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ABSTRACT OF THE DISSERTATION

COHERENT AND INCOHERENT DYNAMICS OF QUASIPARTICLES IN

MONOLAYER MOLYBDENUM DISELENIDE

by

Michael Titze

Florida International University, 2019

Miami, Florida

Professor Hebin Li, Major Professor

Monolayer Materials, especially single-layer graphite, called graphene, as the first

synthesized and most prominent representative, have attracted significant research in-

terest since its discovery in 2004. The efforts were rewarded with a Nobel prize in 2010

for the discovery of graphene, the same year in which the first monolayer transition

metal dichalcogenide (ML-TMD) was found to have a direct bandgap. In contrast

to graphene ML-TMDs have a direct bandgap in the visible or near-infrared spectral

range, making them ideally suited for optoelectronic device applications. Explicit in-

version symmetry breaking of the unit cell in ML-TMDs furthermore leads to a new

interesting property, called valley pseudo-spin. Electrons excited within one valley are

restricted to this valley due to momentum trapping. Investigating the valley pseudo-

spin dynamics is of importance for both understanding of the fundamental physics

as well as device applications since the valley pseudo-spin is a potential information

carrier and has potential use for information storage or computing application.

Additionally, the confinement to two dimensions leads to enhanced Coulomb in-

teraction and increased dielectric screening between electron and hole. Interest-

ingly, the two-dimensional screening effects were already studied before the first

two-dimensional materials were synthesized on quasi-two-dimensional systems. The

screening of the Coulomb interaction in turn leads to a significantly increased binding

v



energy between electron and hole, such that the bound electron-hole state, so-called

exciton, is stable up to room temperature and above. The same reasoning leads to

an enhanced stability of charged excitons, so-called trions, which are the main fo-

cus of this dissertation. The optical response of ML-TMDs is therefore completely

dominated by excitons and trions, requiring an in-depth understanding of these quasi-

particles for device performance optimization.

While steady-state measurements can provide valuable insight into a material sys-

tem, such as the bandgap of a semiconductor or the fact that valley spin exists and

the amount of valley polarization upon continuous excitation, ultimately dynamics

information is of importance for device applications. Time-resolved techniques allow

access of transients and can reveal the lifetime of unstable and metastable states,

which may be invisible in steady-state measurements. Excitation by a pulsed co-

herent source allows access to the dynamics of coherent states, which are especially

interesting for quantum computing applications. A quantum system only exhibits

quantum mechanical correlations within its coherence time, such that a measurement

of the coherence time is essential for evaluating materials as potential platforms for

quantum computing. Furthermore, coherent techniques are known for their ability to

probe many-body effects and microscopic inhomogeneity, which are especially promi-

nent effects in semiconductors. The technique used to investigate the coherent trion

dynamics in this dissertation is two-dimensional coherent spectroscopy, a nonlinear

coherent technique, that resolves the signal as a function of two time delays. Using

two-dimensional spectroscopy, it is possible to measure the homogeneous linewidth,

which is related to the coherence time, even in a strongly inhomogeneously broadened

system. The measurement of the coherence time marks the first step in evaluating a

material for possible quantum computation applications.
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Professor Hebin Li, Doktorvater

Einzellagenkristalle, insbesondere einlagiges Graphit, sogenanntes Graphen, als

der zuerst synthetisierte und bekannteste Vertreter der Einzellagenkristalle, sind seit

ihrer Entdeckung im Jahr 2004 im Fokus signifikanter Forschungsanstrengungen. Die

Forschungen wurden im Jahr 2010 mit einem Nobelpreis für die Entdeckung von

Graphen gewürdigt, dem gleichen Jahr in dem die direkte Bandlücke in den ers-

ten Übergangsmetall-Dichalcogenid (ÜMD) Einzellagen experimentell nachgewiesen

wurde. Im Unterschied zu Graphen haben ÜMD Einzellagen eine direkte Bandlücke

im optischen oder nahinfraroten Spektralbereich, wodurch sie ideal für Anwendun-

gen in optoelektrischen Schaltungen geeignet sind. Durch die explizite Brechung der

Inversionssymmetrie der Elementarzelle in ÜMD Einzellagen haben Elektronen und

Löcher im Kristall eine neuartige Eigenschaft, den sogenannten Valley Pseudo-Spin.

Elektronen die innerhalb eines Valleys angeregt werden sind aufgrund ihres Impulses

innerhalb dieses Valleys gefangen. Als neuartige und nur in ÜMD Einzellagen optisch

addressierbare Eigenschaft ist die Erforschung der Dynamik des Valley Pseudo-Spin

sowohl aus Sicht der Grundlagenforschung als auch im Hinblick auf mögliche Anwen-

dungen interessant, da der Valley Psudo-Spin potentiell zur Informationsspeicherung

oder für computing verwendet werden kann.

Weiterhin führt die Einschränkung von Elektronen und Löchern auf zwei Dimen-
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sionen zu einer Verstärkung der Coulomb Wechselwirkung zwischen den beiden sowie

einer erhöhten dielektrischen Abschirmung. Interessanterweise wurden die Abschirm-

effekte durch Beschränkung auf zwei Dimensionen bereits vor der Entdeckung von

Einzellagenkristallen mithilfe von quasi-zwei-dimensionalen Systemen untersucht. Die

Abschirmung der Coulomb Wechselwirkung führt zu einer signifikanten Erhöhung

der Bindungsenergie zwischen Elektron und Loch, sodass gebundene Elektron-Loch

Zustände, sogenannte Exzitonen, bis zur Raumtemperatur und darüber hinaus stabil

sind. Das gleiche Argument führt dazu, dass geladene Exzitonen, sogenannte Trio-

nen, deren Eigenschaften im Hauptteil dieser Dissertation untersucht werden, auch

stabiler sind als in Volumenkristallen. Die Elektronendynamik in ÜMD Einzellagen

ist darum komplett durch Exzitonen und Trionen dominiert, sodass ein tiefgreifendes

Verständnis derselben zur Anwendungsoptimierung notwendig ist.

Während die Messung von Zuständen im Gleichgewicht wertvolle Einblicke in

ein Materialsystem gewährt, beispielsweise lässt sich die Bandlücke eines Halblei-

ters messen oder die Tatsache dass der Valley-Spin existiert nachweisen sowie die

Menge des durch stationäre Anregung erzeugten Valley-Spins messen, ist ultimativ

die Dynamik für die Anwendung entscheidend. Zeitaufgelöste Techniken erlauben

den Zugang zu transienten und können die Lebensdauer von instabilen oder metasta-

bilen Zuständen erfassen, welche in Gleichgewichtsmessungen nicht sichtbar sind. Die

Anregung durch eine gepulste kohärente Quelle erlaubt zudem die Messung der Dy-

namik von kohärenten Zuständen, welche insbesondere in Hinblick auf Quantencom-

puting eine wichtige Messgröße darstellt. Ein Quantensystem zeigt nur während der

Kohärenzzeit nicht-klassische Korrelationen, sodass die Messung der Kohärenzzeit

einen essenzieller Schritt bei der Evaluierung eines Materials als Quantencomput-

ing Plattform darstellt. Außerdem sind kohärente Techniken bekannt dafür Viel-

teilcheneffekte und mikroskopische Inhomogenität zu messen, welche insbesondere

viii



in Halbleitern stark auftretende Effekte sind. Die Methode zur Untersuchung der

kohärenten Trionendynamik in dieser Dissertation ist zwei-dimensionale kohärente

Spektroskopie, eine nichtlineare kohärente Messtechnik, die ein Signal als Funktion

zweier Zeitabstände misst. Mithilfe der zweidimensionalen kohärenten Spektroskopie

ist es möglich die homogene Linienbreite welche mit der Kohärenzzeit verknüpft ist,

auch in einem stark inhomogen verbreiterten System eindeutig zu messen. Die Mes-

sung der Kohärenzzeit stellt den ersten Schritt der Evaluierung eines Materials für

den Einsatz in Quantenrechnern dar.

ix



TABLE OF CONTENTS

CHAPTER PAGE

1 Introduction 1
1.1 Monolayer Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Two-Dimensional Coherent Spectroscopy . . . . . . . . . . . . . . . . 3

2 Monolayer Materials 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Optical Excitations in Two-Dimensional Materials . . . . . . . . . . . 7
2.3 Bandstructure in Monolayer Semiconductors . . . . . . . . . . . . . . 8
2.4 Dynamics of Excitons and Trions in ML-TMDs . . . . . . . . . . . . 13

3 Two-Dimensional Spectroscopy 18
3.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Density Matrix Formalism . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Optical Bloch Equation . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Double-Sided Feynman Diagrams . . . . . . . . . . . . . . . . 24
3.1.4 Four-Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.5 Two-Dimensional Coherent Spectroscopy . . . . . . . . . . . . 37

3.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Time-Integrated Four-Wave Mixing . . . . . . . . . . . . . . . 41
3.2.2 Two-Dimensional Coherent Spectroscopy . . . . . . . . . . . . 43

4 Incoherent Trion Valley Dynamics in Monolayer MoSe2 54
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Sample Description . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Preliminary Sample Characterization . . . . . . . . . . . . . . 56
4.2.3 Two-Color Pump-Probe Experiment . . . . . . . . . . . . . . 58

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.1 Pump Energy Dependence . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Pump Power Dependence . . . . . . . . . . . . . . . . . . . . 63

4.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Coherence Time of Trions in Monolayer MoSe2 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Preliminary Sample Characterization . . . . . . . . . . . . . . 73
5.2.2 Two-Dimensional Coherent Spectroscopy . . . . . . . . . . . . 74

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.1 Two-Dimensional Spectra . . . . . . . . . . . . . . . . . . . . 76

x



5.3.2 Fitting a Cross-Diagonal Slice . . . . . . . . . . . . . . . . . . 78
5.3.3 Power Dependence of TI-FWM and 2DCS signal . . . . . . . . 83
5.3.4 Power Dependence of the Homogeneous Linewidth . . . . . . . 84
5.3.5 Temperature Dependence of the Homogeneous Linewidth . . . 85
5.3.6 Exciton Results . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Summary and Outlook 90

A Collinear Spectroscopy of Encapsulated Monolayer MoSe2 92

B Detailed Discussion of the 2DCS Platform and Alignment Procedure 98

References 115

VITA 132

xi



LIST OF FIGURES

FIGURE PAGE

1 (a) Real-space lattice in ML-TMDs. A blue circle represents a transi-
tion metal atom while a green circle represents two chalcogenide atoms
separated in the out-of-plane axis. The red arrows are the lattice vec-
tors defining the whole lattice from linear combinations of the two.
The dashed region shows a unit cell. (b) Corresponding first Brillouin

zone of the reciprocal lattice with reciprocal lattice vectors ~b1 and ~b2.
The yellow circles represent the +K points while the magenta colored
circles are the −K points. . . . . . . . . . . . . . . . . . . . . . . . . 12

2 (a) Two-dimensional bandstructure of MoSe2 calculated from a nearest-
neighbor interaction tight-binding model showing the direct bandgap
at the K points. (b) Projection of the bandstructure along the major
symmetry axes showing the direct gap at the K points but lacking an
indirect bandgap around the Γ point. . . . . . . . . . . . . . . . . . . 14

3 Possible vertices in a Feynman diagram, reproduced with permission
from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 top: Pulse ordering and corresponding time delays used in 2DCS. bot-
tom: Phase and population distribution at the focus after interaction
of the sample with one, two and three pulses. . . . . . . . . . . . . . 27

5 Feynman diagrams in a three-pulse experiment with time-orderingA,B,C
from a two-level system contributing to the signal in the phase-matching
direction ~kS = −~kA + ~kB + ~kC . . . . . . . . . . . . . . . . . . . . . . 30

6 Three-dimensional spectrum of a homogeneously broadened system
and the projection onto the x-y plane showing the corresponding two-
dimensional rephasing spectrum. . . . . . . . . . . . . . . . . . . . . . 34

7 Inhomogeneously broadened 2D spectrum using the same linewidth
parameters as in Figure 6 and an inhomogeneous broadening of 30
meV. Each contour corresponds to a difference of 5 % of the maximum
amplitude in the spectrum. . . . . . . . . . . . . . . . . . . . . . . . . 37

8 (a) 2D Spectrum of a purely homogeneously broadened system. (b) An
inhomogeneously broadened system with inhomogeneous:homogeneous
broadening ratio 2:1 exhibiting elongation along the diagonal direction.
(c) The distribution of homogeneous emitters along the diagonal axis
projected onto the absorption frequency axis ωτ . . . . . . . . . . . . . 39

xii



9 TI-FWM traces of (a) potassium vapor in a high temperature cell at
165 °C (b) MoSe2 at 10 K. The inset shows the power dependence of
the TI-FWM signal used to confirm the nonlinear nature of the signal. 42

10 Flowchart of the phase-locking algorithm used for rephasing non-collinear
2DCS scans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11 Schematic of the FWM generation and detection. Three pulses are fo-
cused onto the sample where a FWM signal is generated in the phase-
matching direction ~kFWM = −~kA + ~kB + ~kC . The FWM signal is com-
bined with a reference pulse routed around the sample and sent to a
spectrometer where heterodyne detection is used to extract the FWM
signal. Adapted from [127] with permission. . . . . . . . . . . . . . . 48

12 Room temperature absorbance of a MoSe2 ML excited by broadband
white-light from a 20 W halogen lamp (blue curve) and normalized PL
emission from the ML upon excitation with a green (2.3 eV) cw laser. 57

13 (a) Temperature dependence of the PL from a MoSe2 ML. (b) Power
Dependence of the PL from the same MoSe2 ML at 10 K. (c) Data and
double-lorentzian fit of the spectrum at 10 K taken with an excitation
density of 80 µJ·cm−2. Adapted from [83] with permission. . . . . . . 59

14 (a) Integrated peak area at different pump fluences for the trion (blue)
and exciton (red) peak. (b) Peak Energy of the trion and exciton
resonance. (c) Linewidth of trion and exciton resonance. Adapted
from [83] with permission. . . . . . . . . . . . . . . . . . . . . . . . . 59

15 Schematic of the pump-probe setup. . . . . . . . . . . . . . . . . . . . 60

16 Pump-probe data of the trion resonance when excited at the B exciton
resonance and a pump fluence of 80 µJ·cm−2. The inset shows the
response around the zero delay between pump and probe pulses. . . . 63

17 Pump-probe signal trace and calculated valley polarization for different
pump and probe energies. . . . . . . . . . . . . . . . . . . . . . . . . 64

18 (a) Data from the pump-probe experiment using a pump fluence of
80 µJ·cm−2. Blue (red) circles denote co- (cross-) circularly polarized
pump and probe beams. (b) Zoom in of (a) around the zero delay time.
The dashed curve is a Gaussian of pulse width 500 fs, equal to the
excitation pulse width used in the experiment. The black curve is the
integration of the Gaussian pulse highlighting that the signal buildup
is limited by the pulse duration. Adapted from [83] with permission. . 65

xiii



19 (a) Data (squares) at different pump fluences as well as biexponential
fit (red curve) to the data. (b) Extracted decay time t1. (c) Extracted
decay time t2. Reproduced from [83] with permission. . . . . . . . . . 66

20 (a) Energy level scheme of the model for simulating the trion dynamics
containing two defect states. (b) Simulated trion dynamics. Adapted
from [83] with permission. . . . . . . . . . . . . . . . . . . . . . . . . 69

21 (a) Image of the MoSe2 Sample on AR-coated glass. (b) Photolumi-
nescence emission after 2.3 eV cw excitation at different temperatures.
The exciton and trion resonances are highlighted. (c) Temperature de-
pendence of the PL amplitude with the linear fit used to estimate the
phonon activation energy. . . . . . . . . . . . . . . . . . . . . . . . . 74

22 Typical 2D spectrum obtained for the trion resonance. The black curve
in the top part shows the PL spectrum for the energies shown in the
2D spectrum. The blue curve is the lineshape of the excitation laser
pulse. The white dashed line is the diagonal direction corresponding
to absorption and emission at the same energy. . . . . . . . . . . . . . 77

23 Slice taken through the center of the spectrum in Figure 22 with a fit
according to Equation 23 (red curve) as well as a fit to a square-root
of a Lorentzian (blue curve). . . . . . . . . . . . . . . . . . . . . . . . 78

24 (a) TI-FWM and background trace as measured from the lock-in am-
plifier. (b) log-log plot of the power dependence of the area under the
TI-FWM curve obtained from a Gaussian fit to the data at 5 K. (c)
Power dependence of the extracted fit amplitude of 2D spectra at 5 K. 84

25 Power dependence of the homogeneous linewidth at different temper-
atures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

26 Temperature dependence of the homogeneous linewidth at zero exci-
tation density extrapolated from the results shown in Figure 25. The
error bars correspond to the uncertainty of the intercept obtained from
the linear fits shown in Figure 25. . . . . . . . . . . . . . . . . . . . . 87

27 Excitation density dependence of the homogeneous linewidth of the ex-
citon resonance at various temperatures used for calculating the tem-
perature dependence of the homogeneous linewidth shown in Figure 28. 88

xiv



28 Extracted homogeneous linewidth at different sample temperatures
based off of the results presented in Figure 27. Note that the extracted
linewidths correspond to signal lifetimes equal to the laser pulse dura-
tion and the result can only be considered an upper limit of the exciton
dephasing time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

29 (a) Microscope image of the encapsulated ML sample. The ML region
is within the area highlighted by the black line. The two hBN films are
outlined by the red and green lines. The longest side of the ML flake is
approximately 27 µm. Photoluminescence emission from encapsulated
MoSe2 at low temperatures upon excitation with a 405 nm cw laser. . 94

30 (a) Power dependence of the homogeneous linewidth of encapsulated
MoSe2 MLs at 10 K. (b) Temperature dependence of the homogeneous
linewidth at zero excitation density. The datapoints and error bar are
the y-intercept and corresponding error from the fit in Figure 30a. . . 97

31 (a) Bottom and (b) top deck of the 2DCS instrument. . . . . . . . . . 99

32 Schematic demonstrating the setup for adjusting a beam to be parallel
to a linear stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

33 (a) The closed instrument before opening. (b) The screws used to lift
the top deck from the bottom deck. . . . . . . . . . . . . . . . . . . . 102

34 Handles used to lift the top deck. . . . . . . . . . . . . . . . . . . . . 102

35 Top deck with the periscope mirror M9, input mirror M10 and inter-
ferometer mirror IM2 removed and the alignment beam path. . . . . 103

36 Top deck with the M11 and M12 assembly removed and the alignment
beam path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

37 Top deck with mirror M16 removed and the alignment beam path. . 104

38 Top deck with retroreflectors R4 and R5 removed and the alignment
beam path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

39 Top deck with retroreflector R5 removed and the alignment beam path. 105

40 Top deck with retroreflectors R6 and R7 removed and the alignment
beam path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

41 Top deck with retroreflector R7 removed and the alignment beam path. 106

42 Final top deck beam path for beam B. . . . . . . . . . . . . . . . . . 107

xv



43 Bottom deck with input mirror M1 and interferometer mirror IM1
removed and alignment beam path. . . . . . . . . . . . . . . . . . . . 108

44 Bottom deck with retroreflectors R1 and R2 removed and alignment
beam path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

45 Bottom deck with retroreflector R2 removed and alignment beam path. 109

46 Bottom deck with mirror M4 removed and alignment beam path. . . 109

47 Bottom deck with mirror M5 removed and alignment beam path. . . 110

48 Bottom deck with retroreflector R3 removed and alignment beam path. 110

49 Final bottom deck beam path for beam D. . . . . . . . . . . . . . . . 111

50 Final bottom deck beam path for beam C. . . . . . . . . . . . . . . . 111

51 Bottom part of the extension with beam paths for beams C (red) and
D (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xvi



ABBREVIATIONS AND ACRONYMS

2DCS - Two-Dimensional Coherent Spectroscopy

AR - Anti-Reflection

CCD - Charge-Coupled Device

CVD - Chemical Vapor Deposition

cw - Continuous Wave

EID - Excitation Induced Dephasing

FT - Fourier Transform

FWM - Four-Wave Mixing

GaAs - Gallium Arsenide

hBN - Hexagonal Boron Nitride

ML - Monolayer

MoS2 - Molybdenum Disulfide

MoSe2 - Molybdenum Diselenide

NMR - Nuclear Magnetic Resonance

OBE - Optical Bloch Equation

OPO - Optic Parametric Oscillator

PID - Phonon Induced Dephasing

PL - Photoluminescence

PLL - Phase-Locked Loop

RF - Radio Frequency

SEQ - Schrödinger Equation

SI - Spectral Interferometry

T-FWM - Transient Four-Wave Mixing

TI-FWM - Time-Integrated Four-Wave Mixing

TMD - Transition Metal Dichalcogenide

xvii



TR-PL - Time-Resolved Photoluminescence

µ-PL - Microscopy Photoluminescence

WS2 - Tungsten Disulfide

WSe2 - Tungsten Diselenide

xviii



PUBLICATIONS LEADING UP TO THIS THESIS

The following publications are directly related to the content of this thesis

1. F. Gao, Y. Gong, M. Titze, R. Almeida, P.M. Ajayan and H.Li, “Valley Trion

Dynamics in Monolayer MoSe2”, Phys. Rev. B, 94:245413, Dec. 2016

2. M. Titze and H. Li, “Optical 2D coherent spectroscopy of valley dynamics in

monolayer Transition Metal Dichalcogenide (Invited Paper)”, Ultrafast Bandgap

Photonics III, Apr. 2018

3. M. Titze, B. Li, X. Zhang, P.M. Ajayan and H. Li, “Intrinsic Coherence Time

of Trions in Monolayer MoSe2 Measured via Two-Dimensional Coherent Spec-

troscopy”, Phys. Rev. Materials, 2:054001, May 2018

xix



1 Introduction

1.1 Monolayer Materials

Since the discovery of graphene in 2004, monolayer (ML) materials have become a

major point of attention in the condensed matter physics community, culminating in

the Nobel prize in physics for the discovery of graphene in the year 2010, only six

years after its first synthesis [2,3]. Besides graphene as the first discovered and most

prominent representative of ML materials, many other materials have been reduced

to MLs [4,5]. All these materials have a layered crystal structure with the interlayer

coupling being due to the weak induced-dipole van-der-Waals interaction simplifying

the exfoliation of single layer crystals. Among the layered materials, transition metal

dichalcogenides (TMDs) are a class of materials that are indirect semiconductors in

bulk with a bandgap around the Γ point, similar to the electronic structure of silicon.

When reduced to a single molecular layer, the bandgap widens and shifts from the Γ

point to the K points. The derivation of this phenomenon can be found in Section 2

based on an approximation of the bandstructure in a nearest-neighbor interaction

tight-binding model. Besides a shift of the bandgap location, the bandgap also shifts

from an indirect one to a direct bandgap leading to an enhanced light absorption and

emission on resonance [6–9]. A single molecular layer can absorb up to 20 %, much

more than in the bilayer case and the emission is enhanced in the ML by approxi-

mately a factor 100 compared to a multilayer sample [4]. In graphene the K points

are equivalent because the unit cell is inversion symmetric, but in ML-TMDs, there

are two inequivalent K points reflecting the explicit inversion symmetry breaking of

the unit cell. The large separation of the K points in momentum space means that

electrons can be excited into two different states that are energetically degenerate [10].

The two states can therefore be treated like an energetically degenerate spin-1
2

sys-
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tem. Investigating the valley spin dynamics is of interest both on a fundamental

physics level and for device applications, since the valley spin may be used as an

information carrier and may be used for information storage or, given suitable cou-

pling capabilities, computing applications [8, 11–16]. Moreover, the two-dimensional

confinement of electrons and holes leads to an enhancement of the Coulomb inter-

action in combination with dielectric screening effects [17]. Although these effects

were already studied before the first two-dimensional crystals were synthesized using

quasi-two-dimensional systems, the advent of ML materials has opened a new route

for the study of low dimensional systems [18].

Quasiparticles have been a topic of interest since the first discovery of direct

bandgap semiconductors. Bound electron-hole states in semiconductors act as the

solid-state equivalent to the hydrogen atom in atomic physics, representing a two-

particle system with a Rydberg-like energy structure [19]. Studies of such quasipar-

ticles allow insights into the dielectric environment in a semiconductor making them

an ideal probe of the material they are in. The two-dimensional confinement of the

quasiparticles leads to a significantly increased binding energy between electron and

hole, such that excitons are stable up to room temperature and above in stark con-

trast to excitons in other well-studied direct bandgap semiconductors such as gallium

arsenide (GaAs) [20]. Similarly, charged excitons called trions also have an increased

binding energy making them exceptionally stable [21]. Consequentially, in ML mate-

rials the optoelectronic properties are completely dominated by bound electron-hole

states such that an in-depth understanding of these quasiparticles is necessary prior

to device applications.

To study quasiparticles, time-resolved techniques are used in the present disser-

tation. While steady-state measurements may be used to gain insight into some

properties, such as the bandstructure, ultimately the timescale on which processes
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happen is of interest. With the goal of information processing in mind, information

about transients and possible decay channels into dark states is essential. Besides

probing the population dynamics, which is presented in Section 4 and reveals the ex-

istence of defect states that trap trions, the coherent dynamics of trions are studied.

The results, which are explained by decoherence of trions through scattering off of

defect states that trap trions on a longer timescale, are shown in Section 5. To inves-

tigate the dynamics in the samples, different techniques are used which are described

in the following section.

1.2 Two-Dimensional Coherent Spectroscopy

There are many techniques for performing time-resolved optical spectroscopy, such as

time-resolved photoluminescence (TR-PL), transient and time-integrated four-wave-

mixing (T-/TI-FWM), pump-probe spectroscopy and two-dimensional coherent spec-

troscopy (2DCS). To be able to probe the coherence dynamics, the exciting source

needs to be coherent, such that a quantum coherence may be generated in the system.

Furthermore, to investigate the coherent dynamics, the technique needs to resolve the

time within which the coherence evolves. Photoluminescence and pump-probe spec-

troscopies do not allow access of the coherence time while nonlinear techniques such

as second-harmonic generation, sum-frequency generation, FWM and 2DCS are sen-

sitive to the sample coherence.

Although second order processes are intrinsically stronger than third order non-

linear processes because of a lower order in the perturbation expansion, the second

order signal vanishes in all centrosymmetric materials, making them unsuitable for

the investigation of most materials [22]. However, a significant advantage of second

order processes lies in their ability to probe surfaces. Since a ML is intrinsically a

surface and breaks inversion symmetry, second order processes can be used to study
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MLs [23–27]. The downside of second order processes lies in the need for a state

at the two-photon energy for the possibility of using resonant enhancement. Third

order processes can circumvent this issue by never exciting the system to more than

the single-photon energy. Contrary to second-order processes the third order signal

exists in all materials and gives access to the coherence time. The signal strength

can be significantly enhanced by using resonant excitation and probing conditions.

Therefore, the FWM and 2DCS techniques used in this dissertation are all performed

on resonance and fully degenerate. Although the resonant excitation improves signal

strength, it comes at the cost of spectral overlap between signal and excitation source.

Various techniques exist for rejecting noise in degenerate FWM techniques [28–32].

Originally 2DCS was developed in nuclear magnetic resonance (NMR) spectroscopy

where it received a Nobel prize in chemistry in 1991 [33, 34]. In chemistry it has

contributed greatly to the determination of crystal structures while in biology and

neuroscience 2D NMR spectroscopy is used for mapping brain activity and is now

a routinely used technique [35, 36]. In the optical domain however, the oscillatory

period of the electromagnetic field is about six orders of magnitude higher. While

NMR uses radio frequency (RF) pulses, optical domain signals are in the hundreds

of THz region and impossible to electronically detect with phase resolution. Further-

more, the Fourier transform (FT) involved in the preparation of 2D spectra requires

sub-wavelength stability, which, in the case of RF pulses, is easily realized while in

the optical domain optic pathlength fluctuations must be corrected within nanometer

precision. Due to these two requirements the transfer of 2DCS from the RF to the

optical domain proved to be challenging. Although originally proposed in 1993 [37],

it took years for the first 2D spectra to be recorded from model systems [38–47].

Topics of interest for 2DCS are the measurement of dynamics of electronic and vibra-

tional transitions in molecules [48], interactions in atomic vapors, especially the weak
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dipole-dipole interaction [49–51], and the study of coherence dynamics and many-

body effects in semiconductors. 2DCS performed on semiconductors has revealed

coupling between excitonic resonances and to unbound electron-hole pairs [43], by

phase-resolving the signal evidence of many-body interactions was obtained [52] and

detailed comparison between microscopic calculations and 2DCS results has shown

the existence of correlation terms beyond a mean-field theory [53]. By adjusting the

polarization of each of the exciting beams, biexcitonic resonances can be isolated

because many-body contributions can be suppressed [54].

The general idea of 2DCS lies in correlating a signal to two time delays. Typically

the experimental realization consists of using three excitation pulses with wavevectors

~kA, ~kB and ~kC . These interact in the sample to produce a nonlinear mixing signal

in all possible phase-matching directions. Throughout the experiments done here,

the direction ~kS = −~kA + ~kB + ~kC is chosen. Pulses A and B are separated by a

time delay τ , pulses B and C are separated by delay T and the signal is recorded

as a function of the emission time t resulting in a three-dimensional time domain

signal Si(τ, T, t). The index i denotes the arrival time of the conjugated field with

wavevector −~kA. For a SI(τ, T, t) spectrum the homogeneous and inhomogeneous

broadening are separated because the phase accumulated during delay τ is cancelled

during t. In a TFWM experiment this is known as the photon echo. However, in

the case of a SII(τ, T, t) spectrum, the phase during τ and t have the same sign and

do not cancel. The sum of SI(τ, T, t) and SII(τ, T, t) spectrum produces a so-called

correlation spectrum that isolates the absorptive part of the nonlinear response [55].

For the case of SIII(τ, T, t) spectra, a double-quantum coherence is generated during

delay T and two- and more-photon transitions can be probed [50, 51, 56]. In the

present dissertation, only SI(τ, T, t) spectra are presented since these are able to

reveal the homogeneous linewidth. Besides the separation of the homogeneous and
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inhomogeneous broadening, the spreading of spectra along two dimensions enables the

deconvolution of congested spectra, such that couplings in complex systems can be

found. This was used to determine whether the beating observed in TI-FWM signals

originates from quantum mechanical interference or electromagnetic interference [57,

58]. Furthermore, 2DCS allows probing of non-radiative coherences that are not

coupled through a dipole allowed transition [1, 59].

For ML-TMDs 2DCS is of interest because of its high sensitivity making it an

ideal technique to probe ML-TMDs with low quantum efficiency and only approx-

imately 10 % light absorption on resonance. Topics of interest are the coherence

time of excitons and trions in ML-TMDs, the determination of valley coherence dy-

namics, measurement of valley coupling and the coupling dynamics between different

quasiparticles such as exciton and trion [15,60–64].
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2 Monolayer Materials

2.1 Introduction

The optical properties in ML materials differ strongly from their bulk counterparts

[2, 6–9, 65, 66]. The optical properties in two-dimensional crystals are affected by

the restriction of possible phonon-modes to the plane [67,68] as well as an enhanced

screening of the Coulomb interaction [10,69–73]. The restriction to a plane introduces

a shift of the band structure [6]. While in multilayer TMDs, the bandgap is an

indirect one and located around the Γ-point, the bandgap increases and shifts to

a direct one in the single-layer limit. Furthermore, the bandgap shifts to the K-

point, such that the required electron momentum for near-bandgap excitation is non-

zero [4, 6]. The band structure of ML-TMDs is explained through overlap between

the large d-orbitals [74, 75] and, for non-suspended samples, by dielectric screening

from the substrate [76]. Other than in graphene, the unit cell is not symmetric in

ML-TMDs. In reciprocal space this means that the K points are split into a +K

and −K point, which are energetically degenerate but electrons excited at the two

points have opposite momentum [10]. The +K and −K points can be selectively

excited by σ+ and σ− light. Exciting the sample with light of linear polarization

can generate a superposition between the +K and −K valleys and was used for an

indirect measurement of valley coherence [77].

2.2 Optical Excitations in Two-Dimensional Materials

Two-dimensional confinement of electrons and holes leads to an enhanced screening

of the Coulomb interaction, increasing the binding energy between electron and hole

when compared to the bulk crystal [20, 78, 79]. The large binding energy between

electron and hole makes excitons and charged excitons, so-called trions, thermody-
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namically stable up to room temperature, such that device performance is significantly

affected by these quasiparticles [80–82].

In an intrinsic semiconductor, no trions are formed, since the charges are balanced.

However, defects, impurities or doping can introduce excess charges which will bind to

excitons forming trions [21]. In the case of ML-TMDs another source of excess charges

is the substrate, from where a charge can be captured and bound to an exciton formed

within the ML [83].

Before discussing bound states, the band structure of two-dimensional semicon-

ductors with a hexagonal lattice structure is discussed, followed by the introduction of

excitons and trions. At the end of this section an overview of the decay and dephasing

processes of excitons and trions is given.

2.3 Bandstructure in Monolayer Semiconductors

Semiconductors have electronic properties that are inbetween those of insulators and

metals. Their electric and optical properties are governed by the electronic band

structure which stems from electrons being nearly free in the material but still being

affected by atomic potentials in addition to the position of the Fermi energy. While all

crystalline materials form a band structure, the electronic properties of each material

depend on the number of available states to their highest-energy electrons. In metals,

a band is not fully filled up making it easy for electrons to move around different

energy levels even when excited by only small energies. In insulators the gap between

the highest filled energy state and the next available state is too large for electrons to

cover at room temperature, meaning their bandgap is ≥ 3 eV [84]. Semiconductors

have a bandgap that is small enough for some electrons to get excited from the valence

band to the conduction band, corresponding to 1−3 eV. This energy also corresponds
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to the energy of near-infrared and visible light, making electron properties accessible

through optical methods.

The defining property of a crystal is the existence of a repeating pattern, forming

a lattice structure. Therefore a potential created by the crystal structure has to obey

the form

V (~r) = V (~r + ~R) (1)

where ~R =
∑

i ni~ai is a lattice vector made up of a linear combination of the basis

vectors ~ai with the restriction that the ni ∈ Z. It can be shown that an electron

moving in a periodic potential has a wavefunction Ψ that satisfies the Bloch theorem

[84]

ei
~k·~RnΨ(~k, ~r) = Ψ(~k, ~r + ~Rn) (2)

with the crystal momentum ~k. Equation 2 shows that the wavefunction at any two

lattice points is equal up to a phase factor. The Schrödinger equation (SEQ) describ-

ing the electron wavefunction is

(
− ~2

2m
∇2 + V (~r)

)
Ψ(~r) = EΨ(~r) (3)

with the potential satisfying the above mentioned condition of Equation 1, one can

write

V (~r) =
∑
~R

Vi(~r − ~R)

with Vi(~r) being the contribution of a single lattice site to the total potential and the

sum being over all possible lattice vectors ~R.

For graphene and ML-TMDs the tight-binding approximation is a good approx-

imation for calculating the band structure [85–89]. The benefit of the tight-binding

model is the fact that it returns an analytical result. The major drawback is that it
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does not capture the bandstructure completely and deviates from more sophisticated

but numerical methods, such as band structure calculations using density functional

theory (DFT) [6]. It has been shown that upon including up to the third nearest

neighbors the overall calculated bandstructure is in good agreement with the exper-

imentally measured bandstructure [88]. For simplicity and since the main features

are visible even in the most rudimentary approximation, the discussion here is lim-

ited to only nearest-neighbor interactions. The tight-binding approximation assumes

that an electron is mostly bound to its lattice site meaning that perturbations from

an atomic wavefunction are only due to interaction with lattice sites close to the

excitation spot. Implementing the tight-binding approximation assuming that elec-

trons only interact with nearest-neighbor lattice sites, the electron wavefunction in

Equation 2 is rewritten as

Ψ(~k, ~r) =
1√
N

∑
i

ei
~k·~RiΦa(~r − ~Ri) ,

where the sum over i is still running through all lattice sites and with the atomic

wavefunction Φa. The energy of the electron states is then found by solving for the

eigenvalues of the SEQ Equation 3

E = 〈Ψ|H|Ψ〉. (4)

Neglecting interactions with any atoms that are further away than the nearest-

neighbors, the electron energy in the tight-binding model for a single-atom basis

is

E = 〈Φa|H|Φa〉+
∑
NN

〈Φa|V (~r − ~Ri)|Φa〉ei
~k·~Ri ,

where the sum over NN now runs only over all nearest-neighbors of lattice site a

instead of the whole crystal lattice. In ML-TMDs, there are two non-equivalent basis
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atoms. Naming the two basis atom electron wavefunctions Φa and Φb, the terms

necessary to calculate the bandstructure of ML-TMDs are

〈Φa|H|Φb〉 = 〈Φb|H|Φa〉∗ , 〈Φa|H|Φa〉 and 〈Φb|H|Φb〉 .

The terms 〈Φi|H|Φj〉 are called the self-energy if i = j and the hopping term if

i 6= j. The self-energy can be interpreted as the energy of an electron at a lattice

point compared to the energy at other lattice points, i.e., it is the energy difference

between the atomic potentials making up the lattice. In contrast, the hopping term is

related to the transition probability between atomic wavefunctions Φi and Φj. Since

only relative energies are relevant in optical experiments, one of the self-energies

〈Φi|H|Φi〉 can arbitrarily be set to zero. In this case

〈Φb|H|Φb〉 = 0

is chosen.

The lattice of a typical ML-TMD is shown in Figure 1a. The lattice vectors ~a1,~a2,

which are introduced below, are also drawn. Figure 1b shows the corresponding first

Brillouin zone with the reciprocal lattice vectors ~b1,~b2. Choosing the coordinate axes

as shown in the figures, the vectors can be represented in this basis as

~a1 =
a

2

(
3,
√

3
)

, ~a2 =
a

2

(
3,−
√

3
)

~b1 =
2π

3a

(
1,
√

3
)

, ~b2 =
2π

3a

(
1,−
√

3
)
.

Defining t = 〈Φa|V (~r − ~Ri)|Φb〉 the hopping term is calculated to be
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(a)
(b)

Figure 1: (a) Real-space lattice in ML-TMDs. A blue circle represents a
transition metal atom while a green circle represents two chalcogenide atoms
separated in the out-of-plane axis. The red arrows are the lattice vectors
defining the whole lattice from linear combinations of the two. The dashed
region shows a unit cell. (b) Corresponding first Brillouin zone of the re-

ciprocal lattice with reciprocal lattice vectors ~b1 and ~b2. The yellow circles
represent the +K points while the magenta colored circles are the −K points.

∑
NN

〈Φa|V (~r − ~Ri)|Φa〉ei
~k·~Ri = t

∑
NN

ei
~k·~Ri

= t

(
ei

1
3

√
3kxa + e

i 1
3

(
−
√
3

2
kxa+ 3

2
kya

)
+ e

i 1
3

(
−
√
3

2
kxa− 3

2
kya

))
=.. tΓ.

Plugging this into the eigenvalue problem in Equation 4 the band structure of the

electron is found by solving the determinant equation

det (H − λ1) = 0
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which, when plugged in results in

det

EA − λ tΓ

tΓ∗ −λ

 = 0.

The eigenenergies are then

E1/2 = EA ± t.

The self and hopping term energies are found by fitting the theoretical result to

measured bandstructures. The two parameters contributing in this simple model are

adjusted until the bandgap and bandwidth are reproduced. Using the values measured

through PL and the 4 eV bandwidth of the valence band as reported in [90], the self-

energy is obtained as EA = 1.08 eV and the interaction term is t = 1.50 eV for

molybdenum diselenide (MoSe2). Using these parameters, the explicit bandstructure

is calculated and shown in Figure 2a exhibiting the six bandgaps at the ±K points.

Comparing the calculated bandstructure displayed in Figure 2 to the bandstructure

calculated by DFT calculations, it is seen that even the simple, completely analytic

tight-binding approach captures the energetically degenerate bandgap at the +K and

−K valleys but fails to properly capture the behaviour around the Γ point. Projecting

this bandstructure along the different crystal symmetry axes a band structure diagram

shown in Figure 2b is calculated. The distances between the Γ, M and K points

correspond to the relative distances between the points in the reciprocal space.

2.4 Dynamics of Excitons and Trions in ML-TMDs

A well-studied effect of excitons is the formation of an excitonic Rydberg series just

below the bandgap. This was found in GaAs bulk crystals at low temperatures [19]

and also confirmed for ML-TMDs [81, 91, 92]. This excitonic Rydberg series can

already be used to obtain information about the dielectric environment in the crystal
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Figure 2: (a) Two-dimensional bandstructure of MoSe2 calculated from a
nearest-neighbor interaction tight-binding model showing the direct bandgap
at the K points. (b) Projection of the bandstructure along the major sym-
metry axes showing the direct gap at the K points but lacking an indirect
bandgap around the Γ point.

[91]. Excitons inherit the valley pseudo-spin polarization of their constituent electrons

and holes and thus are also restricted and protected within reciprocal space. The

valley pseudo-spin dynamics of ML-TMDs are attracting research interest, especially

the small valley polarization in ML MoSe2 is still unclear [93].

In a doped crystal lattice or due to defects and impurities in the crystal, excess

charges are available, which can bind to excitons forming a three-particle state called

trion. Trions are also especially stable in ML-TMDs, having binding energies of

≈ 30 meV in ML MoSe2 and existing up to room temperature. Excitons and trions

have been shown to significantly affect the performance of ML-TMD based devices,

making a complete understanding of the exciton and trion interactions important for

applications [20,80,94–96].

The correct characterization of exciton and trion decay dynamics as radiative and

non-radiative processes can be challenging because of the interaction with impurity

and defect states. Below, excitons are classified as bright and dark excitons. For

bright excitons, the momentum of electron and hole matches and radiative recom-
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bination of electron and hole is possible. Contrary to a bright exciton, in a dark

exciton the electron and hole have different momentum and radiative recombination

is only possible through a phonon-assisted recombination process reducing the tran-

sition dipole moment of dark excitons. Some of the radiative and non-radiative decay

processes for excitons are summarized below [97].

1. Radiative Decay

The recombination of the electron and hole constituting the exciton and release

of a photon. Radiative recombination can only occur when the momentum

of electron and hole constituting the electron are matched. In this case, the

radiative recombination has been measured to be 150 fs in tungsten diselenide

(WSe2) [98] for bright excitons with near-zero center-of-mass momentum, as

predicted by theoretical considerations using Fermis golden rule [97].

2. Trion formation

An electron or a hole gets captured by an exciton leading to formation of a

trion and release of the binding energy. This process was found to happen on

a picosecond timescale in MoSe2 and shows strong dependence on the pumping

energy. Excitons excited at a higher energy were found to more rapidly (1.6 ps)

form trions than those excited at the low-energy wing of the exciton resonance

(2.3 ps) [21].

3. Biexciton formation

The binding of two excitons to form a biexciton and release of the binding

energy. Biexcitons are found to have a binding energy of approximately 5 meV

for neutral and 20 meV for charged excitons in MoSe2 [62], while the binding

energy is between 30−50 meV in WSe2. The biexciton relaxation time in WSe2

was found to be 27 ps, limited by non-radiative decay [99].
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4. Inter-valley scattering

An exciton absorbs a phonon and either the electron or the hole, or both get

transferred from the +K(−K) to the −K(+K) valley. Only when both elec-

tron and hole scatter to the opposite valley and a spin flip occurs for both of

them a bright exciton is formed which can then radiatively decay. Kerr ro-

tation spectroscopy has revealed that in tungsten disulfide (WS2) intervalley

scattering happens on a picosecond timescale and that the scattering behaviour

is highly dependent on the excitation energy, i.e. at off-resonant excitation an

additional, long-lived component (30 ps) appears in the scattering process while

the scattering on the short timescale becomes faster [100]. In WSe2 the inter-

valley scattering was observed through polarization-resolved TR-PL revealing

a scattering timescale on the order of 10 ps [101].

5. Intra-valley scattering

An exciton can gain center-of-mass momentum within its valley or a spin-flip

of either electron or hole can occur through absorption or emission of a phonon

leading to an optically bright exciton becoming a dark exciton. The spin-flip

dynamics have been probed in WS2 through a helicity resolved pump-probe

experiment [102]. Excitons become dark when the constituent electron under-

goes a spin-flip, which was found to occur on a sub-picosecond timescale. At

high temperatures this process becomes faster, confirming that it is a phonon-

mediated process [102].

6. Exciton-exciton Auger scattering

Two excitons scatter through their constituents. An electron (hole) of one

exciton transfers energy to an electron or hole of another exciton. One of the

two excitons will not be bound anymore while the other exciton recombines.
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The process was observed through pump density-dependence measurements in

pump-probe experiments on molybdenum disulfide (MoS2) [103,104], WS2 [104,

105] and WSe2 MLs [105].

7. Defect-assisted Auger scattering

For defect-assisted Auger scattering an electron (hole) constituting an exciton

gets captured by a mid-gap defect state. The excess energy gets transferred to

the hole (electron) breaking up the exciton. Since the energy difference between

the initial and final electron (hole) state is smaller than in the case of direct

recombination, the process can be more efficient than exciton-exciton Auger

scattering. The process has been observed using pump density-dependence mea-

surements in pump-probe experiments on MoS2 MLs revealing a fast trapping

on the scale of 1− 2 ps [106]. The results presented in Section 4 are explained

through trion defect scattering on a few picosecond timescale.

8. Defect-assisted exciton-exciton Auger scattering

This process is a defect-assisted version of exciton-exciton Auger scattering. An

electron (hole) of one exciton transfers to a defect state and transfers the excess

energy to the hole (electron) of another exciton, breaking it apart.

For trions, the above mentioned processes are largely the same. Instead of trion

formation, trions can be transformed into an exciton by phonon-excited upconversion,

where a phonon is absorbed breaking apart the trion into an exciton and a free

carrier [107].
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3 Two-Dimensional Spectroscopy

3.1 Theoretical Background

The nonlinear signals discussed in this dissertation can be understood in the per-

turbative limit of semi-classical theory [22]. While atoms are considered quantum

mechanically, their interaction with electric fields and the electric field is treated clas-

sically. In the perturbative limit, the electric fields are low enough that only terms

up to a finite order need to be considered in order to generate the observed signal.

While the perturbative approach definitely has its limitations, as it fails to correctly

predict effects such as Rabi flopping, it is a good framework for the description of

second and third-order processes where higher order contributions can be neglected.

The nonlinear signals discussed here are only up to the third order and second-order

signals from the ML sample were not measured, such that the description here will

start with a general treatment of perturbation theory and then go on to introduce the

pulse sequence used to generate the measured third order signals. A two-level system

will be discussed in detail which is then related to the ML-TMD systems. Although

the optical signals measured are from the radiating polarization generated inside the

medium, it is sufficient to calculate the quantum states generating the polarization

since polarization and quantum state are proportional to each other

P
(n)
ij (t) = Nµijρ

(n)
ij e

iωijt.

The n-th order polarization P depends on the density of radiating dipoles N , the

transition dipole moment µij of transition i, j, the density matrix element ρ
(n)
ij and

radiates a signal at the frequency ωij.
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3.1.1 Density Matrix Formalism

The simplest system to interact with a light-field is a two-level system which has only

one ground state and one excited state. If light of wavelength corresponding to the

energy difference between the two states is incident onto the system it can be absorbed

and excite electrons from the ground state to the excited state. The corresponding

atomic wavefunction |Ψa〉 of any combination of ground |Ψg〉 and excited state |Ψe〉

exists with the constraint that |Ψa〉 is normalised.

|Ψa〉 = cg|Ψg〉+ ce|Ψe〉 where |cg|2 + |ce|2 = 1

This picture fails to describe the full possible state space when considering more than a

single atom, since all possible states that can be described by an atomic wavefunction

are separable, meaning that all atoms are behaving exactly the same. Such a collective

state is realized for Dicke states and has been realized experimentally [50, 108–118],

but generally is not the case for an interacting system. Instead, in a system consisting

of multiple possibly interacting atoms, mixed states are possible, which can no longer

be represented as a sum of wavefunctions.

In order to mathematically represent the full state space, a matrix spanned by a

set of weighted wavefunctions has to be used

ρij =
∑
i,j

cic
∗
j |Ψi〉〈Ψj| with Tr(ρ) = 1.

This so-called density matrix ρ is a hermitian matrix and therefore an observable.

Furthermore, for a pure state, it acts as a projection and satisfies ρ2 = ρ meaning

that measuring a pure state in its eigenbasis will not affect the state. A pure state

is any state that can be represented by a single wavefunction, i.e. ρ will only have

one diagonal entry that is unity while all other entries are zero in its eigenbasis. The
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expectation value of an operator A is obtained by calculating the trace of the density

matrix multiplied by the operator 〈A〉 = Tr(ρA).

It can be shown that ρ can always be diagonalized when choosing an appropriate

basis. However, this is not the interpretation most useful for perturbative nonlinear

optics. Instead, ρ will be created from pure wavefunctions such that the diagonal

contains only contributions from one state at any time. Then the off-diagonal elements

can be interpreted as a coherent superposition between two states. As an example,

one can consider the two-level system mentioned above. The corresponding density

matrix would be

ρ =
∑
i,j

cic
∗
j |Ψi〉〈Ψj| = cgc

∗
g|Ψg〉〈Ψg|+ cec

∗
g|Ψe〉〈Ψg|+ cgc

∗
e|Ψg〉〈Ψe|+ cec

∗
e|Ψe〉〈Ψe|.

In the basis {|Ψg〉, |Ψe〉} the matrix is then represented as

ρ =

cgc∗g cgc
∗
e

cec
∗
g cec

∗
e

 ,

with the diagonal elements containing the information about the fraction of the popu-

lation in states |Ψg〉, |Ψe〉 and the off-diagonal elements containing information about

entanglement between |Ψg〉 and |Ψe〉.

3.1.2 Optical Bloch Equation

The SEQ, which determines the time-evolution of a wavefunction, now needs to be

replaced as the equation of motion, since rather than the dynamics of a quantum

state the dynamics of an ensemble of quantum states is observed. The result is the
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optical Bloch equation (OBE), which is derived from the SEQ. Starting with the SEQ

i~
∂Ψ

∂t
= HΨ (5)

and multiplying with the conjugated state Ψ∗ from the right

i~
∂Ψ

∂t
Ψ∗ = HΨΨ∗,

the reverse product rule of derivatives can be used such that

i~
[
∂(ΨΨ∗)

∂t
−Ψ

∂Ψ∗

∂t

]
= HΨΨ∗.

The second term on the left side is the complex conjugate of the SEQ Equation 5 so it

can be replaced by the complex conjugate on the right side of Equation 5. Subtracting

this term, the OBE is almost obtained in its typical form

i~
∂(ΨΨ∗)

∂t
= HΨΨ∗ −ΨΨ∗H∗.

Moving the prefactors to the right side of the equation and replacing ΨΨ∗ with the

density matrix ρ, the OBE is obtained as

ρ̇ = − i
~

[H, ρ].

This equation describes the unitary time evolution of an ensemble of quantum states.

Instead of the matrix form, the component description is often more useful, since only

one or two components of the matrix need to be calculated to explain an experimen-

tally observed signal

ρ̇mn = − i
~
∑
k

(Hikρkj − ρikHkj) . (6)
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To include dissipative phenomena such as relaxation and decoherence, an additional

term is added into the OBE phenomenologically

ρ̇mn = − i
~
∑
j

(Hmjρjn − ρmjHjn)− Γmnρmn, (7)

where Γmn are the components of the relaxation operator describing the dissipation

dynamics. The relaxation operator consists of two main parts

Γmn =
1

2
(γn + γm) + γdephasing

nm ,

where γn, γm are the population decay rates and γdephasing
nm is the rate of dephasing

that is not associated with any population transfer, for example from dipoles having

different eigenfrequencies or elastic collision between electrons.

In the perturbative approach, H is split into the free atom part H0 as well as a

term that is due to interaction with an electric field V . The basis for the theoretical

treatment is always chosen as the eigenbasis of H0. Then H0 is diagonal and the

eigenvalues are the energy states of the atom with energy Ei. Before solving the

OBE in Equation 7, the commutator is inspected more closely and it is noted that

[A+B,C] = [A,C]+ [B,C] due to the commutator satisfying distributivity. The free

atom term is therefore

[H0, ρ] =
∑
i,j

∑
k

(H0,ikρkj − ρikHkj) =
∑
i,j

∑
k

(Eiρij − ρijEj) =
∑
i,j

(Ei −Ej)ρij. (8)

Defining the transition frequency between states i, j

ωij =
Ei − Ej

~
, Ω =

∑
ij

ωij (9)
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the matrix Ω is constructed. Plugging in the result of Equation 8 and the definition

in Equation 9 into Equation 7 the equation is modified to

ρ̇ = −iΩρ− i

~
[V, ρ]− Γ (ρ− ρeq) . (10)

At this point the equation is expanded in form of a perturbative series, since it

generally can not be solved analytically. The zeroth-order term is

ρ̇(0) = −iΩρ(0) − Γ
(
ρ(0) − ρeq

)
.

This equation describes a system that will relax back into the equilibrium state ρeq

from whichever state ρ(0) it started in with a relaxation rate given by the matrix Γ

while oscillating between states ρij with the transition frequency ωij.

For higher order terms the interaction part of the commutator is considered and

the equation is written as

ρ̇(n) = −(iΩ + Γ)ρ(n) − i

~
[V, ρ(n−1)].

This equation can be integrated which yields the n-th order density matrix as a

function of the (n− 1)-th order density matrix

ρ̇(n)(t) = − i
~

∫ t

−∞

[
V (t′), ρ(n−1)

]
e(iΩ+Γ)(t′−t)dt′. (11)

Plugging in arbitrary electric fields and initial density matrix elements ρ(0), the n-th

order density matrix can at least numerically be calculated.

In practice, the electric field and density matrix are often approximated by suf-

ficiently simple functions and initial conditions such that Equation 11 can be solved

analytically.
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3.1.3 Double-Sided Feynman Diagrams

In order to simplify the presentation of perturbative series, a convenient represen-

tation for summarizing the terms of the perturbation expansion called double-sided

Feynman diagrams has been developed [22]. These diagrams contain information

about the electric fields as well as the density matrix elements ρij involved in the

interaction. There are four different kinds of vertices in Feynman diagrams, corre-

sponding to non-conjugated / conjugated pulses exciting / relaxing the sample. The

possible vertices in Feymnam diagrams are shown in Figure 3. The corresponding

changes to the density matrix are

(a) ρ
(n)
jk = i

µij
2~ e

i~kn·~r
∫ t
−∞En(t′)e−iωnt

′
e−iΩjk(t−t′)ρ

(n−1)
ik (t′)dt′

(b) ρ
(n)
jk = i

µij
2~ e
−i~kn·~r

∫ t
−∞E

∗
n(t′)eiωnt

′
e−iΩjk(t−t′)ρ

(n−1)
ik (t′)dt′

(c) ρ
(n)
il = −iµkl

2~ e
−i~kn·~r

∫ t
−∞E

∗
n(t′)eiωnt

′
e−iΩil(t−t

′)ρ
(n−1)
ik (t′)dt′

(d) ρ
(n)
il = −iµkl

2~ e
i~kn·~r

∫ t
−∞En(t′)e−iωnt

′
e−iΩil(t−t

′)ρ
(n−1)
ik (t′)dt′

with the frequency Ωij defined through the transition frequency ωij = ωi − ωj and

the component Γij of the relaxation operator as

Ωij = ωij − iΓij (12)

Figure 3: Possible vertices in a Feynman diagram, reproduced with permis-
sion from [1].
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By convention, time evolves in the upward direction. An arrow pointing towards

the vertex means a photon is absorbed and the system is further excited while an

arrow pointing away from the vertex means that the system is emitting a photon and

relaxes. An arrow pointing to the left means that the electric field interacting is a

conjugated field while an arrow pointing to the right corresponds to a non-conjugated

field. The indices inside the diagram correspond to the entries of the density matrix.

Each interaction with a field changes the system by changing one index of the density

matrix, in agreement to the perturbation expansion derived in Section 3.1.2.

For a complete treatment of a nonlinear signal all possible Feynman diagrams need

to be considered making the required calculations lengthy. However, due to time-

ordering and phase-matching conditions typically the number of relevant Feynman

diagrams contributing to any signal of interest is significantly reduced.

3.1.4 Four-Wave Mixing

The coherence dynamics of ML semiconductors happen on a timescale ranging from

hundreds of femtoseconds to a few picoseconds for encapsulated samples. Therefore,

ultrafast spectroscopic techniques are required to resolve their dynamics.

In the case of degenerate TI-FWM, the signal is generated by nonlinear light-

matter interaction of three pulses with the same frequency.

For non-collinear excitation, the process for generating a FWM signal is shown in

Figure 4. A first pulse A with a wavevector −~kA interacts with the sample, inducing

a linear polarization, which in the perturbative approximation corresponds to moving

the system from the ground state to a coherent superposition between ground and

excited states. After a time delay τ , a second pulse B with wavevector ~kB is incident

on the sample and converts the polarization into a population. Since the two pulses

are non-collinear, the relative phase of the electric field of pulse B with respect to
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the polarization created by pulse A varies across the illuminated area. The generated

population is maximum when the two interfere constructively and minimum when

they interfere destructively. This process forms a population grating where the max-

imum and minimum population density of the grating depends on the time delay τ

between pulses A and B as well as the coherence time of the superposition of ground

and excited state, which is related to the decay rate Γij in Equation 10. In order

to measure the coherence time, a third pulse C with wavevector ~kC is incident on

the sample after time delay T creating a polarization and scattering off the grating

created by pulses A and B, probing the population in the maximum and minimum

regions of the grating. The signal created in this way is highly directional due to the

phase-matching conditions between the wavevectors of beams A,B,C and therefore

largely background free.

One problem related to TI-FWM spectroscopy is the distinction between a homo-

geneously or inhomogeneously broadened sample. From solving the OBE, there is a

factor of two difference in the measured dephasing rate from TI-FWM between a ho-

mogeneously broadened and inhomogeneously broadened sample [119]. An even larger

problem arises in the case of intermediate inhomogeneous broadening, where neither

the homogeneous nor the inhomogeneous limit holds. The issue of distinguishing

between different types of broadening in a system can be circumvented using 2DCS.

The TI-FWM signal presented here depends on the two time delays τ and T as

well as the ordering of the pulses. During the first time delay the system evolves

coherently while during the second time delay the system is in a population state

evolving incoherently. Therefore the coherent and incoherent dynamics are associated

with the time delays τ and T , respectively. Changing the pulse ordering such that

the conjugated pulse A arrives after pulses B and C double-quantum spectra can

be obtained [120, 121]. For a two-level system, there is no double-quantum signal,
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Figure 4: top: Pulse ordering and corresponding time delays used in 2DCS.
bottom: Phase and population distribution at the focus after interaction of
the sample with one, two and three pulses.

however, interactions can lead to a modified energy level scheme which allows for a

double-quantum signal even in two-level systems [50,51,122,123]. This makes double-

quantum 2DCS a powerful tool for investigating many-body effects.

Using different light polarization configurations, different resonances can selec-

tively be excited or made inaccessible which allows for the isolation of weak sig-

nals, such as the signal due to biexcitons in semiconductor quantum wells or ML-

TMDs [54,62].

Different approaches can be used to isolate the signal from the background. For
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non-collinear approaches to FWM spectroscopy, wavevector selection is used [124].

However, to be able to perform FWM spectroscopy at the diffraction limit, it is

necessary to have the excitation and signal beams copropagate in order to get a tight

focus. For the collinear approach, an approach based on the detection of a frequency

modulated signal has been developed more recently, which will also be discussed and

was used for measuring the coherence in encapsulated MLs [32].

Phase-Matching

Wavevector selection is used to extract the signal from the background in the non-

collinear excitation scheme and can be understood by direct inspection of the mixing

of electric fields. In the non-collinear 2DCS setup, the three beams interacting with

the sample all have different momenta. The fields mix through the susceptibility

leading to cancellation of the signal in most cases and constructive interference in

only certain directions. The four-wave mixing electric field is written as

EFWM ∝EAEBEC

∝
(
e−i(

~kA·~r−ωAtA) + c.c.
)

×
(
e−i(

~kB ·~r−ωBtB) + c.c.
)

×
(
e−i(

~kC ·~r−ωCtC) + c.c.
)
. (13)

Expanding the right-hand side it is seen that the phase-matching directions are along

~ks = ±~kA ± ~kB ± ~kC . In the non-collinear setup used throughout this work, the

phase-matching direction ~ks = −~kA + ~kB + ~kC is used fixing pulse A to interact as a

conjugated pulse while beams B and C act as non-conjugate pulses.

Since the background in a FWM experiment is mostly scatter and luminescence

which both radiate homogeneously, the nonlinear signal along the phase-matching
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direction will be stronger than the background in this direction making it possible to

perform FWM spectroscopy even in the presence of strong background and, more im-

portantly, with fully degenerate excitation conditions used for resonant enhancement

of the FWM signal.

Phase-matching for signal extraction can only be used when the sample size is

larger than the wavelength of the light used to interrogate the sample since otherwise

no population grating can be formed from the interference of the pulses. In the case

of ML-TMDs, which are typically between a few to hundreds of micrometers in size,

phase-matching happens in all samples.

When performing 2DCS at the diffraction limit, wavevector selection can not be

used since all excitation beams are copropagating and the FWM signal will therefore

be copropagating with the excitation beams as well. To extract the signal from

the background in this case, each beam is tagged with a unique phase modulation

frequency. In the discussion of Equation 13, so far only the terms containing the fields

wavevector ~ki was used. Instead of the mixing of the wavevectors ~ki, the phase of the

signal is modulated by the rapidly varying field frequencies ωi and the pulse arrival

times ti. In the collinear setup, the field frequencies (100s of THz) are shifted by a

comparably slow (10s of MHz) radio frequency. The RF mixing leads to a modulation

of the signal, in the case of the PL detected collinear setup used in Appendix A the

detection frequency of the signal is chosen as

ωS = −ωA + ωB + ωC − ωD.

The PL detected collinear setup is a four-pulse experiment, such that Equation 13

needs to be expanded by a fourth exponential
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Ecollinear ∝ EAEBECED

∝
(
e−i(

~kA·~r−ωAtA) + c.c.
)(

e−i(
~kB ·~r−ωBtB) + c.c.

)
×
(
e−i(

~kC ·~r−ωCtC) + c.c.
)(

e−i(
~kD·~r−ωDtD) + c.c.

)
.

The signal frequency ωS is fed to a lock-in amplifier as the reference frequency and

the signal can be extracted from the background.

FWM Signal from a Homogeneously Broadened Two-Level System

Using wavevector selection and implementing the restrictions from pulse-ordering,

only two Feynman diagrams contribute to the FWM signal from a two-level system

in a three pulse experiment as shown in Figure 4. In the diagrams shown, the signal

propagates in the phase-matching direction ~kS = −~kA+~kB+~kC such that pulse A acts

as a conjugated pulse. The time-ordering is chosen such that A arrives first, followed

by beams B and C. The remaining Feynman diagrams are shown in Figure 5. The

coherence time can be measured by measuring the dynamics of any superposition

state denoted by 10 or 01 in the diagram, i.e. the dynamics during delay τ or t.

I I I

Figure 5: Feynman diagrams in a three-pulse experiment with time-ordering
A,B,C from a two-level system contributing to the signal in the phase-
matching direction ~kS = −~kA + ~kB + ~kC

.
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Applying the rules for vertices in Feynman diagrams the FWM signal from dia-

gram I is

ρ
(3)
10,I(t) =− i µ

3
01

8~3
ei(−

~kA+~kB+~kC)·~r

×
∫ t

−∞
EC(t′)e−iωCt

′
e−iΩ10(t−t′)

×
∫ t′

−∞
EB(t′′)e−iωBt

′′
e−iΩ10(t′−t′′)

×
∫ t′′

−∞
EA(t′′′)e−iωBt

′′′
e−iΩ10(t′′−t′′′)ρ

(0)
00 (t′′′)dt′′′dt′′dt′.

For now, it is assumed that the pulse duration is much shorter than the laser pulse

width. The treatment for a finite pulse is delayed to Section 5.3.2. The approx-

imation of short pulses can be written mathematically as a Dirac-δ function, i.e.

Ei(t) = Eiδ(t− ti) where index i denotes pulse i and ti is the arrival time of pulse i.

Implementing this approximation and using the fact that
∫ x
−∞ δ(x− x0) = Θ(x− x0)

with the Heaviside step function Θ(x) =


0 , x < 0

1 , x ≥ 0

, the integration can be per-

formed analytically

ρ
(3)
10,I(t) =− i µ

3
01

8~3
ei(−

~kA+~kB+~kC)·~re−i(−ωAtA+ωBtB+ωCtC)E∗AEBEC

×Θ(tB − tA)Θ(tC − tB)Θ(t− tC)e−iΩ10(t−tC)e−iΩ11(tC−tB)e−iΩ01(tB−tA)ρ
(0)
00 (tA).

Assuming that ρ
(0)
00 (t) = const. = 1 and rewriting the pulse arrival times in terms of

delay times defined as τ = tB − tA, T = tC − tB and t = t − tC , the density matrix
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element contributing to the FWM signal is obtained in the time-domain as

ρ
(3)
10,I(t, T, τ) =− i µ

3
01

8~3
ei(−

~kA+~kB+~kC)·~re−i(−ωAtA+ωBtB+ωCtC)E∗AEBEC

×Θ(τ)Θ(T )Θ(t)e−iΩ10te−iΩ11T e−iΩ01τ . (14)

Taking the FT of this expression, the frequency response is found to be

ρ
(3)
10,I(ωt, ωT , ωτ ) =− i µ

3
01

8~3
ei(−

~kA+~kB+~kC)·~re−i(−ωAtA+ωBtB+ωCtC)E∗AEBEC

× 1
√

2π
3

∫ ∞
−∞

dτ

∫ ∞
−∞

dT

∫ ∞
−∞

dt Θ(τ)Θ(T )Θ(t)

× e−iωtte−iΩ10te−iωTT e−iΩ11T e−iωτ τe−iΩ01τ

=
µ3

01

16
√

2π
3
2~3

ei(−
~kA+~kB+~kC)·~re−i(−ωAtA+ωBtB+ωCtC)E∗AEBEC

× 1

Ω10 + ωt

1

Ω11 + ωT

1

Ω01 + ωτ
.

Repeating this calculation for diagram II, the frequency response for the second Feyn-

man diagram contributing to the signal in the phase-matching direction ~kS is

ρ
(3)
10,II(ωt, ωT , ωτ ) =

µ3
01

16
√

2π
3
2~3

ei(−
~kA+~kB+~kC)·~re−i(−ωAtA+ωBtB+ωCtC)E∗AEBEC

× 1

Ω10 + ωt

1

Ω00 + ωT

1

Ω01 + ωτ
.

The total signal in the phase-matching direction ~kS is then the sum of the two indi-

vidual contributions

ρ
(3)
10,tot = ρ

(3)
10,I + ρ

(3)
10,II .

To further analyze this result, Ωij is replaced by the transition frequency ωij and
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relaxation rate Γij associated with the respective transitions according to Equation 12

ρ
(3)
10,I(ωt, ωT , ωτ ) =

µ3
01

16
√

2π
3
2~3

ei(−
~kA+~kB+~kC)·~re−i(−ωAtA+ωBtB+ωCtC)E∗AEBEC

× 1

ω10 − iΓ10 + ωt

1

−iΓ11 + ωT

1

ω01 − iΓ01 + ωτ

and

ρ
(3)
10,II(ωt, ωT , ωτ ) =

µ3
01

16
√

2π
3
2~3

ei(−
~kA+~kB+~kC)·~re−i(−ωAtA+ωBtB+ωCtC)E∗AEBEC

× 1

ω10 − iΓ10 + ωt

1

−iΓ00 + ωT

1

ω01 − iΓ01 + ωτ
.

The transition frequencies of a population are zero, since ω00 = ω0 − ω0 = 0 = ω11

and were therefore dropped in the equations above. From the above two equations

the shape of a three-dimensional spectrum can be readily read off. In the case of

the two-level system discussed here, there will be one peak on the ωT = 0 axis. The

peak is a sum of two peaks, one with width Γ11 and the other with a width of Γ00

along the ωT axis. The peak is at the location ω10 with a width Γ10 along the ωt

axis and at ω01 = −ω10 with width Γ01 = Γ10 on the ωτ axis. An example three-

dimensional spectrum is shown in Figure 6 for a homogeneously broadened system.

The parameters used are Γ11 = Γ00 = 7.2 meV, Γ01 = 3.6 meV, ω10 = 1620 meV.

The figure exhibits the typical Lorentzian star shape in all three dimensions. The

solid (semi-transparent) red isosurfaces are drawn at a value of 30 % (10 %) of the

maximum peak amplitude. The projection of the spectrum onto the x-y plane, corre-

sponding to a rephasing spectrum as recorded during the course of this dissertation

also exhibits a Lorentzian star shape. The contour spacing is 5 % of the maximum

peak amplitude.
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Figure 6: Three-dimensional spectrum of a homogeneously broadened sys-
tem and the projection onto the x-y plane showing the corresponding two-
dimensional rephasing spectrum.

FWM Signal from an Inhomogeneously Broadened Two-Level System

Although the exponential decay processes involved in electronic relaxation will lead

to a homogeneously broadened lineshape, different effects can lead to inhomogeneous

broadening, which will change the resonance shape. In atomic vapors thermal broad-

ening can lead to a distribution of absorption and emission energies of individual

atoms as seen in the laboratory frame. In semiconductors, differences in the local di-

electric environment lead to a distribution of dipole eigenenergies leading to a similar

broadening of the resonance as thermal broadening of atomic vapors. However, in

semiconductors this broadening is often dominating even at low temperatures, mak-

ing an explicit treatment of the broadening necessary for a full understanding of the

FWM signal.

For an inhomogeneously broadened two-level system the same Feynman diagrams

as before contribute to the signal, i.e., diagrams I and II in Figure 5. The broadening

is introduced assuming a Gaussian distribution with center frequency ωc10 and width
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δω, given by the function

g(ω10) =
1√

2πδω
e−

(ω10−ω
c
10)

2

2δω2 .

To include the broadening in the calculation of the frequency response of the density

matrix elements, the broadening is introduced in the time-domain. For the contribu-

tion from diagram II, the resulting equation is

ρ
(3)
10,II(τ, T, t) =− i µ

3
01

8~3
ei(−

~kA+~kB+~kC)·~rΘ(t)Θ(T )Θ(τ)e−i(−ωAtA+ωBtB+ωCtC)E∗AEBEC

×
∫ ∞

0

e−iΩ10te−iΩ11T e−iΩ01τg(ω10)dω10

where the integration over ω10 only runs over positive frequencies to avoid double-

counting. Plugging in the definition of Ωij = ωij− iΓij from Equation 12 the equation

is rewritten as

ρ
(3)
10,II(τ, T, t) =− i µ3

01√
2πδω8~3

ei(−
~kA+~kB+~kC)·~rΘ(t)Θ(T )Θ(τ)e−i(−ωAtA+ωBtB+ωCtC)

× E∗AEBEC
∫ ∞

0

e−i(ω10−iΓ10)te−i(−iΓ11)T e−i(−ω10−iΓ01)τe−
(ω10−ω

c
10)

2

2δω2 dω10.

Isolating only the terms containing ω10 under the integral and expanding and recol-

lecting the binomial terms the equation is rewritten as

ρ
(3)
10,II(τ, T, t) =− i µ3

01√
2πδω8~3

ei(−
~kA+~kB+~kC)·~rΘ(t)Θ(T )Θ(τ)e−i(−ωAtA+ωBtB+ωCtC)

× E∗AEBECe−Γ10(t+τ)−Γ00T e−
1
2
δω2(t−τ)2+i(ω10−ωc10)(t−τ).

(15)

A better interpretation of this result is possible by defining the new temporal variables

τ ′ = t − τ and t′ = t + τ , which are the diagonal and cross-diagonal directions in a
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2D time-domain spectrum. The Equation 15 is then

ρ
(3)
10,II(τ, T, t) =− i µ3

01√
2πδω8~3

ei(−
~kA+~kB+~kC)·~rΘ(t′ − τ ′)Θ(T )Θ(τ ′ + t′)e−i(−ωAtA+ωBtB+ωCtC)

× E∗AEBECe−Γ10t′−Γ00T e−
1
2
δω2τ ′2+i(ω10−ωc10)τ ′ .

In this form the homogeneous linewidths Γ10 and Γ00 can unambiguously be separated

from the inhomogeneous linewidth δω. While the homogeneous linewidths are found

along the t′ and T directions, the inhomogeneous linewidth is disentangled from the

homogeneous linewidths and can be found by measuring the linewidth along the τ ′ di-

rection. However, the homogeneous and inhomogeneous linewidth are not completely

separated along the t′ and τ ′ axes because the step functions contain both time axes

in an inseparable way. The step functions ensure that causality induced from the

pulse ordering is satisfied [125].

In the case of weak inhomogeneous broadening δω = 0 and the homogeneously

broadened case is recovered. For strong inhomogeneous broadening, i.e. δω >>

Γ10 ∧ δω >> Γ11, the diagonal direction contains the information about inhomoge-

neous broadening while the cross-diagonal direction depends only on the homoge-

neous broadening. For the case of intermediate broadening, the homogeneous and

inhomogeneous linewidths mix in the diagonal and cross-diagonal directions. A de-

tailed lineshape analysis of 2D spectra can be found in [125]. For comparison to the

previously derived homogeneously broadened case, a 2D spectrum is generated with

the same linewidth parameters Γ11 = Γ00 = 7.6 meV, Γ10 = 3.6 meV, ω10 = 1620

meV and an inhomogeneous broadening of δω = 30 meV. The resulting spectrum

is shown in Figure 7 and exhibits an elongation along the diagonal direction while

the cross-diagonal direction is not as broad as in the homogeneously broadened case.

The broadening along the diagonal direction is mostly related to the inhomogeneous
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broadening δω while the broadening along the cross-diagonal direction is related to the

homogeneous linewidth Γ10. However, comparing the spectrum to the homogeneously

broadened case, it is seen that even with the same homogeneous linewidth parame-

ters, the inhomogeneous broadening leads to an apparent decrease of the linewidth

in the cross-diagonal direction. This highlights the importance of using 2DCS or

complementing TI-FWM with other methods to measure FWM signals. In 2DCS

homogeneous and inhomogeneous case are distinguishable from the peak shape such

that the material can be correctly characterized and the homogeneous linewidth can

be extracted in the presence of arbitrary inhomogeneity [125].

Figure 7: Inhomogeneously broadened 2D spectrum using the same linewidth
parameters as in Figure 6 and an inhomogeneous broadening of 30 meV. Each
contour corresponds to a difference of 5 % of the maximum amplitude in the
spectrum.

3.1.5 Two-Dimensional Coherent Spectroscopy

As mentioned in Section 3.1.4, an inherent problem of TI-FWM spectroscopy lies

in the correct characterization of samples into homogeneously or inhomogeneously

broadened systems. For the intermediate case of a slightly inhomogeneously broad-

ened system the dephasing rate can not reliably be obtained by TI-FWM only. To

37



circumvent the requirement of assuming either case and in order to gain access to

the dephasing rate in all systems, 2DCS scans two time delays to generate a two-

dimensional frequency map. From the frequency map the homogeneous and inho-

mogeneous linewidths can directly be read off along the cross-diagonal and diagonal

directions, respectively as discussed in Section 3.1.4. Furthermore, a theory for mea-

suring the homogeneous and inhomogeneous linewidths in the case of all kinds of

inhomogeneity has been developed, such that it is possible to measure the dephas-

ing time in all samples by simultaneously measuring the diagonal and cross-diagonal

linewidths in a two-dimensional spectrum [125].

The basic idea of 2DCS can be understood as correlating a signal as a function

of two time delays. In the case of SI scans, the absorption and emission energy of

a system can be found. A resulting SI 2D spectrum for a homogeneously broadened

system is seen in Figure 8a. There is one Lorentzian peak with typical star shape,

elongated along the emission and absorption frequency axes. The width along the

cross-diagonal axis relates to the homogeneous broadening while the width in the

diagonal direction is related to the inhomogeneous broadening. Even though the ex-

citation source for obtaining such a spectrum may be broadband, since there is only

one resonator, only one frequency gets absorbed and reemitted. In the case of inho-

mogeneous broadening, different dipoles have different eigenenergies. Therefore, each

dipole absorbs and emits at a different frequency and although each dipole gener-

ates the same homogeneously broadened spectrum, the peak of an inhomogeneously

broadened system becomes elongated along the diagonal axis, as shown in Figure 8b.

For the case presented, Gaussian broadening according to the envelope distribution

shown in Figure 8c is used. This highlights how the inhomogeneous distribution of

homogeneously broadened emitters generates an inhomogeneously broadened peak

elongated along the diagonal direction. Even if it may seem like the homogeneous
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linewidth may not readily be read off the spectrum anymore, it was shown in Sec-

tion 3.1.4 that for strongly inhomogeneously broadened spectra, the homogeneous and

inhomogeneous linewidths become independent and the homogeneous broadening re-

lated to the dephasing time is simply the width along the cross-diagonal direction

while the inhomogeneous broadening can be obtained by measuring the width along

the diagonal direction [125].

(a) (b) (c)

Figure 8: (a) 2D Spectrum of a purely homogeneously broadened system. (b)
An inhomogeneously broadened system with inhomogeneous:homogeneous
broadening ratio 2:1 exhibiting elongation along the diagonal direction. (c)
The distribution of homogeneous emitters along the diagonal axis projected
onto the absorption frequency axis ωτ .

For the intermediate case of a slightly inhomogeneously broadened system the

resulting spectrum needs to be analyzed along both the diagonal and cross-diagonal

axes simultaneously since coupling between the two broadening mechanisms leads to

a mixing of the broadening in the diagonal and cross-diagonal directions [125].

Phase-Cycling

For weak signals, even with the use of heterodyne detection and phase-matching, the

signal may be buried in the background. A way of isolating the signal is phase-cycling,
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where each spectrum is taken multiple times and the relative phase of the pulses is

varied and added in a way that the linear contributions such as luminescence and

scatter are canceled in the acquired signal while the FWM signal adds up with each

spectrum [19]. The phase-cycling scheme used is a two-axis phase-cycling scheme

where the phase of the first two pulses is changed by π (A and B for rephasing,

non-rephasing and zero-quantum, C and D for double-quantum). The procedure is

summarized in Table 2 for rephasing scans with the different spectra being taken

labeled S1−S4. The FWM phase contains contributions from all three pulses A,B,C

and therefore the phase of π on both A and B gets cancelled out in the FWM signal.

In the case of double-quantum scans the pulses C and D are modulated instead in

order to maintain the phase-lock inside the instrument.

Pulse S1 S2 S3 S4
A 0 π π 0
B 0 0 π π
C 0 0 0 0
FWM 0 π 0 π

Table 2: Phase-cycling scheme used for rephasing, non-rephasing and zero-
quantum scans. S1-4 correspond to four spectra that are being taken succes-
sively.

A phase of π is equal to a negative sign of the spectrum. Therefore, adding the

signals as Stot = S1 − S2 + S3 − S4 it is seen that the contribution to the total

spectrum due to beams A and B completely cancels and only four FWM signals

remain.

3.2 Experimental Methods

In this section some experimental methods for performing FWM and 2DCS spec-

troscopy are discussed. As seen before, there are three time delays contributing to

a FWM signal of interest. Depending on the pulse ordering and which of the delays
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is scanned, different information about the system and the coherence or population

dynamics can be extracted.

3.2.1 Time-Integrated Four-Wave Mixing

One of the simplest FWM techniques is TI-FWM in which only one delay is scanned

and the signal is integrated over its emission time. By scanning delay τ shown in Fig-

ure 4, the homogeneous lifetime can be measured and coherent coupling between two

states can be resolved. However, care must be taken not to confuse coherent coupling

with possible interference effects. An example spectrum comparing a homogeneous

and inhomogeneously broadened system is shown in Figure 9. The homogeneously

broadened case in Figure 9a is taken from Potassium (K) vapor in Argon buffer gas

atmosphere inside a high temperature cell at 165 °C [126]. Potassium in this ex-

periment can be treated as a three-level system with two excited states connected

through a common ground state. This leads to quantum beating between the two

states at their difference frequency, in the case of the potassium D1 and D2 lines, the

difference frequency is 1.73 THz corresponding to a beating period of 578 fs. The

beating period can be readily read off the graph. The decay of the envelope function

is related to the rate of decoherence between the two D states, measured to be ≈ 5

ps. In the graph presented, the decay constant is measured to be τ = 4.55 ± 0.14

ps. In contrast, the result of the TI-FWM of a MoSe2 ML at 10 K and with 30 mW

excitation power per beam is shown in Figure 9b. The most prominent feature is the

fact that the FWM signal rises and decays within almost the same time. This reflects

the rapid dephasing in ML-TMDs which is on the same order as the pulse duration,

or the response function of the experiment. The actual dephasing time is too short

to be clearly resolved by TI-FWM so a reference scan is taken with beam C blocked.

Even though the amplitude of the reference scan is much lower, this could be due to a
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decreased autocorrelation strength between the excitation pulses, as only two instead

of three pulses are interacting at the sample. The autocorrelation between beams A

and B can be fit by a Gaussian with width 250 fs centered around −50 fs. The fit

is shown as the green curve in the figure. To exclude the possibility of the measured

signal being purely from autocorrelation a power dependence measurement is neces-

sary, which allows a clear distinction between a nonlinear signal and autocorrelation.

The result of the power dependence is shown as a double-logarithmic plot in the inset

along with a fit to the data. The slope extracted from the fit is 1.9 which is clearly

larger than the expected value of 1 for autocorrelation. It is also significantly lower

than the value of 3 expected for a third-order signal. This can be understood by

considering the strong scattering of the beams on the sample surface leading to a sig-

nificant contribution of autocorrelation to the third-order signal lowering the overall

slope of the power dependence.
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Figure 9: TI-FWM traces of (a) potassium vapor in a high temperature cell
at 165 °C (b) MoSe2 at 10 K. The inset shows the power dependence of the
TI-FWM signal used to confirm the nonlinear nature of the signal.

Another implementation of TI-FWM is scanning delay T , while keeping delay τ

fixed and integrating the signal over the emission time. In this case information about
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the incoherent population dynamics can be obtained. This is the typical pump-probe

experiment where the first pulse acts twice and the second (generally weaker) pulse

acts once. A non-degenerate pump-probe experiment is presented in Section 4.

3.2.2 Two-Dimensional Coherent Spectroscopy

Two-dimensional coherent spectroscopy is a powerful experimental method and an

extension of T-FWM. The idea of 2DCS stems from NMR where it was awarded

a Nobel prize in chemistry [34]. Transferring the method to the optical domain

had been originally proposed by Tanimura and Mukamel [37]. However, it took

some years for experiments to achieve the required pathlength stability. The first

experimental demonstrations were in the infrared where the restrictions imposed on

the optic pathlength fluctuations are smaller [39]. Soon after, the method was applied

in the optical and near-infrared spectral regions [38,40–47].

While in TI-FWM only the delay τ in Figure 4 is scanned, in T-FWM only the

delay t is scanned. When performing 2DCS, any two delays in Figure 4 are scanned,

yielding a signal as a function of two time delays. The signal is then Fourier trans-

formed along the two time axes to generate a two-dimensional frequency correlation

map. Fourier transforming the signal poses a strict requirement on the stability of

the experimental setup, since in order to perform the FT, knowledge of the amplitude

and phase is required. In the non-collinear approach, this is realized by active phase-

locking to a reference laser copropagating with the excitation pulse laser. Besides

the requirement for phase-locking, the requirements on passive phase-stabilization of

the optical delays are immense. The instrument used throughout this dissertation

is based on the platform presented in [28] and can actively phase-stabilize relative

pathlength fluctuations to less than λ/100, i.e. a few nanometers.
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Non-Collinear Two-Dimensional Coherent Spectroscopy

To perform non-collinear 2DCS the main concern is keeping the relative pathlength

fluctuations between pulses that are spatially separated to a minimum. This is

achieved by

1. Building the instrument as sturdy as possible leading to passive stabilization

within the instrument

2. Keeping optical assemblies as close to the surface they are attached to as possible

minimizing oscillations of the optics

3. Using high-precision translation stages for changing the delay between pulses

4. Actively stabilizing the phase using a reference laser that samples the same

pathlength fluctuations as the pulse laser.

The first and second parts are done during the design process of the instrument

and have been presented in detail in [28]. The third part was the main source of

instrumental problems during the work leading up to this dissertation. The motors

need to be both accurate and stable. While the accuracy and stability of the motors

used (Newport XMS series) has been found to be outperforming their specifications,

the controller that was originally issued with them (Newport XPS-Q8) has been

shown to suffer from crosstalk between different channels when connecting more than

one motor leading to in-position instability. The problem was resolved by replacing

the original controller with a different controller version with fewer total channels

(Newport XPS-RL) with which the specified motor performance was achieved. Lastly,

once a sufficiently high positional accuracy and in-position stability of the motors

has been achieved, a reference laser is copropagated with the pulses sampling the

remaining optical pathlength fluctuations. Although the mechanical stability of the
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system may be below the threshold required for FT, the optical pathlength may still

fluctuate more than what is required for successful FT since environmental conditions

such as airflow modify the local optical density. The contributions of airflow to the

optical pathlength fluctuations are kept to a minimum by enclosing the whole setup

and enclosing the instrument used for generating optical delays itself as well.

Even with all the discussed passive stabilization techniques, monitoring and con-

trol of the pathlength is necessary. The pulse laser cannot be used to sample the

pathlength fluctuations, since during a measurement the pulses are moved away from

each other in time and will therefore no longer interfere after stepping any one pulse

for a delay longer than the pulse duration of approximately 100 fs. To overcome this

issue, a continuous wave (cw) laser at λRef = 532 nm (shorter wavelength than the

pulse laser) is copropagated with the pulse laser. The cw laser now samples the same

optical pathlength as the pulse laser while simultaneously allowing a higher preci-

sion of the pathlength measurement because of the shorter wavelength. Interfering

the cw laser from different paths the optical pathlength can be measured with in-

terferometric precision. The interference signal is acquired using a photodiode and

used as the error signal to a feedback loop actively correcting the optical pathlength

through a piezo-mounted mirror in real-time. The feedback loop is implemented on a

field-programmable gate array through a PID control with disabled derivative gain.

Disabling the derivative gain allows for higher in-position robustness while sacrificing

the time it takes to reach the setpoint. Since the PID controller is much faster than

the remaining parts of the setup even without derivative gain, the tradeoff between

control speed and robustness is not an issue. While the controller reaches the phase-

lock within less than a microsecond, taking a single spectrum takes between 2− 100

milliseconds. The flowchart for the stepwise process when recording rephasing scans

is shown in Figure 10, other scans will unlock different feedback loops but the overall
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Figure 10: Flowchart of the phase-locking algorithm used for rephasing non-
collinear 2DCS scans.

principle is the same. The logic for which loops to unlock is implemented in software

and is chosen when selecting the type of scan to perform. For the first step, the phase-

locked loops (PLLs) are locked and spectra are recorded manually. Then the PLLs

are sequentially unlocked, the motor is stepped and the loops are locked in reverse

order than they were unlocked. Afterwards, the locking is checked by recording the

output from each of the PLLs. If the lock is sufficiently good, the next spectrum is

recorded and the diagram starts from the first step again. Using this scheme, control

of the optical pathlength can be achieved with ≤ λPulse/100 precision allowing FT of

the TFWM signal along the time axis being stepped.

The wavelength of the reference laser could in principle be chosen arbitrarily, how-

ever there are some practical limitations on the wavelengths used for the reference

laser. While physically a short wavelength is better, since the same optic pathlength

fluctuation will result in a larger phase change of the reference laser, technical issues

arise when using wavelengths that are too far away from the pulse laser central wave-

length. These are mostly due to optical coatings not working for spectrally broad

bands, leading to additional reflections of either the pulse laser or the reference laser.

Reflections of the pulse laser will modify the optical response from the material, since
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it will be multiply excited, so the coatings should be optimized for the pulse laser.

Reflections of the reference laser will, as long as they are not in phase with the main

order, degrade the contrast of the monitored interference signal, such that the ref-

erence laser wavelength should be chosen as close to the pulse laser wavelength as

possible. The reference wavelength of 532 nm is a good compromise, since broadband

coatings from 500 − 900 nm are commercially available while the wavelengths are

sufficiently far apart that the reference laser can be separated from the pulse laser

using a dichroic mirror. However, the first iteration of the setup had beamsplitters

coated only for the pulse laser centered around 800 nm which led to a weak contrast

in the reference lock-in loop due to the reference laser having unequal intensity in the

different interferometer arms.

After leaving the instrument, four phase-locked pulses are copropagating on the

corners of a box, as shown in Figure 11. Three of the four pulses are focused onto

the sample where the T-FWM signal is generated in the phase-matching direction

discussed in Section 3.1.4. The three pulses only propagate through common optics

after leaving the instrument to minimize relative optical pathlength differences on the

way to the sample. The fourth pulse is routed around the sample and combined with

the T-FWM signal after which the interferogram of T-FWM and reference pulse is

recorded on a spectrometer. The pathlength between reference and T-FWM signal

is also phase-stabilized using a feedback loop adjusting the reference arm pathlength.

Depending on the type of scan, either the interference between pulses Ref and C or

Ref and A is used for locking the phase. The reason for using different excitation

pulses to lock onto lies in the fact that now the relative delay between the interfer-

ometer arms becomes crucial. While inside the instrument the cw laser was used for

phase-locking which can interfere with itself for optical pathlength differences within

its coherence length of a few metres, now only the pulse laser can be used for the
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phase-locking. The coherence length of the pulse laser however is given by the pulse

duration and on the order of a few to tens of micrometers. Therefore, a pulse that

is scanned during the acquisition of a 2D spectrum can not be used as a pulse for

locking the reference path and different pulses are used for different 2D scan types.

Figure 11: Schematic of the FWM generation and detection. Three pulses
are focused onto the sample where a FWM signal is generated in the phase-
matching direction ~kFWM = −~kA + ~kB + ~kC . The FWM signal is combined
with a reference pulse routed around the sample and sent to a spectrometer
where heterodyne detection is used to extract the FWM signal. Adapted
from [127] with permission.

The combined T-FWM and reference pulses are used for heterodyne detection of

the signal on a spectrometer and the emission time and phase of the T-FWM signal

is retrieved using spectral interferometry (SI). To get the second time-axis one of

the delays between the excitation pulses is scanned. For each scan step the PLLs

according to the interferometer arms affected by the scan step are unlocked, one or

two motors are moved, then the PLLs are locked again and a spectrum is taken which

is then repeated until the total number of requested steps is reached. When using

phase-cycling, four spectra with different relative phases are taken and added and

subtracted to isolate the FWM signal as shown in Table 2. During the whole scan
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time, the phase-lock needs to be maintained. The optic table on which the setup

operates therefore may not be touched and the whole optical setup as well as the

instrument containing the delay stages are enclosed to reduce airflow.

Collinear Two-Dimensional Coherent Spectroscopy

For the collinear approach also a single pulse is split into four copies. Each copy is

tagged with a unique phase modulation frequency using an acousto-optic modulator

(AOM). The pulses can then be independently delayed before they are recombined and

sent to the sample through a common pathway. A reference laser copropagates with

the pulse laser, but in this case should be as close as possible to the frequency of the

pulse laser in order for pathlength fluctuations to produce the same phase difference

in the excitation and reference laser. However, a technique has been developed by

Eric Martin in his thesis [32] to use an arbitrary reference frequency and calculate the

corresponding optic pathlength change from the phase difference. Besides the need

for adequately sampling the optic pathlength differences, the reference frequency also

acts as the reference frequency for calculating the axis of a 2D spectrum, such that

using a large frequency difference between excitation and reference laser will require a

very small stepsize to fully sample signals within the measured bandwidth. Therefore,

different reference lasers are used to match the resonance of interest. This can be done

by switching out the diode laser used as the reference laser. Placing the diode laser

inside an external cavity, the wavelength of the laser can be sufficiently stabilized to

allow phase referencing. Furthermore, placing a diode laser inside an external cavity

narrows the linewidth such that longer scan durations are possible compared to a

diode laser without external cavity.

The excitation and reference laser copropagate, therefore picking up the same

optic pathlength differences. The reference laser is then split off the excitation laser
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and the reference signal from the different paths is interfered on a photodetector.

The interference pattern is modulated at the beat frequencies between the different

beams. The relevant term in the collinear approach for isolating the signal from the

background in Equation 14 is the phase term ei(−ωAtA+ωBtB+ωCtC).

Since in this experiment there are four pulses incident on the sample, a fourth

term ωDtD needs to be added to the exponential. The effect of an AOM can be

understood as introducing a time-dependent phase term φfi (t) to each beam. Here

i labels the pulse and f the modulation frequency applied to the AOM. The phase

term is therefore rewritten as

ei(−ωAtA+φ
fA
A (tA)+ωBtB+φ

fB
B (tB)+ωCtB+φ

fC
C (tC)+ωDtD+φ

fD
D (tD).

When all four beams are incident onto a detector, the measured interference between

the beams is at all possible beat frequencies of the four AOM frequencies

ωS = ±fA ± fB ± fC ± fD.

Selecting only one frequency, one scan type can be performed. By detecting the signal

at multiple frequencies at once, all possible 2D spectra can be recorded at the same

time [128].

Since the experiment uses lock-in detection, the reference frequency determines

the number of cycles contributing to the signal when using a fixed time constant. The

larger the number of cycles, the higher the signal to noise ratio, meaning that the

reference frequency should be chosen as high as possible with the repetition rate of

the laser being the upper limit on the reference frequency. However, the electronics

available in the experiment pose a limitation on the maximum frequencies that can

be used. Although the repetition rate of the laser used is close to 80 MHz, the beat
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frequencies are chosen on the order of tens of kHz since the bandwidth of the available

electronics do not allow for higher frequencies. The modulation frequencies fi used in

the experiment are summarized in Table 3. Although each individual frequency is in

the RF regime, the resulting beat frequency is in the audio band and can be detected

using conventional electronics. Improving the electronics to be able to process RF

signals, the signal to noise ratio can be enhanced while keeping the acquisition time

constant by choosing a higher mixing frequency and therefore averaging the FWM

signal over more cycles on the lock-in amplifier. On the other hand, improvement

of the electronics and the associated increase in cycles per unit time can lead to

a quadratic reduction of the required acquisition time while keeping the signal to

noise ratio constant. In order to increase the signal to noise ratio even with the

electronics currently in use, the time constant can be increased which comes at the

cost of acquisition time increasing quadratically, since two axes need to be scanned.

Frequency Value (MHz)
fA 80
fB 80.003
fC 80.1173
fD 80.100

−fA + fB + fC − fD 0.0143

Table 3: Frequencies used to tag each pulse as well as the detected beat
frequency between all four pulses.

The four pulses are combined such that they overlap and copropagate and are then

focused onto the sample, from where the signal can be collected. Different approaches

have been used for measuring the signal, the first approaches to collinear 2DCS used

photocurrent detection [29], later the collinear technique was expanded to detection

in the transmission and reflection geometry. Signal collection is also possible by

collecting just the specular reflection, as long as the signal radiates homogeneously

[50, 51]. This is especially useful when using high power pump beams since the
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direct reflection will easily saturate any detector. Since the encapsulated samples

studied in Appendix A are on silicon, which is reflective in the near-infrared, and

the samples have side lengths of approximately 10 µm and are held inside a cryostat

during experiments, the signal needs to be collected through a high numeric aperture

long-working distance microscope objective in the reflection geometry.

Heterodyne Detected Collinear Two-Dimensional Coherent Spectroscopy

Heterodyne detection for non-collinear 2DCS was discussed in Section 3.2.2, but the

technique of heterodyning a signal is not unique to the non-collinear implementation

of 2DCS. The same principle of amplifying the signal through a heterodyning field

can be used in the collinear geometry. In this case only three pulses interact with the

sample generating a radiating polarization. The polarization is then combined with a

fourth pulse on the detector, just like when using non-collinear 2DCS. If the detector

is a photodiode, the delay of the fourth pulse needs to be scanned in order to resolve

the time axis, if the detector is a spectrometer with a charge-coupled device (CCD)

camera, the delay can be obtained from the interference pattern between heterodyne

and signal pulse.

The advantage of using heterodyne detection lies in the lower nonlinear order of

the interaction. While PL or photocurrent detected 2DCS is a fourth order process,

the FWM signal is due to a third order process. With the same reasoning as in the

discussion between second and third order signals, the reduction from fourth to a

third order signal typically leads to at least one order of magnitude stronger signal.

Furthermore, the FWM signal is directional as long as the radiating structure is larger

than the wavelength of the exciting light, leading to a directed signal rather than a

homogeneous emission. This is both a blessing and a curse, since the homogeneous

emission can allow for detection of the specular reflection and strong suppression of
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the excitation beams, while the directional signal needs to be detected in the same

direction as the excitation beams, leading to easy saturation of the detector. The

directionality has the advantage that for weak signals, for example a signal from a

ML with small dipole moment, the signal is radiating only in one direction, giving an

appreciable signal magnitude in this direction, while in the PL detection the overall

amplitude is spread throughout the full solid angle. Therefore the detectable signal is

overall stronger for the heterodyne detected setup. The disadvantage lies in the fact

that the heterodyning beam needs to be perfectly parallel and overlapped with the

signal beam path in order to yield a good interference contrast. Misalignment of the

heterodyning beam will lead to a multiline interference pattern, which, if integrated

on a large area detector, will not show any change in amplitude when moving the

relative delay.
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4 Incoherent Trion Valley Dynamics in Monolayer MoSe2

4.1 Introduction

To pave the way for application of ML semiconductors, it is important to investigate

the carrier dynamics, since these are a major limitation of typical device performance.

In ML semiconductors carriers can form bound states, electron-hole pairs, called ex-

citons. In the presence of defects other bound states can form, for example localized

excitons in MoS2 [129]. In MoSe2 MLs charged excitons can form either through the

capture of an excess charge by an exciton or directly from an unbound electron-hole

plasma [130–133]. In ML-TMDs, strong Coulomb interaction leads to exceptionally

high binding energies for excitons and trions [134, 135], making excitons and trions

stable even at room temperature [75,80,82,136,137]. The effect of trions can easily be

observed in the overall PL spectrum in ML MoSe2 and has been shown to reduce the

conductivity in MoS2 [138]. Besides these direct effects of trions on the optoelectronic

properties of a ML-TMD, the interaction with excitons is of interest. Trions provide

an additional relaxation channel for excitons because of their lower energy [83]. Exci-

tation of trions by an optical phonon is an upconversion process to an excitonic state

observed in WSe2 [107]. Furthermore, coherent coupling between exciton and trion

has been observed in ML MoSe2 [139]. Besides being possibly detrimental to device

performance, deliberately introducing defects to generate trions can also be used for

device engineering, for example in quantum information processing [140]. Therefore,

to fully unlock the potential of ML-TMDs, a thorough understanding of the dynamics

of both excitons and trions in ML-TMDs is necessary.

Optical spectroscopies allow direct access to the electronic energy scales in semi-

conductors and are therefore ideally suited methods for the understanding of car-

rier dynamics. Some of the techniques used are TR-PL [141, 142], ultrafast pump-
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probe spectroscopy [7, 21, 103, 143–150], optical Kerr spectroscopy [14, 151], 2DCS

[15,60–62,64,152,153] and hole-burning spectroscopy [154]. These studies have been

able to reveal important structural and dynamics information of layered TMDs. How-

ever, the focus of these studies has been mainly on the exciton dynamics while the

trion dynamics remained largely unexplored. More recently studies of the trion forma-

tion in ML MoSe2 by ultrafast pump-probe spectroscopy [21] and the trion emission

in ML WSe2 by TR-PL have brought attention to the valley dynamics of trions in

layered TMDs [155].

This section contains an experiment studying the valley trion dynamics in a chem-

ical vapor deposition (CVD) grown MoSe2 ML by using ultrafast pump-probe spec-

troscopy. The trion population forms within 500 fs from photoexcited free carriers.

The trion decay follows a biexponential decay and exhibits a surprising density depen-

dence, as the dynamics become slower as excitation density increases. A theoretical

model is developed based on a set of rate equations which quantitatively reproduces

the experimental result for all pump fluences. The model reveals that the primary

mechanisms responsible for the observed density dependence of the dynamics is the

decay of trions into two different types of defect states. The slowing down of dynamics

at high density is ascribed to filling of the limited density defect states.

4.2 Experiment

This section briefly discusses the sample used in the experiment and then goes on to

present preliminary data used in the later pump-probe experiment. Furthermore, the

pump-probe setup is discussed in detail.
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4.2.1 Sample Description

The sample is MoSe2 grown via CVD on SiO2/Si substrate as described in [156].

After the growth, the sample is transferred from the SiO2/Si substrate onto a glass

substrate. Using this process, large single-layer triangular flakes of tens to more than

one hundred micrometers in size can be grown. More recent developments are able

to grow wafer-size MLs [157–159]. The size of the triangles is essential since edge

effects change the optoelectronic properties of ML-TMDs [160]. The flakes used for

the experiment are about 100 µm in size, much larger than the focal spot of the lasers

used, completely eliminating edge effects. During all experiments the sample is kept

inside a microscopy cryostat and under high vacuum with pressure less than 10−6

Torr.

4.2.2 Preliminary Sample Characterization

Before performing pump-probe spectroscopy, the resonance energy of of the sample

needs to be found. This is done by performing steady-state microscopy-PL (µ-PL)

on the sample. From pulsed excitation µ-PL experiments, the density of excitons

and trions is measured. Performing pulsed excitation µ-PL the excitation conditions

during the pump-probe experiment are reproduced, such that the exciton and trion

densities extracted from the µ-PL measurements can be used in the explanation of

the pump-probe results.

Steady State Measurements

The absorbance of the sample is measured at room temperature using a broadband

white-light halogen lamp, the result of which is displayed as the blue curve in Fig-

ure 12. The absorbance curve exhibits two peaks at 1575 meV and 1745 meV which

are ascribed to the A and B exciton resonances. The A exciton resonance is expected

56



to also contain the absorbance from the A trion. A green (2.3 eV) cw laser is used as

the excitation source for the µ-PL measurements. The PL is shown as the red curve

in Figure 12 and shows a strong peak at the energy of the A exciton while emission

at the energy of the B exciton is below noise level.
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Figure 12: Room temperature absorbance of a MoSe2 ML excited by broad-
band white-light from a 20 W halogen lamp (blue curve) and normalized PL
emission from the ML upon excitation with a green (2.3 eV) cw laser.

Pulse Excitation PL

After having found the resonance energy of exciton and trion in the sample the

excitation laser is replaced with the pump laser used during the experiments to better

reproduce the experimental conditions. Furthermore, the sample is transferred to

a microscopy cryostat where it can be cooled to liquid helium temperature. The

excitation beam is focused onto the sample by a 50× long working distance objective

leading to a tight focal spot with diameter on the order of few micrometers in size.

The PL is collected by the same objective and spectrally filtered using a high-fidelity

low-pass filter. The PL emission is recorded as a function of temperature and can be

seen in Figure 13a. With decreasing temperature, the PL becomes stronger reflected

57



by an increased signal to noise ratio at low temperatures in the normalized spectra

presented here. Additionally, the PL narrows and blueshifts until 150 K. Below 120

K two peaks become visible of which the high (low) energy peak is ascribed to the

exciton (trion) resonance. The two peaks further narrow and blueshift until 10 K. At

10 K a power dependence of the PL is measured, which is shown in Figure 13b. The

minimum fluence used is 10 µJ·cm−2 and the maximum fluence is 160 µJ·cm−2 giving

access to more than one order of magnitude variation of excitation densities. Using

pump fluences larger than 200 µJ·cm−2 was found to damage some of the flakes on

the sample substrate, visible in microscope images and is therefore avoided.

Each PL spectrum is fit using two Lorentzian peaks as shown in Figure 13c for 80

µJ·cm−2. The parameters extracted from the fit are then used for further analysis.

The pump fluence dependence is shown in Figure 14a and reveals that both the exciton

and trion peak area linearly increase within the excitation powers used during the

pump-probe experiment. This means that neither the exciton nor the trion resonance

is saturated upon excitation with fluences up to 160 µJ·cm−2. The peak center energy

for different excitation densities is shown in Figure 14b and shows a redshift of the

trion emission whereas that of the exciton blueshifts. Furthermore the linewidth is

measured and shown in Figure 14c. Both the exciton and trion emission linewidth

slightly increase with increasing excitation density.

4.2.3 Two-Color Pump-Probe Experiment

Now that the sample has been characterized and the resonances are found through

µ-PL, the pump-probe experiment is performed. A schematic of the setup is shown in

Figure 15. The setup consists of two lasers at different wavelengths. The Ti:Sapphire

oscillator is used to generate pulses with approximately 100 fs pulse duration and

bandwidth of 8 nm meaning that the pulses are nearly transform-limited. The center
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Figure 13: (a) Temperature dependence of the PL from a MoSe2 ML. (b)
Power Dependence of the PL from the same MoSe2 ML at 10 K. (c) Data
and double-lorentzian fit of the spectrum at 10 K taken with an excitation
density of 80 µJ·cm−2. Adapted from [83] with permission.
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Figure 14: (a) Integrated peak area at different pump fluences for the trion
(blue) and exciton (red) peak. (b) Peak Energy of the trion and exciton
resonance. (c) Linewidth of trion and exciton resonance. Adapted from [83]
with permission.

wavelength of the output is tuned to the peak of the trion PL at 1625 meV for 10 K.

The output is split using a 90 : 10 beamsplitter and 90 % of the power is used to pump

an optic parametric oscillator (OPO). The OPO output is frequency doubled using a

β-Barium borate crystal, which gives pulses with approximately 500 fs pulse duration

and adjustable center wavelength. The polarization of each pulse can be adjusted

independently and right before the sample a quarter-wave plate is placed which is

used to convert linearly polarized light to circularly polarized light. An important

component is the set of two long focal length lenses in each of the excitation beam

paths which are used to individually adjust the pump and probe beam diameter at the
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sample position. The pump diameter is set to be about 7 µm while the probe beam

diameter is only 5 µm to ensure a homogeneous excitation of the probed area. The

pulses are combined on another beamsplitter and sent to a home-built microscope

setup, where they are focused onto the sample and the reflected beams are collected

through the same microscope objective. The beams are then split with a 50 : 50

beamsplitter plate to simultaneously illuminate a CCD camera used to measure the

spot sizes and a photodiode used to detect the signal. A halogen lamp can be coupled

into the setup instead of the laser beams to find the sample and ensure a good overlap

between a sample flake and the excitation beams.

HWP
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Lens
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LampCCD

Photodiode
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Delay

Lock-In Ampli er

RefSignal
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50 X

Figure 15: Schematic of the pump-probe setup.

A longpass spectral filter with a cutoff wavelength of 750 nm (1653 eV) to re-

move the pump beam is placed before the detector to extract the signal from the

background. Furthermore, the pump beam is amplitude-modulated using a chopper

wheel before interacting with the sample and lock-in detection of the probe beam is

used to improve the signal-to-noise ratio.

The experiment is performed using collinearly propagating pump and probe beams

in the reflection geometry. The two beams are focused onto the sample using the same
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50× long working distance microscope objective as used for the µ-PL measurements.

The long working distance is necessary, since the sample is held in a liquid helium

cryostat where the sample is approximately 10 mm away from the cryostat window.

Before taking a full set of data, a probe fluence dependence is taken at a medium

excitation density of 80 µJ·cm−2. The probe fluence dependence shows a linear in-

crease with probe fluence, the signal-to-noise ratio gets better within the studied

range, and the decay dynamics are unchanged between the different fluences. The

probe fluence is then fixed to 1 µJ·cm−2, such that the probe fluence is about one

order of magnitude smaller than the lowest pump fluences used in the following exper-

iment. A set of data consists of a pump-probe scan trace for co- and cross-circularly

polarized excitation beams and is repeated with different pump fluences.

4.3 Results

In this section the results from the two-color polarization-resolved pump-probe exper-

iment are shown. First, the results on the valley polarization generated at different

excitation energy are laid out, followed by a discussion of the dynamics at different

pump fluences.

4.3.1 Pump Energy Dependence

Different pump energies were used in order to extract a nonzero polarization, as time-

integrated studies have shown a strong dependence of the injected valley polarization

on the pump energy [93]. For ML MoS2, the valley polarization shows a continuous

decrease of the valley polarization degree from 40 % when pumping approximately

100 meV above the A exciton resonance to almost zero as the pump energy gets

increased to > 2 eV [11]. In ML WSe2 the valley polarization exhibits a global

maximum when pumping 140 meV above the A exciton resonance, which is ascribed
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to the first excited exciton state 2s [149]. The change in valley polarization with the

pump energy becoming closer to being on resonance can be understood in terms of the

bandstructure of ML-TMDs. While electrons are always excited within one valley, as

their energy increases, the processes involved in the relaxation to the conduction band

minimum will more likely add sufficient momentum to the electron to be transferred

into the other valley. By resonantly pumping the excited state of the A exciton, the

generation of valley polarization is enhanced, since in the transition back to the ground

state the valley polarization is conserved as the process happens without invoking

multi-phonon mediated relaxation. Furthermore, it was found that excitation at

the resonance energy of the MoSe2 B-exciton transition may lead to larger valley

polarization than exciting off-resonance with a lower energy [93]. Hence, the pump

energy is tuned as close as possible to the trion transition and on resonance with the

B-exciton transition.

A pair of resulting spectra is shown in Figure 16 with the inset highlighting the

dynamics around the zero delay showing the ultrafast signal buildup. Each dataset

consists of the average decay behaviour of ten runs and the error bars are the standard

deviation at each datapoint. When running the experiment, a co- and cross-circular

spectrum are acquired in direct succession to minimize the effect of long-term fluctu-

ations of the laser power or center wavelength.

For analysis, both spectra are offset in the y-direction so that the average transient

reflection for delays smaller than zero is equal to zero. This way, any residual differ-

ence between the two spectra stems from a difference in the valley polarization and is

not because of different background signal for different laser polarization. Figure 17

shows the result of plugging the processed signals into the equation for valley polar-
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Figure 16: Pump-probe data of the trion resonance when excited at the B
exciton resonance and a pump fluence of 80 µJ·cm−2. The inset shows the
response around the zero delay between pump and probe pulses.

ization alongside the pump-probe data used for calculating the valley polarization

Polarization =
Ico − Icross

Ico + Icross

. (16)

The valley polarization calculated this way is zero if there is no valley polarization,

i.e., the population in the two valleys is exactly equal, while it is +(−)1 if all the

population is in the excited (opposite) K-valley. The error bars on the polarization are

obtained from calculating the standard deviation of the polarization between different

measurements. Within the uncertainty of the measurement, it can be concluded that

in MoSe2 MLs, there is no polarization generated, in support of previous TR-PL

measurements [93].

4.3.2 Pump Power Dependence

After having found that valley polarization can not reliably be generated optically

in ML MoSe2, the dynamics of trions in the two valleys are investigated. A typical

pump-probe trace can be seen in Figure 18a, where the pump energy was tuned to 735
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Figure 17: Pump-probe signal trace and calculated valley polarization for
different pump and probe energies.

nm, along with a zoom in to the time close around the zero delay shown in Figure 18b.

Whereas in Figure 16 the absolute values of the pump-probe signal are shown, the

spectra in Figure 18 have been normalized. Furthermore, Figure 16 shows an average

between multiple measurements while Figure 18a shows the results from a single run

and therefore no statistical error is shown. The offset between co- and cross-circular

signals is matched for negative delays to remove contributions to the signal from

different background for different polarization configurations. In Figure 18b, besides

the data for co- and cross-circular excitation, a Gaussian pulse shape with 500 fs

pulse width and the trace corresponding to the integration of the pulse are added to

the graph to highlight the signal buildup behaviour. It can be seen that both the co-

and cross-circular signal follow the integration of the pulse, meaning that the time-

resolution in the experiment is too low to resolve the trion formation dynamics. The

rising behaviour can be explained by two different explanations. Although electrons

are excited by circularly polarized light, the fact that they are excited high into
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the conduction band leads to non-radiative interaction with the lattice under which

they lose their valley polarization. The second possible explanation is that it is

possible that in MoSe2, different to other ML semiconductors such as MoS2, no valley

polarization can be generated optically. From the rise of the pump-probe trace it

can be deduced that trion formation happens on a timescale shorter than 500 fs,

in agreement with other experiments that have specifically investigated the trion

formation dynamics [21].
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Figure 18: (a) Data from the pump-probe experiment using a pump fluence of
80 µJ·cm−2. Blue (red) circles denote co- (cross-) circularly polarized pump
and probe beams. (b) Zoom in of (a) around the zero delay time. The dashed
curve is a Gaussian of pulse width 500 fs, equal to the excitation pulse width
used in the experiment. The black curve is the integration of the Gaussian
pulse highlighting that the signal buildup is limited by the pulse duration.
Adapted from [83] with permission.

The decay of trions happens on a timescale of hundreds of picoseconds and can be

resolved by the experiment. The decay curves for co- and cross-circularly polarized

excitation in Figure 18a almost overlap, meaning that the dynamics in the two valleys

are essentially the same. This behaviour is to be expected, since two conditions are

met in the sample. Firstly, trions, once formed, are trapped to their respective valleys

by momentum trapping. Since the trions in the two valleys are therefore separate
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in momentum space, their decay behaviour is dominated by intravalley relaxation

processes which are expected to be the same for the two valleys. Secondly, since no

valley polarization is generated, the population density in the two valleys is expected

to be the same, meaning that many-body effects in the two valleys are also the

same, therefore leading to an overall equal decay behaviour for co- and cross-circular

excitation.

For further insight into the dynamics, a fluence dependence is done for both co-

and cross-circular polarization. Again, a pair of spectra is recorded in succession as

discussed in Section 4.3.1. Since at all powers the results for co- and cross-circular

excitation are similar, only the co-circular experiment is used for further analysis.

The results for different pump fluences are shown in Figure 19a. All decay traces are

fit using a biexponential decay according to the equation

f(T ) = A0

(
e
− T
t1 + A21e

− T
t2

)

to extract the decay times. The resulting decay times are shown in Figure 19b and

Figure 19c. The decay time increases with increasing fluence, opposite to what one

would typically expect for many-body effects.

(a) (b) (c)

Figure 19: (a) Data (squares) at different pump fluences as well as biexpo-
nential fit (red curve) to the data. (b) Extracted decay time t1. (c) Extracted
decay time t2. Reproduced from [83] with permission.
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4.4 Model

To explain the unexpected decay dynamics revealed by the pump-probe experiment,

a model based on rate equations is developed. The model can quantitatively explain

the dynamics through the existence of two kinds of defect states. A schematic rep-

resentation of the energy structure is shown in Figure 20a. Excited electrons form

trions on an ultrafast timescale, however the trion formation is not modeled in the

rate equations, since it can not be resolved by the experiment. After the trion for-

mation, multiple decay channels exist for the trions, which are each modeled by a

single exponential decay. The dynamics observed in the experiment are dominated

by decay to two defect states, labeled Df and Ds in Figure 20a. Filling up of the de-

fect states then leads to a slowing down of the dynamics at high excitation densities,

since the decay channel is no longer available. Besides decay into one of the defect

states, trions can radiatively recombine, non-radiatively decay or be upconverted to

form an exciton. All these processes are much slower than the decay to the defect

states, therefore only affecting the long-term decay dynamics corresponding to delay

times greater than 100 ps. During the decay time of the trions, excitons can capture

an excess charge and be converted into a trion, refilling the trion population which is
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also a slow process. The equations governing the dynamics are

ṄX = −ΓXr NX − ΓXnr

(
1− Nnr

Dnr

)
NX − ΓXT

(
1− NT

DT

)
NX

ṄT = −ΓTrNT − ΓTf

(
1− Nf

Df

)
NT − ΓTs

(
1− Ns

Ds

)
NT + ΓXT

(
1− NT

DT

)
NX

Ṅf = ΓTf

(
1− Nf

Df

)
NT

Ṅs = ΓTs

(
1− Ns

Ds

)
NT (17)

where NX is the exciton density, Nnr is the occupation density of non-radiative states,

Dnr is the available non-radiative state density, NT is the trion density, Nf (Ns) is the

occupied density in the fast (slow) trapping states, Df (Ds) is the available density of

fast (slow) trapping states and DT is the density of available trion states, related to

the doping level of the material, which was also extracted from the pulse excitation

µ-PL measurements.

Adjusting the parameters of the model, the trion dynamics can quantitatively

be reproduced. The result shown in Figure 20b uses the parameters summarized in

Table 4. To ease interpretation of the results from the model, the excitation fluence is

converted into the photon number per area. The photon density is ≈ 40− 600× 1012

photons·cm−2. Assuming an absorption of 10 % for a single layer, the pump introduces

4− 60× 1012 excitations·cm−2, which is on the same order of magnitude as the defect

state density. Therefore, the slowing down of dynamics is not because of trion-trion

interactions but is rooted in the filling up of the defect states, blocking the trapping
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decay channels, leaving only the radiative decay channel, with a much longer decay

time.

(a)
(b)

Figure 20: (a) Energy level scheme of the model for simulating the trion dy-
namics containing two defect states. (b) Simulated trion dynamics. Adapted
from [83] with permission.

Parameter Value
1/ΓTf 10.3 ps
1/ΓTs 28.0 ps
1/ΓXT 329 ps
1/ΓTr 500 ps
1/ΓXr 250 ps
Df 1.58× 1012 cm−2

Ds 2.98× 1013 cm−2

DT 5× 1013 cm−2

Table 4: Parameters used to model the pump-probe signal decay behaviour.

4.5 Conclusions

To summarize, in this section the incoherent population dynamics of trions in ML

MoSe2 was measured. The valley dynamics can not be probed with the used tech-

nique, since the valley relaxation either happens within the laser pulse duration or
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no valley polarization can be created when exciting above resonance. The intravalley

dynamics are explained by the existence of at least two different kinds of defect states

which trap excitons on a picosecond timescale.

The trion formation dynamics are too fast to be resolved by the experiment,

however, the upper limit on the valley exchange can be set to approximately 500 fs

from the pump-probe measurement.

The trion relaxation was modeled with the rate equations presented in Equa-

tion 17, showing that there exist two types of defect states. The decay is dominated

by trions filling up the two defect states, which leads to slower dynamics at higher

excitation density. The long-term decay is explained by phonon-excited upconver-

sion into excitons and excitons capturing excess charges, forming trions, as well as

radiative decay of trions.

Population decay times obtained from the results in this section are essential to

explain the coherence dephasing measured in the following section. Knowing that in-

teraction of trions with defect states dominate the trion dynamics, the fast dephasing

can be understood.
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5 Coherence Time of Trions in Monolayer MoSe2

5.1 Introduction

Although ML materials are promising candidates for device applications because of

their reduced dimensionality and the possibility of forming heterostructures by stack-

ing of MLs, the lower dimensionality comes at a cost. Owing to the maximally large

surface-to-volume ratio, MLs are exceptionally sensitive to their surroundings. Ef-

forts are being taken to use the high sensitivity to the ML environment for sensing

applications, however, for other devices, especially with the goal of computing appli-

cations in mind, inhomogeneities of the substrate or the surroundings will affect the

device performance more than with current bulk electronics. The PL linewidth of ML

materials is much broader than their homogeneous linewidth, requiring to resolve the

homogeneous linewidth even in the presence of strong inhomogeneous broadening.

As discussed in Section 3, 2DCS is ideally suited for the determination of the homo-

geneous linewidth even in the presence of inhomogeneous broadening. Contrary to

TI-FWM techniques, there is no ambiguity between homogeneously and inhomoge-

neously broadened systems, making it possible to measure the homogeneous linewidth

in the presence of arbitrary inhomogeneous broadening [119]. Although a measure-

ment of the homogeneous linewidth already contains information about the dephasing

inside the material, in order to obtain a more meaningful result, it is necessary to

measure a material property rather than a value dependent on the specific experi-

mental conditions. Therefore the measured homogeneous linewidth is extrapolated to

the linewidth in the absence of excitations and lattice vibrations. At finite excitation

density, trions can elastically collide, leading to dephasing without energy transfer,

called excitation-induced dephasing (EID). This effect is removed by taking a power

dependence measurement of the homogeneous linewidth and extrapolating to zero ex-

71



citation density, corresponding to the linewidth of a single trion in the whole crystal

lattice. Furthermore, phonons can elastically collide with a trion, also destroying the

coherence. To rule out defects from phonon-induced dephasing (PID), a temperature

dependence is measured in the same manner as for the excitation-induced effects and

extrapolated to zero temperature, corresponding to a static lattice. The experimental

procedure used for extrapolating to zero temperature is to obtain a power dependence

measurement at multiple temperatures and extrapolate the zero-power result to zero

temperature. The homogeneous linewidth obtained through this method is then the

homogeneous linewidth of a single trion in a static lattice and therefore a material

property. The variation between other measured linewidths is attributed to variations

in the density of sample or substrate defects [15, 60–63].

5.2 Experiment

Ultrafast coherent spectroscopy is used to study the coherence time of trions in ML

MoSe2. The different approaches to performing 2DCS were discussed in Section 3.1.5.

In this experiment, the non-collinear technique is used [28]. Recently a heterodyne

detected collinear 2DCS technique was developed which proved to be especially suited

for studying semiconductor nanostructures [64,152]. The main challenge in perform-

ing 2DCS on ML materials lies in generating and detecting a sufficiently strong FWM

signal since the absorption of a single ML flake is only ≈ 10 %, while ideal conditions

for 2DCS are found for an absorption of ≈ 75 % [161,162]. This section starts with a

short introduction of the sample and preliminary data required for performing 2DCS

is presented followed by a detailed introduction of the experimental setup used.

72



5.2.1 Preliminary Sample Characterization

The ML MoSe2 that is used during the experiment was grown by CVD and subse-

quently transferred onto anti-reflection (AR) coated quartz glass [156]. The sample is

shown in Figure 21a. The sample now is on an AR coated rather than uncoated glass

substrate to suppress scatter of the pump beams. The sample size is again around

100 µm for each side of the triangle and it is again held inside a liquid helium cooled

cryostat. Preliminary experiments include µ-PL measurements at different tempera-

tures shown in Figure 21b. These measurements are used to confirm that the sample

is indeed a ML. The main peak in the PL spectrum is assigned to the trion resonance,

while the high-energy peak shoulder is ascribed to exciton emission. The PL spectra

show a slight blueshift for lower temperatures as well as a larger amplitude. The cen-

ter energy of the exciton resonance is approximately 1655 meV and the peak energy

of the trion resonance is 1625 meV at 5 K. From the PL data a high doping level

of either the sample or the sample substrate is expected due to the trion peak being

much stronger than that from exciton emission. The excitation pulse for the 2DCS

experiment is characterized using a home-built autocorrelation setup and is found to

have a duration of ≈ 100 fs and can be approximated by a Gaussian shape.

The temperature dependence of the PL amplitude in ML-TMDs can be understood

in terms of the relative energies of defect states and conduction band minima [163].

Controlling the defect density allows tuning of the quantum yield confirming the influ-

ence of defect states on the PL emission characteristics [141,143,164–166]. In MoSe2

the increase of the PL amplitude at low temperatures is ascribed to the deactivation

of scattering phonon modes as the temperature approaches zero leading to optically

generated excitons and trions staying in a momentum allowed recombination region.

Figure 21c shows the increase of the amplitude approximately follows that given by

a Boltzmann factor with a phonon activation energy of 1.80± 0.33 meV. This value
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is low compared to other reported phonon activation energies [167–169], probably

because of the fact that the temperature dependence of the PL measurement was cut

off at 60 K here. Including higher temperature PL data will give a more accurate

value for the phonon activation energy.
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Figure 21: (a) Image of the MoSe2 Sample on AR-coated glass. (b) Photo-
luminescence emission after 2.3 eV cw excitation at different temperatures.
The exciton and trion resonances are highlighted. (c) Temperature depen-
dence of the PL amplitude with the linear fit used to estimate the phonon
activation energy.

5.2.2 Two-Dimensional Coherent Spectroscopy

In the experiment, a single laser pulse gets split into four pulses labeled A−D with

controllable time delays and active phase-stabilization. Copropagating with the pulses

is a cw laser which is used for phase-locking the experiment even when using long

pulse delays. The four pulses are aligned to the corners of a square with sides 2.5

cm in length as shown in Figure 11. Three beams are then focused onto the sample

where a FWM signal is generated.

Only the signal in the phase-matching direction ~ks = −~kA+~kB+~kC is collected by

placing an iris in the signal beampath, minimizing noise from scatter or fluorescence.

The positioning of the iris is critical for successfully performing 2DCS on ML MoSe2

because the noise background without an iris in place is too large, overshadowing any
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FWM signal. Simultaneously, placing the iris at the wrong position will remove the

highly directional FWM signal. To find the best place for the iris in the FWM signal

pathway, 2DCS or TI-FWM is first performed on an atomic vapor with strong FWM

signal and the iris position is optimized using the FWM signal from the atomic vapor.

Then the atomic vapor is replaced with the ML sample of interest.

The fourth pulse is routed around the sample and is used for heterodyne detection

and SI of the signal. A part of this fourth pulse is also split off in order to lock the

phase between the signal and the reference pulse, since the two pulses do not share the

same beam path. The signal and reference pulses are overlapped on a CCD coupled

to a spectrometer and their interferogram is recorded. To improve the signal-to-noise

ratio the phase-cycling scheme presented in Section 3.1.5 is used such that any linear

contributions to the signal get cancelled out when adding the phase-cycled spectra.

Timecuts are then implemented through software in order to further reduce the noise

background. To acquire a 2D spectrum, the time delay between two pulses is stepped

and the resulting FWM signal is subsequently Fourier transformed such that a 2D

map in the frequency domain is created showing the resonances and their correlations.

The pulse ordering used to create the FWM signal is shown in Figure 4. For the

signal emitted in the phase-matching direction, this means that pulse A acts as the

conjugated pulse. It excites a coherent polarization in the sample that will oscillate at

the field frequency. Pulse B interacts with the polarization and creates a population

grating. The grating gets created due to the crossing angle between the pulses, which

means that the phase between pulses A and B changes throughout the irradiated

sample area. Pulse C then scatters off the grating which is detected as the FWM

signal. In order to get a 2D spectrum the signal emission time is time-resolved using

SI between the signal and reference pulse and pulse A is scanned earlier revealing the

coherence dephasing dynamics.
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5.3 Results

This section presents the results leading to the measurement of the intrinsic homo-

geneous linewidth in ML MoSe2. First, the 2D spectra are shown which are then fit

along the cross-diagonal for extraction of the homogeneous linewidth using the equa-

tion derived in Section 5.3.2. Then the power dependence used to extrapolate to the

case of a single trion in the crystal lattice is presented which is followed by the tem-

perature dependence used to extrapolate to zero temperature. The result obtained

for the homogeneous linewidth of trions corresponds to a single trion in the crystal

without any crystal movement and is therefore a sample specific intrinsic property

and independent of the experimental conditions. However, in order to obtain a more

clear picture, samples with variable defect levels would need to be measured as well

to gain access to the dependence of the homogeneous linewidth on the availability of

defect states.

5.3.1 Two-Dimensional Spectra

The homogeneous linewidth can be extracted from the cross-diagonal linewidth in

a 2D spectrum [125]. When the pulses in a 2DCS experiment are much shorter

than the measured decoherence times the pulses can be treated as δ-pulses, which

has been done in Section 3. However, in the present experiment a dephasing time

on the same order as the pulse duration is measured. Therefore excitation can no

longer be treated as being in the short-pulse limit and the resonance shape derived in

Section 5.3.2 needs to be considered. The finite pulse effects can be summarized by

two main effects. Firstly, the lineshape is convoluted with the pulse spectral profile,

leading to a sharper cutoff at the wings. Secondly, the phase of the spectra is changed,

which is not considered in this case, since only amplitude spectra are presented.

A typical 2D spectrum is shown in Figure 22. The x and y axis correspond to
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the emission and absorption axis of the investigated resonance. The only feature in

the acquired 2D spectra is a single resonance on the diagonal line indicated by the

white dashed line. The linewidth of the resonance in the diagonal direction is limited

by the excitation laser bandwidth which is shown in the top of Figure 22 as the blue

curve. In the cross-diagonal direction the linewidth of the resonance is related to the

dephasing rate.
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Figure 22: Typical 2D spectrum obtained for the trion resonance. The black
curve in the top part shows the PL spectrum for the energies shown in the
2D spectrum. The blue curve is the lineshape of the excitation laser pulse.
The white dashed line is the diagonal direction corresponding to absorption
and emission at the same energy.

In order to extract the homogeneous linewidth, a slice through the center of the

2D spectrum is taken along the cross-diagonal direction. The data along the cut is

then fit with the function in Equation 23 and the fit parameters are extracted. The

free parameters contributing to the cross-diagonal lineshape are the homogeneous

linewidth Γ, the population decay rate γ, the amplitude S0 and an offset z0. The
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Figure 23: Slice taken through the center of the spectrum in Figure 22 with
a fit according to Equation 23 (red curve) as well as a fit to a square-root of
a Lorentzian (blue curve).

parameter σ is the excitation pulse duration and is set to 100 fs as was measured

from autocorrelation. Since this parameter was measured, it is held fixed during the

fitting. The parameter ω10 is the center energy of the excitation laser and is set to

1625 meV. Figure 23 shows the data taken from a slice through the center of the

spectrum shown in Figure 22 alongside the fit using the function in Equation 23 and

a fit with a pure Lorentzian function for comparison. It can be seen that the pure

Lorentzian overestimates the signal at the wings as well the peak maximum while

the fit function that was used for the analysis decays more rapidly and has a lower

maximum value.

5.3.2 Fitting a Cross-Diagonal Slice

As discussed in Section 5.1, the coherent dynamics in ML-TMDs are on the order of

hundreds of femtoseconds, being within the same timescale as the excitation pulse

used in this experiment. To completely capture the dynamics, the effects due to the

finite pulse duration are explicitly modeled into the linewidth measurement. This

section briefly discusses how a cross-diagonal slice of a 2D spectrum is fit when the

78



coherence dephasing time is on the same order as the pulse duration. In order to

simplify the calculations, only the case of a two-level system with ground state |0〉 and

excited state |1〉 is considered. A detailed treatment can be found in Refs [170, 171].

The discussion here is adapted from [170].

The effect of excitation with a finite pulse compared to excitation with a δ-pulse

can be summarized by bandwidth limitation. While a δ-pulse contains equal spectral

power for arbitrarily high and low frequencies, a finite pulse has a certain bandwidth,

which is typically non-uniform in the spectral domain. The finite pulse effect is

mathematically described by the convolution integral between the signal shape and

the excitation pulse shape and is performed in the time-domain. The pulses used

in the experiment have Gaussian shape and are close to transform-limited pulses

meaning that the spectral power is largest close to the central frequency and decays

rapidly when going away from the central frequency. Therefore processes with a

broad absorption spectrum are only probed within the bandwidth of the excitation

pulses. The same reasoning holds for processes having a broad emission spectrum,

since the signal is measured by heterodyne detection with a reference pulse, which

has the same bandwidth as the excitation pulses. Hence any spectral features outside

the bandwidth of the laser pulse will not be resolved. Furthermore, the convolution

integral introduces a non-uniform phase-shift, which is not resolved in the 2D spectra

discussed here, since only the amplitude is considered.

Starting with a semi-classical model and solving the OBE perturbatively yields

the n-th order density matrix

ρ
(n)
ij (t) = − i

~

∫ t

−∞
[V̂ (t′), ρ̂(n−1)]ije

−iΩij(t−t′)dt′ (18)

where i, j = 0, 1. The parameter Ωij is again defined through the transition frqeuency

ωij as in Equation 12. The relaxation matrix elements are now redefined such that
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Γ corresponds to the coherence dephasing rate while γ is the population relaxation

time.

Ωij =


ωij − iΓ if i 6= j

−iγ if i = j

. (19)

The interaction Hamiltonian V (t) contains the electric field and is given as

V (t) = −µ01[E(t)ei(
~k·~r−ωt) + c.c.] (20)

with the transition dipole moment µ01 and the slowly varying envelope of the electric

field E(t).

Assuming that the pulses have transform limited Gaussian shape, which is a good

approximation to the experimental pulse shapes, the electric field envelope for each

pulse is written as

Ei(t) =
E0
i√

2πσ
e−

(t−ti)
2

2σ2 i = A,B,C (21)

with σ being expressed through the intensity duration full width at half maximum

∆tFWHM = 2
√

ln(2)σ and the ti being the arrival times of the different pulses. Plug-

ging in the pulse shapes and selecting only the signal in the phase-matching direction

~kS = −~kA + ~kB + ~kC , Equation 18 is modified to

ρ
(3)
01 (t) ∝µ3

01

∫ t

−∞
dt′′′e−

(t′′′)2

2σ2 e(iω01−Γ)(t−t′′′)

×
∫ t′′′

−∞
dt′′e−

(t′′+T )2

2σ2 e−γ(t′′′−t′′)

×
∫ t′′

−∞
dt′e−

(t′+T−τ)2

2σ2 e(−iω01−Γ)(t′′−t′). (22)
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Since only the relative arrival times matter in terms of the material response, the

pulse arrival times have been replaced with the time delays. The delays are defined

as τ = tB − tA, T = tC − tB and t = t− tC where t is the emission time of the signal

and the ti correspond to the arrival time of pulse i. To perform the three integrations

the convolution theorem is used, which states that the order of integration between

FT integral and convolution integral can be switched. First the FT along the ωτ

direction is performed, followed by the integral over t′

ρ
(3)
01 (t) ∝µ3

01

∫ t

−∞
dt′′′e−

(t′′′)2

2σ2 e(iω01−Γ)(t−t′′′)

×
∫ t′′′

−∞
dt′′e−

(t′′+T )2

2σ2 e−γ(t′′′−t′′)

× 1

ωτ − ω01 + iΓ
e−

σ2ω2τ
2 .

The integral over t′′ is a Gaussian integral

ρ
(3)
01 (t) ∝µ3

01

∫ t

−∞
dt′′′e−

(t′′′)2

2σ2 e(iω01−Γ)(t−t′′′)

×
(

1 + erf

(
T + iσ2 (ωt + ωτ − 2γ)

2σ

))
× 1

ωτ − ω01 + iΓ
e−

σ2ω2τ
2 .

Lastly the integral over t′′′ is performed and the absolute value of the expression is

taken, such that the final result is the response function in the 2D frequency domain
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used for fitting

S(ωt, T, ωτ ) =S0

∣∣∣∣∣ i

(ωt − ω10 + iΓ

i

ωτ − ω01 + iΓ
e−γT

(
1 + erf

(
T + iσ2 (ωt + ωτ − 2γ)

2σ

))
e−

σ2(ωt−γ)
2

2 e−
σ2(ωτ−γ)2

2 e−
σ2ω2τ

2

∣∣∣∣∣.
An offset z0 is added into the equation to capture the fact that experimental back-

ground is nonzero. Since T = 0 in all experiments presented, the equation can be

written as the following two-dimensional equation

S(ωt, ωτ ) = z0+S0

∣∣∣∣∣ i

ωt − ω10 + iΓ

i

ωτ − ω01 + iΓ

(
1 + erf

(
iσ2 (ωt + ωτ − 2γ)

2σ

))
e−

σ2(ωt−γ)
2

2 e−
σ2(ωτ−γ)2

2 e−
σ2ω2τ

2

∣∣∣∣∣.(23)

In order to fit a cross-diagonal slice, the full dataset gets interpolated to a square

matrix, in the case presented here, the matrix contains 2048× 2048 entries, governed

by the number of pixels of the CCD detector. Then the cross-diagonal is taken from

the matrix corresponding to the cross-diagonal slice in the 2D figure. The slice is

taken along the center of the spectrum through the point (1620meV,−1620meV).

The same point is used to cut through the spectra in order to ensure that no shift

along the trion resonance influences the measured linewidth [172].

The fitting parameters are the signal amplitude S0, the offset ω10 = −ω01 and the

population as well as coherence decay rates γ and Γ, respectively. Furthermore an

offset z0 is included in the fitting which is due to the experimental background being

nonzero and was added manually in Equation 23.
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5.3.3 Power Dependence of TI-FWM and 2DCS signal

In order to prove the nonlinear nature of the signal, a power-dependence measurement

of TI-FWM and the 2DCS experiment is performed. While the TI-FWM signal shows

a large background, the 2DCS signal is able to extract the signal from the background

showing a clear third-order nonlinear behaviour.

For nonlinear signals, the signal strength scales nonlinearly with the excitation

field amplitude. While a first-order process has a linear dependence on the electric

field meaning that the field emitted by a linear process Elin is proportional to the

input field Ein, for a third-order process this proportionality changes to Ethird ∝ E3
in.

Figure 24a shows a typical TI-FWM signal as well as the background. The data is

fit with a Gaussian peak in order to average out the oscillations, which are due to

interference between the excitation pulses and the signal. The area obtained from this

fit of the TI-FWM signal is used to get a measurement of the signal strength. When

increasing the laser power, the TI-FWM signal increases superlinearly as can be seen

in Figure 24b where the green curve is added as a reference for a linearly increasing

signal with the same offset as the one obtained from the linear fit to the data. The

double-logarithmic plot reveals that the power dependence is approximately Esignal ∝

E1.9
in , which is much less than 3, meaning that the measured signal contains a large

amount of background due to scatter, which scales linearly. The scattered background

can be detected by the TI-FWM setup and is shown as the black curve in Figure 24a.

However, it can be concluded that there has to be some third-order signal, since the

second-order signal vanishes along the observed direction in ML MoSe2. Furthermore

the power dependence for the 2DCS experiment is measured. To do so, the amplitude

that was extracted in the fitting process described above is used and plotted as a

function of input power. However, there is an intrinsic error associated with this

method, since the amplitude has to be weighted by the amount of filters used in front
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of the spectrometer, which were required in order to maintain the signal close to the

maximum dynamic range. Although the filters were calibrated by comparing equal

experiments with different filter settings, the fluctuation of the amplitude between

different experiments was too large. Instead, the filters were calibrated by doing

single shot measurements using the reference beam. The amplitude obtained from a

single power dependence measurement is then scaled by the filters used and the power

dependence of the measured amplitude is fit to the parabolic function Esignal = AEn
in.

The extracted parameters are given in Table 5 for power dependence measurements at

different temperatures. Since the signal amplitude is plotted against the laser power,

a third-order nonlinearity corresponds to n = 1.5 rather than n = 3 as was expected

for the TI-FWM experiment, where intensity versus laser power was shown.
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Figure 24: (a) TI-FWM and background trace as measured from the lock-in
amplifier. (b) log-log plot of the power dependence of the area under the
TI-FWM curve obtained from a Gaussian fit to the data at 5 K. (c) Power
dependence of the extracted fit amplitude of 2D spectra at 5 K.

5.3.4 Power Dependence of the Homogeneous Linewidth

The homogeneous linewidth is measured at different excitation densities in order to

get insight into the strength of EID and obtain the homogeneous linewidth at zero

excitation density. The excitation density is estimated from the laser power, the focal

spot radius, which was measured to be 35 µm using a microscope built into the 2DCS
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Temperature A Exponent
5 K 62± 65 1.65± 0.30

10 K 43± 77 1.75± 0.50
15 K 34± 51 1.85± 0.41
20 K 24± 20 1.94± 0.23
25 K 36± 45 1.82± 0.35
30 K 31± 38 1.87± 0.34
35 K 47± 31 1.63± 0.19

Table 5: Nonlinearity fitting parameters

setup, and an absorption of 10% for a single layer of MoSe2. The focal spot size is

slightly smaller than the sample size as can be seen by comparison with Figure 21a.

The excitation dependence of the homogeneous linewidth is shown in Figure 25 where

the data points are averages between multiple measurements and the error bars their

corresponding standard deviations. It can be seen that the homogeneous linewidth

increases linearly with excitation density. The slope is the strength of EID and at 5

K is measured from a linear fit to the data to be 2.10± 0.23 µeV·cm−2.

5.3.5 Temperature Dependence of the Homogeneous Linewidth

The excitation density dependence is repeated at different temperatures and the inter-

cept is extracted at each temperature. The resulting zero excitation density linewidths

are shown in Figure 26 with their corresponding fit uncertainties. The zero excitation

density homogeneous linewidth shows a linear dependence on the temperature. From

a linear fit to the data the strength of PID can be obtained as 8.2±1.6 µeV·K−1. The

intercept of the temperature dependence yields the intrinsic homogeneous linewidth

which is measured to be Γin = 3.60 ± 0.04 meV. This linewidth corresponds to a

dephasing time of T2 = 182± 2 fs.
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Figure 25: Power dependence of the homogeneous linewidth at different tem-
peratures.

5.3.6 Exciton Results

In addition to the trion resonance excitons in ML MoSe2 were investigated. However,

only an upper bound on the intrinsic homogeneous linewidth can be given, since the

measured linewidth corresponds to a decoherence time equal to or smaller than the

laser pulse duration.

This result could be due to two reasons. Firstly, the PL from the exciton resonance

in the sample used is much weaker than the emission from the trion resonance as can

be seen in Figure 21b. Therefore it is also expected that the FWM signal of the exciton

resonance is weak, even under resonant excitation. It is possible that even though the

decoherence time of excitons is longer than the pulse duration, the coherence time

can not be resolved by the experiment because of the signal being buried in too much

background noise. Secondly, the laser bandwidth is narrower at the more blueshifted

exciton resonance due to technical limitations of the laser itself. This leads to a pulse
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Figure 26: Temperature dependence of the homogeneous linewidth at zero
excitation density extrapolated from the results shown in Figure 25. The
error bars correspond to the uncertainty of the intercept obtained from the
linear fits shown in Figure 25.

duration that is most likely equal to or longer than the decoherence time. The laser

pulse duration as measured from autocorrelation is 158 fs. However, the linewidths

extracted using the same fitting routine as was used for trions taking into account

finite pulse effects, the measured decoherence times are between 140− 170 fs.

The corresponding data is presented in Figure 27 showing no clear change over

the available excitation densities.

Extrapolating to zero power for each set yields the temperature dependence that

is shown in Figure 28, which suggests a negative slope for phonon-induced dephasing.

However, as noted above, the pulse duration is equal to or shorter than the signal

decay time and therefore the measured dephasing time of excitons is only an upper

limit for the coherence lifetime assuming that the measured result is due to the

decoherence and not just background noise.
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Figure 27: Excitation density dependence of the homogeneous linewidth of
the exciton resonance at various temperatures used for calculating the tem-
perature dependence of the homogeneous linewidth shown in Figure 28.

5.4 Conclusion

A 2DCS study of the dynamics of trions in ML-TMDs was performed giving the

example of MoSe2 as one representative material of the class of ML-TMDs. The

intrinsic homogeneous linewidth was measured showing an ultrafast dephasing of 182

fs. Due to the dephasing time being on the order of the pulse duration the effect of the

pulse was explicitly considered in the analysis. In addition to the intrinsic dephasing

time the effects of EID and PID were measured by performing temperature and

excitation dependence measurements of the homogeneous linewidth. Comparing this

result to the ultimate limit on the dephasing time, given by 1
T2

= 1
T1

+ 1
T ∗2

, it is seen

that the dephasing time is orders of magnitude smaller than the population decay

time. As shown in Section 4, the trion decay dynamics are dominated by fast trapping
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Figure 28: Extracted homogeneous linewidth at different sample tempera-
tures based off of the results presented in Figure 27. Note that the extracted
linewidths correspond to signal lifetimes equal to the laser pulse duration
and the result can only be considered an upper limit of the exciton dephas-
ing time.

in defect states. The fast dephasing can be explained by the defect states interacting

with trions on an ultrafast timescale leading to dephasing without population decay.
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6 Summary and Outlook

The present dissertation has investigated the coherent and incoherent dynamics of

trions in ML MoSe2 as a representative of the class of ML-TMDs. Trions have previ-

ously been found to strongly modify the optoelectronic properties of ML-TMDs such

that an understanding of these quasiparticles is necessary for device applications.

Gaining insight into the incoherent dynamics is essential for determining the suitabil-

ity of the material as an information processing platform. Information encoded into

the carriers, such as valley polarization, can at most exist for as long as the popu-

lation lifetime. However, it was shown that it is impossible to nonresonantly excite

a valley polarization with measurable lifetime. The dynamics study reveals that the

trion dynamics are dominated by decay into nonradiating defect states which have a

density of ≈ 1013 cm−2 inside the sample used. The defect density is comparable to

the excited carrier density and the dynamics slow down at higher excitation densities

due to filling up of the defect states.

The coherent dynamics of trions were studied using 2DCS, a spectroscopic tool

that, in contrast to one-dimensional FWM techniques, can unambiguously determine

the coherence time even in the presence of inhomogeneous broadening. The decoher-

ence time was found to be limited by pure dephasing, likely due to trions interacting

with the defect states revealed by the incoherent dynamics study without popula-

tion transfer. The result presented here fits well into works of other groups and it

can be concluded that in bare ML-TMDs the coherence time is intrinsically on the

order of a few hundred fs. A first step in increasing the coherence time has been

taken by encapsulating ML-TMDs in hexagonal Boron-Nitride leading to an increase

of the dephasing time by at least a factor two. Future studies will also investigate

the coherence time of excitons in heterostructures of ML-TMDs. Interlayer excitons

in TMD heterostructures have an increased lifetime on the order of nanoseconds and
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potentially will also have a longer coherence time than their intralayer counterparts,

paving the way for coherent information processing in TMDs. Furthermore, quantum

dots have been shown to lead to a narrowing of the PL linewidth associated with an

increased lifetime on the order of nanoseconds. Again, future experiments will reveal

the coherence time of these interlayer exciton states. Another interesting approach

to increasing the coherence time in ML-TMDs may lie in the use of defect states as

the platform for coherent manipulation. First experiments have shown that defects

in ML-TMDs can have a lifetime of nanoseconds, at least an order of magnitude

longer than the measured lifetime of excitons and trions excited in the bulk crystal.

Although the coherence time of defects in ML-TMDs has not yet been measured,

results on the coherence time of quantum dots in GaAs have shown that the zero-

dimensional confinement can increase the coherence time by orders of magnitude.

Although ML-TMDs have ideal properties for a semiconductor and one molecular

layer having a thickness of only three atoms or about 7− 10 Å [173] already absorbs

approximately 10 % of the incoming light, the utility of the material thus far is

limited because of the relatively low quantum efficiency. Combined with the low

light absorption which can not easily be increased by stacking multiple layers as the

optical properties change in bi- and multilayer structures, optical investigation of ML-

TMDs remains challenging. Still, a large research effort is being taken to improve

understanding of ML-TMDs and transfer them from labs to device applications.
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A Collinear Spectroscopy of Encapsulated Monolayer MoSe2

This section discusses results obtained by performing collinear spectroscopy on encap-

sulated MLs. The results are in disagreement to those reported by others concerning

the linewidth narrowing, probably because of a different fabrication technique.

A.1 Introduction

As shown in Section 5, the coherence time of trions in ML-TMDs is on the order

of 100s of femtoseconds. This timescale is too short for any device application. It

is already known, that defects largely affect the trion dynamics in ML-TMDs, as

discussed in Section 4 and towards the end of Section 5. Because of the maximal

interfacial area of single-layer crystals with the substrate and environment, one can

expect that irregularities in the substrate and interaction with the environment will

readily act as defect locations for trions generated in the ML. To avoid interaction

with these external defects, ML-TMDs can be encapsulated in hexagonal Boron-

Nitride (hBN), which has been shown to have excellent surface quality and low defect

density. Encapsulation in hBN therefore decouples the ML-TMD from possible sub-

strate defects. Furthermore, the coupling to the environment is reduced by capping

the ML-TMD with another film of hBN on top of the ML [174, 175]. Another ben-

eficial effect lies in the fact that encapsulated samples have enhanced resistance to

photodegradation [176]. The effect on the lifetime and coherence time of excitons

upon encapsulating a ML in this way has been studied, and it has been found that

the coherence time approaches the homogeneous limit [64]. Contrary to the samples

previously studied in this dissertation, the flake size of encapsulated samples are on

the order of a few µm, since the encapsulated ML-TMDs are mechanically exfoliated

MLs, which are typically not found to be larger than 10 µm in sidelength. This pro-

hibits the use of non-collinear 2DCS as the focal spot size would be much larger than
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the sample area of interest and any FWM signal from the ML would be completely

overshadowed by scatter from non-ML regions. Instead, PL detected collinear 2DCS

is used, as described in Section 3.2.2. The spot size obtained using this technique is

approximately 1 µm and much smaller than the samples of interest. Using collinear

2DCS it is therefore possible to study encapsulated flakes of exfoliated MoSe2 MLs.

A.2 Experiment

The setup used in this experiment is a modified version of the photocurrent detected

setup developed by Nardin et al. [29] for the detection of 2DCS from indium gallium

arsenide quantum wells inside a device. This section first presents preliminary PL

data used for finding the resonance of the MoSe2 ML when encapsulated. Then the

experimental setup used for PL detected 2DCS is discussed.

A.2.1 Sample description

The ML in this experiment has been exfoliated from a bulk crystal using mechanical

exfoliation. The ML is then transferred onto a thick (100 nm) hBN film on a silicon

substrate to isolate it from defects on the silicon surface. The ML flake is then

capped using another hBN film with thickness of approximately 20 nm to isolate

the ML from the environment. The total device structure is shown in Figure 29a.

The most notable feature is that the flake is much smaller than those used in the

previous experiments. Therefore, an almost diffraction limited spot size is necessary

to investigate the encapsulated ML. Since the sample is now on silicon instead of a

glass substrate, all experiments are performed in the reflection geometry as silicon is

not transparent to the wavelengths used in the experiment.
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A.2.2 Preliminary Experiments

The resonance of the encapsulated MoSe2 ML is found using low-temperature µ-PL.

The ML is excited by a 405 nm cw laser diode focused to a spot size of ≤ 1 µm. The

PL signal from the ML is collected using an optical fiber and sent to a spectrometer.

The result is shown in Figure 29b. Comparison with the PL data in Section 4 and

Section 5 shows that the trion PL linewidth is mostly unchanged and the center energy

of the PL is also the same for all temperatures. Comparing the relative strength of

exciton and trion, it can be seen that the trion emission strength of the encapsulated

sample ranges between that used in Section 4 and the one used in Section 5. The

trion emission still completely dominates the PL spectrum. The overall preliminary

characterization is in stark contrast to the reported results in [64]. However, even

though the preliminary characterization points towards the sample being close to the

samples already studied in the 2DCS experiment shown in Section 5, it is still of

interest if the homogeneous linewidth becomes narrower in the encapsulated sample.
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Figure 29: (a) Microscope image of the encapsulated ML sample. The ML
region is within the area highlighted by the black line. The two hBN films
are outlined by the red and green lines. The longest side of the ML flake is
approximately 27 µm. Photoluminescence emission from encapsulated MoSe2

at low temperatures upon excitation with a 405 nm cw laser.
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A.2.3 Collinear 2DCS

Upon having found the PL emission and therefore the resonances ascribed to exciton

and trion in the encapsulated MoSe2 ML, 2DCS is performed on the encapsulated

flake. Since the flake is smaller than the focal spot size in the non-collinear setup

used before, a collinear setup is used. The benefit of using collinear excitation lies

in the possibility to focus the laser to a near diffraction-limited spot size by coupling

the beams into a microscope objective. The objective used is the same 50× objective

used in Section 4 allowing focal spot sizes estimated to be ≈ 1 µm and much smaller

than the flake size of 10 µm per side.

The collinear setup splits one laser pulse into four copies with variable delay times.

Copropagating with the pulse laser is a reference laser close to the center wavelength

of the pulse laser. In this case, the pulse laser is blue-shifted from the trion resonance

to 1630 meV while the reference laser is operating at a photon energy of 1620 meV.

The blueshifting of the pulse laser is necessary to isolate the signal from the cw laser

spectrum.

In contrast to the non-collinear setup, signal and excitation pulses are now co-

propagating. To be able to isolate the signal from the background, frequency tagging

of the pulses is used. This technique tags each of the four excitation pulses with

a unique RF using AOMs. Mixing of the frequencies then results in a beat note

at their respective difference frequencies. The beat frequency of the FWM signal is

ωs = −ωA + ωB + ωC − ωD where A−D correspond to the beams A−C and Ref in

Figure 4.

Data is recorded by scanning two pulses in time. The pulse sequence shown in

Figure 4 is extended by a fourth pulse arriving after pulse C with delay t. Then

the delays τ and t are scanned to obtain a two-dimensional spectrum in the time-

domain. The spectrum is then Fourier transformed along the two axes to obtain a
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2D spectrum in the frequency domain. The optic pathlength is monitored by the

reference laser copropagating with the pulse laser. To isolate the FWM signal of

interest from linear contributions and other nonlinear signals the reference beat note

is used as the reference frequency to a lock-in amplifier. The FWM signal is recorded

on a photodetector where the electric fields optically mix and signal at the reference

beat frequency is extracted with the help of the lock-in amplifier.

A.3 Results

Following the procedure outlined in Section 5, spectra are recorded at various ex-

citation powers to isolate the zero excitation-density linewidth and remove EID ef-

fects. Then the experiment is repeated at different temperatures to extrapolate to

the zero-temperature linewidth at zero excitation density, excluding PID effects. The

excitation dependence is shown in Figure 30a and exhibits a linear increase upon in-

creasing excitation, similar to the results obtained in Section 5. The large error at low

excitation powers is due to the spectra becoming noisy at lower excitation densities

since fewer trions are excited.

From the temperature dependence of the homogeneous linewidth the intrinsic

homogeneous linewidth in an encapsulated MoSe2 ML is found to be 5.75 ± 0.75

meV. This linewidth corresponds to a coherence time of 114 ± 16 fs, shorter than

that of the non-encapsulated samples and much shorter than the values reported for

excitons in encapsulated MoSe2 MLs [64].

A.4 Discussion and Conclusion

In this section the intrinsic homogeneous linewidth of trions in encapsulated ML-

TMDs was measured using MoSe2 as a representative of the class of ML-TMDs. The

measured coherence time of trions is shorter than that of a bare ML and much shorter
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Figure 30: (a) Power dependence of the homogeneous linewidth of encapsu-
lated MoSe2 MLs at 10 K. (b) Temperature dependence of the homogeneous
linewidth at zero excitation density. The datapoints and error bar are the
y-intercept and corresponding error from the fit in Figure 30a.

than the reported coherence time of excitons in another encapsulated MoSe2 ML.

The PL emission in the ML used differs significantly from that of other encapsulated

MLs. Most notably, the trion emission is much stronger than the exciton emission, in

contrast to PL emission typically reported for encapsulated MLs. Since the substrate

on which the ML flake is placed is now thick hBN which is known to have exceptional

crystal quality, the PL emission can no longer be assigned to defects in the substrate.

Instead, the large trion density is ascribed to defects in the ML flake itself or a different

contact between ML flake and hBN substrate rooted in differences in the fabrication

process.
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B Detailed Discussion of the 2DCS Platform and Alignment Procedure

The non-collinear 2DCS setup has been introduced in Section 3 and Section 5, but the

treatment has focused more on the physical processes involved in generating a signal

in the phase-matching direction rather than focusing on the specific intricacies of the

setup used to implement 2DCS in the presented experiment. This section is going to

give a clear overview of the setup and then go on to give a step-by-step procedure for

aligning the whole 2DCS system.

B.1 Experimental Setup

A schematic of the top and bottom decks used in the setup is shown in Figure 31

with labels for all optics. The input laser is split for the first time at the beamsplitter

BS1. Half of the beam is sent to the top deck while the other half keeps propagating

on the bottom deck. The bottom half of the beam is delayed using a long (15 cm)

double-passing delay stage leading to a maximum total delay of 60 cm or 2 ns. The

delayed beam is then sent to another beamsplitter BS2 where beams C and D are now

generated. Beam C is sent through a glass plate to compensate for the dispersion

with respect to beam D. Furthermore, the two mirrors M6,M7 before beam C

leaves the instrument can be used to adjust the beam position and pointing. Beam

D is sent to a second delay stage that can be used to adjust the delay of beam

D independently and is reflected using a retroreflector. The retroreflector has the

advantage of not requiring any alignment, but the disadvantage of giving little to no

room for adjustment of beam pointing or positioning. The half of the input beam

sent to the top deck is sent upwards through the use of a periscope consisting of

mirrors M8 and M9. Half of the periscope is on the bottom deck and an iris can

be attached for rough alignment of the upgoing beam. The beam coming up to the

top deck can also be delayed using a manual stage, however, this capability has not
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(a) (b)

Figure 31: (a) Bottom and (b) top deck of the 2DCS instrument.

yet been used. The beam is then sent through another glass plate to compensate

the dispersion of beams A and B with respect to beams C and D that went through

the first beamsplitter. The beam is then split on BS3 and the reflected part is sent

to a glass plate to compensate the dispersion of beam B with respect to beam A.

The total number of glass plates in each beam is four, therefore introducing the exact

same amount of dispersion in each beampath, allowing the use of high bandwidth laser

pulses in the setup without worrying about changes in dispersion between different

beampaths. Beam B is sent to a double-passing delay stage after which it leaves the

instrument. Beam A also traverses a double-passing delay stage and is then sent out

of the instrument.

Although care was taken when designing the instrument, the stages are not per-

fectly parallel with respect to each other. However, with the retroreflectors, the only

possibility is to align a beam to the stage and rely on the stage positioning inside the

instrument, since the retroreflector does not have any way of adjusting the output

beam. To improve on the adjustability of the output beams, an extension was devel-

oped adding two mirrors to each beampath while keeping the beams copropagating

on a box of 2.5 cm sidelength. This extension allows compensation of any deviation

of the delay stages from perfect parallelism while still maintaining the phase-lock

between the beams.
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B.2 Full Alignment Procedure

In this section the full alignment procedure is shown. Each step is clarified by its

own drawing. This procedure should only be followed when the instrument has been

moved or the internals of the instrument were changed. Otherwise, an alignment of

the input beam and, if necessary, the extension, is sufficient for performing 2DCS.

The section starts by explaining the blade-method used to ensure that a beam is

parallel to a linear stage.

B.2.1 Alignment Using the Blade-Method

The blade method can be used whenever a beam needs to be made parallel to a linear

stage, either automatic or manual. It uses the fact that the intensity of a Gaussian

beam changes rapidly at the peak center.

To start, a new razor blade is fixed to an x−z manual micrometer controlled stage

and a power meter is set up behind the stage to be aligned as shown in Figure 32.

The stage is set up such that the blade cuts off half of the beam in the horizontal

direction. The stage to align to is then moved towards the mirror as much as possible

and the blade position is adjusted until 50 % of the laser power are transmitted. Then

the stage is moved to the other end such that the blade is as far away from the mirror

as possible. Then the mirror is adjusted until half the laser power is transmitted to

the power meter. This is iterated many times (typically about 10-50 times) until the

power does not change when moving the blade along the whole stage travel.

After alignment in the horizontal direction, the beam must also be aligned to be

vertically parallel to the stage. The blade is placed such that it cuts the beam in half

along the vertical direction and the procedure explained above is repeated. Adjusting

the mirror in the vertical direction leaves the horizontal direction unaffected such that

now the beam is parallel to the stage both vertically and horizontally.
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Figure 32: Schematic demonstrating the setup for adjusting a beam to be
parallel to a linear stage.

B.2.2 Top Deck Alignment

To start alignment of the instrument, first the top and bottom deck need to be

separated. The first step is removing the anodized aluminium panels enclosing the

instrument. These are in place to block stray beams and reduce airflow inside the

instrument. Afterwards, the four screws holding the two plates together should be

removed, highlighted in red in Figure 33a. Then the four screws holding the two

spacers highlighted by the white lines in Figure 33a are removed. The spacers will

stay inside the instrument until the top deck is lifted since the top deck rests on the

spacers now.

There are four screws supplied with the instrument which need to be used to

lift the top from the bottom deck. A picture of the screws is shown in Figure 33b.

The screws are inserted through the top deck at the holes highlighted in green in

Figure 33a. When lifting the top deck, each screw should be turned by no more than

one turn at a time. After turning one screw for one turn or less, the other three
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Figure 33: (a) The closed instrument before opening. (b) The screws used
to lift the top deck from the bottom deck.

screws should be turned by the same amount to ensure a homogeneous lifting of the

top deck and avoid the top deck getting caught on the guiding pins.

After lifting the top deck high enough that it is completely lifted off the guiding

pins the top deck can be moved by two or more persons using the supplied handles

shown in Figure 34. The top deck will be aligned first, followed by the bottom deck.

Figure 34: Handles used to lift the top deck.

Top-Deck Alignment

1. Remove the periscope mirror M9

2. Remove mirrors M10 and IM2 as shown in Figure 35

3. Center the beam on the iris at position I11 and the input
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4. Replace mirrors M10 and IM2

Figure 35: Top deck with the periscope mirror M9, input mirror M10 and
interferometer mirror IM2 removed and the alignment beam path.

5. Remove the assembly holding mirrors M11 and M12

6. Center the beam on the iris at position I12 and I13 using only mirror M10

7. Replace the assembly containing M11 and M12

Figure 36: Top deck with the M11 and M12 assembly removed and the
alignment beam path.

8. Remove mirror M16

9. Align the beam to pass through the iris placed at I14 using M12 and I15 using

M13. Iterate this procedure as necessary. Note that the iris at I14 needs a

cutout for the beam to pass through. The beamsplitter BS3 and the glass

plate should not be removed.
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Figure 37: Top deck with mirror M16 removed and the alignment beam path.

10. Replace M16

11. Remove the retroreflectors R4 and R5

12. Use BS3 to align the beam through I16

13. Ensure the beam is parallel to the stage using the blade edge method explained

in Section B.2.1

14. Confirm the beam still passes through I16 and use the third knob of BS3 to

align to I16

15. Repeat steps 13 and 14 as necessary

16. Replace R4

Figure 38: Top deck with retroreflectors R4 and R5 removed and the align-
ment beam path.
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17. Use M14 to align the beam through iris I17

18. Use M15 to ensure the beam is parallel to the stage

19. Iterate steps 17 and 18 until the beam is passing through the iris and parallel

to the stage

20. Replace the retroreflector R5

Figure 39: Top deck with retroreflector R5 removed and the alignment beam
path.

21. Remove the retroreflectors R6 and R7

22. Use M16 to align the beam through iris I18

23. Use M15 to ensure the beam is parallel to the stage

24. Iterate steps 22 and 23 until the beam is passing through the iris and parallel

to the stage

25. Replace R6

Now alignment of beam A is completed and the beampath up to BS3 is fixed and

should not be touched any more.

26. Use M18 to ensure the beam is parallel to the stage
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Figure 40: Top deck with retroreflectors R6 and R7 removed and the align-
ment beam path.

Figure 41: Top deck with retroreflector R7 removed and the alignment beam
path.

27. Replace R7

28. Use M17 to align to the iris I19

29. Use M18 to ensure the beam is parallel to the stage

30. Repeat steps 28 and 29 until the beam is both parallel to the stage and going

through iris position I19

31. Replace the periscope mirror M9

Now alignment of the top deck is done and the top deck is placed in a safe location

until the bottom deck is aligned and the two parts are combined again.
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Figure 42: Final top deck beam path for beam B.

B.2.3 Bottom Deck Alignment

Before starting alignment of the bottom deck, the bottom deck should be moved to

the location where it will be used later on, since input alignment to the bottom deck

will be the final alignment used during experiments. Furthermore, for safety reasons,

mirror M8 should be removed or covered.

1. Remove mirrors M1 and IM1

2. Align the input to irises placed at positions I1 and I2

3. Now fix the external input alignment using two irises for easy recovery in daily

operation

4. Replace M1 and IM1

5. Remove retroreflectors R1 and R2

6. Use M1 to align to iris position I3

7. Ensure the beam is parallel to the stage using the blade method

8. Repeat steps 6 and 7 until the beam is both aligned to the stage and passes

through I3
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Figure 43: Bottom deck with input mirror M1 and interferometer mirror
IM1 removed and alignment beam path.

Figure 44: Bottom deck with retroreflectors R1 and R2 removed and align-
ment beam path.

9. Replace R1

10. Use M2 to align to iris I4

11. Use M3 to ensure the beam is parallel to the stage using the blade method

12. Repeat steps 10 and 11 until the beam is both parallel to the stage and passes

through I4

13. Replace R2

14. Remove M4

15. Adjust the retroreflector R2 to make the beam pass through I5
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Figure 45: Bottom deck with retroreflector R2 removed and alignment beam
path.

Figure 46: Bottom deck with mirror M4 removed and alignment beam path.

16. Replace M4

17. Remove M5

18. Use M4 to align the beam through I6 and I7

19. Replace M5

20. Remove R3

21. Use M5 to ensure the beam passes through I8

22. Use M5 to ensure the beam is parallel to the stage

23. Repeat steps 20 and 21 until the beam is both parallel to the stage and passing

through I8
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Figure 47: Bottom deck with mirror M5 removed and alignment beam path.

24. Replace R3

Figure 48: Bottom deck with retroreflector R3 removed and alignment beam
path.

25. Adjust R3 to ensure the beam passes through I9

Now beam D is aligned which is used as the reference for aligning beam C.

26. Use M6 to align the beam through iris position I10

27. Obtain a 1 in. box

28. Place the box as far away from the instrument as possible such that beam D

hits the bottom right corner

29. Use M7 to align the beam to the bottom left corner of the box
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Figure 49: Final bottom deck beam path for beam D.

Figure 50: Final bottom deck beam path for beam C.

30. Repeat steps 25 and 28 until the beam passes through I10 and hits the bottom

left corner of the box

31. Replace the periscope mirror M8

The alignment of the bottom deck is done and the top and bottom deck need to

be put together. Before joining the two plates, make sure periscope mirrors M8 and

M9 are in place.

B.2.4 Joining Top and Bottom Deck

The long screws used to lift the top deck up in Section B.2.2 are inserted into the top

deck again and screwed all the way in, such that the screws will hold the top deck

up when joining the two parts. Then the top deck is lifted up, flipped upside down

and placed onto the bottom deck such that the holes receiving the guiding pins are
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approximately overlapped with the pins. Then the lifting screws are retracted until

the top deck starts touching the guiding pins. Now the top deck is aligned to the

guiding pins more carefully to make sure the guiding pins enter straight. Furthermore

the spacers highlighted in Figure 33a need to be inserted now. The lifting screws are

then retracted exactly opposite as described in Section B.2.2, turning each screw no

more than one turn at a time and ensuring that the top deck does not get caught on

the guiding pins. The spacers can now be fixed, holding top and bottom decks at the

correct separation. Also, the locking screws that were removed are put back in place.

Once top and bottom decks are put together again, the periscope needs to be

aligned such that the input to the topdeck is recovered. To do this, a box is placed

outside of the instrument as far away as possible and the bottom corners of the box

are aligned to beams C and D. Then periscope mirror M9 is adjusted until A and B

are on the top corners of the box. The box is then taken as close to the instrument as

possible and the bottom corners are aligned to beams C and D again. M8 can now

be used to improve overlap of A and B with the top corners of the box. Repeating

this procedure beams A and B are eventually vertically parallel and exactly 2.5 cm

above beams C and D. However, there is no way to adjust for any horizontal offset

between the top and bottom deck using only the periscope for which the extension

will be used.

Now the internals of the instrument are fully aligned and any further adjustment

is going to be done either through external input alignment or using the extension.

B.2.5 Using the Extension

At this point the output should closely resemble a box with at most one beam of the

top deck not being on a corner of the box while the other three are.

One beam that is vertically parallel to the table is chosen as the reference beam, in
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Figure 51: Bottom part of the extension with beam paths for beams C (red)
and D (green).

this case it is assumed that beam D is used. The procedure is only explained for beam

C deviating from the box but is exactly the same for all other beams and can be done

simultaneously. To start, the box is placed as close as possible to the instrument and

adjusted such that beam D is overlapped with the bottom right corner of the box.

Any deviation of beam C from the box is compensated by adjusting mirror EM1.

The box is then placed as far away as possible and moved such that beam D is on the

bottom right corner again. Then mirror EM2 is used to overlap beam C with the

bottom left corner again. This procedure is repeated until beam C is simultaneously

on the corner of the box when placed close and far away from the instrument.

Now the four beams are at the correct separation and parallel to each other. In

this configuration a FWM signal is propagating overlapped with the reference beam

and can be found by aligning the reference beam to the spectrometer.

To confirm the overlap between all four beams at the focal plane, a system for

imaging a replica focus is built into the setup. Using this any deviation between

the four beams can be compensated. Still assuming that only beam C needs to be

adjusted, the extension mirror EM2 can be used to overlap beam C with beam D.
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The output from the instrument should again be checked by placing a box as close

as possible and any deviation can be compensated using EM1 again.
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Berghäuser, Ermin Malic, Andreas Knorr, and Xiaoqin Li. Intrinsic homoge-
neous linewidth and broadening mechanisms of excitons in monolayer transition
metal dichalcogenides. Nat. Commun., 6:8315, 2015.

[61] Kai Hao, Lixiang Xu, Philipp Nagler, Akshay Singh, Kha Tran, Chan-
driker Kavir Dass, Christian Schüller, Tobias Korn, Xiaoqin Li, and Galan
Moody. Coherent and Incoherent Coupling Dynamics between Neutral and
Charged Excitons in Monolayer MoSe2. Nano Lett., 16(8):5109–5113, 2016.

[62] Kai Hao, Judith F. Specht, Philipp Nagler, Lixiang Xu, Kha Tran, Akshay
Singh, Chandriker Kavir Dass, Christian Schüller, Tobias Korn, Marten Richter,
Andreas Knorr, Xiaoqin Li, and Galan Moody. Neutral and charged inter-valley
biexcitons in monolayer MoSe2. Nat. Commun., 8:15552, 2017.

[63] C.E. Stevens, P. Dey, J. Paul, Z. Wang, H. Zhang, A.H. Romero, J. Shan,
D.J. Hilton, and D. Karaiskaj. The role of electron-phonon interactions on the
coherence lifetime of monolayer transition metal dichalcogenides. Solid State
Communications, 266(Supplement C):30 – 33, 2017.

[64] Eric W. Martin, Jason Horng, Hanna G. Ruth, Eunice Paik, Michael-Henr
Wentzel, Hui Deng, and Steven T. Cundiff. Encapsulation Narrows Excitonic
Homogeneous Linewidth of Exfoliated MoSe2 Monolayer. arXiv, 2018.

[65] Richard P. Feynman. Plenty of room at the bottom, 1959.

[66] Anderson P. W. More is different. Sci., 177:393–396, 1972.

[67] Landau L. D. and Lifshitz E. M. Course of theoretical physics 3, 1986.
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[75] Gunnar Berghäuser and Ermin Malic. Analytical approach to excitonic prop-
erties of mos2. Phys. Rev. B, 89:125309, 2014.

[76] Miguel M. Ugeda, Aaron J. Bradley, Su-Fei Shi, Felipe H. da Jornada, Yi Zhang,
Diana Y. Qiu, Wei Ruan, Sung-Kwan Mo, Zahid Hussain, Zhi-Xun Shen, Feng
Wang, Steven G. Louie, and Michael F. Crommie. Giant bandgap renormal-
ization and excitonic effects in a monolayer transition metal dichalcogenide
semiconductor. Nat. Mater., 13:1091–1095, 2014.

[77] Sangeeth Kallatt, Govindarao Umesh, and Kausik Majumdar. Valley-coherent
hot carriers and thermal relaxation in monolayer transition metal dichalco-
genides. The J. Phys. Chem. Lett., 7(11):2032–2038, 2016.

[78] A. T. Hanbicki, M. Currie, G. Kioseoglou, A. L. Friedman, and B. T. Jonker.
Measurement of high exciton binding energy in the monolayer transition-metal
dichalcogenides WS2 and WSe2. Solid State Commun., 203:16 – 20, 2015.
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