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ABSTRACT OF THE DISSERTATION 

DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR 

ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND 

CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND 

PROGRESSION OF INVASIVE BREAST CANCER 

by 

Jairo Ramos 

Florida International University, 2018 

Miami, Florida 

Professor Deodutta Roy, Co-Major Professor 

Professor Changwon Yoo, Co-Major Professor 

Despite tremendous progress in the understanding of breast cancer (BC), gaps 

remain in our knowledge of the molecular basis underlying the aggressiveness of 

BC and BC disparities. Nuclear respiratory factor 1 (NRF1) is a transcription 

factor (TF) known to control breast cancer cell cycle progression. DNA response 

elements bound by NRF1 positively correlate with the progression of malignant 

breast cancer. Mechanistic aspects by which NRF1 contributes to susceptibility 

to different breast tumor subtypes are still not fully understood. Therefore, the 

primary objective of this dissertation was to decipher mechanisms by which 

NRF1 coordinates changes in the transcriptional and chromatin landscape 

affecting development and progression of invasive breast cancer. Our hypothesis 

was that NRF1 reprogramming the transcription of tumor initiating gene(s) and 

tumor suppressor gene(s) contribute in the development and progression of 
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invasive breast cancer. To test this hypothesis, we proposed three specific aims: 

(a) Decipher regulatory landscape of NRF1 networks in breast cancer. (b) 

Determine the role of NRF1 gene networks in different subtypes of breast cancer. 

(c) Determine differential NRF1 gene network sensitivity contributing to breast 

cancer disparities. Our approach to test these aims consisted of a systematic 

integration of ChIP DNA-seq, RNA-Seq, NRF1 protein-DNA motif binding, signal 

pathway analysis, and Bayesian machine learning. We uncovered a novel 

oncogenic role for NRF1. This discovery strongly supported the supposition that 

NRF1 overexpression is sufficient to derive breast tumorigenesis. We also 

observed new roles for NRF1 in the acquisition of breast tumor initiating cells, 

regulation of epithelial to mesenchymal transition (EMT), and invasiveness of BC 

stem cells. Furthermore, through the use of Bayesian network structure learning 

we found that the NRF1 motif was enriched in 14 associated with HER2 amplified 

breast cancer. Three genes—GSK3B, E2F3, and PIK3CA—were able to predict 

HER2 breast tumor status with 96% to100% confidence. The findings of this 

study also showed the roles of NRF1 sensitivity to development of lobular A, 

Her2+, and TNBC in different racial/ethnic groups of breast cancer patients. In 

summary, our study revealed for the first time the role of NRF1 in the 

pathogenesis of invasive BC and BC disparities.  
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CHAPTER I 

INTRODUCTION 

Current projections show that during 2018 approximately 878,980 women 

in the United States will be diagnosed with malignant tumors. The number of 

projected new cases of breast cancer is 266,120 (30.3%), ranking number one 

followed by cancer in the digestive system with 137,200 (15.61%) (Siegel, Miller, 

& Jemal, 2018).  The estimated number of female deaths due to cancer during the 

same year is 286,010, with breast cancer the third most important cause with 

40,920 (14.31%). This number is surpassed only by cancer of the respiratory 

system (larynx, lung, and bronchus, and other respiratory organs) at 71,570   

(25.02%) and cancer in the digestive system organs at 66,590 (23.28%) (Siegel et 

al., 2018). 

Breast cancer was previous thought to be homogenous; however, in the 

decade of 2000 to 2010, scientists realized it was a heterogeneous disease 

(Anders & Carey, 2009). Based on classical immunochemistry (IHC) markers 

[estrogen receptor (ER), progesterone receptor (PR) and Human epidermal growth 

factor receptor 2 (HER2)]   and patterns of gene expression (DNA microarrays), 

five subtypes of breast cancer have been identified: Luminal A, Luminal B, Human 

epidermal growth factor receptor 2 (HER2) enriched, Basal-like, and Normal 

breast-like  (Dai et al., 2015; Yuan et al., 2014). Tumors with negative hormone 

receptor and  HER2 status  (ER-, PR- HER2-) are known as  triple negative 

(TNBC).  
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Although any of the subtypes can be triple negative, most (71% to 91%) are 

Basal-like (Huang,Liu, Chen, Liu, & Shao, 2013). Tumor response to treatment 

does not depend on anatomical factors but rather on detailed expression profiles 

(Dai et al., 2015).  Her2 enriched and triple negative subtypes are the two most 

aggressive and have the worst prognostic (Lee, Oprea-Ilies, & Saavedra, 2015; 

Sorlie et al., 2001).  Statistics were  not  consistent when we searched for 

prevalence of breast cancer by molecular subtype in the United States. Therefore, 

the figures presented here should be taken with caution. Table 1, adapted from 

Dai et al. (2015), summarizes our searching results for classification, prevalence, 

and predicted outcome of breast tumors (Cheang et al., 2009).  
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Table 1  

Breast Cancer Intrinsic Subtype Classification, IHC Status, Prevalence, and 

Predicted Outcome  

 

*Even though any of the subtypes can be triple negative, most (71% to 91%) are 
Basal-like (Huang et al., 2013). 
 
**Normal-like is part of Luminal A as it shares similar IHC status. 

Note: Table adapted from Dai et al. (2015).  

Incidence, prevalence, and death rates vary depending not only on 

molecular subtypes but also on ethnic groups. African American women are 

diagnosed at younger ages with more advanced stage tumors and more 

aggressive histologic features than Non-Hispanic White women. Risk of 

recurrence is also higher and survival rates are lower after controlling for age and 

stage at diagnosis (Danforth, 2013; Vidal, Bursac, Miranda-Caroni, White-Means, 

& Starlard-Davenport, 2017). It is believed that biological and nonbiological factors 

may contribute to these disparities. Although nonbiological factors, such as access 



4 
  

to health care, comorbidities, mammography and cultural issues, have been 

studied extensively, there is a lack of understanding of biological differences in 

breast tumors that may explain these disparities (Chlebowski et al., 2005; 

Danforth, 2013). 

Genetic alterations account for  only 5% to 10% of all breast cancer cases 

and include mutations in widely known high risk  genes, such as BRAC1 and 

BRAC2 (Kleibl & Kristensen. 2016). In general, cancer development is a multistep 

process caused by alterations in the expression or biochemical functions of certain 

genes that lead normal human cells to a progressive transformation into malignant 

cells (Hanahan & Weinberg, 2000). The main objective of cancer research is to 

identify causal genes to create new methods of diagnosis and treatment (Furney, 

Higgins, Ouzounis, & Lopez-Bigas, 2006).  

Transcription factors (TFs) play an important role in the regulation of gene 

expression in multicellular genomes. Together with microRNAs, TFs are the most 

abundant of all regulatory factors that affect gene expression (Hobert, 2008). 

Currently several transcription factors have been identified as oncogenes or tumor 

suppressor genes, such as the very well-known P53 linked to different type of 

cancers (Falco, Bleda, Carbonell-Caballero, & Dopazo, 2016; Strano et al., 2007).  

Nuclear Respiratory Factor one (NRF1) is a redox-sensitive pioneer 

transcription factor (also known as ALPHA-PAL) that regulates several genes 

essentials in different cellular processes, such as mitochondrial functions, RNA 

degradation, cell cycle DNA repair, and apoptosis (Cam et al., 2004; Satoh, 

Kawana, & Yamamoto, 2013; Scarpulla, 2008). Embryonic stem cells have been 
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shown to have approximately 33% of all active genes bound by NRF1 (ENCODE 

Project Consortium, 2012). NRF1 activity has been found increased in several 

cancers, including breast tumors (Falco et al., 2016) and  also linked to metastasis 

and poor overall survival in breast cancer patients (Ertel et al., 2012). In spite of 

growing evidence of NRF1 involvement in breast cancer, the underlying 

mechanisms are not yet fully understood. 

Overall Goal 

The overall goal of this dissertation was to decipher mechanisms by which 

nuclear respiratory factor 1 (NRF1) coordinates changes in the transcriptional and 

chromatin landscape affecting development and progression of invasive breast 

cancer, especially in the most aggressive subtypes. These subtypes are of major 

concern because they are associated with increased recurrence, lower survival, 

and higher rates of metastasis to the brain compared to other subtypes (Wu et al., 

2016). Despite tremendous progress in the understanding of breast cancer, gaps 

still remain in our knowledge of the molecular basis underlying these disparities in 

aggressiveness and outcomes associated with molecular subtypes and ethnicity. 

Therefore, filling these gaps may lead to discovery of novel causal genes which 

can be the basis for the development of new therapies for treating and preventing 

the most aggressive breast tumors. 

Hypothesis and Specific Aims 

Hypothesis: NRF1 reprogramming of the transcription of tumor initiating gene(s) 

and tumor suppressor gene(s) contribute to the development and progression of 

invasive breast cancer. 
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Aim 1: Decipher regulatory landscape of NRF1 networks in breast cancer. 

Aim 2: Determine the role of NRF1 gene networks in different subtypes of breast 

cancer. 

Aim 3: Determine differential NRF1 gene network sensitivity contributing to breast 

cancer disparities. 
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CHAPTER II 

CURRENT KNOWLEDGE OF NRF1 INVOLVEMENT IN THE PATHOGENESIS 

OF BREAST CANCER, INCLUDING GENE ONTOLOGY AND PATHWAY 

ANALYSIS OF NRF1 REGULATED NETWORKS 

Abstract 

Current projections show that approximately 266,120 women in the United States 

will be diagnosed with breast cancer in 2018, the highest number among all types 

of cancer. Hormone therapy, advances in the identification of tumor genetic profile, 

and the advent of targeted therapy such as Trastuzumab have increased the 

overall survival of breast cancer patients. In spite of these advances, the molecular 

risk factors involved in the pathogenesis of breast cancer are still not completely 

understood. Nuclear respiratory factor 1 (NRF1), also known as Alpha-palindromic 

binding protein (ALPHA-PAL), is a transcription factor (TF) known to be involved 

in cellular  processes important in cancer development. These include RNA 

degradation, cell cycle, DNA replication, DNA repair, mitosis, and apoptosis.  

NRF1 activity has been associated with breast cancer development in multiple 

ways and poor outcomes among breast cancer patients. We performed a literature 

review searching for current knowledge about mechanisms of NRF1 involvement 

in breast cancer, ChIP-Seq computational analysis to identify NRF1 target genes, 

and Gene Ontology and Pathway Analysis of NRF1 regulatory network to 

investigate its participation in signaling pathways and cellular processes important 

for cancer biology.  We found growing evidence that NRF1 may be involved in 

breast cancer through different mechanisms, including the increase of 
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mitochondrial function to support proliferation of cancer cells, the increase of NRF1 

activity due to estrogen-induced ROS signaling, which in turn dysregulates cell 

cycle genes, and epigenetic changes affecting NRF1 binding such as DNA 

methylation. Identification of NRF1 targets demonstrated that NRF1 network is 

cell-context- dependent, suggesting that these dissimilarities may help to elucidate 

differences in breast tumor behavior among molecular subtypes. We also found 

that the KEGG breast cancer pathway was enriched with NRF1 target genes. 

Finally, we noticed that a high percentage of the well-known breast cancer genes 

were directly or indirectly regulated by NRF1, including the very well-known 

BRCA1 that seems to be regulated by a transcriptional network formed by GABP 

and NRF1 (NRF-1 > GABPβ > BRCA1). 

Introduction 

In 2018, the projected number of women in the United States diagnosed 

with cancer is 878,980. Breast cancer is expected to rank number one, with 

266,120 new cases accounting for 30.3% (Siegel, Miller, & Jemal, 2018). 

Identification of gene expression patterns in tumors has been one of the key 

elements for the advances in the treatment of this disease, with a corresponding 

increase in overall survival. In spite of these advances, the molecular risk factors 

involved in the pathogenesis of breast cancer are not completely understood.  

Genetic and epigenetic alterations are involved in breast cancer 

development and progression (Campoy et al., 2016; Hanahan & Weinberg, 2011).  

Epigenetic alterations include DNA methylation and variations in chromatin, 

histone, and regulatory RNA (Campoy et al., 2016). Genetic alterations account 
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for 5% to 10% of all breast cancer cases and include mutations in widely known 

high-risk  genes, such as BRAC1 and BRAC2 (Kleibel & Kristensen, 2016). The 

human gene Nuclear respiratory factor 1 (NRF1), also known as Alpha-palindromic 

binding protein (ALPHA-PAL), is a transcription factor (TF). This factor regulates 

the expression of a  number of genes involved in mitochondrial functions essentials 

for  cellular growth and development,  such as organelle biogenesis and cellular 

respiration (Scarpulla, 2008), as well as other cellular  processes involved in 

cancer development,  such as RNA degradation, cell cycle, DNA replication, DNA 

repair, mitosis. and apoptosis (Cam et al., 2004; Satoh, Kawana, & Yamamoto, 

2013).  

NRF1 activity has been linked to breast cancer in different ways. We 

performed a review of the literature searching for current knowledge about 

mechanisms of NRF1 involvement in breast cancer. Additionally, we searched for 

ChIP-Seq studies attempting to identify NRF1 targets genes. Because researchers 

use different protocols as well as computational analysis parameters, it is difficult 

to compare results. However, to arrive at a better comparative approach, we took 

the peak calling files and unified the gene annotation method using the same 

software (GREAT) and keeping the same setting parameters.  Finally, we carried 

out Gene Ontology and Pathway Analysis of the NRF1 regulatory network to 

investigate its participation in signaling pathways and cellular processes important 

for cancer biology.   
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Results and Discussion 

NRF1, Breast Cancer, and Mitochondrial Function 

Niida et al. (2008) reported that motifs bound by NRF1 were positively 

correlated with tumor malignancy and progression of breast cancer. Since NFR1 

regulates several nuclear-encoded mitochondrial genes and increases the 

respiratory capacity of mitochondria (Scarpulla. 2006), Niida et al. (2008) 

suggested that this activity could be an indication of hypermetabolism in 

aggressive breast cancer.  Ertel et al. (2012) found that NRF1 activity was higher 

in breast cancer tissue than adjacent normal tissue. They used bioinformatics 

analysis to show that upregulation of NRF1 target genes was associated with 

metastasis, recurrence, and poor overall survival. The hypothesis of Ertel et al. 

(2012) was that cancer cells intended to save themselves from the aging process, 

characterized by significant reductions in oxidative mitochondrial function, 

throughout the implementation of a defensive mechanism that includes 

amplification of the mitochondrial oxidative metabolism (OXPHOS) and 

overexpression of NRF1.  This overexpression of NRF1 in turn causes 

upregulation of NRF1 target genes.   

Sotgia et al. (2012) carried out research to investigate the role of epithelial 

mitochondrial biogenesis in malignant breast tumors, analyzing the transcriptional 

profiles of epithelial cancer cells and comparing them to adjacent stromal cells. 

The researchers found that 39 genes encoding mitochondrial ribosomal proteins 

(MRPs) were involved in mitochondrial translation of OXPHOS complex 

components, and other transcription factors associated with mitochondrial 
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biogenesis, including NRF1, were upregulated (twofold to fivefold).  Confirming the 

hypothesis that increased mitochondrial function plays an important role in 

proliferation of breast cancer cells,  Jafaar et al. (2014) induced cell death in MCF-

7 and LCC9 breast cancer cells lines by inhibiting NRF-1.  

NRF1, Breast Cancer and Epigenetic Factors (DNA Methylation). 

We mentioned previously that gene expression is affected by epigenetic 

factors such as DNA methylation.  Campoy et al. (2016) discovered changes in the 

levels of DNA methylation in breast tumors, which may be linked to LSD1, one of 

the main cofactors of NRF1.  LSD1 (lysine-specific demethylase 1) (Benner et al., 

2013) is a protein encoded by the KDM1A gene that controls the level of 

methylation through its demethylase activity exerted by removing the methyl 

groups from methylated lysine 4 of histone H3 and lysine 9 of histone H3 (Lim et 

al., 2010).  

LSD1 was found overexpressed in breast cancer tissue, especially in 

clinical advanced and ER- tumors. In vitro experiments decreasing or inhibiting 

LSD1 resulted in growth retardation of breast cancer cells (Lim et al., 2010). One 

possible explanation is that LSD1 switch off reduces the demethylation activity. 

Therefore, NRF1 binding decreases causing cell growth delay, which is aligned 

with the idea  that NRF1 may be important for breast cancer cell proliferation.  

NRF1, Estrogen, and Breast Cancer  

Genetic and epigenetic factors affect the level of exposure of a specific 

tissue in the body to estrogen and its metabolites. Epidemiological studies have 

shown that lifetime exposure to estrogens is a major risk for breast cancer 
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development (Clemons & Goss, 2001). Recent investigations support these 

epidemiological findings and elucidate the mechanisms of how estrogen exposure 

contributes to breast cancer initiation and progression.  

We have shown that estrogen or its metabolites generate reactive oxygen 

species (ROS), which cause damage to the genome of cells. This process may be 

involved in cancer development (Roy, Cai, Felty, & Narayan, 2007). Estrogen also 

induces changes in mitochondrial reactive oxygen species (mtROS), which play 

an important role as signaling molecules that may alter the cell cycle probably by 

modifying the expression of early cell cycle genes (Felty, Singh, & Roy, 2005; 

Parkash, Felty, & Roy., 2006). Further in vitro testing confirmed this hypothesis, 

demonstrating that estrogen-induced ROS signaling increases the binding activity 

of NRF1. This activity in turn increases the mRNA expression of NRF1-regulated 

cell cycle genes CDC2, PRC1, PCNA, cyclin B1, and CDC25C, contributing in this 

way to the growth of MCF-7 breast cancer cells (Okoh et al., 2015). 

Identification of NRF1 Target Genes  

To understand the molecular mechanisms of NRF1 involvement in the 

pathogenesis of breast cancer, one of the key aspects is to identify the NRF1 gene 

networks. Transcription factor’s binding to specific genomic sites is a complex 

process determined by identification of features beyond the genomic signature 

(sequence motif). These features include epigenetic factors, transcription 

cofactors, cooperative DNA binding with other transcription factors, the 3-D 

structures  and flexibility of  the transcription factors, and their DNA binding sites 

and the interactions between  them (Slattery et al., 2014).   



15 
  

Identification of NRF1 target genes is essential to elucidate the mechanisms 

of NRF1 involvement in breast cancer; previous reports indicated that the number 

of NRF1-regulated genes were 690 (Cam et al., 2004), until recent studies showed 

that the number of NRF1 target genes were 2,470 (Satoh et al., 2013). However, 

these studies were not based on human mammary or breast cancer cells (Table 

1). 

We used published ChIP-Seq and ChIP-microarray data from MCF7, T47D, 

and HCC1954 breast cancer cells, normal human mammary epithelial cells-HMEC 

and normal blood circulating monocytes to identify candidate NRF1 target genes.  

Some of these studies were not aimed at identifying NRF1 target genes. However, 

we processed the peak calling data and used the same gene annotation webserver 

GREAT to unify the identification of candidate target genes with the same 

parameters (see Table 2 for results).  

Although the great majority of  genes have been successfully annotated in 

the human genome, our knowledge of how transcription factors and other 

regulatory elements control gene expression in the different cell types is 

nevertheless very limited, including the identification of regulatory domain, which 

is not clearly defined (Narlikar & Ovcharenko. 2009). GREAT version 3.0.0 assigns 

NRF1 binding peaks regions to genes by calculating statistics and associating 

genomic regions with nearby genes. The Regulatory domain is defined as 5,000 

bp upstream and 1,000 bp downstream of the transcription start site (TSS). This 

site can be extended in both directions up to a maximum of 1,000 bp, depending 

on the distance of the nearby gene’s regulatory domain.
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Table 1  

Published Chip-Microarray or Chip-Seq Studies With NRF1 Target Genes Results Found in Our Literature Search 

Cell type Method Significance 

Analysis in 

microarray or peak 

calling (in ChIP Seq):  

p- value, FDR, peak 

ratio, fold 

enrichment (FE), etc. 

Software 

used to 

identify 

ChIP Seq  

peaks 

Method used for gene 

identification- based on peak 

location / enrichment 

Numb

er of  

genes 

with 

NRF1 

bindin

g sites 

Reference 

T98G 

Quiescent 

Glioblastoma 

cells 

ChIP 

Microarr

ay (ChIP-

on-Chip) 

p value cutoff  p < 

0.005 

NA 13,000 proximal promoters from 

−700 to +200 relative to TSS were 

scanned. Genes considered to be 

significantly enriched if the median 

rank of their binding ratios was 

greater than 94%  

691 Cam et al. 2004 
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Cell type Method Significance 

Analysis in 

microarray or peak 

calling (in ChIP Seq):  

p- value, FDR, peak 

ratio, fold 

enrichment (FE), etc. 

Software 

used to 

identify 

ChIP Seq  

peaks 

Method used for gene 

identification- based on peak 

location / enrichment 

Numb

er of  

genes 

with 

NRF1 

bindin

g sites 

Reference 

Human 

peripheral 

blood 

monocytes 

from several 

healthy 

donors 

ChIP 

Microarr

ay (ChIP-

on-Chip) 

TF binding regions 

identified using a 

sliding window 

approach of five 

probes (maximal 

distance of 500 bp 

between two 

neighboring probes) 

and the average of two 

independent tests. 

NA Genomic locations based on the 

March 2006 human reference 

sequence (NCBI Build 36.1).  

Enriched regions assigned to closest 

genes. 

1,474 Gebhard et al. 2010 
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Cell type Method Significance 

Analysis in 

microarray or peak 

calling (in ChIP Seq):  

p- value, FDR, peak 

ratio, fold 

enrichment (FE), etc. 

Software 

used to 

identify 

ChIP Seq  

peaks 

Method used for gene 

identification- based on peak 

location / enrichment 

Numb

er of  

genes 

with 

NRF1 

bindin

g sites 

Reference 

Minimum signal 

intensity of 0.4 (log10) 

             

MCF7 Breast 

cancer cells 

ChIP 

DSL 

p-value <0.0001 and 

False positive rate 

calculated 

experimentally of 3% 

NA Testing of approx. 20,000 human 

promoters between -800 bp and 

+200 bp relative to TSS 

1,593 Benner et al (2013) 

MCF7 ChIP 

DSL 

p value <0.001 NA Same 1,936 Benner et al (2013) 
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Cell type Method Significance 

Analysis in 

microarray or peak 

calling (in ChIP Seq):  

p- value, FDR, peak 

ratio, fold 

enrichment (FE), etc. 

Software 

used to 

identify 

ChIP Seq  

peaks 

Method used for gene 

identification- based on peak 

location / enrichment 

Numb

er of  

genes 

with 

NRF1 

bindin

g sites 

Reference 

MCF7 ChIP 

DSL 

p value <0.01 NA Same 2,435 Benner et al (2013) 

             

MCF7 Breast 

cancer cells 

ChIP Seq Not specified Not 

specified 

Any distance, closest gene 

assigned. Some of them  >  +10kb 

from TSS (intragenic) 

1,081 Benner et al (2013) 

SK-N-SH 

Neuroblasto

ma cells 

ChIP Seq FE>= 20 and 

FDR<=0.01 

MACS Neighboring gene analysis within a 

distance of 5,000 bp upstream or 

downstream from peaks to 5' or 3' 

ends of the genes (peaks located in 

2,470 Satoh et al. 2013 
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Cell type Method Significance 

Analysis in 

microarray or peak 

calling (in ChIP Seq):  

p- value, FDR, peak 

ratio, fold 

enrichment (FE), etc. 

Software 

used to 

identify 

ChIP Seq  

peaks 

Method used for gene 

identification- based on peak 

location / enrichment 

Numb

er of  

genes 

with 

NRF1 

bindin

g sites 

Reference 

non-coding and uncategorized 

genes were omitted) 

             

T47D Breast 

Cancer cells 

Under 

hypoxic 

conditions     

(1 % O2) 

ChIP Seq p value <0.00001 MACS Any distance, closest gene 

assigned. Some of them at distance 

greater than +10kb from TSS 

(intragenic) 

9,678 Zhang, Wang et al., 

2015 
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Cell type Method Significance 

Analysis in 

microarray or peak 

calling (in ChIP Seq):  

p- value, FDR, peak 

ratio, fold 

enrichment (FE), etc. 

Software 

used to 

identify 

ChIP Seq  

peaks 

Method used for gene 

identification- based on peak 

location / enrichment 

Numb

er of  

genes 

with 

NRF1 

bindin

g sites 

Reference 

HMEC 

Normal 

breast cancer 

cells 

ChIP Seq Not specified Peakzilla Peaks assigned to the closest gene 

TSS 

9,415 Domcke et al. 2015 

             

HCC1954 

Breast 

cancer cells 

ChIP Seq Not specified Peakzilla Peaks assigned to the closest gene 

TSS 

9,415 Domcke et al. 2015 
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Table 2  
 
Published Chip-Microarray or Chip-Seq Studies With NRF1 Target Genes Results Unifying Gene Annotation (GREAT  
 
3.0.0) 
 

Cell type Method Method used for NRF1 

binding peaks 

identification 

Peak file 

dataset 

reference 

Method used for target gene 

identification 

Number of  genes 

with NRF1 binding 

sites in regulatory 

domain 

T98G 

Quiescent 

Glioblasto

ma cells 

ChIP 

Microarray 

(ChIP-on-

Chip) 

p value cutoff  p < 0.005 Cam et al. 

2004 

13,000 proximal promoters from −700 to 

+200 relative to TSS were scanned. Genes 

considered to be significantly enriched if 

the median rank of their binding ratios was 

greater than 94%  

691 

           

SK-N-SH 

Neuroblast

oma cells 

ChIP Seq FE>= 20 and 

FDR<=0.01 

 

Satoh et al. 

2013 

Neighboring gene analysis within a 

distance of 5,000 bp upstream or 

downstream from peaks to 5' or 3' ends of 

2,470 
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Cell type Method Method used for NRF1 

binding peaks 

identification 

Peak file 

dataset 

reference 

Method used for target gene 

identification 

Number of  genes 

with NRF1 binding 

sites in regulatory 

domain 

Software: MACS the genes (peaks located in non-coding 

and uncategorized genes were omitted) 

Human 

peripheral 

blood 

monocytes 

from 

several 

healthy 

donors 

ChIP 

Microarray 

(ChIP-on-

Chip) (on 

CpG island 

microarrays

) 

TF binding regions 

identified using a sliding 

window approach of five 

probes (maximal 

distance of 500 bp 

between two 

neighboring probes) 

and the average of two 

independent tests. 

Minimum signal 

intensity of 0.4 (log10) 

Gebhard et 

al. 2010 

GEO 

accession: 

GSE16078 

5,000 bp upstream and 1,000 bp 

downstream of the transcription start site 

(TSS). This gene regulatory domain may 

be extended up to 1,000 in both directions 

until reaching the basal domain of the 

nearest gene.  

GREAT 3.0.0 

2,374 
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Cell type Method Method used for NRF1 

binding peaks 

identification 

Peak file 

dataset 

reference 

Method used for target gene 

identification 

Number of  genes 

with NRF1 binding 

sites in regulatory 

domain 

           

MCF7 

Breast 

cancer cells 

ChIP Seq Not specified Benner et 

al (2013) 

5,000 bp upstream and 1,000 bp 

downstream of the transcription start site 

(TSS). This gene regulatory domain may 

be extended up to 1,000 in both directions 

until reaching the basal domain of the 

nearest gene.  

GREAT 3.0.0 

1,767 

           

T47D 

Breast 

Cancer 

cells Under 

ChIP-Seq p value <0.00001 

 

Software: MACS 

Zhang, 

Wang et al., 

2015 

5,000 bp upstream and 1,000 bp 

downstream of the transcription start site 

(TSS). This gene regulatory domain may 

be extended up to 1,000 in both directions 

9,688 
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Cell type Method Method used for NRF1 

binding peaks 

identification 

Peak file 

dataset 

reference 

Method used for target gene 

identification 

Number of  genes 

with NRF1 binding 

sites in regulatory 

domain 

hypoxic 

conditions     

(1 % O2) 

until reaching the basal domain of the 

nearest gene.  

GREAT 3.0.0 

           

HMEC 

Normal 

breast 

cancer cells  

(unmethylat

ed genome) 

ChIP Seq Not specified 

Software: Peakzilla 

 

Domcke et 

al. 2015 

5,000 bp upstream and 1,000 bp 

downstream of the transcription start site 

(TSS). This gene regulatory domain may 

be extended up to 1,000 in both directions 

until reaching the basal domain of the 

nearest gene.  

 

GREAT 3.0.0 

11,205 

           



26 
 

Cell type Method Method used for NRF1 

binding peaks 

identification 

Peak file 

dataset 

reference 

Method used for target gene 

identification 

Number of  genes 

with NRF1 binding 

sites in regulatory 

domain 

HCC1954 

Breast 

cancer cells 

(unmethylat

ed genome) 

ChIP Seq Not specified 

Software: Peakzilla 

 

Domcke et 

al. 2015 

5,000 bp upstream and 1,000 bp 

downstream of the transcription start site 

(TSS). This gene regulatory domain may 

be extended up to 1,000 in both directions 

until reaching the basal domain of the 

nearest gene.  

 

GREAT 3.0.0 

10,909 
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 We found that NRF1 binding activity is cell-context dependent and also 

influenced by other factors, such as DNA methylation and microenvironment (ex 

hypoxia conditions). The number of NRF1 candidate target genes we identified 

was 1,767 in MCF7 cells; 2,374 in human blood monocytes (CpG island 

microarray); 9,688 in T47D cells (hypoxia conditions); 10,909  in HCC1954; and 

11,205 in HMEC cells. We also found that the absolute distance to TSS of NRF1 

binding peak region-gene association was different for each cell line (Figure 1). 

T47d cells show a higher proportion of TSS proximity (0 to 5 kb) with 58%, followed 

by HCC1954, HMEC with 56%, monocytes with 7%, and finally MCF7 with 6%. 

 

 
Figure 1. Absolute distance of NRF1 binding regions to TSS in different cell lines. 
Monocytes (a), MCF7 cells (b), T47D cells (c), HCC1954 (d), and HMEC (f). 
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Differences in NRF1 Network Between Breast Cancer Cell Lines and Normal 

Human Mammary Epithelial Cells  

Molecular classification of tumors allows physicians to provide specific, 

targeted therapies to breast cancer patients (Eliyatkin, Yalcin, Zengel, Aktas, & 

Vardar, 2015). Therefore, it is important to identify differences among normal 

mammary cells and the different types of breast cancer.  We compared the list of 

putative NRF1 target genes in normal Human Mammary Epithelial Cells (HMEC)—

isolated from adult female breast tissue—to  three breast cancer cell lines 

representing different molecular subtypes. These were (a) HCC1954-(breast 

ductal carcinoma) (ER-/PR-/HER2+) negative for expression of estrogen receptor, 

with amplified HER2 and high abundance of EGFR, representing well-accepted 

model systems of HER2-positive breast cancer (Metastatic); (b) T47D—

molecularly classified as Luminal A (ER+/PR+/HER2-) with P53 mutant; and (c) 

MCF7-molecularly classified as Luminal A (ER+/PR+/HER2-) with P53 wild type.  

We compared the four cell lines together (Figure 2, Venn diagram) and 

individually (Figure 3, Venn diagrams). We found 306 genes that were NRF1- 

regulated exclusively in MCF7 cells, 613 in T47D cells, and 395 in HCC1954 cells. 

These cell context differences in the NRF1 regulatory network may provide 

additional information of NRF1 involvement in breast cancer. Therefore, we 

proceeded to classify these genes using the Functional Annotation tool from 

DAVID  (Database for Annotation, Visualization and Integrated Discovery) to find 

enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways using a 

Fisher Exact P value cut off of 0.01. Results are shown in Table 3.  
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Figure 2. Venn diagram: Comparison of  NRF1 network in normal Human 
Mammary Epithelial Cells (HMEC) with three different breast cancer cell lines. 
HCC1954-breast ductal carcinoma (ER-/PR-/HER2+)—negative for expression of 
estrogen receptor and with amplified HER2 and high abundance of EGFR- 
representing well-accepted model systems of HER2 positive breast cancer 
(Metastatic); T47D—molecularly classified as Luminal A (ER+/PR+/HER2-) with 
P53 mutant;  and MCF7—molecularly classified as Luminal A (ER+/PR+/HER2-) 
with P53 wild type. This diagram was constructed with VENNY 2.1.0 (Oliveros,  
2007/2015). VENNY is an interactive tool for comparing lists with Venn diagrams 
(http://bioinfogp.cnb.csic.es/tools/venny/index.html). 
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Figure 3.  Venn diagrams: Individual comparison between  NRF1 network in 
normal Human Mammary Epithelial Cells (HMEC) with three different breast 
cancer cell lines. HCC1954-breast ductal carcinoma (ER-/PR-/HER2+)— negative 
for expression of estrogen receptor and with amplified HER2 and high abundance 
of EGFR, representing well-accepted model systems of HER2 positive breast 
cancer (Metastatic); T47D—molecularly classified as Luminal A (ER+/PR+/ 
HER2-) with P53 mutant; and MCF7—molecularly classified as Luminal A 
(ER+/PR+/HER2-) with P53 wild type. These diagrams were constructed using 
VENNY 2.1.0 (Oliveros, 2007/2015). VENNY is an interactive tool for comparing 
lists with Venn diagrams (http://bioinfogp.cnb.csic.es/tools/venny/index.html). 
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Table 3  

Functional Classification of NRF1 Target Genes Exclusively Regulated in Each 

One of the Different Breast Cancer Cell Lines 

KEGG Pathway Count Genes 

Pathways enriched by NRF1 target genes exclusively regulated in MCF7 cells 

Cell adhesion molecules 

(CAMs) 7 

NRCAM, PTPRC, CD86, NFASC, CNTN2, 

LRRC4B, HLA-DPB1 

ECM-receptor interaction 5 LAMB4, GP6, COL6A6, COL5A3, FN1 

Protein digestion and absorption 5 FXYD2, COL6A6, ACE2, CPA2, COL5A3 

Osteoclast differentiation 6 LILRB1, LILRA1, LILRA2, LILRA4, LILRB4, TREM2  

Pathways enriched by NRF1 target genes exclusively regulated in T47D cells 

Propanoate metabolism 6  ALDH6A1, MUT, SUCLG1, ABAT, ACSS3, ACAT1 

Neuroactive ligand-receptor 

interaction 16 

GABRG3, PTGER3, GLRA2, GABBR2, VIPR2, 

SSTR4, AGTR1, HTR1B, P2RY6, GRM3, SSTR3, 

S1PR1, PRSS3, NPFFR2, ADRA1A, CALCRL 

Renin-angiotensin system 4 AGTR1, KLK2, PRCP, MME  

Valine, leucine and isoleucine 

degradation 5 ALDH6A1, MUT, ALDH2, ABAT, ACAT1 

Vascular smooth muscle 

contraction 8 

 KCNU1, AGTR1, PPP1CA, BRAF, MYLK3, 

ADRA1A, CACNA1F, CALCRL 

beta-Alanine metabolism 4 ALDH6A1, ALDH2, ABAT, DPYS 

Lysosome 8 

  CLTB, AP1G1, AP3M1, CTSO, PPT2, NEU1, 

GGA1, ATP6V0D2 
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KEGG Pathway Count Genes 

Aldosterone synthesis and 

secretion 6 

 PRKD1, AGTR1, KCNK9, CACNA1I, CACNA1H, 

CACNA1F 

Pathways enriched by NRF1 target genes exclusively regulated in HCC1954 cells 

Rap1 signaling pathway 16 

 FGF19, FGFR4, ADCY2, DRD2, ADORA2A, 

GRIN2A, HGF, APBB1IP, RGS14, PRKD2, 

RASSF5, CNR1, ANGPT1, RAPGEF1, ANGPT2, 

FGF4  

Complement and coagulation 

cascades 6  KNG1, C7, VWF, C6, BDKRB1, BDKRB2  

Ras signaling pathway 11 

  FGF19, RASSF5, FGFR4, RASAL3, GRIN2A, 

ZAP70, ANGPT1, HGF, ANGPT2, PLA2G2F, FGF4 

Glycine, serine and threonine 

metabolism 4  PGAM2, GNMT, SARDH, AGXT  

Regulation of actin cytoskeleton 9 

 FGF19, FGFR4, DIAPH3, IQGAP3, BDKRB1, 

ACTN2, BDKRB2, FGF4, INSRR   

Cocaine addiction 4  DRD2, PPP1R1B, TH, GRIN2A  

 

NRF1 and Breast Cancer Genes  

In our literature search, we found that several widely known hereditary 

genes associated with breast cancer, such as BRAC1 and BRAC2, were directly 

or indirectly regulated by NRF1.  Mutations in BRAC1 and BRAC2 account for an 

important proportion of early onset breast tumors. Approximately 5% of all breast 

cancers are attributable to variants in these two high penetrance genes (Van der 

Groep, Van der Wall, & Van Diest, 2011).  
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There is evidence that the loss of BRCA1 can initiate a cancer stem cell that drives 

the formation of breast tumors. BRCA1 expression seems to be regulated by a 

transcriptional network formed by GABP (GA Binding Protein Transcription Factor) 

and NRF1 (NRF-1 > GABPβ > BRCA1). Because NRF1 and GABP also have the 

common role of regulating mitochondrial function, this pathway suggests a 

possible link between tumor initiation via disruption of stem cell maturation and the 

Warburg effect found in several types of tumors  (dysfunctional mitochondrial 

metabolism) (Thompson, MacDonald, & Mueller, 2011).  

Hunter et al. (2007) carried out a genome-wide association study (GWAS) 

in a sample of 1,145 White patients with invasive breast cancer and 1,142 controls. 

All patients were postmenopausal White women. The researchers genotyped  

528,173 SNP’s and found four variants in FGFR2(fibroblast growth factor receptor 

2)   that were significantly associated with breast cancer. FGFR2 is a tyrosine 

kinase receptor that had previously been recognized as an oncogene involved in 

breast tumor angiogenesis (Groose & Dickson, 2005) and was  also identified  as 

NRF1 target gene in T47D breast cancer cells  by Zhang, Wang et al. (2015).  

 Germline BRCA1 or BRCA2 mutations are associated with a high lifetime 

risk of up to 60% to 85% for breast cancer (Ripperger et al., 2009). Several other 

genes have been identified as high-, moderate- or low-penetrance breast cancer 

susceptibility genes. Genes are considered to have high or moderate penetrance 

when at least 5% of individuals with the relevant mutations develop the disease 

(Ripperger, Gadzicki, Meindl, & Schlegelberger, 2009). In addition to BRCA1 and 

BRCA2, the list of the breast cancer high susceptibility genes includes CDH1, 
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PTEN, STK11, and TP53 (Bonifaci et al., 2008; Kleibl & Kristensen. 2016; Pasche, 

2008; Rahman, 2014; Shiovitz & Korde, 2015; van der Groep,  van der Wall, & van 

Diest, 2011). 

  We found that not only hereditary breast cancer genes were NRF1 

regulated but also that several other genes altered in breast cancer, such as FDXR 

(ferredoxin reductase), a mitochondrial flavoprotein involved in the regulation of 

the electron transport chain. FDXR, regulated by NRF1, and  EglN2 (Prolyl 

Hydroxylase Domain-Containing Protein 1),  have been found overexpressed in 

breast cancer patients compared with disease–free individuals and also  positively 

correlated with poor prognosis in ER-positive breast tumor (Zhang, Zheng, & 

Zhang, 2015). The list of NRF1 targets dysregulated in breast cancer include BCL2 

(Apoptosis regulator Bcl-2), an important regulator of apoptosis found 

overexpressed in breast tumors (Shen et al., 2005). Cancer can be described as 

an imbalance between cell growth and cell death; BCL2 exerts an anti-apoptotic 

role by encoding a protein that blocks this process (Hardwick & Soane, 2013). 

Another important gene in this list that has been found to play a significant 

role as promoter of breast cancer metastasis is a splice variant of KLF6- 

denominated KLF6-SV1, whose role is the opposite of the wild KLF6 that acts as 

a tumor suppressor gene. KLF6-SV1 overexpression enhances cell survival, 

migration, and invasion and is also associated with poor survival in breast cancer 

patients (Hatami et al., 2013). EDN1 (ET-1), endothelin 1, has also been found 

overexpressed in breast carcinomas and  associated with aggressiveness and 

invasiveness potential of premalignant breast lesions (Wulfing et al., 2004). 
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FOXO1 (forkhead box O1) regulates FYN, a gene overexpressed in breast cancer 

that promotes cell proliferation, migration, and invasion.  

It is believed that upregulation of FYN induces epithelial-mesenchymal 

transition (EMT), a key process in cancer metastasis (Xie et al., 2016).  HMGA1, 

the high mobility group AT–Hook 1, has been shown to drive metastatic 

progression in triple negative breast cancer cells (MDA-MB-231, Hs578T)  by 

reprogramming them to  stem cancer cells (Shah et al., 2013). The expression of 

LYN, a Src-family kinase and one of the most important gene signatures in EMT, 

has been associated with triple negative breast cancer and shorter overall survival 

in breast cancer patients during the 2- to  6-year period after surgery due to its role 

as a mediator of invasion and epithelial-mesenchymal transition (Choi et al., 2010). 

MED1, mediator complex subunit 1, plays an important role in in breast 

cancer cell growth, although the exact mechanism is unknown (Hasegawa et al., 

2012).  SRC encodes a nonreceptor tyrosine kinase overexpressed in ductal 

carcinoma in situ that has been associated with tumor proliferation, invasiveness, 

and lower recurrence-free survival (Wilson et al., 2006). NCOA3 (SRC-3), nuclear 

receptor coactivator, is overexpressed in breast cancer promoting carcinogenesis 

through different pathways, including  AKT and  E2F   pathways which contribute 

to proliferation, growth, survival , migration, invasion and metastasis of cancer 

cells. NCOA3 also plays a role in tumor resistance to anti hormonal therapy (Gupta 

et al., 2016;   Johnson & O’Malley. 2012; Xu, Wu, & O’Malley, 2009). 

PRDX3, peroxiredoxin 3, has been found overexpressed in breast tumor 

tissue compared to adjacent normal breast tissue (Karihtala, Mantyniemi, Kang, 
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Kinnula, & Soini, 2003). It is believed that peroxiredoxin 3 plays a role in protecting 

breast cancer cells from cytotoxicity due to oxidative stress (McDonald, Muhlbauer, 

Perlmutter, Taparra, & Phelan, 2014). UBE2C, ubiquitin conjugating enzyme E2C, 

is essential for cell cycle progression. The levels of UBE2C mRNA have been 

found associated with poor disease-free survival in breast in breast cancer patients 

(Psyrri et al., 2012).  

Several databases are available with the list of genes associated with breast 

cancer. We used COSMICS (the Catalogue of Somatic Mutations in Cancer), one 

of the world's largest database of somatic mutations in human cancer (Forbes et 

al., 2017) and combined the information found with the results of our literature 

research to create a list of 94 breast cancer genes, listed in Table 4. We found that 

a high percentage of them were predicted NRF1 targets (percentage depends on 

cell line, methods, and parameters used for target gene identification).  

Table 4 shows the list of breast cancer genes classified by the Functional 

Annotation tool from DAVID (top 10 categories, based on key words and ranked 

by adjusted p value), and also indicates potential NRF1 regulation in different 

breast cancer cell lines. The top 10 categories include genes classified in important 

roles in  cancer biology, such as  tumor suppressor genes, DNA repair, apoptosis, 

and cell cycle. 

  



37 
 

Table 4   

Functional Classification of   Breast Cancer Genes and Their Classification as 

Potential NRF1 Targets in Three Different Breast Cancer Cell Lines (MCF7, T47D 

Under Hypoxia Conditions, and HCC1954), in Normal Breast Cancer Epithelial 

Cells (HMEC) and Blood Peripheral Monocytes of Healthy Individuals 

Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

 Tumor suppressor      

ATM ATM serine/threonine kinase   X X X   

BRCA1 BRCA1, DNA repair associated   X X X   

BRCA2 BRCA2, DNA repair associated     X X   

CDKN2B cyclin dependent kinase inhibitor 

2B 

X X X X   

CHEK2 checkpoint kinase 2   X X X   

CTCF CCCTC-binding factor   X X X   

DLC1 DLC1 Rho GTPase activating 

protein 

  X X X   

MLH1 mutL homolog 1   X X X   

MSH2 mutS homolog 2 X X X X   

NF2 neurofibromin 2   X X X   

PALB2 partner and localizer of BRCA2   X     X 

PBRM1 polybromo 1   X       
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

PMS1 PMS1 homolog 1, mismatch repair 

s. component 

X X X X   

PMS2 PMS1 homolog 2, mismatch repair 

s. component 

X X       

PTEN phosphatase and tensin homolog   X       

RASSF1 Ras association domain family 

member 1 

X X X X   

RB1 retinoblastoma gene     X X   

STK11 serine/threonine kinase 11   X X X X 

TP53 tumor protein p53           

  DNA Damage           

ATM ATM serine/threonine kinase   X X X   

BRCA1 BRCA1, DNA repair associated   X X X   

BRCA2 BRCA2, DNA repair associated     X X   

BRIP1 BRCA1 interacting protein C-

terminal helicase 1 

          

CCND1 cyclin D1   X X X   

CHEK2 checkpoint kinase 2   X X X   

FANCA Fanconi anemia complementation 

group A 

  X X X   

FANCC Fanconi anemia complementation 

group C 

  X X X X 
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

FANCE Fanconi anemia complementation 

group E 

  X X X   

FANCM Fanconi anemia complementation 

group M 

  X X X   

MLH1 mutL homolog 1   X X X   

MSH2 mutS homolog 2 X X X X   

MSH3 mutS homolog 3   X       

MSH6 mutS homolog 6   X X X   

NBN Nibrin   X X X   

PALB2 partner and localizer of BRCA2   X     X 

PMS1 PMS1 homolog 1, mismatch repair 

s. component 

X X X X   

PMS2 PMS1 homolog 2, mismatch repair 

s. component 

X X       

RAD50 RAD50 double strand break repair 

protein 

X X X X   

RAD51 RAD51 recombinase   X X X   

STK11 serine/threonine kinase 11   X X X X 

XRCC2 X-ray repair cross complementing 

2 

  X X X   

  DNA Repair           

BRCA1 BRCA1, DNA repair associated   X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

BRCA2 BRCA2, DNA repair associated     X X   

BRIP1 BRCA1 interacting protein C-

terminal helicase 1 

          

CHEK2 checkpoint kinase 2   X X X   

FANCA Fanconi anemia complementation 

group A 

  X X X   

FANCC Fanconi anemia complementation 

group C 

  X X X X 

FANCE Fanconi anemia complementation 

group E 

  X X X   

FANCM Fanconi anemia complementation 

group M 

  X X X   

MLH1 mutL homolog 1   X X X   

MSH2 mutS homolog 2 X X X X   

MSH3 mutS homolog 3   X       

MSH6 mutS homolog 6   X X X   

NBN Nibrin   X X X   

PALB2 partner and localizer of BRCA2   X     X 

PMS1 PMS1 homolog 1, mismatch repair 

s. component 

X X X X   

PMS2 PMS1 homolog 2, mismatch repair 

s. component 

X X       
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

RAD50 RAD50 double strand break repair 

protein 

X X X X   

RAD51 RAD51 recombinase   X X X   

XRCC2 X-ray repair cross complementing 

2 

  X X X   

  Nucleus           

AHR aryl hydrocarbon receptor   X X X   

AKT1 v-akt murine thymoma viral 

oncogene homolog 1 

    X X   

ANG angiogenin   X       

ATM ATM serine/threonine kinase   X X X   

BAP1 BRCA1 associated protein-1    X X X   

BCL2 BCL2, apoptosis regulator   X X X   

BLM Bloom syndrome RecQ like 

helicase 

          

BRCA1 BRCA1, DNA repair associated   X X X   

BRCA2 BRCA2, DNA repair associated     X X   

BRIP1 BRCA1 interacting protein C-

terminal helicase 1 

          

CCND1 cyclin D1   X X X   

CEBPG CCAAT/enhancer binding protein 

gamma 

  X X X X 
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

CHEK2 checkpoint kinase 2   X X X   

CTCF CCCTC-binding factor   X X X   

E2F1 E2F transcription factor 1   X X X   

EP300 300 kd E1A-Binding protein gene   X X X   

ERBB2 erb-b2 receptor tyrosine kinase 2   X X X   

ETV6 ets variant gene 6 (TEL oncogene)           

FANCA Fanconi anemia complementation 

group A 

  X X X   

FANCC Fanconi anemia complementation 

group C 

  X X X X 

FANCE Fanconi anemia complementation 

group E 

  X X X   

FANCM Fanconi anemia complementation 

group M 

  X X X   

FOXA1 forkhead box A1   X X X   

FOXO1 forkhead box O1   X X X   

GATA3 GATA binding protein 3   X X X   

HMGA1 high mobility group AT-hook 1   X X X   

HTT huntingtin   X X X   

IFI16 interferon gamma inducible protein 

16 

  X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

KLF5 Kruppel like factor 5   X X X   

KLF6 Kruppel like factor 6   X X X   

LYN LYN proto-oncogene, Src family 

tyrosine kinase 

  X X X   

MAP2K4 mitogen-activated protein kinase 

kinase 4 

  X X X   

MED1 mediator complex subunit 1   X X X   

MLH1 mutL homolog 1   X X X   

MSH2 mutS homolog 2 X X X X   

MSH6 mutS homolog 6   X X X   

NBN Nibrin   X X X   

NCOA3 nuclear receptor coactivator 3 X X X X   

NF2 neurofibromin 2   X X X   

NFIC nuclear factor I C   X X X   

OVOL2 ovo like zinc finger 2   X X X   

PALB2 partner and localizer of BRCA2   X     X 

PBRM1 polybromo 1   X       

PMS1 PMS1 homolog 1, mismatch repair 

s. component 

X X X X   

PMS2 PMS1 homolog 2, mismatch repair 

s. component 

X X       
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

PTEN phosphatase and tensin homolog   X       

RAD50 RAD50 double strand break repair 

protein 

X X X X   

RAD51 RAD51 recombinase   X X X   

RASSF1 Ras association domain family 

member 1 

X X X X   

RB1 retinoblastoma gene     X X   

RECQL RecQ like helicase           

SFN Stratifin   X X X   

SRC SRC proto-oncogene, non-

receptor tyrosine kinase 

  X       

STK11 serine/threonine kinase 11   X X X X 

TOX3 TOX high mobility group box family 

member 3 

          

TP53 tumor protein p53           

TP53BP2 tumor protein p53 binding protein 2   X X X   

TRERF1 transcriptional regulating factor 1   X X X   

XRCC2 X-ray repair cross complementing 

2 

  X X X   

  Phosphoprotein           

ACVR2B activin A receptor type 2B   X X X   



45 
 

Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

AKT1 v-akt murine thymoma viral 

oncogene homolog 1 

    X X   

ATM ATM serine/threonine kinase   X X X   

AURKA aurora kinase A   X X X   

BAP1 BRCA1 associated protein-1    X X X   

BCL2 BCL2, apoptosis regulator   X X X   

BLM Bloom syndrome RecQ like 

helicase 

          

BMPR2 bone morphogenetic protein 

receptor type 2 

  X X X   

BRCA1 BRCA1, DNA repair associated   X X X   

BRCA2 BRCA2, DNA repair associated     X X   

BRIP1 BRCA1 interacting protein C-

terminal helicase 1 

          

CASP8 caspase 8           

CCND1 cyclin D1   X X X   

CDC20 cell division cycle 20   X X X X 

CDH1 cadherin 1     X X   

CHEK2 checkpoint kinase 2   X X X   

CTCF CCCTC-binding factor   X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

DLC1 DLC1 Rho GTPase activating 

protein 

  X X X   

E2F1 E2F transcription factor 1   X X X   

EP300 300 kd E1A-Binding protein gene   X X X   

ERBB2 erb-b2 receptor tyrosine kinase 2   X X X   

ETV6 ets variant gene 6 (TEL oncogene)           

FADD Fas associated via death domain   X X X X 

FANCA Fanconi anemia complementation 

group A 

  X X X   

FANCE Fanconi anemia complementation 

group E 

  X X X   

FANCM Fanconi anemia complementation 

group M 

  X X X   

FDXR ferredoxin reductase   X X X   

FGFR2 fibroblast growth factor receptor 2   X X X   

FOXA1 forkhead box A1   X X X   

FOXO1 forkhead box O1   X X X   

GATA3 GATA binding protein 3   X X X   

HMGA1 high mobility group AT-hook 1   X X X   

HMMR hyaluronan mediated motility 

receptor 

X X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

HTT huntingtin   X X X   

IFI16 interferon gamma inducible protein 

16 

  X X X   

IL6ST interleukin 6 signal transducer   X X X   

LGALS1 galectin 1   X X X   

LSP1 lymphocyte-specific protein 1           

LYN LYN proto-oncogene, Src family 

tyrosine kinase 

  X X X   

MAP2K4 mitogen-activated protein kinase 

kinase 4 

  X X X   

MAP3K1 mitogen-activated protein kinase 

kinase kinase 1 

  X X X   

MAP3K5 mitogen-activated protein kinase 

kinase kinase 5 

  X X X   

MED1 mediator complex subunit 1   X X X   

MLH1 mutL homolog 1   X X X   

MSH2 mutS homolog 2 X X X X   

MSH3 mutS homolog 3   X       

MSH6 mutS homolog 6   X X X   

NBN Nibrin   X X X   

NCOA3 nuclear receptor coactivator 3 X X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

NF2 neurofibromin 2   X X X   

NFIC nuclear factor I C   X X X   

NTRK3 neurotrophic tyrosine kinase, 

receptor, type 3 

  X       

OVOL2 ovo like zinc finger 2   X X X   

PALB2 partner and localizer of BRCA2   X     X 

PBRM1 polybromo 1   X       

PMS2 PMS1 homolog 2, mismatch repair 

s. component 

X X       

PRDX3 peroxiredoxin 3 X X X X   

PTEN phosphatase and tensin homolog   X       

RAD50 RAD50 double strand break repair 

protein 

X X X X   

RAD51 RAD51 recombinase   X X X   

RASSF1 Ras association domain family 

member 1 

X X X X   

RB1 retinoblastoma gene     X X   

RECQL RecQ like helicase           

SFN Stratifin   X X X   

SOCS3 suppressor of cytokine signaling 3   X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

SRC SRC proto-oncogene, non-

receptor tyrosine kinase 

  X       

STK11 serine/threonine kinase 11   X X X X 

TGFBR1 transforming growth factor beta 

receptor 1 

          

TP53 tumor protein p53           

TP53BP2 tumor protein p53 binding protein 2   X X X   

TRERF1 transcriptional regulating factor 1   X X X   

UBE2C ubiquitin conjugating enzyme E2 C   X X X   

XRCC2 X-ray repair cross complementing 

2 

  X X X   

  Apoptosis           

AKT1 v-akt murine thymoma viral 

oncogene homolog 1 

    X X   

BCL2 BCL2, apoptosis regulator   X X X   

CASP8 caspase 8           

CHEK2 checkpoint kinase 2   X X X   

E2F1 E2F transcription factor 1   X X X   

FADD Fas associated via death domain   X X X X 

FGFR2 fibroblast growth factor receptor 2   X X X   

FOXO1 forkhead box O1   X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

HTT huntingtin   X X X   

IFI16 interferon gamma inducible protein 

16 

  X X X   

LGALS1 galectin 1   X X X   

MAP2K4 mitogen-activated protein kinase 

kinase 4 

  X X X   

MAP3K5 mitogen-activated protein kinase 

kinase kinase 5 

  X X X   

PTEN phosphatase and tensin homolog   X       

STK11 serine/threonine kinase 11   X X X X 

TGFBR1 transforming growth factor beta 

receptor 1 

          

TP53 tumor protein p53           

TP53BP2 tumor protein p53 binding protein 2   X X X   

HRK harakiri, BCL2 interacting protein   X X X   

TNFRSF1

0B 

TNF receptor superfamily member 

10b 

  X       

TOX3 TOX high mobility group box family 

member 3 

          

  Disease mutation           

ACVR2B activin A receptor type 2B   X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

AKT1 v-akt murine thymoma viral 

oncogene homolog 1 

    X X   

ANG angiogenin   X       

ATM ATM serine/threonine kinase   X X X   

BCL2 BCL2, apoptosis regulator   X X X   

BLM Bloom syndrome RecQ like 

helicase 

          

BMPR2 bone morphogenetic protein 

receptor type 2 

  X X X   

BRCA1 BRCA1, DNA repair associated   X X X   

BRCA2 BRCA2, DNA repair associated     X X   

BRIP1 BRCA1 interacting protein C-

terminal helicase 1 

          

CASP8 caspase 8           

CDH1 cadherin 1     X X   

CHEK2 checkpoint kinase 2   X X X   

CTCF CCCTC-binding factor   X X X   

ECM1 extracellular matrix protein 1   X     X 

EDN1 endothelin 1   X X X   

EP300 300 kd E1A-Binding protein gene   X X X   

ETV6 ets variant gene 6 (TEL oncogene)           
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

FADD Fas associated via death domain   X X X X 

FANCA Fanconi anemia complementation 

group A 

  X X X   

FANCC Fanconi anemia complementation 

group C 

  X X X X 

FANCE Fanconi anemia complementation 

group E 

  X X X   

FGFR2 fibroblast growth factor receptor 2   X X X   

GATA3 GATA binding protein 3   X X X   

HTT huntingtin   X X X   

MLH1 mutL homolog 1   X X X   

MSH2 mutS homolog 2 X X X X   

MSH6 mutS homolog 6   X X X   

NBN Nibrin   X X X   

NF2 neurofibromin 2   X X X   

PIK3CA phosphoinositide-3-kinase, 

catalytic, alpha polypeptide 

  X X X   

PMS2 PMS1 homolog 2, mismatch repair 

s. component 

X X       

PTEN phosphatase and tensin homolog   X       

RAD51 RAD51 recombinase   X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

RB1 retinoblastoma gene     X X   

STK11 serine/threonine kinase 11   X X X X 

TGFB1 transforming growth factor beta 1           

TGFB3 transforming growth factor beta 3   X X X   

TGFBR1 transforming growth factor beta 

receptor 1 

          

TP53 tumor protein p53           

  Ubl conjugation           

AKT1 v-akt murine thymoma viral 

oncogene homolog 1 

    X X   

AURKA aurora kinase A   X X X   

BAP1 BRCA1 associated protein-1    X X X   

BCL2 BCL2, apoptosis regulator   X X X   

BLM Bloom syndrome RecQ like 

helicase 

          

BRCA1 BRCA1, DNA repair associated   X X X   

BRCA2 BRCA2, DNA repair associated     X X   

CCND1 cyclin D1   X X X   

CDC20 cell division cycle 20   X X X X 

CDH1 cadherin 1     X X   

CHEK2 checkpoint kinase 2   X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

CTCF CCCTC-binding factor   X X X   

CUL1 cullin 1   X X X   

EP300 300 kd E1A-Binding protein gene   X X X   

ETV6 ets variant gene 6 (TEL oncogene)           

FANCE Fanconi anemia complementation 

group E 

  X X X   

FGFR2 fibroblast growth factor receptor 2   X X X   

FOXO1 forkhead box O1   X X X   

HTT huntingtin   X X X   

IFI16 interferon gamma inducible protein 

16 

  X X X   

KLF5 Kruppel like factor 5   X X X   

LYN LYN proto-oncogene, Src family 

tyrosine kinase 

  X X X   

MAP3K5 mitogen-activated protein kinase 

kinase kinase 5 

  X X X   

NF2 neurofibromin 2   X X X   

PBRM1 polybromo 1   X       

PTEN phosphatase and tensin homolog   X       

RAD51 RAD51 recombinase   X X X   

SFN Stratifin   X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

SRC SRC proto-oncogene, non-

receptor tyrosine kinase 

  X       

TGFBR1 transforming growth factor beta 

receptor 1 

          

TP53 tumor protein p53           

UBE2C ubiquitin conjugating enzyme E2 C   X X X   

  Cell cycle           

AHR aryl hydrocarbon receptor   X X X   

ATM ATM serine/threonine kinase   X X X   

AURKA aurora kinase A   X X X   

BRCA1 BRCA1, DNA repair associated   X X X   

BRCA2 BRCA2, DNA repair associated     X X   

CCND1 cyclin D1   X X X   

CDC20 cell division cycle 20   X X X   

CDKN2B cyclin dependent kinase inhibitor 

2B 

X X X X   

CHEK2 checkpoint kinase 2   X X X   

E2F1 E2F transcription factor 1   X X X   

EP300 300 kd E1A-Binding protein gene   X X X   

MLH1 mutL homolog 1   X X X   

NBN Nibrin   X X X   
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

RAD50 RAD50 double strand break repair 

protein 

X X X X   

RASSF1 Ras association domain family 

member 1 

X X X X   

RB1 retinoblastoma gene     X X   

SRC SRC proto-oncogene, non-

receptor tyrosine kinase 

  X       

STK11 serine/threonine kinase 11   X X X   

TP53 tumor protein p53           

TP53BP2 tumor protein p53 binding protein 2   X X X   

UBE2C ubiquitin conjugating enzyme E2 C   X X X   

  DNA Binding           

AHR aryl hydrocarbon receptor   X X X   

ANG angiogenin   X       

ATM ATM serine/threonine kinase   X X X   

BLM Bloom syndrome RecQ like 

helicase 

          

BRCA1 BRCA1, DNA repair associated   X X X   

BRCA2 BRCA2, DNA repair associated     X X   

CEBPG CCAAT/enhancer binding protein 

gamma 

  X X X X 
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

CTCF CCCTC-binding factor   X X X   

E2F1 E2F transcription factor 1   X X X   

ETV6 ets variant gene 6 (TEL oncogene)           

FANCM Fanconi anemia complementation 

group M 

  X X X   

FOXA1 forkhead box A1   X X X   

FOXO1 forkhead box O1   X X X   

GATA3 GATA binding protein 3   X X X   

HMGA1 high mobility group AT-hook 1   X X X   

IFI16 interferon gamma inducible protein 

16 

  X X X   

KLF5 Kruppel like factor 5   X X X   

KLF6 Kruppel like factor 6   X X X   

MED1 mediator complex subunit 1   X X X   

MSH2 mutS homolog 2 X X X X   

MSH3 mutS homolog 3   X       

MSH6 mutS homolog 6   X X X   

NFIC nuclear factor I C   X X X   

OVOL2 ovo like zinc finger 2   X X X   

PALB2 partner and localizer of BRCA2   X     X 
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Gene 

Symbol 
Gene Name MCF7 T47D 

HCC 

1954 

HME

C 

Mono-

cytes 

PBRM1 polybromo 1   X       

PMS1 PMS1 homolog 1, mismatch repair 

s. component 

X X X X   

RAD51 RAD51 recombinase   X X X   

RB1 retinoblastoma gene     X X   

RECQL RecQ like helicase           

TOX3 TOX high mobility group box family 

member 3 

          

TP53 tumor protein p53           

TRERF1 transcriptional regulating factor 1   X X X   

XRCC2 X-ray repair cross complementing 

2 

  X X X   

 
Gene Ontology 
 

The  enrichment analysis using Generic Gene Ontology Term Finder 

(GGOTF) classified the dataset of NRF1 target genes into 520 Gene Ontology 

(GO) annotations,  using a cut off p value<0.01. The top 20 GO annotations, 

ranked by p values and  the number of genes (Table 5) were as follows:  cellular 

component organization or biogenesis (1,138 genes),  positive regulation of 

cellular process (781), cellular component organization (1,092),  negative 

regulation of cellular process (743), negative regulation of biological process (780),  

positive regulation of biological process (843),  negative regulation of 
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macromolecule metabolic process (451), positive regulation of macromolecule 

metabolic process (493),  negative regulation of metabolic process (475), organelle 

organization (660),   positive regulation of metabolic process (505), negative 

regulation of cellular metabolic process (441),  positive regulation of cellular 

metabolic process (482), developmental process (883),  single-organism 

developmental process (869),  anatomical structure development (819), 

macromolecular complex subunit organization (489), transcription from RNA 

polymerase II promoter (392), cell cycle (372), and  regulation of macromolecule 

metabolic process (1069).  

Table 5  
 
The Top 20 GO Annotations, Number of NRF1 Target Genes Ranked by p Value 

GO ID Description Adjusted 

p value 

Gene 

count 

   

GO:0071840 

   cellular component organization or biogenesis 9.23E-60 1138 

   

GO:0048522 

   positive regulation of cellular process 1.77E-53 781 

   

GO:0016043 

   cellular component organization 7.09E-53 1092 

   

GO:0048523 

   negative regulation of cellular process 1.04E-52 743 

   

GO:0048519 

   negative regulation of biological process 3.05E-51 780 
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GO ID Description Adjusted 

p value 

Gene 

count 

   

GO:0048518 

   positive regulation of biological process 5.34E-48 843 

   

GO:0010605 

   negative regulation of macromolecule metabolic 

process 

2.00E-42 451 

   

GO:0010604 

   positive regulation of macromolecule metabolic 

process  

2.62E-42 493 

   

GO:0009892 

   negative regulation of metabolic process 1.11E-41 475 

   

GO:0006996 

   organelle organization 1.62E-41 660 

   

GO:0009893 

   positive regulation of metabolic process 5.82E-38 505 

   

GO:0031324 

   negative regulation of cellular metabolic process 1.23E-37 441 

   

GO:0031325 

   positive regulation of cellular metabolic process 1.25E-37 482 

   

GO:0032502 

   developmental process 1.88E-37 883 

   

GO:0044767 

   single-organism developmental process 1.72E-36 869 

   

GO:0048856 

   anatomical structure development 6.00E-34 819 

   

GO:0043933 

   macromolecular complex subunit organization 7.77E-33 489 
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GO ID Description Adjusted 

p value 

Gene 

count 

   

GO:0006366 

   transcription from RNA polymerase II promoter 1.88E-32 392 

   

GO:0007049 

   cell cycle 1.48E-31 372 

   

GO:0060255 

   regulation of macromolecule metabolic process 2.60E-31 1069 

 
We analyzed these 20 biological processes and their subcategories (child 

processes) to identify the ones that might be associated with the hallmarks of 

cancer (Hanahan & Weinberg. 2011).  To accomplish this identification, we used 

the mapping that links GO processes to hallmarks of cancer developed by 

Knijnenburg, Bismeijer, Wessels, and Shmulevich (2015). We found five biological 

processes (GO) that are representative of the following cancer hallmarks: 

activating invasion and metastasis (EMT), reprogramming energy metabolism, 

resisting cell death, and sustaining proliferative signaling. Results are shown in 

Table 6, including number of NRF1 targets and p value. 
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Table 6  

Among the Top 20 Biological Processes Enriched With NRF1 Targets We Found 

Five Linked to Hallmarks of Cancer 

Biological process  

(parent) 

Biological process – 

sub category (child 

process)  

Gene 

count 

Adjusted 

p value 

Hallmark  of 

Cancer 

GO:0016043 cellular 

component 

organization 

GO:0032989 cellular 

component 

morphogenesis  

210 8.62E-12 Activating invasion 

and metastasis 

(EMT) 

GO:0048522 

positive regulation 

of cellular process 

GO:0031325 Positive 

regulation of cellular 

metabolic process  

482 1.25E-37 Reprogramming 

energy metabolism 

 GO:0048523 

negative regulation 

of cellular process 

GO:0060548 negative 

regulation of cell death  

140 1.75E-05 Resisting cell death 

GO:0006366 

transcription from 

RNA polymerase II 

promoter 

GO:0045944 positive 

regulation of transcription 

from RNA polymerase II 

promoter  

162 2.96E-08 Sustaining 

proliferative 

signaling  

   GO:0007049: cell 

cycle 

GO:0045787 positive 

regulation of cell cycle  

62 9.29E-4 Sustaining 

proliferative 

signaling  
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Pathway Analysis 

  We imported the set of NRF1 target genes into DAVID, which resulted in an 

output of 89 KEGG pathways. The list of the top 10 enriched pathways, based on 

p value and the corresponding genes count in parenthesis were as follows:  

hsa04120: Ubiquitin mediated proteolysis (85); hsa04110: Cell cycle (78); 

hsa05016: Huntington's disease (106); hsa04141: Protein processing in 

endoplasmic reticulum (95); hsa04144: Endocytosis (133); hsa03018: RNA 

degradation (51); hsa03040: Spliceosome (73); hsa03015: mRNA surveillance 

pathway (53); hsa04512: AMPK signaling pathway (66); and hsa04932: Non-

alcoholic fatty liver disease (NAFLD) (78). See Table 7 for gene list and p values.  

The top two pathways, Ubiquitin mediated proteolysis (Figure 4) and Cell 

cycle (Figure 5), have been reported as altered in breast cancer (Guille, Chaffanet, 

& Birnbaum, 2013). Ubiquitin mediated proteolysis ranked number one with 85 

NRF1 target genes. This pathway plays a critical role in cell cycle regulation and 

includes several breast cancer genes regulated by NRF1, such as UBE2C whose 

overexpression has been associated with poor prognosis in breast cancer patients; 

and CUL1 (Cullin1) that promotes proliferation and migration of breast cancer cells. 

CUL1 overexpression is also associated with worse survival (Bai et al., 2013). 

Another gene in this pathway that plays an important role in breast cancer 

progression is CDC20 (Wang et al., 2015). Its encoded protein and mRNA levels 

have been found elevated in breast cancer cells (Yuan et al., 2006). Aligned with 

these results, Karra et al. (2014) found that CDC20 was overexpressed in 445 

breast cancer patients and also correlated with short-term survival.  
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Table 7  

Top 10 NRF1 Network Enriched KEGG Pathways Ranked by p Value  

KEGG PATHWAY Count p VALUE GENES 

hsa04120: Ubiquitin mediated proteolysis 85 1.70E-07 UBE2G1, BTRC, UBE2G2, SAE1, CUL3, FANCL, MGRN1, 

WWP2, WWP1, ITCH, CUL1, ANAPC1, ANAPC2, SOCS3, 

ANAPC4, SOCS1, UBE2J1, HERC4, UBE2F, UBE2J2, 

UBE2H, UBE2C, HERC1, UBE2N, RFWD2, TRIM37, 

HUWE1, PIAS4, PIAS3, UBE2K, UBE2M, TRIM32, DDB2, 

UBE2W, MDM2, SIAH1, ANAPC7, PIAS1, UBE2S, FZR1, 

UBE3A, PPIL2, KEAP1, ANAPC10, ANAPC11, NHLRC1, 

UBE3C, STUB1, RBX1, UBE2R2, PRPF19, UBE2D4, 

UBE2D3, UBE2D2, FBXW8, MAP3K1, RHOBTB2, 

RHOBTB1, FBXO4, NEDD4L, RCHY1, UBE2D1, FBXW11, 

UBE4A, VHL, UBE4B, CBL, BIRC6, CDC20, PARK2, BIRC3, 

UBE2Q2, BIRC2, CDC27, UBE2Q1, RNF7, NEDD4, UBA1, 

UBA2, TCEB2, DET1, SMURF2, TCEB1, SMURF1, UBE2E2  
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KEGG PATHWAY Count p VALUE GENES 

hsa04110: Cell cycle 78 1.90E-07 E2F1, MAD1L1, E2F3, CDC14A, CDC14B, TGFB3, TTK, 

PTTG1, CCNE2, CCNE1, RAD21, CDKN2B, CDKN2C, 

CDKN2D, MYC, CCNA2, CUL1, STAG2, STAG1, ANAPC1, 

CDC7, CDK1, CDC6, ANAPC2, CCNH, ANAPC4, ESPL1, 

MCM2, CDK7, MCM3, CDK4, MCM4, WEE1, MCM6, 

CCND1, MAD2L1, GADD45G, BUB1B, MDM2, ANAPC7, 

GADD45B, GADD45A, FZR1, YWHAZ, PRKDC, CHEK1, 

ANAPC10, SFN, ANAPC11, ZBTB17, RBX1, TFDP2, BUB1, 

TFDP1, CREBBP, SMAD4, YWHAB, SMAD3, CDC20, ATR, 

CDC27, YWHAE, CDC25A, ATM, CDC25B, CDKN1C, 

CCNB1, YWHAG, CDKN1A, HDAC2, YWHAH, HDAC1, 

PLK1, GSK3B, PCNA, YWHAQ, SMC1A, ABL1     
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KEGG PATHWAY Count p VALUE GENES 

hsa05016: Huntington's disease 106 3.40E-06 NDUFAB1, REST, COX5A, COX5B, UQCR10, SIN3A, 

UQCR11, CREB3L1, TAF4B, RCOR1, DCTN4, DCTN1, 

COX6C, ATP5C1, DNAH11, DNAH14, COX7C, HAP1, 

AP2M1, HIP1, TAF4, HTT, NDUFA4L2, GRIN1, CREBBP, 

COX8A, VDAC2, VDAC3, VDAC1, UQCRHL, PPIF, 

NDUFV3, NRF1, HDAC2, HDAC1, BBC3, NDUFV1, 

NDUFV2, COX6A1, DNAL1, CLTCL1, ATP5D, UQCRC2, 

CLTA, CLTB, UQCRC1, AP2S1, CYC1, CLTC, UQCRFS1, 

NDUFS7, NDUFS6, CASP3, AP2B1, PLCB4, CASP9, 

NDUFS8, DLG4, ATP5O, ATP5H, NDUFS1, ATP5J, 

NDUFB11, NDUFB10, SLC25A4, CYCS, NDUFC2, COX4I1, 

NDUFC1, NDUFA12, NDUFA11, UQCRH, UQCRB, 

POLR2H, POLR2G, NDUFB4, POLR2F, POLR2E, POLR2L, 

NDUFB7, NDUFB8, NDUFB9, POLR2I, ATP5G2, ATP5G1, 

DNAH2, 
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KEGG PATHWAY Count p VALUE GENES 

hsa04141:Protein processing in endoplasmic reticulum 95 4.50E-06 

 
 
 
 
 
 
 
 
 
 
 

  HSP90AB1, DNAJC5B, SEC31A, SEC24A, PDIA3, 

UBE2G1, UBE2G2, DNAJC10, MAN1B1, DNAJB12, PDIA4, 

PRKCSH, UBQLN1, CANX, SSR1, OS9, BAK1, MAP3K5, 

BAG1, DNAJB11, ATF6B, RPN1, DNAJC5, DNAJC3, 

SEC24C, MAP2K7, SEC24D, CUL1, DNAJC1, HSP90AA1, 

MAN1A2, ERP29, UBE2J1, MOGS, UBE2J2, MAN1A1, 

DDIT3, EIF2AK1, EIF2S1, TXNDC5, SIL1, UGGT2, UGGT1, 

EIF2AK4, SEC23B, SEC61G, RAD23B, GANAB, DERL1, 

RAD23A, HSPA1A, EDEM3, LMAN1, EDEM2, STUB1, 

EDEM1, SEC63, RBX1, NGLY1, STT3B, HSPA1L, UBE2D4, 

UBE2D3, UBE2D2, STT3A, BCL2, DAD1, DNAJA1, 

UBE2D1, TRAM1, SEC61A1, HSPA8, DNAJA2, SEC61A2, 

P4HB, NPLOC4, RRBP1, CKAP4, UBE4B, PARK2, 

MARCH6, MAN1C1 
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KEGG PATHWAY Count p VALUE GENES 

hsa04144:Endocytosis 133 7.90E-06 HRAS, CHMP4B, CAPZA2, CAPZA1, CHMP7, TGFB3, 

GBF1, WWP1, VPS4B, GIT2, DNAJC6, VPS4A, ITCH, 

SH3GL3, PLD1, KIF5A, PSD4, HLA-E, ARPC1A, ACAP3, 

ARRB2, ARRB1, ACAP2, PDCD6IP, BIN1, RAB10, VPS26A, 

SH3GL1, FGFR2, CHMP2A, ARFGAP1, ARFGAP3, FGFR3, 

ERBB4, SNX5, SNX2, SNX1, ASAP1, HSPA1A, ARF6, 

SNX4, ARPC5, SNX3, ARFGEF2, CAPZB, SRC, CHMP2B, 

HSPA1L, ARPC2, IQSEC1, AP2M1, GIT1, PARD6A, 

PARD6B, RAB8A, SMAD3, RABEP1, ARF1, NEDD4, ARF3, 

GRK6, SMURF2, SMURF1, GRK5, CLTCL1, CLTA, CLTB, 

RAB5C, AP2S1, PIP5K1C, VPS37C, EPS15L1, VPS37D, 

PIP5K1A, CLTC, CDC42, AP2B1, SMAP1, CXCR4, 

ZFYVE16, SPG20, KIAA1033, SPG21, AGAP1, AGAP3, 

RAB4A, PRKCI, WAS, RAB11FIP5, ADRB2, 
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KEGG PATHWAY Count p VALUE GENES 

hsa03018: RNA degradation 51 6.70E-06  CNOT8, LSM8, LSM7, PABPC4, CNOT3, CNOT1, CNOT7, 

CNOT4, EXOSC10, PATL1, DCPS, PARN, CNOT6L, ENO2, 

LSM5, LSM4, LSM2, PABPC1, ENO1, HSPA9, PAN2, 

NUDT16, EXOSC8, EXOSC9, PAN3, EXOSC6, PFKL, 

EXOSC7, EXOSC4, TTC37, EXOSC5, CNOT10, EXOSC2, 

PAPD7, PFKP, EXOSC3, PAPD5, PFKM, EXOSC1, DDX6, 

DIS3, BTG2, WDR61, DCP2, BTG1, DCP1A, HSPD1, 

MPHOSPH6, PABPC1L, TOB2, TOB1 

hsa03040:Spliceosome 73 3.40E-04  NCBP2, SRSF1, CHERP, LSM8, U2AF2, SNRPD3, LSM7, 

CWC15, ZMAT2, SNRPD1, SNRPD2, SART1, SMNDC1, 

CTNNBL1, DDX23, U2AF1, PQBP1, LSM5, LSM4, LSM2, 

SNRPA1, EFTUD2, PRPF3, CDC5L, HNRNPU, PRPF6, 

EIF4A3, SNRNP200, SNRPB, SNRPA, SLU7, SNRPF, 

SNRPE, THOC1, SNRPG, SRSF10, CCDC12, TRA2B, 

TRA2A, SNRPB2, HSPA1A, XAB2, SF3B2, PRPF19, 

HSPA1L, SF3B1, HNRNPM, PRPF8, USP39, DHX15, 

DHX16, SNRNP70, PRPF40B, HSPA8, RBM25, PRPF40A, 
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KEGG PATHWAY Count p VALUE GENES 

BCAS2, DHX8, SNW1, DDX5, U2AF1L4, SRSF3, PPIE, 

PPIH, SRSF5, SRSF4, SRSF7, SRSF6, SRSF9, SYF2, 

PUF60, TXNL4A, RBM17  

hsa03015:mRNA surveillance pathway 53 7.40E-04  NCBP2, PPP2R5B, PPP2R5A, PPP2R5D, PPP2R5C, 

HBS1L, WDR82, RNGTT, PNN, CLP1, SRRM1, WDR33, 

PPP2R1B, PABPN1, PPP2R1A, SYMPK, PPP1CC, 

CSTF2T, PPP1CB, EIF4A3, PCF11, PPP1CA, CPSF7, 

CPSF6, PPP2R5E, CPSF4, CPSF1, SSU72, PPP2R2A, 

NXT1, FIP1L1, PABPC4, DAZAP1, PPP2CA, NUDT21, 

MSI1, MSI2, PABPC1, UPF2, CSTF3, UPF1, CSTF2, SMG6, 

SMG7, SAP18, SMG1, RNPS1, NXF1, PAPOLB, PAPOLA, 

PABPC1L, CSTF1, PPP2R3C  



71 
 

KEGG PATHWAY Count p VALUE GENES 

hsa04512:AMPK signaling pathway 66 1.40E-03  PPP2R5B, PPP2R5A, PPP2R5D, PPP2R5C, PRKAG2, 

RPS6KB2, FOXO1, RPS6KB1, FOXO3, CAMKK1, CAMKK2, 

PDPK1, SLC2A4, EEF2K, CREB3L1, PIK3CA, CAB39, 

INSR, CCNA2, AKT2, PPP2R1B, PPP2R1A, PFKL, PIK3CB, 

PRKAB2, PFKP, PRKAB1, ADIPOR2, ADIPOR1, EEF2, 

PFKM, CCND1, RAB14, PPP2R5E, RAB10, PPP2R2A, 

CRTC2, CAB39L, PFKFB4, PFKFB3, STK11, PFKFB2, 

G6PC3, IGF1R, AKT1S1, PPP2CA, GYS1, RAB11B, FASN, 

PIK3R5, PIK3R3, PIK3R1, PIK3R2, RAB2A, SREBF1, 

RAB8A, CREB1, SCD, ACACA, STRADA, SIRT1, ADIPOQ, 

CPT1A, TSC2, RHEB, PPP2R3C       

hsa04932: Non-alcoholic fatty liver disease (NAFLD) 78 

 
 
 
 
 
 
 
 

1.90E-03  UQCRC2, UQCRC1, CYC1, PRKAG2, NDUFAB1, NFKB1, 

UQCRFS1, COX5A, COX5B, NDUFS7, NDUFS6, CDC42, 

CASP3, UQCR10, MAP3K5, UQCR11, NDUFS8, PIK3CA, 

FAS, ITCH, INSR, NDUFS1, AKT2, NDUFB11, NDUFB10, 

PIK3CB, SOCS3, RXRA, RELA, CYCS, PRKAB2, NDUFC2, 

ADIPOR2, PRKAB1, COX4I1, ADIPOR1, NDUFC1, 
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KEGG PATHWAY Count p VALUE GENES 

CYP2E1, NDUFA12, DDIT3, BCL2L11, NDUFA11, COX6C, 

UQCRH, EIF2S1, MAP3K11, UQCRB, BID, NDUFB4, 

NDUFB7, NDUFB8, NDUFB9, COX7C, RAC1, MLXIP, 

PIK3R5, PIK3R3, PIK3R1, PIK3R2, SREBF1, CEBPA, 

NDUFA4, NDUFA5, NDUFA3, NDUFA8, NDUFA9, 

NDUFA4L2, NDUFA6, COX8A, ADIPOQ, UQCRHL, 

NDUFV3, SDHB, GSK3A, NDUFV1, GSK3B, NDUFV2, 

COX6A1  
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Cell cycle ranked number two, with 78 NRF1 target genes. Two NRF1 

targets, Cyclin D1 (CCND1) and its binding partner Cyclin-dependent kinase 4 

(CDK4). play a key role in cell cycle, regulating the G1 to S-phase transition 

(Harbour, Luo, Dei Santi, Postigo, & Dean., 1999; Lamb et al., 2013). CCND1 is 

considered an oncogene that has been found upregulated in 25% to 60 % and 

amplified in 10% to 30 % of invasive breast tumors (Courjal et al., 1996; Gillett et 

al., 1996; Lamb, Lehn, Rogerson, Clarke, & Landberg, 2013; McIntosh et al., 

1995). A recent study by Ortiz et al. (2017) found that prognosis of CCND1 

overexpression depends on molecular subtypes, and gene amplification is 

associated with shorter disease-free survival and poor outcome. 
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Figure 4. Ubiquitin mediated proteolysis pathway (KEGG Ref: hsa04120) showing 
NRF1 target genes highlighted in red. 
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Figure 5. Cell cycle pathway (KEGG Ref: hsa04110) showing NRF1 target genes 
highlighted in red. 
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Table 8  

KEGG Breast Cancer Pathway Enriched With NRF1 Targets 

KEGG PATHWAY Count GENES 

hsa05224: Breast cancer  68 AKT2, APC, APC2, ARAF, AXIN1, CCND1, CDK4, 

CDKN1A, CSNK1A1, CTNNB1, DLL4, DVL1, DVL2, 

DVL3, E2F1, E2F3, ERBB2, ESR2, FGF12, FGF21, 

FGF9, FGFR1, FOS, FRAT1, FRAT2, FZD1, FZD10, 

FZD3, FZD4, FZD8, FZD9, GRB2, GSK3B, HES1, HEY1, 

HEY2, HRAS, IGF1R, JAG1, KRAS, LRP6, MAP2K2, 

MAPK1, MYC, NCOA3, NFKB2, NOTCH1, NOTCH3, 

PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIK3R3, PIK3R5, 

RAF1, RPS6KB1, RPS6KB2, SHC1, SOS1, SOS2, SP1, 

TCF7L1, WNT10A, WNT11, WNT16, WNT2B, WNT8B, 

WNT9A 
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Figure 6. Breast cancer pathway (KEGG Ref: hsa05224) showing NRF1 target genes highlighted in red.
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Conclusion 
 

Increased activity or expression of one or more transcription factors might 

be required for the survival and growth of human cancers (Darnell, 2002). There 

is growing evidence in the scientific literature that the transcription factor NRF1 

may be involved in breast cancer through different mechanisms, including the 

increase of mitochondrial function to support proliferation of cancer cells and the 

increase of NRF1 activity due to estrogen-induced ROS signaling. This activity in 

turn dysregulates cell cycle genes and epigenetic changes affecting NRF1 

binding, such as DNA methylation. 

Studies using ChIP microarrays or ChIP-Seq to identify NRF1 targets 

showed that the NRF1 network is cell-context dependent. These dissimilarities 

might improve our knowledge of differences in breast tumor behavior among 

molecular subtypes. We also found that a high percentage of the well-known 

breast cancer genes were directly or indirectly regulated by NRF1. Finally, Gene 

Ontology and Pathway Analysis confirmed the participation of NRF1-regulated 

genes in signaling pathways and biological processes important in cancer 

biology. 

Methods 

First, we searched the literature through PubMed for NRF1-related articles 

and selected those focused on associations between NRF1 and its target genes 

and breast cancer. The next step was to search the literature to construct a dataset 

of ChIP-Seq-based NRF1 target genes for use in our Gene Ontology and Pathway 

Analysis.  The search for downstream genes regulated by NRF1 was conducted 
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with different techniques and cell lines.  Dring the last 5 years, with the use of 

modern ChIP-Seq methods, the list has increased considerably. We found four 

studies which were analyzed for overlaps and commonalities to finally produce a 

list of 8,022 potential NRF1 target genes. 

Finally, we performed the Gene Ontology and Pathway Analysis to find 

genes that may be involved in breast cancer.  Gene Ontology was performed using 

the Generic Gene Ontology Term Finder (GGOTF), a tool developed by the Lewis-

Sigler Institute of Princeton University. This web server classified the dataset of 

8,022 target genes (identified from MCF7 and T47D breast cancer cells) into 

functional categories. This classification is based on statistical testing for enriched 

gene functional categories defined by the Gene Ontology Consortium.  

The Pathway Analysis was performed with the Functional Annotation tool 

of DAVID  and KEGG to identify enriched pathways that may be involved in breast 

cancer development and progression. DAVID and KEGG are available to the 

general public at  http://david.ncifcrf.gov and http://www.genome.jp/kegg/. 
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CHAPTER III 

INTEGRATED CHIP-SEQ AND RNA-SEQ DATA ANALYSIS TO INVESTIGATE 

REGULATORY MECHANISMS OF NRF1 TRANSCRIPTION FACTOR ON 

TARGET GENES IN HER2+ BREAST CANCER CELLS 

Abstract 

Nuclear respiratory factor 1 (NRF1) is a redox sensitive transcription factor 

involved in breast cancer development and progression. Recent studies have 

reported increased activity of NRF1 target genes in breast cancer compared to 

normal adjacent tissue; however, the underlying mechanisms of NRF1 

involvement in mammary tumors have not been elucidated. In this paper, we show 

how, by the use of integrative data analysis of NRF1 ChIP-Seq and RNA seq in 

human epidermal growth factor receptor 2 positive (ER/PR -ve Her2+ve +) breast 

tumor cells, we discovered a set of predicted NRF1 targets with significant 

differential expression and NRF1 motifs  that can be potentially considered as 

disease drivers. We also found that some of these genes had already been 

reported as associated with breast cancer, therapeutic resistance, and poor 

prognosis. A good portion of the paper is devoted to describing and discussing the 

importance of selecting the appropriate computational analysis methods, software, 

and parameters for the processing of NRF1 ChIP-Seq and RNA-Seq raw data as 

well as for their integrative target   analysis in order to obtain accurate results. 
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Introduction 

Nuclear respiratory factor 1 (NRF1) is a redox sensitive transcription factor 

that has been associated with breast cancer.  NRF1 activity was found higher in 

breast cancer compared to adjacent normal tissue, and upregulation of its target 

genes was found to be associated with metastasis and lower overall survival in 

breast cancer patients. These results were obtained with bioinformatics analysis 

(Ertel et al., 2012).  In vitro testing also confirmed this association by demonstrating 

that estrogen-induced reactive oxygen species (ROS) increased the binding 

activity of NRF1, which causes the upregulation of NRF1 regulated cell cycle 

genes contributing to the growth of MCF-7 breast cancer cells (Okoh et al., 2015).  

Chromatin regulators and transcription factors (TFs) play two of the most 

important roles among numerous mechanisms involved in the regulation of gene 

expression (Wang et al., 2013). While TFs bind to DNA, chromatin regulators can 

modify the chromatin structure by catalyzing or binding to histone modifications; 

these actions affect the access of proteins to DNA. Frequently, chromatin 

regulators may also act as transcription cofactors (Dai, 2007; Wang et al., 2013). 

Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-

Seq) is an effective tool that is being widely used by researchers to study 

transcription factors binding to DNA and locations of histone modifications (Bailey 

& Machanick, 2012; Furey, 2012).  

To investigate the effect of chromatin regulators and TFs in the regulation 

of gene expression, it is necessary to integrate the ChIP-Seq results with the 

transcriptome data measured under different conditions, such as transcription 
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factor binding and nonbinding states (Wang et al., 2013). RNA-Seq is currently the 

preferred method of measuring transcriptome data, replacing microarrays. Both 

assays, ChIP-Seq and RNA-Seq, are based on next-generation sequencing (NGS) 

(Finotello & Di Camillo, 2015). 

This chapter focuses on describing methods for bioinformatics processing 

of NRF1 ChIP-Seq and RNA-Seq data with the use of raw sequencing datasets 

from breast cancer and normal human mammary epithelial cells. Subsequently, 

we show how NRF1 ChIP-Seq and RNA-Seq results can be integrated toward 

understanding of the regulatory mechanisms of NRF1 on gene expression and 

how these discoveries can be used to identify genes involved in breast cancer.  

Methods 

Datasets 

Raw NRF1 ChIP-Seq dataset in HCC1954 breast cancer cells was retrieved 

from NCBI-Gene expression omnibus (GEO) with accession numbers 

GSM1891658 and GSM1891659 (replicates 1 and 2. respectively). NRF1 ChIP-

Seq dataset in HMEC-Human mammary epithelial cells was retrieved from 

GSM1891655 and GSM1891656. NRF1 input in HMEC was retrieved from 

GSM1891657 and NRF1 input in HCC1954 from GSM1891660.  Sequencing was 

done using Illumina machine HiSeq 2500 at 50 bp read length single end and in 

accordance with Illumina standards (Domcke et al., 2015). Raw RNA-Seq dataset 

in HCC1954 breast cancer cells was retrieved from GSM721140 (SRR201983 and 

SRR201984) and RNA-Seq dataset in HMEC-Human mammary epithelial cells 

was retrieved from GSM721141 (SRR201985 / SRR201986) (Hon et al., 2012). 
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ChIP-Seq 

  Overview of ChIP-Seq. The main goal of ChIP-Seq experiments is the 

mapping of transcription factor binding sites, histone modifications, and other DNA 

binding proteins on a genome-wide scale (Feng et al., 2012; Park, 2009).  ChIP 

assays are performed in several steps. First, cells are treated with a chemical 

agent (frequently formaldehyde) to crosslink the protein under study to DNA. This 

procedure is followed by a process of sonication to divide the chromatin into 100 

to 300 bp fragment sizes. Subsequently, the protein of interest together with its 

bound DNA is immunoprecipitated with an antibody specific to the protein. After 

immuno-enrichment, the crosslinks are reversed in order to release the DNA, 

which is then purified and prepared for high-throughput sequencing, also called 

next generation sequencing (NGS) (Landt et al., 2012; Park, 2009). ChIP-Seq data 

needs to be processed and analyzed to produce meaningful results other than 

sequencing files. 

Replication and sequencing depth. Before ChIP-Seq data analysis is 

begun, it is necessary to make sure replication and sequencing depth 

requirements have been met. These requirements or guidelines are issued by the 

Encyclopedia of DNA Elements Consortium (ENCODE), an international 

collaboration of research groups funded by the National Human Genome 

Research Institute (NHGRI). One of ENCODE’s aims is to construct a 

comprehensive list of the regulatory elements that control gene expression. 

ENCODE requires that all ChIP assays should be carried out in two independent 

biological replicates.  
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It has been reported that additional replicates do not have any significant 

effect in protein-DNA site discovery. With regard to sequencing depth for 

transcription factors in mammalian cells, a minimum of 10,000,000 unique mapped 

readings per replicate are required. This number totals 20,000,000 per 

transcription factor (Landt et al., 2012; Rozowsky et al., 2009).  

Control (reference) sample. Another feature requiring confirmation before 

ChIP data analysis is the existence of an appropriate control sample. There are 

two reasons why the control sample is so important. First, when the sonication 

process takes place, regions of DNA with open chromatin are more prone to break 

and therefore are overrepresented. Second, different platforms currently used in 

ChIP sequencing, including the Illumina, the most popular platform, have their own 

biases (Auerbach et al., 2009; Dohm, Lottaz, Borodina, & Himmelbauer, 2008). 

Some algorithms have been developed to correct these biases (Cheung, Down, 

Latorre, & Ahringer, 2011) for ChIP-Seq data analysis based upon peak calling 

results, such as identification of transcription factor binding sites. However, the 

control sample is a logical approach to overcome biases, assuming that ChIP and 

control samples have the same sequencing biases when the same instruments 

are used for the assay.  

There are two types of control DNA: input DNA and IgG control. Input DNA 

is obtained by isolation of DNA after crosslinking and fragmentation of the same 

cells used for the ChIP assay, following the same procedures but without 

immunoprecipitation. IgG control is obtained by simulating a ChIP reaction using 

an antibody specific to a non-nuclear antigen (Landt et al., 2012). Once the ChIP 
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seq experiment has been successfully completed, assurances must be made that 

the computational analysis of sequencing reads is properly performed to obtain 

reliable results. 

Computational analysis of ChIP-Seq. Computational analysis of ChIP-

Seq includes several steps, shown in the flowchart of Figure 1. The steps are 

Quality control of sequencing reads, Alignment (mapping sequencing reads to the 

genome), Peak calling (identifying binding sites), and Data visualization and 

Annotation (identifying transcription factor target genes). Galaxy 

(https://usegalaxy.org) is a web-based platform open to the public with many tools 

to analyze large biomedical data, including ChIP-Seq datasets. Through Galaxy, 

a great number of computing resources can be accessed to carry out each one of 

the steps in ChIP data analysis.  

  

Figure 1. Flow chart of the steps in computational analysis of ChIP-Seq data. 
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 Galaxy has been available online since 2007 and currently has over 

124,000 registered users who run approximately 245,000 analyses every month 

(Afgan et al., 2018). All software used for ChIP-Seq data analysis in this chapter 

was accessed through Galaxy. Tutorials for learning how to use Galaxy and all 

accessible tools are available and can be accessed through the same webserver. 

The first step in ChIP-Seq is quality control of sequencing reads. 

Quality control of sequencing reads. Next-generation sequencing (NGS) 

produces millions of short sequences, also called short reads, ranging between 25 

and 75 bp (Feng et al., 2012). Technology of next-generation sequencing involves 

the use of optical sensors and software that analyze the sensor data to determine 

the individual bases. This final step is known as base calling (Ledergerber & 

Dessimoz, 2011). Sequencing files for short reads generally appear in FASTQ 

format.  Each entry in a FASTQ file is composed of four lines: the identifier, the 

sequence, the quality score line identifier (only the + sign), and the quality score of 

each base call. Below is an example of FASTQ file entry (Illumina, 2011-2014, 

FASTQ Files section, para. 10):  

@SIM:1: FCX: 1:15:6329:1045 1:N:0:2 

TCGCACTCAACGCCCTGCATATGACAAGACAGAATC 

+ 

<>;##=><9=AAAAAAAAAA9#:<#<;<<<????#= 

The last line is the Phred quality score (Q) for each nucleotide, representing 

the level of confidence during the base calling process: Q = –10 log10 (P); 

therefore,   P = 10
–Q/10

. P = is the error probability for the base call. For example, 
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if the estimated probability of error for a specific base call is 0.001, then the 

assigned Phred score Q= 30 (Ewing & Green, 1998). In this case, the Phred score 

is reported in ASCII characters, which can be converted into Q scores. For 

instance, the symbol < is equivalent to a quality score Q= 27, which in turn 

represents an estimated Probability of P = 0.002 that the base is incorrect.  

FastQC is one of the most widely used software programs to perform quality 

control checks on raw sequence data, including the Phred quality score of base 

calling. The reports generated by FastQC include a text file with the following 

information: basic statistics, per base sequence quality, per sequence quality 

scores, per base sequence content, per base GC content, per sequence GC 

content,  per base N content, sequence length distribution, sequence duplication 

levels, overrepresented sequences, and Kmer Content.  Figure 2 shows a 

screenshot with a partial view of the report generated by FastQC. This software  is 

available through Galaxy in the tools tab to the left, under “NGS: QC and 

manipulation” and also at http://www.bioinformatics.babraham.ac.uk/ 

projects/fastqc/ (Andrews, 2010). 
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Figure 2. Screenshot with a partial view of the report generated by FastQC in 

Galaxy. 

 

Based on the results generated by FastQC, a threshold can be established 

to discard all readings with quality score below that number. Trimmomatic (Bolger, 

Lohse, & Usadel, 2014) is one of the software programs that allows us to do this 

and can be also accessed through Galaxy under NGS: QC and manipulation. 

Trimmomatic can be used to perform different operations, but our present focus is 

concentration on dropping the readings if the average quality (number of bases to 

average across = 4) is below a Phred score of 20. A Phred score of 20 is equivalent 

to a probability of 1 in 100 that the base is called wrong (99 % accuracy of the base 

call).  
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Figure 3 shows a screenshot of the Galaxy/Trimmomatic step before 

execution; the minimum Phred score has been set up to 20 to drop base calls with 

Q < 20. After quality control, readings are ready for mapping into the genome. 

 

 
 
Figure 3. Screenshot of the Galaxy/Trimmomatic step before execution. The 

minimum Phred score has been set up to 20 to drop base calls with Q < 20. 

 

Mapping sequencing reads to the genome (Alignment). For mapping 

readings into the referenced human genome, we used BOWTIE2 (Langmead & 

Salzberg, 2012), available through Galaxy in the tools tab to the left, under NGS: 

Mapping. Reads are mapped to a reference genome that we need to select. In our 

case, we used the human genome reference hg19 because we needed to compare 

results of NRF1 target genes with previous ChIP-Seq experiments that had used 

this reference. However, a new Homo sapiens genome reference hg38 is currently 
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being used in all new ChIP-Seq experiments. Results are in BAM format, as can 

be seen in Figure 4. The screenshot also shows the statistics of alignments.  

 
 
Figure 4. Partial view of Galaxy screenshot showing the alignment results 

generated by BOWTIE. Also on the right hand side, the statistics of alignment 

show that the percentage of reads aligned concordantly exactly 1 time was 85%. 

 

One of the important statistics to examine is the percentage of reads aligned 

concordantly exactly 1 time. In this case, the result was 85%, as can be observed 

in the righthand side of Figure 4. ENCODE guidelines require that the Non-

Redundant Fraction (NRF)—“Number of distinct uniquely mapping reads (i.e., after 

removing duplicates) / Total number of reads”—should be greater than or equal to 
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80% (Landt et al., 2012). The next step after alignment is identification of binding 

sites through Peak calling. 

Peak calling. MACS2 (Zhang et al., 2008) is the software we used for peak 

calling. This software can be accessed through Galaxy in the tools tab to the left, 

under NGS: Peak Calling. Prior to execution, some parameters must be defined, 

including the false discovery rate (q value) which we set up to 0.01. Figure 5 shows 

a screen shot of results from MACS2 which are provided by the software in tabular 

format. The column fold enrichment can be used to establish a cutoff point to filter 

these results. We discarded peaks with fold enrichment value below 5 following 

ENCODE’s guidelines for point-source transcription factors (Landt et al., 2012). In 

general, the final list of peaks depends on the parameter settings (for example, p 

value and false discovery rate), the software used to identify them, the selected 

control (reference sample), and the quality of the ChIP-Seq experiment (Landt et 

al., 2012).  

Usually, once the binding sites have been established, the next step is to 

identify the TF target genes though a process called Gene Annotation, described 

in the next section. However, in this research we did not use this method because 

we were interested in finding target genes integrating ChIP–Seq and RNA-Seq, as 

described later in the section Integration of ChIP-Seq and RNA-Seq Data Analysis.   
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Figure 5. Screenshot of Galaxy showing the results of peak calling from MACS2. 

Columns 1, 2, and 3 display NRF1 protein peak location and column 8 shows 

fold enrichment (FE). We discarded values below 5 FE. 

 

Gene Annotation (Identifying target genes). GREAT (Genomic Regions 

Enrichment of Annotations Tool), a webserver available at http://great.stanford. 

edu/public/html/, is one of several tools available to identify NRF1 target genes 

based on ChIP-Seq results. GREAT (McLean et al., 2010) associates the TF’s 

binding sites identified during peak calling with TF’s putative target genes by 

assigning to each gene those peaks that fall within a previously defined gene 

regulatory domain. By default, the software establishes the gene regulatory 

domain as   5,000 bp upstream and 1,000 bp downstream of the TSS; however, 

the user can modify these parameters. GREAT also takes into account distal 
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binding sites found in the literature as curated domains; however, the user has the 

option of modifying the settings to exclude them.  

RNA-Seq 

Overview of RNA-Seq. RNA-Seq is widely used by the life science 

scientific community, among other procedures, because it allows combining two 

pieces into one experiment—the sequence discovery and the quantification of 

RNA, the key intermediary between DNA and proteasome. Design of a good 

experiment is the first step in successful completion of an RNA-Seq study. 

Experimental design includes selection of the appropriate library type, number of 

replicates, and sequencing depth. There is abundant scientific literature and many 

variants of RNA-Seq protocols for conducting RNA-Seq assays and computational 

analysis tools to process the results. Choosing the right features is therefore not 

an easy task, especially for new users. The right choices depend on the biological 

system under study and the research question being addressed (Conesa et al. 

2016). 

Sequencing depth (or library size) is the number of sequence reads for a 

single sample. If the sequencing is deeper, the number of transcripts detected will 

be larger and the quantification will be more accurate (Conesa et al., 2016; 

Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008). It is difficult to establish an 

optimal level; although some scientists consider five million reads enough to 

precisely quantify genes with medium to high expression levels  in eukaryotic RNA-

Seq experiments, other researchers recommend sequences up to one hundred 
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million reads to accurately  measure genes with low expression levels (Conesa et 

al., 2016; Sims, Sudbery,  Ilott, Heger, & Ponting, 2014). 

Another important aspect of RNA-Seq experimental design is the number 

of replicates. A minimum number of three replicates is recommended, or use of 

software to calculate the number of replicates based on the desired statistical 

power (Conesa et al., 2016). Once the experiment is completed, the first step in 

analysis of the RNA-Seq data is to evaluate the quality of sequencing reads. 

Quality control of Next Generation Sequence (NGS). Quality control 

(QC) of raw RNA-Seq data (sequence reads in FastQC file) retrieved from GEO 

was performed following the same procedure and using the same program 

(FastQC) utilized for QC of ChIP-Seq. (See previous section quality control of 

sequencing reads for details.) Figure 6 shows a screenshot with a partial view of 

the report generated by FastQC for RNA-Seq of human mammary epithelial cells 

(HMEC) GSM721141-SRR201985.  FastQC, as noted, is available through Galaxy 

in the tools tab to the left, under “NGS: QC and manipulation” and also at 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (Andrews, 2010). 
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Figure 6. Screenshot with a partial view of the Galaxy report generated by FastQC 

for RNA-Seq of Human Mammary Epithelial Cells (HMEC). GEO accession 

reference GSM721141-SRR201985. 

 
Mapping (Generation of Alignments). After evaluation of the quality of 

RNA sequencing readings, the next step is identification of transcripts by mapping 

RNA-Seq reads onto the genome.  We mapped the raw RNA–Seq files retrieved 

from GEO against Homo sapiens genome reference GRCh37/hg19 using the 

TopHat program (Galaxy Version 2.1.1) (Kim et al., 2013). TopHat can be 

accessed through Galaxy under the submenu entitled NGS: RNA Analysis, located 

on the left side window. One of the difficulties of mapping RNA-Seq reads 

compared to DNA-Seq alignment is that genes contains introns while sequencing 

readings come from mature mRNA transcripts where introns have been removed 

(spliced).  
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A second challenge of the software is the presence of pseudogenes in the 

genome that are very similar (sequentially speaking) to functional genes which can 

causes incorrect alignment. Different software programs use different algorithms 

to deal with these challenges. The new version of TopHat (TopHat2) incorporates 

new features to ensure that reads are also aligned with true insertions and 

deletions (Kim et al., 2013). TopHat output contains much information distributed 

in five different files: align summary, insertions, deletions, splice junctions and 

accepted hits.  Figure 7 shows a screenshot of Galaxy listing TopHat output files.  

Although all files are important, for our specific goal we focused on accepted hits, 

the file that contains all the valid alignments to be used in transcript quantification, 

our next step.  

 
 
Figure 7. Screenshot of Galaxy listing the five TopHat output files from reads 

alignment: align summary, insertions, deletions, splice junctions, and accepted 

hits.  Although al files are important, depending on the specific research question, 

for our purpose of quantifying number of reads to find differentially expressed 

genes, accepted hits was our file of interest. 
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Transcript quantification. There are several programs to quantify the 

number of readings that have been mapped to each transcript sequence. We used 

Htseq-count program (Anders, Pyl & Huber, 2015) to aggregate raw counts and 

assign them to genes. Two files are needed as input in the Htseq-count program: 

the alignments file labeled “accepted hits” (BAM format) generated by TopHat, and 

the annotated reference transcriptome in GTF format. For the latter, we used the 

human reference gene dataset GRCh37/hg19 generated by iGenomes 

(https://support.illumina.com/sequencing/sequencing_software/igenome.html). 

Illumina iGenomes contains data downloaded from UCSC, NCBI, or 

Ensembl, and the GRCh37/hg19 file can be downloaded directly into Galaxy with 

use of the shared data option in the menu bar. Other available sources that can be 

used to access the Human reference dataset containing the gene locations in the 

appropriate GTF format are UCSC Genome Browser (http://genome.ucsc.edu/) 

and Gencode (https://www.gencodegenes.org/). Figure 8 is a partial view of Htseq-

count output showing the number of reads assigned to each gene. 

Identification of Differential Expressed (DE) Genes 
 

For comparison of expression levels, raw counts must be normalized to 

address different aspects, such as sequencing biases, transcript length, and total 

number of reads. Reads per kilobase per million reads (RPKM) or FPKM 

(Fragments per Kilobase Million) are the units used to account for transcript length 

and library size factors.  TPM (Transcripts per Kilobase Million) is now also widely 

used; however, a formula can easily convert FPKM into TPM (Conesa et al., 2016; 

Pachter, 2011).   
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Figure 8. Screenshot with a partial view of Galaxy window showing the number of 

reads assigned to each gene generated by Htseq-count. For comparison of 

expression levels to find differentially expressed genes, these raw counts need to 

be normalized. 

 

With the aim of identifying genes in breast cancer cells with statistically 

significant differential expression (DE), compared to normal mammary epithelial 

cells, we used DESeq2 program (Love, Huber, & Anders, 2014) accessed within 

Galaxy platform.  DESeq2 carries out the normalization and quantitative analysis 

of count data (previously generated by Htseq-count) based primarily on statistical 

strength rather than on the amount of differential expression (Love et al., 2014). 
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For illustration purposes, Figure 9 shows a screenshot of DESeq2 output 

displaying the top DE genes ranked by adjusted p value. 

 
 
Figure 9. Screenshot of DESeq2 output displaying the top DE genes ranked by 

adjusted p value. 

 
Integration of ChIP-Seq and RNA-Seq Data Analysis   

We used BETA (Wang et al., 2013), a software that integrates TF binding 

and differential expression, to identify target genes displaying significant statistical 

changes in gene expression that may be attributable to TF regulation activity. 

BETA requires two different dataset inputs: ChIP-Seq and DE expression. With 

this information, BETA calculates two scores, a binding potential rank (Rgb) and a 

differential expression rank (Rge). The first score (Rgb) measures the regulatory 

potential of the TF on the expression of the target gene. Rgb is calculated by 

modeling the influence of all binding sites falling within an established distance 

from the Transcription Start Site (TSS; default is 100 kb), using a monotonically 
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decreasing function based on the distance from each peak to TSS. The gene with 

the highest regulatory potential is scored Rgb = 1.   The second score (Rge) is 

calculated based on differential expression assigning Rge = 1 to the gene with the 

strongest differential expression based on p value.  

BETA calculates the rank product (RP), which is the multiplication of Rgb 

and Rge, that can be considered as the p value showing the probability of a gene 

regulatory potential and significant differentially expressed (Wang et al., 2013). For 

consideration of a gene to be very likely regulated by NRF1, we established as 

cutoff point RP = 10
-3

.  Finally, BETA conducts motif analysis to identify enriched 

DNA sequences in the ChIP-Seq binding summits, representing them in position- 

specific scoring matrices (PSSM) (Wang et al., 2013). BETA is available to the 

public at http://cistrome.org/BETA/. 

Results and Discussion 
 

New in vitro studies have proven that binding of some specific transcription 

factors and histone modifications can predict gene expression; conversely, 

changes in gene expression are correlated to chromatin marks and changes in 

transcription factor binding (Cheng et al., 2012; Klein et al., 2014; Ouyang, Zhou, 

& Wong, 2009). Computational analysis of NRF1 ChIP-Seq data provides 

important evidence about location of NRF1-DNA binding sites, including the 

relative amount of NRF1 protein, but this information is not sufficient to determine 

NRF1 regulation. To establish possible NRF1 regulation, we further analyzed the 

relationship between gene expression of NRF1 target genes and factor-binding 

sites, which is not a simple one-to-one relationship (Wang et al., 2013).  Therefore, 
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in addition to ChIP-Seq data, we used the transcriptome (gene expression) data 

obtained from the computational analysis of RNA-Seq data in normal mammary 

cells (HMEC) and breast cancer cells (HCC1954) to investigate how changes in 

NRF1 activity affect the expression of NRF1 targets genes. 

HCC1954 cells represent a good model of  breast ductal carcinoma 

(ER/PR-ve Her2 +ve) with amplified HER2 and high abundance of EGFR. It has 

been reported that NRF1 activity, measured based on the activity of target genes, 

is increased in different malignant tumors, including breast cancer (Falco, Bleda, 

Carbonell-Caballero, & Dopazo, 2016). Computational analysis of NRF1 ChIP-Seq 

in HCC1954 breast cancer cells resulted in 21,400 binding sites with fold 

enrichment greater than 5. Table 1 shows the location of the lowest 20 peaks 

ranked by fold enrichment.  

The lowest peak is in accordance with the established fold enrichment cutoff 

value of 5. Differential expression analysis of RNA–Seq in breast cancer cells 

(HCC1954)  were compared to normal mammary epithelial cells (HMEC)  using 

DESeq2. This comparison revealed 390 genes with statistically significant DE 

(adjusted p value < 0.05).  
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Table 1  

 

Output From MACS2 Listing the Lowest 20 Peaks Ranked by Fold Enrichment 

 

Note. It should be noticed how these binding sites meet the established fold 

enrichment cutoff value of 5.0. 

   

Table 2 show the top 20 DE genes ranked by adjusted p value. To identify 

among all DE genes the up- or downregulated NRF1 targets, we used BETA in the 

cistrome Galaxy platform. The list of differentially genes in tab-delimited text files 

and the list of NRF1 binding sites in BED format were input into BETA to obtain 

the following outputs:  the activating and repressive function prediction of NRF1, 

the list of inferred NRF1 upregulated and downregulated targets, and the results 

of NRF1 motif analysis. 
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Table 2   

Results of Differential Expression (DE) Analysis Of RNA-Seq in Breast Cancer 

Cells (HCC1954)  Compared to Normal Mammary Epithelial Cells (HMEC)  Using 

Deseq2 Revealed 390 Genes With Statistically Significant DE (Adjusted p Value < 

0.05) 

 

Note. These are the top 20 DE genes ranked by adjusted p value. 

Activating and Repressive Function Prediction  

The likelihood of a gene to be regulated by NRF1 (regulatory potential) is 

individually estimated by BETA for each gene and calculated as Sg	=
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#$(&.()*+,),/
,01  the sum of the regulatory potential of all NRF1 binding peaks (k) 

within a specified distance from TSS (+/- 5 Kb in our case).  Δi is the distance 

between the binding site i and the TSS divided by 100 kb (for example, for 5 kb, Δi 

= 0.05). This equation is a function that decreases monotonically as the distance 

of each binding site from TSS increases. The shape of the equation is a good 

approximation of empirical data of the binding site’s distance to TSS and 

differentially expressed genes obtained from many ChIP-Seq tests (Tang et al., 

2011).  

Based on regulatory potential and the DE list, genes are divided into three 

groups: upregulated, downregulated, and unchanged, as shown in Figure 10. 

Dotted lines represent the genes with no changes. Red lines represent the 

upregulated, and blue line the downregulated groups.  

Among the top 15% ranked up- and downregulated genes, there is a slightly 

higher NRF1 regulatory potential in upregulated genes compared to the 

downregulated genes. That is, among this group of genes the ones with a gain in 

gene expression tend to have also a higher enrichment of NRF1 biding sites (red 

line in Table 10). It can also be observed that after the 15% ranked up- and  

downregulated genes, the NRF1 enrichment pattern changes and the  

downregulated genes tend to have a higher enrichment of NRF1 binding sites. 

Values listed at the top of Figure 10 are the p values of the Kolmogorov-Smirnov 

test used to determine the significance of the difference in NRF1 binding between 

the up- and downregulated genes, compared to the unchanged genes. These 

results (0.995 and 1) indicate that there was no significant difference. 
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Figure 10. BETA output of activating / repressive function prediction of NRF1 in HER2 

enriched breast cancer cells HCC1954.  

 
Note. The dotted lines represent the genes with no changes, the red line the upregulated, and 

purple line the downregulated genes. Within the top 15% ranked up- and downregulated 

genes, there is a slightly higher NRF1 regulatory potential in the upregulated ones. This 

difference means that among this group of genes the ones with a gain in gene expression tend 

to have also a higher enrichment in NRF1 biding sites (the red is above purple line). Values 

listed on top are the p values of the Kolmogorov-Smirnov test used to determine the 

significance of the difference in NRF1 binding between the up- and downregulated genes 

compared to the unchanged genes. 

 

Overall, the activating and repressive function prediction generated by the 

BETA algorithm shows that the increase of NRF1 activity in breast cancer cells 

can be either an activator or repressor of target genes. There is no established 
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pattern of NRF1 enrichment for predicting a specific role. This outcome suggests 

that additional elements, cofactors, or combination of them may play an important 

role in explaining the repressive or activating role of NRF1 in the changes of 

expression (DE) of target genes in HCC1954 breast cancer cells. 

Direct NRF1 Target Prediction 

Prediction of NRF1 target genes is accomplished by BETA combining the 

binding potential rank (Rgb) with the differential expression rank (Rge) and 

calculating the rank product (RP). This combination is the basis for consideration 

of a gene as predicted NRF1 target, provided the established cutoff value is met 

(we used  RP = 10
-3

). Results indicate that out of 390 genes with significant 

differential expression 63 were predicted NRF1 upregulated targets (Table 3) and 

73 were NRF1 downregulated targets (Table 4). 
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Table 3 

 
Predicted NRF1 Target Upregulated Genes in HCC1954 Breast Cancer Cells  
 
Ranked by Rank Product (RP)  
 

Chro

ms txStart txEnd refseqID 

rank 

product 

Stran

ds 

Gene 

Symbol 

chr5 659976 693510 

NM_00703

0 2.85E-05 - TPPP 

chr1 

244998

638 

245008

359 

NM_19807

6 7.97E-05 + COX20 

chr1 

226033

232 

226070

420 

NM_01469

8 1.10E-04 - TMEM63A 

chr16 

300075

29 

300171

11 

NM_17361

8 2.02E-04 + INO80E 

chr2 

148687

965 

148778

316 

NM_00119

0879 3.97E-04 - ORC4 

chr19 

462680

42 

462724

97 

NM_17587

5 4.33E-04 - SIX5 

chr8 

119201

694 

119634

184 

NM_00110

1676 4.93E-04 - SAMD12 

chr5 

180683

385 

180688

119 

NM_03276

5 6.81E-04 - TRIM52 

chr1 

225997

835 

226033

262 

NM_00129

1163 8.19E-04 + EPHX1 

chr5 470624 473080 

NR_02415

8 8.77E-04 - PP7080 
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Chro

ms txStart txEnd refseqID 

rank 

product 

Stran

ds 

Gene 

Symbol 

chr19 

375077

0 

376167

3 

NM_00488

6 1.19E-03 - APBA3 

chr16 

307403

1 

307775

6 

NM_02433

9 1.30E-03 + THOC6 

chr4 699572 764427 

NM_00631

5 1.31E-03 + PCGF3 

chr14 

376671

17 

380204

64 

NM_00119

5296 1.36E-03 + MIPOL1 

chr20 

320779

27 

322378

37 

NM_00103

2999 1.58E-03 + CBFA2T2 

chr11 

102267

055 

102323

775 

NM_05293

2 1.67E-03 - TMEM123 

chr16 

691519

11 

691664

93 

NR_03322

7 1.74E-03 - CHTF8 

chr4 

562940

67 

564130

76 

NM_00489

8 1.74E-03 - CLOCK 

chr3 

113367

232 

113415

493 

NR_11198

1 2.13E-03 - KIAA2018 

chr7 

272102

09 

272139

55 

NM_01895

1 2.18E-03 - HOXA10 

chr9 

978725

07 

980799

91 

NM_00124

3744 2.20E-03 - FANCC 

chr5 

112357

795 

112824

527 

NM_00108

5377 2.24E-03 - MCC 
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Chro

ms txStart txEnd refseqID 

rank 

product 

Stran

ds 

Gene 

Symbol 

chr17 

291097

01 

291517

78 

NM_01598

6 2.32E-03 - CRLF3 

chr9 

154640

64 

155110

03 

NM_00112

8217 2.47E-03 - PSIP1 

chr22 

220518

25 

220901

23 

NM_01331

3 2.89E-03 - YPEL1 

chr4 

175411

327 

175444

044 

NM_00125

6301 3.12E-03 - HPGD 

chrX 

308455

58 

309075

11 

NM_15278

7 3.33E-03 - TAB3 

chr1 

110276

553 

110283

660 

NM_00084

9 3.37E-03 - GSTM3 

chr2 

858323

75 

858391

79 

NM_00101

3649 3.40E-03 - C2orf68 

chr16 

675627

19 

675806

91 

NM_00119

3522 3.45E-03 + FAM65A 

chr21 

189659

67 

189852

68 

NM_00680

6 3.49E-03 - BTG3 

chr2 

974819

90 

975011

21 

NM_01762

3 3.52E-03 + CNNM3 

chr22 

313182

94 

313226

40 

NR_02692

0 3.65E-03 + 

MORC2-

AS1 

chr7 

134850

531 

134855

578 

NM_00124

3754 3.78E-03 - C7orf49 
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Chro

ms txStart txEnd refseqID 

rank 

product 

Stran

ds 

Gene 

Symbol 

chr22 

283153

63 

283209

51 

NR_02696

2 3.82E-03 + 

TTC28-

AS1 

chr6 

344338

37 

345030

00 

NM_02080

4 3.95E-03 + PACSIN1 

chr1 

628125

2 

629604

4 

NM_01240

5 3.96E-03 - ICMT 

chr19 

336995

69 

337167

56 

NM_01984

9 4.24E-03 - SLC7A10 

chr9 

578457

1 

583308

1 

NM_02489

6 4.25E-03 - ERMP1 

chrX 

130537

35 

130629

17 

NM_17490

1 4.30E-03 - FAM9C 

chr5 

108670

409 

108745

675 

NM_01481

9 4.50E-03 - PJA2 

chr1 

569604

18 

570452

57 

NM_00371

3 4.76E-03 - PPAP2B 

chr8 

743326

03 

746591

62 

NM_00116

4380 4.77E-03 - STAU2 

chr17 

291589

87 

292228

83 

NM_02485

7 4.86E-03 + ATAD5 

chr12 

110037

3 

160509

9 

NR_02794

6 5.23E-03 + ERC1 

chr16 

673134

26 

673234

03 

NM_00112

9731 5.43E-03 + PLEKHG4 
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Chro

ms txStart txEnd refseqID 

rank 

product 

Stran

ds 

Gene 

Symbol 

chr16 

695998

68 

697385

69 

NM_00659

9 5.44E-03 + NFAT5 

chr6 

435438

77 

435882

60 

NM_00650

2 5.58E-03 + POLH 

chr17 

444219

0 

445868

1 

NM_01452

0 5.68E-03 - MYBBP1A 

chr22 

359373

51 

359500

45 

NM_01431

0 5.72E-03 + RASD2 

chr17 

460188

88 

460266

74 

NM_01812

9 5.80E-03 + PNPO 

chr17 

776106

3 

776560

0 

NM_14460

7 6.13E-03 + CYB5D1 

chr17 

372195

55 

373079

02 

NM_02040

5 6.33E-03 - PLXDC1 

chr12 

657140

3 

658006

5 

NM_01683

0 7.23E-03 - VAMP1 

chr17 

432246

83 

432294

68 

NM_00646

0 7.78E-03 + HEXIM1 

chr19 

142479

63 

142820

75 

NR_04521

4 7.86E-03 + 

LOC10050

7373 

chr8 

958924

52 

959074

82 

NM_05774

9 7.93E-03 - CCNE2 

chr11 

652652

32 

652739

39 

NR_00281

9 8.30E-03 + MALAT1 
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Chro

ms txStart txEnd refseqID 

rank 

product 

Stran

ds 

Gene 

Symbol 

chr8 

117886

662 

117889

107 

NR_03388

6 1.09E-02 + 

RAD21-

AS1 

chr19 

109822

52 

110334

48 

NM_19914

1 1.11E-02 + CARM1 

chr6 

283176

90 

283369

54 

NM_02449

3 1.20E-02 + ZKSCAN3 

chr7 

996474

16 

996626

63 

NM_14591

4 1.32E-02 + ZSCAN21 

chr1 

228395

830 

228548

951 

NM_05284

3 1.36E-02 + OBSCN 

 

Note. These results can be interpreted  as the p value of the likelihood of  being 

NRF1 regulated based on integrative analysis of NRF1 binding peaks next to TSS 

(+/-5.0 kb) and  differential expression. 
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Table 4  

Predicted NRF1 Target Downregulated Genes in HCC1954 Breast Cancer Cells 

Ranked by Rank Product (RP)  

Chrom

s txStart txEnd refseqID 

rank 

product 

Strand

s Gene Symbol 

chr19 38794199 38806445 

NM_00103967

1 3.86E-05 - YIF1B 

chr12 75891418 75905418 NM_007043 2.31E-04 - KRR1 

chr18 12328942 12377275 NM_006796 2.74E-04 - AFG3L2 

chr3 

15639095

9 

15639350

2 NR_027954 3.49E-04 - TIPARP-AS1 

chr7 36363758 36429734 

NM_00110042

5 4.55E-04 - KIAA0895 

chr11 65657874 65659106 NM_006848 5.26E-04 + CCDC85B 

chr4 57844805 57897328 NM_000938 7.01E-04 + POLR2B 

chr4 

18632069

3 

18634713

9 NM_018359 7.67E-04 - UFSP2 

chr20 62329994 62339365 

NM_00126754

6 9.04E-04 - ARFRP1 

chr10 17270257 17279592 NM_003380 9.09E-04 + VIM 

chr14 67827033 67853233 NM_004094 9.17E-04 + EIF2S1 

chr1 53392900 53517289 

NM_00119361

7 1.19E-03 + SCP2 

chr18 11883471 11908796 

NM_00124290

4 1.30E-03 - MPPE1 
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Chrom

s txStart txEnd refseqID 

rank 

product 

Strand

s Gene Symbol 

chr8 

14498931

4 

14501812

6 NM_201382 1.39E-03 - PLEC 

chr16 56642477 56643409 NM_005953 1.46E-03 + MT2A 

chr7 

13446416

3 

13465548

0 NM_033138 1.47E-03 + CALD1 

chr10 33189245 33247293 NM_002211 1.59E-03 - ITGB1 

chr10 99400442 99436189 NM_018425 1.60E-03 + PI4K2A 

chr12 50017196 50038452 

NM_00103169

8 1.69E-03 + PRPF40B 

chr19 48828628 48833810 NM_001425 1.86E-03 + EMP3 

chr7 5632435 5646287 NM_003088 1.94E-03 + FSCN1 

chr4 

14591572

6 

14601937

1 

NM_00125670

6 1.95E-03 - ANAPC10 

chr12 76419226 76425556 NM_007350 2.50E-03 - PHLDA1 

chr12 28111016 28122894 NM_198966 2.51E-03 - PTHLH 

chr10 

10146850

4 

10149242

3 NM_078470 2.67E-03 - COX15 

chr2 

17329231

3 

17337118

1 NM_000210 2.67E-03 + ITGA6 

chr14 71189242 71275888 NM_033141 2.77E-03 - MAP3K9 

chr18 21452983 21535029 NM_000227 2.84E-03 + LAMA3 

chr22 38339056 38349654 NM_032561 2.89E-03 - C22orf23 

chr1 

15353358

4 

15353830

6 NM_005978 3.41E-03 - S100A2 
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Chrom

s txStart txEnd refseqID 

rank 

product 

Strand

s Gene Symbol 

chr1 

15796306

2 

15807005

2 

NM_00128634

9 3.54E-03 + KIRREL 

chr1 33116748 33151812 

NM_00113525

5 3.61E-03 + RBBP4 

chr16 87863628 87903100 NM_003486 3.74E-03 - SLC7A5 

chr7 

11616483

8 

11620123

9 NM_001753 4.13E-03 + CAV1 

chr12 57482676 57489259 NM_005967 4.43E-03 + NAB2 

chr2 

23540168

5 

23540569

3 NM_005737 4.52E-03 - ARL4C 

chr1 11714913 11723384 NM_183413 4.76E-03 + FBXO44 

chr11 18415935 18429765 

NM_00116541

5 4.78E-03 + LDHA 

chr7 27179982 27195547 NR_038832 4.93E-03 + HOXA-AS3 

chr9 

13026761

6 

13033139

6 NM_022833 5.22E-03 - FAM129B 

chr13 98795351 99102027 NM_005766 5.37E-03 + FARP1 

chr16 57496550 57505921 NM_032940 6.01E-03 + POLR2C 

chr10 

11263155

2 

11265976

4 NM_014456 6.20E-03 + PDCD4 

chr1 25071759 25170815 NM_013943 6.29E-03 + CLIC4 

chr20 5100231 5100615 NR_028370 6.30E-03 + PCNA-AS1 

chr17 2207236 2228558 NM_021947 6.32E-03 + SRR 

chr17 7486964 7491527 NR_024603 6.59E-03 + MPDU1 
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Chrom

s txStart txEnd refseqID 

rank 

product 

Strand

s Gene Symbol 

chr1 85742040 85743771 NR_045484 6.64E-03 + LOC646626 

chr11 62201013 62314332 NM_024060 6.66E-03 - AHNAK 

chr19 45909466 45914024 

NM_00129759

0 6.69E-03 + CD3EAP 

chr19 38794803 38795646 NM_033520 6.93E-03 + C19orf33 

chr15 39873279 39889668 NM_003246 7.08E-03 + THBS1 

chr1 38268613 38273865 NM_024640 7.09E-03 - YRDC 

chr4 

12272247

1 

12273817

6 

NM_00103419

4 7.15E-03 + EXOSC9 

chr19 5691844 5720463 

NM_00127648

0 7.18E-03 - LONP1 

chr2 

21908181

6 

21911907

1 NM_152862 7.75E-03 + ARPC2 

chr14 70232999 70234430 NR_029378 7.89E-03 - 

LOC10028951

1 

chr1 45271581 45272957 

NM_00101363

2 8.28E-03 - TCTEX1D4 

chr11 

10592182

4 

10594846

5 NM_152433 8.58E-03 - KBTBD3 

chr15 66782665 66790146 NM_006049 8.65E-03 - SNAPC5 

chr2 

23157755

6 

23168579

0 NM_016289 8.71E-03 + CAB39 

chr8 38268655 38326352 

NM_00117406

4 8.76E-03 - FGFR1 
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Chrom

s txStart txEnd refseqID 

rank 

product 

Strand

s Gene Symbol 

chr4 

15904573

1 

15909371

8 NM_016613 9.35E-03 - FAM198B 

chr1 

24341930

6 

24366339

3 NM_006642 9.62E-03 + SDCCAG8 

chr1 

10947212

9 

10950612

1 

NM_00104821

0 9.80E-03 - CLCC1 

chr19 4045215 4066816 NM_015898 1.03E-02 - ZBTB7A 

chr17 40554466 40575338 NM_012232 1.09E-02 - PTRF 

chr1 27189632 27190947 NM_006142 1.13E-02 + SFN 

chr11 65686727 65689048 NM_006442 1.14E-02 + DRAP1 

chr1 38273472 38275126 

NM_00114272

6 1.17E-02 + C1orf122 

chr4 7032280 7047958 NR_033828 1.58E-02 - 

LOC10012993

1 

chr12 58118075 58135944 NM_014770 1.70E-02 - AGAP2 

chr1 

15608446

0 

15610765

7 NM_005572 1.93E-02 + LMNA 

 
Note. These results can be interpreted  as the p value of the likelihood of  being 

NRF1 regulated based on integrative analysis of NRF1 binding peaks next to TSS 

(+/-5.0 kb) and  differential expression. 

 

The list of upregulated and downregulated NRF1 targets includes several 

genes previously reported as connected to breast cancer, such as CCNE2, HPGD, 

FGFR1, ITGA6, LAMA3, and PDCD4. Cyclin E2 (CCNE2) overexpression has 

been linked with endocrine resistance in breast cancer, found overexpressed in 
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Her2 enriched and luminal B breast cancers and also associated with shorter 

distant metastasis-free survival among breast cancer patients after endocrine 

therapy (Caldon et al., 2012). HPGD (15-hydroxyprostaglandin dehydrogenase) 

was reported to promote epithelial mesenchymal transition (EMT) in aggressive 

breast tumors, and its upregulation was associated with poor prognosis in a subset 

of breast cancer patients (Lehtinen et al., 2012).  

FGFR1 (fibroblast growth factor receptor 1) belongs to the FGFR gene 

family, a group of tyrosine kinase receptors that play an important role in the 

development and differentiation of the human mammary gland (Pond et al., 2013). 

In vitro essays of FGFR1 have shown that its activation resulted in cellular 

transformation of nontransformed MC10A human mammary cells, cell 

proliferation, survival, loss of cell polarity, and EMT (Xian et al., 2009). FGFR1 is 

also part of the KEGG (Kyoto Encyclopedia of Genes and Genomes) breast cancer 

pathway. ITGA6 (integrin subunit alpha 6) is part of Pathways in cancer (KEGG) 

and found downregulated in breast cancer tissue samples of HER2+ patients 

(Zubor et al., 2015). LAMA3 downregulation due to epigenetic changes in breast 

cancer has been found to be associated with   increased tumor stage and tumor 

size (Sathyanarayana et al., 2003). PDCD4 is a tumor suppressor gene whose 

downregulation promotes antiapoptosis and chemotherapy resistance in the 

breast tumor cell line MCF-7 (Bourguignon, Spevak, Wong, Zia, & Gilad, 2009). 

Binding motif analysis 

Figures 11 and 12 are screenshots from BETA outputs showing the results 

of binding motif analysis in NRF1 upregulated and downregulated target genes, 
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respectively. T scores and p values are the statistics of the enrichment.  The most 

significant binding motif in both groups upregulated and downregulated targets 

was the same—TGCGCAT (Figure 13)—confirming the NRF1 motif in breast 

cancer cells reported by Zhang et al. (2015). 

 

Figure 11. Screenshot of BETA output showing the results of binding motif 

analysis in the group of NRF1 upregulated targets. 

 

 

Figure 12. BETA output showing the results of binding motif analysis in the group 

of  NRF1 downregulated targets. 
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Figure 13. BETA output showing the most significant binding motif in both groups 

upregulated and downregulated targets which resulted in being the same. 

 

Conclusions 
 

Integrated data analysis of NRF1 ChIP-Seq and RNA-Seq data in HER2 

positive breast cancer (HCC1954) and normal human mammary epithelial cells 

(HMEC) revealed a set of 63 upregulated and 73 downregulated genes that are 

very likely NRF1 regulated targets with binding sites within +/- 5.0 kb from TSS. 

Twenty-five (25) genes were upregulated more than 4 log2 fold change (SAMD12, 

MIPOL1,HOXA10, KIAA2018, TPPP, TAB3, RASD2, PACSIN1, SIX5, FAM9C, 

SLC7A10, APBA3, TMEM63A, GSTM3, PLXDC1, PJA2, ZKSCAN3, CBFA2T2 

,PPAP2B, HPGD, PLEKHG4, C7orf49, PNPO, TTC28-AS1, and STAU2) and 

twenty-one (21) were downregulated more than 4 log2 fold change (PTHLH, 

MT2A, EMP3, KIRREL, LAMA3, CCDC85B, FSCN1, POLR2B , PHLDA1 , S100A2 

, SDCCAG8 , EIF2S1 , HOXA-AS3 , MAP3K9 , PI4K2A, CALD1, FGFR1, VIM, 

ARFRP1, TIPARP-AS1, and YIF1B).  

These genes can be considered candidate drivers of HER2+ breast cancer. 

Binding motif analysis confirmed the presence of the preferred NRF1 motif 

TGCGCAT in the summit of NRF1 peaks. Our results were aligned with other 

studies that had found some of these genes such as CCNE2, HPGD, FGFR1, 
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ITGA6, LAMA3 and PDCD4 associated with the development and progression of 

breast tumors. 
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 CHAPTER IV 

NRF1 MOTIF SEQUENCE-ENRICHED GENES INVOLVED IN ER-PR-HER2+  

BREAST CANCER SIGNALING PATHWAYS 

Note. This chapter was previously published: Ramos, J., Das, J., Felty, Q., Yoo, 

C., Poppiti, R., Murrell, D., . . . Roy, D.   (2018). NRF1 motif sequence-enriched 

genes involved in ER/PR -ve HER2 +ve breast cancer signaling pathways. Breast 

Cancer Research and Treatment, 8, 1-17. 

Abstract 

Nuclear respiratory factor 1 (NRF1) transcription factor has recently been shown 

to control breast cancer progression. However, mechanistic aspects by which 

NRF1 may contribute to susceptibility to different breast tumor subtypes are still 

not fully understood. Since transcriptional control of NRF1 seems to be dependent 

on epidermal growth factor receptor signaling, herein we investigated the role of 

NRF1 in estrogen receptor/progesterone receptor negative, but human, epidermal 

growth factor receptor 2 positive (ER-PR-HER2+) breast cancer. We found that 

both mRNA and protein levels of NRF1, and its transcriptional activity, were 

significantly higher in ER-PR-HER2+ breast cancer samples compared to normal 

breast tissues. This result was consistent with our observation of higher NRF1 

protein expression in the experimental model of HER2+ breast cancer brain 

metastasis. To identify network-based pathways involved in the susceptibility to 

the ER-PR-HER2+ breast cancer subtype, the NRF1 transcriptional regulatory 

genome-wide landscape was analyzed using the approach consisting of a 

systematic integration of ChIP DNA-seq, RNA-Microarray, NRF1 protein-DNA 
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motif binding, signal pathway analysis, and Bayesian machine learning. Our 

findings showed that a high percentage of known HER2+ breast cancer 

susceptibility genes, including EGFR, IGFR, and E2F1, are under transcriptional 

control of NRF1. Promoters of several genes from the KEGG (Kyoto Encyclopedia 

of Genes and Genomes) HER2+ breast cancer pathway and 11 signaling 

pathways linked to 6 hallmarks of cancer contain the NRF1 motif. By pathway 

analysis, key breast cancer hallmark genes of epithelial-mesenchymal transition, 

stemness, cell apoptosis, cell cycle regulation, chromosomal integrity, and DNA 

damage/repair were highly enriched with NRF1 motifs. In addition, we found using 

Bayesian network-based machine learning that 30 NRF1 motif-enriched  genes—

including growth factor receptors FGFR1, IGF1R; E2Fs transcription factor family-

E2F1, E2F3; MAPK pathway-SHC2, GRB2, MAPK1; PI3K-AKT-mTOR signaling 

pathway-PIK3CD, PIK3R1, PIK3R3, RPS6KB2; WNT signaling pathway-WNT7B, 

DLV1, DLV2, GSK3B, NRF1, and DDB2, known for its role in DNA repair and 

involvement in early events associated with metastatic progression of breast 

cancer cells—were associated with HER2 amplified breast cancer. Machine 

learning search further revealed that the likelihood of HER2 positive breast cancer 

was almost 100% in a patient with high NRF1 expression combined with 

expression patterns of high E2F3, GSK3B, and MAPK1; low or no change in E2F1 

and FGFR1; and high or no change in PIK3R3.  In summary, our findings suggest 

novel roles of NRF1 and its regulatory networks in susceptibility to the ER-PR-

HER2+ aggressive breast cancer subtype. Clinical confirmation of our machine-

learned Bayesian networks will have significant impact on our understanding of the 
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role of NRF1 as a valuable biomarker for breast cancer diagnosis and prognosis 

as well as provide strong rationale for future studies to develop NRF1 signaling-

based therapeutics to target HER2+ breast cancer.  

Introduction 

Nuclear respiratory factor 1 (NRF1) [alpha-palindromic binding protein (α-

PAL)], is a redox-sensitive transcription factor (Okoh, Deoraj, & Roy, 2011; 

Piantadosi & Suliman, 2006; Roy & Tamuli, 2009; Scarpulla, 2006, 2008). The role 

of NRF1 in breast cancer (BC) has remained largely unexplored. We have recently 

shown that reactive oxygen species (ROS) contribute to estrogen-induced growth 

of BC cells through a NRF1 signaling pathway (Okoh et al., 2015).  Several cell 

cycle genes, including CDC2, PRC1, PCNA, cyclin B1, and CDC25C, are 

regulated by NRF1 and implicated in estrogen-induced breast carcinogenesis 

(Okoh et al., 2011). A bioinformatics study showed that NRF1 is one of the principal 

regulatory motifs significantly associated with worsening histological grades and 

poor breast cancer prognosis (Niida et al., 2008).   

NRF1 activity is higher in breast cancer tissue compared to adjacent normal 

tissue (Ertel et al., 2012).  NRF1 activity correlates significantly with histological 

grades and prognosis of BC (Falco, Bleda, Marbonell-Caballero, & Dopazo, 2016).  

A recent report showed that NRF1 expression is significantly higher in breast 

cancer tissue of Chinese patients compared with adjacent normal tissues (Gao et 

al., 2018).  Despite these studies, the impact of NRF1- regulated gene networks 

on aggressive growth and metastasis of BC is still unknown.  
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NRF1 is one of the transcription factors with the highest enrichment scores 

in mutated epidermal growth factor receptor (EGFR, L858R; T790M mutations)-

derived lung tumors; treatment of mice with an irreversible EGFR/HER2 tyrosine 

kinase inhibitor- afatinib drug significantly down-regulates the expression of this 

gene in tumors (Weaver et al., 2012). These data suggest that transcriptional 

control of NRF1 depends on EGFR signaling. Therefore, in this study we examined 

the role of NRF1 in human epidermal growth factor receptor 2 (HER2) positive 

breast tumors, one of the two most aggressive breast cancer subtypes with poor 

prognosis (Lee, Oprea-Ilies, & Saavedra, 2015; Sorlie et al., 2001). Here, we report 

higher NRF1 expression in HER2 positive breast tumors. To further understand 

the role of NRF1 in HER2+ breast cancer, we also deciphered the regulatory 

landscape of NRF1 networks in a HER2+ breast cancer line and HER2+ breast 

cancer samples. Our findings revealed novel roles of NRF1 and its regulatory 

network associated with ER− PR− HER2+ breast cancer.  

Results 

Higher NRF1 Expression in HER2+ Breast Cancer 

As a first step in discovering the association between NRF1 transcription 

factor and ER-PR-HER2+ breast cancer, we used TCGA NRF1 microarray data 

(log2 normalized (cy5/cy3) from 61 normal samples and 22 HER2+ breast tumor 

samples. We performed the SAS PROCTTEST, which estimates for the equality 

of means for a two-sample (independent group) t test, to compare the mean NRF1 

expression values of these two groups. The results are summarized using boxplots 

and histograms in Figure 1. The comparison of the relative NRF1 distribution in 
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normal and HER2+ breast tumors showed that a higher proportion of breast cancer 

specimens possessed elevated levels of NRF1 compared to normal breast tissue 

specimens. Statistical analysis of mRNA expression showed that NRFl was 

significantly overexpressed in ER-PR-HER2+ breast cancer tissue compared to 

normal tissues (Figure 1, p < 0.0014). 

 

Figure 1. Shows a histogram and boxplot of NRF1 expression in ER-PR-HER2+ 

breast cancer TCGA samples compared to normal samples. 

 

To corroborate this finding, we investigated NRF1 protein expression in a 

breast cancer tissue microarray (TMA). TMA stained with antibodies specific for 

NRF1 were analyzed by confocal immunofluorescence microscopy. The 

representative confocal TMA immunofluorescence analysis showed increased 

expression levels of NRF1 in ER-PR-HER2+ breast cancer specimens compared 

to normal breast specimens. Tumor cells overexpressing HER2 showed moderate 
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to high nuclear staining of NRF1. A majority of normal breast cells showed weak 

to moderate NRF1 nuclear immunoreactivity (Figure 2).  

 

 

 

Figure 2. NRF1 protein expression was higher in ER- PR- HER2+ breast cancer 

tissue sections compared to normal breast tissue section. Shown in (A) 

Representative immunoreactivity of NRF1 antibodies and (B) the box plot 

distribution of intensity scores for NRF1 immunoreactivity (arbitrary unit =A.U.). 

*p < 0.05. 

 

We also measured the transcription activity of NRF1 by estimating 

modulation of mRNA levels of its target genes in a coordinated way in normal and 

ER-PR-HER2+ breast cancer TCGA samples. NRF1 transcription activity was 

significantly upregulated in ER-PR-HER2+ breast cancer compared to normal 

breast tissues (Figure 3). The increase in NRF1 activity was consistent with our 
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observations of higher NRF1 mRNA and protein levels in in ER-PR-HER2+ breast 

cancer.  

 

 

 

 

 

 

 
Figure 3. Shows an increased NRF1 activity in ER-PR-HER2+ breast cancer 

TCGA samples compared to normal samples. 

 

We also evaluated NRF1 protein expression in the experimental model of 

HER2+ breast cancer metastasis. Statistical analysis of NRF1 immuno-reactivity 

showed that NRF1 was significantly higher in HER2+ breast cancer cells derived 

from brain tumors compared to MDA-MB-231-BR (231-BR)-vector cell–derived 

brain metastases (Figure 4, p < 0.01). Our finding of NRF1 overexpression in 

HER2+ breast cancer brain metastatic tumors was consistent with the observation 

of a previous report of EGFR-derived lung tumors (Weaver et al., 2012). In 

summary, these data suggest NRF1 expression is significantly associated with 

HER2+ breast cancer in the preclinical model and clinical breast cancer human 

samples.   
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Figure 4. The representative confocal immunofluorescence microscopy image of 

NRF1 protein expression and box plot showing relative quantitative value o NRF1 

intensity in brain tumors overexpressing HER2. Mice were injected with MDA-MB-

231-BR (231-BR)-vector (n = 4 mice) or HER2 overexpressing MDA-MB-231-BR 

brain tumor sections (n = 6). 

 
Discovery of NRF1 Bound DNA Regions in ER-PR-HER2+ Cells 

To understand NRF1’s role in ER-PR-HER2+ breast cancer, it is critical that 

we identify NRF1 transcriptional regulation of target genes. As a first step, we 

identified the actual occupancy of NRF1 protein to the DNA motif site(s) of the 

different regions of the genome and the distance of NRF1 protein binding sites 

from the transcription start site (TSS) in breast cancer cells that are ER-PR-HER2+ 

(HCC1954); and normal breast epithelial cells (HMEC). To accomplish this 

comparison, we used archived NRF1 ChIP DNA-seq data of HCC1954 breast 

cancer cells from Gene Expression Omnibus (GEO) (Domcke et al., 2015), aligned 
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them into the human genome using BOWTIE2, and subsequently used MACS2 to 

identify enriched NRF1 peaks with fold enrichment (FE) greater or equal to 5. After 

peak identification, we determined genes associated with NRF1 binding sites using 

GREAT 3.0.0. GEO accession numbers for NRF1. ChIP-Seq data and details of 

software and setting parameters used for alignment, peak calling, and gene 

identification can be found in the Method section.  

We identified NRF1 bound target genes that had binding activity localized 

in promoter proximal regions (+/- 2,000 bp from the TSS) in both normal human 

mammary epithelial cells (HMECs) isolated from adult female breast tissue and 

the breast cancer cell line HCC1954 that represents a breast ductal carcinoma 

(ER-PR-HER2+) with amplified HER2 and high abundance of EGFR. This cell line 

is a well-accepted model of metastatic HER2+ breast cancer (Henjes et al., 2012). 

We found 1,283 genes that were NRF1 targets exclusively in HMEC cells, 1,225 

exclusively in HCC1954, and 10,911 NRF1 targets common in both cell lines 

(Figure 5). We could not compare our observations with a previous report from 

HCC1954 breast cancer cells to investigate the effect of DNA methylation to NRF1 

binding because the number of target genes was not reported.  
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Figure 5. Venn diagram showing the number of common and unique NRF1 target 

genes in HER2+ breast cancer cells (HCC1954) compared to normal breast 

epithelial cells (HMEC). 

 

An increase in NRF1 activity has been previously reported in breast cancer 

compared to normal tissue; therefore, we also compared the NRF1 network in 

HMEC normal cells with HCC1954 HER2+ breast cancer cells. We used the 

Jaccard coefficient (JC) to measure the intersection between the two sets of 

genes:  JC = (A∩B) / (A∪B). A very high level of similarity was found in the 

HCC1954 cells (JC=81.3 %).  

NRF1 Motif-Enriched Target Genes Are Part of the Breast Cancer Hallmark 

Pathway  

To identify the pathways in HER2 amplified breast cancer that may be 

regulated by NRF1, we used DAVID (Database for Annotation, Visualization and 

Integrated Discovery) and KEGG to map NRF1 identified target genes in HCC1954 

with hallmark genes of cancer and breast cancer signaling pathways (Hanahan & 
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Weinberg. 2011). Figure 6 and Table 1 show NRF1 target genes identified in each 

signaling pathway as well as the associated hallmarks of cancer.  

We found 11 critical signaling pathways enriched with NRF1 target genes—

PI3K-Akt signaling, MAP-kinase pathway, mTOR pathway, cellular senescence, 

p53 signaling, apoptosis, TGF-beta signaling, autophagy, VEGF signaling, T cell 

receptor signaling, and B cell receptor signaling. These signaling pathways when 

altered are involved in the following hallmarks of cancer: sustaining proliferative 

signaling, evading growth suppressors, resisting cell death, enabling replicative 

immortality, inducing angiogenesis, and evading immune destruction. NRF1 target 

enriched signaling pathways ranked by number of genes, starting with mTOR (48 

genes) and ending with TGF-beta signaling (5 genes) are shown in Figure 6. 

Sustaining proliferative signaling which allows cancer cells to maintain 

continuous growth shows the maximum number of associated signaling pathways 

(4: PI3K-Akt signaling, MAP-kinase pathway, mTOR pathway, and cellular 

senescence) followed by evading growth suppressors (3: p53 signaling, apoptosis, 

and TGF-beta signaling) and resisting cell death (3:  p53 signaling, apoptosis, and 

autophagy).  PI3K-Akt signaling contained 46 NRF1 target genes, including five 

genes—FGF13, FGF19, FGF3, FGF4, and FLT4 that were present only in HER2+ 

breast cancer cells.  MAP-kinase Pathway contained 34 NRF1 target genes.  

mTOR Pathway contained 48 NRF1 target genes, including FZD10 and WNT1 

only present in HER2+ breast cancer cells.  

NRF1 motif was present in 28 genes of cellular senescence as part of the 

sustaining proliferative signaling hallmark. NRF1 motifs were present in 10 genes 
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of the p53 signaling pathway including BAX only found in HER2+ cells.  NRF1 

motifs were found in 23 genes in apoptosis, 19 genes in autophagy, and 5 genes 

in TGF-beta signaling. Figure 6 and Table 1 provide detailed information of target 

genes classified by signaling pathway.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Number of genes containing NRF1 motif discovered in cancer hallmark 

signaling pathways. 
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Table 1 

 Signaling Pathway Enriched With NRF1 Target Genes in the BC and Hallmark of Cancer Pathway  
 
 Hallmarks of cancer  

KEGG Signaling pathway / NRF1 target genes   
 

 

Sustaining 
proliferativ
e 
signaling 

Evading 
growth 
sup-
pressor 

Re-
sis-
ting 
cell 
deat
h 

Enabling 
replicative 
immortality 

Angio-
genesis 

Evading 
immune 
destructio
n 

p 

 PI3K-Akt Signaling: AKT1 , AKT2 , BRCA1 , CCND1 , 
CDK4 , CDK6 , CDKN1A , EGFR , FGF1 , FGF10 , FGF11 , 
FGF12 , FGF18 , FGF21 , FGF22 , FGF7 , FGF9 , FGFR1 , 
GRB2 , GSK3B , HRAS , IGF1R , KIT , KRAS , MAP2K1 , 
MAP2K2 , MAPK1 , MAPK3 , MYC , PIK3CA , PIK3CB , 
PIK3CD , PIK3R1 , PIK3R2 , PIK3R3 , PTEN , RAF1 , 
RPS6KB1 , RPS6KB2 , SOS1 , SOS2 , FGF13** , FGF19** , 
FGF3** , FGF4** , FLT4**  

X      

1.0 
E-
5 

MAP-kinase Pathway: AKT1 , AKT2 , EGFR , FGF1 , FGF10 
, FGF11 , FGF12 , FGF18 , FGF21 , FGF22 , FGF7 , FGF9 , 
FGFR1 , FOS , GADD45A , GADD45B , GADD45G , GRB2 , 
HRAS , JUN , KRAS , MAP2K1 , MAP2K2 , MAPK1 , 
MAPK3 , MYC , NFKB2 , RAF1 , SOS1 , SOS2 , FGF13** , 
FGF19** , FGF3** , FGF4**  

X      

4.6 
E-
24
0 

mTOR Pathway: AKT1 , AKT2 , DVL1 , DVL2 , DVL3 , FZD1 
, FZD2 , FZD3 , FZD4 , FZD5 , FZD6 , FZD8 , FZD9 , GRB2 , 
GSK3B , HRAS , IGF1R , KRAS , LRP5 , LRP6 , MAP2K1 , 
MAP2K2 , MAPK1 , MAPK3 , PIK3CA , PIK3CB , PIK3CD , 
PIK3R1 , PIK3R2 , PIK3R3 , PTEN , RAF1 , RPS6KB1 , 
RPS6KB2 , SOS1 , SOS2 , WNT10A , WNT10B , WNT11 , 

X      

1.0  
E-
44 
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Note. ** Indicates only present In HCC1954 cells.

WNT3A , WNT4 , WNT5A , WNT7A , WNT7B , WNT8B , 
WNT9A , FZD10** , WNT1**  

Cellular Senescence: AKT1 , AKT2 , CCND1 , CDK4 , 
CDK6 , CDKN1A , E2F1 , E2F2 , E2F3 , GADD45A , 
GADD45B , GADD45G , HRAS , KRAS , MAP2K1 , MAP2K2 
, MAPK1 , MAPK3 , MYC , PIK3CA , PIK3CB , PIK3CD , 
PIK3R1 , PIK3R2 , PIK3R3 , PTEN , RAF1 , RB1  

X      

1.0 
E-
5 

p53 Signaling: CCND1 , CDK4 , CDK6 , CDKN1A , DDB2 , 
GADD45A , GADD45B , GADD45G , PTEN , BAX**   X X X   

3.5 
E-
58 

 Apoptosis: AKT1 , AKT2 , BAK1 , FOS , GADD45A , 
GADD45B , GADD45G , HRAS , JUN , KRAS , MAP2K1 , 
MAP2K2 , MAP3K5 , MAPK1 , MAPK3 , PIK3CA , PIK3CB , 
PIK3CD , PIK3R1 , PIK3R2 , PIK3R3 , RAF1 , BAX**  

 X X    

1.2 
E-
71 

 TGF-beta Signaling: MAPK1 , MAPK3 , MYC , RPS6KB1 , 
RPS6KB2   X     

9.5 
E-
74 

Autophagy: AKT1 , AKT2 , HRAS , IGF1R , KRAS , 
MAP2K1 , MAP2K2 , MAPK1 , MAPK3 , PIK3CA , PIK3CB , 
PIK3CD , PIK3R1 , PIK3R2 , PIK3R3 , PTEN , RAF1 , 
RPS6KB1 , RPS6KB2  

  X    

1.0 
E-
5 

VEGF Signaling: AKT1 , AKT2 , HRAS , KRAS , MAP2K1 , 
MAP2K2 , MAPK1 , MAPK3 , PIK3CA , PIK3CB , PIK3CD , 
PIK3R1 , PIK3R2 , PIK3R3 , RAF1 , SHC2  

    X  
2.5 
E-
62 

T cell receptor signaling: AKT1 , AKT2 , CDK4 , FOS , 
GRB2 , GSK3B , HRAS , JUN , KRAS , MAP2K1 , MAP2K2 , 
MAPK1 , MAPK3 , PIK3CA , PIK3CB , PIK3CD , PIK3R1 , 
PIK3R2 , PIK3R3 , RAF1 , SOS1 , SOS2  

     X 

1.7 
E-
92 

B cell receptor signaling: AKT1 , AKT2 , FOS , GRB2 , 
GSK3B , HRAS , JUN , KRAS , MAP2K1 , MAP2K2 , MAPK1 
, MAPK3 , PIK3CA , PIK3CB , PIK3CD , PIK3R1 , PIK3R2 , 
PIK3R3 , RAF1 , SOS1 , SOS2  

     X 

2.7 
E-
61 
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We compared the 78 candidate identified genes in the signaling pathway 

analysis against the list of NRF1 target genes reported in ENCODE by 

Harmonizome—a collection of 125 unique processed datasets (Rouillard et al., 

2016). This comparison resulted in 59 overlapping genes (Table 2).  

Table 2   
 
NRF1 Motif Present in Genes Involved in Development of Malignant Breast 

Tumors  

 
AKT1*  AKT serine/threonine 

kinase 1 
HRAS*  HRas proto-oncogene, 

GTPase 
AKT2* AKT serine/threonine 

kinase 2          
IGF1R*  insulin like growth factor 1 

receptor 
BAK1  BCL2 antagonist/killer 

1 
JUN*  Jun proto-oncogene, AP-1 

transcription factor subunit 
BRCA1* BRCA1 DNA repair 

associated          
LRP6*  LDL receptor related protein 

6 
CDK4*  cyclin dependent 

kinase 4 
MAP2K1
* 

 mitogen-activated protein 
kinase kinase 1 

CDK6  cyclin dependent 
kinase 6 

MAP2K2
* 

 mitogen-activated protein 
kinase kinase 2 

DDB2*  damage specific DNA 
binding protein 2 

MAP3K5
* 

 mitogen-activated protein 
kinase kinase kinase 5 

DVL1*  dishevelled segment 
polarity protein 1 

MAPK1*  mitogen-activated protein 
kinase 1 

DVL2*  dishevelled segment 
polarity protein 2 

MYC  MYC proto-oncogene, bHLH 
transcription factor 

E2F1*  E2F transcription factor 
1 

NFKB2*  nuclear factor kappa B 
subunit 2 

E2F3*  E2F transcription factor 
3 

PIK3CA*  phosphatidylinositol-4,5-
bisphosphate 3-kinase 
catalytic subunit alpha 

EGFR* epidermal growth factor 
receptor          

PIK3CD*  phosphatidylinositol-4,5-
bisphosphate 3-kinase 
catalytic subunit delta 

FGF1  fibroblast growth factor 
1 

PIK3R1*  phosphoinositide-3-kinase 
regulatory subunit 1 
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FGF12  fibroblast growth factor 
12 

PIK3R2  phosphoinositide-3-kinase 
regulatory subunit 2 

FGF18  fibroblast growth factor 
18 

PIK3R3*  phosphoinositide-3-kinase 
regulatory subunit 3 

FGF22*  fibroblast growth factor 
22 

PTEN*  phosphatase and tensin 
homolog 

FGF9*  fibroblast growth factor 
9 

RAF1*  Raf-1 proto-oncogene, 
serine/threonine kinase 

FGFR1*  fibroblast growth factor 
receptor 1 

RB1*  RB transcriptional 
corepressor 1 

FZD1*  frizzled class receptor 1 RPS6KB
1* 

 ribosomal protein S6 kinase 
B1 

FZD2  frizzled class receptor 2 RPS6KB
2* 

 ribosomal protein S6 kinase 
B2 

FZD3*  frizzled class receptor 3 SHC2*  SHC adaptor protein 2 
FZD4*  frizzled class receptor 4 SOS1*  SOS Ras/Rac guanine 

nucleotide exchange factor 1 
FZD5*  frizzled class receptor 5 SOS2*  SOS Ras/Rho guanine 

nucleotide exchange factor 2 
FZD8*  frizzled class receptor 8 WNT10A  Wnt family member 10A 
FZD9*  frizzled class receptor 9 WNT10B

* 
 Wnt family member 10B 

GADD45
A* 

 growth arrest and DNA 
damage inducible alpha 

WNT5A*  Wnt family member 5A 

GADD45
B* 

 growth arrest and DNA 
damage inducible beta 

WNT7A  Wnt family member 7A 

GADD45
G* 

 growth arrest and DNA 
damage inducible 
gamma 

WNT7B*  Wnt family member 7B 

GRB2*  growth factor receptor 
bound protein 2 

WNT9A*  Wnt family member 9A 

GSK3B*  glycogen synthase 
kinase 3 beta 

  

 
Note. Genes with an asterisk have NRF1 binding activity in proximal promoter 
regions (+/- 2,000 bp from TSS). 
 

A protein–DNA interaction network of these genes was developed using 

CYTOSCAPE (Shannon et al., 2003) to visualize NRF1 regulation (Figure 7).  
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Figure 7.   Protein-DNA interaction of 59 NRF1 target genes that contribute to 
acquiring hallmarks of cancer in breast neoplasms.  
 

To investigate whether NRF1 target genes interact among themselves, we 

also constructed a protein-protein interaction network using STRING (Szklarczyk 

et al., 2015) with direct (physical) as well as indirect (functional) associations. The 

resulting network formed 59 nodes and 546 edges (interactions) (Figure 8).  

 

 

 

 

 

 

 

 

 

Figure 8.   Protein-protein interaction of 59 NRF1 target genes that may contribute 
to cells acquiring hallmarks of cancer in breast neoplasms. 
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 The expected number of interactions, for a random set of similar number of 

proteins drawn from the genome is 130; therefore, this high enrichment (546 vs. 

130) indicates that these proteins are at least partially biologically connected, as a 

group (PPI enrichment p-value = 0).  These 59 genes were also input into KEGG, 

and 21 of them enriched  the section of HER2+ in the KEGG breast cancer 

pathway-hsa05224 (Figure 9, genes highlighted in yellow). In summary, pathway 

analysis showed that several NRF1 may regulate many  genes that are part of the 

hallmarks of cancer in ER-PR-HER2 + type breast tumors.  

 

Figure 9. NRF1 target genes highlighted in yellow in KEGG HER2+ breast cancer 
pathway. 
 
NRF1 Motif-Enriched Genes Correlated With Breast Cancer 

 
To investigate whether the binding activity of NRF1 was correlated with 

breast cancer, we searched for NRF1 target genes in HCC1954 and HMEC cell 
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lines with peaks (NRF1 binding regions from MACS2) located in promoter region 

(+/- 2,000 bp from TSS) and showing a minimum Fold Enrichment (FE) equal to 5. 

This was the same cutoff we had established for peak detection. This screening 

resulted in 7,663 genes meeting these criteria (out of more than 10,000 NRF1 

targets).  

We then performed a point biserial correlation analysis using breast cancer 

(BC) as the dependent categorical variable (coded BC = 0 for HMEC cells and BC 

= 1 for HCC1954 cells), and the average FE of the peaks as the independent 

variables, to identify the genes that had a different level of NRF1 binding when 

comparing breast cancer to normal cells (Table 3). We selected the top 2,000 

correlated genes, 1,000 positive correlated and 1,000 negative correlated 

(absolute correlation ranging from 0.866 to 0.790) to visualize the difference in 

binding activity.  

NRF1 binding activity in breast cancer cell line HCC1954 compared to 

normal mammary epithelial cells (HMEC) shows that NRF1 binding to 2,000 genes 

was differentially correlated when compared to normal breast epithelial cells. 

Furthermore, we observed the NRF1 motif (+/- 2,000 bp from TSS) in 49 genes 

involved in the development of malignant breast tumors (Table 2, genes with 

asterisk).  Subsequently, we used these genes for NRF1 mediated transcriptome 

analysis in HER2+ breast tumors.  
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Table 3 
 
Top 10 Genes With Changes in NRF1 Binding Correlated With HER2+ Breast  
 
Cancer 
 
GENE  rpb  HMEC-1* HMEC-2* HCC1954-

1* 
HCC1954-
2* 

BC 
(status) 

 1.00000 0.00000 0.00000 1.00000 1.00000 

SERBP1  0.86599 9.95728 10.02096 16.74631 16.80865 
PPP1R2  0.86597 12.45139 12.65966 28.54475 28.70575 
ACSL3  0.86592 10.13207 10.02223 23.02297 23.28911 
UQCC  0.86592 37.66980 37.28456 71.46165 72.12209 
SF3B1  0.86583 36.03093 35.40324 64.47330 65.08048 
LRFN3  0.86577 17.18126 16.47726 38.27592 38.06927 
BMF  0.86574 9.38154 9.68616 17.90063 17.87512 
CHERP  0.86572 25.38617 26.48630 61.58603 62.39032 
SLC35G1  0.86570 40.94544 39.72945 105.82870 108.11758 
CEBPA  0.86570 11.42519 11.18819 20.95348 20.66899 

 
Note. *-1 = replicate 1 *-2 = replicate 2 in ChIP-Seq analysis. rpb = point biserial 
correlation coefficient. 
 
Machine Learning of NRF1 Target Genes Involved in HER2+ Breast Cancer 

Bayesian network structure learning was used to discover gene-gene 

interactions and identify putative causal interactions with HER2+ breast cancer. 

We used TCGA microarray data to obtain the gene expression of the 49 NRF1 

enriched genes in 61 normal breast tissue samples and 22 samples with the ER- 

PR- HER2+ breast cancer subtype.  We calculated the mean expression of each 

gene and standard deviation. We then defined the cutoff values for up and down 

regulation to be the mean plus or minus two standard deviations.   

The best network (BDe score = -1172.9652) was reached after examination 

of 20,699 million of networks during 8 hours in the second run of the software 
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Banjo. The methods section provides a more detailed explanation of how the 

scoring function BDe (Bayesian metrics with Dirichlet priors and equivalent) 

measures the probability of each searched structure G given the data D (P (G/D) 

to evaluate different structures (Le et al., 2013). Best network structure is shown 

in Figure 10. Table 4 shows the 30 genes that formed the Markov Blanket of the 

HER2+ breast cancer node. These genes are also shown color-coded in red in 

Figure 10.  

Figure 10.  Bayesian network showing genes associated with ER- PR- HER2+ 
breast cancer.  

 
The machine learned NRF1 motif-enriched genes included growth factor 

receptors—FGFR1, IGF1R; E2Fs transcription factor family—E2F1, E2F3; MAPK  
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pathway-SHC2, GRB2, MAPK1; PI3K-AKT-mTOR signaling pathway—PIK3CD, 

PIK3R1, PIK3R3, RPS6KB2; WNT signaling pathway—WNT7B, DLV1, DLV2, 

GSK3B, NRF1, and DDB2, known for its role in DNA repair and involvement in 

early events associated with metastatic progression of breast cancer cells, were 

associated with HER2 amplified breast cancer. Consequently, we used these 

genes to estimate susceptibility to HER2+ breast cancer.  

Table 4 

Markov Blanket Genes of HER2+ BC in the Structure With the Best BDe Score 

PARENTS CHILDREN OTHER CHILDREN'S PARENTS 
 

BRCA1 DDB2 BRCA1* 
PIK3CD E2F1 FZD3 
NRF1 E2F3 FZD9 
RPS6KB2 FGFR1 GSK3B* 
 FZD5 AKT2 
 GADD45A GADD45G 
 GRB2 NRF1* 
 GSK3B RAF1 
 IGF1R WNT5A 
 MAPK1 CDK4 
 PIK3CA SOS2 
 PIK3R1 EGFR 
 PIK3R3 LRP6 
 SHC2 PIK3R3* 
 WNT7B DVL2 

 
Note. Network created by the software BANJO after Bayesian network learning. 
Genes with asterisk are repeated.  
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Impact of NRF1 Target Genes on the Probability of Risk for ER-PR-HER2+  
 
Breast Cancer 
 

We used GeNIe, (software developed by the University of Pittsburg) to 

estimate the conditional and marginal probability distributions of HER2+ breast 

cancer as a result of modifications in 30 NRF1 target genes (Figure 11). A 

sensitivity analysis modifying NRF1 status to up-regulated in all subjects increased 

the marginal probability of HER2+ breast cancer from 30 % to 67 %. Similarly, 

when we modified the status of either PIK3R3 or WNT7B to up-regulated in all 

subjects, we observed an increased marginal probability of HER2+ breast cancer 

from 30% to 92% and 30% to 88.5%, respectively.  

 

 
Figure 11. Bayesian probabilistic graphic model using Markov blanket genes of 
ER-PR-HER2+ breast cancer. 
 

To validate the key Markov blanket genes as causal/signature genes for 

possible ER-PR-HER2+ breast cancer targets or biomarkers, it is important to 
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analyze its predictive capability to distinguish between normal healthy and ER-PR-

HER2+ breast tumor cases. Genie’s “learn parameters” (Figure 11) function 

analysis of the 30 genes associated with the HER2+ breast cancer network 

showed that 10 Markov blanket genes were able to consistently distinguish 

between nontumor and tumor cases.  

The prediction accuracy to distinguish normal healthy or HER2+ breast 

tumor cases was alternatively verified by expression patterns of the combination 

of genes.  Table 5 summarizes the top 12 maximum relative risk (RR) of the 

minimum set of combination of gene expression patterns in predicting HER2 BC. 

The likelihood of HER2 BC is almost 100% in a patient with the expression pattern 

of the [high] NRF1 combined with E2F1 [low or no change], E2F3 [high], FGFR1 

[low or no change], GSK3B [high], MAPK1 [high], and PIK3R3 [high or no change]. 

Whereas a subject that has low NRF1 expression combined with E2F1 [no 

change], E2F3 [low or no change], FGFR1 [ no change], GSK3B [no change], 

MAPK1 [low], and PIK3R3 [low] expression has almost 0% probability of HER2 

BC. This finding confirmed the association of high NRF1 combined with its target 

genes showed high probability of HER2+ breast cancer. 

Discussion 

Major advances in HER2 targeted therapies have been made; 

nevertheless, there are many women with hormone receptor negative, HER2+ 

metastatic breast cancer, who do not experience the same success with these 

therapies. This subtype of breast cancer, along with triple negative breast cancer 

(TNBC), are of major concern because they are associated with increased 
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recurrence, lower survival rates, and higher rates of metastasis to the brain 

compared to other breast cancer subtypes (Wu et al., 2016). Despite tremendous 

progress in the understanding of breast cancer, gaps remain in our knowledge of 

the molecular basis underlying the disparity in aggressiveness of HER2+ breast 

cancer and its metastasis to the brain. Thus, knowledge of the molecular basis 

underlying the disparity in aggressiveness and resistance to therapy, and new 

molecular drug targets, are urgently needed for women diagnosed with this breast 

cancer subtype.  

NRF1 is a redox-sensitive pioneer transcription factor. Embryonic stem cells 

have been shown to have roughly 33% of all active genes bound by NRF1 

(ENCODE Project Consortium, 2012). NRF1 appears to be involved in several 

human cancers, including breast cancer (Ertel et al. 2012; Falco et al., 2016). 

NRF1 activity correlated significantly with histological grades and prognosis of BC 

(Gao et al., 2018; Niida et al., 2008). This study revealed that both mRNA and 

protein expression of NRF1 were significantly higher in ER-PR-HER2+ breast 

cancer samples compared to normal breast tissues. This is consistent with 

previous and our current observations showing higher expression of NRF1 in 

EGFR/HER2+ tumors in the experimental model (Weaver et al., 2012).  
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Table 5 

 

Summary of the Top 12 Maximum Relative Risk (RR) of the Minimum Set of Combination of Gene Expression 
 
Patterns 
 

  

 

Gene Expression Patterns 

   

 

Probability of 

HER2 BC 

 

RR 

 

E2F1[0] E2F3[2] FGFR1[0] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[2]) 0.999998 

 1.52E 

+04 

E2F1[1] E2F3[1] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 6.58E-05 

  

E2F1[0] E2F3[2] FGFR1[0] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[1]) 0.999996 

 1.52E 

+04 

E2F1[1] E2F3[1] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 6.58E-05 

 

 

E2F1[0] E2F3[2] FGFR1[1] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[2]) 0.999996 

 1.52E 

+04 

E2F1[1] E2F3[1] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 6.58E-05 

 

 

E2F1[0] E2F3[2] FGFR1[0] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[2]) 0.999994 

 1.52E 

+04 

E2F1[1] E2F3[1] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 6.58E-05 

 

 

E2F1[1] E2F3[2] FGFR1[0] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[2]) 0.999994 

 1.52E 

+04 

E2F1[1] E2F3[1] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 6.58E-05 

 

 

E2F1[0] E2F3[2] FGFR1[1] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[1]) 0.999991 

 1.52E 

+04 

E2F1[1] E2F3[1] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 6.58E-05 

 

 

E2F1[0] E2F3[2] FGFR1[0] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[2]) 0.999998 

 1.18E 

+04 
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Gene Expression Patterns 

   

 

Probability of 

HER2 BC 

 

RR 

 

E2F1[1] E2F3[0] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 8.50E-05 

 

 

E2F1[0] E2F3[2] FGFR1[0] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[1]) 0.999996 

 1.18E 

+04 

E2F1[1] E2F3[0] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 8.50E-05 

 

 

E2F1[0] E2F3[2] FGFR1[1] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[2]) 0.999996 

 1.18E 

+04 

E2F1[1] E2F3[0] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 8.50E-05 

  

E2F1[0] E2F3[2] FGFR1[0] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[2]) 0.999994  

1.18E 

+04 

E2F1[1] E2F3[0] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 8.50E-05 

  

E2F1[1] E2F3[2] FGFR1[0] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[2]) 0.999994 

 1.18E 

+04 

E2F1[1] E2F3[0] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 8.50E-05 

  

E2F1[0] E2F3[2] FGFR1[1] GSK3B[2] MAPK1[2] NRF1[2] PIK3R3[1]) 0.999991 

 1.18E 

+04 

E2F1[1] E2F3[0] FGFR1[1] GSK3B[1] MAPK1[0] NRF1[0] PIK3R3[0]) 8.50E-05 

  

 
Note. [0] = Low expression, [1] = No Change in the expression, [2] = High expression. 
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These findings further provide support to the concept that transcription 

control of NRF1 seems to be dependent on EGFR signaling. Discovery of NRF1 

localization to several thousand sites in the human genome may indicate they 

occupy up to 15% of the promoter regions. NRF1 binding activity was higher in 

HER2 amplified HCC1954 breast cancer cells compared to normal mammary 

epithelial cells. Here, we observed new roles of NRF1 in contributing to critical 

pathways involved in the transformation of normal cells to cancerous cells. These 

roles included PI3K-Akt, MAPK, mTOR, and Wnt signaling pathways controlling 

cellular senescence, sustaining proliferative signaling;  p53 and  TGF-beta 

signaling  evading growth suppressors; apoptosis and autophagy resisting cell 

death;  enabling replicative immortality hallmark; VEGF signaling inducing 

angiogenesis; and finally, the pathways T and B cell receptor signaling evading 

immune destruction.  

HCC1954 is known to be trastuzumab resistant due to a hotspot PIK3CA 

mutation (H1047R, PI3K gain-of-function) (Kataoka et al., 2010; von der Heyde et 

al., 2015). Interestingly, NRF1 transcriptional control involving the PI3K-AKT 

pathway was observed in this study, which fits the PI3K gain-of-function in this 

resistant HCC1954 cell line. Our results may also point to an important role of 

NRF1 in driving trastuzumab resistance via regulating PI3K-AKT pathway. This 

finding may open a new direction of NRF1’s role in HER2+ breast cancer 

resistance to therapy.   

To understand the mechanistic aspects of the contribution of NRF1 in 

susceptibility to the HER2+ breast cancer subtype, we focused our efforts on NRF1 



 

160 
 

motif-enriched 59 genes, including AKT1, BRCA1, EGFR, which are implicated in 

breast cancer. The majority of these genes, which participate in the process of 

cells acquiring characteristics of malignancy, contain NRF1 binding sites in the 

region located +/- 2,000 bp from TSS. To further understand how these NRF1 

target genes may contribute in HER2 amplified breast cancer, we conducted a 

Bayesian network analysis of NRF1 target genes. In addition to known genes 

involved in KEGG HER2+ breast cancer pathway, such as growth factor receptor 

genes- FGFR1, IGF1R; MAPK pathway genes—SHC2, GRB2, MAPK1; and 

E2Fs—E2F1 and E2F3, we observed mTOR signaling pathway genes-PIK3CD, 

PIK3R1, PIK3R3, RPS6KB2; NRF1 motif-enriched WNT signaling pathway 

genes—WNT7B, DLV1, DLV2, GSK3B—and the damaged DNA binding protein 2 

(DDB2), known for its role in DNA repair,  were strongly associated with HER2 

amplified breast cancer. WNT7B is known to be associated with angiogenesis, 

invasion, and metastasis of breast cancer (Yeo et al., 2014).  

There is a direct relationship between an increase in gene expression of 

NRF1, WNT7B, and PIK3R3 and the probability of HER2 amplified breast cancer. 

DDB2 has been recently shown to be involved in early events associated with 

metastatic progression of breast cancer cells (Barbieux et al., 2016).  Both E2F1 

and E2F3 are important mediators of HER2/Neu-initiated mammary tumorigenesis 

(Andrechek, 2015). Deregulation of E2Fs (E2F1 and E2F3) contributes in 

centrosome amplification in HER2+ HCC1954 cells  (Lee, Moreno, & Saavedra, 

2014), and deregulated expression of the E2Fs in breast cancers influences 

outcome of survival and chemotherapeutic responses, including resistance to the 
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Cdk4/Cdk6 inhibitor PD-0332991 (Lee et al., 2014). Thus, further study of NRF1-

regulated breast cancer hallmark pathways may provide clues not only to 

understanding of how HER2+ breast tumors initiate and progress but also may 

help to explain how HER2+ breast cancer cells fail to respond to common 

therapies.  

 NRF1 may regulate target gene expression in HER2+ breast cancer cells 

either alone or in combination with additional factors.  NRF1 is a “pioneer 

transcription factor” and its binding to DNA in condensed chromatin allows access 

to “settler transcription factor” to bind to its motif sequences (Sherwood et al., 2014, 

p. 174). When methylation prevents NRF1 binding to its motif sequence, it acts as 

a “settler transcription factor,” and requires other factors, such as a demethylase, 

to remove methylated residues from its motif for binding (Domcke et al., 2015, p. 

578). Promoters containing the nuclear respiratory factor 1 (NRF1) motif are 

pervasively associated with lysine-specific demethylase 1 (LSD1/KDM) (Benner et 

al., 2013). Recently, Campoy et al. (2016) discovered changes in the levels of DNA 

methylation in breast tumors are linked to LSD1, one of the main cofactors of 

NRF1.  NRF1 also interacts with histone variants such as mH2A1s that promote 

or repress target gene activities through chromatin modifications (Lavigne et al., 

2015).  Work is currently under way in our laboratory to determine how NRF1 in 

concert with additional factors may regulate target gene expression in HER2+ 

breast cancer. 

In conclusion, we applied the ChIP DNA-seq and RNA-microarray coupled 

with identification of signaling pathways and functional enrichment analysis to 
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identify differentially regulated NRF1 target genes involved in ER-PR-HER2+ 

breast cancer and Bayesian machine learning method to understand their role in 

this disease. The findings of our study suggest that the gain of NRF1 function may 

contribute to the susceptibility of ER-PR-HER2+ breast cancer subtype via 

perturbation of regulation of diverse growth factor receptors, PI3K-Akt-mTOR, 

MAPK, E2Fs, and Wnt pathways. Clinical confirmation of our study will have a 

significant impact on understanding the role of NRF1 as a valuable additional 

biomarker for assessing resistance to therapeutic response in HER2+ breast 

cancer and will provide a strong rationale for the future studies to further develop 

NRF1 signaling-based therapy for HER2+ breast cancer. 

Methods 

Analysis of NRF1 mRNA Expression in HER2+ Breast Tumor Samples  

The Cancer Genome Atlas (TCGA) microarray data from 61 normal 

samples and 22 HER2+ breast tumor samples [log2 lowess normalized (cy5/cy3)] 

was downloaded using Broad Institute's Firehose tool -Version: std. data 2016-01-

28 (Cancer Genome Atlas Network, 2012).  The SAS PROC TTEST was used to 

compare the means of the two groups. 

NRF1 Activity  

Transcription factor activity of NRF1 was assessed as a function of the 

collective mRNA levels of its target genes in normal and ER-PR-HER2+ breast 

cancer TCGA samples using the limma R package (Falco et al., 2016). 
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Analysis of NRF1 Protein Expression   

Human breast cancer tissue arrays were purchased from US Biomax, 

Rockville, Maryland. Sections of experimental model of breast cancer brain 

metastasis from MDA-MB-231-BR-HER2 cells were kindly provided by Dr. Donna 

Murrell (Murrell et al., 2015) and MDA-MB-231-BR-vector cells by Dr. Brunilde Gril 

(Gril et al., 2008) injected intracardially into mice. NRF1 was measured by 

immunofluorescence confocal microscopy (IFC) using NRF1 specific antibodies 

paired with Alexafluor 488 and DRAQ5 for nuclear stain.  Expression was scored 

as low (<the median intensity value), and high (>the median intensity value) levels 

per cancer cells based on immunofluorescence tissue staining intensity. 

Identification of NRF1 Target Genes  

We retrieved the following NRF1 ChIP sequence dataset from NCBI-Gene 

expression omnibus (GEO) and uploaded the Sequence Read Archive (SRA) files 

directly into GALAXY using the NCBI SRA Tool under GALAXY’s menu (Domcke 

et al. 2015): NRF1 input in HMEC: SRR2500899 - GSM1891657, NRF1 input in 

HCC1954: SRR2500902 - GSM1891660, NRF1 ChIP in HCC1954 replicate #1: 

SRR2500900 - GSM1891658, NRF1 ChIP in HCC1954 - replicate # 2: 

SRR2500901 - GSM1891659, NRF1 ChIP in HMEC- replicate # 1: SRR2500897 

- GSM1891655,NRF1 ChIP in HMEC- replicate # 2: SRR2500898 - GSM1891656. 

ChIP-Seq experiments were conducted at Friedrich Miescher Institute for 

Biomedical Research in Switzerland using ChIP antibody NRF1 ABCm, ab55744. 

Sequencing was performed using Illumina machine HiSeq 2500 at 50 bp read 

length single end, following Illumina standards (Domcke et al., 2015). Initially we 



 

164 
 

evaluated the quality of the data using the FASTQC software accessed through 

GALAXY, available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/  

We then used Trimmomatic (http://www.usadellab.org/cms/index 

.php?page=trimmomatic) to cut the adapters, drop readings with an average 

quality Phred score below 20 (number of bases to average across = 4) and 

discard sequences below 36 and 70 bases for 50 and 100 bp length readings 

(minimum read length). Phred score of 20 is equivalent to a probability of 1 in 

100 that the base is called wrong (99% accuracy of the base call).  

The next step was mapping the readings on the human genome reference 

Hg19 using Bowtie2. Subsequently, we used MACS2 (Galaxy Version 

2.1.1.20160309.0) to identify peaks from alignment results, setting up a false 

discovery rate (q value) cutoff of 0.01%.  Peaks were filtered discarding those 

with fold enrichment lower than 5, following ENCODE guidelines for point-source 

transcription factors (Landt et al., 2012). We then performed Gene annotation 

using GREAT 3.0.0, available at http://bejerano.stanford.edu/great/public/html 

/index.php to discover the list of candidate NRF1 target genes. GREAT predicts 

functions of cis-regulatory regions using different settings.  

Initially we used the Basal plus extension option in which each gene is 

assigned a regulatory domain region 5,000 bp upstream and 1,000 bp 

downstream of the TSS. This gene regulatory domain is extended in both 

directions to the nearest gene’s regulatory domain but no more than a maximum 

extension of 1,000 bp.  Additionally, the software also considers peaks falling in 

other literature curated regulatory domains with experimental evidence of being 
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regulatory elements for a specific gene, regardless of its location. The 

intersection was found using VENNY 2.1.0. VENNY is an interactive tool used to 

compare lists with Venn diagrams, developed by J. C. Oliveros that can be found 

at http://bioinfogp.cnb.csic.es/tools/venny/index.html 

Analysis of Similarity in the NRF1 Network of Different Cell Lines  

To measure the overlap between NRF1 target genes in human epithelial 

mammary cells and the HCC1954 breast cancer cell line used in this study, we 

calculated the Jaccard coefficient (JC), which is defined as the intersection 

(common genes) divided by the  union of the sample sets. The formula used was 

JC = 
!∩#
!∪# , in which A is the list of NRF1 target genes in normal mammary epithelial 

cells (HMEC) and B is the list of NRF1 target genes in HCC1954 breast cancer 

cell line. 

Identification of Signaling Pathways and Functional Enrichment Analysis to 

Select Genes of Interest 

The functional annotation tool from DAVID and KEGG  were utilized to 

identify NRF1 target genes in each one of the signaling pathways of interest. To 

further investigate the mechanisms of breast cancer development, we found the 

overlap of these genes with the genes in the breast cancer pathway (KEGG). This 

last step was conducted with an Excel sheet using formulas to select only those 

genes that were in the signaling pathway of interest and also were part of the 

breast cancer pathway. Seventy-eight genes were selected in this process. DAVID 

and KEGG are available to the general public at  http://david.ncifcrf.gov and 

http://www.genome.jp/kegg/. 
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Protein-Protein Interaction and Protein-DNA Networks Among Selected 

Genes 

After selection of the 78 genes associated with hallmarks of cancer 

development, we compared this list to the list of more than 11,000 NRF1 target 

genes reported in ENCODE by Harmonizome (Rouillard et al., 2016) to filter again 

those 78 genes and make the list more selective. This process resulted in 59 genes 

overlapping. To investigate the protein-protein interaction among these 59 genes, 

we used the Search Tool for the Retrieval of Interacting Genes (STRING) database 

(Version 10.5), found at: https://string-db.org. We also used Cytoscape software 

(Version 3.4.0) found at http://www.cytoscape.org/ to manually construct the 

protein-DNA network. 

Changes in NRF1 Binding in Proximal Promoter Regions of Target and 

Selected Breast Cancer Genes in HMEC vs. HCC1954 Cell Lines and 

Correlation with Breast Cancer  

Out of the more than 10,000 NRF1 target genes we found in the ChIP DNA 

sequence analysis, we selected those genes with NRF1 binding peaks located on 

or near the promoter regions (+/- 2,000 bp from TSS). We then calculated the 

average Fold Enrichment (FE) of the peaks for each one of the 7,663 genes that 

met the criterion. This average FE measures the relative amount of NRF1 protein 

bound to the DNA. Subsequently, we ran a point biserial correlation to measure 

the strength of the relationship between breast cancer, which we coded as a binary 

variable (0 in HMEC and 1 in HCC1954), and the average NRF1 peak in the 

promoter region. We selected the top 2,000 correlated genes (1,000 positive 



 

167 
 

correlated and 1,000 negative correlated) (absolute rpb was  between a maximum 

of 0.866 to a minimum of 0.790) to draw a bar graph. We used Excel to better 

visualize the difference in NRF1 binding for the two cell lines in these specific set 

of genes.  

We then compared the list of 59 selected candidate genes (see previous 

section) against the list of 7,663 with NRF1 binding sites in the promoter regions 

to select only those overlapping. The new list of 49 genes plus NRF1 was used as 

the list of variables to perform the Bayesian analysis and develop the probabilistic 

graphic model described in the next section. TCGA dataset of normal mammary 

tissue and breast tumor classified as ER-,PR- and HER2+ (similar genetic profile 

to HCC1954 cells) were collected for this analysis. 

Bayesian Modelling of NRF1 Target Genes in HER2+ Breast Cancer  

We performed a Bayesian data analysis with the 49 candidate genes 

including two additional variables, NRF1 for obvious reasons and the disease 

status (HER2+ BC), for a total of 51 variables. The goal of this analysis was to 

create a proposed network showing the interaction among these variables in 

Her2+ (Her2+ER−PR−) breast cancer subtype to identify possible drivers. The 

nodes represented the expression microarray data collected from TCGA. We were 

able to identify 22 primary solid tumors with the genetic profile Her2+ER−PR− and 

61 normal tissues for a total of 83 samples.  

The software that carries out the Bayesian network learning process 

generates a series of probabilistic graphical networks known as directed acyclic 

graphs (DAG) that represent a set of random variables and their conditional 
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dependencies. The nodes of the networks represent the expression of the genes 

and the clinical variables (in this case we only included one clinical variable the 

disease—HER2+ BC). All of these were assumed to be variables conditionally 

independent from each other. Resulting networks are graphic representation sof 

the causal hypothesis (Friedman, Linial, Nachman, & Pe’er, 2000; Kunkle, Yoo, & 

Roy, 2013).  

We used the software Banjo developed by Duke University to find the best 

Bayesian network. Since Banjo needed the variables to be categorized, we used 

the gene expression values of the normal tissue samples and calculated the mean 

+/-2 standard deviations as the cutoff points for low and upregulation. Banjo works 

by performing structure inference scoring metrics for discrete variables. The 

scoring metric used is called Bayesian Dirichlet equivalence (BDe). The program 

keeps making incremental changes in the structure to improve the score of the 

network. The final DAG shows regulation between genes and their possible 

involvement on the outcome (disease) (Kunkle et al., 2013). Additional explanation 

of Bayesian network learning is given in the results section. 

Bayesian Parameter Estimation of Proposed Network and Sensitivity 

Analysis of HER2 + Breast Cancer Probability 

To calculate the probabilities of the variables in the proposed probabilistic 

graphic model and to test the sensitivity of breast cancer status to changes in the 

gene expression of Markov genes, we recreated the best Banjo network structure 

using the software GeNIe.  This tool was developed by the Decision Systems 

Laboratory of the University of Pittsburgh, available at http://genie.sis.pitt.edu. The 
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TCGA microarray dataset was uploaded. The GeNIe performed the estimation of 

the parameters for each node. After the structure and parameters were assembled, 

a sensitivity analysis was conducted modifying the evidence (marginal probability) 

of different nodes (gene expression stages) and observing the effect on the 

probability of the breast cancer node BC- (probability of HER2 breast cancer). 

Estimation of the Minimum Set of Combination of Gene Expression 

Patterns That Yield a Maximum Relative Risk (RR) 

We used 15 genes and used the model presented by BANJO and 

calculated all 4,251,528 (= 2(×3+,) different gene configurations g with the 

collected dataset and using the SMILE (2018) library (https://www.bayesfusion. 

com/smile-engine) and C++ program and calculate the following: 

.(/|1 = 2) 

where D represents a subject has HER2 breast cancer and R = (DDB2, E2F1, 

E2F3, FGFR1, GRB2, GSK3B, IGF1R, MAPK1, NRF1, PIK3CD, PIK3R1, 

PIK3R3, RPS6KB2, SHC2, WNT7B). Among the gene configurations g that 

predicts HER2 breast cancer with high or low probability (i.e., . / 1 = 2 >

	0.99999 or . / 1 = 2 < 	1.0	×10:;), we focused on g where NRF1 was either 

expressed high or expressed low. 

To find the minimum set of combination of gene expression patterns that 

give us a maximum Relative Risk (RR), we calculated the following: 

< = =>2?=@
A

.(/|A = B)

.(/|A = B′) 
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where Q represents any subset of R, S represents a set of the minimum number 

of genes that maximizes the RR term, B = =>2?=@
2 .(/|A = 2) and B′ =

=>2?DE
2 .(/|A = 2). Note that q and q’ represents two different gene expression 

patterns among the genes in S that maximize and minimize . / A , respectively. 

We report the top 12 RR that we calculated from the dataset.  
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CHAPTER V 

DIFFERENTIAL NRF1 GENE NETWORK SENSITIVITY CONTRIBUTING TO  

BREAST CANCER DISPARITIES 

Abstract 

This study investigated a novel molecular mechanism to help explain the higher 

invasive breast cancer disparity in African Americans by examining contribution of 

the differences in the nuclear respiratory factor 1 (NRF1) sensitivity to the 

racial/ethnic disparity of invasive breast cancer. The significance of this clinically 

translational knowledge will be in predicting the clinical outcomes of African 

American (AA) and non-Hispanic Whites (NHW) who are most susceptible to 

invasive breast cancer. This is a topic of high relevance to breast cancer 

disparities. Invasive breast cancer, particularly triple-negative, is both aggressive 

and nonresponsive to existing therapies. AA patients have higher breast cancer 

mortality in part due to the three times higher proportion of triple-negative breast 

cancer (TNBC) cases among AA patients compared to European American (EA) 

women even though the incidence is lower in AA women. It is crucial to understand 

the racial differences in molecular signatures to develop targeted therapy, and 

subsequently, increase the survival rate of AA women with TNBC. A lack of 

effective molecular targets as well as limited therapeutic options, particularly for 

AA breast cancer patients, leads to high morbidity and poor survival. Our novel 

research has shown that NRF1 overexpression drives estrogen-dependent breast 

tumorigenesis. However, the impact of the NRF1 pathway on breast cancer 

metastasis is unknown. Herein, our objective was to examine an untested and 
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highly innovative hypothesis in breast cancer disparities research, i.e., that 

differential NRF1 sensitivity contributes to disparities in susceptibility to basal 

triple-negative breast cancer in racial/ethnic groups of breast cancer patients, AA 

and NHW women. The findings of this study will elucidate the roles of NRF1 

sensitivity to develop TNBC in different racial/ethnic groups of breast cancer 

patients. This elucidation could provide new strategies to delay or even to prevent 

this important clinical problem. Such strategies may allow personalized 

intervention and treatment. 

Introduction 
 

Despite tremendous progress in the understanding breast cancer (BC), 

gaps remain in our knowledge of the molecular basis underlying the disparity in 

aggressiveness of BC and the metastasis to the different organs. Thus far, we 

have not made a major leap in our understanding of the molecular causes of racial 

disparity in BC. Earlier molecular epidemiological population studies were primarily 

focused on socioeconomic factors, health care access, and Mendelian genetics-

based ancestral heredity to explain breast cancer disparity.  

These studies successfully showed that differences in environment, 

economic factors, and lifestyle contribute to the disparity in the incidence and 

mortality of breast cancer. However, the studies did not take into account the 

contribution of stochastic reprogramming resulting in multiple lineages of human 

breast cancer stem/progenitor cells, gene-environment interactions, and gene-

gene interactions to explain breast cancer disparity. Indeed, emerging data now 

suggest that, in addition to socioeconomic factors and lifestyle differences, 
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biological factors, such as differences at the genetic and epigenetic levels, are 

crucial for understanding the pathogenesis of breast cancer in the United States 

general population of diverse ancestral lineages accounting for individual 

variability in genes, environment, and lifestyle for each person.  

This recognition has resulted into an initiative towards translational basic 

research for establishment and precise understanding of the involved molecular 

mechanisms and identification of the causal elements in gene regulatory networks 

driving the etiology of breast cancer in the individual patient as well as the general 

population to address racial inequalities in breast cancer incidence and clinical 

outcomes. However, such information is emerging based on precision genomics, 

but in most molecular epidemiological studies, breast cancer patients are often 

stratified as White (Caucasian or European) American, African American, or 

Latino/Hispanic American based on race/ethnicity. Each patient group is 

considered as a single race/ethnicity possessing a distinctive "breast cancer 

phenotype."  

On the contrary, the majority of Caucasian/European Americans, African 

Americans, and Latino/Hispanic Americans are genetically mixed and with several 

distinct racial types among them. Genetic evidence shows many distinct ancestries 

in the Caucasian/European American, African American. and Latino/Hispanic 

American populations (Bryc, Durand, Macpherson, Reich, & Mountain, 2015). A 

comprehensive research effort is needed to address the existing gap in the 

understanding of breast cancer disparity by accounting for individual variability in 

genes, environment, and lifestyle. Lack of robust methodology to analyze the 
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interaction of multiple differentially expressed up or down genes identified from 

RNA-Seq data. Funding sources emphasizing focused research limit the 

uncovering this complex knowledge for understanding a biological disparity in the 

risk of breast cancer. The main focus of this study was to investigate a novel 

molecular mechanism that deciphers racial differences in the aggressive growth of 

BC.  

We recently discovered that NRF1-regulated gene networks in breast 

cancer cells from women of Indian origin seem quite different from European White 

women. NRF1 is associated with several human cancers, including breast cancer. 

Genes from the KEGG HER2+ breast cancer pathway and 11 signaling pathways 

linked to six hallmarks of cancer seem to be under transcription control of NRF1 

(Ramos et al., 2018). In this study, we have expanded our efforts to identify the 

causal elements in the NRF1 gene regulatory networks driving etiology of breast 

cancer disparities. 

Results 

Transcription Factor Target Enrichment Analysis (TFTEA) Reveals 

Upregulation of NRF1 Activity Across Different Breast Cancer Subtypes 

Clustered by Patient’s Race and Ethnicity  

TCGA breast cancer tumor samples were classified based on molecular 

subtypes, race, and ethnicity (Table 1).  Some of the subclassifications did not 

have enough number of samples for application of the statistical tests and 

categorization, as explained in the Methods sections. Eight groups were selected 

for the study of changes in NRF1 activity compared to normal samples (Table 2). 
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These groups were four Luminal A (Non-Hispanic White, Non-Hispanic Black, 

Non-Hispanic Asian, and Hispanic White); two triple-negative (Non-Hispanic Black 

and Non-Hispanic White); one Luminal B (Non-Hispanic White); and one HER2 

enriched (Non-Hispanic White). (African American and Black are used 

interchangeably in this study). A significant number of normal samples (79) were 

available only for Non-Hispanic White. Therefore, these normal samples were 

used as counterparts for calculating differential expression (DE) of all eight breast 

cancer clusters.  

Table 1  
 
Number of Breast Cancer and Normal Samples in TCGA Dataset Classified  
 
by Molecular Subtypes, Race, and Ethnicity    
 

ETHNICITY RACE Luminal 
A  

Luminal 
B 

HER2 
enriched 

Triple-
negative 

NA NORMAL TOT 

ER+ and 
/or PR+ / 
HER2-  

ER+ and 
/or PR+ / 
HER2+ 

ER-/ PR- / 
HER2+  

ER-/ PR- 
/ HER2- 

Hispanic or 
Latino 

Asian 1           1 

  Black or 
African 
American 

      1 1   2 

  white 21 4   7 2   34 

  NA 1 1         2 

    23 5 0 8 3 0 39 
                  

Non-
Hispanic or 
Latino 

Asian 22 6 8 8 14 1 59 

  Black or 
African 
American 

69 14 7 48 29 6 173 

  White 373 83 17 74 112 79 738 

  NA 1     1     2 

  American 
Indian or 

    1       1 
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Alaska 
native 

    465 103 33 131 155 86 973 
                  

NA Asian 2           2 

  Black or 
African 
American 

7 3   4     14 

  White 46 9 1 9 2 25 92 

  NA 57 25 3 6   1 92 

    112 37 4 19 2 26 200 
                  

    600   37 158 160 112 1212 
 

 
Table 2  
 
NRF1 Activity in Breast Cancer Based on Differential Expression of Target Genes 
 

  Breast Cancer 
samples 

Normal samples   
TFTEA 

MOL 
SUBT 

ETHNICITY 
AND  
RACE 

# of 
sampl
es 

ETHNICITY 
AND 
RACE 

# of 
sampl
es 

# of 
NRF1 
targe
t 
gene
s 
with  
DE 
p<0.0
5 

DIRECTI
ON 

P-
VALU
E 

HER2 
Enrich
ed 

Non-
Hispan
ic  

Whit
e  

17 Non-
Hispan
ic  

Whit
e  

79         
2,252  

Upregulati
on 

3.32E
-07 

Lumina
l A 

Non-
Hispan
ic  

Asia
n 

22 Non-
Hispan
ic  

Whit
e  

79         
2,739  

Upregulati
on 

2.21E
-06 

Lumina
l A 

Non-
Hispan
ic  

Whit
e  

373 Non-
Hispan
ic  

Whit
e  

79         
3,103  

Upregulati
on 

5.32E
-06 

Lumina
l B 

Non-
Hispan
ic  

Whit
e  

83 Non-
Hispan
ic  

Whit
e  

79         
2,683  

Upregulati
on 

5.47E
-06 

Lumina
l A 

Hispan
ic  

Whit
e  

21 Non-
Hispan
ic  

Whit
e  

79         
2,793  

Upregulati
on 

6.01E
-06 
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Triple-
negativ
e 

Non-
Hispan
ic  

Whit
e  

74 Non-
Hispan
ic  

Whit
e  

79         
2,760  

Upregulati
on 

9.48E
-06 

Lumina
l A 

Non-
Hispan
ic  

Blac
k 

69 Non-
Hispan
ic  

Whit
e  

79         
2,740  

Upregulati
on 

2.56E
-04 

Triple-
negativ
e 

Non-
Hispan
ic  

Blac
k 

48 Non-
Hispan
ic  

Whit
e  

79         
2,696  

Upregulati
on 

4.90E
-03 

 

 

Normalized RNA-Seq gene expression of 20,501 genes in breast cancer 

samples were compared to their counterparts in normal samples to obtain the 

average DE for each of the genes and for each group of breast cancer tumors. The 

R/Bioconductor software package limma was used for this task. Features of 

differential expression analysis using limma are explained in the methods section. 

Transcription Factor Target Enrichment Analysis (TFTEA) was then applied 

to the DE gene lists of each cluster to determine changes in NRF1 activity. A 

logistic regression approach using the gene set enrichment application called 

LRpath (Sartor, Leikaur, & Medvedovic, 2009) was utilized for this purpose. This 

application measures the enrichment and direction (upregulation or 

downregulation) of a set of biologically related genes (NRF1 target genes in this 

case) using the list of differentially expressed genes. 

The TFTEA results shown in Table 2 indicate that NRF1 activity was 

significantly increased (upregulated) in all eight groups of  breast cancer samples 

compared to normal tissue samples (p values for the logistic regression 

coefficients were under 0.05). These results suggest that NRF1 plays a role in 

breast cancer development. Table 2 also provides information on the number of 

NRF1 target genes found with statistically significant differential expression in 
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breast cancer tissues (p < 0.05). This number ranges from a maximum of 3,103 

genes for Luminal A tumors in Non-Hispanic Whites to a minimum of 2,252 for 

HER2 enriched tumors in patients within the same ethnicity and race. This range 

means that 26% to 37% of NRF1 targets were differentially expressed. 

Bayesian Networks Learning Aimed to Discover Breast Cancer-Causal 

Hypothesis Genes Shows Differences Among Different Subtypes Grouped  

by Race and Ethnicity 

The lists of differentially expressed genes identified during TFTEA were 

screened using the list shown in Table 3 to select the genes involved in hallmarks 

of cancer signaling pathways.  Subsequently, the input data matrix of gene 

expression (RNA-Seq) data was created with selected genes on the rows and 

samples (BC and normal) in columns.  Banjo is a software package developed by 

Duke University used in this research for learning Bayesian networks from data.  

The graphical representation of the best Bayesian network (probabilistic 

model) for Non-Hispanic White Luminal A breast cancer is shown in Figure 1. 

Nodes represent the variables (genes symbols and disease–BC). This is a partial 

view because the entire network is too large for display here. The partial view is 

presented as an example of all networks obtained for each cluster.  
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Table 3 

NRF1 Target Genes in Signaling Pathways Linked to Hallmarks of Cancer 

HALLMARKS 
OF CANCER 

SIGNALING 
PATHWAYS 
ASSOCIATED 

NRF1 TARGET GENES ( Identified by ChIP-seq 
using HCC1954-breast cancer cells and HMEC-
normal mammary epithelial  cells) 

Sustaining 
proliferative 
signaling 

PI3K-Akt 
Signaling 

ANGPT1,  ANGPT2,  EIF4EBP1,  FGF13,  FGF19,  
FGF3,  FGF4,  FGFR3,  FGFR4,  FLT4,  GNG10,  
GNG3,  GNG8,  HGF,  IBSP,  IL4,  IL7R,  LPAR1,  
PCK1,  PPP2R2C,  PPP2R2D,  PRLR,  VTN,  YWHAB,  
AKT1,  AKT2,  ANGPT4,  ATF2,  ATF4,  ATF6B,  BAD,  
BCL2,  BCL2L1,  BCL2L11,  BRCA1,  C8orf44-SGK3,  
CASP9,  CCND1,  CCND2,  CCND3,  CCNE1,  
CCNE2,  CDC37,  CDK4,  CDK6,  CDKN1A,  CDKN1B,  
CHRM1,  CHUK,  COL1A1,  COL2A1,  COL4A1,  
COL4A2,  COL4A3,  COL4A4,  COL6A3,  COL6A5,  
COL9A3,  COMP,  CREB1,  CREB3,  CREB3L1,  
CREB3L2,  CREB3L4,  CREB5,  CRTC2,  CSF1,  
CSF1R,  CSH2,  DDIT4,  EFNA1,  EFNA2,  EFNA3,  
EFNA4,  EFNA5,  EGFR,  EIF4B,  EIF4E,  EIF4E2,  
EPHA2,  EPO,  EPOR,  FGF1,  FGF10,  FGF11,  
FGF12,  FGF18,  FGF21,  FGF22,  FGF7,  FGF9,  
FGFR1,  FGFR2,  FOXO3,  G6PC3,  GNB1,  GNB3,  
GNB4,  GNB5,  GNG13,  GNG2,  GNG5,  GNG7,  
GNGT2,  GRB2,  GSK3B,  GYS1,  HRAS,  HSP90AA1,  
HSP90AB1,  IFNAR1,  IFNAR2,  IGF1R,  IKBKB,  
IL3RA,  IL4R,  IL6,  IL6R,  IL7,  INSR,  IRS1,  ITGA10,  
ITGA11,  ITGA2,  ITGA2B,  ITGA3,  ITGA6,  ITGA9,  
ITGAV,  ITGB1,  ITGB3,  ITGB4,  ITGB5,  ITGB6,  
ITGB7,  ITGB8,  JAK1,  JAK2,  JAK3,  KIT,  KITLG,  
KRAS,  LAMA1,  LAMA2,  LAMA3,  LAMA5,  LAMB1,  
LAMB2,  LAMC1,  LAMC2,  LAMC3,  LPAR3,  
MAP2K1,  MAP2K2,  MAPK1,  MAPK3,  MCL1,  MDM2,  
MET,  MLST8,  MTCP1,  MYB,  MYC,  NFKB1,  NGF,  
NGFR,  NOS3,  NR4A1,  OSM,  OSMR,  PCK2,  
PDGFA,  PDGFB,  PDGFC,  PDGFRA,  PDPK1,  
PHLPP1,  PHLPP2,  PIK3AP1,  PIK3CA,  PIK3CB,  
PIK3CD,  PIK3CG,  PIK3R1,  PIK3R2,  PIK3R3,  
PIK3R5,  PKN1,  PKN2,  PKN3,  PPP2CA,  PPP2R1A,  
PPP2R2A,  PPP2R3A,  PPP2R3B,  PPP2R3C,  
PPP2R5A,  PPP2R5B,  PPP2R5C,  PPP2R5D,  
PPP2R5E,  PRKAA1,  PRKCA,  PRL,  PTEN,  PTK2,  
RAC1,  RAF1,  RBL2,  RELA,  RHEB,  RPS6KB1,  
RPS6KB2,  RPTOR,  RXRA,  SGK1,  SGK3,  SOS1,  
SOS2,  STK11,  SYK,  THBS1,  THBS2,  THBS3,  
THEM4,  TLR2,  TLR4,  TSC1,  TSC2,  VEGFA,  
VEGFC,  YWHAE,  YWHAG,  YWHAH,  YWHAQ,  
YWHAZ,  AKT3,  COL9A1,  COL9A2,  EGF,  FGF14,  
FGF2,  FGF20,  FGF5,  FGF8,  FN1,  GHR,  GNB2,  
GNG12,  IFNA2,  IFNA8,  ITGA4,  LAMB3,  PDGFD,  
PDGFRB,  PGF,  PIK3R6,  PPP2R1B,  PPP2R2B,  
PRKAA2,  TNN,  TNR,  VEGFB 
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HALLMARKS 
OF CANCER 

SIGNALING 
PATHWAYS 
ASSOCIATED 

NRF1 TARGET GENES ( Identified by ChIP-seq 
using HCC1954-breast cancer cells and HMEC-
normal mammary epithelial  cells) 

Sustaining 
proliferative 
signaling 

MAP-kinase 
Pathway 

 CACNA1F ,   CACNG2 ,   CACNG4 ,   CACNG7 ,   
ELK1 ,   FGF13 ,   FGF19 ,   FGF3 ,   FGF4 ,   FGFR3 
,   FGFR4 ,   MAPK10 ,   MAPK8IP1 ,   MAPKAPK2 ,   
NTF3 ,   PLA2G4D ,   PLA2G4E ,   PRKCG ,   AKT1 ,   
AKT2 ,   ARRB1 ,   ARRB2 ,   ATF2 ,   ATF4 ,   
CACNA1A ,   CACNA1B ,   CACNA1C ,   CACNA1D ,   
CACNA1E ,   CACNA1G ,   CACNA1H ,   CACNA1I ,   
CACNA1S ,   CACNA2D1 ,   CACNA2D2 ,   CACNA2D3 
,   CACNA2D4 ,   CACNB1 ,   CACNG5 ,   CACNG6 ,   
CACNG8 ,   CASP3 ,   CDC25B ,   CDC42 ,   CHUK ,   
CRK ,   CRKL ,   DAXX ,   DDIT3 ,   DUSP1 ,   DUSP10 
,   DUSP16 ,   DUSP2 ,   DUSP3 ,   DUSP4 ,   DUSP5 
,   DUSP6 ,   DUSP7 ,   DUSP8 ,   DUSP9 ,   ECSIT ,   
EGFR ,   ELK4 ,   FAS ,   FGF1 ,   FGF10 ,   FGF11 ,   
FGF12 ,   FGF18 ,   FGF21 ,   FGF22 ,   FGF7 ,   FGF9 
,   FGFR1 ,   FGFR2 ,   FLNA ,   FLNB ,   FOS ,   
GADD45A ,   GADD45B ,   GADD45G ,   GNA12 ,   
GRB2 ,   HRAS ,   HSPA1A ,   HSPA1B ,   HSPA1L ,   
HSPA2 ,   HSPA6 ,   HSPA8 ,   HSPB1 ,   IKBKB ,   
IL1R1 ,   IL1R2 ,   JUN ,   JUND ,   KRAS ,   LAMTOR3 
,   MAP2K1 ,   MAP2K2 ,   MAP2K3 ,   MAP2K4 ,   
MAP2K5 ,   MAP2K6 ,   MAP2K7 ,   MAP3K1 ,   
MAP3K11 ,   MAP3K12 ,   MAP3K13 ,   MAP3K2 ,   
MAP3K3 ,   MAP3K4 ,   MAP3K5 ,   MAP3K6 ,   
MAP3K8 ,   MAP4K1 ,   MAP4K2 ,   MAP4K3 ,   
MAP4K4 ,   MAPK1 ,   MAPK11 ,   MAPK12 ,   MAPK13 
,   MAPK14 ,   MAPK3 ,   MAPK7 ,   MAPK8 ,   
MAPK8IP2 ,   MAPK8IP3 ,   MAPK9 ,   MAPKAPK3 ,   
MAPKAPK5 ,   MAPT ,   MAX ,   MECOM ,   MEF2C ,   
MKNK1 ,   MKNK2 ,   MRAS ,   MYC ,   NF1 ,   NFATC3 
,   NFKB1 ,   NFKB2 ,   NGF ,   NLK ,   NR4A1 ,   NTRK2 
,   PAK1 ,   PAK2 ,   PDGFA ,   PDGFB ,   PDGFRA ,   
PLA2G4B ,   PLA2G4C ,   PPM1A ,   PPM1B ,   
PPP3CA ,   PPP3CB ,   PPP3CC ,   PPP3R1 ,   PPP5C 
,   PPP5D1 ,   PRKACA ,   PRKACB ,   PRKACG ,   
PRKCA ,   RAC1 ,   RAC2 ,   RAC3 ,   RAF1 ,   RAP1A 
,   RAP1B ,   RAPGEF2 ,   RASA1 ,   RASA2 ,   
RASGRF1 ,   RASGRP1 ,   RASGRP3 ,   RASGRP4 ,   
RELA ,   RELB ,   RPS6KA1 ,   RPS6KA2 ,   RPS6KA3 
,   RPS6KA4 ,   RPS6KA5 ,   RRAS ,   RRAS2 ,   SOS1 
,   SOS2 ,   SRF ,   STK3 ,   STK4 ,   STMN1 ,   TAB1 ,   
TAB2 ,   TAOK1 ,   TAOK2 ,   TAOK3 ,   TGFB1 ,   
TGFB2 ,   TGFB3 ,   TGFBR1 ,   TGFBR2 ,   TNFRSF1A 
,   TRAF2 ,   TRAF6 ,   AKT3 ,   BDNF ,   CACNB2 ,   
CACNB4 ,   CACNG3 ,   CD14 ,   EGF ,   FGF14 ,   
FGF2 ,   FGF20 ,   FGF5 ,   FGF8 ,   GNG12 ,   MOS ,   
NFATC1 ,   PDGFRB ,   PLA2G4A ,   PRKCB ,   
RPS6KA6  
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HALLMARKS 
OF CANCER 

SIGNALING 
PATHWAYS 
ASSOCIATED 

NRF1 TARGET GENES ( Identified by ChIP-seq 
using HCC1954-breast cancer cells and HMEC-
normal mammary epithelial  cells) 

 Sustaining 
proliferative 
signaling 

mTOR Pathway 

 ATP6V1G2 ,   EIF4EBP1 ,   FZD10 ,   PRKCG ,   WNT1 
,   AKT1 ,   AKT1S1 ,   AKT2 ,   ATP6V1A ,   ATP6V1B2 
,   ATP6V1C1 ,   ATP6V1C2 ,   ATP6V1D ,   ATP6V1E1 
,   ATP6V1F ,   ATP6V1G1 ,   ATP6V1G3 ,   ATP6V1H 
,   CAB39 ,   CHUK ,   CLIP1 ,   DDIT4 ,   DEPDC5 ,   
DEPTOR ,   DVL1 ,   DVL2 ,   DVL3 ,   EIF4B ,   EIF4E 
,   EIF4E2 ,   FLCN ,   FNIP1 ,   FNIP2 ,   FZD1 ,   FZD2 
,   FZD3 ,   FZD4 ,   FZD5 ,   FZD6 ,   FZD8 ,   FZD9 ,   
GRB10 ,   GRB2 ,   GSK3B ,   HRAS ,   IGF1R ,   IKBKB 
,   INSR ,   IRS1 ,   KRAS ,   LAMTOR3 ,   LAMTOR4 ,   
LPIN1 ,   LRP5 ,   LRP6 ,   MAP2K1 ,   MAP2K2 ,   
MAPK1 ,   MAPK3 ,   MAPKAP1 ,   MIOS ,   MLST8 ,   
NPRL2 ,   NPRL3 ,   PDPK1 ,   PIK3CA ,   PIK3CB ,   
PIK3CD ,   PIK3R1 ,   PIK3R2 ,   PIK3R3 ,   PRKAA1 ,   
PRKCA ,   PRR5 ,   PTEN ,   RAF1 ,   RHEB ,   RHOA 
,   RICTOR ,   RNF152 ,   RPS6KA1 ,   RPS6KA2 ,   
RPS6KA3 ,   RPS6KB1 ,   RPS6KB2 ,   RPTOR ,   
RRAGA ,   RRAGC ,   RRAGD ,   SEH1L ,   SESN2 ,   
SGK1 ,   SKP2 ,   SLC3A2 ,   SLC7A5 ,   SOS1 ,   SOS2 
,   STK11 ,   STRADA ,   STRADB ,   TBC1D7 ,   TELO2 
,   TNFRSF1A ,   TSC1 ,   TSC2 ,   TTI1 ,   ULK1 ,   
ULK2 ,   WDR59 ,   WNT10A ,   WNT10B ,   WNT11 ,   
WNT3A ,   WNT4 ,   WNT5A ,   WNT7A ,   WNT7B ,   
WNT8B ,   WNT9A ,   AKT3 ,   ATP6V1B1 ,   PRKAA2 
,   PRKCB ,   RPS6KA6 ,   WNT2 ,   WNT2B ,   WNT3 
,   WNT5B  

 Sustaining 
proliferative 
signaling 

Cellular 
Senescence  

CALML6,  CAPN1,  E2F4,  EIF4EBP1,  MAPKAPK2,  
NFATC4,  PPP1CA,  RAD9A,  RBL1,  TRAF3IP2,  
AKT1,  AKT2,  ATM,  ATR,  BTRC,  CACNA1D,  
CALM1,  CALM2,  CALM3,  CALML3,  CALML5,  
CAPN2,  CCNA1,  CCNA2,  CCNB1,  CCNB2,  CCND1,  
CCND2,  CCND3,  CCNE1,  CCNE2,  CDK1,  CDK4,  
CDK6,  CDKN1A,  CDKN2A,  CDKN2B,  CHEK1,  
CHEK2,  E2F1,  E2F2,  E2F3,  ETS1,  FBXW11,  
FOXO1,  FOXO3,  GADD45A,  GADD45B,  GADD45G,  
GATA4,  HIPK2,  HIPK3,  HIPK4,  HRAS,  HUS1,  
IGFBP3,  IL6,  ITPR1,  ITPR3,  KRAS,  LIN37,  LIN52,  
LIN54,  LIN9,  MAP2K1,  MAP2K2,  MAP2K3,  
MAP2K6,  MAPK1,  MAPK11,  MAPK12,  MAPK13,  
MAPK14,  MAPK3,  MCU,  MDM2,  MRAS,  MYBL2,  
MYC,  NBN,  NFATC2,  NFATC3,  NFKB1,  PIK3CA,  
PIK3CB,  PIK3CD,  PIK3R1,  PIK3R2,  PIK3R3,  
PPP1CB,  PPP1CC,  PPP3CA,  PPP3CB,  PPP3CC,  
PPP3R1,  PTEN,  RAD50,  RAF1,  RASSF5,  RB1,  
RBBP4,  RBL2,  RELA,  RHEB,  RRAS,  RRAS2,  
SIRT1,  SLC25A4,  SLC25A5,  SLC25A6,  SMAD2,  
SMAD3,  SQSTM1,  TGFB1,  TGFB2,  TGFB3,  
TGFBR1,  TGFBR2,  TRPM7,  TRPV4,  TSC1,  TSC2,  
VDAC1,  VDAC2,  VDAC3,  ZFP36L1,  ZFP36L2,  
AKT3,  E2F5,  HLA-A,  ITPR2,  NFATC1 
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HALLMARKS 
OF CANCER 

SIGNALING 
PATHWAYS 
ASSOCIATED 

NRF1 TARGET GENES ( Identified by ChIP-seq 
using HCC1954-breast cancer cells and HMEC-
normal mammary epithelial  cells) 

 Evading growth 
suppressors p53 Signaling  

 BAX ,   CCNG1 ,   MDM4 ,   APAF1 ,   ATM ,   ATR ,   
BBC3 ,   BID ,   CASP3 ,   CASP9 ,   CCNB1 ,   CCNB2 
,   CCND1 ,   CCND2 ,   CCND3 ,   CCNE1 ,   CCNE2 
,   CCNG2 ,   CDK1 ,   CDK4 ,   CDK6 ,   CDKN1A ,   
CDKN2A ,   CHEK1 ,   CHEK2 ,   CYCS ,   DDB2 ,   EI24 
,   FAS ,   GADD45A ,   GADD45B ,   GADD45G ,   
GTSE1 ,   IGFBP3 ,   MDM2 ,   PERP ,   PPM1D ,   
PTEN ,   RCHY1 ,   RFWD2 ,   RRM2 ,   RRM2B ,   
SERPINB5 ,   SESN1 ,   SESN2 ,   SESN3 ,   SFN ,   
SHISA5 ,   SIAH1 ,   STEAP3 ,   THBS1 ,   TNFRSF10B 
,   TP73 ,   TSC2 ,   ZMAT3 ,   CD82 ,   TP53I3  

 Evading growth 
suppressors Apoptosis  

 BAX ,   BIRC5 ,   CAPN1 ,   CASP7 ,   CTSH ,   MAPK10 
,   TNFSF10 ,   TUBA3D ,   TUBA3E ,   ACTB ,   ACTG1 
,   AIFM1 ,   AKT1 ,   AKT2 ,   APAF1 ,   ATF4 ,   ATM ,   
BAD ,   BAK1 ,   BBC3 ,   BCL2 ,   BCL2L1 ,   BCL2L11 
,   BID ,   BIRC2 ,   BIRC3 ,   CAPN2 ,   CASP10 ,   
CASP2 ,   CASP3 ,   CASP9 ,   CFLAR ,   CHUK ,   
CSF2RB ,   CTSB ,   CTSC ,   CTSD ,   CTSF ,   CTSL 
,   CTSV ,   CYCS ,   DAB2IP ,   DAXX ,   DDIT3 ,   DFFB 
,   DIABLO ,   EIF2AK3 ,   EIF2S1 ,   ENDOG ,   ERN1 
,   FADD ,   FAS ,   FOS ,   GADD45A ,   GADD45B ,   
GADD45G ,   HRAS ,   HRK ,   HTRA2 ,   IKBKB ,   
IL3RA ,   ITPR1 ,   ITPR3 ,   JUN ,   KRAS ,   LMNA ,   
LMNB1 ,   LMNB2 ,   MAP2K1 ,   MAP2K2 ,   MAP3K5 
,   MAPK1 ,   MAPK3 ,   MAPK8 ,   MAPK9 ,   MCL1 ,   
NFKB1 ,   NFKBIA ,   NGF ,   PARP1 ,   PARP2 ,   
PARP3 ,   PARP4 ,   PDPK1 ,   PIK3CA ,   PIK3CB ,   
PIK3CD ,   PIK3R1 ,   PIK3R2 ,   PIK3R3 ,   PTPN13 ,   
RAF1 ,   RELA ,   RIPK1 ,   SEPT4 ,   SPTAN1 ,   
TNFRSF10A ,   TNFRSF10B ,   TNFRSF10D ,   
TNFRSF1A ,   TRADD ,   TRAF1 ,   TRAF2 ,   TUBA1B 
,   TUBA1C ,   TUBA3C ,   TUBA4A ,   XIAP ,   AKT3 ,   
BCL2A1 ,   ITPR2 ,   PRF1 ,   TNFRSF10C ,   TUBA1A 
,   TUBA8  

 Evading growth 
suppressors 

TGF-beta 
Signaling  

ACVR1,  ACVR1B,  ACVR1C,  ACVR2A,  ACVR2B,  
BAMBI,  BMP2,  BMP4,  BMP6,  BMP7,  BMP8A,  
BMP8B,  BMPR1A,  BMPR1B,  BMPR2,  CDKN2B,  
CHRD,  CREBBP,  CUL1,  DCN,  E2F4,  E2F5,  EP300,  
FST,  GDF5,  GDF6,  ID1,  ID2,  ID3,  ID4,  INHBA,  
INHBB,  INHBC,  LEFTY1,  LTBP1,  MAPK1,  MAPK3,  
MINOS1-NBL1,  MYC,  NBL1,  NOG,  PITX2,  
PPP2CA,  PPP2R1A,  PPP2R1B,  RBL1,  RBX1,  
RHOA,  ROCK1,  RPS6KB1,  RPS6KB2,  SKP1,  
SMAD1,  SMAD2,  SMAD3,  SMAD4,  SMAD5,  
SMAD6,  SMAD7,  SMURF1,  SMURF2,  SP1,  TFDP1,  
TGFB1,  TGFB2,  TGFB3,  TGFBR1,  TGFBR2,  
TGIF1,  THBS1,  ZFYVE16,  ZFYVE9 
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HALLMARKS 
OF CANCER 

SIGNALING 
PATHWAYS 
ASSOCIATED 

NRF1 TARGET GENES ( Identified by ChIP-seq 
using HCC1954-breast cancer cells and HMEC-
normal mammary epithelial  cells) 

Resisting cell 
death p53 Signaling  

 BAX ,   CCNG1 ,   MDM4 ,   APAF1 ,   ATM ,   ATR ,   
BBC3 ,   BID ,   CASP3 ,   CASP9 ,   CCNB1 ,   CCNB2 
,   CCND1 ,   CCND2 ,   CCND3 ,   CCNE1 ,   CCNE2 
,   CCNG2 ,   CDK1 ,   CDK4 ,   CDK6 ,   CDKN1A ,   
CDKN2A ,   CHEK1 ,   CHEK2 ,   CYCS ,   DDB2 ,   EI24 
,   FAS ,   GADD45A ,   GADD45B ,   GADD45G ,   
GTSE1 ,   IGFBP3 ,   MDM2 ,   PERP ,   PPM1D ,   
PTEN ,   RCHY1 ,   RFWD2 ,   RRM2 ,   RRM2B ,   
SERPINB5 ,   SESN1 ,   SESN2 ,   SESN3 ,   SFN ,   
SHISA5 ,   SIAH1 ,   STEAP3 ,   THBS1 ,   TNFRSF10B 
,   TP73 ,   TSC2 ,   ZMAT3 ,   CD82 ,   TP53I3  

Resisting cell 
death Apoptosis  

 BAX ,   BIRC5 ,   CAPN1 ,   CASP7 ,   CTSH ,   MAPK10 
,   TNFSF10 ,   TUBA3D ,   TUBA3E ,   ACTB ,   ACTG1 
,   AIFM1 ,   AKT1 ,   AKT2 ,   APAF1 ,   ATF4 ,   ATM ,   
BAD ,   BAK1 ,   BBC3 ,   BCL2 ,   BCL2L1 ,   BCL2L11 
,   BID ,   BIRC2 ,   BIRC3 ,   CAPN2 ,   CASP10 ,   
CASP2 ,   CASP3 ,   CASP9 ,   CFLAR ,   CHUK ,   
CSF2RB ,   CTSB ,   CTSC ,   CTSD ,   CTSF ,   CTSL 
,   CTSV ,   CYCS ,   DAB2IP ,   DAXX ,   DDIT3 ,   DFFB 
,   DIABLO ,   EIF2AK3 ,   EIF2S1 ,   ENDOG ,   ERN1 
,   FADD ,   FAS ,   FOS ,   GADD45A ,   GADD45B ,   
GADD45G ,   HRAS ,   HRK ,   HTRA2 ,   IKBKB ,   
IL3RA ,   ITPR1 ,   ITPR3 ,   JUN ,   KRAS ,   LMNA ,   
LMNB1 ,   LMNB2 ,   MAP2K1 ,   MAP2K2 ,   MAP3K5 
,   MAPK1 ,   MAPK3 ,   MAPK8 ,   MAPK9 ,   MCL1 ,   
NFKB1 ,   NFKBIA ,   NGF ,   PARP1 ,   PARP2 ,   
PARP3 ,   PARP4 ,   PDPK1 ,   PIK3CA ,   PIK3CB ,   
PIK3CD ,   PIK3R1 ,   PIK3R2 ,   PIK3R3 ,   PTPN13 ,   
RAF1 ,   RELA ,   RIPK1 ,   SEPT4 ,   SPTAN1 ,   
TNFRSF10A ,   TNFRSF10B ,   TNFRSF10D ,   
TNFRSF1A ,   TRADD ,   TRAF1 ,   TRAF2 ,   TUBA1B 
,   TUBA1C ,   TUBA3C ,   TUBA4A ,   XIAP ,   AKT3 ,   
BCL2A1 ,   ITPR2 ,   PRF1 ,   TNFRSF10C ,   TUBA1A 
,   TUBA8  

Resisting cell 
death Autophagy  

AKT1,  AKT1S1,  AKT2,  AKT3,  ATG10,  ATG12,  
ATG13,  ATG14,  ATG16L1,  ATG16L2,  ATG2A,  
ATG2B,  ATG3,  ATG4B,  ATG4C,  ATG4D,  ATG5,  
ATG7,  ATG9A,  ATG9B,  BAD,  BCL2,  BCL2L1,  
BECN1,  BNIP3,  CAMKK2,  CFLAR,  CTSB,  CTSD,  
CTSL,  DAPK1,  DAPK3,  DDIT4,  DEPTOR,  EIF2AK3,  
EIF2AK4,  EIF2S1,  ERN1,  GABARAP,  GABARAPL1,  
HIF1A,  HMGB1,  HRAS,  IGF1R,  IRS1,  IRS2,  IRS4,  
ITPR1,  KRAS,  LAMP1,  MAP2K1,  MAP2K2,  MAPK1,  
MAPK10,  MAPK3,  MAPK8,  MAPK9,  MLST8,  MRAS,  
MTMR14,  MTMR3,  MTMR4,  NRBF2,  PDPK1,  
PIK3C3,  PIK3CA,  PIK3CB,  PIK3CD,  PIK3R1,  
PIK3R2,  PIK3R3,  PPP2CA,  PRKAA1,  PRKAA2,  
PRKACA,  PRKACB,  PRKACG,  PRKCD,  PRKCQ,  
PTEN,  RAB33B,  RAB7A,  RAF1,  RB1CC1,  RHEB,  
RPS6KB1,  RPS6KB2,  RPTOR,  RRAGA,  RRAGC,  
RRAGD,  RRAS,  RRAS2,  SH3GLB1,  SNAP29,  
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HALLMARKS 
OF CANCER 

SIGNALING 
PATHWAYS 
ASSOCIATED 

NRF1 TARGET GENES ( Identified by ChIP-seq 
using HCC1954-breast cancer cells and HMEC-
normal mammary epithelial  cells) 
STK11,  STX17,  SUPT20H,  TRAF6,  TSC1,  TSC2,  
ULK1,  ULK2,  UVRAG,  VAMP8,  WIPI1,  WIPI2,  
ZFYVE1 

 Enabling 
replicative 
immortality 

p53 Signaling  

 BAX ,   CCNG1 ,   MDM4 ,   APAF1 ,   ATM ,   ATR ,   
BBC3 ,   BID ,   CASP3 ,   CASP9 ,   CCNB1 ,   CCNB2 
,   CCND1 ,   CCND2 ,   CCND3 ,   CCNE1 ,   CCNE2 
,   CCNG2 ,   CDK1 ,   CDK4 ,   CDK6 ,   CDKN1A ,   
CDKN2A ,   CHEK1 ,   CHEK2 ,   CYCS ,   DDB2 ,   EI24 
,   FAS ,   GADD45A ,   GADD45B ,   GADD45G ,   
GTSE1 ,   IGFBP3 ,   MDM2 ,   PERP ,   PPM1D ,   
PTEN ,   RCHY1 ,   RFWD2 ,   RRM2 ,   RRM2B ,   
SERPINB5 ,   SESN1 ,   SESN2 ,   SESN3 ,   SFN ,   
SHISA5 ,   SIAH1 ,   STEAP3 ,   THBS1 ,   TNFRSF10B 
,   TP73 ,   TSC2 ,   ZMAT3 ,   CD82 ,   TP53I3  

 Inducing 
Angiogenesis VEGF Signaling  

AKT1, AKT2, AKT3, BAD, CASP9, CDC42, HRAS, 
HSPB1, KRAS, MAP2K1, MAP2K2, MAPK1, MAPK11, 
MAPK12, MAPK13, MAPK14, MAPK3, MAPKAPK2, 
MAPKAPK3, NFATC2, NOS3, PIK3CA, PIK3CB, 
PIK3CD, PIK3R1, PIK3R2, PIK3R3, PLA2G4A, 
PLA2G4B, PLA2G4C, PLA2G4D, PLA2G4E, PLCG1, 
PLCG2, PPP3CA, PPP3CB, PPP3CC, PPP3R1, 
PRKCA, PRKCB, PRKCG, PTGS2, PTK2, PXN, 
RAC1, RAC2, RAC3, RAF1, SHC2, SPHK1, SPHK2, 
SRC, VEGFA 

 Activating 
invasion and 
metastasis 

ECM-receptor 
interaction 

AGRN, CD44, CD47, COL1A1, COL2A1, COL4A1, 
COL4A2, COL4A3, COL4A4, COL6A3, COL6A5, 
COL9A1, COL9A2, COL9A3, COMP, DAG1, FN1, 
GP1BA, GP1BB, GP5, GP9, HMMR, HSPG2, IBSP, 
ITGA10, ITGA11, ITGA2, ITGA2B, ITGA3, ITGA4, 
ITGA6, ITGA9, ITGAV, ITGB1, ITGB3, ITGB4, ITGB5, 
ITGB6, ITGB7, ITGB8, LAMA1, LAMA2, LAMA3, 
LAMA5, LAMB1, LAMB2, LAMB3, LAMC1, LAMC2, 
LAMC3, SDC1, SDC4, SV2A, SV2B, SV2C, THBS1, 
THBS2, THBS3, TNN, TNR, VTN 

 Activating 
invasion and 
metastasis 

Cell adhesion 
molecules 
(CAMs) 

CADM1, CD2, CD226, CD274, CD276, CD28, CD34, 
CD4, CD40LG, CD58, CD6, CD8A, CD8B, CD99, 
CDH1, CDH15, CDH2, CDH3, CDH4, CDH5, CLDN14, 
CLDN15, CLDN17, CLDN19, CLDN22, CLDN23, 
CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, 
CNTN1, CNTNAP1, ESAM, F11R, GLG1, HLA-A, HLA-
DMB, HLA-DOA, ICAM1, ICAM2, ICOSLG, ITGA4, 
ITGA6, ITGA9, ITGAM, ITGAV, ITGB1, ITGB2, ITGB7, 
ITGB8, JAM3, L1CAM, LRRC4, LRRC4B, MADCAM1, 
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HALLMARKS 
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SIGNALING 
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ASSOCIATED 

NRF1 TARGET GENES ( Identified by ChIP-seq 
using HCC1954-breast cancer cells and HMEC-
normal mammary epithelial  cells) 
MPZL1, NCAM1, NEGR1, NEO1, NFASC, NLGN2, 
NRCAM, NRXN2, NRXN3, NTNG1, NTNG2, OCLN, 
PDCD1, PDCD1LG2, PTPRC, PTPRF, PTPRM, PVR, 
SDC1, SDC2, SDC3, SDC4, SELPLG, SPN, VCAM1, 
VCAN, VTCN1 

Evading 
immune 
destruction 

T cell receptor 
signaling pathway 

AKT1, AKT2, AKT3, BCL10, CARD11, CBL, CBLB, 
CBLC, CD247, CD28, CD3D, CD3E, CD4, CD40LG, 
CD8A, CD8B, CDC42, CDK4, CHUK, DLG1, FOS, 
FYN, GRAP2, GRB2, GSK3B, HRAS, IKBKB, IL4, IL5, 
JUN, KRAS, LAT, LCK, MALT1, MAP2K1, MAP2K2, 
MAP2K7, MAP3K8, MAPK1, MAPK11, MAPK12, 
MAPK13, MAPK14, MAPK3, MAPK9, NCK1, NCK2, 
NFATC1, NFATC2, NFATC3, NFKB1, NFKBIA, 
NFKBIB, NFKBIE, PAK1, PAK2, PAK3, PAK4, PAK6, 
PDCD1, PDPK1, PIK3CA, PIK3CB, PIK3CD, PIK3R1, 
PIK3R2, PIK3R3, PLCG1, PPP3CA, PPP3CB, 
PPP3CC, PPP3R1, PRKCQ, PTPN6, PTPRC, RAF1, 
RASGRP1, RELA, RHOA, SOS1, SOS2, TEC, VAV1, 
VAV2, VAV3, ZAP70 

Evading 
immune 
destruction 

B cell receptor 
signaling pathway 

AKT1, AKT2, AKT3, BCL10, BLNK, CARD11, CD72, 
CD81, CHUK, CR2, FOS, GRB2, GSK3B, HRAS, 
IFITM1, IKBKB, INPPL1, JUN, KRAS, LYN, MALT1, 
MAP2K1, MAP2K2, MAPK1, MAPK3, NFATC1, 
NFATC2, NFATC3, NFKB1, NFKBIA, NFKBIB, 
NFKBIE, PIK3AP1, PIK3CA, PIK3CB, PIK3CD, 
PIK3R1, PIK3R2, PIK3R3, PLCG2, PPP3CA, 
PPP3CB, PPP3CC, PPP3R1, PRKCB, PTPN6, RAC1, 
RAC2, RAC3, RAF1, RASGRP3, RELA, SOS1, SOS2, 
SYK, VAV1, VAV2, VAV3 
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Figure 1. Partial view of the best Bayesian network for the Non-Hispanic White 
Luminal A cluster generated by the software Banjo. Node BC represents the 
variable Luminal A breast cancer and the other nodes represent the genes.  
 
 Once the best networks were selected, the causal hypothesis (Markov 

blanket) genes were identified. Markov blanket genes of the variable of interest 

(BC) is the minimal set of genes conditioned on which all the other genes in the 

network are independent (probabilistically speaking) of the variable of interest. 

Figure 2 shows the localization in the network of the Markov blanket genes for 

Non-Hispanic Luminal A (highlighted in blue), and Table 4 lists the results for all 

eight clusters.  
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Figure 2. Bayesian network for Non-Hispanic White Luminal A cluster recreated 
using Cytoscape to provide a better view of the causal hypothesis genes 
highlighted in blue. The set of selected genes (highlighted in blue) form a 
substructure around the node of interest (BC) that makes all the other variables 
probabilistically independent of the disease. This narrows down the search for the 
drivers of Luminal A breast cancer among Non-Hispanic Whites to this set of 
genes. 
 

The strategy followed for searching the best networks included running 

Banjo three times during 8 hours for each group. Genes highlighted in yellow and 

blue in appeared at least twice when the three network outcomes were compared, 

which suggest a possible involvement of these genes in the development of the 

disease. 
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Table 4  
 
Causal Hypothesis Genes of Breast Cancer from Bayesian Networks Analysis 
 

Luminal A Triple-negative HER2+ 
LUMINAL 
B 

Non-
Hispanic 

Non-
Hispanic 

Non-
Hispanic 

Hispani
c 

Non-
Hispanic 

Non-
Hispanic 

Non-
Hispanic 

Non-
Hispanic 

White Black Asian White White Black White White 
ATP6V1G
1 ACVR1B AIFM1 BMP8A BAK1 ATG3 ACTB ACTG1 

BAK1 ATP6V1D 
CACNA1
E 

CACNG
4 BMP8A ATG4D AKT1S1 BAK1 

CACNG4 BAX CACNG4 CLDN3 CADM1 
ATP6V1C
2 ATG16L1 BAX 

CCNB2 BECN1 CBLC ELK1 CASP2 BAK1 ATP6V1A BMP8A 

CDC37 BMP8A CDH15 
LAMTO
R4 CBLC BIRC5 BMP8A BMP8B 

CDH1 CBLC CDK1 
MAPK8I
P2 CCNB1 CCNB1 CDK1 

CACNA1
E 

CDKN1B CCNB1 EFNA2 
MAPKA
PK5 CD44 COL9A3 CDK4 CTSD 

CREB3L4 CCNB2 ENDOG 
PPP2C
A CLDN4 DVL2 CLDN6 EIF4E 

EFNA2 CDH15 NPRL3 RRM2 CLDN7 ECSIT E2F1 FADD 

ELK1 DVL3 RBX1   DAXX GNG8 EI24 GSK3B 

GNG3 F11R STMN1   EFNA1 
HSP90AB
1 GTSE1 HRAS 

GSK3B GNG3 TUBA1C   EFNA2 HSPA8 
HSP90AB
1 ITGA11 

ITGA11 HSPA2 VDAC3   ELK1 ICAM1 MAP4K2 MAPK9 

LAMTOR
4 HSPA6     GNB1 LMNB2 MAPK13 PARP1 

MAP3K11 
MAPK8IP
2     HSPA8 MAP2K2 MYBL2 PIK3R3 

MAP4K2 MAPK9     IFNAR2 NFKB2 PAK4 PPP2R1A 

NLK NLK     INPPL1 PARP1 SNAP29 PPP5C 

NPRL2 PIK3R3     LMNB2 RHEB TBC1D7 RAC3 

PAK2 PPP1CA     PPP1CA TELO2  VDAC1 RBL1 

PARP1 PPP5C     PPP2R1A YWHAZ   RRM2 

PPP2CA PRLR     
PPP2R5
D     SHISA5 

SDC1 RPS6KB2     PTK2     SLC7A5 

SLC7A5       RELB     SNAP29 

SNAP29       RRM2     SPHK2 

TGFB3       STK4     STK3 

TUBA1C       STMN1     TRAF2 

        TELO2     TUBA1C 

        VAMP8     VAV2 

        VAV2     VDAC3 

        VDAC1     YWHAH 

        YWHAZ       
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Note. Genes in red were common in all three Bayesian networks outcomes (Banjo 
software).  
   
Note. Genes in blue were common in all three Bayesian networks outcomes (Banjo 
software).      
 
Parametric Learning and Validation of Proposed Bayesian Networks Verify 

They Are Good Prediction Models of Breast Cancer With Accuracy Levels 

Above 96% 

Having the structure is the first of two tasks for Bayesian network learning. 

Once the structures were obtained, the second step was parametric learning or 

estimation of conditional probabilities (Fuster-Parra et al., 2016). Parameters were 

obtained by recreating the substructure of the Markov blanket genes around the 

breast cancer node with the software GeNIe Modeler, a tool for modeling and 

learning with Bayesian network developed by BayesFusion. GeNIe generates a 

conditional distribution probability table for each node as well as the joint 

probability.  

Figure 3 shows the structure of causal hypothesis genes in Luminal A breast 

cancer for the group of patients classified as Non-Hispanic Whites with the 

corresponding joint probability for each node. All eight proposed BNs were 

validated using a 10-fold crossvalidation method (see Methods section for details).  
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Figure 3. Bayesian network (BN) of causal hypothesis genes with the 
corresponding initial joint probabilities estimated from the dataset of Non-Hispanic 
White-Luminal A breast cancer (n = 373) and normal samples (n = 79).  Gene 
expression was categorized as follows: 0 = down, 1 = Normal and 2 = upregulated. 
BC was categorized 1 for breast cancer samples and 0 for normal. The model 
shows a high probability of Luminal A breast cancer (89%), given the initial 
evidence for the current expression levels of all genes (example:  high probability 
- 77% - of PARP1 to be up regulated). GeNIe allows sensitivity analysis by 
changing the expression levels (evidence) of one or several genes and the 
software recalculates the estimated probability of BC.  

 
Table 5 is an example (partial view) of model validation results in the group 

of Non-Hispanic White Luminal A. Overall results for this model showed 98% 

accuracy in predicting BC status (443 out of 452 samples). 

 

 

 



 

194 
 

Table 5  
 
Validation of the Bn Mode  
 

SAMPLE  Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 
BC STATUS State1 State1 State1 State1 State1 

Probability of 
BC_State0 6.20E-07 1.28E-11 5.07E-11 6.55E-10 2.57E-12 

Probability of 
BC_State1 0.999999 1 1 1 1 

BC_predicted STATUS State1 State1 State1 State1 State1 

Prediction was 
correct? YES YES YES YES YES 

GENES EXPRESSION LEVELS (0=DOWN, 1=NORMAL, 2=UP) 
ATP6V1G1 1 2 2 1 2 

BAK1 2 2 2 2 2 

LAMTOR4 1 2 2 1 1 

CACNG4 2 2 2 2 2 

CCNB2 2 2 2 2 2 

CDC37 1 2 2 1 1 

CDH1 1 0 1 2 2 

CDKN1B 1 2 2 0 1 

CREB3L4 2 2 2 2 2 

EFNA2 1 1 1 1 1 

ELK1 2 2 2 2 2 

GNG3 1 1 2 1 2 

GSK3B 2 0 1 2 1 

ITGA11 2 0 2 1 2 

MAP3K11 1 1 2 1 1 

MAP4K2 1 2 2 1 2 

NLK 1 2 2 2 2 

NPRL2 1 2 2 2 2 

PAK2 2 1 1 2 1 

PARP1 2 2 2 2 2 

PPP2CA 2 2 2 2 2 

SDC1 2 1 2 1 2 

SLC7A5 1 2 1 1 2 

SNAP29 2 2 0 2 2 

TGFB3 2 2 2 2 2 

TUBA1C 2 1 2 2 2 

Note. Partial view of the output file during validation process (5 samples) of the model 
generated by Banjo and GeNIe for the group of Non-Hispanic White Luminal A. Accuracy 
of predicting BC status = 98.01%.  
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Results of crossvalidation for all BN models are shown in Table 6, including 

specificity, accuracy, and the area under the receiver operating characteristic 

(ROC) curve (AUC).  Notice how sensitivity, the percentage of correctly predicted 

samples positive for breast cancer, is greater than 95% for all the models and 

accuracy is always above 96%. The area under receiver operating characteristic 

curve (AUC), a metric that combines sensitivity with false positive rate (FPR), is 

always above 0.99, demonstrating these are very good prediction models of BC. 

Table 6  
 
Results of Crossvalidation for all Eight Bayesian Network Models  
 

Cluster Description 

Number 
of 
samples 

Correctly 
predicted Percentage 

ROC 
(AUC) 

Accuracy 
of  the 
model 

Non-Hispanic 
White Luminal 
A 

Breast Cancer 373 369 98.93% 0.996   

Normal 79 74 93.67%     

Totals 452 443     98.01% 

              

Non-Hispanic 
BLack Luminal 
A 

Breast Cancer 69 69 100.00% 1   

Normal 79 77 97.47%     

Totals 148 146     98.65% 

              

Non-Hispanic 
Asian Luminal 
A 

Breast Cancer 22 22 100.00% 1   

Normal 79 79 100.00%     

Totals 101 101     100.00% 

              

Hispanic Asian 
Luminal A 

Breast Cancer 21 20 95.24% 0.995   

Normal 79 76 96.20%     

Totals 100 96     96.00% 

              

Non-Hispanic 
White Triple-
negative 

Breast Cancer 74 73 98.65% 0.993   

Normal 79 79 100.00%     

Totals 153 152     99.35% 

              

Non-Hispanic 
Black Triple-
negative 

Breast Cancer 48 47 97.92% 0.999   

Normal 79 77 97.47%     

Totals 127 124     97.64% 
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Non-Hispanic 
White HER2 + 

Breast Cancer 48 47 97.92%     

Normal 79 76 96.20%     

Totals 127 123   0.998 96.85% 

              

Non-Hispanic 
White Luminal 
B 

Breast Cancer 83 83 100.00%     

Normal 79 78 98.73%     

Totals 162 161   0.999 99.38% 

 
Note. Sensitivity, the percentage of the proportion of actual positives for breast 
cancer that were correctly identified, is shown under the column “Percentage” in 
the breast cancer row. For example, for Non-Hispanic White the sensitivity of the 
model was 98.93%. Notice that sensitivity is above 95% for all the models and 
accuracy is above 96%. The area under receiver operating characteristic curve 
(AUC), a metric that combines sensitivity with false positive rate (FPR), is above 
0.99 in all cases, indicating these are very good prediction models of breast 
cancer. 
 
Sensitivity Analysis of Bayesian Networks (Bns) Shows Differences in NRF1 

Molecular Signature of Possible Disease Drivers That May Explain the 

Biological Differences in Breast Cancer Outcomes by Race and Ethnicity 

Table 4 lists causal hypothesis genes for each cluster under study. In order 

to further identify possible disease drivers among those genes, we performed 

sensitivity analysis to discover the ones that had the highest impact on the relative 

risk (RR) of breast cancer when maximizing or minimizing their expression.  BNs 

are used to estimate new probabilities when new information is incorporated into 

the model; therefore, the strategy we followed was to use the software GeNIe to 

simulate upregulation (marginal probability of state 2 = 100%), normalization (state 

1) and downregulation (state 0) of candidate genes, estimate the probability of 

breast cancer [Pr.(BC)] for each case, and calculate the relative risk at 

upregulation, normalization, and downregulation using the initial marginal 
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probability of the model as baseline. For example, given the evidence g = up (gene 

is upregulated), we can write the equation for RR as RR= [Pr. (BC/g=up) / Pr. 

(BC/g=current evidence)].  

We focused the sensitivity analysis on those genes that were common in at 

least two of the three locally optimal networks (those highlighted in yellow and blue 

in Table 4), which, given the current results, have a higher probability of being part 

of the globally optimal network. Nevertheless, none of the causal hypothesis genes 

in the locally optimal BNs should be discarded as potential disease drivers. With 

this in mind, we also performed sensitivity analysis simulating changes in 

expression level of more than one gene simultaneously, especially among those 

identified as affecting significantly breast cancer risk. We also tested the parents 

of the breast cancer node regardless of their frequency in the three BNs. Here we 

present the results of the sensitivity analysis for each of the clusters, including 

comments on the most important findings. 

Luminal A in Non-Hispanic Whites 

Figure 3 displays the BN with marginal probabilities for all variables in this 

cluster, and Table 7 shows the results for the sensitivity analysis of Markov blanket 

genes, ordered by relative risk (RR). Notice in Table 7 how the greatest positive 

impact on the probability of breast cancer (lowering from 89% to 7%) was obtained 

through TUBA1C downregulation.  TUBA1C encodes the protein Tubulin Alpha 

1C, the principal component of microtubules, and has been found upregulated in 

breast cancer and its overexpression associated with lower overall survival (Chen 

et al., 2015). PARP1, ELK1 and CREB3L4 individual downregulation also lower 
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considerably the probability of breast cancer; furthermore, downregulation of 

PARP1 and TUBA1C simultaneously lower Pr. (BC) to 0%. 

Table 7   

Results of Sensitivity Analysis for Luminal A BN Model in Non-Hispanic White 

Cluster 

Luminal A Non-Hispanic White 

Candidate 
Gene 

Simulated 
change in gene 
expression 

Probability of 
breast Cancer 
(%) 

Relative Risk (RR)- 
Initial Pr=89 % 

NLK UP 99 1.11 

ELK1 UP 98 1.10 

PARP1 UP 98 1.10 

TGFB3 UP 98 1.10 

CACNG4 UP 97 1.09 

CDKN1B UP 97 1.09 

CREB3L4 UP 97 1.09 

TUBA1C UP 97 1.09 

CDKN1B Down 94 1.06 

CACNG4 Down 92 1.03 

CDKN1B Normal 80 0.90 

TGFB3 Down 78 0.88 

NLK Normal 77 0.87 

TGFB3 Normal 75 0.84 

CACNG4 Normal 73 0.82 

ELK1 Normal 73 0.82 

CREB3L4 Normal 71 0.80 

PARP1 Down 68 0.76 

NLK Down 67 0.75 

TUBA1C Normal 67 0.75 

PARP1 Normal 62 0.70 

ELK1 Down 45 0.51 

CREB3L4 Down 31 0.35 

TUBA1C Down 7 0.08 

Note. Notice how Relative Risk figures indicate that the biggest impact in reducing 
Pr. (BC)—initially 89%--is  achieved by downregulation of TUBA1C. Other genes 
with substantial impact in lowering breast cancer risk are PARP1, ELK1, and 
CREB3L4. 
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Luminal A in Non-Hispanic Blacks 
 

Table 8 shows the results of the sensitivity analysis. Notice how Relative 

Risk figures indicate that the biggest impact in reducing Pr. (BC) from 47% to 3% 

was achieved by switching CCNB1 to 100% normal (initial probability of normal 

expression level in cluster sample was 44%). Genes BMP8A, CBLC, and 

MAPK8IP2 appeared in all three local BNs. Since BMP8A and MAPK8IP2 were 

directly connected to the BC node in the network (Figure 4), we began the analysis 

with the overexpression of these two genes to 100%, resulting in an increase of 

the probability of BC [Pr(BC)]  from the initial 47% to 93% (Relative Risk = 1.98).  

Table 8   
 
Results of Sensitivity Analysis for Luminal A BN model in Non-Hispanic Black 

Cluster 

Luminal A Non-Hispanic Black 

Candidate Gene 

Simulated 
change in gene 
expression 

Probability of 
breast Cancer 
(%) 

Relative Risk 
(RR)compared 
to Initial Pr=47 
% 

CCNB2 Normal 90 1.91 

PPP1CA UP 89 1.89 

NLK UP 88 1.87 

CCNB1 UP 86 1.83 

MAPK9 UP 86 1.83 

BMP8A UP 82 1.74 

DVL3 UP 80 1.70 

ACVR1B UP 76 1.62 

ATP6V1D UP 76 1.62 

BECN1 UP 74 1.57 

MAPK8IP2 UP 70 1.49 

DVL3 Down 48 1.02 

ATP6V1D Down 47 1.00 

ACVR1B Down 39 0.83 
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Luminal A Non-Hispanic Black 

Candidate Gene 

Simulated 
change in gene 
expression 

Probability of 
breast Cancer 
(%) 

Relative Risk 
(RR)compared 
to Initial Pr=47 
% 

NLK Down 38 0.81 

BECN1 Down 34 0.72 

ATP6V1D Normal 31 0.66 

MAPK9 Normal 30 0.64 

MAPK9 Down 30 0.64 

ACVR1B Normal 23 0.49 

CCNB1 Down 23 0.49 

NLK Normal 21 0.45 

MAPK8IP2 Down 20 0.43 

BECN1 Normal 19 0.40 

DVL3 Normal 18 0.38 

MAPK8IP2 Normal 7 0.15 

BMP8A Down 6 0.13 

PPP1CA Normal 6 0.13 

PPP1CA Down 5 0.11 

CCNB2 UP 5 0.11 

BMP8A Normal 4 0.09 

CCNB1 Normal 3 0.06 

 
Note. Notice how Relative Risk figures indicate that the biggest impact in reducing 
Pr. (BC) from 47% to 3% was achieved by switching CCNB1 to 100% normal (initial 
probability of normal expression level in cluster sample was 44%). Conversely, 
upregulation of PPP1CA increased the probability of breast cancer to 89% (RR = 
1.89). The same PPP1CA showed a substantial impact in lowering the breast 
cancer risk when downregulated. 
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Figure 4. Bayesian network (BN) of causal hypothesis genes learned from the 
dataset of Non-Hispanic African American-Luminal A breast cancer cluster (n = 
69) and normal samples (n = 79).  Gene expression was categorized as follows: 0 
= down, 1 = Normal, and 2 = upregulated. BC was categorized 1 for breast cancer 
samples and 0 for normal. This figure  shows how the posterior  probability of 
Luminal A breast cancer changed to 0% from the original 47% (initial evidence) 
after changing the expression levels for genes ACVR1B,   ATP6V1D, BECN1, 
CCNB1, DVL3, MAPK9, NLK, and PPP1CA to normal.  It was further noticed 
during sensitivity analysis that simply changing to normal, two of them (CCNB1 
and PPPC1A) produced the same effect of lowering breast cancer probability to 
zero. 

 
BMP8A presented the highest individual impact on the Pr (BC) at 100% 

upregulation. This gene (Bone morphogenetic protein 8A) is part of the Bone 

morphogenetic protein family involved in the regulation of  different cellular 

processes, such as proliferation, differentiation, apoptosis and migration (Alarmo 

& Kallioniemi, 2010). We also used the model to demonstrate that when the 

evidence was changed simultaneously to normal expression for genes ACVR1B, 
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ATP6V1D, BECN1, CCNB1, DVL3, MAPK9, NLK. and PPP1CA (highlighted in 

blue in Table 4 as common in two out of three BN’s), the probability of breast 

cancer went down to 0%, suggesting that their dysregulation also may be involved 

in the development and/or progression of Luminal A breast cancer among Non-

Hispanic African Americans (Figure 4).  

It was also noticed that the genes with the highest initial likelihood of 

upregulation CCNB1 and PPP1CA (51% and 49%, respectively) were the ones 

with the highest impact in lowering the breast cancer posterior probability.  

Sensitivity analysis demonstrated that simply changing to normal CCNB1 (also 

known as CyclinB1) lowered the probability of breast cancer from 47% to 3%. 

Setting up the two of them to normal reduced BC probability to 0%, the same effect 

as setting up to normal all eight above-mentioned genes.   

These results are aligned with recent discoveries of CCNB1 overexpression 

associated with poor distant metastasis free survival, overall survival, and disease- 

free survival of patients with Estrogen Receptor positive (ER+) breast cancer 

(Ding, Li, Zou, Zou, & Wang, 2014). Previously, CCNB1 had also been reported 

as possibly involved in the epithelial-mesenchymal transition (EMT) process (Song 

et al., 2008). Unlike the Non-Hispanic African American cluster, CCNB1 is not 

among the causal hypothesis genes of the other Luminal A groups—Non Hispanic 

Whites, Non-Hispanic Asian, and Hispanic Whites.  

It is interesting to notice in this model that when CCNB2 (cyclin B2), direct 

parent of the BC node, was switched to normal (state1 = 100%), this switching 

caused upregulation of CCNB1 (state 2 from 51% to 93%). The combined effect 
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resulted in almost doubling the probability of breast cancer to 90% from an initial 

value of 47% (RR = 1.91), the highest number in the sensitivity analysis table. High 

levels of cytoplasmic cyclin B2 have been found associated with short-term 

disease-specific survival in breast cancer patients (Shubbar et al., 2013). 

Luminal A in Non-Hispanic Asians  
 

Table 9 lists the results of sensitivity analysis. EFNA2 was the only gene 

that appeared in all the three local BNs. The simulation of changing the gene 

expression from a probability of 90% upregulation to 100% normal resulted in an 

increase in the probability of breast cancer from 18% to 58% (Relative Risk = 3.22), 

suggesting that EFNA2 (Ephrin A2) exerts a protective effect in Luminal A breast 

cancer among Non-Hispanic Asians. Conversely, an increase in the probability of 

upregulation from 90% to 100%, resulted in a decrease in the probability of breast 

cancer to 14% (RR = 0.77). 

We also performed sensitivity analysis on the causal hypothesis genes 

common to two out of three BNs’ outcomes from Banjo: AIFM1, CDK1, TUBA1C, 

and VDAC3. This analysis revealed that overexpression of CDK1 reduced the 

probability of breast cancer in this cluster from 18% to2 %--Relative Risk = 0.11  

(Figure 5). Cyclin-dependent kinase 1 (CDK1) plays an important role in cell cycle 

regulation, especially in mitosis during the transition from the G2 to M phase. CDK1 

also has several other functions at the molecular level that are not well understood 

yet (Roberts et al., 2012; Vassilev et al., 2006).  
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Table 9 

Results of Sensitivity Analysis for Luminal A BN Model in Non-Hispanic Asian  

Cluster  

Luminal A Non-Hispanic Asian 

Candidate Gene 

Simulated 
change in gene 
expression 

Probability of 
breast Cancer 
(%) 

Relative Risk 
(RR)compared 
to Initial Pr=18 
% 

VDAC3 Normal 84 4.67 

EFNA2 Normal 58 3.22 

CDK1 Normal 53 2.94 

NPRL3 UP 33 1.83 

TUBA1C UP 33 1.83 

TUBA1C Down 15 0.83 

EFNA2 UP 14 0.78 

NPRL3 Normal 13 0.72 

TUBA1C Normal 12 0.67 

VDAC3 UP 12 0.67 

NPRL3 Down 7 0.39 

CDK1 UP 2 0.11 

 
Note. Notice how Relative Risk figures indicate that the biggest impact in reducing 
Pr. (BC) from 18% to 2% was achieved by switching CDK1 to 100% overexpressed 
(initial probability of upregulation in cluster sample was 69%). 
 

TUBA1C upregulation increased the probability of BC from 18% to 33% (RR 

= 1.83). TUBA1C (Tubulin alpha 1c), a component of tubulin, has been reported 

as significantly highly expressed in breast tumor tissues compared to normal tissue 

and as a negative predictor of overall survival (Chen, Li, WaNg, & Jiao, 2015). 

Finally, lowering the expression of VDAC3 (voltage dependent anion channel 3) 

from 91% upregulation (state 2) to 100% normal (state 1) had the effect of 

increasing the probability of BC from 18% to 84%  (RR = 4.67), suggesting that 

VDAC3 upregulation exerts a protection effect against BC. 
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Figure 5. Bayesian network (BN) of causal hypothesis genes learned from the 
dataset of Non-Hispanic Asian-Luminal A breast cancer cluster (n = 22) and normal 
samples (n = 79).  Gene expression was categorized as follows: 0 = down, 1 = 
Normal, and 2 = upregulated. BC was categorized 1 for breast cancer samples 
and 0 for normal. This figure shows how the posterior probability of Luminal A 
breast cancer changed to 2% from the original 18% (initial evidence) after 
changing the expression levels for gene CDK1 to Upregulated.   
 
Luminal A Breast Cancer in Hispanics or Latino Whites 
 

Table 10 shows the results of sensitivity analysis for causal hypothesis 

genes ranked by relative risk. Sensitivity analysis changing to 100% normal the 

expression levels of genes BMP8A, CACNG4, and CLDN3  (genes in all three local 

BNs) reduced the joint probability of breast cancer for the Hispanic or Latino 

Luminal A cluster from 18% to 0%. The initial marginal probabilities of upregulation 

for these three genes were 32%, 21%, and 23%, respectively. Figure 6 shows the 

Bayesian network (BN) of causal hypothesis genes learned from the dataset. 
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Table 10  

Results of Sensitivity Analysis for Luminal A BN Model in Hispanic White Cluster  

Luminal A Hispanic White    

Candidate Gene 

Simulated 
change in gene 
expression 

Probability of 
breast Cancer 
(%) 

Relative Risk 
(RR)compared 
to Initial Pr=18 
% 

BMP8A UP 54 3.00 

CACNG4 UP 46 2.56 

RRM2 Normal 46 2.56 

MAPK8IP2 UP 43 2.39 

CACNG4 Down 25 1.39 

RRM2 UP 10 0.56 

MAPK8IP2 Down 9 0.50 

CACNG4 Normal 8 0.44 

MAPK8IP2 Normal 6 0.33 

BMP8A Down 5 0.28 

BMP8A Normal 0 0.00 

 
Note. Notice how Relative Risk figures indicate that the biggest impact in reducing 
Pr. (BC) from 18% to 0% was achieved by switching BMP8A to 100% probability 
of normal expression in the  sample (initial probability of normal expression  was 
62%).  The same gene, BMPA, showed the highest increase in breast cancer risk 
when upregulated, approximately 3 times the initial marginal risk of 18%. 
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Figure 6. Bayesian network (BN) of causal hypothesis genes learned from the 
dataset of Hispanic or Latino White-Luminal A breast cancer cluster (n = 21) and 
normal samples (n = 79).  Gene expression was categorized as follows: 0 = down, 
1 = normal, and 2 = upregulated. BC was categorized 1 for breast cancer samples 
and 0 for normal. This figure shows how the posterior probability of Luminal A 
breast cancer changed to 0% from the original 18% (initial evidence) after 
changing to normal the expression levels for genes BMP8A, CACNG4, and 
CLDN3. These genes were common in all three best local Bayesian networks 
outcomes generated by Banjo. It was also noticed that simply changing BMP8A 
that originally had a 32% joint distribution probability of being upregulated to 100% 
normal yielded the same effect (Pr. BC = 0). 
 

Continuing with the analysis, it was noticed that only setting up the marginal 

probability of one gene, BMP8A (Bone morphogenetic protein 8A), to normal had 

the same effect of reducing the probability of breast cancer to 0%. The Bone 

morphogenetic protein (BMP) family is a group of more than 20 growth factor 

proteins involved in bone formation and other developmental processes. These 

extracellular signaling molecules regulate various cellular functions, such as 
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proliferation, differentiation, apoptosis, and migration (Alarmo & Kallioniemi, 2010). 

In fact, BMP8A is in the list of NRF1 target genes in the TGF-beta signaling 

pathway linked to the hallmark of cancer Evading Growth Suppressors. Aberrant 

expression of BMPs and BMP signaling has been reported in breast cancer and 

bone metastasis. Recent studies also found BMP signaling activity involved in the 

processes of EMT, angiogenesis, invasion, stemness, and quiescence 

(Zabkiewicz, Resaul, Hargest, Jiang, & Ye, 2017). However, we did not find any 

previous study specifically reporting BMP8A involvement in breast cancer. 

Triple-Negative Breast Cancer in Non-Hispanic White Cluster 

The biggest impact in reducing Pr. (BC) from 49% to 6% (RR = 0.12) was 

achieved by switching BMP8A to 100% probability of downregulation---the initial 

probability of downregulation was 4%  (Table 11).  The initial BN model of TNBC 

in the Non-Hispanic cluster showed 49% joint probability of developing the 

disease, given the initial evidence of the gene expression levels of the 31 causal 

hypothesis genes (Figure 7). This cluster was formed of 153 samples, 74 with 

TNBC and 79 normal.  

Part of sensitivity analysis was to simulate a simultaneous change in the 

gene expression, to 100% normal of the three genes that had appeared 

consistently in all three local networks—CASP2 (initial probability of upregulation 

= 46%), ELK1 (51%), and PPP1CA (48%). This simulation lowered the probability 

of TNBC from 49% to 3%, suggesting that these three genes may play a role in 

the disease. When an additional change was added to the simulation, BMP8A 

(probability of upregulation = 53%) was switched to 100% normal, and the 
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probability of TNBC went down to 0%. A Similar exercise was done but instead of 

switching to normal, the same four genes were switched to 100% upregulated, 

resulting as expected an increase in the probability of TNBC to 99%. This 

procedure  confirms the possible role of these genes as drivers of TNBC in Non-

Hispanic Whites.  

Table 11   

Results of Sensitivity Analysis for Triple-Negative BN Model in Non-Hispanic  

White Cluster  

TNBC Non-Hispanic White 

Candidate Gene 

Simulated 
change in gene 
expression 

Probability of 
breast Cancer 
(%) 

Relative Risk 
(RR)compared 
to Initial Pr=49 
% 

HSPA8 UP 87 1.78 

ELK1 UP 85 1.73 

CASP2 UP 84 1.71 

BMP8A UP 83 1.69 

CCNB1 UP 76 1.55 

HSPA8 Down 46 0.94 

CCNB1 Down 45 0.92 

HSPA8 Normal 25 0.51 

CASP2 Normal 20 0.41 

CCNB1 Normal 17 0.35 

CASP2 Down 15 0.31 

ELK1 Down 15 0.31 

BMP8A Normal 10 0.20 

ELK1 Normal 9 0.18 

BMP8A Down 6 0.12 

 
Note. Notice how Relative Risk figures indicate that the biggest impact in reducing 
Pr. (BC) from 49% to 6% (RR = 0.12) was achieved by switching BMP8A to 100% 
probability of downregulation  (initial probability of downregulation  was 4%).   
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Figure 7. Bayesian network (BN) of causal hypothesis genes learned from the 
dataset of Non-Hispanic White Triple-Negative breast cancer (TNBC) cluster (n = 
74) and normal samples (n = 79).  Gene expression was categorized as follows: 0 
= down, 1 = Normal, and 2 = upregulated. BC was categorized 1 for breast cancer 
samples and 0 for normal. This figure shows how that the joint probability of TNBC 
for this cluster was 49%.  
 

CASP2 (caspase 2) is part of the group of genes involved in the apoptosis 

signaling pathway which contributes to the hallmarks of cancer Evading Growth 

Suppressors and Resisting cell death (Table 3). Apoptosis is known to play a role 

in tumorigenesis and also contributes to the development of resistance to cancer 

therapies. CASP2 produces several alternative splicing isoforms that play 

antagonistic roles, while Casp-2L promotes apoptosis; Casp-2S protects cells 

against apoptosis (Fushimi et al., 2008). Sensitivity analysis in this model suggests 

that CASP2 overexpression exerts a protective role for cancer cells in TNBC.  
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For ELK1, it was reported that higher mRNA expression was associated 

with worse recurrence-free survival in TNBC patients (Liu et al., 2017). Table 11 

also shows that the biggest impact on increasing breast cancer risk was obtained 

with the upregulation of HSPA8. Previous studies have found HSPA8 upregulated 

in the early stages of breast cancer (Hou et al., 2016). 

Triple-Negative Breast Cancer in Non-Hispanic Black 

Table 12 shows that ATP6V1C2 had the highest individual impact on breast 

cancer risk, increasing the probability 2.85 times.  ATP6V1C2 (ATPase, H+ 

transporting, lysosomal 42kD, V1 subunit C isoform 2) is one of the proteins called 

V-ATPases reported in the literature as playing a role in breast cancer growth and 

metastasis (McConnell et al., 2017). Table 12 also shows that switching CCNB1 

(parent of BC in the network) to 100% normal presented the highest effect on 

lowering breast cancer risk for this cluster (RR = 0.15). As mentioned earlier, 

overexpression of CCNB1 was found associated with poor prognosis for distant 

metastasis-free survival and overall survival in breast cancer patients with ER + 

breast cancer (Ding et al., 2014). 
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Table 12  

Results of Sensitivity Analysis for Triple-Negative BN Model in Non-Hispanic Black 

Cluster  

TNBC Non-Hispanic Black 

Candidate Gene 

Simulated 
change in gene 
expression 

Probability of 
breast Cancer 
(%) 

Relative Risk 
(RR)compared 
to Initial Pr=26 
% 

ATP6V1C2 UP 74 2.85 

ATG3 UP 73 2.81 

ATG4D UP 73 2.81 

CCNB1 UP 53 2.04 

BIRC5 Normal 48 1.85 

CCNB1 Down 25 0.96 

ATP6V1C2 Down 21 0.81 

ATG4D Down 15 0.58 

ATG3 Down 14 0.54 

ATG4D Normal 11 0.42 

ATG3 Normal 10 0.38 

BIRC5 UP 10 0.38 

ATP6V1C2 Normal 7 0.27 

CCNB1 Normal 4 0.15 

 
Note. Notice how Relative Risk figures indicate that the biggest impact in 
increasing Pr. (BC) from 26% to 74% (RR = 2.85) was achieved by switching 
LLLATP6V1C2 to 100%  probability of upregulation  (initial probability of 
upregulation  was 26%).  CCNB1 has the highest effect in the opposite direction 
when switched to 100% normal expression.  
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 Unlike the TNBC model for Non-Hispanic Whites, in the BN model for TNBC 

in Non-Hispanic Blacks, we did not find genes common to all three local BNs 

generated by Banjo. However, we found six genes common to two of them: ATG3, 

ATG4D, ATP6V1C2, BIRC5, ECSIT, and LMNB2. Sensitivity analysis was 

performed by simulating changes in expression levels of these genes to observe 

the impact on the joint probability of TNBC that was initially estimated at 26% for 

this cluster (Figure 8).  

 
Figure 8. Bayesian network (BN) of causal hypothesis genes learned from the 
dataset of Non-Hispanic BlackTriple-negative breast cancer (TNBC) cluster (n = 
48) and normal samples (n = 79).  Gene expression was categorized as follows: 0 
= down, 1 = normal, and 2=upregulated. BC was categorized 1 for breast cancer 
samples and 0 for normal. This figure shows that the joint probability of TNBC for 
this cluster was 26%.  
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Individual and simultaneous changes were simulated, with the results that 

when ATG3, ATG4D, ATP6V1C2, and BIRC5 were set up to 100% normal 

expression, the probability of TNBC decreased to 2%. When individual changes to 

100% upregulation were simulated, all of them increased the probability of TNBC 

except BIRC5, which lowered it. This was a surprise because Surviving (also 

known as baculoviral inhibitor of apoptosis repeat-containing 5), the protein 

encoded by this gene that belongs to the inhibitor of the apoptosis (IAP) family, is 

very well known for its dual role as an inhibitor of apoptosis and regulator of cell 

division. These are both involved in tumorigenesis (Vequaud, Desplanques, 

Jezequel, Juin, & Barille-Nion, 2016). 

Surviving has been found upregulated in breast cancer and is a poor 

prognostic marker associated with low overall survival (Brennan et al., 2008). 

ATG3, on the other hand, is part of the Autophagy-related family of proteins (ATG) 

that regulates autophagy. These proteins can be either protumorigenic or 

antitumorigenic (Shen et al., 2015).   

HER2 Enriched Breast Cancer in Non-Hispanic Whites 

Table 13 shows the results of individual gene sensitivity analysis for the 

HER2 breast cancer model among Non-Hispanic Whites, the only cluster found 

with enough samples in the TCGA dataset for HER2 enriched breast cancer. 

GTSE1 ranked number one in affecting breast cancer risk in both directions when 

switching between the only two states in the sample (state 2 and state 1). This 

gene is part of the p53 signaling pathway which plays a role in two hallmarks of 

cancer: Resisting cell death and Enabling replicative immortality. 
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Table 13   
 
Results of Sensitivity Analysis for HER2 Enriched Model in Non-Hispanic White 

Cluster  

HER2 enriched Non-Hispanic White 

Candidate Gene 

Simulated 
change in gene 
expression 

Probability of 
breast Cancer 
(%) 

Relative Risk 
(RR)compared 
to Initial Pr=18 
% 

GTSE1 Normal 80 4.44 

VDAC1 Normal 66 3.67 

ATP6V1A UP 53 2.94 

BMP8A UP 44 2.44 

MAPK13 UP 44 2.44 

CDK1 Normal 37 2.06 

BMP8A Down 19 1.06 

ATP6V1A Down 13 0.72 

MAPK13 Down 11 0.61 

CDK1 UP 10 0.56 

VDAC1 UP 8 0.44 

ATP6V1A Normal 5 0.28 

BMP8A Normal 4 0.22 

MAPK13 Normal 4 0.22 

GTSE1 UP 1 0.06 

 
Note. Notice how Relative Risk figures indicate that the biggest impact in 
increasing Pr. (BC) from 18% to 80% (RR = 4.44) was achieved by switching  
GTSE1 to 100%  probability of normal expression  (initial probability of normal 
expression  was 22%). This gene was primarily overexpressed in this sample—
778%).  The same gene has the highest effect in the opposite direction of lowering 
breast cancer risk when switched to 100% upregulation. 

 
GTSE1 (G2 and S-phase expressed 1) has been reported overexpressed 

in patients with poor outcomes (Canevari et al., 2016) and as a cell migration 

promoter whose expression is correlated with invasive potential, tumor stage, and 

distant metastasis in breast tumors (Scolz et al., 2012). It is worth mentioning that 

GTSE1 is not shown as a candidate gene in any of other seven clusters studied. 
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Four genes were common to all the three local BNs (ATP6V1A, GTSE1, MAP4K2, 

and VDAC1). Sensitivity analysis showed that after changing to 100% normal 

expression the genes ATP6V1A, MAP4K2 and BMP8A, the probability of HER2+ 

breast cancer decreased to 0% from the initial joint probability of 18%. 

Furthermore, we also simulated the overexpression of the same three 

genes, and the probability of the disease increased to 93%.  These findings 

suggest that these three genes may be implicated in breast cancer development 

and progression. ATP6V1A is part of the mTOR Pathway and MAP4K2 is involved 

in the MAP-kinase Pathway (Table 3). Both signaling pathways are associated to 

sustaining proliferative signaling, one of the hallmarks of cancer. BMP8A is part of 

the TGF-beta Signaling pathway linked to Evading Growth Suppressors as we had 

mentioned it before. Figure 9 shows the Bayesian network (BN) of causal 

hypothesis genes learned from the dataset of Non-Hispanic White HER2 enriched 

breast cancer cluster and normal samples. 
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Figure 9. Bayesian network (BN) of causal hypothesis genes learned from the 
dataset of Non-Hispanic White HER2 enriched breast cancer cluster (n = 17) and 
normal samples (n = 79).  Gene expression was categorized as follows: 0 = down, 
1 = normal, and 2 = upregulated. BC was categorized 1 for breast cancer samples 
and 0 for normal. This figure shows how that the joint probability of HER2+ breast 
cancer for this cluster was 18%.  
 
Luminal B in Non-Hispanic Whites 

The results of sensitivity analysis are presented in Table 14.  Joint 

probability of breast cancer for this cohort was initially 51% (Figure 10). Only one 

gene, PARP1, was common to all three local Bayesian Networks generated by 

Banjo and was the gene with the highest impact on elevating and reducing breast 

cancer risk for this cluster (RR s = 1.84 and 0.06). PARP1 [Poly (ADP-ribose) 

polymerase 1] is very well known for its role in DNA repair and is found commonly 

upregulated in cancer (Ko & Ren, 2012; Rouleau, Patel, Hendzel, Kaufmann, & 

Poirier, 2010).   
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Table 14   
 
Results of Sensitivity Analysis for Luminal B Model in Non-Hispanic White 
 
Cluster  
 

Luminal B Non-Hispanic White 

Candidate Gene 

Simulated 
change in gene 
expression 

Probability of 
breast Cancer 
(%) 

Relative Risk 
(RR)compared 
to Initial Pr=51 
% 

PARP1 UP 94 1.84 

RRM2 Normal 93 1.82 

SLC7A5 UP 88 1.73 

TUBA1C UP 88 1.73 

SHISA5 UP 86 1.69 

SNAP29 UP 86 1.69 

BMP8A UP 85 1.67 

CACNA1E UP 81 1.59 

BAK1 UP 78 1.53 

EIF4E UP 75 1.47 

EIF4E Down 55 1.08 

SNAP29 Down 54 1.06 

EIF4E Normal 38 0.75 

CACNA1E Down 37 0.73 

BAK1 Down 31 0.61 

CACNA1E Normal 29 0.57 

SHISA5 Normal 28 0.55 

SLC7A5 Normal 28 0.55 

BAK1 Normal 26 0.51 

SLC7A5 Down 22 0.43 

BMP8A Down 20 0.39 

SNAP29 Normal 19 0.37 

TUBA1C Down 13 0.25 

SHISA5 Down 12 0.24 

TUBA1C Normal 11 0.22 

PARP1 Down 10 0.20 

RRM2 UP 5 0.10 

BMP8A Normal 4 0.08 

PARP1 Normal 3 0.06 
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Note. Notice how Relative Risk figures indicate that the biggest impact in increasing Pr. (BC) from 51% 
to 94% (RR = 4.44) was achieved by switching  PARP1 to 100%  probability of upregulation  (initial 
probability of upregulation  was 53%).  PARP1 also has the highest effect in the opposite direction of 
lowering breast cancer risk when switched to 100% normal expression (RR = 0.06).  This BN model also 
shows that RRM2 has a significant effect on modulating BC risk in both directions (RR = 1.82 and 0.10). 

 

 

Figure 10. Bayesian network (BN) of causal hypothesis genes learned from the 
dataset of Non-Hispanic White-Luminal B enriched breast cancer cluster (n = 83) 
and normal samples (n = 79).  Gene expression was categorized as follows: 0 = 
down, 1 = normal, and 2 = upregulated. BC was categorized 1 for breast cancer 
samples and 0 for normal. This figure shows that the joint probability of Luminal B 
breast cancer for this cluster was 51%.  
 

Rojo et al. (2012) found PARP1 overexpressed in 31.2% of breast cancer 

samples (n = 330), especially in triple-negative breast cancer (51%). PARP1 

overexpression was also found associated with a poor prognosis for disease-free 

and overall survival among all patients. PRP1 inhibitors are actually approved by 

the FDA under specific parameters for some cases of ovarian, fallopian tube, 
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peritoneal, and breast cancer (Pettitt & Lord, 2018).  The Bayesian network model 

developed by us is in agreement with these reported findings.  Simulating 

overexpression of PARP1 (state 2) from an initial probability of 53% upregulation 

(Figure 10) to 100 % upregulation resulted in increase of breast cancer  probability 

from 51% to 94% (Relative Risk = 1.84).  Conversely, its downregulation, which 

would be equivalent to treatment with PRP1 inhibitors, lowered the probability of 

BC to 10% (RR = 0.196). Furthermore, simulating its expression into normal 

expression levels reduced BC probability to 3% (RR = 0.06).   

Sensitivity analysis was also performed on the genes that appeared two out 

of three times in the BNs of this cluster: BAK1, BMP8A, CACNA1E, EIF4E, RRM2, 

SHISA5, SLC7A5, SNAP29, TRAF2, and TUBA1C. All had the effect of increasing 

the probability of breast cancer (RR ranging from 1.47 to 1.73) except for TRAF2. 

This did not have any effect on the Pr (BC) and RRM2, with the opposite effect of 

reducing it   to 5% (RR = 0.10). Interestingly, RRM2 has been reported to be 

downregulated in breast cancer metastasis compared to primary breast tumor 

(Bell, Barraclough & Vasieva, 2017). 

Discussion 

Dysregulation of transcription factors is a key aspect of cancer 

development, progression, and therapy resistance (Bhagwat & Vakoc, 2015). 

Transcription Factor activity profiles between clusters of cancer subtypes and 

ethnicity may help to elucidate the outcome disparities. Although multiple analysis 

and comparisons can be conducted from the results of our work, our main goal 

was focused on triple-negative breast cancer (ER-/ PR- / HER2-) the most 
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aggressive subtype that is also present in higher proportion in Non-Hispanic 

Blacks. Results of Transcription Factor Target Enrichment Analysis (TFTEA) 

showed that upregulation of NRF1 activity occurs in all eight cancer subtypes 

grouped by race and ethnicity. However, the strength of that upregulation as well 

as the number of signature (differential expressed) genes varies. Based on p 

values (Table 2), the difference in increase of NRF1 activity is more significant in 

HER2 enriched breast tumors of Non-Hispanic White patients than in all other 

clusters. HER2 enriched is one of the two more aggressive breast cancers, with 

triple-negative breast cancer (TNBC), which has a higher incidence rate among 

African Americans.  

The TNBC proportion among all breast cancer cases in the United States 

general population is between 15% and 20% but in African Americans 

approximately 30%. TNBC affects more young premenopausal women, and 

African Americans also present higher mortality rate (Hicks et al., 2013). A survival 

rate of 5 or 10 years in African American women is significantly worse than in to 

Non-Hispanic Whites (Doepker, Holt, Durkin, Chu, & Nottingham, 2018). A 

comparison of TFTEA results between the two TNBC clusters of AA and and Non-

Hispanic Whites (Table 2) shows that the number of DE genes is very similar (270), 

with a higher significance of NRF1 activity increase in the Non-Hispanic White 

group.  

A more interesting comparison is found in analysis of the causal hypothesis 

genes resulting from the Bayesian Network Analysis listed in Table 4. We found 

six common causal genes for both clusters (BAK1, CCNB1, HSPA8, LMNB2, 
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TELO2, and YWHAZ); 14 unique in the African American cluster (ATG3 , ATG4D 

, ATP6V1C2 , BIRC5 , COL9A3 , DVL2 , ECSIT , GNG8 , HSP90AB1 , ICAM1 , 

MAP2K2 , NFKB2 , PARP1, and RHEB); and 25 unique in the Non-Hispanic White 

cluster (BMP8A , CADM1 , CASP2 , CBLC , CD44 , CLDN4 , CLDN7 , DAXX , 

EFNA1 , EFNA2 , ELK1 , GNB1 , IFNAR2 , INPPL1 , PPP1CA , PPP2R1A , 

PPP2R5D , PTK2 , RELB , RRM2 , STK4 , STMN1 , VAMP8 , VAV2 , and VDAC1)  

(Figure 11).  

 

Figure 11. Venn diagram showing overlap of differentially expressed causal 
hypothesis genes in TNBC between African American (AA) and Non-Hispanic 
White (W) tumor samples.  (Diagram constructed using Core Graphic Module by 
Vijayaraj Nagarajan, and Web implementation by Mehdi Pirooznia. October 2006, 
usm.edu) 
 
 Can the NRF1 regulated causal hypothesis genes that are unique for the 

TNBC African American cluster explain the increase mortality rate compared to 

Whites? We learned that three genes--DVL2, MAP2K2, and NFKB2—were part of 

the KEGG breast cancer pathway, and two of them have already been linked to 

breast cancer.  DVL2 (disheveled segment polarity protein 2) is involved in   

promoting migration of breast cancer cells via Wnt signaling, which has been found 
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dysregulated in TNBC and associated with metastasis (Dey et al., 2013; Pohl et 

al., 2017; Zhu et al., 2012).   

NFKB2 (nuclear factor kappa B subunit 2) encodes a subunit of the 

transcription factor complex nuclear factor-kappa B (NF-κB) (Stelzer et al., 2017).  

Nuclear factor-kappa B (NF-κB) signaling has been reported involved in the 

regulation of breast cancer stem cells properties (Yeo, French, Spada, & Clarkson, 

2017). Among the other unique causal hypothesis genes in the African American-

TNBC cluster, ATP6V1C2 (ATPase, H+ transporting, lysosomal 42kD, V1 subunit 

C isoform 2) t showed the highest individual impact on breast cancer risk in our 

sensitivity analysis (RR = 2.85) and had been reported associated to breast cancer 

growth and metastasis (McConnell et al., 2017). 

For a graphical view of the NRF1 activity profile showing causal hypothesis 

genes for the eight clusters, we developed a heat map (Figure 12). Notice how 

TNBC in the Non-Hispanic Black cluster has the profile with the highest number of 

upregulated genes, followed by TNBC in the Non-Hispanic White cluster. Again, 

the heat map also shows that the three genes mentioned before have the highest 

expression level in the TNBC / Non-Hispanic Black cluster (TNB-BLACK). 
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Figure 12.  Heat map of causal hypothesis genes generated from Bayesian 
network analysis for all eight clusters. Notice how TNBC clusters for Black and 
White patients show the profiles with the highest number of upregulated genes. 
TNBC is the most aggressive subtype of breast cancer and is present in higher 
proportion in African Americans. Heat map constructed using Clustvis (Metsalu & 
Vilo. 2015).  

 

Conclusion 

 Breast cancer incidence, death rates, and overall survival vary depending 

on molecular subtypes, race, and ethnicity. Age of diagnosis, proportion of more 

aggressive tumors, and survival rates are worse among Non-Hispanic Black 

(African American) compared to Non-Hispanic White women. Biological and 
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nonbiological factors may explain these disparities. Several studies have been 

conducted addressing the nonbiological factors, such as access to health care, 

cultural issues, and comorbidities, unlike biological factors that still lack 

understanding.  

Triple-negative breast cancer is the most aggressive subtype, which is also 

present in higher proportion in African Americans. Our results show how NRF1 

sensitivity, including comparison of NRF1 activity profile of causal hypothesis 

genes in TNBC samples from African Americans versus TNBC samples from Non-

Hispanic Whites, may explain the disparities in outcomes such as lower overall 

survival.  Fourteen genes were found to be in the list of causal hypothesis genes 

that are unique to the TNBC- African American cluster These genes included DVL2 

(disheveled segment polarity protein 2) previously reported  to be associated with 

promoting migration of breast cancer cells,  NFKB2 (nuclear factor kappa B subunit 

2) involved in regulation of breast cancer stem cells properties, and ATP6V1C2 

(ATPase, H+ transporting, lysosomal 42kD, V1 subunit C isoform 2) involved in 

breast cancer growth and metastasis. 

The heat map (Figure 12) provides important information of NRF1 activity 

profiles for all eight clusters. This map can lead to new analysis involving breast 

cancer subtypes other than TNBC, our main focus. Our findings help to elucidate 

the role of NRF1 sensitivity in the development of TNBC in different racial/ethnic 

groups of breast cancer patients. Our findings may help in the future development 

of novel therapies.  
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Methods 

RNA-Seq and Clinical Data  

RNA-Seq gene expression of 20,502 genes and clinical data corresponding 

to 1,212 breast cancer and normal tissues samples were downloaded from TCGA 

with Broad Institute's Firehose tool (Version: std. data 2016-01-28). RNA-Seq data 

collected were level 3, specifying data that had already been normalized and 

assembled in counts per gene. Clinical data of patients were deidentified and   

included several characteristics, such as race, ethnicity, receptor status, cancer 

stage, and age at diagnosis.  

Receptor status (ER / PR / HER2) information  was used to classify samples 

into different clusters based on  molecular subtypes:  luminal A (ER+ and/or PR+, 

HER2-), luminal B (ER+ and/or PR+, HER2+), triple-negative (ER-, PR-, HER2-), 

and  HER2 (ER-, PR-, HER2+) (Stewart, Luks, Roycik, Sang, & Zhang, 2013). 

Race and ethnicity were also recorded (Table 1). The number of samples was 

small in some of the groups; therefore, only clusters with enough samples (eight 

in total) were selected for the study.  

Differential Expression Analysis in Breast Tumor Compared to Normal 

Tissue 

Differential expression of all 20,502 genes in breast tumor compared to 

normal samples was estimated with the limma package (Ritchie et al., 2015). This 

package uses several statistical principles that makes it effective for gene 

expression studies involving large number of genes. Limma works with a matrix of 

gene expression values, in which genes are listed in rows and samples in columns. 
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First, we used the voom function in limma to transform the normalized RNA- 

Seq counts into log2 counts per million (log CPM) in order to continue with the 

downstream analysis of differential expression.  The principal tool of the limma 

package is to develop a linear model for each gene (row), including calculation of 

regression coefficients and standard errors. This method allows the design of 

different experiments more complex that the common comparison of two 

phenotypes. Linear modeling was performed using the lmFit function. 

Subsequently, the contrast matrix was developed to compute the log2 fold   

expression changes and t statistics (breast cancer vs. normal tissue). Finally, the 

empirical Bayes approach with the eBayes function was used to estimate 

differential expression. The moderated t statistics were used for significance 

testing.  

The results provided by limma included logFC (log2 fold change), average 

expression, and adjusted p value (Table 15). Table 15 lists the top 10 differentially 

expressed genes in Luminal A breast cancer samples / Non-Hispanic White group 

and is a partial view of the complete list, presented here for illustrative purposes, 

given the extension of the file (more than 20,000 genes). The genes were ranked 

by adjusted p value to prepare the matrix for input into LRpath, the software used 

for Transcription Factor Target Enrichment Analysis (TFTEA). Differential 

expression using limma was performed for each of the eight clusters. 
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Table 15  
 
Top 10 Differentially Expressed Genes Ranked by Adjusted p Value in Luminal A 

Non-Hispanic White Breast Cancer Samples (N = 373) Compared to Normal 

Samples (N = 79)  

Gene  logFC AveExpr t P.Value adj.P.Val B 

VEGFD 
-
6.1834741 

-
0.0306428 

-
36.924037 1.23E-138 2.52E-134 

306.11717
3 

HIF3A 
-
5.2653731 

-
0.5516659 

-
32.940671 2.83E-122 2.90E-118 

268.52822
9 

LYVE1 -5.206841 
1.9797534
6 

-
32.743262 1.93E-121 1.32E-117 

266.79912
4 

DMD 
-
3.7915362 

3.8720443
7 

-
31.999619 2.76E-118 1.15E-114 259.60918 

CD300LG 
-
6.1113788 

1.1337689
5 

-
31.998388 2.80E-118 1.15E-114 

259.52398
4 

PAMR1 
-
3.7200305 

2.9445650
5 

-
31.655643 8.15E-117 2.78E-113 

256.21384
2 

SCARA5 
-
6.1865318 

1.0916359
7 

-
30.156982 2.42E-110 7.10E-107 

241.31858
9 

RYR3 
-
3.7268943 

-
0.3157998 

-
29.737855 1.64E-108 4.20E-105 

236.82852
8 

BTNL9 
-
4.0324113 

3.0323791
3 

-
29.698696 2.43E-108 5.54E-105 

236.76020
5 

MYOM1 
-
3.8374644 1.5576487 

-
29.541303 1.19E-107 2.44E-104 

235.12150
3 

  
Note. Columns are  log 2 fold change (logFC), average gene expression, adjusted 
p value and log-odds that the gene is differentially expressed (B). 
   
Transcription Factor Target Enrichment Analysis (TFTEA) to Estimate 

Changes in NRF1 Activity 

TFTEA was the method used to measure NRF1 activity based on the combined 

changes in activity of its target genes (Falco, Bleda, Carbonell-Caballero, & 

Dopazo, 2016). TFTEA is a Gene Set Enrichment (GSE) analysis that aims to 

detect asymmetrical distribution of the transcription factor target genes in the top 

(or the bottom) of the list of differentially expressed genes ranked by the adjusted 

p value (Falco et al., 2016). NRF1 target genes were selected from the results we 
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reported previously using NRF1 ChIP sequence data from the HCC1954 breast 

cancer cell line, a good model of HER2 enriched breast cancer (Ramos et al., 

2018).   

Several studies have been conducted to determine which transcription 

factor binding’s sites are functional. The results have shown that the most 

prevalent transcriptionally functional mechanisms involve binding next to the TSS 

(Tabach et al., 2007).  Consequently, we selected 8,443 genes with NRF1 peaks 

located in the promoter region. For this study, the promoter region was defined  as 

-5,000 to +1,000 bp from the Transcription Start Site (TSS), as proposed by Falco 

et al. (2016). However,  the downstream coordinate was revised to +1,000 bp 

(proposed by cited reference = up to first exon). We considered + 1,000 bp from 

TSS to be  a good approximation because the average length of  partially coding 

first exon in the human genome is 348 bp and the average 5’ UTR is 210 bp  

(Davuluri, Grosse, & Zhang, 2001; Mignone, Gissi, Liuni, & Pesole, 2002).  

After we obtained the lists of differentially expressed genes from limma and 

the list of  NRF1 target genes, in the first step we used these two files as input into 

the  web-based application LRpath (http://lrpath.ncibi.org/) to perform the TFTEA 

(Kim et al., 2012; Lee, Patil, & Sartor, 2016; Sartor et al., 2009). Initially, the input 

file (limma output) containing the list of all 20,502 genes in rows and three columns 

displaying log fold change (logFC) and adjusted p value and average gene 

expression was uploaded into the LRpath web server. The second step was to 

upload the dataset to search against the list of NRF1 target genes. The final step 

before execution of the LRpath search was to set up the searching parameters, 
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which included the selection of directional test option to detect up or down 

regulation of the gene set under investigation.  

This process was repeated with all eight clusters. The LRpath method 

consists of using linear regression to find the functional relationship between the 

odds of a gene to be part of a gene set (NRF1 target gene in this case) with 

statistical significance of its differential expression (adjusted p value). To measure 

the statistical significance, LRpath computes the p value adjusted for multiple 

testing using the Benjamini-Hochberg procedure to reduce the false discovery rate 

(FDR). By our setting up LRpath to perform a directional test, the software was 

able to determine whether the NRF1 target set was enriched with genes up or 

down regulated.  

Based on these results, it could be inferred whether   NRF1 activity was up 

or down regulated. LRpath output included the number and symbols of NRF1 

target genes with DE p < 0.05 (signature genes), the direction of the enrichment 

(upregulation or downregulation) and the p value. The selection of genes for 

Bayesian network modeling was based on the list of signature genes generated by 

LRpath. 

Selection of Genes for Bayesian Network Modeling 

Differential expression analysis and TFTEA, as mentioned, allowed us to 

obtain the list of NRF1 target genes with significant differential expression in breast 

cancer compared to normal for each cluster (signature genes). The strategy 

chosen to identify the drivers of the disease was to construct a Bayesian network 

model using the software Banjo. Since the number of signature genes for each 
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cluster was too large (ranging from 3,103 Luminal A  to  2,252 HER2+ in Non-

Hispanic Whites) to perform the Bayesian network modeling, we lowered the 

number of genes by selecting only those involved in the processes of cells 

acquiring  the hallmarks of cancer  (Hanahan & Weinberg, 2011).  

For that purpose, we searched against the list of 902 NRF1 target genes 

involved in hallmarks of cancer we had previously discovered using ChIP-Seq data 

of HCC1954 (breast cancer cells) and HMEC (normal human mammary epithelial 

cells) cell lines (Table 3) (Ramos et al., 2018). Table 3 shows genes classified by 

signaling pathways (PI3K-Akt Signaling, MAP-kinase Pathway, mTOR Pathway, 

Cellular Senescence, p53 Signaling, Apoptosis, TGF-beta Signaling, Autophagy,  

VEGF Signaling, ECM-receptor interaction, Cell adhesion molecules (CAMs), T 

cell receptor signaling pathway, and B cell receptor signaling pathway) and 

mapped to the hallmarks of cancer (Sustaining proliferative signaling, Evading 

growth suppressors, Resisting cell death, Enabling replicative immortality, 

Inducing Angiogenesis, Activating invasion and metastasis, and Evading immune 

destruction). Use of this list as a filter not only contributed to a lower number of 

candidate genes but also to incorporate biological knowledge to the model. Table 

16 shows the number of genes that finally were used for input into Banjo for 

Bayesian network learning. 
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Table 16   
 
Number of NRF1 Target Genes Selected for Bayesian Network Modeling  in Each 

Cluster After Selecting Among Differentially Expressed (Signature Genes)  Those  

Involved in Signaling Pathways Linked to the Hallmarks of Cancer 

  Breast Cancer samples Normal samples   
Bayesian 
Network 
Modeling 

MOL 
SUBT 

ETHNICITY AND  
RACE 

# of 
sampl
es 

ETHNICITY 
AND 
RACE 

# of 
sampl
es 

Number of 
NRF1 target 
genes with  
DE p<0.05 and 
also involved in 
hallmarks of 
cancer signaling 
pathways 
 

HER2 
Enriche
d 

Non-
Hispanic  

White  17 Non-
Hispanic  

Whit
e  

79  
138 

Luminal 
A 

Non-
Hispanic  

Asian 22 Non-
Hispanic  

Whit
e  

79 163 

Luminal 
A 

Non-
Hispanic  

White  373 Non-
Hispanic  

Whit
e  

79 181 

Luminal 
B 

Non-
Hispanic  

White  83 Non-
Hispanic  

Whit
e  

79 161 

Luminal 
A 

Hispanic  White  21 Non-
Hispanic  

Whit
e  

79 158 

Triple-
negative 

Non-
Hispanic  

White  74 Non-
Hispanic  

Whit
e  

79 181 

Luminal 
A 

Non-
Hispanic  

Black 69 Non-
Hispanic  

Whit
e  

79 163 

Triple-
negative 

Non-
Hispanic  

Black 48 Non-
Hispanic  

Whit
e  

79 162 
 

 

Bayesian Network Modeling: Structural and Parameter Learning 

Bayesian networks (BNs) are graphical representation of joint probability 

distributions. A BN consists of a number of variables represented by nodes which 
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are connected by edges representing causal probabilistic relationship between the 

variables. To develop a BN structure, two aspects need to be learned from the 

dataset: the structure and the parameters (Fuster-Parra et al., 2016). Banjo free 

software developed under the direction of Alexander J. Hartemink in the 

Department of Computer Science at Duke University was used to obtain the 

structures (https://users.cs.duke.edu/~amink/software/banjo/) (Hartemink, 2010). 

The data matrix for input into Banjo consists of the list of variables as row 

names (selected genes, age of patients at diagnosis, and breast cancer status) 

and sample IDs as column names. The matrix is completed with the corresponding 

values.  Banjo required the data to be categorized. For gene expression we used 

three tiers with cutoff points equal to the mean plus or minus one standard 

deviations of the particular gene expression in the group of normal tissue samples.  

Any value between the two cutoff points was considered normal with 

categorical value equal to one (1). Values greater than the mean plus one standard 

deviation were considered upregulated with an assigned value of two (2), and 

values below the mean minus one standard deviation were considered 

downregulated with a value of zero (0).  For age we used three tiers: less than 50 

years of age at the time of diagnosis was categorized as equal to 0, between 50 

and 60 years was categorized as equal to 1, and more than 60 years old was 

categorized as equal to 2. Disease status was categorized 0 for normal tissue 

samples and 1 for breast cancer samples.  

Structural learning of BNs from data is considered an NP-hard problem, and 

the number of possible networks increases exponentially with the increase in the 
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number of variables (Adabor, Acquaah-Mensah, & Oduro, 2015). Banjo’s 

approach to structural learning is based on searching and scoring for structure 

inference (Hartemink, 2010). The metric used for scoring is the Bayesian Dirichlet 

Equivalence (BDe), which is proportional to the posterior probability of the network 

given the data. The single highest scoring network is selected after searching 

millions of structures. Given the extent of the search, Banjo provides the best local 

network found after the time limit has been reached. We set up 8 hours as the time 

limit for the search and ran Banjo three times for each cluster. Each run provided 

the best local network, after which we selected the one with the best BDe score as 

the closest approximation to the global network. 

  Selected networks for each cluster were used to identify the Markov blanket 

genes (also called causal hypothesis genes) of the breast cancer node (BC), our 

variable of interest. Markov blanket genes of a node are its parents, children, and 

other children’s parents. This variable (node) is conditionally independent of all the 

other variables (nodes), and therefore Markov blanket genes are the only ones we 

need to incorporate in our final BN model, whose goal is to identify the drivers of 

the disease (Figure 2).  

After the network and Markov blanket genes have been selected, the final 

step for Bayesian network modeling is parameter learning.  During parameter 

learning, a software program is used to estimate the conditional probabilities given 

the structure (Fuster-Parra et al., 2016) and the data matrix. This data matrix is 

basically the same matrix used for network learning except that it includes omly 

the Markov blanket genes. We used GeNIe Modeler, software developed at the 
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Decision Systems Laboratory, University of Pittsburgh (currently licensed to the 

company BayesFusion) for parameter learning. GeNIe can be downloaded free for 

academics using the software for teaching and research at 

https://download.bayesfusion.com/files.html?category=Academia. 

Validation of Proposed Bayesian Networks (Bns) 

The main objective of the constructed BN model is to predict the probability 

of breast cancer based on the values of the variables (gene expression). GeNIe 

can use different methods for validation. We used the most powerful 

crossvalidation method, known as K-fold crossvalidation. In this method, the data 

are divided into K equally sized groups. The model is trained with K-1 and is 

validated using the Kth group. This process is repeated with different parts of the 

dataset. For our validation process we selected K = 10. Validation results from 

GeNIe include a file with predictive and real values of breast cancer probability and 

the values of sensitivity, accuracy, and area under the Receiver Operating 

Characteristic (ROC) curve. Table 6 shows the results of crossvalidation for all 

eight clusters. After proving with validation that these were good models for breast 

cancer prediction, we proceeded to carry out sensitivity analysis to identify those 

genes that have the greatest impact on breast cancer. 

Sensitivity Analysis of Bayesian Networks (Bns) 

In statistical terms, GeNIe allows us to automatically estimate the posterior 

probability distribution after observing evidence. This observing evidence may be 

changes in levels of gene expression. Since we wanted to identify those genes 

with the highest impact on the probability of breast cancer, we developed a 
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strategy of systematically changing the levels of gene expression in the causal 

hypothesis genes to detect what type of changes and what genes affected the 

most the probability of development of breast cancer according to the model. 

Sensitivity analysis was concentrated on the parents of the BC node and 

the genes that appeared in the Markov blanket genes in at least two of the three 

best local networks. However, we did not discard any of the discovered Markov 

blanket genes as potential drivers of the disease for each cluster studied here. Our 

search was not restricted to individual gene changes but included simultaneous 

changes in several genes. We considered that sensitivity analysis using GeNIe is 

easier to explain with the use of practical examples and thus decided to incorporate 

most of the details of the methods used in this part of our research into the results 

section. With this information, readers may become informed about the results and 

methods at the same time. 
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CHAPTER VI 

OVERALL CONCLUSIONS 

 The primary goal of this dissertation was to decipher mechanisms by which 

nuclear respiratory factor 1 (NRF1) coordinates changed in the transcriptional and 

chromatin landscape, affecting development and progression of invasive breast 

cancer. This study was undertaken  to contribute to clarification of   the molecular 

basis underlying the aggressiveness of some  breast cancer subtypes and 

disparities associated with race and ethnicity. Based on previous research 

conducted by our laboratory and the current literature review demonstrating the 

involvement of the transcription factor NRF1 in the control of breast cancer cells 

cycle progression, we hypothesized  that NRF1 reprogramming of the transcription 

of tumor initiating gene(s) and tumor suppressor gene(s) contribute to the 

development and progression of invasive breast cancer.  

Three specific goals were established to test our hypothesis: (a) Decipher 

regulatory landscape of NRF1 networks in breast cancer. (b) Determine the role of 

NRF1 gene networks in different subtypes of breast cancer. (c) Determine 

differential NRF1 gene network sensitivity contributing to breast cancer disparities. 

To accomplish the first goal, we used published NRF1 ChIP-Seq data from 

different breast cancer cells (MCF7, T47D, and HCC1954) and normal human 

mammary epithelial cells (HMEC) to identify approximately 10,000 potential NRF1 

target genes with NRF1 binding sites next to the Transcription Start Site (TSS) and 

enhancer regions located hundreds of thousands of cells from the promoter region. 

We also found that NRF1 regulatory network was cell context dependent. Using 
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Gene Ontology and Pathway Analysis, we confirmed the participation of NRF1 

regulated genes in signaling pathways and biological processes important in 

breast cancer development and progression. 

To determine the role of NRF1 gene networks in different subtypes of breast 

cancer, we used a large set of RNA-Seq gene expression (dataset 20,502 genes) 

corresponding to 1,212 samples from the Cancer Genome Atlas (TCGA). A 

systematic integration of ChIP DNA-seq, RNA-Seq data combined with NRF1 

protein-DNA motif binding, signal pathway analysis, and Bayesian machine 

learning were used to identify differentially regulated NRF1 target genes involved 

in ER/PR - Her2 + (HER2 enriched) breast cancer. Contribution to the susceptibility 

of the disease may be via perturbation of regulation of diverse growth factor 

receptors, PI3K-Akt-mTOR, MAPK, E2Fs, and Wnt pathways. We also observed 

new roles for NRF1 in the acquisition of breast tumor initiating cells, regulation of 

epithelial to mesenchymal transition (EMT), and invasiveness of breast cancer 

stem cells. The NRF1 motif was one of the principal regulatory motifs significantly 

associated with worsening histological grades and poor breast cancer prognosis. 

Finally, using differentially expressed genes, transcription factor target 

enrichment analysis (TFTEA) and Bayesian network analysis to investigate breast 

cancer disparities, we discovered 14 causal hypothesis genes that may explain the 

outcome disparities in TNBC when we compared African American with Non-

Hispanic White patients. Our findings were aligned with previous studies reporting 

that the genes DVL2, NFKB2, and ATP6V1C2 were linked to growth, migration, 

and metastasis of breast cancer cells. 
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 Clinical confirmation of our study will have a significant impact on the 

understanding of the role of NRF1 as a valuable additional biomarker for assessing 

resistance to therapeutic response in HER2+ and TNBC, the two most aggressive 

breast cancer subtypes.  

Limitations 

Methods used in the search of   NRF1 motif sequence-enriched genes 

involved in er-pr-her2+ breast cancer signaling pathways (Chapter IV) and breast 

cancer disparities associated with aggressive subtypes HER2+ and triple- negative 

breast cancer—TNBC (Chapter V)  involved the use of  Bayesian network analysis. 

We used the Bayesian score, which is the posterior probability of the network given 

the data P (G/D), to select the structure with the best score and to make inferences 

assuming this was the true model.  

Even though this approach is widely used, it lacks consideration of the 

uncertainty of the model. This uncertainty is particularly risky when there are a 

large number of structures with highest scores that are very close to each other.  

Several methods have been proposed to account for model uncertainty, referred 

to as Bayesian Model Averaging (BMA). Thus, it would be advisable to use BMA 

to confirm our results. Nevertheless, the candidate hypothesis genes we 

discovered were confirmed with the mathematical validation of the model to predict 

breast cancer status. We established with biological knowledge that some cellular 

processes and signaling pathways known to play important roles in cancer 

development and progression were enriched with these NRF1 targets. 
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Future Studies 

The heterogeneity of breast cancer is widely known. Scientists have made 

great progress in finding common ground by categorizing breast tumors into five 

to 10 molecular subtypes. Here we have shown that the genetic profile of breast 

cancer can be different from one individual to another based not only on molecular 

subtype but also on race and ethnicity. The methods we used in this research and 

the results may be employed in the future towards a more personalized approach 

aimed at identifying patient-specific genetic profiles of tumors to identify gene 

drivers specific to patients. Corresponding personalized treatment and therapy 

could be aimed at increasing the overall survival of breast cancer patients, 

especially patients affected with the more aggressive subtypes of breast cancer. 
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