
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

FIU Electronic Theses and Dissertations University Graduate School 

10-29-2018 

Game-Theoretic and Machine-Learning Techniques for Cyber-Game-Theoretic and Machine-Learning Techniques for Cyber-

Physical Security and Resilience in Smart Grid Physical Security and Resilience in Smart Grid 

Longfei Wei 
lwei004@fiu.edu 

Follow this and additional works at: https://digitalcommons.fiu.edu/etd 

 Part of the Information Security Commons, Numerical Analysis and Scientific Computing Commons, 

Power and Energy Commons, Systems and Communications Commons, and the Theory and Algorithms 

Commons 

Recommended Citation Recommended Citation 
Wei, Longfei, "Game-Theoretic and Machine-Learning Techniques for Cyber-Physical Security and 
Resilience in Smart Grid" (2018). FIU Electronic Theses and Dissertations. 3850. 
https://digitalcommons.fiu.edu/etd/3850 

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It 
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU 
Digital Commons. For more information, please contact dcc@fiu.edu. 

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.fiu.edu%2Fetd%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.fiu.edu%2Fetd%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.fiu.edu%2Fetd%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.fiu.edu%2Fetd%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.fiu.edu%2Fetd%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.fiu.edu%2Fetd%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3850?utm_source=digitalcommons.fiu.edu%2Fetd%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

GAME-THEORETIC AND MACHINE-LEARNING TECHNIQUES FOR

CYBER-PHYSICAL SECURITY AND RESILIENCE IN SMART GRID

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Longfei Wei

2018



To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Longfei Wei, and entitled Game-Theoretic and Machine-
Learning Techniques for Cyber-Physical Security and Resilience in Smart Grid, hav-
ing been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Malek Adjouadi

Armando Barreto

Jean Andrian

Walid Saad

Arif I. Sarwat, Major Professor

Date of Defense: October 29, 2018

The dissertation of Longfei Wei is approved.

Dean John L. Volakis
College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2018

ii



c© Copyright 2018 by Longfei Wei

All rights reserved.

iii



DEDICATION

To my parents, for their love, endless support, and encouragement.

iv



ACKNOWLEDGMENTS

This dissertation would not have been completed without the support of my advisor, com-

mittee, colleagues, friends, and family.

First of all, my sincere appreciation goes to my major professor, Dr. Arif I. Sarwat,

who offered me the opportunity to be in the great family of the Energy, Power and Sus-

tainability (EPS) Group. His motivating personality and endless encouragement improved

my abilities in the early stages of research. In addition, he gave me great freedom to ex-

plore and learn to do independent research, and helped me grow as a researcher over the

last five years.

I would also like to show my gratitude to my committee members, Dr. Malek Ad-

jouadi, Dr. Armando Barreto, Dr. Jean Andrian, and Dr. Walid Saad, for their support,

insightful comments, and constructive suggestions. One of the first classes I took at FIU

was Image Processing, taught by Dr. Adjouadi. He was a great teacher, and everything

I learned in the class laid a solid foundation for the rest of my pursuit. I also came to

interact with Dr. Barreto initially through the class of Neural Network, which directly

influenced my dissertation regarding machine learning parts. Dr. Andrian was the teacher

of my Random Signal Principles class. He continued to offer valuable research sugges-

tions afterwards, which were to the great benefit of my dissertation writing. I started my

PhD on a collaborative project with Dr. Saad, and he provided me a deep insight of game

theory. He has always been a great inspiration for me since then.

I am grateful to all the members of the EPS Group for creating a wonderfully col-

laborative work environment. In particular, thanks to Dr. Amirhasan Moghadasi and Dr.

Arash Anzalchi for their help and many interesting and insightful conversations. I would

also like to thank the staffs of the Electrical and Computer Engineering Department for

their great commitment to student services.

v



A very special gratitude goes out to the National Science Foundation (NSF) for pro-

viding partial research funding. I also acknowledge the doctoral DYF fellowship from

FIU graduate school during the fall semester of 2018. All this would be impossible with-

out their generous support.

Finally, last but by no means least, I want to dedicate the dissertation to my father,

Bin Wei, and my mother, Xichun Zheng, for their love and for fostering all my academic

endeavors.

vi



ABSTRACT OF THE DISSERTATION

GAME-THEORETIC AND MACHINE-LEARNING TECHNIQUES FOR

CYBER-PHYSICAL SECURITY AND RESILIENCE IN SMART GRID

by

Longfei Wei

Florida International University, 2018

Miami, Florida

Professor Arif I. Sarwat, Major Professor

The smart grid is the next-generation electrical infrastructure utilizing Information and

Communication Technologies (ICTs), whose architecture is evolving from a utility-centric

structure to a distributed Cyber-Physical System (CPS) integrated with a large-scale of

renewable energy resources. However, meeting reliability objectives in the smart grid be-

comes increasingly challenging owing to the high penetration of renewable resources and

changing weather conditions. Moreover, the cyber-physical attack targeted at the smart

grid has become a major threat because millions of electronic devices interconnected via

communication networks expose unprecedented vulnerabilities, thereby increasing the

potential attack surface. This dissertation is aimed at developing novel game-theoretic

and machine-learning techniques for addressing the reliability and security issues resid-

ing at multiple layers of the smart grid, including power distribution system reliability

forecasting, risk assessment of cyber-physical attacks targeted at the grid, and cyber at-

tack detection in the Advanced Metering Infrastructure (AMI) and renewable resources.

This dissertation first comprehensively investigates the combined effect of various

weather parameters on the reliability performance of the smart grid, and proposes a mul-

tilayer perceptron (MLP)-based framework to forecast the daily number of power inter-

ruptions in the distribution system using time series of common weather data. Compared

with traditional statistical models, the proposed framework can reduce the Mean Squared

vii



Error (MSE) by 8.77% and 61.37% for sustained and momentary power interruption fore-

casting, respectively. Regarding evaluating the risk of cyber-physical attacks faced by the

smart grid, a stochastic budget allocation game is proposed to analyze the strategic in-

teractions between a malicious attacker and the grid defender. A reinforcement learning

algorithm is developed to enable the two players to reach a Nash equilibrium, and the

risk of the cyber-physical attack can be assessed based on the game equilibrium. Simula-

tion results on the IEEE 9-bus and 118-bus systems have shown that the attacker and the

defender should take different strategies corresponding to the resources owned.

Furthermore, this dissertation develops a multimodal data-driven framework for the

cyber attack detection in the power distribution system integrated with renewable re-

sources. This approach introduces the spare feature learning into an ensemble classi-

fier for improving the detection efficiency, and implements the spatiotemporal correla-

tion analysis for differentiating the attacked renewable energy measurements from fault

scenarios. Numerical results based on the IEEE 34-bus system show that the proposed

framework achieves the most accurate detection of cyber attacks reported in the literature.

To address the electricity theft in the AMI, a Distributed Intelligent Framework for Elec-

tricity Theft Detection (DIFETD) is proposed, which is equipped with Benford’s analysis

for initial diagnostics on large smart meter data. A Stackelberg game between utility and

multiple electricity thieves is then formulated to model the electricity theft actions. Fi-

nally, a Likelihood Ratio Test (LRT) is utilized to detect potentially fraudulent meters,

where, for each smart meter, the successful detection rate is achieved more than 95% and

the false alarm is controlled beyond 10%, when the electricity is stolen in 50%.
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The electric grid is one of the nation’s most critical technological infrastructures, whose

reliability and resilience are essential for the continuous grid operation and control, and

also critical for the other interdependent infrastructures, such as communication networks,

water supply systems, and transportation networks [1]. The critical and networked nature

of the electric grid renders it susceptible to system disturbances from natural and man-

made hazards, including, for instance, hurricanes, wildfires, ice storms, earthquakes, and

malicious cyber and physical attacks [2]. These disturbances may not only lead to the

failure of one electrical element, but also may cascades to other networks and cause the

failure of other independent elements, resulting in a catastrophic widespread failure.

The major goal of this dissertation is to propose new mathematical methods and an-

alytical tools for addressing the reliability and resilience aspects of the electric grid. A

summary of the research background, literature review, and novel contributions of this

dissertation will be included in the following sections of this chapter, which are organized

as follows. Section 1.1 presents the power interruption problems caused by the various

weather conditions, and describes the cyber-physical security issues introduced by the

integration of the Information and Communication Technologies (ICTs). Section 1.2 re-

views the current application of game-theoretic tools and machine-learning techniques

for modeling and analyzing the reliability and resilience problems faced by the electric

grid. In Section 1.3, the main contributions of this dissertation are summarized from the

research areas, including system reliability forecasting, risk assessment of cyber-physical

attacks targeted at the electric grid, and cyber attack detection in the Advanced Metering

Infrastructure (AMI) and renewable energy resources. Finally, Section 1.4 outlines the

general organization of this dissertation.
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1.1 Research Background and Motivation

The smart grid is the next generation electrical infrastructure utilizing ICTs, which incor-

porates an advanced communication network into the traditional electric grid of genera-

tion, transmission and distribution components that enables the bidirectional communica-

tion between the electric utility and its customers [3]. A conceptual model proposed by

the National Institute of Standards & Technology (NIST) of the United States in [4] de-

fines seven important domains for the smart grid including bulk generation, transmission,

distribution, customers, service provider, operations and markets, as shown in Figure 1.1.

The ICTs facilitate the smart grid with effective operation, monitoring and control, en-

able predictive maintenance and self-healing responses to system disturbances, automate

maintenance and operation, and encourage expanded deployment of renewable energy

resources. However, the high penetration of renewable resources, a growing in electric-

ity demands, and adverse weather conditions make meeting the reliability objectives in

the smart grid increasingly challenging. According to the Lawrence Berkeley National

Laboratory’s (LBNL) report in 2016 [5, 6], the annual cost for power interruptions to

the electricity customers of the United States is estimated to be $110 billion, which has

increased more than 30% since 2004.

The power interruptions in the smart grid can be caused by a wide range of factors,

such as adverse weather conditions, equipment failures, animals, trees, wildfires, and

human errors [7, 8]. However, adverse weather conditions are usually the most important

causes of the power interruptions in the current electric grid [9–13]. According to the

reliability data collected by the United States Department of Energy (DOE) [14] from

1992 to 2011, adverse weather conditions contributed more than 64% of the total number

of power interruptions. Extreme weather events have become more frequent and costly in

recent decades. Especially, over the past three decades, the number of recorded extreme
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Figure 1.1: The smart grid conceptual model proposed by the United States NIST.

weather events in the world has increased from around 200 a year to over 400 per year

[15]. The extreme weather events, such as hurricanes, wind storm, lightning, ice storm,

and high/low temperatures, often can cause large-scale power interruptions. For example,

hurricane Irma caused about 65% of the Florida state containing 6.5 million homes and

businesses to lose power in 2017 [16]. Despite the potential for frequently changing

weather conditions, the aging electric grid infrastructure has also resulted in an increasing

number of intermittent power interruptions and an observed decrease in system reliability

performance.

Furthermore, the large-scale, interconnected nature of smart grid renders the system

susceptible to a range of cyber and physical attacks owing to a dramatic increase in its at-

tack surface. This has raised serious concerns about security, as summarized in Table 1.1.

It is important to note that attacks on one realm, say physical, have definite impacts on
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Table 1.1: Physical and Cyber Attacks Targeted at the Smart Grid
Attack Vector Year Target Impact

Stuxnet (CP) 2010 PLCs Damage to nuclear SCADA
Flame (C) 2012 Microsoft Windows Cyber espionage
Shamoon (C) 2012 Microsoft Windows Cyber espionage
Red October (C) 2012 Computer Networks Cyber espionage
Snipers (PC) 2013 Power Substation Power outages in the substation
BlackEnergy3 (CP) 2015 Information Systems Power outages of 225,000 customers
Mirai Botnet (C) 2016 Computer Networks Disruption of Internet services
WannaCry (C) 2017 Microsoft Windows 200,000+ computers affected

the other (cyber), and vice versa. Accordingly, each attack vector (malware, worm or

some form of physical assault) is labeled as PC to signify an attack on the Physical realm

causing Cyber implications; CP to signify an attack on the Cyber realm causing Physi-

cal implications; and C to signify an attack on the Cyber realm alone. Additionally, the

importance of human behavior in the proliferation and strength of attacks is irrefutable.

Physical attacks may disrupt the power plants, transmission lines, and substations of the

power grid. For instance, the Metcalf Sniper Attack on California’s Pacific Gas & Elec-

tric (PG&E) in April 2013 by unidentified gunmen led not only to power outages, but also

underscored the vulnerability of the grid [17]. Moreover, the emergence of cyber-attacks

may seek accessibility to the Supervisory Control And Data Acquisition (SCADA) or

AMI, thereby gaining remote access and/or control, and effectively compromising im-

portant electronic resources. The Stuxnet worm [18] was first discovered in 2010, which

infected numerous industrial control systems and was responsible for causing substantial

damage to power systems. The fear of such acts has peaked after the success of a coor-

dinated cyber-attack, which used the infamous BlackEnergy3 malware to target networks

serving several Ukirainian cities, eventually affecting 225,000 customers [19]. Such a

malicious attack on critical Cyber-Physical System (CPS) infrastructure such as the smart

grid can have a debilitating impact on every person’s life and on national security.
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1.2 Literature Review: Game-Theoretic and Machine-Learning Ap-

proaches

In order to design a resilient and secure smart grid against changing weather conditions

and cyber-physical attacks, it will have to build on the solid mathematical methods and

analytics tools. Game theory provides a mathematical framework for analyzing and im-

plementing security solutions, and machine learning introduces an analytical approach

to transform the high-dimensional data produced by the smart grid into meaningful rep-

resentations, such as system operation patterns, fault detection, and control commands.

Especially, game-theoretic methods and machine-learning techniques have been applied

at multiple layers of the smart grid for addressing the reliability and security issues.

Smart Grid Reliability Analysis Based on Weather Conditions

For evaluating the effect of various weather conditions on the smart grid reliability per-

formance, a wealth of researchers have investigated the effect of extreme weather con-

ditions, such as floods, hurricanes, and ice storms, on the electric grid reliability perfor-

mance [20–26] in the last decades. In [20], a three-state weather model was formulated

for the predictive reliability assessment of the electric distribution systems, where the sys-

tem failure rate was analyzed based on extreme weather conditions. The potential effects

of extreme weather conditions and climate changes on power system components’ oper-

ation and reliability were reviewed in [21], and the mitigation framework was outlined

for boosting the resilience of electrical networks. In [22], a mathematical framework was

presented to assess the risk of extreme weather cases on the power systems, in which

the performances of system protection devices were evaluated under extreme events. Ad-

ditionally, a risk-based defensive islanding algorithm was proposed in [23] for boosting

the power grid resilience to extreme weather events. However, all of these works only
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consider extreme weather conditions. Although severe weather events can cause a large

number of power interruptions, it is not common to consider these events under normal

operation conditions. The major of electric customers’ interruptions happen under normal

weather conditions.

Recently, statistical analysis techniques were introduced in [27, 28] to analyze the

relationship between the number of power interruptions on electric distribution networks

and common weather parameters, such as temperature, wind, air pressure, and lightning.

The number of power interruptions was predicted based on the total sum of the statistical

model of each weather parameter. However, the power interruptions related with common

weather conditions are essentially the result of combined action of many factors. The

power interruption prediction only based on statistical models might be compromising

due to the various effects of different weather parameters.

Smart Grid Protection Against Cyber-Physical Attacks

A series of research [29–34] based on game-theoretic methods has been proposed for de-

fending the smart grid from various types of cyber and physical attacks. Especially, a

zero-sum static game model was proposed in [29] to compute optimal defense strategies

that seek to protect physical infrastructures of the power grid against physical attacks. In

order to protect the communication network of the power grid, a game equilibrium ob-

tained from a zero-sum static game model between an intentional attacker and a fusion-

based defender was introduced and studied in [30]. In [31], a zero-sum game-theoretic

framework was formulated to investigate the interactive decision-making process between

a sensor node and an attacker who can launch denial-of-service (DoS) attacks. For de-

fending against false data injection (FDI) attacks on power grid state estimation, in [32],

the least-budget defense strategy in the game equilibrium was proposed to render power

grids immune to FDI attacks. In [33], a general-sum game-theoretic framework was pro-
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posed to explore and evaluate optimal defense strategies for the power grid operator to

protect the grid against a combination of cyber and physical attacks.

However, the works in [29–33] rely on a static game formulation in which the dy-

namics of the power grid are ignored and the interactions between the attacker and the

defender are assumed to be one-shot events. In [34], a zero-sum stochastic game was

proposed for modeling single transmission line attack-defense scenarios while focusing

on deriving the probabilistic strategies of the involved players. While interesting, the

stochastic game model of [34] focused only on a single attack (e.g. physical or cyber).

Traditionally, power grid planning techniques have accommodated N − 1 contingency in

their scope. Even if the attacker successfully compromises a part of the cyber-physical

power grid system, it is quite possible that no load shedding will be caused. However,

great power failures could be triggered if the attacker launches coordinated attacks to

compromise multiple parts or functions of the power grid in cyber and physical aspects.

Compared with single attacks, coordinated attacks, when smartly structured, cannot only

have severe physical impacts, but can also potentially nullify the effect of system re-

dundancy and other defense mechanisms. In a recent report by North American Elec-

tric Reliability Corporation (NERC), the coordinated attack was identified as one of the

three representative high-impact, low-frequency (HILF) threats [35]. Indeed, devising

new defense mechanisms against such coordinated attacks is both challenging and desir-

able. In [36], a stochastic budget allocation game theory was introduced for modeling

the attack-defense scenarios in the power grid while factoring in the coordinated cyber-

physical attacks. The Nash equilibrium of the formulated dynamic game was derived for

guiding the defender to optimally protect power grid elements at different system states.
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Smart Grid Cyber-Physical Attack Detection:

Recently, a wealth of efforts have been proposed for the cyber attack detection in the

power grid using the machine leaning techniques, such as supervised learning, unsu-

pervised learning, and statistics-based learning approaches [37–41]. In [38], a decision

tree-based anomaly detection approach was presented to secure the power grid commu-

nication network from distributed denial of service (DDoS) attacks. A malware infection

detection using Kernel Fisher discriminant analysis was proposed in [39] by comparing

malware traffic with normal traffic. An intrusion detection system was developed in [40]

for early detection of threats in AMI of the smart grid, where a multi-support vector ma-

chine (SVM) classifier was trained. In [41], a Sybil attack detection method based on

k-Nearest Neighbours (kNN) classification was introduced for the vehicle-to-grid (V2G)

networks. However, all of these machine learning methods need to be evaluated to guide

the selection of mechanisms that are most suitable for the Distributed Energy Resource

(DER) cyber attack detection. Moreover, techniques should be developed to handle the

complex and high-dimensional DER measurement data.

Feature learning is a key to improve the performance of existing machine learning-

based attack detection mechanisms, which consists of feature extraction and selection.

Feature extraction transforms the original features into a more meaningful representation

by reconstructing its inputs and involves reducing the amount of resources required to

describe a large dataset. There are two broad categories for feature extraction algorithms,

including linear and nonlinear. Linear feature extraction algorithms, such as principal

component analysis (PCA) [42], multidimensional scaling [43], and principal coordinates

analysis [44], assume the data lies on a lower-dimensional linear subspace and project

them on this subspace using matrix factorization. However, nonlinear feature extraction

algorithms like self organizing maps (SOMs) [45] and Kohonen maps [46] create a lower

dimensional mapping of an input by preserving its topological characteristics.
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Performance of attack detection mechanisms is heavily dependent on the choice of

applied features, and feature selection is to identify the most informative features from

the original and extracted feature sets. Typically, feature selection is partitioned into three

classes: filters, wrappers, and embedded methods. Filter methods analyze intrinsic prop-

erties of the dataset, ignoring the type of classifier. Conversely, wrappers use classifiers

to score a given subset of features, and embedded methods inject the selection process di-

rectly into the classification learning process. In this paper, the filter methods are utilized

to evaluate different types of classifiers for the DER attack detection. Among the most

used filter-based strategies, Relief algorithm [47] estimates the quality of features accord-

ing to how well their values distinguish between instances that are closer to each other.

Another effective yet fast filter method is the Fisher method [48], which computes a score

for a feature as the ratio of inter-class separation and intra-class variance, where features

are evaluated independently. In [49], a mutual information (MI)-based approach is pro-

posed, and the quality of a given feature is evaluated by the MI between the distribution

of the values of this feature and the membership to a particular class.

1.3 Research Objectives and Original Contributions

The research reported in this dissertation is aimed at developing novel game-theoretic

models and machine-learning algorithms for solving the smart grid reliability and re-

silience problems, such as power distribution system reliability forecasting, risk assess-

ment of cyber-physical attacks targeted at the grid, and cyber attack detection in the AMI

and renewable resources. Specifically, the main body of the dissertation has been pub-

lished in several IEEE and other reputed journals and conferences [33, 36, 50–56]. In

total, the dissertation has completed the following five major activities:
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1) Hybrid integration of multilayer perceptrons and parametric model for power

distribution system reliability forecasting using common weather data

The main contribution of this objective is to comprehensively investigate the com-

bined effect of various weather parameters on the reliability performance of power sys-

tem distribution networks. Especially, a multilayer perceptron (MLP)-based framework is

proposed to forecast the daily numbers of sustained and momentary power interruptions

in one distribution management area using time series of common weather data. Based

on the real-time reliability data from the local utility, Florida Power & Light (FPL), and

common weather data from National Climatic Data Center (NCDC), a modified extreme

learning machine (ELM)-based hierarchical learning algorithm is then introduced to train,

validate, and test the proposed framework. Essentially, compared with traditional statisti-

cal models, the proposed framework can reduce the mean squared error (MSE) by 8.77%

and 61.37% for sustained and momentary power interruption forecasting, respectively. In

addition, the sensitivity of each common weather parameter can be derived with respec-

tive to the daily numbers of power interruptions.

2) A survey on application of noncooperative game-theoretic methods to address

cyber-physical security threats and challenges in the smart grid

Noncooperative game theory provides a mathematical framework for analyzing and

implementing the smart grid cyber-physical security solutions. However, there is little

research in the literature that comprehensively reviews and evaluates the application of

noncooperative game theory to the security issues in the smart grid. In this effort, a

systematic survey of existing game-theoretic approaches for mitigating security threats is

proposed for three main smart grid zones: the power system network infrastructure, AMI,

and state estimation. For each zone, the emerging threats and vulnerabilities are identified

and summarized, and the potential attacks targeted on both cyber and physical realms are

addressed. The current game-theoretic approaches for addressing these security threats
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are evaluated and compared. Future opportunities and extension of these approaches in

the realistic smart grid cyber-physical security problems are also discussed.

3) Risk assessment of coordinated cyber-physical attacks against the smart grid:

a stochastic game approach

In this approach, to address the dynamic nature of the smart grid protection, a stochas-

tic budget allocation game is proposed to analyze the strategic interactions between a ma-

licious attacker and the grid defender while factoring in the attack and defense budget

limitations. At the game equilibrium, the optimal budget allocation strategies of the two

players, in terms of attacking/protecting the critical elements of the grid, can be obtained.

The information about the successful attack probability to various elements is used to

evaluate the risk of the corresponding attack faced by the whole grid at various power

system states. Simulation results on the IEEE 9-bus and 118-bus systems have shown that

different risks are derived as the attack/defense budget is varied.

4) Spare feature learning and spatiotemporal correlation for attack detection in

power distribution systems integrated with DERs

This objective presents a multimodal data-driven framework for the attack detection

in power distribution systems integrated with DERs. Unlike previous works using only

one machine learning classifier, this approach first introduces the spare feature learning

techniques into an ensemble classifier to identify the abnormal events including faults

and cyber attacks within DER implementations. Finally, the spatiotemporal correlation

analysis is utilized for each DER measurement toward the differentiation of the attacked

measurements from fault scenarios in the generated abnormal event list. A modified IEEE

34-bus distribution system modeled with photovoltaics (PV) farm, wind turbine generator

(WTG), battery energy system, and diesel generator is implemented to simulate the nor-

mal, fault, and attack system scenarios, and the numerical results show that the proposed

framework achieves the most accurate DER attack detection reported in the literature.
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5) A distributed intelligent framework for electricity theft detection using Ben-

ford’s law and Stackelberg game

A Distributed Intelligent Framework for Electricity Theft Detection (DIFETD) is pro-

posed and implemented in this effort. It is equipped with Benford’s law for initial but

powerful diagnostics on large smart meter data. A Stackelberg game is formulated to an-

alyze the strategic interactions between one utility and multiple electricity thieves, which

is applied to data flagged suspicious by Benford’s law. Finally, the Stackelberg equilib-

rium provides sampling rate and threshold to conduct a Likelihood Ratio Test (LRT) to

detect potentially fraudulent meters. The capability of the proposed framework was val-

idated against four intelligent theft scenarios with the real consumer power consumption

data from FPL. For each smart meter, the successful detection rate is achieved more than

95% and the false alarm is controlled beyond 10%, when the electricity is stolen in 50%.

1.4 Dissertation Organization

The listed contributions in Section 1.3 will be discussed in detail in the remaining chap-

ters, which are structured as follows:

Chapter 2 presents an overview of fundamental game theoretic concepts and current

machine learning techniques applied to the reliability and resilience areas of the smart

grid. Section 2.1 outlines the classification of game theory, and briefly introduces the def-

inition, solution, and learning algorithms of static and dynamic game theory, respectively.

Section 2.2 describes several key machine learning algorithms that are successfully used

in the smart grid reliability and resilience evaluation with large datasets.

Chapter 3 proposes a hybrid framework integrating Multilayer Perceptrons (MLPs)

and parametric regression models for forecasting the daily numbers of power interrup-

tions in smart grid distribution networks using time series of common weather data. Sec-
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tion 3.1 formally defines the reliability problem and provides a basic introduction to the

existing literature. Section 3.2 introduces the reliability metrics and weather parameters

collected for analysis. Section 3.3 develops the parametric regression models between

the reliability metrics and various weather parameters. Section 3.4 formulates a MLP

model for forecasting the daily numbers of power interruptions and introduces a modified

Extreme Learning Machine (ELM) based algorithm for training the formulated model.

In Section 3.5, the proposed framework is evaluated, and the sensitivity of each weather

parameter is analyzed. Section 3.6 concludes the chapter and outlines the future work.

Chapter 4 provides a systematic survey of existing game-theoretic approaches that

implemented for mitigating security threats in three main smart grid zones including the

power system network infrastructure, AMI, and power system state estimation. Section

4.1 categorizes the smart grid into three main zones and makes an overview of the network

security challenges faced by each zone. Section 4.2 evaluates the current game theoretic

models for cyber-physical security in power system network infrastructure. Section 4.3

compares the game theoretic models for cyber-physical security of communication net-

work and smart meters in AMI. Section 4.4 introduces the game theoretic models for

cyber-physical security in the power system state estimation. To conclude this chapter,

we discuss future work and recent progresses in Section 4.5.
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 Chapter 5 investigates the risk assessment of the coordinated cyber-physical attacks 

against power grids using a novel game-theoretic approach. Section 5.1 makes an overview 

of the cyber-physical security issues in the smart grid. Section 5.2 presents the attack- 

defense scenario in the power grid as well as the formulated stochastic game. Section 5.3 

introduces an optimal load shedding technology to quantify the attacker and defender’s 

rewards. Then, Section 5.4 derives the Nash equilibrium of the proposed stochastic game, 

and computes the risk of the coordinated cyber-physical attack faced by the grid based 
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 Chapter 6 presents a multimodal data-driven framework for the attack detection in 

power distribution systems integrated with a large-scale of distributed energy resources 

(DERs). Section 6.1 makes an overview of this chapter. Section 6.2 introduces the cyber 

attack models in DER systems. Section 6.3 describes the proposed DER attack detection 

framework. Section 6.4 develops a test distribution system. Section 6.5 compares the 

experimental results of the proposed attack detection framework with existing works, 

while Section 6.6 concludes the paper and outlines the future work.

 Chapter 7 presents a Distributed Intelligent Framework for Electricity Theft Detection 

(DIFETD) is proposed and implemented in this chapter. Section 7.1 make a summary of 

this chapter. A summary of related work is provided in Section 7.2. Benford’s Analysis 

for preliminary theft detection is explained in Section 7.3. A Stackelberg game between 

utility and thieves is proposed in Section 7.4. LRT for theft detection is described in Sec- 

tion 7.5. While Section 7.6 discusses data cleansing and the results, Section 7.7 provides 

conclusion and future work.

 Chapter 8 summarizes the dissertation outcomes, concludes the significance of this 

research, discuss the results, and finally makes recommendations for the future works.

           
 

         

on the probability of successful attack and corresponding physical impacts. Section 5.5

presents the simulation results while Section 5.6 concludes the chapter.



This chapter presents an overview of fundamental game theoretic concepts and cur-

rent machine learning techniques applied to the reliability and resilience areas of the smart

grid. Section 2.1 outlines the classification of game theory, and briefly introduces the def-

inition, solution, and learning algorithms of static and dynamic game theory, respectively.

Section 2.2 describes several key machine learning algorithms that are successfully used

in the smart grid reliability and resilience evaluation with large datasets.

2.1 Fundamental Game Theoretic Concepts

Game theory is a branch of applied mathematics that deals with strategic interactions

among multiple decision makers, i.e., players, in which each player’s success in making

choices depends on the choices of others [57]. With respect to whether the players can

select actions or make decisions collectively or individually, games can be classified into

cooperative and noncooperative games. Due to the conflicting interests between mali-

cious personnel, i.e., attackers, and smart grid operators, i.e., defenders, this dissertation

mainly focuses on noncooperative games that can be used to analyze the strategic de-

cision making processes between attackers and defenders. In the noncooperative game,

each attacker or defender’s preference ordering among multiple alternatives is captured

in an objective function. Attackers try to maximize their objective functions for utility or

benefit, while defenders intend to minimize their objective functions for cost or loss. For a

nontrivial game, the objective function of an attacker or defender depends on the choices

(actions, or equivalently decision variables) of at least one other player, and generally of

all the players, and hence players cannot simply optimize their own objective function

independent of the choices of the other players.

15

CHAPTER 2

Game-Theoretic and Machine-Learning Techniques



Table 2.1: Noncooperative Game Classification
Classification Player Action Set Utility Utility/ Action Set Utility/Information Time

Type 1 2 finite zero-sum deterministic complete static
Type 2 N(≥ 2) infinite nonzero-sum stochastic incomplete dynamic

The classification of noncooperative games is shown in Table 2.1. A noncoopera-

tive game is nonzero-sum if the sum of the players’ objective functions cannot be made

zero even after appropriate positive scaling and/or translation that do not depend on the

players’ decision variables. A two-player game is zero-sum if the sum of the objective

functions of the two players is zero or can be made zero by appropriate positive scaling

and translation that do not depend on the decision variables of the players. A game is a

finite game if each player has only a finite number of alternatives, that is, the players pick

their actions out of finite sets (action sets); otherwise the game is an infinite game; finite

games are also known as matrix games. A game is said to be deterministic if the players’

actions uniquely determine the outcome, as captured in the objective functions; whereas,

if the objective function of at least one player depends on an additional variable (state

of nature) with a known probability distribution, then the game is a stochastic game. A

game is a complete information game if the description of the game [that is, the play-

ers, the objective functions, and the underlying probability distributions (if stochastic)]

is common information to all players; otherwise it is an incomplete information game.

Finally, noncooperative games can be classified into two categories: static games and dy-

namic games. A game is static if each player acts only once, and none of the players has

access to information on the actions of any of the other players; otherwise it is a dynamic

game. A dynamic game is said to be a differential game if the evolution of the decision

process (controlled by the players over time) takes place in continuous time, and gener-

ally involves a differential equation. In the following parts, the definition, solution, and

learning algorithms of static and dynamic games will be introduced in detail.
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2.1.1 Static Game Theory

A static game is one in which the notions of time or information do not affect the action

or decision selection of the players [58]. Therefore, in a static setting, a noncooperative

game can be seen as a one-shot process in which the players take their actions only once

(simultaneously or at different points in time). Here, we provide one general definition

for N(≥ 2) players’ static noncooperative games, which is shown as follows:

Definition 2.1.1 A N -player static noncooperative game, Ξ = 〈N , {Ai}i∈N , {Ui}i∈N 〉,

in normal form, is characterized by three main elements: (1) the players’ set N :=

{1, ..., N}, (2) the action set Ai for each player i ∈ N , and (3) the utility function Ui

for each player i ∈ N , which reflects the gains and costs from players’ action choices.

In such a game, each player i ∈ N intends to choose an action ai ∈ Ai so as to op-

timize its utility function Ui(ai,a−i) which depends not only on player i’s action choice

ai but also on the vector of actions taken by the other players in N \ i, denoted by a−i.

The action selection of N players in such a deterministic manner is called pure strate-

gies, denoted by a = (a1, ..., aN) ∈ A1 × · · · × AN . Then, one of the most important

objectives of static noncooperative game theory is to derive a Nash equilibrium [59], that

is, a∗ ∈ A1 × · · · × AN , such that no player i can improve its utility by changing uni-

laterally its actions, given that the actions of the other players are fixed. For the static

noncooperative game theory, the Nash equilibrium can be formally defined as follows:

Definition 2.1.2 A vector of actions a∗ ∈ A1 × · · · × AN is a Nash equilibrium of a

N -player, if and only if ∀i ∈ N , the following condition holds:

Ui(a
∗
i ,a

∗
−i) ≥ Ui(ai,a

∗
−i), ∀ai ∈ Ai. (2.1)

However, a Nash equilibrium in pure strategies is not guaranteed for all static non-

cooperative games, which opens the door for a mixed-strategy Nash equilibrium [60]. A
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mixed strategy for each player i is a probability distribution over its action set Ai, de-

noted by πi, and a Nash equilibrium is guaranteed to exist in mixed strategies for any

finite game.

Numerous learning algorithms have been proposed in the literature for computing

Nash equilibrium of static noncooperative games. Two classical iterative algorithms are

best response dynamics [61] and fictitious play [62], in which each player chooses the

action that maximizes its utility function given the actions of the other players. A myopic

best response strategy was first studied in [63] and refers to the scenario where a firm

in a duopoly adjusts its output to maximize its payoff based on the known output of its

competitor. The strategy known as fictitious play (employed in finite games), where a

player devises a best response based on the history of the other players’ actions, was

introduced in [64] in the context of mixed-strategy Nash equilibrium in matrix games.

The advantage of an iterative algorithm is its simple implementation, however, it suffers

from several drawbacks. First, a best response process is only guaranteed to converge

to an equilibrium for certain types of utility functions. Second, best response dynamics

are highly sensitive to the initial conditions and any change in these conditions could

lead to different equilibriums. Third, adopting a best response approach does not always

guarantee convergence to an efficient equilibrium.

In contrast, regret matching is a type of learning algorithms in which the players

attempt to minimize their regret from using a certain action, i.e., the difference between

the utility of always playing a certain action and the utility that they achieved by playing

their current strategy. An in-depth treatment of regret matching algorithms is found in

[65]. Many other types of learning schemes such as reinforcement learning (RL) are

also used in various game-theoretic scenarios in order to find a desirable state of the

system [66].
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2.1.2 Dynamic Game Theory

In contrast to static games, dynamic noncooperative game [67–69] is one in which the

players have some information about each others’ choices, can act more than once, and

time has a central role in the decision making. Note that, when the game is dynamic,

one needs to also define, as part of the game, additional components such as information

sets, time, or histories (i.e., sets of past actions) which are usually reflected in the util-

ity functions. Dynamic games can be classified into series of games including repeated

games, extensive games, differential games, evolutionary games, and stochastic games. A

common framework to study the interactions between attackers and defenders in dynamic

smart grid systems is a stochastic game [69]. Here, we provide one general definition for

N(≥ 2) players’ stochastic smart grid security games, which is shown as follows:

Definition 2.1.3 A N -player stochastic game, Ξ = 〈N , {Ai}i∈N , {Ui}i∈N ,S, T 〉 in nor-

mal form, has the following key elements:

• The players’ set N = {1, ..., N};

• The action set Ai for each player i ∈ N ;

• The utility function Ui for each player i ∈ N , which reflects the gains and costs

from players’ action choices;

• The smart grid state space S, where each state s ∈ S is associated with the status

of smart grid elements;

• The state transition probability Ts,s′(a,d) from state s ∈ S to state s′ ∈ S under

the action selection of N players, denoted by a = (a1, ..., aN) ∈ A1 × · · · × AN .

In such a stochastic game, players’ actions directly affect underlying state variables

that influence their utilities. The state variables evolve according to a Markov process in

discrete time, and players maximize their infinite horizon expected utility, respectively.
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The standard solution concept for stochastic games is Markov perfect equilibrium (MPE)

[67], where a player’s equilibrium strategy depends on the current state of all players.

The traditional Q-Learning algorithm for Markov decision processes is extended to two-

player zero-sum stochastic games for Minimax-Q Learning in [66]. And the Minimax-Q

Learning algorithm is applied for general-sum stochastic games in [70].

However, MPE presents two significant obstacles as an analytical tool, particularly

as the number of players grows larger. First is computability: the state space expands in

dimension with the number of players, and thus the “curse of dimensionality” kicks in,

making computation of MPE infeasible in many problems of practical interest. Second

is plausibility: as the number of players grows larger, it becomes increasingly difficult

to believe that individual players track the exact behavior of all other agents. Therefore,

fictitious play [64] assumes opponents play stationary strategies. The algorithm main-

tains information about the average value of each action (i.e., is the average expected

discounted reward from past experience). The algorithm then selects the action that has

done the best in the past. This is nearly identical to single agent value iteration with a

uniform weighting of past experience.

Opponent modeling and joint action learners (JALs) [71,72] are RL algorithms, which

are multi-agent extensions to the well-studied Q-learning algorithm. Explicit models of

the opponents are learned as stationary distributions over their joint action space, which

contains the probability the other players will select joint action based on past experience.

These distributions combined with learned joint-action values from standard temporal

differences are used to select an action. The algorithm has very similar behavior to ficti-

tious play that requires observations of the opponents’ actions, but not of their individual

rewards. Additionally, its empirical distribution of play may converge to an equilibrium

solution, but its action selection is deterministic and cannot play a mixed strategy.
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2.2 Machine Learning: Algorithms and Applications

The concept of machine learning refers to the automated detection and extraction of mean-

ingful patterns from large datasets, using statistical techniques [73]. In the smart grid, the

bidirectional information flow between the electric utility and its customers, the increas-

ing electricity supply from DERs, and the integration of advanced sensor and metering

technologies makes it challenging for the traditional power system analysis, but ideal

for the application of machine learning techniques. Based on the learning style, current

machine learning techniques can be categorized into the following types:

• Supervised Learning: The goal is to develop a model to predict new examples in

the test dataset through analyzing examples with known class labels in the training

dataset. The derived model can be implemented for the smart grid data classification

and regression such as in system monitoring and attack detection.

• Unsupervised Learning: The objective is to formulate a model to deduce structures

and patterns presented in the training dataset with unlabeled examples. The ap-

plication areas contain data clustering, dimensionality reduction, and association

rule learning. One example is for grouping together data points with similar ac-

tive/reactive power profiles for power transmission analysis.

• Semi-Supervised Learning: For the training dataset including a mixture of labeled

and unlabeled examples, this learning algorithm intends to propose a model to learn

the structures to organize the data as well as make predictions. The learning algo-

rithms can also be implemented for the smart grid data classification and regression.

• Reinforcement Learning: This algorithm learns a policy/strategy of how to act given

an observation of the system, wherein each action has an impact on the system, and

the system provides feedback that guides the learning process.
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In the following section, we briefly review the theoretic models of supervised, unsu-

pervised, semi-supervised, and reinforcement learning. Moreover, we introduce several

popular machine leaning algorithms in detail that help in the resilient smart grid design

and deployment.

2.2.1 Supervised Learning

Supervised learning involves formulating a mapping between a set of input variables X

and a set of output variables Y , and applying this mapping to predict the outputs for

unseen data [74]. Mathematically, the objective is to derive a function f : X → Y based

on a training set An = {(x1, y1), ..., (xn, yn)}, which is composed of pairs of input and

output points xi ∈ X and yi ∈ Y . Typically, xi ∈ Rd and yi ∈ R. yi is discrete for

classification problems and continuous for regression problems. Let H denote the set of

functions where the solution is sought: f ∈ H. The supervised learning can be converted

into an optimization problem to find the function f ∈ H that minimizes the error or

loss between the prediction f(x) and the desired output y, which is measured by a loss

function L(f(x), y) : Y × Y → R+.

In this section, we focus on kernel-based approaches to supervised learning. We first

explore one of the simplest algorithms for data classification, termed the nearest neighbor

algorithm [75]. We then review the support vector machine (SVM) algorithm which rep-

resents the dominant supervised learning technology used for the smart grid data process-

ing, specially in the cyber attack detection. Finally, we discuss the ensemble technique,

an important strategy for increasing the stability and accuracy of a classifier whereby a

single classifier is replaced by a committee of classifiers.
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Nearest Neighbor Algorithm

The nearest neighbor algorithm classifies the example in the test dataset by identifying its

nearest neighbor and using this neighbor to determine the class of this example. Given

two observations x1 and x2 in the training dataset X , the distance between two can be

defined as D(x1,x2). Here, the function D(·) is defined as an Euclidean distance, where

D(x1,x2) =

√∑d
i=1(x

(i)
1 − x

(i)
2 )2. Given a test data example xt, the nearest neighbor

classifier chooses the class corresponding to the data item in the training set with the

shortest distance to the test example. Using the notation we established above, let i∗

denote the index of the training example closest (i.e., with minimum distance) to the test

example xt. Therefore, i∗ can be derived through solving the following problem:

i∗ = arg min
i=1,...,n

D(xt,xi). (2.2)

After finding i∗, the nearest neighbor role would assign to the test example the label yi∗ ,

which is the label of the training example xi∗ that was closest to the test example xt.

In [76], a k-Nearest Neighbor (kNN) algorithm was introduced as an extension of the

nearest neighbor algorithm, where the class of the test data example xt is determined by

the majority of samples of the labels for k nearest neighbors.

Support Vector Machine (SVM) Algorithm

For binary classification, we try to formulate a function f : Rd → {±1} using the training

set An = {(x1, y1), ..., (xn, yn)}, where xi ∈ Rd and yi ∈ {±1}, such that f will

correctly classify the test data example xt. Assume that the training set An is linearly

separable, the linear SVM algorithm [77] is designed based on the class of hyperplanes:

< w,x > +bwith yi(< w,xi > +b) > 0, ∀i = 1, ..., n. Therefore, the decision function

can be expressed as fd(x) = sign(< w,x > +b) with

fd(xi) = sign(yi), i = 1, ..., n. (2.3)
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The SVM classification method aims at finding the optimal hyperplane based on the

maximization of the margin between the training data for both classes. Because the dis-

tance between a pointx and the hyperplane is yf(x)
‖w‖ , it is easy to show that the optimization

problem may be expressed as the following minimization:

min
1

2
‖w‖2

s.t. yif(xi) ≥ 1, i = 1, ..., n.

(2.4)

The support vectors are the training points for which we have an equality in (2.4). They

are all equally close to the optimal hyperplane. In the real world, the training data is usu-

ally far from linear and the datasets are inseparable. Thus, the nonlinear SVM classifiers

were created by applying the kernel trick to maximum-margin hyperplanes in [78].

Ensemble Techniques

Given a set X = {x1, ...,xn} of training examples, an ordinary machine learning algo-

rithm outputs a classifier, which is an hypothesis about the true classification function

f . The ensemble technique [79] aims to construct a set of classifiers to solve the same

classification problem. In particular, an ensemble classifier is implemented to classify X

into −1 and +1, in which P subsets of tuples of size m(< n) are created by uniformly

sampling from X with replacement. Therefore, P subsets {X1, ...,XP} are generated,

and P classifiers {C1, ..., CP} are built on each subset Xi, i = 1, .., P . A final ensemble

classifier classifies a test example xt by giving as output the class predicted most often

by {C1, ..., CP}. The main discovery is that ensembles are often much more accurate than

the individual classifiers that make them up. In addition, the ensemble classifier can be

implemented for the parallel computing, in which each subset Xi resides on a different

processor within the parallel computer.
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2.2.2 Unsupervised Learning

In unsupervised learning, the machine simply receives the set of training examples X =

{x1, ...,xn} without supervised target outputs. The goal of unsupervised learning is to

build representations of the training examples that can be used for decision making, fore-

casting future inputs, and efficiently transferring the training dataset to another machine.

Therefore, unsupervised learning can be defined as a way to find patterns in the unla-

beled dataset. Two popular algorithms of unsupervised learning are Principal Component

Analysis (PCA) and data clustering. PCA is a a dimension-reduction tool that can ex-

tract the most informational representations or features with a low dimension from a large

dataset [80]. Data clustering represents a broad class of methods, such as K-means clus-

tering and hierarchical clustering, for dividing the training examples into groups (clusters)

that are meaningful and useful [81].

2.2.3 Semi-supervised Learning

Semi-supervised learning is halfway between supervised and unsupervised learning, where

the learning algorithm is provided with both labeled and unlabeled training data [82].

Therefore, the training dataset X = {x1, ...,xn} can be divided into two parts: the

points Xl = {x1, ...,xl}, for which labels Yl = {y1, ..., yl} are provided, and the points

Xu = {x1, ...,xu}, the labels of which are not known. Semi-supervised learning ad-

dresses the problem that the supervised learning cannot integrate part or all of the avail-

able unlabeled data in its learning algorithms. The goal of semi-supervised learning is

to maximize the learning performance by combining both labeled and unlabeled data,

and develop learning algorithms to take advantage of such a combination. There are

some popular semi-supervised learning models, such as self-training, mixture models,
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co-training and multiview learning, graph-based methods, and semi-supervised support

vector machines [83].

2.2.4 Reinforcement Learning

The intrinsic nature of Reinforcement Learning (RL) is learning through interactions,

where a machine interacts with its environment by producing a policy π [84]. The de-

rived policy affects the state of the environment, which in turn results in the machine

receiving some scalar rewards or losses. The goal of the machine is to find an optimal

policy π∗ that maximizes/minimizes the total expected rewards/losses over its lifetime,

termed the discounted reward/loss. RL is closely related to the field of decision theory,

especially the Markov Decision Process (MDP). The MDP is comprised of four main

characteristics including: (1) state, (2) policy, (3) transition between states, and (4) re-

ward function. The dynamic programming is a class of algorithms that is able to compute

optimal policies in the presence of a perfect model of MDP [85]. Moreover, RL is closely

related to game theory, where the machine interacts with some other machines which can

also make actions, receive rewards/losses, and learn. Therefore, the goal of the machine

is to derive an optimal policy so as to maximize/minimize its rewards/losses based on the

other machines’ current and future actions.
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This chapter proposes a hybrid framework integrating Multilayer Perceptrons (MLPs)

and parametric regression models for forecasting the daily numbers of power interruptions

in smart grid distribution networks using time series of common weather data. Section 3.1

formally defines the reliability problem and provides a basic introduction to the existing

literature. Section 3.2 introduces the reliability metrics and weather parameters collected

for analysis. Section 3.3 develops the parametric regression models between the relia-

bility metrics and various weather parameters. Section 3.4 formulates a MLP model for

forecasting the daily numbers of power interruptions and introduces a modified Extreme

Learning Machine (ELM) based algorithm for training the formulated model. In Section

3.5, the proposed framework is evaluated, and the sensitivity of each weather parameter

is analyzed. Section 3.6 concludes the chapter and outlines the future work.

3.1 Overview

The reliability has always been a critical focus area for the design and operation of the

electric power grid, where the distribution networks account for up to 90% of all customer

reliability problems [86, 87]. Improving the distribution reliability is a key point for in-

creasing customer satisfaction and system performance. However, with the high penetra-

tion of renewable resources and increasing electricity demands in distribution networks,

meeting reliability objectives in modern grids becomes increasingly challenging [88–91].

According to the Lawrence Berkeley National Laboratory’s (LBNL) report in 2016 [5,6],

the annual cost for power interruptions to the electricity customers of the United States is

estimated to be $110 billions, which increases more than 30% since 2004.
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Figure 3.1: The distribution of causes for power interruptions in distribution networks:
178 million customers collected from 1992 to 2011 in the United States.

The power interruptions in distribution networks can be caused by a wide range of

factors including equipment failures, animals, trees, and human errors [7, 8]. However,

weather conditions, such as windstorm, lightning, ice storm, and high temperature, are

usually the important causes of the distribution power interruptions [9–11]. According

to the reliability data collected by the United States Department of Energy (DOE) [14]

from 1992 to 2011, weather conditions contribute more than 64% of the total number of

distribution power interruptions as shown in Figure 3.1. As a result, the accurate relia-

bility forecasting based on time series of weather condition data is both challenging and

desirable for the smart grid distribution system design and operation.

In the last decades, a wealth of researchers have investigated the effect of extreme

weather conditions, such as floods, hurricanes, and ice storms, on the electric grid re-

liability performance [20–24]. In [20], a three-state weather model was formulated for

the predictive reliability assessment of the electric distribution systems, where the sys-

tem failure rate was analyzed based on extreme weather conditions. The potential effects

of extreme weather conditions and climate changes on power system components oper-
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ation and reliability were reviewed in [21], and the mitigation framework was outlined

for boosting the resilience of electrical networks. In [22], a mathematical framework was

presented to assess the risk of extreme weather cases on the power systems, in which

the performances of system protection devices were evaluated under extreme events. Ad-

ditionally, a risk-based defensive islanding algorithm was proposed in [23] for boosting

the power grid resilience to extreme weather events. However, all of these works only

consider extreme weather conditions. Although severe weather events can cause large

amounts of power interruptions, it is not common to consider these events under nor-

mal operation conditions and the major of electric customers’ interruptions happen under

normal weather conditions.

Recently, statistical analysis techniques were introduced in [27, 28] to analyze the

relationship between the number of power interruptions on electric distribution networks

and common weather parameters, such as temperature, wind, air pressure, and lightning.

The number of power interruptions was predicted based on the total sum of the statistical

model of each weather parameter. However, the power interruptions related with common

weather conditions are essentially the result of combined action of many factors. The

power interruption prediction only based on statistical models might be compromising

due to the various effects of different weather parameters.

This chapter presents a hybrid framework integrating Multilayer Perceptrons (MLPs)

and parametric regression models is for forecasting the daily numbers of power interrup-

tions in smart grid distribution networks using time series of common weather data. The

main contributions of this chapter contain:

1. Both polynomial and exponential regression models are implemented to analyze

nonlinear relationship between power interruptions and common weather parame-

ters;
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2. Derived regression models are integrated as inputs to formulate a MLP neural net-

work to predict the number of power interruptions instead of directly summing

together;

3. A modified Extreme Learning Machine (ELM) based algorithm is proposed for

training the formulated MLP model using real-time monitored power interruptions

data from an electric utility in Florida and common weather data from National

Climatic Data Center (NCDC);

4. Sensitivity analysis is implemented to analyze the various impacts of different com-

mon weather parameters on the number of power interruptions.

3.2 Reliability and Weather Data Collection

In order to analyze the impacts of common weather conditions on the reliability perfor-

mances of the smart grid distribution networks, a series of reliability metrics are collected

from an electric utility in the United States, serving approximately 10 million people

across nearly half of the state of Florida. The reliability metrics collected from the elec-

tric utility are comprised of the daily numbers of sustained interruption (N ), momentary

interruption (M ), System Average Interruption Duration Index (SAIDI), System Average

Interruption Frequency Index (SAIFI), Momentary Average Interruption Frequency Index

(MAIFI), and Customer Momentary Experience (CME). The numbers of N and M play

a key point in reliability analysis, and other reliability metrics can be calculated based

on these values [92]. Therefore, N and M in one utility management area are selected

for reliability analysis in this chapter, and a sample of the daily numbers of N and M is

shown in Figure 3.2.

Weather data is mostly collected from NCDC, which provides monthly, daily, and

even hourly normal weather data summaries. In addition, a source of weather data like
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Figure 3.2: Daily numbers of N and M collected from Jan. 1st 2015 to Apr. 30th 2017
in one utility management area.

lightning is provided by the control center of the electric utility, which installs its own

weather stations centrally located in various management areas. The selected weather

characteristics for analysis contain temperature, precipitation, air pressure, wind speed,

and lightning. All of these data are collected and preprocessed for each utility manage-

ment area in order to analyze their relationship with the daily numbers of N and M .

The power interruption data can be classified into interruptions with exclusion data

and without exclusion data for an entire day. In order to analyze the combined effect

of common weather conditions on the system reliability performance, the daily numbers

of N and M are selected without exclusion data to avoid extreme events. On the other

hand, the weather data is collected hourly to model the data more precisely and improve

the location of the weather source. In the following section, the preprocessed power

interruptions and weather data will be used for formulating the parametric models to

evaluate the effect of each weather parameter on the daily numbers of N and M .
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3.3 Parametric Regression Models between Reliability and Weather

In this section, parametric regression analysis is introduced to analyze the nonlinear re-

lationship between the number of sustained interruptions and each common weather pa-

rameter in one distribution management area. Similarly, the regression analysis can be

expanded for the number of momentary interruptions.

For each utility management area, assume that N is the vector of the daily sus-

tained interruptions in one time period, and x is a common weather parameter vector

in corresponding time series, the relationship between the two can be represented as:

N = f(x,β) + ε, where f(·) is the relationship function; β is the vector of estimation

parameters; and ε are the unobserved random error satisfying ε ∼ N(0, δ2), where δ

is the standard deviation. Two most popular regression models can be implemented for

this analysis including polynomial and exponential regression. For polynomial regression

with the n-th degree, the relationship function can be defined as:

f(x,βpol) = βpol
0 + βpol

1 x+ βpol
2 x

2 + · · ·+ βpol
n x

n. (3.1)

Correspondingly, for two-term exponential regression, the relationship function can

be determined by:

f(x,βex) = βex
0 + βex

1 exp(βex
2 x) + βex

3 exp(βex
4 x). (3.2)

Commonly, based on the known samples (N k,xk), k = 1, ..., Ntotal, the least square

method [93] can be adopted to estimate β, and the estimation can be expressed by:

Ntotal∑
k=1

(N − f(x, β̂)) = min
β

Ntotal∑
k=1

(N k − f(xk,β)), (3.3)

where β̂ is the estimation of β. The goodness-of-fit of polynomial regression with the

n-th degree, n = 1, 2, 3, and two-term exponential regression for each common weather

parameter including temperature, precipitation, air pressure, wind speed, and lightning
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Table 3.1: Goodness-of-Fit of Regression Models for Each Weather Parameter
Weather Parameter Performance Polynomial (1) Polynomial (2) Polynomial (3) Exponential (2)

Maximum

SSE 7.13E+04 6.68E+04 6.63E+04 7.42E+04

Temperature

R-square 0.09367 0.1517 0.1574 0.05683
Adjusted R-square 0.0926 0.1497 0.1544 0.05349
RMSE 9.171 8.877 8.853 9.366

Minimum

SSE 7.47E+04 7.39E+04 7.33E+04 7.38E+04

Temperature

R-square 0.05044 0.06093 0.06798 0.06238
Adjusted R-square 0.04932 0.05872 0.06467 0.05906
RMSE 9.387 9.34 9.311 9.338

Average

SSE 7.30E+04 7.06E+04 7.05E+04 7.06E+04

Temperature

R-square 0.07222 0.1031 0.104 0.1028
Adjusted R-square 0.07113 0.101 0.1008 0.09958
RMSE 9.278 9.128 9.129 9.135

Heat Days

SSE 7.87E+04 7.85E+04 7.85E+04 7.83E+04
R-square 0.0002128 0.002496 0.002849 0.005259
Adjusted R-square -0.0009662 0.0001408 -0.0006875 0.001732
RMSE 9.632 9.626 9.63 9.619

Cool Days

SSE 7.22E+04 7.08E+04 7.08E+04 7.08E+04
R-square 0.08255 0.1006 0.1006 0.1006
Adjusted R-square 0.08147 0.09848 0.09848 0.09848
RMSE 9.227 9.141 9.141 9.141

Precipitation

SSE 6.69E+04 6.61E+04 6.49E+04 6.43E+04
R-square 0.08588 0.0963 0.1133 0.1212
Adjusted R-square 0.08462 0.09381 0.1096 0.1175
RMSE 9.596 9.547 9.464 9.422

Air Pressure

SSE 7.71E+04 7.66E+04 7.57E+04 7.60E+04
R-square 0.02001 0.02647 0.03759 0.03367
Adjusted R-square 0.01886 0.02417 0.03417 0.03024
RMSE 9.536 9.51 9.461 9.48

Average

SSE 7.62E+04 7.51E+04 7.49E+04 7.48E+04

Wind Speed

R-square 0.03019 0.04404 0.04623 0.04843
Adjusted R-square 0.02904 0.04177 0.04282 0.04504
RMSE 9.506 9.444 9.438 9.427

Peak

SSE 7.71E+04 7.66E+04 7.61E+04 7.44E+04

Wind Speed

R-square 0.01996 0.02649 0.03265 0.05445
Adjusted R-square 0.0188 0.02418 0.02921 0.05108
RMSE 9.551 9.525 9.501 9.393

Sustainable

SSE 7.77E+04 7.76E+04 7.72E+04 7.74E+04

Wind Speed

R-square 0.01321 0.01411 0.01847 0.01641
Adjusted R-square 0.01205 0.01178 0.01499 0.01293
RMSE 9.569 9.57 9.555 9.565

Lightning

SSE 6.60E+04 6.31E+04 6.26E+04 6.35E+04
R-square 0.1609 0.1987 0.2041 0.1937
Adjusted R-square 0.16 0.1968 0.2013 0.1908
RMSE 8.824 8.628 8.604 8.66

Remarks: SSE measures the total deviation of the predicted values from the fit to the observed values.
R-square is the square of the correlation between the response values and predicted response.
Adjusted R-square is a modified R-squared that has been adjusted for the number of predictors.
RMSE is the estimate of the standard deviation of the random component in the data.
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is shown in Table 3.1, where each regression model performance is evaluated through

the error metrics including Sum of Squares Due to Error (SSE), R-square, Degrees of

Freedom Adjusted R-Square, and Root Mean Squared Error (RMSE) defined:

• SSE =
∑N total

k=1 wk(xk − fk)2 measures the total deviation of the original values

from the regression fit, where fk is the predicted value derived by the regression

model, and wk is the weighting applied to each data point. SSE closer to 0 indi-

cates that the regression model has a smaller fitting error, which is more useful for

prediction.

• R-square = 1 − [
∑N total
k=1 wk(xk−fk)2]

[
∑N total
k=1 wk(xk−xav)2]

denotes the square of the correlation between

the original and predicted values, where xav is the mean of the original data. R-

square has the unit interval [0, 1], where a value closer to 1 represents that a greater

proportion of variance is accounted by the regression model.

• Adjusted R-square = 1 − [
∑N total
k=1 wk(xk−fk)2](N total−1)
[
∑N total
k=1 wk(xk−xav)2](v)

is a modified type of R-

square, where the residual degrees of freedom v is determined by N total minus the

number of fitted coefficients. The adjusted R-square statistic can take on any value

less than or equal to 1, where a value closer to 1 implies a better regression fitting.

• RMSE =
√
SSE/v is correlated with the fit standard error and the standard error of

the regression model, which is an estimate of the standard deviation of the random

component in the data. Similar with SSE, a RMSE value closer to 0 indicates that

the regression model is more useful for prediction.

In the subsequent subsections, the regression models between N and various weather

parameters are detailed described.
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3.3.1 Temperature

Temperature is an important weather parameter impacting on the reliability performance

of smart grid distribution networks. An increase of the power interruptions can be caused

at relatively low or high temperatures, since the electricity demand will increase due to

the heating/cooling requirements of customers. Moreover, high air temperatures may

strain power infrastructure devices and reduce transmission capacity [94]. In order to

achieve the relationship between temperature andN , a series of temperature characteris-

tics including dry-bulb maximum temperature Tmax, average temperature Tave, minimum

temperature Tmin, heat days H , and cool days C are selected.

For one utility management area, Figure 3.3(a) shows the variations of Tmax, Tave,

and Tmin, and Figure 3.3(b) displays the variations of H and C. Polynomial regression

with the n-th degree, n = 1, 2, 3, and two-term exponential regression are implemented

for analyzing the relationship between each temperature characteristic and N . Based

on the goodness-of-fit results in Table 3.1, for Tmax, Tave, and Tmin, polynomial regres-

sion with 3-th degree has a better performance with less SSE and RMSE, and greater

R-square. Exponential regression with 2 terms has a better performance for H , while,

for C, polynomial regression with 2-rd and 3-th degree and exponential regression with

2 terms have similar performances in modeling fitting. Figure 3.4(a) and (b) present the

polynomial and exponential regression models adapted for analyzing Tmax and C, respec-

tively. The relationship function between NTmax and Tmax can be expressed as: NTmax =

βTmax
0 + βTmax

1 Tmax + βTmax
2 Tmax

2 + βTmax
3 Tmax

3. Correspondingly, the relationship function

between NC and C can be determined by: NC = βC0 + βC1 exp(βC2 C) + βC3 exp(βC4 C).
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3.3.2 Wind Speed

Wind also plays a key role in the reliability analysis of smart grid distribution networks.

The power of wind is directly proportional to the cube of the wind speed. If the wind

reaches high speeds, it can cause damages to distribution networks such as entire trees

blowing over into power lines, which results in broken conductors, broken crossarms,

broken insulators, broken poles, and leaning poles [95]. There are three factors which

attribute to the severity of wind speeds: peak wind speed Wp, average wind speed Wa,

and sustained wind speed Ws.

Figure 3.5(a) plots the variation of Wp, Wa, and Ws for one utility management

area, and Figure 3.5(b) shows the polynomial and exponential regression models fitted

for analyzing the number of NWp corresponding to Wpea. Based on the goodness-of-fit

results in Table 3.1, exponential regression with 2 terms has a better performance for

Wp and Wa, while Ws has a better performance in polynomial regression with 3-th de-

gree. The relationship function modeling of the effect of Wp on NWp can be defined as:

NWp = β
Wp
0 + β

Wp
1 exp(β

Wp
2 Wp) + β

Wp
3 exp(β

Wp
4 Wp).

3.3.3 Precipitation

Precipitation is any product of the condensation of atmospheric water vapor that falls

under gravity, and two main forms of precipitation contain rain Prain and snow Psnow.

When raining density is large, formerly underground cables, vaults, and manholes may

be exposed. Additionally, many power infrastructure equipments may not be sufficient to

cater for heavy rain conditions, especially at ultra-high voltage [96]. On the other hand,

snow occurs when supercooled rain freezes on contact with tree branches and overhead

conductors. Ice buildup on conductors places a heavy physical load on the conductors,

which increases the cross-sectional area exposed to the wind [97]. Since little snow falls
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in Florida, the correlation of raining Prain to NPra is evaluated in this chapter through poly-

nomial and exponential regression models. As shown in Table 3.1, exponential regression

with 2 terms has a better performance with less SSE and RMSE, and greater R-square

for Prain. For this purpose, the following equation is developed for modeling the effect

of Prain on NPra: NPra = βra
0 + βra

1 exp(βra
2 Prain) + βra

3 exp(βra
4 Prain). Figure 3.6(a) plots

the variation of raining precipitation Prain for one utility management area, and Figure

3.6(b) shows the polynomial and exponential regression fittings adapted for analyzing the

relationship between Prain and NPra .

3.3.4 Air Pressure

Air pressure is the pressure within the atmosphere of Earth, which is highly connected

with other weather parameters, such as raining, heat storm, and wind speed. The vari-

ation of air pressure A for one utility management area is plotted in Figure 3.7(a). The

relationship between air pressureA andNA is analyzed by both polynomial and exponen-

tial regression models as shown in Figure 3.7(b). Polynomial regression with 3-th degree

has a better performance for A with less SSE and RMSE, and greater R-square according

to Table 3.1. Therefore, the relationship function between NA and A can be expressed as:

NA = βA0 + βA1 A+ βA2 A
2 + βA3 A

3.

3.3.5 Lightning

Highly-scaled electrical discharges between the cloud and a piece of earth are called light-

ning strikes L. This natural phenomenon may strike the phase conductors, the tower or

shield wires causing backflash, and a piece of nearby ground generating transient over-

voltage. The energy of the lightning flash may exceed the thermal limit of the struck object

causing thermal failure [98]. In addition, the combined effects of strong winds and rain
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are generally accompanied with L, Thus, L can have a random, though important, effect

on the numbers ofNL in distribution networks. Based on the goodness-of-fit performance

results in Table 3.1, for lightning L, polynomial regression with 3-th degree has a better

performance with less SSE and RMSE, and greater R-square. Therefore, the relationship

function between NL and L can be determined by: NL = βL0 + βL1 L + βL2 L
2 + βL3 L

3.

Figure 3.8(a) plots the numbers of L in one utility management area, and both polynomial

and exponential regression models are adopted for analysis of the effect of L on NL as

shown in Figure 3.8(b).

3.4 Power Interruption Forecasting Framework

In this section, taking the polynomial and exponential regression models derived for com-

mon weather parameters as inputs, a MLP based forecasting framework is developed for

forecasting the daily numbers of N and M in smart grid distribution networks. Addition-

ally, a modified ELM based algorithm is proposed to train, validate, and test the proposed

framework.

3.4.1 MLP based Forecasting Framework

A typical MLP network structure is composed of input, hidden, and output layers. The

input layer neurons receive sample data for analysis and the output layer neurons give

the network results out. A MLP network structure is made up by usually one, but oc-

casionally more than one hidden layers between input and output layers. The hidden

layer neurons learn the nonlinear relationship between the inputs and outputs. The math-

ematical expression of the outputs of the MLPs can be defined as follows: Y = F (b +∑m
j=1 vj[

∑n
i=1G(wijxi + bj)]), where xi, i = 1, .., n, is the input value; Y is the output

value; wij is the weight of connection between the ith input neuron and jth hidden neu-
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Figure 3.9: Network structure of the proposed MLP based forecasting framework.

ron; vj is the weight of connection between the jth hidden neuron and output neuron; b

and bj are the bias values of the corresponding output neuron and jth hidden neuron; and

F (·) and G(·) are the activation functions of output and hidden neurons, respectively.

However, large MLPs usually generalize poorly due to the time needed for variable

preprocessing and the possibility of model overfitting [99]. In this chapter, a hybrid model

integrating MLPs and parametric regression models is proposed to analyze the combined

effect of common weather parameters on the numbers of N and M . In the proposed

framework, the input layer of MLP contains both the common weather parameters, such

as Tmax, Tave, Tmin, H , C, Wpea, Wave, Wsus, Prain, A, and L, and corresponding daily

numbers of N and M derived by their regression models. The output layer is for the

forecasted daily numbers of N and M . To restrict the net capacity, one hidden layer is

included in the MLP. The network structure of the MLP based forecasting framework is

shown in Figure 3.9.
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3.4.2 Extreme Learning Machine Algorithm

ELM is an emerging and efficient algorithm for MLP learning [100], where the model

training is transformed into a matrix calculation problem. Assume F (·) to be a constant

function, the MLP model then can be represented in the matrix form:

Y =
m∑
j=1

vj[
n∑
i=1

G(wijxi + bj)] = Hv, (3.4)

where H ∈ Rn×m is the hidden layer output matrix, and v = [v1, ..., vm]T represents the

output weight vector. Since wij , i = 1, ..., n, and bj are determined randomly for each

hidden layer neuron j = 1, ..,m, the objective of ELM algorithm is to calculate v in order

to formulate the MLP model. Given a training set {X,Y }, where X = {x1, ..., xn},

v can be derived by v = H†Y , where H† can be be calculated through orthogonal

projection: H† = (HTH)−1HT .

However, ELM algorithm may have a high training error when inappropriate wij and

bj are selected. In order to boost the training performance of algorithm, a self-adjusting

parameter λ = ‖Y ‖δ, δ ∈ [1, 2], is introduced into the diagonal elements of HTH:

H† = (HTH +λ)−1HT . Therefore, the MLP learning problem is converted into a least

square problem defined as:

min
v
‖v‖δ1 + λ‖Hv − Y ‖δ2 (3.5)

where δ1, δ2 > 0. The modified ELM algorithm intends to minimize both the training

error and the norm of output weights, where λ is a parameter to balance the two. The

procedures of the modified ELM algorithm can be summarized as Table 3.2. The conver-

gence of the proposed ELM learning algorithm can be proved based on the expansion of

Theorem 3.1 in [101]:

Theorem 3.4.1 Assume the level set: L(v0) = {v ∈ Rm : f(v) ≤ f(v0)} be bounded

and F (v) = Hv − Y is semismooth over L(v0). Let vk be generated by the modified
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Table 3.2: Formulated MLP based Forecasting Framework
Parametric Regression Analysis and Modified ELM Algorithm
Phase 1 - Data Collection & Parametric Regression Analysis:

a) Collect the daily numbers of N and M in one utility MA;
b) Collect the common weather parameters including Tmax, Tave,
Tmin, H , C, Wpea, Wave, Wsus, Prain, A, and L for the MA;
for each common weather parameter do

1: Implement f(x,βpol) = βpol
0 + βpol

1 x+ βpol
2 x

2 + · · ·+ βpol
n x

n,
n = 1, 2, 3, for polynomial regression analysis;

2: Implement f(x,βex) = βex
0 + βex

1 exp(βex
2 x) + βex

3 exp(βex
4 x),

for two-term exponential regression analysis;
3: Analyze the goodness-of-fit of each derived regression model;
4: Derive the number of N and M by the optimal regression model.

end for
Phase 2 - ELM based Learning Algorithm:

a) For each hidden neuron j = 1, ..,m, randomly determine its
input layer weights wij , i = 1, ..., n, and the bias value bj;

b) Calculate the hidden layer output matrixH using both common
weather parameter data and corresponding the number of N and
M derived by Phase 1;

c) Define the self-adjusting parameter λ = ‖Y ‖δ, δ ∈ [1, 2];
d) Obtain the output weight vector v by solving the problem:
v = H†Y , whereH† = (HTH + λ)−1HT .
Or equivalently, minv ‖v‖δ1 + λ‖Hv − Y ‖δ2 .

ELM algorithm, then the algorithm terminates in finite iterations or satisfies:

limk→∞‖F (vk)‖ = 0.

3.5 Evaluation of Proposed Forecasting Framework

The implementation of the proposed forecasting framework contains four main parts in-

cluding: 1) data collection & preprocessing; 2) parametric regression analysis; 3) MLP

based model formulation and training; and 4) sensitivity analysis, in which , in which the

flowchart is detailed explained in Figure 3.10.
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Figure 3.10: The flowchart of the formulated MLP based forecasting model for power
distribution networks.
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1) Data Collection & Preprocessing: The sustained and momentary power interrup-

tion data is collected from one utility management area ranging from Jan. 1st 2015 to

Apr. 30th 2017. The interval data is recorded daily, annotated with timestamp. Addition-

ally, one climate station, which is nearest to the central point of this management area,

is selected for collecting hourly common weather data including Tmax, Tave, Tmin, H , C,

Wpea, Wave, Wsus, Prain, and A. The weather data is noted hourly ranging from Jan. 1st

2015 to Apr. 30th 2017. Correspondingly, the hourly lightning strike L data is collected

from the control center of the electric utility located inside this management area.

2) Parametric Regression Analysis: Both polynomial regression with the n-th degree,

n = 1, 2, 3, and two-term exponential regression are implemented for the analysis of the

numbers of N and M in the management area response to various weather parameters.

Based on the goodness-of-fit results in Table 3.1, for Tmax, Tave, Tmin, Ws, A, and L, poly-

nomial regression with 3-th degree has a better performance with less SSE and RMSE,

and greater R-square. Exponential regression with 2 terms has a better performance for

H , Wp, Wa, and Pra, while, for C, polynomial regression with 2-rd and 3-th degrees and

two term exponential regression have similar performances in fitting. Based on these

regression models, the daily numbers of N and M can be derived by model fitting.

3) MLP based Forecasting Framework: The input layer of the formulated MLP net-

work contains all common weather parameters and corresponding daily numbers of N

and M derived by their regression models. The hidden layer is set to be one, and the out-

put layer is for the target numbers of N and M . The proposed modified ELM algorithm

is used for training, validating, and testing the formulated MLP network, in which 70%

of the collected dataset is for the network training, 15% of the dataset is for the network

validation, and the remaining 15% of the dataset is for the network testing.

Figure 3.11(a) presents the actual numbers of N and the predicted numbers of N

derived by statistical models and the proposed MLP based framework, respectively. In
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this figure, we can find that, compared with statistical models, the proposed MLP based

framework derives better predicted numbers of N . In particularly, the proposed MLP

based framework yields a Mean-Squared Error (MSE) reduction of 8.77% relative to sta-

tistical models. Correspondingly, Figure 3.11 (b) compares the predicted numbers of M

derived by statistical models and the proposed MLP based framework with the actual

numbers of M , respectively. We can also see that the proposed MLP based framework

achieves better predicted numbers of M response to statistical models, in which 61.37%

MSE reduction yielded by the proposed MLP based framework. Furthermore, the training

performance and convergence of the modified ELM algorithm for the MLP based frame-

work are shown in Figure 3.12, in which the y-axis describes the variation of MSE for

each epoch.

4) Sensitivity Analysis: The sensitivity of the output to various input perturbations is

an important issue in the design and implementation of the MLP based forecasting frame-

work. Therefore, the sensitivity analysis is implemented to analyze the impact of each

weather parameter on the daily numbers of N and M , respectively. The sensitivity is cal-
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Figure 3.13: Sensitivity analysis of N and M with each weather parameter.

culated by the first-order derivative of system network function with respect to the system

parameters, which denotes the degree of influence of parameter variations on the network

function. Figure 3.13 presents the sensitivity of each weather parameter response to the

daily numbers of N and M , respectively. In this figure, we can find that lightning strike

L is the most important weather parameter that has an influence on the daily numbers

of N and M , while heat day H has the least impact on the numbers of N and M . This

phenomenon can be explained that the most number of N and M was happened ranging

from June to September during one year, where is the raining season for the Florida and

lightning strike happen most frequently. Since the temperature of Florida is almost kept

above 65oF , heating days has little happened during one year.

3.6 Summary

This chapter presents a MLP based framework to forecast the daily numbers of sustained

and momentary interruptions in smart grid distribution networks using time series of com-

mon weather data. A modified ELM based learning algorithm is proposed to train, vali-
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date, and test the proposed framework, whose convergence is proved. Essentially, com-

pared with traditional statistical models, the proposed framework can reduce MSE by

8.77% and 61.37% for sustained and momentary interruption forecasting, respectively. In

addition, we can derive the sensitivity of each common weather parameter with respective

to the daily numbers of power interruptions. For the utility management area in Florida,

we can find that the lightning strike is the most important common weather parameter

impacting on the reliability performance of the smart grid distribution networks, while

the heat degree days have the least impacts. In the future, the other factors like power

system equipment failure rates and aging of distribution network components can also be

integrated as inputs for the proposed framework.
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In this chapter, a systematic survey of existing game-theoretic approaches for mitigat-

ing security threats is proposed for three main smart grid zones: the power system network

infrastructure, advanced metering infrastructure (AMI), and state estimation. Section 4.1

makes an overview of the cyber-phsyical security challenges faced by the three main smart

grid zones. Section 4.2 evaluates the current game theoretic models for the cyber-physical

security in the power system network infrastructure. Section 4.3 compares the game the-

oretic models for the cyber-physical security of the communication networks and smart

meters in AMI. Section 4.4 introduces the game theoretic models for the cyber-physical

security in the power system state estimation. To conclude this chapter, Section 4.5 will

discuss future work and recent progresses.

4.1 Overview

The smart grid is the next generation electrical infrastructure integrated with information

and communication technologies (ICTs), which are large scale, dynamic cyber-physical

systems (CPSs). The ICTs facilitate the grid with effective operation, monitoring and

control, enable predictive maintenance and self-healing responses to system disturbances,

automate maintenance and operation, and promote expanded deployment of renewable

energy sources. However, the large-scale, interconnected nature of smart grid renders the

system susceptible to a range of cyber and physical attacks due to a dramatic increase in

its attack surface.

Given the presence of risks that could potentially cripple the smart grid as it undergoes

an increased shift towards the Internet of Things (IoT) paradigm, identifying and analyz-

ing potential threats that effectively translate risks into successful attacks is essential to

achieve a more robust and resilient grid. However, due to the complex and interdepen-
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dent nature of the different smart grid technologies, various challenges accompany these

diagnostic and corrective efforts, such as the dynamic nature of the grid, the impact on

the control system, and the synergies between cyber and physical functions. More impor-

tantly, and somewhat remarkably, existing CPS security mechanisms are primarily based

on mathematical and engineering principles that ignore the human decision making pro-

cesses of cybercriminals and system administrators. Indeed, cybercriminals are active

agents who engage in an intelligent, dynamic decision-making process when selecting a

target and executing an attack. Likewise, the defenders, system operators, and engineers

also rely on human intelligence in conjunction with available mathematical and software

tools. Beyond these limitations, most of the state-of-the-art works often assume that at-

tackers or defenders act individually, which, in a large-scale CPS, can be a restrictive

assumption. In this respect, game theory is expected to constitute a key analytical tool

for analyzing the strategic interactions between the potential attackers and the smart grid

operators. Game theory is a formal analytical tool as well as a conceptual framework

with a set of mathematical tools, which enable the study of complex interactions among

independent rational players. In recent decades, game theory has been adopted in a wide

number of fields, including economics, politics, and psychology. More recently, game

theory has also become a central tool in the design and analysis of CPSs such as the smart

grid.

In order to design a resilient and secure smart grid, it will have to build on the solid

mathematical tools, in which game theory provides a mathematical framework for analyz-

ing and implementing security solutions. Currently, there is little research in the literature

that comprehensively reviews and evaluates the application of the game-theoretic mod-

els to cyber-physical security issues within the smart grid. The main contribution of this

chapter is to propose a systematic survey of existing game-theoretic approaches for miti-

gating security threats in three main smart grid zones including the power system network
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infrastructure, AMI, and state estimation. Overall, the goal of this paper is threefold:

• identify and explore the cyber-physical security threats targeted at the three smart

grid zones;

• compare the game-theoretic frameworks and solution approaches that can help with

analysis of the security of the smart grid as well as devising proper defense strate-

gies;

• discuss the future opportunities and extension of current game theoretic applica-

tions in the cyber-physical security of the smart grid.

4.2 Game Theory for Cyber-Physical Security in Smart Grid Zone 1

The emergence of the smart grid, which integrate new communication and information

technologies within the power system network infrastructures such as the power genera-

tion, transmission, and distribution systems, has opened new cyber security concerns and

new points of entry for attackers. Moreover, the growth of the smart grid in both scale

and complexity makes it financially and logistically impossible to protect the entire in-

frastructure. In this section, an overview of the cyber-physical security issues targeted at

the power system network infrastructure will be provided. Additionally, the Markov game

model for distributed denial of services (DDoS) in automatic generation control (AGC),

the three-stage Sequence game for the distribution networks integated with DERs, and

the stochastic game for the coordinated cyber-phsyical attack targeted at the transmission

system will be provided.
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4.2.1 Markov Game for DDoS in Automatic Generation Control

1) Automatic Generation Control Model: AGC is load-frequency control with the ad-

ditional objective of economic dispatch (distributing the required change in generation

among units to minimize costs), which is an indispensable part of the “central nervous

system” of a power grid called the energy management system (EMS), and possibly the

only automatic closed loop between the IT and power system of a control area; because

of this, it is subject to attacks propagated through the IT system.

When system frequency deviates from the nominal frequency by a certain threshold,

overfrequency and underfrequency protection relays execute tripping logic defined by a

protection plan that varies from operator to operator. Underfrequency relays perform

underfrequency load shedding (UFLS), which is the sole concFor our studyern of our

study because it results in directly measurable revenue loss. , we adopt Mullen’s UFLS

scheme. The gist of the scheme is, when the system frequency drops by more than 0.35

Hz below the nominal frequency, to shed this much load: 4Pm −4Pe − 0.3/R, where

4Pm is the change in generator’s mechanical power, 4Pe is the change in generator’s

electrical power, and R is the droop characteristic.

The automatic generation controller is an integral controller of gain KAGC . AGC

design is an established discipline with designs dating back to the 1950s; a simple integral

controller seems to be a logical starting point. The UFLS relay in each area decides on

the necessity to shed load, and the amount of load to shed if necessary, using Mullen’s

algorithm. Once the system frequency has stabilized for at least 30 s, the UFLS relays

reconnect the shed loads in the reverse order they were shed. In this sample configuration,

the maximum sheddable loads are capped at 4 p.u. and 1 p.u. for the areas 1 and 2

respectively. “p.u.” stands for “per unit” and is simply the ratio of an absolute value in

some unit to a base/reference value in the same unit. The base load for both areas is taken

to be 1000 MW.
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It is impossible to exhaust all injection patterns, but there is one basic attack pattern:

constant injection. If an attacker injects a constant false ∆f , then it effectively disables

the integral control loop, causing the system frequency to converge to a non-nominal fre-

quency. If the false is positive, then the system will settle on a below-nominal frequency,

causing loads to be shed; otherwise, the system will settle on an above-nominal frequency,

causing generators to be tripped. Both cases lead to cascading failures. Correspondingly,

one basic defense mechanism is saturation filter. We can constrain the attack by limiting

the ∆f input to the integral controller to [−4.5, 3.5] Hz, because at ∆f = −4.5 Hz, not

only should all sheddable loads have been shed, but also all generators would be tripped.

At ∆f = 3.5 Hz, all generators would be tripped.

2) Game Formulation and Results: The security game between the attacker and the

defender is formulated as a stochastic game with a finite state space, and two players

that choose their actions from their respective finite action space; or more formally, as a

6-tuple 〈S,AA,AD,M, UA, UD〉, where:

• S := {s1, s2, ..., sNS} is the system’s state space, which is associated with the

tuple (∆f1,∆f1) consisting of area 1’s frequency deviation and area 2’s frequency

deviation;

• AA := {a1, a2, ..., aNA} and AD := {d1, d2, ..., dND} represent the attacker and

defender’s action space, respectively;

• M(a, d) = [Msi,sj(a, d)]NS×NS which represents the system’s state transition ma-

trix corresponding to attack action a ∈ A and defense action d ∈ D;

• UA(s) := [RA(a, d, s)]NA×ND which represents the attacker’s expected reward

function corresponding to attack action a ∈ A against defense action d ∈ D in

state s ∈ S;
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• UD(s) := [RD(a, d, s)]NA×ND which represents the defender’s expected reward

function corresponding to defense action d ∈ D against attack action a ∈ A in state

s ∈ S.

For each state s ∈ S, the attacker (defender) incurs a net gain (net loss), and the

attacker’s net gain is assumed to be close to the defender’s net loss, and hence the security

games to be zero-sum. The defender’s loss is defined including the cost of load shed

and the costs of false positives. The cost of the expected total load shed in state s under

attack action a and defense action d is defined as E{Pshed(a, d, s)}. And the expected

cost of false positives is cfppfp, where cfp is the cost of a false positive in the same unit

as load shed, and pfp is the probability of getting a false positive. Dynamic programming

is implemented to obtain the stationary optimal strategy (solving a zero-sum matrix game

at each stage).

4.2.2 Three-Stage Sequence Game for Distribution Networks with

DERs

1) Electricity Distribution Networks: Consider a tree network of radial electric distribu-

tion systems G = (N∪{0}, E), whereN denotes the set of all nodes except the substation

(labeled as node 0), and let N := |N |. Let Vi ∈ C denote the complex voltage at node

i, and vi := |Vi|2 denote the square of voltage magnitude. We assume that the magnitude

of substation voltage |V0| is constant. Let Ij ∈ C denote the current flowing from node

i to node j on line (i, j) ∈ E , and `j := |Ij|2 the square of the magnitude of the current.

A distribution line (i, j) ∈ E has a complex impedance zj = rj + jxj , where rj > 0 and

xj > 0 denote the resistance and inductance of the line (i, j), respectively, and j =
√
−1.

The voltage regulation requirements of the DN under nominal on attack conditions

govern that: vi ≤ vi ≤ vi, ∀i ∈ N , where vi = |V i|2 and vi = |V i|2 are the soft lower and
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upper bounds for maintaining voltage quality at node i. Additionally, voltage magnitudes

under all conditions satisfy: µ
i
≤ vi ≤ µi, ∀i ∈ N , where µ and µ are the hard voltage

safety bounds for any nodal voltage, and 0 < µ < mini∈N vi ≤ maxi∈N vi < µ.

We consider constant power loads. Let sci := pci + jqci denote the power consumed

by a load at node i, where pci and qci are the real and reactive components. And let

sgi := pgi + jqgi denote the power generated by the DER connected to node i, where

pgi and qgi are the real and reactive components, respectively. The 3-phase balanced

nonlinear power flow (NPF) on line (i, j) ∈ E is given by:

Sj =
∑

k:(j,k)∈E

Sk + scj − sgj + zjlj,

vj = vi − 2Re(zjSj) + |zj|2lj,

(4.1)

where lj = |Sj|2/vi, and Sj = Pj + jQj denoting the complex power flowing from node

i to node j on line (i, j) ∈ E .

2) Game Formulation and Results: A 3-stage sequential game between a defender

(network operator) and an attacker (external threat agent) is formulated:

• Stage 1 [Security Investment]: The defender chooses a security strategy u ∈ UB

to secure a subset of DERs, where the set of defender actions is: AD := {d ∈

{0, 1}N | ‖d‖0 ≤ B}, where B ≤ |N | denotes a security budget.

• Stage 2 [Attack]: The attacker chooses from the set of DERs that were not se-

cured by the defender in Stage 1, and manipulates their set-points. Let ΨM(d) :=

S(d) × DM(d) denotes the set of attacker actions for a defender’s choice d, where

S(d) :=
∏

i∈Nv(d) Si×
∏

j∈Ns(d){0 + 0j},DM(d) := {δ ∈ {0, 1}N}, andM ≤ |Nv|

denoting the maximum number of DERs that the attacker can compromise. The

attacker simultaneously compromises a subset of vulnerable DER nodes by intro-

ducing incorrect set-points, and increase the loss L.
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• Stage 3 [Defender Response]: The defender responds by choosing the set-points

of the uncompromised DERs and, if possible, impose load control at one or more

nodes according to a strategy φ := [spd, γ] ∈ Φ(u, ψ). Let γ
i
≥ 0 denote the

maximum permissible fraction of load control at node i, and define the set of Stage 3

defender actions: Φ(d, ψ) := S×Γ, where Γ :=
∏

i∈N [γ
i
, 1]. The defender chooses

new set-points spd of non-compromised DERs, and load control parameters i to

reduce the loss L.

The [DAD] game is a sequential game of perfect information, i.e. each player is

perfectly informed about the actions that have been chosen by the previous players. The

equilibrium concept is the classical Stackelberg equilibrium. In this game, uB and Φ(µ, ψ)

denote the set of defender actions in Stage 1 and 3, respectively; and ΨM(µ) denotes the

set of attacker strategies in Stage 2.

4.2.3 Stochastic Game for Coordinated Cyber-Physical Attacks

1) Smart Grid Transmission Networks: Consider a power grid system with NV buses and

NE branches. This system can be modeled using an undirected graph G := (V , E) with

NV vertices and NE edges. The set of vertices V = {v1, v2, ..., vNV} represents NV nodes

in the graph that can include generation plants, transformers, substation devices, and cus-

tomers. The set E = {e1, e2, ..., eNE} of edges encompasses NE edges that correspond to

transmission lines. Thus, the total number of elements (vertices and edges) of the system

that must be protected against cyber-physical attacks is NG = NV +NE .

Consider an attacker that seeks to disrupt the system by distributing its finite attack

resources over one or more elements of the graph to maximize the physical impact on

the system. The resources owned by the attacker can include a) personnel or hackers that

are assigned to the attack, b) technological resources such as advanced tools or malwares
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to disrupt the power grid, and c) economic resources among others. Due to the resource

limitation, we define CA as the maximum number of attacks that can be carried out at

a time, each of which corresponds to a specific attack. For example, the attacker may

launch a DoS attack over poorly protected wireless channels to block the communication

between power grid sensors and remote estimators. Alternatively, the attacker may plan to

launch a physical attack on a high voltage (HV) transformer. Thus, the action space A of

the attacker contains all possible methods of allocating CA attacks over the NG elements

of the graph.

In order to maximize the system resiliency against such attacks, the defender needs

to allocate its limited defense resources over the NG elements of the graph to reinforce

operational elements or to repair disabled elements. Similarly, the defense resources can

include a) personnel such as users, administrators, and support personnel, b) technological

resources such as advanced tools or softwares to reinforce operational elements or to re-

pair broken elements of the power grid, and c) economic resources such as investments in

new infrastructures or nodes, among others. Let CD be the maximum number of defense

mechanisms that can be implemented at a time, each of which is dependent on the type of

the attack and the element disrupted. For instance, for false data injection attacks on the

automatic generation control system, the defense mechanism can be to implement satura-

tion filters. Alternatively, the defender needs to build some barriers and fortification for

preventing physical attacks on critical infrastructures. Briefly, the defender should make

sensible decisions about how to allocate finite resources over elements of the graph. Let

D be the action space of the defender, then, it conditions all possible methods to distribute

CD defense mechanisms over the NG elements of the graph.

In the literature, the physical impact of an attack on the system is measured by the

cost of shed load following the failure of elements. In order to analyze the physical

impacts of various attacks, attacks on the system can be classified into two categories:

62



isolated and coordinated. The former can only destroy one element of the graph at a time,

while the latter can target two or more elements. A coordinated attack that can collapse

a combination of elements will naturally have a more detrimental impact, as opposed to

a single, isolated attack. For the system impacted by coordinated attacks, load shedding

must be performed in order to regain stability.

2) Game Formulation and Results: We now mathematically analyze and identify the

interactions between the attacker and the defender using the advanced tools of stochastic,

noncooperative game theory. In particular, we formulate a two-player stochastic game

in normal form, Ξ = 〈S,A,D, RA, RD〉, in which the players are the attacker and the

defender. This game is played over a finite state space and each player has a finite number

of actions to choose from. The main components of the game include:

• S := {s1, s2, ..., sNS} represents the transmission network’s state space;

• A := {a1, a2, ..., aNA} and D := {d1, d2, ..., dND} represent the attacker and de-

fender’s action space, respectively;

• RA(s) := [RA(a, d, s)]NA×ND (S × A × D → R) which represents the attacker’s

expected reward function corresponding to attack action a ∈ A against defense

action d ∈ D in state s ∈ S;

• RD(s) := [RD(a, d, s)]NA×ND (S×A×D → R) as the defender’s expected reward

function corresponding to defense action d ∈ D against attack action a ∈ A in state

s ∈ S.

For the power grid composed of NG elements to be protected, the actions of both

the attacker and the defender are constrained by a finite amount of resources. Thus,

the attacker and the defender can only implement CA attacks and CD defense mech-

anisms, respectively, at a given time. We define each attack action vector ai ∈ A,

i = 1, ..., NA, as a method of allocating an attacker’s finite resources over NG elements:
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ai = [cAi,1, c
A
i,2, ..., c

A
i,NG

]T , where
∑NG

j=1 c
A
i,j = CA. 0 ≤ cAi,j ≤ CA, j = 1, 2..., NG ,

represents the number of attacks related to action ai that target element j of the grid.

Similarly, each defense action vector di ∈ D, i = 1, ..., ND, conditions one method

to distribute its limited defense resources over NG elements: di = [cDi,1, c
D
i,2, ..., c

D
i,NG

]T ,

where
∑NG

j=1 c
D
i,j = CD. 0 ≤ cDi,j ≤ CD, j = 1, 2..., NG , denotes the number of defense

mechanisms in action di that the defender plans to commit to element j of the grid.

In this game, the defender’s expected reward is just the negative of the attacker’s ex-

pected reward, denoted by RD(a, d, s) = −RA(a, d, s). The proposed stochastic game Ξ

is therefore a zero-sum stochastic game. Given a state s ∈ S, the attacker and the defender

independently choose actions a ∈ A and d ∈ D, and receive immediate expected rewards

RA(a, d, s) and RD(a, d, s). The state then transits to the next state s′ based on the fixed

transition probability Ts,s′(a, d). New expected rewards RA(a, d, s′) and RD(a, d, s′) will

be obtained in the new state. We have specified the immediate rewards of the attacker

and the defender at each stage game, but not how these rewards are aggregated into an

overall payoff. To solve this problem, the most commonly used aggregation method is the

discounted-sum reward. For an attack action a and a defense action d, the discounted-sum

reward of the attacker is the discounted sum of expected rewards at each time step t, with

a discount factor γ ∈ [0, 1):

Q :=
∞∑
t=0

γtRA(a, d, s(t)), (4.2)

where γt represents the weight of the immediate reward at the time step t, given by

RA(a, d, s(t)), which denotes the relative importance of the immediate reward in the

overall payoff. Small values of γ emphasize near-term gains while large values emphasize

future rewards. Correspondingly, the defender’s discounted-sum reward is the negative of

the number.
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In this game, the attacker aims to maximize the discounted sum of expected rewards

Q, while facing the defender who intends to minimize it. In order to solve for the two

players’ optimal strategies of a stochastic game in normal form such as Ξ, one popular so-

lution is that of a closed-loop Nash equilibrium. A Nash equilibrium is a state of the game

such that no player can increase its reward by unilaterally deviating from this equilibrium

state. Formally, the Nash equilibrium of the proposed stochastic game Ξ is defined as

follows:

Definition 4.2.1 Consider the proposed stochastic game Ξ = 〈S,A,D, RA, RD〉, where

expected rewards RA and RD are derived by solving the optimal load shedding prob-

lem (1), a Nash equilibrium solution of the proposed game is a two-tuple of mixed strate-

gies {π∗A,π∗D}, where π∗A = {π∗A(s)|s ∈ S} and π∗D = {π∗D(s)|s ∈ S}, such that, for

all attack mixed strategies πA(s) and defense mixed strategies πD(s), s ∈ S, it satisfies

the following set of inequalities in state si ∈ S, i = 1, ..., NS:

Q(πA(s1), ...,π
∗
A(si), ...,πA(sNS ),πD(s1), ...,πD(si), ...,πD(sNS ))

≥ Q(πA(s1), ...,π
∗
A(si), ...,πA(sNS ),πD(s1), ...,π

∗
D(si), ...,πD(sNS ))

≥ Q(πA(s1), ...,πA(si), ...,πA(sNS ),πD(s1), ...,π
∗
D(si), ...,πD(sNS )).

(4.3)

4.3 Game Theory for Cyber-Physical Security in Smart Grid Zone 2

The Advanced Metering Infrastructure (AMI) is a key component of the Smart Grid Zone

2 as shown in Figure 4.1, which integrates smart meters, information/communications

networks and meter data management systems (MDMS). Smart meters of the AMI pro-

vide customers with accurate load-profile information and billing data to help manage

their electricity consumption. MDMS is the portion of the AMI that enables the electric

utilities to create a real-time market. Furthermore, the power system outages can be de-

tected for service providers through meter measurements derived by MDMS. However,
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Figure 4.1: The network model of smart grid AMI and its connections with customers,
markets and service providers.

the large scalability and cyber-physical nature of the AMI unavoidably exposes the smart

meters and the communication network to a range of cyber and physical attacks. In this

section, we first provide an overview of the cyber-physical security issues for the AMI.

Then, we study, in detail, the application of static noncooperative games for analyzing

data confidentiality attacks targeting at the AMI communication network and the use of

Stackelberg games for detecting electricity theft in smart meters. We conclude with in-

sights on future game-theoretic approaches for enhancing cyber-physical security in the

AMI systems.

4.3.1 Introduction to Cyber-Physical Security Threats in AMI

The AMI enables the two-way communication between the electric utilities and the end

customers of power. This, however, opens up two main surfaces for attack vectors and

intruders including the smart meters and the AMI communication network. Smart me-

ters are the primary point of data collection for smart grid energy consumption, which

facilitate a dense and large-scale metrology of the smart grid operating characteristics in
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voltage, frequency, power factor, etc. Moreover, smart meters simplify the automated

connection and disconnection of consumers to the smart grid. The design of the smart

meter incorporates two network communication radios, and often a local infrared serial

port for maintenance, which results in a broadened cyber attack surface. Physical access

to the meters adds another attack surface since internal serial links are typically unsecured

and based on common protocols. A series of the theoretical and demonstrated cyber and

physical attacks target at the smart meters are listed as follows:

• Meter Manipulation (P) that modifies the smart meter measurements to AMI through

physical tampering.

• Meter Spoof and Energy Fraud Attack (P) that can occur by gaining the smart meter

ID through physical access.

• Denial of Service (DoS) (C) that compromises smart meters such that they are not

capable of responding to any request sent by a customer or energy supplier, which

can be accomplished through tampering with the routing of the smart meter traffic.

• False Data Injection Attack (FDIA) (C) that introduces arbitrary and/or certain er-

rors inside a normal smart meter traffic activity causing invalid measurements that

are unacceptable in a smart grid network.

• De-pseudonymization Attack (C) that compromises anonymization and privacy of

smart meter data.

• Man-in-the-middle Attack (C) where rogue agents can place themselves in between

end consumer and electric utility.

The vulnerabilities of the AMI communication network can be exploited or disabled

by attacks on the underlying communication infrastructure, insertion of false user re-

quests, unauthorized alteration of demand side management schedules and illegal market
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Table 4.1: Cyber-Physical Attacks Targeted at AMI

Attack Type Attack Target

Smart Meter AMI Communication Network

Physical •Meter Manipulation
•Meter Spoof and Energy Fraud Attack • Crypto Key Flash Extraction

Cyber
Availability • Denial of Service (DoS) • Distributed Denial of Service (DDoS)

Integrity • False Data Injection Attack (FDIA) • False Data Injection Attack (FDIA)

Confidentiality • De-pseudonymization Attack
•Man-in-the-middle Attack

•WiFi/ZigBee Attack
• Internet Attack
• Data Confidentiality Attack

manipulation; all of which can impact system operations and result in both power short-

age, loss of trust and negative economic impacts. The potential and demonstrated attacks

aimed at compromising the AMI communication network are listed as follows:

• Crypto Key Flash Extraction (PC) that accesses AMI device hardware directly with

specific tools to extract data.

• Distributed Denial of Service (DDoS) (C) that compromises AMI data collection

units, preventing the normal communication between Wide Area Network (WAN)

and Neighbourhood Area Network (NAN).

• False Data Injection Attack (FDIA) (C) that manipulates power system’s state mea-

surements or readings by injecting false load data via AMI/sensors.

• WiFi/ZigBee Attack (C) that attacks the WiFi/ZigBee networks in Home Area Net-

work (HAN) of the AMI.

• Internet Attack (C) that compromises the AMI software and systems installed inside

the electric utility.

• Data Confidentiality Attack (C) that attacks device hardware in the AMI in order to

compromise data sent from these devices to the electric utility.

A summary of the different types of cyber and physical attacks targeted at smart me-

ters and communication network of the AMI are shown in Table 4.1. To give more insights
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on these open cyber-physical security problems and related game-theoretic solutions, in

what follows, first, we provide a step-by-step tutorial on how static noncooperative game

theory can be applied for modeling the interactions between the defender and the at-

tacker implementing data confidentiality attacks in AMI Communication Network.Then,

we overview the use of Stackelberg games for detecting potential electricity theft through

compromising smart meters. This section is concluded with a brief overview on other

existing game-theoretic techniques for protecting the AMI against cyber and physical at-

tacks as well as with a discussion on the future outlook of game theoretic applications in

the cyber-physical security of the AMI.

4.3.2 Game Theoretic Models for AMI Communication Network

Due to the sensitivity of importance of the smart meter data, the main security objectives

of the AMI communication network is to guarantee data confidentiality. However, the

large number of devices deployed in the AMI renders the management of the overall

security a challenging task. In this subsection, a two-player noncooperative security game

is proposed for the AMI communication network. The attacker’s objective is to attack the

AMI devices in order to compromise data sent from these devices to the electric utility.

Correspondingly, the defender intends to choose which security mode to enable on each

device in order to protect the maximum amount of data from the attacker.

1) System Model: Consider the AMI communication network as a tree-pattern archi-

tecture T with one root node, where nodes represent the AMI devices. We refer the root

node of T by 1, and let V = {1, 2, ..., Y } be the set of nodes in T , where Y is the total

number of nodes. Each node i ∈ V \ {1} collects data from its children nodes Ch(i),

aggregates it, and finally sends it to its parent node f(i). We consider that there exists N

aggregation levels, and let Li be the set of nodes that belong to the i-th aggregation level,

69



where each node can only belong to one aggregation level. Smart meters are denoted by

nodes that belong to LN .

Data on each node i has a value or security asset Wi, which quantifies the loss in data

confidentiality if node i is attacked successfully. These values can be quantified as a result

of the application of a security risk assessment method [102]. The parent node i collects

data from all its children Ch(i). A node could be responsible of processing and analyzing

a set of the data collected from its children. The result of this analysis is then sent with

the aggregated data from children nodes to the parent node. Therefore, we consider that

Wi ≥
∑

j∈Ch(i)Wj . The value of data on node i is the sum of the value of data generated

by the node in addition to the value of data collected from its children. Finally, let L(T )

be the set of leaves of the tree T . We refer by∇k
i , the number of children of node i ∈ Lm

at level k > m, and W τ
i the security asset of the parent of node i ∈ Lm at level r < m.

As notations, let∇k
i = 1 and W k

i = Wi,∀i ∈ Lk.

For data confidentiality attacks in the AMI communication network, the attacker aims

to intercept data by attacking the nodes without being detected. If the attacker wants to

intercept data sent by node i, it can either attack node i or attack the parent node of i. We

consider that encryption keys are stored in a cryptoprocessor that cannot be accessed by

the attacker. The inbound data arrive at a device and is decrypted using the appropriate

cryptographic key, processed and then encrypted using a different key. The attacker has

no access or control on the decryption and encryption processes. Correspondingly, on

each node, the defender can choose one of a set of security modes available on that node.

The defender chooses an encryption level of outbound data on each node. For example,

if 100 packets are sent from the node, the defender chooses how many packets need

to be encrypted. We consider that data on each communication link is encrypted with

different encryption keys or using different encryption algorithms. At the root node, data

is encrypted for storage after being analyzed.
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2) Game Theoretic Formulation and Results: To determine the interactions between

the attacker and the defender, a two-player static noncooperative game is formulated in.

For the attacker, the strategy is defined as the probability pi of attacking node i, which is

subject to a budget constraint
∑

i pi ≤ P ≤ 1(0 ≤ pi ≤ 1,∀i). In contrast, the defender’s

strategy is defined as the encryption rate si of the packets at node i, which is subject to a

budget constraint
∑

i si ≤ S ≤ Y (0 ≤ si ≤ 1, ∀i). We consider that on each node, an

Intrusion Detection System (IDS) is installed with a detection rate of a. The IDS can be

a combination of hardware and software detection capabilities.

In general, defense mechanisms deployed to protect a device depend on the value

of data generated, stored, or processed by that device. The efficiency, robustness and

therefore the cost of the countermeasures deployed by administrators to protect devices

are often proportional to the value of the assets on these devices. The attacker’s effort to

compromise data on a device increases with defense measures deployed to protect that

device which depend on the value of its assets. Therefore, we consider that the cost of

attacking and encrypting data on node i are proportional to the value of the data Wi and

are given by CaWi and CeWi respectively, where 0 ≤ Ca, Ce ≤ 1.

To intercept data sent by node i, the attacker can choose either to attack node i or its

parent node f(i). Therefore, the probability of compromising unencrypted data sent by i

with an encryption level of si forWi without being detected is given byWi(pi+pf(i))(1−

a)(1 − si). We assume that 1 − a > Ca. Otherwise, the attacker has no incentive to

attack since the cost to attack is greater than the payoff when the attack is successful and

undetected. The utility functions UA and UD of the attacker and the defender respectively
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are as follows:

UA(p, s) =
∑
i∈V

(Wi(pi + pf(i))(1− a)(1− si)− piCaWi)

=
∑
i∈V

(Wipi(1− a)(1− si)− piCaWi) +
∑

i∈V,i/∈L−N

∑
j∈Ch(i)

piWi(1− a)(1− sj)

(4.4)

UD(p, s) = −
∑
i∈V

(Wipi(1−a)(1−si)+siCeWi)−
∑

i∈V,i/∈L−N

∑
j∈Ch(i)

piWi(1− a)(1− sj)

(4.5)

The attacker and the defender have complete knowledge of the architecture of the sys-

tem. The Nash equilibrium is considered as the most profitable strategy profile that gives

each player the maximum utility given the actions of other players. Let p = (p1, ..., pY ) ∈

P and s = (s1, ..., sY ) ∈ S be the strategy profiles of the attacker and the defender respec-

tively, where P and S refer to the strategy spaces of each player. The Nash equilibrium

of the proposed game is defined as follows:

Definition 4.3.1 A Nash equilibrium is a strategy profile (p∗, s∗) in which each player

cannot improve his utility by altering his decision unilaterally. More precisely, we have:

UA(p∗, s∗) ≥ UA(p, s∗),∀p ∈ P , and UD(p∗, s∗) ≥ UA(p∗, s),∀s ∈ S.

3) Future Opportunities: The noncooperative game model studied in [102] can be

used as a basis to analyze data confidentiality attacks on the AMI communication net-

work. In fact, several future opportunities for extending the work in [102] can be ex-

plored:

• Studying the impact of false alarm rates for the detection of attacks on players’

behaviors.
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• Introducing additional players and strategies into the game that enables analyzing

the data confidentiality attack targeted at multiple AMI devices simultaneously, or

studying choosing different possible encryption algorithms on each device.

• Proposing dynamic noncooperative game models that can capture the instantaneous

state changes in the AMI communication network.

• Analyzing the impact of both the attacker’s and defender’s information sets on the

optimal attack and defense strategy selections.

• Proposing a practical implementation that can be used as an AMI communication

testbed to evaluate the defender’s Nash equilibrium strategies against the data con-

fidentiality attacks.

In the security domain, the defenders often deploy defense countermeasures based on

the value of the assets available to protect and potential threats from attackers. Due to

strict defense budgets, defenders must consider the possible actions of attackers while

intelligently allocate defense resources. Clearly, noncooperative games could become a

foundation for analyzing this type of interactions between attackers and defenders, and

eventually identify the optimal defense strategy.

4.3.3 Game Theoretic Methods for Smart Meters

The proliferation and cyber-physical nature of smart meters have rendered them vulner-

able to both cyber and physical attacks. Particularly, electricity theft, such as Meter Ma-

nipulation and FDIA, where malicious attackers alter usage measurements collected by

smart meters, is a major challenge of these attacks [103–105]. According to the U.S. En-

ergy Information Administration, in 2016, between 1.5 and 2% of electricity in the U.S.

was lost due to theft, costing utilities as much as $6 billion annually. Traditional research
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on electricity theft detection has focused on employing specific devices, like wireless sen-

sors and balance meters, which have a high electricity theft detection accuracy [106,107].

In [106], an AMI intrusion detection system was proposed to accurately detect electricity

theft, where anti-tampering sensors were embedded into smart meters. A set of trusted

balanced meters were implemented in the distribution network of smart grid in order to

detect electricity theft [107]. Although these research works do reduce the risks due to

unmeasured and non-billed usage of electricity, they do not identify specific meters being

compromised. Furthermore, these methods significantly increase the cost of deploying

and operating millions of smart meters.

Additionally, statistics and machine learning have been used to train a classifier based

on detailed electricity usage measurements [108–110]. Average historical electricity us-

age under the same conditions was used for constructing an electricity theft detector; an

alarm was raised if the average usage was below a predefined detection threshold. Prin-

cipal Component Analysis (PCA) based anomaly detection was proposed in [108], where

anomalies were deviations from the normal usage behavior. In [109], usage data was

proved to be non-stationary, and Auto-Regressive Integrated Moving Average (ARIMA)

forecasting methods were proposed to validate readings. A Consumption Pattern-Based

Energy Theft Detector (CPBETD) that employed a multi-class Support Vector Machine

(SVM) for each customer was formulated in [110]. However, these works ignored the

attack models of potential thieves, and the effectiveness of anomaly detector was only

evaluated based on a dataset of attack examples.

1) Game Formulation and Results: Consider an electric utility serving a set of cus-

tomers, denoted byN := {1, ..., N}. Assuming these customers have a similar preference

of electricity usage, they can be separated into two classes: normal customers and thieves.

LetM := {1, ...,M} ⊆ N be the set of thieves among the N customers of an electric

utility. Then, a single leader, multi-follower Stackelberg game is formulated in [111] be-
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tween the utility and M thieves to characterize and analyze strategic interactions between

the two. In this game, a subset from N customers is chosen for an anomaly detection

test D, aiming to reduce NTLs. Based on the limited sampling rate l, the utility intends

to maximize detection probability and minimize false positives, while the thieves interact

with one another using a non-cooperative game to identify optimal quantities of electricity

to steal in response to the utility’s detection strategy.

The noncooperative game of M thieves is formulated, Ξ := 〈M, (Ai)i∈M, (Ri)i∈M〉,

whereM is the set of M thieves. Ai is the set of actions available to thief i ∈M, where

ai ∈ Ai is represented by the expected amount of consumed and stolen electricity by

thief i, denoted by qi and qSi , respectively. Additionally, Ri(ai) is the reward function of

thief i under action ai. Thus, thief i selects an action ai := {qi, qSi } that maximizes its

reward Ri, which can be defined as below:

Ri(qi, q
S
i ) := B(qSi )− pDi (l, qSi )P (qSi ), (4.6)

where B(·) represents the utility’s electricity billing function; B(qSi ) gives the amount of

the electricity bill that is not paid by thief i; pDi (l, qSi ) denotes the probability of thief i

being detected when the sampling rate is l and the amount of stolen electricity is qSi ; and

P (qSi ) indicates the penalty function activated upon the successful detection of thief i for

stealing a power of qSi .

One popular solution of the thieves’ game is the Generalized Nash Equilibrium (GNE):

Definition 4.3.2 Consider the noncooperative game Ξ := 〈M, (Ai)i∈M, (Ri)i∈M〉. GNE

is a state of the game in which each electricity thief aims at maximizing its rewards. As a

response to optimal chosen actions of other thieves, a thief aims at choosing the actions,

in the restricting subset dictated by the choice of other thieves that maximizes their own

reward.
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Under the derived GNE of M thieves, the utility needs to selects a defense action, a0,

that maximizes its reward, R0. It is assumed that the utility’s defense action is determined

by two variables including: (1) Detection mechanism,D, used to identify electricity theft,

and (2) Customer sampling rate, l. The objective of the utility is to maximize the follow-

ing problem:

max
D,l

R0 :=
∑
i∈M

pDi (l, qSi )P (qSi ), s.t. 0 ≤ pEi (l, qSi ) ≤ pEimax, 0 ≤ l ≤ lmax, (4.7)

where qSi is derived from the GNE of the proposed noncooperative game Ξ; pEi (l, qSi )

represents the false alarm probability for thief i; pDimax gives the constraint of the false

alarm probability for thief i; and lmax indicates sampling rate limitation for the utility. The

Stackelberg solution concept is adequate for games with hierarchy in which the leader

enforces its strategy and the followers respond, rationally (i.e. optimally), to the leader’s

strategy. The optimal response of M thieves to an action a0 by the utility is written as

Atheft(a0) = {a∗1, ..., a∗M}. This optimal strategy denotes the equilibrium strategy profile

of the attackers as a response to the defender’s strategy. In this regard, a∗0 ∈ A0 is a

Stackelberg equilibrium if it minimizes the utility’s reward function, R0. In other words,

R0(a
∗
0,Atheft) ≤ R0(a0,Atheft),∀a0 ∈ A0. (4.8)

In the Stackelberg equilibrium, the optimal customer sampling rate l and the threshold

selected for the the detection mechanism D can be derived; then they determine the de-

tection probability pDi and false alarm probability pEi , i ∈ N . In the thieves’ game,

M thieves make their decisions simultaneously at each step of the evolutionary process,

playing a GNE between themselves. A multimodal Genetic Algorithm is implemented

for computing the Stackelberg equilibrium for the utility.

2) Further Opportunities: Essentially, the work in [111] establishes how the Stack-

erlberg game theory can be used to study the adversarial nature of the electricity theft

76



problem. The game-theoretic framework proposed in this work can help analyze equilib-

rium consumer and distributor choices in scenarios where the assumptions on consumer

utilities and distributor’s profit function are applicable. Moreover, one can envision sev-

eral future directions that build upon [111], as follows:

• Investigating the impact of the privacy-preserving demand response on the optimal

sampling rate selection.

• Exploring how the sampling interval of smart meters affects the ability of the dis-

tribution utility to identify anomalies and electricity theft.

• Developing utility functions that capture not only the expected electricity stolen, but

also the prices during energy trade and the costs for the communication overhead.

• Analyzing the interactions between the M electricity thieves using classical coop-

erative games.

• Proposing effective algorithms that can identify optimal and stable associations be-

tween the electric utility that acts a leader and millions of electricity thieves as

followers.

Beyond [111], the application of Stackerlberg games for detecting electricity theft is also

discussed in [112], in which the objective of the attacker is set to find the optimal amount

of electricity stolen, while minimizing the expected probability being detected. A sum-

mary of the different applications of game theory for cyber-physical security in the AMI

is shown in Table 4.2.

4.4 Game Theory for Cyber-Physical Security in Smart Grid Zone 3

The State Estimation (SE) of the smart grid is an essential function for the wide area

system monitoring and control in the Smart Grid Zone 3, which is an important part
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Table 4.2: Summary of Game Theoretic Techniques for Security in AMI.
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Figure 4.2: The network model of smart grid state estimation and its connections with
system monitoring and control.

of the modern Energy Management System (EMS), as shown in Figure 4.2. The smart

grid SE uses the redundancy of measurement data provided by SCADA to improve the

accuracy of data, automatically exclude error messages caused by random interference,

and estimate or forecast the running state of the system. In this section, an overview of the

mathematical model of SE and the false data inject attack targeted at SE will be provided.

Then, the application of Stackelberg games for analyzing FDIAs in the smart grid SE will

be studied in detail. Finally, insights on future game-theoretic approaches for enhancing

cyber-physical security within the SE systems will be discussed.

4.4.1 Introduction to Security Threats in State Estimation

A smart grid SE uses multiple power measurements collected throughout the grid to es-

timate the system states. The relation between the measurement vector z, and the vector

of system states θ, in a linearized SE model can be expressed as z = Hθ + e, where H

is the measurement Jacobian matrix and e is the vector of random errors assumed to fol-

low a normal distribution N(0,R). Using a Weighted Least Square (WLS) estimator, the
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estimated system states are given by θ̂ = (HTR−1H)−1HTR−1z. Using the estimated

states, an estimate of the measurement vector can be calculated as ẑ = Hθ̂ = Sz, and

residual r = z− ẑ = (In−S)z = Wz, where In is the identity matrix of size (n× n),

and n is the total number of collected measurements.

The WLS estimator is the maximum likelihood estimator for locating the system

states, but the estimated system states have zero robustness against faulty data, either

caused by random network errors or malicious attacks. Evidently, a secure and efficient

power system requires an accurate state estimation that truthfully reflects the system op-

erating state. The state estimator commonly uses a bad data detection (BDD) mechanism

to filter fault data, which typically implements the Chi-squares test over the sum of the

squares of the residuals. ‖r‖22 =
∑n

i=1 r
2
i follows a χ2 distribution with n − Nθ degrees

of freedom, where Nθ is the number of states to be estimated; the residuals must satisfy

‖r‖2 ≤ τ , where τ is a detection threshold. Hence, for a measurement set to be con-

sidered free from bad data, the residuals must satisfy ‖r‖2 ≤ τ , where τ is a detection

threshold.

However, BDD is unable to detect some structured collaborating injection attacks that

are disguised as normal measurements. One common cyber attack in smart grids is FDIA,

which distorts the measurements collected by the system operator through either physical

device compromise or remote cyber-data injection. Due to its ability to compromise the

state estimation, an adversary capable of false-date injecting can have devastating effects,

such as exploiting profits from electricity price manipulation in the power market and

causing a regional blackout, which could potentially induce financial chaos. The Stackel-

berg game-theoretic approach in [113] is described in detail in order to give more insight

about cyber-physical security problems.
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4.4.2 Stackelberg Game for False Data Injection Attacks in SE

1) Game Formulation and Results: Consider M attackers implementing a FDIA targeted

at the smart grid SE, and the defender intends to secure a set of measurements in order to

decrease the aggregate effect of the FDIA on the system. In [113], a single leader, multi-

follower Stackelberg game between the defender and the M attackers is formulated to

capture and analyze their strategic interactions. In this game, the defender acts as a leader

who selects a set of measurements to defend the SE from the potential FDIA attacks.

The M attackers interact with one another by using a followers’ noncooperative game to

identify the optimal FDIA attack based on the defender’s strategy.

The noncooperative game between M attackers is formulated in its normal form as

follows: Ξ = 〈M, {Zm}m∈M, {Um}m∈M〉, whereM is the set of M attackers, Zm is the

set of FDIA actions available to attackerm ∈M, and Um is the utility function of attacker

m. Thus, each attacker, m ∈ M, selects an attack vector, zm ∈ Zm, that maximizes its

utility, Um. For each attacker m, let Km denote the subset of measurements that can be

attacked by m. Hence, Zm can be represented by a column vector with elements equal

to 0 except for those in Km which can take values within a compact range reflecting the

range of magnitude of the attack.

The utility function Um for each attacker m can be defined as the financial benefit

obtained by virtual bidding. In virtual bidding, attacker m buys and sells Pm MW at

buses im and jm in day ahead, respectively, while, conversely, attacker m sells and buys

Pm MW at, buses im and jm, respectively. Thus, the goal of attacker m ∈ M is to

optimize:

max
zm∈Zm

Um(zm, z
−1
m ) = [(µRTim − µ

DA
im ) + (µDAjm − µ

RT
jm )]Pm − cm(zm),

s.t. ‖W zm‖2 +
M∑

l=1,l 6=m

‖W zl‖2 ≤ εm,
(4.9)

where cm(zm) is the cost of attack, and z−1m is the strategy vector of all players except m.
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Based on the equilibrium of the followers, the grid defender selects a defense vector

a0 that determines which measurements to be secured from the FDIA attacks. The objec-

tive of the defender is to minimize a cost function that captures the variation between the

day ahead and real-time prices on all buses in the system:

min
a0∈A0

U0(am,a−0) = PL

√√√√ 1

N

N∑
i=1

(µRTim − µ
DA
im

)2 + c0(a0),

s.t. ‖a0‖2 ≤ B0,

(4.10)

where c0(a0) is the cost of defense, PL is the total system load, and B0 is the limit on the

number of measurements that the operator can defend simultaneously.

The Stackelberg solution concept is adequate for games with a hierarchy in which

the leader enforces its strategy and the followers respond, rationally (i.e., optimally), to

the leader’s strategy. The optimal response of the attackers to action a0 played by the

defender is denoted by Ratt(a0) , {z∗1(a0), ..., z
∗
M(a0)}. This optimal strategy denotes

the equilibrium strategy profile of the attackers as a response to the defender’s strategy.

In this regard, a∗0 ∈ A0 is a Stackelberg equilibrium if it minimizes the leader’s (i.e.,

defender’s) utility function U0. In other words,

U0(a
∗
0,Ratt(a∗0)) ≤ U0(a0,Ratt(a0)),∀a0 ∈ A0. (4.11)

2) Further Opportunities: The work in [113] provides a Stackerlberg game theoretic

approach in order to analyze the strategic interactions between the defender and multiple

attackers, which intend to inject FDIA into the smart grid SE. Based on this work, several

future directions can be pursed, such as:

• Investigating the multiple-stage sequence game by integrating the defender’s FDIA

mitigation strategy if the attack is successfully detected.

• Developing utility functions that capture not only the expected price changes during

energy trade, but also the physical impact for the grid operation.
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• Analyzing the interactions between the M FDIA attackers by using classical coop-

erative games.

4.5 Summary

In this survey, a comprehensive overview on the applications of noncooperative game

theory for analyzing the cyber-physical security of the smart grid, which was divided into

three zones, was provided. The smart grid analysis was carefully drawn from a broad

range of cyber and physical security issues spanning key elements such as the network

layer, AMI and state estimation. In each zone, the main cyber-physical security threats

were presented and an elaborate discussion on how noncooperative game theory can be

applied to address these challenges was presented. Moreover, several future directions

for extending these approaches and adopting advanced game theoretic techniques was

provided, so as to reduce the gap between theoretical models and practical implementa-

tions of future smart grids. Essentially, from the surveyed works, it can be clearly noted

that noncooperative game theory has a strong potential to provide solutions for pertinent

cyber-physical security problems within the smart grid; however, these theoretic applica-

tions face many design challenges. It can also noted that many of the existing works have

focused on classical static noncooperative games. Hence, for future works, it is of interest

to investigate dynamic game models (both in cooperative and noncooperative settings)

and their applications within smart grid systems.
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In this chapter, the risk assessment of the coordinated cyber-physical attacks against

power grids is investigated using a novel game-theoretic approach. Section 5.1 makes an

overview of the cyber-physical security issues in the smart grid. Section 5.2 presents the

attack-defense scenario in the power grid as well as the formulated stochastic game. Sec-

tion 5.3 introduces an optimal load shedding technology to quantify the attacker and de-

fender’s rewards. Then, Section 5.4 derives the Nash equilibrium of the proposed stochas-

tic game, and computes the risk of the coordinated cyber-physical attack faced by the grid

based on the probability of successful attack and corresponding physical impacts. Section

5.5 presents the simulation results while Section 5.6 concludes the chapter.

5.1 Overview

The modern electric power grid constitutes the backbone of any nation’s economy. The

cyber-physical nature of its critical infrastructures facilitates its effective operation, moni-

toring and control, but renders it to be a high priority target for a range of malicious attacks

in cyber and physical domains [114]. Indeed, the security of the grid is not guaranteed

at all times, and some element failures can cause significant problems for the produc-

ers and consumers of electricity. For example, the Blackout on August 14, 2003 [115]

showed that even a single transmission line outage has cascading effects on an area with

an estimate of 50 million people and 61,800 megawatts (MW) of electric load in the

Northeastern and Midwestern United States and the Canadian province of Ontario. The

North American Electric Reliability Corporation (NERC) traditionally requires that the

bulk electric power grid in an operation state should be able to transition into another op-
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eration state in case of one element failure, commonly referenced as the N-1 contingency

criteria [116].

Compared with accidental single element failures, the well-organized coordinated

cyber-physical attacks can not only lead to severe physical damages to the grid, but may

also potentially nullify the functionality of existing defense mechanisms. A class of coor-

dinated cyber-physical attacks was presented in [117] whereby physical transmission line

attacks and corresponding false data injection attacks were considered. False data injec-

tion attacks, as a special case of cyber attacks, can be implemented into the power grid

state estimation to mask the line outages caused by these physical attacks, and potentially

exasperate outages to trigger cascading failures. As a result, risk analysis of coordinated

attacks and devising defense countermeasures are both challenging and desirable.

Risk assessment is identified as a critical part of the security framework by most power

grid standards and guidelines [118]. Attack graph is a common starting point for most of

the work in this area [50, 119–121]. An attack graph-based framework was developed

in [120] to assess the risk faced by the power grid control systems, in which the cyber

attack targeted at control systems was graphed in a tree structure, and the risk was quanti-

fied according to existing defense mechanisms. In [121], a privilege graph was introduced

to analyze all potential attack paths that can be exploited by the attacker in the advanced

metering infrastructure (AMI) system, and an exposure metric was derived for evaluat-

ing the vulnerability of the system. In [122], a mathematical risk assessment framework

was proposed as an alternative to attack graphs for analyzing coordinated cyber attacks

against the supervisory control and data acquisition (SCADA) system of the power grid.

This work defined the risk of coordinated cyber attacks as the product of probability of

successful cyber intrusion and resulting power grid impacts.

Furthermore, due to the multi-faced decision making process involved in the power

grid protection against coordinated cyber-physical attacks, a noncooperative game-theoretic
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approach was introduced in [123] to analyze the interactions between an intelligent at-

tacker and the grid defender. Also, the attack probability to various elements of the grid

at the game’s equilibrium was used to assess the risk associated with them. In [124], a

zero-sum static game between a malicious attacker and the grid operator was proposed

to compute optimal defense budget allocation strategies that seek to protect physical in-

frastructures of the power grid against physical attacks. Risk faced by each physical

infrastructure was determined by corresponding defense budget allocation. In [125], a

general-sum game-theoretic framework was proposed to explore and evaluate strategies

for the power grid defender to protect the grid against a variety of physical and cyber

attacks, where the attack and defense resource limitations were considered. Optimal at-

tack/defense resource allocation strategies at the game’s equilibrium were used for risk

analysis of each power grid element.

However, the works in [123–125] depend on static game frameworks, in which the in-

teractions and decision making processes between the attacker and defender are assumed

to be one-shot events. In [36, 51], the dynamic game theory was introduced for modeling

the attack-defense scenarios in the power grid while factoring in the dynamic nature of

the power grid protection. The Nash equilibrium of the formulated dynamic game was

derived for guiding the grid defender to optimally protect power grid elements at different

system states.

The main contribution of this chapter is to develop a new game-theoretic framework

for assessing the risk faced by a power grid in terms of coordinated cyber-physical at-

tacks. In order to characterize the dynamic nature of the grid protection, this problem is

formulated as a stochastic budget allocation game between a malicious attacker and the

grid defender. An optimal load shedding problem is proposed to quantify the amount of

shed load under coordinated attacks representing their physical impacts on the power grid.

Taking these physical impacts as the two players’ rewards, a novel learning algorithm is
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devised to enable the two players to reach the Nash equilibrium of the game while maxi-

mizing their respective minimum rewards in a sequence of stages. The attacker’s budget

allocation strategies at such game’s equilibrium are implemented to assess the vulnera-

bility associated with each grid element. Furthermore, the risk of a coordinated cyber-

physical attack faced by the whole power grid at various states can be evaluated based on

the information about the successful attack probability to various elements. Simulation

results using the IEEE 9-bus system are presented to illustrate the proposed framework

and deriving different risk under different attack/defense budget limitations.

5.2 Problem Statement and Game Formulation

In this section, we first present the problem of power grid protection against coordinated

cyber-physical attacks and then, formulate a stochastic budget allocation game between

the attacker and defender. Main notations are listed in Table 5.1.

5.2.1 Problem Statement

We consider an electric power grid system consisting of NB buses including Ng gener-

ation buses and Nl load buses and NT transmission lines. The network topology of this

system can be abstracted as a digraph G(V , E), where V with size NB denotes the set of

all power buses (vertices), and E denotes the set of NT transmission lines (edges). The

total number of elements (vertices and edges) of the system that must be defended against

coordinated cyber-physical attacks is NG = NB +NT .

A malicious attacker aims to disrupt the system by allocating its limited attack budgets

over NG system elements, in order to bring the maximum physical damage to the system.

The budgets possessed by the attacker can contain 1) human budgets such as hackers and

terrorists, 2) technological budgets such as electrical tools and malwares, and 3) economic
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Table 5.1: Summary of Notations
Symbol Description

i a power grid element’s index
NB the number of power buses
Ng the number of generation buses
Nl the number of load buses
NT the number of transmission lines
NG the total number of system elements to be protected
G electric power grid digraph
V vertex set of power grid digraph
E edge set of power grid digraph
A(D) attacker’s (defender’s) action space
a(d) attacker’s (defender’s) action vector

ΠA(ΠD) attacker’s (defender’s) mixed strategy space
πA(πD) attacker’s (defender’s) mixed strategy
BA(BD) the maximum attack (defense) budget
bAi (bDi ) attack (defense) budget implemented for element i
RA(RD) attacker’s (defender’s) expected reward
S power grid state space
s a power grid’s state
T state transition probability
pfail
i fail probability of normal element i
prec
i recovery probability of failed element i
γ discount factor to the overall reward
Q the discounted-sum reward

budgets. Let A be the action space of the attacker, and BA be the maximum budget that

can be implemented for attacking NG system elements at a time. Each attack action

a ∈ A can be defined as a vector of allocating BA budgets over NG system elements:

a = [bA1 , b
A
2 , ..., b

A
NG

]T , each element denotes the budget that action a implements for

the corresponding element, and
∑NG

i=1 b
A
i = BA. For example, the attacker may allocate

a part of technological budgets on launching a false data injection attack over poorly

protected wireless channels to block the communication between command control center

and remote senors. Alternatively, the attacker may plan to distribute several economic

budgets on a physical attack on high voltage (HV) transmission lines.
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Correspondingly, in order to minimize the risk of the attacks against the system, the

system defender (administrator) needs to distribute its finite defense budgets over NG

system elements to protect normal elements or to repair broken elements. The budgets

possessed by the defender can contain: 1) human budgets such as users, administrators,

and maintenance staff, b) technological budgets such as advanced operation systems and

monitoring softwares, and c) economic budgets. LetD be the action space of the defender,

and BD be the maximum defense budget that can be implemented at a time. Then, each

defense action d ∈ D conditions one vector to distribute its limited defense budgets over

NG elements of the system: d = [bD1 , b
D
2 , ..., b

D
NG

]T , whose element is the defense budget

in action d that committed to the corresponding element, and
∑NG

j=1 b
D
j = BD. Therefore,

the attacker’s (defender’s) action space A (D) includes all possible methods of allocating

its limited budgets over NG system elements.

5.2.2 Game Formulation

The interactions and decision making processes between the attacker and defender are

analyzed using the dynamic noncooperative game theory [57, 67–69, 126]. In partic-

ular, we formulate a two-player, discrete time stochastic budget allocation game Ξ =

〈S,A,D, RA, RD, T 〉, whose key elements are shown as follows:

• S: Power grid state space, where each state s ∈ S is associated with the status of

NG grid elements.

• A: Action space of the attacker, where each attack action a ∈ A represents a

method of allocating the attack budget over NG grid elements.

• D: Action space of the defender, where each defense action d ∈ D conditions a

defense budget allocation over NG grid elements.
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• Π(A) (Π(D)): Mixed strategy space of the attacker (defender), where each mixed

strategy πA ∈ Π(A) (πD ∈ Π(D)) yields a probability distribution over action

space A (D).

• RA(s,a,d) (RD(s,a,d)): Reward function for the attacker (defender), under a

pair of attack and defense actions (a,d) at state s ∈ S.

• Ts,s′(a,d): State transition probability from state s ∈ S to state s′ ∈ S under a pair

of attack and defense actions (a,d).

• pfail
i (a,d): Fail probability for normal element i failing under a pair of attack and

defense actions (a,d).

• prec
i (a,d): Recovery probability for failed element i recovering under a pair of

attack and defense actions (a,d).

The game is played over a finite state space S, where each state is an enumeration

of the status of NG power grid elements in order. For instance, if we use ”1” and ”0”

to denote the normal and failed statuses, respectively. Two states then can be defined as:

state s1: {1,1,...,1,1} for all elements being operated normally, and state s2: {0,0,1,...,1,1}

for all elements being operated normally except elements 1 and 2. The state transition

probability Ts,s′(a, d) is derived from corresponding probabilities pfail
i (a, d) and prec

i (a, d),

i = 1, ..., NG, based on state s and s′. For example, Ts1,s2(a, d) = pfail
1 (a, d)×(1 −

pfail
2 (a, d))×(1− pfail

3 (a, d))×· · ·×(1− pfail
NG

(a, d)).

This game proceeds in time steps. In each time step of the game, the attacker takes

an action a ∈ A, and, at the same time, the defender takes an action d ∈ D. The

pair of players’ actions (a,d) will bring a reward for each player at the current state

s ∈ S . Assume the attacker seeks to maximize the physical damage towards the system

under the pair of actions (a,d), while the defender intends to minimize this damage. The
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attacker’s reward will be the negative of the defender’s reward at each time step, where

RA(s,a,d) = −RD(s,a,d).

Thus far, the immediate rewards at each time step are defined for both players, but the

proposed stochastic game Ξ still proceeds. In order to quantify the attacker and defender’s

overall rewards in Ξ, two players’ immediate rewards derived at each time step should be

aggregated together. A popularly used method for aggregating these immediate rewards

is the discounted-sum method [127]. For a pair of attack and defense actions (a,d), the

overall reward of the attacker can be defined the discounted sum of immediate rewards at

each time step, with a discount factor γ ∈ (0, 1):

QA =
∞∑
t=0

γtRA(s(t),a,d), (5.1)

where γt represents the relative importance of the reward at the time step t in the overall

reward QA. Since the defender’s reward is the negative of the attacker’s reward at each

time step, the defender’s overall reward is just the negative of the attacker’s overall reward,

where QD(s,a,d) = −QA(s,a,d). Therefore, the proposed stochastic game Ξ is a zero-

sum stochastic game.

The attacker and defender’s optimal strategies for the proposed stochastic game Ξ are

characterized by the concept of a closed-loop Nash equilibrium [68, 126]:

Definition 5.2.1 The pair of attack and defense mixed strategies (π∗A,π
∗
D) is said to be a

closed-loop Nash equilibrium of the proposed stochastic game Ξ = 〈S,A,D, RA, RD, T 〉,

if, for all attack and defense strategies π(A) ∈ Π(A) and πD ∈ ΠD, we have in state
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si ∈ S, i = 1, ..., NS:

QA(πA(s1), ...,π
∗
A(si), ...,πA(sNS ),

πD(s1), ...,π
∗
D(si), ...,πD(sNS ))

≥ QA(πA(s1), ...,π
∗
A(si), ...,πA(sNS ),

πD(s1), ...,πD(si), ...,πD(sNS )),

QD(πA(s1), ...,π
∗
A(si), ...,πA(sNS ),

πD(s1), ...,π
∗
D(si), ...,πD(sNS ))

≥ QD(πA(s1), ...,πA(si), ...,πA(sNS ),

πD(s1), ...,π
∗
D(si), ...,πD(sNS )).

(5.2)

The existence of a closed-loop Nash equilibrium for stochastic games is known only

in some very special cases [128]. However, for the proposed stochastic game Ξ, if the at-

tacker and defender’s mixed strategies are limited to stationary strategies, we can present

the existence of a closed-loop Nash equilibrium. First, the stationary strategy is defined

as follows:

Definition 5.2.2 For the proposed stochastic game Ξ = 〈S,A,D, RA, RD, T 〉, a station-

ary strategy is one in which the rule of choosing a mixed strategy is the same in each

system state s ∈ S, where the attacker and defender’s mixed strategies satisfy for ∀s ∈ S,

πA(s) = πA(s(t)), and πD(s) = πD(s(t)), ∀t.

Now, we can present the existence of Nash equilibrium in stationary strategies for the

proposed stochastic game Ξ.

Theorem 5.2.3 For the proposed stochastic game Ξ = 〈S,A,D, RA, RD, T 〉, if it sat-

isfies that action sets A and D are finite and state transitions T are dominated by some

probability measures on S, there exists a stationary Nash equilibrium for each discount

factor γ ∈ (0, 1).
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This theorem was proved in a more general form in [129], in which the players’ re-

wards and the discount factor γ may rely on time, and the state space S is a measurable

space. If we assume that action sets A and D are finite and transition probabilities T are

dominated by some probability measures on S, the proposed stochastic game Ξ becomes

as a special case of stochastic games given in [129].

5.3 Optimal Load Shedding

We now calculate the attack and defender’s rewards RA and RD at each time step of the

proposed stochastic game Ξ, which are determined by the physical damage under the pair

of attack and defense actions (a,d). In the literature [130–132], such physical damage

can be quantified by the cost of load that must be shed due to element failures, in which

some load must to be cut off to avoid a cascading failure. For the power grid composed

of NB buses including Ng generation buses and Nl load buses, let p = [pg;pl] be the

power distribution over NB buses, where pg ≥ 0 represents the power generation over

Ng generation buses and pl ≤ 0 represents the load distribution over Nl load buses.

Additionally, let z = [zg; zl] be the power assignment changes over NB buses due to

element failures, where zg represents the re-dispatched power at Ng generation buses and

zl represents load to be shed at Nl load buses. Finally, let ul be the load cost vector of

load buses, an optimal load shedding strategy then can be derived by solving the following

optimization problem:
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min
z,θ

L = ul
Tzl,

s.t. ΓTB sin(Γθ)− (p+ z) = 0,

pgmin ≤ pg + zg ≤ pgmax,

zgmin ≤ zg ≤ zgmax,

pl ≤ pl + zl ≤ plmax,

θmin ≤ Γθ ≤ θmax,

cmin ≤ B sin(Γθ) ≤ cmax,

(5.3)

where pgmin ≥ 0 and pgmax ≥ 0 represent, respectively, the minimum and maximum

outputs at given generation buses. zgmin ≤ 0 represents the maximum power can be

reduced at given generation buses for a time step, and zgmax ≥ 0 represents the maximum

power can be increased at given generation buses for a time step. plmax ≤ 0 refers to

important load that cannot be shed at given load buses. θ is the phase angle at each bus.

θmin and θmax represent the minimized and maximized limitations of the phase angle at

each bus, respectively. Γ is the incidence matrix for the topology of the power grid, and

B is the diagonal matrix whose diagonal entries correspond to line admittances. cmin and

cmax independently represent the minimized and maximized power limitations of each

branch.

The first constraint of the formulated problem gives the physical power flow equa-

tions that must be satisfied during the load shedding, where the voltages at NB buses are

assumed to be fixed. For Ng generation buses, the minimum output of some generation

buses is an important constraint because of the cogeneration, where they must generate

certain power to ensure the heat supply. Additionally, the output of each power plant can-

not exceed its maximum output. Therefore, the second constraint gives the limitations for

generation buses about their minimum and maximum outputs. Additionally, the ramping

94



capability also exists in generation buses because the power plants need certain time to

increase or decrease their outputs. The constraint for the ramping capability of generation

buses is given in the third constraint. For Nl load buses, in order to ensure the uninter-

rupted power supply to certain load, there may be some important load can not be shed at

any time for load buses, which is shown by pl + zl ≤ plmax of the fourth constraint. And

pl ≤ pl + zl in the fourth constraint ensures that the load at given load buses can only be

shed, not added. In order to keep the power grid in a stable state, the phase at NB buses

and NT transmission line flows are also required to be in certain range, which are given

in the fifth and sixth constraint, respectively.

For a given time step t, a pair of attack and defense actions (a,d) will cause the state

(topology) change of the power grid, which is represented by the incidence matrix Γ.

Therefore, the incidence matrix Γ should be updated according to the current power grid

state. For different power grid states, we can derive different incidence matrices to repre-

sent the topology of the power grid. Then, the cost of shed load under the attack, denoted

by L, will be equal to ulTzl derived by solving (7.3). The attacker’s reward is then given

byRA(s(t),a,d) =
∑

s′∈S Ts,s′(a,d)L(s′), and the defender’s rewardRD(s,a,d) is just

negative of RA(s,a,d).

5.4 Game Solution and Risk Assessment

With the two players’ rewards computed, the proposed stochastic game Ξ can be solved

by characterizing the closed-loop Nash equilibrium for each state s ∈ S . At the Nash

equilibrium, one player’s strategy is the optimal strategy to maximize the minimum over-

all rewards under the other player’s optimal strategy, and the optimal attack and defense

budgets allocated at NG power grid elements can be derived. Moreover, the probability

of successful attack a ∈ A can be derived according to the two players’ optimal budget
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Figure 5.1: Flowchart of the proposed algorithm for deriving the Nash equilibrium of
the stochastic budget allocation game Ξ.

allocation strategies at the Nash equilibrium of the game. The risk of the coordinated

cyber-physical attack faced by the power grid is then defined as the product of the proba-

bility of successful attack and its corresponding physical impact on the grid.

5.4.1 Game Solution

Since the proposed stochastic game Ξ is a zero-sum game, we can first derive one player’s

mixed strategies at the Nash equilibrium, and the other’s mixed strategies can be derived

in the same way. Here, we first focus on the attacker, and assume the following overall

reward Q as QA. As shown in [126], the attacker’s Nash equilibrium strategies can be

derived recursively through the following dynamic iterations. Given an initial overall

reward Q0, the optimal overall reward Q∗ for the attacker can be derived iteratively as
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follows:

Qt+1(s,a,d) = RA(s,a,d) + γ
∑
s′∈S

Ts,s′(a,d)V (s′), (5.4)

V (s′) = max
πA

min
d
πTA(s′)Qt(s

′,a,d). (5.5)

The attacker’s stationary strategyπ∗A(s), ∀s ∈ S derived by (5.5) is the optimal strategy at

Nash equilibrium. However, one of the drawbacks of this method is that, during each iter-

ation, the Q-value is only updated by immediate rewards derived at the current time step,

but immediate rewards derived at previous steps are ignored. Therefore, the algorithm’s

computational complexity grows exponentially with the bus and transmission line size of

the power grid, and will make it impractical for grids with reasonable sizes to be solved

by this algorithm. This chapter introduces a changeable learning rate αt = 1/(t+ 1)ω

in [67] for each time step t, for ω ∈ (0.1, 1), into the above algorithm. Using the learn-

ing rate αt, two new recursions are defined for computing the optimal discounted sum of

expected rewards Q∗ at time step t, as follows:

Qt+1(s,a,d) = (1− αt)Qt(s,a,d) + αt(R
A(s,a,d)

+γ
∑
s′∈S

Ts,s′(a, d)× V (s′)),
(5.6)

V (s′) = max
πA

min
d
πTA(s′)Qt(s

′,a,d), (5.7)

for a given initial condition Q0. (5.7) can be formulated as a linear constrained opti-

mization problem. And the attacker’s stationary strategy π∗A(s), ∀s ∈ S derived by the

following problem is the Nash equilibrium strategy:

max
πA

V (s′),

s.t. πTA(s′)Qt(s
′,a,d) ≥ V (s′), ∀d ∈ D.

(5.8)

The fixed points of (5.6) and (5.7), V ∗ andQ∗, lead to the optimal maxmin solution for

the attacker. Correspondingly, the defender’s Nash equilibrium strategy π∗D(s), ∀s ∈ S
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can be obtained by solving the dual of the linear constraint optimization (5.8):

min
πD

Vdual(s
′),

s.t. πTD(s′)Qt(s
′,a,d) ≤ Vdual(s

′),∀a ∈ A.
(5.9)

For the proposed stochastic games Ξ, the strong max-min property in [?] proves that

strong duality applies and Vdual(s
′) is equal to V (s′). Therefore, the tuple of stationary

strategies (π∗A(s),π∗D(s)), ∀s ∈ S, obtained by (5.8) and (5.9) is the Nash equilibrium

that we are looking for each system state of the power grid. The flowchart of computing

the Nash equilibrium of the proposed stochastic game Ξ is detailed presented in Fig. 5.1.

However, in order to derive the pure strategy Nash equilibrium, a ε-greedy technology

is introduced to select the attack/defense action at each time step. With ε-greedy, the

attacker (defender) selects at each time step a random action with a fixed probability,

0 < ε < 1, instead of selecting greedily one of the learned optimal actions with respect

to the Q-function:

a(d) =


random action from A(D), if ξ < ε,

optimal solution of problem (5.8)((5.9)), otherwise,

(5.10)

where 0 ≤ ξ ≤ 1 is a uniform random number drawn at each time step.

The risk faced by the power grid is defined as the product of the probability of suc-

cessful attacks and corresponding physical impacts on the grid, which can be taken as the

cost of the shed load under the given attack action. Since the tuple of Nash equilibrium

strategies (π∗A(s),π∗D(s)) gives the optimal attack and defense action selection strategy

over the two players’ action spaces, the probability Pr(s,a) of successful attack action

a ∈ Aatt at state s can be defined as follows:

Pr(s,a) =
∑
d∈D

π∗A(s,a)π∗D(s,d)
∏
i∈T

pfail
i (a,d), (5.11)

where π∗A(s,a) and π∗D(s,d) represents the probability of selecting attack action a and

defense action d in the tuple of Nash equilibrium strategies (π∗A(s),π∗D(s)) at state s,
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respectively. T represents the set of grid elements targeted by attack action a. The risk

faced by the power grid at state s is therefore shown as follows:

Γ(s) =
∑
a∈A

Pr(s,a)L(a), (5.12)

where L(a) is the cost of load that must be shed under successful attack action a, which

is derived by solving (7.3).

5.4.2 Risk Assessment

For a given state s ∈ S , with the tuple of Nash equilibrium strategies (π∗A(s),π∗D(s))

computed, the optimal defense budget allocation for element i of the power grid at the

Nash equilibrium of the proposed game Ξ can be formulated as follows:

BDi (s) =
∑
d∈D

bDi (d)π∗D(s,d), (5.13)

where i = 1, ..., NG, and bDi (d) represents the defense budget implemented for element i

in defense action d. Similarly, the optimal attack budget allocation for grid element i at

the game equilibrium can be formulated for state s shown as follows:

BAi (s) =
∑
a∈A

bAi (a)π∗A(s,a), (5.14)

where i = 1, ..., NG, and bAi (a) represents the attack budget implemented for element i

in attack action a. Therefore, the vulnerability of the power grid can be assessed with

respect to the ranking of grid components regarding the attack budget ratio BAi /B
A being

allocated.

5.5 Simulation Results and Analysis

To illustrate the application of the stochastic game theoretic approach to the risk assess-

ment of coordinated cyber-physical attacks, the IEEE 9-bus system [133] is taken as the
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test system. We consider that the attacker can take both physical attacks and denial-of-

service (DoS) attacks to disrupt the transmission lines of the system, while the defender

must implement proper defense mechanisms such as building barriers and implementing

filters, to reinforce normal transmission lines and repair broken lines. For clarity, con-

ciseness, and easy illustration of this case study, the attack and defense budgets, indepen-

dently denoted by BA and BD, are considered as dimensionless quantities, i.e., quantities

without any physical units. In the test system, 6 types of single attacks and 15 types of co-

ordinated attacks are investigated. The amount of shed load following each of successful

attacks is listed in Table 5.2. Table 5.2 shows that coordinated attacks can lead to more

load to be shed than single attacks, and attack 7-9, 13-15, 17 and 19-21 are ten coordi-

nated attacks that can cause more physical damages on the grid than other coordinated

attacks. Thus, the attack action space A contains above ten coordinated attacks, where

a1 for Line 1 and 2, a2 for Line 1 and 3, a3 for Line 1 and 4, a4 for Line 2 and 4, a5

for Line 2 and 5, a6 for Line 2 and 6, a7 for Line 3 and 5, a8 for Line 4 and 5, a9 for

Line 4 and 6, and a10 for Line 5 and 6. Similarly, the defense action space D includes ten

corresponding defense actions.

With the two players’ action spaces and rewards computed, we intend to derive the

Nash equilibrium of the proposed stochastic game in stationary strategies for each state

of the power grid. Here, eleven grid states are considered including state s1: {1,1,1,1,1,1},

state s2: {0,0,1,1,1,1}, state s3: {0,1,0,1,1,1}, state s4: {0,1,1,0,1,1}, state s5: {1,0,1,0,1,1},

state s6: {1,0,1,1,0,1}, state s7: {1,0,1,1,1,0}, state s8: {1,1,0,1,0,1}, state s9: {1,1,1,0,0,1},

state s10: {1,1,1,0,1,0}, and state s11: {1,1,1,1,0,0}, where ”1” and ”0” independently de-

note the normal or failed status of transmission lines in order. Given the discount number

γ = 0.5, here, we assume that BA = BD = 10, and pfail
i = [bAi /(1 + bAi )]× [1/(1 + bDi )]

and prec
i = [bDi /(1 + bDi )] × [1/(1 + bAi )], where bA(D)i represents the attack (defense)

budget implemented on Line i.
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Figure 5.2: The defense budget allocation strategies for the test system at the Nash equi-
librium of the proposed game from state s1 to state s11.
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Table 5.2: Shed Load due to Attacks in the IEEE 9-Bus System

Attack No. Attack Target Shed Load Attack No. Attack Target Shed Load
(MW) (MW)

1 Line 1 0 12 Line 2 and 3 0
2 Line 2 0 13(a4) Line 2 and 4 352
3 Line 3 0 14(a5) Line 2 and 5 132
4 Line 4 0 15(a6) Line 2 and 6 27
5 Line 5 0 16 Line 3 and 4 0
6 Line 6 0 17(a7) Line 3 and 5 361
7(a1) Line 1 and 2 120 18 Line 3 and 6 0
8(a2) Line 1 and 3 376 19(a8) Line 4 and 5 220
9(a3) Line 1 and 4 232 20(a9) Line 4 and 6 328
10 Line 1 and 5 0 21(a10) Line 5 and 6 135
11 Line 1 and 6 0

Fig. 5.2 presents the defender’s optimal budget allocation strategies for the test system

at the Nash equilibrium of the proposed game from state s1 to state s11. In this figure, we

can see that different defense budget allocation strategies are derived in various system

states. For instance, at state s1, the defender focuses on distributing its budgets on Lines

1, 3, 4 and 5, which are critical transmission lines that can cause more than 300 MW of

load must be shed if failed. In contrast, the defender shifts its focus to Lines 2 and 6 at

state s7, which can only lead to 27 MW of load to be shed if failed. This observation can

be explained according to the difference between state s1 and s7. At state s1, all transmis-

sion lines of the grid are operated normally. Thus, the defender should implement more

budgets on protecting critical transmission lines that can lead to severe physical damages

if failed. However, at state s7, Lines 2 and 6 have already been out of service. Although

Lines 2 and 6 can cause less physical impacts on the system if failed, the defender need to

implement more budgets on repairing them to avert a cascading failure on other transmis-

sion lines. Furthermore, in all broken states from s2 to s11, Lines 2 and 6 are implemented

of more than 26% budgets, while, in normal state s1, none budget is distributed on these

two lines. This observation shows that Lines 2 and 6 would took important roles if some
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Figure 5.3: The attack budget allocation strategies for the test system at the Nash equi-
librium of the proposed game from state s1 to state s11.

test system lines broken.

Fig. 5.3 presents the attacker’s optimal budget allocation strategies for the test system

at the Nash equilibrium of the proposed game from state s1 to state s11. In Fig. 5.3, we can

also find that the attack budget allocation strategies at the Nash equilibrium varies with

different system states. However, compared with the defender’s optimal budget allocation

strategies, the attacker implements its budgets on only one or two transmission lines from

state s2 to s11, which are broken states. This observation can be explained based on less
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attack budgets are owned by the attacker for allocation. Therefore, the attacker should

implement more budgets on limited critical transmission lines to increase the probability

of the successful attack action. Furthermore, from state s2 to s11, the attacker distributes

its main budgets on broken transmission lines to disrupting the repair of the broken trans-

mission lines. For instance, at state s2, the attacker distribute its almost 50% budget on

Lines 1 and 50% budget on Lines 2. And the attacker shifts its focus to Lines 1 and 3 at

state s3.

The attacker and defender’s Nash equilibrium strategies from state s1 to state s11

for the test system have been derived by solving the proposed stochastic game. The

two players’ optimal budget allocation strategies can be used to assess and quantify the

associated risk faced by the test system for the corresponding state. Here, we assume that

BA = BD = 10, and Fig. 5.4 presents the quantified risks faced by the test system from

state s1 to state s11 with various discount factors γ. In this figure, the x-axis represents

the discount factor γ ranging from 0 to 0.9, and the y-axis shows the corresponding risk

(MW). In this figure, we can see that different quantified risks are derived as we vary γ.

Small values of γ emphasize near-term gains while large values emphasize future rewards.

If γ = 0, the proposed stochastic game becomes a static game, where only the current

state is considered. For instance, at states s2, s4, s6, s7, and s9, as we increase γ from 0

(static game) to 0.9 (stochastic game), the risk reduction reaches up to 87.99%, 87.89%,

87.57%, 82.76%, and 87.41%. Although, at states s5, s8, and s10, the risk is increased

as we increase γ from 0 to 0.9, the risk increase only reaches up to 2.76%, 0.22%, and

1.47%.

The attack and defense budgets, denoted by BA and BD are also key contributors to

the risk variation. Given the discount factor γ = 0.5, Fig. 5.5 presents the risk variation

at state s1 of the proposed game for the test system with respect to various budgets of the

attacker and defender. In this figure, we can see that the risk faced by the grid diminishes
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Figure 5.4: The risk in each of eleven states for the test system with the discount factor
γ ranging from 0 to 0.9.
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Figure 5.5: The risk at state s1 of the proposed game for the test system with respect to
the various budgets of the attacker and defender that can be implemented at a time.

accordingly with the increase of BD. However, the reduction rate of the risk will be

gradually decreased. For instance, for BA = 10, the increase of BD from 10 to 40 yields

13.09 times of risk reduction than the increase of BD from 40 to 70. On the contrary,

to increase the probability of successful attacks and corresponding risks, the increase of

Batt is much less effective. For example, for BD = 70, the addition of BA from 10 to 40

yields the almost same risk increase with the addition of BD from 40 to 70. The above

quantitative analysis provides a basis for the investment of the defense budget BD and

optimal defense budget allocations.

5.6 Summary

In this chapter, we have presented a novel game-theoretic approach for the risk assess-

ment of coordinated cyber-physical attacks against power grids, while considering the

finite budget owned by the attacker and defender that will have an important influence
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on the assessment. We have formulated a two-player zero-sum stochastic game between

the attacker and defender in which each player seeks to maximize its respective minimum

rewards under the opponent’s optimal strategy. In order to quantify their rewards, the

optimal load shedding technology is introduced to determine the minimum cost of shed

load. Using these quantified rewards as inputs, the attacker and defender’s Nash equilib-

rium strategies about its budget allocation are derived by solving the proposed stochastic

game. At the Nash equilibrium of the game, the optimal attack and defense budget allo-

cation strategies can be obtained, in terms of attacking/protecting the critical elements of

the grid. The probability of successful attacks and corresponding physical impacts on the

grid can be used to assess the risk for various states of the power grid, and the optimal de-

fense budget allocation is formulated in terms of the corresponding risk. The IEEE 9-bus

grid is used as the test system, and simulation results have shown that different risks are

derived as we vary the attack/defense budget.
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This chapter presents a multimodal data-driven framework for the attack detection in

power distribution systems integrated with a large-scale of distributed energy resources

(DERs). Section 6.1 makes an overview of this chapter. Section 6.2 introduces the cyber

attack models in DER systems. Section 6.3 describes the proposed DER attack detection

framework. Section 6.4 develops a test distribution system. Section 6.5 compares the

experimental results of the proposed attack detection framework with existing works,

while Section 6.6 concludes the chapter and outlines the future work.

6.1 Overview

The power grid architecture is currently evolving from a utility-centric structure to a dis-

tributed cyber-physical system (CPS) integrated with a large-scale of distributed energy

resources (DERs) [134]. The implementation of DERs requires electric utilities to coor-

dinate grid control functions with customers and other energy providers, which demands

a wide-area communication for remotely controlling customer owned DERs. While smart

meters and advanced metering infrastructure (AMI) already significantly expand the util-

ities’ attack surfaces, DER deployments present additional risks due to the tremendous

number of devices and access points that operate outside the typical utility’s administra-

tive domain. Therefore, cyber attacks could exploit vulnerabilities in the end-user devices

such as smart meters and renewable energy resources, thereby compromising the power

grid. Moreover, the high scalability of DER deployments and the existence of uncertain-

ties in power distribution systems make the quick and accurate detection of DER cyber

attacks challenging [135].
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To detect targeted cyber attacks and achieve attack resilience, there is a requirement

for continuous monitoring of DERs and their interactions with power distribution sys-

tems in real-time [136]. The anomalies within the physical systems can be used for the

DER cyber attack detection. If cyber attacks are beginning to manipulate the operation

of DERs, a variety of smart meters and micro-PMUs on power distribution systems can

be utilized to evaluate which DER devices and customers are misoperating and what ma-

licious functions they are performing. Additionally, historical data describing the DER

operation can help identify anomalies and potential attacks. As a result, it is useful and

effective to predict the DER system states and detect potential cyber attacks through mea-

surement data-driven approaches.

Recently, a wealth of efforts have been proposed for the cyber attack detection in

the power grid using the advanced data analytics, such as supervised learning, unsuper-

vised learning, and statistics-based learning approaches [38–41]. In [38], a decision tree

based anomaly detection approach was presented to secure the power grid communica-

tion network from distributed denial of service (DDoS) attacks. A malware infection

detection using Kernel Fisher discriminant analysis was proposed in [39] by comparing

malware traffic with normal traffic. An intrusion detection system was developed in [40]

for early detection of threats in AMI of smart grid, where a multi-support vector machine

(SVM) classifier was trained. In [41], a Sybil attack detection method based on k-Nearest

Neighbours (kNN) classification was introduced for the vehicle-to-grid (V2G) networks.

However, all of these machine learning methods need to be evaluated to guide the selec-

tion of mechanisms that are most suitable for the DER cyber attack detection. Moreover,

techniques should be developed to handle the complex and high dimensional DER mea-

surement data, whereas maintain the accuracy of the attack detection mechanisms.

Feature learning is a key to improve the performance of existing data analytics based

attack detection mechanisms, which consists of feature extraction and selection. Fea-
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ture extraction transforms the original features into a more meaningful representation by

reconstructing its inputs and involves reducing the amount of resources required to de-

scribe a large dataset. There are two broad categories for feature extraction algorithms

including linear and nonlinear. Linear feature extraction algorithms, such as principal

component analysis (PCA) [42], multidimensional scaling [43], and principal coordinates

analysis [44], assume the data lies on a lower-dimensional linear subspace and projects

them on this subspace using matrix factorization. However, nonlinear feature extraction

algorithms like self organizing maps (SOMs) [45] and Kohonen maps [46] create a lower

dimensional mapping of an input by preserving its topological characteristics.

Performance of attack detection mechanisms is heavily dependent on the choice of

applied features, and feature selection is to identify the most informative features from

the original and extracted feature sets. Typically, feature selection is partitioned into

three classes: filters, wrappers, and embedded methods. Filter methods analyze intrinsic

properties of dataset ignoring the type of classifier. Conversely, wrappers use classifiers

to score a given subset of features, and embedded methods inject the selection process

directly into the classification learning process. In this chapter, the filter methods are uti-

lized to evaluate different types of classifiers for the DER attack detection. Among the

most used filter-based strategies, Relief algorithm [47] estimates the quality of features

according to how well their values distinguish between instances that are closer to each

other. Another effective yet fast filter method is the Fisher method [48], which computes

a score for a feature as the ratio of inter-class separation and intra-class variance, where

features are evaluated independently. In [49], a mutual information (MI) based approach

is proposed, and the quality of a given feature is evaluated by the MI between the distri-

bution of the values of this feature and the membership to a particular class.

This chapter introduces a novel sparse feature extraction and a modified filter based

feature selection into an ensemble classifier, and formulates a multimodal data-driven de-

110



tection framework for identifying the abnormal events within DER implementation. In

order to differentiate the attacked DER measurements from fault scenarios in the gener-

ated abnormal event list, the spatiotemporal correlation analysis is finally applied to each

measurement to quantify the differentiable characteristics of this measurement from other

correlated measurements. The main contributions of the chapter contain:

• Develop a two layer stacked denoising autoencoder (SAE) for feature extraction,

and construct the low dimensional abstract features from the original DER mea-

surement data;

• Propose a modified Relief based feature selection algorithm to identify the most

relevant features;

• Train a decision tree based ensemble classifier using the selected features for iden-

tifying the abnormal events in DER measurement data;

• Implement a spatiotemporal correlation based approach for each DER measurement

to classify the cyber attacks and system faults in the generated abnormal event list;

• Formulate a test distribution system integrated with DERs for simulating the nor-

mal, fault, and attack scenarios, and compare the attack detection performance of

the proposed framework with existing works.

6.2 DER System Model and Adversary Model

6.2.1 DER System Model

A CPS architecture is developed to model the cyber-physical integration of DER systems

into the power grid, as depicted in Fig. 6.1, which consists of four main domains: 1) trans-

mission operation and control, 2) distribution utility communication and control, 3) DER
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devices and controllers, and 4) third parties. The high penetration of DERs in Domain 3

leads to a large number of distributed energy devices, such as smart inverters and battery

controllers, which could vastly outnumber the utility owned and controlled resources. In

addition, the DERs span multiple security administrative domains, meaning that the utility

may only be able to monitor the security posture of devices up to the smart meter while

DER owners in Domain 4 control and manage their devices themselves. Furthermore,

a variety of communication networks (e.g., utility wide area network (WAN)) used to

control the DERs will likely be interconnected with DER local area network (LAN) and

related IT networks, thereby increasing the attack surfaces. All of these features introduce

many new threats to both DER instances and the broader grid, and potential attacks listed

in Fig. 6.1 include:

• Attack 1: Malicious commands to DERs over utility WAN;

• Attacks 2-3: Malware or unauthorized control over DER control devices to manip-

ulate their operation;

• Attacks 4-6: Additional attack vectors to access DER components through inter-

connected networks;

• Attack 7: Novice system owners and administrators;

• Attack 8: Compromised wide-area monitoring, protection, and control (WAMPAC)

applications negatively influence the operation of a large number of DERs.

In the physical layer of the architecture, the DERs in the distribution system include

solar PV, battery energy storage systems, diesel generators, and electric vehicles (EVs),

while wind turbine generators (wind farms) are connected at the sub-transmission and

transmission levels. In addition, in power flow calculations, all DER devices except diesel

generators are modeled as constant active (P) and reactive (Q) power generators connected

at the corresponding bus. The diesel generators are treated as constant active power (P)
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Figure 6.1: CPS architecture of the power grid integrated with a large-scale of dis-
tributed energy resources (DERs) and its cyber security risk.

and constant voltage (V) bus. The PCC point with the bulk grid is considered as the slack

bus. In the cyber layer, the control architectures and communication networks of the DER

implementation directly determine the risk exposure from cyber attacks. Multiple devices

are involved in controlling DERs, especially smart inverters, DER controllers, and bat-

tery controllers. Models can be developed using cyber-architectural languages such as

data ow diagrams or the architectural analysis and design language. Specific properties

of DER control and communication that need to be modelled include: (1) communica-

tion protocols (e.g., IEEE 1815 (DNP3), IEC 61850-7-420, SEP (Smart Energy Prole)

2.0, and SunSpec Modbus) tailored for the control of DER devices; (2) unicast, multicast,

and broadcast communication topologies for DER messages; (3) dierent messaging pat-

terns such as request reply, publish subscribe, push-pull, exclusive pair, and client-server;

and (4) smart inverter control functions including volt/var management, frequency/watt

management, status reporting, and time synchronization.
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6.2.2 Adversary Model

Consider a power distribution system integrated with DERs, and letM be the set of DER

devices in this system, where |M| = m. Assume that the control center collects the

DER measurements of different physical quantities (e.g., voltages and currents) fromM

for a time period T . Hence, the collected time series measurement set can be defined as

X := {x(t)|t ∈ T }, where x(t) is an m-dimensional vector [x
(t)
1 , ..., x

(t)
m ]T ∈ Rm, and its

elements correspond to m DER device measurements. An attacker could compromise a

subset of DER devices and manipulate their measurements such that any operational deci-

sion made based on these measurements could trigger unwarranted control actions for the

true system state. There are various types of cyber attacks targeted at DERs. In the follow-

ing parts, four specific cyber attack models are presented consisting of denial-of-service

(DoS) attack, fault replay attack, data manipulation attack, and device misconfiguration

attack.

Assume that the attacker has limited resources and could only compromise mA DER

devices for a time period T A ⊆ T . Define the set of compromised DER devices as

MA ⊆ M, where |MA| = mA. For DoS attacks, the attacker could jam the communi-

cation channels, attack networking protocols, and flood the network traffic to make the

DER measurement packets sent from sensors to be lost. Hence, ∀t ∈ T A, DER device

i measurement x(t)i , i ∈ MA, is set to be NA. Fault replay attacks attempt to emulate a

valid fault by alerting system measurements followed by sending an illicit trip command

to relays at the ends of the lines. This attack may lead to confusion and potentially cause

an operator to take invalid control actions. For each compromised DER device i ∈ MA,

the fault replay attack involves replacing the measurement x(t)i , t ∈ T A, by a historical

valid fault measurement.

Correspondingly, data manipulation attacks refer to inject false data into the DER

measurements by hacking into the communication network. Here, two types of data ma-
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nipulation attacks are studied: 1) for each DER device i ∈MA, a zero-mean white noise

is added into the measurement sequence: {x(t)i + ε|t ∈ T A}; 2) a uniformly distributed

random number in the interval (a, b) is injected into the measurement of DER device

i ∈ MA: {x(t)i + rand(a, b)|t ∈ T A}. In addition, an attacker can manipulate the droop

characteristic or references setpoints of DER control systems, which can cause changes

in the outputs of DERs or system frequency. For example, a scaling attack parameter λA is

injected into the device i measurement to change the magnitude: {(1 + λA)x
(t)
i |t ∈ T A},

where i ∈MA.

All of these cyber attacks could cause instabilities in the underlying physical system

or force the system to operate at uneconomical operating conditions due to non-optimal

control actions. This chapter aims to formulate a data-driven framework to identify the

compromised DER devices based on the collected measurements, and provide a perfor-

mance analysis on the proposed DER attack detection mechanism.

6.3 DER Attack Detection Framework

In this section, we formulate a multimodel DER attack detection framework, whose main

objective is to: 1) reduce the cost of DER measurement collection; 2) improve detection

rates and reduce false alarms; and 3) control the attack detector training time. As depicted

in Figure 6.2, the basic procedure of the multimodel attack detection framework consists

of:

1. DER measurement data collection and preprocessing;

2. Sparse feature extraction;

3. Filter based feature selection;

4. DER anomaly detector training and postprocessing;
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Figure 6.2: Flowchart for the multimodel DER attack detection framework.

5. DER anomaly list generation;

6. Spatialtemporal correlation analysis for anomalies;

7. DER cyber attack and fault scenarios classification.

In particular, the SAE is introduced for the sparse feature extraction, and a Relief based

feature selection algorithm is proposed to select the most relevant features with a lower

dimensionality from the total of input and extracted feature sets.

6.3.1 SAE based Feature Extraction

An autoencoder mainly contains two parts including an encoder and a decoder. Given

a measurement point x(t) ∈ X with m DER features, the encoder first maps it to a

m′(< m)-dimensional hidden representation (feature) y(t) ∈ Rm′ through a determin-

istic mapping y(t) = sf (Wx(t) + b), where sf (·) is a nonlinear activation function pa-

rameterized by a m′ × m weight matrix W and a bias vector b ∈ Rm′ . The derived

latent representation y(t) is then mapped by the decoder back to a reconstructed vector

z(t) ∈ Rm in input space: z(t) = sg(W
′y(t) + b′), where sg(·) is the decoder’s activation

function parameterized by a m × m′ weight matrix W ′ and a bias vector b′ ∈ Rm. In
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this chapter, the autoencoder is assumed to have tied weights, where W ′ = W T . Each

x(t) ∈ X is thus mapped to a corresponding y(t) and a reconstruction z(t). The parameters

θ = {W , b, b′} of the autoencoder is optimized through minimizing the reconstruction

loss L(x(t), z(t)):

θ∗ = arg min
θ
L(x(t), z(t)) = min

θ
L(x(t), sg(sf (x

(t)))), (6.1)

where loss L(x(t), z(t)) is defined from cross-entropy:

L = − 1

T

T∑
t=1

m∑
i=1

[x
(t)
i log(z

(t)
i ) + (1− x(t)i ) log(1− z(t)i )]. (6.2)

Due to the large scalability of the power distribution system integrated with DERs, the

anomalies caused by limited attack resources usually lie in sparse regions of the extracted

feature space Y := {y(t)|t ∈ T }. In order to keep the sparsity of the autoencoder, the

average output of each extracted feature j: ρ̂j = 1
T

∑T
t=1 y

(t)
j , j = 1, ...,m′, is enforced

to a sparsity parameter ρ0 close to zero. To achieve this, a sparsity regularization based

on Kullback-Leibler (KL) divergence is added into the optimization objective (6.1) that

penalizes ρ̂j deviating significantly from ρ0:

θ∗ = arg min
θ
L(x(t), z(t)) + λS

m′∑
j=1

KL(ρ0‖ρ̂j), (6.3)

where KL(ρ0‖ρ̂j) = ρ0log ρ0
ρ̂j

+ (1− ρ)) log 1−ρ0
1−ρ̂j , and parameter λS controls the weight

of the sparsity regularization.

Furthermore, to enforce robustness to partially destroyed or missing DER measure-

ments, a modified denoising autoencoder is trained to reconstruct a repaired input from

a corrupted version, which is done by first corrupting the initial input x(t) into x̃(t) by

means of a stochastic mapping x̃(t) ∼ qD(x̃(t)|x(t)). Corrupted input x̃(t) is then mapped,

as with the basic autoencoder, to a hidden representation ỹ(t) = sf (Wx̃(t) + b), from

which we reconstruct z̃(t) = sg(W
′ỹ(t) + b′). The overall objective function of the de-

117



Hidden 

Layer 1

PPV x1

x2

x3

Xm-2

Xm-1

xm

y1
(1)

y2
(1)

ym1-1
(1)

ym1
(1)

y2
(2)

ym2
(2)

+1

+1

+1

S

QPV

PWind

VDiesel

VBattery

IBattery

D
E

R
 M

e
a

su
r
em

en
t

Input Layer

Hidden 

Layer 2

Softmax 

Classifier

Normal

Anomaly

Figure 6.3: Network Architecture of SAE for Feature Extraction.

noising (sparse) autoencoder is:

θ∗ = arg min
θ

L(x(t), z̃(t)) + λ
m′∑
j=1

KL(ρ‖ρ̃j),

s.t. x̃(t) ∼ qD(x̃(t)|x(t)),

(6.4)

where ρ̃j = 1
T

∑T
t=1 ỹ

(t)
j , j = 1, ...,m′, and qD(x̃(t)|x(t)) denotes x̃(t) = x(t) + ε, where

ε is a zero-sum white Gaussian noise, x̃(t) ∼ N(0, δ2), and δ is the standard deviation of

x(t).

The SAE is a neural network consisting of multiple layers of denoising autoencoders,

which can generate different levels of new features by adding hidden layers. In this chap-

ter, we construct two layer SAE as shown in Fig. 6.3, where two denoising autoencoders

are trained in a layer-wise manner. The input vector x(t) ∈ X is fed to Input Layer for

training Hidden Layer 1 of the first autoencoder. The outputs of the first autoencoder are

propagated to Hidden Layer 2 for deriving the second autoencoder. The overall process of
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encoding is y(t) = sf1(sf2(Wx(t)+b)), where sfi(·), i = 1, 2, is the encoding function of

Hidden Layer i. Correspondingly, the decoding process is: z(t) = sg1(sg2(W
′y(t) + b′)),

where sgi(·), i = 1, 2, is the decoding function of Hidden Layer i. The neurons of Hidden

Layer 2 are used as extracted features of DER measurements, and Final Layer implements

the softmax function for identifying the abnormal measurements based on the extracted

features.

6.3.2 Relief based Feature Selection

Due to the increasing dimensionality of DER features, feature selection plays a critical

role in the attack detection for reducing computational complexity and enhancing detec-

tion performance. The key idea of Relief based algorithms is to estimate each feature

weight based on its ability to differentiate between neighboring features. Define the DER

feature set to be D := {d(t)|t ∈ T }, where d(t) = (x(t),y(t)) ∈ Rm+m′ is composed

of the original measurement x(t) ∈ X and its extracted feature y(t) ∈ Y through SAE.

Given a randomly selected feature vector d(t) = [d
(t)
1 , ..., d

(t)
m+m′ ]

T , the Relief algorithm

first searches for its two nearest neighbors: one from the same class, termed the nearest

hit NH(d(t)), and the other from the different class, called the nearest miss NM(d(t)).

Let the feature weight vector to be w = [w1, ..., wm+m′ ]
T and the margin of d(t) to be

ρ
(t)
d =

∑m+m′

i=1 |d(t)i − NMi(d
(t))|−

∑m+m′

i=1 |d(t)i − NHi(d
(t))|. The optimal weight vector

w∗ then can be derived through maximizing the averaged margin computed with respect

to w:

w∗ = arg max
w

1

T

T∑
t=1

(m+m′∑
i=1

(
wi|d(t)i − NMi(d

(t))|
)

−
m+m′∑
i=1

(
wi|d(t)i − NHi(d

(t))|
))
,

s.t. ‖w‖22 = 1,w ≥ 0,

(6.5)

119



where the constraints correspond to the boundary of w. However, the objective function

of (6.5) only considers the nearest neighbors for calculating the averaged margin. Thus,

the performance of Relief algorithm may be greatly deteriorated when a large amount of

irrelevant features included in the dataset.

To increase the algorithm reliability, a modified objective function is proposed by

searching for all hits/misses of each feature vector d(t) ∈ D instead of only the nearest

hit/miss. We first defineM(t) = {t′|label(d(t′)) 6= label(d(t))} andH(t) = {t′|label(d(t′)) =

label(d(t)), t′ 6= t} as the miss and hit sets of d(t), respectively. By using the pairwise

distances that have been computed when searching for the nearest hit and miss, the prob-

ability of d(t′), ∀t′ ∈M(t), being the nearest miss of d(t) can be defined as:

PM(t′|d(t),w) =

∑m+m′

i=1

(
wi|d(t)i − d

(t′)
i |
)∑

t′′∈M (t)

∑m+m′

i=1

(
wi|d(t)i − d

(t′′)
i |
) . (6.6)

Similarly, ∀t′ ∈ H(t), the probability of d(t′) being the nearest hit of d(t) can be defined

as:

PH(t′|d(t),w) =

∑m+m′

i=1

(
wi|d(t)i − d

(t′)
i |
)∑

t′′∈H(t)

∑m+m′

i=1

(
wi|d(t)i − d

(t′′)
i |
) . (6.7)

Finally, w can be derived by solving the following problem:

w∗ = arg max
w

1

T

T∑
t=1

( ∑
t′∈M (t)

PM(t′|d(t),w)

−
∑

t′∈H(t)

PH(t′|d(t),w)
)
,

s.t. ‖w‖22 = 1,w ≥ 0.

(6.8)

The feature weight wi, i = 1, ...,m + m′, is updated after integrating all of the feature

vectors in D. In order to select the important features, a threshold σ > 0 is selected, and

the feature satisfying w > σ is collected for DER anomaly detection.

Let S = {s1, s2, ..., sN} be the index set of the selected N DER features, the selected

feature set then can be defined as DS = {{d(t)s |s ∈ S}|t ∈ T }. An ensemble classifier is
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implemented to classify DS into “Normal” and “Anomaly”, in which P subsets of tuples

of size n(< N) are created by uniformly sampling fromDS with replacement. Therefore,

P subsets {D1, ...,DP} are generated and P decision tree classifiers {C1, ..., CP} are built

on each subset Di, i = 1, .., P . A final ensemble classifier classifies a DER feature

example {d(t)s |s ∈ S} by giving as output the class predicted most often by {C1, ..., CP}.

In addition, the ensemble classifier can be implemented for the parallel computing, in

which each subset Di resides on a different processor within the parallel computer.

6.3.3 DER Fault and Cyber Attack Classification

Situation awareness of the anomaly event such as a system fault or cyber attack is critical

for utility operators to make a reaction. Specially, this chapter propose a spatiotempo-

ral correlation based approach to accurately extract patterns of system faults and cyber

attacks from the generated DER anomaly list derived by the ensemble classifier. Spa-

tiotemporal correlation is a natural property found in various physical phenomena includ-

ing power system fault scenarios, since the system components are typically continuous

over both the time and spatial domains. For the spatial domain, the DERs, such as PV

farm and battery storage, deployed in a nearby area are interdependent in such a way that

the fault of one DER device would affect the power quality of other independent devices

and may cause the faults of other DERs. In addition, these spatial correlations should be

similar to those that have occurred in the past, that is, these DER devices are temporally

correlated.

Define the anomaly measurement set to be XD = {x(t)|t ∈ TD}, where TD ⊆ T

denotes for the anomaly period. Each anomaly x(t) ∈ XD is an m-dimensional vector

corresponding to m DER devices. Given two DER devices (i, j ∈ M), the correlation
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coefficient ρij between two is:

ρij =

∑
t∈TD(x

(t)
Di − µi)

∑
t∈TD(x

(t)
Dj − µj)√∑

t∈TD(x
(t)
i − µi)2

√∑
t∈TD(x

(t)
j − µj)2

, (6.9)

where µi and µj are the means of device measurement {x(t)i |t ∈ TD} and {x(t)j |t ∈ TD},

respectively. In this approach, we first define a correlation sphere G satisfying that, for

each DER device pair (i, j) ∈ G, the correlation coefficient ρij between two is greater

than a constant threshold τ ∈ (0, 1). Thus, the correlation neighbor set Ni of device

i ∈ G contains all the DER devices in G excluding i. The definition of correlation sphere

can guarantee that all of DER devices in G are spatially and temporally correlated in

fault scenarios. However, in the DER cyber attack scenarios, assume that the attacker has

limited resources and cannot access all DER devices in G, therefore, the attacked DER

device will not be correlated with the other DER devices in its neighbor set. Given a DER

device i ∈ G, let |Ni| be the number of DER devices in its neighbor set, and |ND
i | be the

correlated DER device number in XD. If |N
D
i |
|Ni| > 50%, DER device i is classified into a

fault scenarios. Otherwise, its measurement is under cyber attacks.

6.4 Test System and Dataset Formulation

A test distribution system, shown in Fig. 6.4, is used for simulating system scenarios and

formulating corresponding DER measurement datasets. The developed test system is a

modified version of the IEEE 34-bus system. The test distribution system is integrated

with four types of DERs including PV farm, wind turbine generator (wind farm), utility

scale battery energy system, and diesel generator, where DERs are connected to a dis-

tribution node via a transformer having rating equal to the volts-ampere (VA) rating of

DERs. In the test system, the nominal voltage level is set to be 12.47 kV L-L; PV farm

is rated at 5 MW with modeled MPPT controller, DC-DC converter, and a three-phase
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Figure 6.4: The test distribution system integrated with four types of DERs.

inverter; wind farm is modeled using a single doubly fed induction generator of 7.5 MVA

capacitor including major components, such as rotor-side converter (RSC), grid-side con-

verter (GSC), pitch controller, and two mass model for wind turbines; battery bank is

rated at 360 kW, 828 kWh with terminal voltage of 720 V dc, and the battery inverter is

rated at 540 kVA to provide enough reactive power support to the feeder; diesel gener-

ator is rated at 6.25 MVA with diesel engine governor, and IEEE AC1A type excitation

system. The battery inverter, PV inverter, and wind generator have the provision operated

in one of the following three modes of control:

1. Voltage control mode: With the voltage setpoint decided by the grid operator and the

DER tries to maintain its point of common coupling voltage at the desired setpoint.

2. Reactive power control mode: With the reactive power set point decided by the grid

operator and the DER tracks the reactive power setpoint.

3. Power factor control mode: With the power factor at the DER point of common

coupling decided by the grid operator and the DER tracks the power factor setpoint.
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Table 6.1: Simulated Scenarios For Test Distribution System
State No. Scenario Description

Normal S1 Normal system operation and no event occurring.

Fault
S2 Three phase fault on Line 1.

S3 Three phase fault on Line 16.

S4 Two three phase faults on both Line 1 and 16.

Cyber
Attack

S5-S9 Five types of attacks on PV farm power measurement.

S10-S14 Five types of attacks on wind farm RMS measurement.

S15-S19 Five types of attacks on battery power measurement.

S20-S24 Five types of attacks on diesel power measurement.

S25-S29 Five types of attacks on distribution node measurement.

In addition, the system is designed to operate in both radial system and loop configuration,

and has a provision to operate in both islanded and grid connected modes.

The system scenarios simulated by the test system are utilized to train and validate

the proposed DER attack detection framework, which have been grouped into three cat-

egories: 1) normal operation; 2) three phase line-to-ground faults; and 3) cyber attacks.

Given a initial system state, Table 6.1 lists the 29 simulated system scenarios, where each

scenario is named with capital “S” along with a number. For scenario S1, the test distri-

bution system is in the normal operation state without abnormal events occurring. Three

phase line-to-ground faults are injected into the distribution lines for fault scenarios S2-

S4 simulation. Specially, S2 represents a scenario, in which a three phase fault is injected

into Line 1, and S3 shows the scenario that a three phase fault occurs on Line 16. Two

three phase faults are instantaneously injected into both Line 1 and 16 for S4.

For scenarios S5-S29, the five types of cyber attacks proposed in Section II, includ-

ing DoS attack, fault replay attack, two types of data manipulation attack, and device

misconfiguration attack, are simulated for the distribution node and each DER in the test

distribution system. Especially, S5-S9 simulate five types of cyber attacks on the PV
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farm power measurement, respectively. S10-S14 inject five types of cyber attacks tar-

geted at the root mean square (RMS) measurement of WTG. S15-S19 represent five types

of cyber attacks on the battery bank power measurement. S20-S24 describe five types

of cyber attacks for the diesel generator power measurement. In addition, S25-S29 show

five types of cyber attacks on the distribution node power measurement. Taking the real

power measurement of the distribution node as example, Fig. ?? presents its normal mea-

surement (S1), fault measurement (S2), DoS attack (S25), fault replay attack (S26), two

types of data manipulation attacks (S27-S28), and device misconfiguration attack (S29),

respectively.

The collected dataset consists of data logs associated with 2×105 simulated instances

for each system scenario. Each data log is a CSV file with labeled tuples including 21

types of measurement data and a time stamp. The 21 data sources are collected from

the distribution node and four types of DERs including PV farm, WTG, battery energy

system, and diesel generator. The real & reactive power measurements and three phase

V-I measurements are collected for the distribution node and PV farm. The RMS mea-

surement is selected for WTG. For battery energy system, the real & reactive power mea-

surements, the State of Charge (SoC) measurement, RMS measurement, and grid real &

reactive power measurements are gathered together. The real & reactive power measure-

ments and RMS measurement are collected for the diesel generator. In addition, relay

information, breaker events, snort alerts, and control panel alerted are logged for the

dataset. The simulation timestep is set to be 50 µs, and all logged data is merged into a

single dataset.
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6.5 Numerical Experiment

This section evaluates the performance of the proposed DER attack detection framework

using the test dataset, in which the dataset of fault and cyber attack scenarios is labeled

as “Anomaly”, while the dataset simulated in normal conditions is named as “Normal”.

First, the dataset is preprocessed through normalization and balancing. The SAE based

feature extraction and Relief based feature selection are then introduced for an ensemble

classifier for DER anomaly detection. Finally, the spatiotemporal correlation approach is

implemented to classify faults and cyber attacks in the generated anomaly list.

6.5.1 Data Preprocessing and Detection Evaluation Metrics

1) Data Normalization: The DER measurements contained in the test dataset are gener-

ally diverse in a flexible value, therefore, the preprocessing phase first implements data

normalization to transform all measurement ranges to be equal. The mean range method

is adopted, in which each device measurement xi = [x
(1)
i , ..., x

(T )
i ]T , i ∈ M, is lin-

early normalized in [0, 1] in order to avoid the undue influence of different scales. Given

a measurement point x(t)i ∈ xi, the normalized measurement z(t)i can be derived by:

z
(t)
i =

x
(t)
i −min(xi)

max(xi)−min(xi)
, where min(xi) and max(xi) are the minimum and maximum val-

ues of device i measurement, respectively.

2) Data Balancing: In the test dataset, abnormal instances from scenarios S2-S29

significantly outnumber normal instances in S1, and the ratio between two is 28:1, which

is not a good representation of real situations. In addition, this property might be biased

to the attack detection model and affect its performance. To alleviate this, we balance

the dataset by randomly selecting the abnormal instances, and make the ratio between

normal and abnormal instances to be 1:1, which is an appropriate proportion for the model

training phase.
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3) Evaluation Metrics: In order to compare the performance of the proposed DER

attack detection framework with existing detection mechanisms, the following evaluation

metrics are implemented: Accuracy (Acc), Detection Rate (DR), Precision, False Alarm

Rate (FAR),F1 Score, Matthews Correlation Coefficient (Mcc),CPU Time of Model Build-

ing (TB), and Prediction Speed (Sp). In these metrics, Acc(%) represents the overall effec-

tiveness of an algorithm. DR(%) refers to the number of anomaly detected divided by the

total number of abnormal instances, while Precision(%) counts the number of anomaly

detected among the total number of instances classified as anomaly. FAR(%) is the num-

ber of normal instances mistakenly classified as anomaly divided by the total number of

normal instances. F1(%) measures the harmonic mean of Precision and DR. Mcc(%) rep-

resents the correlation coefficient between the detected and observed data. The proposed

DER attack detection framework aims to achieve a high Acc, DR, Precision, F1, Mcc,

and Sp, and simultaneously maintain low FAR and TB.

The metrics can be defined by the following equations:

Acc =
TP + TN

TP + TN + FP + FN
(%),

DR =
TP

TP + FN
(%),

FAR =
FP

TN + FP
(%),

F1 =
2TP

2TP + FP + FN
,

Mcc =
TP × TN − FP × FN

2
√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

(6.10)

where TP is the number of intrusions correctly classified as an attack, TN is the number

of normal instances correctly classified as a benign packet, FN is the number of intru-

sions incorrectly classified as a benign packet, and FP is the number of normal instances

incorrectly classified as an attack.
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6.5.2 Sparse Feature Extraction and Selection

1) SAE based Feature Extraction: The SAE architecture with two hidden layers is utilized

to extract the new features from the preprocessed dataset, in which the features generated

from the first encoder layer are employed as the training data in the second encoder layer.

Meanwhile, the size of each hidden layer is decreased accordingly such that the encoder

in the second encoder layer learns an even smaller representation of the input data. The

classification layer with the softmax activation function is then implemented in the final

step. Although there is no strict rule for determining the number of hidden neurons, it is

generally selected from 70% to 90% of the input neurons [137]. In the formulated SAE

architecture, the first hidden layer is set to have 20 neurons. The SAE architecture is

then introduced for classifying the preprocessed dataset, and its performance is compared

for different numbers of second hidden layer neurons. The evaluation metrics including

Detection Rate (DR), False Alarm Rate (FAR), Accuracy (Acc), and F1 Score are shown

in Fig. 6.5 for the SAE architecture with varying the number of second hidden layer

neurons from 5 to 15. In Fig. 6.5(a), the formulated SAE architecture achieves similar

DR around 60% when the second hidden layer neurons are selected from 5 to 14, while

it only derives 40% DR when 15 second hidden layer neurons are defined. However,

when the second hidden layer is set to have 9 neurons, the least FAR of 15.8% is derived.

Meanwhile, in Fig. 6.5(b), the SAE architecture achieves the highest Acc (69.5%) and F1

(64.1%) for 9 second hidden layer neurons. As a result, the SAE architecture is chosen

with 21:20:9:2 topology.

2) Feature Selection: The preprocessed test dataset is then integrated with extracted

features from the second hidden layer of the SAE architecture. In the integrated dataset,

even though each instance is represented by various features, not all of these features

are needed to build an attack detection model. Therefore, it is important to identify the

most informative features from the integrated dataset to achieve higher performance. The
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Figure 6.5: The evaluation metrics of DR, FAR, Acc, and F1 for the formulated SAE
architecture with various numbers of second hidden layer neurons ranging from 5 to 15.
(a) for DR(%) and FAR(%), (b) for Acc(%) and F1(%).
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proposed modified Relief based algorithm (MRelief) is compared with 7 state-of-the-art

algorithms for feature selection:

• Latent feature selection (LFS);

• Infinite latent feature selection (Inf-FS);

• Feature selection via eigenvector centrality (EC-FS);

• Distributed mutual information feature selection (DisMI);

• Unsupervised multi-cluster data feature selection (MC-FS);

• Generalized Fisher score for feature selection (Fisher);

• L1 regularized discriminative feature selection (L1-FS).

Based on the feature ranking/weight derived by these algorithms, the first 15 features

are selected as inputs from each algorithm for training and evaluating a decision tree

based ensemble classifier independently. The anomaly detection performance is measured

by DR, FAR, Acc, and F1. Table 6.2 lists the feature selection algorithms compared,

where we note their types as filters and wrappers. The feature ranking/weight for total 30

features and the classification evaluation metrics are also reported. From the table, we can

find that MRelief achieves the best anomaly detection performance with the highest DR,

Acc, and F1 of 99.48%, 99.69%, and 99.69%, respectively. At the same time, the lowest

FAR (0.1%) is derived. In addition, based on the feature ranking/weight derived by these

algorithms, we can see that some features are essential for DER anomaly detection, such

as the power measurement data of the battery bank (Feature 19 and 20). This phenomenon

can be explained that the power of the battery bank will change significantly when some

faults or failures occur.
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Table 6.2: Anomaly Detection Comparison of Feature Selection Methods
Method Type Feature Ranking/Weight DR(%) FAR(%) Acc(%) F 1(%)

MRelief filter 19,20,6,5,1,9,4,2,8,3,7,11,16,17,27,12,15,10,18,13,28,22,25,26,23,21,24,14,29,30 99.48 0.10 99.69 99.69
LFS [138] filter 11,21,24,13,28,18,12,27,10,4,7,16,3,17,8,22,14,9,26,25,23,2,1,6,5,29,20,30,15,19 97.43 2.91 97.25 97.26

Inf-FS [138] filter 19,20,11,5,21,23,22,2,24,1,26,25,6,9,8,3,7,4,10,16,27,12,18,13,30,17,28,14,29,15 98.39 0.209 99.09 99.08
EC-FS [139] filter 19,20,11,21,23,22,24,25,26,5,2,1,6,9,8,3,7,4,27,12,10,16,18,13,30,17,28,14,29,15 98.37 0.19 99.09 99.08
DisMI [49] filter 11,19,20,27,12,2,5,1,6,9,8,3,7,4,30,16,13,17,10,18,28,14,15,29,22,23,21,25,26,24 99.41 0.12 99.64 99.64

MC-FS [140] filter 4,8,7,26,23,21,24,25,22,2,1,3,6,12,27,5,9,10,19,20,18,17,11,28,13,30,14,15,16,29 96.87 2.20 97.33 97.32
Fisher [48] filter 5,19,2,1,20,6,9,8,3,7,4,11,10,27,18,12,13,28,16,14,17,30,29,15,24,21,22,25,23,26 99.32 0.13 97.32 97.32

L1-FS [141] wrapper 3,1,9,5,7,6,2,4,8,12,27,24,19,25,20,22,23,17,21,26,13,15,11,28,14,16,10,18,29,30 98.35 0.19 99.08 99.06

6.5.3 Comparisons With State-of-the-Art Methods

Based on the feature ranking derived by the MRelief, we compare the anomaly detec-

tion performance of the proposed ensemble classifier with three other decision tree based

classifiers including: 1) simple tree with 4 branch nodes, 2) medium tree with 20 branch

nodes, and 3) complex tree with 100 branch nodes. Fig. 6.6 plots the DR and FAR for the

four decision tree based classifiers with varying the number of selected features from 1

to 30. From this figure, we can find that the proposed ensemble classifier achieves higher

DR and lower FAR compared with other three classifiers, when more than 2 features are

selected for training the classification model. Especially, in Fig. 6.6(a), the proposed en-

semble classifier achieves 99.48% DR after 15 features are selected, while the complex

tree obtains 90.8%, the medium tree derives 68.12%, and the simple tree only acquires

54.29%. Meanwhile, as shown in Fig. 6.6(b), the proposed ensemble classifier achieves

0.1% FAR after 15 features are selected, which is lower than 5.59% of the complex tree,

2.83% of the medium tree, and 2.17% of the simple tree. Additionally, in Fig. 6.6(a),

with the increasing of branch nodes, the decision tree based classifier can derive higher

DR. However, when more than 3 features are selected, the simple tree based classifier can

obtain lower FAR than medium and complex tree based classifiers, as depicted in Fig.

6.6(b).

We also compare the performance of the proposed ensemble classifier based DER

attack detection method against existing classification methods, such as Quadratic Dis-
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Figure 6.6: The DR(%) and FAR(%) comparison between the decision tree based clas-
sifiers with various numbers of feature selected based on the feature ranking derived by
MRelief. (a) for DR; (b) for FAR.
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Table 6.3: Anomaly Detection Comparison With Existing Methods
Model Type DR(%) FAR(%) Acc(%) F 1(%) TB(s)

Proposed Detection 99.48 0.10 99.69 99.69 82.82
Quadratic [39] 50.06 20.48 64.79 58.71 1.84
Logistic [142] 56.07 17.11 69.48 64.75 4.89

SVM [40] 98.61 0.36 99.13 99.13 938.92
kNN [41] 98.33 0.62 98.85 98.85 171.4

criminant Analysis, Logistic Regression Classifier, SVM, and Nearest Neighbor Classifier,

and their evaluation metrics, like DR, FAR, Acc, F1, and the computing time for model

building (TB), are provided in Table 6.3. Compared with other four existing algorithms,

we can see that the proposed DER attack detection algorithm shows the best performance

by achieving the highest DR (99.48%), Acc (99.69%) and F1 (99.69%), and the lowest

FAR (0.1%). Even though the nearest neighbor classifier and SVM algorithm derive the

competitive detection results, their TB are 2.07 and 11.34 times longer than the proposed

DER attack detection algorithm, respectively. The quadratic discriminant analysis and

logistic regression classifier consume less TB, whereas they only achieve Acc of 64.79%

and 69.48%, which are not satisfactory for accurate DER attack detection.

6.5.4 DER Fault and Cyber Attack Classification

Based on the spatiotemporal correlation in scenario S1, we define a correlation sphere G

including the real & reactive power measurements (P0,Q0) at the distribution node, the

real & reactive power measurements (PG,QG) and RMS measurement (RMSG) for the

diesel generator, the RMS measurement data (RMSW ) for the wind generator, and the

real & reactive power measurements (PP ,QP ) for the PV farm. Therefore, we can define

the neighbor set of PP as: NPP = {P0, Q0, PG, QG,RMSG,RMSW , QP}. In the fault

scenarios S2-S4, the correlation ratio
|NCPP |
|NPP |

for PP is 100%, 57.14%, 100%, respectively.
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134



However, for cyber attack scenarios S5-S9, the correlation ratio is only 14.29%, which is

less than 50%. Since the cyber attacks are injected into the PV power measurements in S5-

S9, PP is only spatiotemporally correlated with QP except other measurements in NPP .

In order to describe the spatiotemporal correlation approach in time series, we introduce

the measurements P0 and PP from time step 1 to 3000, where a fault replay attack is

injected into PP from time step 500 to 1000. Assume that a three phase line-to-ground

fault occurs on Line 1 from time step 1500 to 2000, Fig. 6.7 plots the measurements

(P0,PP ) and their coorelation coefficient ρij change from time step 1 to 3000. From this

figure, we can see that ρij decreases below 0.5 during the cyber attack period from 500 to

1000, whereas it keeps around 0.9 during the fault period from 1500 to 2000.

6.6 Summary

In this chapter, we introduced a novel DER cyber attack detection framework that in-

tegrates spare feature learning and spatiotemporal correlation analysis. First, a two-

layer SAE architecture was formulated to extract the abstract representations from large-

volume DER measurement datasets. The MRelief feature selection was then developed

to provide the feature ranking for both original measurements and extracted representa-

tions. Furthermore, we combined the SAE architecture and MRelief with a decision tree

based ensemble classifier for identifying the abnormal events in the DER measurement

dataset. The normal, fault, and cyber attack system scenarios simulated by the IEEE

34-bus test distribution system are utilized for training the proposed ensemble classifier.

Compared with existing detection methods such as decision tree, quadratic discriminant

analysis, logistic regression classifier, SVM, and nearest neighbor classifier, the proposed

DER anomaly detection framework achieved the best performance of 99.48% DR, 99.69%

Acc, 99.69% F1, and only 0.1% FAR. Finally, a spatiotemporal correlation sphere is de-

135



veloped for PV farm in the test distribution system for classifying the fault scenarios and

the potential cyber attacks in the generated abnormal event list.
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Electricity theft is a major contributor of non-technical losses in the distribution sys-

tems of the smart grid. However, owing to the resource-limitations of smart meters and

the privacy requirement of electricity usage data, theft detection has become a challeng-

ing task for electric utilities. To address this problem, a Distributed Intelligent Framework

for Electricity Theft Detection (DIFETD) is proposed and implemented in this chapter.

Section 7.1 make a summary of this chapter. A summary of related work is provided in

Section 7.2. Benford’s Analysis for preliminary theft detection is explained in Section

7.3. A Stackelberg game between utility and thieves is proposed in Section 7.4. LRT for

theft detection is described in Section 7.5. While Section 7.6 discusses data cleansing and

the results, Section 7.7 provides conclusion and future work.

7.1 Overview

The transformation of the traditional power grid into a smart grid capable of advanced

computing and communication functions, self-healing, and autonomy is expected to guar-

antee an improved efficiency, reliability, and security [143–145]. Advanced Metering

Infrastructure (AMI) is a key component of the smart grid, which brings together tech-

nologies deployed at the customer to the utility level and supports smart meters capable of

bidirectional communication [146]. However, proliferation of smart meters has rendered

the distribution system vulnerable to cyber-attacks [147, 148]. Particularly, electricity

theft is a major challenge for utilities, where malicious attackers alter usage measurements

collected by smart meters. According to the U.S. Energy Information Administration in

2016, between 1.5 and 2% of electricity in the U.S. is lost due to theft, costing utilities

as much as $6 billion annually [33, 149]. Although most traditional theft detection meth-
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ods consider both technical as well as Non-Technical Losses (NTLs), this chapter focuses

on NTLs caused by deliberate acts to manipulate electricity usage data by actors called

electricity thieves, referred to in this chapter as thieves.

The main contribution of this chapter is the development and implementation of a

data-driven Distributed Intelligent Framework for Electricity Theft Detection (DIFETD)

for smart meters. The proposed method first uses Benford’s Analysis [150] to study the

distribution of significant digits in a machine-generated data. The analysis is based on

Benford’s Law which states that the frequency of occurrence of the first significant digit

in a machine generated and natural data is around 30.1%, which is much higher than the

expected value of 11.1% [151]. The analysis compares the Probability Density Func-

tion (PDF) of the leading significant digits of the structured electricity usage data with

the baseline curve to which it must ideally adhere. Any violation therein signifies the

occurrence of suspected theft. The baseline curve is the PDF of the leading significant

digits of Fibonacci series which strictly conforms to Benford’s Law [152]. Therefore, the

Benford’s Analysis provides the first but important diagnostic of the dataset.

Additionally, the proposed method provides a mathematical approach to maximize

theft detection probability with minimum false positives. As shown in Fig. 7.1, for any

AMI data that fails Benford’s Analysis, the following steps are executed: 1) Implementa-

tion of Maximum Likelihood Estimator (MLE) for training historical usage data of cus-

tomers and development of the adversary model of multiple thieves; 2) Formulation of

a Stackelberg game where the utility aims to maximize theft detection probability while

limiting false positives and the thieves engage in a non-cooperative strategic game by

stealing different amounts of electricity to maximize the trade-off between rewards and

probability of being detected; and 3) Application of the proposed game to obtain a Stack-

elberg equilibrium from which the customer sampling rate l and a threshold value are de-

rived. Likelihood Ratio Test (LRT) at the sampling rate l and the derived threshold value
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Figure 7.1: Schematic of the proposed data-driven Distributed Intelligent Framework for
Electricity Theft Detection (DIFETD).

is implemented for classifying each customer into normal customers or thieves. There-

fore, the specific meters being compromised are identified for final checking. It ensures

faster resolution, minimal latency, and identification of suspicious meters from which as-

sociated customers could be discovered. The proposed method was implemented using

real-world AMI interval data collected from an electric utility in Florida, USA, that con-

tained multiple suspected electricity thefts. It is noteworthy that the terms attack and theft

are used interchangeably.

7.2 Related Work

The significance of cybersecurity for smart meters has been a well-researched topic in

the literature, where the focus is on ensuring power availability at all times.Traditional

research on electricity theft detection has focused on employing specific devices, like

wireless sensors and balance meters, to provide a high electricity theft detection accu-

racy [153, 154]. In [153], an AMI intrusion detection system was proposed to accurately
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detect electricity theft, where anti-tampering sensors were embedded into smart meters.

A set of trusted balanced meters were implemented in the distribution network of smart

grid to detect electricity theft [154]. Although these research works reduce the risks due

to unmeasured and non-billed usage of electricity, they do not identify specific meters

being compromised. Further, these methods significantly increase the cost of deploying

and operating millions of smart meters.

Despite cyber-physical vulnerabilities of smart meters, the high-resolution data is a

promising tool to complement traditional tools for theft detection, and is also considered

one of the preliminary tools for auditors [155–158]. A Fast NTL Fraud Detection (FNFD)

method using Recursive Least Squares (RLS) was proposed by [159] to detect frauds in

real-time, and its performance was shown to be better than Intrusion Detection Systems,

Binary Coded Grouping-based Inspection (BCGI) [160], NTL Fraud Detector (NFD) and

Difference-comparison-based detection [161]. However, it’s performance for real data

was not accounted for, nor was its convergence speed. Considering not all datasets con-

form to Benford’s Law, a model-based Digits Analysis was proposed using log-Pearson

Type IV model [162].

Additionally, statistics and machine learning have been used to train a classifier based

on detailed electricity usage measurements [163–166]. In [163], average historical elec-

tricity usage under the same conditions was used for constructing an electricity theft de-

tector, and an alarm was raised if the average usage was below a predefined detection

threshold. Principal Component Analysis (PCA) based anomaly detection was proposed

in [164], where anomalies were deviations from the normal usage behavior. In [165],

usage data was proved to be non-stationary, and Auto-Regressive Integrated Moving Av-

erage (ARIMA) forecasting methods were proposed to validate readings. A Consump-

tion Pattern-Based Energy Theft Detector (CPBETD) that employed a multi-class Sup-

port Vector Machine (SVM) for each customer was formulated in [166]. However, these
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works ignored the attack model of potential thieves, and the effectiveness of anomaly

detector was only evaluated based on a dataset of attack examples.

The problem of electricity theft detection was formulated as a game between the utility

and the thieves in [167], in which the utility intended to maximize the detection probabil-

ity and minimize the investment in monitoring fraud, while each electricity thief was to

steal a certain amount of electricity and minimize the probability being detected. How-

ever, these works assume all electricity thieves as a player, and the competition between

thieves was ignored. If thieves add high loads to the distribution networks and steal elec-

tricity at the same time, the resulting power surges and electrical system failures can cause

power outages, causing thefts to be detected.

7.3 Benford’s Analysis

The first step in the proposed framework is Benford’s Analysis, as depicted by Fig.

7.1 [168]. Consider an electric utility serving a set of customers, denoted by N :=

{1, ..., N}. Assuming these customers have a similar preference of electricity usage how-

ever some customers have the ability to tamper with the smart meter data, they can be

separated into two classes, such as normal customers and thieves. The goal of this anal-

ysis is to determine whether the electricity usage data belonging to these N customers is

potentially tampered with or not.

It has been empirically proven by statisticians and mathematicians that PDF of the

leading significant digits of a data which is either randomly distributed or is a result of

mathematical operations on multiple randomly distributed data that is most likely to fol-

low a trend as illustrated in Fig. 7.2 [169–171]. This is counter-intuitive to the pre-

sumption that the PDF of such digits should be uniformly distributed with a percentage

of occurrence around 11% each. Electricity usage falls under this category because it is
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Figure 7.2: Ideal vs. observed Benford’s distribution for normal meter dataset.
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derived by the product of voltage and current, both of which are randomly distributed.

Thus, by virtue of this property, this data is expected to conform to Benford’s Law. A

mathematical representation of Benford’s Law for first significant digits in decimal (base

10) system can be written as [172]:

P(d) = log10(d+ 1)− log10(d) = log10(1 +
1

d
), (7.1)

where d is the first (leading) significant digit of the data and P(·) denotes the PDF of

the leading digit. PDF of the leading digits of Fibonacci series is used as the baseline

since real-world data does not conform with zero error. The frequency of occurrence

of the leading significant digits is expressed in percent for better intuition in Fig. 7.2.

Also shown in the same figure is the PDF of the leading significant digit frequency for

preprocessed meter data. It can be seen that this data is close to the ideal trend with a

small, acceptable deviation. A smart meter data that is tampered by humans is expected

to have a PDF that violates Benford’s Law.

7.4 Game Model for Strategic Interactions between Utility and Thieves

LetM := {1, ...,M} ⊆ N be the set of thieves among the N customers of an electric

utility. Then, a single leader, multi-follower Stackelberg game can be formulated between

the utility and M thieves to characterize and analyze strategic interactions between the

two. In this game, a subset from N customers is chosen for an anomaly detection test

D, aiming to reduce NTLs. Based on the limited sampling rate l, the utility intends

to maximize detection probability and minimize false positives, while the thieves interact

with one another using a non-cooperative game to identify optimal quantities of electricity

to steal in response to the utility’s detection strategy. In the following subsection, the

thieves’ game is first analyzed before finding the Stackelberg game solution.
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7.4.1 Thieves’ Non-cooperative Game Formulation

A non-cooperative game is formulated in this section to analyze optimal decision making

of M thieves in response to any arbitrary utility’s action. This game is formulated in

normal form, Ξ := 〈M, (Ai)i∈M, (Ri)i∈M〉, whereM is the set of M thieves. Ai is the

set of actions available to thief i ∈M, where ai ∈ Ai is represented by the expected

amount of consumed and stolen electricity by thief i, denoted by qi and qSi , respectively.

Additionally, Ri(ai) is the reward function of thief i under action ai. Thus, thief i selects

an action ai := {qi, qSi } that maximizes its reward Ri, which can be defined as below:

Ri(qi, q
S
i ) := B(qSi )− pDi (l, qSi )P (qSi ), (7.2)

where B(·) represents the utility’s electricity billing function; B(qSi ) gives the amount

of electricity bill that is not paid by thief i; pDi (l, qSi ) denotes the probability of thief i

being detected when the sampling rate is l and the amount of stolen electricity is qSi ; and

P (qSi ) indicates the penalty function activated upon the successful detection of thief i for

stealing a power of qSi .

The reward function of each thief reflects the financial benefit obtained by stealing

electricity. Thus, for a given sampling rate l and theft detection mechanism D, the goal

of thief i is to optimize the following problem (Problem 1):

max
ai∈Ai

Ri(ai,a−i)

s.t. 0 ≤ pDi (l, qSi ) ≤ pDimax,

0 ≤ qSi ≤ qi,

0 ≤ qi ≤ qmax,

0 ≤
M∑
i=1

qi ≤ qTmax,

(7.3)

where a−i denotes the actions of all thieves except thief i. In order to control the risk, pDimax

represents the upper bound for the probability of being detected for thief i. qmax indicates
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the electricity usage limitation for thief i. Similarly, qTmax gives the total electricity usage

constraint for the community. Following this formulation, one popular solution of the

thieves’ game is the Generalized Nash Equilibrium (GNE) [126]:

Definition 7.4.1 Consider the proposed noncooperative game Ξ := 〈M, (Ai)i∈M, (Ri)i∈M〉.

GNE is a state of the game in which each electricity thief aims at maximizing Problem

1. As a response to optimal chosen actions of other thieves, a thief aims at choosing the

actions, in the restricting subset dictated by the choice of other thieves that maximizes

their own reward.

To find a GNE that can be reached by the thieves, the distributed learning algorithm

using the framework of learning automata [126] is implemented, in which each thief only

knows its own action space and its own reward after choosing an action.

7.4.2 Utility’s Side Analysis

Under the derived GNE of M thieves, the utility needs to selects a defense action a0 that

maximizes its reward R0. It is assumed that the utility’s defense action is determined by

two variables including: (1) Detection mechanism, D, used to identify electricity theft,

and (2) Customer sampling rate, l.

The objective of the utility is to maximize the following problem (Problem 2):

max
D,l

R0 :=
∑
i∈M

pDi (l, qSi )P (qSi ),

s.t. 0 ≤ pEi (l, qSi ) ≤ pEimax,

0 ≤ l ≤ lmax,

(7.4)

where qSi is derived from the GNE of the proposed noncooperative game Ξ; pEi (l, qSi )

represents the false alarm probability for thief i; pDimax gives the constraint of the false

alarm probability for thief i; and lmax indicates sampling rate limitation for the utility. The
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Stackelberg solution concept is adequate for games with hierarchy in which the leader

enforces its strategy and the followers respond, rationally (i.e. optimally), to the leader’s

strategy. The optimal response of M thieves to an action a0 by the utility is written as

Atheft(a0) = {a∗1, ..., a∗M}. This optimal strategy denotes the equilibrium strategy profile

of the attackers as a response to the defender’s strategy. In this regard, a∗0 ∈ A0 is a

Stackelberg equilibrium [57] if it minimizes the utility’s reward function R0. In other

words,

R0(a
∗
0,Atheft) ≤ R0(a0,Atheft),∀a0 ∈ A0. (7.5)

In the Stackelberg equilibrium, the optimal customer sampling rate l and the threshold

selected for the the detection mechanism D can be derived; they determine the detection

probability pDi and false alarm probability pEi , i ∈ N . In the thieves’ game, M thieves

make their decisions simultaneously at each step of the evolutionary process, playing a

GNE between themselves. A multimodal Genetic Algorithm [57] is implemented for

computing the Stackelberg equilibrium for the utility.

7.5 Likelihood Ratio Test

Following the scenario that the smart meter data from a community fails Benford’s Anal-

ysis, the proposed DIEFTED implements the Likelihood Ratio Test (LRT) for further

scrutiny in order to identify potentially fraudulent meters within this community using

results from the Stackelberg game. For each customer i ∈ N , the utility collects a time

series of electricity usage measurements, denoted by xit, from time 1 to time T . It is

assumed that the collected meter measurements xit, t = 1, .., T , are independently drawn

from identically distributed random variables following the PDF of f 0
i . Then, the expected

value of xit for customer i is qi. In other words, it is the expected amount of electricity

consumed by customer i at one time step. However, if customer i is an electricity thief,
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they may have comprised their smart meter and thus can propagate a falsified time series,

x̂it, to lower their billable energy. Let the fraudulent meter measurements, x̂it, follow the

PDF of f 1
i and thus the expected value of x̂it is qi − qSi , which is the expected amount of

electricity billed by customer i. Therefore, a binary hypothesis testing problem can be

formulated as follows:

H0 : xit ∼ f 0
i , E[xit] = qi,

H1 : xit ∼ f 1
i , E[xit] = qi − qSi ,

(7.6)

where t = 1, .., T . The null hypothesis H0 indicates that customer i’s time series follows

the PDF of normal customers, while the alternative hypothesisH1 states that customer i’s

time series follows the PDF of thieves.

For customer i, let the time series for a normal customer follow lognormal distribution

with scale parameter µ0
i and shape parameter δ0i . Also let the time series for a thief follow

lognormal distribution with scale parameter µ1
i and shape parameter δ1i . Therefore, the

LRT can be expressed as:

Λ = ln

∏K
t=1 f

n
i (xit)∏K

t=1 f
f
i (xit)

=
T∑
t=1

ln(|δ
1
i

δoi
| × e

(ln(xit)−µ
1
i )

2

2δ1
i
2 − (ln(xit)−µ

0
i )

2

2δ0
i
2

) ≷ γ,

(7.7)

where γ represents the threshold to classify customer i as ”Normal” or ”Thief”. If Λ > γ,

customer i is considered Normal, and a Thief otherwise. If δ0i = δ1i = δ, then:

Λ =
T∑
t=1

(2 lnxit − µ1
i − µ0

i )(µ
0
i − µ1

i )

2δ2
≷ γ. (7.8)

where t = 1, .., T . The null hypothesis H0 indicates that customer i’s time series follows

the PDF of normal customers, while the alternative hypothesisH1 states that customer i’s

time series follows the PDF of thieves.

For customer i, let the time series for a normal customer follow lognormal distribution

with scale parameter µ0
i and shape parameter δ0i . Also let the time series for a thief follow
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lognormal distribution with scale parameter µ1
i and shape parameter δ1i . Therefore, the

LRT can be expressed as:

Λ = ln

∏K
t=1 f

n
i (xit)∏K

t=1 f
f
i (xit)

=
T∑
t=1

ln(|δ
1
i

δoi
| × e

(ln(xit)−µ
1
i )

2

2δ1
i
2 − (ln(xit)−µ

0
i )

2

2δ0
i
2

) ≷ γ,

(7.9)

where γ represents the threshold to classify customer i as ”Normal” or ”Thief”. If Λ > γ,

customer i is considered Normal, and a Thief otherwise. If δ0i = δ1i = δ, then:

Λ =
T∑
t=1

(2 lnxit − µ1
i − µ0

i )(µ
0
i − µ1

i )

2δ2
≷ γ. (7.10)

Therefore, LRT can be simplified as
∑T

t=1 lnxit ≷ τ , where τ = 2γδ2

µ0i−µ1i
+

T (µ0i+µ
1
i )

2
.

Under this assumption, successful detection probability pDi and the false alarm probability

pEi are defined as follows:

pDi = Pr{xit < eτ |H1} =

∫ eτ

0

f 1
i (x)dx,

pEi = Pr{xit < eτ |H0} =

∫ eτ

0

f 0
i (x)dx,

(7.11)

where f 0
i (x) is the lognormal PDF of the time series consumed by the normal customer

with scale parameter µ0
i and shape parameter δi, and f 1

i (x) is the lognormal PDF of the

time series consumed by the thief with scale parameter µ1
i and shape parameter δi. Based

on historical time-series on normal customers, the parameters µ0
i and δi can be deter-

mined by the Maximum Likelihood Estimator (MLE), where E[X] = eµ
0
i+δ

2
i /2 = qi, and

V ar[X] = e2µ
0
i+δ

2
i (eδ

2
i − 1). For a thief, E[X̂] = eµ

1
i+δ

2
i /2 = qi − qSi , and V ar[X̂] =

e2µ
1
i+δ

2
i (eδ

2
i − 1).

The descriptive parameters for one meter’s interval usage data is illustrated in Fig.

7.3 using a Cullen and Frey Graph that plots kurtosis against skewness [173]. While

Kurtosis is a measure of how heavy-tailed the distribution of a given data is, Skewness is
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Figure 7.3: Skewness vs. Kurtosis for the data of one meter.

a measure of its symmetry. For example, the PDF of an ideal normally distributed data

has a Skewness of 0 and a Kurtosis of 3. It can be seen from the figure that the PDF of

the considered dataset, denoted by a blue colored filled circle, is likely to show a fit for

lognormal distribution denoted by the dotted line. A similar Kurtosis-Skewness plot was

obtained for data from majority of the other meters. It was further deduced that data from

all meters were within the shaded region, implying they were all likely to show a fit for

beta distribution. These observations are again evident in the PDF of the data shown in

the top-left of Fig. 7.4.

The Quantile-Quantile (Q-Q) and Probability-Probability (P-P) plots shown in the

top and bottom right of the same figure illustrate the agreement between the theoreti-

cal and empirical quantiles and probabilities, respectively. The empirical data is drawn
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Figure 7.4: Fitting meter data to a lognormal distribution using MLE.
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from the sample observations while the theoretical data belongs to the known lognormal

distribution. While Q-Q plot compares the quantiles, P-P plot compares the Cumulative

Distribution Functions (CDFs), which is affirmed by the agreement between the theoret-

ical and empirical CDFs shown in the bottom-left of Fig. 7.4. It can be concluded both

mathematically as well statistically that lognormal distribution can be viewed as the most

likely fit for the smart meter interval data.

7.6 Results and Discussion

In order to implement the proposed DIFETD, real-world data from 103 AMI smart me-

ters was collected from an electric utility in Florida, for the month of May, 2013. The

interval data was recorded every one hour, annotated with timestamp. It is to be noted

that the sample of 103 meters was chosen to demonstrate the feasibility of the proposed

framework alone, and that in the future, the number of meters would be scaled to validate

the framework against real-world test cases.

Data Preprocessing

Raw data was available as DAT Header files containing values separated by semicolon

delimiters (;). Appropriate preprocessing steps were implemented since the data was in

a non-numeric format and contained non-intuitive header format. The resulting dataset

was structured, time-series and multivariate in nature. In order to maintain privacy of the

consumers, original meter IDs were renamed Meter1 through Meter103.

Theft Scenario Construction

This subsection considers the different electricity theft scenarios that will be used to

demonstrate the feasibility of the proposed framework. It is to be noted that, while the at-
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Figure 7.5: An example of the normal daily electricity usage and four theft scenarios.

tacks were synthetically generated, their distributions are randomized to ensure the exact

percolation of the attacks into the meter data is still unknown. This ensures a minimiza-

tion of any inherent bias the proposed framework might have and keeps the overall data

structure intact (as would be the case in reality). Consider the electricity bill function as

B(q) = Bq, and the fine penalty as B(q) = P , with pDimax = 0.5 and pEimax = 0.3, ∀i ∈ N ,

and lmax = 0.7. Therefore, the Stackelberg equilibrium can be derived. Based on the

derived qSi in the game equilibrium, for each meter measurement xt, t = 1, .., 744, in the

dataset, four electricity theft scenarios can be formulated:

1. A1
t = (qi − qSi )/qi × (xt);

2. A2
t = (qi − qSi )/qi × (x744−t);

3. A3
t = (qi − qSi )/qi × E[xt];

4. A4
t = [x1, ..., xt1 , 0, ..., 0], where t1 is the earliest time satisfies

∑t1
1 xt ≥ qi − qSi .

One customer’s daily electricity usage and the four suspected scenarios of electricity theft

are shown in Fig. 7.5.
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Benford’s Analysis

To validate the data’s adherence to Benford’s Law, several Goodness of Fit (GoF) tests

have been proposed in the literature. Of them, Pearson’s Chi-Square test and Euclid-

ian distance are two of the widely considered methods to test for significance. These tests

assume a null hypothesis (H0) of the data conforming to the Law, and an alternate hypoth-

esis (H1) representing the conclusion otherwise. As the sample size grows larger, as is

the case in this study, the significance level represented by p-value decreases substantially,

approaching zero. Furthermore, threshold of significance, denoted by α is arbitrarily set

to a value of 0.05 in most studies. However, even a slight difference between the mean

of the two groups of data becomes statistically significant for such a large sample size.

Hence, it is necessary to justify hypothesis testing with a measure of how big the effect

of size is. Cohen’s distance is used as an effect of size measure to evaluate the differ-

ence between the mean of two groups. Here, group 1 comprises the Fibonacci series that

precisely conforms to the Benford’s Law curve. It is used as the baseline, while group 2

comprises different types of meter data: normal, and those subject to Attacks 1 through

4 as described in Section 7.6. Illustrated by Fig. 7.6, it can be seen that the difference

in mean between Normal and the baseline is 0, implying that there is no effect of size

between the two. However, the Cohen’s d-value increases relatively significantly when

the data is subject to the Attacks 1 through 4. Greater the d-value, more obvious is the dif-

ference between the normal and abnormal datasets. The small d-values implicitly suggest

that the four attacks considered are quite intelligent, probably perpetrated by an attacker

who is aware of typical electricity usage profiles.

Benford’s Analysis for normal data against that compromised by the four attacks is

depicted by Fig. 7.7. It can be seen that the PDFs of the leading significant digits of data

manipulated by Attacks 1 through 4 (colored orange, yellow, green and blue, respectively)

show significant deviations from the expected PDF represented by the normal data (col-

153



Figure 7.6: Cohen’s distance showing effect of size measure for normal and tampered
data against ideal dataset.
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Figure 7.7: Benford analysis for normal and tampered data against ideal dataset.
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Figure 7.8: The LRT between normal daily electricity usage and Attack 1.

ored red). This deviation signifies the comparison step shown in Fig. 7.1. This, hence,

illustrates the power of Benford’s Analysis in determining whether the data is potentially

tampered with in some form. However, this analysis fails to pin-point specific meters that

are manipulated. Thus, this analysis provides a crucial preliminary high-level picture for

the operators and analysts to study the meter data of N consumers and decipher anoma-

lies in them for the next stage. If flagged by this analysis, the data is sent to the next stage

of the proposed DIFETD.

Likelihood Ratio Test

The lognormal PDF of a normal customer and a thief was trained using normal electricity

usage and attack patterns, respectively. Figure 7.8 gives one normal customer’s lognormal

PDF and corresponding malicious lognormal PDF. Figure 7.9 shows the Receiver Oper-

ating Characteristic (ROC) curve of the LRT for different levels of stealing by thieves,

where qS/q = 30%, ..., 70%. In this figure, it can be seen that, with increase of the per-

cent of electricity being stole, the LRT test exhibits better performance. For instance,
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Figure 7.9: The ROC Curve (probability of successful detection versus false alarm prob-
ability) of the LRT for different levels of stealing by thieves.

when qS/q = 30%, the probability of successful detection probability pD is close to the

false alarm probability pE . However, when qS/q = 70%, the probability of successful

detection probability pD is close to 1, which is much larger than pE .

7.7 Summary

Electricity theft is a major concern for utilities all over the world, since it accounts for

billions of dollars in losses every year. Considering crucial power system applications

such as demand response and state estimation utilize smart meter data, undetected thefts

such as FDI could pose serious threats to the reliable operation of smart grid distribu-

tion network, raising resiliency concerns. Thus, electricity theft can be considered a very

key precursor to the issue of resiliency in smart grid. To address this growing concern,

DIFETD is proposed in this chapter to detect electricity theft in smart meters using Ben-
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ford’s Analysis for preliminary diagnostics and Stackelberg game for strategic interac-

tions between one utility and multiple thieves. The game equilibrium provides optimal

sampling rate and threshold value for LRT. The capability of the proposed framework

was validated against four intelligent theft scenarios with real usage data. For each smart

meter, the successful detection rate is achieved more than 95% and the false alarm is con-

trolled beyond 10%, if the electricity is stolen in 50%. In the future, more sophisticated

types of theft scenarios on a community of more number of smart meters will be used to

evaluate the performance of the proposed work. Here, realistic attack data will be used to

validate the framework, and the number of meter samples drawn will be further increased

to demonstrate the real-world complexity and how the proposed framework handles it.

Further, the uncertainty in theft detection will be considered in the adversary model for-

mulation, in order to detect specific fraudulent meters.
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8.1 Conclusion

Security and resilience issues that arise in the smart grid constitute a pivotal concern in

modern critical infrastructures. In this dissertation, we have discussed new mathematical

methods and analytical tools for addressing the reliability and resilience aspects of the

smart grid. Regarding the smart grid reliability, statistical analysis techniques were intro-

duced in [27, 28] to analyze the relationship between the number of power interruptions

on electric distribution networks and common weather parameters, such as temperature,

wind, air pressure, and lightning. The number of power interruptions was predicted based

on the total sum of the statistical model of each weather parameter. However, the power

interruptions related with common weather conditions are essentially the result of com-

bined action of many factors. The power interruption prediction only based on statistical

models might be compromising due to the various effects of different weather parameters.

Chapter 3 has presented a MLP based framework to forecast the daily numbers of

sustained and momentary interruptions in smart grid distribution networks using time se-

ries of common weather data. Essentially, compared with traditional statistical models,

the proposed framework reduced MSE by 8.77% and 61.37% for sustained and momen-

tary interruption forecasting, respectively. A modified ELM based learning algorithm was

proposed to train, validate, and test the formulated framework, whose convergence was

proved. In addition, we derived the sensitivity of each common weather parameter with

respect to the daily numbers of power interruptions based on the formulated framework.

For the utility management area in Florida, we can find that the lightning strike was the

most important common weather parameter impacting the reliability performance of the

smart grid distribution networks, while the heating day had the least impact.
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Appropriate implementation of this framework leads to save time by predicting the

number of power interruptions. Whenever the number of interruptions is forecasted based

on historical weather data, power system equipment failure rates, and aging of distribution

network components, the utilities can prevent a major percent of these events by establish-

ing preventive maintenance programs. Hence, the number of interruptions will be reduced

considerably because they are not unexpected and the system operator is equipped to face

such problems and solve them immediately and without any delay. This awareness of

the power distribution network situation helps to achieve an acceptable level of reliability

and the improvement of reliability is one of the main objectives of moving to smart grid.

The proposed method is implementable on the future power system. In the proposed ap-

proach, the variable weather conditions are also considered. The capability of considering

the weather conditions in the reliability calculations in terms of interruption prediction is

one of the significant breakthroughs of Chapter 3.

A comprehensive overview on the applications of noncooperative game theory for

analyzing the cyber-physical security of the smart grid has been presented in Chapter 4.

The smart grid analysis was carefully drawn from a broad range of cyber and physical

security issues spanning key elements such as network infrastructure, AMI, and state

estimation. In each zone, we have identified the main cyber-physical security threats and

presented an elaborate discussion on how noncooperative game theory can be applied to

address these challenges. Moreover, we proposed several future directions for extending

these approaches and adopting advanced game theoretic techniques, so as to reduce the

gap between theoretical models and practical implementations of future smart grids. From

the surveyed works, we can clearly see that game theory has strong potential to provide

solutions for pertinent cyber-physical security problems in the smart grid but also faces

many design challenges. However, we also note that many of the existing works have

focused on classical static noncooperative games. Hence, in future work, it is of interest to
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investigate dynamic game models (both in cooperative and noncooperative settings) and

their applications in smart grid systems. In this context, dynamic game theory could be a

cornerstone for capturing these parameters and designing better algorithms for improving

the cyber and physical aspects of the future smart grid.

In Chapter 5, we proposed a novel game-theoretic approach for the risk assessment

of coordinated cyber-physical attacks against power grids, while considering the finite

budget owned by the attacker and defender that will have an important influence on the

assessment. We have formulated a two-player zero-sum stochastic game between the

attacker and defender in which each player seeks to maximize its respective minimum

rewards under the opponent’s optimal strategy. In order to quantify their rewards, the

optimal load shedding technology was introduced to determine the minimum cost of shed

load. Using these quantified rewards as inputs, the attacker and defender’s Nash equilib-

rium strategies about its budget allocation were derived by solving the proposed stochastic

game. At the Nash equilibrium of the game, the optimal attack and defense budget allo-

cation strategies can be obtained, in terms of attacking/protecting the critical elements of

the grid. The probability of successful attacks and corresponding physical impacts on the

grid can be used to assess the risk for various states of the power grid, and the optimal

defense budget allocation is formulated in terms of the corresponding risk. The IEEE

9-bus grid wasis used as the test system, and simulation results have shown that different

risks are derived as we vary the attack/defense budget. In addition, compared with the

traditional static game models, the proposed stochastic game-theoretic approach can re-

duce the test system risk by more than 30% for each system state. This proposed game

theoretic framework provided a way for the optimal management of the shared critical

infrastructure resources be resilient to failures in any of the power system.

In Chapter 6, we introduced a novel DER cyber attack detection framework that

integrates spare feature learning and spatiotemporal correlation analysis. First, a two-
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layer SAE architecture was formulated to extract the abstract representations from large-

volume DER measurement datasets. The MRelief feature selection was then developed

to provide the feature ranking for both original measurements and extracted represen-

tations. Furthermore, we combined the SAE architecture and MRelief with a decision

tree-based ensemble classifier for identifying the abnormal events in the DER measure-

ment dataset. The normal, fault, and cyber attack system scenarios simulated by the IEEE

34-bus test distribution system are utilized for training the proposed ensemble classifier.

Compared with existing detection methods such as decision tree, quadratic discriminant

analysis, logistic regression classifier, SVM, and nearest neighbor classifier, the proposed

DER anomaly detection framework achieved the best performance of 99.48% DR, 99.69%

Acc, 99.69% F1, and only 0.1% FAR. Finally, a spatiotemporal correlation sphere is de-

veloped for PV farm in the test distribution system for classifying the fault scenarios and

the potential cyber attacks in the generated abnormal event list.

In Chapter 7, to address this growing concern for electricity theft, DIFETD was pro-

posed in this paper to detect electricity theft in smart meters using Benford’s Analysis

for preliminary diagnostics and Stackelberg game for strategic interactions between one

utility and multiple thieves. The game equilibrium provides optimal sampling rate and

threshold value for LRT. The capability of the proposed framework was validated against

four intelligent theft scenarios with real usage data. For each smart meter, the successful

detection rate is achieved more than 95% and the false alarm is controlled beyond 10%, if

the electricity is stolen in 50%. Electricity theft is a major concern for utilities all over the

world, since it accounts for billions of dollars in losses every year. Considering crucial

power system applications such as demand response and state estimation utilize smart

meter data, undetected thefts such as FDIA could pose serious threats to the reliable op-

eration of smart grid distribution network, raising resiliency concerns. Thus, electricity

theft can be considered a very key precursor to the issue of resiliency in smart grid. The
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proposed DIFETD provided a model to investigate distributor monitoring choices when

customers are strategic, and a known fraction of consumers engages in stealing.

8.2 Recommendations for Future Work

The reliable power system operation is a major goal for electric utilities, which requires

the accurate reliability forecasting to minimize the duration of power interruptions. The

weather conditions, including both common weather parameters and extreme weather

events, are usually the leading causes for power interruptions in the smart grid, especially

for its distribution networks. However, the proposed hybrid power distribution reliability

forecasting model in Chapter 3 only investigated the combined effect of common weather

parameters on the reliability performance of distribution networks. Due to essential needs

for understanding and recognizing the power system reliability performance under ex-

treme weather events such as hurricanes and windstorms, it is recommended to consider

the extreme weather condition based power system reliability forecasting as the future

work. Specially, a Bidirectional LSTM based framework can be proposed to forecast the

numbers of sustained and momentary power interruptions in one distribution management

area under extreme weather events.

The stochastic game theoretic framework proposed in Chapter 5 can be used as a basis

to analyze the coordinated cyber-physical attacks targeted at the smart grid. However, the

proposed framework can be extended by considering the bounded rationality of the play-

ers and the coordination between the cyber attackers. In fact, several future opportunities

for extending this work can be explored:

• Introducing additional players and strategies into the game that enables analyzing

the cyber-physical attack targeted at multiple smart grid elements simultaneously;
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• Analyzing the impact of both the attacker’s and defender’s information sets on the

optimal attack and defense strategy selections;

• Proposing a practical implementation that can be used as a smart grid testbed to

evaluate the defender’s Nash equilibrium strategies against the data confidentiality

attacks.

Regarding the DER cyber attack detection mechanism in Chapter 6 and theft detection

framework in Chapter 7, the simulated attack scenarios are implemented for evaluating

the performance of the proposed work. However, in the future work, realistic attack data

can be used to validate the framework. Further, the operation and information technol-

ogy support personnel at utility command and control centers constantly detect suspicious

events and/or extreme conditions across the smart grid. Already overwhelmed by routine

mandatory tasks such as guidelines compliance and patching that if ignored could in-

cur penalties, they have little time to understand the large volumes of machine-generated

data associated with the events, generated by intrusion detection systems, firewalls, and

other security tools. Lack of powerful classification and anomaly detection tools, and

non-contextual visualization of such critical but inadequately processed data, reduces the

situational awareness, thereby increasing the likelihood of erroneous or sub-optimal de-

cisions that could prove opportunities to well-evolved attackers. The future work focuses

on proposing a tri-modular framework which shifts low-performance processing speed

and data contextualization from users to high-performance processing using software,

thereby providing users with actionable information. The framework provides three mod-

ules, Data Module (DM): Kafka, Spark, and R to ingest streams of heterogeneous data;

Classification Module (CM): a Long Short-Term Memory (LSTM) model to classify pro-

cessed data at each time-step; and Action Module (AM): naturalistic and rational models

for time-critical and non-time-critical decision-making, respectively.
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belova, V. Vyatkin, P. Vrba, and V. Mařı́k, “A review of architectures and con-
cepts for intelligence in future electric energy systems,” IEEE Trans. Ind. Electron.,
vol. 62, pp. 2424–2438, Apr. 2015.

[91] K. Moslehi and R. Kumar, “Smart grid - a reliability perspective,” in 2010 Innova-
tive Smart Grid Technologies (ISGT), pp. 1–8, Jan. 2010.

[92] “IEEE Guide for Electric Power Distribution Reliability Indices - Redline,” IEEE
Std 1366-2012 (Revision of IEEE Std 1366-2003), pp. 1–92, May 2012.

[93] T. V. Dao, S. Chaitusaney, and H. T. N. Nguyen, “Linear least-squares method for
conservation voltage reduction in distribution systems with photovoltaic inverters,”
IEEE Trans. Smart Grid, vol. 8, pp. 1252–1263, May 2017.

[94] C. Pace, J. Hernandez-Ambato, L. Fragomeni, G. Consentino, A. D’Ignoti,
S. Galiano, and A. Grimaldi, “A new effective methodology for semiconductor
power devices HTRB testing,” IEEE Trans. Ind. Electron., vol. 64, pp. 4857–4865,
June 2017.

[95] H. Li, J. Guo, and J. Liang, “Application of new wind speed model in power system
reliability assessment,” in 2015 50th International Universities Power Engineering
Conference (UPEC), pp. 1–6, Sept 2015.

[96] A. Lisnianski and H. Ben Haim, “Short-term reliability evaluation for power sta-
tions by using Lz-transform,” J. Mod. Pow. Syst. Cl. Ener., vol. 1, pp. 110–117, Sep
2013.

[97] H. Yang, C. Y. Chung, J. Zhao, and Z. Dong, “A probability model of ice storm
damages to transmission facilities,” IEEE Trans. Power Del., vol. 28, pp. 557–565,
April 2013.

[98] C. Romualdo-Torres, M. Ramirez-Gonzaez, and A. Escamilla-Paz, “Lightning
outage transmission line reliability improvement with surge arresters,” in 2016

173



IEEE/PES Transmission and Distribution Conference and Exposition (T&D),
pp. 1–5, May 2016.

[99] Y.-C. Lai, Y.-A. Huang, and H.-Y. Chu, “Estimation of rail capacity using regres-
sion and neural network,” Neural Comput. Appl., vol. 25, pp. 2067–2077, Dec
2014.

[100] Y. Zhang, Y. Xu, Z. Y. Dong, Z. Xu, and K. P. Wong, “Intelligent early warn-
ing of power system dynamic insecurity risk: Toward optimal accuracy-earliness
tradeoff,” IEEE Trans. Ind. Informat., vol. 13, pp. 2544–2554, Oct 2017.

[101] L. Qi, X. Xiao, and L. Zhang, “A parameter-self-adjusting levenberg-marquardt
method for solving nonsmooth equations,” J. Comp. Math, vol. 34, no. 3, 2016.

[102] Z. Ismail, J. Leneutre, D. Bateman, and L. Chen, “A game theoretical analysis of
data confidentiality attacks on smart-grid ami,” IEEE Journal on Selected Areas in
Communications, vol. 32, pp. 1486–1499, July 2014.

[103] A. Sundararajan, A. Pons, and A. Sarwat, “A generic framework for eeg-
based biometric authentication,” in 12th International Conference on Information
Technology-New Generations (ITNG), (Las Vegas), Apr. 2015.

[104] A. Anzalchi and A. Sarwat, “A survey on security assessment of metering infras-
tructure in smart grid systems,” in IEEE Southeast Conference, (Fort Lauderdale),
2015.

[105] I. Parvez, A. Sundararajan, and A. Sarwat, “Frequency band for han and nan com-
munication in smart grid,” in IEEE Symposium on Computational Intelligence Ap-
plications in Smart Grid (CIASG), (Orlando), Dec. 2014.

[106] S. McLaughlin, B. Holbert, A. Fawaz, R. Berthier, and S. Zonouz, “A multi-sensor
energy theft detection framework for advanced metering infrastructures,” IEEE
Journal on Selected Areas in Communications, vol. 31, pp. 1319–1330, July 2013.

[107] E. de Buda, “System for accurately detecting electricity theft,” January 2010.

[108] V. Badrinath Krishna, G. A. Weaver, and W. H. Sanders, PCA-Based Method
for Detecting Integrity Attacks on Advanced Metering Infrastructure, pp. 70–85.
Cham: Springer International Publishing, 2015.

174



[109] V. Badrinath Krishna, R. K. Iyer, and W. H. Sanders, ARIMA-Based Modeling
and Validation of Consumption Readings in Power Grids, pp. 199–210. Cham:
Springer International Publishing, 2016.

[110] P. Jokar, N. Arianpoo, and V. C. M. Leung, “Electricity theft detection in ami
using customers’ consumption patterns,” IEEE Transactions on Smart Grid, vol. 7,
pp. 216–226, Jan 2016.

[111] S. Amin, G. A. Schwartz, A. A. Cardenas, and S. S. Sastry, “Game-theoretic mod-
els of electricity theft detection in smart utility networks: Providing new capa-
bilities with advanced metering infrastructure,” IEEE Control Systems, vol. 35,
pp. 66–81, Feb 2015.

[112] A. A. Cárdenas, S. Amin, G. Schwartz, R. Dong, and S. Sastry, “A game theory
model for electricity theft detection and privacy-aware control in ami systems,” in
2012 50th Annual Allerton Conference on Communication, Control, and Comput-
ing (Allerton), pp. 1830–1837, Oct 2012.

[113] A. Sanjab and W. Saad, “Data injection attacks on smart grids with multiple adver-
saries: A game-theoretic perspective,” IEEE Transactions on Smart Grid, vol. 7,
pp. 2038–2049, July 2016.

[114] W. Saad, Z. Han, H. V. Poor, and T. Basar, “Game-theoretic methods for the smart
grid: An overview of microgrid systems, demand-side management, and smart grid
communications,” IEEE Signal Process. Mag., vol. 29, pp. 86–105, Sept. 2012.

[115] ELCON, “The economic impacts of the august 2003 blackout,” Feb. 2004.

[116] NERC, “Reliability concepts.,” Nov. 2015.

[117] Z. Li, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, “Bilevel model
for analyzing coordinated cyber-physical attacks on power systems,” IEEE Trans.
Smart Grid, vol. PP, no. 99, pp. 1–1, 2015.

[118] M. Anthony, R. Arno, N. Dowling, and R. Schuerger, “Reliability analysis for
power to fire pump using fault tree and rbd,” IEEE Trans. Ind. Appl., vol. 49,
pp. 997–1003, March 2013.

[119] Y. W. Law, T. Alpcan, and M. Palaniswami, “Security games for risk minimization
in automatic generation control,” IEEE Trans. Power Syst., vol. 30, pp. 223–232,
Jan 2015.

175



[120] C. W. Ten, G. Manimaran, and C. C. Liu, “Cybersecurity for critical infrastruc-
tures: Attack and defense modeling,” IEEE Trans. Syst., Man, and Cybern. A,
Syst., Humans, vol. 40, pp. 853–865, July 2010.

[121] A. Hahn and M. Govindarasu, “Cyber attack exposure evaluation framework for
the smart grid,” IEEE Trans. Smart Grid, vol. 2, pp. 835–843, Dec. 2011.

[122] S. Sridhar, M. Govindarasu, and C.-C. Liu, “Risk analysis of coordinated cyber
attacks on power grid,” in Control and Optimization Methods for Electric Smart
Grids, vol. 3, (New York, USA: Springer), pp. 275–294, Nov. 2011.

[123] E. Bompard, C. Gao, R. Napoli, A. Russo, M. Masera, and A. Stefanini, “Risk
assessment of malicious attacks against power systems,” IEEE Trans. Syst., Man,
and Cybern. A, Syst., Humans, vol. 39, pp. 1074 – 1085, Sept. 2009.

[124] A. J. Holmgren, E. Jenelius, and J. Westin, “Evaluating strategies for defending
electrical power networks against antagonistic attacks,” IEEE Trans. Power Syst.,
vol. 22, Feb. 2007.

[125] L. Wei, A. H. Moghadasi, A. Sundararajan, and A. Sarwat, “Defending mecha-
nisms for protecting power systems against intelligent attacks,” in Proc. IEEE 10th
SoSE Conf., (San Antonio, the United States), May 2015.

[126] E. Alpaydin, Introduction to Machine Learning. MIT Press, Aug. 2012.

[127] NERC, “The highimpact, low-frequency event risk to the North American Bulk
Power System,” Nov. 2009.

[128] K. Chatterjee and A. Tarlecki, Computer Science Logic. Springer Berlin Heidel-
berg Press, 2004.

[129] L. Shapley, “Stochastic games,” in Proc. Nat. Acad. Sci. USA, vol. 39, pp. 1095–
1100, 1953.

[130] A. Pinar, J. Meza, V. Donde, and B. Lessieutre, “Optimization strategies for the
vulnerability analysis of the electric power grid,” SIAM J. Optimiz., vol. 20, no. 4,
pp. 1786–1810, 2010.

[131] B. Otomega and T. V. Cutsem, “Undervoltage load shedding using distributed con-
trollers,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 1898–1907, 2007.

176



[132] V. C. Nikolaidis, C. D. Vournas, G. A. Fotopoulos, G. P. Christoforidis,
E. Kalfaoglou, and A. Koronides, “Automatic load shedding schemes against volt-
age stability in the hellenic system,” in Proc. IEEE PES Gen. Meet., (Tampa, FL),
June 2007.

[133] P. M. Anderson and A. A. Fouad, Power system control and stability. Delhi, India:
Galgotia, 1981.

[134] J. Qi, A. Hahn, X. Lu, J. Wang, and C. C. Liu, “Cybersecurity for distributed energy
resources and smart inverters,” IET Cyber-Phys. Syst., Theory Appl., vol. 1, no. 1,
pp. 28–39, 2016.

[135] D. Munoz-Alvarez, J. F. Garcia-Franco, and L. Tong, “On the efficiency of con-
nection charges - part II: Integration of distributed energy resources,” IEEE Trans.
Power Syst., pp. 1–1, 2017.

[136] A. Ameli, A. Hooshyar, E. El-Saadany, and A. Youssef, “Attack detection and
identification for automatic generation control systems,” IEEE Trans. Power Syst.,
pp. 1–1, 2018.

[137] M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim, “Deep ab-
straction and weighted feature selection for wi-fi impersonation detection,” IEEE
Trans. Inf. Forensics Security, vol. 13, pp. 621–636, March 2018.

[138] N. Chen, J. Zhu, F. Sun, and B. Zhang, “Learning harmonium models with infinite
latent features,” IEEE Trans. Neural Netw. Learning Syst., vol. 25, pp. 520–532,
March 2014.

[139] M. A. Karim, J. Currie, and T. T. Lie, “Dynamic event detection using a distributed
feature selection based machine learning approach in a self healing microgrid,”
IEEE Trans. Power Syst., pp. 1–1, 2018.

[140] L. Wang and H. Shen, “Improved data streams classification with fast unsupervised
feature selection,” in 2016 17th Int. Conf. Parallel Distrib. Comput., Appl. and
Technol. (PDCAT), pp. 221–226, Dec 2016.

[141] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, “L2,1-norm regularized dis-
criminative feature selection for unsupervised learning,” in the 22nd Int. Joint Conf.
AI, pp. 1589–1594, 2011.

177



[142] M. Ohsaki, P. Wang, K. Matsuda, S. Katagiri, H. Watanabe, and A. Ralescu,
“Confusion-matrix-based kernel logistic regression for imbalanced data classifi-
cation,” IEEE Trans. Knowl. Data Eng, vol. 29, pp. 1806–1819, Sept 2017.

[143] W. Saad, Z. Han, H. V. Poor, and T. Basar, “Game-theoretic methods for the smart
grid: An overview of microgrid systems, demand-side management, and smart grid
communications,” IEEE Signal Process. Mag., vol. 29, pp. 86–105, Sept. 2012.

[144] L. Wei, A. Sarwat, W. Saad, and S. Biswas, “Stochastic games for power grid pro-
tection against coordinated cyber-physical attacks,” IEEE Transactions on Smart
Grid, vol. PP, no. 99, pp. 1–1, 2017.

[145] I. Parvez, M. Jamei, A. Sundararajan, and A. I. Sarwat, “Rss based loop-free com-
pass routing protocol for data communication in advanced metering infrastructure
(ami) of smart grid,” in 2014 IEEE Symposium on Computational Intelligence Ap-
plications in Smart Grid (CIASG), pp. 1–6, Dec 2014.

[146] I. Parvez, A. I. Sarwat, L. Wei, and A. Sundararajan, “Securing metering infras-
tructure of smart grid: A machine learning and localization based key management
approach,” Energies, vol. 9, no. 9, 2016.

[147] R. Jiang, R. Lu, Y. Wang, J. Luo, C. Shen, and X. S. Shen, “Energy-theft detection
issues for advanced metering infrastructure in smart grid,” Tsinghua Science and
Technology, vol. 19, pp. 105–120, April 2014.

[148] L. Wei, A. I. Sarwat, and W. Saad, “Risk assessment of coordinated cyber-physical
attacks against power grids: A stochastic game approach,” in 2016 IEEE Industry
Applications Society Annual Meeting, pp. 1–7, Oct 2016.

[149] U. S. EIA, “Internatioanl energy outlook 2016,” May 2016.

[150] A. Jamain, “Benford’s law,” Imperial College of London, 2001.

[151] S. Newcomb, “Note on the frequency of use of the different digits in natural num-
bers,” American Journal of Mathematics, vol. 4, no. 1, pp. 39–40, 1881.

[152] O. Kafri, “Entropy principle in direct derivation of benford’s law,” Varicom Com-
munication, 2009.

178



[153] S. McLaughlin, B. Holbert, A. Fawaz, R. Berthier, and S. Zonouz, “A multi-sensor
energy theft detection framework for advanced metering infrastructures,” IEEE
Journal on Selected Areas in Communications, vol. 31, pp. 1319–1330, July 2013.

[154] E. de Buda, “System for accurately detecting electricity theft,” January 2010.

[155] C. Durtschi, W. Hillison, and C. Pacini, “The effective use of benford’s law to assist
in detecting fraud in accounting data,” Journal of Forensic Accounting, vol. V,
pp. 17–34, 2004.

[156] R. Joannes-Boyau, T. Bodin, A. Scheffers, M. Sambridge, and S. May, “Using
benford’s law to investigate natural hazard dataset homogeneity,” Nature Scientific
Reports, 2015.

[157] G. Bella and F. Grigoli, “Power it up: Strengthening the electricity sector to im-
prove efficiency and support economic activity,” IMF Working Paper Technical
Report, 2016.

[158] T. Mir, “Citations to articles citing benford’s law: a benford analysis,” arXiv, Feb.
2016.

[159] W. Han and Y. Xiao, “Fnfd: A fast scheme to detect and verify non-technical
loss fraud in smart grid,” Proc. 2016 ACM International on Workshop on Traffic
Measurements for Cybersecurity, pp. 24–34, 2016.

[160] X. Xia, W. Liang, Y. Xiao, and M. Zheng, “Bgci: A fast approach to detect mali-
cious meters in neighborhood area smart grid,” in IEEE International Conference
on Communications, (London, UK), June 2015.

[161] X. Xia, W. Liang, Y. Xiao, M. Zheng, and Z. Xiao, “Difference-comparison-
based approach for malicious meter inspection in neighborhood area smart grids,”
in Proc. 50th International Conference on Communications, (London, UK), June
2015.

[162] C. Winter, M. Schneider, and Y. Yannikos, “Model-based digit analysis for fraud
detection overcomes limitations of benford analysis,” 2012 Seventh International
Conference on Availability, Reliability and Security, 2012.

[163] E. Telecom., “Fighting electricity theft with advanced metering infrastructure,”
March 2011.

179



[164] V. Badrinath Krishna, G. A. Weaver, and W. H. Sanders, PCA-Based Method
for Detecting Integrity Attacks on Advanced Metering Infrastructure, pp. 70–85.
Cham: Springer International Publishing, 2015.

[165] V. Badrinath Krishna, R. K. Iyer, and W. H. Sanders, ARIMA-Based Modeling
and Validation of Consumption Readings in Power Grids, pp. 199–210. Cham:
Springer International Publishing, 2016.

[166] P. Jokar, N. Arianpoo, and V. C. M. Leung, “Electricity theft detection in ami
using customers’ consumption patterns,” IEEE Transactions on Smart Grid, vol. 7,
pp. 216–226, Jan 2016.

[167] S. Amin, G. A. Schwartz, A. A. Cardenas, and S. S. Sastry, “Game-theoretic mod-
els of electricity theft detection in smart utility networks: Providing new capa-
bilities with advanced metering infrastructure,” IEEE Control Systems, vol. 35,
pp. 66–81, Feb 2015.

[168] W. K. T. Cho and B. J. Gaines, “Breaking the (benford) law: Statistical fraud
detection in campaign finance,” The American Statistician, vol. 61, pp. 218–223,
Aug. 2007.

[169] P. D. Scott and M. Fasli, “Benford’s law: An empirical investigation and a novel
explanation,” CSM Technical Report 349, 2001.

[170] S. Miller, Benford’s Law: Theory and Applications. Princeton Press, 2015.

[171] T. Sugiarto, “Application of first digits ‘benford’ law: A case study of an indone-
sian company,” International Journal of Management & Organizational Studies,
vol. 5, June 2016.

[172] F. Benford, “The law of anomalous numbers,” in Proc. American Philosophical
Society, vol. 78, 1938.

[173] A. Cullen and H. Frey, The Use of Probabilistic Techniques in Exposure Assess-
ment: A Handbook for Dealing with Variability and Uncertainty in Models and
Inputs. New York, NY: Plenum Press, Plenum Publishing Corporation, 1999.

180



VITA

LONGFEI WEI

Born, Tangshan, Hebei Province, China

2007-2011 B.S., Mathematics and Applied Mathematics
Hebei University of Technology
Tianjin, China

2011-2014 M.S., Applied Mathematics
Hebei University of Technology
Tianjin, China

2014-2018 Doctoral Candidate, Electrical Engineering
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

L. Wei, A. I. Sarwat, W. Saad, and S. Biswas, (2016). Stochastic games for power grid
protection against coordinated cyber-physical attacks. IEEE Transactions on Smart Grid,
9(2), 684–694.

I. Parvez, A. I. Sarwat, L. Wei, and A. Sundararajan, (2016). Securing metering in-
frastructure of smart grid: a machine learning and localization based key management
approach. Energies, 9(9), 691–709.

L. Wei and A. I. Sarwat, Hybrid integration of multilayer perceptrons and parametric
models for reliability forecasting in the smart grid. Submitted to IEEE Transactions on
Industry Informatics, Under Review.

L. Wei, R. Singh, and A. I. Sarwat, Spare feature learning and spatiotemporal correlation
for attack detection in power distribution systems integrated with DERs. Submitted to
IEEE Transactions on Power System, Under Review.

M. Moghaddami, L. Wei, and A. I. Sarwat, Generalized Physics-Based Multi-Objective
Design Optimization of Magnetic Structures for Inductive Charging Systems. Submitted
to the IEEE Transactions on Industrial Electronics, Under Review.

A. Sundararajan, T. Olowu, L. Wei, S. Rahman, and A. I. Sarwat, Impacts of Partial Solar
Eclipse on Distribution Grid-Tied Photovoltaic Systems and Management Areas: A Case
Study. Submitted to International Journal of Electrical Power and Energy Systems, Under
Review.

181



L. Wei, L. P. Rondon, A. Moghadasi, and A. I. Sarwat, (2018, April). Review of cyber-
physical attacks and counter defense mechanisms for advanced metering infrastructure in
smart grid. In 2018 IEEE PES T&D conference (pp. 1–7).

L. Wei, A. Sundararajan, and A. I. Sarwat, (2018, to be appear). Review of cyber-physical
attacks and counter defense mechanisms for advanced metering infrastructure in smart
grid. In 2018 resilience week (RWS) (pp. 1–7).

L. Wei, A. Sundararajan, A. I. Sarwat, S. Biswas, and E. Ibrahim, (2017, September). A
distributed intelligent framework for electricity theft detection using benford’s law and
stackelberg game. In 2017 resilience week (RWS) (pp. 5–11)

J. Lu, L. Wei, M. M. Pour, Y. Mekonnen, and A. I. Sarwat, (2017, June). Modeling dis-
charge characteristics for predicting battery remaining life. In 2017 IEEE transportation
electrification conference and expo (ITEC) (pp. 468–473).

L. Wei, A. I. Sarwat, and W. Saad, (2016, October). Risk assessment of coordinated
cyber-physical attacks against power grids: a stochastic game approach. In 2016 IEEE
industry applications society annual meeting (pp. 1–7).

L. Wei, A. H.Moghadasi, A. Sundararajan, and A. I. Sarwat, (2015, May). Defending
mechanisms for protecting power systems against intelligent attacks. In 2015 10th sys-
tem of systems engineering conference (SoSE) (pp. 12–17).

A. Anzalchi, A. Sundararajan, L. Wei, A. Moghadasi, and A. Sarwat, (2018, June). Fu-
ture directions to the application of distributed fog computing in smart grid systems. IGI
Global.

L. Wei, A. Anzalchi, A. Sundararajan, and A. Moghadasi, Electric Power Reliability &
Analytics Center (EPRAC) for High Penetration Distributed Renewable Resource Mod-
ern Grid System, presented at Engineering Center, FIU, Miami, FL, Nov. 2016.

L. Wei, A. Anzalchi, A. Sundararajan, and A. Moghadasi, Electric Power Reliability &
Analytics Center (EPRAC) for High Penetration Distributed Renewable Resource Mod-
ern Grid System, presented at Florida Power & Light (FPL), Juno Beach, FL, Aug. 2017.

L. Wei, Game-Theoretic Methods and its Application for Cyber-Physical Security in
Smart Grids, presented at American Mathematical Society (AMS) Student Chapter Event,
FAU, Boca, FL, Nov. 2017.

L. Wei, A. Sundararajan, S. Rahman, T. Olayemi, and M. Jafari, Electric Power Reliabil-
ity & Analytics Center (EPRAC) for High Penetration Distributed Renewable Resource
Modern Grid System, presented at Florida Power & Light (FPL), Jupiter, FL, Apr. 2018.

182


	Game-Theoretic and Machine-Learning Techniques for Cyber-Physical Security and Resilience in Smart Grid
	Recommended Citation

	tmp.1546541643.pdf.JoPch

