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ABSTRACT OF THE DISSERTATION

IMAGE-BASED AUTHENTICATION

by

Mozhgan Azimpourkivi

Florida International University, 2019

Miami, Florida

Professor Bogdan Carbunar, Major Professor

Mobile and wearable devices are popular platforms for accessing online services.

However, the small form factor of such devices, makes a secure and practical ex-

perience for user authentication, challenging. Further, online fraud that includes

phishing attacks, has revealed the importance of conversely providing solutions for

usable authentication of remote services to online users. In this thesis, we intro-

duce image-based solutions for mutual authentication between a user and a remote

service provider. First, we propose and develop Pixie, a two-factor, object-based au-

thentication solution for camera-equipped mobile and wearable devices. We further

design ai.lock, a system that reliably extracts from images, authentication creden-

tials similar to biometrics.

Second, we introduce CEAL, a system to generate visual key fingerprint represen-

tations of arbitrary binary strings, to be used to visually authenticate online entities

and their cryptographic keys. CEAL leverages deep learning to capture the target

style and domain of training images, into a generator model from a large collection

of sample images rather than hand curated as a collection of rules, hence provides

a unique capacity for easy customizability. CEAL integrates a model of the visual

discriminative ability of human perception, hence the resulting fingerprint image

generator avoids mapping distinct keys to images which are not distinguishable by

humans. Further, CEAL deterministically generates visually pleasing fingerprint im-

vi



ages from an input vector where the vector components are designated to represent

visual properties which are either readily perceptible to human eye, or imperceptible

yet are necessary for accurately modeling the target image domain.

We show that image-based authentication using Pixie is usable and fast, while

ai.lock extracts authentication credentials that exceed the entropy of biometrics.

Further, we show that CEAL outperforms state-of-the-art solution in terms of effi-

ciency, usability, and resilience to powerful adversarial attacks.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Mobile and wearable devices are popular platforms for accessing sensitive online

services such as e-mail, social networks and banking accounts. Traditional solutions

for authentication equation are not always suitable for mobile and wearable devices.

For instance, while the traditional text password or PIN are widely used, and can be

securely stored, accessed and converted to cryptographic keys, the small form factor

of mobile and wearable devices disqualifies them as being user-friendly. In addition,

while fingerprint based protection is convenient, it requires specialized hardware

that is not ubiquitous in all mobile devices.

Generally, a secure and practical experience for mobile device-based user au-

thentication raises significant challenges: the small and limited form factor of these

devices, especially for wearable devices (e.g., smartwatches [Sam17] and smart-

glasses [Vuz17]), complicates the input of the commonly used text-based passwords,

while the memorability of these passwords poses a significant burden on users who

access a multitude of services [WWB+05b]. Further, the form factor of mobile and

wearable devices renders them easy targets for theft followed by attacks to recover

the user’s authentication credentials, keying information, or sensitive information.

Biometric authentication solutions seemingly address the issues with small form

factor of mobile and wearable devices. Biometric authentication features, com-

prised of “something you are”, provide a basis for sufficiently strong systems se-

curity, instant verification and convenience for users. Forecasts put the total bio-

metrics software and hardware market revenue exceptions to a staggering $15 bil-

lion for 2025 [KW17], which is dominated by applications in consumer device au-
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thentication, mobile banking, point of sale payments, cashpoints, and IT systems

security. However, the cost-benefit analysis of biometrics does not include per-

sonal implications to users, who are the least prepared for the imminent nega-

tive outcomes, and are not often given equally convenient alternative authenti-

cation options. Users have at most 10 fingerprints for all of their accounts in

their lifetime, yet unlike passwords and credit card numbers, biometrics cannot

be reset and re-issued when compromised. Furthermore, biometrics such as finger-

print, face and gait cannot even be kept secret. More importantly, as surrendering

biometrics may become de facto mandatory [MK16, Kee15], existing vulnerabili-

ties [XPFM16, PLK+12, ACJP14, GRGB+12], coupled with the compromise of large

scale biometrics databases [Pet15], raise significant long term security concerns, es-

pecially as transactions authenticated by biometrics across different systems are

linkable and traceable back to the individual identity.

In addition, token-based authentication solutions, e.g., SecurID [RSA17], usually

require extra hardware and expensive infrastructure [Sec15] (e.g. for issuing, man-

aging, and synchronizing the token). In addition, use of these solutions can impact

usability: the user needs to enter password plus an additional code to the device to

authenticate.

A secret image-based authentication approach, where users authenticate using

arbitrary images they capture with the device camera, may address several of the

above problems. For instance, the authentication is not tied to a visual of the user’s

body, but that of a personal accessory, object, or scene. As illustrated in Figure 1.1,

a user sets her reference credential to be an image of a nearby object or scene. To

authenticate, the user captures a candidate image; the authentication succeeds only

if the candidate image contains the same object or scene as the reference image. In

this dissertation, we introduce Pixie and ai.lock (see Chapter 4 and Chapter 5), two

2



Figure 1.1: Image-based authentication scenario. The user captures the image of an
object or scene with the device camera. The information about reference credentials
are securely store on the mobile device or on a remote server. The user authenticates
only if she can captures another image of the same object or scene.

secret image-based authentication solutions. These solutions improve on (1) biomet-

rics, by freeing users from personal harm, providing plausible deniability, allowing

multiple keys, and making revocation and change of secret simple and (2) token-

based authentication, by eliminating the need for an expensive infrastructure. Visual

token-based solutions (e.g., based on barcodes or QR codes) [MPR05, HPOH12] can

be seen as special cases of secret image-based authentication.

Further, online fraud that includes phishing attacks [Ram10], has revealed the

importance of conversely providing solutions that allow users to verify the authen-

ticity of online services they access or the identity of other users with whom they

communicate, e.g., social networking friends, e-mail contacts, etc. One approach

that allows the users to perform such verification, without any reliance on trusted

third parties with predefined authorities, is through the use of key fingerprints.

Key fingerprints [wae16, akw, GSS+06, Hui00, LLvG09, PS99] help humans

compare arbitrary data strings (e.g., keys, addresses, and identifiers) for equality.

Key fingerprints have a wide range of applications, including preventing phishing
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[Ram10, RAM+18] and Bitcoin clipboard [Sub18] attacks, authentication in End-

to-End Encrypted (E2EE) applications, device pairing and security indicators, see

§ 6.2.2 for more details.

Efficient Key Fingerprint Generation (KFG) solutions need to minimize the time

taken by a human to compare the data, and minimize the success rate of “collision”

attacks, where adversaries find different key fingerprints perceived as being the same

by humans. Tan et al. [TBB+17] have shown that Visual Key Fingerprint Gener-

ation (VKFG) solutions and Vash [vas14] in particular, that convert input strings

into images for humans to compare, outperform several text-based key fingerprint

solutions (e.g. [wae16, Hui00]) in terms of both human attack detection rate and

comparison time.

The attack success rate against visual key fingerprint representation solutions

is however still unacceptable, exceeding 10% [TBB+17]. One reason for this is

that existing solutions do not take into account the limits of human perception

and how it relates to the space of images that they generate. More specifically,

existing solutions cannot predict if specific changes in the input data will generate

human-distinguishable changes in the generated images. Further, we show that most

Vash [vas14]-generated images are vulnerable to attack (see § 6.7.4), and out of only

10,000 random-generated Vash images, we found 24 human-validated collisions.

Unlike existing solutions that only generate structured images (e.g. Vash [vas14],

Unicorn [vdE17] and CLPS [OKS+13]), a straightforward approach to generate real-

istic and diverse set of images from input strings, is to use a Generative Adversarial

Network (GAN [GPAM+14]). GANs can model the distribution of image samples,

and can be used to draw previously unseen samples from the estimated distribution.

In this dissertation, we introduce, implement and evaluate CEAL, short for CrE-

dential Assurance Label, a human-centric VKFG solution that employs GANs [GPAM+14]
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Figure 1.2: Visual key fingerprint-based authentication scenario: Given an arbitrary
input string, the VKFG function generates an image fingerprint representation of the
input. A human verifier compares this image against a securely acquired reference
image fingerprint, e.g., from trusted site, person-to-person, etc.

to generate realistic, attack-resilient images (i.e. ceals), that are easy to compare

by humans. As depicted in Figure 1.2, to authenticate an identity, the user needs

to generate the image key fingerprint corresponding to the identity using VKFG.

Then, he compares this image to a reference image of the key fingerprint that he has

obtained through a secure channel. Unlike existing solutions that base their security

on cryptographic hash functions or pseudo-random number generators, CEAL has

built-in “input-spreading” properties that endow it with second pre-image and col-

lision resistance properties that is required for key fingerprint generation solutions.

1.2 Contributions

In this dissertation, we design secure, efficient and usable solutions for mutual au-

thentication between mobile device users and remote parties. Specifically, we pro-

pose three image-based authentication solutions. The first two approaches are de-

signed for authenticating a mobile device user either locally, to a mobile device, or

remotely to a remote service provider. Conversely, we present a visual key finger-

print representation solution to allow users to verify the authenticity of a remote

identity, e.g., remote service provider, social network contact or a nearby device the
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user is willing to connect. In the following, we briefly introduce these systems that

include: Pixie, ai.lock and CEAL.

1.2.1 Secure image-based mobile authentication

We introduce Pixie and ai.lock, two secret image-based authentication methods

for mobile and wearable devices. Pixie is an object-based authentication solution

that employs traditional image processing techniques to extract image features (i.e.,

“keypoints”) and match user captured images. Pixie has an important drawback

when deployed on mobile devices: the image keypoints that it extracts need to be

stored and matched in cleartext on vulnerable devices. Therefore, to eliminate this

problem, we need to make sure that the image features are stored on a secure remote

server. In contrast, ai.lock uses state of the art, Deep Neural Network (DNN) based

image feature extraction (see § 3.1.4) along with locality sensitive hashing (see § 3.2)

to extract binary imageprints that are robust to changes caused by image capture

conditions. The ai.lock’s imageprints can be securely stored and matched using

secure sketches. This makes ai.lock resilient to device capture attacks. Furthermore,

on larger and more complex attack datasets, the use of DNNs enabled ai.lock to

achieve False Acceptance Rate (FAR) that are at least 2 orders of magnitude smaller

than those of Pixie (≤ 0.0015% vs. 0.2− 0.8%), for similar FRRs (4%).

In the following sections, we briefly describe the Pixie and ai.lock systems. In

addition, we describe our major contributions when designing these systems.

Pixie

We introduce Pixie, an easy to use camera-based remote authentication solution for

mobile and wearble devices, see [CaS17d] for a short demo. Pixie can establish trust
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to a remote service-based on the user’s ability to present to the camera a previously

agreed secret physical token. We call this token, the trinket. We use the term trinket

to signify the uniqueness and small size of the token, not its value.

Users choose their trinkets similar to setting a password, and authenticate by

presenting the same trinket to the camera upon further authentication attempts.

The fact that the object is the trinket, is secret to the user. Pixie extracts robust,

novel features from trinket images, and leverages a supervised learning classifier to

effectively address inconsistencies between images of the same trinket captured in

different circumstances.

Pixie combines graphical password [BCVO12, Pas17, DMR04] and token-based

authentication concepts [RSA17, VAS17], into a two factor authentication (2FA)

solution based on what the user has (the trinket) and what the user knows (the

trinket, the angle and section used to authenticate). Contrary to other token-based

authentication methods, Pixie does not require expensive, uncommon hardware to

act as the second factor; that duty is assigned to the physical trinket, and the mobile

device in Pixie is the primary device through which the user authenticates. Pixie

only requires the authentication device to have a camera, making authentication

convenient even for wearable devices such as smartwatches and smartglasses.

Our major contributions are as follows:

• We introduce Pixie, a novel camera-based two factor authentication solution

for mobile and wearable devices. Pixie leverages the ubiquitous cameras of

mobile devices to snap images of trinkets carried by the users. A quick and

familiar user action of snapping a photo is sufficient for Pixie to simultane-

ously perform a graphical password authentication and a physical token-based

authentication, yet it does not require any expensive, uncommon hardware.

Pixie establishes trust based on both the knowledge and possession of an arbi-
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trary physical object readily accessible to the user, called trinket. Users choose

their trinkets similar to setting a password, and authenticate by presenting the

same trinket to the camera.

• We extract robust, novel features from trinket images, and leverage a super-

vised learning classifier to effectively address inconsistencies between images

of the same trinket captured in different circumstances. Pixie classifier deter-

mines if a candidate image contains the same token (i.e. trinket) as a set of

reference images.

• We develop several image-based attacks including brute force image pictionary

attacks, a shoulder surfing flavor and master image attacks. We construct more

than 14.3 million authentication instances and show that Pixie is resilient to

these attacks.

• We manually collect a dataset of images that consist of 1400 images of 350

different objects. We only selected objects that are good candidate to be

used as trinket. We have captured 4 images for each trinket, that differ in

background and lighting conditions, i.e., either indoors using artificial light or

outdoors in daylight conditions. We make our datasets including the Pixie

attack datasets, available for download [CaS17c].

• We implement Pixie in Android and study the usability and discoverability of

Pixie as a novel form of authentication. We show through a user study with 42

participants that Pixie is accurate, faster than text passwords and perceived

as such by users. In addition, we show that Pixie’s trinkets are memorable.

• We publish Pixie as an open source prototype, with code and the Android

installation file available on GitHub [CaS17e] and Google Play Store [CaS17b].

Pixie work is published in proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies (IMWUT) in 2017 [ATC17a].
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ai.lock

Image-based mobile authentication approach, as in Pixie, raises important challenge

when deployed to locally authenticate a user to a mobile device (local authentication

scenario): an adversary who captures or compromises the device that stores the

user’s reference credentials (e.g. mobile device) and has access to its storage, should

not be able to learn information about the reference credentials or their features.

To address the problem of secure storage and matching of the image features, we

introduce ai.lock, a practical, secure and efficient image-based authentication system

that can be used for both local and remote authentication scenarios. Unlike Pixie,

ai.lock uses state of the art, DNN-based image feature extraction (see 3.1.4) along

with Locality Sensitive Hashing (LSH) [Cha02] to extract binary imageprints that

are robust to changes in image capture conditions. We show that imageprints can

be securely stored and matched using secure sketches [DRS04]. This makes ai.lock

resilient to device capture attacks.

We measure the security of ai.lock against brute force attacks on more than 3.5

billion authentication instances built from more than 250,000 images of real objects,

and 100,000 synthetically generated images using a GAN[RMC15] trained on object

images. We show that the ai.lock estimated entropy is superior to a fingerprint-based

authentication built into popular mobile devices.

Our major contributions are as follows:

• We introduce ai.lock, a practical, secure and efficient image-based authen-

tication system that converts general mobile device captured images into

biometric-like structures, to be used in conjunction with secure sketch con-

structs and provide secure authentication and storage of credentials.

• To extract invariant features for image-based authentication, ai.lock leverages

(1) the ability of Deep Neural Networks (DNNs) to learn representations of
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the input space (i.e., embedding vectors of images) that reflect the salient

underlying explanatory factors of the data, (2) Principal Component Analysis

(PCA) [F.R01] to identify more distinguishing components of the embedding

vectors and (3) Locality Sensitive Hashing (LSH) [Cha02] to map the resulting

components to binary space, while preserving similarity properties in the input

space. We call the resulting binary values imageprints. ai.lock builds on

a secure sketch variant [DRS04] to securely store reference imageprints and

match them to candidate imageprints.

• We propose the LSH-inspired notion of locality sensitive image mapping func-

tions (δ-LSIM), that convert images to binary strings that preserve the “simi-

larity” relationships of the input space, for a desired similarity definition (see

§ 5.3). A δ-LSIM function can be used to efficiently match images-based on

their extracted binary imageprints.

• We develop several image-based attacks including brute force image dictionary

attacks using real images as well as 100,000 synthetically generated images

using a GAN trained on object images. We vaccinate ai.lock to be more

resistant to synthetic image attacks. We also develop a synthetic credential

attack to brute force ai.lock. Finally, we introduce an object/scene guessing

attack to evaluate ai.lock in a scenario similar to shoulder surfing attack. We

show that ai.lock is resilient to attacks: Its FAR on 140 million synthetic image

attack samples is 0.2 × 10−6%. ai.lock was unbreakable when tested with 1.4

billion synthetic credential attack samples. The estimated Shannon entropy

[Sha01] of ai.lock on 2 billion image pairs is 18.02 bits, comparing favorably

with state-of-the-art biometric solutions. Further, we show that ai.lock is a

δ-LSIM function, over publicly available image datasets as well as images we

collected (see § 5.6.5).
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• We implement ai.lock in Android using Tensorflow [ABC+16]. We have re-

leased the code and data on ai.lock Github [CaS17a]. We show that ai.lock

is fast, imposing an overhead of under 1s on a Nexus 6P device. We have

published ai.lock work in proceedings of the 33rd Annual Computer Security

Applications Conference (ACSAC) in 2017 [ATC17b].

1.2.2 Human-distinguishable Visual Key Fingerprint Gen-

eration(VKFG)

Although recent studies by Tann et al. [TBB+17] suggests that visual key fingeprints

are more usable, the attack success rate against Visual Key Fingerprint Generation

(VKFG) solutions is still unacceptable, exceeding 10% [TBB+17]. One reason for

this is that existing solutions do not take into account the limits of human perception

and how it relates to the space of images that they generate. More specifically,

existing solutions cannot predict if specific changes in the input data will generate

human-distinguishable images. Further, we show that most images generated by

state-of-the art VKFG (i.e., Vash [vas14] an implementation of random art [PS99])

are vulnerable to attack (§ 6.7.4), and out of only 10,000 random-generated Vash

images, we found 24 human-validated collisions.

In this dissertation, we introduce, implement and evaluate CEAL (CrEdential

Assurance Labeling), a user-centric contact authentication system. The CEAL sys-

tem generates unique, hard to spoof images (i.e., ceals) for each relationship between

a user and a contact, and enables users to visually verify the authenticity of infor-

mation received from contacts. Ceals can be embedded in social networks, online

sellers, or bank accounts, in order to authenticate the owner of a ceal to the user.
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Ceals protect users from man-in-the-middle attacks, where attackers impersonate

the users to contact other users (e.g., their customers, friends, and contacts).

CEAL generates its images (i.e. ceals) using a Deep Generative Models (see

§ 3.1.5). Unlike existing solutions that base their security on cryptographic hash

functions or pseudo-random number generators, CEAL has built-in “input-spreading”

properties that endow it with second pre-image and collision resistance properties.

First, we reveal important vulnerabilities of existing VKFG solutions. We then

perform large-scale brute-force attacks using more than 255M pairs of (target, at-

tack) keys, that differ only in small number of bits, to break CEAL. We then identify

potential successful attacks using a classifier that can predict if a pair of images are

perceived as same or different by human. We then present these identified images

along with their corresponding target images to Amazon Mechanical Turk (MTurk)

worker to label them. We show that even under attack of such a powerful adversary,

the break ratio of CEAL images is small (< 1.0%).

We provide the following contributions:

• Vulnerabilities in State-of-the-Art Solution. We reveal important vul-

nerabilities of Vash [vas14], the leading visual key fingerprint representation

solution. We show that even in a small sample of 10K Vash images 24 pairs

of images were identified as same by our human subjects.

• Human Perception Discriminator (HPD). Unlike [YN04], we build a

classifier that predicts if two images (generated by a GAN) will be perceived

as being the same or different by average humans. We show that despite sparse

human annotated data, an HPD with high precision and low recall can be built

and still be effectively used for CEAL. We also show that the HPD has good

performance even when evaluated on radically different images than those in

training (Vash images).
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• Hash-Like CEAL. We develop the first VKFG solution with built-in hash

properties (second pre-image and collision resistance). We train CEAL DC-

GAN, a Deep Convolutional Generative Adversarial Network (DCGAN) [RMC15],

that is unlike the generic model (see § 3.1.5), is trained i) using HPD to gen-

erate not only realistic, but distinguishable images, ii) with constraints that

ensure separation of latent vector components into major and minor compo-

nents while maximizing the capacity of major components. We publish the

data and code to build CEAL DCGAN and HPD networks.

• Datasets. We generated more than 500 synthetic image pairs and used crowd-

sourcing workers to label these image pairs as either same or different. In

addition, we collected labels for more than 7000 ceal image pairs, including

likely attack image pairs using human workers. Finally, we collected the labels

for 270 vash image pairs that we generated. We publish these image datasets

along with the collected labels.

1.3 Outline of Dissertation

This dissertation is organized as follows:

• In Chapter 2, we review and discuss the relevant work to authentication for

mobile and wearable devices. We then review relevant literature to the problem

of key fingerprint representation including existing solutions. We also, review

traditional and more advance methods for extracting useful image features

that can be employed for image comparison and matching.

• In Chapter 3, we review the required background relevant to this work includ-

ing DNNs, image generation using DNNs, locality sensitive hashing, and error

correcting codes.
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• In Chapter 4, we describe the system and adversary model for image-based

authentication scenario. We introduce Pixie, a novel image-based authentica-

tion solution. We evaluate its performance, including under attack, and study

its usability. We discuss Pixie limitations and application that goes beyond

mobile-device authentication.

• In Chapter 5, we describe the system and adversary model for image-based

authentication scenario that is performed locally on the mobile device. We in-

troduce ai.lock, an image-based authentication solution that extras biometric-

like features from authentication images and use them for secure storage and

matching of the images on the mobile device. We evaluate ai.lock performance

under adversarial attacks. We discuss ai.lock limitations and application and

finally conclude this study.

• In Chapter 6, we reveal important vulnerabilities of existing VKFG solutions.

We then introduce CEAL, a visual key fingerprint generation solution that

incorporates visual human perception into the key fingerprint generation pro-

cess to guarantee the generated images are human distinguishable. We build

CEAL using Tensorflow [ABC+16] and evaluate its performance under power-

ful attacks. We then describe the limitations and future directions to improve

the key fingerprint images generated by CEAL.
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CHAPTER 2

RELATED WORK

In this chapter, we first present the relevant work to both image-based authenti-

cation and key fingerprint representation, the two major related fields to this disser-

tation. Particularity, we review existing solutions for authentication in mobile and

wearable devices. Then, we describe traditional methods for image feature extrac-

tion and matching. We also review modern approaches using Deep Neural Networks

(DNNs) for image feature extraction. Next, we review exciting key fingerprint repre-

sentation methods. Finally, we review deep generative models for image generation

and differentiate our work to existing solutions.

2.1 Mobile Authentication

The image-based client authentication solutions that we present in this disserta-

tion (i.e., Pixie and ai.lock) are camera based authentication solutions that combine

graphical password and token based authentication concepts into a single step 2 Fac-

tor Authentication (2FA) solution. Proposed image-based authentication solutions

are based on what the user has (the particular trinket among all the other objects

that the user readily has access to) and what the user knows (angle and viewpoint

used to register the trinket). The unique form factor of image-based authentication

solution differentiates it from existing solutions based on typed, drawn, or spoken

secrets. We briefly survey and distinguish our image-based authentication solution

from existing solutions.
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2.1.1 Biometric-based Authentication

Biometric based mobile authentication solutions leverage unique human character-

istics, e.g., faces [DLHvZH15], fingerprints [App17b], gait [JW15], to authenticate

users. In particular, the form factor of Pixie and ai.lock (the image-based authentica-

tion solutions we present in this dissertation) makes them similar to camera based

biometric authentication solutions based on face [BCF+13, TSK+12, DLHvZH15]

and gaze [KAH+16, LDGW15]. Consequently, Pixie and ai.lock share several limi-

tations with these solutions, that include (i) vulnerability to shoulder surfing attacks

and (ii) susceptibility to inappropriate lighting conditions, that can spoil the per-

formance and usability of the authentication mechanism [BUI+15, MB14].

In addition, previous studies [BUI+15, DLHvZH15] report that face biometrics

adoption might be problematic as participants have expressed mixed feelings toward

using them. For instance, participants in the De Luca et al. [DLHvZH15] user study

expressed feeling awkward, as authentication can be perceived as taking a selfie in

public. While we have not evaluated this dimension, we expect trinket shots to be

perceived as less awkward than the appearance of taking selfies in public.

Another concern in biometric authentication solutions that requires a camera is

to verify the liveness of the authentication secret to prevent spoofing attacks. In

face based authentication, liveness can be verified by requiring the users to blink

or move their mouth upon capturing the image of the face [KFB08a]. Boehm

et al. [BCF+13] introduced a form of challenge-response liveness verification for

gaze based authentication where the user gaze at and follows a moving icon on

the screen. We note that liveness verification solutions, e.g. based on consistency

between the device motions and motion directions inferred from images captured

by the camera [MR16], can bring advantages of liveness verification to Pixie and

ai.lock.
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In contrast to biometrics, Pixie and ai.lock enable users to change the authenti-

cating physical factor, as they change accessories they wear or carry. This reduces

the risks from an adversary who has acquired the authentication secret from hav-

ing lifelong consequences for the victims, thereby mitigating the need for biometric

traceability and revocation [PPJ03].

In addition, due to the diversity of the trinkets, we need to solve a harder problem

than existing biometrics based authentication solutions: while existing biometrics

solutions focus on a single, well studied human characteristic, image-based authen-

tication trinkets can be arbitrary objects or scenes, thus lack the convenience of a

set of well known features.

We note that Pixie and ai.lock can be used in conjunction with biometric solu-

tions as an additional authentication factor. For instance in touchscreen devices, we

can use the touch gesture used to shoot the trinket, as an additional authentication

factor [DLHB+12].

Biometric Protection

Our work is also related to the problem of protecting biometric templates. We

summarize biometric protection solutions, that can be classified into fuzzy biometric

protection and feature transformation approaches [JNN08].

Fuzzy biometric template protection. This approach leverages error correcting

codes to verify biometric data. Techniques include secure sketch and fuzzy ex-

tractor [DRS04], fuzzy vault [JS02] and fuzzy commitment [JW99], and have been

applied to different biometric data, e.g. palm and hand [LS15].

In Chapter 5, we extend the secure sketch under the Hamming distance solution

from [DRS04]: reconstruct the biometric credential, then compare its hash against

a stored value. We briefly describe here the password set and authentication pro-
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cedures for ai.lock, using generated imageprints, i.e., the authentication credential

(see Chapter 5). Let ECC be a binary error correcting code, with the corresponding

decoding function D, and let H be a cryptographic hash function.

• Image password set. Let R be the reference image captured by the user

and let πR = π(R) be its ai.lock computed imageprint. Generate a random vector

x, then compute and store the authentication credentials, SS(R, x) = 〈SS1, SS2〉,

where SS1 = πR ⊕ ECC(x) and SS2 = H(x).

• Images based authentication. Let C be the user captured candidate image,

and let πC = π(C) be its ai.lock computed imageprint. Retrieve the stored SS value

and compute x′ = D(πC ⊕ SS1). The authentication succeeds if H(x′) = SS2.

Dodis et al. [DRS04] further proposed the fuzzy extractor concept that extracts

a uniformly random string R from the protected biometric in an error-tolerant way.

They then show how to construct this given a secure sketch. Fuzzy extractors can be

used to securely encrypt the mobile data with strong keys extracted from biometrics

with sufficient entropy. In Chapter 5, we show that on our experimental datasets,

ai.lock’s entropy is 16-18 bits, comparing favorably with state-of-the-art biometric

authentication solutions (see Table 5.1).

Transformation based biometric template protection. A transformation is

applied both to biometric template and biometric candidate, and the matching pro-

cess is performed on the transformed data. In an invertible transformation (a.k.a.,

salting [JNN08]), a key, e.g., a password, is used as a parameter to define the trans-

formation function [TGN06]. The security of this approach depends on the ability

to protect the key. In contrast, in non-invertible schemes [MCF+10, RCCB07] a

one-way transformation functions is used to protect the biometric template, making

the inversion of a transformed template computationally hard even when the key is

revealed.
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Hybrid approaches. Hybrid transformation and fuzzy protection approaches have

also been proposed. Nandakumar et al. [NNJ07] introduced an approach to make

the fingerprint fuzzy value stronger using a password as salt. Song et al. [OJN08]

used discrete hashing to transform the fingerprint biometric, which is then encoded

and verified using error correcting codes.

2.1.2 Security Tokens and 2 Factor Authentication (2FA)

The trinket concept is similar to token based authentication, such as door keys and

hardware security tokens [RSA17], as authentication involves access to a physical

object. Hardware tokens are electronic devices that provide periodically changing

one time passwords (OTP), which the user needs to manually enter to the authenti-

cation device. Software token solutions, such as Google’s 2-step verification [Goo17],

require the user to retrieve a verification code sent to the mobile device (e.g., through

SMS) from the mobile device and type it into the authentication device. This further

requires the device to be reachable from the server, hence introduces new challenges

(e.g. location tracing, delays in phone network, and poor network coverage). More-

over, such solutions provide no protection when the device is stolen. They also

impact usability, as the user needs to type both a password and a verification code.

Solutions such as [CDK+12, SJSN14, KMSv15] treat the mobile device as a sec-

ond factor. Further, they eliminate user interaction to retrieve a token from the

mobile device to the authentication device (e.g. a desktop) by leveraging proximity

based connectivity (e.g., Bluetooth, Wi-Fi). For instance, in PhoneAuth [CDK+12],

where the user authenticates from a browser to a remote server, the mobile device

stores a private key of the user and uses it to sign server issued challenges. In Shir-

vanian et al. [SJSN14], the mobile device associates with an access point created
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on the authentication device. In SoundProof [KMSv15], the second factor (prox-

imity between the mobile and authentication devices), is ensured by verifying the

consistency of the ambient noise captured by the two devices’ microphone sensors.

Other approaches exist that seek to transform biometrics into tokens that the

user needs to carry, with important implications on biometric privacy and revocation

capabilities. For instance, TAPS [TAP17] is a glove sticker with a unique fingerprint

intended for TouchID.

Token-based authentication requires an expensive infrastructure [Sec15] (e.g. for

issuing, managing, synchronizing the token). Pixie and ai.lock provide mechanisms

that make objects usable as passwords, with the existing infrastructure. They may

also provide a personalized and inexpensive alternative to such tokens. In addition,

as the user action of scanning a bar-code is replaced with snapping of a photo of a

personal object image-based authentication can provide a faster alternative to visual

token based authentication, especially when the trinket is readily accessible to the

user, e.g., tattoo, piece of jewellery worn by the user, etc.

In addition, the mobile device or a specialized device can act as a secondary

device for storing a token for the second authentication factor. By contrast, in

image-based mobile authentication we assign the duty of storing the token for the

second factor to a physical object outside the mobile device. The mobile device is

the sole device that is used to authenticate to a back-end application or to access the

services on remote servers. As an added benefit, the physical factor of the trinket

renders image-based authentication solution immune to the “2FA synchronization

vulnerabilities” introduced by Konoth et al. [KvdVB16], that exploit the ongoing

integration of apps among multiple platforms.
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2.1.3 Graphical Passwords

Pixie’s and ai.lock’s visual nature is similar to graphical passwords, that include

recall and recognition systems. In the following, we briefly describe these solution,

see [BCVO12] for a survey.

Recall based solutions such as DAS (Draw-A-Secret) [JMM+99] and variants [DY07,

GGC+08] ask the user to enter their password using a stylus, mouse or finger.

YAGP [GGC+08] extends DAS with approximate matches for input passwords.

Pass-Go [TA08] uses a finer grained grid than DAS and restricts the user movement

to grid lines and intersections, eliminating small shape variations. GrIDsure [Gem]

displays digits in a 5×5 grid and requires the user to memorize a pattern within this

grid. On login, the user is displayed with a grid permutation and needs to input

the digits shown within the pattern. DAS variants are popular on smartphones,

including Android and Blackberry (PatternLock). However, Zhao et al. [ZAH15]

propose an attack framework that is able to crack a significant portion of picture

gesture passwords.

Recognition-based systems (e.g., Passfaces [Pas17, DP00]) exploit the human

ability to better recognize previously seen images. To create a password, users

select and memorize a set of images (e.g., faces), which they need to recognize from

among other images during the authentication process. Davis et al. [DMR04] have

shown that when the users are in charge of choosing their own images, such schemes

may be insecure, e.g., passwords may be correlated with the race or gender of the

user. Similarly, GeoPass [TMSA13] is a graphical location based authentication

schema which requires the users to choose and remember a location on digital maps

as their password. Passfaces [Pas17, BS00, DNO08], the most popular recognition-

based system, uses images of human faces. Awase-E [TK03] allows users to use their

own images, improving flexibility and memorability, and increasing the attack search

21



space. Similar to Passfaces, Awase-E imposes several verification steps, where the

user needs to correctly select the reference images from the decoys in each step.

Story [DMR04] extends the Passface approach with a “sequentiality” requirement:

users need to identify their reference images in the correct order. Weinshall [Wei06]

extends the basic scheme with a keyboard based navigation of displayed images, to

prevent spyware and shoulder-surfing attacks.

Cued-recall systems improve password memorability by requiring users to re-

member and target specific locations within an image [WWB+05a, WWB+05c].

PassPoints [WWB+05a, WWB+05c], one of the first solutions, also includes the se-

quentiality requirement: it presents the user with an image, on which he needs to

select a sequence of key points. To authenticate, the user is shown the cue (the

image) and needs to identify the key points, in the correct sequence. Suo [Suo06]

introduced a shoulder-surfing resistant extension that blurs random areas of the

image and asks the user to decide if a key point is within the clear area.

Pixie and ai.lock (see Chapters 4 and 5) can be considered to be a recognition-

based graphical password systems with dynamically generated images, where the

physical world around the user represents the set of possible passwords. Since the

user freely presents the candidate password through a photo of the physical world,

captured in different light, background, and angle conditions, we need to implement

an accurate matching of trinkets. Trinkets can be small portions of items worn by

users (e.g., shirt pattern, shoe section). Thus, even if the attacker is able to see and

reproduce the trinket, the attacker does not know the required section and angle of

the trinket. These image-based authentication solutions accurately verify that the

candidate image contains the same trinket part as a previously captured reference

image(s). This process endows image-based authentication with attack resilience

properties: to fraudulently authenticate, an adversary needs to capture both the

22



mobile device and the trinket, then guess the correct part of the trinket or angle of

a scene that was used when registering the image password.

2.1.4 Text-based Passwords

Traditional solutions to authenticate users on a mobile phones are based either

on entering a Personal Identification Number (PIN) or a password. The usabil-

ity of traditional text-based passwords has been well studied in literature, see

e.g., [TSK+12, MKS+16, CFS+09, SKD+14]. Several limitations are associated with

text passwords on memorability and usability especially when adopted in mobile

platforms.

Melicher et al. [MKS+16] found that creating and entering passwords on mobile

devices take longer than desktops and laptops. In mobile devices, text-based pass-

words need to be entered on spatially limited keyboards on which typing a single

character may require multiple touches [SWKW13], due also to typing the wrong

key. Cherapau et al. [CMAB15] identified memorability and less typing as reasons

that users choose PINs rather than longer and more secure passwords (or passcodes)

to protect their mobile devices. Shay et al. [SKD+14] have shown through a large

user study of different password-composition policies, that more than 20% of par-

ticipants had problems recalling their password and 35% of the users reported that

remembering a password is difficult. Trewin et al. [TSK+12] found that face biomet-

rics can be entered faster than text based passwords. Shay et al. [SKD+14] reported

that user entry time for text passwords ranges between 11.6-16.2s (see Table 4.1) in

line with our evaluation (see § 4.6.2).

Image-based authentication solution replaces the user action of typing a password

with pointing the camera to the trinket and snapping a photo of it. In Chapter 4, we
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show that Pixie is perceived as more memorable than text passwords (see § 4.6.2).

We also show that Pixie entry time is faster than text based passwords on a mobile

device.

2.1.5 Wearable Device Authentication

The special form factor and limited input method of wearable devices make the

employment of conventional authentication methods, such as PIN, cumbersome for

users. However, wearable devices are sometimes equipped with physiological (e.g.,

ECG, EEG) and kinesthetic sensors that open up a range of new possibilities for

authentication solutions on these devices.

Not only the biometric information collected by wearable devices are used for

user authentication [BCTPL16], wearable devices can be used as the second au-

thentication factor: in iAuth [LL16] the smartwatch collects and sends the motion

patterns of the user to authenticate to a smartphone. Wearable authentication so-

lutions often leverage the available sensors to address the small form factor of the

devices: Yoon et al. [YPL15] use the light state changes captured by the ambient

light sensor as a PIN entry method. WatchMe [VVBVS15] uses the smartwatch

camera to process the input (e.g. PIN) drawn by the user on a canvas. Similarly,

Pixie and ai.lock can be employed as a form of authentication in wearable devices

that are equipped with a camera.

2.2 Image Feature Extraction and Matching

Traditional feature extraction (e.g. [RRKB11, BTVG06, LCS11, Low04]) are based

on finding “keypoints” on the images. These keypoints can then be used to com-

pare against similar keypoints on another image and are usually resistant to scale
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or rotation [RRKB11, BTVG06]. Particularly, these algorithms extract several fea-

tures (piece of information, a.k.a descriptor) about the pixel values surrounding the

keypoints. Later, these descriptors can be used to identify the patch in the image

when comparing it against other patches in another image. In Chapter 4, we use

SURF (Speeded Up Robust Features) [BTVG06] and ORB [RRKB11] algorithms,

to extract scale and rotation invariant image keypoints and use them for image

matching.

In order to match two images, one can compare all keypoint in the image to

all the other keypoints in the second image to find the closest keypoints based on

a distance measure (bruteforce matching). However, this is expensive and time

consuming. Instead in Chapter 4, we use Fast Library for Approximate Nearest

Neighbors (FLANN)-based matcher [ML09]. These are algorithms that are devel-

oped for fast nearest neighbor search based on a specific distant measure.

More advanced methods for feature extraction includes using Convolutional Neu-

ral Networks (CNNs) [LB+95]. These networks take advantage of local connectivity

to extract salient image features from images. The representations learned by CNNs

are shown to resemble the primate visual system [CHY+14]. In addition, they can

help predict human eye fixation [KWB17], and capture information about artistic

style of images that are meaningful to humans [GEB16]. Specifically, we use the

ability of CNNs to capture underlying images features and use these features to

train different image classifiers (see § 5.4 and 6.5.3).

2.3 Key Fingerprint Representation

In this section, we review the relevant key fingerprint representation solutions. This

is particularly, related to the CEAL system that we introduce in Chapter 6.
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2.3.1 Text-based Key Fingerprints

Key fingerprint representation methods transform an input key (e.g. (hashed) pub-

lic key) into a shorter, human readable format. The numeric [wae16] format uses

numbers (0-9) to represent a binary key fingerprint in based 10 instead of 2. How-

ever, the most commonly used textual key fingerprint representations encode the

key into a hexadecimal (letters A-F and numbers 0-9) or based32 (Latin alpha-

bet) strings. In both numeric and alphanumeric representation, the string can be

grouped into chunks of equal length. Chunking can slightly affect the user verifica-

tion speed [DSB+].

In addition to (alpha)numeric representation, the key fingerprints can be rep-

resented as a set of pronounceable words [Hui00]. In this method, the binary key

fingerprint is splitted into chunks. Each chunk is then mapped to a word that is

selected from a dictionary. Other teqniques use syntactically correct English sen-

tences [akw, GSS+06] to represent key fingerprints.

The text-based schema used for key fingerprint representation impacts the effi-

ciency and accuracy of verification process [DSB+, TBB+17, VWO+17]. Under an

targeted attack scenario, an adversary may try to generate a key whose fingerprint

differs in positions which are not apparent to an inattentive human verifier (e.g.

middle of the string instead of its beginning or the end [DSB+, TBB+17]). Dechand

et al. [DSB+] evaluate the performance and usability of key fingerprint represen-

tation using (alpha)numeric strings, words and sentences. Based on their findings,

wildly adopted hexadecimal representation performs poorly both from verification

accuracy and usability aspects. In addition, while representing the key fingerprints

using a large dictionary of words can increase the verification speed, representing

keys using sentences achieved the best attack detection rate.
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2.3.2 Graphical and image-based representations

Several techniques represent the key fingerprints visually, using graphics or syn-

thetically generated images. Visual key fingerprint representation solutions,such

as Random art [PS99] and OpenSSH Visual Host Key [LLvG09], use the key to

generate a structured image.

For instance, Vash [vas14], is an open source implementation for Random art [PS99],

that converts input binary strings into corresponding image “fingerprints”. Vash

uses the input string as the seed to a Pseudo Random Number Generator (PRNG),

then uses the output of this PRNG to construct an expression tree structure. The

number of nodes of the tree, which we denote by N , is chosen randomly by PRNG.

Vash then converts this tree to an image fingerprint: Each node in the tree corre-

sponds to an operation function, which modifies the pixel values of the fingerprint

image. Each operation is chosen randomly using the PRNG, from an existing pool

of 17 operations, e.g., ellipse, flower, squircle, etc. In addition, the parameters of an

operation are chosen randomly in [0, 1]. However, this value can then be mapped

to a numbers in a different range.

Avatar representation techniques have also been used as key fingerprint represen-

tation. For instance, in [vdE17] a unicorn image with randomly chosen properties

is drawn based on the input key and a PRNG.

Further, the text-and-image hybrid solution and the most widely used solution,

OpenSSH visual host key [LLvG09] splits the 128 bits MD5 hash of the input key,

into chunks. Each chunk is then processed to decide how to navigate on canvas

according to a set of rules and add specific ASCII characters to the canvas. WP-

MonsterID [mon] randomly selects pieces of the visual representation from a dataset

of images. However, this requires a large image dataset to ensure the uniqueness

and distinguishability of key fingerprints.
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Tan et al. [TBB+17] performed user studies to compare several textual and

graphical key fingerprint representation solutions. Their findings suggest that vi-

sual key fingerprints can speed up the verification of key fingerprints. In their

experiments, Vash [vas14] outperformed the unicorn solution [vdE17] and several

text-based key fingerprint representation solutions (e.g. hexadecimal and numeric

representations) in terms of both attack detection rate and comparison time.

In contrast, CEAL is the first visual key fingerprint representation solution de-

signed to ensure that the human visual system can differentiate between image

fingerprints generated from different keys. In Chapter 6, we show that despite its

reliance on a PRNG, Vash is unable to satisfy the requirements that we introduce

for visual key fingerprint representation (see 6.3.1). Particularly, we show that not

all the images generated by Vash are human-distinguishable, especially when the

number of overlaid shapes and colors on the canvas increases. This is expected,

as the visual sensitivity of human to changes diminishes with increased spatial fre-

quency [YN04]. Further, we show that CEAL outperforms Vash. Over a set of 10K

random vash images, we identified 24 images indistinguishable, however, using the

same procedure, we did not identify any indistinguishable images for CEAL.

2.4 Deep Generative Models for Image Generation

Deep Generative Models (DGMs) are DNNs that are usually trained, using unsu-

pervised learning, to summarize explanatory key features of samples in the training

data. The trained model can be used to draw samples from the modeled data distri-

bution, i.e. generate fake and unseen but realistic and plausible instances similar to

the samples in the training dataset. There are two major classes of generative mod-
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els: Variational AutoEncoder (VAE) [KW13] and Generative Adversarial Networks

(GAN) [GPAM+14].

In this dissertation, we focus on GANs for generating images (see § 3.1.5 for

a review on the conventional components and training process of a GANs). Note,

GANs are an active area of research and there has been many efforts to generate

realistic and high resolution images using this networks (e.g. [KALL18]).

In Chapter 4 and 5, we use a traditional GAN to model an adversary who can

use these networks to draw a large number of plausible image samples to break

image-based authentication solutions that we introduce.

In addition, in Chapter 6, we introduce CEAL DCGAN (see § 6.4.1), a GAN

network trained to generate realistic and human distinguishable images. To train

this network, we modify the process of training GANs to generate images that are

not only realistic but human distinguishable. CEAL DCGAN uses a network with

similar architecture as in DCGAN [RMC15] to generate images. However, it can be

replaced with any state-of-the-art GAN-like network (e.g. [KALL18]).

Similar to [CDH+16, DBML18], we modify the training process of GAN to gen-

erate images with particular properties. InfoGAN [CDH+16] uses unsupervised

learning to distangle the visual characteristics (e.g. style, color, pose of objects,

etc.) of the generated images by a GAN. Similar to CEAL, SDGAN [DBML18] uses

a supervised approach to train a GAN with latent vectors that include components

representing both identities (e.g. individual humans) and observations (e.g. specific

photographs) of human faces.

In CEAL, we decompose the latent vector components (the input to a GAN) into

major and minor components (see Conjecture 6.4.2). The major components learn

to carry information about human distinguishability aspect of the generate images,

while minor components represent other properties of the images (e.g. realism).
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CHAPTER 3

BACKGROUND

In this chapter, we present the necessary background relevant to this research. First,

we review Deep Neural Networks(DNNs), including the generative models for gener-

ating images. We review the components of these networks and how these networks

are trained.

We then present the background on locality sensitive hashing for transforming

real valued vectors into binary strings while preserving the similarity relationships

of the input vectors. In addition, we briefly review BCH [BRC60] an error correcting

code that we use in this dissertation.

3.1 Deep Neural Networks (DNNs)

Deep learning [Sch15] is a branch of machine learning that attempt to model and

learn high level abstractions in data. A Deep Neural Networks (DNN), is a network

of connected processing units (neurons/nodes) that are wired in an specific fashion

to perform a task. In the simplest case, a neural network can be defined by input,

hidden and output neurons. An input neuron accepts a real value as input and

passes a modified version of it, by using a transformation function, to the neuron(s)

in the next layer. Each neuron is connected to other neurons in the next layer

through a weight, which is a model parameter. In addition, there is a value, referred

to as bias, associated with each neuron in a neural network. The neuron uses its

connected weights and its bias to transform the input of the neuron into its output.
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3.1.1 Deep Neural Network Models

Neural network models are usually used for function approximation. There are three

major types of neural network models: (1) discriminative models, (2) generative

models, and (3) hybrid models. Here, we briefly describe these models. Consider

a pattern recognition problem where we want to identify the relationship between

covariant input samples to a target variable y, where y could be discrete (e.g., as in

classification problems) or continuous (e.g., as in regression problems).

Generative Models

A generative model learns the joint probability distribution of samples and their

corresponding class labels, i.e., p(x, y). Once this model is estimated, we can apply

Bayes rule to indirectly compute the conditional probability of y given the sample

x, i.e., p(y|x). In the case of a classification problem, a generative model learns the

distribution of individual classes. In addition, generative models potentially learn

the natural features and properties of data. As a result, these models can be used

for drawing (unseen) samples from the same distribution as in original data. In

practice, generative models are widely used for unsupervised feature learning.

Discriminative Models

Unlike generative models, discriminative models are directly trained to estimate the

conditional probability of a target value given a sample, i.e., p(y|x). Discriminative

models learn the boundary of samples from different classes. Many of traditional

classification algorithms, such as logistic regression and SVM, can be categorized as

discriminative models.
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Figure 3.1: A neuron (with index i) in a feed forward neural network: the input
to the neuron is scaled, summed, added to a bias and is passed to a non-linear
activation function (Act) to produce the output.

Hybrid Models

Hybrid models combine the generative and discriminative models to perform a task.

For instance, the output of a discriminative model can be used as a criteria to guar-

antee certain property of the samples generated by a discriminative model. Similarly,

a generative model can assist with training a discriminative model by improving the

optimization process or providing regularization for the model [Den12]. In CEAL

(see Chapter 6), we use a discriminative model (i.e., Human Perception Discrimina-

tor) to push an image generator (a generative model) to generate only images that

are human distinguishable.

3.1.2 Layers in Deep Neural Networks

Independent of the DNN type, i.e., discriminative, generative or hybrid, the archi-

tecture of a neural network consist of connected neurons that are stacked on top of

each others in different layers. There are several types of layers in a neural network.

Here, we briefly introduce some of these layers that are usually used in practice and

the networks we have designed or used in the dissertation.
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Fully Connected Layer

In a feed forward neural network with fully connected layers, the connection between

the neurons of different layers do not form a cycle: the nodes in each layer are

connected to all the other nodes in the next layer, while, there is no connection

between the neurons in one layer. In a forward pass, the information flows in only

one direction from input layer to optionally intermediate (hidden) layers and finally

the output layer. A single neuron accept as input a vector x with n components (i.e.,

x is a n-dimensional vector) and produces a single output. The output of the neuron

is computed using h = W Tx+ b. In this equation, W is the weights connecting the

neuron to the input or the neurons in the previous layer, and b is neuron’s bias.

This bias can increase the computational capability of the neuron. However, the

relation between the input and output of a layer is linear, hence, a neuron acts

only as a linear transformation function. In order to increase the computational

capability of a neuron, a non-linear function is applied to the output of each node.

This non-linear function is referred to as the “activation function”. Therefore, the

transformation of input to the output is performed through hout = Act(h) where

Act is an activation function. In § 3.1.2, we review several activation functions that

we have used in the networks designed or used in this dissertation.

The notation above can be extended to a network with a layer that has multiple

neurons. Let m be the number of neurons in this layer. Each node is connected

to the nodes/input components from the previous layer through a set of weights

i.e., {W (1), W (2), W (3), ..., W (m)}. Also, for these nodes we have biases {b1, b2,

b3, ..., bm} respectively. Then, the activation of ith node in this layer is computed

as ai = Act(W (i)Tx) + bi, where W (i)T is the transpose of the ith’s nodes weights.

Figure 3.1 depicts this process. To summarize, in a fully connected layer, each

neuron computes the dot product between the input and its weights, adds the bias to
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the dot product value and optionally applies a non-linearity (i.e., activation function)

to the result obtained in previous step.

Convolutional Layer

Convolutional layer derives its name from the convolution operator in mathematics.

A convolutional layer is organized in 3-dimensions: width, height, and depth. In

addition, to provide weight sharing and local connectivity, the neurons in each layer

are connected only to a small region of the previous layer. The spatial span of

this connectivity is referred to as the “receptive field” of a neuron. The size of the

receptive field along depth axis is always equal to the depth of the input. The set

of weights that are used to transform an input region to output are referred to as a

“filter” (a.k.a. kernel). The output of a convolutional layer is computed by sliding

the filter from the top left corner of the input to the bottom left corner, s step at a

time. s is a hyperparameter and is referred to as “stride”. This process is similar

to the convolution operation. To perform the convolution operation, the input is

sometimes padded with zeros around the boarders to simplify calculations. Based

on the size of the input (I), receptive field of a filter (f), stride (s) and the size

of padding (p), we can compute the size of the output of a convolutional layer as

(I − f + 2p)/(s+ 1).

As an example, consider an image as input to a convolutional layer. Let the

size of the image be m × m × d where m is the width and height of image and

d is the number of channels in the image, e.g., an RGB image has d = 3. The

convolutional layer itself can have k filters of size f × f × q where f < m and

q = d. In this case, each neuron in the convolutional layer has weights that are

connected to a [f × f × d] region in the input, for a total of f × f × d weights plus
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one bias parameter. With stride 1 and no padding, the output of such layer has size

(m− f + 1)× (m− f + 1)× (k).

Pooling Layer

Commonly, convolutional layers are followed by a pooling layer. The purpose of

this layer is to reduce the spatial dimensionality of the intermediate representations

and the number of parameters of the network. Consequently, overfitting can be

controlled by reducing the number of parameters.

Similar to a convolutional layer, a pooling layer has filters of small size, however,

each pooling layer filter is applied independently on each slice of the input on the

depth axis. The dimensionality of the representations are reduced by applying either

a minimum or maximum function, or by taking the average over the receptive field

of a filter. Depending on the function used, the pooling layer is referred to as a min

pooling, max poling or average pooling layer.

Activation Function

In order to increase the computational capacity of the neural networks, a non-linear

function is applied to the output of the layers in an element wise fashion. Here, we

review the activation functions we use in this dissertation.

Sigmoid. The sigmoid (a.k.a logistic) activation function accepts a real-valued

number as input and squashes it into range of (0,1). The mathematical form of this

function is σ(x) = 1
1+e−x .

Softmax. The softmax function is the generalized version of logistic function that

squashes a k-dimensional vector of real values into a k-dimensional normalized prob-

ability values: all the output values add up to 1. The mathematical form of softmax

function for the jth element of input is ϕ(x)j = e
xj

∑k
i=1

exi
. In this equation, x is a
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k dimensional input and 1 ≤ j ≤ k. Softmax function is usually used in case of

multi-class classification problems where it computes normalized probabilities over

k different mutually exclusive classes. In contrast, sigmoid function is used in case

of binary classification problem (i.e., when k = 2).

Tanh. Tanh activation function provides a zero-centered activation by squashing

the neuron’s output to range [-1, 1]. Tanh can also be considered as a scaled sigmoid

function, i.e., tanh(x) = 2σ(2x)− 1.

Rectified Linear Unit (ReLU). The ReLU is one of the most popular activation

functions. It cuts the activation of the neuron at zero by computing the function

ReLU(x) = max(0, x).

3.1.3 Training Using Gradient Decent Algorithm

In a feed-forward neural network, the connections between the nodes of different

layers do not form a cycle. In other words, there is no feedback connections that

connects an output of the model to itself. Therefore, the information in a feed-

forward neural network flows in only one direction: from the input to the output

by passing each hidden layer in the network. The purpose of a feed-forward neural

network is to approximate a function y = f(x, θ), where x is the input and θ is the

set of model parameters (i.e., the layers’ weights and biases).

In a forward pass, the output of the model is computed based on the input: each

layer performs a transformation on the input data and passes the result to the next

layer. When the output of the network is computed, a loss (a.k.a error) function is

calculated based on the model output and expected output (e.g., actual class label

associated with the input). In the next step, the parameters of the neural network

are adjusted to gradually reduce the loss value. This process is performed in a
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backward pass, using gradient descent algorithm or similar, from the output node

to the input.

In Chapter 6, we use the well-known cross-entropy loss for binary classification

problem, defined as cross entropy(y, ŷ) = −ylog(ŷ)− (1− y)log(1− ŷ), for a given

input sample. Here, y is the target class label of the input, while ŷ is the predicted

class.

In addition, we use weighted contrastive loss [CHL05] to train a twin network to

classify images as either “same” or “different”. The purpose of this loss is to enable

the network to differentiate between the two images. Equation 3.1 shows how the

weights are updated based on this loss for two input samples I1 and I2.

L(θ, Y, I1, I2) =
1
2
(1− r)(1− Y )(Dθ

2) + 1
2
rY (max(0, µ−Dθ))

2
(3.1)

θ denotes the model parameters (weights and biases), and Y is the actual class

label of the image pair, i.e. 1 for different and 0 for same images. Dw is the Euclidean

distance between the outputs of the twin networks for the input image pairs (I1 and

I2). r ∈ [0, 1] is the weight (importance) assigned to the positive (different) class

and µ ∈ R, µ > 1 is a margin.

Types of Gradient Descent

Depending on the number of samples used for computing the loss function, gradient

decent algorithm can be categorized into three category: (1) Batch Gradient Decent

(BGD), (2) Stochastic Gradient Decent (SGD) and (3) mini-batch gradient decent.

Batch Gradient Decent (BGD) optimization. In the BGD algorithm, the

weights are incrementally updated after one pass over all the training samples. Such

pass over training data is referred to as a training “epoch”. In other words, in BGD
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all the training samples are used to compute the loss function. The value of the loss

is then used to updated the network’s weights.

Stochastic Gradient Decent (SGD) optimization. Unlike BGD algorithm, in

SGD algorithm the weights are updated after observing each sample individually.

Mini-batch Gradient Decent optimization. In mini-batch gradient decent al-

gorithm, the weights are updated after processing a fixed size of samples from the

training data. The size of this set is referred to as “batch-size”. The batch-size

is a hyper parameter and it’s value is usually selected based on the memory and

computational capacity of the system on which the training is performed. In this

dissertation, we use mini-batch gradient decent algorithm for training the neural

networks.

Gradient-based Optimization

In this section, we review two different gradient-based optimizer that we use in this

dissertation for training the Human Perception Discriminator and CEAL neural

networks (see Chapters 5 and 6).

Gradient decent optimizer. In this method, the weights of the model are ad-

justed in the negative direction of gradient of loss function with respect to weights.

This is because the gradient represents the direction in which the function is max-

imized. Particularly, the gradient of the loss with respect to weights are computed

using ∂L(θ)
∂wij

, where L is the loss value and wij is the weight of jth node in ith layer

of the network. Once this derivatives are computed, the weights are updated us-

ing Equation 3.2. In this equation, η is hyperparameter known as “learning rate”.

Learning rate defines the step sizes we take in the opposite direction of gradient to

minimize the loss function. Choosing the right learning rate is very important: if it

38



is too large, the model might not converge to local/global minima; while if it is too

small, the learning would be so slow.

wij := wij − η
∂L(θ)

∂wij

(3.2)

Adam optimizer. In traditional gradient descent method, a single learning rate

is used for all weight updates. In addition, the value of this learning rate is con-

stant during training. However, Adam optimization algorithm “computes individual

adaptive learning rates for different parameters from estimates of first moment (the

mean) and second moment (the uncentered variance) of the gradients.” [KB15].

Particularly, the decaying first moment (mt) and second moment (vt) are estimated

as in Equation 3.3 and Equation 3.4. mt and vt are estimates of the first and the

second moments of the gradients respectively.

mt = β1mt−1 + (1− β1)gt (3.3)

vt = β2vt−1 + (1− β2)gt
2 (3.4)

3.1.4 Representation Learning Using Deep Neural Networks

Representation or feature learning is a field of machine learning that seeks to con-

struct a suitable representation of the input vectors for the learning task. The idea

is to transform the raw input vectors into a new space that captures the most im-

portant factors of the unknown generating distribution of the input data. Principal

Component Analysis (PCA) [F.R01] is an ancestor of such solutions that performs

a linear transformation of the input vectors to capture the directions (components)

with the highest variability.
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In contrast, DNNs leverage linear and non-linear transformations, performed by

several processing layers, in order to learn a high level abstract feature set of the

input data. A well-known method for finding a feature representation for images

is to use an auto-encoder [Bal87]. An auto-encoder is a neural network with two

components: an encoder that transforms the input image into a compact code; and

a decoder that attempts to reconstruct the input image from the code. An auto-

encoder is trained in an unsupervised fashion, to minimize the reconstruction error

of the input at the output. When the network is trained, the code can be considered

as the compact representation of the salient features of the input data.

Further, the representation learned by DNNs can be re-purposed for a new task.

This process is referred to as “transfer learning” [YCBL14]. Empirical results have

shown the effectiveness of representations learned by DNNs for different tasks in-

cluding image classification [YCBL14, DJV+14, PCS17], and verification of different

biometric information [CHL05, MCP+15, PHJ16].

Particularly, one can use the entire or part of a pre-trained model weights (source

model) to build a new network for performing a different similar task (target model).

In this setting, the target model weights are initialized by transferred weights from

the source model. Then, these weights can be retrained for the new task. In another

setting, additional new layers are stacked on the (partial) copy of the source model

and the new layers are fine-tuned for the target task using a labeled dataset of

samples.

Transfer learning facilitates the learning process for the new network as the

extracted feature by the source model are also useful for performing the new task.

For instance, let us assume we have a DNN that is trained to classify images of

certain objects, e.g., cat, dog, flower, tree, house. We can use this network to

train a classifier for distinguishing other classes of images, such as different types
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of flowers, e.g., iris, lily, etc. For this, we can stack one of the deepest layers of

the pre-trained network with several additional (fully connected) layers. Then, we

retrain the new layers to optimize the network weights for the new task using labeled

samples of flower images. The source model can extract useful image features (e.g.,

features that resemble Gabor filters, color, etc.) that are also useful for performing

the target task (i.e. flower classification).

In addition, in a recent study Elsayed et al. [EGSD18] introduced reprogramming

DNNs. This is a new form of transfer learning approach where instead of using pre-

trained model weights, or the features extracted by this model, the input to the

pre-trained model is modified so that the network performs well on the new task.

This can be considered as reprogramming the network.

In contrast to image classification problem, ai.lock and CEAL image-based au-

thentication solutions differ in their need to ensure that two object/scene images

are the same or different for the purpose of authentication. In ai.lock and CEAL

architectures, we exploit the ability of DNNs to learn features of the input images

and capture the important underlying explanatory factors of images. We conjecture

that such features will have small variations among images of the same object or

scene, captured in different circumstances.

Pre-trained Deep Neural Networks

We are interested in the task of extracting robust and salient features of images

using the abilities of DNNs. Training a DNN with millions of parameters is compu-

tationally expensive and requires a large training dataset of labeled samples, rarely

available in practice. Instead, we employed a “transfer learning” [SZL15] approach:

obtain a trained DNN and use it for a similar task.
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Particularly, we exploit different pre-trained networks for image feature extrac-

tion: when the image is input to a pre-trained network, we consider activations of

specific layer, or multiple layers, as corresponding image features.

In this dissertation, we use two versions of Inception network for image feature

extraction. Inception networks use a specific module a.k.a Inception modules in

their architecture. The Inception module was introduces by Google engineers to

enable the network to have a deeper architecture, hence pushing the performance of

image classification task for computer vision. This module uses filters of different

sizes in the convolutional layers. The output of convolution operations using these

filters are then concatenated, enabling the network to learn from multiple sources of

information when performing the task. This continuous effort has resulted in several

versions of Inception. Each version provides an improvement over the prior version,

however, depending on the task in hand and the dataset in use, an earlier version

can have better performance over a later one.

Pre-trained Inception.v1. For image feature extraction in CEAL, we use In-

ception.v1 [ten17, SLJ+15] network pre-trained on ImageNet dataset [DDS+09], of

1.2 million images of 1,000 different object categories, for image classification (see

Chapter 6).

Pre-trained Inception.v3. Similar to Inception.v1, Inception.v3 [SVI+16a] is a

network pre-trained on ImageNet dataset [DDS+09], of 1.2 million images of 1,000

different object categories. We use this network for image feature extraction in

ai.lock (see Chapter 5).
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3.1.5 Generating Images Using Deep Neural Networks

In § 3.1.1, we described the generative models. Generative models digest a large

dataset, related to some domain (e.g., images, sentences, sounds, videos, etc.), and

learn to generate data samples that look similar to this dataset. In this dissertation,

we focus on image data generation.

A Deep Generative Model (DGM) is usually trained, using unsupervised learning,

to summarize explaining key features of images in training dataset. The trained

model can be further used for drawing samples from this data distribution, i.e.

they can generate fake but visually realistic and plausible images. There are two

major classes of generative models: Variational AutoEncoders (VAEs) [KW13] and

Generative Adversarial Networks (GANs) [GPAM+14]. VAEs consist of two DNNs,

i.e., a encoder part that transforms the input images to a compact hidden code

(a.k.a. latent variable); and a decoder part that learns to reconstruct the hidden

code back into the input image. VAEs are trained to minimize the reconstruction loss

of the decoder when there is a prior on the distribution of latent variables, i.e., the

encoder is constraint to generate latent variables that follow a specific distribution

(e.g. normal, or uniform).

A GAN [GPAM+14] is implemented by a system of two competing DNNs: (1) a

generator network (G) that transforms the input latent vector into an image. The

latent vector is usually selected from a simple distribution such normal or uniform

distributions. We assume that the latent vector components are randomly drawn

from U(−1, 1); (2) a discriminator (D) network that differentiates between instances

from the real images and synthetic images generated by the G network. G and D

are trained alternately: D is trained using the images generated by G and a set

of real images from a training dataste. G uses the output of D for the images it

generated to generate better images that can deceive D into believing they are real.
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The competition will drive G to generate image samples that look like images from

the training dataset.

In Chapters 4 and 5, we use a GAN model with the same architecture as in Deep

Convolutional Generative Adversarial Networks (DCGAN) [RMC15] to generate a

huge number of synthetic image samples that look similar to the real images in

our training datasets. We use these synthetic datasets to attack Pixie and ai.lock

image-based authentication solutions. In addition, in Chapter 6, we use a DCGAN

generator in CEAL system. We modify the process of training this DCGAN to

generate images that are not only realistic, but distinguishable by human visual

system. The images that CEAL generates can be used to represent a key fingerprint

corresponding to a public key or identity.

3.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) seeks to reduce the dimensionality of data, while

probabilistically preserving the distance properties of the input space. LSH was ini-

tially used to solve the near neighbor search problem in high dimensional spaces [IM98].

While seemingly the ideal candidate to provide the ai.lock functionality (i.e. map-

ping an image into a binary string), LSH does not work well on images: images

of the same scene or object, captured in different conditions, e.g., angle, distance,

illumination, will have dramatically different pixel values, leading to a high distance

between the images and thus also between their LSH values.

We use however Charikar’s [Cha02] LSH as a building block in ai.lock. Charikar’s [Cha02]

LSH defines a family of hash functions in the space Rd. Specifically, the LSH

function hr is based on a randomly chosen d-dimensional Gaussian vector with in-

dependent components r ∈ Rd, where hr(u) = 1 if r · u ≥ 0 and hr(u) = 0 if
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r · u < 0 (· denotes the inner product). This function provides the property that

Pr[hr(u) = hr(v)] = 1 − θ(u,v)
π

, for any vectors u and v, where θ(u, v) denotes the

angle between the input vectors.

3.3 Error Correcting Codes

In this dissertation, we use binary Bose-Chaudhuri-Hocquenghem BCH [BRC60,

Hoc59b] codes. A t-error-correcting BCH code can correct up to t bits. In this case,

the code words, generated by encoder, are guaranteed to be at least in d hamming

distance of each other, where d ≥ 2t + 1. We represent a t-error correcting code

with message length n and code word length k bits as BCH(n, k, t).
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CHAPTER 4

PIXIE: IMAGE-BASED REMOTE AUTHENTICATION

4.1 Introduction

We introduce Pixie, a novel, camera based two factor authentication solution for

mobile and wearable devices, see Figure 4.1 and [CaS17d] for a short demo. A quick

and familiar user action of snapping a photo is sufficient for Pixie to simultaneously

perform a graphical password authentication and a physical token based authentica-

tion, yet it does not require any expensive, uncommon hardware. Pixie establishes

trust based on both the knowledge and possession of an arbitrary physical object

readily accessible to the user, called trinket. While the trinket is essentially an au-

thentication token, it is not (necessarily) electronic, but can be any object easily

accessible to the user during the authentication process, e.g., wallet, watch, clothing

pattern. Pixie also differs from authentication based on biometric, since the trinket

can be changed, as users change accessories they wear or carry.

Just like setting a password, the user picks a readily accessible trinket of his

preference, e.g., a clothing accessory, a book, or a desk toy, then uses the device

camera to snap trinket images (a.k.a., reference images). All the user needs to do to

authenticate is to point the camera to the trinket. If the captured candidate image

matches the reference images, the authentication succeeds.

Challenges. Building a secure and usable trinket based authentication solution

is difficult. Unlike biometrics based solutions, trinkets can be chosen from a more

diverse space than e.g., faces, thus lack the convenience of a set of well known

features. In addition, users cannot be expected to accurately replicate during login,

the conditions (e.g. angle and distance, background) of the trinket as in the setup

process. Thus, Pixie needs to be resilient to candidate images captured in different
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(a) (b) (c)

Figure 4.1: Pixie: (a) Trinket setup. The user takes photos of the trinket placing it
in the circle overlay. UI shows the number of photos left to take. (b) Login: the user
snaps a photo of the trinket. (c) Trinket setup messages provide actionable guid-
ance, when the image quality is low (top), or the reference images are inconsistent
(bottom).

circumstances than the reference images. To address these challenges, Pixie requires

the users to capture multiple trinket images in registration phase. In addition, we

leverage robust keypoints [BTVG06, RRKB11] extracted from images of the trinket

to perform image matching. Particularly, we identify a novel set of features extracted

from a 1-to-1 matching of candidate to reference image keypoint descriptors. We

then train a classifier on these features to decide if the candidate and reference

images “match”.

We identified an additional challenge in early pilot studies: Pixie users can use

low quality reference trinkets, (e.g. with uniform textures, or inconsistent reference

images with different viewing angles), or capture low quality images of their trinkets,

(e.g., blurry, or with improper lighting conditions, see Figure 4.2(d)-(f)). In order to

help the users pick high quality images of trinket, we develop features that capture
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Examples of good (a-c) and low quality (d-f) trinket images. Trinkets are
small (parts of) objects carried or worn by users, thus hard to steal and even reproduce
by adversaries. ORB keypoints are shown as small, colored circles. Good images have a
high number of keypoints on the trinket. Low quality images are due to (d) insufficient
light conditions on shirt section, (e) bright light and reflection, (f) image blur, or uniform,
texture-less trinket.

the quality of reference and candidate images as defined by the likelihood of causing

false accepts or false rejects. We use these features to implement image filters that

detect and reject low quality images before they can be used as Pixie trinkets. We

introduce two rules of Pixie filters for rejecting trinket images: (i) images on which

they predict Pixie will fail, and (ii) images with feature values for which Pixie has

not been trained.

It is crucial to give the user actionable feedback about how to choose a better

trinket when the Pixie filters reject a trinket image. For instance, a set of reference

images can be rejected because they contain different trinkets, or because one of

48



Success rate Entry Time Number of trials
Solution (%) (s) before success

Pixie 84.00 7.99 (Std=2.26, Mdn=8.51) 1.2 (Std=0.4, Mdn=1)
Text password (MyFIU) 88.10 12.5 (Std=6.5, Mdn=11.5) 1.4 (Std=1.02, Mdn=1)

Text password (comp8) [SKD+14]* 75.0-80.1 (Mdn=13.2) 1.3

Eye tracking [LDGW15] 77.2-91.6 ¡ 9.6 1.37 (Std=0.8, Mdn=1)-1.05 (Std=0.3, Mdn=1)
GazeTouchPass [KAH+16] 65 3.13 1.9 (Std=1.4, Mdn=1)
Face biometric [TSK+12] 96.9 (Mdn=5.55) N/A
Face & eyes [BCF+13]* N/A 20-40 1.1
Face & voice [TSK+12] 78.7 (Mdn=7.63) N/A
Voice biometric [TSK+12] 99.5 (Mdn=5.15) N/A
Gesture (stroke) biometric [TSK+12] 100 (Mdn=8.10) N/A

Android pattern unlock [HDLE16] 87.92 0.9 (Std=0.63, Mdn=0.74) 1.13(Std=0.06, Mdn=1.11)
Passpoints [CFS+09]* 57 18.1 (Mdn=15.7) 2.2
Xside [DLHvZ+14] 88 3.1-4.1 N/A
SmudgeSafe [SSB+14] 74 3.64 (Std=1.66) N/A

* The study device is a computer.

Table 4.1: Comparison of usability related metrics of Pixie’s camera based two-factor
authentication approach with text, biometric and graphical password authentication
solutions. The Pixie user entry time is faster than typing text passwords. The results
of text-based passwords evaluated in § 4.6.2 are consistent with those from previous
work. Pixie’s median of login trials until success is 1, similar to other solutions.

them is blurry. Most supervised learning classifiers are not easily interpretable, thus

cannot indicate the nature of the problem. In order to provide meaningful actionable

feedback, we identify feature threshold values that pinpoint problem images and

naturally translate into user instructions (see Table 4.6), e.g. blurry images, and

inconsistent reference sets.

Implementation and evaluation. We implement Pixie for Android, and show

using an extensive evaluation that Pixie is secure, fast and usable, and perceived

as such by users. Pixie achieves a False Accept Rate (FAR) of 0.02% and a False

Reject Rate (FRR) of 4.25%, when evaluated over 122, 500 authentication instances.

Pixie processes a login attempt in 0.5s on a HTC One mobile device.

Table 4.1 compares usability related metrics of Pixie’s camera based two-factor

authentication approach with text, biometric and graphical password authenti-

cation solutions. While Pixie takes longer than biometric authentication based

on face [TSK+12], it is still faster than several authentication solutions based on
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gaze [BCF+13, LDGW15]. We note that while fingerprint based authentication is

fast and convenient [BUI+15], it is only applicable to devices that invest in such

equipment. In contrast, cameras are ubiquitously present, including on wearable

devices such as smartwatches and smartglasses.

To evaluate the security of Pixie, we introduce image based dictionary, or “pic-

tionary” attacks, based on public trinket image datasets and images that we collected

online. On pictionary attacks consisting of 14.3 million authentication attempts,

Pixie achieves a FAR below 0.1%. We show that knowledge of the trinket type does

not provide an adversary with a significant advantage: on our online trinket image

dataset, the average number of “trials until success” exceeds 5, 500 irrespective of

whether the adversary knows the type of the trinket or not. In addition, we intro-

duce and study the concept of master images, whose diverse keypoints enable them

to match multiple trinkets. We develop features that enable Pixie to reduce the

effectiveness of master images.

A user study performed with 42 participants over 8 days in 3 sessions, reveals

that Pixie is “discoverable”: without prior training and given no external help, 86%

and 78% of the participants were able to correctly set a trinket then authenticate

with it, respectively. Pixie’s trinkets were perceived as more memorable than text

passwords, and were also easily remembered 2 and 7 days after being set.

Without any additional practice outside of the 3 sessions, participants entered

their trinket progressively faster. Participants think Pixie is easier to use, more

memorable and faster than text passwords. We found that preference of Pixie over

text passwords correlates positively with its preference on ease of use, memorability

and security dimensions and overall perception of trinket memorability and willing-

ness to adopt Pixie. In addition, 50% of participants reported that they preferred

Pixie over text passwords. 62% of the participants were willing to adopt Pixie.
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Figure 4.3: Pixie system model: the user authenticates through a camera equipped
device (smartphone, smartwatch, Google Glass, car), to a remote service, e.g., e-
mail, bank, social network account. The remote service stores the user credentials
and performs the authentication.

4.2 Model and Applications

4.2.1 System Model

Figure 4.3 illustrates the system model. The user has a camera equipped mobile de-

vice, called the authentication device. Authentication devices include smartphones,

tablets, resource constrained devices such as smartwatches and smartglasses, and

complex cyber-physical systems such as cars. The user uses the authentication de-

vice to access remote services such as e-mail, bank and social network accounts, or

cyber-physical systems, e.g., home or child monitoring systems.

We assume that the user can select and easily access a physical object, the trinket.

The user sets the authentication secret to consist of multiple photos of the trinket,

taken with the device camera. We call these “reference” images, or reference set. To

authenticate, the user snaps a “candidate” image of the trinket. This image needs

to match the stored, reference set. As illustrated in Figure 4.3, in this chapter,

we focus on the scenario where the user is willing to authenticate to a remote
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service using Pixie. The remote service will store the reference images securely and

perform the image match over candidate images captured on and sent by the mobile

device. However, the mobile device can also be used to store the reference images,

and perform the image matching. In this case, the device associates the reference

images with the user’s remote authentication credentials (e.g. OAuth [DH12]). If

the image match succeeds, the credentials are sent to the remote service. In § 4.7

we compare the merits and drawbacks of each approach.

It worth mentioning that, Pixie can be used both as a standalone authentication

solution and as a secondary authentication solution, e.g., complementing text based

passwords.

4.2.2 Application

While this chapter centers on a remote service authentication through a mobile de-

vice scenario, Pixie has multiple other applications such as authentication in camera

equipped cyber-physical systems. For instance, cars can use Pixie to authenticate

their drivers locally and to remote services [Sec17]. Pixie can also authenticate

users to remote, smart house or child monitoring systems, through their wearable

devices. Further, doorlocks, PIN pads [Sec17, Sch17] and fingerprint readers can

be replaced with a camera through which users snap a photo of their trinket to

authenticate.
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 Pixie can be used as an alternative to face based authentication when the users 

are reluctant to provide their biometric information (e.g. in home game systems 

where the user needs to authenticate to pick a profile before playing or to unlock 

certain functionalities). Pixie can also be used as an automatic access control check- 



53

              

token and use it to pass Pixie access control checkpoints.

 In addition, given the large number of people who work from home [Sed14], 

Pixie can provide an inexpensive 2FA alternative for organizations to authenticate 

employees who are connecting to the private network remotely [Gol]: replace the 

hardware tokens with user chosen Pixie trinkets.

 We note however that as we discuss later, Pixie may be unsuitable in authenti- 

cation scenarios that include (1) a high risk associated with external observers, (2) 

poor light conditions, (3) unpredictable movements, e.g., while walking or in public 

transportation, or (4) depending on the trinket object type, situations where the 

user cannot use both hands.

4.2.3 Adversary Model

We assume that the adversary can physically capture the mobile device of the victim. 

We also assume that the adversary can use image datasets that he captures and 

collects (see § 4.4) to launch brute force pictionary attacks against Pixie (see 

§ 4.5.2).

 Similar to PIN based authentication to an ATM, Pixie users need to make sure 

that onlookers are far away and cannot see the trinket and its angle. We assume 

thus an adversary with incomplete surveillance [FA12], who cannot observe or record 

the trinket details. However, we consider a shoulder surfing attack flavor where 

the adversary sees or guesses the user’s trinket object type. The adversary can then 

use datasets of images of similar objects to attack Pixie (see § 4.5.2).

 Further, we also consider an adversary that attempts to launch a master image 

attack, i.e., identify images that contain diverse features and match many trinkets.

point (e.g. for accessing privileged parts of a building). The users can print a visual



Example master images include “clutter” images, with an array of shapes, colors

and shadows (see § 4.5.2).

In remote authentication scenario, we assume that the reference trinket images

are transferred to the remote server through a secure channel (e.g. SSH). These

images are then stored on the server securely through encryption. In the scenario

where the reference images have to be stored on the mobile device, we assume that

the adversary cannot access the stored image password: the images could be secured

through hardware-level protection, e.g., [Tru17], or through privacy preserving fea-

ture extraction and matching solutions [WHWR16, QYR+14, HLP12], see § 4.7 for

a discussion. Depending on the scenario, the adversary seeks to either authenticate

on the captured device, or to use the device to gain access to the victim’s online

service accounts.

It is important to note that, we are not assuming a naive or unmotivated adver-

sary whose only means is to take photos of trinkets, as such limited adversaries are

known to create a false sense of security [BML06]. The adversary that we assume

is able to launch massive image-based attacks on Pixie using public image libraries.

4.3 Pixie

4.3.1 Pixie Requirements

Pixie is a two factor authentication solution as it requires both a possession factor

and a knowledge factor to authenticate the user. The possession factor is the trinket.

The knowledge factor is the knowledge of the trinket itself, its angle and section used

to authenticate. In addition to being resilient against attacks (see § 4.2.3), Pixie

needs to satisfy the following requirements:
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Figure 4.4: Pixie registration and login workflows: to register, the user captures
“reference images” of the trinket, which are filtered for quality and consistency. To
authenticate, the user needs to capture a “candidate image” of the trinket that
matches the reference images.

• Trinket image quality. Pixie needs to ensure the quality of trinkets and

images. Early pilot studies showed that not all the trinkets that the users

chose, or the photos that they took, were suitable for authentication.

• Trinket match. Pixie needs to match images of the same trinket, even when

captured with a different background, lighting, or from a slightly different

distance or angle.

• Discoverability. New users should easily discover the functionality of Pixie.

• Deployability. Pixie should be easy to integrate into existing systems.

Figure 4.4 depicts the modular approach we use for Pixie to address these goals. The

image capture module seeks to address part of the first requirement, by facilitating

the capture of high quality trinket images. The authentication module tackles the

second requirement through the use of trained classifiers to match trinket images.

To simultaneously address the first and third requirements, i.e., to ensure the dis-

coverability of Pixie while guiding new users through the capture of high quality
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photos and the choice of visually complex objects as the secret, the filter module

detects and eliminates low quality images and invalid reference sets. We now detail

each module.

4.3.2 Image Capture & Feedback

We performed pilot studies to identify early problems with the Pixie user interface.

For instance, during the pilot studies, some users captured trinket photos whose

background provided more features than the trinkets. This revealed that the trinket

needs to be the main object in captured images. To simultaneously satisfy this

requirement, and the trinket quality requirement above, we design Pixie to guide

the user to take larger photos of trinkets. We achieve this by overlaying a circle on

the camera image: the user needs to fit the trinket impression inside the circle (see

Figures 4.1(a) and 4.1(b)). Since Pixie does not allow zooming in, the user needs

to bring the camera closer to the trinket, hence take a larger photo. Pixie crops the

image, and keeps only the largest rectangle parallel to the sides of the device that

fits the circle.

In addition, we observed that the quality of trinket images captured by the

users could be low (e.g. blurry or dark, see Figure 4.2), or the users may take

inconsistent trinket images in the registration phase. To ensure the quality of trinket

images and the consistency of reference images, we identified common problems that

occur during the image capture process (e.g., insufficient light, trinket with plain

texture). Then, we mapped prefilter rejection decisions provided by Pixie’s image

filter (see § 4.3.4) into informative error messages (see Figure 4.1(c)). Furthermore,

to facilitate the discoverability of Pixie, we designed and included a step by step

in-app instruction guide on how to use Pixie (see Figure 4.12). Table 4.2 summarizes
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Requirement Pixie Feature

Increase the size of trinket &
Reduce the background area in trinket images

1. Disable camera zoom
2. Overlay a circle as the target area on the camera view

Ensure the quality of reference and candidate images
Ensure consistency of reference images

1. Design prefilters for checking the quality of images
2. Translate the prefilter criteria into an actionable feedback to the users

Improve the discoverability of Pixie
1. Show number of remaining images to take in registration screen
2. Show camera capture icon for login page
3. Add step by step in-app instruction on how to use Pixie

Table 4.2: Summary of user interface improvements identified during pilot studies.

Figure 4.5: Example ORB keypoint matches between two images of the same trinket,
taken in different conditions. Each line represents a match: it connects matching
keypoints (shown as small colored circles) from each image.

the design improvements we made to the Pixie UI.

4.3.3 The Authentication Module

The authentication module is responsible for addressing Pixie’s second requirement

(see § 4.3.1), of matching the candidate image against the reference images. Pixie

extracts robust keypoints from these images, then computes a 1-to-1 mapping be-

tween the resulting keypoint sets (see Figure 4.5 for an illustration), and filters out

low quality matches. Pixie extracts a suite of features from the keypoint match

process and uses supervised learning to decide if the candidate image matches the

reference set. We now detail this process.
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Symbol Description

R The set of reference images

R Any of the reference images in the reference set (R)
C The candidate image
T (R) Template image of reference set (R)

NNSim(C,R) Nearest neighbor similarity of C to R
FNSim(C,R) Furthest neighbor similarity of C to R
AvgRefNN(R) Avg. nearest neighbor similarity of each reference image
AvgRefFN(R) Avg. furthest neighbor similarity of each reference image

AvgRefTempl(R) Avg. similarity of reference images to template image

KP-CNT Number of keypoints in an image
DTC-KP Avg. distance of keypoints to their centroid in an image
White-CNT Number of detected edge (white) pixels of an image
DTC-White Avg. distance of edge (white) pixels to their centroid

MinCrossSim(R) Min. similarity among all the pairs of images in R
MaxCrossSim(R) Max. similarity among all the pairs of images in R
AvgCrossSim(R) Avg. similarity among all the pairs of images in R

ORB [RRKB11] ORB keypoint extraction algorithm
SURF [BTVG06] Speeded Up Robust Features keypoint extraction algorithm
RANSAC [FB81] Random Sample Consensus algorithm for fitting the model to data
FLANN [ML09] Fast Approximate Nearest Neighbor Search

Table 4.3: Pixie notations and algorithm acronyms.

Table 4.3 summarizes the most important Pixie features notations. Let C denote

the candidate image, R be the set of reference images, and R be any of the reference

images (see § 4.2.1).

Keypoint matching

We use SURF (Speeded Up Robust Features) [BTVG06] and ORB [RRKB11] algo-

rithms, to extract scale and rotation invariant image keypoints from the candidate

and reference images, e.g., shown as small colored circles on images in Figure 4.5 and

4.2. We also extract the descriptors of the keypoints, which represent their char-

acteristics. To determine if a candidate image C and a reference image R contain

the same trinket, we compute a 1-to-1 matching between their keypoint descriptors
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Similarity Table R1 R2 R3

R1 1 0.9 0.8
R2 0.7 1 0.6
R3 0.7 0.8 1

C 0.7 0.5 0.9

Table 4.4: Similarity table of three reference images R = {R1, R2, R3} and a candi-
date image C. Red cells correspond to the nearest neighbor. R1 is the template im-
age. AvgRefNN = (0.8+0.7+0.9)/3 = 0.8, AvgRefFN = (0.7+0.6+0.8)/3 = 0.7
and AvgRefTempl = (0.8 + 0.9)/2 = 0.85. Then, minSim(C,R) = 0.5/0.7,
maxSim(C,R) = 0.9/0.8 and TemplSim = 0.7/0.85.

(e.g., shown as lines in Figure 4.5). We use brute-force matching for ORB keypoints,

where each keypoint of the candidate image is matched with the closest keypoint

(in terms of Hamming distance) of the reference image. For SURF keypoints, we

use the FLANN-based matcher [ML09].

An exhaustive matching of each keypoint in the candidate image to a keypoint in

the reference image will produce low quality, outlier matches. We experimented with

several existing filters: applying a threshold on the matched keypoint distances, cross

checking the matched keypoints in both images, and RANSAC [FB81], to identify

and remove outlier matches. The RANSAC based filter performed the best, hence

we use it implicitly in the following.

Image similarities and the template image

Given two images C and R, we define their similarity Sim(C,R) to be the ratio

between the number of keypoint matches of C and R, after the above filter and

outlier detection steps, and the number of keypoints in C. We also define several

concepts as bellow. These concepts are exemplified in Table 4.4.

Given C and the set R, we define the nearest neighbor similarity of C to R as

NNSim(C,R) = max {Sim(C,R)|∀R ∈ R}, and the farthest neighbor similarity,
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Solution Features Details

Keypoint stats. Statistics of ORB/SURF keypoints
Pixie Keypoint nearest neighbors Keypoint match stats.

Perspective transformation RANSAC optimal map of match keypoints

Keypoints Count and spread of keypoints
Pixie filters Edge pixels Count and spread of edge pixels

Reference quality Reference image similarities stats.

Table 4.5: Summary of (top) Pixie features and (bottom) Pixie filter features.

FNSim(C,R) = min {Sim(C,R)|∀R ∈ R}.

Given a reference set R, we define the average nearest neighbor similarity value

of each reference image, to the other reference images in R: AvgRefNN(R) =

Σ
R∈R

NNSim(R,R−R)

|R|
. Similarly, we define the average farthest neighbor similarity value

of each reference image to the other images inR: AvgRefFN(R) =
Σ

R∈R
FNSim(R,R−R)

|R|
.

In addition, given a reference set R, we define its template image, T (R), as

the reference image R whose value
∑

r∈R−R Sim(r, R) is the maximum among all

reference images in R. Intuitively, T (R) is the reference image “closest to the center”

of the reference set. We define AvgRefTempl(R) as the average similarity of images

in R to T (R).

Pixie matching features

We use the above concepts to extract the following features (see Table 4.5, top sec-

tion for a summary). We use these features to train a supervised learning algorithm

(e.g. random forest) to decide whether a candidate image matches to a reference

set.

• Keypoint counts. The keypoint count of C and T (R).

• Match based features. The number of keypoints in C and T (R) that match, before

the RANSAC filter. The min, max, mean and SD of the distance, size, response

and angles between the matched keypoints in C and T (R), after RANSAC.
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•Quality of the reference set. AvgRefNN(R), AvgRefFN(R) andAvgRefTempl(R).

• Similarity to template. The similarity of C to T (R), normalized by the average

similarity of the images in R to T (R), i.e., Sim(C,Templ(R))

AvgRefTempl(R)
.

• Similarity to reference set. We define minSim(C,R) = min{Sim(C,R)|∀R∈R}

AvgRefFN(R)
: the

ratio of the similarity between C and “farthest” reference image, and the average

least similarity between reference images. Similarly, we define maxSim(C,R) =

max{Sim(C,R)|∀R∈R}

AvgRefNN(R)
.

• Homography: Output of homography between C and T (R): the perspective trans-

formation between the planes of the two images (3 features).

4.3.4 Pixie Filters

Early pilot studies revealed that Pixie users can capture low quality images. Such

images, either reference or candidate, hinder the ability of the authentication module

to discern candidate images, increasing the FRR of Pixie. Furthermore, they impose

gratuitous network latency in the remote authentication scenario (see § 4.2.1).

Several conditions may prevent taking high quality images Figure 4.2(d)-(f)

shows example outcomes of such conditions, including (i) improper lighting or choice

of a complex background that generates irrelevant keypoints, (ii) unsteady hand and

(iii) choice of trinkets with constant texture. We also observed that some pilot study

participants, during the reference set registration process, took photos containing

different trinkets, or different areas of the same trinket. Such reference images may

not only reduce the accuracy of the authentication process, but may also introduce

vulnerabilities: an attacker may find it easier to capture a candidate image that is

similar to one of 3 different reference images, hence, increase the chance to break

the authentication mechanism.

61



To address these issues, we introduce a set of filters (see Figure 4.4) that reject

problematic images captured by the user. We propose the two rules of filtering, that

set out the operation space for Pixie image filters:

• Filter Rule #1: Pixie may not willfully fail by operating on images on which

it predicts it will fail.

• Filter Rule #2: Pixie may not operate in a space where it has not been

trained.

In the following, we detail these rules and describe the resulting filters.

Filter Rule #1: CBFilter and RBFilter

We introduce CBFilter and RBFilter, filters that identify reference and candidate

images on which they predict Pixie will fail. The filters leverage the following

features, (see Table 4.5 (bottom section) for a summary).

Filter features. First, we define KP-CNT as the keypoint count of an image.

The intuition for using this feature is that an image with a low KP-CNT (e.g.,

Figure 4.2(f) with only 5 keypoints) is likely to negatively impact the accuracy of

Pixie’s matching process. A second feature is based on the center, or centroid of the

keypoints extracted from an image: let DTC-KP (distance to center of keypoints)

denote the average distance between the keypoints of the image and their centroid.

DTC-KP measures the spread of the keypoints across the image. The intuition is

that a high DTC-KP may indicate that some keypoints do not belong to the trinket

but to the background. Third, to detect blurry images, we use the Canny edge

detector [Can86] to identify edge pixels that delimit objects in the image. Let White-

CNT denote the number of detected edge (“white”) pixels of an image. White-CNT

is an indicator of the clarity of the image: a low White-CNT denotes a blurred

image, with few trinket edges. We also introduce DTC-White (distance to center of
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Figure 4.6: Example 2D histograms of KP-CNT of template image vs.
AvgCrossSim(R). (a) Correctly classified instances. (b) False reject instances. (c) False
accept instances. The legend in (a)-(c) shows the color code used for the number of authen-
tication instances. (d) Aggregated 2D histogram. The darker regions with 1 in the center
have a greater proportion of misclassified than correctly classified instances. The regions
with -1 in the center correspond to value ranges on which we have no template images.
Conclusion: filter out reference sets with KP-CNT < 20 and AvgCrossSim(R) < 0.6.

white pixels), the average distance of the white pixels to their centroid. DTC-White

denotes the spread of the edge pixels, i.e., the size of the trinket. Finally, to detect

inconsistent reference images, we define MinCrossSim(R), MaxCrossSim(R) and

AvgCrossSim(R), to be the minimum, maximum and average similarity (see § 4.3.3)

among all the pairs of images in R. Small cross similarity values indicate reference

images of non-identical trinkets.
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CBFilter: Classifier Based Filter. Given the reference set R and its template

image T (R) (see § 4.3.3), CBFilter uses a suite of features to train a supervised

learning algorithm and determine if R is suitable to participate in the authentica-

tion process. The features include KP-CNT, DTC-KP, White-CNT, DTC-White

of T (R), the average, minimum and maximum of KP-CNT, DTC-KP, White-CNT,

DTC-White over all the images in R, and MinCrossSim(R), MaxCrossSim(R)

and AvgCrossSim(R).

RBFilter: Rule Based Filter. Pilot studies demonstrated the need to give rele-

vant feedback to users as early as possible: early pilot study participants expressed

frustration when they discovered that the photos they took were not suitable at the

end of the registration, or worse, during the authentication process. The output of

CBFilter cannot however be used to provide meaningful feedback.

To address this limitation, we identified common problems that occur during the

image capture process, e.g., improper light, trinket with plain texture or not identical

reference images. We then developed a set of rules for these filter features, that (i)

predict if an image or image set will not perform well during authentication, and (ii)

that can be transposed to one of the problems identified. For instance, we found that

a small KP-CNT is associated with insufficient light, blur, or trinkets with a plain

texture, while a small AvgCrossSim value can indicate reference images containing

non-identical trinkets. Figure 4.1(c) illustrates the feedback provided when the user

captures a low quality trinket (top) or inconsistent reference images (bottom).

To identify such rules, we run Pixie on the Pixie dataset, a dataset of reference

set and candidate image pairs that are captured in different conditions (see § 4.4 for

more details). Specifically, we investigate reference sets and candidate images that

contributed to misclassified instances as follows. For each pair of the above filter

features, we plot the 2D histogram of instances that were correctly classified, and
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Image type Filter Rule Interpretation

Reference KP-CNT < 20 Low quality image or plain trinket
Reference DTC-KP < 30 Low quality image or plain trinket
Reference AvgCrossSim < 0.6 Non-identical trinkets in reference set

Candidate KP-CNT < 20 Low quality image or plain trinket

Candidate DTC-KP > 44, 600 Out of bounds image
Candidate White-CNT > 22, 400 Out of bounds image
Candidate DTC-White > 160 Out of bounds image

Table 4.6: RBFilter and UBounds filter rules for reference and candidate images,
and their real world interpretation. RBFilter (top 2 sections) filters images on which
it predicts Pixie will fail. UBounds (bottom section) filters images outside the space
seen by Pixie during training.

that contributed to false accepts (FA) and false rejects (FR). Figures 4.6(a)-(c) illus-

trates this process for the KP-CNT of template images T (R) vs. AvgCrossSim(R)

pair of features. Then, we aggregate the results for the three 2D histograms, see Fig-

ure 4.6(d), by calculating the contribution of each type of classification result (i.e.,

FA, FR, True Accept (TA) and True Reject (TR)) in a cell of the 2D histogram.

The dark regions have a larger proportion of misclassified than correctly classified

instances. This enables us to identify “problem” regions, where the contribution

of misclassified instances (FA and FR) is larger than that of correctly classified in-

stances (TA and TR). We then define rules, i.e., threshold values, that avoid clusters

of problem regions. For instance, based on the bottom area of Figure 4.6(d), we re-

ject reference sets whose template has KP-CNT < 20. Similarly, we reject reference

sets with AvgCrossSim(R) < 0.6, as we have none with AvgCrossSim(R) < 0.4

(cells with −1), and those in [0.4, 0.6] are frequently misclassified.

Through a similar process, we have identified several other filtering rules for ref-

erence sets and candidate images, and their real world interpretation, see Table 4.6

(top 2 sections). RBFilter uses these rules to reject low quality reference and candi-
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date images, and extend Pixie with informative error messages that guide users to

improve the quality of captured images.

Filter Rule #2: UBounds

We train Pixie on a dataset of images that do not cover the entire value space of

the filter features. Pixie cannot make informed decisions on candidate images whose

features take values in sub-areas not seen during training. We have identified several

such sub-areas for the Pixie dataset. The UBounds filter consists of the “universe

boundary” rules listed in Table 4.6 (bottom section), that define these sub-areas.

By rejecting candidate images that satisfy these rules, UBounds presents a con-

servative performance for Pixie: Pixie would easily reject UBounds rejected candi-

date images, thus artificially increasing its perceived accuracy. As a result, we do

not use this rules when evaluating performance of Pixie.

4.4 Implementation and Data

We have implemented Pixie using Android 3.2, OpenCV 2.4.10 and Weka [Wek17].

In order to evaluate the performance of the Pixie features and using several super-

vised learning algorithms, we have collected and generated the following datasets:

4.4.1 Primary Image Datasets

Nexus image dataset. We used a Nexus 4 device to capture 1, 400 photos of 350

unique trinkets, belonging to 33 object categories. We selected only objects that can

be easily carried by users and are thus ideal candidates for image-based trinkets, e.g.,

watches, shoes, jewelery, shirt patterns, credit cards and logos. We have captured 4
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images for each trinket, that differ in background and lighting conditions, i.e., either

indoors using artificial light or outdoors in daylight conditions.

Google Image dataset. We used Google’s image search site to retrieve at least

200 images from each of the 33 object categories of the Nexus image dataset, for a

total of 7, 853 images. This dataset forms the basis of a shoulder surfing attack (see

§ 4.5.2).

ALOI dataset. We use the illumination subset of the Amsterdam Library of Object

Images (ALOI) [GBS05a] dataset, that contains 24 different images for 1000 small

objects (i.e., natural trinket choices) captured under various illumination conditions.

We cropped these images to the size of the Nexus images (270× 312 pixels), while

keeping their object centered.

Caltech101 dataset. We use Caltech101 [FFFP04] dataset which is a collection

of 9, 145 images of small and large objects, from 101 object categories.

4.4.2 Evaluation Datasets

Pixie dataset. To evaluate Pixie, we generate authentication instances that consist

of one candidate image and 3 reference images. To prevent “tainting”, we need to

ensure that instances used for testing do not contain reference images that have

appeared in a training instance. For this, we use the 1, 400 images of the 350

trinkets, to generate 10 Pixie subsets, each containing 10 folds, as follows. To

generate one of the 10 folds of one of the 10 subsets, we first randomly split the

350 trinkets into 10 sets of 35 trinkets each. For each trinket in a set, we randomly

select one of its 4 images as candidate; the remaining 3 images are reference images.

The trinket then contributes to the fold by one genuine instance (its candidate +

its 3 reference images) and 34 “fraud” instances. Each fraud instance combines
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the trinket’s candidate image with the 3 reference images of one of the other 34

trinkets in the subset. Thus, each fold consists of 35 authentic and 1190 = 35× 34

fraud instances. Then, one of the 10 Pixie subsets contains 12, 250 authentication

instances. Thus, the Pixie dataset has a total of 122, 500 authentication instances.

Attack datasets. We use the Nexus dataset (§ 4.4) to build 3 authentication attack

datasets based on the ALOI, Google Image and Caltech101 sets.

We generate the authentication attack instances for each attack dataset, and

group them into 10 folds, as follows. We randomly split the 350 unique trinkets

of the Nexus dataset into 10 subsets of 35 trinkets each. For each trinket in a

subset, we randomly select 3 out of its 4 images, to form a reference set. We then

combine this set with each of the images from ALOI, Google Image, and Caltech101

datasets, respectively. We repeat this process for all the 35 reference sets in a

fold. Thus, in the ALOI attack dataset, a fold contains 840K = 35 × 24K attack

instances, for a total of 8.4M ALOI based attack instances. Similarly, the Google

Image attack dataset contains 2.7M+ attack instances, while the Caltech101 attack

dataset contains 3.2M+ instances.

4.5 Evaluation

We evaluate the performance of Pixie’s optimal configuration under the attacks

introduced in § 4.2.3. We report the performance of Pixie through its False Accept

Rate (FAR), False Reject Rate (FRR), Equal Error Rate (EER), and F-measure.

FAR can be defined as a the ratio of number of times an authentication system allows

an unauthorized access divided by the number of identification attempts. FPR can

be defined as the ratio of the number of times an authentication system incorrectly

rejects the access of an authorized user divided by the total number of identification
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Keypoint Detector FAR(%) FRR(%) F-measure(%) EER(%)

ORB 0.10 9.83 93.08 4.87

SURF 0.07 4.80 96.40 2.80

Table 4.7: ORB vs. SURF based Pixie (MLP classifier, no filter) performance, on
the Pixie dataset. SURF has lower FAR and FRR compared to ORB.

attempts. EER defined the rate at which both acceptance and rejection are equal.

Finally, F-measure is the harmonic mean of precision (i.e. ratio of truly accepted

attempts to all accepted attempts) and recall (i.e., 1− FNR).

Experimental setup. Throughout this section, we have applied 10-fold cross-

validation tests [Koh95] to assess how the results of the statistical analysis will

generalize to an independent data set. The advantage of this method is that all

observations are used for both training and validation, and each observation is used

for validation exactly once.

For our experiments, we have used a Mac OS X (2.9 GHz Intel Core i7 CPU,

and 8GB DDR3 RAM) and a Nexus 4 smartphone (Quad-core 1.5 GHz Krait, and

2GB RAM; 8MP camera sensor, f/2.4 aperture).

We have used the Weka version 3.7.9 data mining suite [Wek17] to perform the

experiments, with default settings: For the back-propagation algorithm of the Multi

Layer Perceptron (MLP) classifier, we set the learning rate to 0.3 and the momentum

rate to 0.2.

4.5.1 Parameter Choice for Pixie

We first identify the parameters for which Pixie performs best.
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Figure 4.7: Keypoint count distribution extracted from Nexus image set by (a) ORB
and (b) SURF.

ORB vs. SURF for image keypoint extraction

We compare the performance of Pixie when using two popular keypoint extraction

algorithms, ORB [RRKB11] and SURF [BTVG06]. We use a MLP classifier for

the Pixie classifier, and no filter. We perform the evaluation through 10-fold cross

validation on each of the 10 subsets of the Pixie dataset (see § 4.4). Table 4.7 reports

the performance of ORB and SURF: SURF has lower FAR and FRR, leading to an

EER that is smaller by 2% than that of ORB.

Figure 4.7 shows the distribution of the per image number of keypoints extracted

by ORB and SURF from the Nexus dataset (see § 4.4). We extract at most 500

keypoints with ORB, while with the extended descriptors, SURF discovers up to

1, 289 keypoints. We have extracted 385, 361 ORB keypoint descriptors from the

1, 400 Nexus dataset images, each being 256 bits long.

Figure 4.8(a) compares the average time to extract ORB and SURF keypoints

on the Mac and Nexus 4 devices, over 100 Nexus dataset images (that include

images with low, medium and high number of keypoints). On both devices, SURF is
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Figure 4.8: ORB vs. SURF: Pixie speed on Mac and Nexus 4. (a) Average time to
extract keypoints. ORB takes an average 160ms on Nexus 4. (b) Average time to match
keypoint descriptors of two images. Only ORB is viable on the Nexus 4.

significantly slower than ORB. On a Nexus 4, ORB takes 0.15s to extract keypoints,

while SURF takes on average more than 2.5s on the Mac and almost 5s on the Nexus

4.

Figure 4.8(b) compares the speed of the matching step, when using ORB and

SURF descriptors. These values are computed using the comparison of 10, 000

image pairs: 100× 100, for the aforementioned subset of 100 Nexus images. SURF

is consistently slower than ORB: On Nexus 4, SURF takes an average of 2.72s to

match the descriptors of a pair of images, and may exceed 3s for images with many

keypoints. ORB takes only 0.66s on average to match the descriptors.

Given the trade-off between speed and accuracy, SURF is more suitable when

the image processing and matching tasks can be performed on a server. The faster

ORB should be preferred in the mobile authentication scenario, when these tasks

have to be performed by a mobile device. In the following experiments, we set

Pixie’s keypoint extraction algorithm to be ORB.
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Pixie Classifier FAR(%) FRR(%) F-measure(%) EER(%)

MLP 0.10 9.83 93.08 4.87

RF 0.02 10.74 93.90 3.82

SVM 0.00 12.57 93.04 10.74

Decision Tree (C4.5) 0.17 11.54 91.01 7.66

Table 4.8: Classifier performance on Pixie dataset using ORB keypoint extractor
and no filter. Random Forest and MLP achieve the lowest EER, thus we only use
them in the following.

Images Filtering Rule FAR(%) FRR(%) F-measure(%)

Reference KP-CNT <20 0.09 6.60 95.06

Reference DTC-KP <30 0.10 9.12 93.46

Reference AvgCrossSim <0.6 0.07 8.10 94.53

Reference All 3 Filters 0.06 4.46 96.75

Candidate KP-CNT <20 0.27 12.39 89.33

Candidate White-CNT <2000 0.25 10.55 90.61

Candidate Both Filters 0.25 9.86 91.04
Ref. & cand. All RBFilter Rules 0.04 5.25 96.58

Table 4.9: Performance of Pixie MLP classifier with RBFilter on the Pixie dataset.
The disjunction of all the RBFilters on the reference images reduced the FAR and
FRR by more than 40%.

Classifier Choice

We use the Pixie dataset to identify the best performing classifier for Pixie’s au-

thentication module. Table 4.8 shows the results: Random Forest (RF) and MLP

outperform Support Vector Machine (SVM) and Decision Tree (DT) through lower

FAR and FRR. In the following, we use only RF and MLP as Pixie’s classifiers.
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Pixie with filters

In this section, we evaluate the effect of Pixie filters that we have introduced in

§ 4.3.4 separately and in combination.

Pixie with RBFilter. We evaluate the effects of the RBFilter rules of Table 4.6

on the performance of Pixie. For this, in each of the 100 classification experiments

(10 folds cross validation over each of the 10 subsets of the Pixie dataset), we

remove from the Pixie test fold all the authentication instances that satisfy the

rules. Specifically, we have removed the instances whose (i) reference images have

fewer than 20 keypoints, a distance to the centroid of keypoints of less than 30, or

an average cross similarity of under 0.6, and (ii) whose candidate image has fewer

than 20 keypoints. We then run Pixie (with MLP) on this filtered dataset.

Table 4.9 shows that almost all the rules are effective and increases Pixie’s F-

measure. The disjunction of all the reference set filter rules is the most effective, for

an F-measure of 96.75% (3.8% improvement from the unfiltered 93.08% of Table 4.7).

The 3 reference set filter rules remove an average of 6.68 reference sets from a testing

fold. When also using the candidate image filter, that removes an average of 82.23

authentication instances per testing fold, Pixie’s F-measure drops to 96.58%. This

is because we count the “valid” instances removed by the candidate filter as part of

FRR, even though they are likely of low quality and can mislead Pixie.

Pixie with CBFilter. Figure 4.9 illustrates the process we employed to evaluate

the impact of CBFilter on the performance of Pixie. To provide a large training

set for CBFilter, we first build a Reference Set Bank (RSB), that contains all the

reference sets that appear in the 10 subsets of the Pixie dataset. For each such

reference set, the RSB also stores its “class”, according to the outcome of Pixie

(see step 1 of Figure 4.9). If the reference set has been part of any authentication

instance (in the Pixie dataset) that was incorrectly classified by Pixie (i.e., either as
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Figure 4.9: CBFilter test methodology: create a large training set (RSB) that does
not contain reference images from the fold on which we later run Pixie (F1). Run
CBFilter on the reference sets from fold F1, filter the reference sets that fail, then
run Pixie on the filtered F1.

FR or FA), its class is 1, otherwise it is 0.

We use the RSB set for the following evaluation process, performed separately for

each subset of the Pixie dataset. Each of the subset’s 10 folds, (step 2 in Figure 4.9)

is used once for testing. Given one such fold, e.g., F1 in Figure 4.9, we extract its

reference sets. We train CBFilter on all the reference sets of RSB, that are different

from the reference sets of fold F1, then test CBFilter on the reference sets of F1

(step 3 and 4 in Figure 4.9). We filter from F1 all the reference sets that are labeled

as 1 by CBFilter, i.e., predicted to be a likely culprit of a future false rejection or

false acceptance. Finally, we train Pixie on the 9 other folds (F2, ..., F10) and test it
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Pixie CBFilter FAR(%) FRR(%) F-measure(%) EER(%)

MLP MLP 0.07 6.34 95.54 2.97

MLP RF 0.06 4.70 96.52 1.87

MLP C4.5 0.02 7.19 95.92 2.35

MLP SVM 0.10 9.83 93.08 4.87

RF MLP 0.02 7.64 95.63 2.72

RF RF 0.01 5.74 96.77 1.96

RF C4.5 0.02 7.19 95.92 2.35

RF SVM 0.02 10.74 93.90 3.82

Table 4.10: Pixie + CBFilter performance, for various combinations of supervised
learning algorithms. CBFilter is effective: when using RF, it reduces the EER of
Pixie (with MLP) to 1.87%.

Algo FAR(%) FRR(%) F-measure(%)

Pixie 0.10 9.83 93.08

Pixie & RBFilter 0.04 5.25 96.58

Pixie & CBFilter 0.06 4.70 96.52

Pixie & RBFilter & CBFilter 0.02 4.25 97.52

Table 4.11: Filters effects on Pixie performance. The combination of RBFilter and
CBFilter (RF) has the best performance.

on the filtered F1. We repeat this process 100 times (for the 10 folds of each of the

10 subsets of the Pixie dataset).

Table 4.10 compares the performance of various classifiers for both Pixie and

CBFilter. It shows that CBFilter is effective: when using RF classifier, it reduces

the EER of Pixie to 1.87% (from 4.87%), and removes 3.45 reference sets on average

from a testing fold.

Pixie, RBFilter and CBFilter. When used in combination with RBFilter, CBFil-

ter removes an additional 0.9 reference sets on average from a testing fold. RBFilter’s

candidate rule also removes 79.59 instances. Table 4.11 compares the performance
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Attack Dataset FAR(%)

Google 0.054

ALOI 0.087

Caltech101 0.042

Table 4.12: Performance of Pixie (with RBFilter and CBFilter) on the ALOI, Cal-
tech101 and Google attack datasets: On more than 14M attack authentication sam-
ples, the FRR of Pixie is less than 0.09%.

of the combined Pixie, RBFilter and CBFilter against the performance of the unfil-

tered Pixie, as well as Pixie’s combination with only one of the filters. When used

together, the filters reduce the FAR of the basic Pixie by 80% and its FRR by 56%.

Comparison to other authentication methods. The performance of Pixie

(EER=1.87) compares favorably with the performance of other biometric based

authentication solutions. For instance, Meng et al. [MWFZ15] report EERs of 2-4%

and 2-6% for authentication solutions based on face and fingerprint. Samangouei

et al. [SPC15] report EERs of 13-30% for attribute based face authentication, and

Taigman et al. [TYRW14] report an EER of 8.6% for face recognition using features

extracted by deep neural networks. The gaze-challenge authentication solution of

Sluganovic et al. [SRRM16a] has an EER of 6.3%, while Zhao et al. [ZFSK14] report

EERs between 4.1-9.6% for touch gesture based authentication.

4.5.2 Pixie Under Attack

We use the Google Image based attack dataset (see § 4.4) for a shoulder surfing

attack, and, along with the ALOI and Caltech101 datasets, to evaluate brute force

pictionary attacks.

We investigate the performance of Pixie, trained on one of the 10 Pixie dataset

subsets, under the attacks of § 4.2.3. We use the previously identified parameters:
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the ORB keypoint extractor, MLP for the Pixie classifier, RF for the CBFilter

classifier, and all the rules for RBFilter. We do not cosider UBounds filter as by

using UBounds filter we obtain a conservative performance of Pixie: with UBounds,

Pixie would easily reject out of bounds images, artificially boosting its accuracy.

Pictionary Attack

Under the Google Image attack dataset, Pixie achieved a FAR of 0.054%, see Ta-

ble 4.12. 216 of the 350 trinkets were not broken. However, we counted each such

trinket as success at 7, 853 trials (i.e. the total number of attack images). Then,

the average number of Google dataset based “trials until success”, over the 350

trinkets is 5, 766.12. For the ALOI based attack, when using both RBFilter and

CBFilter, Pixie achieved a FAR of 0.087%. Under the Caltech101 attack, Pixie’s

FAR is 0.042%. The higher FAR of the ALOI pictionary attack dataset may be due

to the similarity of its images of small objects to images in the Pixie datase. Pixie

filters about 10 reference sets from each attack dataset. In addition, it filters a small

number of candidate images (82 and 5) from the Google and Caltech101 datasets,

but 1,449 candidate images from the ALOI dataset.

Restricted Shoulder Surfing Attack

We use the Pixie and Google Image datasets to evaluate the “guessing entropy” [DMR04]

of the restricted shoulder surfing attack. The attack proceeds as follows: for each

reference set of a Pixie dataset trinket, we re-order the Google dataset images to

start the brute force attack with images of the same type as the trinket. We then

use each image in the re-ordered Google dataset as candidate, and count the number

of trials before a match (false accept) occurs. Thus, this experiment evaluates the

scenario where the adversary exploits his knowledge of the trinket type.
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Figure 4.10: Example master images for Pixie: each of these images matches multi-
ple reference sets of the Pixie dataset. Master images tend to have a rich combination
of shapes, shadows, colors and letters.

As in the pictionary attack above, we counted each of the 216 unbreakable trin-

kets as “success” at 7, 853 (the size of the attack dataset) trials. Then, the average

number of “trials until success”, over the 350 Pixie dataset trinkets was 5, 639.53.

This result is similar to the above pictionary attack: in fact, an unpaired t-test

did not find a statistically significant difference in the number of trials to break a

reference set between the two scenarios (p− value = 0.44, for α = 0.05). Thus, in

our experiments, knowledge of the trinket type does not provide the adversary with

a significant guessing advantage.

The Master Image Attack and Defense

We identified 788 master images in the ALOI dataset, 75 in the Caltech Image

dataset, and 127 in the Google dataset. Master images match multiple Pixie ref-

erence sets. Upon manual inspection, we observed that master images are not of

the same type of trinket as the reference set that they match. Instead, they contain

an array of shapes, shadows, letters and colors, that translate into a diverse sets of

keypoints, see Figure 4.10 for examples. Less than half of the master images in the

ALOI (224), Caltech101 (34) and Google (30) datasets match at least 5 reference
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sets. 1 master image in the Caltech101 dataset matches 51 reference sets.

Defense. The shape formed by the matched keypoints in a master image is likely to

be inconsistent with that of the “victim” reference set. We leverage this observation

to introduce several new features: the distance to the centroid of the matched

keypoints (DTC-MKP) in the candidate and template images, and the minimum,

maximum and mean of the DTC-MKP over all pairs of candidate and reference

images. We train the Pixie classifier using this enhanced feature set, and test it on

the ALOI attack dataset. The enhanced Pixie reduces the number of effective ALOI

master images (matching at least 5 reference sets) by 60%, i.e., from 224 to 88.

To evaluate the effect of the new features on the FRR, we run Pixie with both

RBFilters and CBFilters on the 10 Pixie data subsets (see § 4.4) in a 10-fold cross

validation experiment similar to that of § 4.5.1. We observed that when new features

are included in the classification task, the FRR of Pixie decreases slightly from 4.25%

(last row in Table 4.11) to 4.01%, while its FAR remained unchanged (0.02%). We

conclude that the newly added features do not increase Pixie’s FRR.

4.6 User Study

We have used a lab study to evaluate the usability of Pixie’s trinket based authen-

tication and compared it against text-based passwords. In this section, we describe

the methodology and results.

4.6.1 Design and Procedure

We performed a within-subjects study, where all the participants were exposed to

every conditions considered. Specifically, the conditions were to authenticate from a

smartphone to the Florida International University Portal Website (MyFIU), using
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(i) their username and text-based password and (ii) their Pixie trinket. MyFIU is a

site that provides students with information about class schedules and administra-

tive functionality.

We have recruited participants from the university campus over e-mail lists,

bulletin boards and personal communications. All the participants were students

enrolled at the university. The reason for selecting students for the study was to

ensure a consistent and familiar login procedure to MYFIU remote service. The

participants in our study achieved text password authentication times on par with

previously reported results (see § 4.6.2). Considering the ubiquity of mobile devices,

we believe that the participants had no unfair advantage when compared to other

social groups of similar age, with respect to their ability to perform the basic action

of snapping a picture with a smartphone.

In the following, we first present some demographic information about the (n=42)

participants in this study, then describe the procedure we used to perform the user

study.

Demographics. We have recruited 42 participants for our lab study. Table 4.13

shows the demographics of the participants, obtained through the study question-

naires. In addition, 41 (98%) participants said they use their phones to login to

their online accounts.

Figure 4.11: Pre-study level of agreement of the participants with ease of remem-
bering faces, photos and text. 42% of the participants strongly agree to their ease
of remembering photos and faces vs. only 16% who agreed it is easy for them to
remember text.
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Demographic Number Proportion (%)

Gender
Female 11 26
Male 31 74

Age
Min 18
Max 50
Median 28

Android 20 48
iPhone 21 50
Windows phone 1 2

Undergraduate 16 38
Graduate 26 62

CS/IT 38 90
Other majors 4 10

Use phone to login to remote services? 41 98

Table 4.13: Participant demographics. We chose only students in order to have a
consistent experience for remote authentication (on the university portal website,
MyFIU).

Prior to the study, we also asked the participants to express their level of agree-

ment using a 5-point Likert scale (from 1-strongly disagree to 5-strongly agree) with

how easy it is for them to remember text, photos and faces. Figure 4.11 shows the

summary of the participants responses. More than 42% of the participants strongly

agreed that it is easy for them to remember faces and photos. However, only 16%

of the participants strongly agreed it is easy for them to remember text. While

64.29% of the participants said it is not easy for them to remember text, a lower

47.62% and 42.86% of the participants said it is not easy for them to remember

photos and faces respectively. A pairwise non-parametric Wilcoxon-Mann-Whitney

test revealed no significant difference between the perceived memorability for differ-

ent items. Based on this analysis and given the picture superiority effect [NRW76],

81



(a) (b) (c) (d)

Figure 4.12: Pixie in-app instructions (best viewed in color), showing how to (a)
setup a trinket, (b) confirm the trinket, (c) enter credentials for the MyFIU account
the first time the app is used, and (d) login using the trinket.

we posit that memorizing trinkets and their secret angles could be perceived to be

as memorable as faces and text. We compare the perceived memorability of trinkets

and text passwords in § 4.6.2.

The study procedure. We have conducted the study in an indoor lab using the

existing artificial lighting. For the authentication device, we have used an HTC One

M7 smartphone (1.7GHz CPU, 2.1 MP camera with f/2.0 aperture, 4.7 inch display

with 1920 × 1080 resolution, and 137.4 × 68.2 × 9.33mm overall size).

The study consisted of 3 sessions, taking place on day 1, day 3 and day 8 of

the experiment. From the total of 42 participants, 31 participants returned for

and completed session 2 (7 female). Due to scheduling constraints, 3 participants

returned for session 2 on day 4 or 5. 21 participants returned for and completed

session 3 (4 female). The lab sessions proceeded as follows.

In the first session, we briefed participants about the purpose of the study: to

explore the usability and the user interface design of a mobile device application.

Then, we asked them to use Pixie to login to their MyFIU account, using their
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credentials (username and password). Pixie associates the text credentials with the

trinket’s reference images. During subsequent login sessions, the users only needed

to correctly capture the image of their trinket in order to access their account.

Our goal was to let the participants experience Pixie for authentication, thus we

did not ask them to enter their text password in subsequent sessions. As a result,

the comparison of Pixie with text passwords is based only on the data collected in

session 1.

Subsequently, the first session consisted of 3 steps. In the discoverability step, we

gave no verbal instructions to participants. Instead, we asked each participant to try

to figure out how to use Pixie, given only the in-app instructions, that show a watch

as a trinket example. Figure 4.12(a-d) shows snapshots of Pixie app instructions for

setting up a trinket, verifying the trinket, setting up the MyFIU account when the

app is used for the first time and login step using trinket.

In the training step, we explained Pixie’s purpose and walked the participant

through the process of setting and testing a trinket using a gum pack. However, we

neither justified why we chose this trinket, nor specified what other objects can be

used as trinkets. We then asked the participants to set a trinket for the rest of the

study.

In the third, repeatability step we asked the participant to repeat the login part of

the process. To avoid input based on muscle memory, we distracted the participant’s

attention between the second and third step by playing a game for 5 minutes.

In session 2 and 3, the participants were asked to login to their MyFIU account

with the trinket they chose in session 1. At the end of each session, the participants

filled out questionnaires that use Likert scales (ranging from 1-strongly disagree to 5-

strongly agree). The questionnaires evaluate Pixie and compare it against text-based

passwords on perceived security, ease of use, memorability and speed dimensions.
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In addition, at the end of session 3, we have used “emocards” [DOT01] to evaluate

the emotional responses of users toward Pixie and text password authentication.

Emocards are 16 cartoon faces, each representing one of 8 distinct recognizable

facial expression (1 per gender). Emocards assist users to non-verbally express their

emotions about products, in terms of pleasantness (pleasant, neutral, unpleasant)

and arousal (calm, average, excited), two commonly accepted dimensions of emotion

responses [Rus80].

Participant dropout. The participant drop from session 1 to session 3 is not due

to a dislike of Pixie. To conclude this, we have compared the distributions of the

answers of the 21 participants who dropped and of the 21 participants who stayed

until session 3, on their overall impression of Pixie and their willingness to adopt it.

Both questions were rated on a Likert scale. The Mann-Whitney test shows that

the difference between the two populations is not statistically significant (p = 0.7532

for the first question, and p = 0.0701 for the second question at α = 0.05). The

participant drop can be due to the difficulty of scheduling 3 sessions across 8 days,

at the end of the semester.

Ethical considerations. We have worked with our university Institutional Re-

view Board to ensure an ethical interaction with the participants during the user

study. We have asked the participants to avoid choosing sensitive trinkets. The

entire experiments took around 40 minutes per participant. We compensated each

participant with a $5 gift card.

4.6.2 User Study Results

Pixie is a novel authentication solution. Thus, we first present insights from its use

across the 3 sessions, with a focus on discoverability. We then detail Pixie’s observed
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memorability and performance, as well as the participant perception and emotional

responses. All the statistical tests performed in this section used a significance level

of α = 0.05.

User Experience

We now detail the user experience across the 3 sessions.

Session 1: discoverability. Without previous knowledge of Pixie, 86% of the par-

ticipants (36) were able to correctly set up their trinkets. Therefore, Pixie’s Failure

to Enroll (FTE) rate is 14%. From the 14% (6) participants who failed to enroll,

3 did not notice that the 3 trinket photos had to be of the same object, captured

from similar angles. While Pixie provides a tooltip on the trinket capture button

that guides the user to take another picture of the trinket when the app is used for

the first time (see Figure 4.1(a)), these 3 participants took random pictures from

different objects in the lab. These participants also did not understand the meaning

of several words, as English was their second language:

[P20]: “Include one page saying what the trinket is. Like [sic], you can

say that trinket is an object that you will be using to sign in to your

account”.

[P21]: “I don’t understand what plain texture means”.

In all 3 cases, the Pixie prefilters identified the issue correctly. The other 3

unsuccessful participants chose trinkets with a plain texture (e.g., palm of hand,

pencil, objects with plain black surface) that generated errors. They either dismissed
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error messages quickly or were not sure what to choose as a trinket to eliminate the

errors.

Subsequently, 3 other participants were unable to perform the trinket verification

step within 3 trials. This occurred due to (i) bad lighting conditions around the

trinket, (ii) the participant forgetting the trinket angle, or (iii) a texture-less (plain)

trinket. While the Chi-square test did not identify significant differences in the error

rates caused by any of the aforementioned circumstances (p > 0.05), this could be

because of the limited number of samples.

Session 1: Training. All the participants were able to set up a trinket successfully,

reducing the FTE rate of Pixie from 14% in the discoverability step to 0%. All the

participants then tested their trinkets within 4 trials (M = 1.29 trials, Std = 0.6):

76% of the participants were able to login from the first trial. The other 24% had

lighting related difficulties (e.g., the trinket reflected the light, or was in the shadow).

Only one participant required 4 trials.

Session 1: Repeatability. All the participants except one, were able to success-

fully complete this step within 3 trails (M = 1.29 trials, Std = 0.6). One participant

required 4 trials.

Sessions 2 and 3. In session 2, 84% of the participants were able to login from the

first trial, 13% logged in within 2-3 trials and only one participant needed 6 trials

(M = 1.35 trials, Std = 1.02). 2 participants did not carry their trinkets and had

to reset them. In session 3, 81% of the participants were able to login from the first

trial and all the other participants were able to login within 2-3 trials (M = 1.20

trials, Std = 0.40).
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Participant Performance

To measure participant performance we use success rate [CFS+09], defined as the

number of successful attempts to the total number of attempts. In order to compare

the success rate of participants for text-based passwords and Pixie, we analyzed the

data from either of the login recalls of each session. We only consider successful

Pixie authentication sessions within 3 trials (see § 4.6.2). This is similar to MyFIU,

where the participants need to reset their passwords after 3 unsuccessful trials.

The success rate of Pixie improves from session 1 (82.00%) to session 2 (83.33%)

and session 3 (84.00%). Throughout all the 3 sessions, the Pixie success rate for

successful authentication sessions is slightly lower than the success rate for the text-

based password in session 1 (88.10%). This is not surprising, given the significantly

lower number of practice opportunities for Pixie, compared to the ubiquitous text

passwords. However, the Chi-square test revealed no significant difference between

the success rate for Pixie and text password in session 1 (χ2(1) = 0.506, p = 0.48).

Similarly, the Wilcoxon-Mann-Whitney test found no significant difference in terms

of the number of attempts for a successful login for Pixie within different sessions,

and between Pixie and text-based password in session 1.

Memorability

During session 2, 96% of the participants (all except one) were able to remember

their trinkets. 2 participants did not immediately recall the part of the trinket

they used to authenticate, but they figured it out in the 3rd attempt. These 2

participants were able to login in the first attempt in the 3rd session. 2 participants

did not carry their trinkets and had to reset them in session 2. During session 3,

all the participants were able to remember their trinkets. We contrast these results

with the memorability of text passwords: 5 participants did not remember their
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Figure 4.13: Box plot for entry time of Pixie across 3 sessions vs. text password
in session 1. The Wilcoxon-Mann-Whitney test revealed that Pixie’s entry time in
each session was significantly less than the entry time for text passwords. For a
single participant, the Pixie entry time was 70.51s during session 1.

MyFIU password and had to reset it in the first session. This is consistent with

previous findings: Wiedenbeck et al. [WWB+05b]) report that more than 17% of

text-based passwords are forgotten in one week.

User Entry Time

We have measured the user entry time, the interval from the moment when a user

starts Pixie and when Pixie submits the captured photo to the authentication mod-

ule. Figure 4.13 shows the box plot of the user entry time for Pixie in different

sessions vs. the time for text passwords, during session 1. The shortest authen-

tication session was 3.01s and the longest session was 70.51s for Pixie. The av-

erage entry time improves from session 1 (M=9.71s, Std=11.42s, Mdn=6.24s), to

session 2 (M=9.71s, Std=4.66s, Mdn=8.32s) and session 3 (M=7.99s, Std=2.26s,

Mdn=8.51s). However, Wilcoxon-Mann-Whitney tests did not reveal any statisti-

cally significant differences between the Pixie user entry time across the 3 sessions.

We expect however that additional practice can further improve Pixie’s entry time.

Moreover, a Wilcoxon-Mann-Whitney test revealed that the entry time for Pixie
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was significantly less than the entry time for text passwords in session 1 (W =

845.0, p = 0.000). We emphasize that in contrast to text passwords, Pixie par-

ticipants did not have the opportunity to practice beyond the steps of the above

procedure.

Table 4.1 compares the entry time for Pixie and other authentication solutions

based on biometrics or text and graphical passwords. Although Pixie’s entry time is

higher compared to solutions based on face or voice, it compares well to several other

solutions. For instance, Shay et al. [SKD+14] report an entry time of 11.6-16.2 for

text passwords. MyFIU passwords are similar to the comp8 category in [SKD+14]

(at least 8 characters, and include a lowercase English letter, uppercase English

letter, and digit) for which [SKD+14] report a median entry time of 13.2s. The

additional safeguards of Boehm et al.’s [BCF+13] face and eyes based biometric

solution result in an entry time of 20-40s. Chiasson et al. [CFS+09] report an

entry time of about 15s for Passpoints. Trewin et al. [TSK+12] reported an entry

time of 8.1s for gesture (stroke) based biometric. The eye tracking solution of Liu

et al. [LDGW15] requires 9.6s and the audio or haptic based solution of Bianchi et

al. [BOK11] requires 10.8− 20.1s.

In addition, we evaluated the processing overhead of Pixie: the time required

to decide if a candidate image matches the reference set. The average processing

overhead of Pixie on the HTC One smartphone over 94 successful authentication

trials is 0.5 seconds.

Perception

We asked the participants to express their perception about Pixie and text passwords

by providing answers to a set of questions in a 5-point Likert scale (from strongly

agree to strongly disagree). In the following we presents the participants response.
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(a) (b)

Figure 4.14: (a) Results at the end of session 1. (a - top) Perceived performance
of Pixie compared to text passwords. Pixie dominates on ease of use, memorability
and speed dimensions. (b - bottom) Pixie ease of use: 95% of participants agreed
that Pixie is easy to use. (b - top) Pixie perceived memorability. 86% of participants
agree that the trinkets are easy to remember after session 1, but reach consensus
after session 3. (b - bottom) Perceived memorability of Pixie vs. text passwords
(TP). No participant believes text passwords are more memorable after session 3.

In session 1, 81% of the participants agree that overall, Pixie is easier to use

than text-based passwords (Figure 4.14(a) (top)). 83% and 86% of the participants

agree or strongly agree that trinket setup and login steps are easy (Figure 4.14(a)

(bottom)). 95% of participants agree or strongly agree that overall, Pixie is easy to

use.
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 Furthermore, 86% of the participants agree or strongly agree that trinkets are 

easy to remember, see Figure 4.14(b) (top). 67% of the participants agree that 

trinkets are easier to remember than passwords, while only 5% of the participants 

believe the opposite, see Figure 4.14(a) (top) and Figure 4.14(b) (bottom). These 

results improve in sessions 2 and 3. At the end of session 3, all the participants 

agree that trinkets are easy to remember (Figure 4.14(b) (top)): 12 participants 

changed their opinion in favor of Pixie’s memorability. No participants believe that 

text passwords are easier to remember than trinkets, see Figure 4.14(b) (bottom). 

A two-sample proportion test revealed that the proportion of the participants who 
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(Z = 2.36, p = 0.009 and Z = 2.05, p = 0.020).

 36% of the participants believe that Pixie is more secure than text passwords, 

and 31% of the participants believe that passwords are more secure (Figure 4.14(a) 

(left)). Several participants felt strongly about the security of Pixie, e.g.,:

[P27] “This method is even more secure than text-based passwords, be- 

cause even if someone sees me during the password entry, he wouldn’t 

know what part of the object I have selected as my trinket and cannot 

easily figure it out”.

 68% of participants agree or strongly agree that the trinket based login is fast. 

74% of participants agree or strongly agree that the trinket setup step is fast. 95% 

and 59% of the participants agree that Pixie’s login and trinket setup steps are 

faster compared to the corresponding text password operations. (Figure 4.14(a) 

(top)). 50% of the participants say that they prefer trinkets over text passwords 

(Figure 4.14(a) (top, bottom bar)).

 When asked if they would use trinket based authentication in real life 26% of 

participants said that they would use Pixie for most of their accounts, 36% would 

use it for at least some of their accounts, and 36% would consider using it. Only 

2% of the participants (1) said that they would not use it. Several participants felt 

strongly about adopting Pixie:

[P18]: “Why isn’t [Pixie] integrated with the original MyFIU mobile ap- 

plication as another option for signing to my account?”.

think Pixie is memorable, significantly increases from session 1 to session 2 and 3



[P40]: “I always forget my passwords [...] I always store them in my

browser. I would definitely use Pixie if it is available”.

[P27]: “I think this is a good method because I usually forget my pass-

words for my accounts”.

While we did not include survey questions on trinket availability, one participant

asked:

[P8]: “What if I do not wear the same watch everyday?”.

Other participants suggested to use multiple trinkets to ensure trinket availabil-

ity:

[P21]: “That would be good if we could set multiple trinkets and use any

of them to authenticate”.

Statistical analysis. To differentiate true choice from random chance, we com-

bine the strongly agree and agree answers into an “agreement” answer, and the

strongly disagree and disagree answers into a “disagreement” answer. We then use

a one-sample binomial test with a confidence interval in order to test whether the

proportion of agreement of the participants with a statement is sufficiently different

from a random choice (50%). Table 4.14 presents this result for the proportion of

“agreement” answers to each question. Pixie is perceived easier, more memorable

and faster than text passwords for login and the perceived advantage is not due to

random choice. However, the participants did not perceive a significant difference

in the setup speed and the security of Pixie over text passwords.
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Question Sample proportion 95% CI p

Easier to use 80.95 (65.88, 91.39) 0.000*
More memorable 66.67 (50.45, 80.43) 0.044*
Faster Login 95.24 (83.83, 99.41) 0.000*
Faster Setup 58.54 (40.96, 72.27) 0.441
More secure 35.71 (21.55, 51.97) 0.088

* Statistically significant result at α = 0.05.

Table 4.14: Confidence interval for the proportion of “agreement” answers to us-
ability and security questions comparing Pixie and text-based authentication. Pixie
is perceived to be easier to use, more memorable and faster than text passwords.
Pixie’s perceived advantage in ease of use, memorability, and login speed is not due
to random choice.

Analysis of User Feedback

Table 4.15 shows that the general preference of Pixie over text passwords signif-

icantly correlates positively with its preference on ease of use, memorability and

security and speed dimensions. The preference over text passwords is also signif-

icantly correlated with overall perception of trinket memorability and willingness

to adopt Pixie. Interestingly, we observed a significant correlation between prefer-

ence over text passwords on security and the participant feeling of owning a unique

trinket (τ = 0.36, p = 0.005).

The participant willingness to use Pixie also correlates positively with perceived

memorability (τb = 0.29), perceived ease of use (τb = 0.28), general preference

over text passwords (τb = 0.32), preference over text passwords on security (τb =

0.28), and preference on ease of use (τb = 0.04). We observe a negative correlation

between the willingness to use Pixie and the number of login attempts (τb = −0.16),

highlighting the impact of unsuccessful logins. However, the correlations are not

statistically significant.
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Prefer Pixie over text passwords τb p

Easier to use 0.60 0.000*
More memorable 0.54 0.000*
More secure 0.38 0.003*
Faster Setup 0.46 0.000*
Faster Login 0.48 0.000*

Pixie Memorability 0.40 0.003*
Willingness to Use Pixie 0.60 0.000*

* Indicates a statistically significant correlation at α = 0.05.

Table 4.15: Kendall’s Tau-b test shows significant positive correlation between pref-
erence of Pixie vs. text passwords, and its preference in terms of ease of use, memo-
rability, security, faster setup and login time. Preference over text passwords is also
significantly correlated with the overall memorability of the trinket and willingness
to adopt Pixie.

Emotional Response

The emocard experiment revealed that Pixie generates only positive emotions: 81%

of the participants reported a “pleasant”, and 19% reported a “neutral” experience.

In addition, 47% of the participants were “calm”, 34% were “average” and 19%

were “excited”. In contrast to Pixie, only 5% of the participants (1) reported a

“pleasant” level for text passwords, while 57% reported “unpleasant” and 38% re-

ported “neutral” levels. A one-sided test of the difference of proportions revealed

that the proportion of the participants who perceived Pixie as pleasant was signifi-

cantly larger than the proportion of the participants who perceived text passwords

as pleasant (Z = 4.01, p = 0.000).

The Kendall’s Tau-b correlations plotted in Figure 4.15 shows that the partic-

ipant reports of willingness to use Pixie correlate positively with levels of pleasure

and excitement, as well as Pixie’s perceived ease of use. While 4 participants re-

ported excitement for Pixie’s novelty, functionality and performance, we observe
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Figure 4.15: Kendall’s Tau-b correlations between willingness to use, emo-
tional responses (pleasure and excitement), and ease of use (SA/SD = Strongly
Agree/Disagree), during session 3. No participant rated Pixie as unpleasant. Will-
ingness to use correlates positively with pleasant and average levels, as well as with
agreement with ease of use.

no correlation between “excited” levels and willingness to use. This is a positive

finding, as authentication solutions should not generate high arousal levels.

Trinket Choice

We manually analyzed the trinket images captured by the participants in the first

session (42 trinkets) and those captured by the participants who reset their trinket

in session 2 (2 trinkets). We allowed the participants to pick any nearby object as

a trinket. The 42 participants picked a total of 36 unique trinkets, from 31 unique

objects of 18 types, chosen from among participant owned objects and lab objects.

The gum pack and watch were the most frequently chosen object types. However,

all the 6 watch trinkets were different, and the 16 participants who chose a gum

pack have captured 8 unique trinket images (object + angle combination).

In the discoverability step, 8 participants used their watches as trinkets. We did

not observe a significant difference in user choice of trinket between the discoverabil-
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Object type # of unique objects # of participants # of unique trinkets

Gum pack 3 16 8
Watch 6 6 6
Mug 3 3 3
Logo 2 2 2
Keychain 2 2 2
Car remote control key 2 2 2
Sunglasses 2 2 2
A piece of puzzle 1 1 1
Shoe 1 1 1
Kohl container 1 1 1
Backpack pin 1 1 1
Hair clip 1 1 1
Cigarette box 1 1 1
Match box 1 1 1
Water Bottle 1 1 1
iphone menu 1 1 1
University ID card 1 1 1
Tattoo 1 1 1

Total 31 44 36

Table 4.16: Trinket choice: object types chosen by participants, along with the
number of unique objects belonging to each category and number of unique trin-
ket choice (object + angle) in the study. The gum pack and watch (used in the
training step and on-screen instructions) are the types most frequently used by the
participants. All the captured watch trinkets are unique.

ity and training steps: 18 participants used the same trinket in the discoverability

and training steps. 8 participant chose their trinket to be their watches. The other

trinket categories chose by participants that are not among those in Table 4.16

include: pen/pencil, book and computer mouse.

We have used the images captured by the participants to “brute force” the

reference sets of each participant. We removed 8 reference sets as they were identical

(the top view of the same gum pack). This has produced a single “success” event,

for the two participants who chose the same side of the same gum pack, with very

similar angles. As we described previously, the participant preference of Pixie over

text passwords on security correlates significantly with the participant feeling of
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owning a unique trinket. We did not observe a statistically significant difference

between the feeling of owning a unique trinket and participants gender.

4.7 Discussion and Limitations

Authentication speed. Our user study shows that Pixie’s authentication speed

in session 1 is 25% faster than well rehearsed text passwords and improves through

even mild repetition. However, Pixie’s entry time is longer than the reported entry

time for face based authentication solutions (see Table 4.1). This may be due to

either the novelty of Pixie or the way the images are captured, i.e. using the back,

not the front camera for capturing trinket images.

Secure image storage and processing. The storage and processing of the trin-

ket images needs to be performed securely. While outside the focus of this chapter,

we briefly discuss and compare trinket image storage and processing solutions that

are performed on the remote service vs. the user’s authentication device. A re-

mote server based solution trivially protects against an adversary that captures the

authentication device, as the device does not store or process sensitive user infor-

mation. The image matching process is also faster on a server than on a mobile

device (see § 4.5.1). The drawbacks are the overhead of transmitting candidate im-

ages over the cellular network, and the imposition on users to register a different

reference image set for each remote service.

The authentication device based solution can easily associate the reference im-

ages with the user’s authentication credentials (e.g. OAuth [DH12]) for multi-

ple remote services. However, since an attacker can capture and thus access the

storage of the mobile device, reference images cannot be stored or processed in

cleartext. The storage and processing of reference images can however be secured
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through hardware-level protection, e.g., TrustZone [Tru17], or by using privacy

preserving image feature extraction solutions that work in the encrypted domain,

e.g., [WHWR16, QYR+14, HLP12]. In Chapter 5, we introduce ai.lock, an image-

based authentication solution similar to Pixie, that alleviate the problem of secure

storage of credentials.

Deployability. Pixie is well suited for OAuth [DH12] authorization to access re-

mote services from the mobile device: Pixie authenticates the user to the app on the

mobile device, which can then proceed with the OAuth protocol with the remote

server.

Default authentication. If the trinket based authentication fails a number of

times (due to e.g., forgotten trinket, poor lighting conditions, unsteady hand), the

user is prompted to use the default authentication solution, e.g., text password.

Strong passwords. Popular and ubiquitously available trinkets (e.g., iWatch, Coke

can) should not be chosen as trinkets, as an adversary can easily predict and replicate

them. To address this problem, Pixie can store a dataset of popular trinket images,

then, during the trinket setup process, reject reference sets that match popular

trinkets.

Defense against brute force attacks. The brute force attacks of § 4.2.3 can be

made harder to launch through video “liveness” verifications, e.g., [MR16]: capture

both video and accelerometer streams while the user shoots the trinket, then use

video liveness checks to verify the consistency between the movements extracted

from the two streams. The lack of such streams or their inconsistency can indicate

a brute force attack.

The user study. The study presented in this chapter was the first attempt to

quantify the usability aspects of an authentication solution based on trinkets. We

performed the user study in a lab setting. We were able to recruit only 42 partic-
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ipants, of which half did not stay until the last session. As we wanted to ensure

a consistent and familiar login procedure to remote services for the participants,

we only recruited students from the university who had access to myFIU, FIU’s

login portal. While the population of the study is not fully representative of the

users who would use the system, we believe that the participants had no unfair

advantage when compared to other social groups of similar age in performance: the

participants in our study achieved text password authentication times on par with

previously reported results (see § 4.6.2).

Pixie works by extracting invariant keypoints from the captured images, using

keypoint extraction algorithms (e.g. SURF [BTVG06] and ORB [RRKB11]). These

algorithms are not capable of extracting keypoints from images of object with con-

stant shade. We attempted to address this issue by providing actionable feedback

to users, and guiding them toward choosing visually complex trinkets. In addition,

to ensure Pixie is able to identify the trinket images even when captured in slightly

different circumstances and to lower the false reject rate, we required the users to

enter 3 trinket images in the registration phase. This may partially explain why

the participants in our study did not perceive Pixie as significantly faster than text

passwords for the registration phase.

During the discoverability step, we observed that several participants had dif-

ficulties in understanding the in-app instructions on how to use Pixie. Similar

problems have been reported for other authentication mechanisms. For instance,

Bhagavatula et al. [BUI+15] reported that 7 out of 10 participants found under-

standing on-screen instructions difficult for iPhone fingerprint authentication. They

recommend to provide clearer instructions (e.g. through a demo video) on what the

users need to do. We posit that explaining the meaning of trinkets will help users

during the registration phase and improve the discoverability rate of Pixie.
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The consent form that we read and the participants signed prior to the study,

emphasizes that the focus of the study is on the usability aspects of a new applica-

tion. We observed that some of the participants might have selected trinkets without

concerns over security during the study. We did not guide the participants towards

choosing specific trinkets, as we intended to observe the personal or lab objects cho-

sen by the participants. Nevertheless, we observed that the participants preference

of Pixie over text passwords on security correlates significantly with the partici-

pants feeling of owning a unique trinket. This suggests that the participants could

corroborate the relationship between unique trinkets and higher level of security.

The trinkets used to walk the participants through Pixie (i.e., gum pack) and the

in-app user guide of Pixie (i.e., watch), appear to influence the participant trinket

selection in the first session: in the discoverability step, 8 participant chose their

watches as trinkets. In addition, during session 1, 9 participants chose the same

gum pack as used in the Pixie walk-through without even trying a different angle,

and 5 participants used their watches as trinkets. Further studies are required to

understand whether other means of communicating the goals of Pixie (e.g. using a

short video that guides the user on how to choose secure and unique trinkets) can

reduce this bias.

Further, although 50% of the participants said they prefer Pixie over text pass-

words, 40% percent of the participants were undecided. This may be due to the

limited experience of the participants with Pixie. In addition, 62% participants said

they would use Pixie in real life. We did not observe a statistically significant cor-

relation between being excited about using Pixie, that could be due to the novelty

of the method, and willingness to use it. However, future studies are required to

understand in what scenarios and situations the users are willing to adopt trinket

based authentication or prefer it over text passwords.
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If we were to redo the study, we would split the Likert scale questions comparing

Pixie with text passwords into 2 questions asking the participants to rate any of

them in terms of usability and security. In addition, we would ask the participants

to justify their answers about perceived usability and security in the form of open

ended questions in the post study interview.

Real world limitations. A comprehensive study similar to the studies conducted

for biometric based solutions (e.g. [BUI+15]) may help identify potential limitations

of Pixie in different situations. We discuss now two such situations.

• Insufficient light. In our studies, we observed that Pixie has problems with

insufficient lighting. This is likely a problem shared also by face based au-

thentication solutions. We took steps to partially address this problem, by de-

signing image filters to identify the problematic images and provide users with

actionable feedback. Note that low light photography is one of the major dif-

ferentiators among mobile phone manufacturers. Newer devices are equipped

with wider apertures which capture more light and optical stabilization which

allow for longer exposures and thereby taking better low light photos. As

mobile device cameras get more capable in capturing better low light photos

over time, we expect it to be less of a problem for camera based authentication

methods as well. Further, while we did not test this in our studies, we con-

jecture that using the camera’s flash light to illuminate the trinket could also

help address this problem. We leave it for future work to investigate better

solutions, e.g., that leverage the ability of mobile device cameras to capture

infrared light, to handle the case of reflective trinkets.

• Unstable capture conditions. Pixie may be harder to use in certain circum-

stances, e.g., while the user is walking or in public transportation, as move-

ments might affect the quality of snapped photos. The ease of using Pixie in
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such scenarios is likely to depend on the trinket object type, as for snapping a

trinket image, the user needs one or both hands. Pixie has specialized filters

to identify blurry images. However, a thorough evaluation of the filters in such

scenarios will help identify the filter parameters that maximize usability.

Changing and forgetting trinkets. In contrast to biometric based authentica-

tion solutions, Pixie allows the participants to change their trinkets regularly as

they change the clothes, accessories and objects that they carry. Despite the ob-

vious security benefits of this property, people may forget to carry their trinkets,

impacting Pixie’s usability. The simplest solution to this problem is to fall back on

default authentication using a standard approach (e.g., text password) then set a

new Pixie trinket. Another solution is to allow Pixie users to have multiple trinkets,

the additional trinkets could be chosen among frequently worn outfits or locations

visited, alternatively there could be a single backup trinket which is known to be

reliably accessible although may not be readily available such as an object kept at

home or at work. This however impacts the security of Pixie, as it becomes easier

to guess or brute force one of the trinkets.

Another approach is to use Pixie in conjunction with the security token concept,

where the token is a printed visual token that displays a pattern (e.g., random art

[PS99]). The user still needs to capture this token using Pixie, and should carry the

token at all times, just like for a credit card or mobile device. Using a simple visual

token is an alternative to using a QR code as trinket, e.g. [CHM15, KHX15]). In

addition, Pixie does not require the additional hardware (e.g., magnetic strips and

Near-field communication) used in automated access control solutions, and is thus

applicable to a wider ranger of mobile and wearable devices.
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the impact of trinket changes and failure to recall.

Shoulder surfing attack. Choosing and using trinkets in public exposes users 

to shoulder surfing attacks. In this respect, Pixie is similar to ATM authentica- 

tion: the user needs to be cognizant of the risks and make sure that there are no 

people around watching, before setting or using her trinket. We note that while per- 

sonal privacy during authentication may protect Pixie users from shoulder surfing 

attacks, this does not hold for biometric authentication alternatives based on face 

and fingerprints. This is because face and fingerprints are almost public informa- 

tion, accessible to attackers in vulnerable social networks and government datasets. 

Further, we note that unlike the ATM and biometric authentication scenarios, Pixie 

allows the user to change her trinket once she is in a more private setting.

 We have shown that Pixie is resilient to a shoulder surfing attack flavor, where 

the adversary learns or guesses the trinket object type and attempts to collect and 

use images of similar objects to brute force Pixie (see 4.5.2). We note that additional 

information about the trinket object or the objects owned by the user can increase 

the adversary chance to launch a successful attack.

 In a shoulder surfing attack, the adversary still needs to capture the trinket, 

or obtain a copy of it to launch a successful attack. Since Pixie authentication 

requires a simple interaction with the user, it is also possible to combine Pixie with 

a token (cryptographic key) stored on the mobile device. This approach is similar 

to the concept of “protocredential” introduced by Corella and Lewison [CL15]. The 

combined Pixie and mobile device token authentication would require the user to 

possess both the particular mobile device that stores the token and the trinket. 

As an alternative, Pixie can be used in conjunction with biometric authentication 

solutions, e.g., [DLHB+12]: in touchscreen devices, one could use a touch gesture to 

mark the trinket, as an additional authentication factor.

 We note that a survey about the gamut of objects that people carry with them 

as well as the variability of possession habits would enable further analysis regarding



Field study. We leave for future work a field study of Pixie to investigate the

longer term effects of using trinket passwords on user entry times, accuracy and

memorability, the factors that impact trinket choice, how users choose and change

their trinkets in real life, as well as the potential improvements provided by alterna-

tive means of communication of Pixie’s goals and functionality (e.g., through short

video instead of text). We also leave for future work the investigation of using men-

tal stories to associate trinkets to accounts (e.g., use credit card as trinket for bank

account) and reducing the impact of interference [CFS+09, AAW15].

4.8 Conclusions

We introduced Pixie, a proof of concept implementation of a trinket based two-

factor authentication approach that uses invariant keypoints extracted from images

to perform the matching between the candidate and reference images. Pixie only

requires a camera, thus applies even to simple, traditional mobile devices as well as

resource limited wearable devices such as smartwatch and smartglasses.

We manually captured and collected from public datasets, 40,000 trinket images.

We proposed several attacks against Pixie and have shown that Pixie achieved an

EER of 1.87% and FAR of 0.02% on 122, 500 authentication attempts and an FAR of

less than 0.09% on 14.3 million attack instances generated from the 40,000 images.

We performed an in lab user study to evaluate the usability aspects of Pixie as

a novel authentication solution. Our experiments show that Pixie is discoverable:

without external help and prior training, 86% and 78% of the participants were

able to correctly set a trinket then authenticate with it, respectively. 62% of the

participants expressed that they would use Pixie in real life. Pixie simplifies the au-

thentication process: the study shows that trinkets are not only perceived as more
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memorable than text passwords, but are also easily remembered 3 and 8 days after

being set, without any inter-session use. In addition, Pixie’s authentication speed

in session 1 is 25% faster than well rehearsed text passwords and improves through

even mild repetition. We believe that Pixie can complement existing authentica-

tion solutions by providing a fast alternative that does not expose sensitive user

information.

The identified master images and the reference sets they match can be used (see

§ 4.5.2) to develop a new filter (e.g., based on supervised learning algorithms), that

detects vulnerable reference sets, likely to be matched by master images. We leave

this investigation for future work.

In addition, a promising approach to improve Pixie is to use more advanced

image processing techniques, e.g. deep neural networks [SVI+16b], for image feature

extraction and processing. Such techniques may improve Pixie’s usability by (i)

eliminating the requirement for capturing multiple reference images of the trinket in

the registration phase, (ii) increasing the ability to extract features even from images

of objects with constant shade, and (iii) further reducing FRRs. In Chapter 5, we

investigate this direction.
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CHAPTER 5

AI.LOCK: IMAGE-BASED AUTHENTICATION WITH SECURE

STORAGE OF CREDENTIALS

5.1 Introduction

Biometrics are widely used for authentication in consumer devices and business set-

tings as they provide sufficiently strong security, instant verification and convenience

for users. However, biometrics are hard to keep secret, stolen biometrics pose life-

long security risks to users as they cannot be reset and re-issued, and transactions

authenticated by biometrics across different systems are linkable and traceable back

to the individual identity. In addition, their cost-benefit analysis does not include

personal implications to users, who are least prepared for the imminent negative

outcomes, and are not often given equally convenient alternative authentication

options.

In Chapter 4, we introduced Pixie, a secret image based authentication approach,

where users authenticate to a remote service using arbitrary images they capture

with the device camera. Pixie authentication solution can address several of the

problems associated with biometric-based authentication method. For instance,

using Pixie the authentication is no more tied to a visual of the user’s body (e.g.,

face and fingerprint), but that of a personal accessory, object, or scene, i.e., the

trinket.

However, Pixie has an important drawback when deployed on mobile devices (i.e.

local authentication scenario of § 4.2.1): the image keypoints (features), extracted

by Pixie, need to be stored and matched in cleartext on vulnerable devices.

Challenges. Local Image based authentication approach raises new challenges.

First, an adversary who captures or compromises the device that stores the user’s
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reference credentials (e.g. mobile device, remote server) and has access to its storage,

should not be able to learn information about the reference credentials or their

features.

Second, while biometric features such as ridge flow of fingerprints or eye socket

contours of faces, can be captured with engineered features and are invariant for a

given user, images of objects and general scenes lack a well defined set of features that

can be accurately used for authentication purposes. Improper features will generate

(i) high False Accept Rates (FAR), e.g., due to non-similar images with similar

feature values, and (ii) high False Reject Rates (FRR) that occur due to angle,

distance and illumination changes between the capture circumstances of reference

and candidate images.

In this chapter, we first introduce ai.lock, a practical, secure and efficient image

based authentication system that converts general mobile device captured images

into biometric-like structures, to be used in conjunction with secure sketch con-

structs [DRS04] and provide secure authentication and storage of credentials (see

§ 5.4). To extract invariant features for image based authentication, ai.lock lever-

ages (1) the ability of Deep Neural Networks (DNNs) to learn representations of the

input space (i.e., embedding vectors of images) that reflect the salient underlying

explanatory factors of the data, (2) Principal Component Analysis (PCA) [F.R01]

to identify more distinguishing components of the embedding vectors and (3) Lo-

cality Sensitive Hashing (LSH) [Cha02] to map the resulting components to binary

space, while preserving similarity properties in the input space. We call the resulting

binary values imageprints.

In a second contribution, we propose the LSH-inspired notion of locality sensi-

tive image mapping functions (δ-LSIM), that convert images to binary strings that

preserve the “similarity” relationships of the input space, for a desired similarity
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FAR EER Estimated Entropy Dataset
Solution (%) (%) (bits) size

ai.lock (MLMS) 0.0004 - 18.02 2 ×109

ai.lock (MLSS) 0.0015 0.17 16.02 6 ×106

iPhone TouchID [App17a] 0.0020 - 15.61 -

Deepface [TYRW14] (face) - 8.6 - > 0.5 ×109

SoundProof [KMSv15] (sound) 0.1 0.2 9.97 > 2 ×106

[SRRM16b] (eye movement) 0.06 6.2 10.70 1, 602

RSA SecurID [RSA17] - - 19.93 -

Text-based password [Bon12] - - 10-20 7 ×107

Table 5.1: ai.lock variants vs. commercial and academic biometric, token-based
authentication solutions, and text passwords. ai.lock MLSS variant has no false
rejects, as it is evaluated under attack samples only. Under large scale datasets
of powerful attacks, ai.lock achieves better entropy than state-of-the-art biometric
solutions.

definition (see § 5.3). A δ-LSIM function can be used to efficiently match images

based on their extracted binary imageprints.

Unlike Pixie, ai.lock builds on a secure sketch variant [DRS04] to securely store

reference imageprints and match them to candidate imageprints. ai.lock only stores

a “hash” of the object’s image (i.e., the imageprints). Furthermore, we show that on

larger and more complex attack datasets, the use of DNNs enables ai.lock to achieve

FAR that are at least 2 orders of magnitude smaller than those of Pixie (≤ 0.0015%

vs. 0.02− 0.08%), for similar FRRs (4%).

Implementation and evaluation. We implemented ai.lock using Tensorflow [ABC+16]

and Bose, Chaudhuri, and Hocquenghem (BCH) codes [Hoc59a, BRC60]. We then

develop brute force image based attacks that aim to defeat ai.lock.

Particularly, to evaluate ai.lock performance under attacks, first we perform real

image attacks using manually collected and publicly available image datasets. To

evaluate ai.lock on large scale attack images, we develop synthetic image attacks that
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use images produced by generative models [RMC15]. To evaluate the resilience of

stored credentials, we introduce synthetic credential attacks, that use authentication

credentials generated with the same distribution of the credentials extracted from

manually collected images (see § 5.2.3).

We have captured, collected and generated datasets of 250,332 images, and gen-

erated 1 million synthetic credentials (see § 5.5.1). We have used these datasets to

generate attack datasets containing more than 3.5 billion (3,567,458,830) authen-

tication instances (see § 5.5.2). We have released the code and data on ai.lock’s

github [CaS17a].

ai.lock uses an imaging sensor to reliably extract authentication credentials sim-

ilar to biometrics. Despite lacking the regularities of biometric image features, we

show that ai.lock consistently extracts features across authentication attempts from

general user captured images, to reconstruct credentials that can match and exceed

the security of biometrics (EER = 0.71%). The estimated entropy [Sha01] of ai.lock

on 2 billion image pairs is 18.02 bits, comparing favorably with state-of-the-art bio-

metric solutions (see Table 5.1).

5.2 Model and Applications

5.2.1 System Model

We consider a user that has a camera equipped device, e.g., smartphone or tablet,

a resource constrained device such as a smart watch/glasses, or a complex cyber-

physical system such as a car. The user needs to authenticate to the device or an

application back-end, or authenticate through the device to a remote service. For

this, we assume that the user can select and easily access a physical object or scene.
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Figure 5.1: ai.lock model and scenario. The user captures the image of an object
or scene with the device camera. ai.lock converts the image to a binary imageprint,
and uses it as a biometric, in conjunction with a secure sketch solution, to securely
store authentication information on the device or on a remote server. The user can
authenticate only if she is able to capture another image of the same object or scene.

To set her password, the user captures the image of an object/scene with the device

camera, see Figure 5.1 for an illustration. ai.lock extracts a set of features from the

user’s captured reference image, then stores this information (imageprint) securely

either on the device or on a remote server. We note that, in the former case, the

device can associate the reference image with the user’s authentication credentials

(e.g. OAuth [DH12]) for multiple remote services. To authenticate, the user needs to

capture another image. The user is able to authenticate only if the candidate image

is of the same object or scene as the reference image. Similar to e.g., text passwords,

the user can choose to reuse objects across multiple services, or use a unique object

per service. Using a unique object per service will affect memorability. However,

due to the image superiority effect [NRW76], objects may be easier to remember

than text passwords.
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5.2.2 Application

In the following, we describe a few applications of ai.lock system.

Alternative to biometric authentication. Instead of authenticating with her

sensitive and non-replaceable biometrics (e.g. face and fingerprint), the user uses

a unique nearby scene or object that she carries, e.g., a trinket, Rubik’s cube with

a unique pattern, printed Random art [PS99], etc. ai.lock moves the source of

information from the user to an externality, as it does not require a visual of the

user’s body, but that of a personal accessory, object, or scene that the user can

recreate at authentication time. ai.lock improves on biometrics by freeing users

from personal harm, providing plausible deniability, allowing multiple keys, and

making revocation and change of secret simple.

Location based authentication. The user chooses as password an image of a

unique scene at a frequented location (office, home, coffee shop), e.g., section of

book shelf, painting, desk clutter. This approach can be generalized to enable

location based access control, e.g., to provide restricted access to files and networks

in less secure locations.

Cyber-physical system authentication. Similar to Pixie, our model supports

authentication to cyber-physical systems, including car and door locks, thermostat

and alarm systems, where key and PIN entry hardware [Sch17, Sec17] is replaced

with a camera. To authenticate, the user needs to present her unique but replaceable

authentication object to the camera.

5.2.3 Adversary Model

We assume an active adversary who can physically capture or compromise the device

that stores the user credentials. Such an adversary can not only access the stored
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credentials, but also any keying material stored on the device, then use it to recover

encrypted data and to authenticate through the proper channels. However, we

assume that the adversary does not have control over the authentication device while

the user authenticates (e.g., by installing malware). We also assume an adversary

with incomplete surveillance [FA12], i.e., who can physically observe the victim

during authentication but cannot capture the details of the secret object.

Furthermore, we assume that the adversary has “blackbox access” to the authen-

tication solution, thus can efficiently feed it images of his choice and capture the

corresponding imageprint. The adversary can use this output to learn information

from the stored credentials. More specifically, we consider the following attacks:

• Real image attack. The adversary collects large datasets of images, e.g.,

manually using a mobile camera, and online. Then, in a brute force approach,

he matches each image as an authentication instance against the stored reference

credentials until success.

• Synthetic image attack. The adversary uses the previously collected images

to train a generative model, e.g. [GPAM+14], that captures essential traits of the

images, then uses the trained model to generate a large dataset of synthetic images.

Finally, the adversary matches each such image against the reference credentials.

• Synthetic credential attack. Instead of images, the adversary queries the

authentication system with binary imageprints. For this, the adversary extracts the

imageprints generated by the authentication solution on real images of his choice.

He then generates a large dataset of synthetic credentials that follow the same dis-

tribution as the extracted credentials. Finally, he matches each synthetic credential

exhaustively against the reference credentials.

• Object/scene guessing attack. While we do not consider shoulder surfing

attacks which also apply to face based authentication [XPFM16, KFB08b], we as-
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sume an adversary that is able to guess the victim’s secret object/scene type. The

adversary then collects a dataset of images containing the same object or scene type,

then uses them to brute force ai.lock (see § 5.6.3).

Finally, we assume the use of standard secure communication channels for the

remote authentication scenario where the user credentials are stored on a server.

5.3 Problem Definition

Let I denote the space of images that can be captured by a user with a camera. Let

sim : I × I → {0, 1} be a function that returns true when its input images have

been taken with the same camera and are of the same object or scene, and false

otherwise.

Informally, the image based authentication problem seeks to identify a store func-

tion S : I → {0, 1}k, and an authentication function Auth : {0, 1}k×{0, 1}∗ → {0, 1}

(for a parameter k) that satisfy the following properties. First, it is hard for any

adversary with access to only S(R), for a reference image R ∈ I, to learn informa-

tion about R. That is, S imposes a small entropy reduction on its input image.

Second, for any candidate string C ∈ {0, 1}∗, Auth(S(R), C) = 1 only if C ∈ I and

sim(R,C) = 1. Thus, a candidate input to the Auth function succeeds only if it is

a camera captured image of the same object or scene as the reference image.

We observe that the secure sketch of [DRS04] solves this problem for biometrics:

given a biometric input, the secure sketch outputs a value that reveals little about the

input, but allows its reconstruction from another biometric input that is “similar”.

Therefore, the image based authentication problem can be reduced to the problem of

transforming camera captured images of arbitrary objects and scenes into biometric-

like structures.
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Symbol Description

λ Length of the imageprint for a single image segment
τ Error tolerance threshold
c Correctable number of bits
s Number of image segments in multi segment schema
t Segment-based secret sharing threshold

Table 5.2: ai.lock notations.

Hence, we introduce the LSH-related notion of locality sensitive image mapping

functions. Specifically, let d : {0, 1}λ × {0, 1}λ → R be a distance function (e.g.,

Hamming), where λ is a system parameter. Then, for a given δ ∈ [0, 1], a δ-Locality

Sensitive Image Mapping (LSIM) function h satisfies the following properties:

Definition 5.3.1 h : I → {0, 1}λ is a δ-LSIM function if there exist probabilities

P1 and P2, P1 > P2, s.t.:

1. For any two images I1, I2 ∈ I, if sim(I1, I2) = true, then d(h(I1),h(I2))
λ

< δ with

probability P1.

2. For any two images I1, I2 ∈ I, if sim(I1, I2) = false, then d(h(I1),h(I2))
λ

> δ with

probability P2.

5.4 The ai.lock Solution

We introduce ai.lock, the first locality sensitive image mapping function, and a

practical image based authentication system. In the following, we describe the basic

solution, then introduce two performance enhancing extensions.
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Figure 5.2: ai.lock architecture. ai.lock processes the input image through a deep
neural network (i.e., Inception.v3), selects relevant features, then uses locality sensi-
tive hashing to map them to a binary imageprint. ai.lock uses a classifier to identify
the ideal error tolerance threshold (τ), used by the secure sketch block to lock and
match imageprints.

5.4.1 ai.lock: The Basic (SLSS) Solution

ai.lock consists of 3 main modules (see Figure 5.2): (1) Deep Image-to-Embedding

(DI2E) conversion module (2) feature selection module, and (3) LSH based binary

mapping module. We now describe each module and its interface with the secure

sketch module. Table 5.2 summarizes the important ai.lock parameter notations.

Deep image to embedding (DI2E) module. Let I be the fixed size input

image. Let Emb : I → Re be a function that converts images into feature vectors

of size e. We call Emb(I) the embedding vector, an abstract representation of I.

To extract Emb(I), ai.lock uses the activations of a certain layer of Inception.v3

DNN [SVI+16a] when I is the input to the network. Let e denote the size of the

output of the layer of the DNN used by ai.lock. Thus, Emb(I) ∈ Re.
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Feature selection module. We have observed that not all the components in the

embedding feature vectors are relevant to our task (see § 5.6.1). Therefore, we reduce

the dimensionality of the feature vectors to improve the performance and decrease

the processing burden of ai.lock. Let P : Re → Rp, where p < e be a function

that reduces the features of an embedding to the ones that are most important.

ai.lock uses PCA with component range selection as the P function, and applies it

to Emb(I) to find a set of components that can reflect the distinguishing features of

images. Thus, the vector produced by feature selection module is P (Emb(I)) ∈ Rp.

LSH based binary mapping module. In a third step, ai.lock seeks to map

P (Emb(I)) to a binary space of size λ that preserves the similarity properties of the

input space. A straightforward transformation of the floating point feature values

of the P (Emb(I)) vectors to their binary representation does not satisfy the second

property of the LSIM definition: significantly different feature values that differ only

in the most representative bits will have a small Hamming distance.

To address this problem, we use the LSH scheme proposed by Charikar [Cha02].

Let L : Rp → {0, 1}λ be such a mapping function. ai.lock uses as L, a random

binary projection LSH as follows. Let M be a matrix of size p× λ, i.e. λ randomly

chosen p-dimensional Gaussian vectors with independent components. Calculate

b as the dot product of P (Emb(I)) and M : the projection of the feature vectors

P (Emb(I)) on λ randomly generated vectors.

For each coordinate of b, output either 0 or 1, based on the sign of the value

of the coordinate. We call this binary representation of the input image I, i.e.

π(I) = L(P (Emb(I))), its imageprint. We denote the length of a single imageprint

by λ. Note that, the hash value for the Charikar’s method is a single bit (λ = 1).

Therefore, L can be viewed as a function that returns a concatenation of λ such

random projection bits.
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In § 5.6.5, we provide empirical evidence that the function h = L ◦P ◦Emb is a

(τ)-LSIM transform (see § 5.6.1), for specific τ values.

Secure sketch. ai.lock extends the secure sketch under the Hamming distance

solution from [DRS04]: reconstruct the biometric credential, then compare its hash

against a stored value. We briefly describe here the password set and authentication

procedures that we use based on ai.lock generated imageprints. Let ECC be a binary

error correcting code, with the corresponding decoding function D, and let H be a

cryptographic hash function.

• Image password set. Let R be the reference image captured by the user

and let πR = π(R) be its ai.lock computed imageprint. Generate a random vector

x, then compute and store the authentication credentials, SS(R, x) = 〈SS1, SS2〉,

where SS1 = πR ⊕ ECC(x) and SS2 = H(x).

• Images based authentication. Let C be the user captured candidate image,

and let πC = π(C) be its ai.lock computed imageprint (§ 5.4). Retrieve the stored SS

value and compute x′ = D(πC ⊕SS1). The authentication succeeds if H(x′) = SS2.

5.4.2 ai.lock Variants

In the following, we introduce two ai.lock extensions, intended to increase the en-

tropy provided by ai.lock’s imageprints. First, we modify ai.lock to use the em-

bedding vectors obtained from multiple layers of Inception.v3 network. Second,

we extend ai.lock to split the input image into multiple overlapping segments and

concatenate their resulting binary representations.

By combining the concept of these approaches we can have 4 variants of ai.lock

as follows: Single Layer Single Segment (SLSS) image, Multi Layer Single Segment

(MLSS) image, Single Layer Multi Segment (SLMS) image and Multi Layer Multi
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Segment (MLMS) image. In the following, we describe necessary modifications to

the basic ai.lock modules to work with these variants.

ai.lock with Multiple DNN Layers

Representations learned by a DNN are distributed in different layers of these net-

works. The lower (initial) layers of convolutional neural networks learn low level

filters (e.g. lines, edges, colors), while deeper layers learn more abstract representa-

tions (e.g. shapes) [ZF14]. The use of a single DNN layer prevents the basic ai.lock

solution from taking advantage of both filters.

To address this issue, we propose an ai.lock extension that collects the embedding

vectors from multiple (l) layers of Inception.v3 network. In addition, we modify the

basic ai.lock feature extractor module as follows. The Principal Components (PCs)

of activations for each layer are computed separately and are mapped to a separate

binary string of length λ. Then, the binary strings constructed from different layers

are concatenated to create a single imageprint for the input image. Thus, the length

of the imageprint increases linearly with the number of layers used in this schema.

ai.lock with Multiple Image Segments

We divide the original image into s overlapping segments (see Figure 5.3(a)). We

then run the basic ai.lock over each segment separately to produce s different im-

ageprints of length λ. However, we identify the PCs for the embedding vectors of

each segment based on the whole size images. The intuition for this choice is that

random image segments are not good samples of real objects and may confuse the

PCA. We then generate the imageprint of the original, whole size image, as the

concatenation of the imageprints of its segments.
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Figure 5.3: (a) 3 overlapping segments of an image. (b) Top: sample images gen-
erated by DCGAN, Bottom: visually similar images in Nexus Dataset to images
generated by DCGAN.

Secure sketch sharing. We extend the secure sketch solution with a (t, s)-secret

sharing scheme. Specifically, let x1, .., xs be (t, s)-shares of the random x, i.e., given

any t shares, one can reconstruct x. Given a reference image R, let R(1), ..R(s) be its

segments, and let π
(i)
R = π(R(i)), i ∈ 1, 2, 3, ..., s be their imageprints. Then, we store

SS(R, x) = 〈SS
(1)
1 , .., SS

(s)
1 , SS2〉, where SS

(i)
1 = π

(i)
R ⊕ ECC(xi) and SS2 = H(x).

To authenticate, the user needs to provide a candidate image C, whose segments

C(i), i = 1..s produce imageprints π
(i)
C = π(C(i)) that are able to recover at least t of

x’s shares xi.

5.5 Implementation and Data

We build ai.lock on top of the Tensorflow implementation for Inception.v3 network

[ten17]. For the error correcting code of secure sketches, we use a BCH [Hoc59a,

BRC60] open source library [Jef17], for syndrome computation and syndrome decod-

ing with correction capacity of up to c bits. The value for c is calculated empirically

using the training dataset (see § 5.6.1).
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Basic (SLSS) ai.lock. In the basic ai.lock solution, we use the output of the

last hidden layer of Inception.v3 network, before the softmax classifier, consisting of

2, 048 float values. Our intuition is that this layer provides a compact representation

(set of features) for the input image objects, that is efficiently separable by the

softmax classifier.

Multi layer ai.lock. For the multi DNN layer ai.lock variants, we have used 2 layers

(l = 2). The first layer is the “Mixed 8/Pool 0” layer and the second layer is the

last hidden layer in Inception.v3. The embedding vector for the “Mixed 8/Pool 0”

consists of 49, 152 float values. As described in § 5.4.2, the embedding vectors of

each layer are separately processed by the feature selection and LSH modules; the

resulting binary strings are concatenated to form the imageprint of size 2λ.

Multi segment ai.lock. For the multi segment ai.lock variant, we split the image

into multiple segments that we process independently. Particularly, we consider 5

overlapping segments, cropped from the top-left, bottom-left, top-right, bottom-

right and the center of the image. We generate segments whose width and height

is equal to the width and height of the initial image divided by 2, plus 50 pixels

to ensure overlap. The extra 50 pixels are added to the interior sides for the side

segments. For the middle segment, 25 pixels are added to each of its sides. Each

segment is then independently processed with the basic ai.lock (i.e., last hidden layer

of Inception.v3, PCA, and LSH).

Multi layer multi segment ai.lock. This is a hybrid of the above variants: split

the image into 5 overlapping parts, then process each part through Inception.v3

network, and extract the activation vectors for each of the two layers of Inception.v3

(the last hidden layer and Mixed 8/Pool 0 layer). The output of each layer for

each segment is separately processed as in the basic ai.lock. Thus, the resulting

imageprint of the image has 10λ bits.
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5.5.1 Primary Data Sets

Real Images

Nexus dataset. We have used a Nexus 4 device to capture 1,400 photos of 350

objects, belonging to 33 object categories. Example of object categories in this

dataset includes watches, shoes, jewelry, shirt patterns, and credit cards. We have

captured 4 images of each object, that differ in background and lighting conditions.

Note, this is the same dataset as we introduced in § 4.4.1.

ALOI dataset. We have used the “illumination direction” subset of the Amster-

dam Library of Object Images (ALOI) [GBS05b] dataset. This dataset includes

24 different images of 1000 unique objects (24,000 in total) that are taken under

different illumination angles.

Google dataset. We have used Google’s image search to retrieve at least 200

images from each of the 33 object categories of the Nexus image dataset, for a total

of 7,853 images. This dataset forms the basis of a “targeted” attack. This is the

same dataset as we used to break Pixie (see § 4.5.2).

YFCC100M toy dataset. We have extracted a subset of the Yahoo Flickr Creative

Commons 100M (YFCC100M) [TSF+16] image dataset (100 million Flickr images).

This subset includes 126,600 Flickr images tagged with the “toy” keyword, and not

with “human” or “animal” keywords.

Synthetic Data

Synthetic image dataset. Manually capturing the Nexus dataset was a difficult

and time consuming process. In order to efficiently generate a large dataset of simi-
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lar images, we have leveraged the ability of generative models to discover an abstract

representation that captures the essence of the training samples. Generative mod-

els, including Variational AutoEncoders (VAE) [KW13] and Generative Adversarial

Networks (GAN) [GPAM+14], are trained to generate samples that are similar to

the data they have been trained on (see § 3.1.5 for a review on GANs). Such models

have been shown to be suitable for representation learning tasks, e.g., [RMC15].

We have used a DCGAN [RMC15] to generate a large set of synthetic images

that are similar to the images in the Nexus dataset. Specifically, we have trained a

DCGAN [RMC15] using the images of the Nexus dataset for 100 training epochs.

Image augmentation, e.g., rotation, enhancement, and zoom, is performed to artifi-

cially increase the number of Nexus image dataset samples to include 20 variants per

image. We then used the trained network to generate synthetic images: generate a

random vector (z) drawn from the uniform distribution, then feed z to DCGAN’s

generator network to construct an image. We repeated this process to generate

200,000 images, that form our synthetic image dataset. Figure 5.3(b) shows sample

images generated by this network, alongside similar images from the Nexus dataset.

Synthetic credential dataset. We have generated the binary imageprints for

the images in Nexus dataset based on the best parameters of ai.lock (see § 5.6.1).

For each considered λ value, we consider the value at each position of the binary

imageprint as an independent Bernoulli random variable. We then calculate the

probability of observing a 1 in each position based on the imageprints of the Nexus

dataset. We use these probabilities to draw 100,000 random samples (of length

λ) from the corresponding Bernoulli distribution for each position. The resulting

random binary imageprints form our synthetic credential dataset. We have exper-

imented with 10 values of λ ranging from 50 to 500, thus, this dataset contains 1

million synthetic imageprints.
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5.5.2 Evaluation Datasets

We use the above image datasets to generate authentication samples that consist of

one candidate image and one reference image.

ai.lock attack dataset

We use roughly 85% of the images from the Nexus, ALOI and Google datasets as a

training set to train and estimate the performance of ai.lock. We use the remaining

15% of images in each dataset (i.e., 220 Nexus, 3,600 ALOI and 1,178 Google images)

as a holdout set. We use the holdout dataset to assess the generalization error of

the final model, and as a real image attack dataset (see § 5.6.3).

We generate the samples in holdout dataset using each subset of Nexus, ALOI

and Google separately as follows. Each image of the Nexus holdout dataset is

chosen as a reference image once, then coupled once with all the other images in

the Nexus, ALOI and Google sets, used as candidate images. Therefore, there are

220×219
2

= 24, 090 combinations of samples for the images in the Nexus set. For each

55 unique objects in this set, there are 6 (
(

4
2

)

) possible valid samples that compare

one image of this object to another image of the same object. Thus, there are

55× 6 = 330 valid samples in the Nexus set. We then generate 220× 3, 600 = 792K

and 220×1, 178 = 259, 160 invalid samples from comparing Nexus images to images

in ALOI and Google sets respectively. Therefore, the ai.lock holdout set contains a

total of 1, 075, 250 samples.

In addition, the training set is further divided into 5 folds, for cross validation.

Each training fold contains 236, 4080 and 1335 images of Nexus, ALOI and Google

datasets respectively. Therefore, there are 236×235
2

= 27, 730 samples for the fold’s

59 unique Nexus set objects, of which 59 × 6 = 354 pairs are valid. Similarly, we

generate 236 × 4, 080 = 962, 880 and 236 × 1, 335 = 315, 060 invalid samples, that
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consist of Nexus images coupled with ALOI and Google images, respectively. Thus,

each training fold has a total of 1, 305, 670 samples, of which 354 are valid.

Synthetic image attack datasets

We divide the synthetic image dataset of § 5.5.1 into 2 equal sets, each containing

100,000 images. Then, we build two synthetic image attack datasets (DS1 and DS2)

by repeating the following process for each subset of the synthetic image dataset:

combine each Nexus dataset image, used as a reference image, with each image from

the subset of the synthetic image dataset, used as a candidate image. Therefore, in

total we have 140 million samples in each of DS1 and DS2.

Synthetic credential attack dataset

We use the synthetic credential dataset described in § 5.5.1 to build a synthetic

credential attack dataset: for each value of λ, combine the imageprint of each Nexus

dataset image, used as a reference imageprint, with each imageprint in synthetic

credential dataset, used as the candidate imageprint. Hence, we have 140 million

authentication samples in this dataset for each value of λ. We repeat this process

for 10 values of λ, ranging from 50 to 500. Therefore, in total this dataset contains

10× 140 M = 1.4 billion samples.

Illumination robustness evaluation dataset

To evaluate the performance of ai.lock under illumination changes, we use the ALOI

holdout set (3, 600 images) that includes up to 11 images of each object captured

under a different illumination condition. Specifically, we pair each image in the

ALOI holdout set (i.e., not used during training) with all the other images in this
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λ 50 100 150 200 250 300 350 400 450 500

τ × 10 7.80 7.30 7.07 6.95 6.80 6.87 6.80 6.85 6.87 6.82

Table 5.3: Error tolerance threshold (τ) values for the basic ai.lock obtained through
cross validation over the ai.lock dataset, when using PCs with feature ranked 200-
400.

set. Therefore, we have a total of 3600×3599
2

= 6, 478, 200 authentication samples in

the illumination robustness evaluation dataset, of which 6, 306 samples are valid.

Entropy evaluation dataset

We randomly selected 2 billion unique pairs of images from the YFCC100M toy

dataset. In each pair, an image is considered to be the reference, the other is the

candidate.

5.6 Experimental Evaluation

We evaluate ai.lock and its variants. First, we describe the process we used to

identify the best ai.lock parameters. We use these parameters to evaluate the per-

formance of ai.lock under the attack datasets of § 5.5.2. We also show that ai.lock

is a δ-LSIM function, empirically estimate its entropy, and measure its speed on a

mobile device.

5.6.1 ai.lock: Parameter Choice

We identify the best parameters for the ai.lock variants, starting with the SLSS

solution, using 5 fold cross validation on the ai.lock training dataset (see § 5.5.2).
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Best error tolerance threshold

In each of the 5 cross validation experiments, we identify the best threshold that

separates the binary imageprints of the testing set. Particularly, we normalize the

Hamming distance of each pair of imageprints in the test fold by the length of the

imageprints. Then, we apply more than 4K different real values, between 0 and

1, as a threshold on the normalized Hamming distances of the authentication pairs

to classify them. At the end of the 5th cross validation experiment, we select the

threshold that has the maximum average performance, in terms of F1 score, as the

best separating threshold. We call this the Error Tolerance Threshold, which we

denote by τ .

Table 5.3 reports the τ values for basic ai.lock and MLSS ai.lock variant with

different values of λ, when using PCs with feature rank 200-400. We observe that

as λ increases, the value for τ decreases: we posit that larger λ values preserve more

information about the input vectors (PCs of the embedding vectors) in the LSH

output.

We translate τ to the error correcting capacity required for ECC. Specifically,

for an imageprint of length λ, we choose an ECC that is able to correct up to

c = ⌊λ× (1− τ)⌋ bits.

Best principal component range

To identify the best PC range, we use 5 fold cross validation as follows. First, we

retrieve the embedding vector (output of the last hidden layer of Inception.v3) for

each image in the ai.lock training dataset. Then, for each cross validation experi-

ments, we use 4 training folds to find the principal components of the embedding

vectors. Then, we transform the embedding vectors of the test fold into the newly
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Figure 5.4: Comparison of ai.lock performance (F1 score) when using different subset
of principal component feature ranks for different imageprint length (λ) values. PCs
ranked 200-400 constantly outperform other tested subsets.

identified feature space. Finally, we project them into several randomly generated

vectors (LSH) to construct the binary imageprint of the images.

To choose the best PCs, we have experimented with different subsets of the

transformed feature space of various size including the first and second consecutive

principal component sets of size 50, 100, 150, and 200, as well as, the first 400 PCs.

Figure 5.4 shows the cross validation performance achieved by ai.lock when using

different subsets of PC features for different λ values. We observe that the PCs

ranked 200-400 perform consistently the best. This might seem surprising, as higher

ranked PCs have higher variability and thus we expected that they would have more

impact in differentiating between valid and invalid samples. We conjecture that

some of the lower rank coordinates of these transformed vectors are more efficient in

capturing the lower level details of the input object images that differentiate them

from other object images.

Motivation for feature selection using PCA. We now justify the need for

the PCA step of ai.lock. For this, we compare the best version of ai.lock running

PCA (i.e., features ranked 200-400), with two other versions. First, we consider a

baseline version (which we call “Raw”), that uses no feature selection component.

Specifically, Raw applies LSH to the raw embedding vectors, then, identifies the
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Figure 5.5: PCA motivation: FRR vs. FAR of (i) ai.lock when using PCA (with
features ranked 200-400), (ii) ai.lock with no feature selection (“Raw”), and (iii)
250 independent instances of ai.lock when using a feature selection approach that
randomly selects 200 features. ai.lock with PCA consistently achieves the lowest
FRR and often the lowest FAR.

best threshold τ using the 5-fold cross validation experiment described previously

for ai.lock. Second, we compare against an ai.lock variant where we replace the

PCA component with a random choice of 200 features (of the embedding vectors)

produced by the last hidden layer of Inception.v3. Figure 5.5 shows the results of

this comparison for λ values of 150, 250, 350 and 500, and 250 different instances of

ai.lock with random feature selection. We observe that ai.lock with PCA (PCs of

rank 200-400) consistently achieves the significantly lower FRR, and often the lowest

FAR. In addition, we observe that randomly choosing the features is not ideal, as it

often performs worse than when no feature selection is used at all.

ai.lock MLSS variant. Similar to the basic ai.lock, we have experimented with

multiple ranges of PCs and λ values to identify the τ values for MLSS ai.lock,

using the 5 fold cross validation experiment on the ai.lock training dataset. Table

5.4 reports the τ values for MLSS ai.lock variant with different values of λ. As
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λ 200 250 300 350 400 450 500

τ × 10 6.75 6.74 6.61 6.58 6.55 6.57 6.56

Table 5.4: Error tolerance threshold (τ) values for MLSS ai.lock obtained through
cross validation over the ai.lock dataset, when using PCs with feature ranked 200-
400.

t (matching segment counts out of 5) 3 4 5

F1 score (%) for SLMS 93.13 90.95 85.84
F1 score (%) for MLMS 95.53 94.64 92.42

Table 5.5: Cross validation performance (F1 score) for different values of t (number
of segments that need to match out of 5) when using PCs with feature rank 200-400
and λ = 500 for SLMS and MLMS variants of ai.lock. t = 3 consistently achieves
the best performance.

mentioned before, the value of τ decreases as we increase λ.

ai.lock Multi segment variants. For this ai.lock variant, we identify the τ values

separately for each image segment, using the 5-fold cross validation experiment

explained previously. Therefore, we end up having 5 different τ values corresponding

to each image segment. The τ corresponding to each segment can be used to identify

if there is a match between the piece of the candidate image to the corresponding

piece in the reference image. We say that the whole candidate and reference images

match, when t of their segments match. We have tested with t ranging from 3 to 5

and observed that t=3 achieved the best F1 score (see Table 5.5).

5.6.2 Cross validation performance for trained ai.lock model

We now report the cross validation performance of ai.lock with the parameters

identified above, for λ ranging from 50 to 500. Figures 5.6(a)-(c) compare the F1

score, FAR and FRR values of the best version of the ai.lock variants (basic SLSS,
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Figure 5.6: (a-c) ai.lock cross validation performance, and (d-f) ai.lock holdout
performance using different ai.lock variants: Single Layer Single Segment (SLSS),
Multi Layer Single Segment (MLSS), Single Layer Multi Segment (SLMS), Multi
Layer Multi Segment (MLMS). Exploiting information from multiple Inception.v3
DNN layers (multi layer variants) lowers the FRR, while splitting images into smaller
segments (multi segment variants) lowers the FAR. The MLMS variant of ai.lock
consistently achieves the lowest FAR, that can be as low as 0% for the holdout
dataset.

SLMS, MLSS, and MLMS) over the 5-fold cross validation experiments, using ai.lock

training dataset. The performance of all ai.lock variants improves with increasing

the value of λ. The MLMS ai.lock achieves the best performance, with an F1 score

of 95.52% and FAR of 0.0009% when λ = 500. The MLSS ai.lock also consistently

improves over the basic ai.lock, with a smaller FRR and a smaller or at most equal

FAR. Its FRR (4.18% for λ = 500) is slightly smaller than that of MLMS variants

(5.36%), but it exhibits a slight increase in FAR. For large values of λ, the FRR of

SLMS and SLSS are almost equivalent.

The average cross validation Equal Error Rate (EER, the rate at which the FAR

= FRR) of ai.lock for the SLSS and MLSS variants is less than 0.67% and 0.17%

respectively when using PCs with feature rank 200− 400 and λ = 500.
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λ 50 150 250 350 500

FAR×10+6 33.87 4.34 3.29 0.69 0.20

Table 5.6: SLSS ai.lock performance on synthetic attack DS1. The FAR decreases
significantly as λ grows from 50 to 500. The FAR when λ = 500 is only 0.2× 10−6.
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an image extracted by a DNN into a binary string. Our conjecture is that larger 

lambda values extract more high quality information about the feature vectors, 

which in turn leads to lower FAR and FRR. This is partly due to the random 

nature of the LSH we used (see Figure 5.10), where roughly half of the bits among 

different images are different, and images of the same object have a smaller distance 

overall. Using more LSH bits reduces the variance of the distance that was due to 

perturbations from using a random projection, hence provides a better separation 

between TP and FP image comparisons.

5.6.3 ai.lock Under Attack

Holdout dataset, real image attack

The performance over the ai.lock holdout set is reported in Figure 5.6(d)-(f). As 

before, the performance of all the ai.lock variants improves with the increase in λ. 

In agreement with the results of the cross validation experiments, we conclude that 

exploiting information from multiple Inception.v3 layers decreases the FRR, while 

using information from multiple image segments decreases the FAR. In addition, 

the MLMS ai.lock variant achieves the highest F1 score (97.21% for λ = 500). The 

SLMS and MLMS schema consistently achieve the lowest FAR, which is as low as 

0% on the holdout dataset.

The purpose of the LSH-based transformation is to encode the feature vector of



Figure 5.7: Histogram of the number of broken reference images, using the synthetic
attack dataset DS1. The x axis shows the range for the number of times a breakable
Nexus reference image is defeated by the attack images and the y axis shows the
number of such breakable images. A majority of the “broken” reference images are
defeated only by a small number of candidate images. The ratio of broken references
(r) decreases significantly when λ increases.

Synthetic image attack

We use the synthetic attack dataset DS1 of § 5.5.2 to evaluate the performance of

SLSS ai.lock, using the trained parameters of § 5.6.1. We emphasize the importance

of achieving a low FAR in this experiment: this powerful adversary can generate

and try many synthetic images.

Table 5.6 shows the performance of ai.lock in classifying these attack samples.

The FAR decreases significantly with λ, and is as low as 0.00002% when λ = 500.

Figure 5.7 shows the histogram of the number of times when the Nexus image

references are broken using the synthetic image dataset DS1, for different λ values.

The value r indicates the percentage of the reference images that have been broken

at least once. The proportion of the reference images that have been broken at

least once decreases significantly by increasing λ: from 16.86% to 0.79% (11 Nexus

images) when λ is 150 and 500 respectively. A majority of the broken references are

broken only by a small number of candidate images: when λ = 500, only 2 of the

11 broken images have been broken 5 times by the synthetic images in DS1. The

empirical average number of trials until finding the first matching synthetic image,

over the 11 broken reference images, is 31,800.
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Figure 5.8: (a) Cross validation FAR, (b) Cross validation FRR , (c) Holdout FAR,
and (d) Holdout FRR of SLSS ai.lock when trained over the ai.lock and synthetic
image attacks of DS2.

Vaccinated ai.lock. To further improve the ai.lock resistance to synthetic image

attacks, we use the synthetic image attack dataset DS2 (see § 5.5.2) along with the

ai.lock training dataset, to train ai.lock. Specifically, we divide the synthetic image

attack dataset DS2 into 5 folds and distribute them into the 5 training folds of the

ai.lock dataset. In other words, we train ai.lock on an additional 236 × 20,000 =

4,720,000 invalid authentication samples. The holdout set remains untouched and

is used to evaluate the effectiveness of this approach. Then, we train ai.lock with

SLSS as before using the cross validation experiment (see § 5.6.1).

We experimented with two cases. First, the invalid synthetic image attack sam-

ples in DS2 contribute to both PCA-based feature selection and the error tolerant
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Figure 5.9: FAR of ai.lock on synthetic image attack, when trained on the ai.lock
dataset vs. when trained also on DS2. The “vaccinated” ai.lock improves its resis-
tance to the synthetic image attack: the FAR drops by more than 74%, 51% and
59% when λ is 50, 150 and 350 respectively.

threshold (τ) discovery processes. Second, those samples are only used in the process

of discovering τ . Figure 5.8 shows the cross validation FAR and FRR (a, b) as well

as the performance over the holdout set (c, d). In both experiments, we observed

a drop in the FAR of ai.lock, however, the FRR increases. The FAR improvement

is higher for the second case. We conjecture that the inclusion of synthetic, not

camera captured images, is misleading the PCA based feature selection module into

capturing irrelevant information.

We used the ai.lock trained on the synthetic image attack dataset DS2 to evaluate

its performance over the synthetic image attack DS1. Figure 5.9 compares the

performance of ai.lock when trained on the ai.lock dataset and when trained on the

ai.lock and the synthetic dataset DS2. Training also over synthetic image attack

samples helps ai.lock to be more resilient to synthetic image attack, especially for

small values of λ.

Synthetic credential attack. Table 5.7 shows the FAR values for ai.lock under

the synthetic credential attack dataset described in § 5.5.2. For all values of λ

greater than 300, the FAR of ai.lock is equal to 0. Even for a λ of 50, the FAR

is 11.89 × 10−4%. This is an important result: even a powerful adversary who can
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λ 50 150 250 350 500

FAR×10+6 11.89 0.09 0.03 0.000 0.000

Table 5.7: SLSS ai.lock performance on the synthetic credential attack. ai.lock is
unbreakable under 1.4 billion samples of the synthetic credential attack: its FAR is
0 when λ ≥ 300.

# of words in image search query 1 2 3 4

Dataset size (dsize) 12, 413 24, 882 26, 418 26, 766
Avg # of trials before FA (random order) 12, 078 23, 205 24, 641 25, 028
Avg # of trials before FA (guessing attack) 12, 034 22, 755 23, 921 24, 488

Portion of broken references (%) 5.0 9.0 10.9 9.0

Table 5.8: ai.lock under the object guessing attack. The average number of trials
before the first false accept (FA) drops only slightly in the object guessing attack
scenario when compared to a random ordering of attack images. Thus, knowledge
of the authentication object type provides the adversary only nominal guessing
advantage.

create and test synthetic credentials on a large scale, is unable to break the ai.lock

authentication.

Object/Scene Guessing Attack

Data. We have asked a graduate student to tag each of the 55 unique object images

in the Nexus holdout set with 1 to 4 words. For each value of the number of tags per

image (i.e., 1 to 4), and each object image, we collected 300-500 images provided by

Google’s image search engine. Thus, we generated 4 Google image datasets, one for

images found when searching with 1 tag, another when searching with 2 tags, etc.

In total, we have collected 90,479 images.

ai.lock performance under object guessing attack. We use the 4 collected

image datasets from Google to generate a total of 19, 905, 380 “guessing attack”

authentication samples, and use them to evaluate the guessing entropy [DMR04] of

ai.lock under an object/scene guessing attack (see § 6.2).
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Specifically, using each of the 4 Google image datasets we perform the following

two brute force attacks. The first attack emulates an object guessing attack: re-order

the images in the Google dataset to start the brute force attack with the images

of the same object type, then continue with images of other object categories in

a random order. Finally, count the number of trials before the first match (false

accept) occurs. The second attack is a standard brute force attack: randomly shuffle

the images in the Google image dataset and use them to brute force each image in

the Nexus holdout set. We use the second attack as a baseline, to determine if

knowledge of the object type impacts the trial count to success. In both attacks,

we count each of the unbreakable reference images as “success” at dsize trials, where

dsize is the number of images in the corresponding Google image dataset.

Table 5.8 summarizes the ai.lock performance under the object/scene guessing

attack scenario. We observe an increase in the portion of the Nexus images that are

broken when the simulated adversary uses more words to describe the authentication

objects for collecting the attack image dataset. However, for all experiments, the

average number of trials before success drops only slightly in the object guessing

attack scenario compared to the baseline. This is due to the fact that the reference

images were mostly broken with images of different object categories. We conclude

that knowledge of the secret object type does not provide the adversary with a

significant guessing advantage.

5.6.4 Resilience to Illumination Changes

We evaluate the resilience of ai.lock to illumination changes using the 6,478,200

authentication samples of the illumination robustness evaluation dataset (§ 5.5.2).

While the FAR of the MLMS variant of ai.lock (for λ = 500 and t = 3) remains
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very small (0.006%), its FRR increases to 16.9%. Decreasing the required matching

segments count (t) to 2, reduces the FRR to 11.43%, which results in a slightly

higher FAR of 0.010%.

5.6.5 Is ai.lock δ-LSIM?

We now evaluate if the basic ai.lock (SLSS) variant, with the parameters identified

in § 5.6.1 preserves the similarity of the input space, i.e., if it satisfies the LSIM

properties (see Definition 5.3.1). We use the ai.lock holdout set to evaluate the

probability of obtaining the same hash value for valid and invalid samples.

Let πi and πj be the imageprints corresponding to two images in the ai.lock

holdout set. Let dH(πi, πj) denote the Hamming distance and SH(πi, πj) denote the

normalized Hamming similarity of these imageprints, i.e., SH(πi, πj) = 1−
dH (πi,πj)

λ
.

The output of ai.lock can be considered either as a single bit or a string of bits.

In the former case, the imageprints consist of the concatenation of the output of

multiple hash functions, while in the later case, the entire imageprint is assumed to

be the ai.lock hash value. In the following, we empirically evaluate the P1 and P2

values (see Definition §5.3.1), for the case where the ai.lock individual imageprint

bits are considered as the hash value. We further show that ai.lock is also a δ-

LSIM function when the entire ai.lock imageprint is considered as the hash value

(multi-bit).

ai.lock with single bit hash value is a δ-LSIM

We show that ai.lock with a single bit hash value is a δ-LSIM (see Definition 5.3.1).

ai.lock uses Charikar’s random projection LSH [Cha02]. Therefore, for any

embedding vector (the input to LSH function) u and v, Pr[1 bit collision] = 1 −
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Figure 5.10: Histograms of normalized Hamming similarity between imageprints
of valid and invalid authentication samples in the ai.lock holdout set. The red
rectangles pinpoint the focus areas: valid samples with Hamming similarity below
0.6 and invalid samples with Hamming similarity above 0.6. Higher values of λ
provide more effective separation between valid and invalid samples: when λ = 500,
no invalid samples have similarity above 0.6.

λ 150 350 500

P1 0.799 0.797 0.796
P2 0.500 0.500 0.500

Table 5.9: Average probability of collision, for valid (P1) and invalid (P2) samples in
the ai.lock holdout set per imageprint bit basis. In all cases, P1 > P2, thus conclude
that ai.lock with single bit hash value is an LSIM function.

θ(u,v)
π

, where θ(u, v) denotes the angle between u and v. We use the angle between

the feature vectors of images in the ai.lock holdout set to compute the average

probability of collision: 0.79 for valid and 0.50 for invalid authentication samples.

Figure 5.10 shows the histogram of normalized Hamming similarity between im-

ageprints in the valid and invalid samples of the ai.lock holdout set. Unsurprisingly,

most invalid samples have a Hamming similarity between 0.4 and 0.6: different

images have imageprints that are similar in around half of their bits (see also Ta-

ble 5.9). We observe that the overlap between the Hamming similarities of valid

and invalid samples significantly reduces for higher values of λ.

In addition, we compute these probabilities empirically by counting the number

of times when the hash values collide for valid and invalid samples, after the LSH
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λ 150 350 500

P1 8.6e-1 9.3e-1 9.1e-1
P2 2.8e-6 0.0 0.0

Table 5.10: Average probability of collision, for valid (P1) and invalid (P2) samples
in the ai.lock holdout set, when the ai.lock imageprint is considered as image hash
value and at most c = ⌊λ× (1− τ)⌋ bits of error is allowed. In all cases, P1 > P2,
thus conclude that ai.lock is an LSIM function.

transformation. We then use this count to compute the average probability of

collision for a valid (P1) and invalid (P2) authentication samples (see Table 5.9).

We observe the remarkable similarity of these values, to the ones above, computed

analytically. As λ increases, the empirical P1 approaches the analytic lower bound

(0.79). We perform a Mann-Whitney one-sided test with alternative hypothesis

P1 > P2. This test suggests that there is a significant gap between P1 and P2

(p − value = 0.00, α = 0.05) for all cases, hence, ai.lock is a δ-LSIM on the Nexus

holdout dataset.

ai.lock with multi-bit hash value is a δ-LSIM

We set δ = τ , where τ is the error tolerance threshold obtained from the ai.lock

training process (see Table 5.3), for different values of λ. Table 5.10 shows the P1

and P2 values achieved by the basic ai.lock over the holdout dataset. We perform

Mann-Whitney one-sided test with alternative hypothesis P1 > P2. Based on the

observed p−value = 0.00, (α = 0.05), for different values of λ, we conclude that the

alternative hypothesis is true, hence, ai.lock is a δ-LSIM function over the holdout

dataset.

We can also compute the probability of collision for imageprints in an error

tolerant way using the probability of collision for a single bit (PrsingleBit collision).

Let X be the random variable denoting the number of matching bits for a pair
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λ Avg Pr[collision+] Avg Pr[collision−]

150 8.4e-01 5.9e-06
350 9.0e-01 4.1e-06
500 9.0e-01 2.2e-06

Table 5.11: The average probability of imageprints collision for genuine and fake
pairs of images in ai.lock holdout set when at most c = τ × λ error is allowed.
ai.lock hash LSH-like property which maps the similar images to binary strings
with higher probability of collision.

of imageprints. We assume the extraction of each imageprint bit is an indepen-

dent random variable with probability PrsingleBit collision. Therefore, Pr[X >=

c] = (PrsingleBit collision)
c(1− PrsingleBit collision)

c. These values are reported in Table

5.11. We observed that the collision probabilities computed based on ai.lock dataset

are very close to those estimated based on probability of collision for a single bit.

Compared to ai.lock with single bit hash value, we observe concatenating multi-

ple hashes enlarges the gap between P1 and P2 values.

5.6.6 On the Entropy of Imageprints

We have used the entropy evaluation dataset (see § 5.5.2) to empirically calculate

the entropy of the imageprints generated by the ai.lock variants. The empirical

entropy of an authentication solution is proportional to the size of the keyspace

that the attacker needs to search to find a match for the authentication secret. For

biometric information, estimating this size is difficult. In such cases, the entropy

can be estimated as −log2(
1

FAR
) [O’G03]. We performed this study for different

values of λ and the best parameter choice of ai.lock (see § 5.6.1), using the entropy

evaluation dataset.

On the 2 billion image pairs in the entropy evaluation dataset, the FAR of the

SLSS ai.lock variant is 0.020% and 0.035% when λ is 50 and 500 respectively, for an
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λ 150 250 350 500

DI2E module (Inception v.1) 0.7 0.7 0.7 0.7
DI2E module (Inception v.3) 1.9 1.9 1.9 1.9

PCA + LSH module 0.044 0.049 0.051 0.066

Table 5.12: Processing time (in seconds) of SLSS ai.lock modules, for different values
of λ. The performance of the DNN module does not depend on λ and is 0.7s for
Inception.h5. The combined performance of the PCA and LSH modules increases
with λ but is under 70ms even when λ = 500. When using Inception.h5, the overall
ai.lock speed is below 0.8s.

entropy of 12.28 bits and 11.48 bits. We have visually inspected several hundreds of

image pairs that resulted in false accepts and observed that a significant proportion

were due to images that contained the same object type, e.g. ribbons, helmets, etc.

This result is not unexpected: the SLSS variant uses only the last hidden layer of

Inception.v3 network. Since Inception.v3 is trained for image classification task, it is

expected to have similar activations on the last hidden layer for images of the same

object type. We expect to eliminate this situation by requiring the match between

activations of multiple inception layers (multi layer variant).

The FAR of the MLMS ai.lock variant on the entropy evaluation dataset, for λ

values of 500 and 150, is 0.0007% and 0.0004% respectively. Therefore, the estimated

entropy of ai.lock imageprints is 17.14 and 18.02 bits respectively.

In the cross validation experiments reported in § 5.6.4, MLMS ai.lock achieved

best performance (F1 score) when λ = 500. The calculated FAR from the entropy

evaluation dataset is consistent with the cross validation FAR (0.0009%). When λ is

500, the FRR of ai.lock MLMS is 5.37%. However, when λ = 150, MLMS achieves

a lower FAR of 0.0006%, for a higher FRR of 7.85%.
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5.6.7 ai.lock Speed

We have implemented ai.lock using Android 7.1.1 and Tensorflow 0.12.1 and have

evaluated its speed using 1,000 images of the Nexus dataset on a Nexus 6P smart-

phone (Qualcomm Snapdragon 810 CPU and 3GB RAM). Table 5.12 shows the

average processing time of the 3 main ai.lock modules for different values of λ.

Independent of the value for λ, ai.lock’s DI2E module takes 1.9s to compute the

activations of all the layers of Inception.v3. When using Inception.h5 [SLJ+15] (a

smaller network), DI2E module takes 0.7s. The combined PCA and LSH speed in-

creases with the value of λ, but is below 70ms for λ = 500. The processing overhead

of ai.lock is below 2s and 1s using Inception.v3 and Inception.h5 respectively.

To minimize its impact on user experience on a Nexus 6P, ai.lock needs to use

Inception.h5. The most significant processing overhead of ai.lock is on computing

the activation of the DNN, which directly depends on the size of the network. Note

that compressing the network using the DNN distillation approach [HVD15] can

alleviate this overhead. In addition, future device and Inception improvements will

likely improve the ai.lock performance and accuracy.

5.7 Discussion and Limitations

Default authentication, revocation and recovery. If the image based authenti-

cation fails a number of times or the ai.lock secret is not available, the authentication

falls back to the default authentication mechanism, e.g. text passwords.

Strong passwords. ai.lock benefits from users choosing strong, high-entropy and

unique objects for authentication. ai.lock can use datasets of images of frequently

occurring, thus low entropy, objects and learn to reject similar objects during their

registration by the user. Further, the image classification task can be adapted to
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detect images belonging to classes of weak, low-entropy authentication objects. In

addition, similar to text passwords, users could be encouraged to pick an ordered

combination of personal objects for authentication.

Usability. Although usability is not the focus of this chapter, we expect ai.lock

to share several limitations with face based authentication mechanisms due to their

similarities in the form factor. These include susceptibility to inappropriate lighting

conditions [BUI+15]. While the FAR of ai.lock remains small under illumination

changes, its FRR increases, affecting its usability. However, DNNs are capable of

learning representations that are invariant to input changes, e.g. lighting, transla-

tion, etc. Thus, the DI2E module of ai.lock can be further fine-tuned to be more

resistant to illumination changes. We leave the investigation of such improvement

for future work. In addition, we leave for future work investigating alternative, more

advanced DNN models and exhaustive search for the choice of layer to be used in

DI2E module of ai.lock.

In Chapter 4, we have evaluated the usability aspects of an image based authen-

tication approach, and have shown that (1) the user entry time was significantly

shorter compared to text passwords on a mobile device, (2) the participants were

able to remember their authentication objects 2 and 7 days after registering them,

and (3) the participants perceived object based authentication to be easier to use

than text passwords, and were willing to adopt it. As the user interface of ai.lock is

similar to Pixie, the directions we identified in § 4.7 for investigating the usability as-

pects of Pixie, will also apply to ai.lock. Particularly, further studies are required to

understand (1) the user choice of the secret objects or scenes and whether it impacts

the secret key space, (2) the ability of ai.lock to filter out common or low-entropy

images, (3) the scenarios where users are willing to adopt ai.lock authentication and

(4) other limitations associated to ai.lock authentication.
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Shoulder surfing. Similar to face based authentication, ai.lock is vulnerable to

shoulder surfing attacks where the adversary captures images of the objects or scenes

used by victims. However, ai.lock eliminates remote attacks, e.g., [PLK+12], moves

the target away from sensitive body features, and enables users to trivially change

their image-passwords. Similar to biometrics, ai.lock can also benefit from liveness

verification techniques [RATC17], that ensure that the adversary has physical access

to the authentication object or scene, to prevent sophisticated image replay attacks.

In addition, in § 5.6.3 we show that the knowledge of the authentication object type

does not provide the adversary with significant advantage when launching a brute

force attack.

Multi-factor authentication. ai.lock can also be used in conjunction with other

authentication solutions. For instance, the image password set and authentication

steps described in § 2.1.1 can take advantage of a secondary secret (e.g. password,

PIN), increasing the number of authentication factors to improve security. To this

end, let r be a random salt. We modify x in the fuzzy biometric protection solution

outlined in § 5.4.1 to be the randomized hash of the secondary secret computed

using salt r. Randomized hashing ensures the required formatting and bit length

for x can be achieved using key derivation function (e.g. HKDF [KE10]), etc. The

random salt r needs to be stored along with the other authentication credentials,

i.e. SS(R, x).

Compromised device. Our model assumes an adversary that physically captures

a victim’s device and thus has black-box access to the authentication function.

ai.lock is not resilient to an adversary who installs malware on the victim device.

Such malware may for instance leverage PlaceRaider [TRCK13] to construct three

dimensional models of the environment surrounding the victim, including the au-

thentication object.
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Trusted hardware can secure ai.lock and even obviate the need for secure sketches.

However, it would reduce the number of devices where ai.lock can be applied. Tech-

niques similar to AuDroid [PSJA15] could be employed to ensure that unauthorized

processes or external parties cannot access and misuse the device camera, however,

they may still leave ai.lock vulnerable to cache attacks [LGS+16].

5.8 Conclusions

In this chapter, we introduced ai.lock, a secure and efficient image based authentica-

tion with secure storage of authentication credentials. We have presented a suite of

practical yet powerful image based attacks and built large scale attack datasets. We

have shown that even under our powerful attacks, ai.lock achieves better entropy

than state-of-the-art biometric authentication solutions.

We have implemented an ai.lock in Android using Tensorflow [ABC+16] and

shown that it is resilient to attacks. Its FAR on 140 million synthetic image attack

samples is 0.2×10−6%. ai.lock was unbreakable when tested with 1.4 billion synthetic

credential attack samples. Further, we show that ai.lock is a δ-LSIM function, over

images that we collected (see § 5.6.5). ai.lock is fast, imposing an overhead of under

1s on a Nexus 6P device.

ai.lock security can be tuned by changing the length of the binary imageprints

(λ). Longer imageprints can preserve more information about the input images,

resulting in better overall performance of ai.lock. However, this cannot be arbitrary

large due to the limitations of the current binary error correcting codes. In addition,

certain level of security (FAR) versus usability (FRR) can be achieved by adjusting

error tolerance threshold (τ).
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CHAPTER 6

CEAL: IMAGE-BASED KEY AUTHENTICATION

6.1 Introduction

Phishing attempts [Ram10, RAM+18] often impersonate user trusted contacts (e.g.,

social networking friends, e-mail contacts) and services (e.g., financial institutions,

online markets). Therefore, in today’s Internet the ability to verify the authenticity

of online contacts or services is of paramount importance.

Public key cryptography is the dominant and reliable method for verifying the

identity of an entity over the Internet and in secure end-to-end communications.

One central problem to designing a public key encryption system is to facilitate the

process of evaluating the authenticity of a binding between a public key and an

entity (i.e., its owner).

There are two major approaches for addressing this problem: (1) a public key

infrastructure (PIK) in which one or more centralized third-party Certificate Au-

thorities (CAs) certify the authenticity of pairs of key and their ownership, and (2) a

web of Trust (WoT) which decentralizes the task of authenticating public keys by re-

lying on a chain of individual endorsements (i.e., signatures) to the link between the

owner and public key. Numerous security incidents, e.g. DigiNotar [Fis12], Trust-

Wave [Con12], have shown the vulnerabilities associated with failure of centralized

CAs. On the contrary, WoT benefits from being independent of any central point of

failure. However, its deployment raises several usability issues including challenges

in verifying the keys for the first time and issues with recovering the keys [FVY14].

Nevertheless, to address public key authentication problem for decentralized sys-

tems without pre-defined authorities (e.g., SSH [GT06], OpenPGP [CDF+07], and

secure messaging applications [UDB+15]) manual key verification of the key by a hu-
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man verifier is used. Public keys are long strings of arbitrary bits and this makes the

process of comparison difficult for the human verifier. In practice, key fingerprint,

short hashes of the public keys are used to simplify this process for users: A user

transfers the reference key fingerprint corresponding to her public key to another

contact through a reliable out-of-bound channel, e.g., a secure key server, trusted

web site, etc. To authenticate this user, a contact can manually compute the key

fingerprint corresponding to the contact’s key and compare it to the reference key

fingerprint (see Figure 1.2).

Recent study by Tan et al. [TBB+17] have shown that the Visual Key Fin-

gerprint Generation (VKFG) solutions, that represent the key fingerprint using an

image (e.g. Vash [vas14]), can increase usability and attack resistance of the key fin-

gerprint verification. Yet, 10% of the generated attack images that they generated

for Vash [vas14], when modeling a similar adversary as we describe in this chapter,

were missed by human verifiers.
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 We introduce CEAL (CrEdential Assurance Labeling), a novel approach to gen- 

erate visual fingerprint representations of cryptographically strong public strings. 

CEAL’s generated images (i.e. ceal) stands out from existing approaches in three 

significant aspects: i) involves a learning step where the target style and domain of 

the fingerprint images are captured into a generator model from a large collection 

of sample images rather than hand curated as a collection of rules, hence providing 

a unique capacity for easy customization, ii) integrates a model of the visual dis- 

criminative ability of human perception so the resulting fingerprint image generator 

avoids mapping distinct keys to images which are not distinguishable by humans, iii) 

deterministically generates visually pleasing fingerprint images from an input vector 

where the vector components are designated to represent visual properties which 
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accurately modeling the target image domain.

Challenges. To build CEAL, we need to address several important challenges:

 • Human distinguishability. Due to the wide variety in the visual systems 

of the humans, identifying the space of human distinguishable images is a difficult 

task. However, humans are good at identifying shapes, colors and objects [Wil66]. 

In addition, the human visual system is better at distinguishing changes in images 

when their content is more natural [PTT00]. We exploit these properties to generate 

realistic images that are distinguishable by average humans.

 • Generating human distinguishable images. While using GAN [GPAM+14] 

would ensure that generated images are realistic, thus easy to compare, our experi- 

ments have shown that not all the components of the input to GAN (i.e. the input 

latent vector), will result in a perceptible change in the generated images when 

modified. Furthermore, the perceptability of a change could depend on the values 

of the other components (see § 6.5.2). This severely limits the application of GAN to 

fingerprint image generation, as the indistinguishable images mean that an attacker 

can forge a key that has a fingerprint image similar to the authentic one, thereby 

successfully spoof the human verification.

 To address this problem, we employ a mechanism that efficiently evaluates the 

distinguishability of the generated images by the generator network during training 

of a GAN and provides a feedback for the generator to generate images that are hu- 

man distinguishable. While ideally one would use humans to verify the satisfaction 

of this requirement, this process does not scale well.

 • Automatic classification of human distinguishability. The above chal- 

lenge suggests the need for an automatic solution. For this, we build a Human 

Perception Discriminator (HPD), a classifier that can predict whether two images 

are perceived as distinct by human verifiers.

are either readily perceptible to human eye, or imperceptible yet are necessary for



However, training a classifier that accurately predicts the perception of all human

visual systems, using limited human labeled datasets that we collect, is a difficult

task. Specially, given the wide variety in the visual systems of the humans who will

compare these images in real life (range of ages, visual acuity, color blindness, etc).

Instead, we settled to build an Human Perception Discriminator (HPD) that only

has high precision: if it predicts that two images are different, they will be perceived

to be similar by human verifiers, only with a very small probability. We show that

even with such a HPD, that may have a lower recall, we are able to train a GAN

that satisfies our requirements.

• Input mapping impact on human-distinguishability of generated im-

ages. Our experiments with Vash, state-of-the-art VKFG [TBB+17], revealed that

not all the bits of the input string, when modified, result in a human-perceptive

change in the generated images (see § 6.7.4). To ensure all ceal images that are gen-

erated, using any input string, are human distinguishable, we conjecture that it is

possible to build a GAN with a special latent vector. Particularly, when a subset of

latent vector components (called major components are changed even individually,

it can result in human-perceptible changes in the generated images, while the other

(minor components cannot individually produce such changes and encode relatively

imperceptible characteristics of the images. We built the constraints of major and

minor components into CEAL training procedure, which not only decomposed these

components in the latent vector, but also pushed the efficiency of the major com-

ponents to encode larger keys. We then use the major components to estimate the

capacity of CEAL.

• Capacity. In addition to the human aspects, the security of a key fingerprint

depends on the encoding capacity of a solution, i.e., the max number of unique

distinguishable images the algorithm can generate, where the larger capacity solution
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is stronger against attacks. CEAL is able to push the key payload capacity of the

images to the limit of human perception. The separation of the major and minor

components allows the use of error correction codes to properly encode the input

vectors to CEAL into a representation that will guarantee the generated image to

be human distinguishable (see Definition 6.4.2).

Implementation and evaluation. We implemented and trained CEAL using

Tensorflow [ABC+16]. We then show that ceal images are distinguishable and it is

computationally hard for even powerful adversaries to find a collision. We run brute

force attacks using 156 million attack images generated for 79 million target inputs.

We then use HPD to identify likely successful attack images along with their broken

targets. We use MTurk to label these images. Out of 308 potential attack samples

we identified, only 0.97% was missed by human.

In addition, the human verifiers can quickly compare ceal images: on average, it

took 2.04s for our workers to compare similar (attack) pairs of ceal images.

6.2 Model and Applications

6.2.1 System Model

We consider a key fingerprint based authentication scenario where every identity

represents his keying material or online identify (e.g. email address, IP address,

Bitcoin account, etc.) using an image (i.e. key fingerprint of his key or identity).

To authenticate the identity, one should obtain the key fingerprint of the contact

in advance through a secure channel. Upon authentication verification, the user

computes the key fingerprint of the online identify and compares it to his reference

(see Figure 1.2).
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6.2.2 Applications

We now discuss several applications of visual key fingerprint solutions.

Bitcoin Clipboard Attack Prevention. Visual key fingerprints can prevent

clipboard hijacking attacks performed on Bitcoin users [Sub18]. In this type of

attack, a malware gains access to the clipboard of a user while he copy-pastes a

Bitcoin address, and replaces it with the attacker’s address. Key fingerprints for

Bitcoin addresses can prevent this attack: The user compares the fingerprint of the

copy-pasted address with the reference of the recipient’s address.

Phishing Attack Prevention. Visual key fingerprints can also provide both server

and contact authentication in online communications. Social network, e-mail, and

financial service providers can use visual key fingerprints to prevent phishing attacks,

by allowing their users to authenticate both the service and their contacts on the

site. For instance, CEAL can provide a visual clue of the identity of a website that

is visited by a user, i.e., the domain names of website.

Authentication in E2EE Apps. Key fingerprint solutions can be used for au-

thentication in different online system such as End-to-End Encrypted (E2EE) ap-

plications on smartphones (e.g., WhatsApp [Wha], Viber [Vib], Facebook messen-

ger [Con16]). To authenticate the other party in the communication, the user needs

to manually compare the peer’s public key fingerprint against a reference fingerprint

that she has previously acquired through a secure channel (e.g., in person, from a

trusted sites, etc).

Avatars. Similar to identicons [Par07], visual key fingerprints can also be used to

represent unique avatars for users of online wiki pages, forums or who post blog

comments. For instance, the email, IP address, or the browser fingerprint of the

user can be used to generate a ceal for her identity, while helping preserve the user’s

identity and improve the user experience of the web site visitors.
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Device Pairing. Visual key fingerprints can be used to pair devices (e.g., Bluetooth

Secure Simple Pairing using ECDH [Pad17]): the user can confirm the identity of

the other device by verifying the ceal corresponding to the device’s key.

Security Indicators. A visual key fingerprint generated by CEAL can provide

a visual password hint for users while they are typing their password: the ceal

corresponding to the user’s password is shaped as the user enters the character and

the user can verify if he has entered the right password without requirement to

display the password on the screen.

File Integrity Check. Key fingerprints can provide a more usable alternative for

checking the integrity of files downloaded from the Internet. Instead of comparing

hash values (of the downloaded file and a reference from a trusted site), the user

will compare their fingerprints.

6.2.3 Adversary Model

We assume an adversary who attempts to generate input keys whose visual finger-

prints will be perceived by a human verifier to be similar to the fingerprint of a

specific victim (see Figure 6.1). We assume that the adversary has blackbox access

to the VKFG function. While the adversary can brute-force search the input space,

we also consider a (γ, d)-adversary, similar to that of Dechand et al. [DSB+], who

picks candidate strings within Hamming distance d < γ to the victim’s key K. The

adversary can then apply VKFG to the candidate strings, to generate attack visual

fingerprints.
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Figure 6.1: Adversary model: Let’s assume that Alice is trying to verify the identify
of his contact, Bob. For this, Alice computes the fingerprint of the public key of the
contact and compares it to a trusted reference of Bob’s key fingerprint that she has
obtained previously through a secure out of band channel. However, the adversary
can perform a man-in-the-middle-attack. Particularly, the adversary attempts to
impersonate the victim (Bob), by using a public key whose corresponding fingerprint
image will be perceived to be the same as that of the victim (Bob).

6.3 Problem Definition

Informally, we seek to construct a set of images, where each image can be distin-

guished from any other image in the set, by a human. Furthermore, we desire to

construct a hash-like mapping function, from an input space of strings of the same

size to the set of images that we generate. In the following, for simplicity, we also

refer to input strings as keys. This will allow us to represent a given input string

with an image, which will not be confused for another input’s image representation.

For practical applications, we require the set of images to be large, and infeasible

to store and enumerate. Therefore, we define our set through a generator, which

takes an input string and outputs the corresponding element in the set. In the rest

of this section, we provide a formal definition of the visual fingerprint problem, and

introduce mechanisms which we have used to build our solution.
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We define set of RGB images I, and a function HPDratio : I × I → [0, 1] that

captures the proportion of experiments where humans would perceive the pair of

images to be distinguishable. Let P i,j
u ∈ {0, 1}, denote the result of the uth human

perception experiment on an image pair Ii, Ij ∈ I, P i,j
u = 1 if and only if the human

perceives the images to be different, P i,j
u = 0 otherwise. Then, if h is the number of

human experiments conducted per each image pair, HPDratio(Ii, Ij) =
∑h

u=1
P

i,j
u

h
.

We seek to build a visual key fingerprint generation function V KFG : {0, 1}γ →

IS , where, IS ⊂ I. VKFG, and thereby IS , has the following desired property: For

all binary input strings Ki, Kj ∈ {0, 1}γ, and their corresponding mapped images

Ii, Ij ∈ IS : V KFG(Ki) = Ii, V KFG(Kj) = Ij ,

Ki 6= Kj ⇐⇒ HPDratio(Ii, Ij) = 1

In practice, it is very challenging to build a generator that satisfies the VKFG

requirement for all possible human visual systems. However, having access to a

HPDratio function, would immediately allow a generator training algorithm to tap

into golden annotations of which images are suitable to generate. In practice, we

are not able to run a large number of perception experiments for any given pair of

images. However, given a sufficient number of annotations, a regression predictor

model HPDpredict : I × I → [0, 1] may be used to approximate the HPDratio

function, E(|HPDpredict(I1, I2)−HPDratio(I1, I2)|) < ǫ. We show that, even when

a small number of annotated data is present, a very limited classification model

HPDequal : I × I → {0, 1} which can detect distinguishable image pairs with high

precision at the cost of low recall, P (HPDratio > 0 | HPDequal(I1, I2) = 1) < ǫ, is

sufficient for training a generator which satisfies the VKFG requirement
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6.3.1 Requirements for a Key Fingerprint Generator

Here, we briefly summarize the requirements for a VKFG function.

• Human-distinguishability of fingerprints. Any pair of fingerprint images

that can be mapped from the key space should be distinguishable by humans.

• Capacity. To be resistant against attacks, the solutions needs to have suf-

ficiently large capacity, i.e., the number of unique distinguishable images that the

VKFG can generate should be sufficiently large.

• Ease of comparison. Humans should be able to quickly compare any gener-

ated images for equality.

6.4 The CEAL System

In practice, it is very challenging to build a generator that satisfies the VKFG

requirement for all possible human visual systems (see § 6.3). Instead, we propose to

build a weak visual key fingerprint generation function V KFGweak : {0, 1}
γ′

→ IW ,

where IW ⊂ I. Let dH denote the Hamming distance. The V KFGweak is not

able to guarantee that key pairs will be distinguishable if their dH is within d,

E(HPDratio(Ii, Ij) | dH(Ki, Kj) < d) < 1 − ǫ. However, for key pairs whose dH

value is at least d, V KFGweak is able to guarantee human distinguishability, i.e.,

∀Ki, Kj ∈ {0, 1}γ
′

, dH(Ki, Kj) ≥ d ⇐⇒ HPDratio(Ii, Ij) = 1, where Ii, Ij ∈ IS ,

V KFGweak(Ki) = Ii, and V KFGweak(Kj) = Ij. Therefore, our problem reduces to

building such an instance of V KFGweak and identifying the minimum value for d

that satisfies the above requirements.

We show that it is possible to build a VKFG using a V KFGweak with the help

of an error correcting code encoder, ECC. Let ECC : {0, 1}γ → {0, 1}γ
′

, with mini-

mum distance of d, hence ∀Ki, Kj ∈ {0, 1}γ, Ki 6= Kj =⇒ dH(ECC(Ki), ECC(Kj)) ≥
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Figure 6.2: CEAL System. CEAL accepts as input a binary string and used input
mapper module to map the input to the input latent vector components to Gceal).
The generator network, then generates the visual key fingerprint (ceal) correspond-
ing to the input string.

d. We can apply the ECC to the input and apply V KFGweak to the encoded string,

which makes sure that the input to V KFGweak are always human distinguishable

by definition of the V KFGweak. Therefore, V KFGweak ◦ ECC : {0, 1}γ → IW ′,

where IW ′ ⊂ IW , and ∀I1, I2 ∈ IW ′, HPDratio(I1, I2) = 1.

We introduce CEAL (CrEdential Assurance Labeling), a VKFG function that

uses a GAN [GPAM+14] to generate realist images and address the requirements of

§ 6.3.1. CEAL has two major components: (1) CEAL DCGAN a DCGAN [RMC15]

network with an additional discriminator, i.e. a human perception discriminator;

(2) Key Mapper (KMap). The process of generating a ceal image for an input string

is depicted in Figure 6.2. Let K be the input (e.g. (truncated) hash of the user’s

key, i.e. its binary fingerprint). Let γ = |K|. The KMap module in CEAL converts

the input key into a latent vector L. Let λ = |L|, γ < λ. The latent vector is then

used as input to the generator network of CEAL DCGAN (Gceal). It then generates

ceal corresponding to the input string.

To thwart adversaries who can generate K ′ to be at small Hamming distance

fromK (see § 6.2.3), we design CEAL to generate image fingerprints that are visually

different even when the keys are similar. For this, we define the following image pair

generation (IPG) process, that takes as input a seed latent vector with length λ and
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an index i ∈ {1, 2, 3, ..., λ}, and outputs two vectors v1 and v2, also of length λ:

Definition 6.4.1 (Image Pair Generation: IPG(v, i)). Generate vectors v1 and

v2, such that v1[i] = 1 and v2[i] = -1, and v1[j] = v2[j] = v[j], ∀j ∈ {1, 2, 3, ..., λ}, j 6=

i. -1 and 1 are the extreme values of each component. We use these values to

maximize the effect of a component in generated images when generating ceals.

We further introduce the following conjecture:

Conjecture 6.4.2 (Major and Minor Components). We conjecture that a

subset of the latent vector components, when changed individually, can produce per-

ceptible changes in the generated images. We call these “major components” of the

latent vector. Further, we conjecture that a disjoint subset of the latent vector com-

ponents, when changed individually, do not produce perceptible changes in the output

images.

According to Conjecture 6.4.2, we further conjecture that only the major com-

ponents contribute to the entropy or capacity of the CEAL VKFG function, while

the minor components can help CEAL generate realistic images or maintain other

visual aspects of the image.

Let M be a system parameter, the number of major components of the latent

vector. Thus, the number of minor components is m = λ−M . We select the values

for the M major components from the set {−1, 1} to maximize the effect of each

component on the visual characteristics of the generated images. However, we select

the values for each of the m minor components, uniformly random from (−1, 1).

In the following, we use CEAL to denote the system and ceal to denote its output

image for a given user input. We now describe each module of CEAL.
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Figure 6.3: CEAL DCGAN architecture and training. We use the combination of
Discriminator loss and HPD loss to train the generator to generate distinguishable
and realistic images. We also learn a latent vector that consist of major and minor
components (see Conjecture 6.4.2).

6.4.1 CEAL DCGAN

We introduce CEAL DCGAN, a DCGAN [RMC15]-based deep generative model

(see Figure 6.3). CEAL DCGAN architecture is similar to the architecture of DC-

GAN [RMC15]. The heart of the CEAL DCGAN is a generator network, i.e., the

CEAL generator (Gceal), that can generate realistic and human distinguishable im-

ages. For an input key (K), we use KMap (§ 6.4.2) to transform the binary key

fingerprint of a K into the major and minor components, that are then concatenated

to form the input latent vector to CEAL generator. The Gceal then generates the

image (i.e. ceal) corresponding to K.

We train the generator network using two classifiers (see Figure 6.3): (1) the

CEAL discriminator (Dceal) that is trained to differentiate between real images,

from a dataset of images, and synthetically generated images by Gceal; (2) HPD

classifier that is trained to estimate the likelihood that a human will label a pair of

images as either same or different.

We train the discriminator network of CEAL DCGAN similar to conventional

GAN using a real dataset of images (see § 3.1.5). However, Human Perception
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Discriminator (HPD) is a classifier we train to estimate the human distinguishability

of the image pairs (HPDratio), see § 6.3. The output of this classifier is referred to

as HPDpredict. In the following, we first describe the HPD. We then describe how

we used trained HPD along with Dceal to train CEAL DCGAN to generate realistic

and distinguishable images.

Human Perception Discriminator (HPD)

The Human Perception Discriminator (HPD) module takes two images as input, and

computes the probability that the images are perceived as being different images by

humans.

The HPD Architecture and Training Process. We build HPD using a DNN.

The high level architecture of the HPD classifier network, illustrated in Figure 6.4, is

similar to a Siamese network [CHL05]. Specifically, the HPD consists of two identi-

cal, twin networks (with shared weights). Each network accepts as input one of the

two input images and passes it through the layers of trained Inception.v1 [SLJ+15]

network (see § 3.1.4). It then extracts 50, 176 image features i.e., the activations of

the ‘Mixed 5c” layer of inception.v1. In § 6.6.1 we experimentally justify the choice

of the layer. Following the Inception.v1 network, HPD adds to both of its twin

networks, several additional fully connected layers.

To train the HPD network, we do not update the weights of Inception.v1 layers.

However, we optimize the weights of the (three) additional fully-connected layers,

using weighted contrastive loss [CHL05] with L2 regularization. The purpose of this

loss is to enable the network to differentiate between the two images and regulariza-

tion is used to prevent overfitting. Equation 3.1 shows how the weights are updated

based on the weighted contrastive loss for two input samples X1 and X2.
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Figure 6.4: Human Perception Discriminator (HPD) architecture. HPD passes input
images I1 and I2 through the Inception.v1 network, applies 3 fully connected layers to
generate image feature vectors O1 and O2, computes the Squared Euclidean distance
between O1 and O2 and passes it through a fully connected layer to the computed
distance. HPD classifies I1 and I2 as different or same based on this distance.

After training the (three) additional layers in the twin Siamese network, we freeze

the network weights and feed their derived output, i.e., the component-wise squared

differences between the last layers of the networks for the input image pair, to an

additional fully connected layer (here, with 1 neuron, i.e. HPD output, with sigmoid

activation function). We optimize this layer’s weights using well known weighted

cross-entropy loss and L2 regularization of the layers weights. We train this layer

to classify the image pairs into either of “same” or “different” classes, based on the

squared Euclidean distance between the image pair features that is obtained from

the Siamese network. As we describe in § 6.6, we decide the choice of architecture

(including the number of layers and nodes in each layer) through hyper-parameter

search.
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Figure 6.5: Image pairs generated while training CEAL: Step 1 focuses on promoting
CEAL to generate different images when a major component value is flipped (set
to 1 and -1). Step 2, focuses on promoting minor components to not change the
visual characteristic of generated images when their values are modified. Step 3,
prompts CEAL to generate diverse set of images by further training it using major
components. (see § 6.4.1).

Training CEAL DCGAN

While the DCGAN [RMC15] generates realistic images, we train CEAL DCGAN to

generate images that are both realistic, and visually distinguishable by human. To

achieve this, in each training epoch, we train Gceal in 3 steps, shown below. In each

step, we randomly create a set of latent vector pairs, that we generate from a set

of random seed latent vectors whose components are uniformly selected from (-1,1).

We then use Gceal to generate the corresponding image pairs. Similar to DCGAN,

we train Gceal using the output (real/fake) of discriminator (Dceal) for the generated

images by Gceal. In addition, we use the HPD (§ 6.4.1) to compute the HPDpredict

corresponding to each image pairs. We then use the HPDpredicts as a feedback to

Gceal about the visual characteristics of the images that it generated: adjusts the

weights of Gceal based on an objective that is a function of HPDpredict.
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as input to Gceal, the objective functions for all the steps has a general form as 

shown in Equation 6.1. Therefore in each step, we implicitly use this equation as 

the loss function to train Gceal. In this equation, HPDloss is the HPD loss that 

we define exclusively for the step. This loss is an indicator of how different the 

generated images are, as perceived by a human. α ∈ IR is a weight that determines 

the contribution of HPDloss to the overall loss value for the step. Gloss is the 

generator loss in the conventional GAN (i.e., Gloss = −log(Dceal(Gceal(z))), where 

z is a sample latent vector). This loss is an indicator of how realistic and visually 

similar the generated images are, compared to the images in the real image dataset 

used for training Dceal.

L(θGceal
) = α × HPDloss + Gloss (6.1)

Human Distinguishability. We leverage the input latent vector to control the 

visual characteristics of the images generated by Gceal. Specifically, we train Gceal 

to generate (1) visually distinguishable images when the values of individual major 

components in the latent vectors are changed (flipped between 1 and -1) and (2) 

visually indistinguishable images when the values for minor components are flipped 

(see § 6.3).

 Let M and m = λ − M be the number of major and minor components in the 

latent vector input to Gceal. We now describe each of the 3 steps, i.e., how we 

generate the 3 sets of latent vector pairs, and the HPDloss function that we use in 

that training step. Each latent vector pair that we generate, is different in d = 1 or 

d = 2 specific major or minor components.

 • Step 1. Generate M random seed latent vectors. Then, for each index i ∈ 

{1, 2, 3, ..., M}, use the IPG(i) of Definition 6.4.1, along with the corresponding 

generated seed latent vector, to generate two random latent vectors v1 and v2. Use

Although in each of the 3 steps we use a different set of latent vector pairs



Gceal to generate images I1 and I2 from v1 and v2 respectively. Use the HPD classifier

to compute HPDpredict(I1, I2).

To force the ith component of the latent vector to be a major component, i.e.,

maximize the effect of the ith component on the visual characteristics of the gener-

ated images, we want the HPD classifier to classify all these image pairs (I1, I2) as

different (class 1). To achieve this, we define the HPDloss for the pair of images to

be: HPDloss(v1, v2) = cross entropy(1, HPDpredict(I1, I2)).

• Step 2. Generate m random seed latent vectors. For each minor position i ∈

{M+1,M+2, ..., λ}, form sample latent vector pairs v1 and v2 as in Definition 6.4.1.

Use Gceal on v1 and v2 to generate images M1 and M2.

To force the ith component of the latent vector to be a minor component, we want

the HPD classifier to classify (M1, M2) as same (class 0). To achieve this, we define

theHPDloss for this pair to be: HPDloss(v1, v2) = cross entropy(0, HPDpredict(M1,M2)).

• Step 3. Generate one batch of random seed latent vectors (here, 64). For each

latent vector, pick two random major components i, j ∈R {1, 2, 3, ...,M} and i 6= j.

Copy seed latent vector v into two other latent vectors v1 and v2, then set v1[i] = 1

and v2[j] = 1. Thus, v1 and v2 only differ in the i-th and j-th components. Let N1

and N2 be the images that are generated by Gceal from v1 and v2 respectively. We

define the loss of the generator as HPDloss = cross entropy(1, HPDpredict(N1, N2)).

This step seeks to train Gceal to use any 2 major components to impose different

effects on the visual characteristic of generated images.

Realism. In each epoch, the discriminator is also trained similar to conventional

DCGAN to discriminate between the real images from a particular dataset and

synthetic images generated by Gceal in all the 3 steps above. Subsequently, Gceal

is trained using the classification signal provided by Dceal: we included this signal

as Gloss in the overall loss function used for training Gceal in each step (see Equa-
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tion 6.1). This process encourages Gceal to generate previously unseen images, that

look like the images in the real image dataset, thus deceive Dceal to classify them as

real images.

6.4.2 Key Mapper (KMap)

KMap takes as input user data (e.g., public key, shared key, Bitcoin address, IP

address, domain name) and outputs a latent vector L of length λ. For this, KMap

first computes a cryptographic hash of the input to produce K, its binary key

fingerprint, of length γ.

To generate the major components of the latent vector L, KMap employs an error

correcting code with encoder E (see § 3.3) that encodes a binary string of length γ

into a code word of length ≤ M (i.e., the number of major components). Specifically,

KMap computes E(K), then performs a one-to-one mapping between the bits of the

code word E(K) and the major components of L: L[i] = -1 if E(K)[i] = 0 and L[i]

= 1 if E(K)[i] = 1, i = {1, 2, 3, ...,M}. The indices of these components in the

latent vector are arbitrary selected. If |E(K)| < M , we set L[i] = -1 for M−|E(K)|

other i positions of the major components.

The error correcting code enables KMap to compensate for the training limi-

tation of the generator network of the CEAL DCGAN (§ 6.4.1) and fine tune the

distinguishability of ceal images that it generates (see § 6.6).

KMap uses then a pseudo random number generator R seeded with K, to ran-

domly select the values for m = λ −M minor components of L: L(i) ∈ U(−1, 1),

i ∈ {M + 1,M + 2,M + 3, ..., λ}.

164



6.5 Data

To evaluate CEAL, we use several datasets of real and synthetically generated im-

ages. We describe them in the following sections.

6.5.1 Real Outdoor Image Dataset

We use a subset of 150,113 outdoor landscape images (mountains, ocean, forest) of

64 by 64 pixels, from the MIT Places205 dataset [ZLX+14, Out18]. In addition, we

manually collected 35 additional images that represent outdoor scenes using Google

image search. We selected images that include only a few objects and colors, e.g.,

horizon and landscapes. These are used as obviously same images in our surveys

(see § 6.5.2).

6.5.2 Ground Truth Human Perception Dataset

We train a DCGAN network with random uniform input latent vector of length

λ = 100, using the real outdoor image dataset of § 6.5.1. We stopped training the

network when we started to observe realistic images similar to the ones in training

dataset (after 10 epochs). We refer to this trained network as “vanilla DCGAN”.

We generated two datasets of synthetic image pairs using vanilla DCGAN and

collected their labels using MTurk workers. For this, we followed an IRB-approved

protocol to recruit 500 adult workers located in the US, to label 558 unique image

pairs. We asked each worker to label each image pair as being either “same” or

“different” images. After analyzing the workers responses, 318 image pairs were

labeled as different and 240 pairs were labeled as same. In following, we describe

the two labeling processes that generated this dataset.
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Participants.. We collected labels from 500 human workers: 337 female and 163

male, with an age range of 18 to 84 (M=44.54, SD=14.64). 85.5% of our participants

had college education or higher. 220 (40.5%), 251 (50.3%), 26 (5.2%), 21 (4.0%)

participants used a desktop, laptop and mobile device, or tablet to answer the

surveys respectively.

Labeling Process 1

We used the vanilla DCGAN network to generate 100 synthetic “different” image

pairs using 100 random seed latent vectors (v) and IPG of Definition 6.4.1 for

i ∈ {1, 2, 3, ..., 100}. We assume that the images in each such pair are perceived as

being “different” by humans.

In addition, we generated 40 identical image pairs: 32 pairs from the real out-

door scenes image dataset (§ 6.5.1) plus 8 pairs from randomly selected synthetic

images among the above 100 image pairs of the previous step. We used proportional

sampling to divide the total of 140 image pairs (100 “different”, 40 “same”) into 4

groups of size 35 (25 assumed “different”, 10 assumed “same”). We then recruited 4

groups of 100 different MTurk workers (400 workers in total) and asked each group

of 100 workers to label each of the 35 image pairs in one of the groups. Thus, each

image pair received 100 labels, one from each worker to which the pair was shown;

each worker labeled 35 image pairs.

To avoid collecting low quality labels from inattentive workers, we have included

an attention test (a.k.a. golden task [LWZF17]) at the beginning of the surveys. We

did not collect the labels from workers who failed to answer the attention test cor-

rectly. In addition, we removed the responses from speeders [GMS15], i.e., workers

who completed a survey in less than a minute, which is about one standard error less

than the average worker response time. We also removed the answers from workers
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who made more than 10 errors (or 10% error) with respect to the assumed labels

for the image pairs they processed. In total, we have removed the responses of 34

of the 400 workers. Subsequently, we have the labels from at least 94 workers for

each image pair.

We then assigned to each image pair its assumed (“same” or “different”) label,

only if more that 90% of the worker responses agreed with it. Otherwise, we assigned

the opposite label. This is because we wish to have high confidence for the image

pairs labels. By this choice, we will be conservative in the case of “different” images:

we don’t want to have an image pair labeled as different if not almost all of our

workers agreed. Consequently, 75 and 65 of the image pairs were respectively labeled

as different and same by our workers.

Verification Device. The device on which the comparison is taking place does

not have a significant affect on user performance and time to compare image pairs.

Particularly, we studied the quality of responses collected from 400 MTurk workers

in the DCGAN image labeling Process 1. 160, 201, 21, and 18 participants used

a desktop, laptop, mobile phone, or tablet to complete the surveys respectively. A

Kruskal-Wallis test, did not show a significant difference between the number of

errors made (w.r.t. the hypothetical labels) by participants responding to surveys

using either of four devices, i.e., desktop, laptop, mobile phone, and tablet, to

complete the surveys (P-value = 0.93). We also did not observe any significant

difference between the overall time it took for the participants using different devices

to complete our surveys (P-value = 0.06).

Labeling Process 2

Following the Labeling Process 1 (§ 6.5), we identified the index of 3 random compo-

nents in the input latent vector to vanilla DCGAN whose corresponding generated
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images were labeled with relatively high error rates by workers (respectively, 52%,

27% and 20%). This error rate was calculated with respect to the hypothetical

labels we assumed for images. We then performed a second labeling experiment,

to determine if the error rate we observed was due to the fact that the component

always produces indistinguishable image pairs when its value is flipped or this is

due to other factors, e.g. the contribution of all the other components on what the

image looks like.

First, for each of the 3 image pairs with the relatively high error rate in labeling

Process 1, with hypothetical label of “different”, we generate 99 variant image pairs

as follows: Let j be the index of the component that we flipped to generate this

particular image pair in Process 1 (which resulted in a high error rate). Also, let v

be the seed latent vector (see Definition 6.4.1) corresponding to this image pair. For

all i ∈ {1, 2, 3, ..., 100} index values, where i 6= j, we use the IPG of Definition 6.4.1

to obtain two copies of v that only differ in the i-th component, then use the vanilla

DCGAN to obtain an assumed “different” image pair. In total, we generate 297

(99× 3) image pairs that are hypothetically different.

Second, for each random 10 components (inducing previous 3 component) with

relatively high error rate in Process 1, with hypothetical label of “different”, we

generate 10 image pairs using a new seed latent vector randomly. We obtain two

copies of the new seed latent vector and set the values of the jth components to 1

and -1 in the first and second copy respectively. Thus, in total, we generate 100

image pairs.

Further, we used a total of 49 unique hypothetically same pairs in this study:

28 from real and synthetic images that were labeled correctly by a majority of the

workers in Labeling Process 1, 3 real images that we collected from Google images

(see 6.5.1) and 18 synthetic images randomly selected from the above Process 1.
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We selected the image pairs for each survey as follows. We split the 397 assumed

“different” and a random subset of size 10 from 49 “same” image pairs into 10

different sets, each for a different survey. Except for one residual survey, each survey

consists of 50 image pair comparisons: 30 image pairs out of 297 image pairs of first

step, 10 image pairs out of 100 image pairs of second step, and 10 assumed same

image pairs. We asked 10 MTurk workers to label the image pairs in each set as

either “same” or “different” (total of 100 workers).

As before, we eliminated the labels provided by speeders and the workers who

failed the attention check at the beginning of the surveys. In total, we removed

responses from 13 workers. Then, for each image pair, we assigned it the assumed

“different” or “same” label, only if more than 80% of the workers agreed with it.

Otherwise, we assigned the opposite of the hypothetical label as the true label of

the image pair. In total, 243 images were labeled as different, while 203 image pairs

were labeled as same. We found no disagreement between the labeling results for

28 hypothetically same image pairs that were common in Process 1 and 2.

The Spearman correlation test did not reveal any significant monotonic corre-

lation between the error rate for components in Process 1, and image pairs corre-

sponding to these components, in both experiments. Therefore, we conclude that

the visual characteristics of a generated image is determined by a combination of

effects of each component in the latent vector.

6.5.3 HPD Classifier Dataset

In order to train the Human Perception Discriminator (HPD) classifier, we have

generated 6 different datasets of synthetic image pairs, containing a total of 26,802

image pairs, including the labeled image pairs from ground truth human perception

169



Dataset Name # pairs Similarity

Labeled Synthetic Image Pairs 558 Mixed

Unrealistic DCGAN Image Pairs 11,072 Same

Minor Change in Latent Vector 7,040 Same

Blob Image Pair Dataset 2,108 Different

10%-different Image Pair Dataset 1,024 Different

Enhanced Synthetic Image Pair Dataset 5000 Different

Table 6.1: Size of 6 generated image pair datasets, of either “same”, “different” or
“mixed” image pairs, used to train the HPD classifier.

dataset. Table 6.1 lists these datasets and their corresponding number of image

pairs. In the following, we describe each dataset.

Set 1: Labeled Synthetic Image Pairs. This dataset is the gold standard human

perception labeled dataset of § 6.5.2 (318 “different” and 240 “same” image pairs).

Set 2: Unrealistic DCGAN Image Pairs. In order to train the HPD to cor-

rectly classify visually similar, but random noise images, as “same” we generated

an unrealistic image dataset of 11,072 image pairs using a poorly trained vanilla

DCGAN: (1) 10,048 image pairs using a vanilla DCGAN trained for only 1400 it-

erations, i.e., less than an epoch, and (2) 1,024 image pairs using the same vanilla

DCGAN trained for 3600 iterations (slightly more than an epoch).

We generated each of these image pairs as follows: randomly generate a latent

vector, then select a random component and set its value to 1 once and -1 the other

time. We label each pair as “same”. That is, we wish to train the HPD classifier to

classify these image pairs as being the same, as this is how a human verifier will see

them (gray images with random noise).

Set 3: Minor Change in Latent Vector. To increase the number of synthetic

“same” image pairs in the synthetic datasets, we chose a random seed latent vector
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and (1) used it to generate one image of the pair and (2) chose a random component

of the seed latent vector and multiplied its value by c ∈ [0, 1], then generate the

other image in the pair. We generated 1024 image pairs with c = 0.5, 3008 pairs

with c = 0.6 and 3008 pairs with c = 0.7, for a total of 7,040 image pairs. We

manually sampled and verified that these image pairs look the same.

Set 4: Blob Image Pair Dataset. First, we generated 20 different blobs of

random shapes and colors. Then, we generated 1,000 realistic images using the

vanilla DCGAN model using random input latent vectors. We then form image

pairs that consist of (1) one synthetic image and (2) the same image, overlayed with

one randomly chosen blob. We only accept the composite image (2) if its dominant

color is dissimilar in the blob overlap position, to the color of the blob. To measure

the similarity between colors we compute the Delta E CIE 2000 [SWD05] score,

representing colors that are perceived to be different by humans [Sch11]. We accept

the composite image if this score exceeds 50. In total, we generated 2,108 “blob”

image pairs.

Set 5: 10%-different Image Pair Dataset. We generated 1,024 different image

pairs as follows: generate a random seed latent vector, copy it to v1 and v2, select

10 random latent components (out of 100) and set the values of these components

to 1 in v1 and -1 in v2. We then used the trained vanilla DCGAN to generate

the corresponding image pair. Thus, these 1,024 image pairs are generated from

latent vectors that are different in 10% of the components. We set this percentage

experimentally, where we found 10% to be the smallest percentage of difference that

resulted in always distinguishable image pairs.

Set 6: Enhanced Synthetic Image Pair Dataset. We generated 5,000 different

image pairs as follows. For each of 1,000 random, vanilla DCGAN generated images,

we generated 5 images, by applying either of 5 enhancements, change (1) image
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Network Hyper-parameters
labeled synthetic

dataset
Unrealistic DCGAN
image pairs (itr 1400)

Unrealistic DCGAN
image pairs (itr 3600)

All other
synthetic datasets

m w r F1 FPR FNR Precision F1 FPR FNR F1 FPR FNR F1 FPR FNR

Siamese model 1 1.64 0.49 0.02 0.72 0.20 0.35 0.82 - 0.06 - - 0.32 - 0.77 0.01 0.35

HPD model 1 - 1.57 0.24 0.82 0.24 0.21 0.84 - 0.15 - - 0.47 - 0.83 0.02 0.29

HPD model 2 - 0.78 0.17 0.54 0.04 0.62 0.93 - 0.004 - - 0.12 - 0.63 0.001 0.54

Table 6.2: Performance of the best HPD classifier and its underlying Siamese-like
network, over different HPD classifier datasets.

brightness, (2) contrast, (3) color, (4) add noise to the image, and (5) apply a blur

filter to the image. We experimented with multiple parameters for each enhancement

function and selected the parameters so that the generated image pairs (the original

image and its enhanced version) are visually distinguishable.

6.6 Implementation

We have built CEAL in Python using Tensorflow 1.3.0. In this section, we describe

the process we used to identify the parameters for which CEAL components,HPD,

CEAL DCGAN and KMap, performs best. In the case of the first two components,

we discuss the networks training and hyper parameter tuning.

6.6.1 HPD Training and Parameter Choice

Inception.v1 Layer Choice. We experimented with using activations of different

layers of the Inception.v1, for image feature extraction in HPD (see 6.4.1). Specifi-

cally, we performed 200 runs of each 3 experiments, where we used activations from

either the (1) “Mixed 5c”, (2) “MaxPool 5a 2x2” or (3) “MaxPool 4a 3x3” layers

of the Inception.v1. In each run, we kept the architecture and initial weights of the

fully connected layers weights in HPD identically. We then trained each of the 3

networks for 1000 epochs. We repeated this process 200 times. We then compared
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the performance of trained classifiers using either of these 3 sets of features, using a

paired t-test.

We found a significant difference between the performance (over holdout datasets)

of HPD classifiers trained using the “Mixed 5c” layer features, compared to the

other two layers (P-Value = 0.000 when compared to “MaxPool 4a 3x3” layer, and

P-Value = 0.000, when compared to “MaxPool 5a 2x2” features). In the following,

we implicitly use the features extracted based on the activations of the “Mixed 5c”

layer. The length of the activations vector for this layer is 50,176.

Training the HPD. We use the 6 datasets of § 6.5.3 to train and evaluate HPD.

Particularly, we randomly split each synthetic dataset (except the Labeled Synthetic

image pairs), into training ( 80% of samples) and holdout ( 20%) sets: we use the

training sets to train the HPD classifier, then test its performance over holdout sets.

For the Labeled Synthetic image pairs dataset, we make sure the number of ground

truth image pairs that are labeled as same and different are distributed to training

and test sets proportionally to their size.

We hyper-tuned the architecture and parameters of the HPD classifier to find a

classifier which accurately identifies samples from the “different” class (has high

precision). Such a classifier is necessary when training the CEAL DCGAN to

ensure CEAL DCGAN stays away from generating images that are not human-

distinguishable. Among the classifiers that we have trained with high precision, we

chose the one with a quite balance FPR and FNR (highest F1).

Specifically, we experimented with different numbers of fully connected layers

in the twin network of HPD and different numbers of neurons in each layer, and

adding drop-out with different probabilities for the last hidden layer of the Siamese

network. Further, instead of computing the Euclidean distance between the output

of the Siamese network for the two images in a pair, we also tested by concate-
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nating these outputs and feeding them directly into the following fully connected

layer(s). Figure 6.4 shows the best performing architecture for the HPD network.

Table 6.2 shows the performance of the Siamese network and of the HPD networks

that we trained and used to train CEAL DCGAN. In addition, we also use an HPD

model that has the same weights as HPD model 1 in the Siamese layers, but dif-

ferent weights in the fully connected layer on top of the twin networks in the HPD

architecture. This network, referred to as HPD model 2, has a higher precision on

the hold out datasets compared to model 1 (see Table 6.2). We also, tested with

this network to train and evaluate CEAL.

6.6.2 CEAL DCGAN Parameter Choice

In addition to using different HPD models to train CEAL DCGAN, we experimented

with 2 different architectures using different number of neurons in the first layer of

Gceal (i.e. 8,192 and 16,384). The size of this layer also directly impacts the number

of following convolution transpose (a.k.a deconvolution) layers in Gceal: more input

neurons, larger layers.

We also performed a grid search in the parameters of the CEAL DCGAN includ-

ing (1) the input size (λ ∈ 64, 128, 256, 512), (2) the number of major and minor

components (λ
2
, and (3) the α ∈ [25, 75] with step size 5, in the loss functions of the

ceal generator (see Equation 6.1). For best performing parameters, we also tested

with different weight initialization for the networks weights.

We trained the CEAL DCGAN using the process described in § 6.4.1, for 5

epochs, with batch size 64, and the Adam optimizer [KB15] to minimize Equation 6.1

for each step. We completed an epoch when all the images in the outdoor image

dataset were shown to the discriminator. In order to make the training process more
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stable, we trained the generator 3 times for every time we train the discriminator,

but using the same inputs.

We observed that, when α is increased, the HPDloss decreases faster (see Equa-

tion 6.1). However, the quality of the images is reduced for large values of α. In

addition, we observed that it is harder to train networks with larger values of λs:

the quality of images generated by CEAL DCGAN and their distinguishability de-

creases as we increase λ. Finally, we observed that when the size of the nodes in

the first layer of Gceal is increased, the network generates smoother (blurred) with

lower quality images.

We also experimented with the number of times that the generator network is

trained using the three steps described in § 6.4.1, in each training epoch of Gceal.

Using the first and third steps, we train Gceal to prompt major components to result

in perceptible change when their values are modified. However, the second step

focuses on training minor components to make them cause imperceptible change in

the output images when their values are changed from -1 to 1. We observed that

when the minor components are trained using Step 2 twice, there is a better balance

between Gloss and HPDloss of the trained network. Therefore in the following, we

implicitly train Gceal twice using Step 2.

Evaluating the generative models is a hard task. Theis et al. [TOB15] discuss

that the generative models should be evaluated with respect to the application

domain, since performance using a certain criterion does not necessarily extend to

good performance with respect to another criterion. In order to compare the trained

networks, we use the values for the HPDloss as well as the Gloss. The former is an

indicator of how different the generated images are as perceived by human, while the

latter is an indicator on how realistic and visually similar the generated images are

compared to the images in the real image dataset used for training the discriminator.
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We have manually evaluated the quality of the images generated by the networks

we trained. The parameters for the best performing network using HPD model 1

are α = 40, λ =256, and M = m = 128. The values of the HPDloss and Gloss for

this model were 0.6 and 12, respectively.

6.6.3 Key Mapper Parameter Choice

In early experiments, we observed that in order to consistently achieve human dis-

tinguishability, we need to flip the values of more than 1 major component (see

§ 6.3). To identify the minimum number of major components that need to be mod-

ified to achieve consistent human distinguishability, we manually inspected CEAL

image pairs generated by flipping d major components, where d = 1, 2, 3, ..., 128. We

identified d > 10 to be a suitable value. Therefore, through this paper we consider 3

different values for γ i.e., 92, 85 and 78. For this, we use BCH(127, 92, 5), BCH(127,

85, 6) and BCH(127, 78, 7) respectively in the key mapper module to transform the

binary key fingerprint of length γ into a binary string of length 127 that are at least

in Hamming distance of 11, 13, and 15 respectively.

Note, as we show in our experiments, the choice of γ and the BCH error tolerance

(t) can be used to tune the security vs capacity of CEAL (see § 6.7.3). Based on our

attack results, γ = 78 was selected as the parameter that achieves highest security

(see S 6.7.3 and 6.7.3). In addition, in § 6.7.2, we found that recruited human

subjects labeled all the ceal samples that were generated using latent vectors that

are different in d = 15 major components as different. Note, we did not used any

randomness provided by minor components: the minor components are the same

between target and attack strings. Therefore, we use a BCH(n=127, k=78, t=7)

for KMap, an ECC with minimum Hamming distance of 15 bits that transforms a
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message of length 78 into a code word of length 127. Thus, CEAL DCGAN accepts

binary key fingerprints of length γ = 78 bits. Based on this setting, the maximum

capacity of CEAL is 278, i.e., CEAL can generate 278 unique and distinguishable

images. In § 6.3, we described that we can achieve human distinguishability with

some error. In the following, we estimate this error to be ∼ 1.02%.

6.7 Empirical Evaluation

In this section we use human participants to evaluate the CEAL system with pa-

rameters identified in § 6.6, and compare it against Vash [vas14], the state-of-the-art

visual fingerprint solution. In the following, we first describe the procedure we em-

ployed to run the user studies, then investigate Vash and report vulnerabilities that

we identified. We evaluate the effects of major and minor components on human

perception, and the resilience of CEAL against the adversary described in § 6.2.3.

Finally, we compare the human distinguishability and verification speed of CEAL

and Vash.

6.7.1 User Study Procedure

Throughout our evaluation, we followed an IRB-approved protocol to recruit Ama-

zon Mechanical Turk workers to evaluate the performance of CEAL and Vash [vas14].

Specifically, we have recruited 519 adult, US-based workers, to compare a total of

6,579 image pairs: 6,309 CEAL and 270 Vash generated image pairs.

We asked each worker to compare either 35 or 50 pairs of images, and paid

them $0.4 or $0.5, respectively. To verify worker attention, and discard data from

inattentive ones, we included 5 attention check questions in each survey: 3 obviously

different pairs of images, and 2 pairs of same (duplicated) images. For CEAL, we
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generated an obviously different attention check image pair from a random seed

latent vector, and flipped (1 vs. -1) a random set of its 100 major components (out

of 128). For Vash, we generated obviously different attention check image pairs

randomly. We manually verified that all these image pairs look indeed different.

We removed the answers from 12 participants who had incorrectly answered

more than 2 (out of 5) attention check questions in the study.

Thus, we collected labels from 507 human workers: 180 female and 327 male,

with an age range of 18 to 84 (M=35.41, SD=10.38). 90.94% of our participants

had college education or higher. 253 (50%), 249 (49%), 5 (1%) participants used a

desktop, laptop and mobile device to answer the survey respectively.

Overall, for each image pair, we collected annotations from at least 3 workers.

In the Vash user studies of § 6.7.4, we collected at least 10 labels for each image

pair. We then used majority voting [LWZF17] to aggregate the labels assigned by

the workers to each image pair, and produced the human-assigned label.

6.7.2 Choice of Major Component Count

We first leverage the above human workers to evaluate the effects of changing the

values for the major and minor components of the input latent vector to the CEAL

DCGAN, on the visual characteristics of the generated images.

For this, we first evaluated CEAL’s ability to meet one of our training objec-

tives, i.e., that major components have perceptible impact on the generated images

while minor components do no cause perceptible change in the images. than minor

components. For this, we used the IPG of Definition 6.4.1 (λ=256), to generate two

datasets D1 and D2 of image pairs, each containing 8,128 image pairs. We generated

the image pairs in D1 using random latent vectors that were different in only one
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Figure 6.6: The distribution of “different” and “same” labels as annotated by MTurk
workers. The number of image pairs that are identified as same decreases as we flip
more number of minor components or major components.

major component, while the pairs in D2 differ in only one minor component. We

then used our HPD models (see Table 6.2) to compute the probability that image

pairs are perceived as different by a human verifier. A t-test showed that indeed,

the scores given by HPD to image pairs in D1 are significantly higher than those

given to image pairs in D2 (P-value = 0.00).

In a second experiment we evaluated the ability of human workers (see § 6.7.1)

to perceive changes in images when we changed the value for major and minor

components in the latent vector. Specifically, we generated 1,000 image pairs by

flipping (i.e., 1 vs. -1) 5, 10, 15, 20 and 30 randomly chosen major components in

each of 200 latent vectors respectively. Further, we generated another set of 3,000

image pairs, by flipping the values of 2, 3 and 5 randomly chosen minor components

in the latent vectors of 1,500, 1,000 and 500 images respectively.

Figure 6.6 shows the percentage of images that were annotated as “different” and

“same” by workers, for each of the 8 different types of image pairs in our study. We
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Attack
Dtataset

Size
# attacks found

by HPD
# human

verified attacks

(78, 1)-adversary 78M 13 0(0.00%)

(78, d)-adversary 78M 295 3 (1.02%)

Table 6.3: Attack image datasets we generated to break CEAL. We show the
dataset size, the portion of the (target, attack) samples that were identified by
HPD model 1, and the number of attack images validated by human workers.

observe that 91.0% of the image pairs that had only 5 major components flipped,

were recognized as different by workers. This is significantly higher than the portion

of samples labeled as different when we flipped 5 minor components (Z = 14.35, P-

value = 0.00). In addition, the number of identified different images increased as

we flipped more major components: when we flipped 15 major components, none of

the image pairs were identified as being the same.

Thus, we found that even if we take out the randomness provided by minor

components to the ceal images, the generated images are distinguishable if enough

number of major components (here, > 15) are flipped. Thus, in the following, we

set d to 15.

6.7.3 CEAL Under Attack

CEAL Under (78, 1)-Attack

We now evaluate CEAL under brute force attacks perpetrated by the adversary

defined in § 6.2.3. We first consider a (γ, 1)-adversary, who can find usable inputs

that are within 1-Hamming distance of victim input, and uses them to generate

attack ceal images. Specifically, for γ=78 (§ 6.7.3 includes a similar evaluation for

γ=92), we generated 1 million target inputs randomly. Then, for each such input,

we considered all γ “attack” strings that are within 1-Hamming distance, and used
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Figure 6.7: Sample (target, attack) image pairs we generated for (γ = 78, d = 1)-
attacks, along with the human subjects’ labeled for these image pairs.

the CEAL DCGAN to generate ceal images corresponding to the target and attack

strings. Therefore, in total we generated 78 million ceal image pairs for γ = 78.

Note, we select d=1 as it is highly likely to generate similar images for similar input

to a GAN.

We first used the HPD classifier to decide if the generated image pairs would

be perceived as being the same by a human verifier. Out of 1 million target ceal

images, 13 of them were broken (only) once according to the HPD model 1 (see

Table 6.3 top). We then presented these 13 presumably broken ceal images to

human verifiers (see § 6.7.1). None of these images were labeled as being the same

by the recruited workers. Figure 6.7 represents several target and attack ceal images

that we generated.

CEAL Under (78, d)-Attack

We now consider a (γ, d)-adversary (§ 6.2.3), where 1 ≤ d ≤ γ. Specifically, for each

value of d ∈ {1, 2, 3, ..γ}, we have built an attack dataset as follows: We generated 1

million random “target” inputs, then for each target input, we randomly selected an

“attack” string that is within Hamming distance d from the target. We generated
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Figure 6.8: Sample (target, attack) image pairs we generated for (γ = 78, d)-attacks,
along with the human subjects’ labeled for these image pairs.

the ceal images corresponding to each target and attack strings pair. Thus, in total

we generate γ million ceal image pairs, organized into γ datasets, each containing 1

million (target, attack) ceal image pairs. We present results over an evaluation for

γ of 78. We include results for γ of 85 and 92, in § 6.7.3.

We then run HPD model 1 over the (target, attack) image pairs that we gener-

ated. For γ = 78, HPD model 1 predicted 295 of image pairs as indistinguishable.

When we presented these image pairs to human workers (§ 6.7.1), only 3 of them

were verified as being the same (see Table 6.3 bottom).

Based on the small false accept rate of CEAL on this attack and the (γ, 1)-

attack of § 6.7.3, we conclude that for γ=78, CEAL is resilient to adversaries that

are significantly more powerful that the ones considered in previous work [DSB+,

TBB+17]. Under attacks of similar strength, Tan et al. report a false accept rate of

12% for Vash [vas14] and 10% for the OpenSSH Visual Host Key [LLvG09]). This

is significantly larger than the CEAL false accept rate (i.e. 3/(13 + 295) < 1%).

Figure 6.8 represents several (target, attack) ceal images in this experiment, along

with their labeled that we collected using MTurk.
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γ
# attack
samples

# broken ceals
HPD model 1

# human
verified attacks

92 92 M 443 11 (2.48%)

85 85 M 379 -

78 78 M 295 3 (1.02%)

Table 6.4: Number of broken ceal images in (γ, d)-Attacks as identified by
HPD model 1.

CEAL Under (92, 1)-Attack

Similar to § 6.7.3, we consider and adversary with access to all attack keys whose

binary fingerprint is in 1-Hamming distance of a target key. For γ = 92, out of

1 million target ceal images, 27 of them were broken at least once according to

HPD model 1 The maximum number of times (out of γ) that a target key fingerprint

was broken under HPD model 1 is once. We manually verified the identified (target,

attack) image pairs. Although, several of the image pairs were indeed similar, we

did not find any of the 27 image pairs to be undistinguished.

CEAL Under (γ, d)-Attack

We now report the performance of a (γ, d)-adversary when breaking CEAL with

γ of 92, 85 and 78. Similar to attack performed in § 6.7.3, we generate γ million

pairs of (target, attack) samples. Table 6.4 shows the total number of “broken”

ceals for each value of γ using HPD model 1. We observe that only a small number

of ceal images were broken according to HPD model 1. Also, this value decreases

when using a KMap that uses a BCH code with higher error tolerance (i.e., higher

minimum Hamming distance between the code-words).

We labeled 443 and 295 pairs of images that were identified by HPD for γ

equal to 92 and 78 respectively using the user study procedure described in § 6.7.1.
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Figure 6.9: (γ = 92, d)-adversary: The break ratio of 1 million target ceal images
for each value of d, where d is the Hamming distance between the attack and the
target binary fingerprints and 0 < d < 93 according to (left) HPD model 1 and
(right) HPD model 2 (see § 6.7.3)

Our workers identified 11 and 3 of image pairs as same respectively in each group.

In addition to the above Mturk study, we manually labeled 379 image pairs from

experiments with γ = 85. We only identified 5 image pairs out of 379 image pairs

to be visually very similar.

In addition to HPD model 1, we used HPD model 2 to identify potential suc-

cessful attack samples in 92M pairs of images we generated to model a (γ = 92, d)-

adversary. Figure 6.9 shows the portion of broken ceal images in each of the 92

datasets according to (left) HPD model 1 and (right) HPD model 2. As expected,

the number of broken ceal images decreases as the Hamming distance between the

target and attack binary key fingerprints increases. We observe the same effect for

γ = 85 and γ = 78.

As HPD model 2 has a higher FPR compared to HPD model 1, it identified a

larger number (906,678) pairs as potential attack samples. To validate the results

of the HPD model 2, we used the workers from § 6.7.1 to also annotate 1,557 ran-
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Figure 6.10: Distribution of “different” and “same” labels as annotated by human
workers for Vash image pairs. The number of image pairs that are identified as
same decreases as the number of buckets (b) and number of nodes (n) in the tree
are decreased.

domly chosen, successful attack image pairs that were identified by HPD model 2

for d = 1. Only 23 image pairs (out of 1,557) were identified as being the same by

our participants. Thus, as we discussed previously, even with the imperfect HPD

models we have, we are able to train CEAL DCGAN to generate ceals that are

indistinguishable only with small probability (0.01 for γ = 78).

6.7.4 Human-Distinguishability of Vash

To evaluate the ability of Vash [vas14] to generate human-distinguishable images,

we generated 120 Vash image pairs, all different, as follows. We first quantized the

random values used to select each operation into the Vash tree (see § 2.3.2), into 32

buckets, and quantized the operation parameter values into b buckets of the same

lengths. We experimented with values of b in {4, 8, 16}. We then generated random
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trees until we had 30 trees of each size N ∈ {15, 20, 40, 60}. Then, we corralled these

trees into groups of 10. For each tree, we selected a random node (i.e., operation)

and changed the value of one of its parameters by q. The values for q that we used

for each group of trees are {0.25, 0.125, 0.0625} respectively (for each value of b).

When selecting the operations, we made sure that each operation type appears in

almost the same number of trees in each group. We generated thus 10 image pairs

for each of the 12 combinations of q and n.

We used the procedure of § 6.7.1 to label these pairs using 40 human workers.

Each image pair was labeled by 10 workers.

Figure 6.10 shows the portion of image pairs in each category that were labeled

as either same or different images by our workers. We observe that human workers

were able to consistently label image pairs correctly as different, only when the

number of nodes N in the tree was 15, and the number of quantization buckets was

4 (i.e., a parameter needed to be changed by at least 0.25). Thus, Vash images

are human-distinguishable only when the generating tree is small. However, when

we generated 10,000 random Vash images (see experiment in § 6.7.5), 99.98% of

them were constructed from trees of more than 15 nodes. This suggests that most

of Vash-generated images are vulnerable to attack, and that Vash is unlikely to

provide second pre-image resistance.

6.7.5 CEAL vs. Vash

We estimate a lower bound on capacity of Vash and CEAL using the method pro-

posed by Orlitsky et al. [OSV07]. We also report the time to compare ceal images

and compare it to Vash.

Data. We generate 10K images randomly (from random keys) using Vash and
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Key fingerprint
representation

Attack
dataset size

# attacks found
by HPD

Verified
attacks

CEAL ∼50M 1 0 (0%)

VASH ∼50M 150 24 (16%)

Table 6.5: Attack datasets generated using 10K random images for each key fin-
gerprint representation and the result of user study to label identified attacks by
HPD model 1.

CEAL (total 20K images). Then for each dataset of images, generated using Vash

and CEAL, we use HPD model 1 to predict if pairwise images are human distin-

guishable (total 10K×9999
2

= 49, 995, 000 comparisons). Here, we also evaluate per-

formance of HPD model 1 on 120 Vash images pairs and labels that we collected

from user study reported in § 6.7.4. On 120 image pairs, HPD model 1 has a FAR

of 0.21, FNR of 0.14 and F1 of 0.76. This results confirms that our trained HPD

model, also perform well in identifying distinguishable changes in images (e.g. Vash)

that are dramatically different that the images used in training (nature images).

To estimate the number of distinguishable images for each VKFG, we compute

k̂(Nr, r) =
Nr

2

2r
where Nr is the number of samples until observing r repetition, i.e.,

human indistinguishable images (see [OSV07]). Note, we use this method as a lower

bound estimate for the capacity of VKFG, as any estimation method fails when

k >> s2, where k is the real population size and s is the sample size used for the

estimate. Therefore, it is not possible to check if capacity of CEAL is 278 using a

only 10K samples.

HPD identified 150 (3−4%) and 1 (2−6%) Vash and ceal image pairs as indistin-

guishable in the first 10K samples of each. We then labeled these image pairs using

MTurk (see Table 6.5). Particularly, we labeled the identified Vash images using 15

MTurk workers using similar procedure as described for previous Vash user study

(see § 6.7.4). We also labeled the 1 identified ceal image pair using MTurk using the
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procedure described in § 6.7.1. Out of 150 (target, attack) image pairs, 24 image

pairs were identified as same by our workers (16%). Therefore, we estimate the num-

ber of perceptually different images generated by Vash as k̂(Nr, r) =
10K2

2×24
= 220.99.

This result is aligned with the results reported by Hsiao et al. [HLS+09]. However,

after user study the identified ceal image pair was labeled as different by our work-

ers. Therefore, we did not identify any indistinguishable images in the first 10K

samples of ceal.

Vash vs CEAL Images Comparison Time. We compare the response time

of participants to (target, attack) image pairs we generated for 150 Vash image

pairs as well as 309 ceal image pairs (295 images from § 6.7.3, 13 images of § 6.7.3

and 1 image pairs identified in the above experiment). The average comparson

time over Vash attack images is 3.03s (M=1.4s, SD=5.42s), while for ceal is 2.04s

(M=1.5s, SD=3.44s). A t-test revealed that the time to compare ceal attack images

is significantly shorter than the time they took to compare Vash attack images

(P-Value = 0.024).

In addition, to compare timing for Vash and ceal images with almost the same

level of distinguishability, we compare the time to compare the ceal and Vash images

that were distinguishable by human ∼ 70% of the times. For this, we consider the

time to compare Vash image pairs that were generated using n = 15 for different val-

ues of q (see § 6.7.4) to the time it took to compare ceal images that were generated

using latent vectors with 5 different minor components (see § 6.7.2). The average

comparison time over ceal image pairs is 4.82s (M=3.71s, SD=4.43s). However, this

value for Vash images is 6.15s (M=3.71s, SD=5.89s). Again, a t-test revealed that

the average comparison time for ceal images is significantly lower than that of Vash

(P-Value = 0.020).

188



6.8 Discussion and Limitations

Increasing entropy. One way to increase the entropy of the CEAL key fingerprint

generator, is to design and train multiple generators (see § 6.6), then use the input

key to decide which generator to use (e.g., the value of the key’s first two bits to

pick one out of 4 generators). However, we note that this approach imposes an

exponential increase on computation and storage: to achieve k bits of entropy, we

need to train and access 2k generators. Instead, in the proposed CEAL approach,

we use careful training to achieve its entropy.

Improving HPD. As we defined in § 6.3, we use a HPD, a classifier that we use to

predict human distinguishability (HPDration) of image pairs. However, due to data

and training limitations, our classifier has some error. However, we show that even

using a weak classifier, we are able to train a generator network to generate images

that are human distinguishable.

For instance, we manually verified ceal image pairs that were identified as same

by our workers in § 6.7.3. The input strings for the verified attack images were

within a Hamming distance of 2, 4 and 6 from their target. We manually checked

these image pairs and observed that 2 of these images represent a blue sky with

shadows from different angles (see Figure 6.8). We conjecture that, by training

HPD to further identify texture-less images as being the same, and retraining CEAL

DCGAN, we can avoid generating such images.

Usability and effectiveness. The results of our studies do not generalize to the

entire population, as we performed them on only a subset of MTurk workers, which

are also not representative of the entire population. For instance, we conjecture

that workers who work on visualization tasks are less likely to suffer from vision

loss problems. Further, MTurk workers have different goals (minimize their time
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investment, maximize financial gains) which may differ from those of regular key

fingerprint based authentication users, i.e., not only minimize time investment, but

also correctly detect attacks.

We also note that key fingerprint comparisons should be robust to key finger-

prints displayed on devices with different screen properties (e.g., size and resolution),

or even when printed on paper, to be compared against an image shown on a screen.

Our experiments showed no difference between the responses from users comparing

the key fingerprint on different devices. However, an extensive study is required to

properly evaluate this aspect. In addition, we leave for future work the evaluation

of the memorability of CEAL-generated images, which may help improve long term

recognition and verification of key fingerprints as it bring meaning to key fingerprint

images, e.g. compared to several textual representation, bar-codes, etc.

In addition, commonly used key text-based fingerprints have been shown to be

ignored by users [Gut11]. Thus, an extensive study is required to understand if

representing key fingerprints as realistic and familiar-looking images, will help draw

user attention, and increase verification rates.

6.9 Conclusions

In this chapter, we built the first visual fingerprint solution with built-in input

distribution properties, and have shown that it is substantially superior to state-of-

the-art solutions, in terms of entropy, human accuracy and speed of evaluation.

We leave for future work an investigation into the use of CEAL with key stretch-

ing methods to improve entropy, investigating alternative HPD and GAN (e.g.

[KALL18]) architectures, and including other types of classifiers during training,

e.g. to build ceals appropriate for color blind people.
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