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ABSTRACT OF THE DISSERTATION

A MATHEMATICAL FRAMEWORK ON MACHINE LEARNING: THEORY

AND APPLICATION

by

Bin Shi

Florida International University, 2018

Miami, Florida

Professor Sundaraja S. Iyengar, Major Professor

The dissertation addresses the research topics of machine learning outlined below.

We developed the theory about traditional first-order algorithms from convex opti-

mization and provide new insights in nonconvex objective functions from machine

learning. Based on the theory analysis, we designed and developed new algorithms to

overcome the difficulty of nonconvex objective and to accelerate the speed to obtain

the desired result. In this thesis, we answer the two questions: (1) How to design a

step size for gradient descent with random initialization? (2) Can we accelerate the

current convex optimization algorithms and improve them into nonconvex objective?

For application, we apply the optimization algorithms in sparse subspace clustering.

A new algorithm, CoCoSSC, is proposed to improve the current sample complexity

under the condition of the existence of noise and missing entries.

Gradient-based optimization methods have been increasingly modeled and inter-

preted by ordinary differential equations (ODEs). Existing ODEs in the literature

are, however, inadequate to distinguish between two fundamentally different meth-

ods, Nesterov’s acceleration gradient method for strongly convex functions (NAG-SC)

and Polyak’s heavy-ball method. In this paper, we derive high-resolution ODEs as

more accurate surrogates for the two methods in addition to Nesterov’s acceleration

gradient method for general convex functions (NAG-C), respectively. These novel

vi



ODEs can be integrated into a general framework that allows for a fine-grained anal-

ysis of the discrete optimization algorithms through translating properties of the

amenable ODEs into those of their discrete counterparts. As a first application of

this framework, we identify the effect of a term referred to as gradient correction in

NAG-SC but not in the heavy-ball method, shedding deep insight into why the for-

mer achieves acceleration while the latter does not. Moreover, in this high-resolution

ODE framework, NAG-C is shown to boost the squared gradient norm minimization

at the inverse cubic rate, which is the sharpest known rate concerning NAG-C itself.

Finally, by modifying the high-resolution ODE of NAG-C, we obtain a family of new

optimization methods that are shown to maintain the accelerated convergence rates

as NAG-C for minimizing convex functions.

Key Words. Convex optimization, first-order method, Polyak’s heavy ball method,

Nesterov’s accelerated gradient methods, ordinary differential equation, Lyapunov

function, gradient minimization, dimensional analysis, phase space representation,

numerical stability
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CHAPTER 1

INTRODUCTION

1.1 Background

With the explosive growth of data nowadays, a young and interdisciplinary field,

Data Science, has emerged, which uses scientific methods, processes, algorithms

and systems to extract knowledge and insights from data in various forms, both

structured and unstructured. This data science field is becoming popular and needs

to be developed urgently so that it can serve and guide for the industry of the society.

Rigorously, applied Data Science is a “concept to unify statistics, data analysis,

machine learning and their related methods” in order to ”understand and analyze

actual phenomena” with data. It employs techniques and theories drawn from many

fields within the context of mathematics, statistics, information science, and computer

science.

Within the field of data analytics, Machine Learning is a method used to devise

complex models and algorithms that lend themselves to prediction; in commercial use,

this is known as predictive analytics. The name Machine Learning was coined in

1959 by Arthur Samuel, evolved from the study of pattern recognition and compu-

tational learning theory in artificial intelligence. Computational Statistics, which

also focuses on prediction-making through the use of computers, is a closely related

field and often overlaps with Machine Learning.

The name, Computational Statistics, tells us that it is composed of two in-

dispensable parts, statistics inference models as well as the corresponding algorithms

implemented in computers. Based on the different kinds of hypotheses, statistics

inference can be divided into two schools, frequentist inference school and Bayesian

inference school. Now, we briefly describe them. Let H be a hypothesis and D be
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data which may give evidence for H. The probabilities about the event are defined

as below

• The priori P (H) is the probability that H is true before the data is considered.

• The posterior P (H|D) is the probability that H is true after the data D is

considered.

• The likelihood P (D|H) is the evidence about H provided by the data D.

• P (D) is the total probability, shown as below

P (D) =
∑
H

P (D|H)P (H)

Connecting the probabilities above is the significant Bayes’ formula in the theory of

probability

P (H|D) =
P (D|H)P (H)

P (D)
∼ P (D|H)P (H) . (1.1)

where P (D) can be calculated automatically if we have known the likelihood P (D|H)

and P (H). If we presume that some hypothesis (parameter specifying the conditional

distribution of the data) is true and that the observed data is sampled from that

distribution, that is,

P (H) = 1,

only using conditional distributions of data given specific hypotheses is the view of

the frequentist school. However, if there is no presumption that some hypothesis

(parameter specifying the conditional distribution of the data) is true, that is, there

is a prior probability for the hypothesis H,

H ∼ P (H),

summing up the information from the prior and likelihood is the view from the

Bayesian school. Apparently, the view from the frequentist school is a special case
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of the view from the Bayesian school, but the view from the Bayesian school is more

comprehensive and requires more information.

Take the Gaussian distribution with known variance for the likelihood as an ex-

ample. Without loss of generality, we assume the variance σ2 = 1. In other words,

the data point is viewed as a random variable X following the rule below,

X ∼ P (x|H) =
1√
2π
e−

(x−µ)2
2

where the hypothesis is H = {µ|µ ∈ (−∞,∞) is some fixed real number}. Let the

data set be D = {xi}ni=1. The frequentist school requires to compute maximum

likelihood or maximum log-likelihood, that is

argmax
µ∈(−∞,∞)

f (µ) = argmax
µ∈(−∞,∞)

logP (D|H)

= argmax
µ∈(−∞,∞)

(
log

n∏
i=1

P (xi ∈ D|H)

)

= argmax
µ∈(−∞,∞)

log

( 1√
2π

)n
e−

n∑
i=1

(xi−µ)
2

2


= − argmin

µ∈(−∞,∞)

[
1

2

n∑
i=1

(xi − µ)2 + n log
√

2π

]
,

(1.2)

which has been shown in the classical textbooks, such as [RS15]; whereas the Bayesian

school requires to compute maximum posterior estimate or maximum log-posterior

estimate, that is, we need to assume reasonable prior distribution

• If the prior distribution is a Gauss distribution µ ∼ N (0, σ2
0), we have

argmax
µ∈(−∞,∞)

f (µ) = argmax
µ∈(−∞,∞)

logP (D|H)P (H)

= argmax
µ∈(−∞,∞)

log

(
n∏
i=1

logP (xi ∈ D|H)

)
P (H)

= argmax
µ∈(−∞,∞)

log


( 1√

2π

)n
e−

n∑
i=1

(xi−µ)
2

2

 · ( 1√
2πσ0

)
e
− µ2

2σ20


= − argmin

µ∈(−∞,∞)

[
1

2

n∑
i=1

(xi − µ)2 +
1

2σ2
0

· µ2 + n log
√

2π + log
√

2πσ0

]
(1.3)
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• If the prior distribution is Laplace distribution µ ∼ L(0, σ2
0), we have

max
µ∈(−∞,∞)

f (µ) = argmax
µ∈(−∞,∞)

logP (D|H)P (H)

= argmax
µ∈(−∞,∞)

log

(
n∏
i=1

logP (xi ∈ D|H)

)
P (H)

= argmax
µ∈(−∞,∞)

log


( 1√

2π

)n
e−

n∑
i=1

(xi−µ)
2

2

 · ( 1

2σ2
0

)
e
− |µ|
σ20


= − argmin

µ∈(−∞,∞)

[
1

2

n∑
i=1

(xi − µ)2 +
1

σ2
0

· |µ|+ n log
√

2π + log 2σ2
0

]
(1.4)

• If the prior distribution is the mixed distribution combined with Laplace distri-

bution and Gaussian distribution µ ∼M(0, σ2
0,1, σ

2
0,2), we have

argmax
µ∈(−∞,∞)

f (µ) = argmax
µ∈(−∞,∞)

logP (D|H)P (H)

= argmax
µ∈(−∞,∞)

log

(
n∏
i=1

logP (xi ∈ D|H)

)
P (H)

= argmax
µ∈(−∞,∞)

log


( 1√

2π

)n
e−

n∑
i=1

(xi−µ)
2

2

 · C(σ0,1, σ0,2)
−1e
− |µ|
σ20,1
− µ2

2σ20,2


= − argmin

µ∈(−∞,∞)

[
1

2

n∑
i=1

(xi − µ)2 +
1

σ2
0

· |µ|+ 1

2σ2
0,2

· µ2

+n log
√

2π + logC(σ0,1, σ0,2)
]

(1.5)

where C = 2
√

2πσ2
0,1σ0,2.

In summary, based on the description above, to solve this statistic problem can

be transformed into an optimization problem.

1.2 Problem Statement

Based on the description on the statistics model in the previous section, we state the

problems that we need to solve from two aspects. One is from the field of optimization,
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the other is from samples of probability distribution. Practically, from the view of

efficient algorithms in computers, the representation of the first one is the expectation-

maximization (EM) algorithm. The EM algorithm is used to find (local) maximum

likelihood parameters of a statistical model in cases where the equations cannot be

solved directly. Typically these models involve latent variables in addition to unknown

parameters and known data observations. That is, either missing values exist among

the data, or the model can be formulated more simply by assuming the existence of

further unobserved data points. For example, a mixture model can be described more

simply by assuming that each observed data point has a corresponding unobserved

data point, or latent variable, specifying the mixture component to which each data

point belongs.

Finding a maximum likelihood solution typically requires taking the derivatives

of the likelihood function with respect to all the unknown values, the parameters and

the latent variables, and simultaneously solving the resulting equations. In statistical

models with latent variables, this is usually impossible. Instead, the result is typically

a set of interlocking equations in which the solution to the parameters requires the

values of the latent variables and vice versa, but substituting one set of equations

into the other produces an unsolvable equation.

The EM algorithm proceeds from the observation that there is a way to solve

these two sets of equations numerically. One can simply pick arbitrary values for one

of the two sets of unknowns, use them to estimate the second set, then use these new

values to find a better estimate of the first set, and then keep alternating between the

two until the resulting values both converge to fixed points. It’s not obvious that this

will work, but it can be proven that in this context it does, and that the derivative

of the likelihood is (arbitrarily close to) zero at that point, which in turn means that

the point is either a maximum or a saddle point. In general, multiple maxima may
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occur, with no guarantee that the global maximum will be found. Some likelihoods

also have singularities in them, i.e., nonsensical maxima. For example, one of the

solutions that may be found by EM in a mixture model involves setting one of the

components to have zero variance and the mean parameter for the same component

to be equal to one of the data points.

The second one is the Markov chain Monte Carlo (MCMC) method. Markov

chain Monte Carlo methods are primarily used for calculating numerical approxima-

tions of multi-dimensional integrals, for example in Bayesian statistics, computational

physics, computational biology and computational linguistics.

In Bayesian statistics, the recent development of Markov chain Monte Carlo meth-

ods has been a key step in making it possible to compute large hierarchical models

that require integrations over hundreds or even thousands of unknown parameters.

In rare event sampling, they are also used for generating samples that gradually

populate the rare failure region.

1.2.1 Optimization

Recall the process of finding the maximum probability, which is equivalent to the

maximum log-likelihood or the maximum log-posterior estimate in essential. We

describe them rigorously in statistics language as below.

• Finding the maximum likelihood (1.2) is equivalent to the expression below

argmax
µ∈(−∞,∞)

f (µ) = − argmin
µ∈(−∞,∞)

[
1

2

n∑
i=1

(xi − µ)2

]
, (1.6)

which is named linear regression in statistics.

• Finding the maximum posterior estimate (1.3) is equivalent to the expression

below

argmax
µ∈(−∞,∞)

f (µ) = − argmin
µ∈(−∞,∞)

[
1

2

n∑
i=1

(xi − µ)2 +
1

2σ2
0

· µ2

]
, (1.7)

6



which is named ridge regression in statistics.

• Finding the maximum posterior estimate (1.3) is equivalent to the expression

below

argmax
µ∈(−∞,∞)

f (µ) = − argmin
µ∈(−∞,∞)

[
1

2

n∑
i=1

(xi − µ)2 +
1

σ2
0

· |µ|

]
, (1.8)

which is named lasso in statistics.

• Finding the maximum posterior estimate (1.3) is equivalent to the expression

below

argmax
µ∈(−∞,∞)

f (µ) = − argmin
µ∈(−∞,∞)

[
1

2

n∑
i=1

(xi − µ)2 +
1

σ2
0,1

· |µ|+ 1

2σ2
0,2

· µ2

]
, (1.9)

which is named elastic-net in statistics.

Linear regression (1.6) is considered as one of the standard models in statistics, the

variants (1.7), (1.8) and (1.9) of which are viewed as linear regression with regularizers.

Every regularizer has its own advantage, the advantage of ridge regression (1.7) is

stability, that of lasso (1.8) is sparsity, and that of elastic-net (1.9) owns sparsity and

group-effect. Especially, due to the sparse property, the lasso (1.8) become one of the

most significant models in statistics.

The linear regression and its variants above can be reduced to finding a minimizer

of the convex objective function without constraint:

min
x∈R

f(x),

of which the corresponding high-dimension expression highly concerned in practice is

min
x∈Rn

f(x).

All of descriptions above are from the simple likelihood. In biology, the models

above are suitable to study for a single species. Take the tigers in China for example.
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Figure 1.1: Left: Siberian Tiger; Right: South China tiger.

There are two kinds of tigers in China, Siberian tiger and South China tiger (Fig-

ure 1.1). If we only consider one kind of tigers, Siberian tiger or South China tiger,

then we can assume the likelihood is a single Gaussian; but if we consider the total

tigers in China, both Siberian tiger and South China tiger, then the likelihood is a

superposition of two single Gaussian. The simple sketch in R is shown in Figure 1.2.

Comparing the left two and the right one in Figure 1.2, there exists three stationary

Figure 1.2: Left: Gaussian-1; Middle: Gaussian-2; Right: Mixed Gaussian: Gaussian-
1+Gaussian-2.

points, two local maximal points and one local minimal point. In other words, the

objective function is nonconvex. The classical convex optimization algorithms, based

on the principle that the local minimal point is the global minimal point, are not

suitable for the original convex case. Furthermore, if the dimension of the objective
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function is greater than and equal 2, there exists another stationary point: saddle.

We demonstrate the different stationary points in Figure 1.3.

Figure 1.3: Left: Local Minimal Point; Middle: Local Maximal Point; Right: Saddle.

From the descriptions above, many statistics models are finally transformed to

solve an optimization problem, not only simple convex optimization but also complex

nonconvex optimization. What’s more, the optimization algorithms are based on

the information from the objective function. The classical oracle assumption for the

smoothness is described in [Nes13] as below

• Zero-order oracle assumption: returns the value f(x);

• First-order Oracle assumption: returns the value f(x) and the gradient ∇f(x);

• Second-order oracle assumption: returns the value f(x), the gradient ∇f(x)

and the Hessian ∇2f(x).

To discriminate if an optimization algorithm is highly efficient in practice, based

on the performance, the main characters are from oracle information and itera-

tion complexity. Apparently, zero-order oracle algorithms are firstly considered.

Currently, there are two main kinds of methods involved to implement: kernel-

based bandit algorithms [BLE17] and algorithms of single-point gradient estima-

tion [FKM05], [HL14]. Since the fewer oracle information leads to the higher it-

eration complexity, the zero-order oracle algorithms are not popular in practice.
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Furthermore, developing zero-order oracle algorithms are still in the convex stage.

Second-order oracle algorithms have been studied widespread for last four decades,

which are essentially based on classical Newton iteration, such as modified New-

ton’s method [MS79], modified Cholesky’s method [GM74], Cubic-Regularization

method [NP06] and Trust Region method [CRS14]. Currently, with the success of

deep learning, some algorithms based on Hessian-prodcut in nonconvex objective have

been proposed in [AAZB+17, CD16, CDHS16, LY17, RZS+17, RW17]. However, the

difficulty of computing the Hessian information leads to infeasibility in current com-

puters.

Now, we come to the first-order algorithms which have been widespread used.

First-order algorithms only need to compute gradient which takes O(d) time com-

plexity, where the dimension d is large. Recall the statistics model (1.6), (1.7), (1.8)

and (1.9), if we compute the full gradient ∇f(µ), it leads to deterministic algorithms;

if we compute one gradient ∇fi(µ), that is, (xi − µ) for some 1 ≤ i ≤ n, it leads to

stochastic algorithms. In this thesis, we focus on deterministic algorithms.

1.2.1.1 Gradient Descent

Gradient descent (GD) and its variants provide the core optimization methodology

in machine learning problems. Given a C1 or C2 function f : Rn → R with uncon-

strained variable x ∈ Rn, GD uses the following update rule:

xk+1 = xk − hk∇f (xk) (1.10)

where hk are step size, which may be either fixed or vary across iterations. When

f is convex, hk <
2
L

is a necessary and sufficient condition to guarantee the (worst-

case) convergence of GD, where L is the Lipschitz constant of the gradient of the

function f . On the other hand, there is far less understanding of GD for non-convex
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problems. For general smooth non-convex problems, GD is only known to converge

to a stationary point (i.e., a point with zero gradient) [Nes13].

Machine learning tasks often require finding a local minimizer instead of just a

stationary point, which can also be a saddle point or a maximizer. In recent years,

there has been an increasing focus on geometric conditions under which GD escapes

saddle points and converges to a local minimizer. More specifically, if the objective

function satisfies 1) all saddle point are strict and 2) all local minima are global min-

ima then GD finds a global optimal solution. These two properties hold for a wide

range of machine learning problems, such as matrix factorization [LWL+16], matrix

completion [GLM16, GJZ17], matrix sensing [BNS16, PKCS17], tensor decomposi-

tion [GHJY15], dictionary learning [SQW17] and phase retrieval [SQW16].

Recent works showed when the objective function has the strict saddle property,

then GD converges to a minimizer provided the initialization is randomized and the

step sizes are fixed and smaller than 1/L [LSJR16, PP16]. While this was the first

results establishing convergence of GD, there are still gaps toward fully understanding

GD for strict saddle problems.

1.2.1.2 Accelerated Gradient Descent

Non-convex optimization is the dominating algorithmic technique behind many state-

of-art results in machine learning, computer vision, natural language processing and

reinforcement learning. Finding a global minimizer of a non-convex optimization

problem is NP-hard. Instead, the local search method become increasingly important,

which is based on the method from convex optimization problem. Formally, the

problem of unconstrained optimization is stated in general terms as that of finding

the minimum value that a function attains over Euclidean space, i.e.

min
x∈Rn

f(x).
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Numerous methods and algorithms have been proposed to solve the minimization

problem, notably gradient methods, Newton’s methods, trust-region method, ellipsoid

method and interior-point method [Pol87b, Nes13, WN99, LY+84, BV04, B+15].

First-order optimization algorithms are the most popular algorithms to perform

optimization and by far the most common way to optimize neural networks, since the

second-order information obtained is supremely expensive. The simplest and earliest

method for minimizing a convex function f is the gradient method, i.e.,
xk+1 = xk − h∇f(xk)

Any Initial Point : x0.

(1.11)

There are two significant improvements of the gradient method to speed up the con-

vergence. One is the momentum method, named as Polyak heavy ball method, first

proposed in [Pol64], i.e.,
xk+1 = xk − h∇f(xk) + γk(xk − xk−1)

Any Initial Point : x0.

(1.12)

Let κ be the condition number, which is the ratio of the smallest eigenvalue and

the largest eigenvalue of Hessian at local minima. The momentum method speed

up the local convergence rate from 1 − 2κ to 1 − 2
√
κ. The other is the Notorious

Nesterov’s accelerated gradient method, first proposed in [Nes83] and an improved

version [NN88, Nes13], i.e. 
yk+1 = xk −

1

L
∇f(xk)

xk+1 = xk + γk(xk+1 − xk)

Any Initial Point : x0 = y0

(1.13)

where the parameter is set as

γk =
αk(1− αk)
α2
k + αk+1

and α2
k+1 = (1− αk+1)α

2
k + αk+1κ.
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The scheme devised by Nesterov does not only own the property of the local con-

vergence for strongly convex function, but also is the global convergence scheme,

from 1 − 2κ to 1 −
√
κ for strongly convex function and from O

(
1
n

)
to O

(
1
n2

)
for

non-strongly convex function.

Although there is the complex algebraic trick in Nesterov’s accelerated gradi-

ent method, the three methods above can be considered from continuous-time lim-

its [Pol64, SBC14, WWJ16, WRJ16] to obtain physical intuition. In other words,

the three methods can be regarded as the discrete scheme for solving the ODE. The

gradient method (1.11) is correspondent to
ẋ = −∇f(xk)

x(0) = x0,

(1.14)

and the momentum method and Nesterov accelerated gradient method are correspon-

dent to 
ẍ+ γtẋ+∇f(x) = 0

x(0) = x0, ẋ(0) = 0,

(1.15)

the difference of which are the setting of the friction parameter γt. There are two sig-

nificant intuitive physical meaning in the two ODEs (1.14) and (1.15). The ODE (1.14)

is the governing equation for potential flow, a correspondent phenomena of waterfall

from the height along the gradient direction. The infinitesimal generalization is corre-

spondent to heat conduction in nature. Hence, the gradient method (1.11) is viewed

as the implement in computer or optimization simulating the phenomena in the real

nature. The ODE (1.15) is the governing equation for the heavy ball motion with

friction. The infinitesimal generalization is correspondent to chord vibration in na-

ture. Hence, the momentum method (1.12) and the Nesterov’s accelerated gradient

method (1.13) are viewed as the update version implement in computer or optimiza-

tion by use of setting the friction force parameter γt.
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Furthermore, we can view the three methods above as the thought for dissipating

energy implemented in the computer. The unknown objective function in black box

model can be viewed as the potential energy. Hence, the initial energy is from the

potential function f(x0) at x0 to the minimization value f(x?) at x?. The total energy

is combined with the kinetic energy and the potential energy. The key observation

in this paper is that we find the kinetic energy, or the velocity, is observable and

controllable variable in the optimization process. In other words, we can compare

the velocities in every step to look for local minimum in the computational process

or re-set them to zero to arrive to artificially dissipate energy.

Let us introduce firstly the governing motion equation in a conservation force field,

that we use in this paper, for comparison as below,
ẍ = −∇f(x)

x(0) = x0, ẋ(0) = 0.

(1.16)

The concept of phase space, developed in the late 19th century, usually consists of all

possible values of position and momentum variables. The governing motion equation

in a conservation force field (1.16) can be rewritten as
ẋ = v

v̇ = −∇f(x)

x(0) = x0, v(0) = 0.

(1.17)

1.2.1.3 Application to sparse subspace clustering

Subspace clustering is an important problem in machine learning, signal processing

and computer vision research [Vid11]. Subspace clustering aims at grouping data

points into disjoint clusters so that data points within each cluster lie near a low-

dimensional linear subspace. It has found many successful applications in computer

vision and machine learning, as many high dimensional data can be approximated
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by a union of low-dimensional subspaces. Example data include motion trajectories

[CK98], face images [BJ03], network hop counts [EBN12], movie ratings [ZFIM12]

and social graphs [JCSX11].

Mathematically, let X = (x1, · · · ,xN) be an n × N data matrix, where n is

the ambient dimension and N is the number of data points. We suppose there are

L clusters S1, · · · ,SL, and each column (data point) of X belongs to exactly one

cluster, and cluster S` has N` ≤ N points in X. It is further assumed that data

points within each subspace lie approximately on a low-dimensional linear subspace

U` ⊆ Rn of dimension d` � n. The question is to recover the clustering of all points

in X without additional supervision.

In the case where data are noiseless (i.e., xi ∈ U` if xi belongs to cluster S`), the

following sparse subspace clustering [EV13] approach can be used:

SSC : ci := arg min
ci∈RN−1

‖ci‖1 s.t. xi = X−ici. (1.18)

The vectors {ci}Ni=1 are usually referred to as the self-similarity matrix, or simply

similarity matrix, with the property that |cij| being large if xi and xj belong to the

same cluster and vice versa. Afterwards, spectral clustering methods can be applied

on {ci}Ni=1 to produce the clustering [EV13].

While the noiseless subspace clustering model is ideal for simplified theoretical

analysis, in practice data are almost always corrupted by additional noise. A general

formulation for the noisy subspace clustering model is X = Y + Z where Y =

(y1, · · · ,yN) is an unknown noiseless data matrix (i.e., yi ∈ U` if yi belongs to S`)

and Z = (z1, · · · , zN) is a noise matrix such that z1, · · · , zN are independent and

E[zi|Y] = 0. Only the corrupted data matrix X is observed. Two important examples

can be formulated under this framework:

• Gaussian noise: {zi} are i.i.d. Gaussian random variables N (0, σ2/n · In×n).
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• Missing data: let Rij ∈ {0, 1} be random variables indicating whether entry

Yij is observed; that is, Xij = RijYij/ρ. The noise matrix Z can be taken as

Zij = (1 − Rij/ρ)Yij, where ρ > 0 is a parameter governing the probability of

observing an entry; that is, Pr[Rij = 1] = ρ.

Many methods have been proposed to cluster noisy data with subspace clustering

[SEC14, WX16, QX15, Sol14]. Existing work can be categorized primarily into two

formulations: the Lasso SSC formulation

Lasso SSC : ci := arg min
ci∈RN−1

‖ci‖1 +
λ

2
‖xi −X−ici‖22, (1.19)

which was analyzed in [SEC14, WX16, CJW17], and a de-biased Dantzig selector

approach

De-biased Dantzig Selector : ci := arg min
ci∈RN−1

‖ci‖1 +
λ

2

∥∥∥Σ̃−ici − γ̃i∥∥∥
∞

(1.20)

which was proposed in [Sol14] and analyzed for an irrelevant feature setting in [QX15].

Here in Eq. (1.20) the terms Σ̃−i and γ̃i are de-biased second-order statistics, defined

as Σ̃−i = X>−iX−i −D and γ̃i = x>i X−i, where D = diag(E[z>1 z1], · · · ,E[z>NzN ]) is

a diagonal matrix that approximately de-biases the inner product and is assumed to

be known. In particular, in the Gaussian noise model we have D = σ2I and in the

missing data model we have D = (1 − ρ)2/ρ · diag(‖y1‖22, · · · , ‖yN‖22) which can be

approximated by D̂ = (1− ρ)2diag(X>X) computable from corrupted data.

1.2.2 Online Algorithms: Sequential Updating

Based on the sampling methods, we here briefly introduce the principle behind the

online time-varying algorithms. Let t ∈ {0, 1, 2, . . . , N} be a discrete finite time set.

In every t ∈ {0, 1, 2, . . . , N}, there are always new data being observed, noted as Dt.
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Recally the Bayesian formula (1.1), at time t = 0, with the prior P (H) and likelihood

P (D0|H), we have

P (H|D0) ∼ P (D0|H)P (H).

At time t = 1, we take the posterior P (H|D0) at time t = 0 as the prior at time t = 1

and the likelihood P (D1|H, D0), then the new posterior at t = 1 can be calculated as

P (H|D0, D1) ∼ P (D1|H, D0)P (H|D0).

By analogy, at time t = N , we take the posterior P (H|D0, . . . , DN−1) at time t = N−1

as the prior at time t = N and the likelihood P (DN |H, D0, . . . , DN−1), then the new

posterior at t = 1 can be calculated as

P (H|D0, . . . , DN) ∼ P (DN |H, D0, . . . , DN−1)P (H|D0, . . . , DN−1).

With the description above, we actually implementN+1 times maximum posterior

estimate, that is, maximum posterior estimate sequence as below,

P (H|D0), P (H|D0, D1), . . . , P (H|D0, D1, DN).

In other words, obtaining the distribution P (H|D0, . . . , Dk) (k = 0, . . . , N) is sequen-

tial updating. With the probability distribution P (H|D0, . . . , Dk) at time t = k, we

can implement sampling process to generate data to observe the trend from time

t = 0 to t = N and to compare with the actual trend. Here, without any difficulty,

we can find the core part of sequential updating is how to implement the likelihood

sequence experimentally

P (D0|H), P (D1|H, D0), . . . , P (DN |H, D0, . . . , DN−1).

A popular technique is named as particle learning, which assume actually the likeli-

hood sequence following Gaussian random walk.
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1.2.2.1 Application to multivariate time series

MTS analysis has been extensively employed across diverse application domains [BJRL15,

Ham94], such as finance, social network, system management, weather forecast, etc.

For example, it is well-known that there exists spatial and temporal correlations be-

tween air temperatures across certain regions [JHS+11, BBW+90]. Discovering and

quantifying the hidden spatial-temporal dependences of the temperatures at different

locations and time brings great benefits for weather forecast, especially in disaster

prevention [LZZ+16].

Mining temporal dependency structure from MTS data is extensively studied

across diverse domains. The Granger Causality framework is the most popular

method. The intuition behind it is that if the time series A Granger causes the

time series B, the future value prediction of B can be improved by giving the value

of A. Regression model has evolved to be one of the principal approaches for Granger

Causality. Specifically, to predict the future value of B, one regression model built

only on the past values of B should be statistically significantly less accurate than

the regression model inferred by giving the past values of both A and B. Regression

model with L1 regularizer [Tib96], named Lasso-Granger, is an advanced and effec-

tive approach for Granger causal relationship analysis. Lasso-Granger can effectively

identify the sparse Granger Causality especially in high dimensions [BL13].

However, Lasso-Granger suffers some essential disadvantages. The number of non-

zero coefficients chosen by Lasso is bounded by the number of training instances and

also it tends to randomly select only one variable and ignore the others within a vari-

able group which leads to instability. Moreover, all the work described above assumes

a constant dependency structure among MTS. However, this assumption rarely holds

in practice, since real-world problems often involve underlying processes that are dy-

namically evolving over time. Take a scenario in temperature forecast as an example.
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Local temperature is usually impacted by its neighborhoods, but the dependency re-

lationships dynamically change when monsoon comes from different directions. In

order to capture the dynamic dependency typically happening in practice, a hidden

Markov regression model [LKJ09] and a time-varying dynamic Bayesian network al-

gorithm [ZWW+16] have been proposed. However, both methods infer the underlying

dependency structure based on the offline mode.

1.3 Contributions

In this section, we introduce our main contributions.

1.3.1 Gradient Descent

Question 1: Maximum Allowable Fixed Step Size. Recall that for convex

optimization by gradient decent with fixed step-size rule hk ≡ h, h < 2/L is both

a necessary and a sufficient condition for the convergence of GD. However, for non-

convex optimization existing works all required the (fixed) step size to be smaller

than 1/L. Because larger step sizes lead to faster convergence, a nature question is to

identify the maximum allowable step size such that GD escapes saddle points. The

main technical difficulty to analyze larger step size is that the gradient map

g(x) = x− h∇f (x)

may not be a diffeomorphism when h ≥ 1/L. Thus, techniques used in [LSJR16,

PP16] are no longer sufficient.

Here, we take a finer look at the dynamics of GD. Our main observation is that

the GD procedure escapes strict saddle points under much weaker conditions than g

being a diffeomorphism everywhere. In particular, the probability of GD with random
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initialization converging to a strict saddle point is 0 provided that

g(xk) = xk − ht∇f(xk)

is a local diffeomorphism at every xt. We further show that

λ ({h ∈ [1/L, 2/L) : ∃t, g(xk) is not a local diffeomorphism}) = 0

where λ(·) is the standard Lebesgue measure on R, meaning that for almost every fixed

step size choice in [1/L, 2/L), g(xk) is a local diffeomorphism for every t. Therefore,

if a step size h is chosen uniformly at random from
(
2
L
− ε, 2

L

)
for any ε > 0, GD

escapes all strict saddle points and converges to a local minimum. See Section 3.1 for

the precise statement and Section 3.3 for the proof.

Question 2: Analysis of Adaptive Step Sizes. Another open question we

consider in this paper is to analyze the convergence of GD for non-convex objectives

when the step sizes {ht} vary as t evolves. In convex optimization, adaptive step

size rules such as exact or backtracking line search [Nes13] are commonly used in

practice to improve convergence, and convergence of GD is guaranteed provided that

the adaptively tuned step sizes do not exceed twoce the inverse of local gradient

Lipschitz constant. On the other hand, in non-convex optimization, whether gradient

descent with varying step sizes can escape all strict saddle points is unknown.

Existing techniques [LSJR16, PP16, LPP+17, OW17] cannot solve this question

because they relied on the classical Stable Manifold Theorem [Shu13], which requires

a fixed gradient map whereas when step sizes vary, the gradient maps also change

across iterations. To deal with this issue, we adopt the powerful Hartman product

map Theorem [Har71], which gives a finer characterization of local behavior of GD

and allows the gradient map to change at every iteration. Based on Hartman product

map Theorem, we show that as long as the step size at each iteration is proportional to

the inverse of the local gradient Lipschitz constant, GD still escapes all strict saddle
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points. To our knowledge, this is the first result establishing convergence to local

minima for non-convex gradient descent with varying step sizes.

1.3.2 Accelerated Gradient Descent

Here, we implement our discrete strategy into algorithms with the utility of the ob-

servability and controllability of the velocity, or the kinetic energy, as well as artifi-

cially dissipating energy for two directions as below,

• To look for local minima in non-convex function or global minima in convex

function, the kinetic energy, or the norm of the velocity, is compared with that

in the previous step, it will be re-set to zero until it becomes larger no longer.

• To look for global minima in non-convex function, an initial larger velocity

v(0) = v0 is implemented at the any initial position x(0) = x0. A ball is

implemented with (1.17), the local maximum of the kinetic energy is recorded to

discern how many local minima exists along the trajectory. Then implementing

the strategy above to find the minimum of all the local minima.

For implementing our thought in practice, we utilize the scheme in the numerical

method for Hamiltonian system, the symplectic Euler method. We remark that a

more accuracy version is the Störmer-Verlet method for practice.

1.3.3 The CoCoSSC Method

In this paper, we consider an alternative formulation CoCoSSC to solve the noisy

subspace clustering problem, inspired by the CoCoLasso estimator for high-dimensional

regression with measurement error [DZ17]. First, a pre-processing step is used that

computes Σ̃ = XTX− D̂ and then finds a matrix belonging to the following set:

S :=
{
A ∈ RN×N : A � 0

}
∩
{

A :
∣∣Ajk − Σ̃jk

∣∣ ≤ |∆jk|,∀j, k ∈ [N ]
}
, (1.21)
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where ∆ ∈ RN×N is an error tolerance matrix to be specified by the data analyst. For

Gaussian random noise, all entries in ∆ can be set to a common parameter, while for

the missing data model we recommend setting two different parameters for diagonal

and off-diagonal elements in ∆, as estimation errors of these elements of A behave

differently under the missing data model. We give theoretical guidelines on how to

set the parameters in ∆ in our main theorems, while in practice we observe that

setting the elements in ∆ to be sufficiently large would normally yield good results.

Because S in Eq. (1.21) is a convex set, and we will later prove that S 6= ∅ with high

probability, a matrix Σ̃+ ∈ S can be easily found by alternating projection from Σ̃.

For any Σ̃+ ∈ S and let Σ̃+ = X̃T X̃, where X̃ = (x̃1, · · · , x̃N) ∈ RN×N . Such a

decomposition exists because Σ̃+ is positive semidefinite. The self-regression vector

ci is then obtained by solving the following (convex) optimization problem:

CoCoSSC : ci := arg min
ci∈RN−1

‖ci‖1 +
λ

2

∥∥∥x̃i − X̃−ici

∥∥∥2
2
. (1.22)

Eq. (1.22) is an `1-regularized least squares self regression problem, with the dif-

ference of using x̃i and X̃−i for self-regression instead of directly using the raw noise-

corrupted observations xi and X−i. This leads to improved sample complexity, as

shown in Table 1.1 and our main theorems. On the other hand, CoCoSSC retains

the nice structure of Lasso SSC, making it easier to optimize. We further discuss

this aspect and other advantages of CoCoSSC in the next section.

1.3.3.1 Advantages of CoCoSSC

The CoCoSSC has the following advantages:

1. Eq. (1.22) is easier to optimize, especially compared to the de-biased Dantzig

selector approach in Eq. (1.20), because it has a smoothly differentiable objective

with an `1 regularization term. Many existing methods such as ADMM [BPC+11]
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can be used to obtain fast convergence. We refer the readers to [WX16, Appendix

B] for further details on efficient implementation of Eq. (1.22). The pre-processing

step Eq. (1.21) can also be efficiently computed using alternating projection, as

both sets in Eq. (1.21) are convex. On the other hand, the de-biased Dantzig

selector formulation in Eq. (1.20) is usually solved using linear programming [CT05,

CT07] and could be very slow as the number of variables is large. Indeed, our

empirical results show that the debiased Dantzig selector is almost 5-10 times

slower than both Lasso SSC and CoCoSSC.

2. Eq. (1.22) has improved or equal sample complexity in both the Gaussian noise

model and the missing data model, compared to Lasso SSC and the de-biased

Dantzig selector. This is because a “de-biasing” pre-processing step in Eq. (1.21)

is used, and an error tolerance matrix ∆ with different diagonal and off-diagonal

elements is considered to reflect the heterogeneous estimation error in A. Table

1.1 gives an overview of our results and compare them with existing results.

Table 1.1: Summary of success conditions with normalized signals ‖yi‖2 = 1. Poly-
nomial dependency on d, C, C and logN are omitted. In the last line χ is a sub-
space affinity quantity introduced in Definition 6.1.3 for the non-uniform semi-random
model. χ is always upper bounded by

√
d.

Gaussian model Missing data (MD) MD (random subspaces)
Lasso SSC [SEC14] σ = O(1) - -
Lasso SSC [WX16] σ = O(n1/6) ρ = Ω(n−1/4) ρ = Ω(n−1/4)
Lasso SSC [CJW17] - ρ = Ω(1) ρ = Ω(1)
PZF-SSC[TV18] - ρ = Ω(1) ρ = Ω(1)

Debiased Dantzig [QX15] σ = O(n1/4) ρ = Ω(n−1/3) ρ = Ω(n−1/3)
CoCoSSC (this paper) σ = O(n1/4) ρ = Ω(χ2/3n−1/3 + n−2/5)† ρ = Ω(n−2/5)†

† If ‖yi‖2 is exactly known, the success condition can be improved to ρ = Ω(n−1/2). See

Remark 6.1.3 for details.
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1.3.4 Online Time-Varying Elastic-Net Algorithm

To overcome the deficiency of Lasso-Granger and capture the dynamical change of

causal relationships among MTS, in this paper, we investigate the Granger Causality

framework with Elasitc-Net [ZH05], which imposes a mixed L1 and L2 regularization

penalty on the linear regression. The Elastic-Net cannot only obtain strongly stable

coefficients [SHB16], but also capture grouped effects of variables [SHB16, ZH05].

Furthermore, our approach explicitly models the dynamical change behaviors of the

dependency as a set of random walk particles, and utilizes particle learning [CJLP10,

ZWW+16] to provide a fully adaptive inference strategy which allows our model to

effectively capture the varying dependency and learns the latent parameters simul-

taneously. Empirical studies on both synthetic and real dataset demonstrate the

effectiveness of our proposed approach.

1.4 Organization

In Chapter ??, we introduce preliminaries including notations, definitions as well as

some related works. In Chapter 3, the maximum allowable step size and varying step

size rules for gradient descent are shown. In Chapter 4, we show the conservation

law algorithms based on accelerated gradient descent for nonconvex optimization. In

Chapter 6, we introduce improved algorithm, CoCoSSC, and analyze sample complex-

ity in sparse subspace Clustering with noisy and missing Entries. Finally, we show

the online time-varying elastic-net algorithm to practically capture the dynamic group

effect for MTS in Chapter 7.
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CHAPTER 2

PRELIMINARIES AND NOTATIONS

2.1 Preliminaries and Notations

We define necessary notations and review important definitions that will be used later

in our analysis. Let C2(Rn) be the vector space of real-valued twice-continuously

differentiable functions. Let ∇ be the gradient operator and ∇2 be the Hessian

operator. Let ‖ · ‖2 be the Euclidean norm in Rn. Let µ be the Lebesgue measure in

Rn.

Definition 2.1.1 (Global Gradient Lipschitz Continuity Condition). f ∈ C2(Rn)

satisfies the global gradient Lipschitz continuity condition if there exists a constant

L > 0 such that

‖∇f(x1)−∇f(x2)‖2 ≤ L ‖x1 − x2‖2 ∀x1, x2 ∈ Rn. (2.1)

Definition 2.1.2 (Global Hessian Lipschitz Continuity Condition). f ∈ C2(Rn) sat-

isfies the global Hessian Lipschitz continuity condition if there exists a constant K > 0

such that ∥∥∇2f(x1)−∇2f(x2)
∥∥
2
≤ K ‖x1 − x2‖2 ∀x1, x2 ∈ Rn. (2.2)

Intuitively, a twice-continuously differentiable function f ∈ C2(Rn) satisfies the

global gradient and Hessian Lipschitz continuity condition if its gradients and Hessians

do not change dramatically for any two points in Rn. However, the global Lipschitz

constant L for many objective functions that arise in machine learning applications

(e.g., f(x) = x4) may be large or even non-existent. To handle such cases, one can

use a finer definition of gradient continuity that characterizes the local behavior of

gradients, especially for non-convex functions. This definition is adopted in many

subjects of mathematics, such as in dynamical systems research.
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Let δ > 0 be some fixed constant. For every x0 ∈ Rn, its δ-closed neighborhood

is defined as

V (x0, δ) = {x ∈ Rn| ‖x− x0‖2 < δ} . (2.3)

Definition 2.1.3 (Local Gradient Lipschitz Continuity Condition). f ∈ C2(Rn) sat-

isfies the local gradient Lipschitz continuity condition at x0 ∈ Rn with radius δ > 0

if there exists a constant L(x0,δ) > 0 such that

‖∇f(x)−∇f(y)‖2 ≤ L(x0,δ)‖x− y‖2 ∀x, y ∈ V (x0, δ). (2.4)

We next review the concepts of stationary point, local minimizer and strict saddle

point, which are important in (non-convex) optimization.

Definition 2.1.4 (Stationary Point). x∗ ∈ Rn is a stationary point of f ∈ C2(Rn) if

∇f (x∗) = 0.

Definition 2.1.5 (Local Minimizer). x∗ ∈ Rn is a local minimum of f if there is a

neighborhood U around x∗ such that for all x ∈ U , f(x∗) < f(x).

A stationary point can be a local minimizer, a saddle point or a maximizer. It is

an standard fact that if a stationary point x? ∈ Rn is a local minimizer of f ∈ C2(Rn),

then ∇2f(x?) is positive semidefinite; on the other hand, if x∗ ∈ Rn is a stationary

point of f ∈ C2(Rn) and ∇2f(x?) is positive definite, then x∗ is also a local minimizer

of f . It should also be noted that the stationary point x? in the second case is isolated.

The following definition concerns “strict” saddle points, which was also analyzed

in [GHJY15].

Definition 2.1.6 (Strict Saddle Points). x∗ ∈ Rn is a strict saddle1 of f ∈ C2(Rn) if

x∗ is a stationary point of f and furthermore λmin (∇2f (x∗)) < 0.

1For the purposes of this paper, strict saddle points include local maximizers.
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We denote the set of all strict saddle points by X . By definition, a strict saddle

point must have an escaping direction so that the eigenvalue of the Hessian along

that direction is trictly negative. For many non-convex problems studied in machine

learning, all saddle points are strict.

We next review additional concepts in multivariate analysis and differential ge-

ometry/topology that will be used in our analysis.

Definition 2.1.7 (Gradient Map and Its Jacobian). For any f ∈ C2(Rn), the gradient

map g : Rn → Rn with step size h is defined as

g(x) = x− h∇f(x). (2.5)

The Jacobian Dg : Rn → Rn×n of the gradient map g is defined as

Dg(x) =


∂g1
∂x1

(x) · · · ∂g1
∂xn

(x)

· · · · · · · · ·
∂gn
∂x1

(x) · · · ∂gn
∂xn

(x)

 , (2.6)

or equivalently, Dg = I − h∇2f .

We write an . bn if there exists an absolute constant C > 0 such that, for

sufficiently large n, |an| ≤ C|bn|. Similarly, an & bn if bn . an and an � bn if both

an . bn and bn . an are true. We write an � bn if for a sufficiently small constant

c > 0 and sufficiently large n, |an| ≤ c|bn|. For any integer M , [M ] denotes the finite

set {1, 2, · · · ,M}.

Definition 2.1.8 (Local Diffeomorphism). Let M and N be two differentiable man-

ifolds. A map f : M → N is a local diffeomorphism if for each point x in M , there

exists an open set U containing x such that f(U) is open in N and f |U : U → f(U)

is a diffeomorphism.

Definition 2.1.9 (Compact Set). S ⊆ Rn is compact if every open cover of S has a

finite sub-cover.
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Definition 2.1.10 (Sublevel Set). The α-sublevel set of f : Rn → R is defined as

Cα = {x ∈ Rn | f(x) ≤ α} .

2.2 Related Work

Over the past few years, there have been increasing interest in understanding the ge-

ometry of non-convex programs that naturally arise from machine learning problems.

It is particularly interesting to study additional properties of the considered non-

convex objective such that popular optimization methods (such as gradient descent)

escape saddle points and converge to a local minimum. The strict saddle property

(Definition 2.1.6) is one such property. which was also shown to hold in a broad range

of applications.

Many existing works leveraged Hessian information in order to circumvent saddle

points This includes a modified Newton’s method [MS79], the modified Cholesky

method [GM74], the cubic-regularization method [NP06] and trust region meth-

ods [CRS14]. The major drawback of such second-order methods is the require-

ment of access to the full Hessian, which could be computationally expensive. as the

per-iteration computational complexity scales quadratically or even cubically in the

problem dimension, unsuitable for optimization of high-dimensional functions. Some

recent works [CDHS16, AAB+17, CD16] showed that the requirement of full Hes-

sian can be relaxed to Hessian-vector products, which can be computed efficiently in

certain machine learning applications. Several works [LY17, RZS+17, RW17] also pre-

sented algorithms that combine first-order methods with faster eigenvector algorithms

to obtain lower per-iteration complexity.

Another line of works focus on noise-injected gradient methods whose per-iteration

computational complexity scale linearly in the problem dimension. Earlier work have
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shown that first-order method with unbiased noise with sufficiently large variance

can escape strict saddle points [Pem90]. [GHJY15] gave quantitative rates on the

convergence. Recently, more refined algorithms and analyses [JGN+17, JNJ17] have

been proposed to improve the convergence rate of such algorithms. Nevertheless,

gradient methods with deliberately injected noise are almost never used in practical

applications, limiting the applicability of the above-mentioned analysis.

Empirically, [SQW16] observed that gradient descent with 100 random initializa-

tions for the phase retrieval problem always converges to a local minimizer. The-

oretically, the most important existing result is due to [LSJR16], who showed that

gradient descent with fixed step size and any reasonable random initialization always

escapes isolated strict saddle points. [PP16] later relaxed the requirement that strict

saddle points are isolated. [OW17] extended the analysis to accelerated gradient de-

scent and [LPP+17] generalized the result to a broader range of first-order methods,

including proximal gradient descent and coordinate descent. However these works all

require the step size to be significantly smaller than the inverse of Lipschitz constant

of gradients, which has factor of 2 gap from results in the convex setting and do not

allow the step size to vary across iterations. Our paper resolve both two problems.

The history of gradient method for convex optimization can be back to the time of

Euler and Lagrange. However, since it is relatively cheaper to only calculation for first-

order information, this simplest and earliest method is still active in machine learn-

ing and nonconvex optimization, such as the recent work [GHJY15, AG16, LSJR16,

HMR16]. The natural speedup algorithms are the momentum method first proposed

in [Pol64] and Nesterov accelerated gradient method first proposed in [Nes83] and an

improved version [NN88]. A acceleration algorithm similar as Nesterov accelerated

gradient method, named as FISTA, is designed to solve composition problems [BT09].

A related comprehensive work is proposed in [B+15].
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The original momentum method, named as Polyak heavy ball method, is from

the view of ODE in [Pol64], which contains extremely rich physical intuitive ideas

and mathematical theory. An extremely important work in application on machine

learning is the backpropagation learning with momentum [RHW+88]. Based on the

thought of ODE, a lot of understanding and application on the momentum method

and Nesterov accelerated gradient methods have been proposed. In [SMDH13], a well-

designed random initialization with momentum parameter algorithm is proposed to

train both DNNs and RNNs. A seminal deep insight from ODE to understand the

intuition behind Nesterov scheme is proposed in [SBC14]. The understanding for

momentum method based on the variation perspective is proposed on [WWJ16], and

the understanding from Lyaponuv analysis is proposed in [WRJ16]. From the stability

theorem of ODE, the gradient method always converges to local minima in the sense

of almost everywhere is proposed in [LSJR16]. Analyzing and designing iterative

optimization algorithms built on integral quadratic constraints from robust control

theory is proposed in [LRP16].

Actually the “high momentum” phenomenon has been firstly observed in [OC15]

for a restarting adaptive accelerating algorithm, and also the restarting scheme is

proposed by [SBC14]. However, both works above utilize restarting scheme for an

auxiliary tool to accelerate the algorithm based on friction. With the concept of phase

space in mechanics, we observe that the kinetic energy, or velocity, is controllable and

utilizable parameter to find the local minima. Without friction term, we can still find

the local minima only by the velocity parameter. Based on this view, the algorithm

is proposed very easy to practice. Meanwhile, the thought can be generalized to

nonconvex optimization to detect local minima along the trajectory of the particle.

Sparse subspace clustering was proposed by [EV13] as an effective method for sub-

space clustering. [SC12] initiated the study of theoretical properties of sparse subspace
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clustering, which was later extended to noisy data [SEC14, WX16], dimensionality-

reduced data [WWS15a, HTB17, TG17] and data consisting of sensitive private in-

formation [WWS15b]. [YRV15] considered some heuristics for subspace clustering

with missing entries, and [TV18] considered a PZF-SSC approach and proved suc-

cess conditions with ρ = Ω(1). [PCS14, HB15, LLY+13, TV17] proposed alternative

approaches for subspace clustering. Some earlier references include k-plane [BM00],

q-flat [Tse00], ALC [MDHW07], LSA [YP06] and GPCA [VMS05].

It is an important task to reveal the casual dependencies between historical and

current observations in MTS analysis. Bayesian Network [JYG+03, Mur02] and

Granger Causality [ALA07, ZF09] are two main frameworks for inference of tem-

poral dependency. Comparing with Bayesian Network, Granger Causality is more

straightforward, robust and extendable [ZF09].

Originally, Granger Causality is designed for a pair of time series. The appear-

ance of pioneering work of combining the notion of Granger Causality with graphical

model [Eic06] leads to the emergence of causal relationship analysis among MTS data.

Two typical techniques, statistical significance test and Lasso-Granger [ALA07], are

developed to inference the Granger Causality among MTS. Lasso-Granger gains more

popularity due to its robust performance even in high dimensions [BL12]. However,

Lasso-Granger suffers from instability and failure of group variable selection because

of the high sensitivity of L1 norm. To address this challenging, our method adopts

Elastic-Net regularizer [ZH05] which is stable since it encourages a group variable se-

lection (group effect) where strongly correlated predictors tend to be zero or non-zero

simultaneously.

Particle learning [CJLP10] is a powerful tool to provide an online inference strategy

for Bayesian models. It belongs to the Sequential Monte Carlo (SMC) methods con-

sisting of a set of Monte Carlo methodologies to solve the filtering problem [DGA00].
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Particle learning provides state filtering, sequential parameter learning and smoothing

in a general class of state space models [CJLP10]. The central idea behind particle

learning is the creation of a particle algorithm that directly samples from the particle

approximation to the joint posterior distribution of states and conditional sufficient

statistics for fixed parameters in a fully-adapted resample-propagate framework.
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CHAPTER 3

GRADIENT DESCENT CONVERGES TO MINIMIZERS: OPTIMAL

AND ADAPTIVE STEP SIZE RULES

In this chapter, we first introduce our main result formally with Theorems for

maximum allowable step size in Section 3.1 and adaptive step size rules in Section 3.2.

The both full proofs are shown in Section 3.3 and Section 3.4, respectively. Finally,

we conclude the content of this chapter and introduce some future directions.

3.1 Maximum Allowable Step Size

We first consider gradient descent with a fixed step size. The following theorem

provides a sufficient condition for escaping all strict saddle points.

Theorem 3.1.1. Suppose f ∈ C2(Rn) satisfies the global gradient Lipschitz condition

(Definition 2.1.1) with constant L > 0. Then there exists a zero-measure set U ⊂[
1
L
, 2
L

)
such that if h ∈

(
0, 2

L

)
\U and x0 ∈ Rn is randomly initialized with respect to

an absolute continuous measure over Rn, then

Pr
(

lim
k
xk ∈ X

)
= 0,

where X denotes the set of all strict saddle points of f .

The complete proof of Theorem 3.1.1 is given in Sec. 3.3. Here we give a high-

level sketch of our proof. Similar to [LSJR16], our proof relies on the seminal stable

manifold theorem [Shu13]. For a fixed saddle point x∗, the stable manifold theorem

asserts that locally, all points that converge to x∗ lie in a manifold W cs
loc(x

∗). Further,

W cs
loc(x

∗) has dimension at most n − 1, thus µ (W cs
loc(x

∗)) = 0. By Lindelöf’s Lemma

(Lemma 3.5.2), we can show that the union of these manifolds, W cs
loc =

⋃
x∗∈X W

cs
loc(x

∗),

also has Lebesgue measure 0. Next, we analyze what initialization points converge
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to W cs
loc. Using the notion of the inverse gradient map, we can show the initialization

points that converge W cs
loc belongs to the set

∞⋃
i=0

g−i(W cs
loc).

Thus, we only need to upper bound the Lebesgue measure of this set. If g is a local dif-

feomorphism, then by Lemma 3.3.2, we have µ (
⋃∞
i=0 g

−i(W cs
loc)) ≤

∑∞
i=0 µ (g−i (W cs

loc)) =

0. Therefore, we only need to show g is a local diffeomorphism. Existing works re-

quire η ≤ 1/L to ensure g is a global diffeomorphism whereas a local diffeomorphism

is already sufficient. Our main observation is that for h in (1/L, 2/L), there is only a

zero-measure set U such that g with respect to h ∈ U is not a local diffeomorphism

at some xt. In other words, for almost every step size h ∈ (1/L, 2/L), g is a local

diffeomorphism at xt for every t.

Theorem 3.1.1 shows that the step sizes in [1/L, 2/L) that potentially leads to

GD convergence towards a strict saddle point have measure zero. Comparing to

recent results on gradient descent by [LSJR16, LPP+17, PP16], our theorem allows

a maximum (fixed) step size of 2/L instead of 1/L.

3.1.1 Consequences of Theorem 3.1.1

A direct corollary of Theorem 3.1.1 is that GD (with fixed step sizes < 2/L) can only

converge to minimizers when the limit limk xk exists.

Corollary 3.1.2 (GD Converges to Minimizers). Under the conditions in Theo-

rem 3.1.1 and the additional assumption that all saddle points of f are strict, if

limk xk exists then with probability 1 limk xk is a local minimizer of f .

We now discuss when limk xk exists. The following lemma gives a sufficient con-

dition on its existence.
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Lemma 3.1.3. Suppose f ∈ C2 (Rn) has global gradient Lipschitz constant L and

owns compact sublevel sets. Further assume f only contains isolated stationary

points. If 0 < h < 2/L, limk xk converges to a stationary point of f for any ini-

tialization x0.

Theorem 3.1.1 and Lemma 3.1.3 together imply Corollary 3.1.2, which asserts that

if the objective function has compact sub-level sets and the fixed step size h is smaller

than 2/L, GD converges to a minimizer. This result generalizes [LSJR16, PP16] where

the fixed step sizes of GD cannot exceed 1/L.

3.1.2 Optimality of Theorem 3.1.1

A natural question is whether the condition h < 2/L in Theorem 3.1.1 can be further

improved. The following proposition gives a negative answer, showing that GD with

fixed step sizes h ≥ 2/L diverges on worst-case objective function f with probability

1. This shows that h < 2/L is the optimal fixed step size rule one can hope for with

which GD converges to a local minimum almost surely.

Proposition 3.1.1. There exists f ∈ C2(Rn) with global gradient Lipschitz constant

L > 0, compact sublevel sets and only isolated stationary points such that if h ≥ 2/L

and x0 is randomly initialized with respect to an absolutely continuous density on

Rn, then limk xk does not exist with probability 1.

The proof of the proposition is simple by considering a quadratic function f ∈

C2(Rn) that serves as a counter-example of GD with fixed step sizes larger than or

equal to h/2. A complete proof of Proposition 3.1.1 is given in the appendix.
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3.2 Adaptive Step Size Rules

In many machine learning applications, the global gradient Lipschitz constant L of the

objective function f may be very large, but at most points the local gradient Lipschitz

constant could be much smaller. It is thus desirable to consider varying step size

rules that select step sizes ht adaptively corresponding to the local gradient Lipschitz

constant of f at xt. When the objective function f is convex, the convergence of

gradient descent with varying step sizes is well-understood [Nes13]. However, when f

is non-convex, whether GD with varying step sizes can escape strict saddle points is

still unknown. Existing works [LSJR16, LPP+17, PP16] all require the step sizes to

be fixed. Our following result closes this gap, showing that GD escapes strict saddle

points if the step sizes chosen at each point xt is proportional to the local gradient

Lipschitz constant Lxt,δ.

Theorem 3.2.1. Suppose f ∈ C2 (Rn) satisfies the global Hessian Lipschitz continu-

ity condition (Definition 2.1.2) with parameter K and for every x∗ ∈ X , ∇2f(x∗) is

non-singular. Fix ε0 ∈ (0, 1) and define r = maxx∗∈X K
−1ε0‖∇2f(x∗)‖2. Then there

exists U ⊂ R+ with µ (U) = 0 such that if the step size at the tth iteration satisfies

ht ∈
[

ε0
Lxt,r

, 2−ε0
Lxt,r

]
\U for all t = 0, 1, . . . and x0 is randomly initialized with respect to

an absolutely continuous density on Rn, then

Pr
(

lim
t
xt ∈ X

)
= 0.

Theorem 3.2.1 shows that even though the step sizes vary across iterations, GD

still escapes all strict saddle points provided that all step sizes are proportional to their

local smoothness. To our knowledge, this is the first result showing GD with varying

step size escapes all strict saddle points. Theorem 3.2.1 requires ht ∈
[

ε0
Lxt,δ

, 2−ε0
Lxt,δ

]
,

which are the desired local step size.
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The proof of Theorem 3.2.1 follows a similar path as that of Theorem 3.1.1. We

first locally characterize Lebesgue measure of the set of points that converge to saddle

points and then use Lemma 3.3.2 to relates this set to the initialization. The main

technical difficulty is the inapplicability of the stable manifold theorem in this setting,

as the gradient maps g are no longer fixed and change across iterations. Instead of

using the stable manifold theorem, we adopt the more general Hartman’s product

map theorem [Har82] which gives a finer characterization of the local behavior of a

series of gradient maps around a saddle point.

Different from Theorem 3.1.1, Theorem 3.2.1 has two additional assumptions.

First, we require that the Hessian matrices ∇2f(x∗) at each saddle point x∗ is non-

singular (i.e., no zero eigenvalues). This is a technical regularity condition for using

Hartman’s product map theorem. To remove this assumption, we need to generalize

Hartman’s product map theorem which is a challenging problem in dynamical sys-

tems. Second, we require that Hessian matrices ∇2f(x) satisfies a global Lipschitz

continuity condition (Definition 2.1.2). This is because the Hartman’s product map

theorem requires the step size to be proportional to the gradient Lipschitz constant

in a neighborhood of each saddle point and the radius of the neighborhood needs to

be carefully quantified. Under the Hessian Lipschitz continuity assumption, we can

give an upper bound on this radius which is sufficient for applying Hartman’s product

map theorem. It is possible to give finer upper bounds on this radius based on other

quantitative continuity assumptions on the Hessian. The complete proof of Theorem

3.2.1 is given in Section 3.4.

3.3 Proof of Theorem 3.1.1

To prove Theorem 3.1.1, similar to [LSJR16], we rely on the following seminal stable

manifold theorem from dynamical systems research.
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Theorem 3.3.1 (Theorem III.7, pp.65, [Shu13]). Let 0 be a fixed point for a Cr

local differomorphism f : U → Rn, where U is a neighborhood of zero in Rn and

1 ≤ r < ∞. Let Es
⊕

Ec
⊕

Eu be the invariant splitting of Rn into the generalized

eigenspaces of Df(0) corresponding to eigenvalues of absolute value less than one,

equal to one, and greater than one. To the Df(0) invariant subspaces Es
⊕

Ec, Ec

there is associated a local f invariant Cr embedded disc W cs
loc tangent to the linear

subspace at 0 and a ball B around zero in an adapted norm such that

f(W cs
loc) ∩B ⊂ W cs

loc.

In addition, for any x satisfying fn(x) ∈ B for all n ≥ 0, 1 then x ∈ W cs
loc.

For each saddle point x∗, Theorem 3.3.1 implies the existence of a ball Bx∗ centered

at x∗ and an invariant manifold W cs
loc(x

∗) whose dimension is at most n − 1. Let

B =
⋃
x∗∈X Bx∗ . With Lindelöf’s Lemma (Lemma 3.5.2), there exists a countable

X ′ ⊂ X such that

B =
⋃

x?∈X ′
Bx∗ .

Recall the dimension of W cs
loc(x

∗) is at most n − 1. Therefore µ(W cs
loc (x∗)) = 0. The

measure of W cs
loc can be subsequently bounded as

µ(W cs
loc) = µ

( ⋃
x?∈S′

W cs
loc(x

?)

)
≤
∑
x∗∈X ′

µ (W cs
loc(x

∗)) = 0

where the first inequality is from the semi-countable additivity of Lebesgue measure.

To relate the stable manifolds of these saddle points to the initialization, we need

to analyze the gradient map. In contrast to previous analyses, we only show the

gradient maps is a local diffeomophism instead of a global one, which is considerably

weaker but sufficient for our purposes. This result is in the following lemma, which

is proved in the appendix.

1fn(x) means the application of f on x repetitively for n times.
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Lemma 3.3.2. If a smooth map g : Rn → Rn is a local diffeomorphism, then for

every open set S with µ(S) = 0, the inverse set g−1(S) is also a zero-measure set;

that is, µ (g−1(S)) = 0.

Next, we show we can choose a step size in (0, 2/L) to make g a local diffeomor-

phism except for a zero-measure set.

Lemma 3.3.3. The gradient map g : Rn → Rn in (2.5) is a local diffeomorphism in

Rn for step sizes h ∈ (0, 2/L)\H, where H ⊆ [1/L, 2/L) has measure zero.

Given Lemma 3.3.2 and Lemma 3.3.3, the rest of the proof is fairly straightforward.

With Lemma 3.3.3, we know that under the step size h ∈ (0, 2/L) \H and µ(H) = 0,

gradient descent is a local diffeomorphism. Furthermore, with Lemma 3.3.2, we have

µ

(
∞⋃
i=0

g−i(W cs
loc)

)
≤

∞∑
i=0

µ(g−i(W cs
loc)) = 0.

Thus, as long as the random initialization scheme is absolutely continuous with respect

to the Lebesgue measure, GD will not converge a saddle point.

3.4 Proof of Theorem 3.2.1

In this section we prove Theorem 3.2.1. First observe that if we can prove a local

manifold that converges to the strict saddle point has Lebesgue measure 0, then

we can re-use the arguments for proving Theorem 3.1.1. To characterize the local

behavior of GD with varying step sizes, we resort to a generalization of the seminal

Hartman product map theorem.

3.4.1 Hartman Product Map Theorem

Before describing the Theorem, we need to introduce some conditions and definitions.
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Assumption A1 (Hypothesis (H1) [Har71]). Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach

spaces and Z = X × Y with norm ‖ · ‖Z = max(‖ · ‖X , ‖ · ‖Y ). Define Zr(0) = {z ∈

Z : ‖z‖Z < r}. Let Tn(z) = (Anx,Bny) + (Fn(z), Gn(z)) be a map from Zr(0) to Z

with fixed point 0 and having a continuous Fréchet derivative. Let An : X → X and

Bn : Y → Y be two linear operators and assume Bn is invertible. Suppose

‖An‖X ≤ a < 1, ‖B−1n ‖Y ≤ 1/b ≤ 1. 0 < 4δ < b− a, 0 < a+ 2δ < 1, (3.1)

Fn(0) = 0, Gn(0) = 0 and
‖Fn(z1)− Fn(z2)‖X ≤ δ‖z1 − z2‖Z

‖Gn(z1)−Gn(z2)‖Y ≤ δ‖z1 − z2‖Z

Here An represents local linear operator that acts on the space that corresponds to

positive eigenvalues of the Hessian of a saddle point and Bn is a local linear operator

that acts on the remaining space. Fn and Gn are higher order functions which vanish

at 0.

The main mathematical object we study in this section is the following invariant

set.

Definition 3.4.1 (Invariant Set). With the same notations in Assumption A1, let

T1, . . . , Tn be n maps from Zr(0) to Z and Sn = Tn ◦ Tn−1 ◦ · · · ◦ T1 be the product of

the maps. Let Dn be the invariant set of the product operator Sn and D =
⋂∞
n=1Dn.

This set corresponds the points that will converge to the strict saddle point. To

study its property, we consider a particular subset.

Definition 3.4.2 ([Har71]).

Daδ = {z0 = (x0, y0) ∈ D : zn ≡ Sn(z0) ≡ (xn, yn) s.t. ∀n, ‖yn‖Y ≤ ‖xn‖X ≤ (a+ 2δ)n‖x0‖X} .

Now we are ready to state Hartman product map Theorem.
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Theorem 3.4.3 (Theorem 7.1, [Har71]). Under the Assumption A1, the set Daδ

is a C1-manifold and satisfies Daδ = {z = (x, y) ∈ D|y = y0(x)} for some function

y0 which is continuous and has continuous Frèchet derivative Dxy0 on Xr(0) and

zn = Sn(x0, y0) ≡ (xn(x0), yn(x0)). Further, we have

‖yn(x0)− yn(x0)‖Y ≤ ‖xn(x0)− xn(x0)‖X ≤ (a+ 2δ)n‖x0 − x0‖X ,

yn(x0) = y0(xn(x0)),

for any |x0|, |x0| < r and n = 0, 1, . . ..

Remark 3.4.1. The C1-manifold y = y0(x) is equivalent to y − y0(x) = 0. The tan-

gent manifold of y at the fixed point 0 is the intersection set
⋂dim(y)
i=1 {(x, y)|∇xyi(x0) ·

x − yi = 0}. In the Rn case, {(x, y)|∇xyi(x0) · x − yi = 0} is a subspace of Rn with

dimension at most n− 1. Hence, its Lebesgue measure is 0.

Remark 3.4.2. Taking x0 = 0 where 0 is a fixed point, we can rewrite the result of

Theorem 3.4.3 as

‖yn(x0)− yn(0)‖Y ≤ ‖xn(x0)− xn(0)‖X ≤ (a+ 2δ)n‖x0 − 0‖X ,

yn(0) = y0(xn(0)) = 0, xn(0) = 0.

The following theorem from [Har71] implies Daδ is actually D.

Theorem 3.4.4 (Proposition 7.1, [Har71]). Let z0 ∈ D; and zn = Sn(z0) for n =

0, 1, . . ..

1. If the inequality

‖ym‖Y ≥ ‖xm‖X

holds for some m ∈ N, then for n > m, we have

‖ym‖Y ≥ ‖xm‖X ‖yn‖Y ≥ (b− 2δ)n−m‖ym‖Y
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2. Otherwise, for every n ∈ N, we have

‖yn‖Y ≤ ‖xn‖X ≤ (a+ 2δ)n‖x0‖X

Using Theorem 3.4.4 we have the following useful corollary.

Corollary 3.4.5. If b− 2δ > 1, we have D = Daδ.

3.4.2 Complete Proof of Theorem 3.2.1

We first correspond the parameters of GD to the notations in Assumption A1. Let

x∗ be a strict saddle point. Since ∇2f (x∗) is non-singular, it only contain positive

and negative eigenvalues. We let Rn = X × Y where X corresponds to the space of

positive eigenvalues of∇2f (x∗) and Y corresponds to the space of negative eigenvalues

of ∇2f (x∗). For any z ∈ Rn, we write z = (x, y) where x represents to the component

in X and y represents the component in Y . Mappings T1, T2, . . . in Assumption A1

correspond to the gradient maps. An,Bn,Fn and Gn are thus defined accordingly.

The next lemma shows under our assumption on the step size, GD dynamics satisfies

Assumption A1.

Lemma 3.4.6. Suppose f ∈ C2 (Rn) with Hessian Lipschitz constant K and x∗ a

strict saddle point with L = ‖∇2f(x∗)‖2 and µ = ‖ (∇2f(x∗))
−1 ‖−12 . For any fixed

ε0 ∈ (0, 1), if the step size satisfies ht ∈
[
ε0
L
, 2−ε0

L

]
, we have

‖At‖2 ≤ 1− ε0 and ‖B−1t ‖2 ≤
1

1 + ε0µ
L

and for any z1, z2 ∈ Rn.

max(‖Ft(z1)− Ft(z2)‖2, ‖Gt(z1)−Gt(z2)‖2) ≤ δ‖z1 − z2‖2.

where δ = ε
5

and r = εL
20K

(c.f. Assumption A1).

42



Let D be the invariant set defined in Definition 3.4.2. From Theorem 3.4.3, Re-

mark 3.4.1 and Remark 3.4.2, we know the induced shrinking C1 manifold Daδ defined

in Definition 3.4.2 has dimension at most n− 1. Furthermore, by Corollary 3.4.5 we

know that D = Daδ. Therefore, the set of points converging to the strict saddle point

has zero Lebesgue measure. Similar to the proof of Theorem 3.1.1, since the gradient

map is a local diffeomorphism, we can see that with random initialization, GD will

not converge to any saddle point. The proof is complete.

3.5 Appendix

3.5.1 Additional Theorems

Lemma 3.5.1 (The Inverse Function Theorem). Let f : M → N be a smooth map,

and dim(M) = dim(N). Suppose that the Jacobian Dfp is nonsingular at some

p ∈M . Then f is a local diffeomorphism at p, i.e., there exists an open neighborhood

U of p such that

1. f is one-to-one on U .

2. f(U) is open in N .

3. f−1 : f(U)→ U is smooth.

In particular, D(f−1)f(p) = (Dfp)
−1.

Lemma 3.5.2 (Lindelöf’s Lemma). For every open cover there is a countable sub-

cover.

3.5.2 Additional Techniques

Proof. [Proof of Lemma 3.3.2] With Theorem 3.5.1, we know that for every x ∈ S,

there exists an open set Ux ∈ Rn such that g is non-singular. Let Wx = S ∩ Ux, then
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we have

S ⊆
⋃
x∈S

Wx

With Lindelöf’s Lemma, there exists a set S ′ with countable elements x such that

S ⊆
⋃
x∈S′

Wx

Since the Dg is non-singular on Wx , we know that g on Wx is one-one-onto. Hence,

we have µ(g−1(Wx)) = 0. Hence, we have

µ(g−1(
⋃
x∈S

Wx)) = µ(g−1(
⋃
x∈S′

Wx)) ≤ µ(
⋃
x∈S′

g−1(x)) ≤
∑
x∈S′

µ(g−1(x)) = 0

where the second inequality is from monotony of Lebesgue measure and the third

inequality is from semi-countable additivity of Lebesgue measure.

Proof. Proof of Lemma 3.3.3 If the Jacobian of the gradient map Dg is non-singular

at some point x ∈ Rn, with the continuity of the Jacobian Dg, we know that Dg is

non-singular at some open neighborhood Ux of the point x. Hence, we have

Rn ⊆
⋃
x∈Rn
Ux

With Lindelöf’s Lemma, there exists a set S with countable number of x ∈ Rn such

that

Rn ⊆
⋃
x∈S

Ux

Let Hx be the step size that Jacobian Dg s singular at the open set Ux. With the

definition of Ux, we know that there are at most n elements in Hx. Hence, we have

µ(Hx) = 0 and H =
⋃
x∈S

Hx,

where H satisfies that the Jacobian of the gradient map non-singular with step size

h ∈
(
0, 2

L

)
\H. With the semi-countable additivity of Lebesgue measure, we have

µ(H) = µ

(⋃
x∈S

Hx

)
≤
∑
x∈S

µ(Hx) = 0.
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Proof. Proof of Proposition 3.1.1 Consider the following quadratic function

f(x) =
1

2
xTAx

where A is a diagonal matrix A = diag(λ1, . . . , λn) and satisfies λ1 > λ2 > . . . , λn >

0. The global gradient Lipschitz constant L of f is λ1. Now consider the gradient

dynamics

xt+1 = xt − hAxt = (I − hA)xt.

Since h ≥ 2
L

, λmax (I − hA) ≥ 1. Therefore, the sequence {x0, x1, . . .} does not

converge.

Proof. Proof of Lemma 3.4.6 If xt ∈ Vr(x?), the step size satisfies

ht ∈
[

ε0
L(xt,r)

,
2− ε0
L(xt,r)

]
⊆
[

ε0
L− 2Kr

,
2− ε0
L

]
⊆
[

ε0
L(1− 0.1ε0)

,
2− ε0
L

]
Therefore, we known

ht ∈
[
ε′0
L
,
2− ε′0
L

]
.

where ε′0 = ε0
1−0.1ε′0

. Since both At and Bt are diagonal, then the 2-norm is equal to

the maximum eigenvalue, that is,

‖At‖2 = 1−max |λ(∇2|f(x?)) · h ≤ 1− ε0

‖B−1t ‖2 =
1

1 + µmin |λ(∇2f(x∗))|h
≤ 1

1 + ε0µ
L

.

Furthermore, we have

max(‖F1(z1)− F1(z2)‖2, ‖F2(z1)− F2(z2)‖2)

≤ h‖(∇f(x)−∇f(y)) +∇2f(x?)(x− y)‖2

≤ hK (‖z1‖2 + ‖z2‖2) ‖z1 − z2‖2

Plugging in our assumption on the step size we have the desired result.
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CHAPTER 4

A CONSERVATION LAW METHOD IN OPTIMIZATION

This chapter is organized as follows. In Section 4.1, we warm up with a analytical

solution for simple 1-d quadratic function. In Section 4.3, we propose the artificially

dissipating energy algorithm, energy conservation algorithm and the combined algo-

rithm based on the symplectic Euler scheme, and remark a second-order scheme —

the Störmer-Verlet scheme . In Section 4.4, we propose the locally theoretical analy-

sis for High-Speed converegnce. Section 4.5 propose the experimental demonstration.

In section 4.5, we propose the experimental result for the proposed algorithms on

strongly convex function, non-strongly convex function and nonconvex function in

high-dimension. Finally, we propose some perspective view for the proposed algo-

rithms and two adventurous ideas based on the evolution of Newton Second Law —

fluid and quantum.

4.1 Warm-up: An Analytical Demonstration for Intuition

For a simple 1-D function with ill-conditioned Hessian, f(x) = 1
200
x2 with the ini-

tial position at x0 = 1000. The solution and the function value along the solution

for (1.14) are given by x(t) = x0e
− 1

100
t (4.1)

f(x(t)) =
1

200
x20e
− 1

50
t. (4.2)

The solution and the function value along the solution for (1.15) with the optimal

friction parameter γt = 1
5

are
x(t) = x0

(
1 +

1

10
t

)
e−

1
10
t (4.3)

f(x(t)) =
1

200
x20

(
1 +

1

10
t

)2

e−
1
5
t. (4.4)
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The solution and the function value along the solution for (1.17) are
x(t) = x0 cos

(
1

10
t

)
and v(t) = x0 sin

(
1

10
t

)
(4.5)

f(x(t)) =
1

200
x20 cos2

(
1

10
t

)
(4.6)

stop at the point that |v| arrive maximum. Combined with (4.2), (4.4) and (4.6) with

stop at the point that |v| arrive maximum, the function value approximating f(x?)

are shown as below,

0 10 20 30 40 50
TIME

10
0

10
2

10
4

10
6

10
8

f(
x
(t

))
- 

f(
x
*)

Gradient

Momentum

Conservation

0 10 20 30 40 50
TIME

10
-6

10
-4

10
-2

10
0

10
2

f(
x
(t

))
- 

f(
x
*)

/|
|x

0
 -

 x
*|

|
2

Gradient

Momentum

Conservation

Figure 4.1: Minimizing f(x) = 1
200
x2 by the analytical solution for (4.2), (4.4)

and (4.6) with stop at the point that |v| arrive maximum, starting from x0 = 1000
and the numerical step size ∆t = 0.01.

From the analytical solution for local convex quadratic function with maximum

eigenvalue L and minimum eigenvalue µ, in general, the step size by 1√
L

for momentum

method and Nesterov accelerated gradient method, hence the simple estimate for

iterative times is approximately

n ∼ π

2

√
L

µ
.

hence, the iterative times n is proportional to the reciprocal of the square root of

minimal eigenvalue
√
µ, which is essentially different from the convergence rate of the

gradient method and momentum method.
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4.2 Related Work

The history of gradient method for convex optimization can be back to the time of

Euler and Lagrange. However, since it is relatively cheaper to only calculation for first-

order information, this simplest and earliest method is still active in machine learn-

ing and nonconvex optimization, such as the recent work [GHJY15, AG16, LSJR16,

HMR16]. The natural speedup algorithms are the momentum method first proposed

in [Pol64] and Nesterov accelerated gradient method first proposed in [Nes83] and an

improved version [NN88]. A acceleration algorithm similar as Nesterov accelerated

gradient method, named as FISTA, is designed to solve composition problems [BT09].

A related comprehensive work is proposed in [B+15].

The original momentum method, named as Polyak heavy ball method, is from

the view of ODE in [Pol64], which contains extremely rich physical intuitive ideas

and mathematical theory. An extremely important work in application on machine

learning is the backpropagation learning with momentum [RHW+88]. Based on the

thought of ODE, a lot of understanding and application on the momentum method

and Nesterov accelerated gradient methods have been proposed. In [SMDH13], a well-

designed random initialization with momentum parameter algorithm is proposed to

train both DNNs and RNNs. A seminal deep insight from ODE to understand the

intuition behind Nesterov scheme is proposed in [SBC14]. The understanding for

momentum method based on the variation perspective is proposed on [WWJ16], and

the understanding from Lyaponuv analysis is proposed in [WRJ16]. From the stability

theorem of ODE, the gradient method always converges to local minima in the sense

of almost everywhere is proposed in [LSJR16]. Analyzing and designing iterative

optimization algorithms built on integral quadratic constraints from robust control

theory is proposed in [LRP16].
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Actually the “high momentum” phenomenon has been firstly observed in [OC15]

for a restarting adaptive accelerating algorithm, and also the restarting scheme is

proposed by [SBC14]. However, both works above utilize restarting scheme for an

auxiliary tool to accelerate the algorithm based on friction. With the concept of phase

space in mechanics, we observe that the kinetic energy, or velocity, is controllable and

utilizable parameter to find the local minima. Without friction term, we can still find

the local minima only by the velocity parameter. Based on this view, the algorithm

is proposed very easy to practice. Meanwhile, the thought can be generalized to

nonconvex optimization to detect local minima along the trajectory of the particle.

4.3 Symplectic Scheme and Algorithms

In this chapter, we utilize the first-order symplectic Euler scheme from numerically

solving Hamiltonian system as below
xk+1 = xk + hvk+1

vk+1 = vk − h∇f(xk)

(4.7)

to propose the corresponding artifically dissipating energy algorithm to find the global

minima for convex function, or local minima in non-convex function. Then by the

observability of the velocity, we propose the energy conservation algorithm for detect-

ing local minima along the trajectory. Finally, we propose a combined algorithm to

find better local minima between some local minima.

Remark 4.3.1. In all the algorithms below, the symplectic Euler scheme can be

taken place by the Störmer-Verlet scheme, i.e.
vk+1/2 = vk −

h

2
∇f(xk)

xk+1 = xk + hvk+1/2

vk+1 = vk+1/2 −
h

2
∇f(xk+1)

(4.8)
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which works perfectly better than the symplectic scheme even if doubling step size

and keep the left-right symmetry of the Hamiltonian system. The Störmer-Verlet

scheme is the natural discretization for 2nd-order ODE

xk+1 − 2xk + xk−1 = −h2∇f(xk) (4.9)

which is named as leap-frog scheme in PDEs. We remark that the discrete scheme (4.9)

is different from the finite difference approximation by the forward Euler method to

analyze the stability of 2nd ODE in [SBC14], since the momentum term is biased.

4.3.1 Artifically Dissipating Energy Algorithm

Firstly, the artificially dissipating energy algorithm based on (4.7) is proposed as

below.

Algorithm 1 Artifically Dissipating Energy Algorithm

1: Given a starting point x0 ∈ dom(f)
2: Initialize the step length h, maxiter, and the velocity variable v0 = 0
3: Initialize the iterative variable viter = v0
4: while ‖∇f(x)‖ > ε and k < maxiter do
5: Compute viter from the below equation in (4.7)
6: if ‖viter‖ ≤ ‖v‖ then
7: v = 0
8: else
9: v = viter

10: end if
11: Compute x from the above equation in (4.7)
12: xk = x;
13: f(xk) = f(x);
14: k = k + 1;
15: end while

Remark 4.3.2. In the actual algorithm 1, the codes in line 15 and 16 are not need

in the while loop in order to speed up the computation.
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4.3.1.1 A Simple Example For Illustration

Here, we use a simple convex quadratic function with ill-conditioned eigenvalue for

illustration as below,

f(x1, x2) =
1

2

(
x21 + αx22

)
, (4.10)

of which the maximum eigenvalue is L = 1 and the minimum eigenvalue is µ = α.

Hence the scale of the step size for (4.10) is

1

L
=

√
1

L
= 1.

In figure 4.2, we demonstrate the convergence rate of gradient method, momen-

tum method, Nesterov accelerated gradient method and artifically dissipating energy

method with the common step size h = 0.1 and h = 0.5, where the optimal friction

parameter for momentum method γ = 1−
√
α

1+
√
α

with α = 10−5. A further result for

comparison with the optimal step size in gradient method h = 2
1+α

, the momentum

method h = 4
(1+
√
α)2

, and Nesterov accelerated gradient method with h = 1 and the

artifically disspating energy method with h = 0.5 shown in figure 4.3.
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Figure 4.2: Mimimize the function in (4.10) for artificially dissipating energy algo-
rithm comparing with gradient method, momentum method and Nesterov accelerated
gradient method with stop criteria ε = 1e − 6. The Step size: Left: h = 0.1; Right:
h = 0.5.
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Figure 4.3: Mimimize the function in (4.10) for artificially dissipating energy algo-
rithm comparing with gradient method, momentum method and Nesterov accelerated
gradient method with stop criteria ε = 1e − 6. The Coefficient α: Left: α = 10−5;
Right: α = 10−6.

With the illustrative convergence rate, we need to learn the trajectory. Since the

trajectories of all the four methods are so narrow in ill-condition function in (4.10),

we use a relatively good-conditioned function to show it as α = 1
10

in figure 4.4.
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Figure 4.4: The trajectory for gradient method, momentum method, Nesterov accel-
erated method and artifically dissipating energy method for the function (4.10) with
α = 0.1.

A clear fact in figure 4.4 shows that the gradient correction decrease the oscillation

to comparing with momentum method. A more clear observation is that artificially

dissipating method owns the same property with the other three method by the law of

nature, that is, if the trajectory come into the local minima in one dimension will not
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leave it very far. However, from figure 4.2 and figure 4.3, the more rapid convergence

rate from artificially dissipating energy method has been shown.

4.3.2 Energy Conservation Algorithm for Detecting Local

Minima

Here, the energy conservation algorithm based on (4.7) is proposed as below.

Algorithm 2 Energy Conservation Algorithm

1: Given a starting point x0 ∈ dom(f)
2: Initialize the step size h and the maxiter
3: Initialize the velocity v0 > 0 and compute f(x0)
4: Compute the velocity x1 and v1 from the equation (4.7), and compute f(x1)
5: for k = 1 : n do
6: Compute xk+1 and vk+1 from (4.7)
7: Compute f(xk+1)
8: if ‖vk‖ ≥ ‖vk+1‖ and ‖vk‖ ≥ ‖vk−1‖ then
9: Record the position xk

10: end if
11: end for

Remark 4.3.3. In the algorithm 2, we can set v0 > 0 such that the total energy

large enough to climb up some high peak. Same as the algorithm 1, the function

value f(x) is not need in the while loop in order to speed up the computation.

4.3.2.1 The Simple Example For Illustration

Here, we use the non-convex function for illustration as below,

f(x) =


2 cos(x), x ∈ [0, 2π]

cos(x) + 1, x ∈ [2π, 4π]

3 cos(x)− 1, x ∈ [4π, 6π]

(4.11)
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which is the 2nd-order smooth function but not 3rd-order smooth. The maximum

eigenvalue can be calculated as below

max
x∈[0,6π]

|f ′′(x)| = 3.

then, the step length is set h ∼
√

1
L

. We illustrate that the algorithm 2 simulate the

trajectory and find the local minima in figure 4.5.
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Figure 4.5: The Left: the step size h = 0.1 with 180 iterative times. The Right: the
step size h = 0.3 with 61 iterative times.

Another 2D potential function is shown as below,

f(x1, x2) =
1

2

[
(x1 − 4)2 + (x2 − 4)2 + 8 sin(x1 + 2x2)

]
. (4.12)

which is the smooth function with domain in (x1, x2) ∈ [0, 8]× [0, 8]. The maximum

eigenvalue can be calculated as below

max
x∈[0,6π]

|λ(f ′′(x))| ≥ 16.

then, the step length is set h ∼
√

1
L

. We illustrate that the algorithm 2 simulate the

trajectory and find the local minima in figure 4.6.
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Figure 4.6: The common step size is set h = 0.1. The Left: the position at (2, 0) with
23 iterative times. The Right: the position at (0, 4) with 62 iterative times.

Remark 4.3.4. We point out that for the energy conservation algorithm for de-

tecting local minima along the trajectory cannot detect saddle point in the sense of

almost every, since the saddle point in original function f(x) is also a saddle point

for the energy function H(x, v) = 1
2
‖v‖2 + f(x). The proof process is fully the same

in [LSJR16].

4.3.3 Combined Algorithm

Finally, we propose the comprehensive algorithm combining the artificially dissipating

energy algorithm (algorithm 1) and the energy conservation algorithm (2) to find

global minima.

Algorithm 3 Combined Algorithm

1: Given some starting points x0,i ∈ dom(f) with i = 1, . . . , n
2: Implement algorithm 2 detecting the position there exists local minima, noted as
xj with j = 1, . . . ,m

3: Implement algorithm 1 from the result on line 2 finding the local minima, noted
as xk with k = 1, . . . , l

4: Comparison of f(xk) with k = 1, . . . , l to find global minima.

Remark 4.3.5. We remark that the combined algorithm (algorithm 3) cannot guar-

antee to find global minima if the initial position is not ergodic. The tracking local
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minima is dependent on the trajectory. However, the time of computation and pre-

cision based on the proposed algorithm is far better than the large sampled gradient

method. Our proposed algorithm first makes the global minima found become possi-

ble.

4.4 An Asymptotic Analysis for the Phenomena of Local

High-Speed Convergence

In this section, we analyze the phenomena of high-speed convergence shown in fig-

ure 4.1, figure 4.2 and figure 4.3. Without loss of generality, we use the translate

transformation yk = xk − x? (x? is the point of local minima) and vk = vk into (4.7),

shown as below, 
yk+1 = yk + hvk+1

vk+1 = vk − h∇f(x? + yk),

(4.13)

the locally linearized scheme of which is given as below,
yk+1 = yk + hvk+1

vk+1 = vk − h∇2f(x?)yk.

(4.14)

Remark 4.4.1. The local linearized analysis is based on the stability theorem in finite

dimension, the invariant stable manifold theorem and Hartman-Grobman linearized

map theorem [Har82]. The thought is firstly used in [Pol64] to estimate the local

convergence of momentum method. And in the paper [LSJR16], the thought is used

to exclude the possiblity to converegnce to saddle point. However, the two theorems

above belong to the qualitative theorem of ODE. Hence, the linearized scheme (4.14)

is only an approximate estimate for the original scheme (4.13) locally.

56



4.4.1 Some Lemmas for the Linearized Scheme

LetA be the positive-semidefinite and symmetric matrix to represent∇2f(x?) in (4.14).

Lemma 4.4.2. The numerical scheme, shown as belowxk+1

vk+1

 =

I − h2A hI

−hA I


xk
vk

 (4.15)

is equivalent to the linearized symplectic-Euler scheme (4.14), where we note that the

linear transformation is

M =

I − h2A hI

−hA I

 . (4.16)

Proof.I −hI
0 I


xk+1

vk+1

 =

 I 0

−hA I


xk
vk

⇔
xk+1

vk+1

 =

I − h2A hI

−hA I


xk
vk



Lemma 4.4.3. For every 2n × 2n matrix M in (4.16), there exists the orthogonal

transformation U2n×2n such that the matrix M is similar as below

UTMU =



T1

T2

. . .

Tn


(4.17)

where Ti (i = 1, . . . , n) is 2× 2 matrix with the form

Ti =

1− ω2
i h

2 h

−ω2
i h 1

 (4.18)

where ω2
i is the eigenvalue of the matrix A.
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Proof. Let Λ be the diagonal matrix with the eigenvalues of the matrix A as below

Λ =



ω2
1

ω2
2

. . .

ω2
n


.

Since A is positive define and symmetric, there exists orthogonal matrix U1 such that

UT
1 AU1 = Λ

Let Π be the permuation matrix satisfying

Πi,j =


1, j odd, i =

j + 1

2

1, j even, i = n+
j

2

0, otherwise

where i is the row index and j is the column index. Then, let U = diag(U1, U1)Π,

we have by conjugation

UTMU = ΠT

UT
1

UT
1


I − h2A hI

−hA I


U1

U1

Π

= ΠT

I − h2Λ hI

−hΛ I

Π

=



T1

T2

. . .

Tn


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From Lemma 4.4.3, we know that the equation (4.15) can be written as the equivalent

form (UT
1 x)k+1,i

(UT
1 v)k+1,i

 = Ti

(UT
1 x)k,i

(UT
1 v)k,i

 =

1− ω2
i h

2 h

−ω2
i h 1


(UT

1 x)k,i

(UT
1 v)k,i

 (4.19)

where i = 1, . . . , n.

Lemma 4.4.4. For any step size h satisfying 0 < hωi < 2, the eigenvalues of the

matrix Ti are complex with absolute value 1.

Proof. For i = 1, . . . , n, we have

|λI − Ti| = 0⇔ λ1,2 = 1− h2ω2
i

2
± hωi

√
1− h2ω2

i

4
.

Let θi and φi for i = 1, . . . , n for the new coordinate variables as below
cos θi = 1− h2ω2

i

2

sin θi = hωi

√
1− h2ω2

i

4

,


cosφi =

hωi
2

sinφi =

√
1− h2ω2

i

4

(4.20)

In order to make θi and φi located in
(
0, π

2

)
, we need to shrink to 0 < hωi <

√
2.

Lemma 4.4.5. With the new coordinate in (4.20) for 0 < hωi <
√

2, we have

2φi + θi = π (4.21)

and 
sin θi = sin(2φi) = hωi sinφi

sin(3φi) = −
(
1− h2ω2

i

)
sinφi

(4.22)
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Proof. With Sum-Product identities of trigonometric function, we have

sin(θi + φi) = sin θi cosφi + cos θi sinφi

= hωi

√
1− h2ω2

i

4
· hωi

2
+

(
1− h2ω2

i

2

)√
1− h2ω2

i

4

=

√
1− h2ω2

i

4

= sinφi.

Since 0 < hωi < 2, we have θi, φi ∈
(
0, π

2

)
, we can obtain that

θi + φi = π − φi ⇔ θi = π − 2φi

and with the coordinate transfornation in (4.20), we have

sin θi = hωi sinφi ⇔ sin(2φi) = hωi sinφi.

Next, we use Sum-Product identities of trigonometric function furthermore,

sin(θi − φi) = sin θi cosφi − cos θi sinφi

= hωi

√
1− h2ω2

i

4
· hωi

2
−
(

1− h2ω2
i

2

)√
1− h2ω2

i

4

=
(
h2ω2

i − 1
)√

1− h2ω2
i

4

= −
(
1− h2ω2

i

)
sinφi

and with θi = π − 2φi, we have

sin(3φi) = −
(
1− h2ω2

i

)
sinφi

Lemma 4.4.6. With the new coordinate in (4.20), the matrix Ti (i = 1, . . . , n)

in (4.18) can expressed as below,

Ti =
1

ωi (e−iφi − eiφi)

 1 1

ωie
iφi ωie

−iφi


eiθi 0

0 e−iθi


ωie−iφi −1

−ωieiφi 1

 (4.23)
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Proof. For the coordinate transformation in (4.20), we have

Ti

 1

ωie
iφi

 =

 1

ωie
iφi

 eiθi and Ti

 1

ωie
−iφi

 =

 1

ωie
−iφi

 e−iθi

Hence, (4.23) is proved.

4.4.2 The Asymptotic Analysis

Theorem 4.4.7. Let the initial value x0 and v0, after the first k steps without reseting

the velocity, the iterative solution (4.14) with the equivalent form (4.19) has the form

as below(UT
1 x)k,i

(UT
1 v)k,i

 = T ki

(UT
1 x)0,i

(UT
1 v)0,i

 =

− sin(kθi−φi)
sinφi

sin(kθi)
ωi sinφi

−ωi sin(kθi)
sinφi

sin(kθi+φi)
sinφi


(UT

1 x)0,i

(UT
1 v)0,i

 (4.24)

Proof. With Lemma 4.4.6 and the coordinate transformation (4.20), we have

T ki =
1

ωi (e−iφi − eiφi)

 1 1

ωie
iφi ωie

−iφi


eiθi 0

0 e−iθi


kωie−iφi −1

−ωieiφi 1


=

1

ωi (e−iφi − eiφi)

 1 1

ωie
iφi ωie

−iφi


 ωei(kθi−φi) −eikθi

−ωe−i(kθi−φi) e−ikθi


=

− sin(kθi−φi)
sinφi

sin(kθi)
ωi sinφi

−ωi sin(kθi)
sinφi

sin(kθi+φi)
sinφi


The proof is complete.

Comparing (4.24) and (4.19), we can obtain that

sin(kθi − φi)
sinφi

= 1− h2ω2
i .

With the intial value (x0, 0)T , then the initial value for (4.19) is (UT
1 x0, 0). In order

to make sure the numerical solution, or the iterative solution owns the same behavior

as the analytical solution, we need to set 0 < hωi < 1.
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Remark 4.4.8. Here, the behavior is similar as the thought in [LSJR16]. The step

size 0 < hL < 2 make sure the global convergence of gradient method. And the step

size 0 < hL < 1 make the uniqueness of the trajectory along the gradient method,

the thought of which is equivalent of the existencen and uniqueness of the solution

for ODE. Actually, the step size 0 < hL < 1 owns the property with the solution

of ODE, the continous-limit version. A global existence of the solution for gradient

system is proved in [Per13].

For the good-conditioned eigenvalue of the Hessian ∇2f(x?), every method such

as gradient method, momentum method, Nesterov accelerated gradient method and

artificially dissipating energy method has the good convergence rate shown by the

experiment. However, for our artificially dissipating energy method, since there are

trigonometric functions from (4.24), we cannot propose the rigorous mathematic proof

for the convergence rate. If everybody can propose a theoretical proof, it is very

beautiful. Here, we propose a theoretical approximation for ill-conditioned case, that

is, the direction with small eigenvalue λ(∇2f(x?))� L.

Assumption A2. If the step size h = 1√
L

for (4.14), for the ill-conditioned eigenvalue

ωi �
√
L, the coordinate variable can be approximated by the analytical solution as

θi = hωi, and φi =
π

2
. (4.25)

With Assumption A2, the iterative solution (4.24) can be rewritten as(UT
1 x)k,i

(UT
1 v)k,i

 =

 cos(khωi)
sin(khωi)

ωi

−ωi sin(khωi) − cos(khωi)


(UT

1 x)0,i

(UT
1 v)0,i

 (4.26)

Theorem 4.4.9. For every ill-conditioned eigen-direction, with every initial condition

(x0, 0)T , if the algorithm 1 is implemented at ‖viter‖ ≤ ‖v‖, then there exist an

eigenvalue ω2
i such that

kωih ≥
π

2
.
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Proof. When ‖viter‖ ≤ ‖v‖, then
∥∥UT

1 viter
∥∥ ≤ ∥∥UT

1 v
∥∥. While for the

∥∥UT
1 v
∥∥, we can

write in the analytical form,

∥∥UT
1 v
∥∥ =

√√√√ n∑
i=1

ω2
i (U1x0)2i sin2(khωi)

if there is no kωih <
π
2
,
∥∥UT

1 v
∥∥ increase with k increasing.

For some i such that kωih approximating π
2
, we have∣∣(UT

1 x)k+1,i

∣∣
|(UT

1 x)k,i|
=

cos ((k + 1)hωi)

cos (khωi)

= eln cos((k+1)hωi)−ln cos(khωi)

= e− tan(ξ)hωi

(4.27)

where ξ ∈ (khωi, (k + 1)hωi). Hence, with ξ approximating π
2
,
∣∣(UT

1 x)k,i
∣∣ approxi-

matie 0 with the linear convergence, but the coefficient will also decay with the rate

e− tan(ξ)hωi with ξ → π
2
. With the Laurent expansion for tan ξ at π

2
, i.e.,

tan ξ = − 1

ξ − π
2

+
1

3

(
ξ − π

2

)
+

1

45

(
ξ − π

2

)3
+O

((
ξ − π

2

)5)
the coefficient has the approximating formula

e− tan(ξ)hωi ≈ e
hωi
ξ−π2 ≤

(π
2
− ξ
)n
.

where n is an arbitrary large real number in R+ for ξ → π
2
.

4.5 Experimental Demonstration

In this section, we implement the artificially dissipating energy algorithm (algo-

rithm 1), energy conservation algorithm (algorithm 2) and the combined algorithm

(algorithm 3) into high-dimension data for comparison with gradient method, mo-

mentum method and Nesterov accelerated gradient method.
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4.5.1 Strongly Convex Function

Here, we investigate the artificially dissipating energy algorithm (algorithm 1) for the

strongly convex function for comparison with gradient method, momentum method

and Nesterov accelerated gradient method (strongly convex case) by the quadratic

function as below.

f(x) =
1

2
xTAx+ bTx (4.28)

where A is symmetric and positive-definite matrix. The two cases are shown as below:

(a) The generate matrix A is 500× 500 random positive define matrix with eigen-

value from 1e− 6 to 1 with one defined eigenvalue 1e− 6. The generate vector

b follows i.i.d. Gaussian distribution with mean 0 and variance 1.

(b) The generate matrix A is the notorious example in Nesterov’s book [Nes13], i.e.,

A =



2 −1

−1 2 −1

−1 2
. . .

. . . . . . . . .

. . . . . . −1

−1 2


the eigenvalues of the matrix are

λk = 2− 2 cos

(
kπ

n+ 1

)
= 4 sin2

(
kπ

2(n+ 1)

)
and n is the dimension of the matrix A. The eigenvector can be solved by the

second Chebyshev’s polynomial. We implement dim(A) = 1000 and b is zero

vector. Hence, the smallest eigenvalue is approximating

λ1 = 4 sin2

(
π

2(n+ 1)

)
≈ π2

10012
≈ 10−5
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Figure 4.7: The Left: the case (a) with the initial point x0 = 0. The Right: the case
(b) with the initial point x0 = 1000

4.5.2 Non-Strongly Convex Function

Here, we investigate the artificially dissipating energy algorithm (algorithm 1) for

the non-strongly convex function for comparison with gradient method, Nesterov

accelerated gradient method (non-strongly convex case) by the log-sum-exp function

as below.

f(x) = ρ log

[
n∑
i=1

exp

(
〈ai, x〉 − bi

ρ

)]
(4.29)

where A is the m × n matrix with ai, (i = 1, . . . ,m) the column vector of A and b

is the n× 1 vector with component bi. ρ is the parameter. We show the experiment

in (4.29): the matrix A = (aij)m×n and the vector b = (bi)n×1 are set by the entry

following i.i.d Gaussian distribution for the paramter ρ = 5 and ρ = 10.
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Figure 4.8: The convergence rate is shown from the initial point x0 = 0. The Left:
ρ = 5; The Right: ρ = 10.

4.5.3 Non-convex Function

For the nonconvex function, we exploit classical test function, known as artificial

landscape, to evaluate characteristics of optimization algorithms from general perfor-

mance and precision. In this paper, we show our algorithms implementing on the

Styblinski-Tang function and Shekel function, which is recorded in the virtual library

of simulation experiments1. Firstly, we investigate Styblinski-Tang function, i.e.

f(x) =
1

2

d∑
i=1

(
x4i − 16x2i + 5xi

)
(4.30)

to demonstrate the general performance of the algorithm 2 to track the number of

local minima and then find the local minima by algorithm 3.

1https://www.sfu.ca/ ssurjano/index.html
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Figure 4.9: Detecting the number of the local minima of 2-D Styblinski-Tang function
by algorithm 3 with step length h = 0.01. The red points are recorded by algorithm 2
and the blue point are the local minima by algorithm 1. The Left: The Initial Position
(5, 5); The Right: The Initial Position (−5, 5).

To the essential 1-D nonconvex Styblinski-Tang function of high dimension, we

implement the algorithm 3 to obtain the precision of the global minima as below.

Local min1 Local min2 Local min3 Local min4

Initial Position (5,5,. . . ) (5,5,. . . ) (5,-5,. . . ) (5,-5,. . . )
Position (2.7486,2.7486,. . . ) (-2.9035,-2.9035,. . . ) (2.7486,-2.9035,. . . ) (-2.9035,2.7486,. . . )
Function Value -250.2945 -391.6617 -320.9781 -320.9781

Table 4.1: The example for ten-dimensional Styblinski-Tang function from two initial
positions.

The global minima calculated at the position (−2.9035,−2.9035, . . .) is −391.6617

shown on the Table 4.1. And the real global minima at (−2.903534,−2.903534, . . .)

is −39.16599× 10 = −391.6599.

Furthermore, we demonstrate the numerical experiment from Styblinski-Tang

function to more complex Shekel function

f(x) = −
m∑
i=1

(
4∑
j=1

(xj − Cji)2 + βi

)−1
(4.31)

where

β =
1

10
(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T
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and

C =



4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6


.

(1) Case m = 5, the global minima at x? = (4, 4, 4, 4) is f(x?) = −10.1532.

(a) From the position (10, 10, 10, 10), the experimental result with the step

length h = 0.01 and the iterative times 3000 is shown as below

Detect Position (Algorithm 2)

7.9879 6.0136 3.8525 6.2914 2.7818

7.9958 5.9553 3.9196 6.2432 6.7434

7.9879 6.0136 3.8525 6.2914 2.7818

7.9958 5.9553 3.9196 6.2432 6.7434


Detect value(

−5.0932 −2.6551 −6.5387 −1.6356 −1.7262

)
Final position (Algorithm 1)

7.9996 5.9987 4.0000 5.9987 3.0018

7.9996 6.0003 4.0001 6.0003 6.9983

7.9996 5.9987 4.0000 5.9987 3.0018

7.9996 6.0003 4.0001 6.0003 6.9983


Final value(

−5.1008 −2.6829 −10.1532 −2.6829 −2.6305

)
(b) From the position (3, 3, 3, 3), the experimental result with the step length

h = 0.01 and the iterative times 1000 is shown as below
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Detect Position (Algorithm 2)

3.9957 6.0140

4.0052 6.0068

3.9957 6.0140

4.0052 6.0068


Detect value (

−10.1443 −2.6794

)
Final position (Algorithm 1)

4.0000 5.9987

4.0001 6.0003

4.0000 5.9987

4.0001 6.0003


Final value (

−10.1532 −2.6829

)
(2) Case m = 7, the global minima at x? = (4, 4, 4, 4) is f(x?) = −10.4029.

(a) From the position (10, 10, 10, 10), the experimental result with the step

length h = 0.01 and the iterative times 3000 is shown as below

Detect Position (Algorithm 2)

7.9879 6.0372 3.1798 5.0430 6.2216 2.6956

8.0041 5.9065 3.8330 2.8743 6.2453 6.6837

7.9879 6.0372 3.1798 5.0430 6.2216 2.6956

8.0041 5.9065 3.8330 2.8743 6.2453 6.6837


Detect value(

−5.1211 −2.6312 −0.9428 −3.3093 −1.8597 −1.5108

)
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Final position (Algorithm 1)

7.9995 5.9981 4.0006 4.9945 5.9981 3.0006

7.9996 5.9993 3.9996 3.0064 5.9993 7.0008

7.9995 5.9981 4.0006 4.9945 5.9981 3.0006

7.9996 5.9993 3.9996 3.0064 5.9993 7.0008


Final value(

−5.1288 −2.7519 −10.4029 −3.7031 −2.7519 −2.7496

)
(b) From the position (3, 3, 3, 3), the experimental result with the step length

h = 0.01 and the iterative times 1000 is shown as below

Detect Position (Algorithm 2)

4.0593 3.0228

3.9976 7.1782

4.0593 3.0228

3.9976 7.1782


Detect value (

−9.7595 −2.4073

)
Final position (Algorithm 1)

4.0006 3.0006

3.9996 7.0008

4.0006 3.0006

3.9996 7.0008


Final value (

−10.4029 −2.7496

)
(3) Case m = 10, the global minima at x? = (4, 4, 4, 4) is f(x?) = −10.5364.
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(a) From the position (10, 10, 10, 10), the experimental result with the step

length h = 0.01 and the iterative times 3000 is shown as below

Detect Position (Algorithm 2)

7.9977 5.9827 4.0225 2.7268 6.1849 6.2831 6.3929

7.9942 6.0007 3.8676 7.3588 6.0601 3.2421 1.9394

7.9977 5.9827 4.0225 2.7268 6.1849 6.2831 6.3929

7.9942 6.0007 3.8676 7.3588 6.0601 3.2421 1.9394


Detect value(
−5.1741 −2.8676 −7.9230 −1.5442 −2.4650 −1.3703 −1.7895

)
Final position (Algorithm 1)

7.9995 5.9990 4.0007 3.0009 5.9990 6.8999 5.9919

7.9994 5.9965 3.9995 7.0004 5.9965 3.4916 2.0224

7.9995 5.9990 4.0007 3.0009 5.9990 6.8999 5.9919

7.9994 5.9965 3.9995 7.0004 5.9965 3.4916 2.0224


Final value(
−5.1756 −2.8712 −10.5364 −2.7903 −2.8712 −2.3697 −2.6085

)
(b) From the position (3, 3, 3, 3), the experimental result with the step length

h = 0.01 and the iterative times 1000 is shown as below

Detect Position (Algorithm 2)

4.0812 3.0206

3.9794 7.0173

4.0812 3.0206

3.9794 7.0173


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Detect value (
−9.3348 −2.7819

)
Final position (Algorithm 1)

4.0007 3.0009

3.9995 7.0004

4.0007 3.0009

3.9995 7.0004


Final value (

−10.5364 −2.7903

)
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CHAPTER 5

UNDERSTANDING THE ACCELERATION PHENOMENON VIA

HIGH-RESOLUTION DIFFERENTIAL EQUATIONS

5.1 Introduction

Machine learning has become one of the major application areas for optimization

algorithms during the past decade. While there have been many kinds of applica-

tions, to a wide variety of problems, the most prominent applications have involved

large-scale problems in which the objective function is the sum over terms associated

with individual data, such that stochastic gradients can be computed cheaply, while

gradients are much more expensive and the computation (and/or storage) of Hessians

is often infeasible. In this setting, simple first-order gradient descent algorithms have

become dominant, and the effort to make these algorithms applicable to a broad range

of machine learning problems has triggered a flurry of new research in optimization,

both methodological and theoretical.

We will be considering unconstrained minimization problems,

min
x∈Rn

f(x), (5.1)

where f is a smooth convex function. Perhaps the simplest first-order method for

solving this problem is gradient descent. Taking a fixed step size s, gradient descent

is implemented as the recursive rule

xk+1 = xk − s∇f(xk),

given an initial point x0.

As has been known at least since the advent of conjugate gradient algorithms,

improvements to gradient descent can be obtained within a first-order framework
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by using the history of past gradients. Modern research on such extended first-

order methods arguably dates to Polyak [Pol64, Pol87a], whose heavy-ball method

incorporates a momentum term into the gradient step. This approach allows past

gradients to influence the current step, while avoiding the complexities of conjugate

gradients and permitting a stronger theoretical analysis. Explicitly, starting from an

initial point x0, x1 ∈ Rn, the heavy-ball method updates the iterates according to

xk+1 = xk + α (xk − xk−1)− s∇f(xk), (5.2)

where α > 0 is the momentum coefficient. While the heavy-ball method provably

attains a faster rate of local convergence than gradient descent near a minimum of

f , it does not come with global guarantees. Indeed, [LRP16] demonstrate that even

for strongly convex functions the method can fail to converge for some choices of the

step size.1

The next major development in first-order methodology was due to Nesterov, who

discovered a class of accelerated gradient methods that have a faster global convergence

rate than gradient descent [Nes83, Nes13]. For a µ-strongly convex objective f with

L-Lipschitz gradients, Nesterov’s accelerated gradient method (NAG-SC) involves the

following pair of update equations:

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
1−√µs
1 +
√
µs

(yk+1 − yk) ,
(5.3)

given an initial point x0 = y0 ∈ Rn. Equivalently, NAG-SC can be written in a

single-variable form that is similar to the heavy-ball method:

xk+1 = xk +
1−√µs
1 +
√
µs

(xk − xk−1)− s∇f(xk)−
1−√µs
1 +
√
µs
· s (∇f(xk)−∇f(xk−1)) ,

(5.4)

1[Pol64] considers s = 4/(
√
L +
√
µ)2 and α = (1 −√µs)2. This momentum coefficient

is basically the same as the choice α =
1−√µs
1+
√
µs (adopted starting from Section 5.1.1) if s is

small.
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starting from x0 and x1 = x0− 2s∇f(x0)
1+
√
µs

. Like the heavy-ball method, NAG-SC blends

gradient and momentum contributions into its update direction, but defines a specific

momentum coefficient
1−√µs
1+
√
µs

. Nesterov also developed the estimate sequence technique

to prove that NAG-SC achieves an accelerated linear convergence rate:

f(xk)− f(x?) ≤ O
(

(1−√sµ)k
)
,

if the step size satisfies 0 < s ≤ 1/L. Moreover, for a (weakly) convex objective f

with L-Lipschitz gradients, Nesterov defined a related accelerated gradient method

(NAG-C), that takes the following form:

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
k

k + 3
(yk+1 − yk),

(5.5)

with x0 = y0 ∈ Rn. The choice of momentum coefficient k
k+3

, which tends to one, is

fundamental to the estimate-sequence-based argument used by Nesterov to establish

the following inverse quadratic convergence rate:

f(xk)− f(x?) ≤ O

(
1

sk2

)
, (5.6)

for any step size s ≤ 1/L. Under an oracle model of optimization complexity, the

convergence rates achieved by NAG-SC and NAG-C are optimal for smooth strongly

convex functions and smooth convex functions, respectively [NY83].

5.1.1 Gradient Correction: Small but Essential

Throughout the present paper, we let α =
1−√µs
1+
√
µs

and x1 = x0− 2s∇f(x0)
1+
√
µs

to define a spe-

cific implementation of the heavy-ball method in (5.2). This choice of the momentum

coefficient and the second initial point renders the heavy-ball method and NAG-SC

identical except for the last (small) term in (5.4). Despite their close resemblance,
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however, the two methods are in fact fundamentally different, with contrasting con-

vergence results (see, for example, [B+15]). Notably, the former algorithm in general

only achieves local acceleration, while the latter achieves acceleration method for all

initial values of the iterate [LRP16]. As a numerical illustration, Figure 5.1 presents

the trajectories that arise from the two methods when minimizing an ill-conditioned

convex quadratic function. We see that the heavy-ball method exhibits pronounced

oscillations throughout the iterations, whereas NAG-SC is monotone in the function

value once the iteration counter exceeds 50.

This striking difference between the two methods can only be attributed to the

last term in (5.4):

1−√µs
1 +
√
µs
· s (∇f(xk)−∇f(xk−1)) , (5.7)

which we refer to henceforth as the gradient correction2. This term corrects the update

direction in NAG-SC by contrasting the gradients at consecutive iterates. Although

an essential ingredient in NAG-SC, the effect of the gradient correction is unclear

from the vantage point of the estimate-sequence technique used in Nesterov’s proof.

Accordingly, while the estimate-sequence technique delivers a proof of acceleration

for NAG-SC, it does not explain why the absence of the gradient correction prevents

the heavy-ball method from achieving acceleration for strongly convex functions.

A recent line of research has taken a different point of view on the theoretical

analysis of acceleration, formulating the problem in continuous time and obtaining

algorithms via discretization [SBC14, KBB15, WWJ16]). This can be done by taking

continuous-time limits of existing algorithms to obtain ordinary differential equations

(ODEs) that can be analyzed using the rich toolbox associated with ODEs, including

2The gradient correction for NAG-C is k
k+3 ·s(∇f(xk)−∇f(xk−1)), as seen from the single-

variable form of NAG-C: xk+1 = xk+ k
k+3(xk−xk−1)−s∇f(xk)− k

k+3 ·s(∇f(xk)−∇f(xk−1)).
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Figure 5.1: A numerical comparison between NAG-SC and heavy-ball method. The
objective function (ill-conditioned µ/L� 1) is f(x1, x2) = 5× 10−3x21 + x22, with the
initial iterate (1, 1).

Lyapunov functions3. For instance, [SBC16] shows that

Ẍ(t) +
3

t
Ẋ(t) +∇f(X(t)) = 0, (5.8)

with initial conditions X(0) = x0 and Ẋ(0) = 0, is the exact limit of NAG-C (5.5)

by taking the step size s→ 0. Alternatively, the starting point may be a Lagrangian

or Hamiltonian framework [WWJ16]. In either case, the continuous-time perspective

not only provides analytical power and intuition, but it also provides design tools for

new accelerated algorithms.

Unfortunately, existing continuous-time formulations of acceleration stop short of

differentiating between the heavy-ball method and NAG-SC. In particular, these two

methods have the same limiting ODE (see, for example, [WRJ16]):

Ẍ(t) + 2
√
µẊ(t) +∇f(X(t)) = 0, (5.9)

3One can think of the Lyapunov function as a generalization of the idea of the energy
of a system. Then the method studies stability by looking at the rate of change of this
measure of energy.
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and, as a consequence, this ODE does not provide any insight into the stronger con-

vergence results for NAG-SC as compared to the heavy-ball method. As will be shown

in Section 5.2, this is because the gradient correction
1−√µs
1+
√
µs
s (∇f(xk)−∇f(xk−1)) =

O(s1.5) is an order-of-magnitude smaller than the other terms in (5.4) if s = o(1).

Consequently, the gradient correction is not reflected in the low-resolution ODE (5.9)

associated with NAG-SC, which is derived by simply taking s→ 0 in both (5.2) and

(5.4).

5.1.2 Overview of Contributions

Just as there is not a singled preferred way to discretize a differential equation, there

is not a single preferred way to take a continuous-time limit of a difference equation.

Inspired by dimensional-analysis strategies widely used in fluid mechanics in which

physical phenomena are investigated at multiple scales via the inclusion of various

orders of perturbations [Ped13], we propose to incorporate O(
√
s) terms into the

limiting process for obtaining an ODE, including the (Hessian-driven) gradient cor-

rection
√
s∇2f(X)Ẋ in (5.7). This will yield high-resolution ODEs that differentiate

between the NAG methods and the heavy-ball method.

We list the high-resolution ODEs that we derive in the paper here4:

(a) The high-resolution ODE for the heavy-ball method (5.2):

Ẍ(t) + 2
√
µẊ(t) + (1 +

√
µs)∇f(X(t)) = 0, (5.10)

with X(0) = x0 and Ẋ(0) = −2
√
s∇f(x0)
1+
√
µs

.

4We note that the form of the initial conditions is fixed for each ODE throughout the
paper. For example, while x0 is arbitrary, X(0) and Ẋ(0) must always be equal to x0 and
−2
√
sf(x0)/(1 +

√
µs) respectively in the high-resolution ODE of the heavy-ball method.

This is in accordance with the choice of α =
1−√µs
1+
√
µs and x1 = x0 − 2s∇f(x0)

1+
√
µs .
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(b) The high-resolution ODE for NAG-SC (5.3):

Ẍ(t) + 2
√
µẊ(t) +

√
s∇2f(X(t))Ẋ(t) + (1 +

√
µs)∇f(X(t)) = 0, (5.11)

with X(0) = x0 and Ẋ(0) = −2
√
s∇f(x0)
1+
√
µs

.

(c) The high-resolution ODE for NAG-C (5.5):

Ẍ(t) +
3

t
Ẋ(t) +

√
s∇2f(X(t))Ẋ(t) +

(
1 +

3
√
s

2t

)
∇f(X(t)) = 0 (5.12)

for t ≥ 3
√
s/2, with X(3

√
s/2) = x0 and Ẋ(3

√
s/2) = −

√
s∇f(x0).

High-resolution ODEs are more accurate continuous-time counterparts for the

corresponding discrete algorithms than low-resolution ODEs, thus allowing for a bet-

ter characterization of the accelerated methods. This is illustrated in Figure 5.2,

which presents trajectories and convergence of the discrete methods, and the low-

and high-resolution ODEs. For both NAGs, the high-resolution ODEs are in much

better agreement with the discrete methods than the low-resolution ODEs5. More-

over, for NAG-SC, its high-resolution ODE captures the non-oscillation pattern while

the low-resolution ODE does not.

The three new ODEs include O(
√
s) terms that are not present in the correspond-

ing low-resolution ODEs (compare, for example, (5.12) and (5.8)). Note also that if

we let s → 0, each high-resolution ODE reduces to its low-resolution counterpart.

Thus, the difference between the heavy-ball method and NAG-SC is reflected only

in their high-resolution ODEs: the gradient correction (5.7) of NAG-SC is preserved

only in its high-resolution ODE in the form
√
s∇2f(X(t))Ẋ(t). This term, which we

refer to as the (Hessian-driven) gradient correction, is connected with the discrete

gradient correction by the approximate identity:

1−√µs
1 +
√
µs
· s (∇f(xk)−∇f(xk−1)) ≈ s∇2f(xk)(xk − xk−1) ≈ s

3
2∇2f(X(t))Ẋ(t)

5Note that for the heavy-ball method, the trajectories of the high-resolution ODE and
the low-resolution ODE are almost identical.
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Figure 5.2: Top left and bottom left: trajectories and errors of NAG-SC and the
heavy-ball method for minimizing f(x1, x2) = 5× 10−3x21 + x22, from the initial value
(1, 1), the same setting as Figure 5.1. Top right and bottom right: trajectories and
errors of NAG-C for minimizing f(x1, x2) = 2× 10−2x21 + 5× 10−3x22, from the initial
value (1, 1). For the two bottom plots, we use the identification t = k

√
s between

time and iterations for the x-axis.

for small s, with the identification t = k
√
s. The gradient correction

√
s∇2f(X)Ẋ

in NAG-C arises in the same fashion6. Interestingly, although both NAGs are first-

order methods, their gradient corrections brings in second-order information from the

objective function.

6Henceforth, the dependence of X on t is suppressed when clear from the context.
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Despite being small, the gradient correction has a fundamental effect on the be-

havior of both NAGs, and this effect is revealed by inspection of the high-resolution

ODEs. We provide two illustrations of this.

• Effect of the gradient correction in acceleration. Viewing the coefficient

of Ẋ as a damping ratio, the ratio 2
√
µ+
√
s∇2f(X) of Ẋ in the high-resolution

ODE (5.11) of NAG-SC is adaptive to the position X, in contrast to the fixed

damping ratio 2
√
µ in the ODE (5.10) for the heavy-ball method. To appreciate

the effect of this adaptivity, imagine that the velocity Ẋ is highly correlated with

an eigenvector of ∇2f(X) with a large eigenvalue, such that the large friction

(2
√
µ+
√
s∇2f(X))Ẋ effectively “decelerates” along the trajectory of the ODE

(5.11) of NAG-SC. This feature of NAG-SC is appealing as taking a cautious step

in the presence of high curvature generally helps avoid oscillations. Figure 5.1

and the left plot of Figure 5.2 confirm the superiority of NAG-SC over the

heavy-ball method in this respect.

If we can translate this argument to the discrete case we can understand why

NAG-SC achieves acceleration globally for strongly convex functions but the

heavy-ball method does not. We will be able to make this translation by lever-

aging the high-resolution ODEs to construct discrete-time Lyapunov functions

that allow maximal step sizes to be characterized for the NAG-SC and the

heavy-ball method. The detailed analyses is given in Section 5.3.

• Effect of gradient correction in gradient norm minimization. We will

also show how to exploit the high-resolution ODE of NAG-C to construct a

continuous-time Lyapunov function to analyze convergence in the setting of a

smooth convex objective with L-Lipschitz gradients. Interestingly, the time

derivative of the Lyapunov function is not only negative, but it is smaller than

−O(
√
st2‖∇f(X)‖2). This bound arises from the gradient correction and, in-
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deed, it cannot be obtained from the Lyapunov function studied in the low-

resolution case by [SBC16]. This finer characterization in the high-resolution

case allows us to establish a new phenomenon:

min
0≤i≤k

‖∇f(xi)‖2 ≤ O

(
L2

k3

)
.

That is, we discover that NAG-C achieves an inverse cubic rate for minimizing

the squared gradient norm. By comparison, from (5.6) and the L-Lipschitz

continuity of ∇f we can only show that ‖∇f(xk)‖2 ≤ O (L2/k2). See Section

5.4 for further elaboration on this cubic rate for NAG-C.

As we will see, the high-resolution ODEs are based on a phase-space representation

that provides a systematic framework for translating from continuous-time Lyapunov

functions to discrete-time Lyapunov functions. In sharp contrast, the process for

obtaining a discrete-time Lyapunov function for low-resolution ODEs presented by

[SBC16] relies on “algebraic tricks” (see, for example, Theorem 6 of [SBC16]). On

a related note, a Hessian-driven damping term also appears in ODEs for modeling

Newton’s method [AABR02, AMR12, APR16].

5.1.3 Related Work

There is a long history of using ODEs to analyze optimization methods [HM12, Sch00,

Fio05]. Recently, the work of [SBC14, SBC16] has sparked a renewed interest in lever-

aging continuous dynamical systems to understand and design first-order methods and

to provide more intuitive proofs for the discrete methods. Below is a rather incom-

plete review of recent work that uses continuous-time dynamical systems to study

accelerated methods.

In the work of [WWJ16, WRJ16, BJW18], Lagrangian and Hamiltonian frame-

works are used to generate a large class of continuous-time ODEs for a unified treat-
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ment of accelerated gradient-based methods. Indeed, [WWJ16] extend NAG-C to

non-Euclidean settings, mirror descent and accelerated higher-order gradient meth-

ods, all from a single “Bregman Lagrangian.” In [WRJ16], the connection between

ODEs and discrete algorithms is further strengthened by establishing an equivalence

between the estimate sequence technique and Lyapunov function techniques, allow-

ing for a principled analysis of the discretization of continuous-time ODEs. Recent

papers have considered symplectic [BJW18] and Runge–Kutta [ZMSJ18] schemes for

discretization of the low-resolution ODEs.

An ODE-based analysis of mirror descent has been pursued in another line of

work by [KBB15, KBB16, KB17], delivering new connections between acceleration

and constrained optimization, averaging and stochastic mirror descent.

In addition to the perspective of continuous-time dynamical systems, there has also

been work on the acceleration from a control-theoretic point of view [LRP16, HL17,

FRMP18] and from a geometric point of view [BLS15, CML17]. See also [OC15,

FB15, GL16, DO17, LMH18, DFR18] for a number of other recent contributions to

the study of the acceleration phenomenon.

5.1.4 Organization and Notation

The remainder of the paper is organized as follows. In Section 5.2, we briefly intro-

duce our high-resolution ODE-based analysis framework. This framework is used in

Section 5.3 to study the heavy-ball method and NAG-SC for smooth strongly convex

functions. In Section 5.4, we turn our focus to NAG-C for a general smooth convex

objective. In Section 5.5 we derive some extensions of NAG-C. We conclude the pa-

per in Section 5.6 with a list of future research directions. Most technical proofs are

deferred to the Appendix.
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We mostly follow the notation of [Nes13], with slight modifications tailored to the

present paper. Let F1
L(Rn) be the class of L-smooth convex functions defined on Rn;

that is, f ∈ F1
L if f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all x, y ∈ Rn and its gradient is

L-Lipschitz continuous in the sense that

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ ,

where ‖ · ‖ denotes the standard Euclidean norm and L > 0 is the Lipschitz constant.

(Note that this implies that ∇f is also L′-Lipschitz for any L′ ≥ L.) The function

class F2
L(Rn) is the subclass of F1

L(Rn) such that each f has a Lipschitz-continuous

Hessian. For p = 1, 2, let Spµ,L(Rn) denote the subclass of FpL(Rn) such that each

member f is µ-strongly convex for some 0 < µ ≤ L. That is, f ∈ Spµ,L(Rn) if

f ∈ FpL(Rn) and

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2 ,

for all x, y ∈ Rn. Note that this is equivalent to the convexity of f(x)− µ
2
‖x− x?‖2,

where x? denotes a minimizer of the objective f .

5.2 The High-Resolution ODE Framework

This section introduces a high-resolution ODE framework for analyzing gradient-

based methods, with NAG-SC being a guiding example. Given a (discrete) optimiza-

tion algorithm, the first step in this framework is to derive a high-resolution ODE

using dimensional analysis, the next step is to construct a continuous-time Lyapunov

function to analyze properties of the ODE, the third step is to derive a discrete-time

Lyapunov function from its continuous counterpart and the last step is to translate

properties of the ODE into that of the original algorithm. The overall framework is

illustrated in Figure 5.3.
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Figure 5.3: An illustration of our high-resolution ODE framework. The three solid
straight lines represent Steps 1, 2 and 3, and the two curved lines denote Step 4. The
dashed line is used to emphasize that it is difficult, if not impractical, to construct
discrete Lyapunov functions directly from the algorithms.

Step 1: Deriving High-Resolution ODEs

Our focus is on the single-variable form (5.4) of NAG-SC. For any nonnegative integer

k, let tk = k
√
s and assume xk = X(tk) for some sufficiently smooth curve X(t).

Performing a Taylor expansion in powers of
√
s, we get

xk+1 = X(tk+1) = X(tk) + Ẋ(tk)
√
s+

1

2
Ẍ(tk)

(√
s
)2

+
1

6

...
X(tk)

(√
s
)3

+O
((√

s
)4)

xk−1 = X(tk−1) = X(tk)− Ẋ(tk)
√
s+

1

2
Ẍ(tk)

(√
s
)2 − 1

6

...
X(tk)

(√
s
)3

+O
((√

s
)4)

.

(5.13)

We now use a Taylor expansion for the gradient correction, which gives

∇f(xk)−∇f(xk−1) = ∇2f(X(tk))Ẋ(tk)
√
s+O

((√
s
)2)

. (5.14)

Multiplying both sides of (5.4) by
1+
√
µs

1−√µs ·
1
s

and rearranging the equality, we can

rewrite NAG-SC as

xk+1 + xk−1 − 2xk
s

+
2
√
µs

1−√µs
· xk+1 − xk

s
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+∇f(xk)−∇f(xk−1) +
1 +
√
µs

1−√µs
∇f(xk) = 0. (5.15)

Next, plugging (5.13) and (5.14) into (5.15), we have7

Ẍ(tk) +O
((√

s
)2)

+
2
√
µ

1−√µs

[
Ẋ(tk) +

1

2
Ẍ(tk)

√
s+O

((√
s
)2)]

+∇2f(X(tk))Ẋ(tk)
√
s+O

((√
s
)2)

+

(
1 +
√
µs

1−√µs

)
∇f(X(tk)) = 0,

which can be rewritten as

Ẍ(tk)

1−√µs
+

2
√
µ

1−√µs
Ẋ(tk) +

√
s∇2f(X(tk))Ẋ(tk) +

1 +
√
µs

1−√µs
∇f(X(tk)) +O(s) = 0.

Multiplying both sides of the last display by 1−√µs, we obtain the following high-

resolution ODE of NAG-SC:

Ẍ + 2
√
µẊ +

√
s∇2f(X)Ẋ + (1 +

√
µs)∇f(X) = 0,

where we ignore any O(s) terms but retain the O(
√
s) terms (note that (1−√µs)

√
s =

√
s+O(s)).

Our analysis is inspired by dimensional analysis [Ped13], a strategy widely used in

physics to construct a series of differential equations that involve increasingly high-

order terms corresponding to small perturbations. In more detail, taking a small s,

one first derives a differential equation that consists only of O(1) terms, then derives

a differential equation consisting of both O(1) and O(
√
s), and next, one proceeds to

obtain a differential equation consisting of O(1), O(
√
s) and O(s) terms. High-order

terms in powers of
√
s are introduced sequentially until the main characteristics of the

original algorithms have been extracted from the resulting approximating differential

7Note that we use the approximation
xk+1+xk−1−2xk

s = Ẍ(tk) + O(s), whereas [SBC16]

relies on the low-accuracy Taylor expansion
xk+1+xk−1−2xk

s = Ẍ(tk)+o(1) in the derivation of
the low-resolution ODE of NAG-C. We illustrate this derivation of the three low-resolution
ODEs in Appendix 5.7.1.2; they can be compared to the high-resolution ODEs that we
derive here.
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equation. Thus, we aim to understand Nesterov acceleration by incorporating O(
√
s)

terms into the ODE, including the (Hessian-driven) gradient correction
√
s∇2f(X)Ẋ

which results from the (discrete) gradient correction (5.7) in the single-variable form

(5.4) of NAG-SC. We also show (see Appendix 5.7.1.1 for the detailed derivation) that

this O(
√
s) term appears in the high-resolution ODE of NAG-C, but is not found in

the high-resolution ODE of the heavy-ball method.

As shown below, each ODE admits a unique global solution under mild conditions

on the objective, and this holds for an arbitrary step size s > 0. The solution is

accurate in approximating its associated optimization method if s is small. To state

the result, we use C2(I;Rn) to denote the class of twice-continuously-differentiable

maps from I to Rn for I = [0,∞) (the heavy-ball method and NAG-SC) and I =

[1.5
√
s,∞) (NAG-C).

Proposition 5.2.1. For any f ∈ S2
µ(Rn) := ∪L≥µS2

µ,L(Rn), each of the ODEs (5.10)

and (5.11) with the specified initial conditions has a unique global solution X ∈

C2([0,∞);Rn). Moreover, the two methods converge to their high-resolution ODEs,

respectively, in the sense that

lim sup
s→0

max
0≤k≤ T√

s

∥∥xk −X(k
√
s)
∥∥ = 0,

for any fixed T > 0.

In fact, Proposititon 5.2.1 holds for T =∞ because both the discrete iterates and

the ODE trajectories converge to the unique minimizer when the objective is stongly

convex.

Proposition 5.2.2. For any f ∈ F2(Rn) := ∪L>0F2
L(Rn), the ODE (5.12) with

the specified initial conditions has a unique global solution X ∈ C2([1.5
√
s,∞);Rn).

Moreover, NAG-C converges to its high-resolution ODE in the sense that

lim sup
s→0

max
0≤k≤ T√

s

∥∥xk −X(k
√
s+ 1.5

√
s)
∥∥ = 0,
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for any fixed T > 0.

The proofs of these propositions are given in Appendix 5.7.1.3.1 and Appendix 5.7.1.3.2.

Step 2: Analyzing ODEs Using Lyapunov Functions

With these high-resolution ODEs in place, the next step is to construct Lyapunov

functions for analyzing the dynamics of the corresponding ODEs, as is done in previ-

ous work [SBC16, WRJ16, LRP16]. For NAG-SC, we consider the Lyapunov function

E(t) = (1+
√
µs) (f(X)− f(x?))+

1

4
‖Ẋ‖2+1

4
‖Ẋ+2

√
µ(X−x?)+

√
s∇f(X)‖2. (5.16)

The first and second terms (1 +
√
µs) (f(X)− f(x?)) and 1

4
‖Ẋ‖2 can be regarded,

respectively, as the potential energy and kinetic energy, and the last term is a mix.

For the mixed term, it is interesting to note that the time derivative of Ẋ+2
√
µ(X−

x?) +
√
s∇f(X) equals −(1 +

√
µs)∇f(X).

The differentiability of E(t) will allow us to investigate properties of the ODE (5.11)

in a principled manner. For example, we will show that E(t) decreases exponentially

along the trajectories of (5.11), recovering the accelerated linear convergence rate of

NAG-SC. Furthermore, a comparison between the Lyapunov function of NAG-SC and

that of the heavy-ball method will explain why the gradient correction
√
s∇2f(X)Ẋ

yields acceleration in the former case. This is discussed in Section 5.3.1.

Step 3: Constructing Discrete Lyapunov Functions

Our framework make it possible to translate continuous Lyapunov functions into dis-

crete Lyapunov functions via a phase-space representation (see, for example, [Arn13]).

We illustrate the procedure in the case of NAG-SC. The first step is formulate explicit
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position and velocity updates:

xk − xk−1 =
√
svk−1

vk − vk−1 = −
2
√
µs

1−√µs
vk −

√
s(∇f(xk)−∇f(xk−1))−

1 +
√
µs

1−√µs
·
√
s∇f(xk),

(5.17)

where the velocity variable vk is defined as:

vk =
xk+1 − xk√

s
.

The initial velocity is v0 = − 2
√
s

1+
√
µs
∇f(x0). Interestingly, this phase-space represen-

tation has the flavor of symplectic discretization, in the sense that the update for

xk − xk−1 is explicit (it only depends on the last iterate vk−1) while the update for

vk − vk−1 is implicit (it depends on the current iterates xk and vk)
8.

The representation (5.17) suggests translating the continuous-time Lyapunov func-

tion (5.16) into a discrete-time Lyapunov function of the following form:

E(k) =
1 +
√
µs

1−√µs
(f(xk)− f(x?))︸ ︷︷ ︸

I

+
1

4
‖vk‖2︸ ︷︷ ︸
II

+
1

4

∥∥∥∥vk +
2
√
µ

1−√µs
(xk+1 − x?) +

√
s∇f(xk)

∥∥∥∥2︸ ︷︷ ︸
III

−s ‖∇f(xk)‖2

2(1−√µs)︸ ︷︷ ︸
a negative term

,

(5.18)

by replacing continuous terms (e.g., Ẋ) by their discrete counterparts (e.g., vk). Akin

to the continuous (5.16), here I, II, and III correspond to potential energy, kinetic

energy, and mixed energy, respectively, from a mechanical perspective. To better

appreciate this translation, note that the factor
1+
√
µs

1−√µs in I results from the term

1+
√
µs

1−√µs
√
s∇f(xk) in (5.17). Likewise,

2
√
µ

1−√µs in III is from the term
2
√
µs

1−√µsvk in (5.17).

The need for the final (small) negative term is technical; we discuss it in Section 5.3.2.

8Although this suggestion is a heuristic one, it is also possible to rigorously derive a
symplectic integrator of the high-resolution ODE of NAG-SC; this integrator has the form:

xk − xk−1 =
√
svk−1

vk − vk−1 = −2
√
µsvk − s∇2f(xk)vk − (1 +

√
µs)
√
s∇f(xk).
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Step 4: Analyzing Algorithms Using Discrete Lyapunov Func-

tions

The last step is to map properties of high-resolution ODEs to corresponding properties

of optimization methods. This step closely mimics Step 2 except that now the object is

a discrete algorithm and the tool is a discrete Lyapunov function such as (5.18). Given

that Step 2 has been performed, this translation is conceptually straightforward,

albeit often calculation-intensive. For example, using the discrete Lyapunov function

(5.18), we will recover the optimal linear rate of NAG-SC and gain insights into the

fundamental effect of the gradient correction in accelerating NAG-SC. In addition,

NAG-C is shown to minimize the squared gradient norm at an inverse cubic rate by

a simple analysis of the decreasing rate of its discrete Lyapunov function.

5.3 Gradient Correction for Acceleration

In this section, we use our high-resolution ODE framework to analyze NAG-SC and

the heavy-ball method. Section 5.3.1 focuses on the ODEs with an objective function

f ∈ S2
µ,L(Rn), and in Section 5.3.2 we extend the results to the discrete case for

f ∈ S1
µ,L(Rn). Finally, in Section 5.3.3 we offer a comparative study of NAG-SC and

the heavy-ball method from a finite-difference viewpoint.

Throughout this section, the strategy is to analyze the two methods in parallel,

thereby highlighting the differences between the two methods. In particular, the

comparison will demonstrate the vital role of the gradient correction, namely
1−√µs
1+
√
µs
·

s (∇f(xk)−∇f(xk−1)) in the discrete case and
√
s∇2f(X)Ẋ in the ODE case, in

making NAG-SC an accelerated method.
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5.3.1 The ODE Case

The following theorem characterizes the convergence rate of the high-resolution ODE

corresponding to NAG-SC.

Theorem 5.3.1 (Convergence of NAG-SC ODE). Let f ∈ S2
µ,L(Rn). For any step

size 0 < s ≤ 1/L, the solution X = X(t) of the high-resolution ODE (5.11) satisfies

f(X(t))− f(x?) ≤ 2 ‖x0 − x?‖2

s
e−
√
µt

4 .

The theorem states that the functional value f(X) tends to the minimum f(x?)

at a linear rate. By setting s = 1/L, we obtain f(X)− f(x?) ≤ 2L ‖x0 − x?‖2 e−
√
µt

4 .

The proof of Theorem 5.3.1 is based on analyzing the Lyapunov function E(t) for

the high-resolution ODE of NAG-SC. Recall that E(t) defined in (5.16) is

E(t) = (1 +
√
µs) (f(X)− f(x?)) +

1

4
‖Ẋ‖2 +

1

4
‖Ẋ + 2

√
µ(X − x?) +

√
s∇f(X)‖2.

The next lemma states the key property we need from this Lyapunov function

Lemma 5.3.2 (Lyapunov function for NAG-SC ODE). Let f ∈ S2
µ,L(Rn). For any

step size s > 0, and with X = X(t) being the solution to the high-resolution ODE

(5.11), the Lyapunov function (5.16) satisfies

dE(t)

dt
≤ −
√
µ

4
E(t)−

√
s

2

[
‖∇f(X(t))‖2 + Ẋ(t)>∇2f(X(t))Ẋ(t)

]
. (5.19)

The proof of this theorem relies on Lemma 5.3.2 through the inequality Ė(t) ≤

−
√
µ

4
E(t). The term

√
s
2

(‖∇f(X)‖2 + Ẋ>∇2f(X)Ẋ) ≥ 0 plays no role at the moment,

but Section 5.3.2 will shed light on its profound effect in the discretization of the

high-resolution ODE of NAG-SC.

Proof. [Proof of Theorem 5.3.1]

Lemma 5.3.2 implies Ė(t) ≤ −
√
µ

4
E(t), which amounts to

d

dt

(
E(t)e

√
µt

4

)
≤ 0.
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By integrating out t, we get

E(t) ≤ e−
√
µt

4 E(0). (5.20)

Recognizing the initial conditions X(0) = x0 and Ẋ(0) = −2
√
s∇f(x0)
1+
√
µs

, we write (5.20)

as

f(X)− f(x?) ≤e−
√
µt

4

[
f(x0)− f(x?) +

s(
1 +
√
µs
)3 ‖∇f(x0)‖2

+
1

4(1 +
√
µs)

∥∥∥∥2
√
µ(x0 − x?)−

1−√µs
1 +
√
µs
·
√
s∇f(x0)

∥∥∥∥2
]
.

Since f ∈ S2
µ,L, we have that ‖∇f(x0)‖ ≤ L‖x0 − x?‖ and f(x0) − f(x?) ≤ L‖x0 −

x?‖2/2. Together with the Cauchy–Schwarz inequality, the two inequalities yield

f(X)− f(x?)

≤
[
f(x0)− f(x?) +

2 + (1−√µs)2

2(1 +
√
µs)3

· s ‖∇f(x0)‖2 +
2µ

1 +
√
µs
‖x0 − x?‖2

]
e−
√
µt

4

≤
[
L

2
+

3− 2
√
µs+ µs

2(1 +
√
µs)3

· sL2 +
2µ

1 +
√
µs

]
‖x0 − x?‖2 e−

√
µt

4 ,

which is valid for all s > 0. To simplify the coefficient of ‖x0 − x?‖2 e−
√
µt

4 , note that

L can be replaced by 1/s in the analysis since s ≤ 1/L. It follows that

f(X(t))− f(x?) ≤
[

1

2
+

3− 2
√
µs+ µs

2(1 +
√
µs)3

+
2µs

1 +
√
µs

]
‖x0 − x?‖2 e−

√
µt

4

s
.

Furthermore, a bit of analysis reveals that

1

2
+

3− 2
√
µs+ µs

2(1 +
√
µs)3

+
2µs

1 +
√
µs

< 2,

since µs ≤ µ/L ≤ 1, and this step completes the proof of Theorem 5.3.1.

We now consider the heavy-ball method (5.2). Recall that the momentum coeffi-

cient α is set to
1−√µs
1+
√
µs

. The following theorem characterizes the rate of convergence

of this method.
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Theorem 5.3.3 (Convergence of heavy-ball ODE). Let f ∈ S2
µ,L(Rn). For any step

size 0 < s ≤ 1/L, the solution X = X(t) of the high-resolution ODE (5.10) satisfies

f(X(t))− f(x?) ≤ 7 ‖x0 − x?‖2

2s
e−
√
µt

4 .

As in the case of NAG-SC, the proof of Theorem 5.3.3 is based on a Lyapunov

function:

E(t) = (1 +
√
µs) (f(X)− f(x?)) +

1

4
‖Ẋ‖2 +

1

4
‖Ẋ + 2

√
µ(X − x?)‖2, (5.21)

which is the same as the Lyapunov function (5.16) for NAG-SC except for the lack

of the
√
s∇f(X) term. In particular, (5.16) and (5.21) are identical if s = 0. The

following lemma considers the decay rate of (5.21).

Lemma 5.3.4 (Lyapunov function for the heavy-ball ODE). Let f ∈ S2
µ,L(Rn). For

any step size s > 0, the Lyapunov function (5.21) for the high-resolution ODE (5.10)

satisfies

dE(t)

dt
≤ −
√
µ

4
E(t).

The proof of Theorem 5.3.3 follows the same strategy as the proof of Theo-

rem 5.3.1. In brief, Lemma 5.3.4 gives E(t) ≤ e−
√
µt/4E(0) by integrating over the

time parameter t. Recognizing the initial conditions

X(0) = x0, Ẋ(0) = −2
√
s∇f(x0)

1 +
√
µs

in the high-resolution ODE of the heavy-ball method and using the L-smoothness of

∇f , Lemma 5.3.4 yields

f(X)− f(x?) ≤
[

1

2
+

3

(1 +
√
µs)3

+
2(µs)

1 +
√
µs

]
‖x0 − x?‖2 e−

√
µt

4

s
,

if the step size s ≤ 1/L. Finally, since 0 < µs ≤ µ/L ≤ 1, the coefficient satisfies

1

2
+

3

(1 +
√
µs)3

+
2µs

1 +
√
µs

<
7

2
.
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The proofs of Lemma 5.3.2 and Lemma 5.3.4 share similar ideas. In view of this,

we present only the proof of the former here, deferring the proof of Lemma 5.3.4 to

Appendix 5.7.2.1.

Proof. [Proof of Lemma 5.3.2] Along trajectories of (5.11) the Lyapunov function (5.16)

satisfies

dE
dt

= (1 +
√
µs)〈∇f(X), Ẋ〉+

1

2

〈
Ẋ,−2

√
µẊ −

√
s∇2f(X)Ẋ − (1 +

√
µs)∇f(X)

〉
+

1

2

〈
Ẋ + 2

√
µ (X − x?) +

√
s∇f(X),−(1 +

√
µs)∇f(X)

〉
= −√µ

(
‖Ẋ‖2 + (1 +

√
µs) 〈∇f(X), X − x?〉+

s

2
‖∇f(X)‖2

)
−
√
s

2

[
‖∇f(X)‖2 + Ẋ>∇2f(X)Ẋ

]
≤ −√µ

(
‖Ẋ‖2 + (1 +

√
µs) 〈∇f(X), X − x?〉+

s

2
‖∇f(X)‖2

)
.

(5.22)

Furthermore, 〈∇f(X), X − x?〉 is greater than or equal to both f(X)−f(x?)+ µ
2
‖X−

x?‖2 and µ‖X − x?‖2 due to the µ-strong convexity of f . This yields

(1 +
√
µs) 〈∇f(X), X − x?〉

≥
1 +
√
µs

2
〈∇f(X), X − x?〉+

1

2
〈∇f(X), X − x?〉

≥
1 +
√
µs

2

[
f(X)− f(x?) +

µ

2
‖X − x?‖2

]
+
µ

2
‖X − x?‖2

≥
1 +
√
µs

2
(f(X)− f(x?)) +

3µ

4
‖X − x?‖2,

which together with (5.22) suggests that the time derivative of this Lyapunov function

can be bounded as

dE
dt
≤ −√µ

(
1 +
√
µs

2
(f(X)− f(x?)) + ‖Ẋ‖2 +

3µ

4
‖X − x?‖2 +

s

2
‖∇f(X)‖2

)
.

(5.23)

Next, the Cauchy–Schwarz inequality yields∥∥∥2
√
µ(X − x?) + Ẋ +

√
s∇f(X)

∥∥∥2 ≤ 3
(

4µ ‖X − x?‖2 + ‖Ẋ‖2 + s ‖∇f(X)‖2
)
,
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from which it follows that

E(t) ≤ (1 +
√
µs) (f(X)− f(x?)) + ‖Ẋ‖2 + 3µ ‖X − x?‖2 +

3s

4
‖∇f(X)‖2 . (5.24)

Combining (5.23) and (5.24) completes the proof of the theorem.

Remark 5.3.5. The only inequality in (5.22) is due to the term
√
s
2

(‖∇f(X)‖2 +

Ẋ>∇2f(X)Ẋ), which is discussed right after the statement of Lemma 5.3.2. This

term results from the gradient correction
√
s∇2f(X)Ẋ in the NAG-SC ODE. For

comparison, this term does not appear in Lemma 5.3.4 in the case of the heavy-ball

method as its ODE does not include the gradient correction and, accordingly, its

Lyapunov function (5.21) is free of the
√
s∇f(X) term.

5.3.2 The Discrete Case

This section carries over the results in Section 5.3.1 to the two discrete algorithms,

namely NAG-SC and the heavy-ball method. Here we consider an objective f ∈

S1
µ,L(Rn) since second-order differentiability of f is not required in the two discrete

methods. Recall that both methods start with an arbitrary x0 and x1 = x0− 2s∇f(x0)
1+
√
µs

.

Theorem 5.3.6 (Convergence of NAG-SC). Let f ∈ S1
µ,L(Rn). If the step size is set

to s = 1/(4L), the iterates {xk}∞k=0 generated by NAG-SC (5.3) satisfy

f(xk)− f(x?) ≤ 5L ‖x0 − x?‖2(
1 + 1

12

√
µ/L

)k ,
for all k ≥ 0.

In brief, the theorem states that log(f(xk)−f(x?)) ≤ −O(k
√
µ/L), which matches

the optimal rate for minimizing smooth strongly convex functions using only first-

order information [Nes13]. More precisely, [Nes13] shows that f(xk)−f(x?) = O((1−
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√
µ/L)k) by taking s = 1/L in NAG-SC. Although this optimal rate of NAG-SC is

well known in the litetature, this is the first Lyapunov-function-based proof of this

result.

As indicated in Section 5.2, the proof of Theorem 5.3.6 rests on the discrete

Lyapunov function (5.18):

E(k) =
1 +
√
µs

1−√µs
(f(xk)− f(x?)) +

1

4
‖vk‖2

+
1

4

∥∥∥∥vk +
2
√
µ

1−√µs
(xk+1 − x?) +

√
s∇f(xk)

∥∥∥∥2 − s ‖∇f(xk)‖2

2(1−√µs)
.

Recall that this functional is derived by writing NAG-SC in the phase-space represen-

tation (5.17). Analogous to Lemma 5.3.2, the following lemma gives an upper bound

on the difference E(k + 1)− E(k).

Lemma 5.3.7 (Lyapunov function for NAG-SC). Let f ∈ S1
µ,L(Rn). Taking any step

size 0 < s ≤ 1/(4L), the discrete Lyapunov function (5.18) with {xk}∞k=0 generated

by NAG-SC satisfies

E(k + 1)− E(k) ≤ −
√
µs

6
E(k + 1).

The form of the inequality ensured by Lemma 5.3.7 is consistent with that of

Lemma 5.3.2. Alternatively, it can be written as E(k+1) ≤ 1

1+
√
µs

6

E(k). With Lemma

5.3.7 in place, we give the proof of Theorem 5.3.6.

Proof. [Proof of Theorem 5.3.6] Given s = 1/(4L), we have

f(xk)− f(x?) ≤
4(1−

√
µ/(4L))

3 + 4
√
µ/(4L)

E(k). (5.25)

To see this, first note that

E(k) ≥
1 +

√
µ/(4L)

1−
√
µ/(4L)

(f(xk)− f(x?))− ‖∇f(xk)‖2

8L(1−
√
µ/(4L))

and

1

2L
‖∇f(xk)‖2 ≤ f(xk)− f(x?).
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Combining these two inequalities, we get

E(k) ≥
1 +

√
µ/(4L)

1−
√
µ/(4L)

(f(xk)− f(x?))− f(xk)− f(x?)

4(1−
√
µ/(4L))

=
3 + 4

√
µ/(4L)

4(1−
√
µ/(4L))

(f(xk)− f(x?)),

which gives (5.25).

Next, we inductively apply Lemma 5.3.7, yielding

E(k) ≤ E(0)(
1 +

√
µs

6

)k =
E(0)(

1 + 1
12

√
µ/L

)k . (5.26)

Recognizing the initial velocity v0 = −2
√
s∇f(x0)
1+
√
µs

in NAG-SC, one can show that

E(0) ≤
1 +
√
µs

1−√µs
(f(x0)− f(x?)) +

s

(1 +
√
µs)2

‖∇f(x0)‖2

+
1

4

∥∥∥∥ 2
√
µ

1−√µs
(x0 − x?)−

1 +
√
µs

1−√µs
√
s∇f(x0)

∥∥∥∥2
≤

[
1

2

(
1 +
√
µs

1−√µs

)
+

Ls

(1 +
√
µs)2

+
2µ/L

(1−√µs)2
+
Ls

2

(
1 +
√
µs

1−√µs

)2
]

· L ‖x0 − x?‖2 .

(5.27)

Taking s = 1/(4L) in (5.27), it follows from (5.25) and (5.26) that

f(xk)− f(x?) ≤
Cµ/L L ‖x0 − x?‖2(

1 + 1
12

√
µ/L

)k .
Here the constant factor Cµ/L is a short-hand for

4
(

1−
√
µ/(4L)

)
3 + 4

√
µ/(4L)

·

[
1 +

√
µ/(4L)

2− 2
√
µ/(4L)

+
1

4(1 +
√
µ/(4L))2

+
2µ/L

(1−
√
µ/(4L))2

+
1

8

(
1 +

√
µ/(4L)

1−
√
µ/(4L)

)2
 ,

which is less than five by making use of the fact that µ/L ≤ 1. This completes the

proof.
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We now turn to the heavy-ball method (5.2). Recall that α =
1−√µs
1+
√
µs

and x1 =

x0 − 2s∇f(x0)
1+
√
µs

.

Theorem 5.3.8 (Convergence of heavy-ball method). Let f ∈ S1
µ,L(Rn). If the step

size is set to s = µ/(16L2), the iterates {xk}∞k=0 generated by the heavy-ball method

satisfy

f(xk)− f(x0) ≤
5L ‖x0 − x?‖2(

1 + µ
16L

)k
for all k ≥ 0.

The heavy-ball method minimizes the objective at the rate log(f(xk)− f(x?)) ≤

−O(kµ/L), as opposed to the optimal rate −O(k
√
µ/L) obtained by NAG-SC. Thus,

the acceleration phenomenon is not observed in the heavy-ball method for minimizing

functions in the class S1
µ,L(Rn). This difference is, on the surface, attributed to the

much smaller step size s = µ/(16L2) in Theorem 5.3.8 than the (s = 1/(4L)) in

Theorem 5.3.6. Further discussion of this difference is given after Lemma 5.3.9 and

in Section 5.3.3.

In addition to allowing us to complete the proof of Theorem 5.3.8, Lemma 5.3.9

will shed light on why the heavy-ball method needs a more conservative step size. To

state this lemma, we consider the discrete Lyapunov function defined as

E(k) =
1 +
√
µs

1−√µs
(f(xk)− f(x?)) +

1

4
‖vk‖2 +

1

4

∥∥∥∥vk +
2
√
µ

1−√µs
(xk+1 − x?)

∥∥∥∥2 , (5.28)

which is derived by discretizing the continuous Lyapunov function (5.21) using the

phase-space representation of the heavy-ball method:

xk − xk−1 =
√
svk−1

vk − vk−1 = −
2
√
µs

1−√µs
vk −

1 +
√
µs

1−√µs
·
√
s∇f(xk).

(5.29)

Lemma 5.3.9 (Lyapunov function for the heavy-ball method). Let f ∈ S1
µ,L(Rn).

For any step size s > 0, the discrete Lyapunov function (5.28) with {xk}∞k=0 generated
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by the heavy-ball method satisfies

E(k + 1)− E(k) ≤ −√µsmin

{
1−√µs
1 +
√
µs
,
1

4

}
E(k + 1)

−

[
3
√
µs

4

(
1 +
√
µs

1−√µs

)
(f(xk+1)− f(x?))− s

2

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2
]
. (5.30)

The proof of Lemma 5.3.9 can be found in Appendix 5.7.2.3. To apply this lemma

to prove Theorem 5.3.8, we need to ensure

3
√
µs

4

(
1 +
√
µs

1−√µs

)
(f(xk+1)− f(x?))− s

2

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2 ≥ 0. (5.31)

A sufficient and necessary condition for (5.31) is

3
√
µs

4
(f(xk+1)− f(x?))−

(
1 +
√
µs

1−√µs

)
sL (f(xk+1)− f(x?)) ≥ 0. (5.32)

This is because ‖∇f(xk+1)‖2 ≤ 2L (f(xk+1)− f(x?)), which can be further reduced

to an equality (for example, f(x) = L
2
‖x‖2). Thus, the step size s must obey

s = O
( µ
L2

)
.

In particular, the choice of s = µ
16L2 fulfills (5.32) and, as a consequence, Lemma 5.3.9

implies

E(k + 1)− E(k) ≤ − µ

16L
E(k + 1).

The remainder of the proof of Theorem 5.3.8 is similar to that of Theorem 5.3.6 and

is therefore omitted. As an aside, [Pol64] uses s = 4/(
√
L+
√
µ)2 for local accelerated

convergence of the heavy-ball method. This choice of step size is larger than our step

size s = µ
16L2 , which yields a non-accelerated but global convergence rate.

The term s
2

(
1+
√
µs

1−√µs

)2
‖∇f(xk+1)‖2 in (5.30) that arises from finite differencing

of (5.28) is a (small) term of order O(s) and, as a consequence, this term is not

reflected in Lemma 5.3.4. In relating to the case of NAG-SC, one would be tempted

to ask why this term does not appear in Lemma 5.3.7. In fact, a similar term can
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be found in E(k + 1) − E(k) by taking a closer look at the proof of Lemma 5.3.7.

However, this term is canceled out by the discrete version of the quadratic term
√
s
2

(‖∇f(X)‖2 + Ẋ>∇2f(X)Ẋ) in Lemma 5.3.2 and is, therefore, not present in the

statement of Lemma 5.3.7. Note that this quadratic term results from the gradient

correction (see Remark 5.3.5). In light of the above, the gradient correction is the

key ingredient that allows for a larger step size in NAG-SC, which is necessary for

achieving acceleration.

For completeness, we finish Section 5.3.2 by proving Lemma 5.3.7.

Proof. [Proof of Lemma 5.3.7] Using the Cauchy–Schwarz inequality, we have9

III =
1

4

∥∥∥∥(1 +
√
µs

1−√µs

)
vk +

2
√
µ

1−√µs
(xk − x?) +

√
s∇f(xk)

∥∥∥∥2
≤3

4

[(
1 +
√
µs

1−√µs

)2

‖vk‖2 +
4µ

(1−√µs)2
‖xk − x?‖2 + s ‖∇f(xk)‖2

]
,

which, together with the inequality

3s

4
‖∇f(xk)‖2 −

s ‖∇f(xk)‖2

2(1−√µs)
=
s

4
‖∇f(xk)‖2 +

s

2
‖∇f(xk)‖2 −

s ‖∇f(xk)‖2

2(1−√µs)

≤ Ls

2
(f(xk)− f(x?))−

s
√
µs ‖∇f(xk)‖2

2(1−√µs)
,

for f ∈ S1
µ,L(Rn), shows that the Lyapunov function (5.18) satisfies

E(k) ≤
(

1

1−√µs
+
Ls

2

)
(f(xk)− f(x?)) +

1 +
√
µs+ µs

(1−√µs)2
‖vk‖2

+
3µ

(1−√µs)2
‖xk − x?‖2 +

√
µs

1−√µs

(
f(xk)− f(x?)− s

2
‖∇f(xk)‖2

)
.

(5.33)

Next, as shown in Appendix 5.7.2.2, the inequality

E(k + 1)− E(k) ≤ −√µs

[
1− 2Ls(

1−√µs
)2 (f(xk+1)− f(x?)) +

1

1−√µs
‖vk+1‖2

+
µ

2(1−√µs)2
‖xk+1 − x?‖2 +

√
µs

(1−√µs)2
(
f(xk+1)− f(x?)− s

2
‖∇f(xk+1)‖2

)]
(5.34)

9See the definition of III in (5.18).
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holds for s ≤ 1/(2L). Comparing the coefficients of the same terms in (5.33) for

E(k + 1) and (5.34), we conclude that the first difference of the discrete Lyapunov

function (5.18) must satisfy

E(k + 1)− E(k)

≤−√µsmin

{
1− 2Ls

1−√µs+ Ls
2

(
1−√µs

)2 , 1−√µs
1 +
√
µs+ µs

,
1

6
,

1

1−√µs

}
E(k + 1)

≤−√µsmin

{
1− 2Ls

1 + Ls
2

,
1−√µs

1 +
√
µs+ µs

,
1

6
,

1

1−√µs

}
E(k + 1)

=−
√
µs

6
E(k + 1),

since s ≤ 1/(4L).

5.3.3 A Numerical Stability Perspective on Acceleration

As shown in Section 5.3.2, the gradient correction is the fundamental cause of the

difference in convergence rates between the heavy-ball method and NAG-SC. This

section aims to further elucidate this distinction from the viewpoint of numerical

stability. A numerical scheme is said to be stable if, roughly speaking, this scheme

does not magnify errors in the input data. Accordingly, we address the question of

what values of the step size s are allowed for solving the high-resolution ODEs (5.10)

and (5.11) in a stable fashion. While various discretization schemes on low-resolution

ODEs have been explored in [WWJ16, WRJ16, ZMSJ18], we limit our attention to

the forward Euler scheme to simplify the discussion (see [SB13] for an exposition on

discretization schemes).

For the heavy-ball method, the forward Euler scheme applied to (5.10) is

X(t+
√
s)− 2X(t) +X(t−

√
s)

s
+ 2
√
µ · X(t)−X(t−

√
s)√

s

+ (1 +
√
µs)∇f(X(t−

√
s)) = 0. (5.35)
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Using the approximation ∇f(X(t−
√
s) + ε) ≈ ∇f(X(t−

√
s)) +∇2f(X(t−

√
s))ε

for a small perturbation ε, we get the characteristic equation of (5.35):

det
(
λ2I − (2− 2

√
µs)λI + (1− 2

√
µs)I + (1 +

√
µs)s∇2f(X(t−

√
s))
)

= 0,

where I denotes the n×n identity matrix. The numerical stability of (5.35) requires

the roots of the characteristic equation to be no larger than one in absolute value.

Therefore, a necessary condition for the stability is that10

(1− 2
√
µs)I + (1 +

√
µs)s∇2f(X(t−

√
s)) � I. (5.36)

By the L-smoothness of f , the largest singular value of ∇2f(X(t −
√
s)) can be as

large as L. Therefore, (5.36) is guaranteed in the worst case analysis only if

(1 +
√
µs)sL ≤ 2

√
µs,

which shows that the step size must obey

s ≤ O
( µ
L2

)
. (5.37)

Next, we turn to the high-resolution ODE (5.11) of NAG-SC, for which the forward

Euler scheme reads

X(t+
√
s)− 2X(t) +X(t−

√
s)

s

+ (2
√
µ+
√
s∇2f(X(t−

√
s))) ·X(t)−X(t−

√
s)√

s
+ (1 +

√
µs)∇f(X(t−

√
s)) = 0.

(5.38)

Its characteristic equation is

det
(
λ2I − (2− 2

√
µs− s∇2f(X(t−

√
s)))λI

+(1− 2
√
µs)I +

√
µs3∇2f(X(t−

√
s))
)

= 0, (5.39)

10The notation A � B indicates that B−A is positive semidefinite for symmetric matrices
A and B.
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which, as earlier, suggests that the numerical stability condition of (5.38) is

(1− 2
√
µs)I +

√
µs3∇2f(X(t−

√
s)) � I.

This inequality is ensured by setting the step size

s = O

(
1

L

)
. (5.40)

As constraints on the step sizes, both (5.37) and (5.40) are in agreement with the

discussion in Section 5.3.2, albeit from a different perspective. In short, a comparison

between (5.35) and (5.38) reveals that the Hessian
√
s∇2f(X(t −

√
s)) makes the

forward Euler scheme for the NAG-SC ODE numerically stable with a larger step

size, namely s = O(1/L). This is yet another reflection of the vital importance of the

gradient correction in yielding acceleration for NAG-SC.

5.4 Gradient Correction for Gradient Norm Minimization

In this section, we extend the use of the high-resolution ODE framework to NAG-C

(5.5) in the setting of minimizing an L-smooth convex function f . The main re-

sult is an improved rate of NAG-SC for minimizing the squared gradient norm. In-

deed, we show that NAG-C achieves the O(L2/k3) rate of convergence for minimizing

‖∇f(xk)‖2. To the best of our knowledge, this is the sharpest known bound for this

problem using NAG-C without any modification. Moreover, we will show that the

gradient correction in NAG-C is responsible for this rate and, as it is therefore unsur-

prising that this inverse cubic rate was not perceived within the low-resolution ODE

frameworks such as that of [SBC16]. In Section 5.4.3, we propose a new accelerated

method with the same rate O(L2/k3) and briefly discuss the benefit of the phase-space

representation in simplifying technical proofs.
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5.4.1 The ODE Case

We begin by studying the high-resolution ODE (5.12) corresponding to NAG-C with

an objective f ∈ F2
L(Rn) and an arbitrary step size s > 0. For convenience, let

t0 = 1.5
√
s.

Theorem 5.4.1. Assume f ∈ F2
L(Rn) and let X = X(t) be the solution to the ODE

(5.12). The squared gradient norm satisfies

inf
t0≤u≤t

‖∇f(X(u))‖2 ≤ (12 + 9sL)‖x0 − x?‖2

2
√
s(t3 − t30)

,

for all t > t0.

By taking the step size s = 1/L, this theorem shows that

inf
t0≤u≤t

‖∇f(X(u))‖2 = O(
√
L/t3),

where the infimum operator is necessary as the squared gradient norm is generally not

decreasing in t. In contrast, directly combining the convergence rate of the function

value (see Corollary 5.4.3) and inequality ‖∇f(X)‖2 ≤ 2L(f(X)− f(x?)) only gives

a O(L/t2) rate for squared gradient norm minimization.

The proof of the theorem is based on the continuous Lyapunov function

E(t) = t

(
t+

√
s

2

)
(f(X)− f(x?)) +

1

2
‖tẊ + 2(X − x?) + t

√
s∇f(X)‖2, (5.41)

which reduces to the continuous Lyapunov function in [SBC16] when setting s = 0.

Lemma 5.4.2. Let f ∈ F2
L(Rn). The Lyapunov function defined in (5.41) with

X = X(t) being the solution to the ODE (5.12) satisfies

dE(t)

dt
≤ −

[√
st2 +

(
1

L
+
s

2

)
t+

√
s

2L

]
‖∇f(X)‖2 (5.42)

for all t ≥ t0.
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The decreasing rate of E(t) as specified in the lemma is sufficient for the proof of

Theorem 5.4.1. First, note that Lemma 5.4.2 readily gives∫ t

t0

[√
su2 +

(
1

L
+
s

2

)
u+

√
s

2L

]
‖∇f(X(u))‖2 du ≤ −

∫ t

t0

dE(u)

du
du

= E(t0)− E(t)

≤ E(t0),

where the last step is due to the fact E(t) ≥ 0. Thus, it follows that

inf
t0≤u≤t

‖∇f(X(u))‖2 ≤

∫ t
t0

[√
su2 +

(
1
L

+ s
2

)
u+

√
s

2L

]
‖∇f(X(u))‖2 du∫ t

t0

√
su2 +

(
1
L

+ s
2

)
u+

√
s

2L
du

≤ E(t0)
√
s(t3 − t30)/3 +

(
1
L

+ s
2

)
(t2 − t20)/2 +

√
s

2L
(t− t0)

.

(5.43)

Recognizing the initial conditions of the ODE (5.12), we get

E(t0) = t0(t0 +
√
s/2)(f(x0)− f(x?))

+
1

2

∥∥−t0√s∇f(x0) + 2(x0 − x?) + t0
√
s∇f(x0)

∥∥2
≤ 3s · L

2
‖x0 − x?‖2 + 2 ‖x0 − x?‖2 ,

which together with (5.43) gives

inf
t0≤u≤t

‖∇f(X(u))‖2 ≤ (2 + 1.5sL) ‖x0 − x?‖2
√
s(t3 − t30)/3 +

(
1
L

+ s
2

)
(t2 − t20)/2 +

√
s

2L
(t− t0)

. (5.44)

This bound reduces to the one claimed by Theorem 5.4.1 by only keeping the first

term
√
s(t3 − t30)/3 in the denominator.

The gradient correction
√
s∇2f(X)Ẋ in the high-resolution ODE (5.12) plays a

pivotal role in Lemma 5.4.2 and is, thus, key to Theorem 5.4.1. As will be seen in the

proof of the lemma, the factor ‖∇f(X)‖2 in (5.42) results from the term t
√
s∇f(X)

in the Lyapunov function (5.41), which arises from the gradient correction in the

ODE (5.12). In light of this, the low-resolution ODE (5.8) of NAG-C cannot yield

a result similar to Lemma 5.4.2 and; furthermore, we conjecture that the O(
√
L/t3)
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rate does applies to this ODE. Section 5.4.2 will discuss this point further in the

discrete case.

In passing, it is worth pointing out that the analysis above applies to the case of

s = 0. In this case, we have t0 = 0, and (5.44) turns out to be

inf
0≤u≤t

‖∇f(X(u))‖2 ≤ 4L ‖x0 − x?‖2

t2
.

This result is similar to that of the low-resolution ODE in [SBC16]11.

This section is concluded with the proof of Lemma 5.4.2.

Proof. [Proof of Lemma 5.4.2] The time derivative of the Lyapunov function (5.41)

obeys

dE(t)

dt
=

(
2t+

√
s

2

)
(f(X)− f(x?)) + t

(
t+

√
s

2

)〈
∇f(X), Ẋ

〉
+

〈
tẊ + 2(X − x?) + t

√
s∇f(X),−

(√
s

2
+ t

)
∇f(X)

〉
=

(
2t+

√
s

2

)
(f(X)− f(x?))− (

√
s+ 2t) 〈X − x?,∇f(X)〉

−
√
st

(
t+

√
s

2

)
‖∇f(X)‖2 .

Making use of the basic inequality f(x?) ≥ f(X) + 〈∇f(X), x? −X〉+ 1
2L
‖∇f(X)‖2

for L-smooth f , the expression of dE
dt

above satisfies

dE
dt
≤ −
√
s

2
(f(X)− f(x?))−

(√
st+

1

L

)(
t+

√
s

2

)
‖∇f(X)‖2

≤ −
(√

st+
1

L

)(
t+

√
s

2

)
‖∇f(X)‖2

= −
[√

st2 +

(
1

L
+
s

2

)
t+

√
s

2L

]
‖∇f(X)‖2 .

11To see this, recall that [SBC16] shows that f(X(t))−f(x?) ≤ 2‖x0−x?‖2
t2

, whereX = X(t)
is the solution to (5.44) with s = 0. Using the L-smoothness of f , we get ‖∇f(X(t))‖2 ≤
2L(f(X(t))− f(x?)) ≤ 4L‖x0−x?‖2

t2
.
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Note that Lemma 5.4.2 shows E(t) is a decreasing function, from which we get

f(X)− f(x?) ≤ E(t0)

t
(
t+

√
s
2

) =
3s(f(x0)− f(x?)) + 2 ‖x0 − x?‖2

t
(
t+

√
s
2

)
by recognizing the initial conditions of the high-resolution ODE (5.12). This gives

the following corollary.

Corollary 5.4.3. Under the same assumptions as in Theorem 5.4.1, for any t > t0,

we have

f(X(t))− f(x?) ≤ (4 + 3sL) ‖x0 − x?‖2

t (2t+
√
s)

.

5.4.2 The Discrete Case

We now turn to the discrete NAG-C (5.5) for minimizing an objective f ∈ F1
L(Rn).

Recall that this algorithm starts from any x0 and y0 = x0. The discrete counterpart

of Theorem 5.4.1 is as follows.

Theorem 5.4.4. Let f ∈ F1
L(Rn). For any step size 0 < s ≤ 1/(3L), the iterates

{xk}∞k=0 generated by NAG-C obey

min
0≤i≤k

‖∇f(xi)‖2 ≤
8568 ‖x0 − x?‖2

s2(k + 1)3
,

for all k ≥ 0. In additional, we have

f(xk)− f(x?) ≤ 119 ‖x0 − x?‖2

s(k + 1)2
,

for all k ≥ 0.

Taking s = 1/(3L), Theorem 5.4.4 shows that NAG-C minimizes the squared

gradient norm at the rate O(L2/k3). This theoretical prediction is in agreement

with two numerical examples illustrated in Figure 5.4. To our knowledge, the bound
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O(L2/k3) is sharper than any existing bounds in the literature for NAG-C for squared

gradient norm minimization. In fact, the convergence result f(xk)−f(x?) = O(L/k2)

for NAG-C and the L-smoothness of the objective immediately give ‖∇f(xk)‖2 ≤

O(L2/k2). This well-known but loose bound can be improved by using a recent

result from [AP16], which shows that a slightly modified version NAG-C satisfies

f(xk)−f(x?) = o(L/k2) (see Section 5.5.2 for more discussion of this improved rate).

This reveals

‖∇f(xk)‖2 ≤ o

(
L2

k2

)
,

which, however, remains looser than that of Theorem 5.4.4. In addition, the rate

o(L2/k2) is not valid for k ≤ n/2 and, as such, the bound o(L2/k2) on the squared

gradient norm is dimension-dependent [AP16]. For completeness, the rate O(L2/k3)

can be achieved by introducing an additional sequence of iterates and a more aggres-

sive step size policy in a variant of NAG-C [GL16]. In stark contrast, our result shows

that no adjustments are needed for NAG-C to yield an accelerated convergence rate

for minimizing the gradient norm.

An Ω(L2/k4) lower bound has been established by [Nes12] as the optimal con-

vergence rate for minimizing ‖∇f‖2 with access to only first-order information. (For

completeness, Appendix 5.7.3.3 presents an exposition of this fundamental barrier.)

In the same paper, a regularization technique is used in conjunction with NAG-SC to

obtain a matching upper bound (up to a logarithmic factor). This method, however,

takes as input the distance between the initial point and the minimizer, which is not

practical in general [KF18].

Returning to Theorem 5.4.4, we present a proof of this theorem using a Lyapunov

function argument. By way of comparison, we remark that Nesterov’s estimate se-

quence technique is unlikely to be useful for characterizing the convergence of the

gradient norm as this technique is essentially based on local quadratic approxima-
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Figure 5.4: Scaled squared gradient norm s2(k+1)3 min0≤i≤k ‖∇f(xi)‖2 of NAG-C. In
both plots, the scaled squared gradient norm stays bounded as k →∞. Left: f(x) =
1
2
〈Ax, x〉+〈b, x〉, where A = T ′T is a 500×500 positive semidefinite matrix and b is 1×

500. All entries of b, T ∈ R500×500 are i.i.d. uniform random variables on (0, 1), and ‖·

‖2 denotes the matrix spectral norm. Right: f(x) = ρ log

{
200∑
i=1

exp [(〈ai, x〉 − bi) /ρ]

}
,

where A = [a1, . . . , a200]
′ is a 200 × 50 matrix and b is a 200 × 1 column vector. All

entries of A and b are i.i.d.-sampled from N (0, 1) and ρ = 20.

tions. The phase-space representation of NAG-C (5.5) takes the following form:

xk − xk−1 =
√
svk−1

vk − vk−1 = −3

k
vk −

√
s(∇f(xk)−∇f(xk−1))−

(
1 +

3

k

)√
s∇f(xk),

(5.45)

for any initial position x0 and the initial velocity v0 = −
√
s∇f(x0). This representa-

tion allows us to discretize the continuous Lyapunov function (5.41) into

E(k) = s(k + 3)(k + 1) (f(xk)− f(x?))

+
1

2

∥∥(k + 1)
√
svk + 2(xk+1 − x?) + (k + 1)s∇f(xk)

∥∥2 . (5.46)

The following lemma characterizes the dynamics of this Lyapunov function.

Lemma 5.4.5. Under the assumptions of Theorem 5.4.4, we have

E(k + 1)− E(k) ≤ −s
2 ((k + 3)(k − 1)− Ls(k + 3)(k + 1))

2
‖∇f(xk+1)‖2

for all k ≥ 0.

109



Next, we provide the proof of Theorem 5.4.4.

Proof. [Proof of Theorem 5.4.4] We start with the fact that

(k + 3)(k − 1)− Ls(k + 3)(k + 1) ≥ 0, (5.47)

for k ≥ 2. To show this, note that it suffices to guarantee

s ≤ 1

L
· k − 1

k + 1
, (5.48)

which is self-evident since s ≤ 1/(3L) by assumption.

Next, by a telescoping-sum argument, Lemma 5.4.5 leads to the following inequal-

ities for k ≥ 4:

E(k)− E(3) =
k−1∑
i=3

(E(i+ 1)− E(i))

≤
k−1∑
i=3

−s
2

2
[(i+ 3)(i− 1)− Ls(i+ 3)(i+ 1)] ‖∇f(xi+1)‖2

≤ −s
2

2
min
4≤i≤k

‖∇f(xi)‖2
k−1∑
i=3

[(i+ 3)(i− 1)− Ls(i+ 3)(i+ 1)]

≤ −s
2

2
min
4≤i≤k

‖∇f(xi)‖2
k−1∑
i=3

[
(i+ 3)(i− 1)− 1

3
(i+ 3)(i+ 1)

]
,

(5.49)

where the second inequality is due to (5.47). To further simplify the bound, observe

that

k−1∑
i=3

[
(i+ 3)(i− 1)− 1

3
(i+ 3)(i+ 1)

]
=

2k3 − 38k + 60

9
≥ (k + 1)3

36
,

for k ≥ 4. Plugging this inequality into (5.49) yields

E(k)− E(3) ≤ −s
2(k + 1)3

72
min
4≤i≤k

‖∇f(xi)‖2 ,

which gives

min
4≤i≤k

‖∇f(xi)‖2 ≤
72(E(3)− E(k))

s2(k + 1)3
≤ 72E(3)

s2(k + 1)3
. (5.50)
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It is shown in Appendix 5.7.3.1 that

E(3) ≤ E(2) ≤ 119 ‖x0 − x?‖2 ,

for s ≤ 1/(3L). As a consequence of this, (5.50) gives

min
4≤i≤k

‖∇f(xi)‖2 ≤
8568 ‖x0 − x?‖2

s2(k + 1)3
. (5.51)

For completeness, Appendix 5.7.3.1 proves, via a brute-force calculation, that ‖∇f(x0)‖2,

‖∇f(x1)‖2, ‖∇f(x2)‖2, and ‖∇f(x3)‖2 are all bounded above by the right-hand side

of (5.51). This completes the proof of the first inequality claimed by Theorem 5.4.4.

For the second claim in Theorem 5.4.4, the definition of the Lyapunov function

and its decreasing property ensured by (5.47) implies

f(xk)− f(x?) ≤ E(k)

s(k + 3)(k + 1)
≤ E(2)

s(k + 3)(k + 1)
≤ 119 ‖x0 − x?‖2

s(k + 1)2
, (5.52)

for all k ≥ 2. Appendix 5.7.3.1 establishes that f(x0)− f(x?) and f(x1)− f(x?) are

bounded by the right-hand side of (5.52). This completes the proof.

Now, we prove Lemma 5.4.5.

Proof. [Proof of Lemma 5.4.5]

The difference of the Lyapunov function (5.46) satisfies

E(k + 1)− E(k)

=s(k + 3)(k + 1) (f(xk+1)− f(xk)) + s(2k + 5) (f(xk+1)− f(x?))

+
〈
2(xk+2 − xk+1) +

√
s(k + 2)(vk+1 +

√
s∇f(xk+1))−

√
s(k + 1)(vk +

√
s∇f(xk)),

2(xk+2 − x?) + (k + 2)
√
s(vk+1 +

√
s∇f(xk+1))

〉
− 1

2

∥∥2(xk+2 − xk+1) +
√
s(k + 2)(vk+1 +

√
s∇f(xk+1))

−(k + 1)
√
s(vk +

√
s∇f(xk))

∥∥2
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=s(k + 3)(k + 1) (f(xk+1)− f(xk)) + s(2k + 5) (f(xk+1)− f(x?))

+
〈
−s(k + 3)∇f(xk+1), 2(xk+2 − x?) +

√
s(k + 2)(vk+1 +

√
s∇f(xk+1))

〉
− 1

2
‖s(k + 3)∇f(xk+1)‖2

=s(k + 3)(k + 1) (f(xk+1)− f(xk)) + s(2k + 5) (f(xk+1)− f(x?))

− s
3
2 (k + 3)(k + 4) 〈∇f(xk+1), vk+1〉 − 2s(k + 3) 〈∇f(xk+1), xk+1 − x?〉

− s2(k + 3)(k + 2) ‖∇f(xk+1)‖2 −
s2

2
(k + 3)2 ‖∇f(xk+1)‖2 ,

where the last two equalities are due to

(k + 3)
(
vk +

√
s∇f(xk)

)
− k

(
vk−1 +

√
s∇f(xk−1)

)
= −k

√
s∇f(xk), (5.53)

which follows from the phase-space representation (5.45). Rearranging the identity

for E(k + 1)− E(k), we get

E(k + 1)− E(k) = s(k + 3)(k + 1) (f(xk+1)− f(xk))

− s
3
2 (k + 3)(k + 4) 〈∇f(xk+1), vk+1〉

+ s(2k + 5) (f(xk+1)− f(x?))− s(2k + 6) 〈∇f(xk+1), xk+1 − x?〉

− s2(k + 3)(3k + 7)

2
‖∇f(xk+1)‖2 .

(5.54)

The next step is to recognize that the convexity and the L-smoothness of f gives

f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 .

Plugging these two inequalities into (5.54), we have

E(k + 1)− E(k) ≤ −s
3
2 (k + 3) 〈∇f(xk+1), (k + 4)vk+1 − (k + 1)vk〉

− s

2L
(k + 3)(k + 1) ‖∇f(xk+1)−∇f(xk)‖2

− s 〈∇f(xk+1), xk+1 − x?〉
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− s2(k + 3)(3k + 7)

2
‖∇f(xk+1)‖2

≤ −s
3
2 (k + 3) 〈∇f(xk+1), (k + 4)vk+1 − (k + 1)vk〉

− s

2L
(k + 3)(k + 1) ‖∇f(xk+1)−∇f(xk)‖2

− s2(k + 3)(3k + 7)

2
‖∇f(xk+1)‖2 ,

where the second inequality uses the fact that 〈∇f(xk+1), xk+1 − x?〉 ≥ 0.

To further bound E(k + 1)− E(k), making use of (5.53) with k + 1 in place of k,

we get

E(k + 1)− E(k) ≤ s2(k + 3)(k + 1) 〈∇f(xk+1),∇f(xk+1)−∇f(xk)〉

− s

2L
(k + 3)(k + 1) ‖∇f(xk+1)−∇f(xk)‖2

− s2
(

(k + 3)(3k + 7)

2
− (k + 3)(k + 4)

)
‖∇f(xk+1)‖2

=
Ls3(k + 3)(k + 1)

2
‖∇f(xk+1)‖2

− s(k + 3)(k + 1)

2L
‖(1− Ls)∇f(xk+1)−∇f(xk)‖2

− s2(k + 3)(k − 1)

2
‖∇f(xk+1)‖2

≤ −s
2

2
[(k + 3)(k − 1)− Ls(k + 3)(k + 1)] ‖∇f(xk+1)‖2 .

This completes the proof.

In passing, we remark that the gradient correction sheds light on the superiority

of the high-resolution ODE over its low-resolution counterpart, just as in Section 5.3.

Indeed, the absence of the gradient correction in the low-resolution ODE leads to

the lack of the term (k + 1)s∇f(xk) in the Lyapunov function (see Section 4 of

[SBC16]), as opposed to the high-resolution Lyapunov function (5.46). Accordingly,

it is unlikely to carry over the bound E(k + 1) − E(k) ≤ −O(s2k2‖∇f(xk+1)‖2) of

Lemma 5.4.5 to the low-resolution case and, consequently, the low-resolution ODE
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approach pioneered by [SBC16] is insufficient to obtain the O(L2/k3) rate for squared

gradient norm minimization.

5.4.3 A Modified NAG-C without a Phase-Space Represen-

tation

This section proposes a new accelerated method that also achieves the O(L2/k3) rate

for minimizing the squared gradient norm. This method takes the following form:

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
k

k + 3
(yk+1 − yk)− s

(
k

k + 3
∇f(yk+1)−

k − 1

k + 3
∇f(yk)

)
,

(5.55)

starting with x0 and y0 = x0. As shown by the following theorem, this new method

has the same convergence rates as NAG-C.

Theorem 5.4.6. Let f ∈ F1
L(Rn). Taking any step size 0 < s ≤ 1/L, the iterates

{(xk, yk)}∞k=0 generated by the modified NAG-C (5.55) satisfy

min
0≤i≤k

‖∇f(xi) +∇f(yi)‖2 ≤
882 ‖x0 − x?‖2

s2(k + 1)3

f(yk)− f(x?) ≤ 21 ‖x0 − x?‖2

s(k + 1)2
,

for all k ≥ 0.

We refer readers to Appendix 5.7.3.2 for the proof of Theorem 5.4.6, which is, as

earlier, based on a Lyapunov function. However, since both f(xk) and f(yk) appear in

the iteration, (5.55) does not admit a phase-space representation. As a consequence,

the construction of the Lyapunov function is complex; we arrived at it via trial and

error. Our initial aim was to seek possible improved rates of the original NAG-C

without using the phase-space representation, but the enormous challenges arising in

this process motivated us to (1) modify NAG-C to the current (5.55), and (2) to adopt
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the phase-space representation. Employing the phase-space representation yields a

simple proof of the O(L2/k3) rate for the original NAG-C and this technique turned

out to be useful for other accelerated methods.

5.5 Extensions

Motivated by the high-resolution ODE (5.12) of NAG-C, this section considers a family

of generalized high-resolution ODEs that take the form

Ẍ +
α

t
Ẋ + β

√
s∇2f(X)Ẋ +

(
1 +

α
√
s

2t

)
∇f(X) = 0, (5.56)

for t ≥ α
√
s/2, with initial conditionsX(α

√
s/2) = x0 and Ẋ(α

√
s/2) = −

√
s∇f(x0).

As demonstrated in [SBC16, ACR17, VJFC18], the low-resolution counterpart (that

is, set s = 0) of (5.56) achieves acceleration if and only if α ≥ 3. Accordingly, we

focus on the case where the friction parameter α ≥ 3 and the gradient correction

parameter β > 0. An investigation of the case of α < 3 is left for future work.

By discretizing the ODE (5.56), we obtain a family of new accelerated methods

for minimizing smooth convex functions:

yk+1 = xk − βs∇f(xk)

xk+1 = xk − s∇f(xk) +
k

k + α
(yk+1 − yk),

(5.57)

starting with x0 = y0. The second line of the iteration is equivalent to

xk+1 =

(
1− 1

β

)
xk +

1

β
yk+1 +

k

k + α
(yk+1 − yk).

In Section 5.5.1, we study the convergence rates of this family of generalized NAC-C

algorithms along the lines of Section 5.4. To further our understanding of (5.57),

Section 5.5.2 shows that this method in the super-critical regime (that is, α > 3)

converges to the optimum actually faster than O(1/(sk2)). As earlier, the proofs of
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all the results follow the high-resolution ODE framework introduced in Section 5.2.

Proofs are deferred to Appendix 5.7.4. Finally, we note that Section 5.6 briefly

sketches the extensions along this direction for NAG-SC.

5.5.1 Convergence Rates

The theorem below characterizes the convergence rates of the generalized NAG-

C (5.57).

Theorem 5.5.1. Let f ∈ F1
L(Rn), α ≥ 3, and β > 1

2
. There exists cα,β > 0 such that,

taking any step size 0 < s ≤ cα,β/L, the iterates {xk}∞k=0 generated by the generalized

NAG-C (5.57) obey

min
0≤i≤k

‖∇f(xi)‖2 ≤
Cα,β‖x0 − x?‖2

s2(k + 1)3
, (5.58)

for all k ≥ 0. In addition, we have

f(xk)− f(x?) ≤ Cα,β‖x0 − x?‖2

s(k + 1)2
,

for all k ≥ 0. The constants cα,β and Cα,β only depend on α and β.

The proof of Theorem 5.5.1 is given in Appendix 5.7.4.1 for α = 3 and Ap-

pendix 5.7.4.2 for α > 3. This theorem shows that the generalized NAG-C achieves

the same rates as the original NAG-C in both squared gradient norm and function

value minimization. The constraint β > 1
2

reveals that further leveraging of the gra-

dient correction does not hurt acceleration, but perhaps not the other way around

(note that NAG-C in its original form corresponds to β = 1). It is an open question

whether this constraint is a technical artifact or is fundamental to acceleration.
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5.5.2 Faster Convergence in Super-Critical Regime

We turn to the case in which α > 3, where we show that the generalized NAG-C

in this regime attains a faster rate for minimizing the function value. The follow-

ing proposition provides a technical inequality that motivates the derivation of the

improved rate.

Proposition 5.5.2. Let f ∈ F1
L(Rn), α > 3, and β > 1

2
. There exists c′α,β > 0 such

that, taking any step size 0 < s ≤ c′α,β/L, the iterates {xk}∞k=0 generated by the

generalized NAG-C (5.57) obey

∞∑
k=0

[
(k + 1) (f(xk)− f(x?)) + s(k + 1)2 ‖∇f(xk)‖2

]
≤
C ′α,β ‖x0 − x?‖

2

s
,

where the constants c′α,β and C ′α,β only depend on α and β.

In relating to Theorem 5.5.1, one can show that Proposition 5.5.2 in fact implies

(5.58) in Theorem 5.5.1. To see this, note that for k ≥ 1, one has

min
0≤i≤k

‖∇f(xi)‖2 ≤
∑k

i=0 s(i+ 1)2 ‖∇f(xi)‖2∑k
i=0 s(i+ 1)2

≤
C′α,β‖x0−x

?‖2

s
s
6
(k + 1)(k + 2)(2k + 1)

= O

(
‖x0 − x?‖2

s2k3

)
,

where the second inequality follows from Proposition 5.5.2.

Proposition 5.5.2 can be thought of as a generalization of Theorem 6 of [SBC16].

In particular, this result implies an intriguing and important message. To see this,

first note that, by taking s = O(1/L), Proposition 5.5.2 gives

∞∑
k=0

(k + 1) (f(xk)− f(x?)) = O(L ‖x0 − x?‖2), (5.59)

which would not be valid if f(xk) − f(x?) ≥ cL ‖x0 − x?‖2 /k2 for a constant c > 0.

Thus, it is tempting to suggest that there might exist a faster convergence rate in the

sense that

f(xk)− f(x?) ≤ o

(
L ‖x0 − x?‖2

k2

)
. (5.60)
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This faster rate is indeed achievable as we show next, though there are examples

where (5.59) and f(xk) − f(x?) = O(L ‖x0 − x?‖2 /k2) are both satisfied but (5.60)

does not hold (a counterexample is given in Appendx 5.7.4.3).

Theorem 5.5.3. Under the same assumptions as in Proposition 5.5.2, taking the

step size s = c′α,β/L, the iterates {xk}∞k=0 generated by the generalized NAG-C (5.57)

starting from any x0 6= x? satisfy

lim
k→∞

k2(f(xk)− f(x?))

L ‖x0 − x?‖2
= 0.
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Figure 5.5: Scaled error s(k + 1)2(f(xk) − f(x?)) of the generalized NAG-C (5.57)
with various (α, β). The setting is the same as the left plot of Figure 5.4, with the
objective f(x) = 1

2
〈Ax, x〉 + 〈b, x〉. The step size is s = 10−1‖A‖−12 . The left shows

the short-time behaviors of the methods, while the right focuses on the long-time
behaviors. The scaled error curves with the same β are very close to each other in
the short-time regime, but in the long-time regime, the scaled error curves with the
same α almost overlap. The four scaled error curves slowly tend to zero.

Figures 5.5 and 5.6 present several numerical studies concerning the prediction of

Theorem 5.5.3. For a fixed dimension n, the convergence in Theorem 5.5.3 is uniform

over functions in F1 = ∪L>0F1
L and, consequently, is independent of the Lipschitz

constant L and the initial point x0. In addition to following the high-resolution

ODE framework, the proof of this theorem reposes on the finiteness of the series in
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Figure 5.6: Scaled error s(k + 1)2(f(xk) − f(x?)) of the generalized NAG-C (5.57)
with various (α, β). The setting is the same as the right plot of Figure 5.4, with the

objective f(x) = ρ log

{
200∑
i=1

exp [(〈ai, x〉 − bi) /ρ]

}
. The step size is s = 0.1. This set

of simulation studies implies that the convergence in Theorem 5.5.3 is slow for some
problems.

Proposition 5.5.2. See Appendix 5.7.4.2 and Appendix 5.7.4.4 for the full proofs of

the proposition and the theorem, respectively.

In the literature, [AP16, May17, ACPR18] use low-resolution ODEs to establish

the faster rate o(1/k2) for the generalized NAG-C (5.57) in the special case of β = 1.

In contrast, our proof of Theorem 5.5.3 is more general and applies to a broader class

of methods.

In passing, we make the observation that Proposition 5.5.2 reveals that

∞∑
k=1

sk2 ‖∇f(xk)‖2 ≤
C ′α,β ‖x0 − x?‖

2

s
,

which would not hold if min0≤i≤k ‖∇f(xi)‖2 ≥ c‖x0 − x?‖2/(s2k3) for all k and a

constant c > 0. In view of the above, it might be true that the rate of the generalized

NAG-C for minimizing the squared gradient norm can be improved to

min
0≤i≤k

‖∇f(xi)‖2 = o

(
‖x0 − x?‖2

s2k3

)
.

We leave the confirmation or disconfirmation of this asymptotic result for future

research.
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5.6 Discussion

In this paper, we have proposed high-resolution ODEs for modeling three first-order

optimization methods—the heavy-ball method, NAG-SC, and NAG-C. These new

ODEs are more faithful surrogates for the corresponding discrete optimization meth-

ods than existing ODEs in the literature, thus serving as a more effective tool for

understanding, analyzing, and generalizing first-order methods. Using this tool, we

identified a term that we refer to as “gradient correction” in NAG-SC and in its

high-resolution ODE, and we demonstrate its critical effect in making NAG-SC an

accelerated method, as compared to the heavy-ball method. We also showed via the

high-resolution ODE of NAG-C that this method minimizes the squared norm of the

gradient at a faster rate than expected for smooth convex functions, and again the

gradient correction is the key to this rate. Finally, the analysis of this tool suggested

a new family of accelerated methods with the same optimal convergence rates as

NAG-C.

The aforementioned results are obtained using the high-resolution ODEs in con-

junction with a new framework for translating findings concerning the amenable ODEs

into those of the less “user-friendly” discrete methods. This framework encodes an

optimization property under investigation to a continuous-time Lyapunov function

for an ODE and a discrete-time Lyapunov function for the discrete method. As an

appealing feature of this framework, the transformation from the continuous Lya-

punov function to its discrete version is through a phase-space representation. This

representation links continuous objects such as position and velocity variables to their

discrete counterparts in a faithful manner, permitting a transparent analysis of the

three discrete methods that we studied.

There are a number of avenues open for future research using the high-resolution

ODE framework. First, the discussion of Section 5.5 can carry over to the heavy-ball
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method and NAG-SC, which correspond to the high-resolution ODE

Ẍ(t) + 2
√
µẊ(t) + β

√
s∇2f(X(t))Ẋ(t) + (1 +

√
µs)∇f(X(t)) = 0

with β = 0 and β = 1, respectively. This ODE with a general 0 < β < 1 corresponds

to a new algorithm that can be thought of as an interpolation between the two

methods. It is of interest to investigate the convergence properties of this class of

algorithms. Second, we recognize that new optimization algorithms are obtained in

[WWJ16, WRJ16] by using different discretization schemes on low-resolution ODE.

Hence, a direction of interest is to apply the techniques therein to our high-resolution

ODEs and to explore possible appealing properties of the new methods. Third, the

technique of dimensional analysis, which we have used to derive high-resolution ODEs,

can be further used to incorporate even higher-order powers of
√
s into the ODEs.

This might lead to further fine-grained findings concerning the discrete methods.

More broadly, we wish to remark on possible extensions of the high-resolution

ODE framework beyond smooth convex optimization in the Euclidean setting. In

the non-Euclidean case, it would be interesting to derive a high-resolution ODE for

mirror descent [KBB15, WWJ16]. This framework might also admit extensions to

non-smooth optimization and stochastic optimization, where the ODEs are replaced,

respectively, by differential inclusions [ORX+16, VJFC18] and stochastic differential

equations [KB17, HLLL17, LTE17, LS17, XWG18, HMC+18, GGZ18]. Finally, rec-

ognizing that the high-resolution ODEs are well-defined for non-convex functions, we

believe that this framework will provide more accurate characterization of local be-

haviors of first-order algorithms near saddle points [JGN+17, DJL+17, HLS17]. On a

related note, given the centrality of the problem of finding an approximate stationary

point in the non-convex setting [CDHS17a, CDHS17b, AZ18], it is worth using the

high-resolution ODE framework to explore possible applications of the faster rate for

minimizing the squared gradient norm that we have uncovered.
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5.7 Technical Details and Proofs

5.7.1 Technical Details in Section 5.2

5.7.1.1 Derivation of High-Resolution ODEs

In this section, we formally derive the high-resolution ODEs of the heavy-ball method

and NAG-C. Let tk = k
√
s. For the moment, let X(t) be a sufficiently smooth

map from [0,∞) (the heavy-ball method) or [1.5
√
s,∞) (NAG-C) to Rn, with the

correspondence X(tk) = X(k
√
s) = xk, where {xk}∞k=0 is the sequence of iterates

generated by the heavy-ball method or NAG-C, depending on the context.

The heavy-ball method. For any function f(x) ∈ S2
µ,L(Rn), setting α =

1−√µs
1+
√
µs

,

multiplying both sides of (5.2) by
1+
√
µs

1−√µs ·
1
s

and rearranging the equality, we obtain

xk+1 + xk−1 − 2xk
s

+
2
√
µs

1−√µs
xk+1 − xk

s
+

1 +
√
µs

1−√µs
∇f(xk) = 0. (5.61)

Plugging (5.13) into (5.61), we have

Ẍ(tk) +O
(√

s
)

+
2
√
µ

1−√µs

[
Ẋ(tk) +

1

2

√
sẌ(tk) +O

((√
s
)2)]

+
1 +
√
µs

1−√µs
∇f(X(tk)) = 0.

By only ignoring the O(s) term, we obtain the high-resolution ODE (5.10) for the

heavy-ball method

Ẍ + 2
√
µẊ + (1 +

√
µs)∇f(X) = 0.

NAG-C. For any function f(x) ∈ F2
L(Rn), multiplying both sides of (5.5) by

1+
√
µs

1−√µs ·
1
s

and rearranging the equality, we get

xk+1 + xk−1 − 2xk
s

+
3

k
· xk+1 − xk

s
+ (∇f(xk)−∇f(xk−1)) +

(
1 +

3

k

)
∇f(xk) = 0.

(5.62)
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For convenience, we slightly change the definition tk = k
√
s + (3/2)

√
s instead of

tk = k
√
s. Plugging (5.13) into (5.62), we have

Ẍ(tk) +O
((√

s
)2)

+
3

tk − (3/2)
√
s

[
Ẋ(tk) +

1

2

√
sẌ(tk) +O

((√
s
)2)]

+∇2f(X(tk))Ẋ(tk)
√
s+O

((√
s
)2)

+
tk + (3/2)

√
s

tk − (3/2)
√
s
∇f(X(tk)) = 0.

Ignoring any O(s) terms, we obtain the high-resolution ODE (5.12) for NAG-C

Ẍ +
3

t
Ẋ +

√
s∇2f(X)Ẋ +

(
1 +

3
√
s

2t

)
∇f(X) = 0.

5.7.1.2 Derivation of Low-Resolution ODEs

In this section, we derive low-resolution ODEs of accelerated gradient methods for

comparison. The results presented here are well-known in the literature and the

purpose is for ease of reading. In [SBC16], the second-order Taylor expansions at

both xk−1 and xk+1 with the step size
√
s are,

xk+1 = X
(
(k + 1)

√
s
)

= X(tk) + Ẋ(tk)
√
s+

1

2
Ẍ(tk)

(√
s
)2

+O
((√

s
)3)

xk−1 = X
(
(k − 1)

√
s
)

= X(tk)− Ẋ(tk)
√
s+

1

2
Ẍ(tk)

(√
s
)2

+O
((√

s
)3)

.

(5.63)

With the Taylor expansion (5.63), we obtain the gradient correction

∇f(xk)−∇f(xk−1) = ∇2f(X(tk))Ẋ(tk)
√
s+O

((√
s
)2)

= O
(√

s
)
. (5.64)

From (5.63) and (5.64), we can derive the following low-resolution ODEs.

(1) For any function f(x) ∈ S1
µ,L(Rn).

(a) Recall the equivalent form (5.15) of NAG-SC (5.3) is

xk+1 + xk−1 − 2xk
s

+
2
√
µs

1−√µs
xk+1 − xk

s

+ (∇f(xk)−∇f(xk−1)) +
1 +
√
µs

1−√µs
∇f(xk) = 0.
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Plugging (5.63) and (5.64) into (5.15), we have

Ẍ(tk) +O
(√

s
)

+
2
√
µ

1−√µs

[
Ẋ(tk) +

1

2
Ẍ
√
s+O

((√
s
)2)]

+O
(√

s
)

+
(
1 +O(

√
s)
)
∇f(X(tk)) = 0.

Hence, taking s→ 0, we obtain the low-resolution ODE (5.9) of NAG-SC

Ẍ + 2
√
µẊ +∇f(X) = 0.

(b) Recall the equivalent form (5.61) of the heavy-ball method (5.2) is

xk+1 + xk−1 − 2xk
s

+
2
√
µs

1−√µs
xk+1 − xk

s
+

1 +
√
µs

1−√µs
∇f(xk) = 0.

Plugging (5.63) and (5.64) into (5.61), we have

Ẍ(tk) +O
(√

s
)

+
2
√
µ

1−√µs

[
Ẋ(tk) +

1

2

√
sẌ(tk) +O

((√
s
)2)]

+
1 +
√
µs

1−√µs
∇f(X(tk)) = 0.

Hence, taking s→ 0, we obtain the low-resolution ODE (5.9) of the heavy-

ball method

Ẍ + 2
√
µẊ +∇f(X) = 0.

Notably, NAG-SC and the heavy-ball method share the same low-resolution

ODE (5.9), which is almost consistent with (5.10). Thus the low-resolution

ODE fails to capture the information from the “gradient correction” of NAG-

SC.

(2) For any function f(x) ∈ F1
L(Rn), recall the equivalent form (5.62) of NAG-

C (5.5) is

xk+1 + xk−1 − 2xk
s

+
3

k
·xk+1 − xk

s
+(∇f(xk)−∇f(xk−1))+

(
1 +

3

k

)
∇f(xk) = 0.
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Plugging (5.63) and (5.64) into (5.62), we have

Ẍ(tk) +O
(√

s
)

+
3

tk
·
[
Ẋ(tk) +

1

2
Ẍ(tk)

√
s+O

((√
s
)2)]

+O
(√

s
)

+

(
1 +

3
√
s

tk

)
∇f(X(tk)) = 0.

Thus, by taking s→ 0, we obtain the low-resolution ODE (5.8) of NAG-C

Ẍ +
3

t
Ẋ +∇f(X) = 0,

which is the same as [SBC16].

5.7.1.3 Solution Approximating Optimization Algorithms

To investigate the property about the high-resolution ODEs (5.10), (5.11) and (5.12),

we need to state the relationship between them and their low-resolution corresponding

ODEs. Here, we denote the solution to high-order ODE by Xs = Xs(t). Actually,

the low-resolution ODE is the special case of high-resolution ODE with s = 0. Take

NAG-SC for example

Ẍs + µẊs +
√
s∇f(Xs)Ẋs + (1 +

√
µs)∇f(Xs) = 0

Xs(0) = x0, Ẋs(0) = −2
√
s∇f(x0)

1 +
√
µs

.

In other words, we consider a family of ODEs about the step size parameter s.

5.7.1.3.1 Proof of Proposition 5.2.1

Global Existence and Uniqueness To prove the global existence and unique-

ness of solution to the high-resolution ODEs (5.10) and (5.11), we first emphasize a

fact that if Xs = Xs(t) is the solution of (5.10) or (5.11), there exists some constant

C1 > 0 such that

sup
0≤t<∞

∥∥∥Ẋs(t)
∥∥∥ ≤ C1, (5.65)
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which is only according to the following Lyapunov function

E(t) = (1 +
√
µs) (f(Xs)− f(x?)) +

1

2
‖Ẋs‖2. (5.66)

Now, we proceed to prove the global existence and uniqueness of solution to the

high-resolution ODEs (5.10) and (5.11). Recall initial value problem (IVP) for first-

order ODE system in Rm as

ẋ = b(x), x(0) = x0, (5.67)

of which the classical theory about global existence and uniqueness of solution is

shown as below.

Theorem 5.7.1 (Chillingworth, Chapter 3.1, Theorem 4 [Per13]). Let M ∈ Rm be

a compact manifold and b ∈ C1(M). If the vector field b satisfies the global Lipschitz

condition

‖b(x)− b(y)‖ ≤ L ‖x− y‖

for all x, y ∈ M . Then for any x0 ∈ M , the IVP (5.67) has a unique solution x(t)

defined for all t ∈ R.

Apparently, the set MC1 =
{

(Xs, Ẋs) ∈ R2n
∣∣∣ ‖Ẋs‖ ≤ C1

}
is a compact manifold

satisfying Theorem 5.7.1 with m = 2n.

• For the heavy-ball method, the phase-space representation of high-resolution

ODE (5.10) is

d

dt

Xs

Ẋs

 =

 Ẋs

−µẊs − (1 +
√
µs)∇f(Xs)

 . (5.68)

For any (Xs, Ẋs)
>, (Ys, Ẏs)

> ∈MC1 , we have∥∥∥∥∥∥∥
 Ẋs

−µẊs − (1 +
√
µs)∇f(Xs)

−
 Ẏs

−µẎs − (1 +
√
µs)∇f(Ys)


∥∥∥∥∥∥∥
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=

∥∥∥∥∥∥∥
 Ẋs − Ẏs

−µ(Ẋs − Ẏs)


∥∥∥∥∥∥∥+ (1 +

√
µs)

∥∥∥∥∥∥∥
 0

∇f(Xs)−∇f(Ys)


∥∥∥∥∥∥∥

≤
√

1 + µ2

∥∥∥Ẋs − Ẏs
∥∥∥+ (1 +

√
µs)L ‖Xs − Ys‖

≤2 max
{√

1 + µ2, (1 +
√
µs)L

}∥∥∥∥∥∥∥
Xs

Ẋs

−
Ys

Ẏs


∥∥∥∥∥∥∥ . (5.69)

• For NAG-SC, the phase-space representation of high-resolution ODE (5.11) is

d

dt

Xs

Ẋs

 =

 Ẋs

−µẊs −
√
s∇2f(Xs)Ẋs − (1 +

√
µs)∇f(Xs)

 . (5.70)

For any (Xs, Ẋs)
>, (Ys, Ẏs)

> ∈MC1 , we have∥∥∥∥∥∥∥
 Ẋs

−µẊs −
√
s∇2f(Xs)Ẋs − (1 +

√
µs)∇f(Xs)

 (5.71)

−

 Ẏs

−µẎs −
√
s∇2f(Ys)Ẏs − (1 +

√
µs)∇f(Ys)


∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥
 Ẋs − Ẏs

−
(
µI +

√
s∇2f(Xs)

)
(Ẋs − Ẏs)


∥∥∥∥∥∥∥+
√
s

∥∥∥∥∥∥∥
 0(
∇2f(Xs)−∇2f(Ys)

)
Ẏs


∥∥∥∥∥∥∥

+ (1 +
√
µs)

∥∥∥∥∥∥∥
 0

∇f(Xs)−∇f(Ys)


∥∥∥∥∥∥∥

≤
√

1 + 2µ2 + 2sL2

∥∥∥Ẋs − Ẏs
∥∥∥+

[√
sC1L′ + (1 +

√
µs)L

]
‖Xs − Ys‖

≤2 max
{√

1 + 2µ2 + 2sL2,
√
sC1L′ + (1 +

√
µs)L

}∥∥∥∥∥∥∥
Xs

Ẋs

−
Ys

Ẏs


∥∥∥∥∥∥∥ .

(5.72)

Based on the phase-space representation (5.68) and (5.70), together with the Lip-

schitz condition (5.69) and (5.71), Theorem 5.7.1 leads to the following Corollary.
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Corollary 5.7.2. For any f ∈ S2
µ(Rn) := ∪L≥µS2

µ,L(Rn), each of the two ODEs

(5.10) and (5.11) with the specified initial conditions has a unique global solution

X ∈ C2(I;Rn)

Approximation Based on the Lyapunov function (5.66), the gradient norm is

bounded along the solution of (5.10) or (5.11), that is,

sup
0≤t<∞

‖∇f(Xs(t))‖ ≤ C2. (5.73)

Recall the low-resolution ODE (5.9), the phase-space representation is proposed as

d

dt

X

Ẋ

 =

 Ẋ

−µẊ −∇f(X)

 . (5.74)

Similarly, using a Lyapunov function argument, we can show that if X = X(t) is a

solution of (5.9), we have

sup
0≤t<∞

∥∥∥Ẋ(t)
∥∥∥ ≤ C3. (5.75)

Simple calculation tells us that there exists some constant L1 > 0 such that∥∥∥∥∥∥∥
 Ẋ

−µẊ −∇f(X)

−
 Ẏ

−µẎ −∇f(Y )


∥∥∥∥∥∥∥ ≤ L1

∥∥∥∥∥∥∥
X

Ẋ

−
Y

Ẏ


∥∥∥∥∥∥∥ . (5.76)

Now, we proceed to show the approximation.

Lemma 5.7.3. Let the solution to high-resolution ODEs (5.10) and (5.11) as X =

Xs(t) and that of (5.9) as X = X(t), then we have

lim
s→0

max
0≤t≤T

‖Xs(t)−X(t)‖ = 0 (5.77)

for any fixed T > 0
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In order to prove (5.77), we prove a stronger result as

lim
s→0

max
0≤t≤T

(
‖Xs(t)−X(t)‖2 + ‖Ẋs(t)− Ẋ(t)‖2

)
= 0. (5.78)

Before we start to prove (5.78), we first describe the standard Gronwall-inequality as

below.

Lemma 5.7.4. Let m(t), t ∈ [0, T ], be a nonnegative function satisfying the relation

m(t) ≤ C + α

∫ t

0

m(s)ds, t ∈ [0, T ],

with C, α > 0. Then

m(t) ≤ Ceαt

for any t ∈ [0, T ].

The proof is only according to simple calculus, here we omit it.

Proof. [Proof of Lemma 5.7.3] We separate it into two parts.

• For the heavy-ball method, the phase-space representations (5.68) and (5.74)

tell us that

d

dt

Xs −X

Ẋs − Ẋ

 =

 Ẋs − Ẋ

−µ
(
Ẋs − Ẋ

)
− (∇f(Xs)−∇f(X))

−√µs
 0

∇f(Xs)


By the boundedness (5.73), (5.65) and (5.75) and the inequality (5.76), we have

‖Xs(t)−X(t)‖2 + ‖Ẋs(t)− Ẋ(t)‖2

=2

∫ t

0

〈Xs(u)−X(u)

Ẋs(u)− Ẋ(u)

 ,
d

du

Xs(u)−X(u)

Ẋs(u)− Ẋ(u)

〉 du

+ ‖Xs(0)−X(0)‖2 + ‖Ẋs(0)− Ẋ(0)‖2

≤2L1

∫ t

0

‖Xs(u)−X(u)‖2 + ‖Ẋs(u)− Ẋ(u)‖2du
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+

[
(C1 + C3) C2

√
µt+

4
√
s

(1 +
√
µs)2

‖∇f(x0)‖2
]√

s

≤2L1

∫ t

0

‖Xs(u)−X(u)‖2 + ‖Ẋs(u)− Ẋ(u)‖2du+ C4
√
s.

According to Lemma 5.7.4, we have

‖Xs(t)−X(t)‖2 + ‖Ẋs(t)− Ẋ(t)‖2 ≤ C4
√
se2L1t.

• For NAG-SC, the phase-space representations (5.70) and (5.74) tell us that

d

dt

Xs −X

Ẋs − Ẋ

 =

 Ẋs − Ẋ

−µ
(
Ẋs − Ẋ

)
− (∇f(Xs)−∇f(X))


−
√
s

 0

∇2f(Xs)Ẋs +
√
µ∇f(Xs)


Similarly, by the boundedness (5.73), (5.65) and (5.75) and the inequality (5.76),

we have

‖Xs(t)−X(t)‖2 + ‖Ẋs(t)− Ẋ(t)‖2

=2

∫ t

0

〈Xs(u)−X(u)

Ẋs(u)− Ẋ(u)

 ,
d

du

Xs(u)−X(u)

Ẋs(u)− Ẋ(u)

〉 du

+ ‖Xs(0)−X(0)‖2 + ‖Ẋs(0)− Ẋ(0)‖2

≤2L1

∫ t

0

‖Xs(u)−X(u)‖2 + ‖Ẋs(u)− Ẋ(u)‖2du

+

[
(C1 + C3) (LC1 + C2

√
µ) t+

4
√
s

(1 +
√
µs)2

‖∇f(x0)‖2
]√

s

≤2L1

∫ t

0

‖Xs(u)−X(u)‖2 + ‖Ẋs(u)− Ẋ(u)‖2du+ C5
√
s

According to Lemma 5.7.4, we have

‖Xs(t)−X(t)‖2 + ‖Ẋs(t)− Ẋ(t)‖2 ≤ C5
√
se2L1t
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The proof is complete.

Lemma 5.7.5. The two methods, heavy-ball method and NAG-SC, converge to their

low-resolution ODE (5.9) in the sense that

lim
s→0

max
0≤k≤T/

√
s

∥∥xk −X(k
√
s)
∥∥ = 0

for any fixed T > 0.

This result has bee studied in [WRJ16] and the method for proof refer to [SBC16,

Appendix 2]. Combined with Corollary 5.7.2, Lemma 5.7.3 and Lemma 5.7.5, we

complete the proof of Proposition 5.2.1.

5.7.1.3.2 Proof of Proposition 5.2.2

Global Existence and Uniqueness Similar as Appendix 5.7.1.3.1, we first

emphasize the fact that if Xs = Xs(t) is the solution of high-resolution ODE (5.12),

there exists some constant C6 such that

sup
3
√
s

2
≤t<∞

∥∥∥Ẋs(t)
∥∥∥ ≤ C6, (5.79)

which is only according to the following Lyapunov function

E(t) =

(
1 +

3
√
s

2t

)
(f(Xs)− f(x?)) +

1

2

∥∥∥Ẋs

∥∥∥2 . (5.80)

Now, we proceed to prove the global existence and uniqueness of solution to the

high-resolution ODEs (5.12). Recall initial value problem (IVP) for first-order nonau-

tonomous system in Rm as

ẋ = b(x, t), x(0) = x0, (5.81)

of which the classical theory about global existence and uniqueness of solution is

shown as below.
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Theorem 5.7.6. Let M ∈ Rm be a compact manifold and b ∈ C1(M × I), where

I = [t0,∞). If the vector field b satisfies the global Lipschitz condition

‖b(x, t)− b(y, t)‖ ≤ L ‖x− y‖

for all (x, t), (y, t) ∈ M × I. Then for any x0 ∈ M , the IVP (5.81) has a unique

solution x(t) defined for all t ∈ I.

The proof is consistent with Theorem 3 and Theorem 4 of Chapter 3.1 in [Per13]

except the Lipschitz condition for the vector field

‖b(x, t)− b(y, t)‖ ≤ L ‖x− y‖

instead of

‖b(x)− b(y)‖ ≤ L ‖x− y‖

for any x, y ∈M . The readers can also refer to [GH13]. Similarly, the set

MC6 =
{

(Xs, Ẋs) ∈ R2n
∣∣∣ ‖Ẋs‖ ≤ C6

}
is a compact manifold satisfying Theorem 5.7.6 with m = 2n.

For NAG-C, the phase-space representation of high-resolution ODE (5.11) is

d

dt

Xs

Ẋs

 =

 Ẋs

−3

t
·Ẋs −

√
s∇2f(Xs)Ẋs −

(
1 +

3
√
s

2t

)
∇f(Xs)

 . (5.82)

For any (Xs, Ẋs, t), (Ys, Ẏs, t) ∈MC6 × [(3/2)
√
s,∞), we have∥∥∥∥∥∥∥∥

 Ẋs

−3

t
·Ẋs −

√
s∇2f(Xs)Ẋs −

(
1 +

3
√
s

2t

)
∇f(Xs)

 (5.83)

−

 Ẏs

−3

t
·Ẏs −

√
s∇2f(Ys)Ẏs −

(
1 +

3
√
s

2t

)
∇f(Ys)


∥∥∥∥∥∥∥∥
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=

∥∥∥∥∥∥∥∥
 Ẋs − Ẏs

−
(

3

t
· I +

√
s∇2f(Xs)

)
(Ẋs − Ẏs)


∥∥∥∥∥∥∥∥+
√
s

∥∥∥∥∥∥∥
 0(
∇2f(Xs)−∇2f(Ys)

)
Ẏs


∥∥∥∥∥∥∥

+

(
1 +

3
√
s

2t

)∥∥∥∥∥∥∥
 0

∇f(Xs)−∇f(Ys)


∥∥∥∥∥∥∥

≤

√
1 +

18

t20
+ 2sL2

∥∥∥Ẋs − Ẏs
∥∥∥+

[√
sC6L′ +

(
1 +

3
√
s

2t0

)
L

]
‖Xs − Ys‖

≤2 max

{√
1 +

8

s
+ 2sL2,

√
sC6L′ + 2L

}∥∥∥∥∥∥∥
Xs

Ẋs

−
Ys

Ẏs


∥∥∥∥∥∥∥ . (5.84)

Based on the phase-space representation (5.82), together with (5.83), Theorem 5.7.6

leads the following Corollary.

Corollary 5.7.7. For any f ∈ F2(Rn) := ∪L>0F2
L(Rn), the ODE (5.12) with the

specified initial conditions has a unique global solution X ∈ C2(I;Rn).

Approximation Using a linear transformation t+ (3/2)
√
s instead of t, we can

rewrite high-resolution ODE (5.12) as

Ẍs(t) +
3

t+ 3
√
s/2

Ẋs(t) +
√
s∇2f(Xs(t))Ẋs(t) +

(
1 +

3
√
s

2t+ 3
√
s

)
∇f(Xs(t)) = 0

(5.85)

for t ≥ 0, with initial Xs(0) = x0 and Ẋs(0) = −
√
s∇f(x0), of which the phase-space

representation is

d

dt

Xs

Ẋs

 =

 Ẋs

− 3

t+ 3
√
s/2
·Ẋs −

√
s∇2f(Xs)Ẋs −

(
1 +

3
√
s

2t+ 3
√
s

)
∇f(Xs)

 .

(5.86)
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Here, we adopt the technique max{δ, t} instead of t for any δ > 0 to overcome the

singular point t = 0, which is used firstly in [SBC16]. Then (5.86) is replaced into

d

dt

Xδ
s

Ẋδ
s



=

 Ẋδ
s

− 3

max{δ, t}+ 3
√
s/2
·Ẋδ

s −
√
s∇2f(Xs)Ẋ

δ
s −

(
1 +

3
√
s

2 max{δ, t}+ 3
√
s

)
∇f(Xδ

s )

 ,

(5.87)

with the initial Xδ
s (0) = x0 and Ẋδ

s (0) = −
√
s∇f(x0). Recall the low-resolution

ODE (5.8), with the above technique, the phase-space representation is proposed as

d

dt

Xδ

Ẋδ

 =

 Ẋδ

− 3

max{t, δ}
·Ẋδ −∇f(Xδ)

 , (5.88)

with the initial Xδ
s (0) = x0 and Ẋδ

s (0) = 0. Then according to (5.87) and (5.88), if

we can prove for any δ > 0 and any t ∈ [0, T ], the following equality holds

lim
s→0
‖Xδ

s (t)−Xδ(t)‖ = 0.

Then, we can obtain the desired result as

lim
s→0
‖Xs(t)−X(t)‖ = lim

s→0
lim
δ→0
‖Xδ

s (t)−Xδ(t)‖ = lim
δ→0

lim
s→0
‖Xδ

s (t)−Xδ(t)‖ = 0.

Similarly, using Lyapunov function argument, we can show that the solutions Xδ
s

and Xδ satisfy

sup
0≤t<∞

∥∥∥Ẋδ
s (t)
∥∥∥ ≤ C7 and sup

0≤t<∞

∥∥∇f(Xδ
s (t))

∥∥ ≤ C8, (5.89)

and

sup
0≤t<∞

∥∥∥Ẋδ(t)
∥∥∥ ≤ C9 and sup

0≤t<∞

∥∥∇f(Xδ(t))
∥∥ ≤ C10. (5.90)
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Simple calculation tells us that for any (X, Ẋ), (Y, Ẏ ) ∈ R2n, there exists some

constant L2 > 0 such that∥∥∥∥∥∥∥
 Ẋ

− 3

max{t, δ}+ (3/2)
√
s
·Ẋ −∇f(X)

 (5.91)

−

 Ẏ

− 3

max{t, δ}+ (3/2)
√
s
·Ẏ −∇f(Y )


∥∥∥∥∥∥∥

≤L2

∥∥∥∥∥∥∥
X

Ẋ

−
Y

Ẏ


∥∥∥∥∥∥∥ . (5.92)

for all t ≥ 0. Now, we proceed to show the approximation.

Lemma 5.7.8. Denote the solution to high-resolution ODE (5.12) as X = Xs(t) and

that to (5.8) as X = X(t). We have

lim
s→0

max
0≤t≤T

‖Xs(t)−X(t)‖ = 0 (5.93)

for any fixed T > 0

In order to prove (5.93), we prove a stronger result

lim
s→0

max
0≤t≤T

(
‖Xs(t)−X(t)‖2 + ‖Ẋs(t)− Ẋ(t)‖2

)
= 0. (5.94)

Proof. [Proof of Lemma 5.7.8] The phase-space representation (5.87) and (5.88) tell

us that

d

dt

Xδ
s −Xδ

Ẋδ
s − Ẋδ

 =

 Ẋδ
s − Ẋδ

− 3

max{t, δ}+ (3/2)
√
s
·
(
Ẋδ
s − Ẋδ

)
−
(
∇f(Xδ

s )−∇f(Xδ)
)


−
√
s

 0

∇2f(Xδ
s )Ẋδ

s +
3∇f(Xs)

2 max{t, δ}+ 3
√
s
− 9∇f(X)

max{t, δ} (2 max{t, δ}+ 3
√
s)


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By the boundedness (5.89) and (5.90) and the Lipschitz inequality (5.91), we have

∥∥Xδ
s (t)−Xδ(t)

∥∥2 +
∥∥∥Ẋδ

s (t)− Ẋδ(t)
∥∥∥2

=2

∫ t

0

〈Xδ
s (u)−Xδ(u)

Ẋδ
s (u)− Ẋδ(u)

 ,
d

du

Xδ
s (u)−Xδ(u)

Ẋδ
s (u)− Ẋδ(u)

〉 du

+
∥∥Xδ

s (0)−Xδ(0)
∥∥2 +

∥∥∥Ẋδ
s (0)− Ẋδ(0)

∥∥∥2
≤2L2

∫ t

0

∥∥Xδ
s (u)−Xδ(u)

∥∥2 +
∥∥∥Ẋδ

s (u)− Ẋδ(u)
∥∥∥2 du

+

[
(C7 + C9)

(
LC7 +

3C8
2δ

+
9C10
2δ2

)
t+
√
s ‖∇f(x0)‖2

]√
s

≤2L2

∫ t

0

‖Xs(u)−X(u)‖2 + ‖Ẋs(u)− Ẋ(u)‖2du+ C11
√
s

According to Lemma 5.7.4, we obtain the result as (5.94)

∥∥Xδ
s (t)−Xδ(t)

∥∥2 + ‖Ẋδ
s (t)− Ẋδ(t)‖2 ≤ C11

√
se2L2t

The proof is complete.

Lemma 5.7.9 (Theorem 2 [SBC16]). NAG-C converges to its low-resolution ODE in

the sense that

lim
s→0

max
0≤k≤T/

√
s

∥∥xk −X(k
√
s)
∥∥ = 0

for any fixed T > 0.

Combined with Corollary 5.7.7, Lemma 5.7.8 and Lemma 5.7.9, we complete the

proof of Proposition 5.2.2.

5.7.1.4 Closed-Form Solutions for Quadratic Functions

In this section, we propose the closed-form solutions to the three high-resolution

ODEs for the quadratic objective function

f(x) =
1

2
θx2. (5.95)
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where θ is the parameter suitable for the function in S2
µ,L(Rn) and F2

L(Rn). We com-

pare them with the corresponding low-resolution ODEs and show the key difference.

Throughout this section, both c1 and c2 are arbitrary real constants.

5.7.1.4.1 Oscillations and Non-Oscillations For any function f(x) ∈ S2
µ,L(Rn),

the parameter θ is set in [µ, L]. First, plugging the quadratic objective (5.95) into

the low-resolution ODE (5.9) of both NAG-SC and heavy-ball method, we have

Ẍ + 2
√
µẊ + θX = 0. (5.96)

The closed-form solution of (5.96) can be shown from the theory of ODE, as below.

• When θ > µ, that is, 4µ−4θ < 0, the closed-form solution is the superimposition

of two independent oscillation solutions

X(t) = c1e
−√µt cos

(√
θ − µ · t

)
+ c2e

−√µt sin
(√

θ − µ · t
)
,

of which the asymptotic estimate is

‖X(t)‖ = Θ
(
e−
√
µt
)
.

• When θ = µ, that is, 4µ−4θ = 0, the closed-form solution is the superimposition

of two independent non-oscillation solutions

X(t) = (c1 + c2t) e−
√
µt,

of which the asymptotic estimate is

‖X(t)‖ = Θ
(
te−
√
µt
)
.

Second, plugging the quadratic objective (5.95) into the high-resolution ODE (5.11)

of NAG-SC, we have

Ẍ + (2
√
µ+
√
sθ)Ẋ + (1 +

√
µs)θX = 0. (5.97)

The closed-form solutions to (5.97) are shown as below.
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• When s < 4(θ−µ)
θ2

, that is, 4(µ − θ) + sθ2 < 0, the closed-form solution is the

superimposition of two independent oscillation solutions

X(t) = e
−
(√

µ+
√
sθ
2

)
t

[
c1 cos

(√
(θ − µ)− 1

4
sθ2 · t

)
+ c2 sin

(√
(θ − µ)− 1

4
sθ2 · t

)]
,

the asymptotic estimate of which is

‖X(t)‖ = Θ

(
e
−
(√

µ+
√
sθ
2

)
t

)
≤ o

(
e−
√
µt
)
.

• When s = 4(θ−µ)
θ2

, that is, 4(µ − θ) + sθ2 = 0, the closed-form solution is the

superimposition of two independent non-oscillation solutions

X(t) = (c1 + c2t) e
−
(√

µ+
√
sθ
2

)
t
,

the asymptotic estimate of which is

‖X(t)‖ ≤ O

(
te
−
(√

µ+
√
sθ
2

)
t

)
≤ o

(
e−
√
µt
)
.

• When s > 4(θ−µ)
θ2

, that is, 4(µ − θ) + sθ2 > 0, the closed-form solution is also

the superimposition of two independent non-oscillation solutions

X(t) = c1e
−
(
√
µ+
√
sθ
2

+

√
(µ−θ)+ sθ2

4

)
t
+ c2e

−
(
√
µ+
√
sθ
2
−
√

(µ−θ)+ sθ2

4

)
t
,

the asymptotic estimate of which is

‖X(t)‖ ≤ O

(
e
−
(
√
µ+
√
sθ
2
−
√

(µ−θ)+ sθ2

4

)
t

)
≤ o

(
e−
√
µt
)
.

Note that a simple calculation shows

4(θ − µ)

θ2
=

4

θ − µ+ µ2

θ−µ + 2
≤ 2

1 + µ
, for θ ≥ µ.

Hence, when the step size satisfies s ≥ 2, there is always no oscillation in the closed-

form solution of (5.97).

138



Finally, plugging the quadratic objective (5.95) into the high-resolution ODE (5.10)

of the heavy-ball method, we have

Ẍ + 2
√
µẊ + (1 +

√
µs)θX = 0. (5.98)

Since 4µ − 4(1 +
√
µs)θ < 0 is well established, the closed-form solution of (5.98) is

the superimposition of two independent oscillation solutions

X(t) = c1e
−√µt cos

(√
(1 +

√
µs)θ − µ · t

)
+ c2e

−√µt sin

(√
(1 +

√
µs)θ − µ · t

)
,

the asymptotic estimate is

‖X(t)‖ = Θ
(
e−
√
µt
)
.

In summary, both the closed-form solutions to (5.96) and (5.98) are oscillated

except the fragile condition θ = µ and the speed of linear convergence is Θ
(
e−
√
µt
)
.

However, the rate of convergence in the closed-form solution to the high-resolution

ODE (5.97) is always faster than Θ
(
e−
√
µt
)
. Additionally, when the step size s ≥

2, there is always no oscillation in the closed-form solution of the high-resolution

ODE (5.97).

5.7.1.4.2 Kummer’s Equation and Confluent Hypergeometric Function

For any function f(x) ∈ F2
L(Rn), the parameter θ is required to located in (0, L].

Plugging the quadratic objective (5.95) into the low-resolution ODE (5.8) of NAG-C,

we have

Ẍ +
3

t
Ẋ + θX = 0,

the closed-form solution of which has been proposed in [SBC16]

X(t) =
1√
θt
·
[
c1J1

(√
θt
)

+ c2Y1

(√
θt
)]
,

where J1(·) and Y1(·) are the Bessel function of the first kind and the second kind,

respectively. According to the asymptotic property of Bessel functions,

J1(
√
θt) ∼ 1√

t
and Y1(

√
θt) ∼ 1√

t
,
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we obtain the following estimate

‖X(t)‖ = Θ

(
1

t
3
2

)
.

Now, we plug the quadratic objective (5.95) into the high-resolution ODE (5.12)

of NAG-C and obtain

Ẍ +

(
3

t
+ θ
√
s

)
Ẋ +

(
1 +

3
√
s

2t

)
θX = 0. (5.99)

For convenience, we define two new parameters as

ξ =
√
sθ2 − 4θ and ρ =

θ
√
s+
√
sθ2 − 4θ

2
.

Let Y = Xeρt and t′ = ξt, the high-resolution ODE (5.99) can be rewritten as

t′Ÿ (t′) + (3− t′)Ẏ (t′)− (3/2)Y (t′) = 0,

which actually corresponds to the Kummer’s equation. According to the closed-form

solution to Kummer’s equation, the high-resolution ODE (5.99) for quadratic function

can be solved analytically as

X(t) = e−ρt
[
c1M

(
3

2
, 3, ξt

)
+ c2U

(
3

2
, 3, ξt

)]
(5.100)

where M(·, ·, ·) and U(·, ·, ·) are the confluent hypergeometric functions of the first

kind and the second kind. The integral expressions of M(·, ·, ·) and U(·, ·, ·) are given

as 
M

(
3

2
, 3, ξt

)
=

Γ(3)

Γ
(
3
2

)2 ∫ 1

0

eξtuu
1
2 (1− u)

1
2du

U

(
3

2
, 3, ξt

)
=

1

Γ
(
3
2

) ∫ 1

0

eξtuu
1
2 (1− u)

1
2du.

Since the possible value of arg(ξt) either 0 or π/2, we have
M

(
3

2
, 3, ξt

)
∼ Γ(3)

(
eξt(ξt)−

3
2

Γ
(
3
2

) +
(−ξt)− 3

2

Γ
(
3
2

) )

U

(
3

2
, 3, ξt

)
∼ (−ξt)−

3
2 .

(5.101)

Apparently, from the asymptotic estimate of (5.101), we have
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• When s < 4/θ, that is, sθ2−4θ < 0, the closed-form solution (5.100) is estimated

as

‖X(t)‖ ≤ Θ
(
t−

3
2 e−

√
sθt
2

)
.

Hence, when the step size satisfies s < 4/L, the above upper bound always

holds.

• When s ≥ 4/θ, that is, sθ2−4θ ≥ 0, the closed-form solution (5.100) is estimated

as

‖X(t)‖ ∼ e−
√
sθ−
√
sθ2−4θ
2

·tt−
3
2 .

Apparently, we can bound

‖X(t)‖ ≤ O
(
e
− t√

s t−
3
2

)
= O

(
e
− t√

s
− 3 log t

2

)
and

‖X(t)‖ ≥ Ω
(
e
− 2t√

s t−
3
2

)
= Ω

(
e
− 2t√

s
− 3 log t

2

)
.

5.7.2 Technical Details in Section 5.3

5.7.2.1 Proof of Lemma 5.3.4

With Cauchy-Schwarz inequality

‖Ẋ + 2
√
µ(X − x?)‖2 ≤ 2

(
‖Ẋ‖2 + 4µ ‖X − x?‖22

)
,

the Lyapunov function (5.21) can be estimated as

E ≤ (1 +
√
µs) (f(X)− f(x?)) +

3

4
‖Ẋ‖2 + 2µ ‖X − x?‖2 . (5.102)

Along the solution to the high-resolution ODE (5.10), the time derivative of the

Lyapunov function (5.21) is

dE
dt

= (1 +
√
µs)

〈
∇f(X), Ẋ

〉
+

1

2

〈
Ẋ,−2

√
µẊ − (1 +

√
µs)∇f(X)

〉
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+
1

2

〈
Ẋ + 2

√
µ (X − x?) ,−(1 +

√
µs)∇f(X)

〉
= −√µ

[
‖Ẋ‖22 + (1 +

√
µs) 〈∇f(X), X − x?〉

]
.

With (5.102) and the inequality for any function f(x) ∈ S2
µ,L(Rn)

f(x?) ≥ f(X) + 〈∇f(X), x? −X〉+
µ

2
‖X − x?‖22 ,

the time derivative of the Lyapunov function can be estimated as

dE
dt
≤ −√µ

[
(1 +

√
µs)(f(X)− f(x?)) + ‖Ẋ‖22 +

µ

2
‖X − x?‖22

]
≤ −
√
µ

4
E

Hence, the proof is complete.

5.7.2.2 Completing the Proof of Lemma 5.3.7

5.7.2.2.1 Derivation of (5.34) Here, we first point out that

E(k + 1)− E(k)

≤−
√
µs

1−√µs

[
1 +
√
µs

1−√µs
(
〈∇f(xk+1), xk+1 − x?〉 − s ‖∇f(xk+1)‖2

)
+ ‖vk+1‖2

]
− 1

2

(
1 +
√
µs

1−√µs
+

1−√µs
1 +
√
µs

)(
1

L
− s
)
‖∇f(xk+1)−∇f(xk)‖2 (5.103)

implies (5.34) with s ≤ 1/L. With (5.103), noting the basic inequality for f(x) ∈

S1
µ,L(Rn) as

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

1

2L
‖∇f(xk+1)‖22

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖xk+1 − x?‖22 ,

when the step size satisfies s ≤ 1/(2L) ≤ 1/L, we have

E(k + 1)− E(k)

≤−
√
µs

1−√µs

[(
1 +
√
µs

1−√µs

)
(f(xk+1)− f(x?)) +

1

2L

( √
µs

1−√µs

)
‖∇f(xk+1)‖2
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+
µ

2

(
1

1−√µs

)
‖xk+1 − x?‖2 −

(
1 +
√
µs

1−√µs

)
s ‖∇f(xk+1)‖2 + ‖vk+1‖2

]
≤−√µs

[(
1

1−√µs

)2 (
f(xk+1)− f(x?)− s ‖∇f(xk+1)‖2

)
+

√
µs

(1−√µs)2
(
f(xk+1)− f(x?)− s

2
‖∇f(xk+1)‖2

)
+

µ

2(1−√µs)2
‖xk+1 − x?‖2 +

1

1−√µs
‖vk+1‖2

]
≤−√µs

[
1− 2Ls(

1−√µs
)2 (f(xk+1)− f(x?)) +

1

1−√µs
‖vk+1‖2

+
µ

2(1−√µs)2
‖xk+1 − x?‖2

+

√
µs

(1−√µs)2
(
f(xk+1)− f(x?)− s

2
‖∇f(xk+1)‖2

)]
.

5.7.2.2.2 Derivation of (5.103) Now, we show the derivation of (5.103). Recall

the discrete Lyapunov function (5.18),

E(k) =

(
1 +
√
µs

1−√µs

)
(f(xk)− f(x?))︸ ︷︷ ︸
I

+
1

4
‖vk‖2︸ ︷︷ ︸
II

+
1

4

∥∥∥∥vk +
2
√
µ

1−√µs
(xk+1 − x?) +

√
s∇f(xk)

∥∥∥∥2︸ ︷︷ ︸
III

−s
2

(
1

1−√µs

)
‖∇f(xk)‖2︸ ︷︷ ︸

additional term

.

For convenience, we calculate the difference between E(k) and E(k + 1) by the three

parts, I, II and III respectively.

• For the part I, potential, with the convexity, we have(
1 +
√
µs

1−√µs

)
(f(xk+1)− f(x?))−

(
1 +
√
µs

1−√µs

)
(f(xk)− f(x?))

≤
(

1 +
√
µs

1−√µs

)[
〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

]
≤
(

1 +
√
µs

1−√µs

)√
s 〈∇f(xk+1), vk〉︸ ︷︷ ︸
I1

− 1

2L

(
1 +
√
µs

1−√µs

)
‖∇f(xk+1)−∇f(xk)‖2︸ ︷︷ ︸

I2

.
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• For the part II, kinetic energy, with the phase representation of NAG-SC (5.17),

we have

1

4
‖vk+1‖2 −

1

4
‖vk‖2

=
1

2
〈vk+1 − vk, vk+1〉 −

1

4
‖vk+1 − vk‖2

−
√
µs

1−√µs
‖vk+1‖2 −

√
s

2
〈∇f(xk+1)−∇f(xk), vk+1〉

−
1 +
√
µs

1−√µs
·
√
s

2
〈∇f(xk+1), vk+1〉 −

1

4
‖vk+1 − vk‖2

=−
√
µs

1−√µs
‖vk+1‖2︸ ︷︷ ︸

II1

−
√
s

2
·

1−√µs
1 +
√
µs
〈∇f(xk+1)−∇f(xk), vk〉︸ ︷︷ ︸

II2

+
1−√µs
1 +
√
µs
· s

2
‖∇f(xk+1)−∇f(xk)‖2︸ ︷︷ ︸

II3

+
s

2
〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉︸ ︷︷ ︸

II4

−
1 +
√
µs

1−√µs
·
√
s

2
〈∇f(xk+1), vk+1〉︸ ︷︷ ︸

II5

−1

4
‖vk+1 − vk‖2︸ ︷︷ ︸

II6

.

• For the part III, mixed energy, with the phase representation of NAG-SC (5.17),

we have

1

4

∥∥∥∥vk+1 +
2
√
µ

1−√µs
(xk+2 − x?) +

√
s∇f(xk+1)

∥∥∥∥2
− 1

4

∥∥∥∥vk +
2
√
µ

1−√µs
(xk+1 − x?) +

√
s∇f(xk)

∥∥∥∥2
=

1

2

〈
−

1 +
√
µs

1−√µs
√
s∇f(xk+1),

1 +
√
µs

1−√µs
vk+1 +

2
√
µ

1−√µs
(xk+1 − x?) +

√
s∇f(xk+1)

〉
− 1

4

(
1 +
√
µs

1−√µs

)2

s ‖∇f(xk+1)‖2

=−
√
µs

1−√µs
1 +
√
µs

1−√µs
〈∇f(xk+1), xk+1 − x?〉︸ ︷︷ ︸
III1

−1

2

(
1 +
√
µs

1−√µs

)2√
s 〈∇f(xk+1), vk+1〉︸ ︷︷ ︸

III2
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−1

2

(
1 +
√
µs

1−√µs

)
s ‖∇f(xk+1)‖2︸ ︷︷ ︸

III3

−1

4

(
1 +
√
µs

1−√µs

)2

s ‖∇f(xk+1)‖2︸ ︷︷ ︸
III4

.

Both II2 and III3 above are the discrete correspondence of the terms−
√
s
2
‖∇f(X(t))‖2

and −
√
s
2
Ẋ(t)>∇2f(X(t))Ẋ(t) in (5.19). The impact can be found in the calculation.

Now, we calculate the difference of discrete Lyapunov function (5.18) at k-th iteration

by the simple operation

E(k + 1)− E(k)

≤
(

1 +
√
µs

1−√µs

)√
s 〈∇f(xk+1), vk〉︸ ︷︷ ︸
I1

− 1

2L

(
1 +
√
µs

1−√µs

)
‖∇f(xk+1)−∇f(xk)‖2︸ ︷︷ ︸

I2

−
√
µs

1−√µs
‖vk+1‖2︸ ︷︷ ︸

II1

−
√
s

2
·

1−√µs
1 +
√
µs
〈∇f(xk+1)−∇f(xk), vk〉︸ ︷︷ ︸

II2

+
1−√µs
1 +
√
µs
· s

2
‖∇f(xk+1)−∇f(xk)‖2︸ ︷︷ ︸

II3

+
s

2
〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉︸ ︷︷ ︸

II4

−
1 +
√
µs

1−√µs
·
√
s

2
〈∇f(xk+1), vk+1〉︸ ︷︷ ︸

II5

−1

4
‖vk+1 − vk‖2︸ ︷︷ ︸

II6

−
√
µs

1−√µs
1 +
√
µs

1−√µs
〈∇f(xk+1), xk+1 − x?〉︸ ︷︷ ︸
III1

−1

2

(
1 +
√
µs

1−√µs

)2√
s 〈∇f(xk+1), vk+1〉︸ ︷︷ ︸

III2

−1

2

(
1 +
√
µs

1−√µs

)
s ‖∇f(xk+1)‖2︸ ︷︷ ︸

III3

−1

4

(
1 +
√
µs

1−√µs

)2

s ‖∇f(xk+1)‖2︸ ︷︷ ︸
III4

−s
2

(
1

1−√µs

)(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
︸ ︷︷ ︸

additional term

≤−
√
µs

1−√µs

(
1 +
√
µs

1−√µs
〈∇f(xk+1), xk+1 − x?〉+ ‖vk+1‖2

)
︸ ︷︷ ︸

II1+III1
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−1

2

(
1 +
√
µs

1−√µs

)[√
s

〈
∇f(xk+1),

(
1 +
√
µs

1−√µs

)
vk+1 − vk

〉
+ s ‖∇f(xk+1)‖2

]
︸ ︷︷ ︸

1
2
I1+III2+III3

−
√
s

2
·

1−√µs
1 +
√
µs
〈∇f(xk+1)−∇f(xk), vk〉︸ ︷︷ ︸

II2

+
s

2
〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉︸ ︷︷ ︸

II4

−1

4

[
‖vk+1 − vk‖2 + 2

(
1 +
√
µs

1−√µs

)√
s 〈∇f(xk+1), vk+1 − vk〉︸ ︷︷ ︸

1
2
I1+II5+II6+III4

+

(
1 +
√
µs

1−√µs

)2

s ‖∇f(xk+1)‖2
]

︸ ︷︷ ︸
1
2
I1+II5+II6+III4

−1

2

[
1

L

(
1 +
√
µs

1−√µs

)
− s

(
1−√µs
1 +
√
µs

)]
‖∇f(xk+1)−∇f(xk)‖2︸ ︷︷ ︸

I2+II3

−1

2

(
1

1−√µs

)
s
(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
︸ ︷︷ ︸

additional term

Now, the term, (1/2)I1 + II5 + II6 + III4, can be calculated as

1

2
I1 + II5 + II6 + III4 = −1

4

[
‖vk+1 − vk‖2 + 2

(
1 +
√
µs

1−√µs

)√
s 〈∇f(xk+1), vk+1 − vk〉

+

(
1 +
√
µs

1−√µs

)2

s ‖∇f(xk+1)‖2
]

= −1

4

∥∥∥∥vk+1 − vk +

(
1 +
√
µs

1−√µs

)√
s∇f(xk)

∥∥∥∥2
≤ 0.

With phase representation of NAG-SC (5.17), we have

1

2
I1 + III2 + III3

=− 1

2

(
1 +
√
µs

1−√µs

)[√
s

〈
∇f(xk+1),

(
1 +
√
µs

1−√µs

)
vk+1 − vk

〉
+ s ‖∇f(xk+1)‖2

]
=

1

2

(
1 +
√
µs

1−√µs

)
s

(
〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉+

2
√
µs

1−√µs
‖∇f(xk+1)‖2

)
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=
1

2

(
1 +
√
µs

1−√µs

)
· s · 〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉︸ ︷︷ ︸

IV1

+

(
1 +
√
µs

1−√µs

)
·
√
µs

1−√µs
· s ‖∇f(xk+1)‖2︸ ︷︷ ︸

IV2

For convenience, we note the term IV = (1/2)I1 + III2 + III3. Then, with phase

representation of NAG-SC (5.17), the difference of Lyapunov function (5.18) is

E(k + 1)− E(k)

≤−
√
µs

1−√µs

(
1 +
√
µs

1−√µs
(
〈∇f(xk+1), xk+1 − x?〉 − s ‖∇f(xk+1)‖2

)
+ ‖vk+1‖2

)
︸ ︷︷ ︸

II1+III1+IV2

−1

2
·

1−√µs
1 +
√
µs
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉︸ ︷︷ ︸

II2

+

(
1

1−√µs

)
s 〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉︸ ︷︷ ︸

II4+IV1

−1

2

[
1

L

(
1 +
√
µs

1−√µs

)
− s

(
1−√µs
1 +
√
µs

)]
‖∇f(xk+1)−∇f(xk)‖2︸ ︷︷ ︸

I2+II3

−1

2

(
1

1−√µs

)
s
(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
︸ ︷︷ ︸

additional term

Now, we can find the impact of additional term in the Lyapunov function (5.18). In

other words, the II4 + IV1 term added the additional term is a perfect square, as

below

II4 + IV1 + additional term =

(
1

1−√µs

)
s 〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉

− 1

2

(
1

1−√µs

)
s
(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
=

1

2

(
1

1−√µs

)
s ‖∇f(xk+1)−∇f(xk)‖2
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Merging all the similar items, II4 + IV1 + additional term, I2 + II3, we have

(II4 + IV1 + additional term) + (I2 + II3)

=
1

2

(
1

1−√µs
+

1−√µs
1 +
√
µs
−

1 +
√
µs

1−√µs
· 1

Ls

)
s ‖∇f(xk+1)−∇f(xk)‖2

≤ 1

2

(
1 +
√
µs

1−√µs
+

1−√µs
1 +
√
µs
−

1 +
√
µs

1−√µs
· 1

Ls

)
s ‖∇f(xk+1)−∇f(xk)‖2

Now, we obtain that the difference of Lyapunov function (5.18) is

E(k + 1)− E(k)

≤−
√
µs

1−√µs

(
1 +
√
µs

1−√µs
(
〈∇f(xk+1), xk+1 − x?〉 − s ‖∇f(xk+1)‖2

)
+ ‖vk+1‖2

)
− 1

2
·

1−√µs
1 +
√
µs
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉

+
1

2

(
1 +
√
µs

1−√µs
+

1−√µs
1 +
√
µs
−

1 +
√
µs

1−√µs
· 1

Ls

)
s ‖∇f(xk+1)−∇f(xk)‖2

With the inequality for any function f(x) ∈ S1
µ,L(Rn)

‖∇f(xk+1)−∇f(xk)‖2 ≤ L 〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 ,

we have

E(k + 1)− E(k)

≤−
√
µs

1−√µs

[
1 +
√
µs

1−√µs
(
〈∇f(xk+1), xk+1 − x?〉 − s ‖∇f(xk+1)‖2

)
+ ‖vk+1‖2

]
− 1

2
·

1−√µs
1 +
√
µs
· 1

L
· ‖∇f(xk+1)−∇f(xk)‖2

+
1

2

(
1 +
√
µs

1−√µs
+

1−√µs
1 +
√
µs
−

1 +
√
µs

1−√µs
· 1

Ls

)
s ‖∇f(xk+1)−∇f(xk)‖2

≤−
√
µs

1−√µs

(
1 +
√
µs

1−√µs
(
〈∇f(xk+1), xk+1 − x?〉 − s ‖∇f(xk+1)‖2

)
+ ‖vk+1‖2

)
− 1

2

(
1 +
√
µs

1−√µs
+

1−√µs
1 +
√
µs

)(
1

L
− s
)
‖∇f(xk+1)−∇f(xk)‖2 .
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5.7.2.3 Proof of Lemma 5.3.9

With the phase representation of the heavy-ball method (5.29) and Cauchy-Schwarz

inequality, we have∥∥∥∥vk +
2
√
µ

1−√µs
(xk+1 − x?)

∥∥∥∥2
2

=

∥∥∥∥1 +
√
µs

1−√µs
vk +

2
√
µ

1−√µs
(xk − x?)

∥∥∥∥2
2

≤ 2

[(
1 +
√
µs

1−√µs

)2

‖vk‖22 +
4µ

(1−√µs)2
‖xk − x?‖22

]
.

The discrete Lyapunov function (5.28) can be estimated as

E(k) ≤
1 +
√
µs

1−√µs
(f(xk)− f(x?)) +

1 + µs

(1−√µs)2
‖vk‖22 +

2µ

(1−√µs)2
‖xk − x?‖22 .

(5.104)

For convenience, we also split the discrete Lyapunov function (5.28) into three parts

and mark them as below

E(k) =
1 +
√
µs

1−√µs
(f(xk)− f(x?))︸ ︷︷ ︸

I

+
1

4
‖vk‖2︸ ︷︷ ︸
II

+
1

4

∥∥∥∥vk +
2
√
µ

1−√µs
(xk+1 − x?)

∥∥∥∥2︸ ︷︷ ︸
III

,

where the three parts I, II and III are corresponding to potential, kinetic energy and

mixed energy in classical mechanics, respectively.

• For the part I, potential, with the basic convex of f(x) ∈ S1
µ,L(Rn)

f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk − xk+1〉+
1

2L
‖∇f(xk+1)−∇f(xk)‖22 ,

we have(
1 +
√
µs

1−√µs

)
(f(xk+1)− f(x?))−

(
1 +
√
µs

1−√µs

)
(f(xk)− f(x?))

≤
(

1 +
√
µs

1−√µs

)√
s 〈∇f(xk+1), vk〉︸ ︷︷ ︸
I1

− 1

2L

(
1 +
√
µs

1−√µs

)
‖∇f(xk+1)−∇f(xk)‖2︸ ︷︷ ︸

I2

.
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• For the part II, kinetic energy, with the phase representation of the heavy-ball

method (5.29), we have

1

4
‖vk+1‖2 −

1

4
‖vk‖2 =

1

2
〈vk+1 − vk, vk+1〉 −

1

4
‖vk+1 − vk‖2

= −
√
µs

1−√µs
‖vk+1‖2︸ ︷︷ ︸

II1

−1

2
·

1 +
√
µs

1−√µs
·
√
s 〈∇f(xk+1), vk+1〉︸ ︷︷ ︸

II2

−1

4
‖vk+1 − vk‖2︸ ︷︷ ︸

II3

• For the part III, mixed energy, with the phase representation of the heavy-ball

method (5.29), we have

1

4

∥∥∥∥vk+1 +
2
√
µ

1−√µs
(xk+2 − x?)

∥∥∥∥2 − 1

4

∥∥∥∥vk +
2
√
µ

1−√µs
(xk+1 − x?)

∥∥∥∥2
=

1

4

〈
vk+1 − vk +

2
√
µ

1−√µs
(xk+2 − xk+1), vk+1 + vk +

2
√
µ

1−√µs
(xk+2 + xk+1 − 2x?)

〉
=− 1

2
·

1 +
√
µs

1−√µs
·
√
s

〈
∇f(xk+1), vk+1 +

2
√
µ

1−√µs
(xk+2 − x?)

〉
− s

4

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2

=−
1 +
√
µs

1−√µs
·
√
µs

1−√µs
〈∇f(xk+1), xk+1 − x?〉︸ ︷︷ ︸

III1

−1

2

(
1 +
√
µs

1−√µs

)2√
s 〈∇f(xk+1), vk+1〉︸ ︷︷ ︸

III2

−s
4

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2︸ ︷︷ ︸
III3

Now, we calculate the difference of discrete Lyapunov function (5.18) at the k-th

iteration by the simple operation as

E(k + 1)− E(k)

≤
(

1 +
√
µs

1−√µs

)√
s 〈∇f(xk+1), vk〉︸ ︷︷ ︸
I1

− 1

2L

(
1 +
√
µs

1−√µs

)
‖∇f(xk+1)−∇f(xk)‖2︸ ︷︷ ︸

I2
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−
√
µs

1−√µs
‖vk+1‖2︸ ︷︷ ︸

II1

−1

2
·

1 +
√
µs

1−√µs
·
√
s 〈∇f(xk+1), vk+1〉︸ ︷︷ ︸

II2

−1

4
‖vk+1 − vk‖2︸ ︷︷ ︸

II3

−
1 +
√
µs

1−√µs
·
√
µs

1−√µs
〈∇f(xk+1), xk+1 − x?〉︸ ︷︷ ︸

III1

−1

2

(
1 +
√
µs

1−√µs

)2√
s 〈∇f(xk+1), vk+1〉︸ ︷︷ ︸

III2

−s
4

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2︸ ︷︷ ︸
III3

=−
√
µs

1−√µs

(
1 +
√
µs

1−√µs
〈∇f(xk+1), xk+1 − x?〉+ ‖vk+1‖2

)
︸ ︷︷ ︸

II1+III1

− 1

2L

(
1 +
√
µs

1−√µs

)
‖∇f(xk+1)−∇f(xk)‖2︸ ︷︷ ︸

I2

−1

2

(
1 +
√
µs

1−√µs

)√
s

〈
∇f(xk+1),

(
1 +
√
µs

1−√µs

)
vk+1 − vk

〉
︸ ︷︷ ︸

1
2
I1+III2

−1

4

(
‖vk+1 − vk‖2 + 2

√
s ·

1 +
√
µs

1−√µs
〈∇f(xk+1), vk+1 − vk〉︸ ︷︷ ︸

1
2
I1+II2+II3+III3

+s

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2
)

︸ ︷︷ ︸
1
2
I1+II2+II3+III3

With the phase representation of the heavy-ball method (5.29), we have

1

2
I1 + III2 = −1

2

(
1 +
√
µs

1−√µs

)√
s

〈
∇f(xk+1),

(
1 +
√
µs

1−√µs

)
vk+1 − vk

〉
=
s

2

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2 ;

and

1

2
I1 + II2 + II3 + III3
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=− 1

4

[
‖vk+1 − vk‖2 + 2

√
s ·

1 +
√
µs

1−√µs
〈∇f(xk+1), vk+1 − vk〉+ s

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2
]

=− 1

4

∥∥∥∥vk+1 − vk +
1 +
√
µs

1−√µs
·
√
s∇f(xk+1)

∥∥∥∥2
≤0.

Now, the difference of discrete Lyapunov function (5.28) can be rewritten as

E(k + 1)− E(k) ≤ −
√
µs

1−√µs

(
1 +
√
µs

1−√µs
〈∇f(xk+1), xk+1 − x?〉+ ‖vk+1‖2

)
− 1

2L

(
1 +
√
µs

1−√µs

)
‖∇f(xk+1)−∇f(xk)‖2

+
s

2

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2 .

With the inequality for any function f(x) ∈ S1
µ,L(Rn)

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖xk+1 − x?‖2 ,

we have

E(k + 1)− E(k)

≤−√µs
[

1 +
√
µs

(1−√µs)2
(f(xk+1)− f(x?)) +

µ

2
·

1 +
√
µs

(1−√µs)2
‖xk+1 − x?‖2

+
1

1−√µs
‖vk+1‖2

]
+
s

2

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2

≤−√µs
[

1 +
√
µs

1−√µs
(f(xk+1)− f(x?)) +

µ

2
·

1 +
√
µs

1−√µs
‖xk+1 − x?‖2

+
1

1−√µs
‖vk+1‖2

]
+
s

2

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2

≤−√µs
[

1

4
·

1 +
√
µs

1−√µs
(f(xk+1)− f(x?)) +

1

1−√µs
‖vk+1‖2

+
µ

2
·

1 +
√
µs

1−√µs
‖xk+1 − x?‖2

]
−

[
3

4

√
µs

(
1 +
√
µs

1−√µs

)
(f(xk+1)− f(x?))− s

2

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2
]
.
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Comparing the coefficient of the estimate of Lyapunov function (5.104), we have

E(k + 1)− E(k)

≤−√µsmin

{
1−√µs
1 +
√
µs
,
1

4

}
E(k + 1)

−

[
3

4

√
µs

(
1 +
√
µs

1−√µs

)
(f(xk+1)− f(x?))− s

2

(
1 +
√
µs

1−√µs

)2

‖∇f(xk+1)‖2
]
.

The proof is complete.

5.7.3 Technical Details in Section 5.4

5.7.3.1 Technical Details in Proof of Theorem 5.4.4

5.7.3.1.1 Iterates (xk, yk) at k = 1, 2, 3 The iterate (xk, yk) at k = 1 is

x1 = y1 = x0 − s∇f(x0). (5.105)

When k = 2, the iterate (xk, yk) is
y2 = x0 − s∇f(x0)− s∇f(x0 − s∇f(x0))

x2 = x0 − s∇f(x0)−
5

4
s∇f(x0 − s∇f(x0)).

(5.106)

When k = 3, the iterate (xk, yk) is

y3 = x0 − s∇f(x0)−
5

4
s∇f(x0 − s∇f(x0))

− s∇f
(
x0 − s∇f(x0)−

5

4
s∇f(x0 − s∇f(x0))

)
x3 = x0 − s∇f(x0)−

27

20
s∇f(x0 − s∇f(x0))

− 7

5
s∇f

(
x0 − s∇f(x0)−

5

4
s∇f(x0 − s∇f(x0))

)
.

(5.107)

5.7.3.1.2 Estimate For ‖∇f(xk)‖2 at k = 0, 1, 2, 3 According to (5.105), we

have

‖∇f(x1)‖2 = ‖∇f(x0 − s∇f(x0))‖2 ≤ L2 ‖x0 − x? − s∇f(x0)‖2
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≤ 2L2
(
‖x0 − x?‖2 + s2 ‖∇f(x0)‖2

)
≤ 2L2(1 + L2s2) ‖x0 − x?‖2 . (5.108)

According to (5.106), we have

‖∇f(x2)‖2 =

∥∥∥∥∇f (x0 − s∇f(x0)−
5

4
s∇f (x0 − s∇f(x0))

)∥∥∥∥2
≤ L2

∥∥∥∥x0 − x? − s∇f(x0)−
5

4
s∇f (x0 − s∇f(x0))

∥∥∥∥2
≤ 3L2

(
‖x0 − x?‖2 + s2 ‖∇f(x0)‖2 +

25

16
s2 ‖∇f(x0 − s∇f(x0))‖2

)
≤ 3L2

[
(1 + L2s2) ‖x0 − x?‖2 +

25

16
L2s2 ‖x0 − x? − s∇f(x0)‖2

]
≤ 3L2

[
(1 + L2s2) ‖x0 − x?‖2 +

25

8
L2s2

(
‖x0 − x?‖2 + s2 ‖∇f(x0)‖2

)]
≤ 3L2

(
1 +

33

8
L2s2 +

25

8
L4s4

)
‖x0 − x?‖2 . (5.109)

With (5.105)-(5.107), we have

‖∇f(x3)‖2 (5.110)

≤L2 ‖x3 − x?‖2

≤L2

∥∥∥∥x0 − x? − s∇f(x0)−
27

20
s∇f(x1)−

7

5
s∇f (x2)

∥∥∥∥2
=4L2

(
‖x0 − x?‖2 + s2 ‖∇f(x0)‖2 +

729

400
s2 ‖∇f(x1)‖2 +

49

25
s2 ‖∇f(x2)‖2

)
=4L2

[
1 + L2s2 +

729

200
L2s2(1 + L2s2) +

147

25
L2s2

(
1 +

33

8
L2s2 +

25

8
L4s4

)]
‖x0 − x?‖2

=
L2(40 + 381L2s2 + 1156L4s4 + 735L6s6)

10
‖x0 − x?‖2 . (5.111)

Taking s ≤ 1/(3L) and using (5.108), (5.109) and (5.110), we have

‖∇f(x0)‖2 ≤
‖x0 − x?‖2

9s2
, ‖∇f(x1)‖2 ≤

20 ‖x0 − x?‖2

81s2
,

‖∇f(x2)‖2 ≤
485 ‖x0 − x?‖2

972s2
, ‖∇f(x3)‖2 ≤

2372 ‖x0 − x?‖2

2187s2
.
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5.7.3.1.3 Estimate For f(xk)− f(x?) at k = 0, 1 According to (5.105), we have

f(x1)− f(x?) ≤ L

2
‖x1 − x?‖2

≤ L

2
‖x0 − s∇f(x0)− x?‖2

≤ L
(
‖x0 − x?‖2 + s2 ‖∇f(x0)‖2

)
≤ L(1 + L2s2) ‖x0 − x?‖2 . (5.112)

Taking s ≤ 1/(3L), (5.112) tells us that

f(x0)− f(x?) ≤ ‖x0 − x
?‖2

6s
, f(x1)− f(x?) ≤ 10 ‖x0 − x?‖2

27s
.

5.7.3.1.4 Estimate for Lyapunov function E(2) and E(3) With the phase-

space representation form (5.45), we have

v2 =
x3 − x2√

s
=

1

10
∇f(x1) +

7

5
∇f(x2). (5.113)

According to (5.46), the Lyapunov function E(2) can be written as

E(2) = 15s (f(x2)− f(x?)) +
1

2

∥∥2(x2 − x?) + 5
√
sv2 + 3s∇f(x2)

∥∥2 .
With (5.113) and Cauchy-Schwarz inequality, we have

E(2) ≤ 15Ls

2
‖x2 − x?‖2 +

3

2

(
4 ‖x2 − x?‖2 + 25s ‖v2‖2 + 9s2 ‖∇f(x2)‖2

)
≤
(

15Ls

2
+ 6

)
‖x2 − x?‖2 +

27

2
s2 ‖∇f(x2)‖2 +

75

2
s2
∥∥∥∥ 1

10
∇f(x1) +

7

5
∇f(x2)

∥∥∥∥2
≤
(

15Ls

2
+ 6

)
‖x2 − x?‖2 +

27

2
s2 ‖∇f(x2)‖2 +

3

4
s2 ‖∇f(x1)‖2 + 147s2 ‖∇f(x2)‖2

=

(
15Ls

2
+ 6

)
‖x2 − x?‖2 +

321

2
s2 ‖∇f(x2)‖2 +

3

4
s2 ‖∇f(x1)‖2 .

Furthermore, with (5.106), we have

E(2) ≤
(

15Ls

2
+ 6

)∥∥∥∥x0 − x? − s∇f(x0)−
5

4
s∇f(x0 − s∇f(x0))

∥∥∥∥2
+

321

2
s2 ‖∇f(x2)‖2 +

3

4
s2 ‖∇f(x1)‖2 .
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Finally, with (5.108)-(5.109), Cauchy-Schwarz inequality tells

E(2) (5.114)

≤
{[

3

16
(12 + 15Ls) +

963

16
L2s2

] (
8 + 33L2s2 + 25L4s4

)
+

3

2
L2s2(1 + L2s2)

}
· ‖x0 − x?‖2

=
288 + 360Ls+ 8916L2s2 + 1485L3s3 + 32703L4s4 + 1125L5s5 + 24075L6s6

16

· ‖x0 − x?‖2 . (5.115)

By Lemma 5.4.5, when the step size s ≤ 1/(3L), (5.114) tells us

E(3) ≤ E(2) ≤ 119 ‖x0 − x?‖2 .

5.7.3.2 Proof of Theorem 5.4.6

Let wk = (1/2) [(k + 2)xk − kyk + (k − 1)s∇f(yk)] for convenience. Using the dy-

namics of {(xk, yk)}∞k=0 generated by the modified NAG-C (5.55), we have

wk+1 =
1

2
[(k + 3)xk+1 − (k + 1)yk+1 + sk∇f(yk+1)]

=
1

2

[
(k + 3)

(
yk+1 +

k

k + 3
(yk+1 − yk)−

sk

k + 3
∇f(yk+1)

+
s(k − 1)

k + 3
∇f(yk)

)
− (k + 1)yk+1 + sk∇f(yk+1)

]
=

1

2
[(k + 2)yk+1 − kyk + s(k − 1)∇f(yk−1)]

= wk −
s(k + 2)

2
∇f(xk).

156



Hence, the difference between ‖wk+1 − x?‖2 and ‖wk − x?‖2 is

1

2
‖wk+1 − x?‖2 −

1

2
‖wk − x?‖2

=

〈
wk+1 − wk,

wk+1 + wk
2

− x?
〉

=
s2(k + 2)2

8
‖∇f(xk)‖2 −

s(k + 2)

2
〈∇f(xk), wk − x?〉

=
s2(k + 2)2

8
‖∇f(xk)‖2 −

s2(k − 1)(k + 2)

4
〈∇f(xk),∇f(yk)〉

− s(k + 2)

4
〈∇f(xk), (k + 2)xk − kyk − 2x?〉 .

If the step size satisfies s ≤ 1/L, there exists a tighter basic inequality than [SBC16,

Equation (22)] and [B+15, Lemma 3.6] for any function f(x) ∈ F1
L(Rn)

f(x− s∇f(x)) ≤ f(y) + 〈∇f(x), x− y〉 − s

2
‖∇f(x)‖2 − s

2
‖∇f(x)−∇f(y)‖2 .

(5.116)

With (5.116), we can obtain that

(k + 2) (f(yk+1)− f(x?))− k (f(yk)− f(x?)) ≤ 〈∇f(xk), (k + 2)xk − kyk − 2x?〉

− s(k + 2)

2
‖∇f(xk)‖2 −

sk

2
‖∇f(xk)−∇f(yk)‖2 .

Consider the discrete Lyapunov function

E(k) =
s(k + 1)2

4
(f(yk)− f(x?)) +

1

2
‖wk − x?‖2 . (5.117)

Hence, the difference between E(k + 1) and E(k) in (5.117) is

E(k + 1)− E(k) = −1

4
(f(yk)− f(x?))− s2(k − 1)(k + 2)

2
〈∇f(xk),∇f(yk)〉

− s2k(k + 2)

8
‖∇f(xk)−∇f(yk)‖2

≤ −1

4
(f(yk)− f(x?))− s2(k − 1)(k + 2)

8
‖∇f(xk) +∇f(yk)‖2 .

(5.118)

157



When k ≥ 2, we have

E(k + 1)− E(2) =
k∑
i=2

(E(i+ 1)− E(i))

≤ −
k∑
i=2

s2(i− 1)(i+ 2)

8
‖∇f(xi) +∇f(yi)‖2

≤ −s
2

8
min
2≤i≤k

‖∇f(xi) +∇f(yi)‖2
k∑
i=2

(i− 1)(i+ 2)

≤ − s
2

24
min
2≤i≤k

‖∇f(xi) +∇f(yi)‖2 · k(k2 + 3k − 4)

≤ − s
2

24
min
2≤i≤k

‖∇f(xi) +∇f(yi)‖2 ·
(k + 1)3

7

= −s
2(k + 1)3

168
min
2≤i≤k

‖∇f(xi) +∇f(yi)‖2 .

Furthermore, we have

min
2≤i≤k

‖∇f(xi) +∇f(yi)‖2 ≤
168 [E(2)− E(k + 1)]

s2(k + 1)3
≤ 168E(2)

s2(k + 1)3
.

Combining with (5.118), we obtain that

min
2≤i≤k

‖∇f(xi) +∇f(yi)‖2

≤ 168E(1)

s2(k + 1)3

≤ 168

s2(k + 1)3

[
s (f(y1)− f(x?)) +

1

2
‖w1 − x?‖2

]
≤ 168

s2(k + 1)3

(
Ls

2
‖y1 − x?‖2 +

1

2
‖w0 − s∇f(x0)− x?‖2

)
=

168

s2(k + 1)3

(
Ls

2
‖x0 − s∇f(x0)− x?‖2 +

1

2

∥∥∥∥x0 − 3s

2
∇f(x0)− x?

∥∥∥∥2
)

≤882 ‖x0 − x?‖2

s2(k + 1)3
.

Similarly, when s ≤ 1/L, for k = 0, we have

‖∇f(x0) +∇f(y0)‖2 = 4 ‖∇f(x0)‖2 ≤
4 ‖x0 − x?‖2

s2
;
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for k = 1, following the modified NAG-C (5.55), we obtain (x1, y1) as

y1 = x0 − s∇f(x0), x1 = x0 −
4

3
s∇f(x0),

furthermore we have

‖∇f(x1) +∇f(y1)‖2 ≤ 2
(
‖∇f(x1)‖2 + ‖∇f(y1)‖2

)
≤ 2

s2
(
‖x1 − x?‖2 + ‖y1 − x?‖2

)
≤ 4

s2
[(

1 + L2s2
)
‖x0 − x?‖2 +

(
1 + (16/9)L2s2

)
‖x0 − x?‖2

]
≤ 172s2 ‖x0 − x?‖2

9
.

For function value, (5.118) tells

f(yk)− f(x?) ≤ 4E(1)

s(k + 1)2
≤ 21 ‖x0 − x?‖2

s(k + 1)2

for all k ≥ 1. Together with

f(y0)− f(x?) ≤ ‖x0 − x
?‖2

s
,

we complete the proof.

5.7.3.3 Nesterov’s Lower Bound

Recall [Nes13, Theorem 2.1.7], for any k, 1 ≤ k ≤ (1/2)(n − 1), and any x0 ∈ Rn,

there exists a function f ∈ F1
L(Rn) such that any first-order method obeys

f(xk)− f(x?) ≥ 3L ‖x0 − x?‖2

32(k + 1)2
.

Using the basic inequality for f(x) ∈ F1
L(Rn),

‖∇f(xk)‖ ‖xk − x?‖ ≥ 〈∇f(xk), xk − x?〉 ≥ f(xk)− f(x?),

we have

‖∇f(xk)‖ ≥
3L ‖x0 − x?‖2

32(k + 1)2 max
1≤k≤n−1

2

‖xk − x?‖

for 1 ≤ k ≤ (1/2)(n− 1).
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5.7.4 Technical Details in Section 5.5

5.7.4.1 Proof of Theorem 5.5.1: Case α = 3

Before starting to prove Theorem 5.5.1, we first look back our high-resolution ODE

framework in Section 5.2.

• Step 1, the generalized high-resolution ODE has been given in (5.56).

• Step 2, the continuous Lyapunov function is constructed as

E(t) = t

[
t+

(
3

2
− β

)√
s

]
(f(X(t))− f(x?))

+
1

2

∥∥∥2(X(t)− x?) + t
(
Ẋ(t) + β

√
s∇f(X(t))

)∥∥∥2 . (5.119)

Following this Lyapunov function (5.119), we can definitely obtain similar re-

sults as Theorem 5.4.1 and Corollary 5.4.3. The detailed calculation, about the

estimate of the optimal constant β and how the constant β influence the initial

point, is left for readers.

• Step 3, before constructing discrete Lyapunov functions, we show the phase-

space representation (5.57) as

xk − xk−1 =
√
svk−1

vk − vk−1 = −α
k
vk − β

√
s (∇f(xk)−∇f(xk−1))−

(
1 +

α

k

)√
s∇f(xk).

(5.120)

Now, we show how to construct the discrete Lyapunov function and analyze the

algorithms (5.57) with α = 3 in order to prove Theorem 5.5.1.

5.7.4.1.1 Case: β < 1 When β < 1, we know that the function

g(k) =
k + 3

k + 3− β

decreases monotonically. Hence we can construct the discrete Lyapunov function as
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E(k) = s(k + 4)(k + 1) (f(xk)− f(x?))

+
k + 3

2(k + 3− β)

∥∥2(xk+1 − x?) +
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)∥∥2 , (5.121)

which is slightly different from the discrete Lyapunov function (5.46) for NAG-C.

When β → 1, the discrete Lyapunov function (5.121) approximate to (5.46) as k →

∞.

With the phase-space representation (5.120) for α = 3, we can obtain

(k + 3)
(
vk + β

√
s∇f(xk)

)
− k

(
vk−1 + β

√
s∇f(xk−1)

)
= −
√
s (k + 3− 3β)∇f(xk).

(5.122)

The difference of the discrete Lyapunov function (5.121) of the k-th iteration is

E(k + 1)− E(k)

=s(k + 5)(k + 2) (f(xk+1)− f(x?))− s(k + 4)(k + 1) (f(xk)− f(x?))

+
k + 4

2(k + 4− β)

∥∥2(xk+2 − x?) +
√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)∥∥2
− k + 3

2(k + 3− β)

∥∥2(xk+1 − x?) +
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)∥∥2
≤s (k + 4) (k + 1) (f(xk+1)− f(xk)) + s(2k + 6) (f(xk+1)− f(x?))

+
k + 4

k + 4− β
[〈

2(xk+2 − xk+1) +
√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)
−
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)
,

2(xk+2 − x?) +
√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)〉
−1

2

∥∥2(xk+2 − xk+1) +
√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)
−
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)∥∥2]
=s (k + 4) (k + 1) (f(xk+1)− f(xk)) + s(2k + 6) (f(xk+1)− f(x?))

−
〈
s(k + 4)∇f(xk+1), 2(xk+2 − x?) +

√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)〉
− 1

2
s2(k + 4) (k + 4− β) ‖∇f(xk+1)‖2 .

161



With the basic inequality of any function f(x) ∈ F1
L(Rn)

f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk − xk+1〉+
1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉 ,

and the phase-space representation (5.120)

xk+2 = xk+1 +
√
svk+1,

the difference of the discrete Lyapunov function (5.121) can be estimated as

E(k + 1)− E(k)

≤s(k + 4)(k + 1)

(
〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

)
+ s(2k + 6) (f(xk+1)− f(x?))− s(2k + 8) 〈∇f(xk+1), xk+1 − x?〉

− s
3
2 (k + 4)2 〈∇f(xk+1), vk+1〉 − βs2(k + 2)(k + 4) ‖∇f(xk+1)‖2

− 1

2
s2(k + 4) (k + 4− β) ‖∇f(xk+1)‖2

≤− s
3
2 (k + 4) 〈∇f(xk+1), (k + 4)vk+1 − (k + 1)vk〉

− s(k + 4)(k + 1)

2L
‖∇f(xk+1)−∇f(xk)‖2

− 2s (f(xk+1)− f(x?))

− s2
[
β(k + 4)(k + 2) +

1

2
(k + 4) (k + 4− β)

]
‖∇f(xk+1)‖2 .

Utilizing the phase-space representation (5.120) again, we calculate the difference of

the discrete Lyapunov function (5.121) as

E(k + 1)− E(k)

≤s
3
2 (k + 4)

〈
∇f(xk+1), β

√
s(k + 1) (∇f(xk+1)−∇f(xk)) +

√
s(k + 4)∇f(xk+1)

〉
− s(k + 4)(k + 1)

2L
‖∇f(xk+1)−∇f(xk)‖2

− s2
[
β(k + 4)(k + 2) +

1

2
(k + 4) (k + 4− β)

]
‖∇f(xk+1)‖2
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≤βs2(k + 4)(k + 1) 〈∇f(xk+1),∇f(xk+1)−∇f(xk)〉

− s(k + 4)(k + 1)

2L
‖∇f(xk+1)−∇f(xk)‖2

−
[
(k + 2)(k + 4)β − 1

2
(k + 4 + β) (k + 4)

]
s2 ‖∇f(xk+1)‖2

≤Lβ
2s3

2
(k + 4)(k + 1) ‖∇f(xk+1)‖2

−
[
(k + 2)(k + 4)β − 1

2
(k + 4 + β) (k + 4)

]
s2 ‖∇f(xk+1)‖2

=−
[
β(k + 2)− 1

2
(k + 4 + β)− Lβ2s

2
(k + 1)

]
(k + 4)s2 ‖∇f(xk+1)‖2 .

To guarantee that the Lyapunov function E(k) is decreasing, a sufficient condition is

β(k + 2)− 1

2
(k + 4 + β)− Lβ2s

2
(k + 1) ≥ 0. (5.123)

Simple calculation tells us that (5.123) can be rewritten as

s ≤ (2β − 1)k + 3β − 4

(k + 1)Lβ2
=

1

Lβ2

(
2β − 1 +

β − 3

k + 1

)
. (5.124)

Apparently, when β → 1, the step size satisfies

0 < s ≤ k − 1

k + 1
· 1

L

which is consistent with (5.48). Now, we turn to discuss the parameter 0 ≤ β < 1

case by case.

• When the parameter β ≤ 1/2, the sufficient condition (5.123) for the Lyapunov

function E(k) decreasing cannot be satisfied for sufficiently large k.

• When the parameter 1/2 < β < 1, since the function h(k) = 1
Lβ2

(
2β − 1 + β−3

k+1

)
increases monotonically for k ≥ 0, there exists k3,β =

⌊
4−3β
2β−1

⌋
+ 1 such that the

step size

s ≤ (2β − 1)k3,β + 3β − 4

(k3,β + 1)Lβ2
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works for any k ≥ k3,β (k3,β → 2 with β → 1). Then, the difference of the

discrete Lyapunov function (5.121) can be estimated as

E(k + 1)− E(k) ≤ −s2
(

2β − 1− Lβ2s

2

)
(k − k3,β)2 ‖∇f(xk+1)‖2 .

Here, the proof is actually complete. Without loss of generality, we briefly show

the expression is consistent with Theorem 5.5.1 and omit the proofs for the

following facts. When k ≥ k3,β + 1, there exists some constant C0
3,β > 0 such

that

E(k + 1)− E(k) ≤ −s2C0
3,β(k + 1)2 ‖∇f(xk+1)‖2 .

For k ≤ k3,β, using mathematic induction, there also exists some constant

C1
3,β > 0 such that for s = O(1/L), we have

‖∇f(xk+1)‖2 ≤
C1
3,β ‖x0 − x?‖

2

s2
and f(xk)−f(x?) ≤ E(k)

4s
≤

C1
3,β ‖x0 − x?‖

2

s
.

5.7.4.1.2 Case: β ≥ 1 When β ≥ 1, we know that the function

g(k) =
k + 2

k + 3− β

decreases monotonically. Hence we can construct the discrete Lyapunov function as

E(k) = s(k + 3)(k + 1) (f(xk)− f(x?))

+
k + 2

2(k + 3− β)

∥∥2(xk+1 − x?) +
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)∥∥2 . (5.125)

which for β = 1 is consistent with the discrete Lyapunov function (5.46) for NAG-C.

With the expression (5.122)

(k + 3)
(
vk + β

√
s∇f(xk)

)
− k

(
vk−1 + β

√
s∇f(xk−1)

)
= −
√
s (k + 3− 3β)∇f(xk),

the difference of the discrete Lyapunov function (5.125) of the k-th iteration is

E(k + 1)− E(k)
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=s(k + 4)(k + 2) (f(xk+1)− f(x?))− s(k + 3)(k + 1) (f(xk)− f(x?))

+
k + 3

2(k + 4− β)

∥∥2(xk+2 − x?) +
√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)∥∥2
− k + 2

2(k + 3− β)

∥∥2(xk+1 − x?) +
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)∥∥2
≤s (k + 3) (k + 1) (f(xk+1)− f(xk)) + s(2k + 5) (f(xk+1)− f(x?))

+
k + 3

k + 4− β
[〈

2(xk+2 − xk+1) +
√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)
−
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)
,

2(xk+2 − x?) +
√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)〉
−1

2

∥∥2(xk+2 − xk+1) +
√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)
−
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)∥∥2]
=s (k + 3) (k + 1) (f(xk+1)− f(xk)) + s(2k + 5) (f(xk+1)− f(x?))

−
〈
s(k + 3)∇f(xk+1), 2(xk+2 − x?) +

√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)〉
− 1

2
s2(k + 3) (k + 4− β) ‖∇f(xk+1)‖2 .

With the basic inequality of any function f(x) ∈ F1
L(Rn)

f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk − xk+1〉+
1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉 ,

and the phase-space representation (5.120)

xk+2 = xk+1 +
√
svk+1,

the difference of the discrete Lyapunov function (5.125) can be estimated as

E(k + 1)− E(k)

≤s(k + 3)(k + 1)

(
〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

)
+ s(2k + 5) (f(xk+1)− f(x?))− s(2k + 6) 〈∇f(xk+1), xk+1 − x?〉
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− s
3
2 (k + 3)(k + 4) 〈∇f(xk+1), vk+1〉 − βs2(k + 2)(k + 3) ‖∇f(xk+1)‖2

− 1

2
s2(k + 3) (k + 4− β) ‖∇f(xk+1)‖2

≤− s
3
2 (k + 3) 〈∇f(xk+1), (k + 4)vk+1 − (k + 1)vk〉

− s(k + 3)(k + 1)

2L
‖∇f(xk+1)−∇f(xk)‖2

− 2s (f(xk+1)− f(x?))

− s2
[
β(k + 3)(k + 2) +

1

2
(k + 3) (k + 4− β)

]
‖∇f(xk+1)‖2 .

Utilize the phase-space representation (5.120) again, we calculate the difference of the

discrete Lyapunov function (5.125) as

E(k + 1)− E(k)

≤s
3
2 (k + 3)

〈
∇f(xk+1), β

√
s(k + 1) (∇f(xk+1)−∇f(xk)) +

√
s(k + 4)∇f(xk+1)

〉
− s(k + 3)(k + 1)

2L
‖∇f(xk+1)−∇f(xk)‖2

− s2
[
β(k + 3)(k + 2) +

1

2
(k + 3) (k + 4− β)

]
‖∇f(xk+1)‖2

≤βs2(k + 3)(k + 1) 〈∇f(xk+1),∇f(xk+1)−∇f(xk)〉

− s(k + 3)(k + 1)

2L
‖∇f(xk+1)−∇f(xk)‖2

−
[
(k + 2)(k + 3)β − 1

2
(k + 4 + β) (k + 3)

]
s2 ‖∇f(xk+1)‖2

≤Lβ
2s3

2
(k + 3)(k + 1) ‖∇f(xk+1)‖2

−
[
(k + 2)(k + 3)β − 1

2
(k + 4 + β) (k + 3)

]
s2 ‖∇f(xk+1)‖2

=−
[
β(k + 2)− 1

2
(k + 4 + β)− Lβ2s

2
(k + 1)

]
(k + 3)s2 ‖∇f(xk+1)‖2 .

Consistently, we can obtain the sufficient condition for the Lyapunov function E(k)

decreasing (5.123) and the sufficient condition for step size (5.124).

Now, we turn to discuss the parameter β ≥ 1 case by case.
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• When the parameter β ≥ 3, since the function h(k) = 1
Lβ2

(
2β − 1 + β−3

k+1

)
decreases monotonically for k ≥ 0, then the condition of the step size

s ≤ 2β − 1

(1 + ε)Lβ2
<

2β − 1

Lβ2

holds for (5.123), where ε > 0 is a real number. Hence, when k ≥ k3,β + 1,

where

k3,β = max

{
0, bβ − 3c+ 1,

⌊
4− 3β + Lβ2s

2β − 1− Lβ2s

⌋
+ 1

}
,

the difference of the discrete Lyapunov function (5.125) can be estimated as

E(k + 1)− E(k) ≤ −s2
(

2β − 1− Lβ2s

2

)
(k − k3,β)2 ‖∇f(xk+1)‖2 .

• When the parameter 1 ≤ β < 3, since the function h(k) = 1
Lβ2

(
2β − 1 + β−3

k+1

)
increases monotonically for k ≥ 0, there exists k3,β = max {0, bβ − 3c+ 1,⌊

4−3β
2β−1

⌋
+ 1
}

such that the step size

s ≤ (2β − 1)k3,β + 3β − 4

(k3,β + 1)Lβ2

works for any k ≥ k3,β. When β = 1, the step size satisfies

0 < s ≤ k − 1

k + 1
· 1

L

which is consistent with (5.48) and k3,β = 2. Then, the difference of the discrete

Lyapunov function (5.121) can be estimated as

E(k + 1)− E(k) ≤ −s2
(

2β − 1− Lβ2s

2

)
(k − k3,β)2 ‖∇f(xk+1)‖2 .

for all k ≥ k3,β + 1.

By simple calculation, we complete the proof.
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5.7.4.2 Proof of Theorem 5.5.1: Case α > 3

Before starting to prove Theorem 5.5.1: Case α > 3, we first also look back our

high-resolution ODE framework in Section 5.2.

• Step 1, the generalized high-resolution ODE has been given in (5.56).

• Step 2, the continuous Lyapunov function is constructed as

E(t) = t
[
t+
(α

2
− β

)√
s
]

(f(X(t))− f(x?))

+
1

2

∥∥∥(α− 1)(X(t)− x?) + t
(
Ẋ(t) + β

√
s∇f(X(t))

)∥∥∥2 , (5.126)

which is consistent with (5.119) for α → 3. Following this Lyapunov func-

tion (5.126), we can obtain

f(X(t))− f(x?) ≤ O

(
‖X(t0)− x?‖2

(t− t0)2

)
∫ t

t0

u (f(X(u))− f(x?)) +
√
su2 ‖∇f(X(u))‖2 du ≤ O

(
‖X(t0)− x?‖2

)
(5.127)

for any t > t0 = max {
√
s(α/2− β)(α− 2)/(α− 3),

√
s(α/2)}. The two in-

equalities of (5.127) for the convergence rate of function value is stronger than

Corollary 5.4.3. The detailed calculation, about the estimate of the optimal

constant β and how the constant β influences the initial point, is left for read-

ers.

• Step 3, before constructing discrete Lyapunov functions, we look back the

phase-space representation (5.120)

xk − xk−1 =
√
svk−1

vk − vk−1 = −α
k
vk − β

√
s (∇f(xk)−∇f(xk−1))−

(
1 +

α

k

)√
s∇f(xk).

The discrete functional is constructed as
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E(k) = s(k + 1)(k + α− β + 1) (f(xk)− f(x?))

+
1

2

∥∥(α− 1)(xk+1 − x?) +
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)∥∥2 . (5.128)

When β = 1, with α → 3, the discrete Lyapunov function E(k) degenerates

to (5.46).

Now, we procced to Step 4 to analyze the algorithms (5.57) with α > 3 in order to

prove Theorem 5.5.2. The simple transformation of (5.120) for α > 3 is

(k + α)
(
vk + β

√
s∇f(xk)

)
− k

(
vk−1 + β

√
s∇f(xk−1)

)
= −
√
s (k + γ − γβ)∇f(xk).

(5.129)

Thus, the difference of the Lyapunov function (5.128) on the k-th iteration is

E(k + 1)− E(k)

=s(k + 2)(k + α− β + 2) (f(xk)− f(x?))

+
1

2

∥∥(α− 1)(xk+2 − x?) +
√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)∥∥2
− s(k + 1)(k + α− β + 1) (f(xk)− f(x?))

− 1

2

∥∥(α− 1)(xk+1 − x?) +
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)∥∥2
=s(k + 1) (k + α− β + 1) (f(xk+1)− f(xk)) + s (2k + α− β + 3) (f(xk+1)− f(x?))

+
〈
(α− 1)(xk+2 − xk+1) +

√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)
−
√
s(k + 1)

(
vk + β

√
s∇f(xk)

)
,

(α− 1)(xk+2 − x?) +
√
s(k + 2)

(
vk+1 + β

√
s∇f(xk+1)

)〉
− 1

2

∥∥(α− 1)(xk+2 − xk+1) + (k + 2)
√
s
(
vk+1 + β

√
s∇f(xk+1)

)
−(k + 1)

√
s
(
vk + β

√
s∇f(xk)

)∥∥2
=s(k + 1) (k + α− β + 1) (f(xk+1)− f(xk))

+ s (2k + α− β + 3) (f(xk+1)− f(x?))

−
〈
s (k + α− β + 1)∇f(xk+1), (α− 1)(xk+1 − x?) +

√
s(k + α + 1)vk+1
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+βs(k + 2)∇f(xk+1)〉

− 1

2
s2(k + α− β + 1)2 ‖∇f(xk+1)‖2 .

With the basic inequality of convex function f(x) ∈ F1
L(Rn),

f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk − xk+1〉+
1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉

and the phase-space representation (5.120)

xk+2 = xk+1 +
√
svk+1,

the difference of the discrete Lyapunov function (5.128) can be estimated as

E(k + 1)− E(k)

=s(k + 1) (k + α− β + 1)

(
〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

)
+ s (2k + α− β + 3) (f(xk+1)− f(x?))

− s(α− 1) (k + α− β + 1) 〈∇f(xk+1), xk+1 − x?〉

−
〈
s (k + α− β + 1)∇f(xk+1),

√
s(k + α + 1)vk+1

〉
− 1

2
s2(k + α− β + 1) [(2β + 1)k + α + 3β + 1] ‖∇f(xk+1)‖2

≤− s
3
2 (k + α− β + 1) 〈∇f(xk+1), (k + α + 1)vk+1 − (k + 1)vk〉

− s(k + 1) (k + α− β + 1)

2L
‖∇f(xk+1)−∇f(xk)‖22

− s [(α− 3)k + (α− 2) (α− β + 1)− 2] (f(xk+1)− f(x?))

− 1

2
s2(k + α− β + 1) [(2β + 1)k + α + 3β + 1] ‖∇f(xk+1)‖2 .

Utilizing the phase-space representation (5.120) again, we calculate the difference of

the discrete Lyapunov function (5.128) as

E(k + 1)− E(k)
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=βs2(k + 1) (k + α− β + 1) 〈∇f(xk+1),∇f(xk+1)−∇f(xk)〉

+ s2(k + α + 1) (k + α− β + 1) ‖∇f(xk+1)‖2

− s(k + 1) (k + α− β + 1)

2L
‖∇f(xk+1)−∇f(xk)‖22

− s [(α− 3)k + (α− 2) (α− β + 1)− 2] (f(xk+1)− f(x?))

− 1

2
s2(k + α− β + 1) [(2β + 1)k + α + 3β + 1] ‖∇f(xk+1)‖2

=βs2(k + 1) (k + α− β + 1) 〈∇f(xk+1),∇f(xk+1)−∇f(xk)〉

− s(k + 1) (k + α− β + 1)

2L
‖∇f(xk+1)−∇f(xk)‖22

− s [(α− 3)k + (α− 2) (α− β + 1)− 2] (f(xk+1)− f(x?))

− 1

2
s2(k + α− β + 1) [(2β − 1)k − α + 3β − 1] ‖∇f(xk+1)‖2

≤Lβ
2s3

2
(k + 1) (k + α− β + 1) ‖∇f(xk+1)‖2

− s [(α− 3)k + (α− 2) (α− β + 1)− 2] (f(xk+1)− f(x?))

− 1

2
s2(k + α− β + 1) [(2β − 1)k − α + 3β − 1] ‖∇f(xk+1)‖2

=− s [(α− 3)k + (α− 2) (α− β + 1)− 2] (f(xk+1)− f(x?))

− 1

2
s2(k + α− β + 1)

[
(2β − 1)k − α + 3β − 1− Lβ2s(k + 1)

]
‖∇f(xk+1)‖2

To guarantee the Lyapunov function E(k) decreasing, a sufficient condition is

(2β − 1)k − α + 3β − 1− Lβ2s(k + 1) ≥ 0. (5.130)

With the inequality (5.130), the step size can be estimated as

s ≤ 2β − 1

Lβ2
− α− β

(k + 1)Lβ2
.

• When the parameter β > 1/2 and α < β, since the function h(k) = 2β−1
Lβ2 −

α−β
(k+1)Lβ2 decreases monotonically for k ≥ 0, thus the step size

s ≤ 2β − 1

(1 + ε)Lβ2
<

2β − 1

Lβ2
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holds for (5.130), where ε > 0 is a real number. Hence, when k ≥ kα,β + 1,

where

kα,β = max

{
0,

⌊
2− (α− 2)(α− β + 1)

α− 3

⌋
+ 1,⌊

4− 3β + Lβ2s

−1 + 2β − Lβ2s

⌋
+ 1, bβ − α− 1c+ 1

}
,

the difference of the discrete Lyapunov function (5.128) can be estimated as

E(k + 1)− E(k) ≤− s(α− 3) (k − kα,β) (f(xk+1)− f(x?))

− s2
(

2β − 1− Lβ2s

2

)
(k − kα,β)2 ‖∇f(xk+1)‖2 .

• When the parameter β > 1/2 and α ≥ β, since the function h(k) = 2β−1
Lβ2 −

α−β
(k+1)Lβ2 increases monotonically for k ≥ 0, there exists

kα,β = max

{
0,

⌊
2− (α− 2)(α− β + 1)

α− 3

⌋
+ 1, bβ − α− 1c+ 1,

⌊
1 + α− 3β

2β − 1

⌋
+ 1

}
such that the step size satisfies

s ≤ (2β − 1)kα,β − α + 3β − 1

Lβ2(kα,β + 1)
.

When β = 1, the step size satisfies

s ≤ 1

L
· kα,β − α + 2

(kα,β + 1)
→ 1

L
· kα,β − 1

kα,β + 1
with α→ 3,

which is consistent with (5.48). Then, the difference of the discrete Lyapunov

function (5.128) can be estimated as

E(k + 1)− E(k) ≤− s(α− 3) (k − kα,β) (f(xk+1)− f(x?))

− s2
(

2β − 1− Lβ2s

2

)
(k − kα,β)2 ‖∇f(xk+1)‖2 .
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5.7.4.3 A Simple Counterexample

The simple counterexample is constructed as

f(xk)− f(x?) =


L ‖x0 − x?‖2

(k + 1)2
, k = j2

0, k 6= j2

where j ∈ N. Plugging it into (5.59), we have

∞∑
k=0

(k + 1) (f(xk)− f(x?)) = L ‖x0 − x?‖2 ·
∞∑
j=0

(
1

j2 + 1

)
<∞.

Hence, Proposition 5.5.2 cannot guarantee the faster convergence rate.

5.7.4.4 Super-Critical Regime: Sharper Convergence Rate o(1/t2) and

o(L/k2)

5.7.4.4.1 The ODE Case Here, we still turn back to our high-resolution ODE

framework in Section 5.2. The generalized high-resolution ODE has been still shown

in (5.56). A more general Lyapunov function is constructed as

Eν(t) = t
[
t+
(α

2
− β

)√
s+ (α− ν − 1)β

√
s
]

(f(X(t))− f(x?))

+
ν(α− ν − 1)

2
‖X(t)− x?‖2 +

1

2

∥∥∥ν(X(t)− x?) + t
(
Ẋ(t) + β

√
s∇f(X(t))

)∥∥∥2
(5.131)

where 2 < ν ≤ α − 1. When ν = α − 1, the Lyapunov function (5.131) degenerates

to (5.126). Furthermore, when ν = α − 1 → 2, the Lyapunov function (5.131)

degenerates to (5.119). Finally, when 2 = ν = α − 1 and β = 1, the Lyapunov

function (5.131) is consistent with (5.41). We assume that initial time is

tα,β,ν = max

{√
s
(
β − α

2

)
,
√
s

(
β(α− 2)

ν − 2
− α(ν − 1)

2(ν − 2)

)
,

√
sα

2

}
.

Based on the Lyapunov function (5.131), we have the following results.
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Theorem 5.7.10. Let f(x) ∈ F2
L(Rn) andX = X(t) be the solution of the ODE (5.56)

with α > 3 and β > 0. Then, there exists tα,β,ν > 0 such that
lim
t→∞

t2
(

(f(X(t))− f(x?)) +
∥∥∥Ẋ(t) + β

√
s∇f(X(t))

∥∥∥2) = C2
α,β,ν ‖x0 − x?‖

2

∫ t

t0

[
u (f(X(u))− f(x?)) + u

∥∥∥Ẋ(u) + β
√
s∇f(X(u))

∥∥∥2] du <∞

(5.132)

for all t ≥ tα,β,ν , where the positive constant C2
α,β,ν and the integer tα,β,ν depend only

on α, β and ν. In other words, the equivalent expression of (5.132) is

f(X(t))− f(x?) +
∥∥∥Ẋ(t) + β

√
s∇f(X(t))

∥∥∥2 ≤ o

(
‖x0 − x?‖2

t2

)
.

Now, we start to show the proof. Since X = X(t) is the solution of the ODE (5.56)

with α > 3 and β > 0, when t > tα,β,ν , the time derivative of Lyapunov func-

tion (5.131) is

dEν(t)
dt

=
[
2t+

(α
2
− β

)√
s+ (α− ν − 1)β

√
s
]

(f(X(t))− f(x?))

+ t
[
t+
(α

2
− β

)√
s+ (α− ν − 1)β

√
s
] 〈
∇f(X(t)), Ẋ(t)

〉
+ ν(α− ν − 1)

〈
X(t)− x?, Ẋ(t)

〉
−
〈

(α− 1− ν)Ẋ(t) +
[
t+
(α

2
− β

)√
s
]
∇f(X(t)),

ν(X(t)− x?) + t
(
Ẋ(t) + β

√
s∇f(X(t))

)〉
=
[
2t+

(α
2
− β

)√
s+ (α− ν − 1)β

√
s
]

(f(X(t))− f(x?)) (5.133)

− (α− 1− ν)t
∥∥∥Ẋ(t)

∥∥∥2
− ν

[
t+
(α

2
− β

)√
s
]
〈∇f(X(t)), X(t)− x?〉 (5.134)

− βt
√
s
[
t+
(α

2
− β

)√
s
]
‖∇f(X(t))‖2 .

With the basic inequality for any f(x) ∈ F2
L(Rn)

f(x?) ≥ f(X(t)) + 〈∇f(X(t)), x? −X(t)〉 ,

174



the time derivative of Lyapunov function (5.133) can be estimated as

dEν(t)
dt

≤ −
{

(ν − 2)t+
√
s

[
α(ν − 1)

2
− (α− 2)β

]}
(f(X(t))− f(x?))

− (α− 1− ν)t
∥∥∥Ẋ(t)

∥∥∥2 − βt√s [t+
(α

2
− β

)√
s
]
‖∇f(X(t))‖2 .

With the Lyapunov function Eν(t) ≥ 0 and the technique for integral, for any t > t0

we have∫ t

t0

u(f(X(u))− f(x?))du ≤
∫ t0+δ

t0

u(f(X(u))− f(x?))du

+

(
1 +

t0
δ

)∫ t

t0+δ

(u− t0)(f(X(u))− f(x?))du,

where δ < t− t0. Thus, we can obtain the following Lemma.

Lemma 5.7.11. Under the same assumption of Theorem 5.7.10, the following limits

exist

lim
t→∞
Eν(t), lim

t→∞

∫ t

t0

u(f(X(u))−f(x?))du, lim
t→∞

∫ t

t0

u
∥∥∥Ẋ(u)

∥∥∥2 du, lim
t→∞

∫ t

t0

u2 ‖∇f(X(u))‖2 du.

With (5.133) and Lemma 5.7.11, the following Lemma holds.

Lemma 5.7.12. Under the same assumption of Theorem 5.7.10, the following limit

exists

lim
t→∞

∫ t

t0

u 〈∇f(X(u)), X(u)− x?〉 du.

Lemma 5.7.13. Under the same assumption of Theorem 5.7.10, the following limits

exist

lim
t→∞
‖X(t)− x?‖ and lim

t→∞
t
〈
X(t)− x?, Ẋ(t) + β

√
s∇f(X(t))

〉
.

Proof. [Proof of Lemma 5.7.13] Taking ν 6= ν ′ ∈ [2, γ − 1], we have

Eν(t)− Eν′(t) = (ν − ν ′)
[
−β
√
st (f(X(t))− f(x?))
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+t
〈
X(t)− x?, Ẋ(t) + β

√
s∇f(X(t))

〉
+
α− 1

2
‖X(t)− x?‖2

]
With Lemma 5.7.11 and (5.127), the following limit exists

lim
t→∞

[
t
〈
X(t)− x?, Ẋ(t) + β

√
s∇f(X(t))

〉
+
α− 1

2
‖X(t)− x?‖2

]
. (5.135)

Define a new function about time variable t:

π(t) :=
1

2
‖X(t)− x?‖2 + β

√
s

∫ t

t0

〈∇f(X(u)), X(u)− x?〉 du.

If we can prove the existence of the limit π(t) with t → ∞, we can guarantee

lim
t→∞
‖X(t)− x?‖ exists with Lemma 5.7.12. We observe the following equality

tπ̇(t) + (α− 1)π(t)

=β(α− 1)
√
s

∫ t

t0

〈∇f(X(u)), X(u)− x?〉 du

+ t
〈
X(t)− x?, Ẋ(t) + β

√
s∇f(X(t))

〉
+
α− 1

2
‖X(t)− x?‖2 .

With (5.135) and Lemma 5.7.12, we obtain that the following limit exists

lim
t→∞

[tπ̇(t) + (α− 1)π(t)] ,

that is, there exists some constant C3 such that the following equality holds,

lim
t→∞

d(tα−1π(t))
dt

tα−2
= lim

t→∞
[tπ̇(t) + (α− 1)π(t)] = C3.

For any ε > 0, there exists t0 > 0 such that when t ≥ t0, we have

tα−1
(
π(t)− C3

α− 1

)
− tα−10

(
π(t0)−

C3

α− 1

)
≤ ε

α− 1
·
(
tα−1 − tα−10

)
that is, ∣∣∣∣π(t)− C3

α− 1

∣∣∣∣ ≤ ∣∣∣∣π(t0)−
C3

α− 1

∣∣∣∣ (t0t
)α−1

+
ε

α− 1
.

The proof is complete.
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Finally, we finish the proof for Theorem 5.7.10.

Proof. [Proof of Theorem 5.7.10] When t > tα,β,ν , we expand the Lyapunov func-

tion (5.131) as

Eν(t) =t
[
t+
(α

2
− β

)√
s+ (α− ν − 1)β

√
s
]

(f(X(t))− f(x?))

+
ν(α− 1)

2
‖X(t)− x?‖2

+
t2

2

∥∥∥Ẋ(t) + β
√
s∇f(X(t))

∥∥∥2
+ t
〈
X(t)− x?, Ẋ(t) + β

√
s∇f(X(t))

〉
.

With Lemma 5.7.11 and Lemma 5.7.13, we obtain the first equation of (5.132). Fur-

thermore, Cauchy-Scharwz inequality tells that[
t+
(α

2
− β

)√
s+ (α− ν − 1)β

√
s
]

(f(X(t))− f(x?))

+
t

2

∥∥∥Ẋ(t) + β
√
s∇f(X(t))

∥∥∥2
≤
[
t+
(α

2
− β

)√
s+ (α− ν − 1)β

√
s
]

(f(X(t))− f(x?))

+ t
∥∥∥Ẋ(t)

∥∥∥2 + β2st ‖∇f(X(t))‖2 .

With Lemma 5.7.11, we obtain the second equation of (5.132). With basic calculation,

we complete the proof.

5.7.4.4.2 Proof of Theorem 5.5.3 Similarly, under the assumption of Theo-

rem 5.5.3, if we can show a discrete version of (5.132), that is, there exists some con-

stant C4
α,β,ν > 0 and cα,β,ν > 0 such that when the step size satisfies 0 < s ≤ cα,β,ν/L,

the following relationship holds
lim
k→∞

(k + 1)2
(
f(xk)− f(x?) +

∥∥vk + β
√
s∇f(xk)

∥∥2) =
C4
α,β,ν ‖x0 − x?‖

2

s
∞∑
k=0

(k + 1)
(

(f(xk)− f(x?)) +
∥∥vk + β

√
s∇f(xk)

∥∥2) <∞.
(5.136)

177



Thus, we obtain the sharper convergence rate as

f(xk)− f(x?) +
∥∥vk + β

√
s∇f(xk)

∥∥2 ≤ o

(
‖x0 − x?‖2

sk2

)
.

Now we show the derivation of the inequality (5.136). The discrete Lyapunov

function is constructed as

E(k) = s(k + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
(f(xk)− f(x?))︸ ︷︷ ︸

I

+
ν(α− ν − 1)

2
‖xk+1 − x?‖2︸ ︷︷ ︸

II

+
1

2

∥∥ν(xk+1 − x?) + (k + 1)
√
s
(
vk + β

√
s∇f(xk)

)∥∥2︸ ︷︷ ︸
III

,

(5.137)

where 2 ≤ ν < α − 1 and parts I, II and III are potential, Euclidean distance

and mixed energy respectively. Apparently, when ν = α − 1, the discrete Lyapunov

function (5.137) is consistent with (5.128). When β = 1 and ν = α − 1 → 2, the

discrete Lyapunov function (5.137) degenerates to (5.46), Now, we turn to estimate

the difference of Lyapunov function (5.137).

• For the part I, potential, we have

s(k + 2)

[
k + α + 2− β +

(k + 3)(α− 1− ν)β

k + α + 2

]
(f(xk+1)− f(x?))

− s(k + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
(f(xk)− f(x?))

=s(k + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
(f(xk+1)− f(xk))

+ s (2k + α + 3− β) (f(xk+1)− f(x?))

+ s(k + 2)(α− 1− ν)β

[
k + 3

k + α + 2
− k + 1

k + α + 1

]
(f(xk+1)− f(x?))

≤ s(k + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
(f(xk+1)− f(xk))︸ ︷︷ ︸

I1

+ s [2k + α + 3 + (2α− 3− 2ν)β] (f(xk+1)− f(x?))︸ ︷︷ ︸
I2

,
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where the last inequality follows k + α + 2 > k + α + 1 > k + 2.

• For the part II, Euclidean distance, we have

ν(α− ν − 1)

2
‖xk+2 − x?‖2 −

ν(α− ν − 1)

2
‖xk+1 − x?‖2

= ν(α− ν − 1) 〈xk+2 − xk+1, xk+2 − x?〉︸ ︷︷ ︸
II1

−ν(α− ν − 1)

2
‖xk+2 − xk+1‖2︸ ︷︷ ︸

II2

.

• For the part III, mixed energy, with the simple transformation (5.129) for α > 3

(k + α)
(
vk + β

√
s∇f(xk)

)
− k

(
vk−1 + β

√
s∇f(xk−1)

)
= −
√
s (k + γ − γβ)∇f(xk),

we have

1

2

∥∥ν(xk+2 − x?) + (k + 2)
√
s
(
vk+1 + β

√
s∇f(xk+1)

)∥∥2
− 1

2

∥∥ν(xk+1 − x?) + (k + 1)
√
s
(
vk + β

√
s∇f(xk)

)∥∥2
=
〈
ν(xk+2 − xk+1) + (k + 2)

√
s
(
vk+1 + β

√
s∇f(xk+1)

)
− (k + 1)

√
s
(
vk + β

√
s∇f(xk)

)
,

ν(xk+2 − x?) + (k + 2)
√
s
(
vk+1 + β

√
s∇f(xk+1)

)〉
− 1

2

∥∥ν(xk+2 − xk+1) + (k + 2)
√
s
(
vk+1 + β

√
s∇f(xk+1)

)
−(k + 1)

√
s
(
vk + β

√
s∇f(xk)

)∥∥2
=− 〈s (k + α + 1− β)∇f(xk+1) + (α− 1− ν)(xk+2 − xk+1),

ν(xk+2 − x?) + (k + 2)(xk+2 − xk+1) + βs(k + 2)∇f(xk+1)〉

− 1

2
‖s (k + α + 1− β)∇f(xk+1) + (α− 1− ν)(xk+2 − xk+1)‖2

=− ν(α− ν − 1) 〈xk+2 − xk+1, xk+2 − x?〉 − (k + 2)(α− ν − 1) ‖xk+2 − xk+1‖2

− βs(k + 2)(α− 1− ν) 〈∇f(xk+1), xk+2 − xk+1〉

− 〈s (k + α + 1− β)∇f(xk+1),

ν(xk+1 − x?) + (k + 2 + ν)(xk+2 − xk+1) + βs(k + 2)∇f(xk+1)〉
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− 1

2
‖s (k + α + 1− β)∇f(xk+1)‖2

− 〈s (k + α + 1− β)∇f(xk+1), (α− 1− ν)(xk+2 − xk+1)〉

− (α− 1− ν)2

2
‖xk+2 − xk+1‖2

=−ν(α− ν − 1) 〈xk+2 − xk+1, xk+2 − x?〉︸ ︷︷ ︸
III1

−(2k + α + 3− ν)(α− ν − 1)

2
‖xk+2 − xk+1‖2︸ ︷︷ ︸

III2

−s(k + α + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
〈∇f(xk+1), xk+2 − xk+1〉︸ ︷︷ ︸

III3

−sν (k + α + 1− β) 〈∇f(xk+1), xk+1 − x?〉︸ ︷︷ ︸
III4

−1

2
s2 [k + α + 1− β + 2(k + 2)β] (k + α + 1− β) ‖∇f(xk+1)‖2︸ ︷︷ ︸

III5

.

Apparently, we can observe that

II1 + III1 = 0,

and

II2 + III2 = −s(2k + α + 3)(α− ν − 1)

2
‖vk+1‖2 .

Using the basic inequality for f(x) ∈ F1
L(Rn)

f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk − xk+1〉+
1

2L
‖∇f(xk+1)−∇f(xk)‖2 ,

we have

I1 + III3 + III5

=s(k + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
(f(xk+1)− f(xk))

− s(k + α + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
〈∇f(xk+1), xk+2 − xk+1〉
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− 1

2
s2 [k + α + 1− β + 2(k + 2)β] (k + α + 1− β) ‖∇f(xk+1)‖2

≤− s
3
2

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
〈∇f(xk+1), (k + α + 1)vk+1 − (k + 1)vk〉

− s(k + 1)

2L

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
‖∇f(xk+1)−∇f(xk)‖2

− 1

2
s2 [k + α + 1− β + 2(k + 2)β] (k + α + 1− β) ‖∇f(xk+1)‖2 .

Utilizing (5.129) again, we have

I1 + III3 + III5

≤βs2(k + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
〈∇f(xk+1),∇f(xk+1)−∇f(xk)〉

+ s2(k + α + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
‖∇f(xk+1)‖2

− s(k + 1)

2L

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
‖∇f(xk+1)−∇f(xk)‖2

− 1

2
s2 [k + α + 1− β + 2(k + 2)β] (k + α + 1− β) ‖∇f(xk+1)‖2

≤Lβ
2s2

2
(k + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
‖∇f(xk+1)‖2

+ s2(k + α + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
‖∇f(xk+1)‖2

− 1

2
s2 [k + α + 1− β + 2(k + 2)β] (k + α + 1− β) ‖∇f(xk+1)‖2

=s2
[
Lβ2s

2
(k + 1) + (k + α + 1)

] [
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
‖∇f(xk+1)‖2

− 1

2
s2 [(2β + 1)k + α + 1 + 3β] (k + α + 1− β) ‖∇f(xk+1)‖2

≤ s2
[
Lβ2s

2
(k + 1) + (k + α + 1)

]
[k + α + 1− β + (α− 1− ν)β] ‖∇f(xk+1)‖2

− 1

2
s2 [(2β + 1)k + α + 1 + 3β] (k + α + 1− β) ‖∇f(xk+1)‖2

Since β > 1/2, let n ∈ N+ satisfy

n =

⌊
2

2β − 1

⌋
+ 1.

When k ≥ n(α− 1− ν)β − (α + 1− β), we have

I1 + III3 + III5
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≤s2
[
Lβ2s

2
(k + 1) + (k + α + 1)

]
[k + α + 1− β + (α− 1− ν)β] ‖∇f(xk+1)‖2

− s2n

2(n+ 1)
· [(2β + 1)k + α + 1 + 3β] [k + α + 1− β + (α− 1− ν)β] ‖∇f(xk+1)‖2

With the monotonicity of the following function about k

h(k) =

(
n(2β+1)
2(n+1)

− 1
)
k + n

2(n+1)
· (α + 1 + 3β)− α− 1

Lβ2(k+1)
2

=
(2βn− n− 2)(k + 1) + (β − α)n− 2α

Lβ2(n+ 1)(k + 1)
,

we know there exists some constant cα,β,ν and k1,α,β,ν such that the step size satisfies

0 < s ≤ cα,β,ν/L. When k ≥ k1,α,β,ν , the following inequality holds

I1 + III3 + III5 ≤ −
s2

2

(
2βn

n+ 1
− n+ 2

n+ 1
− Lβ2s

)
(k − k1,α,β,ν)2 ‖∇f(xk+1)‖2 .

With the basic inequality for f(x) ∈ F1
L(Rn),

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉 ,

we know that there exists k2,α,β,ν such that when k ≥ k2,α,β,ν ,

I2 + III4 ≤ −s(ν − 2)(k − k2,α,β,ν) 〈∇f(xk+1), xk+1 − x?〉 .

Let kα,β,ν = max{k1,α,β,ν , k2,α,β,ν}+ 1. Summing up all the estimates above, when

β > 1/2, the difference of discrete Lyapunov function, for any k ≥ kα,β,ν ,

E(k + 1)− E(k) ≤ −s
2

2

(
2βn

n+ 1
− n+ 2

n+ 1
− Lβ2s

)
(k − kα,β,ν)2 ‖∇f(xk+1)‖2

− s(ν − 2)(k − kα,β,ν) 〈∇f(xk+1), xk+1 − x?〉

− s(2k + α + 3)(α− ν − 1)

2
‖vk+1‖2 .

With the basic inequality for any function f(x) ∈ F1
L(Rn)

〈∇f(xk+1), xk+1 − x?〉 ≥ f(xk+1)− f(x?),

we can obtain the following lemma.
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Lemma 5.7.14. Under the same assumption of Theorem 5.5.3, the following limit

exists

lim
k→∞
E(k)

and the summation of the following series exist

∞∑
k=0

(k + 1)2 ‖∇f(xk+1)‖2 ,
∞∑
k=0

(k + 1) 〈∇f(xk+1), xk+1 − x?〉 ,

∞∑
k=0

(k + 1)(f(xk+1)− f(x?)),
∞∑
k=0

(k + 1) ‖vk+1‖2 .

Lemma 5.7.15. Under the same assumption of Theorem 5.5.3, the following limits

exist

lim
k→∞
‖xk − x?‖ and lim

k→∞
(k + 1)

〈
xk+1 − x?, vk + β

√
s∇f(xk)

〉
.

Proof. [Proof of Lemma 5.7.15] Taking ν 6= ν ′ ∈ (2, γ − 1], we have

Eν(k)− Eν′(k) = (ν − ν ′)
[
−sβ · (k + 1)(k + 2)

k + α + 1
(f(xk)− f(x?))

+(k + 1)
√
s
〈
xk+1 − x?, vk + β

√
s∇f(xk)

〉
+

(α− 1)

2
‖xk+1 − x?‖2

]
With Lemma 5.7.14, the following limit exists

lim
k→∞

[
(k + 1)

√
s
〈
xk+1 − x?, vk + β

√
s∇f(xk)

〉
+
α− 1

2
‖xk+1 − x?‖2

]
. (5.138)

Define a new function about k:

π(k) :=
1

2
‖xk − x?‖2 + βs

k−1∑
i=k0

〈∇f(xi), xi+1 − x?〉 .

If we can show the existence of the limit π(k) with k → ∞, we can guarantee

lim
k→∞
‖xk+1 − x?‖ exists with Lemma 5.7.14. We observe the following equality

(k + 1)(π(k + 1)− π(k)) + (α− 1)π(k + 1)− s (α− 1) β
k∑
i=0

〈∇f(xi), xi+1 − x?〉
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=(k + 1) 〈xk+1 − xk, xk+1 − x?〉 −
(k + 1)s

2
‖vk‖2

+
α− 1

2
‖xk+1 − x?‖2 + s(k + 1)β 〈∇f(xk), xk+1 − x?〉

=(k + 1)
√
s
〈
xk+1 − x?, vk + β

√
s∇f(xk)

〉
− (k + 1)s

2
‖vk‖2 +

α− 1

2
‖xk+1 − x?‖2 .

Lemma 5.7.14 and (5.138) tell us there exists some constant C5 such that

lim
k→∞

[(k + α)π(k + 1)− (k + 1)π(k)] = C5,

that is, taking a simple translation π′(k) = π(k)− C5/(γ − 1), we have

lim
k→∞

[(k + α)π′(k + 1)− (k + 1)π′(k)] = 0.

Since E(k) decreases for k ≥ kα,β,ν , thus, ‖xk − x?‖2 is bounded. With Lemma 5.7.14,

we obtain that π(k) is bounded, that is, π′(k) is bounded. Then we have

lim
k→∞

(k + 2)α−1π′(k + 1)− (k + 1)α−1π′(k)

(k + 1)α−2
= 0,

that is, for any ε > 0, there exists k′0 > 0 such that

|π′(k)| ≤
(
k′0 + 1

k + 1

)α−1
|π′(k′0)|+

ε
k−1∑
i=k′0

(i+ 1)α−2

(k + 1)α−1
.

With arbitrary ε > 0, we complete the proof of Lemma 5.7.15.

Proof. [Proof of (5.136)] When k ≥ kα,β,ν , we expand the discrete Lyapunov func-

tion (5.137) as

E(k) = s(k + 1)

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
(f(xk)− f(x?))

+
√
s(k + 1)ν

〈
xk+1 − x?, vk + β

√
s∇f(xk)

〉
+
ν(α− 1)

2
‖xk+1 − x?‖2 +

s(k + 1)2

2

∥∥vk + β
√
s∇f(xk)

∥∥2 .
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With Lemma 5.7.14 and Lemma 5.7.15, we obtain the first equation of (5.136). Ad-

ditionally, we have

s

[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
(f(xk)− f(x?))

+
(k + 1)s

2

∥∥vk + β
√
s∇f(xk)

∥∥2
≤s
[
k + α + 1− β +

(k + 2)(α− 1− ν)β

k + α + 1

]
(f(xk)− f(x?))

+ (k + 1)s ‖vk‖2 + (k + 1)β2s2 ‖∇f(xk)‖2 .

With Lemma 5.7.14, we obtain the second equation of (5.136).
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CHAPTER 6

IMPROVED SAMPLE COMPLEXITY IN SPARSE SUBSPACE

CLUSTERING WITH NOISY AND MISSING ENTRIES

In this chapter, we show the results about the new CoCoSSC algorithm. The

content is organized as follows. The main results about CoCoSSC algorithm are

shown in Section 6.1. Following Section 6.1, we show the full proofs in Section 6.2.

In Section 6.3, we show the performance for CoCoSSC algorithm and some related

algorithms numerically. Finally, we conclude this work and some future directions.

6.1 Main Results about CoCoSSC Algorithm

We introduce our main results analyzing the performance of CoCoSSC under both

the Gaussian noise model and the missing data model. Similar to [WX16], the quality

of the computed self-similarity matrix {ci}Ni=1 is assessed using a subspace detection

property (SDP):

Definition 6.1.1 (Subspace detection property (SDP), [WX16]). The self-similarity

matrix {ci}Ni=1 satisfies the subspace detection property if 1) for every i ∈ [N ], ci is a

non-zero vector; and 2) for every i, j ∈ [N ], cij 6= 0 implies that xi and xj belong to

the same cluster.

Intuitively, the subspace detection property asserts that the self-similarity matrix

{ci}Ni=1 has no false positives, where every non-zero entry in {ci}ni=1 links two data

points xi and xj to the same cluster. The first property in Definition 6.1.1 further

rules out the trivial solution of ci ≡ 0.

The SDP stated in Definition 6.1.1 is, however, not sufficient for the success of

a follow-up spectral clustering algorithm, or any clustering algorithm, as the “sim-

ilarity graph” constructed by connecting every pairs of (i, j) with cij 6= 0 might
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be poorly connected. Such “graph connectivity” is a well-known open problem in

sparse subspace clustering [NH11] and remains largely unsolved except under strong

assumptions [WWS16]. Nevertheless, in practical scenarios the SDP criterion corre-

lates reasonably well with clustering performance [WX16, WWS15a] and therefore

we choose to focus on the SDP success condition only.

6.1.1 The Non-Uniform Semi-Random Model

We adopt the following non-uniform semi-random model throughout the paper:

Definition 6.1.2 (Non-uniform semi-random model). Suppose yi belongs to cluster

S` and let yi = U`αi, where U` ∈ Rn×d` is an orthonormal basis of U` and αi is a d`-

dimensional vector with ‖αi‖2 = 1. We assume that αi are i.i.d. distributed according

to an unknown underlying distribution P`, and that the density p` associated with P`

satisfies

0 < C · p0 ≤ p`(α) ≤ C · p0 <∞ ∀α ∈ Rd` , ‖α‖2 = 1

for some constants C,C, where p0 is the density of the uniform measure on {u ∈

Rd` : ‖u‖2 = 1}.

Remark 6.1.1. Our non-uniform semi-random model ensures that ‖yi‖2 = 1 for

all i ∈ [N ], a common normalizing assumption made in previous works on sparse

subspace clustering [SC12, SEC14, WX16]. However, such a property is only used

in our theoretical analysis, and in our CoCoLasso algorithm the norms of {yi}Ni=1

are assumed unknown. Indeed, if the exact norms of ‖yi‖2 are known to the data

analyst the sample complexity in our analysis can be further improved, as we remark

in Remark 6.1.3.

The non-uniform semi-random model considers fixed (deterministic) subspaces

{S`}, but assumes that data points within each low-dimensional subspace are inde-
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pendently generated from an unknown distribution P` with densities bounded away

and above from below. This helps simplifying the “inter-subspace incoherence” (Def-

inition 6.2.5) in our proof and yields interpretable results.

Compared with existing definitions of semi-random models [SC12, WX16, HB15,

PCS14], the key difference is that in our model data are not uniformly distributed

on each low-dimensional subspace. Instead, it is assumed that the data points are

i.i.d., and that the data density is bounded away from both above and below. Such

non-uniformity rules out algorithms that exploit the E[yi] = 0 property in traditional

semi-random models which is too strong and rarely holds true in practice.

Because the underlying subspaces are fixed, quantities that characterize the “affin-

ity” between these subspace are needed because closer subspaces are harder to distin-

guish from each other. We adopt the following affinity measure, which was commonly

used in previous works on sparse subspace clustering [WX16, WWS15a, CJW17]:

Definition 6.1.3 (Subspace affinity). Let Uj and Uk be two linear subspaces of

Rn of dimension dj and dk. The affinity between Uj and Uk is defined as χ2
j,k :=

cos2 θ
(1)
jk + · · ·+ cos2 θ

(min(dj ,dk))
jk , where θ

(`)
jk is the `th canonical angle between Uj and

Uk.

Remark 6.1.2. χjk = ‖U>j Uk‖F where Uj ∈ Rn×dj ,Uk ∈ Rn×dk are orthonormal

basis of Uj,Uk.

Throughout the paper we also write χ := maxj 6=k χj,k.

For the missing data model, we need the following additional “inner-subspace”

incoherence of the subspaces to ensure that the observed data entries contain sufficient

amount of information. Such incoherence assumptions were widely adopted in the

matrix completion community [CR09, KMO10, Rec11].

Definition 6.1.4 (Inner-subspace incoherence). Fix ` ∈ [L] and let U` ∈ Rn×d` be

an orthonormal basis of subspace U`. The subspace incoherence of U` is the smallest
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µ` such that

max
1≤i≤n

‖e>i U`‖22 ≤ µ`d`/n.

With the above definitions, we are now ready to state the following two theorems

which give sufficient success conditions for the self-similarity matrix {ci}ni=1 produced

by CoCoLasso.

Theorem 6.1.5 (The Gaussian noise model). Suppose λ � 1/
√
d and ∆jk � σ2

√
logN
n

for all j, k ∈ [N ]. Suppose also that N` ≥ 2Cd`/C. There exists a constant K0 > 0

such that, if

σ < K0

(
n/d3 log2(CN/C)

)1/4
,

then the optimal solution {ci}Ni=1 of the CoCoSSC estimator satisfies the subspace

detection property (SDP) with probability 1−O(N−10).

Theorem 6.1.6 (The missing data model). Suppose λ � 1/
√
d, ∆jk � µd logN

ρ
√
n

for

j 6= k and ∆jk � µd logN
ρ3/2
√
n

for j = k. Suppose also that N` ≥ 2Cd`/C. There exists a

constant K1 > 0 such that, if

ρ > K1 max
{

(µχd5/2 log2N)2/3 · n−1/3, (µ2d7/2 log2N)2/5 · n−2/5
}
,

then the optimal solution {ci}Ni=1 of the CoCoSSC estimator satisfies the subspace

detection property (SDP) with probability 1−O(N−10).

Remark 6.1.3. If the norms of the data points ‖yi‖2 are exactly known and can

be explicitly used in algorithm design, the diagonal terms of A in Eq. (1.21) can be

directly set to Aii = ‖yi‖22 in order to avoid the ψ2 concentration term in our proof

(Definition 6.2.1). This would improve the sample complexity in the success condition

to ρ > Ω(n−1/2), matching the sample complexity in linear regression problems with

missing design entries [WWBS17].
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Theorems 6.1.5 and 6.1.6 show that when the noise magnitude (σ in the Gaussian

noise model and ρ−1 in the missing data model) is sufficiently small, a careful choice

of tuning parameter λ results in a self-similarity matrix {ci} satisfying the subspace

detection property. Furthermore, the maximum amount of noise our method can

tolerate is σ = O(n1/4) and ρ = Ω(χ2/3n−1/3 + n−2/5), which improves over the

sample complexity of existing methods (see Table 1.1).

6.1.2 The Fully Random Model

When the underlying subspaces U1, · · · ,UL are independently uniformly sampled, a

model referred to as the fully random model in the literature [SC12, SEC14, WX16],

the success condition in Theorem 6.1.6 can be further simplified:

Corollary 6.1.7. Suppose subspaces U1, · · · ,UL have the same intrinsic dimension

d and are uniformly sampled, the condition in Theorem 6.1.6 can be simplified to

ρ > K̃1(µ
2d7/2 log2N)2/5 · n−2/5,

where K̃1 > 0 is a new universal constant.

Corollary 6.1.7 shows that in the fully-random model, the χ2/3n−1/3 term in The-

orem 6.1.6 is negligible and the success condition becomes ρ = Ω(n−2/5), strictly

improving existing results (see Table 1.1).

6.2 Proofs

In this section we give proofs of our main results. Due to space constraints, we only

give a proof framework and leave the complete proofs of all technical lemmas to the

appendix.
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6.2.1 Noise Characterization and Feasibility of Pre-Processing

Definition 6.2.1 (Characterization of noise variables). {zi} are independent random

variables and E[zi] = 0. Furthermore, there exist parameters ψ1, ψ2 > 0 such that

with probability 1−O(N−10) the following holds uniformly for all i, j ∈ [N ]:

∣∣z>i yj∣∣ ≤ ψ1

√
logN

n
;

∣∣z>i zj − E[z>i zj]
∣∣ ≤

 ψ1

√
logN
n

i 6= j;

ψ2

√
logN
n

i = j.

Proposition 6.2.1. Suppose ∆ are set as ∆jk ≥ 3ψ1

√
logN
n

for j 6= k and ∆jk ≥

3ψ2

√
logN
n

for j = k. Then with probability 1−O(N−10) the set S defined in Eq. (1.21)

is not empty.

The following two lemmas derive explicit bounds on ψ1 and ψ2 for the two noise

models.

Lemma 6.2.2. The Gaussian noise model satisfies Definition 6.2.1 with ψ1 . σ2 and

ψ2 . σ2.

Lemma 6.2.3. Suppose ρ = Ω(n−1/2). The missing data model satisfies Definition

6.2.1 with ψ1 . ρ−1µd
√

logN and ψ2 . ρ−3/2µd
√

logN , where d = max`∈[L] d` and

µ = max`∈[L] µ`.

6.2.2 Optimality Condition and Dual Certificates

We first write down the dual problem of CoCoSSC:

Dual CoCoSSC : νi = arg max
νi∈RN

x̃>i νi −
1

2λ
‖νi‖22 s.t.

∥∥∥X̃>−iνi∥∥∥∞ ≤ 1. (6.1)

Lemma 6.2.4 (Dual certificate, Lemma 12 of [WX16]). Suppose there exists triplet

(c, e,ν) such that x̃i = X̃−ic+ e, c has support S ⊆ T ⊆ [N ], and that ν satisfies

[X̃−i]
>
Sν = sgn(cS), ν = λe,

∥∥∥[X̃−i]
>
T∩Scν

∥∥∥
∞
≤ 1,

∥∥∥[X̃−i]
>
T cν
∥∥∥
∞
< 1,
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then any optimal solution ci to Eq. (1.22) satisfies [ci]T c = 0.

To construct such a dual certificate and to de-couple potential statistical depen-

dency, we follow [WX16] to consider a constrained version of the optimization prob-

lem. Let X̃
(`)
−i denote the data matrix of all but x̃i in cluster S`. The constrained

problems are defined as follows:

Constrained Primal : c̃i = arg min
ci∈RN`−1

‖ci‖1 + λ/2 · ‖x̃i − X̃
(`)
−ici‖22; (6.2)

Constrained Dual : ν̃i = arg max
νi∈RN`−1

x̃>i νi − 1/(2λ) · ‖νi‖22 s.t. ‖(X̃(`)
−i)
>νi‖∞ ≤ 1.

(6.3)

With c = [c̃i,0S−` ], ν = [ν̃i,0S−` ] and e = x̃i − X̃
(`)
−i c̃i, the certificate satisfies the

first three conditions in Lemma 6.2.4 with T = S` and S = supp(c̃i). Therefore, we

only need to establish that |〈x̃j, ν̃i〉| < 1 for all x̃j /∈ S` to show no false discoveries,

which we prove in the next section.

6.2.3 Deterministic Success Conditions

Define the following deterministic quantities as inter-subspace incoherence and in-

radius, which are important quantities in deterministic analysis of sparse subspace

clustering methods [SC12, WX16, SEC14].

Definition 6.2.5 (Inter-subspace incoherence). The inter-subspace incoherence µ̃ is

defined as µ̃ := max`∈[L] maxyi∈S` maxyj /∈S`
∣∣〈yi,yj〉∣∣.

Definition 6.2.6 (In-radius). Define ri as the radius of the largest ball inscribed in

the convex body of {±Y
(`)
−j}. Also define that r := min1≤i≤N ri.

The following lemma derives an upper bound on |〈x̃j, ν̃i〉|, which is proved in the

appendix.
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Lemma 6.2.7. For every (i, j) belonging to different clusters, |〈x̃j, ν̃i〉| . λ(1 +

‖c̃i‖1)(µ̃+ ψ1

√
logN/n), where ‖c̃i‖1 . r−1(1 + r−1λ(ψ1 + ψ2)

√
logN/n).

Lemmas 6.2.4 and 6.2.7 immediately yield the following theorem:

Theorem 6.2.8 (no false discoveries). There exists an absolute constant κ1 > 0 such

that if

λ
r

(
1 + λ

r
(ψ1 + ψ2)

√
logN
n

)
·
(
µ̃+ ψ1

√
logN
n

)
< κ1, (6.4)

then the optimal solution ci of the CoCoSSC estimator in Eq. (1.22) has no false

discoveries; that is, cij = 0 for all xj that belongs to a different cluster of xi.

The following theorem shows conditions under which ci is not the trivial solution

ci = 0.

Theorem 6.2.9 (Avoiding trivial solutions). There exists an absolute constant κ2 >

0 such that, if

λ

(
r − ψ1

√
logN
n

)
> κ2, (6.5)

then the optimal solution ci of the CoCoSSC estimator in Eq. (1.22) is non-trivial;

that is, ci 6= 0.

Finally, we remark that choosing r = c/λ for some small constant c > 0 (depending

only on κ1 and κ2), the choice of λ satisfies both Theorems 6.2.8 and 6.2.9 provided

that

max

{
ψ1

r

√
logN
n
, µ̃
r2
, µ̃(ψ1+ψ2)

r3

√
logN
n
, ψ1(ψ1+ψ2)

r3
logN
n

}
< κ3 (6.6)

for some sufficiently small absolute constant κ3 > 0 that depends on κ1, κ2 and c.

6.2.4 Bounding µ̃ and r in Randomized Models

Lemma 6.2.10. Suppose N` = Ω(Cd`/C`) Under the non-uniform semi-random

model, with probability 1−O(N−10) it holds that µ̃ . χ
√

log(CN/C) and r & 1/
√
d.
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Lemma 6.2.11. Suppose U1, · · · ,UL are independently uniformly sampled linear

subspaces of dimension d in Rn. Then with probability 1 − O(N−10) we have that

χ . d
√

logN/n and µ .
√

logN .

6.3 Numerical results

Figure 6.1: Heatmaps of similarity matrices {ci}Ni=1, with brighter colors indicating
larger absolute values of matrix entries. Left: LassoSSC; Middle: De-Biased Dantzig
Selector; Right: CoCoSSC.

Experimental settings and methods We conduct numerical experiments

based on synthetic generated data, using a computer with Intel Core i7 CPU (4

GHz) and 16GB memory. Each synthetic data set has ambient dimension n = 100,

intrinsic dimension d = 4, number of underlying subspaces L = 10, and a total num-

ber of N = 1000 unlabeled data points. The observation rate ρ and Gaussian noise

magnitude σ vary in our simulations. Underlying subspaces are generated uniformly

at random, corresponding to our fully-random model. Each data point has an equal
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probability of being assigned to any cluster, and is generated uniformly at random

on its corresponding low-dimensional subspace.

We compare the performance (explained later) of our proposed CoCoSSC ap-

proach, and two popular existing methods Lasso SSC and the de-biased Dantzig

selector. The `1 regularized self-regression steps in both CoCoSSC and Lasso SSC

are implemented using ADMM. The pre-processing step of CoCoSSC is implemented

using alternating projections initialized at Σ̃ = X>X−D. Unlike the theoretical rec-

ommendations, we choose ∆ in Eq. (1.21) to be very large (3×103 for diagonal entries

and 103 for off-diagonal entries) for fast convergence. The de-biased Dantzig selector

is implemented using linear programming.

Evaluation measure We consider two measure to evaluate the performance

of algorithms being compared. The first one evaluates the quality of the similarity

matrix {ci}Ni=1 by measuring how far (relatively) it deviates from having the subspace

detection property. In particular, we consider the RelViolation metric proposed in

[WX16] defined as

RelViolation(C,M) = (
∑

(i,j)/∈M|C|i,j)/(
∑

(i,j)∈M|C|i,j). (6.7)

whereM is the mask of ground truth with all (i, j) satisfying xi,xj ∈ S(`) for some `.

A high RelViolation indicates frequent deviation from the subspace detection property

and therefore poorer quality of {ci}Ni=1.

For clustering results, we use the Fowlkes-Mallows index [FM83] to evaluate their

quality. Suppose A ⊆ {(i, j) ∈ [N ] × [N ]} consists of pairs of data points that are

clustered together by a clustering algorithm, and A0 is the ground truth clustering.

Define TP = |A ∩ A0|, FP = |A ∩ Ac0|, FN = |Ac ∩ A0|, TN = |Ac ∩ Ac0|. The

Fowlkes-Mallows (FM) index is then expressed as

FM =
√
TP 2/(TP + FP )(TP + FN).
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The FM index of any two clusterings A and A0 is always between 0 and 1, with an

FM index of one indicating perfectly identical clusterings and an FM index close to

zero otherwise.

Figure 6.2: The Fowlkes-Mallows (FM) index of clustering results (top row) and
RelViolation scores (bottom row) of the three methods, with noise of magnitude
σ varying from 0 to 1. Left column: missing rate 1 − ρ = 0.03, middle column:
1− ρ = 0.25, right column: 1− ρ = 0.9.

Results We first give a qualitative illustration of similarity matrices {ci}Ni=1

produced by the three algorithms of Lasso SSC, de-biased Dantzig selector and

CoCoSSC in Fig. 6.1. We observe that the similarity matrix of Lasso SSC has

several spurious connections, and both Lasso SSC and the de-biased Dantzig selec-

tor suffer from graph connectivity issues as signals within each block (cluster) are not

very strong. On the other hand, the similarity matrix of CoCoSSC produces con-

vincing signals within each block (cluster). This shows that our proposed CoCoSSC
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approach not only has few false discoveries as predicted by our theoretical results, but

also has much better graph connectivity which our theory did not attempt to cover.

In Fig. 6.2 we report the Fowlkes-Mallows (FM) index for clustering results and

RelViolation scores of similarity matrices {ci}Ni=1 under various noise magnitude (σ)

and observation rates (ρ) settings. A grid of tuning parameter values λ are attempted

and the one leading to the best performance is reported. It is observed that our

proposed CoCoLasso consistently outperforms its competitors Lasso SSC and de-

biased Dantzig selector. Furthermore, CoCoLasso is very computationally efficient

and converges in 8-15 seconds on each synthetic data set. On the other hand, de-

biased Dantzig selector is computationally very expensive and typically takes over

100 seconds to converge.

6.4 Technical Details

Proof. [Proof of Proposition 6.2.1] By Definition 6.2.1 we know that |Σ̃−i−YT
−iY−i| ≤

|∆| in an element-wise sense. Also note that Y>Y is positive semi-definite. Thus,

Y>Y ∈ S.

Proof. [Proofs of Lemmas 6.2.2 and 6.2.3] Lemma 6.2.2 is proved in [WX16]. See

Lemmas 17 and 18 of [WX16] and note that E[z>i zi] = σ2.

We next prove Lemma 6.2.3. We first consider |z>i yj|. Let z = zi, y = yi, ỹ = yj

and r = Rj·. Define Ti := ziyi = (1−ri/ρ)yiỹj. Because r is independent of y and ỹ,

we have that E[Ti] = 0, E[T 2
i ] ≤ y2

i ỹi
2/ρ ≤ µ2d2/ρn2 and |Ti| ≤ µd/ρn =: M almost

surely. Using Bernstein’s inequality, we know that with probability 1−O(N−10)

|z>i yj| =
∣∣∣∣ T∑
i=1

Ti

∣∣∣∣ .
√√√√ n∑

i=1

E[T 2
i ] · logN +M logN . µd

√
log2N

ρn
.

We next consider |z>i zj| and the i 6= j case. Let y = yi, ỹ = yj, r = Ri·

and r̃ = Rj·. By definition of µ, we have that ‖y‖2∞ ≤ µdi/n and ‖ỹ‖2∞ ≤ µdj/n.
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Define Ti := ziz̃i = (1 − ri/ρ)(1 − r̃i/ρ) · yiỹi. Because r and r̃ are independent,

E[Ti] = 0, E[T 2
i ] ≤ y2

i ỹ
2
i /ρ

2 ≤ µ2d2/ρ2n2 and |Ti| ≤ µd/ρ2n =: M almost surely.

Using Bernstein’s inequality, we know that with probability 1−O(N−10)

∣∣∣∣ n∑
i=1

Ti

∣∣∣∣ .
√√√√ n∑

i=1

E[T 2
i ] · logN +M logN .

µd

ρ

√
log2N

n
,

where the last inequality holds because ρ = O(n−1/2).

Finally is the case of |z>i zj| and i = j. Let again z := zi = zj. Define Ti :=

z2i −E[z2i ] = (1−ri/ρ)2y2
i − (1−ρ)2/ρ ·y2

i . It is easy to verify that E[Ti] = 0, E[T 2
i ] .

y4
i /ρ

3 ≤ µ2d2/ρ3n2 and |Ti| . y2
i /ρ

2 ≤ µd/ρ2n. Subsequently, with probability

1−O(N−10) we have ∣∣∣∣ n∑
i=1

Ti

∣∣∣∣ . µd

ρ3/2

√
log2N

n
.

The estimation error of (1− ρ)(X>X)ii for (1− ρ)/ρ · ‖yi‖22 = (1− ρ)/ρ can be upper

bounded similarly.

Proof. [Proof of Lemma 6.2.7] Take ∆jk = 3ψ1

√
logN
n

for j 6= k and ∆jk = 3ψ2

√
logN
n

.

Fix arbitrary x̃j /∈ S` and x̃i ∈ S`. Because ν̃i = λ(x̃i − X̃
(`)
−i c̃i), we have that

∣∣〈x̃j, ν̃i〉∣∣ = λ
∣∣x̃>j (x̃i + X̃

(`)
−i c̃i)

∣∣ ≤ λ(1 + ‖c̃i‖1) · sup
x̃i∈S`

∣∣〈x̃j, x̃i〉∣∣
≤ λ(1 + ‖c̃i‖1) ·

(
µ̃+ sup

x̃i /∈S`

∣∣〈x̃j, x̃i〉 − 〈yj,yi〉∣∣)
. λ(1 + ‖c̃i‖1) ·

(
µ̃+ ψ1

√
logN

n

)
, (6.8)

where the last inequality holds by applying Definition 6.2.1 and the fact that

∣∣〈x̃i, x̃j〉 − 〈ỹi, ỹj〉∣∣ ≤ ∣∣(Σ̃+)ij − (Σ̃)ij
∣∣+
∣∣(Σ̃)ij − 〈ỹi, ỹj〉

∣∣
≤
∣∣∆ij

∣∣+
∣∣〈x̃i, x̃j〉 − 〈ỹi, ỹj〉∣∣

≤
∣∣∆ij

∣∣+
∣∣〈z̃i, ỹj〉∣∣+

∣∣〈ỹj, z̃i〉∣∣+
∣∣〈z̃j, z̃i〉∣∣
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. ψ1

√
logN

n
for i 6= j.

To bound ‖c̃i‖1, consider an auxiliary noiseless problem:

ĉi := arg min
ci
‖ci‖1 s.t. yi = Y

(`)
−ici. (6.9)

Note that when r > 0 Eq. (6.9) is always feasible. Following standard analysis (e.g.,

Lemma 15 and Eq. (5.15) of [WX16]), it can be established that ‖ĉi‖1 ≤ 1/ri ≤ 1/r.

On the other hand, by optimality we have ‖c̃i‖1 + λ
2
‖x̃i − X̃

(`)
−i c̃i‖22 ≤ ‖ĉi‖1 + λ

2
‖x̃i −

X̃
(`)
−i ĉi‖22. Therefore,

‖c̃i‖1 ≤ ‖ĉi‖1 +
λ

2

∥∥∥x̃i − X̃
(`)
−i ĉi

∥∥∥2
2

. ‖ĉi‖1 +
λ

2

∥∥∥yi −Y
(`)
−i ĉi

∥∥∥2
2

+ (1 + ‖ĉi‖1)2 ·
λ

2
sup

yi,yj∈S`

∣∣〈x̃i, x̃j〉 − 〈yi,yj〉∣∣
= ‖ĉi‖1 + (1 + ‖ĉi‖1)2 ·

λ

2
sup

yi,yj∈S`

∣∣〈x̃i, x̃j〉 − 〈yi,yj〉∣∣
. ‖ĉi‖1 + (1 + ‖ĉi‖1)2 · (ψ1 + ψ2)

√
logN

n

.
1

r

(
1 +

λ

r
(ψ1 + ψ2)

√
logN

n

)
. (6.10)

Proof. [Proof of Theorem 6.2.9] Following the analysis of Lasso SSC solution path

in [WX16], it suffices to show that λ > 1/‖x̃>i X̃−i‖∞. On the other hand, note

that ‖y>i Y−i‖∞ ≥ ‖y>i Y
(`)
−i‖∞ ≥ ri ≥ r (see, for example, Eq. (5.19) of [WX16]).

Subsequently,∥∥∥x̃>i X̃−i

∥∥∥
∞
≥
∥∥y>i Y−i

∥∥
∞ − sup

j 6=i

∣∣〈x̃i, x̃j〉 − 〈yi,yj〉∣∣ & r − ψ1

√
logN

n
.

Proof. [Proof of Lemma 6.2.10] We first prove

max
yi∈Sk

max
yj∈S`

∣∣〈yi,yj〉∣∣ . χk` ·
log(CN/C)√

dkd`
∀j 6= k ∈ [L]. (6.11)
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Let Nk and N` be the total number of data points in Sk and S`, and let Pk and

P` be the corresponding densities which are bounded from both above and below by

Cp0 and Cp0. Consider a rejection sampling procedure: first sample α randomly

from the uniform measure over {α ∈ Rdk : ‖α‖2 = 1}, and then reject the sample

if u > pk(α)/Cp0, where u ∼ U(0, 1). Repeat the procedure until Nk samples are

obtained. This procedure is sound because pk/p0 ≤ C, and the resulting (accepted)

samples are i.i.d. distributed according to Pk. On the other hand, for any α the

probability of acceptance is lower bounded by C/C. Therefore, the procedure ter-

minates by producing a total of O(CNk/C) samples (both accepted and rejected).

Thus, without loss of generality we can assume both Pk and P` are uniform measures

on the corresponding spheres, by paying the cost of adding Ñk = O(CNk/C) and

Ñ` = O(CN`/C) points to each subspace.

Now fix yi = Ukαi and yj = U`αj, where αi ∈ Rdk , αj ∈ Rd` and ‖αi‖2 =

‖αj‖2 = 1. Then both αi and αj are uniformly distributed on the low-dimensional

spheres, and that |〈yi,yj〉| = |α>i (U>k U`)αj|. Applying Lemma 7.5 of [SC12] and

note that χk` = ‖U>k U`‖F we complete the proof of Eq. (6.11).

We next prove

ri &

√
log(CN`/Cd`)

d`
∀i ∈ [N ], ` ∈ [L],xi ∈ S`. (6.12)

Let P` be the underlying measure of subspace S`. Consider the decomposition

P` = C/C ·P0+(1−C/C)·P ′`, where P0 is the uniform measure. Such a decomposition

and the corresponding density P ′` exists because CP0 ≤ P` ≤ CP0. This shows that

the distribution of points in subspace S` can be expressed as a mixture distribution,

with a uniform density mixture with weight probability C/C. Because ri decreases

with smaller data set, it suffices to consider only the uniform mixture. Thus, we can

assume P` is the uniform measure at the cost of considering only Ñ` = Ω(CN`/C)
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points in subspace S`. Applying Lemma 21 of [WX16] and replacing N` with Ñ` we

complete the proof of Eq. (6.12).

Finally Lemma 6.2.10 is an easy corollary of Eqs. (6.11) and (6.12).

Proof. [Proof of Lemma 6.2.11] Fix k, ` ∈ [L] and let Uk = (uk1, · · · ,ukd), U` =

(u`1, · · · ,u`d) be orthonormal basis of Uk and U`. Then χk` = ‖U>k U`‖F ≤ d‖U>k U`‖max =

d ·sup1≤i,j≤d |〈uki,u`j〉|. Because Uk and U` are random subspaces, uki and u`j are in-

dependent vectors distributed uniformly on the d-dimensional unit sphere. Applying

Lemma 17 of [WX16] and a union bound over all i, j, k, ` we prove the upper bound

on χ. For the upper bound on µ, simply note that ‖ujk‖∞ .
√

logN
n

with probability

1−O(N−10) by standard concentration result for Gaussian suprema.
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CHAPTER 7

ONLINE DISCOVERY FOR STABLE AND GROUPING

CAUSALITIES IN MULTI-VARIATE TIME SERIES

The content of this chapter is organized as follows. The problem formulation

is presented in Section 7.2. Section 7.3 introduces the details about our proposed

approach and its equivalent Bayesian model. A solution capable of online inference

with particle learning is given in Section 7.4. Extensive empirical evaluation are

demonstrated in Section 7.5. Finally, we concludes our work and discusses the future

work.

7.1 Related work

It is an important task to reveal the casual dependencies between historical and cur-

rent observations in MTS analysis. Bayesian Network [JYG+03, Mur02] and Granger

Causality [ALA07, ZF09] are two main frameworks for inference of temporal depen-

dency. Comparing with Bayesian Network, Granger Causality is more straightfor-

ward, robust and extendable [ZF09].

Originally, Granger Causality is designed for a pair of time series. The appear-

ance of pioneering work of combining the notion of Granger Causality with graphical

model [Eic06] leads to the emergence of causal relationship analysis among MTS data.

Two typical techniques, statistical significance test and Lasso-Granger [ALA07], are

developed to inference the Granger Causality among MTS. Lasso-Granger gains more

popularity due to its robust performance even in high dimensions [BL12]. However,

Lasso-Granger suffers from instability and failure of group variable selection because

of the high sensitivity of L1 norm. To address this challenging, our method adopts

Elastic-Net regularizer [ZH05] which is stable since it encourages a group variable se-
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lection (group effect) where strongly correlated predictors tend to be zero or non-zero

simultaneously.

Particle learning [CJLP10] is a powerful tool to provide an online inference strategy

for Bayesian models. It belongs to the Sequential Monte Carlo (SMC) methods con-

sisting of a set of Monte Carlo methodologies to solve the filtering problem [DGA00].

Particle learning provides state filtering, sequential parameter learning and smoothing

in a general class of state space models [CJLP10]. The central idea behind particle

learning is the creation of a particle algorithm that directly samples from the particle

approximation to the joint posterior distribution of states and conditional sufficient

statistics for fixed parameters in a fully-adapted resample-propagate framework.

7.2 Problem Formulation

In this section, we formally define the Granger Causality by the VAR model. Given

a set of time series Y defined on Rn in the time interval [0, T ], that is,

Y = {yt : yt ∈ Rn, t ∈ [0, T ]},

where yt = (yt,1, yt,2, . . . , yt,n)T . The inference of Granger Causality is usually achieved

by fitting the time series data Y with a VAR model. Given the maximum time lag

L, the VAR model is expressed as follows:

yt =
L∑
l=1

W T
l yt−l + ε, (7.1)

where ε is the standard Gaussian noise and the vector-value yt (1 ≤ t ≤ T ) only

depends on the past vector-value yt−l (1 ≤ l ≤ L). The Granger causal relationship

between yt and yt−l is formulated as the matrix Wl in the following:

Wl = (wl,ji)n×n
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where the entry wl,ji express how large the component yt−l,i influence the component

yt,j, noted as yt−l,i →g yt,j.

To induce sparsity in the matrix Wl (l = 1, 2, . . . , L), the prior work [ZWW+16]

proposed a VAR-Lasso model as follows:

min
Wl

T∑
t=L+1

∥∥∥∥∥yt−
L∑
l=1

W T
l yt−l

∥∥∥∥∥
2

2

+λ1

L∑
l=1

‖Wl‖1, (7.2)

and an online time-varying method based on Bayesian update. However, it suffers

instability and fails to select a group of variables that are highly correlated. To

address these problems, we propose a method with Elastic-Net regularization and

equivalent online inference strategy is given in following sections.

7.3 Elastic-net Regularizer

In this section, we describe the VAR-Elastic-Net model and its equivalent form in the

perspective of Bayesian modeling.

7.3.1 Basic Optimization Model

Elastic-Net regularization [ZH05] is a combination of L1 and L2 norm and has the

following objective function for MTS data:

T∑
t=L+1

∥∥∥∥∥yt −
L∑
l=1

W T
l yt−l

∥∥∥∥∥
2

2

+ λ1

L∑
l=1

‖Wl‖1 + λ2

L∑
l=1

‖Wl‖22, (7.3)

where ‖·‖1 is the entrywise norm and ‖·‖2 is the Frobenius norm (or Hilbert-Schmidt

norm).

In order to change Equation 7.3 into the standard form of the linear regression

model, we define β, a nL× n matrix, as follows:

β = (W T
1 ,W

T
2 , . . . ,W

T
L )T , (7.4)
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and xt be a nL column vector as

xt = [yTt−1,y
T
t−2, . . . ,y

T
t−L]T . (7.5)

Then, Equation 7.3 can be reformulate as

T∑
t=L+1

(
yt − βTxt

)2
+ λ1‖β‖1 + λ2‖β‖22. (7.6)

The coefficient matrix β can be expressed as

β = (βT1 ,β
T
2 , . . . ,β

T
n )T , (7.7)

where βi (i = 1, 2, . . . , n) is a row vector of size nL. Based on Equation 7.7, the

equivalent form of the Equation 7.6 is

T∑
t=L+1

(
yt,i − βTi xt

)2
+ λ1‖βi‖1 + λ2‖βi‖22, (7.8)

where i = 1, 2, . . . , n. Thus, the original optimization problem of Equation 7.3 can be

addressed as the optimization problem of n independent standard linear regression

problem of Equation 7.8.

7.3.2 The Corresponding Bayesian Model

From Bayesian perspective, yt,i (i = 1, 2, . . . , n) follows a Gaussian distribution, given

the coefficient vector βi and the variance of random observation noise σ2
i , as follows:

yt,i|βi, σ2
i ∼ N

(
βTi xt, σ

2
i

)
. (7.9)

The coefficient vector βi is viewed as a random variable which follows the mixed

Gaussian and Laplace distribution, as below [LL+10, Mur12]:

p(βi|σ2
i ) ∝ exp

(
−λ1σ−1i

nL∑
j=1

|βij| − λ2σ−2i
nL∑
j=1

|β2
ij|

)
. (7.10)
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Equation 7.10 represents a scale mixture of normal distributions and exponential

distributions and equals a hierarchical form as below:

τ 2j |λ1 ∼
√

exp (λ21),

βi|σ2
i , τ

2
1 , . . . , τ

2
nL ∼ N

(
0, σ2

iMβi

)
,

Mβi = diag
((
λ2 + τ−21

)−1
, . . . ,

(
λ2 + τ−2nL

)−1)
.

(7.11)

The variance σ2
i is a random variable following inverse Gamma distribution [Mur12]

as follows:

σ2
i ∼ IG(α1, α2), (7.12)

where α1 and α2 are hyper parameters.

Equation 7.10 can be obtained from integrating out the hyper parameters α1 and

α2 in Equation 7.12 and it reduces to the regular Lasso when λ2 = 0.

7.3.3 Time-Varying Causal Relationship Model

The aforementioned model is the traditional static regression model, based on the

assumption that the coefficient βi(i = 1, 2, . . . , n) is unknown but fixed, which rarely

holds in practice. To model dynamic dependencies, it is reasonable to view the

coefficient vector βt,i(i = 1, 2, . . . , n) as a function of time t. Specifically, we propose

a method modeling the coefficient vector as two parts including the stationary part

and the drift part. The latter is to account for tracking the time-varying temporal

dependency among the time series instantly.

Let the operation ◦ be the Hadamard product (entrywise-product). The form of

the dynamic coefficient vector βt,i (i = 1, 2, . . . , n) is constructed as

βt,i = βt,i,1 + βt,i,2 ◦ ηt,i, (7.13)

where both βt,i,1 and βt,i,2 are stationary part and ηt,i is the drift part. The drift

part at time t is caused by the standard Gaussian random walk from the information
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at time t− 1, i.e., ηt,i = ηt−1,i + v and v ∼ N (0, InL). Thus ηt,i follows the Gaussian

distribution

ηt,i ∼ N (ηt−1,i, InL). (7.14)

Combined with Equation 7.13, the equivalent time-varying Bayesian Elastic-Net model

in Equation 7.8 becomes

T∑
t=L+1

(
yt,i − βTt,ixt

)2
+ λ1,1‖βt,i,1‖1

+ λ2,1‖βt,i,1‖22 + λ1,2‖βt,i,2‖1 + λ2,2‖βt,i,2‖22.

(7.15)

Furthermore, the priors of the equivalent Bayesian model is given as below:

βi,1|σ2
i , τ

2
1,1, . . . , τ

2
1,nL ∼ N

(
0, σ2

iMβi,1

)
,

βi,2|σ2
i , τ

2
2,1, . . . , τ

2
2,nL ∼ N

(
0, σ2

iMβi,2

)
,

τ 21,j|λ1,1 ∼
√

exp
(
λ21,1
)
,

τ 22,j|λ1,2 ∼
√

exp
(
λ21,2
)
,

σ2
i ∼ IG(α1, α2),

Mβi,1 = diag
(
(λ2,1 + τ−21,1 )−1, . . . , (λ2,1 + τ−21,nL)−1

)
,

Mβi,2 = diag
(
(λ2,2 + τ−22,1 )−1, . . . , (λ2,2 + τ−22,nL)−1

)
.

(7.16)

It is difficult to solve straightforward the above regression model by traditional

optimization method. We develop our solution to infer VAR-Elastic-Net model from

a Bayesian perspective utilizing particle learning, which is presented in the following

section.

7.4 Online Inference

In this section, we describe the online inference process to update the parameters

from time t− 1 to time t based on particle learning. At last, we give the pseudocode

of algorithm to summarize the whole process.

207



Our goal is to infer both latent parameters and state variables in our Bayesian

model. However, since the inference partially depends on the random walk which

generates the latent state variables, we use particle learning strategy [CJLP10] to

learn the distribution of both parameters and state variables. The definition of a

particle is given as below.

Definition 7.4.1 (Particle). A particle used to predict yt,i (i = 1, 2, . . . , n) is a con-

tainer which maintains the current status information for value prediction. The status

information comprises of random variables, their distributions with corresponding hy-

perparameters.

Assume the number of particles is B. Let P(k)
t,i be the kth particle for predicting

the value yi at time t with particle weight ρ
(k)
t,i .

We define a new variable β
′(k)
t,i =

(
β

(k),T
t,i,1 ,β

(k),T
t,i,2

)T
for concisely expressing the

stationary parts given in Equation 7.13. At time t−1, the information of particle P(k)
t−1,i

includes the following variables and hyperparameters for corresponding distributions:

β
′(k)
t−1,i∼N

(
µ

β
′(k)
t−1,i
, σ2

iM
1
2

β
′(k)
t−1,i

Σ
β
′(k)
t−1,i

M
1
2

β
′(k)
t−1,i

)
,

η
(k)
t−1,i ∼ N

(
µ
η
(k)
t−1,i

,Σ
η
(k)
t−1,i

)
,

σ2(k)
t−1,i ∼ IG

(
α
(k)
t−1,1, α

(k)
t−1,2

)
.

(7.17)

7.4.1 Particle Learning

The core idea for particle learning is iterated in following steps:

(1) At time t−1, there are B particles and each contains information in Equation 7.17.

The coefficients at t− 1 is given as

β
(k)
t−1,i = β

(k)
t−1,i,1 + β

(k)
t−1,i,2 ◦ η

(k)
t−1,i.
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(2) At time t, sample the drift part η
(k)
t,i from Equation 7.14, and update parameters of

all priors and sample the new values for β
(k)
t,i,1 ,β

(k)
t,i,2 (details is given in Section 7.4.2)

for each particle.

(3) Finally, gain new feedback yt,i and resample B particles based on the recalcuated

particle weights (details is given in Section 7.4.2). The value of βt,i for prediction

at time t is averaged as bellow:

βt,i =
1

B

B∑
k=1

(
β

(k)
t,i,1 + β

(k)
t,i,2 ◦ η

(k)
t,i

)
. (7.18)

7.4.2 Update Process

In the process of particle learning, the key step is to update all the parameters from

time t−1 to time t and recalculate particle weights mentioned above. In this section,

we describe the update process of particle weights and all the parameters in details.

7.4.2.1 Particle Weights Update

Each particle P(k)
t,i has a weight, denoted as ρ

(k)
t,i , indicating its fitness for the new

observed data at time t. Note that
B∑
k=1

ρ
(k)
t,i = 1. The fitness of each particle P(k)

t,i is

defined as likelihood of the observed data xt and yt,i. Therefore,

ρ
(k)
t,i ∝P (xt, yt,i|P(k)

t−1,i).

Combined with Equation 7.14 for η
(k)
t,i and Equation 7.17 for η

(k)
t−1,i, the particle

weights ρ
(k)
i at time t is proportional to the value as follows:

ρ
(k)
t,i ∝

∫∫
N (yt,i|β(k),T

t,i xt, σ
2(k)
t−1,i)N (η

(k)
t,i |η

(k)
t−1,i, InL)

N (η
(k)
t−1,i|µη(k)

t−1,i
,Σ

η
(k)
t−1,i

)dη
(k)
t−1,idη

(k)
t,i .

(7.19)

Integrating out the variables of η
(k)
t−1,i and η

(k)
t,i , we can obtain that the particle weights

ρ
(k)
i at time t follows Gaussian distribution as follows:

ρ
(k)
t,i ∝ N (yt,i|m(k)

t,i , Q
(k)
t,i ), (7.20)
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where the mean value and the variance are respectively,

m
(k)
t,i = (β

(k)
t,i,1 + β

(k)
t,i,2 ◦ µη(k)

t−1,i
)Txt,

Q
(k)
t,i = σ

2(k)
t−1,i + (xt ◦ β(k)

t,i,2)
T

(InL + Σ
η
(k)
t−1,i

)(xt ◦ β(k)
t,i,2).

(7.21)

Furthermore, the final kth particle weights at time t can be obtained from normaliza-

tion, as follows:

ρ
(k)
t,i =

N (yt,i|m(k)
t,i , Q

(k)
t,i )

B∑
k=1

N (yt,i|m(k)
t,i , Q

(k)
t,i )

. (7.22)

With the particle weights ρ
(k)
t,i (k = 1, 2, . . . , B) at time t obtained, the B particles

are resampled at time t.

7.4.2.2 Latent State Update

Having the new observation xt and yt,i at time t, both the mean µ
η
(k)
t−1,i

and the

variance Σ
η
(k)
t−1,i

need to update from time t−1 to time t. Here, we apply the Kalman

filter method [Har90] to recursively update to the mean and the variance at time t as

follows:

µ
η
(k)
t,i

= µ
η
(k)
t−1,i

+ G
(k)
t−1,i(

yt,i −
(
β

(k)
t,i,1 + β

(k)
t,i,2 ◦ µη(k)

t−1,i

)T
xt

)
,

Σ
η
(k)
t,i

= Σ
η
(k)
t−1,i

+ InL −G
(k)
t,i Q

(k)
t,i G

(k),T
t,i .

(7.23)

where G
(k)
t,i is the Kalman gain defined as [Har90]

G
(k)
t,i =

(
InL+Σ

η
(k)
t−1,i

)(
xt ◦ β′(k)t−1,i,2

)
Q

(k)
t,i

−1
. (7.24)

Then, we can sample the drift part at time t from Gaussian distribution as follows:

η
(k)
t,i ∼ N

(
µ
η
(k)
t,i
,Σ

η
(k)
t,i

)
. (7.25)
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Before updating parameters, a resampling process is conducted. We replace the

particle set P(k)
t−1,i with a new set P(k)

t,i , where P(k)
t,i is generated from P(k)

t−1,i using

sampling with replacement based on the new particle weights.

7.4.2.3 Parameter update

Having sampled the drift part η
(k)
t,i , the parameter update for the covariant matrix,

mean value and the hyperparameters from time t− 1 to time t are as follows:

Σ
β
′(k)
t,i

=

(
Σ−1

β
′(k)
t−1,i

+M
1
2

β
′(k)
t−1,i

z
(k)
t,i z

(k)
t,i

T
M

1
2

β
′(k)
t−1,i

)−1
,

µ
β
′(k)
t,i

= M
1
2

β
′(k)
t−1,i

Σ
β
′(k)
t,i

M
1
2

β
′(k)
t−1,i

z
(k)
t,i yt,i

+ M
1
2

β
′(k)
t−1,i

Σ
β
′(k)
t,i

Σ
β
′(k)
t−1,i

M
1
2

β
′(k)
t−1,i

β
′(k)
t−1,i,

α
(k)
t,1 = α

(k)
t−1,1 +

1

2
,

α
(k)
t,2 = α

(k)
t−1,2 +

1

2
y2t,i

+
1

2
µT
β
′(k)
t−1,i
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where z
(k)
t,i = (xTt , (η

(k)
t,i ◦ xt)

T )T be a 2n column vector. After parameters update in

Equation 7.26 at time t, we can sample σ2(k)
t,i and the stationary part of coefficients

β
′(k)
t,i as follows:

σ2(k)
t,i ∼ IG(α

(k)
t,1 , α

(k)
t,2 ),

β
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(7.27)

7.4.3 Algorithm

Putting all the aforementioned descriptions together, an algorithm for Var-Elastic-Net

by Bayesian Update is provided below.
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Online inference for time-varying Bayesian Var-Elastic-Net model starts with

MAIN procedure, as presented in Algorithm 1. The parametersB,L, α1, α2, λ11, λ12, λ21

and λ22 are given as the input of MAIN procedure. The initialization is executed from

line 2 to line 7. As new observation yt arrives at time t, xt is built using the time

lag, then βt is inferred by calling UPDATE procedure. Especially in the UPDATE

procedure, we use the resample-propagate strategy in particle learning [CJLP10]

rather than the resample-propagate strategy in particle filtering [DKZ+03]. With

the resample-propagate strategy, the particles are resampled by taking ρ
(k)
t,i as the kth

particle’s weight, where the ρ
(k)
t,i indicates the occurring probability of the observation

at time t given the particle at time t − 1. The resample-propagate strategy is con-

sidered as an optimal and fully adapted strategy, avoiding an importance sampling

step.

7.5 Empirical Study

To demonstrate the efficiency of our proposed algorithm, we conduct experiments

over both synthetic and real world climate change data set. In this section, we first

outline the baseline algorithms for comparison and the evaluation metrics. Second, we

present our approach to generate the synthetic data and then illustrate corresponding

experimental results in details. Finally, a case study on real world climate change

data set is given.

7.5.1 Baseline Algorithms

In our experiments, we demonstrate the performance of our method by comparing

with the following baseline algorithms:

• BL(γ): VAR by Bayesian prior Gaussian distribution N (0, γ−1Id).
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• BLasso(λ1): VAR-Lasso by Baysian prior Laplacian distribution L(0, λ1I).

• TV LR(γ): VAR by Bayesian prior Gaussian distribution N (0, γ−1Id) and online

update with both stationary and drift components of the coefficient [ZWW+16].

• TV Lasso(λ1, λ2): VAR-Lasso by Baysian prior Laplacian distribution

L(0, diag(λ1I, λ2I)) and online update with both stationary and drift components

of the coefficient [ZWW+16].

Our proposed algorithm, VAR-Elastic-Net, is denoted as TV EN(λ11, λ12, λ21, λ22).

The penalty parameters λij (i = 1, 2; j = 1, 2) are presented in Equation 7.15, de-

termining the L1 and L2 norm of both stationary component and drift component,

respectively. During our experiments, we extract small subset of data with early time

stamps and employ grid search to find the optimal parameters for all the algorithm.

The parameter settings are verified by cross validation in terms of the prediction

errors over the extracted data subset.

7.5.2 Evaluation Metrics

• AUC Score: At each time t, the AUC score is obtained by comparing its inferred

temporal dependency structure with the ground truth. Nonzero value of Wl,ji indi-

cates yt−l,i →g yt,j and the higher absolute value of Wl,ji implies a larger likelihood

of existing a temporal dependency yt−l,i →g yt,j.

• Prediction Error: At each time t, the true coefficient matrix is Wt and the

estimated one is Ŵt. Hence, the prediction error εt defined by the Frobenius

norm [CDG00] is εt = ‖Ŵt − Wt‖F . A smaller prediction error εt indicates a

more accurate inference of the temporal structure.
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7.5.3 Synthetic Data and Experiments

In this section, we first present our approach to generate the synthetic data and then

illustrate corresponding experimental results.

Table 7.1: Parameters for Synthetic Data Generation

Name Description

K The number of MTS
T The total length of MTS with time line
L The maximum time lag for VAR model
n The number of different value in the case

of piecewise constant
S The sparsity of the spatial-temporal

dependency, denoted as the ratio of zero-value
coefficients in dependency matrix W

µ The mean of the noise
σ2 The variance of the noise

7.5.3.1 Synthetic Data Generation

By generating synthetic MTS with all types of dependency structures, we are able to

comprehensively and systematically evaluate the performance of our proposed method

in every scenario. Table 7.1 summarizes the parameters used to generate the Synthetic

Data.

The dependency structure is shown by the coefficient matrix Wl,ji, which have

beed constructed by five ways in [ZWW+16], such as Zero value, Constant value,

Piecewise constant, Periodic value and Random walk. To show the efficiency

our proposed algorithm, we add a new constructure by Grouped value. The vari-

ables are categorized into several groups. Each group first appoints a representative

variable whose coefficient is sampled at time t. Meanwhile, the coefficients for other

variables at the group is assigned with the same value adding a small Gaussian noise,

that is, ε = 0.1ε∗, ε∗ ∼ N (0, 1).
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7.5.3.2 Overall Evaluation

We first conduct an overall evaluation in terms of AUC and prediction error over

synthetic data generated by setting parameter S = 0.85, T = 5000, n = 10, L =

2, µ = 0, σ2 = 1 and K = (30, 40, 50). From the experimental results shown in

Figure 7.1, we conclude that our proposed method has the best performance in both

evaluation metrics AUC and prediction error which indicates the superiority of our

algorithm in dependency discovery for time series data.
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Figure 7.1: The temporal dependency identification performance is evaluated in
terms of AUC and prediction error for algorithms BLR(1.0) BLasso(1k), TVLR(1.0),
TVLasso(1k, 2k), TVElastic-Net(1k, 2k, 1m, 2m). The bucket size is 200.
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To better show the capability of our algorithm in capturing the dynamic depen-

dencies, we visualize and compare the ground truth coefficients and the estimated

ones by different algorithms over synthetic data with all aforementioned dependency

structures. The experiments start with simulations where S = 0.87, T = 3000, L = 2,

n = 10, µ = 0 and σ2 = 1. In order to guarantee consistent comparison with the

result in work [ZWW+16], we set parameter K = 20. The result shown on Fig-

ure 7.2 indicates our proposed approach is able to better track the dynamic temporal

dependencies in all cases.

Figure 7.2: The temporal dependencies from 20 time series are learned and eight
coefficients among all are selected for demonstration. Coefficients with zero values
are displayed in (a), (b), (e) and (f). The coefficients with periodic change, piecewise
constant, constant, and random walk are shown in (c), (d), (g) and (h), respectively.

7.5.3.3 Group Effect

To present the ability of our algorithm in better stability and group variable selection,

we highlight our experiments on synthetic data with a Group Value dependency
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structure, where T = 3000, n = 10, L = 1, µ = 0, σ2 = 1 and K = 20. Among the

dependency matrix sampled in this experiment, only 6 coefficients are non-zero and

we equally categorize them into two groups. When sampling the coefficient values

for each group, we first sample a value x and every member in this group is assigned

with x adding a small Gaussian noise, that is, ε = 0.1ε∗, ε∗ ∼ N (0, 1), such that the

synthetic data will have group effect.

We make use of the tuning parameter shrinkage ratio [ZH05] s defined as following:

s = ‖β‖1/max(‖β‖1),

where s is a value in [0, 1]. A smaller value s indicates a stronger penalty on the

L1 norm of coefficient β thus a smaller ratio of non-zero coefficient. We also have

following definition:

Definition 7.5.1 (Zero Point). A zero point for a variable α in our model equals

to the value of shrinkage ratio s, which makes the coefficient of the variable α happen

to change from zero to non-zero or vise versa.

From the definition of shrinkage ratio s, (1) a small zero point for variable α

indicates a strong correlation between the variable α and the dependent variable and

(2) group variables have closer zero points. However, it is static result on [ZH05].

Here, we show the dynamic change of zero point with time.

Figure 7.3 records the zero points for all variables with non-zero coefficients cal-

culated by algorithm TVLasso and TVEN. From the result, it is safe to claim that

Lasso regularization alone fail to identity group variables meanwhile our proposed

method with Elastic-Net regularization succeeds.
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Figure 7.3: The zero point s change with time between TVLasso and TVEN. The
penalty parameters are λ1 = λ2 = 1000 for TVLasso and λ11 = λ12 = λ21 = λ22 =
1000 for TVEN.

7.5.4 Climate Data and Experiments

In this section, we conduct experiments on real world climate data and display cor-

responding experimental results and analysis.

7.5.4.1 Data Source and Pre-Processing

The MTS data1 records monthly global surface air temperature from 1948 to 2017 for

each grid. The whole global surface is equally segmented into 360 × 720 grids (0.5

degree latitude × 0.5 degree longitude global grid for each).

In this paper, we only focus on East Florida area in U.S.A and is able to extract

totally 46 contiguous land grids with complete monthly air temperature observations

from Jan. 1948 to Dec. 2016. Each grid data is considered as one time series y, so

the number of multi-variate time series K is 46 and the total length of the time series

T is 828. Normalization is applied to the data set for all grids.

1https://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.
-html

218



7.5.4.2 Spatial-temporal Overall Evaluation

To illustrate the efficacy of our algorithm on the real world climate data, we conduct

experiments to inspect the prediction performance of our algorithm in the perspective

of both space and time.

Figure 7.4 shows the average predicted value of the normalized air temperatures

on the total 46 grids of East Florida, where the basic parameters are set to K = 46,

T = 828, L = 1, s = 0.85, µ = 0 and σ2 = 1 for all the algorithms. As illustrated in

Figure 7.4, our algorithm outperforms other baseline algorithms in predicting ability.
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Figure 7.4: Average predicted value of the normalized air temperature on the total
46 grids of East Florida.

7.5.4.3 Group Effect

In this section, we further conduct experiments on data of contiguous 11 grids, a

subset of aforementioned 46 points, to illustrate the ability of our algorithm in identi-

fying group locations having similar dependencies towards one another location. Un-
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like the dependency analysis on the data of the globe or the entire USA [LLNM+09,

Cas16], we ignore the influence of the weather in other far regions in our experiments

since they are considered insignificant to the 11 grids [KKR+13], a relatively small

area. We analyze the dependency matrices of the 11 locations towards two loca-

tions (81.25◦W, 27.25◦N) and (81.75◦W, 30.25◦N) to show the group effects of the air

temperature among those locations.

Figure 7.5 shows the experimental results for the two target locations (black

points) respectively. 4 groups are identified among the 11 locations by adjusting

the shrinkage ratio s and locations in the same group are displayed with same colors.

As shown in Figure 7.5, the black location, i.e., itself, has the most significant corre-

lation for estimating the target air temperatures from time t − 1 to time t for both

two target locations. The relative close locations in color green and blue have larger

power for predicting the target air temperatures from time t− 1 to time t for the two

locations than the red location.

The spatial-temporal dependency structures learned in our experiments are quite

consistent with domain expertise which indicates our model is able to provide signif-

icant insights in MTS data
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Figure 7.5: Group dependencies of air temperatures over time for two target locations.
Subfigures (a) and (c) show the geographical locations and target locations are in
black. Subfigures (b) and (d) show the zero points graph for the two target locations
respectively.
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Algorithm 4 The algorithm for VAR-Elastic-Net by Bayesian Update

1: procedure MAIN(B,L, α1, α2, λ11, λ12, λ21, λ22,βt)
2: for i = 1 : K do
3: Initialize y0,i with B particles;
4: for k = 1 : B do
5: Initialize µ

β
′(k)
0,i

= 0;

6: Initialize Σ
β
′(k)
0,i

= I;

7: end for
8: end for
9: for t = 1 : T do

10: Obtain xt using time lag L;
11: for i = 1 : K do
12: UPDATE(xt, yt,i,β

′
t,i,ηt,i);

13: Output βt according to Eq. 7.18;
14: end for
15: end for
16: end procedure

17: procedure UPDATE(xt, yt,i,β
′
t,i,ηt,i)

18: for k = 1 : B do
19: Compute particle weights ρ

(k)
t,i by Eq. 7.22;

20: end for
21: Resample P(k)

t,i from P(k)
t−1,i according to ρ

(k)
t,i ;

22: for i = 1 : B do
23: Update µ

η
(k)
t,i

and Σ
η
(k)
t,i

by Eq. 7.23;

24: Sample η
(k)
t,i according to Eq. 7.25;

25: Update the parameters β
′(k)
t,i , β

′(k)
t,i , α

(k)
t,1 and α

(k)
t,2 by Eq. 7.26;

26: Sample σ2(k)
t,i and β

′(k)
t,i by Eq. 7.27;

27: end for
28: end procedure
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CHAPTER 8

CONCLUSION

The contribution of the thesis are as follows,

1. Here, we considered an optimal and adaptive step size rule for gradient descent

(GD) applied to non-convex optimization problems. We finish to prove that GD

with fixed step sizes not exceeding 2/L, where L is the Lipschtiz constant, will

not converge to strict saddle points almost surely, generalizing previous works

of [LSJR16, PP16] that require step sizes to not exceed 1/L. We also establish

escaping strict saddle point properties of GD under varying/adaptive step sizes

under additional conditions.

We address an important open question and is to derive an explicit rate of

convergence for the GD algorithm with different step size rules for non-convex

objective functions. It is particularly interesting to study non-convex problems

for which GD converges to local minima with number of iterations polynomial

in problem dimension d. While the work of [DJL+17] rules out such possibility

for general smooth f , polynomial iteration complexity of GD might still be

possiblbe for non-convex objectives under additional assumptions.

2. Based on the idea of understanding arithmetical complexity from analytical

complexity in the seminal book by Nesterov [Nes13] and the idea for viewing

optimization from differential equation in the novel blog1 , we propose some

novel algorithms based on Newton Second Law with the kinetic energy ob-

servable and controllable in the computational process firstly. Although our

algorithm cannot fully solve the global optimization problem, or it is dependent

on the trajectory path more unpositively, this work introduce Hamilton sys-

tem essentially to optimization such that it is possible that the global minima

1http://www.offconvex.org/2015/12/11/mission-statement/
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can be obtained. Our algorithms are easy to implement and own more rapid

convergence rate.

From the theoretical view, the Hamilton system is closer to nature and a lot

of fundamental work have appeared on the last decades, such as KAM theory,

Nekhoroshev estimate, operator spectral theory and so on [Arn13, Arn12]. Are

these beautiful and essentially original work used to understand and improve

the algorithm for optimization and machine learning? Furthermore, to estimate

the convergence rate, the matrix containing the trigonometric function is hard

to estimate. Some estimate for the trigonometric matrix based on spectral the-

ory are proposed in [JL17, LY15]. For the numerical scheme, we only exploit

the simple first-order symplectic Euler method. A lot of more efficient schemes,

such as Störmer-Verlet scheme, Symplectic Runge-Kutta scheme, order condi-

tion method and so on, are proposed on [HLW06]. These schemes can make the

algorithms in this paper more efficient and accurate. For the optimization, the

method we proposed is only about unconstrained problem. In the nature, the

classical Newton Second law, or the equivalent expression — Lagrange mechan-

ics and Hamilton mechanics, is implemented on the manifold in the almost real

physical world. In other word, a natural generalization is from unconstrained

problem to constrained problem for our proposed algorithms. A more natural

implementation is the geodesic descent in [LY+84]. Similar as the development

of the gradient method from smooth condition to nonsmooth condition, our

algorithms can be generalized to nonsmooth condition by the subgradient. For

application, we will implement our algorithms to Non-negative Matrix Factor-

ization, Matrix Completion and Deep Neural Network and speed up the training

of the objective function. Meanwhile, we apply the algorithms proposed in this
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paper to the maximum likelihood estimator and maximum a posteriori estima-

tor in statistics.

Starting from Newton Second Law, we implement only a simple particle in clas-

sical mechanics, or macroscopic world. A natural generalization is from the

macroscopic world to the microscopic world. In the field of fluid dynamics, the

Newton second Law is expressed by Euler equation, or more complex Navier-

Stokes equation. An important topic from fluid dynamics is geophysical fluid

dynamics [Ped13, CRB11] , containing atmospheric science and oceanography.

Especially, a key feature in the oceanography different from atmospheric science

is the topography, which influence mainly vector field of the fluid. Many results

have been demonstrated based on many numerical modeling , such as the clas-

sical POM2, HYCOM3, ROMS4 and FVCOM5. A reverse idea is that if we view

the potential function in black box is the topography, we observe the changing

of the fluid vector field to find the number of local minima in order to obtain the

global minima with a suitable initial vector field. A more adventurous idea is to

generalize the classical particle to the quantum particle. For quantum particle,

the Newton second law is expressed by the energy form, that is from the view

of Hamilton mechanics, which is the starting point for the proposed algorithm

in this paper. The particle appears in wave form in microscopic world. When

the wave meet the potential barrier, the tunneling phenomena will appear. The

tunneling phenomena still appear in high dimension [NM13]. It is very easy to

observe the tunneling phenomena in the physical world. If the computer can

be very easy to simulate the quantum world, we can find the global minima

by binary section search. That is, if there exist tunneling phenomena in the

2 http://ofs.dmcr.go.th/thailand/model.html
3 https://hycom.org/
4 https://www.myroms.org/
5 http://fvcom.smast.umassd.edu/

225



upper level, continue to detect the upper level in the upper level, otherwise to

go the lower level. In quantum world, it need only O(log n) times to find global

minima other than NP-hard.

3. In this paper we propose a general ODE-based approach to analyze accelerated

gradient methods. Our approach explains why NAGs provide acceleration and

imply new quantitative results on the convergence of gradient norms. In the

sequel, we list some future directions.

The variational perspective from Lagrangian mechanics is adopted in [WRJ16,

WWJ16]. In contrast we draw ideas from Hamiltonian mechanics. While La-

grangian mechanics and Hamiltonian mechanics are equivalent under the Leg-

endre transformation, the symplectic structure of Hamiltonian systems and the

its view of energy [LL60] give us intuition on using phase space representation

and how to construct energy functionals. Roughly speaking, the phase repre-

sentation is a bridge between continuous energy functionals and discrete energy

functionals.

8.0.0.0.1 Generating new algorithms through discretizing ODEs

[WWJ16, WRJ16, BJW18] considered different discretization schemes on low-

resolution ODE s to generate new optimization algorithms. As we discussed

in Section 5.1.3, only the implicit scheme can obtain the optimal convergence

rate but it is not practical. Since our proposed ODEs are different from their

low-resolution ODE s, applying discretization schemes on our proposed ODEs

naturally generate another class of optimization algorithms and these new al-

gorithms may admit competitive convergence rates as NAGs.
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8.0.0.0.2 Generalization to Primal-dual Approach In many machine

learning problems, one uses the primal-dual (accelerated) method to speed up

convergence [DH18, DCL+17, CP11, LYW+17, WX17]. Similar to NAGs, ex-

isting analyses of the accelerated algorithms also require estaimted sequence

based approach. It would be interesting to generalize ODE approach to char-

acterize the convergence rates of accelerated primal-dual gradient methods and

give simpler proofs.

8.0.0.0.3 Generalization to Non-convex Functions In deriving our high-

resolution ODE s, we do not rely on the convexity of the objective function.

Thus, even if the objective function is non-convex, we can still use these ODEs

for analysis. A concrete problem is to analyze the convergence rate for the gen-

eral smooth but non-convex problem [Nes13]. Another interesting direction is

to use our framework to study the local behavior of the optimization algorithms

around a strict saddle point [JGN+17, DJL+17].

8.0.0.0.4 Understanding optimization algorithms by higher order

ODEs In this paper, we only consider gradient-Lipschitz objective functions.

When the function has higher order smoothness, e.g., Hessian is Lipschitz, it is

possible to obtain faster optimization algorithms. [Pol64] initiated the study in

this direction. In his seminal paper, he proposed to study the following ODE

X(n)(t) +

(
n

1

)
a1X(n−1)(t) + . . .+

(
n

n− 1

)
an−1X(1)(t) +∇f(X(t)) = 0.

where a is some problem dependent constants. Notice that this is essentially

“low-resolution” because there is no step size parameter. An interesting di-

rection is to derive high-resolution or higher resolution ODEs and study the

convergence rates.
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4.5. In this paper we propose a CoCoSSC formulation for the subspace clustering

problem with data subjecting to stochastic Gaussian noise or missing entries.

Our proposed method enjoys improved sample complexity and practical perfor-

mance, and is also computationally efficient.

An interesting future direction is to further improve the sample complexity to

ρ = Ω(n−1/2) without knowing the norms ‖yi‖2, Such sample complexity is

likely to be optimal because it is the smallest observation rate under which off-

diagonal elements of sample covariance X>X can be consistently estimated in

max norm, which is also shown to be optimal for related regression problems

[WWBS17].

6. In this paper, we proposed a novel VAR-Elastic-Net model with online Bayesian

update allowing for both stable-sparsity and group-selection among MTS, which

implements adaptive inference strategy of particle learning. Extensive empirical

studies on both the synthetic and real MTS data demonstrate the effectiveness

and the efficiency of the proposed method. In the process of time-varying tem-

poral dependency discovery from MTS, the choice of regularizer is essential. One

possible future work is to automate the identification of the proper regularizer

for different MTS in an online setting.

228



BIBLIOGRAPHY

[AAB+17] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and
Tengyu Ma. Finding approximate local minima faster than gradient
descent. In STOC, 2017. Full version available at http://arxiv.org/

abs/1611.01146.

[AABR02] Felipe Alvarez, Hedy Attouch, Jérôme Bolte, and P Redont. A
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mathématiques pures et appliquées, 81(8):747–780, 2002.

[AAZB+17] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and
Tengyu Ma. Finding approximate local minima faster than gradient
descent. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1195–1199. ACM, 2017.

[ACPR18] Hedy Attouch, Zaki Chbani, Juan Peypouquet, and Patrick Redont. Fast
convergence of inertial dynamics and algorithms with asymptotic van-
ishing viscosity. Mathematical Programming, 168(1-2):123–175, 2018.

[ACR17] Hedy Attouch, Zaki Chbani, and Hassan Riahi. Rate of convergence of
the Nesterov accelerated gradient method in the subcritical case α ≤ 3.
arXiv preprint arXiv:1706.05671, 2017.

[AG16] Anima Anandkumar and Rong Ge. Efficient approaches for escaping
higher order saddle points in non-convex optimization. arXiv preprint
arXiv:1602.05908, 2016.

[ALA07] Andrew Arnold, Yan Liu, and Naoki Abe. Temporal causal model-
ing with graphical granger methods. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 66–75. ACM, 2007.

[AMR12] Hedy Attouch, Paul-Emile Maingé, and Patrick Redont. A second-order
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