

so we can add predictor variables into the fitted model while 𝑛 is greater than 𝑘. However,

as mentioned previously, forward selection has the disadvantages of keeping previously

added regressors even if they before irrelevant when other regressors are added because of

collinearity [3]. So even though forward selection is our only viable subset selection

method when dealing with high dimensionality, it might not be effective at picking the best

model.

Regression Trees and Random Forest

As mentioned before, several methods exist for fitting a model of a given data set. We now

focus on a method known as Random Forest, which can be used when dealing with high

dimensional data.

Amongst the multiple methods in the Tree Class, we only focus on the Random Forest

method in the present paper. However, more information on other methods, such as

bagging or boosting, can be found in Gareth James’ An Introduction to Statistical Learning

20

with Applications in R or Kotu’s Predictive Analytics and Data Mining. Before we

introduce random forests, it is essential to understand the concept of regression trees.

Regression Trees

Regression Trees are a data mining technique that involves stratifying the predictor space

into simpler regions than the original predictor space [9]. We then use the mean of the

response variable 𝑦 in each region as the “fitted” value for any observed data point that

falls inside that region. The textbook An Introduction to Statistical Learning with

Applications in R provides a simple algorithm for building regression trees without getting

into the complexity of the formulas used in it. The regression tree algorithm is provided

here:

1. Divide the predictor space into 𝐽 different non-overlapping regions 𝑅1, 𝑅2, … , 𝑅𝐽,

known as leaves or terminal nodes.

a. Let {𝑋} be the predictor space before any splitting has occurred.

2. For every single observation of the response variable that falls into a region 𝐽, the

“fitted” value of that observation is ȳ𝑅𝑗
, the mean of all observations in region 𝑅𝑗,

where 1 ≤ 𝑗 ≤ 𝐽.

When we think of splitting the predictor space, the questions “which regressor do we split

first?” and “at what point should a regressor be split?” arise. In simple terms, we select a

predictor variable 𝑋𝑗 and the cutoff point 𝑐 such that splitting the predictor space into the

regions {𝑋|𝑋𝑗 < 𝑐} and {𝑋|𝑋𝑗 ≥ 𝑐} yields the greatest reduction in SSE, the sum of squares

of the error [3]. The stratifying or splitting of the regressor space continues until the SSE

can no longer be reduced or until each leaf has no more than five observations [3]. Figure

21

5 (left) provides a visual of a regression tree that has been created using two predictor

variables while figure 5 (right) is a visual of the generated regions. Note that it looks like

an “upside down” tree, hence the name. Although the formulas and algorithm of regression

trees are much more complicated, we only provide a general idea in this paper without loss

of generality.

Random Forests

Recall that regression trees have a predicted value for each region created by the predictor

space. In random forests, we obtain multiple de-correlated regression trees and average

them [10].

Random Forest is a method that uses multiple trees 𝑇1, 𝑇2, … , 𝑇𝐵 to cast an average “fitted”

value 𝑓𝐵(𝑥) to each observation of the response variable 𝑌, where 𝑥 represents the values

Figure 5: Splitting of a regressor space (left) and the creation of regions in the response variable (right).

(Image taken from An Introduction to Statistical Learning with Applications in R)

22

of a set of predictors that correspond to an observation 𝑦. The fitted value generated by a

random forest for an observation 𝑦𝑖 is given by:

𝑓𝑎𝑣𝑔
𝐵 (𝑥) =

1

𝐵
∑ 𝑇𝑏(𝑥, 𝑅𝑗)

𝐵

𝑏=1

=
1

𝐵
∑ 𝑇𝑏𝑗(𝑥)

𝐵

𝑏=1

where 𝐵 is the total number of trees and 𝑇𝑏(𝑥, 𝑅𝑗) represents the fitted value given by the

𝑗th region in the 𝑏th regression tree for a given set of predictor values 𝑥 that correspond to

observation 𝑦. In a simpler notation similar to the one provided to regression trees, we can

see 𝑇(𝑥, 𝑅𝑗𝑏) as ȳ𝑅𝑗𝑏 for set of predictor values 𝑥. An advantage of random forests include

the fact that they do not overfit the data, no matter how many trees are used [3]. However,

it is suggested using 𝐵 = 100 to achieve good predicted values of the observed data [3].

Also, random forests use trees that randomly select a subset of predictor variables (usually

1/3 of the original number of regressors), making the trees non-correlated [10]. Even

though some regressors may not be optimal to a regression tree, their selection might reveal

interaction effects with other predictor variables that would otherwise be ignored if a subset

of regressors was not randomly selected [12]. The book The Elements of Statistical

Learning (Hastie, Tibshirani, Jerome, 2009) provides a simple algorithm for building a

random forest, which is summarized here:

1. For 𝑏 = 1, 2, … , 𝐵, grow a regression tree 𝑇𝑏 using 𝑙 randomly selected predictor

variables from the total 𝑘. A typical value for 𝑙 is 𝑘/3.

a. Note: Refer to the previous section on regression trees to know when to stop

splitting/stratifying.

2. Ensemble/combine the 𝐵 trees to create new regions.

23

3. Make predictions using the formula 𝑓𝑎𝑣𝑔
𝐵 (𝑥) =

1

𝐵
∑ 𝑇𝑏(𝑥, 𝑅𝑗)𝐵

𝑏=1 [10].

Suppose we have a response variable 𝑌 and three predictor variables 𝑋1, 𝑋2, 𝑋3 𝑎𝑛𝑑 𝑋4.

Suppose also that we decide to make a random forest using two regression trees. The first

tree 𝑇1 is built using randomly selected regressors 𝑋1 𝑎𝑛𝑑 𝑋3, while the second tree 𝑇2 is

built using randomly selected regressors 𝑋2 𝑎𝑛𝑑 𝑋4. Figure 6 offers a visual of this

example using the idea of random forests explained in this section. We can see from the

diagram in Figure 6 that the “new regions” have a fitted value equal to the average of the

corresponding fitted values in the individual trees.

Figure 6: A visual of a Random Forest using two trees. (Note that the fitted value of each region in the forest

is the average of two regions: one from each tree. Visual created using the logic presented in this section.)

24

It seems that random forests do a good deal of providing fitted values for observed data.

However, they do not provide us with a model, but rather a logic for determining the

predicted value of 𝑦 for a given set of predictor values. Here we explore an example of

random forests found in Genuer, Poggi, and Tuleau-Malot’s “Variable selection using

random forests” (2010) found in the Pattern Recognition Letters journal.

Example

The example stated in the “Variable selection using random forests” article uses the Ozone

dataset, located in the 𝑚𝑙𝑏𝑒𝑛𝑐ℎ package in statistical program R. The Ozone dataset

contains 366 observations, 163 of which contain missing values on at least one variable,

so we are left with only 203 observations. The dataset contains a total of 13 variables [13],

the fourth of which is used as the response variable and the remaining twelve are the

predictor variables. The example used the suggested
𝑘

3
=

12

3
= 4 predictors per regression

tree and grow a total of 2000 trees for the random forest [13], proceeding by creating the

random forest and obtaining the regressors that had a positive importance on 𝑌-Daily

maximum one-hour-average ozone. The important regressors were 𝑋1-Month, 𝑋5-Pressure

height, 𝑋7-Humidity, 𝑋8-Temperature (Sandburg), 𝑋9-Temperature (El Monte), 𝑋11-

Pressure gradient, and 𝑋12-Inversion base temperature [13].

In the next chapter, we provide a new subset selection method that can potentially provide

us with a good model, even when we are dealing with high dimensional data.

25

CHAPTER II

NEW SUBSET SELECTION METHOD

Now that we have a good idea on the concepts of linear regression and some of the many

methods that can be used for reducing the dimensions of a data set, we can go over a new

method that can potentially provide us with an effective model, whether the data has a low

or high dimensionality. We begin with an overview of the new procedure, followed by a

detailed explanation of each step along with any comparisons used in each step. The

statistical program R was used to build the procedure. Therefore, we include a quick

overview of the program code logic after each step plus a copy of the full program code in

Appendix A.

An Overview

The proposed method consists of selecting various regressors that will make an effective

model without having to go through every possible subset like best subset selection;

without having to keep previously selected regressors in the model like forward selection;

without having to keep previously eliminated regressors out of the model like backward

elimination. For naming purposes, we will be using the name Best Probable Subset (BPS)

for the name of this new method.

Suppose we want to reduce the dimensions of the regressor space by a certain percent, say

60%. That would mean that we want to keep 40% of the total number of regressor 𝑘. Let

us say that 40% of 𝑘 equals 0.40 ∗ 𝑘 = 𝑙 regressors that we want to keep in the model.

Previously seen methods, like forward selection, backward elimination, best subset

selection, and step-wise regression offer ways to select a good subset of regressors 𝑙.

26

However, as previously discussed, they all run into issues, whether computational

ineffectiveness, inability to change previously added/deleted regressors, or inability to deal

with high dimensional data. The logic behind the BPS method consists of selecting a subset

of 𝑙 regressors using a probability pool that is calculated from the linear relationships – or

squared correlations – between the response variable 𝑌 and each of the predictor variables.

The probability pool, conveniently named Linear Relationship Pool (LRP), is then used to

select a subset of 𝑙 predictors without replacement to avoid selecting the same predictor

twice for the same fitted model. The LRP allows us to have models containing regressors

that might not be present in other models at all. This solves the issue that we run into in

forward selection, in which previously selected predictors have to stay in the fitted model

[3].

Once the 𝑙 regressors are chosen, we use the original LRP for all regressors to have chance

of be picked in the next model, even if they were chosen in the previous model, and repeat

the selection process until we have 1000 models. Note that each regressor can be in multiple

models but the same regressor cannot be more than once in the same model. We decided

to use 1000 as the total number of possible models because it gives each predictor a chance

of being picked in at least one model, even if they have a squared correlation as small as

1

1000
= 0.001 with the response variable. We then calculate the coefficient of

determination, 𝑅2, for each model of 𝑙 predictor variables and select the model with the

highest 𝑅2 out of the 1000. The selected model is considered to be the “best probable

model” with 𝑙 regressors using the BPS method, which we denote as 𝑀𝑙
𝐵𝑃𝑆 and the subset

of regressors in that model make up the “best probable subset” of size 𝑙. When dealing with

27

high dimensional data, this subset selection procedure is much more computationally

efficient than the other subset selection methods mentioned in the previous chapter.

Figure 7 summarizes the entire procedure for finding the best probable fitted model with 𝑙

regressors. The blue path serves as a guide of the steps of the BPS method while the red

path are alternative steps used for comparison purposes. The key next to the diagram

provides more information about the colors and shapes.

28

Figure 7: Diagram of the Best Probable Subset (BPS) method.

29

Step One: Linear Relationship Pool

The first step on the process is obtaining our sampling plan, the Linear Relationship Pool

(LRP), which is created by calculating the squared correlation,𝑟2, of each predictor

variable with the response variable. We then use these squared correlations and divide each

of them by the sum of all squared correlations, giving us a probability of selection, 𝑝, for

each regressor. Each of these probabilities can be calculated using the formula:

𝑝𝑗 = 𝑃(𝑋𝑗) =
𝑟𝑗

2

∑ 𝑟𝑖
2𝑘

𝑖=1

, 1 ≤ 𝑗 ≤ 𝑘

where 𝑘 is the total number of

regressors in the dataset and 𝑟𝑗
2 is

the marginal R-squared of the 𝑗th

regressor with the response variable

𝑌. Once we have calculated every

𝑝𝑗 for 1 ≤ 𝑗 ≤ 𝑘, we have

completed the LRP and are ready to

proceed to the next step.

Coding Equivalent

In coding, we create the LRP using the following steps:

1. Calculate the squared correlation of each predictor with the response variable.

2. Calculate the probability of selection, 𝑝, for each predictor variable.

Figure 8: Step One: Creating the Linear Relationship Pool (LRP)

30

3. Find the number of decimal places, 𝑚, until the first non-zero digit for the smallest

probability.

4. Create a vector in which integer 𝑗 appears 𝑟𝑜𝑢𝑛𝑑(𝑝𝑗 ∗ 10𝑚+1) times, representing

the 𝑗th regressor. The value 𝑚 makes sure that the regressor with the smallest

probability is represented at least once in the vector.

Example

 Suppose we have three regressors, 𝑋1, 𝑋2, 𝑋3 with marginal squared correlations equal to

0.070, 0.800, 𝑎𝑛𝑑 0.002, respectively. Their probabilities of being selected would be

0.07

0.07+0.8+0.002
= 0.080, 0.917, 𝑎𝑛𝑑 0.003, respectively. The smallest probability is 0.003,

which has two decimal places before the first non-zero digit, so 𝑚 = 2. In R, we would

have a vector where "1" (for

Regressor 𝑋1) appears

𝑟𝑜𝑢𝑛𝑑(0.080 ∗ 102+1) = 80

times, "2" (for Regressor 𝑋2)

appears 𝑟𝑜𝑢𝑛𝑑(0.917 ∗

102+1) = 917 times, and "3"

(For Regressor 𝑋3) appears

𝑟𝑜𝑢𝑛𝑑(0.003 ∗ 101+1) = 3

times. This step completes our

linear relationship pool and the

vector to be used in R for the

selection of 𝑙 regressors.

Figure 9: Step One: Alternative sampling plan.

31

Comparison Step: Equal Probability Pool

For comparison purposes, we also use random selection of 𝑙 regressors without

replacement for each of the 1000 fitted models. We use this alternative sampling plan to

compare the 𝑅2s generated by the 1000 models with 𝑙 regressors selected using the LRP

and the 𝑅2s generated by the 1000 models with 𝑙 regressors selected at random. Equal

probabilities means that all predictor variables have the same chance of being selected.

Therefore, the probabilities for each regressor is:

𝑝 = 𝑝𝑗 = 𝑃(𝑋𝑗) =
1

𝑘
, 1 ≤ 𝑗 ≤ 𝑘

Where 𝑘 is the total number of regressors and 𝑝𝑗 is the probability of selecting the 𝑗th

regressor.

Coding Equivalent

In coding, we create the pool of equal probabilities using the following steps:

1. For 𝑗 = 1, 2, … , 𝑘: create a vector in which integer 𝑗 appears one time, representing

the 𝑗th predictor variable.

a. Note: When coding, we can use 𝑠𝑒𝑞(1: 𝑘) to create this vector.

Example

 Suppose we have the same three regressors, 𝑋1, 𝑋2, 𝑋3 as in the previous example with the

same squared correlations 0.070, 0.800, 𝑎𝑛𝑑 0.002, respectively. Their probabilities of

being selected at random would be 1/3 for each of them. Therefore, the vector of integers

in R contains "1", "2", 𝑎𝑛𝑑 "3" once each.

32

Step Two: Selection of the Predictor Variables

Now that we have the linear relationship pool, the next step in the procedure is selecting

the 𝑙 predictor variables using the probabilities. For comparison purposes previously

mentioned, we will be selecting a subset of 𝑙 predictors 1000 times using the LRP and

another 1000 times using the equal probabilities pool. Both methods of selection can be

done using a computer program. We used computer program R for both random and non-

random selections.

Coding Equivalent

Using Statistical Computer Program R, this can be easily done by using the command:

𝑠𝑎𝑚𝑝𝑙𝑒(𝑃𝑟𝑜𝑏, 1, 𝑇)

where Prob is the probability pool being used, whether LRP or the equal probabilities

pool for selecting at random. This command selects an integer from a vector of integers

and deletes all of its repetitions. The “T” – which represents True – deletes any replicates

of the selected number. Deleting replicates avoids selecting the same regressor more than

once for the same fitted model; it is our way of selecting 𝑙 regressors without

replacement.

Example

Recall our previous example, where the three regressors, 𝑋1, 𝑋2, 𝑎𝑛𝑑 𝑋3 have a LRP with

probabilities 0.080, 0.917, 𝑎𝑛𝑑 0.003, respectively, of being selected using the R-Squared

Probability pool. Suppose that we want to select 𝑙 = 2 out of the three total regressors. Let

us assume that 𝑋2 is selected first since it has a significantly larger probability of being

than the others. Using 𝑠𝑎𝑚𝑝𝑙𝑒(𝐿𝑅𝑃, 1, 𝑇), once the integer "2" is selected – which

33

represents regressor 𝑋2 – the 917 repetitions of the integer "2" will be deleted from the

vector of integers, leaving us with 80 repetitions of integer "1" and 3 repetitions of integer

"3". Since we are selecting two regressors without replacement, every time we select

another regressor for the fitted model the probabilities of those regressors that have not yet

been selected are updated. This example is just for the sake of showing the logic of the

method. It would be totally unnecessary to produce 1000 models with 𝑙 = 2 out of three

regressors.

Comparing the Outcome of Using both Probability Pools

We have been using

two probability pools

–the LRP and the

equal probabilities

pool– to select 𝑙 out of

𝑘 regressors. In order

to determine whether

which probability pool

is indeed more

effective, we only

need to compare the

average R-Squared of

the 1000 fitted models

produced by selecting 𝑙 regressors using the LRP and the average R-Squared of the 1000

Figure 10: Step Two: Selecting a subset of 𝑙 regressors using the preferred

and alternative sampling plans and a comparison between the two.

34

fitted models produced by selecting a subset of 𝑙 regressors using the random probability

pool. In short, we just need to show that:

𝐴𝑣𝑔(𝑅𝐿𝑅𝑃
2) > 𝐴𝑣𝑔((𝑅𝐸𝑃𝑃

2)

Where LRP is means “linear relationship pool” and EPP means “equal probabilities pool”

for selecting at random. We should expect to obtain models with higher 𝑅2s when using

the LRP since the regressors that have a higher squared correlation with the response

variable have a higher chance of being selected in the subset of 𝑙 regressors. We omit

showing this in the examples in Chapter IV, but can be demonstrated using with the code

provided in Appendix A.

It should be clear that using the LRP is more effective at creating 1000 fitted models with

𝑙 regressors having a higher average 𝑅2 than the 1000 fitted models with 𝑙 regressors

chosen at random. We now continue to the next step in the BPS method assuming that only

the LRP will be used for the selection of 𝑙 regressors.

35

Step Three: Choosing the Model with the Best 𝒍 Regressors

After creating the

linear relationship

pool and using it to

select a subset of 𝑙

regressors when

fitting the 1000

models, the next

step is to determine

which of the 1000

models has the best

subset of 𝑙 out of

the 𝑘 original

regressors. To

choose the best

model, we must

first decide what

criteria would make one model to be the best out of the 1000.

Criterion for Selecting the Best Subset of Size 𝑙

We covered in Chapter I that some measures of fit include Mean Squared Error (MSE),

the coefficient of determination 𝑅2, and the𝑅𝑎𝑑𝑗
2 . We also mentioned that 𝑅2 and adjusted

𝑅2 have the advantage of having a range between 0 and 1 and less than 1, respectively,

Figure 11: Step Three: Selecting the model with the best subset of 𝑙.

36

making them easier to understand that MSE [3]. Lastly, we explained that 𝑅2 continues to

increase when we keep adding more regressors to the model, making it more useful for

comparing fitted models with the same number of regressors.

The dilemma we currently have is determining which model(s) out of the generated 1000

is the best probable model, 𝑀𝑙
𝐵𝑃𝑆, containing the best subset of 𝑙 predictors. Since all of

them have the same number of predictors 𝑙, we can use the regular 𝑅2 to measure their fit.

Since a large 𝑅2 indicates a better fit for equally sized models, we just need to select the

model with 𝑙 regressors that yields the highest 𝑅2.

Coding Equivalent

Now that we have chosen a measure of fit as the criteria for choosing the best fitted model

with 𝑙 predictor variables, we only need to find out which model has the highest 𝑅2. In

order to do this using R, we simply calculated the 𝑅2 for each of the 1000 models having

𝑙 predictors and sorted them from largest to smallest using the command:

𝑠𝑜𝑟𝑡(𝑅𝑆𝑞𝑢𝑎𝑟𝑒𝑠, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 = 𝑇𝑅𝑈𝐸)

where RSquares is a vector containing the 1000 𝑅2 and the subsection “decreasing =

TRUE” tells R to sort the numbers from largest to smallest. We select the highest 𝑅2 and

the unique model that yields it.

Step Four: Determining the Best Subset Size 𝒍

Up to now we have assumed that the reduction amount that we want to perform on a data

is known, making it clear what the subset size 𝑙 is. But what happens if we do not know

what the reduction amount is? Or what if we want to select the best subset, no matter what

the size of it is? Assuming that the sample size 𝑛 is much greater than the number of

37

regressors 𝑘, we are left with 𝑘 + 1 possible best probable models – 𝑀0
𝐵𝑃𝑆 , 𝑀1

𝐵𝑃𝑆, … , 𝑀𝑘
𝐵𝑃𝑆

each of them being the best probable subset of size 0, 1, … , 𝑘, respectively – and no

direction on where to go next. We proceed by determining a criteria for selecting the single

best probable subset without having a pre-set subset size.

General Criterion for Selecting the Best Subset of Any Size

In the previous section, we used the R-Squares to determine the best fitted linear model out

of the 1000 models generated using the Linear Relationship Pool. Assuming that we fit a

model with the best probable subset for all possible subset sizes, we are left with

𝑀0
𝐵𝑃𝑆, 𝑀1

𝐵𝑃𝑆, … , 𝑀𝑘
𝐵𝑃𝑆, a total of 𝑘 + 1 plausible models, where 𝑀0

𝐵𝑃𝑆 is the null model and

𝑀𝑘
𝐵𝑃𝑆 is the full model containing all regressors. Since the 𝑘 + 1 best probable models

contain different number of regressors, we need other criteria other than the 𝑅2s to

determine the best one out of them.

As mentioned in Chapter I, the 𝑅2
𝑎𝑑𝑗 statistic offers flexibility when comparing subsets of

different sizes because, unlike the non-adjusted 𝑅2, it is penalized for the addition of

unnecessary regressors [3]. Furthermore, 𝑅2
𝑎𝑑𝑗 is simple to understand as it goes up to 1.

Because of these reasons, we decided to use this statistic as the criterion for choosing the

best possible subset out of the 𝑘 + 1 subsets to consider.

The 𝑅2
𝑎𝑑𝑗 increases when an added regressor contributes to the fit of the model, so the

best out of the 𝑘 + 1 plausible fitted models 𝑀0
𝐵𝑃𝑆, 𝑀1

𝐵𝑃𝑆, … , 𝑀𝑘
𝐵𝑃𝑆 should be the one

yielding the highest 𝑅2
𝑎𝑑𝑗. We will use the fitted model having the highest 𝑅2

𝑎𝑑𝑗 as the

general criteria for choosing the best probable subset. We denote the linear model

containing the best probable subset as 𝑀𝐵𝑃𝑆, without a subscript.

38

Coding Equivalent

Similarly to the coding logic in the previous step, we simply calculate the 𝑅2
𝑎𝑑𝑗 for each

of the 𝑘 + 1 models, each having the best probable subset of size 0, 1, … , 𝑘 and sort the

adjusted 𝑅2s using the command:

𝑠𝑜𝑟𝑡(𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑅𝑆𝑞𝑢𝑎𝑟𝑒𝑠, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 = 𝑇𝑅𝑈𝐸)

where AdjustedRSquares is a vector containing the 𝑘 + 1 𝑅2
𝑎𝑑𝑗 and the subsection

“decreasing = TRUE” tells R to sort the numbers from largest to smallest. We select the

highest adjusted 𝑅2 and the unique model that yields it, 𝑀𝐵𝑃𝑆.

High Dimensional Data and Stopping Rules

Recall from Chapter I that data having a large number of predictors, 𝑘, that equals or

exceeds the number of observations, 𝑛, are known to have high dimensionality, and that

the least squares estimation does not work with such data [3]. Recall also that forward

selection is the only alternative subset selection methods when we are dealing with such

data. Here we explain how the best probable subset method deals with high dimensional

data while keeping the number of fitted models to a minimum by creating some stopping

rules.

Stopping Rules

We begin by creating a stopping rule so that the number of predictors in the model never

exceeds, or even approaches, the number of observations. For this paper, we want the

number of observations to be at least 5 times larger than the number of regressors in the

fitted mode, limiting 𝑙 to be less than or equal to 𝑛/5. The rule will allow us to have five

observations per regressor and let us always use the BPS method while dealing with low

39

or high dimensional data. Note that the 𝑛/5 limit on 𝑙 can be changed to any other number

less than 𝑘, and there is no statistical proof that this limit will always be the best; the limit

is specified for the purpose of this paper can be changed accordingly as long as it is less

than the number of observation 𝑛.

Using the stopping rule above, we would still need to consider various best probable

models of different sizes, 𝑀0
𝐵𝑃𝑆, 𝑀1

𝐵𝑃𝑆, … , 𝑀𝑛/5
𝐵𝑃𝑆. If 𝑛/5 were to equal 100, we would still

be considering 100 + 1 best possible models of different sizes, each of which was selected

from 1000 models, with the exception of the null model 𝑀0
𝐵𝑃𝑆. The total number of fitted

models would then equal 100 ∗ 1000 + 1 = 100,001, which can be computationally

inefficient. To improve the situation, we created a second stopping rule, which states that

we will continue to find the best possible subset of the next size until the adjusted R-squared

ceases to increase by more than 1%. In short, we begin by finding 𝑀0
𝐵𝑃𝑆, followed by

𝑀1
𝐵𝑃𝑆, followed by 𝑀2

𝐵𝑃𝑆, etc. until 𝑀𝑖
𝐵𝑃𝑆 yields a lower 𝑅2

𝑎𝑑𝑗 than 𝑀𝑖−1
𝐵𝑃𝑆, where 1 ≤ 𝑖 ≤

𝑘. At that point 𝑀𝑖−1
𝐵𝑃𝑆 is the best probable model. Note that the 1% was selected for the

present paper but there could be other stopping rules that are just as reliable.

When we combine the stopping rules described above, we obtain the following stopping

criteria:

1. Begin by finding the null model 𝑀0
𝐵𝑃𝑆.

2. For 1 ≤ 𝑖 ≤ min (𝑘,
𝑛

5
), continue finding the model with the best possible subset

size 𝑖 until 𝑀𝑖
𝐵𝑃𝑆 yields an 𝑅2

𝑎𝑑𝑗 than is less than 1% greater than the 𝑅2
𝑎𝑑𝑗 of

𝑀𝑖−1
𝐵𝑃𝑆.

40

Once we have reached the stopping rule, we are left with 𝑖 + 1 best possible models of

different sizes. Since the adjusted R-squared continues to increase by more than 1% until

𝑀𝑖−1
𝐵𝑃𝑆, the best probable model is 𝑀𝑖−1

𝐵𝑃𝑆, so 𝑀𝐵𝑃𝑆 = 𝑀𝑖−1
𝐵𝑃𝑆.

Best Probable Method Algorithm

The Best Probable Subset (BPS) method is summarized here:

1. Create a probability pool, called Linear Relationship Pool (LRP), for selecting a

subset of regressors by using the following formula for each regressor of the 𝑘

regressors.

𝑝𝑗 = 𝑃(𝑋𝑗) =
𝑟𝑗

2

∑ 𝑟𝑖
2𝑘

𝑖=1

, 1 ≤ 𝑗 ≤ 𝑘

Where 𝑝𝑗 is the probability of choosing the 𝑗th predictor for the reduced model and

𝑟𝑗
2represents the squared correlation between the 𝑗th predictor and the response

variable.

2. Begin by finding the null model 𝑀0
𝐵𝑃𝑆. For 1 ≤ 𝑖 ≤ min (𝑘,

𝑛

5
):

a. Select a subset of size 𝑖 without replacement from the predictor by using the

LRP. Repeat 1000 times and select the model with the highest 𝑅2. Call it

𝑀𝑖
𝐵𝑃𝑆.

b. Continue finding the model with the best probable subset size 𝑖 until 𝑀𝑖+1
𝐵𝑃𝑆

yields an 𝑅2
𝑎𝑑𝑗 than is less than 1% greater than the 𝑅2

𝑎𝑑𝑗 of 𝑀𝑖
𝐵𝑃𝑆.

3. Since the adjusted R-squared continues to increase by more than 1% until 𝑀𝑖−1
𝐵𝑃𝑆,

the best probable model is 𝑀𝐵𝑃𝑆 = 𝑀𝑖
𝐵𝑃𝑆.

41

CHAPTER III

DATA SIMULATION

In order to validate the BPS method, we simulated some linear regression models and

generated data from them. In Chapter III we cover how we generated both the models and

the data.

Simulating Multiple Regression Linear Models

Our next goal is to prove that the BPS method can pick up a subset of regressors that make

an effective fitted model for observed data. To do so, we create multiple regression linear

models and generate “observed” data from them. Without loss of generality, we decided to

create simulate three linear models, each containing a different total number of regressors

– 𝑘 = 10, 25, 𝑎𝑛𝑑 50. To create data sets containing significant and insignificant

regressors, we made the response variable using only the first 20% of the regressors. The

data for each regressor, whether significant or insignificant to the model, were generated

using one randomly chosen distribution from this list:

➢ Chi-Squared (DF is a random integer from 1 to 10)

➢ Gamma (α is a random integer from 1 to 10; β is a random integer from 1 to 10)

➢ Normal (μ is a random integer from 1 to 10; σ is a random integer from 1 to 10)

Once the data for the first 20% of the regressors are generated, the observations for the

response variable were created using the model:

𝑌 = 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑙𝑋𝑙 + 𝜀

42

where 𝑋1, 𝑋2, … , 𝑋𝑙 are the first 20% and only significant regressors and the regression

parameters are randomly generated integers from −10 to 10, excluding 0. The error term

𝜀 is distributed as 𝑁(0, 𝜎2), where 𝜎2 is specified in each dataset. Once the observations

of the response variable are generated using the above model, we simulate data for the

other 80% of the regressors, each having a regression parameter equal to zero and a

distribution chosen at random from the list:

➢ Uniform (where x is between 0 and 1)

➢ Poisson (λ is a random integer from 1 to 10)

➢ Binomial (p is a random number between 0 and 1; n is a random integer form 1 to

10)

➢ Beta (α is a random integer from 1 to 100; β is a random integer from 1 to 10)

➢ Chi-Squared (DF is a random integer from 1 to 10)

➢ Exponential (β is a random integer from 1 to 10)

➢ Gamma (α is a random integer from 1 to 100; β is a random integer from 1 to 10)

➢ Normal (μ is a random integer from 1 to 100; σ is a random integer from 1 to 10)

To compare the BPS method with already existing methods, we need the number of

observations to be well above the number of regressors. The three data sets mentioned in

this section will have a sample size equal to five times the total number of regressors, 𝑘.

A Data Set with High Dimensionality

We created a 4th data set, also having a total of 100 regressors, which have 80 observations

and only the first 20 regressors will be significant to the model. We will use this high

43

dimensional data set to compare it to forward selection and random forests, both of which

can be used in data with high dimensionality.

Lastly, we reference back to the random forest example provided at the end of Chapter I,

and it to the BPS method by looking at the MSE that each of the two methods produced

using the Ozone dataset.

DATA COLLECTION

The section walks the reader through some existing data sets used in this paper. The data

set, named “U.S. News and World Report’s College Data,” was collected from the “ISLR”

package in R, and belong to their respective publishers. The data set, along with many

others, was made public and can be used freely. Without further delay, here is a summary

of the data:

“College” – U.S. News and World Report’s College Data

The College data set offers statistics for a large number of Colleges, including graduation

rates, enrollments, tuition, and more. The data was collected from the 1995 US News and

World Reports[11]. The following information is a summary from the dataset description

in R:

 R Package

 “ISLR”

Description

The College data has 777 observations and 18 variables.

Format

This data frame contains the following columns:

44

“Private Indicates ‘Yes’ or ‘No’ as a factor

Apps Number of applications received

Accept Number of applications accepted

Enroll Number of new students enrolled

Top10perc Percent of new students from the top 10% of their H.S class

Top25perc Percent of new students from the top 25% of their H.S class

 F.Undergrad Number of full time undergraduates

P.Undergrad Number of part time undergraduates

Outstate Out-of-state tuition

Room.Board Costs for room and board

Books Estimated cost of books

Personal Estimated amount of personal spending

PhD Percent of faculty with Ph.D.’s

Terminal Percent of faculty with terminal degrees

S.F.Ratio Student/faculty ratio

Perc.alumni Percent of alumni who donate to the College

Expend Instructional expenditure per student

Grad.Rate Graduation rate” [11].

Source

Dataset was taken from the Statistics library, StatLib, maintained at

Carnegie Mellon University. The dataset was also used in the 1995 Data

45

Analysis Exposition, sponsored by the ASA Statistical Graphics Section

[11].

For more information on this dataset, refer to the ISLR package documentation.

46

CHAPTER IV

COMPARISONS AND RESULTS

In Chapter IV we apply the BPS and other existing methods to each data set to provide

some insight on the method’s functionality. In the first section, we use simulated data sets

that follow the linear regression assumptions in order to validate the new method and

contain low to moderate correlation between regressors. After, we use a data set that is not

as perfect and compare the results with some existing methods.

Validation of the BPS Method

We begin the validation of the BPS method by using a simulated data sets with only ten

predictor variables. For each data set we use, we provide a list of the contributing

regressors, which are those that were used to build the observations of the response variable

𝑌. Since we are simulating the data using linear regression models with the error term

distributed as 𝑁(0, 𝜎2 = 1), there is no need to check the model assumptions. We do

provide the correlation matrix to the first data set. After that, the correlation matrices are

too large, so we only provide the highest correlation coefficient between two different

regressors to show that there is no collinearity amongst regressors.

47

Dataset # 1:

Number of Predictors: 10

Contributing Predictors: 𝑋1, 𝑋2

Sample Size: 50

Error Term: 𝜀~𝑁(0, 𝜎2 = 2)

Correlation Matrix:

Non-Zero Correlation Coefficients:

The following table provides the distribution and true regression coefficients for

the regressors with non-zero regression coefficients in Dataset # 1. All other

regressors have a true regression coefficient of zero.

Table 1: Correlation Matrix – Dataset # 1

Table 2: Regression Coefficients – Dataset # 1

48

Using the statistical program R, we generated 1000 models for each subset size 𝑖, where

1 ≤ 𝑖 ≤ 10. From each group of 1000 models, the best model of size 𝑖, denoted as 𝑀𝑖
𝐵𝑃𝑆,

is selected. The following plot and table show the adjusted R-squares for each 𝑀𝑖
𝐵𝑃𝑆 model.

Note that the AdjRSquaresPercentChange contains the percent changes of the 𝑅𝑎𝑑𝑗
2 .

According to our stopping rule, we should select the best probable subset of two regressors,

𝑋1 𝑎𝑛𝑑 𝑋2, which yield the following LS estimates:

Figure 12: Adjusted R-Squares vs. Subset Size Plot – Dataset # 1

Table 3: Best Probable Subset of Size 𝑙 – Dataset # 1

49

When we compare the fitted model to the population linear regression model, we can see

that we obtained the same regressors, but very different estimates for the linear regression

coefficients. The following 𝑅𝑎𝑑𝑗
2 table contains useful information for comparing the

different subset selection methods. The table provides the 𝑅𝑎𝑑𝑗
2 for each subset size using

each subset selection method. The cells highlighted in yellow indicates the 𝑅𝑎𝑑𝑗
2 value for

the best model selected by each method.

At first glance, we can observe that the BPS method has the same 𝑅𝑎𝑑𝑗
2 values as most

subset selection methods for all subset sizes. When we look at the table, we can see that

the largest 𝑅𝑎𝑑𝑗
2 for all methods occurs when the subset size equals 2. According to the

subset selection criteria explained in chapter 1, all pre-existing subset selection methods

should choose 𝑙 = 2 as the best subset size. The BPS method does not take any more

Table 4: Best Probable Subset LS Estimates – Dataset # 1

Table 5: Subset Selection Methods 𝑅𝑎𝑑𝑗
2 Comparisons – Dataset # 1

50

regressors once the adjusted R-Squared value increases by less than 1%. In this case, the

𝑅𝑎𝑑𝑗
2 increased

0.9846−0.9843

0.9843
∗ 100% = 0.03%, so we stay at 𝑙 = 2 regressors in the best

probable model.

Lastly, we compare the Mean Square Error (MSE) of the best probable model with the

MSE that we get by building a random forest, which we denote as 𝑀𝑆𝐸𝐵𝑃𝑆 and 𝑀𝑆𝐸𝑅𝐹,

respectively. Recall from chapter 1 that the suggested number of trees for random forests

is 100 and that the number of regressors that should be considered at each node is

approximately 𝑛/3 for regression random forests. We provide a summary table of the

random forest we obtained using dataset # 1:

The 𝑀𝑆𝐸𝐵𝑃𝑆 we obtained for dataset # 1 equals 1.2208, a much lower number than

𝑀𝑆𝐸𝑅𝐹 = 34.8418. Note that the BPS method is more effective than Random Forests in

this data set. This does not mean or imply, however, that the BPS will always be more

effective at predicting the values of the response variable.

Table 6: Random Forest Summary – Dataset # 1

51

Dataset # 2:

Number of Predictors: 25

Contributing Predictors: 𝑋1, 𝑋2, … , 𝑋5

Sample Size: 125

Error Term: 𝜀~𝑁(0, 𝜎2 = 5)

Maximum Pair-Wise Correlation Value: 0.273

Non-Zero Regression Coefficients:

Similar to the first data set, we generated 1000 models for each subset size 𝑖, where 1 ≤

𝑖 ≤ 25, using R. From each group of 1000 models, the best model of size 𝑖, denoted as

𝑀𝑖
𝐵𝑃𝑆, is selected. The following plot and table show the adjusted R-squares for each 𝑀𝑖

𝐵𝑃𝑆.

Figure 13: Adjusted R-Squares vs. Subset Size Plot – Dataset # 2

Table 7: Regression Coefficients – Dataset # 2

52

According to our stopping rule, we should select the best probable subset of seven

regressors, 𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋14, 𝑋20, 𝑎𝑛𝑑 𝑋23, which yield the following LS estimates:

Table 8: Best Probable Subset of Size 𝑙 – Dataset # 2

Table 9: Best Probable Subset LS Estimates – Dataset # 2

53

When we compare the fitted model to the population linear regression model, we can see

that we obtained 4 out of the 5 regressor we used to generate the observations of 𝑌, along

with 3 nuisance variables as regressors. It is important to note here that not selecting every

regressor having a non-zero regression coefficient is not necessarily a bad thing. It just

means that the regressor did not contribute to the fitted model. To make proper conclusions,

we compare the BPS method with other existing subset selection methods.

Table 10: Subset Selection Methods 𝑅𝑎𝑑𝑗

2 Comparisons – Dataset # 2

54

Table 10 in the previous page contains information for comparing the different subset

selection methods. The table provides the 𝑅𝑎𝑑𝑗
2 for each subset size using each subset

selection method. The cells highlighted in yellow indicates the 𝑅𝑎𝑑𝑗
2 value for the best

model selected by each method.

We can observe that the BPS method has the same 𝑅𝑎𝑑𝑗
2 values as most subset selection

methods for all subset sizes. Most importantly, the 𝑅𝑎𝑑𝑗
2 values when the subset size equals

7 is the same for all subset selection methods and they all have the same regressors and LS

estimates when 𝑙 = 7, so the BPS is performing just as well and reducing the dimensions

even more than other methods. According to the subset selection criteria explained in

chapter 1, all pre-existing subset selection methods should choose 𝑙 = 14 as the best subset

size, which is when 𝑅𝑎𝑑𝑗
2 reaches a maximum. The BPS method does not take any more

regressors once the adjusted R-Squared value increases by less than 1%, so we take 𝑙 = 7

regressors as the best probable subset size for the best probable model 𝑀𝐵𝑃𝑆.

We now compare the 𝑀𝑆𝐸𝐵𝑃𝑆 and 𝑀𝑆𝐸𝑅𝐹. The table below provides a summary of the

number of trees, number of regressors considered at each node, and 𝑀𝑆𝐸, for the Random

Forest created for dataset # 2:

The 𝑀𝑆𝐸𝑅𝐹 is much higher than the 𝑀𝑆𝐸𝐵𝑃𝑆, which equals 26.1753, so we conclude that

the BPS method yields lower variation than Random Forests for dataset # 2.

Table 11: Random Forest Summary – Dataset # 2

55

Dataset # 3:

Number of Predictors: 50

Contributing Predictors: 𝑋1, 𝑋2, … , 𝑋10

Sample Size: 250

Error Term: 𝜀~𝑁(0, 𝜎2 = 10)

Maximum Pair-Wise Correlation Value: 0.205

Non-Zero Regression Coefficients:

Just like in the two previous data set, any predictor variables that do not appear in the table

above have a regression coefficient equal to zero. We generated 1000 models for each

subset size 𝑖, where 1 ≤ 𝑖 ≤ 50, using R. From each group of 1000 models, the best model

of size 𝑖, denoted as 𝑀𝑖
𝐵𝑃𝑆, is selected. The following plot and table show the adjusted R-

squares for each 𝑀𝑖
𝐵𝑃𝑆 model.

Table 12: Regression Coefficients – Dataset # 3

56

Figure 14: Adjusted R-Squares vs. Subset Size Plot – Dataset # 3

Table 13: Best Probable Subset of Size 𝑙 – Dataset # 3

57

Note that the table above does not contain the entire list of best probable models for all

sizes. Rather, the list contains the best probable models for subset sizes 1 𝑡𝑜 20. The rest

are omitted as the entire table takes a lot of space and we are only concerned with the first

seven rows. Regardless, according to our stopping rule, we should select the best probable

subset of six regressors, 𝑋1, 𝑋2, 𝑋4, 𝑋5, 𝑋9, 𝑎𝑛𝑑 𝑋45, which yield the following LS

estimates:

When we compare the fitted model to the population linear regression model, we can see

that we obtained 5 out of the 10 regressor we used to generate the observations of 𝑌, along

with only one predictor variable (𝑋45) not in the original population model. Let us now see

how the BPS method performed compared to other subset selection methods. The table in

the next page contains the 𝑅𝑎𝑑𝑗
2 for each subset size selected by each subset selection

method. Note from the table that only the first 20 best probable subset sizes are included.

We can see that the 𝑅𝑎𝑑𝑗
2 value for a subset selection of size 𝑙 = 6 is equal for all subset

selection methods, including BPS.

Table 14: Best Probable Subset LS Estimates – Dataset # 3

58

We have equal adjusted 𝑅2s because all methods selected the same regressors for a subset

of size 𝑙 = 6. We can see from the table that the other subset selection methods also

selected some predictors that had a regression parameter equal to zero in the true population

model. Note also that the BPS method selected a smaller subset of regressors which yields

a very similar 𝑅𝑎𝑑𝑗
2 value to the subset selected by the other subset selection methods. When

we compare the BPS method to the best Best Subset Selection method, we can see that

there is a relatively large difference in the number of regressors selected for the fitted model

while the difference in their 𝑅𝑎𝑑𝑗
2 is very small. The fitted model using Best Subset

Selection has 16 regressors and an 𝑅𝑎𝑑𝑗
2 of 0.6331 while the BPS gives us a model with

only 6 regressors and an 𝑅𝑎𝑑𝑗
2 of 0.617 – a small difference in 𝑅𝑎𝑑𝑗

2 for a large difference

Table 15: Subset Selection Methods 𝑅𝑎𝑑𝑗
2 Comparisons – Dataset # 3

59

in number of regressors, which is very useful in high dimensional data. Lastly, the reduced

model we get using BPS yields an R-squared value of 0.6201, which is very close to the

full regression R-squared, which is 0.6692. The table below provides all R-Squared values

for each subset obtained using each subset selection method.

Finally, the 𝑀𝑆𝐸𝐵𝑃𝑆 we obtained for dataset # 3 equals 99.6679, a much lower value than

the 𝑀𝑆𝐸𝑅𝐹, which is provided in the table below:

Table 16: Subset Selection Methods 𝑅2 Comparisons – Dataset # 3

Table 17: Random Forest Summary – Dataset # 3

60

Dataset # 4:

Number of Predictors: 100

Contributing Predictors: 𝑋1, 𝑋2, … , 𝑋20

Sample Size: 80

Error Term: 𝜀~𝑁(0, 𝜎2 = 10)

Maximum Pair-Wise Correlation Value: 0.440

Non-Zero Regression Coefficients:

Table 18: Regression Coefficients – Dataset # 4

61

Note that, unlike the previous datasets, dataset # 4 has high dimensionality, with a sample

size of 80 and 100 predictor variables. The table above shows the predictor variables that

contributed to the simulation of the response variable 𝑌, along with their respective

distributions and regression coefficients; any predictor variables that do not appear in the

table above have a regression coefficient equal to zero. We generated 1000 models for each

subset size 𝑖, where 1 ≤ 𝑖 ≤ 80/5, using R. Recall that one of our stopping rules was that

the sample size 𝑛 has to be at least five times the subset size, or the number of regressors

in the reduced model. Since we have 80 observations, we will only look at the best probable

subsets of sizes 1 through
80

5
= 16. The following plot and table show the adjusted R-

squares for each 𝑀𝑖
𝐵𝑃𝑆 model.

Figure 15: Adjusted R-Squares vs. Subset Size Plot – Dataset # 4

62

The table above contains the best probable models for subset sizes 1 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 16.

Regardless, according to our stopping rule, we should select the best probable subset of

seven regressors, 𝑋1, 𝑋16, 𝑋18, 𝑋42, 𝑋71, 𝑎𝑛𝑑 𝑋93, which yield the following LS estimates:

When we compare the fitted model to the population linear regression model, we can see

that we obtained 3 out of the 20 regressor we used to generate the observations of 𝑌, along

with four other predictor variables. Let us now see how the BPS method performed

Table 19: Best Probable Subset of Size 𝑙 – Dataset # 4

Table 20: Best Probable Subset LS Estimates – Dataset # 4

63

compared to forward selection. The following table contains the 𝑅𝑎𝑑𝑗
2 for each subset size

selected by each subset selection method:

Note from the table above that we are only comparing the BPS method with the Forward

Selection method. The other methods cannot be used with data that has high dimensionality

[3]. We can see that the 𝑅𝑎𝑑𝑗
2 value for a subset selection of size 𝑙 = 7 using the BPS

method is slightly lower than the subset of the same size obtained using forward selection.

When comparing the BPS to random forests, we see that the 𝑀𝑆𝐸𝐵𝑃𝑆, which equals

209.369, is once again much lower than the 𝑀𝑆𝐸𝑅𝐹, provided in the table below.

Table 21: Subset Selection Methods 𝑅𝑎𝑑𝑗
2 Comparisons – Dataset # 4

Table 22: Random Forest Summary – Dataset # 4

64

Dataset # 5: College Dataset

Number of Predictors: 16

Sample Size: 777

Important Information:

The College dataset selected for this section was taken from the ISLR package in R. The

dataset contains a total of 18 variables. From these, we have selected the Graduation Rates,

Grad.Rate, as the response variable. We also dropped out the Private variable because it is

non-numeric, and it would interfere with the correlation matrix. The remaining 16 variables

were used as predictor variables. We now use various methods to select a subset of the

predictor variables to fit a model for the graduation rates, which we have renamed as 𝑌 in

the dataset.

Model Assumptions:

The Fitted Values vs. Residuals plot shown above shows no pattern of the data, so we can

assume that the response variable is linear and the error terms have a constant variance.

Figure 16: Residuals vs. Fitted Values – Dataset # 5

65

The correlation matrix, however, shows very high values amongst many pairs of

regressors; the correlation values go as high as 0.943 between the variables Apps and

Accept, which are the number of applications received and number of applications

accepted, respectively. Regardless of the collinearity, we continue by selecting the best

probable model using the BPS method.

Note that the sample size is very large compared to the number of predictor variables. Since

we do not know the true model for the College dataset, we use cross validation. 80% of

the observations were randomly selected for the train set and the remaining 20% of the

observations were used for the test set. The “random” selection of observations was done

in R, using 𝑠𝑒𝑡. 𝑠𝑒𝑒𝑑(1) and 𝑠𝑎𝑚𝑝𝑙𝑒() to generate the random indexes for the observations

that belong to the train data set. We proceed with multiple subset selection methods to find

out which subset of predictors can contribute to the fitted model. The following plot and

table show the adjusted R-squares for each 𝑀𝑖
𝐵𝑃𝑆 model.

Figure 17: Adjusted R-Squares vs. Subset Size Plot – Dataset # 5

66

Note that the regressors have a number rather than a name. The table below matches each

predictor number with its name:

Table 23: Best Probable Subset of Size 𝑙 – Dataset # 5

Table 24: Regressor Numbers and Names – Dataset # 5

67

According to the BPS method, the best probable subset has seven predictors: Apps,

Top25perc, P.Undergrad, Outstate, Room.Board, perc.alumni, and Expend. These seven

predictors yield an R-squared of 0.4482, almost as large as the full model’s R-Squared,

which is 0.4587. The reduced model has the following LS estimates:

Note that from the two regressors that had the highest pair-wise correlation (Apps and

Accept), only Apps made it into the reduced model. The table in the next page contains the

𝑅𝑎𝑑𝑗
2 for each subset size selected by each subset selection method.

Note that the BPS selected the smallest subset out of all the subset selection methods, with

a slightly smaller 𝑅𝑎𝑑𝑗
2 . We can see that the 𝑅𝑎𝑑𝑗

2 value for a subset selection of size 𝑙 = 7

is the same for all methods. This is because all methods chose the same predictor variables

when the subset size equals 7.

Table 25: Best Probable Subset LS Estimates – Dataset # 5

68

When comparing the BPS to random forests, we see that the 𝑀𝑆𝐸𝐵𝑃𝑆, which equals

173.3057, is somewhat lower than the 𝑀𝑆𝐸𝑅𝐹, provided in the table below.

Note that both 𝑀𝑆𝐸𝐵𝑃𝑆 and 𝑀𝑆𝐸𝑅𝐹 are calculated using the predictions from the test data

set using cross validation.

Here we conclude the analysis and comparison of the Best Probable Subset and other subset

selection methods with simulated or pre-existing datasets.

Table 26: Subset Selection Methods 𝑅𝑎𝑑𝑗
2 Comparisons – Dataset # 5

Table 27: Random Forest Summary – Dataset # 5

69

CHAPTER V

CONCLUSIONS AND REMARKS

In this paper, we have discussed some concepts in Linear Regression, including the Least

Squares Estimators (LSE), model assumptions, measures of fit, and subset selection. We

also discussed some of the predominant methods used in linear regression for subset

selection and the concept of regression trees and random forests, some of which can be

used when dealing with high dimensional data.

We continued our discussion by proposing a new subset selection method, which we called

Best Probable Subset (BPS), that seems to have great potential based on our simulations

and can be used when we are dealing with high dimensional data. The Best Probable Subset

(BPS) method is summarized here:

1. Create a probability pool, called Linear Relationship Pool (LRP), for selecting a

subset of regressors by using the following formula for each regressor of the 𝑘

regressors.

𝑝𝑗 = 𝑃(𝑋𝑗) =
𝑟𝑗

2

∑ 𝑟𝑖
2𝑘

𝑖=1

, 1 ≤ 𝑗 ≤ 𝑘

Where 𝑝𝑗 is the probability of choosing the 𝑗th predictor for the reduced model and

𝑟𝑗
2represents the squared correlation between the 𝑗th predictor and the response

variable.

2. Begin by finding the null model 𝑀0
𝐵𝑃𝑆. For 1 ≤ 𝑖 ≤ min (𝑘,

𝑛

5
):

a. Select a subset of size 𝑖 without replacement from the predictor by using the

LRP.

70

b. Continue finding the model with the best possible subset size 𝑖 until 𝑀𝑖
𝐵𝑃𝑆

yields an 𝑅2
𝑎𝑑𝑗 than is less than 1% greater than the 𝑅2

𝑎𝑑𝑗 of 𝑀𝑖−1
𝐵𝑃𝑆.

3. Since the adjusted R-squared continues to increase by more than 1% until 𝑀𝑖−1
𝐵𝑃𝑆,

the best probable model is 𝑀𝐵𝑃𝑆 = 𝑀𝑖−1
𝐵𝑃𝑆.

We used the BPS method on multiple simulated dataset and obtained promising results

when compared to Best Subset Selection and other subset selection methods by keeping up

with an equal 𝑅𝑎𝑑𝑗
2 in the 1st, 2nd, 3rd, and 5th datasets and a slightly lower 𝑅𝑎𝑑𝑗

2 on the 4th

dataset. The method was also compared with random forests and outperformed it with a

lower MSE in every single dataset.

For future research projects, we would like to do further research on the theoretical side of

the BPS method, which seems to have potential with low and high dimensional data.

Without showing the theoretical proof, we can guarantee that the best probable subset will

choose the best subset of size 𝑙 as the number of model selection repetitions (1000 in this

paper) increase. A further research on this subset could include this proof. We would also

like to investigate subset selection based on some other alternative subset selection

probability rules. A way to improve this study would be to test the method with many more

datasets of different sizes and properties and see how it performs compared to other subset

selection methods. Furthermore, for 1000 models with a subset size 𝑙, we could select the

model that yields the lowest MSE instead of the highest 𝑅2. More research can be done on

the performance of the method overall by finding the average proportion of the 𝑅2 of the

full model that is explained by the 𝑅2 of the best probable model throughout many datasets.

71

REFERENCES

1. Montgomery, Douglas C., Elizabeth A. Peck, and Geoffrey Vining. Introduction

to Linear Regression Analysis. 5th ed. Hoboken, NJ: Wiley, 2012.

2. Mandenhall, William. Mathematical Statistics with Applications. 7th ed. Boston,

MA: Thomson Brooks/Cole, 2008.

3. James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An

Introduction to Statistical Learning with Applications in R. 1st ed. New York,

NY: Springer, 2013.

4. Hocking, Ronald R. Methods and Applications of Linear Models: Regression and

the Analysis of Variance. 2nd ed. Hoboken, NJ: John Wiley and Sons, 2003.

5. Rohatgi, Vijay K. An Introduction to Probability and Statistics. 2nd ed. New

York, NY: John Wiley and Sons, 2001.

6. Walpole, Ronald E. Probability and Statistics for Engineers and Scientists. 6th

ed. New Jersey, NJ: Prentice-Hall, 2002.

7. Lyman, R. Ott. An Introduction to Statistical Methods and Data Analysis. 6th ed.

Bermont, CA: Cengage, 2008.

8. Rawlings, John O. Applied Regression Analysis: A Research Tool. 1st ed. New

York, NY: Springer, 1988.

9. Kotu, Vijay. Predictive Analytics and Data Mining. Waltham, MA: Elsevier,

2015.

10. Hastie, Trevor. The Elements of Statistical Learning. 2nd ed. Stanford, CA:

Springer, 2016.

11. James, Gareth, Daniela Witten, Trevor Hastie, and Rob Tibshirani. "Package

'ISLR'." R-Project. October 19, 2017. https://cran.r-

project.org/web/packages/ISLR/ISLR.pdf.

12. Strobl, Carolin, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and

Achim Zeileis. "Conditional Variable Importance for Random Forests." BMC

Bioinformatics9, no. 1 (2008). doi:10.1186/1471-2105-9-307.

13. Genuer, Robin, Jean-Michel Poggi, and Christine Tuleau-Malot. "Variable

Selection Using Random Forests." Pattern Recognition Letters31, no. 14 (2010):

2225-236. doi:10.1016/j.patrec.2010.03.014.

https://cran.r-project.org/web/packages/ISLR/ISLR.pdf
https://cran.r-project.org/web/packages/ISLR/ISLR.pdf
https://cran.r-project.org/web/packages/ISLR/ISLR.pdf
https://cran.r-project.org/web/packages/ISLR/ISLR.pdf

72

APPENDIX

APPENDIX A

Program R-Code

The following code can be copied and pasted into R-Studio. This code will simulate data

and do all the analysis explained throughout the entirety of this paper. To avoid running

errors caused by different versions, it is advised to use Microsoft R Open 3.5.1 and R-

Studio 1.0.143, which are the versions I used when writing the program. Without further

ado, here is the R-Code:

####START OF SCRIPT####---

######MASTER'S THESIS - ELIESER NODARSE######

####THE PURPOSE OF THIS PROGRAM IS TO ANALYZE THE IMPACT OF

####DATA REDUCTION IN LINEAR REGRESSION

####INSTALL NECESSARY PACKAGES####

 install.packages(c("dplyr",

 "stringr",

 "DT",

 "MASS",

 "gtools",

 "ISLR",

 "leaps",

 "glmnet",

 "quantmod"

))

library(dplyr)

library(stringr)

library(DT)

library(MASS)

library(gtools)

library(ISLR)

library(leaps)

library(glmnet)

library(quantmod)

73

####CREATING THE DATA SET####

 ###CREATING A POOL OF DISTRIBUTIONS###

 #Here we create a pool of distributions which will be chosen randomly (with

 #replacement) for the GLM analysis#

Var_Size <- 100

Sample_Size <- 80

 Dist_Pool <- c("CHI_SQUARED", "GAMMA", "NORMAL")

 ###PREDICTOR VARIABLES###

 #Creates independent variables from a pool of possible distributions

 #Refer to Dist_Pool for all possible distributions

 Y <- rep(0, Sample_Size)

 FULL_REGRESSION_RSQUARES <- c()

DATA_COMPLETE <- data.frame(Y, matrix(rep(rep(0,Sample_Size),Var_Size),

ncol = Var_Size))

 Regressor_Names <- c()

 ##CREATING THE SIGNIFICANT PREDICTOR VARIABLES##

 i <- 2 #Index of complete data frame

 Significant <- round(Var_Size*0.20)

 while(i <= Significant + 1) { #We only want the first 20% of the variables#

 temp_Dist <- sample(Dist_Pool, 1, T) #Chooses the distribution of predictor

 variable Xi at random from the distribution pool

 if(temp_Dist == "CHI_SQUARED") {

 df <- sample(1:10,1,T) #Generates data for Chi-Squared distribution

DATA_COMPLETE[,i] <- rchisq(Sample_Size, df)

#Names respective column in full data frame

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, " CHI-

SQUARED(df = ", df, ")", sep = ""))

 } else if(temp_Dist == "GAMMA") {

 alpha <- sample(1:10,1,T)

 beta <- sample(1:10,1,T)

#Generates data for Gamma distribution

 DATA_COMPLETE[,i] <- rgamma(Sample_Size, alpha, beta)

#Names respective column in full data frame

74

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, "

GAMMA(alpha = ", alpha, ", beta = ", beta, ")", sep = ""))

 } else if(temp_Dist == "NORMAL") {

 MU <- sample(1:10,1,T)

 sigma <- sample(1:10,1,T)

#Generates data for Normal distribution

DATA_COMPLETE[,i] <- rnorm(Sample_Size, MU, sigma)

#Names respective column in full data frame

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, "

NORMAL(Mu = ", MU, ", Sigma = ", sigma, ")", sep = ""))

 }

 #Goes to the next column in data frame to generate another independent variable

i <- i + 1

 }

 ####RESPONSE VARIABLE####

 #Creates a dependent variable Y with n observations

 #Y is a function linear function of the significant regressors plus some random error#

 #The number of observations is pre-determined#

 i <- 2

 Y <- rep(0, Sample_Size)

 Coefficients <- c()

 while(i <= Significant + 1){

 CurrentCoeff <- sample(c(-10:-1, 1:10), 1)

#Saves the REAL model coefifcients

 Coefficients <- c(Coefficients, CurrentCoeff)

 Y <- Y + DATA_COMPLETE[,i]

 i <- i + 1

 }

 MU <- 0

 sigma <- round(Var_Size*0.20)

 Error <- rnorm(Sample_Size, MU, sigma)

 Y <- Y + Error

 DATA_COMPLETE[,1] <- Y

75

 ##CREATING THE INSIGNIFICANT PREDICTOR VARIABLES##

Dist_Pool <- c("POISSON", "BINOMIAL", "CHI_SQUARED",

"EXPONENTIAL", "GAMMA", "NORMAL")

 i <- round(Var_Size*0.20) + 2 #Index of complete data frame

 Significant <- round(Var_Size*0.20)

while(i <= ncol(DATA_COMPLETE)) {

#We only want the first 20% of the variables#

temp_Dist <- sample(Dist_Pool, 1, T)

#Chooses the distribution of predictor variable Xi at random from the

#distribution pool

 if (temp_Dist == "UNIFORM") {

 #Generates data for Uniform distribution

DATA_COMPLETE[,i] <- runif(Sample_Size)

#Names respective column in full data frame

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, " UNIFORM",

sep = ""))

 } else if(temp_Dist == "POISSON") {

 lambda <- sample(1:10,1,T)

#Generates data for Poisson distribution

DATA_COMPLETE[,i] <- rpois(Sample_Size, lambda = lambda)

#Names respective column in full data frame

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, "

POISSON(lambda = ", lambda, ")", sep = ""))

 } else if(temp_Dist == "BINOMIAL") {

 n <- sample(1:10,1,T)

 p <- runif(1)

#Generates data for Binomial distribution

DATA_COMPLETE[,i] <- rbinom(Sample_Size, n, p)

#Names respective column in full data frame

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, "

BINOMIAL(n = ", n, ", p = ", p, ")", sep = ""))

 } else if(temp_Dist == "BETA") {

76

 alpha <- sample(1:10,1,T)

 beta <- sample(1:10,1,T)

#Generates data for Beta distribution

DATA_COMPLETE[,i] <- rbeta(Sample_Size, alpha, beta)

#Names respective column in full data frame

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, " BETA(alpha

= ", alpha, ", beta = ", beta, ")", sep = ""))

 } else if(temp_Dist == "CHI_SQUARED") {

 df <- sample(1:10,1,T)

#Generates data for Chi-Squared distribution

DATA_COMPLETE[,i] <- rchisq(Sample_Size, df)

#Names respective column in full data frame

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, " CHI-

SQUARED(df = ", df, ")", sep = ""))

 } else if(temp_Dist == "EXPONENTIAL") {

 beta <- sample(1:10,1,T)

#Generates data for Exponential dsitribution

DATA_COMPLETE[,i] <- rexp(Sample_Size, beta)

#Names respective column in full data frame

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, "

EXPONENTIAL(beta = ", beta, ")", sep = ""))

 } else if(temp_Dist == "GAMMA") {

 alpha <- sample(1:10,1,T)

 beta <- sample(1:10,1,T)

#Generates data for Gamma distribution

 DATA_COMPLETE[,i] <- rgamma(Sample_Size, alpha, beta)

#Names respective column in full data frame

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, "

GAMMA(alpha = ", alpha, ", beta = ", beta, ")", sep = ""))

 } else if(temp_Dist == "NORMAL") {

 MU <- sample(1:10,1,T)

 sigma <- sample(1:10,1,T)

#Generates data for Normal distribution

77

 DATA_COMPLETE[,i] <- rnorm(Sample_Size, MU, sigma)

#Names respective column in full data frame

Regressor_Names <- c(Regressor_Names, paste("X", i - 1, "

NORMAL(Mu = ", MU, ", Sigma = ", sigma, ")", sep = ""))

 }

 Coefficients <- c(Coefficients, 0)

 #Goes to the next column in data frame to generate another independent variable

 i <- i + 1

 }

 NAMES <- data.frame()

 NAMES <- data.frame(Regressors = names(DATA_COMPLETE[,-1]), Distribution =

 Regressor_Names, Coefficients = Coefficients)

 Corr_Matrix <- data.frame(round(cor(DATA_COMPLETE[,-1]), 3))

####R-SQUARES OF FULL REGRESSION####

 #The R-Squared for the FULL regression

 #Full regression includes ALL independent variables

FULL_REG_RSQUARED <- summary(lm(Y ~ ., data =

DATA_COMPLETE))$r.squared #Regression on ALL predictor variables

 ##INDIVIDUAL REGRESSION WITH EACH PREDICTOR VARIABLE##

 #Obtains the individual R-Squared value for each independent variable when

 #regressed with the dependent variable

 INDIVIDUAL_RSQUARES <- c() #Creates an empty list of values for the individual

 R-Squares

 index <- 1 #Index for the independent variable

 #Obtains each individual R-Squared value and passes it to the list of individual R-

 Squares

 while(index <= Var_Size){

tempRegression <- lm(Y ~ DATA_COMPLETE[,index + 1], data =

DATA_COMPLETE) #Creates temporary regression Y ~ Xi

78

INDIVIDUAL_RSQUARES <- c(INDIVIDUAL_RSQUARES,

summary(tempRegression)$r.squared)

 index <- index + 1

 }

####CREATING A POOL OF PROBABILITIES AND A POOL OF NAMES####

 #Creates a probability pool based on the individual R-Squares of each regressor

 #The regressor with the highest individual R-Squared value has the highest number of

 #appearances in the probability pool

 LRP <- INDIVIDUAL_RSQUARES/sum(INDIVIDUAL_RSQUARES)

 #Rounds the individual R-Sqaures

 INDIVIDUAL_RSQUARES <- round(INDIVIDUAL_RSQUARES, 9)

 #Sum of all individual R-Squares

 INDIVIDUAL_RSQUARES_SUM <- sum(INDIVIDUAL_RSQUARES)

 PROBABILITIES <- INDIVIDUAL_RSQUARES/INDIVIDUAL_RSQUARES_SUM

 PROBABILITY_POOL <- c() #Creates an empty pool of probabilities

 maxIndex <- Var_Size #Index for last regressor in the data

 #Obtains the name for each gregressor

 NAMES <- names(DATA_COMPLETE[,2:(maxIndex + 1)])

 index <- 1 #Index for first regressor in the data

 #Assigns a probability to each regressor

 while(index <= maxIndex){

 #Maximum number of zeros between the decimal point and the first integer after the

 #decimal point in the smallest marginal R-Squared#

 m <- attr(regexpr("(?<=\\.)0+", format(min(INDIVIDUAL_RSQUARES), scientific =

 FALSE), perl = TRUE), "match.length")

 PROBABILITY_POOL <- c(PROBABILITY_POOL, rep(index,

 round(PROBABILITIES[index] * 10^(m+1)))) #Adds probability of current regressor

 to the probability pool

 index <- index + 1 #Goes to the next regressor

 }

 PROBABILITY_POOL

####CREATING A RANDOM POOL OF EQUAL PROBABILITIES####

 RANDOM_PROBABILITY_POOL <- seq(1:Var_Size)

79

 RANDOM_PROBABILITY_POOL

####LRP SELECTION####

 RUNS <- 1000 #Total number of times we will select regressors based on the created

probability pool

 CURRENT_RUN <- 1 #start on first run

 REGRESSORS_INFO <- data.frame()

 #The following process will be repeated for each run

 while(CURRENT_RUN <= RUNS){

 Prob <- PROBABILITY_POOL #We need the probability pool for each run

 ##Choosing Regressors - Probability Pool##

 #Chooses regressors using the probability pool created earlier#

 Ordered_Indexes_Sel <- c() #Regressor Indexes ordered by selection

 Ordered_Names_Sel <- c() #Regressor Names ordered by selection

 Selected_Index <- c()

 Selected_Indexes <- c()

 index <- 1

 limit <- min(Var_Size, Sample_Size/5)

 while(index <= limit){

 #Using Probability Pool#

 picked <- sample(Prob,1,T) #The index of the regressor that was picked at random

 Prob <- Prob[!Prob %in% picked] #Removes the picked index from the Probability

pool

 Ordered_Indexes_Sel <- c(Ordered_Indexes_Sel, picked) #Gets the index of the

picked regressor

 ##UPDATES INDEXES SELECTED UP TO THAT POINT##

 if(length(Selected_Index) == 0){

 Selected_Index <- c(as.character(picked))

 }else{

 Selected_Index <- paste0(Selected_Index, ", ", picked)

 }

80

 Selected_Indexes <- c(Selected_Indexes, Selected_Index)

#Gets the name of the picked regressor

Ordered_Names_Sel <- c(Ordered_Names_Sel,

colnames(DATA_COMPLETE)[picked + 1])

 index = index + 1 #Goes to the next pick

 }

 ##DATA_COMPLETE FRAME WITH NAMES AND R-sQUARES##

#Creates a data frame that contains the regressors in the order by which they were

picked along with their simple regression R-Squared and Joint R-Squares#

 index <- 1 #Start with the first regressor picked

 #Joint R-Squares for each group of regressors using probability pool

Ordered_Joint_RSquares_Sel <- c()

 Ordered_Adjusted_RSquares_Sel <- c()

 limit <- min(Var_Size, Sample_Size/5)

 while(index <= limit){

 #Based on Probability Pool#

#Gets data for Y (1) and selected regressors

tempJointData <- DATA_COMPLETE[,c(1,

(Ordered_Indexes_Sel[1:index]) + 1)]

#NOTE: Regressor index is not the same as the index in the

#DATA_COMPLETE data frame. Each regressor index is bumbed by one

#unit in the data frame#

TempJointReg <- lm(Y ~ ., data = tempJointData)

#DATA_COMPLETEndexes_Ordered_Sel only contains regressor

#indexes so it goes 1 - Var_Size#

#Gets the Joint R-Squared for the selected regressors#

Ordered_Joint_RSquares_Sel <- c(Ordered_Joint_RSquares_Sel,

summary(TempJointReg)$r.squared)

#Gets the Joint R-Squared for the selected regressors

Ordered_Adjusted_RSquares_Sel <- c(Ordered_Adjusted_RSquares_Sel,

summary(TempJointReg)$adj.r.squared)

 index <- index + 1 #Goes to the next regressor to be added

 }

 #Combines all necessary information into one place#

81

 REGRESSORS_INFO_curr <- data.frame(Regressor = Ordered_Names_Sel,

JointRSquares = Ordered_Joint_RSquares_Sel, AdjustedRSquares =

Ordered_Adjusted_RSquares_Sel,

 Index = Ordered_Indexes_Sel, SelectionOrder = seq(1,limit),

Regressors = Selected_Indexes)

 ##ADDING A COLUMN FOR RUN NUMBER TO R-SQUARES DATA FRAME##

 Run <- rep(CURRENT_RUN, limit) #Run number

REGRESSORS_INFO_curr <- dplyr::mutate(REGRESSORS_INFO_curr, Run)

#Adds run number to the combined info

 ##UPDATING ALL FULL REGRESSION R-SQUARES##

 #Binds this run's information to the general combined information#

REGRESSORS_INFO <- rbind(REGRESSORS_INFO,

REGRESSORS_INFO_curr) #Binds current data frame to big data frame

 CURRENT_RUN <- CURRENT_RUN + 1 #Goes to the next run

 }

####RANDOM SELECTION####

 RUNS <- 1000 #Total number of times we will select regressors based on the created

 probability pool

 CURRENT_RUN <- 1 #start on first run

 RANDOM_REGRESSORS_INFO <- data.frame()

 #The following process will be repeated for each run

 while(CURRENT_RUN <= RUNS){

 #We need the random probability pool for each run

 Prob2 <- RANDOM_PROBABILITY_POOL

 ##Choosing Regressors - Probability Pool##

 #Chooses regressors using the probability pool created earlier#

 Random_Ordered_Indexes_Sel <- c()

 Random_Ordered_Names_Sel <- c()

 Random_Selected_Index <- c()

 Random_Selected_Indexes <- c()

 index <- 1

 limit <- min(Var_Size, Sample_Size/5)

82

 while(index <= limit){

 #Using Random Probability Pool#

 #The index of the regressor that was picked at random

random_picked <- sample(Prob2,1,T)

 #Removes the picked index from the Random Probability pool

Prob2 <- Prob2[!Prob2 %in% random_picked]

Random_Ordered_Indexes_Sel <- c(Random_Ordered_Indexes_Sel,

random_picked) #Gets the index of the picked regressor

 ##UPDATES INDEXES SELECTED UP TO THAT POINT##

 if(length(Random_Selected_Indexes) == 0){

 Random_Selected_Index <- c(as.character(random_picked))

 }else{

Random_Selected_Index <- paste0(Random_Selected_Index, ", ",

random_picked)

 }

Random_Selected_Indexes <- c(Random_Selected_Indexes,

Random_Selected_Index)

#Gets the name of the picked regressor

Random_Ordered_Names_Sel <- c(Random_Ordered_Names_Sel,

colnames(DATA_COMPLETE)[random_picked + 1])

 index = index + 1 #Goes to the next pick

 }

 ##DATA_COMPLETE FRAME WITH NAMES AND R-sQUARES##

#Creates a data frame that contains the regressors in the order by which they were

#picked along with their simple regression R-Squared and Joint R-Squares#

 index <- 1 #Start with the first regressor picked

#Joint R-Squares for each group of regressors using probability pool

Ordered_Joint_RSquares_Sel <- c()

#Joint R-Squares for each group of regressors using random probability pool

Random_Ordered_Joint_RSquares_Sel <- c()

#Joint R-Squares for each group of regressors using random probability pool

Random_Ordered_Adjusted_RSquares_Sel <- c()

83

 limit <- min(Var_Size, Sample_Size/5)

 while(index <= limit){

 #Based on Ramdom Probability Pool#

#Gets data for Y (1) and selected regressors

tempJointData <- DATA_COMPLETE[,c(1,

(Random_Ordered_Indexes_Sel[1:index]) + 1)]

#NOTE: Regressor index is not the same as the index in the DATA_COMPLETE

#data frame. Each regressor index is bumbed by one unit in the data frame#

TempJointReg <- lm(Y ~ ., data = tempJointData)

#DATA_COMPLETEndexes_Ordered_Sel only contains regressor indexes so it goes

#1 - Var_Size#

#Gets the Joint R-Squared for the selected regressors

Random_Ordered_Joint_RSquares_Sel <- c(Random_Ordered_Joint_RSquares_Sel,

summary(TempJointReg)$r.squared)

Random_Ordered_Adjusted_RSquares_Sel <-

c(Random_Ordered_Adjusted_RSquares_Sel,

summary(TempJointReg)$adj.r.squared)

 index <- index + 1 #Goes to the next regressor to be added

 }

 #Combines all necessary information into one place#

RANDOM_REGRESSORS_INFO_curr <- data.frame(Regressor =

Random_Ordered_Names_Sel, JointRSquares =

Random_Ordered_Joint_RSquares_Sel, AdjustedRSquares =

Random_Ordered_Adjusted_RSquares_Sel,

Index = Random_Ordered_Indexes_Sel, SelectionOrder =

seq(1,limit), Regressors = Random_Selected_Indexes)

 ##ADDING A COLUMN FOR RUN NUMBER TO R-SQUARES DATA FRAME##

 Run <- rep(CURRENT_RUN, limit) #Run number

RANDOM_REGRESSORS_INFO_curr <-

dplyr::mutate(RANDOM_REGRESSORS_INFO_curr, Run) #Adds run number

to the random combined info

 ##UPDATING ALL FULL REGRESSION R-SQUARES##

 #Binds this run's information to the general combined information#

RANDOM_REGRESSORS_INFO <- rbind(RANDOM_REGRESSORS_INFO,

RANDOM_REGRESSORS_INFO_curr)

84

 CURRENT_RUN <- CURRENT_RUN + 1 #Goes to the next run

 }

rm(RANDOM_REGRESSORS_INFO_curr, REGRESSORS_INFO_curr,

tempJointData)

 ####SUMMARY TABLE WITH ALL BEST PROBABLE SUBSETS####

 #Adjusted R-Squares using BPS#

 BEST_PROBABLE_SUBSETS <- REGRESSORS_INFO

BEST_PROBABLE_SUBSETS <-

BEST_PROBABLE_SUBSETS[order(BEST_PROBABLE_SUBSETS$JointRSq

uares, decreasing = TRUE),]

BEST_PROBABLE_SUBSETS <- group_by(BEST_PROBABLE_SUBSETS,

SelectionOrder)

BEST_PROBABLE_SUBSETS <- top_n(BEST_PROBABLE_SUBSETS, 1,

JointRSquares)

 # View(BEST_PROBABLE_SUBSETS)

 BEST_PROBABLE_SUBSETS <- top_n(BEST_PROBABLE_SUBSETS, 1,

Run)

 BEST_PROBABLE_SUBSETS <- ungroup(BEST_PROBABLE_SUBSETS)

 BEST_PROBABLE_SUBSETS <-

BEST_PROBABLE_SUBSETS[order(BEST_PROBABLE_SUBSETS$Selection

Order, decreasing = FALSE),]

BEST_PROBABLE_SUBSETS <- data.frame(SubsetSize =

BEST_PROBABLE_SUBSETS$SelectionOrder,

 Regressors = BEST_PROBABLE_SUBSETS$Regressors,

 RSquares = BEST_PROBABLE_SUBSETS$JointRSquares,

 AdjustedRSquares =

BEST_PROBABLE_SUBSETS$AdjustedRSquares,

AdjRSquaresPercentChange =

Delt(BEST_PROBABLE_SUBSETS$AdjustedRSquares)*100)

BEST_PROBABLE_SUBSETS$RSquares <-

round(BEST_PROBABLE_SUBSETS$RSquares, 4)

BEST_PROBABLE_SUBSETS$AdjustedRSquares <-

round(BEST_PROBABLE_SUBSETS$AdjustedRSquares, 4)

 names(BEST_PROBABLE_SUBSETS)[5] <- c("AdjRSquaresPercentChange")

 BEST_PROBABLE_SUBSETS[,5] <-

round(BEST_PROBABLE_SUBSETS[,5], 1)

####DATA FRAMES WITH BEST SUBS FOR ALL SUBSET SEL. METHODS####

##R-Squares Table##

85

SQUARES_TABLE <- data.frame(SubsetSize =

BEST_PROBABLE_SUBSETS$SubsetSize,

 BPS = BEST_PROBABLE_SUBSETS$RSquares)

 #Best Subset Selection#

 modelSubset <- regsubsets(Y~., data = DATA_COMPLETE, nvmax = Var_Size)

 #nvmax is the number of variables to consider#

 summarySubset <- summary(modelSubset)

 #Forward Selection#

modelForward <- regsubsets(Y~., data = DATA_COMPLETE, nvmax = limit,

method = "forward") #nvmax is the number of variables to consider#

 summaryForward <- summary(modelForward)

 #Backward Elimination#

modelBackward <- regsubsets(Y~., data = DATA_COMPLETE, nvmax =

Var_Size, method = "backward") #nvmax is the number of variables to consider#

 summaryBackward <- summary(modelBackward)

 #StepWise Regression#

modelStepwise <- regsubsets(Y~., data = DATA_COMPLETE, nvmax =

Var_Size, method = "seqrep") #nvmax is the number of variables to consider#

 summaryStepwise <- summary(modelStepwise)

RSQUARES_TABLE <- mutate(RSQUARES_TABLE, BestSubset =

summarySubset$rsq, Forward = summaryForward$rsq,

 Backward = summaryBackward$rsq, Stepwise = summaryStepwise$rsq)

 RSQUARES_TABLE[,-1] <- round(RSQUARES_TABLE[,-1], 4)

##Adjusted R-Squares Table##

ADJUSTED_RSQUARES_TABLE <- data.frame(SubsetSize =

BEST_PROBABLE_SUBSETS$SubsetSize,

 BPS = BEST_PROBABLE_SUBSETS$AdjustedRSquares)

ADJUSTED_RSQUARES_TABLE <-

mutate(ADJUSTED_RSQUARES_TABLE, BestSubset = summarySubset$adjr2,

Forward = summaryForward$adjr2,

Backward = summaryBackward$adjr2, Stepwise =

summaryStepwise$adjr2)

ADJUSTED_RSQUARES_TABLE[,-1] <-

round(ADJUSTED_RSQUARES_TABLE[,-1], 4)

####BPS + BPS MSE####

86

PLOT <- plot(x = BEST_PROBABLE_SUBSETS$SubsetSize, y =

BEST_PROBABLE_SUBSETS$AdjustedRSquares,

 xlab = "Subset Size", ylab = "Adjusted R-Squared")

BPS_Model <- lm(Y~Apps + Top25perc + P.Undergrad + Outstate +

Room.Board + perc.alumni + Expend, data = DATA_COMPLETE)

 BPSModelCoeff <- as.data.frame(summary(BPS_Model)$coeff)

 BPS_MSE <- sum((BPS_Model$fitted.values -

DATA_COMPLETE$Y)^2)/Sample_Size

 FittedValues <- BPS_Model$fitted.values

 Residuals <- Y - FittedValues

 plot(FittedValues, Residuals)

####RANDOM FORESTS####

RF <- randomForest(Y~.,data = DATA_COMPLETE, ntree = 100, mtry =

Var_Size/3)

RF_DATA <- data.frame(Measure = c("Number of Trees", "Splits per Node",

"MSE"),

Value = c(RF$ntree, RF$mtry, sum((RF$predicted-

DATA_COMPLETE$Y)^2)/Sample_Size))

####END OF SCRIPT####--

	Best Probable Subset: A New Method for Reducing Data Dimensionality in Linear Regression
	Recommended Citation

	Best Probable Subset: A New Method for Reducing Data Dimensionality in Linear Regression

