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ABSTRACT OF THE DISSERTATION

A MODEL-BASED AI-DRIVEN TEST GENERATION SYSTEM

by

Dionny Santiago

Florida International University, 2018

Miami, Florida

Professor Peter J. Clarke, Major Professor

Achieving high software quality today involves manual analysis, test planning, doc-

umentation of testing strategy and test cases, and development of automated test

scripts to support regression testing. This thesis is motivated by the opportunity to

bridge the gap between current test automation and true test automation by inves-

tigating learning-based solutions to software testing. We present an approach that

combines a trainable web component classifier, a test case description language, and

a trainable test generation and execution system that can learn to generate new test

cases. Training data was collected and hand-labeled across 7 systems, 95 web pages,

and 17,360 elements. A total of 250 test flows were also manually hand-crafted for

training purposes. Various machine learning algorithms were evaluated. Results

showed that Random Forest classifiers performed well on several web component

classification problems. In addition, Long Short-Term Memory neural networks

were able to model and generate new valid test flows.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A grand challenge in software engineering is continually and consistently delivering

high quality software. Although 50% of software development budgets typically

go towards testing, software defects cost the U.S. economy $59.5 billion annually

[Tas02]. A study on the IT budget allocation suggests that testing is not as efficient

as it should be, and greater efficiency should be an important objective of any quality

program [Cap17]. Test automation is one way of achieving higher efficiency.

Although automated test execution provides critical efficiency benefits to the

software development process, there are many accompanying problems with the

current state of the art. Test scripts are hand-crafted by humans and may break

given changes to the underlying system under test, and may not generalize across

applications. Consequently, current approaches do not provide for fully automated

software testing and substantial manual effort is still required. Also, automated

test script oracles are limited and can only detect defects based on the path and

assertions that were coded explicitly in the test script.

There is a significant gap between human-present and machine-driven testing.

Although there has been extensive research and work into semi-automated testing

techniques [AMRS11, RMPM12], these techniques do not: (1) mimic the thought

and learning process of human testers; and (2) seamlessly generalize across applica-

tions and application domains. Human testers can perceive the state of an appli-

cation, can act intelligently to attempt to break the software, and can modify their

strategy dynamically based on observations. Advances in artificial intelligence (AI)

and machine learning (ML) have shown that machines are capable of matching or
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surpassing human performance across various problem domains [BDTD+16, Moy16].

Researchers and practitioners are realizing the potential for AI and ML to further

improve the capability of machine testing [AIS18, KA18, AH04].

This thesis presents an approach for automatically generating tests using a com-

bination of ML-based techniques for perceiving web page application state and gen-

erating abstract test flows. More specifically, we present a method for allowing

human testers to express tests as reusable test flows, and for leveraging AI and ML

to enable the creation of a trainable test flow generation system. The major con-

tributions of this thesis are as follows: (1) presents a novel approach that models

how human testers produce test flows as an application-agnostic abstract sequence

problem; (2) defines a language and accompanying grammar that supports the cre-

ation of test flows, and presents examples of applying the language to a variety of

scenarios; and (3) discusses the implementation and results of a test flow generation

prototype.

1.2 Outline of Thesis

Chapter 2 provides background on software testing and artificial intelligence (AI),

and proceeds to discuss related works in the intersection of software testing and

AI. Chapter 3 puts forth the problem statement, the thesis, and the thesis objec-

tives along with their evaluation criteria. Chapter 4 discusses our AI-driven test

generation and execution system, and covers web component classification and test

flow generation. Also, Chapter 4 covers our approach to test case generation and

execution. In Chapter 5, we evaluate our approach to webpage component classifi-

cation, test flow generation, and test execution. We also discuss the limitations of

the approach. Finally, Chapter 6 concludes the thesis and discusses future work.

2



CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter contains background material to aid understanding of the thesis, and

describes related work. The covered background material includes software testing,

webpage rendering, artificial intelligence, machine learning algorithms, and the re-

lationship between machine learning and testing. In addition, we cover approaches

for AI-driven object recognition and text generation.

2.1 Background

This section contains background material to aid understanding of the thesis, in-

cluding an overview of software testing, web page rendering, artificial intelligence,

machine learning and the application of the aforementioned topics.

2.1.1 Software Testing

Software testing is the process of executing a software system to determine whether

it matches its specification and executes in its intended environment [Whi00]. Am-

mann and Offutt [AO17], in regards to software, define testing as "evaluating by

observing its execution". Much work has gone into automating software testing

in order to reduce repetitive manual labor [ABC+13, VKCF+15, AMRS11]. Auto-

mated testing involves creating scripts that are programmed to follow specific test

steps. Creating these scripts typically involves creating a model of the application

using implementation details from the system under test (SUT). Test scripts refer

to the models and exercise a sequence of test steps referred to as flows through

the SUT. Within the scope of web applications, the test scripts are then executed

3



against the SUT using tools such as Selenium [Sel18], and the results are recorded

and logged. An example of Selenium-based web automation is shown on Figure 2.1.

Figure 2.1: Selenium Page Object Model and Test Script

2.1.2 Webpage Rendering

The Document Object Model (DOM) is an object-oriented tree representation of

a web page that represents the hierarchical document structure of the page, and

serves as a programming interface for web pages [Lui18]. Cascading Style Sheet Ob-

ject Model (CSSOM) trees extend DOM trees by introducing web element styling

information, also in a hierarchical fashion [Gri18]. The CSSOM and DOM trees are

combined into a render tree that is used as input to the graphical rendering sub-

system of a web browser, where the final layout of each visible element is computed

and drawn [Gri18]. The difference between the various tree representations is shown

on Figure 2.2.
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Figure 2.2: Web Rendering Trees

2.1.3 Artificial Intelligence

Artificial intelligence (AI) is a field that attempts to not only understand how hu-

mans can perceive, understand, predict, and manipulate their surrounding environ-

ment, but also sets out to build intelligent entities that are able to mimic human

behavior.

Machine Learning (ML) is a subset of AI that includes abstruse statistical tech-

niques that enable machines to improve at tasks with experience. If the performance

P of a computer program at completing a task T improves with experience E, the

program is said to "learn" from experience E. Machine learning is the science of

getting computers to act without being explicitly programmed [Ng18].

Two major applications of ML are referred to as unsupervised learning and su-

pervised learning. In unsupervised learning, unlabeled data is fed into a training

algorithm with the goal of discovering patterns and relationships. Examples include

clustering algorithms that attempt to organize data points into groups. Supervised

5



learning, in contrast, involves human-labeled training data. A supervised learning

workflow typically involves multiple iterations of constructing labeled training data,

extracting features from the data, choosing an algorithm, training a model, evalu-

ating the model using test or input data, and improving the model. This workflow

is shown on Figure 2.3.

Figure 2.3: Supervised Learning Workflow

Another application of ML is reinforcement learning. This learning approach

involves creating algorithms that are capable of learning by using reward systems.

Useful actions are positively rewarded, whereas less useful actions may be penalized.

2.1.4 Machine Learning Algorithms

This work focuses on using and comparing the performance of decision tree learn-

ing, random forests, the k-Nearest Neighbor algorithm, Support Vector Machines

(SVM), and artificial neural networks (ANN) for various webpage classification and

automated test generation tasks. Decision tree learning uses a hierarchy of con-
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ditional statements as a predictive model for making choices and predictions on a

specific data point using observable information about the data point [Sci18]. Vari-

ous algorithms exist for automatically inferring decision trees from a training dataset

[Qui96, PS13].

The k-Nearest Neighbor (KNN) algorithm is a technique that does not require

training; instead, it looks at all data points at prediction time and arrives to a de-

cision based on measuring distance from a new data point to training data points

[Pet09]. Support vector machines are learning models that may be used for clas-

sification and regression analysis problems [Wan05]. Artificial neural networks are

computing systems vaguely inspired by biological neural networks, and are based

on a collection of connected units called artificial neurons [Sch97]. ANN units are

usually grouped into a hierarchy of layers, where each layer’s output serves as input

into the subsequent layer. Figure 2.4 shows an example neural network.

Figure 2.4: Simple Neural Network
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Long Short-Term Memory (LSTM) recurrent neural networks (RNN) are a spe-

cial type of neural network that are able to generate sequential data with long-range

structure [Gra13]. A common LSTM unit is composed of a cell, an input gate, an

output gate and a forget gate. The cell remembers values over arbitrary time in-

tervals and the three gates regulate the flow of information into and out of the cell.

This is illustrated on Figure 2.5.

Figure 2.5: Long Short-Term Memory Block

A Bayesian network, also known as Bayesian belief network, is a directed acyclic

graph in which each node is associated with a conditional probability distribution

[Mar14]. Conditional probability is the likelihood of an event happening, given that

it has some relationship to one or more other events [Gut13]. For example, the

probability of finding a parking space is dependent on the location being visited,

the day of the week, and time of day. Formally, a Bayesian network model is defined

by: (1) a set of nodes where each node corresponds to a random variable, which may

be discrete or continuous; (2) a set of directed edges that connect pairs of nodes,

where an edge from node X to node Y indicates that Y is dependent on X ; and

8



(3) a set of annotations in the form of conditional probability tables (CPTs), where

each CPT represents a conditional probability distribution P (Xi|Parents(Xi)) that

quantifies the effect of the parents on node Xi.

Overfitting is a common problem in ML, and refers to the issue of having a

predictive model that does very well on training data, but poorly on unseen new

data. Various techniques exist for controlling overfitting, such as random forests

and gradient boosted trees [LW+02, De’07].

2.1.5 Relationship Between ML and Testing

There is a direct mapping from the software testing problem to a machine learning

solution. The testing problem involves applying a test input to an application

or function, then comparing the output to an expected result. This is precisely

what machine learning does. A set of inputs (or features) is supplied to a training

algorithm. In supervised learning, the correct answer is also supplied to the training

algorithm with each set of inputs. The job of the machine learning system is to

iteratively (slightly) reconfigure the internal computation units, each time getting

closer to providing the correct answers based on the provided input sets. Therefore,

all of the existing and ongoing research and development that has gone into building

these ML systems are providing a direct benefit towards further automating the

software testing problem.

Self-driving cars and the technology that powers them can be mapped to the

problem of software testing. Just as humans can teach learning algorithms how to

drive a car, we can envision building a system capable of learning from a user’s

testing journey. Similarly, NLP and natural language generation research may map

to test case generation. Lastly, game theory and reinforcement learning may map
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well to the problem of discovering a system and hunting for bugs. For example,

reinforcement learning may be used to reward an intelligent system for uncovering

a system crash or an exception.

Researchers and practitioners realize the potential for AI and ML to be leveraged

to help bridge the gap between the testing capabilities of humans and those of

machines [KA18, AIS18]. Existing work on applications of ML to software testing

has explored applying supervised ML to the testing problem [Arb17]. There is also

an abundance of emerging research on new AI and ML techniques and algorithms.

It is imperative that the testing community make a concerted effort to keep up with

AI research and look for ways to innovate within the testing field.

2.1.6 AI-Driven Object Recognition

There exist several problems and areas of research surrounding object recognition

within images. Image classification involves visually inspecting an image and decid-

ing whether the image belongs to a particular class. For example, given an image

of a cat as input, an image classifier may return the label "cat" as an output.

In some cases, classifying an image with a single label is not sufficient. Suppose

the input image contains both a cat and a dog. While assigning either label would

be correct, we may instead want to produce two output labels for the single input

image. Research efforts have been focused on ML algorithms that can produce

multiple outputs. Lastly, in some cases, we are not just interested in generating

classes for a given input image. Depending on the problem at hand, we may want

to build a system capable of detecting the location of the object within an image.

Figure 2.6 shows an example of object recognition problems.
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Figure 2.6: Object Recognition Problems

A common approach for encoding an image to be used as input into a neural

network is to treat each pixel as a feature as shown on Figure 2.7.

Figure 2.7: Encoding Image into Neural Network

2.1.7 AI-Driven Text Generation

Much research exists on generating sequential information using ML-based tech-

niques. In the field of natural language processing (NLP), several approaches to

11



text generation have been studied [Gra13, Bro18]. A conventional approach is to

treat text generation as a sequence-to-sequence problem. A sequence of text is fed

into a trainable algorithm that in turn outputs a sequence of text. The training goal

is that the concatenation of both sequences results in a plausible sentence. Since

machines do not understand words, a common practice is to map words to integer

values, resulting in what we may refer to as a word encoding. This means that

both the input and output of the sequence-to-sequence problem are a sequence of

integers. Word encodings are challenging to create and maintain as there are many

possible words that may appear, especially when different languages are used.

An alternative approach is to create a character encoding, where each character

(for example, each character from A-Z) is mapped to an integer. Although this sim-

plifies the text-to-machine mapping process, it creates additional complexity from a

training standpoint. There are many valid (and invalid) arrangements of character

sequences that can first form words and eventually form sentences. In contrast, there

are much fewer unique arrangements of complete words. ML-based text generation

techniques that leverage character-based encoding typically require more training

to reach stability and feasibility-of-use over word-based encoding approaches.

An example of an ML approach to sentence generation using word encodings

is shown on Figure 2.8. Research has shown that specialized ANNs are capable of

being trained to handle sequence-to-sequence problems (such as text generation).

Long Short-Term Memory (LSTM) recurrent neural networks (RNNs) are a partic-

ular type of neural network capable of generating sequential data with long-range

structure [Gra13]. For the interested reader, Jason Brownlee [Bro18] provides a

great step-by-step tutorial that leverages tools such as Keras and TensorFlow to

build LSTMs capable of generating plausible sentences for a problem domain based

on training from classical texts [Bro18].
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Figure 2.8: Sentence Generation Example

2.2 Related Work

Memon et al. [MBN03] present an approach to automatically reverse engineer a

graphical user interface (GUI) for testing. Memon [Mem04] also demonstrates a

technique for automated GUI regression testing using AI planning. Memon repre-

sents GUI test cases as pairs of initial and expected goal states along with sequences

of events. Vos et al. [VKCF+15] present Testar, a tool for test automation at the

user interface level. Li and Offutt [LO17] present findings for building test oracles

when using model-based testing. Our work on abstract test flow sequencing uses

ideas from these works for incorporating generic oracles.

Onan [Ona16] evaluates webpage classification accuracy across different feature

selections, ensemble learning methods, and base learners (Naive Bayes, K-Nearest

Neighbor, C4.5 Algorithm and FURIA). Gogar et al. [GHS16] describe an ap-

proach for webpage information extraction. The authors present prior research and

emphasize the limited generalization power of extraction using predefined website

templates. The authors introduce a mechanism to encode webpage nodes into a spa-

tial bag of words model that captures positional information. The study presents

promising results classifying product images, prices, and names from shopping ap-

13



plications. The work done by Onan and Gogar et al. is important for recognizing

web pages, elements, and components for the purposes of testing.

Graves [Gra13] shows how to leverage LSTMs in order to generate complex

sequences with long-range structures. Graves shows how this can be done by pre-

dicting one data point at a time. The approach is demonstrated in the context of

generating text and online handwriting. LSTMs are also capable of learning simple

context-free and context-sensitive languages, as shown by Gers and Schmidhuber

[GS01]. Brownlee [Bro18] shows how to create a character-by-character generative

model for text using LSTMs, and demonstrates the generation of text sequences

from classical texts. Our work extends Brownlee’s work by using word encodings

instead of character encodings to support a test flow generation language.

Arbon [Arb17] presents an approach to AI-driven software testing that includes

learning systems capable of recognizing application state, applying test inputs, and

verifying behavior. Arbon focuses on mobile applications and applies ML techniques

including decision tree learning, random forests, and ANNs. Arbon et al. [ANT+18]

also presents an Abstract Intent Test (AIT) language that allows one to manually

define test cases using domain concepts. The AIT language has elements that are

similar to the language presented in our work. An important distinction is that our

language is designed to allow ML-based test flow generation, but does not specify

intent.

14



CHAPTER 3

PROBLEM STATEMENT

This chapter introduces the problem, the problem statement, the thesis, and the

objectives along with their evaluation criteria.

3.1 Problem

By solving technical challenges such as web browser automation and by provid-

ing simple programming interfaces, tools such as Selenium [Sel18] have facilitated

writing test scripts that are capable of automatically executing complex test cases

against a web application. Automated software testing involves writing both page

object code [Fow13] and scripts that are web application specific. Due to implemen-

tation coupling, test scripts do not generalize across applications, and may easily

break given changes to the underlying application.

The cost due to manual effort of testing software remains high as a

result of gaps in existing test automation practices. ML-based test gen-

eration can provide a higher degree of test automation that is more general and

representative of human testing than current approaches. This research examines

three questions:

1. How can ML be used to raise the level of abstraction for representing webpage

components?

2. How can ML be used to generate test flows for a web application?

3. How can the ML approaches for web component classification and test flow

generation from (1.) and (2.) be combined to automatically generate and

execute tests for a web application?
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3.2 Objectives and Evaluation Criteria

Primary Objective – Investigate the feasibility of using machine learning ap-

proaches such as decision trees and neural networks to automatically generate tests

in a way that is independent of any specific web application.

Evaluation Criteria: The developed approach should be capable of generalizing

from previously trained models, and should generate executable test cases against

an unseen web application.

The following sub-objectives each are required towards reaching the primary objec-

tive:

Sub-Objective 1 – Develop a trainable classifier which perceives application state

and allows for the extraction of web page components in a way that is agnostic to

a web application.

Evaluation Criteria: The classifier will be evaluated against multiple pages from

several disparate web applications using accuracy, precision, and recall.

Sub-Objective 2 – (1) Develop a language that enables the generalized description

of web application test flows; and (2) Develop an ML classifier for generating test

flows.

Evaluation Criteria: Given a representative set of hand crafted test cases for a web

application: (1) The language should be able to express each test case as an abstract

test flow; and (2) the ML classifier should be able to generate a comparable set of

abstract test flows for a previously unseen web application.

Sub-Objective 3 – Develop a test execution engine that uses ML-generated test

flows and seeded test inputs to produce executable tests for a previously unseen web

application.
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Evaluation Criteria: The tests executed by the ML-based system should be able to

discover a comparable number of defects compared to a human testing approach.
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CHAPTER 4

AI-DRIVEN TEST GENERATION APPROACH

In this chapter we present the overall approach to solving the problem of reducing

the gap between manual testing and automated testing. We then describe each of

the processes used in the overall approach including: web component classification,

test flow sequencing, the test flow specification language, test flow generation, and

test case generation and execution.

4.1 Overall Approach

Our overall approach is two-pronged, targeting three major sub-problems: (1) web-

page component classification; (2) test flow generation; and (3) test case generation.

We define a test flow as a sequence of events that can represent the semantics of

a test case. A test flow may contain action and observation steps. An action step

describes a particular interaction that must be executed against the System Under

Test (SUT). An observation step describes perception or expectational information;

for example, we may perceive the existence of a particular field on a form, and we

may have a particular expectation based on previously performed steps, such as an

expectation on the existence of an error message.

The first part of our approach focuses on teaching a computer system to un-

derstand various different components on a given webpage. This problem can be

framed as a supervised learning classification problem. Our approach involves creat-

ing a tool that functions as a web browser plugin, allowing a human user to supply

labeled information about any webpage component on any webpage. This labeled

data may be used to iteratively improve underlying machine learning models.
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Figure 4.1: AI-Driven Test Generation Approach

The second part of our approach focuses on teaching a computer system the

ability to understand test flows, process them, and also to generate new test flows. In

order to teach a system to understand valuable test flows, our approach also involves

creating a web browser plugin that is capable of observing a human user as they

carry out their testing. By combining the information from our webpage component

classification system, along with the test steps being executed by a human user, our

approach can generalize and generate test flows. Given a mechanism to generate

test flows, we also present a machine learning algorithm capable of learning and

generalizing test flows. Given the ability to generate and learn test flows, we also

include a test generation component that is capable of generating test cases by

mapping generated test flows to the SUT.

Our approach for this process is shown in Figure 4.1. We use a trainable web

classification system (1) to recognize web components using common abstractions

applicable across SUTs. A language and grammar (2) is used to allow the definition

of test flows. A trainable flow generation system (3) is used to produce abstract

test flows. A test generation system (4) maps an abstract test flow to an executable

concrete flow. Lastly, a test execution (5) system performs actions against an SUT.
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4.2 Web Component Classification

We frame the problem of understanding webpage components as a supervised learn-

ing classification problem. Our approach is illustrated on Figure 4.2. The feature

extraction step (A1) focuses on scraping information from a given webpage. This

step produces a Computed Render Tree (CRT) representation of a given webpage.

A standard web-based render tree includes information such as: (1) hierarchy; (2)

element types; (3) element attributes; and (4) style sheet information. We extend

this basic definition by collecting the render tree only once the web browser has

finalized rendering, and by calculating additional information such as: (1) element

positions; and (2) element sizes.

Figure 4.2: Webpage Component Classification Approach

Using the CRT representation, the next step is to perform a feature synthesis

step (A2). This step performs an element-wise pass through all of the elements in

the CRT, synthesizing several features for each element. Although the synthesis is

done at the local level for each element, the full global context (information on the

entire set of elements) is taken into account in order to synthesize most features.

The total synthesized feature set is described in Table 4.1.

Given the synthesized feature set for each element on the webpage, the next step

of our approach is to hand label all of the elements with various different classes.

Examples of meaningful classes include: (1) page title; (2) label candidates - text
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Feature Description
HTML Tag The tag for the given element.
Parent HTML Tag The tag for the given element’s parent.
"For" Attribute The existence of a value for the HTML "For" at-

tribute.
Num. Children The number of HTML nodes that are children of the

given element’s node.
Num. Siblings The number of HTML nodes that are siblings of the

given element’s node.
Depth The depth of the given element’s node within the

ADOM tree.
Horizontal Percent The relative horizontal position (in percentage) of the

given element.
Vertical Percent The relative vertical position (in percentage) of the

given element.
Font Size The relative (normalized against the full set of ele-

ments) font size of the given element.
Font Weight The relative (normalized against the full set of ele-

ments) font weight of the given element.
Is Text Describes whether a given element is a text node.
Nearest Color The closest color computed using CIEDE2000 algo-

rithm.
Nearest Background Color The closest background color computed using

CIEDE2000 algorithm.
Distance from Input The relative (normalized against the full set of ele-

ments) distance to the closest input widget from the
given element.

Text The actual text associated with the given element.

Table 4.1: Computed Render Tree Feature Synthesis

elements which may be associated with input widgets on the page; (3) required

label candidates - label candidates that suggest a field to be required; and (4) error

messages. Once all of the data has been labeled, we can now make use of several

different machine learning classifiers, comparing their performance on our dataset,

and ultimately deciding on the best one for the given problem. An example of

a simple webpage form along with a possible set of component classifications is

illustrated on Figure 4.3.
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Figure 4.3: Sample Web Form with Classifications

Our preliminary work involved creating a dataset containing a total of 17,231

labeled examples. Our approach focuses primarily on training both feed-forward

neural networks, and random forest classifiers in order to classify webpage com-

ponents. For each given classification subtask, the better of the two is ultimately

chosen. Several different approaches are used in order to validate the classification

and generalization power of our trained machine learning models. Primarily, a per-

centage split approach is used: 60% of the dataset is used for training, while 40% is

used for testing. In addition, cross-validation is used as a secondary technique. For

both approaches, accuracy, precision, recall, and F1 scores are used to evaluate the

model’s performance. Steps A4 and A5, shown in Figure 4.2, focus on tweaking our

dataset and tuning hyperparameters to reduce bias and variance.

The next question to explore is: How can image classification and object

detection be leveraged to aid in software testing? To generate and execute

test cases against a web application, the current state of the art involves construct-

ing page objects that are coupled to the implementation details of a specific web

application. Page objects often include references to document object model (DOM)

and stylesheet information for a specific SUT. It is beneficial to shift towards an ap-

proach that leverages ML to raise the level of abstraction by which generated test

cases interact with webpage components. Rather than interacting with elements us-
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ing information that is SUT-specific, the goal is to be able to leverage ML to identify

web components based on models that have been trained across various SUTs.

Having the ability to perceive web application state and recognize objects using

ML-based approaches moves us one step closer to being able to write test cases

devoid of any SUT-specific implementation details. Armed with enough example

training data, we can leverage existing AI research and techniques for object recog-

nition to raise the level of abstraction by which our automated test cases refer to

objects. There are several benefits to this approach, including the ability for test

scripts to self-heal if the SUT changes. For instance, while a change in the way the

SUT renders a shopping cart button would likely break test scripts that leverage

traditional DOM-based element selection strategies, a sufficiently trained ML model

may be able to locate the new shopping cart button, allowing a test script that lever-

ages ML-based element selection to continue execution. Also, by raising the level

of abstraction, it becomes possible to reuse test cases across different SUTs. With

enough training data, an ML model could be trained to recognize various compo-

nents of a web application state. An example of webpage decomposition and object

recognition is shown on Figure 4.4.

Figure 4.4: Webpage Decomposition and Object Recognition
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Figure 4.5 shows another example of an actual ML-based classification system

recognizing various components (Page title, widget labels, and error messages) on

an arbitrary web page.

Figure 4.5: Webpage Component Recognition

4.3 Test Flow Sequence Problem

The next step of our approach is to model the test flow process as a sequence

problem. Figure 4.6 shows the workflow for developing and validating a test flow

generator using neural networks. The phases of the workflow are as follows:

1. Model Test Flow Process As Sequence Problem. Before modeling the test flow

process, we must first define the term for our purposes. A test flow is a

sequence of events that can be performed against a web application, and that

can be used to represent a test. Given this, we model the human test flow

execution process as a sequence problem. Framing test flows as such enables

us to apply various ML techniques for generation purposes.
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Figure 4.6: Workflow for Developing and Validating a Test Flow Generator using
Neural Networks

2. Develop Language to Support Test Flow Model. To enable the generalized

description of web application test flows, we develop a language and accom-

panying grammar, Test Flow Specification Language. The language must be

expressive enough to cover meaningful tests, yet constrained enough to reduce

the data complexity of ML-based techniques to test flow generation.

3. Create Representative Test Set. A set of tests that span several web pages

belonging to disparate domains is hand-crafted. To measure the adequacy of

the language, we test the ability of the language to express test flows that

cover the representative test set. Test flows are hand-crafted with the purpose

of covering tests in a manner that is reusable across SUTs. This is an iterative

process that involves extending the language, and possibly expanding the test

set.

4. Create Training Set For Test Flow Generator. A set of test flows that represent

meaningful tests against web applications is hand-crafted as training data.
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5. Train Neural Network Model. An ML-based system capable of learning se-

quential information is developed and trained to generate valid test flows that

belong to the Test Flow Specification Language. The ML system is trained

until the model is able to produce valid test flows at a rate above a desired

threshold. The generated test flows are validated for correct grammar using a

language parser.

Beyond representing a sequence of actions executable on an SUT, a test flow is

also associated with a set of expected observations. Next, we describe an approach

to mimicking and modeling the behaviors of human testers when executing test

flows. Specifically, we focus on the human ability to perceive, act, and observe. The

steps that a human tester follows while executing test flows may be modeled as

shown on Figure 4.3.

Figure 4.3: Event Sequence Model for Test Flows
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We present the test flow execution process as a sequence of steps where each

step belongs to one of three categories: Perceive, Act, Observe. Steps belonging to

the Perceive category focus on establishing preconditions for a test flow, and involve

drawing observations from the environment, and action planning before selecting an

appropriate set of actions. Steps belonging to the Act category focus on selecting

and executing appropriate actions based on the previously constructed plan. Finally,

steps belonging to the Observe category focus on comparing expected vs. actual

SUT behavior, and deciding on correctness. We support the continuity property of

the testing process by allowing the results of the Observe steps to initiate a new

Perceive stage, thus forming a cycle.

Defining the test flow process using this framework is the first step towards the

goal of being able to represent the process in a machine-understandable format.

Next, we define a language that may be used to express test flows that fit into our

framework. The language must promote the use of webpage component abstractions

that utilize web classifiers in place of SUT-specific information. This supports the

generality of the approach.

4.4 Test Flow Specification Language

In this section, we specify a language which can be used to represent the process

outlined in Section 4.3. The language specification is defined as follows:
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Test Flow Language Grammar Specification

〈flow〉 ::= 〈observation-list〉 〈component-action-list〉

〈observation-list〉

〈observation-list〉 ::= 〈observation〉 ‘ ’ 〈observation-list〉 | 〈observation〉

〈observation〉 ::= ‘Observe’ 〈qualifier-list? 〉 〈component〉 |

‘NotObserve’ 〈qualifier-list? 〉 〈component〉 |

‘Or(’ 〈boolean-observations〉 ‘)’ |

‘Observe’ 〈qualifier-list? 〉 ‘In Collection’ |

‘NotObserve’ 〈qualifier-list? 〉 ‘In Collection’ |

‘Observe’ 〈capture〉|〈not-capture〉 ‘In Collection’ |

‘NotObserve’ 〈capture〉|〈not-capture〉 ‘In Collection’ |

‘Observe’ 〈qualifier-list? 〉 〈component〉 〈capture〉

〈boolean-observations〉 ::= 〈observation〉 ‘,’ 〈boolean-observations〉 |

〈observation〉

〈qualifier-list〉 ::= 〈qualifier〉 ‘ ’ 〈qualifier-list〉 | 〈qualifier〉 | ‘’

〈qualifier〉 ::= ‘Required’ | ‘Disabled’ | 〈learned-qualifier〉

〈component〉 ::= 〈element-class〉 〈ident〉 | 〈ident〉

〈component-action-list〉 ::= 〈component-action〉 ‘ ’ 〈component-action-list〉 |

〈component-action〉

〈component-action〉 ::= ‘Try’ 〈equivalence-class〉 〈component〉 |

‘Focus’ 〈capture〉 ‘In Collection’ |

‘Click’ 〈component〉 |

‘Try’ 〈equivalence-class〉 〈component〉 〈capture〉 |

‘Try’ 〈capture〉|〈not-capture〉 〈component〉

〈equivalence-class〉 ::= ‘VALID’ | ‘BLANK’ | ‘WHITESPACE’ | 〈learned-eq-class〉

〈element-class〉 ::= ‘Textbox’ | ‘Dropdown’ | ‘ErrorMessage’ |

‘Commit’ | ‘Cancel’ | 〈learned-el-class〉
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〈capture〉 ::= ‘$’ 〈ident〉

〈not-capture〉 ::= ‘!’ 〈ident〉

〈learned-qualifier〉 ::= 〈ident〉

〈learned-eq-class〉 ::= 〈ident〉

〈learned-el-class〉 ::= 〈ident〉

〈ident〉 ::= _?[A-Z][_A-Z0-9]*

The main building blocks of the language are components, actions, and obser-

vations. Components represent elements on a web page. Observations represent

information about components that can be perceived from a given web page. Fi-

nally, actions are interactions that may be performed on components. By interleav-

ing observations and actions, the language allows for the specification of test flows.

The language supports the use of learned abstract objects, instead of using specific

input values and observed text values that may only be pertinent to a single SUT

or only pertinent to a specific domain of software applications. Example test flows

constructed using the language are shown in Figure 4.4.

Figure 4.4: Example Test Flows
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The example test flows use basic language features to express simple tests focused

on testing the required field behavior of the shown form. The language supports

building test flows that cover a variety of additional tests. In this section, we will

discuss a few of the notable language features.

4.4.1 Boolean Operators

In some cases, it is useful to introduce flexible observations into a test flow in order

to promote re-usability. Some minute differences in system behavior across disparate

SUTs can be settled using a simple boolean operator. For example, when filling out

a form using missing or invalid values, most systems will produce appropriate error

messages upon form submission. Alternatively, other system designs may prevent

the form submission in the first place, usually by disabling the form submission

widget. When constructing a test flow for such an example, a boolean operator

enables the definition of a single test flow that accepts both system behaviors. The

Sign In example test flow shown in Table 4.2 displays the use of boolean operators.

4.4.2 Variables and Captures

In many cases, it is important to recall values that were input into the SUT in

order to determine the expected behavior following a subsequent step. For example,

when searching an employee directory, knowing to look for the original search string

within the search results is necessary to verify correctness. To address this, the

language provides for the definition of variables that hold captured values. The

Register example test flow shown in Table 4.2 displays the use of variables and

captures to keep track of passwords being entered into the system.
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Table 4.2: Representative Test Set and Example Test Flows

4.4.3 Collections and Focus

Collections commonly appear across many web applications. On search websites,

the search results are collections. When viewing a list of products, each item is part

of a collection. When viewing a shopping cart on an e-commerce application, all of

the products are typically represented as a collection. As such, it is important to

be able to construct test flows that support interacting with specific items within a

collection, as well as support the ability to draw observations about specific items

within a collection. The Shopping Cart example test flow shown in Table 4.2 displays

the use of collections for ensuring that a collection of added products exists on a

shopping cart.
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4.5 Test Flow Generation

Much research exists on generating sequential information using ML-based tech-

niques [Gra13, Bro18]. A common approach for text generation is to feed a text

sequence into a trainable algorithm that in turn outputs a text sequence. The train-

ing goal is that the concatenation of both sequences results in a plausible sentence.

Examples include teaching a computer system to generate plausible sentences based

on training from classical texts [Bro18].

A common practice in NLP is to map words to integers, thereby supporting

machine readable sequences for input and output, resulting in a word encoding.

Our approach leverages word encodings and focuses on generating text using a

vocabulary that is limited by the language presented in Section 4.4. It is important

that the generated text adhere to the language as this allows us to convert from the

generated text to an executable test flow. The result is an ML-based trainable test

flow generation system.

To create a trainable sequence generation system, we leverage a specialized form

of RNNs. LSTM units are used in order to learn sequential information. LSTM

networks have been used for several NLP tasks, and have been shown to be able to

generate new sequential data that is plausibly correct for a given problem domain,

given enough training data. LSTM networks have also been shown to be able to

generate strings belonging to context-free and context-sensitive languages [Gra13].

In order to use test flows as training data, a sliding window data augmentation

technique is used in order to expand the training data.

We frame the test flow learning problem as a supervised learning problem by

taking each individual test flow from the training set and expanding it one word at

a time, creating a new training example with a bigger sentence at each iteration.
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Figure 4.5: LSTM Sequence Training

For each generated training example, the next step of the sentence is the correctly

assigned label. An example of how the training data is created is illustrated in

Figure 4.5. Once an LSTM network has been trained, a typical prediction task

involves querying the trained model for the next step of a sequence, given an initial

set of elements. Our overall approach combines this capability of LSTMs with

the test flow language specification in order to enable the learning, generalization,

and generation of meaningful test flows. An example of how LSTM training data is

mapped is shown in Figure 4.5. Our word encoding, augmentation, and vectorization

algorithms are detailed below.
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Algorithm 1 Create word encoding from a set of test flows
1: procedure CreateEncoding(F )
2: wordToIndex = {}
3: indexToWord = {}
4: index = 0
5: for n = 1 to |F | do
6: for i = 1 to |F [n].steps| do
7: word = F [n].steps[i].lower().strip()
8: if word /∈ wordToIndex then
9: index = index+ 1

10: wordToIndexs[word] = index
11: indexToWord[index] = word

12: return wordToIndex, indexToWord

Algorithm 1 shows our procedure for creating a word encoding from a set of test

flows. Lines 2-4 initialize the mapping from a word to an index, and a mapping

from an index to a word. Line 5 loops over each input test flow, and line 6 loops

over each step within the current test flow. Line 7 retrieves the next word in the

test flow. Lines 8 checks if an index does not already exist for the current word. If

the word has not been processed yet, an index will not exist for it, and lines 9-11

will assign an index to the word and update both mappings. Finally, the algorithm

returns the word and index mappings.
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Algorithm 2 Generate expanded vectorized training set
1: procedure GenerateTrainingSet(F )
2: wordToIndex, indexToWord = CreateEncoding(F )
3: stepLists = []
4: nextStep = []
5: X = np.zeros(|F |,MAXLEN, |indexToWord|))
6: Y = np.zeros(|F |, |indexToWord|)
7: for n = 1 to |F | do . Encode each test flow step.
8: for i = 1 to |F [n].steps| do
9: F [n].steps[i] = F [n].steps[i].lower().strip()

10: F [n].steps[i] = wordToIndex[F [n].steps[i]]

11: for n = 1 to |F | do . Expand training data using sliding subflow windows.
12: for i = 1 to |F [n].steps| do
13: stepLists.append(F [n].steps[: i+ 1])
14: nextStep.append(F [n].steps[i+ 1])

15: for n = 1 to |stepLists| do . Vectorize training data.
16: for i = 1 to |stepLists[n]| do
17: X[n, i, stepLists[n][i]] = 1

18: Y [n, nextStep[n]] = 1

19: return X, Y

Algorithm 2 shows our procedure for creating a training data set given a set of

test flows. Line 2 invokes algorithm 1 to create a word encoding. Line 3 initializes

the list that will hold the expanded set of training data points. Line 4 initializes

a list that will hold the correct next word for each training data point. Lines 5-6

initialize the vectors necessary to properly represent the training data as input to

an LSTM neural network. Lines 7-10 loop through each word in each test flow,

converting each word into the appropriate encoded value. The algorithm frames the

flow learning problem as a supervised learning problem by taking each individual

test flow from the training set and expanding it one word at a time, creating a

new training example with a bigger sentence at each iteration. For each generated

training example, the next step of the sentence is the correct assigned label. Lines

11-14 expand the training data by processing each test flow and growing each test
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flow one word at a time, storing the currently grown test flow and the correct next

word as a new training data point. An example of how this works is shown in

Table 4.5. Lines 15-17 vectorize the expanded training data points and represent

them as matrices, where each element represents the existence of a specific word on a

specific position within a specific training data point sentence. Line 18 vectorizes the

correctly assigned next word for each training data point. Finally, Line 19 returns

both the training data and correct answer vectors.

Table 4.3: Test Flow Training Data Expansion

Given the training data, our approach focuses primarily on training a specialized

form of recurrent neural networks. Long short-term memory (LSTM) units are used

in order to learn sequential information. LSTM networks have been used for several

natural language processing tasks, and have been shown to be able to generate new

sequential data that is plausibly correct for a given problem domain, given enough

training data. Once an LSTM network has been trained, a typical prediction task is

ask the trained model for the next step of a sequence, given an initial set of elements.

Our approach combines LSTMs with an abstracted flow language specification in

order to enable the learning of meaningful test flows, in order to be able to generalize
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across examples, and in order to generate new test flows. Our work involved creating

a dataset containing a total of 5534 labeled examples, which were expanded from

922 test flows. Steps B4 and B5 of our approach, shown in Figure 4.6, focus on

tweaking our dataset and tuning hyperparameters to reduce bias and variance.

Figure 4.6: Test Flow Learning Approach

4.6 Test Case Generation and Execution

Once we have reached the point where we can both learn to classify web components,

and learn meaningful test flows against learned components, we can use our trained

models to generate executable test cases against a SUT. Our test generation and

execution system consists of a collection of agents that work in cooperation with the

test flow generation and web classification systems. A test coordinator is used to

orchestrate, distribute, and load-balance queued generated test flows. A knowledge

base is included to keep track of and remember information on which test cases

have been completed. The system allows the number of agents to be scaled, and all

communication and orchestration happens over a message bus channel. All major

system components are shown in Figure 4.7.

Each test agent implements the necessary systems to orchestrate the various re-

quired interactions. Given a new SUT, we will first generate a list of observations
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Figure 4.7: Test Case Generation and Execution Packages

using our web component classification system. We will then encode test flow frag-

ments, and use our trained LSTM networks to expand upon possible next steps of

previously trained test flows. Since test flows are generalized using our test flow

specification language, we can map a generalized test flow into a concrete test flow

that is executable for a given SUT. All of the major packages and classes that are

necessary to carry this process out are shown in Figure 4.8.

Our agent-based design involves the following major packages within an agent:

1. Grammar. Contains all necessary classes and implementation for processing

test flows using a specialized grammar. Contains the TestFlow class, an im-

plementation of a test flow. A test flow is a sequence of events that can be

performed against a web application, and that can be used to represent a test.

In addition, contains the SequenceParser class which utilizes the Python Lark

framework and a predefined grammar to parse test flow sequences generated

by the test flow generation system.
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Figure 4.8: Test Agent Packages

2. Defect Reporting. Responsible for collecting and reporting defect information.

Contains the Defect class, an implementation that contains information about

problems found in the SUT during execution. The DefectReporter class is

responsible for triaging defects and preventing duplicate defects from being

reported.

3. Abstraction. Responsible for reducing state space explosion when automati-

cally crawling web applications. Contains the ActionablePage class which rep-

resents abstract forms of all encountered SUT pages. Abstract pages contain
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information about actionable widgets and important static widgets. Static

widget importance is determined by the web classifier system. The Page-

Abstraction class is responsible for carrying out the abstraction process that

converts a concrete page to an abstract page.

4. Clients. Contains all necessary client wrappers to communicate with the AI-

based classifiers. The WebClassifier client allows communication with the web

classification system, and the FlowGenerator client allows communication with

the test flow generation system.

5. Perceive. Responsible for perceiving application state. The PageObserver

class extracts information from the current page being visited in the SUT.

The LabelExtraction class implements heuristics for extracting widget labels.

6. Flow Execution. Responsible for automatically executing test flows against

a concrete SUT. The Planner class processes test flows recommended by the

FlowGenerator client and filters out any flows that cannot be executed based

on the current execution context. The Executor class is responsible for carrying

out concrete execution actions.
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A snippet of the implementation for the main control loop for a test agent is

shown in Figure 4.9. On line 2, the current computed render tree is captured from

the web driver. A page analysis that processes the computed tree in order to extract

widget classifications is executed on line 3. The abstract state (a simplified version

of the computed tree) is created on Line 4. A set of observations derived from the

abstract state and the page analysis is constructed on Line 5. On lines 9-16, a test

flow is generated, parsed, and planned for each observation. On lines 18-19, each

planned test flow is published onto an external and shared planned flow queue. On

lines 21-23, a planned test flow is popped off the external queue and executed.

Figure 4.9: Agent Control Loop
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A snippet of the implementation provided by the FlowExecution.Planner system

is shown in Figure 4.10. The algorithm is invoked with an abstract state, the page

analysis, and the generated test flow as input. The purpose of the algorithm is to

map the abstract generated flow to a concrete executable flow. It is possible for

a single abstract flow to generate multiple concrete flows. Line 2 initializes a list

that will hold any flows planned by the algorithm. Line 3 initializes a list that

holds all of the planned steps. Line 5 loops through every action called for by the

generated test flow. Lines 6-10 handle the case of the abstract flow requiring text

input onto a widget. Line 7 attempts to find the widget using the label described

by the generated test flow, and Line 10 appends both the action and the concrete

widget onto the planned steps (explanation continues on next page).

Figure 4.10: Test Flow Execution Planner
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For readability, Figure 4.11 is a copy of the previous code snippet. Lines 12-22

handle the case of the abstract flow requiring clicking on a widget. Multiple candi-

date widgets may be found when the previously collected page analysis is processed

for matching widget labels, resulting in a list of possible actions being appended

as a single step to the overall planned steps. Line 24 handles this possibility by

constructing the Cartesian product of all possible planned flows across all possible

multiple match subsets. Lines 26-27 convert each flow in the Cartesian product into

a planned test flow. Finally, Line 29 returns the planned flows.

Figure 4.11: Test Flow Execution Planner (Copy)
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A snippet of the implementation provided by the FlowExecution.Executor system

is shown in Figure 4.12. This algorithm is responsible for executing a planned test

flow. Lines 1-11 loop over all necessary actions that are called for by the planned

flow. Lines 4-7 handle the case where a given widget must be set to a value that falls

within an equivalence class specified by the planned flow. Line 5 retrieves a concrete

input for a given equivalence from a system that provides seeded inputs. Lines 9-11

handle the case where a widget must be clicked. Lines 13-16 handle retrieving the

latest computed render tree, page analysis, abstract state, and observations. Line

17 creates a list of actual observation hash codes. Lines 19-26 loop through each

expected observation and ensure that each expected positive observation is present

within the actual observation hashes, and that each expected negative observation

is not present within the actual observation hashes. On line 26, a defect is raised if

an expectation is not met.

Figure 4.12: Test Flow Executor
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4.7 Summary

In this chapter we presented our approach to an AI-driven test generation approach

to reduce the gap between manual testing and automated testing. Our approach

includes using training data to train the web classifier and the flow generator, whose

output are then fed into the test generator. The test generator uses a test specifi-

cation language and the input from the web classifier and flow generator to create

test cases that are then executed by the test executor.
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CHAPTER 5

EVALUATION

In this chapter, we describe a prototype implementation and experimentation results

for the various different parts of an AI-driven test generation approach described in

Section 4.1, including webpage component classification, test flow generation, and

test generation and execution. Also, we discuss the results and identify limitations

with the approach.

5.1 Webpage Component Classification

In Section 4.2, we discussed the application of image-based classification to the prob-

lem of perceiving web application state. Aside from collecting and labeling images,

as part of our research we collected and labeled structural information from web

pages. To leverage structural information from a web page, we start by collecting

a render tree. A render tree contains information on the structure and styling of

nodes on the Document Object Model (DOM). A Computed Render Tree (CRT)

representation of the webpage is then constructed. In contrast to a standard render

tree, a CRT extends browser render trees by collecting the render tree only once the

web browser has finalized rendering, and by calculating additional information such

as: (1) element positions; and (2) element sizes.

Using the CRT representation, a feature synthesis step is then performed. An

element-wise pass is done through all of the elements in the CRT, synthesizing

several features for each element. Although the synthesis is done at the local level

for each element, the full global context (information on the entire set of elements)

is used to compute several features. The feature synthesis results in the generation

of training data that can be annotated for the purpose of training ML models.
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In order to evaluate the web classification approach, CRTs were collected and

hand-labeled for 7 different SUTs, comprised of 95 web pages and 17,360 web el-

ements. Among the labeled data were 122 elements labeled as page titles, 384

elements labeled as widget labels, 91 labeled as error messages, and 16,762 noise

data points. For each of the three component classes analyzed, an experiment was

done to compare the performance of the following ML classifiers: (1) random forests,

(2) J48 decision trees; (3) k-nearest neighbor; (4) support vector machines; and (5)

Bayesian networks.

The evaluations were done using percentage split and cross-validation. Perfor-

mance was measured using accuracy, precision, recall, and F1 score [GG05]. For the

problem of classifying widget labels, the results show that the random forest algo-

rithm performed best with an F1-Score of 96.3%. The detailed results are shown in

Table 5.1.

Table 5.1: Webpage Component Classification Results

Examples of sampled decision trees from the generated random forests are shown

in Figures 5.1 to 5.3. Each figure displays a randomly chosen sampled decision tree

generated by the random forest algorithm. Each node on the tree has a true or false

outcome for a specified condition against one of the features extracted from the web
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component. Following each tree from the root to a leaf will produce a classification

for the input web component. The random trees may vary greatly in complexity

and size.

Figure 5.1: Random Forest Sampled Decision Tree (First Sample)
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Figure 5.2: Random Forest Sampled Decision Tree (Second Sample)

Figure 5.3: Random Forest Sampled Decision Tree (Third Sample)
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5.2 Test Flow Generation

In order to validate both the designed language, as well as the test flow generation,

we constructed a prototype. We created an Extended Backus-Naur Form (EBNF)

[MR] language parser using the Lark library available in Python [Lar18]. We created

a total of 250 test flows utilizing all of the features of the language, and successfully

parsed the test flows using the custom Lark parser.

The Lark grammar is defined as follows:

s t a r t : ob s e r va t i on_ l i s t SPACE component_action_list

SPACE obs e r va t i on_ l i s t −> test_f low

ob s e r va t i on_ l i s t : obse rvat i on SPACE obs e r va t i on_ l i s t

−> obs e r va t i on_ l i s t_sub l i s t

| obse rvat i on −> obs e rva t i on_ l i s t_s i ng l e

obse rvat i on : "OBSERVE" SPACE q u a l i f i e r _ l i s t ? SPACE?

component −> observe

| "NOTOBSERVE" SPACE q u a l i f i e r _ l i s t ? SPACE?

component −> not_observe

| "OBSERVE" SPACE capture SPACE "IN" SPACE

"COLLECTION" −> obse rve_in_co l l e c t i on

| "NOTOBSERVE" SPACE capture SPACE "IN" SPACE

"COLLECTION" −> not_observe_in_col lect ion

| "OBSERVE" SPACE q u a l i f i e r _ l i s t ? SPACE? component

SPACE capture −> observe_capture

| "OR(" SPACE cond i t i ona l_obse rva t i on s SPACE ")"

−> cond i t i ona l_obs e rva t i on_ l i s t
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cond i t i ona l_obse rva t i on s : obse rvat i on SPACE " ," SPACE

cond i t i ona l_obse rva t i on s

−> cond i t i o n a l_ l i s t_ sub l i s t

| obse rvat i on −> cond i t i o n a l_ l i s t_ s i n g l e

q u a l i f i e r _ l i s t : q u a l i f i e r SPACE q u a l i f i e r _ l i s t

−> q u a l i f i e r _ l i s t _ s u b l i s t

| q u a l i f i e r −> q u a l i f i e r _ l i s t _ s i n g l e

q u a l i f i e r : "REQUIRED" −> requ i r ed

| "DISABLED" −> di sab l ed

| "SCREEN" −> screen

| l e a r n ed_qua l i f i e r

component_action_list : component_action SPACE

component_act ion_l ist_single

−> component_act ion_l i st_subl i s t

| component_action

−> component_act ion_l ist_single

component_action : "TRY" SPACE equ iva l ence_c la s s SPACE

component −> try_

| "TRY" SPACE equ iva l ence_c la s s SPACE

component SPACE capture −> try_capture

| "TRY" SPACE ( capture | not_capture ) SPACE

component −> try_captured

| "CLICK" SPACE component −> c l i c k

| "ENTER" SPACE component −> ente r
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| "NAVIGATE" SPACE component −> navigate

| "FOCUS" SPACE capture SPACE "IN" SPACE

"COLLECTION" −> focus_ in_co l l e c t i on

component : e lement_class SPACE TOKEN −> component_1

| e lement_class −> component_2

| TOKEN −> component_3

equ iva l ence_c la s s : "VALID" −> va l i d

| "INVALID" −> inva l i d

| "BLANK" −> blank

| "WHITESPACE" −> whitespace

| "INVALID_LONG" −> inva l id_long

| "INVALID_SPECIAL_CHARACTERS"

−> inva l i d_spec i a l_cha rac t e r s

| "INVALID" −> inva l i d

| "INVALID_XSR" −> inva l id_xsr

| learned_eq_class

e lement_class : "TEXTBOX" −> textbox

| "DROPDOWN" −> dropdown

| "ERRORMESSAGE" −> error_message

| "COMMIT" −> commit

| "CANCEL" −> cance l

| l ea rned_e l_c las s

capture : "$" TOKEN −> capture
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not_capture : " ! " TOKEN −> not_capture

l e a r n ed_qua l i f i e r : "LEARNED_QUAL_" TOKEN

learned_eq_class : "LEARNED_EQCLASS_" TOKEN

learned_e l_c las s : "LEARNED_ELCLASS_" TOKEN

TOKEN: /_? [A−Z ] [_A−Z0−9]∗/

%import common .WS −> SPACE

%import common .ESCAPED_STRING −> _STRING

Each of the 250 crafted test flows captured real tests that could feasibly be

performed by a human tester against a web application. Table 5.2 presents a subset

of the tests. Using the sliding window data augmentation technique, we created a

dataset containing a total of 2610 labeled examples for the purposes of using ML

for test flow generation. We used the Keras [Cho17] framework to build the neural

networks for the prototype.

The performance of the LSTM was measured using the built-in categorical cross-

entropy loss function available in the Keras neural network programming framework

[Cho17]. Training set accuracy was based on whether or not a predicted test flow

was a valid test flow sub-sequence in the training data. In addition, the output

predictions were only considered valid if the resulting test flow was able to be parsed

by the custom Lark parser. Different network topologies, optimization algorithms,

and regularization technique settings were compared [KB14, SHK+14, TH12]. The

ability of the test flow learning system to extract patterns and generalize was also
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Table 5.2: Selected Test Cases

tested. As one example, the experiment was concerned with investigating the ability

of the learning system to learn the generalized concept of required field validation.

The research and results show that it is possible to model human test flow

execution behavior as a continuous sequence problem that involves perceiving web

application state, acting upon the webpage, and observing resulting state. We

demonstrate how to restrict such testing behavior within the confines of a well-

defined language, and we present an ML-based approach for learning to recall and

generate strings that belong to the language.

To test the language, 5 categories of disparate web application screen types

were selected. For each of the categories, 5 different examples were selected across

distinctive web sites. For each of the examples, a set of tests was hand-crafted. The

ability of the language to be able to express each of the tests was then determined.
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The language was iteratively expanded to accommodate more functionality and

expressiveness. Table 5.2 contains a subset of the tests that were selected for this

exercise. Each group of tests in the table also contains an example test flow.

Our results suggest that LSTMs can model and generate test flows. One of the

challenges observed when training LSTMs was instability in the accuracy of the

trained model. Significant fluctuations in accuracy were observed during training.

In addition, instability was also observed in the ability of the LSTM to learn patterns

and generalize across training examples. Results suggest that the system is able to

extract patterns from the training data and is able to form generalizations. For

example, results showed that the following pattern was extracted from the training

data: after observing a required field, attempting to leave it blank and submitting

a form should raise an error message. Table 5.2 shows a detailed breakdown of

the performance of each configuration that was evaluated when training the neural

networks.

Each trained LSTM model was used for generating a total of 2925 test flows.

When evaluating each LSTM configuration, accuracy was measured by dividing

the number of generated test flows that were valid strings in our language by the

total number of generated test flows. Experiments included varying the number of

training iterations, called epochs, the number of LSTM layers, and the number of

LSTM units per layer. The Adam and RMSProp optimizers were also evaluated, as

well as dropout regularization. Based on the results, the highest accuracy (93.85%)

was achieved when training a single LSTM layer network for 500 epochs, using the

RMSProp optimization algorithm. Equivalent accuracy was observed when using

multiple stacked LSTM layers. Generally, increasing the number of layers and units

improved accuracy; however, training time was also observed to increase. Stacking

LSTM layers appears to be a viable option for increasing accuracy as more training
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data is added. While dropout regularization generally reduced training set accuracy,

it did not greatly affect accuracy when training for longer durations or when using

larger networks.

Table 5.3: Flow Learning LSTM Results

5.3 Test Generation and Execution

The test generation system was evaluated using the Spring Pet Clinic application

[Pet13], shown in Figure 5.4. After training the AI classifiers, the test flow execution

system was able to generate 700 unique test cases for the Spring Pet Clinic applica-

tion, and as a consequence our approach was able to find 12 bugs in the application

in under 10 minutes using 5 test agents. In comparison, a human tester was able

to find the same number of bugs in 30 minutes, and found a total of 20 bugs in 45

minutes. Most of the bugs that were found include lack of field validation across

many fields in the Spring Pet Clinic application. For example, many fields accepted

cross-site scripting values, and invalid values in general. In addition, a few bugs

were found with required field functionality.

As part of our experiments, we also varied the number of agents to evaluate the

scalability of the approach. We found that with a single agent it took about 45
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minutes to find as many bugs as 5 agents were able to find in 10 minutes. With 50

agents, it took about 8 minutes to find the same number of target bugs. During the

50 agent experiment, we identified that the response times of the underlying machine

learning services (running a single service per machine learning system) significantly

degraded, which may explain the diminishing return on defect detection efficiency.

Figure 5.5 showcases the distributed nature of the multi-agent system.

Figure 5.4: Sprint Pet Clinic Website

Figure 5.5: Distributed Generated Test Execution
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5.4 Discussion

The primary objective of the thesis is to investigate the feasibility of using machine

learning approaches such as decision trees and neural networks to automatically

generate tests in a way that is independent of any specific web application. The

evaluation criteria is that the developed approach should be capable of generalizing

from previously trained models, and should generate executable test cases against

an unseen web application. As discussed in Sections 5.1 and 5.2, various machine

learning systems were trained on a number of different web sites and on a number of

different manually hand-crafted test flows. In Section 5.3 we discussed a prototype

capable of leveraging these ML-based systems in order to generate and execute test

cases against the Spring Pet Clinic application, resulting in defects being found in

the application. The web classification subsystem was only trained on 2 example

data points from one of the pages of the Spring Pet Clinic application, and the

test flow generation system was not trained on any information from the Spring Pet

Clinic application. Based on our evaluation, our presented approach is able to better

generalize as more data is collected and trained on, and the approach generalizes to

new systems with little effort.

The first sub-objective of the thesis is to develop a trainable classifier which

perceives application state and allows for the extraction of web page components in

a way that is agnostic to a web application. This sub-objective was evaluated using

multiple pages from several disparate web applications using accuracy, precision,

and recall. As discussed in Section 5.1, the classifier was evaluated against 7

different websites, comprising 95 web pages and 17,360 web elements. Among the

labeled data were 122 elements labeled as page titles, 384 elements labeled as widget

labels, 91 labeled as error messages, and 16,762 noise data points. Using percentage
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split and cross-validation, our evaluation results show an F1-Score of 96.3% for

widget label classification, 99.4% for error message classification, and 71.6% for page

title classification. Overall, the results were favorable for the different classification

problems evaluated.

The second sub-objective is to develop a language that enables the generalized

description of web application test flows and to develop an ML classifier for gener-

ating test flows. This sub-objective was evaluated by taking a representative set of

hand-crafted test cases for a web application and checking the expressiveness of the

language and the ability of the language to express each test case as an abstract test

flow. In addition, this sub-objective was evaluated by testing the ability of an ML

classifier to generate a comparable set of abstract test flows for a previously unseen

web application. As discussed in Section 5.2, our evaluation shows that our lan-

guage was able to express a total of 250 test cases for different types of application

screens. In addition, our ML implementation was able to generate abstract flows

with 93.85% accuracy. Each of the valid generated abstract flows were applicable

to new unseen applications such as the Spring Pet Clinic application, as discussed

in Section 5.3.

The third sub-objective is to develop a test execution engine that uses ML-

generated test flows and seeded test inputs to produce executable tests for a previ-

ously unseen web application. This sub-objective was evaluated by comparing the

number of defects found by our approach compared to that of the number of defects

found by a human testing approach. As discussed in Section 5.3, our approach

was able to find 12 defects on the Spring Pet Clinic application, compared to 20

defects found by a human tester on the same application. While there is room for

improvement, the results are generally favorable.
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5.5 Limitations

While the overall results were favorable with regards to the development of a train-

able web classification system, the machine learning experiments were conducted

on limited data sets, and as such the trained ML models may have over-fit during

training. Only 7 different websites were considered for data collection and training

evaluation, and only 17,360 web elements were considered. In addition, only 3 dif-

ferent classification problems were investigated: widget labels, error messages, and

page titles. In addition, only a finite set of machine learning classifiers and hyper-

parameter configurations were evaluated. As such, it is difficult to predict whether

the approach will generalize as more data is collected.

Although the results were favorable for both language expressiveness and ability

to generate test flows, there are also a few threats to validity. The language was

only expanded to accommodate test cases from 5 different types of web application

screens. In addition, a limited set of test cases were selected for each of the 5

types of screens. One of the challenges observed when training LSTMs is instability

in the accuracy of the trained model. Significant fluctuations in accuracy were

observed during training. In addition, instability was also observed in the ability

for the LSTM to learn patterns and generalize across training examples. Also, only

a finite set of hyper-parameter configurations and LSTM layer configurations were

evaluated.

While we were able to show that our approach could generate test flows, execute

test flows, and find defects against an unseen web application, namely the Spring

Pet Clinic Application, the evaluation was limited and only attempted to execute

generated test flows against a single application. As such, it is difficult to predict how

generalizable the approach is. In addition, although the test coordination subsystem
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performs de-duplication of generated test cases, and does not en-queue a test case

in the event of an execution failure (outside of expectation mismatches), the system

does not learn from these events in order to improve test generation. In addition,

current test planning algorithms do not implement high level planning with test

goals and exit criteria in mind. Instead, they focus on filtering out generated tests

that are not executable against the concrete SUT. Overall, this thesis presents an

approach that aims to reduce the gap between the testing capabilities of humans

and those of machines. Although the results are generally positive, the research

presented in this thesis is still limited and only examines a limited scope of each of

the presented sub-problems.

61



CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis focused in detail on a specific approach for allowing human testers

to express tests as reusable test flows, and for leveraging AI and ML to enable the

creation of a trainable test flow generation system. The primary objective of the

thesis is to investigate the feasibility of using machine learning approaches such as

decision trees and neural networks to automatically generate tests in a way that is

independent of any specific web application. Based on our evaluation, our presented

approach is able to better generalize as more data is collected and trained on, and

the approach generalizes to new systems with little effort.

The first sub-objective of the thesis was to develop a trainable classifier which

perceives application state and allows for the extraction of web page components

in a way that is agnostic to a web application. As discussed in Section 4.2, we

frame the problem of understanding webpage components as a supervised learning

classification problem. Using an ML-based approach allows us to improve the system

by providing additional data, and allows us to raise the level of abstraction by which

we interact with webpage components, ultimately promoting test re-usability across

systems. As discussed in Section 5.1, the classifier was evaluated against 7 different

websites, 95 web pages, and 17,360 web elements. Among the labeled data were 122

page title elements, 384 widget label elements, 91 error message elements, and 16,762

noise data points. Overall, the results were favorable for the different classification

problems evaluated, averaging an overall classification F1-Score of 89.1%.

The second sub-objective was to develop a language that enables the general-

ized description of web application test flows and to develop an ML classifier for

generating test flows. As discussed in Sections 4.3, 4.4, and 4.5, we developed

a test flow specification language that may be used to manually create test flows
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for training, and for parsing automatically generated test flows. We also developed

an ML-based approach to test flow generation via the use of techniques previously

applied to text generation. Our evaluation shows that our language was able to ex-

press a total of 250 test cases for different types of application screens. In addition,

our ML implementation was able to generate abstract flows with 93.85% accuracy.

The third sub-objective was to develop a test execution engine that uses ML-

generated test flows and seeded test inputs to produce executable tests for a previ-

ously unseen web application. As discussed in Section 4.6, we developed a system

that consists of a collection of agents and coordinators that work in cooperation

with our test flow generation and web classification systems in order to automati-

cally explore a System Under Test, automatically perceive application state across

various pages, and automatically generate and execute test cases. In addition, our

test execution system is distributed and scalable as testing is more efficient as more

test agents are deployed. Our approach was able to find 12 defects on the Spring

Pet Clinic application within 10 minutes using 5 test agents.

While the results are promising, our work is limited. There are still outstanding

research challenges, such as the oracle problem. Although we show the ability to

generate abstract test flows that include expectation information, our training data

and prototypes are limited in that they are focused on generic problems, and not

domain-specific details. To construct domain-specific oracles, more training data

with higher variety must be collected, and more analysis must be done.

Further work must be done on expanding the feature synthesis work for the web

classification approach in order to improve the classification power of the approach.

While our work focused on classifying individual elements on web pages, remaining

work must be done in order to classify a group of elements as belonging to a par-

ticular class. Techniques that utilize image data and convolutional neural networks
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will be explored. In addition, we also plan to explore spatial encoding techniques

for expressing webpage positional information in a sparse form that does not require

the use of images [GHS16].

To improve the generalization of the approach, additional training and test data

must be collected, and the scope of the problem domains from which the training

website data belongs to must be expanded. Additional remaining work involves

further development of a tool that functions as a web browser plugin, allowing a

human user to supply labeled information about any webpage component on any

webpage. This labeled data may be used to iteratively improve the underlying ma-

chine learning models. In addition, it would be useful to create a web browser plugin

that is capable of observing a human user as they carry out testing activities. The

plugin will work in tandem with the web component classification system to record

information about web components being interacted on by testing activity. The

observations that are automatically collected from human testers may be encoded

into strings that belong to the test flow specification language. Once the test flows

have been created, they may be used to train the LSTM networks. The trained

LSTM models may then be used to generate new test flows.

A promising research direction for future work involves the creation of a hierar-

chical LSTM-based test flow generation model, whereby higher-level models generate

abstract domain-specific concepts. The trained LSTM model detailed in our work

would serve as the foundation of the hierarchy. While base-level LSTMs enable

the generation of fine-grained test cases against low-level web elements, higher level

LSTMs focus on generating coarse-grained test cases that would be useful for test-

ing higher-level domain-specific application work-flows. The LSTM models at each

level of the hierarchy are all independently trainable and serve specific purposes,

and may be composed to increase test coverage of the generated test case set.
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