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ABSTRACT OF THE DISSERTATION
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Today, as more and more industries are involved in the artificial intelligence era, all

business enterprises constantly explore innovative ways to expand their outreach and

fulfill the high requirements from customers, with the purpose of gaining a competitive

advantage in the marketplace. However, the success of a business highly relies on its

IT service. Value-creating activities of a business cannot be accomplished without

solid and continuous delivery of IT services especially in the increasingly intricate

and specialized world. Driven by both the growing complexity of IT environments

and rapidly changing business needs, service providers are urgently seeking intelligent

data mining and machine learning techniques to build a cognitive “brain” in IT service

management, capable of automatically understanding, reasoning and learning from

operational data collected from human engineers and virtual engineers during the IT

service maintenance.

The ultimate goal of IT service management optimization is to maximize the au-

tomation of IT routine procedures such as problem detection, determination, and

resolution. However, to fully automate the entire IT routine procedure is still a

challenging task without any human intervention. In the real IT system, both the

step-wise resolution descriptions and scripted resolutions are often logged with their

vii



corresponding problematic incidents, which typically contain abundant valuable hu-

man domain knowledge. Hence, modeling, gathering and utilizing the domain knowl-

edge from IT system maintenance logs act as an extremely crucial role in IT service

management optimization. To optimize the IT service management from the per-

spective of intelligent data mining techniques, three research directions are identified

and considered to be greatly helpful for automatic service management: (1) efficiently

extract and organize the domain knowledge from IT system maintenance logs; (2) on-

line collect and update the existing domain knowledge by interactively recommending

the possible resolutions; (3) automatically discover the latent relation among scripted

resolutions and intelligently suggest proper scripted resolutions for IT problems.

My dissertation addresses these challenges mentioned above by designing and

implementing a set of intelligent data-driven solutions including (1) constructing the

domain knowledge base for problem resolution inference; (2) online recommending

resolution in light of the explicit hierarchical resolution categories provided by domain

experts; and (3) interactively recommending resolution with the latent resolution

relations learned through a collaborative filtering model.
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CHAPTER 1

INTRODUCTION

1.1 Background

As more and more industries are involved in the age of artificial intelligence [KDF+],

it has become essential to adopt information techniques for all business enterprises

to gain a competitive advantage. Business enterprises constantly explore innovative

ways of expanding their outreach and fulfill high requirements from customers. How-

ever, value-creating activities cannot be accomplished without a solid and continuous

delivery of IT services in this increasingly complex world. Service providers are ex-

pected to focus on assisting customers in their core business areas and resolving tough

problems. Also, the time spending on fixing operational issues has to be minimized

as well. Therefore, intelligent data mining and machine learning techniques urgently

need employing to maximize the automation of subroutine procedures such as prob-

lem detection, determination, and resolution of the service infrastructure, which is an

ultimate goal of IT service management, prescribed by the Information Technology

Infrastructure Library (ITIL) specification [urlg]. A traditional workflow of an IT

routine maintenance illustrated in Figure 1.1 includes four steps.

At the first step, anomalies are detected by the monitoring system, one of the most

critical components in IT service management. Some popular monitoring systems

are available in the marketplace, such as IBM Tivoli Monitoring [urlf], HP Open

View [urlb], etc. A monitoring system can track the status of a system and detect

various problems related to CPU utility, memory usage, network connection condition

and so on. Based on the regularly collected system data, it computes the metrics

situation compared with some predefined acceptable thresholds. An alert will be

1
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Figure 1.1: A typical workflow of a traditional IT routine maintenance.

raised if any violation occurred. When an anomaly persists beyond a predefined

duration, the monitoring system generates an event for further inspection.

For the second step, events generated from an entire IT environment are con-

solidated in an enterprise console and finally stored into an event database. Each

event consists of three parts: event type, occurring timestamp, and the description.

The system determines whether or not to create an incident ticket having a business

impact or a business risk, also referred to as a monitoring ticket by employing rules,

cases or a knowledge-based engine to analyze these events.

At the third step, the reported incident tickets illustrated in Figure 1.2 are collect-

ed by an IPC (Incident, Problem, and Change) system. The information recorded in

2



RESOLUTION

TICKET IDENTIFIER: XXXX:APPS:LogAdapter:NALAC:STARACTUAT_6600

NODE
FAILURECO

DE

ORIGINAL

SEVERITY
OSTYPE COMPONET CUSTOMER

XXXX UNKNOWN 4 WIN2K3 APPLICATION XXXX

TICKET SUMMARY:

STARACTUAT_6600 03/01/2014 04:30:28 STARACTUAT_6600 

GLACTUA Market=CAAirMiles:Report_ID=MRF600:ReportPeriod From: 

2014/02/01 to 2014/02/28:ErrorDesc=For CAAirMiles Actuate is out of 

balance with STAR BalanceMRF600 & MRF601 Counts. Reconcilation 

Difference = 2MRF600 & MRF601 Net Fee. Reconcilation Difference = 

25MRF600 & MRF601 Gross Fee .Reconcilation Difference = 25

ProblemSolutionText:***** Updated by GLACTUA ****** 

Problem Reported : Reconciliation difference Root cause : Reconciliation was run before all 

reports completed. This is as per the new SLAs. 

Solution provided : Reconciliation was re-run after the next set of reports completed.There was 

no user impact. 

Closure code : WRKS_AS_DSIGND 

RCADescription:***** Updated by GLACTUA ****** 

Problem Reported : Reconciliation difference 

Root cause : Reconciliation was run before all reports completed. This is as per the new SLAs. 

Solution provided : Reconciliation was re-run after the next set of reports completed.There was 

no user impact. 

Closure code : WRKS_AS_DSIGND

Figure 1.2: A ticket example in IT service management. Ticket summary logs the
specific problem symptoms. A step-wised resolution written by human engineers is
recorded in ticket resolution.

the ticket summary is the description of the underlying problem for further problem

diagnosis, determination and resolution.

At the fourth step, human engineers start to inspect possible root causes based

on the ticket summary. In general, the role of human engineers is limited to correctly

inferring the possible categories (e.g., database, application, OS, etc.) of the under-

lying IT problem and assigning it to the corresponding processing teams for the final

problem resolution. They make the complex root cause analysis and log a step-wise

resolution into the historical database after they have fixed this issue. The resolution

part contains considerable domain expert knowledge seen in Figure 1.2. However,

human engineers are often overcharged in this workflow by the abundant incident

ticket data for problem diagnosis, determination, and resolution. Developing more

3



intelligent and efficient solutions is required to fully automate these processes, and

thus alleviate human efforts involved in IT service management.

Recent advances in artificial intelligence have led to a new revolution in traditional

IT industries. For decades, service providers have already developed various cognitive

techniques to optimize the automated processes. They are trying to address the

customers’ concerns about how they could quickly detect and fix problems in their

infrastructure as soon as the issues occurred. With this purpose, human engineers

begin with automatically resolving repetitive problems in an IT system. They identify

the problem patterns from data and write the corresponding scripts, which could

quickly fix specific issues in an automated way.

Then, enterprise IT automation services [urld] has been developed, where virtual

engineer is incorporated as a cognitive engine for automated corrective actions (i.e.,

scripted resolutions or automations) and closure of incident records immediately. It

includes several key components:

• Virtual engineer is a software component that uses algorithms to detect and

take operational actions on problems without any human intervention.

• Patterns are identified by human engineers, which virtual engineer must follow

to respond to an incident.

• Analytics is used as the gauge of the effectiveness of automation and to learn

experience from new changes or root problem determination.

In this process, it logs detailed information while it executes operations. Figure 1.3

shows an example of an IT service management ticket that was automatically gener-

ated by the monitoring system, and successfully fixed by IT automation services. The

summary and monitoring class (i.e., an alert key) of the incident ticket provide an

initial symptom description, which is used for automation service to identify existing
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automation or lack thereof. If the issue is resolved by the recommended automa-

tion (i.e., a scripted resolution), the value of “AUTORESOVLED” will be marked

non-zero. If it could not be completely resolved, this ticket problem is then directly

escalated to human engineers due to the lack of the corresponding automation.

ALERT_KEY cpc_cpuutil_gntw_win_v3

CLIENT_ID HOSTNAME
ORIGINAL

SEVERITY
OSTYPE COMPONET

SUBCOMP

OMET

136
LEXSBWS01

VH
2 WIN WINDOWS CPU

TICKET 

SUMMARY

AUTOMATON_NAME CPC:WIN:GEN:R:W:System Load Handler

AUTO

RESOVLED

CPU Workload High. CPU 1, 

busy 99% time.

1

TICKET 

RESOLUTION

The CPU Utilization was quite reduced, 

hence closing the ticket.

OPEN_DTTM

2016-04-30

12:43:07

Figure 1.3: A sample ticket solved by IT automation services.

To sum up, IT service management relies on partial automation of the IT rou-

tine maintenance procedure, where operations of both human engineers and virtual

engineers are closely intertwined.

1.2 Motivation and Problem Statement

Optimizing the automation of IT routine maintenance procedures can significantly

alleviate the involvement of human efforts, and thereby increase the IT industry’s

productivity as well as efficiency, and further reduce human errors. The optimiza-

tion of IT service management is urgently dictated in practice. Especially, when the

systems are growing more complex, it further aggravates the difficulty in controlling

the quality of delivery services and needs more human interventions in the routine

maintenance procedures. As we mentioned before, artificial intelligence is dramati-

cally improving traditional technologies of IT service management by empowering its

cognitive capability. There are three critical areas outlined as follows [urla].
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• Incident or request creation. Automated IT service management processes

are designed to work well when the incident information is provided correctly.

Unfortunately, many of them turn out to be ineffective due to the incorrect

information provided by end-users. Incorporating AI into IT service manage-

ment will enable it to interpret incidents from end-users and thereby improve

the efficiency of the service management.

• Automated backend processes. Automated IT service management pro-

cesses can detect anomalies and automatically open an incident ticket without

any human intervention. The power of AI in IT service management would

make the system capable of learning experience from past operations of human

engineers and automated backend processes. In the future, automated IT ser-

vice management processes will intelligently correct any issue, even if it is new

to the system by learning and inferring with no human efforts.

• Knowledge management. Automated IT service management processes in-

corporated AI would search for answers against the trusted knowledge databases

(e.g., AI cloud) automatically. An AI-enabled system will not only recommend

the proper resolution to any IT problem, but also train itself using interactive

feedback to optimize the provided answers adaptively.

In recent years, data mining and machine learning techniques have been involved

in addressing the practical issues in the system and service management by re-

searchers [MSGL09, ABD+07, DJL09, LPG02, ABCM09, KWI+11, TLS12, TLS+13,

ZLSG15a, LZJ+17, LZZ+16, LZZ+17]. In an IT system, the operational data of both

human engineers and virtual engineers stores in the historical database, which has

not been well exploited yet. My dissertation focuses on proposing and implementing

intelligent solutions to learn domain knowledge from these valuable data and leverage
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the learned or inferred domain knowledge to facilitate the automated processes of

problem determination, diagnosis, and resolution.

From the perspectives of intelligent data mining techniques, three research direc-

tions are identified and considered to be helpful for IT service management optimiza-

tion.

1. Efficiently recommend problem resolution using a constructed do-

main knowledge base. A problematic incident is logged as an incident ticket

and contains the ticket summary (i.e., problem description). When such tickets

are resolved, the system administrators will log the step-wise resolution descrip-

tion, which is a free-form text but with valuable domain human knowledge. It

is almost an impossible task to fully automate the entire IT service manage-

ment without the help of domain experts. Therefore, modeling, gathering, and

utilizing the domain knowledge during ticket resolution become increasingly

crucial. However, both ticket summary and resolution contain domain-specific

terms such as SLAs and RCA. Besides, they contain many typos and gram-

matical errors. As a result, it becomes infeasible to identify useful information

using only traditional Natural Language Processing (NLP) techniques without

any domain expertise. All these issues pose new challenges in constructing a

domain knowledge base.

2. Interactively recommend the best matching automation using a hi-

erarchical multi-armed bandit algorithm. IT automation services (i.e.,

ITAS) has been introduced into IT service management as an engine for au-

tomated corrective actions (i.e., scripted resolutions) and closure of incident

records. The summary and monitoring class (i.e., an alert key) of the ticket

provide an initial symptom description, which is used for automation services

to identify existing automation or lack thereof. To improve the efficiency of the
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recommended strategies of the automation engine, it is essential to understand

how the symptoms could be mapped to the corresponding scripted resolution-

s. Based on preliminary studies, three key challenges are identified. The first

challenge is the well-known cold start problem [SPUP02, ZWML16] making the

enterprise automation engine ineffective which translates into significant human

efforts. Adaptively optimizing the recommending strategies of the enterprise au-

tomation engine by utilizing the interactive feedback is the second challenge.

Besides, domain experts usually define the taxonomy (i.e., hierarchy) of the

IT problems explicitly. Correspondingly, the scripted resolutions (i.e., automa-

tions) also contain the underlying hierarchical problems’ structure. The third

challenge is how to improve the performance of a recommendation using the

automation hierarchy.

3. Intelligently recommend proper scripted resolutions using an inter-

active collaborative topic regression model. The reality of IT environ-

ments is such that not all automations are properly set in a hierarchical structure

due to the lack of sufficient information and some may fall into the unknown

category. Furthermore, as a result of the imperfection of log information record-

ing, a large number of tickets are logged with an error code only with no detailed

symptom information, which becomes a significant challenge to infer a match

between the ticket symptoms and the corresponding scripted resolutions. The

mapping function could be naturally formalized as an interactive collaborative

filtering problem.

Figure 1.4 summarizes my three research directions aiming to introduce a cognitive

brain into the current automatic service management. This brain can intelligently and

effectively understand, reason and learn from data collected from human engineers
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and virtual engineers. In the next section, I briefly present the contributions of my

dissertation along these research directions.

Figure 1.4: Overview of research directions.

1.3 Contributions

My dissertation addresses the challenges relevant to the research topics outlined

above, by designing and developing data-driven approaches, with the purpose of help-

ing system administrators better manage the system and alleviate the human efforts

involved in IT service management. Notably, the main outcomes of my dissertation

are highlighted as follows: (1) constructing the domain knowledge base for improving

the performance of the resolution recommendation; (2) an online learning approach

for a context-based automation recommendation; (3) an online interactive collabora-

tive filtering model for a context-free automation recommendation. The contributions

of the three research directions are carefully discussed in the reminder of Section 1.3.
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1.3.1 Learn Human Intelligence by Domain Knowledge Base

Construction

Since it is a tough task to fully automate the entire IT service management with

no involvement of domain experts, domain knowledge base construction becomes

increasingly crucial by modeling, gathering, and utilizing the domain knowledge. An

integrated framework is proposed to construct a domain knowledge base for inferring

the problem resolution. In order to improve the efficiency of the problem resolution

process, it is crucial to formalize problem records and discover relationships between

elements of the records, the records overall and other technical information. In the

proposed framework, the domain knowledge is modeled using ontology techniques, of

which the key contribution is a novel domain-specific approach for extracting useful

phrases that makes it possible to learn from human engineers [WZZ+17b].

1. A novel domain-specific approach, designed to analyze free-form text in both

ticket summary and resolution for useful phrase extraction.

2. Utilization of the ontology modeling techniques, constructing a knowledge base

by combining domain expertise with extracted useful phrases.

3. Automation improvement of IT service management, through development of

a resolution recommendation component based on domain knowledge.

4. A closed feedback loop system, to facilitate learning from an outcome of reso-

lution recommendation, and thus continuous extension of the knowledge base.
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1.3.2 Learn Automation Intelligence by Hierarchical Multi-

armed Bandit Model

For many years, service providers have focused on developing intelligent automating

processes to improve the efficiency and quality of delivered services. Recent advances

in data mining and machine learning techniques have significantly powered the cog-

nitive development of traditional IT industries. With this purpose, human engineers

begin with automatically resolving repetitive problems in an IT system. They identify

and determine the patterns and write scripts, making operational fixes from months

to minutes and reducing human errors. In this work, we try to understand how the

problem symptom could be mapped to the corresponding automation (i.e., a script-

ed resolution). To the best of my knowledge, it is the first work to formulate the

automation recommendation of IT automation services as a contextual multi-armed

bandit problem, while considering the dependencies among arms in the form of hierar-

chies. We develop a hierarchical multi-armed bandit model leveraging the hierarchical

information, which can match the coarse-to-fine feature space of arms. [WLI+18]

The contribution mainly focuses on proposing a new hierarchical multi-armed ban-

dit model to interactively learn the best mapping function between problem symptoms

and automations. The key features of our contribution include:

1. A new online learning approach, designed to (1) solve the cold-start problem,

and (2) continuously recommend an appropriate automation for the incoming

ticket problem and adapt based on the feedback to improve the goodness of

match between the problem and automation in IT automation services.

2. Utilization of the hierarchies, integrated into bandit algorithms to model the

dependencies among arms.
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3. Automation improvement of IT automation services, through development of

an online recommendation for ticket resolution.

1.3.3 Learn Automation Intelligence by Interactive Collabo-

rative Topic Regression Model

In the practical IT system, a large number of tickets are logged with an error code

only and no detailed symptoms, which means no context information about ticket

problem is provided. In order to effectively infer a proper automation for ticket prob-

lem as well, we propose an interactive collaborative topic regression model to solve

it, which is capable of learning hidden features for ticket problems and automations,

while automatically identifying automation dependencies in the form of clusters. We

first provide the formulation of a general interactive recommender system used for

recommending an interesting news article or a favorite movie and then a ticket au-

tomation recommendation problem. We explicitly formulate item dependencies as the

clusters of arms in the bandit setting, where the arms within a single cluster share the

similar latent topics. In light of topic modeling techniques, we come up with a novel

generative model to generate the items from their underlying topics. Furthermore,

an efficient particle-learning based online algorithm is developed for inferring both

latent parameters and states of our model by taking advantage of the fully adaptive

inference strategy of particle learning techniques [WLI+18, WZZ+17a].

1. An online interactive collaborative filtering mode, proposed to (1) balance the

tradeoff between exploration and exploitation, and (2) interactively and contin-

uously recommend a proper item in the context-free mode.

2. Identification of item dependencies in the form of clusters, leveraged topic mod-

eling into bandit model to model the dependencies among arms.
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3. An effective online inference algorithm using particle learning, developed to

solve the generative model.

4. Continual automation services improvements, through an intelligent interactive

recommendation strategy.

1.4 Summary and Roadmap

Large and complex systems with a large number of heterogeneous components are

difficult to monitor, manage and maintain. Traditional approaches to system man-

agement mainly rely on the knowledge from the domain experts, where the domain-

specific knowledge is used to compose operational rules, policies, and dependency

models. However, those routine maintenance procedures are well known and experi-

enced as a cumbersome, labor intensive, and error-prone processes. In the disserta-

tion, focusing on optimizing the automation processes, we design and employ intel-

ligent data-driven approaches applied into IT service management learning domain

knowledge from human engineers and virtual engineers.

To facilitate the reading and understanding of the research problems, the organi-

zation of this dissertation is outlined as follows. First, the preliminary and related

works of the three research directions above are discussed in Chapter 2. To continue,

we carefully study the three research problems in Chapter 3, Chapter 4 and Chapter 5,

respectively. Particularly, in Chapter 3, the domain knowledge base construction is

studied, where both natural language processing and ontology modeling are utilized.

In Chapter 4, we mathematically formulate ticket automation recommendations as a

contextual multi-armed bandit problem, where the dependencies among arms are in

the form of hierarchies. In Chapter 5, we study the interactive collaborative filtering

problem about how to recommend an appropriate item using only interaction data.

We propose a novel interactive collaborative topic regression model, where arm de-
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pendencies are formulated using topic modeling techniques. Finally, in Chapter 6,

we conclude the dissertation and discuss the future work along our research. The

work was supported in part by the National Science Foundation under Grant Nos.

CNS-1461926 and FIU Dissertation Year Fellowship.
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CHAPTER 2

PRELIMINARIES AND RELATED WORK

In the previous chapter, I have highlighted three concrete problems on the existing

IT service management system. In order to make the system more intelligent and

efficient, three popular research directions are proposed along with the corresponding

solutions, trying to learn expert experience from both human engineers and virtu-

al engineers. In this chapter, I will provide background knowledge on the research

topics mentioned above and highlight the closely related state-of-art literature. Sec-

tion 2.1 introduces the existing work related to the traditional automation techniques

in IT service management and the domain knowledge base construction as well as

the relevant techniques such as ontology modeling. Contextual multi-armed bandit

algorithms and interactive recommender systems will be reviewed in Section 2.2. Sec-

tion 2.3 discuss the related literature on the interactive collaborative filtering problem.

2.1 Related Work of Learn Human Intelligence by Domain

Knowledge Base Construction

2.1.1 Traditional Automation techniques in IT service man-

agement

The automation of IT service management is largely achieved through service-providing

facilities in combination with automation of subroutine procedures such as problem

detection, problem determination, and ticket resolution recommendation for the ser-

vice infrastructure. Automatic problem detection is typically realized by the mon-

itoring systems, such as IBM Tivoli Monitoring [urlf] and HP OpenView [urlb].
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In [XHF+09], Xu et al. developed the automated system runtime problem detec-

tion by analyzing console logs. Tang et al. [TLS+13] proposed an integrated frame-

work to minimize the false positive and maximize the coverage for system fault de-

tection to optimize this procedure. For problem determination, significant efforts

have been put on analyzing structured logs or unstructured text fields. A hierarchi-

cal multi-label classification method [ZLSG14, ZZL+17] was proposed to classify the

problem types in the monitoring IT tickets. In order to determine the root cause,

authors [ZTL+14, ZL15, ZTZ+17, ZWML16] analyzed the historical events to reveal

the underlying temporal causal relationship between these sequential data. Auto-

mated ticket resolution recommendation [TLSG13] is a big challenge in IT service

management since it requires vast domain knowledge about the target infrastructure.

However, these studies mainly work on structured data, ignoring valuable domain-

specific knowledge hidden in those unstructured text fields/logs. Therefore, we ur-

gently need to develop an intelligent framework collecting the precious human knowl-

edge to facilitate all the subroutine procedures. In [ZXB+17], a deep neural network

ranking model was utilized for a recommendation of the best top-n matching res-

olutions by quantifying the quality of each historical ticket resolution. It perfectly

demonstrated the domain knowledge base is not only fundamental to the understand-

ing of the system problems but also can significantly benefit those aforementioned

tasks.

2.1.2 Ontology Modeling

Over the past decades, ontology technology has become common and been moving

out from the realm of Artificial Intelligence [NM+01a] to desktops of domain ex-

perts, which has been defined as the study of the categories of things that exist or

may exist in some domain [S+00, KMSS03]. Ontology modeling represents domain

16



knowledge by specifying the classes and relations among the classes. It makes the

structure of domain information sharing a common understanding and enables the

domain knowledge can be reused as well. Therefore, ontology modeling has been ex-

tensively investigated by many researchers due to its effectiveness and simplicity, and

applied into various research domains (e.g., knowledge management, natural language

processing [MN+95], recommender system [IGFH10], etc.).

2.1.3 Knowledge Base Construction

There is a fine line where the ontology ends and the knowledge base begins [NM+01a].

After ontology modeling, the great challenge lies in the knowledge base construction

(KBC), which has a long history dating back to the expert systems of the 1970s.

Due to the recent advances in machine learning and artificial intelligence, KBC has

become perspective again by powering the AI-based knowledge system (i.e., Google

Assitant, Amazon Alexa, and Apple Siri). KBC is extremely challenging due to its

goal is to extract the structure information automatically from unstructured data,

involving high complex subtasks including parsing, extracting, cleaning, linking and

integrations.

The authors in [DHR08] analyzed natural structured English text to construct the

knowledge base. In [DLT+13], the authors proposed a framework to incrementally

build, maintain, and use knowledge bases from Wikipedia semi-structured articles.

Lee et al. [LKKW07] adopt an episode-based ontology construction mechanism to

extract domain knowledge from text documents. However, these studies build their

ontology models by taking natural language text as an input. This work focuses on

mining domain-specific phrases from unstructured texts with little syntax structure

and mapping them onto predefined domain knowledge classes to facilitate ontology

construction.
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2.2 Related Work of Learn Automation Intelligence by Hi-

erarchial Multi-armed Bandit Model

2.2.1 Interactive Recommender Systems

In order to boost sales as well as improve users’ visiting experience, many practical

applications in major companies (e.g., Google, Amazon, and Netflix) provide effi-

cient online recommendation services to help consumers deal with the overwhelming

information. Most recently, interactive recommender systems (see figure 2.1) have

emerged striving to promptly feed an individual with proper items (e.g., news arti-

cles, music, movies, and etc.) according to the current observable context, adaptively

optimize the underlying recommendation model using the up-to-date feedback and

continuously maximize his/her satisfaction in a long run [ZZW13]. To achieve this

goal, it becomes a critical task for such modern recommender systems to identify the

goodness of match between users’ preferences and target items. However, successful

personalized recommendation prediction needs adequate observations of user’s behav-

iors to learn his/her preferences, which pose a well-known cold-start problem since

a significant number of users/items might be completely new to the system with no

consumption history at all.

Interactive Recommender 

System

Recommendation

Feedback

Figure 2.1: Recommendation-feedback loop in an interactive recommender system.

Existing work addresses this problem in two phrases [ZZW13]: (1) to learn the us-

er profile using active learning [JS04, RESK15] or interview process [ZYZ11] and (2)
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to make a personalized recommendation based on the established profile. However, it

is still time-consuming to take interviews with users. Many users have no patience let-

ting the system ask them a bunch of questions, especially when most of these questions

are involving the information about their privacy. Before the system established user

profiles, they may have already left it. Different from previous methods, multi-armed

bandit algorithms [LZ07, LCLS10, CL11, TJLL14, TJL+15, ZWML16, HNL+17] can

successfully deal with this dilemma without distinguishing between the two phrases

and continuously learn the user’s preference while recommending the best items.

2.2.2 Multi-armed Bandit Problems with Dependent Arms

Multi-armed bandits are widely adopted in diverse applications such as online adver-

tising [ZWML16, PO07], web content optimization [ACE09, LCLS10], and robotic

routing [AK08]. The core task of bandit problem is to balance the tradeoff between

exploration and exploitation. A series of algorithms have been proposed to deal with

this problem including ε-greedy[Tok10], UCB[BBG12, MRTM12], EXP3 [ACBFS02],

Thompson sampling [AG13]. Contextual multi-armed bandit problem is an instance

of bandit problem, where the contextual information is utilized for arm selection.

Many existing multi-armed bandit algorithms have been extended to incorporating

the contextual information.

In [BBG12], contextual ε-greedy algorithm has been introduced by extending the

ε-greedy strategy with the consideration of context. This algorithm chooses the best

arm based on current knowledge with the probability 1 − ε, while chooses one arm

uniformly with the probability ε. Both LinUCB and LogUCB algorithms are con-

textual bandit models [BBG12, MRTM12] by extending the UCB algorithm with

context. LinUCB [LCLS10] is proposed to do personalized recommendation on news

article assuming a linear regression mapping function between the expected reward
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of an arm and its corresponding context. In [MRTM12], LogUCB is proposed to deal

with the contextual bandit problem based on logistic regression, where the reward is

a binary value (e.g.,click or not click on an ad). Thompson sampling [CL11], one of

earliest heuristics for bandit problems, belongs to the probability matching family.

Its main idea is to randomly allocate the pulling chance according to the probability

that an arm gives the largest expected reward given the context.

However, most prior work (e.g., LinUCB [LCLS10] and Thompson sampling [CL11])

assumes independent arms, which rarely holds in reality. Since the real-world items

tend to be correlated with each other, a delicate framework [PCA07] is developed

to study the bandit problem with dependent arms. Pandey et al. [PACJ07] used the

taxonomy structure to exploit dependencies among the arm in the context-free bandit

setting. CoFineUCB approach [YHG12] utilized a coarse-to-fine feature hierarchy to

reduce the cost of exploration, where the hierarchy was estimated by a small number

of existing user profiles. In our work, we study the contextual bandit problem with

a given hierarchical structure of arms, where the hierarchy is constructed by domain

experts based on the features of items.

2.3 Related Work of Learn Automation Intelligence by In-

teractive Collaborative Regression Model

2.3.1 Interactive Collaborative Filtering

In recommender systems, collaborative filtering (CF) has gained extensive popular-

ity in recent decades due to its capability of identifying the user preference from

the historical interactions between users and items [SFHS07, KBK+15, SKKR01,

MS08, SM08, PBK17, WHS17]. The existing CF methods typically fall into two
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primary categories: the memory-based methods [SKKR01, HKBR99] mainly make a

recommendation by computing the similarity between items or users, while and the

model-based methods [MS08, SM08] develop models using data mining and machine

learning techniques to find patterns based on ratings. In addition, it handles the spar-

sity better than memory-based methods such as matrix factorization [KBV09] (MF)

technologies, which project both users and items into a shared low dimension latent

factor space. Our proposed approaches are related to the model-based methods.

Matrix factorization (MF), one of the model-based methods gained popularity due

to the Netflix Prize and other recommendation competitions. A significant variety of

MF-based methods are proposed. Probabilistic Matrix Factorization (PMF) [MS08]

models the ratings as products of users’ and items’ latent features considering Gaus-

sian observation noise. PMF can scale linearly with a number of observations and

perform well on very sparse and imbalanced data. Bayesian Probabilistic Matrix Fac-

torization (BPMF) [SM08] presents a fully Bayesian treatment of the PMF model

with priors controlling model complexity automatically. Notwithstanding the fac-

t that MF-based methods have been successfully applied to various recommender

systems,

However, it is still an immense challenge to effectively predict preferences for

new users. This challenge typically referred to as the well-known cold-start prob-

lem [BP17, Ahn08, SPUP02]. A straightforward solution to address this issue involves

two separate stages, where it first explicitly figures out the user profile, then makes

a further recommendation based on the established user profile [RAC+02, RKR08].

By contrast, some preliminary work, referred to as interactive collaborative filter-

ing (ICF), have recently emerged as an alternative way to deal with the cold-start

issue [ZZW13, KBK+15]. These works do not explicitly fulfill the two stages sepa-

rately but formulate the recommendation problem as a multi-armed bandit problem,
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and then naturally integrate the two stages together by striking a balance between

exploration and exploitation. Our work is primarily relevant to this research area

addressing the ICF problem.

The ICF problem is first introduced in [ZZW13], where several multi-armed bandit

algorithms (e.g., Thompson sampling [CL11], UCB [BBG12]) are used for item rec-

ommendation in light of the user-item rating prediction with the probabilistic matrix

factorization (PMF) framework [MS08]. However, the proposed method in [ZZW13]

does not work in a completely online interactive mode since the multi-armed ban-

dit algorithms partially rely on the latent item feature vector distributions, which

are learned with the offline Gibbs sampling in advance. In [KBK+15], an efficient

Thompson sampling algorithm named particle Thompson sampling (PTS) addresses

the ICF problem with Bayesian probabilistic matrix factorization (BPMF) [SM08]

in a completely online mode. To reduce the reward prediction uncertainty, Wang

et al. [WWW16] incorporated the contextual features into the learned latent feature

vectors for ICF problem. However, these methods assume the latent item feature vec-

tors in the ICF setting are independent. Although the work in [PCA07] formulates

the arm dependencies as an arm clustering problem, it fails to present an efficient

online method to learn arm dependencies.

By comparison, we explicitly learn the dependent arms with a generative topic

model in the ICF setting and develop an efficient online solution capable of tracking

the dependencies between arms as well as addressing the online recommendation.
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2.3.2 Multi-armed Bandit Problems for Group Recommen-

dation

Some recent studies explore the bandit dependencies for a group recommendation

delivery by assuming that users in the same group react with similar feedback to the

same recommended item [GLZ14, WWGW16, WWW17, WHLE17, STvdS16]. Most

existing works utilize the contextual information for users or predefined social network

to build the user dependencies. Wu et al. [WWGW16] exploit social information to

find dependency among users for improving the accuracy of reward prediction. Wang

et al. [WWW17] propose a context-aware collaborative bandit model, which could in-

corporate mutual influence among users directly for matrix completion. In [WHLE17],

an interactive social recommendation model is proposed to predict the target user’s

preference using a weighted combination of a user’s preferences and his/her friends’

preferences. A context-dependent clustering of bandits algorithm [GLK+17] is inves-

tigated, where the clusters over users are based on the current item content. Our

work is orthogonal to those studies since we investigate the arm (item) dependencies

in a bandit model rather than the dependencies among users. Wang et al. [WLI+18]

come up with a hierarchical multi-armed bandit model leveraging the explicit tax-

onomy information among items for online recommendation. Our proposed method

is capable of instantly learning the item dependencies during the online interactive

recommendation process without explicit context information provided.

It leverages topic modeling [BNJ03] to formulate arm dependencies and sequen-

tial online inference to infer the latent states and learn the unknown parameters.

Popular sequential learning methods include sequential monte carlo sampling [Hal62,

DDFG01] and particle learning [CJLP10, ZWW+16].
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2.3.3 Sequential Online Inference

Sequential Monte Carlo (SMC) sampling consists of a set of Monte Carlo method-

ologies to solve the filtering problem [DGA00]. It provides a set of simulation based

methods for computing the posterior distribution. These methodologies allow infer-

ence of full posterior distributions in general state space models, which may be both

nonlinear and non-Gaussian. These methods approximate the distributions using a

considerable number of samples (particles). As the number of particles N increases

toward∞, this converges to actual distribution. These methods allow inference of full

posterior distributions in general state space models, which may be both nonlinear

and non-Gaussian.

Particle filtering was first introduced in [GSS93]. Since then, they have become

a very popular class of numerical methods for the solution of optimal estimation

problems in non-linear non-Gaussian scenarios. It uses a genetic type mutation s-

election particle algorithm for the filtering equation. Particle filters implement the

prediction-updating transitions of the filtering equation directly by using a genetic

type mutation-selection particle algorithm. The samples from the distribution are

represented by a set of particles. Each particle has a likelihood weight assigned to

it that represents the probability of that particle being sampled from the probabil-

ity density function. Weight disparity leading to weight collapse is a common issue

encountered in these filtering algorithms. However, it can be mitigated including a

resampling step before the weights become too uneven. Several adaptive resampling

criteria can be used, including the variance of the weights and the relative entropy

with respect to the uniform distribution. In the resampling step, the particles with

negligible weights are replaced by new particles in the proximity of the particles with

higher weights.
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Particle learning provides state filtering, sequential parameter learning and s-

moothing in a general class of state space models [CJLP10]. Particle learning is used

to approximate the sequence of filtering and smoothing distributions in light of pa-

rameter uncertainty for a wide class of state space models. The central idea behind

particle learning is to create a particle directly from the approximation to the joint

posterior distribution of states and conditional sufficient statistics of fixed parameters

in a fully-adapted resample-propagate framework. In this paper, we leverage the

idea of particle learning for both latent state inference and parameter learning.

2.4 Summary

In this chapter, I have listed all the necessary background knowledge and related work

to understand the three research problems discussed in my dissertation, i.e., domain

knowledge base construction, multi-armed bandit problem with dependent arms, and

the interactive collaborative filtering problem.
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CHAPTER 3

LEARN HUMAN INTELLIGENCE BY DOMAIN KNOWLEDGE

BASE CONSTRUCTION

Recent advances in artificial intelligence have led to the renaissance of knowledge base

construction (KBC) [RR18], a highly complex process involving extracting knowl-

edge, understanding the knowledge structure, reasoning, and learning, which makes

it possible for service providers to automatically expand services and continuously

make service delivery better. In an IT system, abundant valuable domain human

knowledge is contained in step-wise resolution descriptions, which are logged with

the corresponding problematic incidents. Modeling, gathering, and utilizing the do-

main knowledge become increasingly crucial, since domain knowledge plays a critical

role to fully automate the entire IT service management.

In this chapter, an integrated framework is proposed for a problem resolution.

In order to improve the efficiency of the problem resolution process, it is crucial to

formalize problem records and discover relationships between elements of the record-

s, records overall and other technical information. In the proposed framework, the

domain knowledge is modeled using ontology modeling techniques, of which the key

contribution is a novel domain-specific approach for extracting useful phrases, that

enables an automation improvement through a resolution recommendation utilizing

the ontology modeling technique, which provides the possibility to learn domain ex-

pert knowledge from human engineers.
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3.1 Introduction

3.1.1 Background

Driven by the rapid changes in the economic environment, business enterprises con-

stantly evaluate their competitive position in the market and attempt to come up with

innovative activities to gain competitive advantage. Value-creating activities cannot

be accomplished without solid and continuous delivery of IT services. The increasing

complexity of IT environments dictates the usage of cognitive incident managemen-

t [urlc], one of the most critical processes in IT service management [urlg, LZJ+17],

resolves the incident and restores the provision of services, while relying on monitoring

or human intervention.

A typical workflow of IT service management is illustrated in Figure 3.1. It usu-

ally involves five steps. (1) As problems detected by a monitoring agent on a server,

alerts are generated, and the monitoring emits an event if the alert persists beyond a

predefined duration. (2) Events coming from an IT environment are consolidated in

an enterprise console, which analyzes the monitoring events and determines whether

to create an incident ticket for IT problem reporting. (3) Tickets are collected by IPC

(Incident, Problem, and Change) system and stored in the ticket database [urlg]. (4)

The system administrators perform the problem determination, diagnosis, and reso-

lution based on the ticket description. The ticket resolution part of IT service delivery

workflow is often a labor-intensive process. (5) In order to alleviate human efforts

and maximize the automation of IT service management, the workflow incorporates

an enrichment engine which in turn uses various data mining techniques to create,

maintain and apply knowledge about the underlying IT system and its possible is-

sues. This chapter focuses on the construction of the knowledge base by processing
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Figure 3.1: The overview of IT service management workflow.

ticketing information; it outlines an integrated solution that uses obtained knowledge

to optimize problem resolution.

3.1.2 Motivation

An example of an IT service management ticket is shown in Figure 3.6. It consists

of both structured fields (e.g., OSTYPE, COMPONENT) and unstructured free-form

text fields (i.e., SUMMARY and RESOLUTION). Note that tickets are either gener-

ated automatically or reported by the system’s user. The structured fields and the

summary of a ticket provide the initial problem description for the system adminis-
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RESOLUTION
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WPPWA544 UNKNOWN 4 WIN2K3 APPLICATION XXXX

TICKET SUMMARY:

STARACTUAT_6600 03/01/2014 04:30:28 STARACTUAT_6600

GLACTUA Market=CAAirMiles:Report_ID=MRF600:ReportPeriod From:

2014/02/01 to 2014/02/28:ErrorDesc=For CAAirMiles Actuate is out of

balance with STAR BalanceMRF600 & MRF601 Counts. Reconcilation

Difference = 2MRF600 & MRF601 Net Fee. Reconcilation Difference =

25MRF600 & MRF601 Gross Fee .Reconcilation Difference = 25

ProblemSolutionText:***** Updated by GLACTUA ******

Problem Reported : Reconciliation difference Root cause : Reconciliation was run before all

reports completed. This is as per the new SLAs.

Solution provided : Reconciliation was re-run after the next set of reports completed.There was

no user impact.

Closure code : WRKS_AS_DSIGND

RCADescription:***** Updated by GLACTUA ******

Problem Reported : Reconciliation difference

Root cause : Reconciliation was run before all reports completed. This is as per the new SLAs.

Solution provided : Reconciliation was re-run after the next set of reports completed.There was

no user impact.

Closure code : WRKS_AS_DSIGND
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Figure 3.6: A ticket in IT service management and its corresponding resolution are
given.

trators (SAs) to start ticket resolution. SAs usually record the troubleshooting steps

in the resolution field as an unstructured free-form text.

In order to improve the efficiency of the problem resolution process, it is crucial

to formalize the content of the ticket and, if possible, to discover a mapping between

symptoms or a ticket’s summary and resolutions. This is the initial motivation of our

study. After a meticulous study and detailed analysis of the problem, a number of

obstacles are identified.

Challenge 1 Even in cases where the structured fields of a ticket are properly set,

they either have small coverage or do not distinguish tickets well, and hence they

contribute little information to the problem resolution.
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A subset of tickets are extracted from the historical ticket data set collected by IBM

Global Services. Several fields such as OSTYPE, COMPONENT, and SEVERITY are

investigated. The distributions of the field values are shown in Figures 3.2 to 3.5. As

illustrated, the distributions are highly imbalanced in general. Specifically, most val-

ues of OSTYPE and COMPONENT fields are missing and labeled as UNKNOWN. We

also observe that the field values such as STORAGE, NETWORK, HARDWARE, and

APPLICATION only provide general information for problem type inference. Addi-

tionally, we provide the distributions of both original severity values generated by the

monitoring and the severity values revised by human, denoted as ORIGINAL SEVER-

ITY and SEVERITY, respectively. The severity values are considerably subjective

since the two distributions of SEVERITY and ORIGINAL SEVERITY are extremely

inconsistent.

Consequently, these structured fields are useful but by far not sufficient for precise

problem inference. Thus we need to focus more on the free-form text fields in order

to gain further insights into the underlying problem. The analysis of free-form text

fields reveals the following.

Challenge 2 The ambiguity brought by the free-form text in both ticket summary and

resolution poses difficulty in problem inference, although more descriptive information

is provided.

Both ticket summary and resolution, illustrated in Figure 3.6, contain domain-specific

terms such as SLAs, RCA, and WRKS AS DSIGND. In addition they contain a num-

ber of typos and grammatical errors, such as ErrorDesc and ProblemSolutionText.

Moreover, some text snippets may be repeated multiple times in a single ticket and

resolution. An example is shown in Figure 3.6 where phrases such as Reconciliation

Difference and several other sentences appear in both ticket summary and resolution.
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As a result, it becomes infeasible to identify useful information for problem infer-

ence using only traditional Natural Language Processing (NLP) techniques without

any domain expertise. As illustrated further, our proposed integrated framework

is capable of gathering domain knowledge from logs, ticketing systems, and system

administrators.

Challenge 3 IT service management and particularly problem determination, diag-

nosis, and resolution require a large investment of manual effort by system adminis-

trators.

It is still a formidable task to fully automate the entire IT service management without

the help of domain experts. Therefore, modeling, gathering, and utilizing the domain

knowledge during ticket resolution become increasingly crucial.

In the proposed framework, the domain knowledge is modeled using ontology

(see [BSW+08] for another application of ontology to IT Management) and organized

into a knowledge base. In order to improve IT service management by making a

number of steps toward its automation, a recommendation component leveraging the

domain knowledge is explored to facilitate the ticket resolution.

3.1.3 Contribution

The contribution of our work mainly focuses on proposing and implementing an inte-

grated framework that significantly improves the automation of IT service manage-

ment. The key features of the proposed cognitive framework include:

• A novel domain-specific approach, designed to analyze free-form text in both

ticket summary and resolution for useful phrase extraction.

• Utilization of the ontology modeling techniques, constructing a knowledge base

by combining domain expertise with extracted useful phrases.
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• Automation improvement of IT service management, through development of

a resolution recommendation component based on domain knowledge.

• A closed feedback loop system, to facilitate learning from an outcome of reso-

lution recommendation, and thus continuous extension of the knowledge base.

The effectiveness and efficiency of our framework are verified on a large data set of

tickets from IBM Global Services.

The remainder of this chapter is organized as follows. The overall framework

is briefly introduced in Section 3.2. The detail design and implementation of the

proposed framework is provided in Section 3.3. Section 3.4 describes an extensive

empirical study conducted over the real ticket data. This chapter is summarized and

concluded in Section 3.5.

3.2 System Overview

Taking the aforementioned challenges into account, an integrated framework is pro-

posed. The framework is capable of constructing a knowledge base from discovered

useful phrases mined from the tickets. It also incorporates the domain knowledge

provided by domain experts. The framework shows how the constructed knowledge

base is used to optimize the IT service maintenance. The overall architecture of the

integrated framework is illustrated in Figure 3.7. Our proposed integrated framework

consists of three stages: (1) Phrase Extraction, (2) Knowledge Construction, and (3)

Ticket Resolution.

The entire framework starts with the stage of Phrase Extraction. The input of

Phrase Extraction is a set of the historical tickets, and the output are the useful do-

main knowledge phrases. The Phrase Extraction stage involves two main components:

the Phrase Composition and Initial Summary Analysis component, and the Phrase
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Figure 3.7: An overview of the integrated framework.

Refining component. The Phrase Composition and Initial Summary Analysis com-

ponent builds phrases from the unstructured text fields of tickets and estimates the

frequency for each obtained phrase. The Phrase Refining component applies filters

with diverse criteria (e.g., length, frequency, etc.) to refine the extracted phrases.

In the stage of Knowledge Construction, the domain expertise (e.g., the knowledge

from system administrators) is utilized for ontology modeling. As usual the ontology

is composed of the classes and the relations among classes. The phrases from the

Phrase Extracting stage are tagged with the classes defined in the ontology and
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archived for knowledge base construction. The archived knowledge is leveraged for

ticket resolving in the next stage.

The incoming tickets are resolved in the stage of Ticket Resolution. The un-

structured text fields of each ticket are first tagged by the Information Inference

component. Provided with the tagged ticket, the Recommendation component rec-

ommends a ranked list of the most relevant resolutions to the system administrators.

The SAs can choose the most appropriate resolution. The ticket with the attached

final resolution is archived into the historical ticket repository. The SAs accumulate

more experience during ticket resolution. The newly obtained domain expertise can

be used to enrich the knowledge base and facilitate learning. As a result, a closed

feedback loop system is formed, and the knowledge base can be incrementally built.

In summary, the enriched knowledge base further facilitates the resolution recom-

mendation, allowing the improvement of IT service management.

3.3 Design and Implementation

In this section, we explicitly describe the design and implementation for each stage.

3.3.1 Phrase Extraction Stage

This stage takes the historical tickets as input and produces useful specific domain

phrases (e.g., “available disk space,” “backup client connection”) by analyzing the

unstructured text fields. Intuitively, those phrases encompass the terms with high

frequency as well as context information. To achieve this goal, we first extract frequent

phrases, then filter out non-informative word combinations to keep only informative

phrases. This stage consists of two main components: (1) Phrase Composing and

Initial Summary Analysis, and (2) Phrase Refining.
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Phrase Composing and Initial Summary Analysis

Traditionally, n-gram model is extensively applied to capture the frequently co-

occurrent words in a given corpus, explored in our initial approach. However, the

extraction of all possible n-grams from a large corpus is an highly time and comput-

ing power consuming task. To solve the problem, we exploit the data compression

algorithm Lempel-Ziv-Welch (LZW) [Wel84] to extract the hot phrases from the mas-

sive ticket corpus.

We address two issues of LZW to achieve our goal of extracting frequent phrases

as follows. First, LZW typically works at the character level, and we leverage it to

the word level LZW (WLZW). Second, the algorithm only finds repeated patterns

but not their frequencies.

Domain-Specific Dictionary Construction

In this part, an input text T =“sql server sql server memory” with repeated pat-

terns is constructed to illustrate how we adopt WLZW for efficient domain-specific

dictionary extraction.

Beginning with an empty dictionary, the input T feeds into the WLZW algorithm.

We obtain a dictionary with items (e.g., “sql,” ”sql server”) by reading the first two

words. When WLZW reads “sql” again, it already exists in the dictionary. Then the

algorithm continues to read the next word “server” and combine it with the previous

word to be a new current phrase “sql server’ as a key that also exists in the dictionary.

Therefore, it keeps reading the next word “memory” and merges it with “sql server,”

a new long phrase “sql server memory” composed and inserted into the dictionary.

The WLZW algorithm seeks the trade-off between completeness and efficiency and

attempts to find the longest n-gram with a repeated prefix, indicating the importance
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of the phrase. If an n-gram is not found, it adds the next word and creates an n+1-

gram in the dictionary.

The analysis of the time complexity: WLZW runs in a linear time complexity of

O(n), where n is the length of the given text. Practically, WLZW takes less than one

minute to build the domain-specific dictionary from our entire ticket resolutions.

Frequency of Phrase Estimation We use the Aho-Corasick algorithm (AC) [AC75]

to locate all occurrences of keys in a dictionary built by the WLZW algorithm and

to efficiently calculate the frequency of the found keywords or phrases in the given

corpus. The algorithm consists of three parts:

• Build a Trie (Keyword Tree) based on the domain-specific dictionary,

• Extend the Trie into a finite state string pattern matching machine to support

linear time matching,

• Fed with the given text, find all matching keywords or phrases appearing as a

substring of the input text.

We provides a specific example to clarify how the AC algorithm works in our

integrated framework. Assume we have a dictionary D comprising {“job failed due

to plc issue,” “job failed due to database deadlock,” “job failed due to sql error,”

“database connectivity,” “sql server,” “sql server memory”}. Given the dictionary

D, the Aho-Corasick algorithm builds a Trie shown in Figure 3.8. The solid arrows are

success transitions, while the dashed arrows are failure transitions that might lead to

potentially successful matches. If matching the target word, the state of automaton

transits in the direction of the arrow from the current state to the following state.

We select a real ticket resolution (e.g., “job failed due to database connectivity”)

as the input, and demonstrate step by step how the AC algorithm finds all matching

phrases from the input:
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Figure 3.8: An example of a finite state string pattern matching machine.

• The automaton stays at the initial state “State 0” while scanning non-matching

words;

• When reading the word “job,” the automaton state transits from “State 0” to

“State 1,” and the output of “State 1” is empty;

• Reading word by word, the automaton traverses success transitions (e.g., solid

arrows) until it fails in “State 7;”

• In “State 7,” it transits to “State 11” by following a failure transition;

• With the input word “connectivity,” automaton transits from “State 11” to

“State 12,” and the output of “State 12” is “database connectivity;”

• As reaching the end of the word sequence, the matching substring “database

connectivity” is output.

The analysis of the time complexity: Assume we locate occurrences of a pattern

set P = {P1, P2, ..., Pk} in text T [W1,W2, ...,Wm]. Let n =
∑k

i=1 |Pi| and z is the

number of pattern occurrences in T , the AC algorithm runs in a linear time complexity

of O(n+m+ z).
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Phrase Refining

The repeated phrases have been extracted during the previous stage; however, not all

of the word combinations are useful and some should be omitted from the construct-

ed ontology. Intuitively, we should select the most frequent pattern as important.

However, many of them are non-informative phrases (e.g. numbers, “no action”).

We apply the following three filters to the extracted repeated phrases allowing the

omission of non-informative phrases.

Phrase Length & Frequency Filters Intuitively, both length and frequency are

good indicators for important phrases. Based on our experiments, we define several

filtering rules for phrase length & frequent filters: (1) Length ≥ 10 characters; (2)

Frequency ≥ 5; (3) Single-word phrases (part of a bi-gram or tri-gram); (4) containing

only numbers (non-informative phrases).

With respect to the length threshold setting for Phrase Length Filter, Figure 3.9

shows that most of the useful phrases can be obtained when the length falls between

10 and 60. In practice, we keep the phrases longer than 60 as well since those long

phrases indicate high frequent occurrences in the WLZW algorithm. The frequency

threshold setting is validated by the system administrators considering the trade-off

that lower frequency threshold can capture more informative phrases but more noises

are included, while higher frequency threshold results in fewer informative phrases.

Part-Of-Speech Filter In [JK95], Justeson et al. claim that technical terms con-

sist mostly of noun phrases containing adjectives, nouns, and occasionally preposi-

tions. They analyze four major technical dictionaries. Subsequently, they come up

with seven practical patterns defining a technical term scheme. The scheme and

the corresponding Penn Treebank tagset are summarized in Table 3.1. We utilize

the existing Stanford Log-linear Part-Of-Speech Tagger [TM00] to tag input phrases.
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Figure 3.9: Distribution of length of useful phrases.

However, technical terms alone cannot cover all possible informative phrases since

Table 3.1: Definition of technical term’s schemes.

Justeson-Katz Patterns Penn Treebank Entity Patterns Examples in Tickets
A N JJ NN[P|S|PS]* global merchant
N N NN[P|S|PS]* NN[P|S|PS]* database deadlock

A A N JJ JJ NN[P|S|PS]* available physical memory
A N N JJ NN[P|S|PS] NN[P|S|PS] backup client connection
N A N NN[P|S|PS] JJ NN[P|S|PS] load balancing activity
N N N NN[P|S|PS] NN[P|S|PS] NN[P|S|PS] socket connectivity error
N P N NN[P|S|PS] IN NN[P|S|PS] failures at sfdc

A:Adjective, N: Noun, P: Preposition
JJ: Adjective, NN: singular Noun, NNS: plural Noun,

NNP: singular proper Noun, NNPS: plural proper Noun, IN: Preposition

our dictionary describes both terms and possible actions (actions may be found in

the summary part of the ticket as well as in the resolution part of the ticket). We
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extend the work [JK95] by including action describing domain-specific phrases - the

phrases that contain verbs in different forms (e.g. past tense verb, gerund, etc.).

Corresponding Penn Treebank Action Patterns are outlined in Table 3.2.

The input phrases that do not match defined patterns are eliminated.

Table 3.2: Definition of action term’s schemes.

Penn Treebank Action Patterns Examples in Tickets

VB[D|G|N]*
run/check, updated/corrected

affecting/circumventing, given/taken
VB: base form Verb, VBD: past tense Verb, VBG: gerund Verb,VBN: past participle Verb,

After applying the three filters in a pipeline, a list of candidate phrases, including

entities and actions, are created for the class tagging procedure. It provides us a

great benefit by reducing unqualified and unmatched potential phrases from manually

unmanageable 400+K phrases to approximately 2K candidate phrases. The potential

dictionary candidate phrases are ready for manual look-up by domain experts.

3.3.2 Knowledge Construction Stage

In the stage of Knowledge Construction, the SAs first develop an ontology model. This

ontology model provides the semantic definition of the informative domain-specific

phrases obtained during the Phrase Extracting stage.

Second, the phrases with more specific definition are tagged with the classes de-

fined in the ontology, and finally archived for knowledge base construction. To give a

concrete example, we are looking for the phrase “database deadlock” instead of just

“database,” since the former has more specific meaning. The archived knowledge is

leveraged for the ticket resolution recommendation in the next stage.
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Ontology Model

An ontology explicitly defines a common vocabulary including the formal specifica-

tions of the terms in the domain as well as the relations among them. Development

of an ontology includes [NM+01b]:

• Defining classes in the ontology.

• Arranging the classes in taxonomic hierarchy.

• Defining relations amongst the classes.

Then we can construct a knowledge base by defining the instances of these classes

(or facts). We build an ontology model with the help of domain experts. To veri-

fy coverage and identify capability of our ontology model, we discuss with domain

experts the practical situations found in tickets and describe them in terms of the

ontology’s classes and relations.

Classes: a class is a deterministic concept describing a collection of objects in a given

domain [NM+01b]. In our ontology model, six classes are explicitly defined in

Table 3.3 to classify the important domain-specific phrases from previous stages.

For example, Entity class represents all technical terms (e.g., memory fault,

filesystem error). ProblemCondition class is the description of the negative

state of an entity (e.g., stopped, failed).

Relations: a relation describes the interaction among the classes in our ontology

model [NM+01b]. For example, the Action class can have the “TAKEN ON”

interaction on Entity class, and the SupportTeam class can “WORK ON” Entity

class. Note that there is no relation between Action class and Activity class.

The outline of our ontology models is depicted in Figure 3.10.
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Table 3.3: Classes of our ontology model.

Class Definition Examples
Entity Object that can be created/destroyed/replace memory fault; database deadlock
Action Requires creating/destroying an entity restart; rerun; renew

Activity Requires interacting with an entity check; update; clean
Incident State known to not have a problem false alert; false positive

ProblemCondition Describe the condition that causes a problem offline; abended; failed
SupportTeam Team that works on the problem application team; databases team

Entity

SupportTeam

Action Activity

ProblemCondition Incident

WORK ON

TAKEN ON TAKEN ON

DESCRIBES

STATE
OCCURS ON

Figure 3.10: Ontology model depicting interactions amongst classes.

Knowledge Archive

Based on our ontology model, a domain expert manually tags the important keyword-

s or phrases with their most relevant classes defined in Section 3.3.2. For example,

the text snippet “certificates will be renewed” can be tagged with classes into tuples

such as “[(certificates, Entity), (will, STOP WORD), (be, STOP WORD), (renewed,

Action)].” Finally, we initiate our domain knowledge base with approximately 630 in-

stances of Entity class, 240 instances of Activity class, 25 instances of Action class, 21

instances of ProblemCondition class, two instances of Incident class, and 76 instances

of SupportTeam.
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3.3.3 Ticket Resolution Stage

The goal of this stage is to recommend operational phrases for an incoming ticket.

The incoming ticket is first processed by the Class Tagger module of Information

Inference component. Taking the tagged ticket as an input, the Recommendation

component provides the list of the most relevant resolutions. Finally, SAs check the

recommended results. The ticket is archived into the historical ticket database, and

the newly obtained domain expertise can be used to enrich the knowledge base.

Information Inference Component

The Information Inference component is used to infer problems, activities, and actions

from trouble tickets by applying the constructed knowledge base and ontology model.

The three key questions addressed herein are as follows: (1) how to formalize the

physical words using the ontology model, (2) how to define three key concepts (e.g.,

problem, activity, and action) that can be extracted from the tagged ticket, (3) how

to find the corresponding entity phrases associated with problem, activity or action

phrases. We address them as follows:

Class Tagger Module The Class Tagger module is an index tool based on our

domain knowledge base. Taking the ticket resolutions and knowledge base as the

input, it outputs tagged domain keywords or phrases with the corresponding classes.

The module has three steps for tagging: (1) tokenize the input into sentences; (2)

construct a Trie by using ontology domain dictionary; (3) find the longest matching

phrases of each sentence using the Trie and knowledge base, then map them onto the

corresponding ontology classes.

For example, “database,” “deadlock,” and “database deadlock” are all valid do-

main phrases of Entity class. But the Class Tagger module only tags the “database
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deadlock” as Entity in a given sentence. An example of tagged ticket by the Class

Tagger module is shown in Figure 3.11.

(post loading)/(Entity) (failed)/(ProblemCondition) due to (plc issue)/

(Entity). (updated)/(Activity) the (gft)/(Entity) after (proper validation)/

(Entity) and (processed)/(Activity) the (job)/(Entity) and (completed)/

(Action) successfully.

Figure 3.11: Ticket tagged by the Class Tagger module.

Defined Concept Patterns for Inference We first define three key concepts as

follows:

Problem: describes an entity in negative condition or state.

Activity: denotes the diagnostic steps on an entity.

Action: represents the fixing operation on an entity.

Using Class Tagger we obtain a total of 672+K tagged ticket resolutions and find some

concept patterns in the structured corpus. For instance, ProblemCondition/Action

keywords and their corresponding entities always appear in a single sentence. The

structure of concepts is identified manually as shown in Table 3.4.

Table 3.4: Defined concept patterns for inference.

Concept Pattern Examples
Problem Entity preceded/succeeded by ProblemCondition (jvm) is (down)
Activity Entity preceded/succeeded by Activity (check) the (gft record count)
Action Entity preceded/succeeded by Action (restart) the (database)

Problem, Activity, and Action Extraction The derived concepts provide their

patterns for information inference extraction. First, the Class Tagger module tok-

enizes the input into sentences and outputs a list of tagged phrases. Second, we
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decide whether it is an informative snippet or not by checking if it exists in a Prob-

lemCondition/Action list. Once ProblemConditon/Action phrase is matched in the

sentence, the phrase is appended to the dictionary as a key, and all its related entities

are added as the corresponding values via a neighborhood search. Each of the three

key concepts has its own dictionary. Finally, we obtain the problem, activity, and

action inferences. For instance, given the tagged snippet in Figure 3.11, the output

is as follows:

• Problem - {failed: plc issue, post loading}

• Activity - {update: gft, proper validation; process: job}

• Action - {complete: job}

Ontology-based Resolution Recommendation Component

In our prior work [TLSG13] for automatic problem resolution, we propose a KNN-

based algorithm in which the resolutions of historical tickets with top summary sim-

ilarity scores to the incoming ticket summary are recommended. We use the Jaccard

similarity function [SM86] to calculate the summary similarity score after tokenizing

each summary into a bag of words.

Typically, Jaccard similarity function ignores the semantic information on ticket

summaries. In our application, the ticket summary and resolution are highly noisy,

which makes the Jaccard similarity function inappropriate. Table 3.5 shows two ticket

summaries describing the same issue “database save failed.” However, a low Jaccard

similarity score here is due to many non-informative words.

Two extended works [ZTL+15, ZLSG15b] adopt several techniques trying to allevi-

ate the issue by grouping words into semantic topics or mapping semantically similar

words closely in the same vector space. Those approaches, however, only deal with

semantically similar words without handling the noise caused by the non-informative
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words. Fortunately, the ontology model we constructed greatly facilitates our resolu-

tion recommendation task, as it essentially enhances our semantic understanding of

the tickets and de-noises tickets by filtering the non-informative words out of the tex-

tual attributes. De-noising improves similarity allowing tokenized Jaccard similarity

function to concentrate only on informative phrases.

Table 3.5: Noisy ticket summary examples.

Inside ProcessTransaction. DetermineOutcome failed. Database save failed: Tried an
insert, then tried an update
CRPE3I1Server Database save failed on XXX 00:19:46 XXX
/logs/websphere/wsfpp1lppwa 899CRPE3I1Server/SystemOut.log [3/20/14
0:19:33:371 MST] 0000002b SystemOut 20140320 00:19:33, 371 [WebContain-
er:30] [STANDARD] [DI US:01.22] (ng.AEXP US ISR Work Txn.Action) FA-
TAL XXX—10.16.4.4—SOAP—AEXP US ISR Roads3 Pkg —AEXPUSISRWork-
Inquiry—ProcessInquiry

Ontology Construction in ticket summary

Ontology construction in ticket summary follows the same steps as in ticket resolution.

But ticket summary delivers the problem symptoms instead of the problem resolution

information. It is reasonable to assume that only problem and activity phrases present

in ticket summary. Extracted activity phrases describe automatically triggered system

actions such as “rerun,” “restart,” and so on. According to the assumption, only

three types of knowledge phrases, i.e., Entity, Activity and Problem Condition, are

recognized during the manual tag process.

Tokenized Similarity function

Once we extract problems from ticket summary using concept patterns of Table 3.4,

the Jaccard similarity function is applied to the extracted Problem phrases. After

removing the non-informative phrases in ticket summary from the process of similarity

calculation, the same methodology is adopted for ticket resolution recommendation
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as in the work [TLSG13]. A case study given in Section 3.4 illustrates that the revised

similarity function can better capture the similarity between ticket summaries.

3.4 Experiment

In this section, we present the experimental dataset, the running environment, and

the discussion of experimental results.

3.4.1 Data and Setup

Experimental tickets are collected from real production servers of the IBM Tivoli

Monitoring system [urlf]. The data set covers three month time period containing

|D| = 22, 423 tickets with 33 attributes corresponding to the columns of tickets table.

Our integrated system is designed to compliment monitoring systems such as the IBM

Tivoli Monitoring system and to automate delivery of an IT service management. The

component is implemented in Java 1.8, and tested on 64-bit Windows 8.1 Enterprise

residing on a machine equipped with Intel Core 2 Xeon CPU 3.4GHz and 16GB of

RAM.

3.4.2 Evaluation Metrics and Evaluation Overview

Four commonly used evaluation metrics are applied in our evaluation. Let TP, TN,

FP, and FN correspond to true positive, true negative, false positive, and false neg-

ative, respectively. Accuracy is computed as TP+TN
TP+TN+FP+FN

. Precision is defined as

TP
TP+FP

, recall is defined as TP
TP+FN

. The F1 score is computed as 2 · Precision·Recall
Precision+Recall

.

To evaluate our integrated system, we randomly split our dataset into training and

testing dataset. The training set, 90% of the entire ticket dataset, is used to build

the knowledge base through our system, while the remaining are used for testing. To
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Figure 3.12: Evaluation of our integrated system in terms of precision.

build the ground truth, domain experts manually find and tag all phrase instances

into six classes defined in Table 3.3. Class Tagger is applied to the testing tickets

to produce tagged phrases with predefined classes. Comparing the tagged phrases

with the ground truth, we obtain the performance evaluation shown in Figures 3.12

to 3.15.

The precision, recall, F1 score, and accuracy for ProblemCondition are close to 1

due to the small number of instances (e.g., failed, occurred, expired, unavailable, etc.).

We also observe the precision of Entity, Action, and Activity extraction is 99.86%,

94.42%, and 97%, recall is 88.73%, 95.12%, and 93%, F1 score is 93.97%, 94.77%,

and 95.1%, and accuracy is 97.05%, 97.72%, and 99.3%, respectively. The reason is

that the classes of Entity, Action, and Activity contain a large amount of instances in

typos and various verb forms. The Incident class is observed with similar results with

ProblemCondition class, though its performance is not illustrated explicitly herein.
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Figure 3.13: Evaluation of our integrated system in terms of recall.
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Figure 3.14: Evaluation of our integrated system in terms of f1-score.
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Figure 3.15: Evaluation of our integrated system in terms of accuracy.

3.4.3 Evaluating Information Inference

We also evaluate the usability and readability of our automated information inference

results and compare them with traditional methods of manually analyzed tickets.

For the usability, we evaluate the extracting accuracy for concepts, i.e., Problem,

Activity, and Action. Similarly, we tag the ground truth from the testing tickets

and then compare it with the result tagged by Information Inference component. We

evaluate the average accuracy to be 95.5%, 92.3%, and 86.2% for Problem, Activity,

and Action respectively.

To evaluate readability, we focus on measuring the time-cost difference to un-

derstand a ticket with and without the Information Inference component. First, 50

tickets are randomly selected from the testing tickets and two domain experts are in-

vited for the task of Problem, Activity, and Action identification. Then, one domain

expert is required to execute the task by inspecting these tickets directly, while the
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other domain expert is presented with the same task utilizing the output from the

Information Inference component. We observe a significant decrease in time cost to

accomplish the task from around 1000s to 100s totally.

3.4.4 Case Study: Resolution Recommendation Task

In this section, we describe a case study of our experimental results and provide the

insights learned during the domain experts’ manual review process.

Table 3.6: Case study for testing ticket summary “Patrol Agent is not running”.

Similarity
function

Top most similar summary Associated resolutions

word level

A1: Patrol Agent is not running.
Problem - {not running: patrol a-
gent}

Server’s uptime indicates server
was unavailable. Server is avail-
able now and patrol agent connec-
tivity present

A2: The zpdc process is not run-
ning
Problem - {not running: zpdc pro-
cess}

Downstream of DB crash

A3: The syslogd process is not
running
Problem - {not running: syslogd
process}

No actions taken, the process is
running as expected on server
according to System Operations
Procedures

problem level

B1: Patrol Agent is not running
Problem - {not running: patroal
agent}

Server’s uptime indicates server
was unavailable. Server is avail-
able now, patrol agent connectivi-
ty present

B2: Patrol Agent Offline: Failed
to reconnect to Patrol Agent on
host WWPP, port 3181. Will
retry in 3 timer ticks.
Problem - {offline: patroal agent}

Verified connectivity. Patrol A-
gent connectivity test failed.

B3: The zpdc process is not run-
ning
Problem - {not running: zpdc pro-
cess}

Downstream of DB crash
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For the accurate evaluation one needs to fully understand the semantics of the

ticket summary and resolution. That’s the reason why the manual review of the

recommended results by domain experts is conducted.

The recommendation is achieved based on the similarity score which can be com-

puted by both the word level and the problem level Jaccard similarity functions shown

in Table 3.6. The word level Jaccard similarity function takes the whole textual value

of the ticket summary into account for similarity score computing, while the prob-

lem level Jaccard similarity function, utilizing the knowledge base constructed in our

work, takes only the Problem phrases into account to obtain the similarity score.

To illustrate the difference between the two similarity functions, our task is to

recommend the resolution for the ticket with summary “Patrol Agent is not running,”

which indicates Problem “not running: patrol agent.” As a fact confirmed by domain

experts, Problem “not running: patrol agent” is the same as Problem “offline: patroal

agent” occurring in B2, but different from Problem “not running: zpdc process”

associated with A2. However, shown by Table 3.6, the recommended result based

on the word level Jaccard similarity contradicts with the fact. By contrast, the

recommended result according to the problem level Jaccard similarity presents the

consistency with the domain expertise.

By further investigating our case study, since the entity “patrol agent” mismatch-

es “zpdc process,” domain experts assert that the resolution for the later problem

contributes little to resolve the previous one. However, if the two entities are sim-

ilar, such as “zpdc process” and “syslogd process,” in the perspective of concept,

the resolutions for the entity “zpdc process” might also apply to the entity “syslogd

process.”
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3.5 Summary

In this chapter, we study the research problem of constructing a domain-specific

knowledge base using a large number of historical tickets in the IT system. An inte-

grated cognitive computing framework is proposed supporting incremental knowledge

extraction and ontology construction. We first address the issues of efficient extrac-

tion and identification of the domain-specific phrases from noisy unstructured text

fields in tickets and then construct the knowledge base with the guidance of domain

experts. We conduct an empirical study that leverages a constructed knowledge base

to generate ticket resolution recommendations. Our encouraging results show the

effectiveness and efficiency of our integrated framework as applied to the task, and

also the scalability to other critical tasks in IT service management.
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CHAPTER 4

LEARN AUTOMATION INTELLIGENCE BY HIERARCHICAL

MULTI-ARMED BANDIT MODEL

The increasing complexity of IT environments urgently requires the use of analyt-

ical approaches and automated problem resolution for more efficient delivery of IT

services. With the purpose of automatically resolving repetitive problems in the IT

system, the problem patterns are identified, and the corresponding scripted resolu-

tions (i.e., automations) are written by human engineers. These automations enable

the system automatically solve these repetitively happened issues, making the oper-

ational fixing time from months to minutes and reducing human errors. However,

a traditional automation system still needs human interaction when an unexpected

event occurred, which is a challenge must be solved.

In this chapter, we model the automation recommendation procedure of IT au-

tomation services as a contextual bandit problem, where arms are dependent in the

form of hierarchies. Intuitively, different automations in IT automation services, de-

signed to automatically solve the corresponding ticket problems, can be organized

into a hierarchy by domain experts according to the types of ticket problems. We in-

troduce novel hierarchical multi-armed bandit algorithms leveraging the hierarchies,

which can match the coarse-to-fine feature space of arms. Empirical experiments on

a real large-scale ticket dataset have demonstrated substantial improvements over the

conventional bandit algorithms. Also, a case study of dealing with the well-known

cold-start problem is conducted to show the merits of our proposed model clearly.
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4.1 Introduction

4.1.1 Background

Facing the rapid changes in the economic environment, business enterprises constant-

ly evaluate their competitive position in the market and attempt to come up with

innovative ways to gain a competitive advantage. Value-creating activities cannot

be accomplished without stable and continuous delivery of IT services. The growing

complexity of IT environments dictates an extensive use of analytics combined with

automation. Incident management is one of the most critical processes in IT service

management as it resolves incidents and restores provisioned services.
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Figure 4.1: The overview of ITAS-integrated IT service management workflow.
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A typical workflow of IT service management is illustrated in Figure 4.1. It usually

includes six steps: (1) As an anomaly detected, an event is generated and the moni-

toring system emits the event if it persists beyond a predefined duration. (2) Events

from an entire IT environment are consolidated in an enterprise event management

system, which upon results of quick analysis, determines whether to create an alert

and subsequently an incident ticket. (3) Tickets are collected by an IPC (Incident,

Problem, and Change) system [ZLSG14]. (4) A monitoring ticket, identified by IT

automation services for potential automation (i.e., scripted resolution) based on the

ticket description. In case the issue could not be completely resolved, this ticket is

then escalated to human engineers. (5) In order to improve the performance of IT

automation services and reduce human efforts for escalated tickets, the workflow in-

corporates an enrichment engine that uses data mining techniques (e.g., classification

and clustering) for continuous enhancement of IT automation services. Additionally,

the information is added to a knowledge base, which is used by the IT automation

services as well as in resolution recommendation for tickets escalated to a human. (6)

Manually created and escalated tickets are forwarded to human engineers for problem

determination, diagnosis, and resolution, which is a very labor-intensive process.

4.1.2 Motivation

In today’s economic climate, IT service provider is expected to focus on innovation

and assisting customers in their core business areas. Time the experts spend on

fixing operational issues has to be minimized. With the increasing complexity and

scalability of IT service, it has become an urgent challenge to fix operational issues

regardless of the problem severity. Even the simplest issues, such as user password

expiration or a CPU becoming high because of a particular process, can take several

hours to be identified and fixed, and as a result, can severely cause degraded per-
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formance. In order to solve these problems before they become critical, enterprise

IT Automation Services [urle] has been introduced into IT service management as

an engine for automated corrective actions (i.e., scripted resolutions) and closure of

incident records.

Figure 4.2 shows an example of an IT service management ticket that was auto-

matically generated by a monitoring system, and successfully fixed by the automation

engine. The summary and monitoring class (i.e., an alert key) of the ticket provide

an initial symptom description, which is used for automation service to identify ex-

isting automation or lack thereof. If the problem is resolved by the recommended

automation, the value of “AUTORESOVLED” will be marked non-zero. To improve

the efficiency of the recommending strategies of the automation engine, it is essential

to understand how the symptoms could be mapped to the corresponding scripted

resolutions. This is the initial motivation for our study. Based on preliminary stud-

ies [ZLSG14, WZZ+17b, ZXB+17], we have identified three key challenges in virtual

engineering technology.
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Figure 4.2: A sample ticket is logged in IT service management with its corresponding
automaton.

Challenge 1 How do we appropriately solve the well-known cold-start problem in IT

automation services?

Most recommender systems suffer from a cold-start problem. This problem is critical

since every system could encounter a significant number of users/items that are com-
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pletely new to the system with no historical records at all. The cold-start problem

makes recommender systems ineffective unless additional information about user-

s/items is collected [SPUP02, CZC+15], which is a crucial problem for automation

engine as well, since it cannot make any effective recommendation that translates into

significant human efforts. Multi-armed bandit algorithm can address the cold-start

problem, which balances the tradeoff between exploration and exploitation, hence,

maximizing the opportunity for fixing the tickets, while gathering new information

for improving the goodness of the ticket and automation matching.

Challenge 2 How do we utilize the interactive feedback to adaptively optimize the

recommending strategies of the enterprise automation engine to enable a quick problem

determination by IT automation services?

The automation engine (see Figure 4.1) automatically takes action based on the

contextual information of the ticket and observes the execution feedback (e.g., success

or failure) from the problem server. The current strategies of the automation engine

do not take advantage of these interactive information for continuous improvement.

Based on the aforementioned discussion, we present an online learning problem of

recommending an appropriate automation and constantly adapting the up-to-date

feedback given the context of the incoming ticket. This can be naturally modeled

as a contextual multi-armed bandit problem, which has been widely applied into

various interactive recommender systems [LCLS10, ZZW13, ZWML16]. To the best of

authors’ knowledge, it is the first study to formulate the strategies of the automation

recommendation in IT automation services as a contextual bandit problem.

Challenge 3 How do we efficiently improve the performance of recommendation us-

ing the automation hierarchies of IT automation services?
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Domain experts usually define the taxonomy (i.e., hierarchy) of the IT problems ex-

plicitly (see Figure 4.3). Correspondingly, the scripted resolutions (i.e., automations)

also contain the underlying hierarchical problems’ structure.

For example, a ticket is generated due to a failure of the DB2 database. The

root cause may be database deadlock, high usage or other issues. Intuitively, if

the problem was initially categorized as a database problem, the automated ticket

resolutions have a much higher probability to fix this problem, than if it hasn’t been

categorized as such, and all other categories (e.g., file system and networking) are

now taken into consideration. We formulate this as a contextual bandit problem with

dependent arms organized hierarchically, which can match the feature spaces from

a coarse level first, and then be refined to the next lower level of taxonomy. The

existing bandit algorithms can only explore the flat feature spaces by assuming the

arms are independent.

All

File System Database Networking

HDFS NAS DB2 Oracle Cable NIC

Figure 4.3: An example of taxonomy in IT tickets.

4.1.3 Contribution

To the best of our knowledge, this is the first work to formulate the automation

recommendation in IT automation services as a multi-armed bandit problem by con-

sidering the dependencies among arms in the form of hierarchies. We demonstrate

this approach on the automation recommendation for IT service management. The
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contribution mainly focuses on proposing hierarchical multi-armed bandit algorithms

to overcome the aforementioned three key challenges. The key features of our contri-

bution include:

• A new online learning approach, designed to (1) solve the cold-start problem,

and (2) continuously recommend an appropriate automation for the incoming

ticket and adapt based on the feedback to improve the goodness of match be-

tween the problem and automation in IT automation services.

• Utilization of the hierarchies, integrated into bandit algorithms to model the

dependencies among arms.

The effectiveness and efficiency of our proposed methods are verified on a large dataset

of tickets from IBM Global Services.

The remainder of this chapter is organized as follows. In Section 4.2, we give the

mathematical formalization of the problem. The solution to the problem is provided

in Section 4.3. Section 4.4 describes comparative experiments and an empirical case

study conducted over the real ticket data, which demonstrate the efficacy of the

proposed algorithms. Finally, Section 4.5 summarizes and concludes this chapter.

4.2 Problem Formulation

In this section, we provide a mathematical formulation of the problem and describe

a new contextual multi-armed bandit model, which can utilize a taxonomy defined

by domain experts explicitly depicting the dependencies among arms. A glossary of

notations mentioned in this work is summarized in Table 4.1.
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Table 4.1: Important Notations

Notation Description

a(i) the i-th arm.
A the set of arms, A = {a(1), ..., a(K)}.
H the hierarchy (taxonomy) defined by domain

experts.
X d -dimensional context feature space.
xt the context at time t.
rk,t the reward (payoff) of pulling the arm a(k) at

time t.
r̂k,t the predicted reward (payoff) for the arm a(k)

at time t.
π the policy for pulling arm sequentially.
Rπ the cumulative reward of the policy π.
Sπ,t the sequence of (xi, π(xi), rπ(xi)) observed

until time t = 1, ..., T .
θk the coefficients predicting reward of the arm

a(k).
σ2
k the reward prediction variance for arm a(k).
α, β the parameters of the distribution of σ2

k.
µθ,Σθ the parameters of the distribution of θ.

4.2.1 Basic Concepts and Terminologies

Let A = {a(1), ..., a(K)} denote a set of automations (i.e., scripted resolutions) feasible

in IT automation system, where K is the number of the automations. Every time

a ticket is reported, the online IT automation recommendation process selects an

automation a(i) ∈ A using contextual information (i.e., the symptom description in

the ticket) and recommends it as a possible resolution for the ticket. Specifically, the

contextual information for the reported ticket at time t is represented as a feature

vector xt ∈ X , where X denotes the d-dimensional feature space. After recommending

63



an IT automation a(k) at time t, its corresponding feedback is received, indicating

whether the ticket has been successfully resolved or not.

We formalize the online IT automation recommendation process as a contextual

multi-armed bandit problem where automations are constantly recommended and

the underlying recommendation model is instantly updated based on the feedback

collected over time. The graphic model representation for contextual multi-armed

bandit problem is presented in Figure 4.4.

θk 

rk,t rtXt

K

σk
2

μω

Σθ

α

β

T
T

T

π

Figure 4.4: Graphical model representation for bandit problem. Random variable is
denoted as a circle. The circle with green color filled means the corresponding random
variable is observed. Red dot indicates a hyper parameter.

In general, a contextual multi-armed problem involves a series of decisions over a

finite but possibly unknown time horizon T . In our formalization, each automation

corresponds to an arm. Pulling an arm indicates its corresponding automation is

being recommended, and the feedback (e.g., success or failure) received after pulling

the corresponding arm is used to compute the reward.

In the contextual multi-armed bandit setting, at each time t = [1, T ], a policy π

makes a decision for selecting an automation π(xt) ∈ A to perform an action according
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to the contextual vector xt of the current ticket. Let rk,t denote the reward for

recommending an automation a(k) at time t, whose value is drawn from an unknown

distribution determined by the context xt presented to automation a(k). The total

reward received by the policy π after T iterations is

Rπ =
T∑
t=1

rπ(xt). (4.1)

The optimal policy π∗ is defined as the one with maximum accumulated expected

reward after T iterations,

π∗ = arg max
π

E(Rπ) = arg max
π

T∑
t=1

E(rπ(xt)|t). (4.2)

Our goal is to identify a good policy for maximizing the total reward. Herein we

use reward instead of regret to express the objective function, since maximization

of the cumulative reward is equivalent to minimization of regret during the T itera-

tions [ZZW13].

Before selecting the optimal automation at time t, a policy π is updated to refine

a model for reward prediction of each automation according to the historical observa-

tions Sπ,t−1 = {(xi, π(xi), rπ(xi))|i = [1, t−1]}. The reward prediction helps to ensure

that the policy π includes decisions to increase the total reward. The reward rk,t is

typically modeled as a linear combination of the feature vector xt given as follows:

rk,t = xTt θk + ξk, (4.3)

where θk is a d-dimensional coefficient vector, and ξk denotes an observation noise, a

zero-mean Gaussian noise with variance σ2
k, i.e., ξk ∼ N (0, σ2

k). Then,

rk,t ∼ N (xTt θk, σ
2
k), (4.4)

and our objective function in Equation 4.2 can be reformulated as:

π∗ = arg max
π

T∑
t=1

Eθπ(xt)(x
T
t θπ(xt)|t). (4.5)
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To address the aforementioned problem, contextual multi-armed bandit algorithms

have been proposed to balance the tradeoff between exploration and exploitation for

arm selection, including ε-greedy, Thompson sampling, LinUCB, etc.

Thompson sampling is one of the earliest heuristic methods to address the con-

textual bandit problems, belonging to the probability matching family [AG13]. The

main idea is to allocate the pulling chance according to the probability that an arm

produces the maximum expected reward given the context xt at time t. Particularly,

Thompson sampling method learns and maintains the posterior distribution of the

parameters in the reward prediction model for each arm. At every time t, Thompson

sampling first samples the model parameters from its posterior distribution learnt at

time t− 1. The sampled parameters together with the contextual information xt are

used for reward prediction. The arm with maximum predicted reward is then selected

to pull. Based on the feedback after pulling at time t, the posterior distribution of

the model parameters for the selected arm at time t is updated and ready for arm

selection at time t+ 1.

LinUCB [LCLS10], an extension of the UCB algorithm [Aue02], is another con-

textual bandit algorithm. It pulls the arm with the largest score computed by com-

bining both reward expectation and deviation, which are computed in light of the

reward prediction model.

Although different multi-armed bandit algorithms have been proposed and exten-

sively adopted in diverse real applications, most of them do not take the dependencies

between arms into account. In the IT environment, the automations (i.e., arms) are

organized with its taxonomy, i.e., a hierarchical structure. The following section will

introduce our approach to make use of the arm dependencies in the bandit settings

for IT automation recommendation optimization.
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4.2.2 Automation Hierarchy

In IT automation services, the automations can be classified with a pre-defined tax-

onomy. It allows us to reformulate the problem as a bandit model with the arm

dependencies described by a tree-structured hierarchy.

Let H denote the taxonomy, which contains a set of nodes (i.e., arms) organized

in a tree-structured hierarchy. Given a node a(i) ∈ H, pa(a(i)) and ch(a(i)) are used to

represent the parent and children sets, respectively. Accordingly, we have Property 1.

Property 1 If pa(a(i)) = ∅, node a(i) is assumed to be the root node. If ch(a(i)) = ∅,

then a(i) is a leaf node, which represents an automation. Otherwise, a(i) is a category

node when ch(a(i)) 6= ∅.

Since the goal is to recommend an automation for ticket resolving and only a leaf node

of H represents an automation, the recommendation process cannot be completed

until a leaf node is selected at each time t. Therefore, the multi-armed bandit problem

for IT automation recommendation is reduced to select a path of H from root to a

leaf node, where multiple arms along the path are sequentially selected with respect

to the contextual vector xt at time t.

Let pth(a(i)) be a set of nodes, consisting of all the nodes along the path from

root node to a(i) in H. Further, assume πH(xt|t) to be the path selected by policy π

in light of the contextual information xt at time t. Hence, we can have Property 2

for every arm selection policy π.

Property 2 Given the contextual information xt at time t, if a policy π selects a

node a(i) in the hierarchy H and receives positive feedback (i.e., success), the policy π

receives positive feedback as well by selecting the nodes in pth(a(i)).

Let rπH(xt|t) denote the reward obtained by the policy π after selecting the multiple

arms along the path πH(xt|t) at time t. The reward is computed as follows,

67



rπH(xt|t) =
∑

a(i)∈πH(xt|t),ch(a(i))6=∅

rπ(xt|ch(a(i))), (4.6)

where π(xt|ch(a(i))) represents the arm selected from the children of a(i), given the

contextual information xt.

Therefore, after T iterations, the total reward received by the policy π is computed

as below,

RπH =
T∑
t=1

rπH(xt|t). (4.7)

The optimal policy π∗ with respect to H is determined by

π∗ = arg max
π

E(RπH) = arg max
π

T∑
t=1

E(rπH(xt)|t). (4.8)

The reward prediction for each arm is conducted by Equation (4.4), and then the

optimal policy can be equivalently determined by

π∗ = arg max
π

T∑
t=1

(
∑

a(i)∈πH(xt|t),
ch(a(i)) 6=∅

Eθ
π(xt|ch(a(i)))

(xTt θπ(xt|ch(a(i)))|t)) (4.9)

Both Thompson sampling and LinUCB mentioned above will be incorporated into

our new learning models that leverage the hierarchies defined by domain experts. In

such settings, bandit algorithms can achieve faster convergence by exploring feature

space hierarchically.

4.3 Solution & Algorithm

In this section, we propose the HMAB (Hierarchical Multi-Armed Bandit) algorithms

for exploiting the dependencies among arms organized hierarchically. As presented in

Equation (4.4), the reward rk,t depends on random variable xt, θk and σ2
k. We assume

θk and σ2
k follow a conjugate prior distribution, Normal Inverse Gamma (abbr., NIG)
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distribution. σ2
k is drawn from the Inverse Gamma (abbr., IG) distribution shown in

Equation (4.10).

p(σ2
k|αk, βk) ∼ IG(αk, βk), (4.10)

where αk and βk are the predefined hyper parameters for the IG distribution. Given

σ2
k, the coefficient vector θk is generated by a Gaussian prior distribution with the

hyper parameter µθk and Σθk :

p(θk|µθk ,Σθk , σ
2
k) ∼ N (µθk , σ

2
kΣθk), (4.11)

At each time t, a policy π will select a path πH(xt|t) from H according to the

context xt. Assuming a(p) ∈ πH(xt|t) is the leaf node (i.e., an automaton), then we

have pth(a(p)) = πH(xt|t). After recommending the automation a(p), a reward rp,t is

obtained. Since the reward rp,t is shared by all the arms along the path pth(a(p)),

a set of triples F = {(xt, a(k), rk,t)|a(k) ∈ pth(a(k)), rk,t = rp,t} are acquired. A new

sequence Sπ,t is generated by incorporating the triple set F into Sπ,t−1. The posterior

distribution for every a(k) ∈ pth(a(k)) needs to be updated with the new feedback

sequence Sπ,t. The posterior distribution of θk and σ2
k given Sπ,t is a NIG distribution

with the hyper parameter µθk , Σθk , αk and βk. These hyper parameters at time t are

updated based on their values at time t− 1:

Σθk,t = (Σ−1θk,t−1
+ xtx

T
t )−1

µθk,t = Σθk,t(Σ
−1
θk,t−1

µθk,t−1
+ xtrk,t)

αk,t = αk,t−1 +
1

2

βk,t = βk,t−1 +
1

2
[r2k,t + µTθk,t−1

Σ−1θk,t−1
µθk,t−1

− µTθk,tΣ
−1
θk,t
µθk,t ]

(4.12)

Note that the posterior distribution of θk and σ2
k at time t is considered as the

prior distribution of time t + 1. On the basis of the aforementioned inference of the

leaf node a(k), we propose HMAB algorithms presented in Algorithm 1 developing

different strategies including HMAB-TS(H, α, β) and HMAB-LinUCB(H, λ).
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Algorithm 1 The algorithms for HMAB model

1: procedure main(H, π, λ) . Main entry, π is the policy.
2: for t← 1, T do
3: Initialize parameters of a(m) ∈ H to αm, βm, Σθm = Id, µθm = 0d×1.
4: Get contextual vector xt ∈ X .
5: for each path P of H do
6: Compute the reward of P using Equation (4.6), by calling

EVAL(xt, a
(k), π) for each arm a(k) ∈ P .

7: end for
8: Choose the path P ∗ with maximum reward.
9: Recommend the automation a(∗) (leaf node of P ∗).

10: Receive reward r∗,t by pulling arm a(∗).
11: UPDATE(xt, P

∗, r∗,t, π)
12: end for
13: end procedure
14:

15: procedure eval(xt, a
(k), π) . Get a score for a(k), given xt.

16: if π is TS then
17: Sample σ2

k,t according to Equation (4.10).
18: Sample θk,t according to Equation (4.11).
19: return r̂k,t = xTt θk,t.
20: end if
21: if π is LinUCB then
22: return r̂k,t = xTt µθk,t−1

+ λ
σk,t−1

√
xTt Σ−1θk,t−1

xt

23: end if
24: end procedure
25:

26: procedure update(xt, P, rt, π) . Update the inference.P is the path in H, rt is
the reward.

27: for each arm a(k) ∈ P do
28: Update αk,t, βk,t, Σθk,t , µθk,t using Equation (4.12).
29: end for
30: end procedure

Online inference of our hierarchical bandit problem starts with MAIN procedure.

As a ticket xt arrives at time t, the EVAL procedure computes a score for each arm

of different levels. In each level, the arm with the maximum score is selected to be

pulled. After receiving reward by pulling an arm, the new feedback is used to update

the HMAB algorithms by the UPDATE procedure.
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4.4 Experiment Setup

To demonstrate the efficiency of our proposed algorithms, we conduct a large scale

experimental study over a real ticket dataset from IBM Global Services. First, we

outline the general implementation of the baseline algorithms for comparison. Second,

we describe the dataset and evaluation method. Finally, we discuss the comparative

experimental results of the proposed and baseline algorithms, and present a case study

to demonstrate the effectiveness of HMAB algorithms.

4.4.1 Baseline Algorithms

In the experiments, we demonstrate the performance of our methods by comparing

the following baseline algorithms:

1. Random: a random item recommended to the targeted user without considering

the contextual information.

2. EpsGreedy(ε): a random arm with probability ε selected, as well as the arm of

the largest predicted reward r̂k,t with probability 1− ε, where ε is a predefined

parameter.

3. TS(α, β): Thompson sampling described in Section 4.2.1, randomly draws the

coefficients from the posterior distribution, and selects the item with the largest

estimated payoff according to Equation (4.4). Both α and β are hyper param-

eters. We initial α and β with the same value.

4. LinUCB(λ): the parameter λ is used to calculate the score, a linear combination

of the expectation and deviation of the reward. The arm with the largest score

is selected. When λ = 0, it is equivalent to the Exploit policy.

Our methods proposed in this chapter include:
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1. HAMB-EpsGreedy(H, ε): a random arm with probability ε is selected, and the

arm of the highest estimated reward r̂k,t with probability 1− ε with respect to

the hierarchy H, which is a predefined parameter as well as ε.

2. HMAB-TS(H, α, β): it denotes our proposed hierarchical multi-armed bandit with

Thompson sampling outlined in Algorithm 1. H is the taxonomy defined by

domain experts. α and β are hyper parameters.

3. HMAB-LinUCB(H, λ): it represents our proposed algorithm based on LinUCB pre-

sented in Algorithm 1. Similarly, H is the hierarchy depicting the dependencies

among arms. And the parameter λ is given with the same use in LinUCB.

4.4.2 Dataset Description

Experimental tickets are collected by IBM Tivoli Monitoring system [urlf]. This

dataset covers from July 2016 to March 2017 with the size of |D| = 116, 429. S-

tatistically, it contains 62 automations (e.g., NFS Automation, Process CPU Spike

Automation, and Database Inactive Automation) recommended by the automation

engine to fix the corresponding problems. The execution feedback including success,

failure and escalation, indicates whether the problem has been resolved or needs to

be escalated to human engineers. These collected feedback can be utilized to improve

the accuracy of recommended results. Thereby, the problem of automation recom-

mendation can be regarded as an instance of the contextual bandit problem. As we

mentioned above, an arm is an automation, a pull is to recommend an automation for

an incoming ticket, the context is the information vector of ticket’s description, and

the reward is the feedback on the result of the execution of recommended automa-

tion on the problem server. An automation hierarchy H shown in Figure 4.5 with

three layers constructed by domain experts is introduced to present the dependencies

72



among automations. Moreover, each record is stamped with the open time of the

ticket.

#All Automations=62

#Application=6 #Database=30 #Unix=17

ntp restart 
automation

jvm 
healthcheck 
automation

db2 database 
instance down 

automation

tablespace 
automation

hostdown 
automation

process cpu 
spike 

automation

Others

e.g., escalation 
automation

...

... ... ...

Figure 4.5: An automation hierarchy defined by domain experts.

We now discuss how to construct ticket features for the experiments. To reduce

the noise of the data, the domain experts only selected the categorical attributes (e.g.,

ALERT KEY, CLIENT ID, SEVERITY and OSTYPE) with high representative

information of tickets. These categorical information of a ticket is encoded as a binary

vector [LCL+12]. In addition, we augmented a constant feature with value 1 for all

vectors. Therefore, each ticket is represented as a binary feature vector x of dimension

1,182.

Evaluation Method

We apply the replayer method to evaluate our proposed algorithms on the aforemen-

tioned dataset. The replayer method is first introduced in [LCL+12], which provides

an unbiased offline evaluation via the historical logs. The main idea of replayer is to

replay each user visit to the algorithm under evaluation. If the recommended item by

the testing algorithm is identical to the one in the historical log, this visit is considered

as an impression of this item to the user. The ratio between the number of user clicks

and the number of impressions is referred to as Click-through rate (CTR). The work

in [LCL+12] shows that the CTR estimated by the replayer method approaches the

real CTR of the deployed online system. In this problem, a user is a ticket, and an

item is an automation. A user visit means a ticket comes into IT automation services,
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and a user click indicates the ticket has been successfully solved by the recommended

automation.

Relative Success Rate Optimization for Online Automation Recommenda-

tion

In this section, we discuss the performance evaluation for each proposed algorithm on

the dataset. The averaged reward (i.e., the overall success rate of the corresponding

automations) is considered as the metric in the experiments. We define it as the

total reward divided by the total number of times a given automation has been

recommended (i.e., 1
n

∑n
t=1 rt). It is obvious that the higher the success rate, the

better the performance of the algorithm. To avoid the leakage of business-sensitive

information, the relative success rate is reported, which is the overall success rate of

an algorithm divided by the overall success rate of random selection.

In contrast to the baseline algorithms outlined in Section 4.4.1, the corresponding

HMABs configured with different parameter settings achieve much better performance

on the dataset shown in Figure 4.6, Figure 4.7 and Figure 4.8, respectively. To be

clarified, we set the parameter λ > 1 of LinUCB and HMAB-LinUCB in the experi-

ments deliberately to reveal the merits of HMAB-LinUCB because their performance

are almost equal with λ < 1. By observing the results, we find that HMAB-LinUCB

has the best performance compared with other algorithms. Through these substan-

tial experiments, we conclude that the proposed algorithms outperformed the strong

baselines with the assumption that arms are independent.

A Comparative Case Study

In order to better illustrate the merits of the proposed algorithms, we present a case

study on the recommendation for an escalated ticket in IT automation services.
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Figure 4.6: The Relative Success Rate of EpsGreedy and HMAB-EpsGreedy on the
dataset is given along each time bucket with diverse parameter settings.

As mentioned above, the recommendation for an escalated ticket can be regarded

as a cold-start problem due to the lack of the corresponding automations. In other

words, there is no historical records for resolving this ticket. Note that both our pro-

posed HMABs and conventional MABs are able to deal with the cold-start problem

by exploration. To compare their performance, we calculate the distribution of the

recommended automations over different categories (e.g., database, unix, and appli-

cation). Figure 4.10 presents an escalated ticket, which records a database problem.

Such a problem has been repeatedly reported over time in the dataset. Since this

ticket reports a database problem, intuitively the automations in the database cate-

gory should have a high chance of being recommended. The category distributions of

our proposed HMABs and conventional MABs are provided in Figure 4.9, as well as

the baseline category distribution, which is the prior category distribution obtained

from all the automations of the hierarchy. From Figure 4.9, we observe that 1) com-

pared with TS, HMAB-TS explores more automations from the database category;
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and 2) in HMAB-TS the database category has the highest percentage among all

the automation categories. This shows that our proposed HMABs can achieve better

performance by making use of the predefined hierarchy.
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Figure 4.7: The Relative Success Rate of TS and HMAB-TS on the dataset is given
along each time bucket with diverse parameter settings.

To further illustrate the effectiveness of HMABs, we provide the detailed results

of recommended automations for the escalated tickets. As shown in Figure 4.10, au-

tomations from the database category (e.g., database instance down automation, db2

database inactive automation) are frequently recommended according to the contex-

t of the ticket, which clearly indicate the issue is due to the inactive database. By

checking the recommended results, domain experts figure out the database instance

down automation, one of the top recommended automations, can successfully fix

such a cold-start ticket problem, which clearly demonstrate the effectiveness of our

proposed algorithms.
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Figure 4.8: The Relative Success Rate of LinUCB and HMAB-LinUCB on the dataset
is given along each time bucket with diverse parameter settings.

4.5 Summary

In this chapter, we propose a novel parametric model (HMAB) to formulate the

automation recommendation in IT automation services as a contextual multi-armed

bandit problem, where the arms are organized in the form of a taxonomy. To show

the effectiveness of our proposed solutions, empirical experiments are conducted on

a real ticket dataset compared with conventional bandit algorithms, which assume

that the arms are independent. In a case study of solving a cold-start problem, our

proposed algorithms show a better performance due to usage of the hierarchy.
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Figure 4.9: The comparison of category distribution on the recommended automa-
tions.
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Figure 4.10: The exploration by HMAB-TS of a cold-start ticket case.
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CHAPTER 5

LEARN AUTOMATION INTELLIGENCE BY INTERACTIVE

COLLABORATIVE TOPIC REGRESSION MODEL

The reality of IT environments is such that not all automations are properly set in

a hierarchical structure due to the lack of sufficient information and some may fall

into the “Others” category (see Figure 5.1). Furthermore, as a result of the imper-

fection of log information, many tickets are logged with an error code only with no

detailed symptoms. This makes inferring a proper automation more challenging. By

observing the rich historical data, we find different ticket problems (see Figure 5.2)

that can be resolved by the same automation, while a single ticket problem may be

resolved by different automations, which can be treated as an interactive collabo-

rative filtering problem [ZZW13]. In this chapter, we consider such a context-free

automation recommendation in IT service management as a real-world application of

online interactive recommender systems, which can adaptively learn the preferences

of each ticket problem on automations.

Online interactive recommender systems strive to promptly suggest users appro-

priate items (e.g., movies, news articles) according to the current context including

both user and item content information. However, such contextual information is

often unavailable in practice, where only the users’ interaction data on items can be

utilized by recommender systems. The lack of interaction records, especially for new

users and items, inflames the performance of recommendation further. To address

these issues, both collaborative filtering, one of the most popular recommendation

techniques relying on the interaction data only, and bandit mechanisms, capable

of achieving the balance between exploitation and exploration, are adopted into an

online interactive recommendation setting assuming independent items (i.e., arms).

This assumption rarely holds in reality, since the real-world items tend to be cor-
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related with each other. we study online interactive collaborative filtering problems

by considering the dependencies among items. We explicitly formulate item depen-

dencies as the clusters of arms in the bandit setting, where the arms within a single

cluster share the similar latent topics. In light of topic modeling techniques, we come

up with a novel generative model to generate the items from their underlying top-

ics. Furthermore, an efficient particle-learning based online algorithm is developed

for inferring both latent parameters and states of our model by taking advantage of

the fully adaptive inference strategy of particle learning techniques. Additionally,

our inferred model can be naturally integrated with existing multi-armed selection

strategies in an interactive collaborative filtering setting.

All

Application Database OS

MQ NTP DB2 Oracle Linux Win

Others

MySQL AIX

Figure 5.1: An example of taxonomy in IT tickets with ”Others” category.
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Figure 5.2: Two different ticket problems in IT service management.
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5.1 Introduction

The overwhelming amount of data requires an efficient online interactive recommenda-

tion system where online users constantly interact with the system, and user feedback

is instantly collected to improve recommendation performance. Online interactive rec-

ommender systems are challenged to immediately recommend the most proper items

(e.g., movies, news articles) to users based on the current user and item content in-

formation aiming to continuously maximize users’ satisfaction over a long run. To

achieve this goal, it becomes a critical task for such recommender systems to con-

stantly track user preferences and recommend interesting items from a large item

repository.

In the process of identifying the appropriate match between user preferences and

target items, the systems encounter difficulties due to several existing practical chal-

lenges. One challenge is the well-known cold-start problem since a significant number

of users/items might be completely new to the system, that is, they may have no

consumption historical records at all. This problem makes recommender systems

ineffective unless additional information including both items and users is collect-

ed [ZWML16], [CZC+15]. The second challenge is that most recommender systems

typically assume the entire set of contextual features with respect to both users and

items can be accessed to infer users’ preference. Due to a number of reasons (e.g.,

privacy or sampling constraints), it is challenging to obtain all relevant features ahead

of time, thus rendering many factors unobservable to recommendation algorithms.

In the first challenge, an exploration or exploitation dilemma [BU17] is identi-

fied in the aforementioned setting. A tradeoff between two competing goals needs

to be considered in recommender systems: maximizing user satisfaction using their

consumption history, while gathering new information for improving the goodness

of match between user preferences and items [LCLS10]. This dilemma is typically
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formulated as a multi-armed bandit problem where each arm corresponds to an item.

The recommendation algorithm determines the strategies for selecting an arm to pull

according to the contextual information at each trial. Pulling an arm indicates that

the corresponding item is recommended. When an item matches the user preference

(e.g., a recommended news article or movie is consumed), a reward is obtained; oth-

erwise, no reward is provided. The reward information is fed back to optimize the

strategies. The optimal strategy is to pull the arm with the maximum expected re-

ward based on the historical interaction on each trial, and then to maximize the total

accumulated rewards for the whole series of trials.

Collaborative filtering (CF) is widely applied in recommender systems to address

the second challenge [SFHS07],[BL+07],[KBV09] . CF has gained its popularity due

to its advantage over other recommendation techniques, where CF requires no extra

information about items or users for recommendation but only users’ historical ratings

on items [KBK+15, HKBR99]. Further, considering both aforementioned challenges

simultaneously aggravates the difficulties when recommending items. Recently, an on-

line interactive collaborative filtering system has been suggested [ZZW13, KBK+15]

adopting both techniques, multi-armed bandit and collaborative filtering. Typically,

one collaborative filtering task is formulated as a matrix factorization problem. Ma-

trix factorization derives latent features for both users and items from the historical

interaction records. It assumes that a user’s preference (i.e., rating) on a given item

can be predicted considering the item and user latent feature vectors. Based on this

assumption, multi-armed bandit policies make use of the predicted reward (i.e., user

preference) for arm (i.e., item) selection. The feedback occurring between the current

user and arm is used to update their latent vectors, without impacting the inference

of other arms’ latent vectors assuming arms are independent from each other. How-

ever, the assumption about the independency among arms rarely holds in real-world
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applications. For example, in the movie recommendation scenario, each movie corre-

sponds to an arm. The dependent arms (i.e., movies) typically share similar latent

topics (e.g., science fiction movies, action movies, etc.), and are likely to receive simi-

lar rewards (i.e., ratings or feedback) from users. Intuitively, the dependencies among

arms can be utilized for reward prediction improvement and further facilitated the

maximization of users’ satisfaction in a long run.

In this chapter, we introduce an interactive collaborative topic regression model

that utilizes bandit algorithms with dependent arms to recommend appropriate items

for target users. A sequential online inference method is proposed to learn the latent

parameters and infer the latent states. We adopt a generative process based on topic

model to explicitly formulate the arm dependencies as the clusters on arms, where

dependent arms are assumed to be generated from the same cluster. Every time

an arm is pulled, the feedback is not only used for inferring the involved user and

item latent vectors, but it is also employed to update the latent parameters with

respect to the arm’s cluster. The latent cluster parameters further help with reward

prediction for other arms in the same cluster. The fully adaptive online inference

strategy of particle learning [CJLP10] allows our model to effectively capture arm

dependencies. In addition, the learnt parameters can be naturally integrated into

existing multi-arm selection strategies, such as UCB and Thompson sampling. We

conduct empirical studies on three real-world applications, movie recommendation,

news recommendations, and ticket automation recommendation. The experimental

results demonstrate the effectiveness of our proposed approach.

The rest of this chapter is organized as follows. We formulate the underlying

problem in Section 5.2. The solution to the problem is presented in Section 5.3.

Extensive evaluation results are reported in Section 5.4. Finally, Section 5.5 summary

this chapter.
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5.2 Problem Formulation

In this section, we provide a mathematical formulation of the interactive collaborative

filtering (ICF) problem into a bandit setting. Then we introduce a new generative

model describing the dependency among arms (i.e. items). A glossary of notations

mentioned in this chapter is summarized in Table 5.1.

5.2.1 Basic Concepts and Terminologies

Assume that there are M users and N items in the system. The preferences of the

users for the items are recorded by a partially observable matrix R = {rm,n} ∈ RM×N ,

where the rating score rm,n indicates how user m would like item n. The basic

collaborative filtering task is to predict the unknown rating score in light of the

observed rating scores in R. However, it is very challenging to fulfill the task in

practice due to the high dimensionality and sparsity of the rating matrix. Matrix

factorization addresses this challenge by mapping each user m and item n to the

latent feature vectors pm ∈ RK and qn ∈ RK in a shared low K-dimension space

(typically, K �M,N). It assumes that the rating rm,n can be predicted by

ym,n = pᵀ
mqn. (5.1)

Therefore, the latent features {pm} and {qn} can be learned by minimizing the pre-

diction error for all observed ratings in R, while each unobserved rating value can

be estimated using Equation (5.1) with its corresponding latent features learned by

matrix factorization. In practice, since the feedback (i.e., rating scores) from user-

s is received over time, the system is required to address the collaborative filtering

problem in an interactive mode, which is referred to as an interactive recommender

system.
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Table 5.1: Important notations.

Notation Description

M,N number of rows (users) and columns (items).
R ∈ RM×N the rating matrix.
S(t) the sequence of (n(t− 1), rm,n(t−1)) observed until

time t.
n(t) the recommended item index in the t-th iteration.
rm,t the rating (reward) of the m-th user by pulling the

given item in the t-th iteration.
ym,t the predicted rating for the m-th user over given

item in the t-th iteration.
π the policy to recommend items sequentially.
Rπ the cumulative rating (reward) of the policy π.
K the number of topics and the number of dimensions

for latent vectors.

pm ∈ RK the latent feature vector of the m-th user.
qn ∈ RK the latent feature vector of the n-th item.
Φk ∈ RN the item distribution of the k-th topic.
Pm,n(t−1) the set of particles for item n(t− 1) given user m

at time t− 1.
zm,t the latent topic of the m-th user in the t-th itera-

tion.
xm,t the selected item of the m-th user in the t-th iter-

ation.

λ Dirichlet priors over topics for topic model.
η Dirichlet priors over items for topic model.
σ2
n the variance of rating prediction.
α, β the hyper parameters determine the distribution

of σ2
n.

µq, Σq the hyper parameters determine the Gaussian dis-
tribution of qn.

ξ the observation noise of the rating.
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In an interactive recommender system, user m constantly arrives to interact with

the system over time. At each time t = [1, . . . , T ], the system, according to the ob-

served rating history, recommends an item n(t) to the corresponding user m. After

consuming item n(t), the feedback (i.e., rating) rm,n(t) from user m is collected by the

system and further utilized to update the model for the next item delivery. The inter-

active recommendation process involves a series of decisions over a finite but possibly

unknown time horizon T . Accordingly, such an interactive recommendation process

is modeled as a multi-armed bandit problem, where each item corresponds to an arm.

Pulling an arm indicates that its corresponding item is being recommended and the

rating score is considered as the reward received after pulling the corresponding arm.

Let S(t) be the available information at time t collected by the system for the

target user m,

S(t) = {(n(1), rm,n(1)), . . . , (n(t− 1), rm,n(t−1))}. (5.2)

A policy π is defined as a function and used to select an arm based on the current

cumulative information S(t),

n(t) = π(S(t)). (5.3)

The total rewards received by the policy π after T iterations is

Rπ =

T∑
t=1

rm,π(S(t)). (5.4)

The optimal policy π∗ is defined as the one with maximum accumulated expected

reward after T iterations,

π∗ = arg max
π

E(Rπ) = arg max
π

T∑
t=1

E(rm,π(S(t))|t). (5.5)

Therefore, our goal is to identify an optimal policy for maximizing the total rewards.

Herein we use reward instead of regret to express the objective function, since maxi-

mization of the cumulative rewards is equivalent to minimization of regret during the
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T iterations [ZZW13]. Before selecting one arm at time t, a policy π typically learns

a model to predict the reward for every arm according to the historical accumulated

information S(t). The reward prediction helps the policy π make decisions to increase

the total rewards.

In the latent factor model [MS08, SM08], the rating is estimated by a product

of user and item feature vectors pm and qn in Equation (5.1). From the proba-

bilistic perspective, PMF introduces an observation noise ξ, a zero-mean Gaussian

noise with variance σ2 (i.e., ξ ∼ N (0, σ2)), to the rating prediction function given in

Equation (5.1). The derived rating prediction is as follows:

rm,n = pᵀ
mqn + ξ. (5.6)

In this setting, Equation (5.5) can be re-formulated as:

π∗ = arg max
π

T∑
t=1

Epm,qπ(S(t))(p
ᵀ
mqπ(S(t))|t). (5.7)

Consequently, the goal of an interactive recommender system is reduced to the opti-

mization of the objective function in Equation (5.7).

Thompson Sampling, one of earliest heuristics for the bandit problem [CL11],

belongs to the probability matching family. Its main idea is to randomly allocate the

pulling chance according to the probability that an arm gives the largest expected

reward at a particular time t. Based on the objective function in Equation (5.7), the

probability of pulling arm n can be expressed as follows:

p(n(t) = n) =

∫
I[E(rm,n|pm,qn) = max

i
E(rm,i|pm,qi)]

p(pm,qn|t)dpmdqn.
(5.8)

At each time t, Thompson sampling samples both the user and item feature vectors

together from their corresponding distributions, and then selects the item that leads

to the largest reward expectation. Therefore, using Thompson sampling, the item
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selection function can be defined as:

n(t) = arg max
n

(p̃ᵀ
mq̃n|t), (5.9)

where p̃m and q̃n denote the sampled feature vectors for user m and item n, respec-

tively.

To accomplish Thompson sampling, it is critical to model the random variable

pm and qn using distributions, where the latent feature vectors can be easily sampled

and the feedback at every time can be reasonably integrated. Most of the previous

studies suppose a Gaussian prior for both user and item feature vectors with an

assumption that items are independent from each other [ZZW13, KBK+15]. However,

this assumption rarely holds in real applications. In the following section, we explicitly

formulate the dependent arms with a generative model.

5.2.2 Modeling the Arm Dependency

Based on the fact that similar items (i.e., arms) are likely to receive similar feedback

(i.e., rewards), we assume that a dependency exists among similar items. The de-

pendencies among items can be further leveraged to improve the users’ preferences

inference on a particular item even if the item has little historical interaction data

in the system. The challenge here lies in how to sequentially infer the arms’ depen-

dencies as well as the users’ preferences simultaneously, providing the feedback over

time.

In our work, the arms’ dependencies are expressed in the form of the clusters

of arms, where the dependent arms fall into the same one. In order to explore the

dependencies in the bandit setting, Latent Dirichlet Allocation (LDA) [BNJ03], a

generative statistic model for topic modeling, is adopted to construct the arms’ clus-
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ters. We propose the ICTR (Interactive Collaborative Topic Regression) model to

infer the clusters of arms as well as the arm selection.

The main idea of our model is to treat an item n as a word, while consider a user

m as a document. All the items rated by a user indicate the hidden preferences of

the user, analogous to the scenario in topic modeling where the words contained in a

document imply its latent topics. Specifically, let K be the number of latent aspects

(i.e., topics or clusters) the users concern when consuming items. We assume that

pm ∈ RK corresponds to the latent vector for user m, where the k-th component of

pm indicates the user’s preference over the k-th aspect of items. Further, qn ∈ RK

is supposed to be the latent vector for item n, and the k-th component value of qn

represents that it belongs to the k-th cluster. The rating score rm,n, given by user m

after consuming item n, is assumed to be the inner product of pm and qn. By linking

to the topic model, a generative process for user ratings is accordingly introduced and

presented in Figure 5.3.

Based on the above description, the user latent vector pm is assumed to follow

a Dirichlet prior distribution with a predefined hyper parameter λ, shown in Equa-

tion (5.10).

pm|λ ∼ Dir(λ). (5.10)

As presented in Equation (5.6), we denote σ2 as the variance of the noise for reward

prediction and assume σ2
n is drawn from the Inverse Gamma (IG) distribution shown

in the following.

p(σ2
n|α, β) = IG(α, β), (5.11)

where α and β are predefined hyper parameters for IG distribution.

Given σ2
n, the item latent vector qn is generated by a Gaussian prior distribution

as follows:

qn|µq,Σq, σ
2
n ∼ N (µq, σ

2
nΣq), (5.12)
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Figure 5.3: The graphic model for the ICTR model. Random variable is denoted as
a circle. The circle with filled color denotes the observed random variable. Red dot
represents a hyper parameter.

where µq and Σq are predefined hyper parameters.

Further, let

Φk ∈ RN

be the item distribution for topic k. Similar to pm, Dirichlet distribution is specified

as the prior of Φk presented in Equation (5.13).

Φk|η ∼ Dir(η), (5.13)

where η ∈ RN is the hyper parameter.

When userm arrives to interact with the system at time t, one ofK topics, denoted

as zm,t, is first selected according to the user’s latent preference pm, indicating that

user m shows interest in the topic zm,t at this moment. Accordingly, zm,t is supposed
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to follow a multinomial distribution governed by pm as follows,

zm,t|pm ∼Mult(pm). (5.14)

W.L.O.G, we assume

zm,t = k

, and then the item distribution for topic k (i.e., Φk) is for generating item xm,t

recommended to user m at time t. We assume the random variable xm,t follows the

multinominal distribution ruled by Φk, i.e.,

xm,t|Φk ∼Mult(Φk). (5.15)

W.L.O.G, item n is assumed to be selected by user m at time t (i.e., xm,t = n)

where the latent vector corresponding to item n is qn. Let ym,t be the predicted

reward (i.e., rating), given by user m at time t. The predicted reward ym,t can be

inferred by

ym,t ∼ N (pᵀ
mqn, σ

2
n). (5.16)

By Equation (5.16), the rewards of different items are predicted. Based on the pre-

dicted rewards, the policy π selects an item and recommends it to user m, considering

the tradeoff between exploitation and exploration. After consuming the recommend-

ed item, the system receives the actual reward rm,t from user m. The objective of the

model is to maximize the expected accumulative rewards in a long run as described

in Equation (5.5).

In this section, taking the clusters of arms into account, we formally introduced our

ICTR model, which integrates matrix factorization with topic modeling in the bandit

setting. We develop our solution to infer ICTR model from a Bayesian perspective

in the following section.
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5.3 Methodology and Solution

In this section, we present the methodology for online inferences of ICTR model.

The posterior distribution inference involves five random variables, i.e., pm, zm,t,

Φk, qn, and σ2
n. According to the graphical model in Figure 5.3, the five random vari-

ables belong to two categories: parameter random variable and latent state random

variable. Φk, pm, qn, and σ2
n are parameter random variables since they are assumed

to be fixed but unknown, and their values do not change with time. Instead, zm,t is

referred to as a latent state random variable since it is not observable and its value

is time dependent. After pulling arm n(t), where

n(t) = xm,t

according to Equation (5.15) at time t, a reward is observed as rm,t. Thus, xm,t and

rm,t are referred to as observed random variables.

Our goal is to infer both latent parameter variables and latent state random vari-

ables to sequentially fit the observed data at time t− 1, and predict the rewards for

arm selection with respect to the incoming user at time t. However, since the infer-

ence of our model cannot be conducted by a simple closed-form solution, we adopt

the sequential sampling-based inference strategy that is widely used in sequential

Monte Carlo sampling [SDdFG13], particle filtering [DKZ+03], and particle learn-

ing [CJLP10] to learn the distribution of both parameter and state random variables.

Specifically, particle learning that allows both state filtering and sequential parame-

ter learning simultaneously is a perfect solution to our proposed model inference. In

order to develop the solution based on particle learning, we first define a particle as

follows.

Definition 5.3.1 (Particle) A particle for predicting the reward ym,t is a container

that maintains the current status information for both user m and item xm,t. The
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status information comprises of random variables such as pm, σ2
n, Φk, qn, and zm,t,

as well as the hyper parameters of their corresponding distributions, such as λ, α, β,

η, µq and Σq.

In particle learning, each particle corresponds to a sample for modeling inference

status information. At each time stamp, particles are re-sampled according to their

fitness to the current observable data. Then, the re-sampled particles are propagated

to new particles and obtain the status information for the next time stamp. In the

following subsections, we develop our solution based on particle learning.

5.3.1 Re-sample Particles with Weights

At time t− 1, a fixed-size set of particles is maintained for the reward prediction for

each arm n(t− 1) given user m. We denote the particle set at time t− 1 as Pm,n(t−1)

and assume the number of particles in Pm,n(t−1) is B. Let P(i)
m,n(t−1) be the ith particles

given both user m and item n(t − 1) at time t − 1, where 1 ≤ i ≤ B. Each particle

P(i)
m,n(t−1) has a weight, denoted as ρ(i), indicating its fitness for the new observed data

at time t. Note that
B∑
i=1

ρ(i) = 1

. The fitness of each particle P(i)
m,n(t−1) is defined as the likelihood of the observed

data xm,t and rm,t. Therefore,

ρ(i) ∝ p(xm,t, rm,t|P(i)
m,n(t−1)). (5.17)

Further, ym,t is the predicted value of rm,t. The distribution of ym,t, determined by

pm, qn, zm,t, Φk, and σ2
n, has been described in Section 5.2.2.

Therefore, we can compute ρ(i) as proportional to the density value given

ym,t = rm,t
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and

xm,t = n.

Thus, we obtain

ρ(i) ∝
K∑

zm,t=1

{N (rm,t|(pᵀ
mqn, σ

2
n)

• p(zm,t = k, xm,t = n|P(i)
m,n(t−1))},

where

p(zm,t = k, xm,t = n|P(i)
m,n(t−1))

=

∫∫
pm,Φk

p(zm,t = k, xm,t = n,pm,Φk|λ, η)dpmdΦk

=

∫
pm

Mult(zm,t = k|pm)Dir(pm|λ)dpm

•
∫

Φk

Mult(xm,t = n|Φk)Dir(Φk|η)dΦk

= E(pm,k|λ) • E(Φk,n|η).

(5.18)

Thus, we have:

ρ(i) ∝
K∑

zm,t=1

{N (rm,t|(pᵀ
mqn, σ

2
n) • E(pm,k|λ) • E(Φk,n|η)}, (5.19)

where E(pm,k|λ) and E(Φk,n|η) represent the conditional expectations of pm,k and

Φk,n given the observed reward λ and η of P(i)
m,n(t−1) . The expectations can be inferred

by

E(pm,k|λ) =
λk∑K
k=1 λk

and

E(Φk,n|η) =
ηk,n∑N
n=1 ηk,n

.

Before updating any parameters, a re-sampling process is conducted. We replace

the particle set Pm,n(t−1) with a new set Pm,n(t), where Pm,n(t) is generated from

Pm,n(t−1) using sampling with replacement based on the weights of particles. Then

sequential parameter updating is based on Pm,n(t).
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5.3.2 Latent State Inference

Provided with the new observation xm,t and rm,t at time t, the random state zm,t can

be one of K topics and the posterior distribution of zm,t is shown as follows:

zm,t|xm,t, rm,t,P(i)
m,n(t−1) ∼Mult(θ), (5.20)

where θ ∈ RK is the parameter specifying the multinominal distribution. According

to Equation (5.18), since

p(zm,t|xm,t, rm,t, λ, η) ∝ p(zm,t, xm,t|rm,t, λ, η),

θ can be computed by

θk ∝ E(pm,k|rm,t, λ) • E(Φk,n|rm,t, η)

. Further, E(pm,k|rm,t, λ) and E(Φk,n|rm,t, η) can be obtained as follows,

E(pm,k|rm,t, λ) =
I(zm,t = k)rm,t + λk∑K
k=1[I(zm,t = k)rm,t + λk]

,

E(Φk,n|rm,t, η) =
I(xm,t = n)rm,t + ηk,n∑N
n=1[I(xm,t = n)rm,t + ηk,n]

.

(5.21)

where I(•), an indicator function, returns 1 when the input boolean expression

is true, otherwise returns 0. Specifically, if rm,t ∈ {0, 1}, the value of rm,t indicates

whether xm,t should be included in the preferred item list of user m. If rm,t ∈ [0,+∞),

the value of rm,t implies how user m likes item xm,t. Therefore, our solution can

effectively handle the non-negative rating score at different scales.

5.3.3 Parameter Statistics Inference

At time t − 1, the sufficient statistics for the parameter random variables (qn, σ2
n,

pm, Φk) are (µq, Σq, α, β, λ, η). Assume µ′q, Σ′q, α′, β′, λ′, and η′ are the sufficient
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statistics at time t, which are updated on the basis of both the sufficient statistics at

time t− 1 and the new observation data (i.e, xm,t and rm,t). The sufficient statistics

for parameters are updated as follows:

Σ′qn = (Σ−1qn + pmpᵀ
m)−1,

µ′qn = Σ′qn(Σ−1qnµqn + pmrm,t),

α′ = α +
1

2
,

β′ = β +
1

2
(µᵀ

qnΣ
−1
qnµqn + rᵀm,trm,t − µ′ᵀqnΣ

′−1
qn µ

′
qn),

λ′k = I(zm,t = k)rm,t + λk, η′k,n = I(xm,t = n)rm,t + ηk,n.

(5.22)

At time t, the sampling process for the parameter random variables σ2
n, qn, pm

and Φk is summarized as below:

σ2
n ∼ IG(α′, β′),

qn|σ2
n ∼ N (µ′qn , σ

2
nΣ
′
qn),

pm ∼ Dir(λ′),

Φk ∼ Dir(η′).

(5.23)

5.3.4 Integration with Policies

In our ICTR model, when user m arrives at time t, reward rm,t is unknown since it

is not observed until one of arms xm,t is pulled. Without observed xm,t and rm,t, the

particle re-sampling, latent state inference, and parameter statistics inference for time

t cannot be conducted. Therefore, we utilize the latent vectors pm and qn, sampled

from their corresponding posterior distributions by Equation (5.23) at time t− 1, to

predict the reward for each arm. In this section, two policies based on Thompson

sampling and UCB for ICF are integrated with our model.

In the model, every item has B independent particles given user m. Each particle i

contains its latent variables and parameters, and produces an independent reward pre-

diction r
(i)
m,t. Specifically, according to Thompson sampling discussed in Section 5.2.1,
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we predict the reward of pulling arm n with the average value of rewards from B

particles. The policy based on Thompson sampling selects an arm n(t) based on the

following equation,

n(t) = arg max
n

(r̄m,n), (5.24)

where r̄m,n denotes the average reward, i.e.,

r̄m,n =
1

B

B∑
i=1

p(i)ᵀ
m q(i)

n .

Moreover, UCB policy selects an arm based on the upper bound of the predicted

reward. Assuming that

r
(i)
m,t ∼ N (p(i)ᵀ

m q(i)
n , σ

(i)2),

the UCB-based policy is developed by the mean and variance of predicted reward,

i.e.,

n(t) = arg max
n

(r̄m,n + γ
√
ν), (5.25)

where γ ≥ 0 is a predefined threshold and the variance is expressed as

ν =
1

B

B∑
i

σ(i)2.

5.3.5 Algorithm

Putting all the aforementioned inference together, an algorithm for ICTR model is

provided below.

Online inference for ICF problem starts with MAIN procedure presented in Al-

gorithm 2. As user m arrives at time t, EVAL procedure computes a score for each

arm, where we define the score as the average reward. The arm with the highest score

is selected to be pulled. After receiving a reward by pulling an arm, the new feed-

back is used to update ICTR model by UPDATE procedure. Especially in UPDATE

procedure, we use the resample-propagate strategy in particle learning [CJLP10]
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rather than the propagate-resample strategy in particle filtering [DKZ+03]. With

the resample-propagate strategy, particles are re-sampled by taking ρ(i) as the ith

particle’s weight, where the ρ(i) indicates the fitness of the observation at time t giv-

en the particle at time t − 1. The resample-propagate strategy is considered as an

optimal and fully adapted strategy avoiding an importance sampling step.

Algorithm 2 The algorithms for ICTR model

1: procedure main(B) . Main entry.

2: Initialize B particles, i.e., P(1)
m,n(0)...P

(B)
m,n(0).

3: for t← 1, T do
4: User m arrives for item recommendation.
5: n(t) = arg maxn=1,N EVAL(m,n) by Equation (5.24) or Equation (5.25).
6: Receive rm,t by rating item n(t).
7: UPDATE(m, n(t), rm,t).
8: end for
9: end procedure

10: procedure eval(m, n) . Get a rating score for item n, given user m.
11: for i← 1, B do . Iterate on each particle.
12: Get the user latent vector p

(i)
m .

13: Get the item latent vector q
(i)
n .

14: Predict ith reward r
(i)
m,t.

15: end for
16: Compute the average reward as the final reward rm,t.
17: return the score.
18: end procedure

19: procedure update(m, n(t), rm,t) . Update the inference.
20: for i← 1, B do . Compute weights for each particle.
21: Compute weight ρ(i) of particle P(i)

m,n(t) by Equation (5.17).
22: end for
23: Re-sample P ′m,n(t) from Pm,n(t) according to the weights ρ(i)s.
24: for i← 1, B do . Update statistics for each particle.
25: Update the sufficient statistics for zm,t by Equation (5.21).
26: Sample zm,t according to Equation (5.20).
27: Update the statistics for qn, σ2

n, pm, Φk by Equation (5.22).
28: Sample qn, σ2

n, pm, Φk by Equation (5.23).
29: end for
30: end procedure
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In addition, existing algorithms [ZZW13, KBK+15] consider all the arms inde-

pendently, while our model takes the clusters of arms into account by learning the

topic-related random variables (e.g., Φk), which are shared among all the arms.

5.4 Empirical Study

To demonstrate the efficiency of our proposed algorithm, we conduct our experimental

study over two popular real-world dataset: Yahoo! Today News and MovieLens

(10M). First, we outline the general implementation of the baselines. Second, we start

with a brief description of the datasets and evaluation method. Finally, we show and

discuss the comparative experimental results of both the proposed algorithms and the

baselines, and a case study on movie topic distribution analysis of MovieLens (10M).

Methods in [GLZ14, WWGW16, WWW17, ZB16] are excluded from the baselines

since our work is orthogonal to those methods.

5.4.1 Baseline Algorithms

In the experiment, we demonstrate the performance of our methods by comparing

them with the following baseline algorithms:

1. Random: it randomly selects an item recommending to the target user.

2. ε-greedy(ε): it randomly selects an item with probability ε and selects the item

of the largest predicted reward with probability 1 − ε, where ε is a predefined

parameter.

3. UCB(λ): it picks item j(t) with the highest rewards at time t as follows:

j(t) = arg max
j=1,...,N

(µ̂i + λ

√
2ln(t)

ni(t)
)
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where ni(t) is the number of times that item ni has been recommended until

time t.

4. TS(Si(t), Fi(t)): Thompson sampling described in Section 5.2.1, randomly draws

the expected reward from the Beta posterior distribution, and selects the item

with the largest predicted reward.

Si(t)/Fi(t)

is the number of positive/negative feedback on item i until time t.

5. PTS(d, p): particle Thompson sampling for matrix factorization approximates

the posterior of latent feature vectors by updating a set of particles. Here d is

the dimension of latent feature vector and p is the number of particles.

Our methods proposed in this chapter include:

1. ICTRTS(d, p): it denotes our proposed interactive collaborative topic regression

model with TS. Here d is the dimension of latent feature vector and p is the

number of particles.

2. ICTRUCB(d, p, γ): it indicates our proposed model with UCB. Similar to UCB, γ

is given. Here d is the dimension of latent feature vector and p represents the

number of particles.

All algorithms are implemented using Java 1.8. All empirical experiments are

running on Linux 2.6.32. The server is equipped with Intel(R) Xeon(R) CPU with

24 cores running at speed of 2.50GHZ. The total volume of memory is 158GB.

5.4.2 Datasets Description

We use two real-world datasets shown in Table 5.2 to evaluate our proposed algo-

rithms.
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Table 5.2: Description of datasets.

Dataset Yahoo News MovieLens (10M) Automation
#users or #alert keys 226,710 71,567 1,091
#items or #automations 652 10,681 62
#ratings 280,410,150 10,000,054 332,211

Yahoo! Today News: The core task of personalized news recommendation is

to display appropriate news articles on the web page for users. The system often

takes the user’s instant feedback into account to improve the prediction of his/her

preferences, where the user feedback is about whether he/she clicks the recommended

article or not. Here, we formulate the personalized news recommendation problem as

an instance of bandit problem, where each arm corresponds to a news article. The

experimental dataset is a collection based on a sample of anonymized user interaction

on the news feeds published by Yahoo! Research Lab1. The dataset contains 15 days’

visit events of user-news item interaction data by randomly selecting news articles

for recommendation. Besides, user’s information (e.g., demographic information) is

provided for each visit event and represented as the user identification, where users

with the same information are identified as one user. In our experiments, the visit

events of the first day are utilized for selecting proper parameters of ICTR model,

while two million of the remaining are for the evaluation. Each interactive record

in the historical logs consists of user ID, news article ID, rating feedback and a

timestamp.

MovieLens (10M): Online movie recommender service aims to maximize the

customer’s satisfaction by recommending proper movies to target users according to

their preferences. Specifically, several movies are selected out of a movie set and

displayed to users, and then users’ feedback on displayed movies are collected for

improving the user satisfaction. Thereby, the problem of movie recommendation can

1http://webscope.sandbox.yahoo.com/catalog.php
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be formulated as a bandit problem where an arm is a movie, a pull is regarded as a

movie selection, and the reward is indicated by the user’s rating on the recommended

movie. In our experiments, each rating associates user ID, movie ID, and a timestamp.

In order to use the replayer evaluation method, we assume the rating data is produced

by the users when the movies are randomly recommended. The rating score in the

dataset ranges from 1 to 5. Additionally, we choose the top-N (N=100) popular

movies to form a movie set, from which one movie is recommended to a user by

algorithms in every trial.

Automation: The dataset is collected by IBM Tivoli Monitoring system [urlf]

from July 2016 to March 2017, which contains 332,211 historical records. After fil-

tering out those unqualified ones for recommendation algorithms, 116, 429 records

are available for empirical studies. The dataset contains 1,091 alert keys (e.g., c-

pusum xuxc aix, prccpu rlzc std) and 62 automations (e.g., NFS automation, process

CPU spike automation) in total. The execution feedback (i.e., reward or rating) indi-

cating whether the ticket has been resolved by an automation or needs to be escalated

to human engineers, is collected and utilized for our proposed model inference. Each

record is stamped with the reporting time of the ticket.

5.4.3 Evaluation Method and Metrics

The evaluation methods for traditional non-interactive recommender systems assume

the independence among the items at different time stamps once the offline model

is built. In an online interactive recommender system, the recommended items at

previous time stamps are used to update the recommendation model, and then further

effect the recommendation items at current time stamp.

We apply the replayer method to evaluate our proposed algorithms on the afore-

mentioned two datasets. The replayer method, first introduced in [LCL+12], provides
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an unbiased offline evaluation for multi-armed bandit algorithms via historical logs,

where the logs are assumed to be generated by random recommendation. The main

idea of replayer is to replay each user visit in the historical logs to the algorithm

under evaluation. If the recommended item by the testing algorithm is identical to

the one in the historical log, this visit is considered as a match between the historical

recommendation and the testing recommendation algorithm. The replayer method

only counts those matched visits in for the accumulated reward computation. Since

the recommendation algorithms may result in different numbers of matched visits,

the average reward (i.e., the accumulated rewards divided by the number of matched

visits) is adopted for evaluation.

Particularly, in the scenario of news article recommendation, a matched visit cor-

responds to an impression, and a reward of one is obtained by a click, so the average

reward also represents the average CTR (Click Through Rate). In the scenario of

movie recommendation, we set the reward of one if the rating score of the recom-

mended movie is no less than four, indicating that the user likes the recommended

movie. If the rating is less than four, a reward value of zero is obtained. Thus, the

average reward in this scenario indicates the success rate of movie recommendation.

To sum it up, in our setting, the reward is one if the recommended article (movie) is

clicked (liked), otherwise it is zero.

Table 5.3: Evaluation metric computation for replayer.

Item in Random Recommendation Logs
Clicked/Liked Not Clicked/Not Liked

Recommended
Item

Matched TP FP
Not Matched N/A N/A

Consider a matched visit shown in Table 5.3. If the item in the logs is clicked

or liked by a user, the recommended item is referred to as a true positive (TP),

otherwise it is referred to as a false positive (FP). The average reward is computed
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as TP∗1+FP∗0
TP+FP

= TP
TP+FP

, corresponding to the formula for the precision for matched

visits. However, for the unmatched visits, we can not determine whether an item

is false negative or true negative since no ground truth is provided. Therefore, the

computation of the average reward in this case as the recall, relying on the false

negative, is not feasible.

5.4.4 Recommendation Evaluation

In this section we first conduct the replayer evaluation method for each algorithm

with different parameter settings. The aforementioned average reward is used as the

performance metric in the experiments.

All baseline algorithms are configured with different parameter settings provided

in Table 5.4. The settings of all algorithms with the highest average reward are high-

lighted in bold. Our algorithm ICTRUCB(2,10,1.0) achieves the best performance

among all algorithms on Yahoo! Today News, and the performance comparisons a-

mong different algorithms along different time buckets are illustrated in Figure 5.4.

For MovieLens (10M), ICTRTS(3,10) outperforms all others and the corresponding

performance comparisons are shown in Figure 5.5. ICTRTS(5,3) has the best perfor-

mance during recommending the most matched automation presented in Figure 5.6.

Our proposed algorithms outperform the baseline algorithms using independent

arms because ICTR model can leverage the dependencies among items by clustering

items (arms) using items’ latent aspects. The feedback received after recommending

an item is not only used to update the model parameters related to this item, but

also utilized to refine the parameters for the item’s cluster. As a result, the updated

cluster parameters further influence the model’s parameter inference for other items

within the same cluster. The effect of the clustering is illustrated in more details in

the next section.
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Figure 5.4: The average CTR of Yahoo! Today News data is given along each time
bucket. All algorithms shown here are configured with their best parameter settings.
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Figure 5.5: The average rating of MovieLens (10M) data is given along each time
bucket. All algorithms shown here are configured with their best parameter settings.
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Figure 5.6: The relative average rating of Automation data is given along each time
bucket. All algorithms shown here are configured with their best parameter settings.

5.4.5 A Case Study: Topic Distribution Analysis on Movie-

Lens (10M)

We conduct an experiment to demonstrate that our model can effectively capture the

dependency between items, i.e., finding the latent topics among movies and clustering

similar movies together. In this experiment, top-N (N=8) popular movies are selected

and topic number (K=2) is set for our model. After millions of training iterations,

the learned latent movie feature vectors will represent each movie’s topic distribution

over the two latent topics, in which the i-th dimension of the feature vector encodes

the probability that the movie belongs to the i-th movie topic cluster. We separately

choose four movies with the highest value of the first element and the second element

of these latent feature vectors, and list their IDs, names, and movie types in Table 5.5,
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Table 5.4: Average CTR/rating on two real world datasets.

Algorithm Yahoo! Today News MovieLens (10M)

mean std min max mean std min max

ε-greedy(0.01) 0.06916 0.00312 0.06476 0.07166 0.70205 0.06340 0.60752 0.78934
ε-greedy(0.1) 0.07566 0.00079 0.07509 0.07678 0.82038 0.01437 0.79435 0.83551
ε-greedy(0.3) 0.07006 0.00261 0.06776 0.07372 0.80447 0.01516 0.77982 0.82458
ε-greedy(1.0) 0.03913 0.00051 0.03842 0.03961 0.60337 0.00380 0.59854 0.60823

UCB(0.01) 0.05240 0.00942 0.04146 0.06975 0.62133 0.10001 0.45296 0.73369
UCB(0.1) 0.08515 0.00021 0.08478 0.08544 0.73537 0.07110 0.66198 0.85632
UCB(0.5) 0.05815 0.00059 0.05710 0.05893 0.71478 0.00294 0.63623 0.64298
UCB(1.0) 0.04895 0.00036 0.04831 0.04932 0.63909 0.00278 0.60324 0.61296

TS(0.01,0.01) 0.07853 0.00058 0.07759 0.07921 0.83585 0.00397 0.82927 0.84177
TS(0.1,0.1) 0.07941 0.00040 0.07869 0.07988 0.83267 0.00625 0.82242 0.84001
TS(0.5,0.5) 0.07914 0.00106 0.07747 0.08041 0.82988 0.00833 0.81887 0.84114
TS(1.0,1.0) 0.07937 0.00079 0.07788 0.08044 0.83493 0.00798 0.82383 0.84477

PTS(2,2) 0.06069 0.00575 0.05075 0.06470 0.70484 0.03062 0.64792 0.74610
PTS(2,10) 0.05699 0.00410 0.05130 0.06208 0.65046 0.01124 0.63586 0.66977
PTS(5,10) 0.05778 0.00275 0.05589 0.06251 0.63777 0.00811 0.62971 0.65181
PTS(5,20) 0.05726 0.00438 0.05096 0.06321 0.62289 0.00714 0.61250 0.63567
PTS(10,20) 0.05490 0.00271 0.05179 0.05839 0.61819 0.01044 0.60662 0.63818

ICTRTS(2,5) 0.06888 0.00483 0.06369 0.07671 0.70386 0.15772 0.48652 0.85596
ICTRTS(2,10) 0.06712 0.01873 0.03731 0.08487 0.56643 0.10242 0.42974 0.67630
ICTRTS(3,10) 0.06953 0.00783 0.05857 0.07804 0.88512 0.00052 0.88438 0.88553
ICTRTS(5,10) 0.08321 0.08236 0.08492 0.06292 0.55748 0.14168 0.38715 0.73404
ICTRTS(7,10) 0.05066 0.00885 0.04229 0.06423 0.517826 0.07120 0.42297 0.59454
ICTRTS(7,20) 0.04925 0.00223 0.04672 0.05285 0.61414 0.12186 0.44685 0.73365

ICTRUCB(2,10,0.01) 0.06673 0.01233 0.04588 0.08112 0.44650 0.06689 0.38678 0.53991
ICTRUCB(2,10,1.0) 0.08597 0.00056 0.08521 0.08675 0.86411 0.01528 0.85059 0.88547
ICTRUCB(3,10,0.05) 0.07250 0.00426 0.06799 0.07694 0.54757 0.13265 0.43665 0.73407
ICTRUCB(3,10,1.0) 0.08196 0.00296 0.07766 0.08530 0.57805 0.08716 0.46453 0.67641
ICTRUCB(5,10,0.01) 0.07009 0.00722 0.06411 0.08244 0.62282 0.02572 0.59322 0.65594
ICTRUCB(5,10,1.0) 0.08329 0.00140 0.08098 0.08481 0.80038 0.24095 0.29625 0.88554

which clearly proves our assumption that the model is able to capture the dependency

between items and cluster similar movies together.

Table 5.5: Movie topic distribution of MovieLens (10M).

Topic Cluster I Topic Cluster II

MovieId MovieName MovieType MovieId MovieName MovieType

32 12 Monkeys Sci-Fi,Thriller 344 Pet Detective Comedy

50 Usual Suspects Crime,Mystery,Thriller 588 Aladdin Children,Animation,Comedy

590 Dances with wolves Adventure,Drama,Western 595 Beauty and the Beast Animation,Children,Musical

592 Batman Action,Crime,Sci-Fi,Thriller 2857 Yellow Submarine Adventure,Animation,Comedy,Musical
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5.4.6 A Case Study: Identify the Category of a New Au-

tomation

Another case study is carried out with an attempt to identify the category of an

automation named ”process missing” using ICTR model. Based on our previous dis-

cussion, ICTRTS (5, 3) can achieve the best performance on this dataset, where the

dimension of the latent feature vector is 5 and the number of particles is 3. Through

iteratively running on the rating dataset, ICTRTS (5, 3) fully learns the latent feature

vector of each automation as well as performs the recommendation. Four automations

are randomly selected from the automation pool and listed in Figure 5.7. Different

from the automation ”process missing”, the other four automations can be easily

figured out their correct categories according to their names. We compute the Eu-

clidean distances between the latent feature vector of ”process missing” and the ones

of the other four categorized automations. We consider it as an automation related

to “WINDOWS” category as the minimum distance indicates in Figure 5.7. The

correctness of categorization is verified by the domain experts, which demonstrates

ICTR’s capability of discovering the automation categories by clustering the learned

latent features.

CATEGORYCATEGORIZED AUTOMATION

DATABASE

UNIX

WINDOWS*

1.086

1.014

(1) db2 percent db connection 

executing is to high automation

0.565*(1) windows service automation

 

0.858

(1) process cpu spike automation

(2) swap automation

UNCATEGORIZED AUTOMATION process missing

 EUCLIDEAN 

DISTANCE

Figure 5.7: An example of categorizing an automation.
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5.4.7 Time Cost

The cumulative time cost of each algorithm on Yahoo! Today News data and Movie-

Lens (10M) datasets is presented in Figure 5.8 and Figure 5.9, where all algorithms

are configured with their best parameter settings, since the size of Automation data

is not large enough. Our proposed algorithms have higher running time since they

needs to learn the latent features for arms. However, the computational complexity

of both ICTRUCB(1,1,1.0) and ICTRTS(1,1) is comparable to the baselines’. We

also evaluate the time costs of ICTRTS and ICTRUCB with different number of parti-

cles and latent feature vector dimensions on the two datasets (see Figure 5.10 and

Figure 5.11). It shows that the time cost grows linearly with the number of particles

and dimensions of latent feature vector.

The observations can be summarized as follows: (1) MovieLens (10M) requires

much more time than Yahoo! Today New due to a larger amount of items and users.

(2) In general, UCB-based algorithms (e.g., ICTRUCB, UCB) are faster than TS-based

ones (e.g., ICTRTS, PTS) since the TS-based algorithms highly depend on the sampling

process.

5.5 Summary

In this chapter, we propose an interactive collaborative topic regression model that

adopts a generative process based on topic model to explicitly formulate the arm

dependencies as the clusters on arms, where dependent arms are assumed to be gen-

erated from the same cluster. Every time an arm is pulled, the feedback is not only

used for inferring the involved user and item latent vectors, but also employed to

update the latent parameters with respect to the arm’s cluster. The latent cluster

parameters further help with the reward prediction for other arms in the same cluster.
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Figure 5.8: Cumulative time cost of Yahoo! Today News is given along each time
bucket.
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We conduct empirical studies on three real-world applications and the experimental

results demonstrate the effectiveness of our proposed approach.

We also inspected the current procedures in IT automation services and extend

the ICTR model to solve the problems in real IT environment, where implicit au-

tomation dependencies can be effectively exploited as well as promptly suggest the

most matched automations for resolving a ticket problem. Empirical studies in real

IT environment are conducted to show the advantages of our solutions. In addition,

we would like to provide a comprehensive regret analysis [GLK+17] of our model in

the future work.
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CHAPTER 6

THE FUTURE OF AI-BASED SERVICE MANAGEMENT

In the previous chapters, my efforts are aiming at empowering the automated IT ser-

vice management processes certain AI capability. Constructing the domain knowledge

base would make it capable of learning past experiences from both human engineers

and virtual engineers. For example, updating its knowledge database and ultimately

improving the performance that how it reacts to any issues, even some of them are

completely new to the system. Introducing multi-armed bandit model into IT au-

tomation services would enable it automatically learn the underlying mapping func-

tion between ticket problem symptoms and resolutions from virtual engineers through

the up-to-date feedback from the problem servers. In recent years, deep learning, a

sub-field of machine learning, has become so successful in many research areas such as

computer vision and natural language processing [ZYS17]. The amazing performance

on image recognition and language translation and its attractive property of learning

feature representations from scratch make it a glaring star garnered considerable in-

terests. In this chapter, in order to provide more complex and intelligent solutions, I

propose two future potential research directions for automatic service management:

deep bandit model and script generation machine.

6.1 Deep Bandit Collaborative Filtering Model

Deep learning techniques have made tremendous success in many application domains

including information retrieval and recommender systems in the past few decades.

In Chapter 4 and Chapter 5, our proposed bandit models have successfully solved

the challenges existed in the current IT automation services system. However, both

context-based and context-free automation recommendation model is based on the
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assumption that there exists a linear regression mapping function between problem

symptom and its corresponding automation (i.e. scripted resolution). Deep neural

networks are capable of modeling the non-linear mapping function in data using

nonlinear activations such as relu, sigmoid, tanh and etc [ZYS17], which makes it

possible to capture the more complex and intricate user-item interaction patterns

in recommender systems. It is a natural way to construct a dual neural network

introducing the nonlinear transformation to model the interaction between users and

items. In our system, a ticket problem can be treated as a user and an automation

as an item.

In [HLZ+17, ZYS17], neural collaborative filtering (NCF) model is introduced.

Figure 6.1 shows the architecture of NCF model. Let pm and qn denote the contextual

information of user m and item n. The predictive reward r̂m,n function can be defined

in the following:

r̂m,n = f(PT · pm,QT · qn|P,Q, θ)

where f(·) represents the nonlinear activations and θ indicates the all parameters of

this network. It is convenient to come up with a more general model that leverages

both linearity of matrix factorization and non-linearity of deep neural network to

improve recommendation performance. However, NCF is not in an online mode.

Deep reinforcement learning [MKS+15] has made a significant improvement on the

applications such as AlphaGo and Atari games, which makes the agent can well adopt

the surrounding environment through learning the strategies from the immediate

feedback from outside after taking action. Deep bandit model [RTS18] is developed

to balance exploration and exploitation in complex domains. Facing the challenges

of the automation recommendation, it is promising to come up with deep bandit

collaborative filtering model that could utilize both the advantages of two models.

114



1

pm

User Latent Vector

...0 1 0

qn

...0 1

P Q

Items Latent Vector

Input Layer

Embedding 
Layer

Layer 1

Layer 2

Layer X

Neural CF 
Layer

f(·) rm,nOutput Layer

Training

Figure 6.1: Neural Collaborative Filtering.

6.2 Script Generation Machine

As we mentioned in Chapter 4, incident tickets that manually created by customers

and escalated from IT automation services will be directly forward to human engineer-

s, which leads to a labor-intensive and error-prone process for problem determination,

diagnosis, and resolution. Therefore, a more intelligent idea is proposed. Is it possi-

ble to automatically generate the proper scripted resolutions and recommend them

to human engineers for further improvement when a new ticket problem is arriving

in the system?

Indeed, neural machine translation [BCB14] provides a possible way. We can

consider the scripted resolutions (i.e., automations) are written in a machine language.

In the IT automation services system, thousands of pairs of ticket resolutions written

in the natural human language and the form of scripts can be used to train a neural
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machine translation model, which is a recent popular end-to-end learning approach

for automated translation [WSC+16]. In Figure 6.2, a simple example is presented to

demonstrate how to translate the natural human language into Linux commands using

a seq2seq model. Some related work [LWP+17, ZXS17] have shown the feasibility of

our proposal.

Encoder Decoder

0.5

1.2

-0.1

-0.2

1.0

0.2

0.3

0.6

Remove 
file A.

rm -f A 

Figure 6.2: Encoder-decoder architecture for neural machine translation. An encoder
learns the vector representation from an source sentence. A decoder is used to produce
the translation.

6.3 Summary

In this chapter, I highlighted potential research directions by extending to deep neural

network research area. Its capability and property will greatly enhance the perfor-

mance of automatic processes and finally achieve the ultimate goal of fully maximizing

the automation of subroutine procedures such as problem detection, determination,

and resolution without any human interaction.
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[RR18] Alex Ratner and Christopher Ré. Knowledge base construction in the
machine-learning era. Queue, 16(3):50, 2018.

[RTS18] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian
bandits showdown. In International Conference on Learning Represen-
tations, 2018.

[S+00] John F Sowa et al. Knowledge representation: logical, philosophical,
and computational foundations, volume 13. Brooks/Cole Pacific Grove,
CA, 2000.

123



[SDdFG13] Adrian Smith, Arnaud Doucet, Nando de Freitas, and Neil Gordon. Se-
quential Monte Carlo methods in practice. Springer Science & Business
Media, 2013.

[SFHS07] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Col-
laborative filtering recommender systems. In The adaptive web, pages
291–324. Springer, 2007.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-
based collaborative filtering recommendation algorithms. In Proceedings
of the 10th international conference on World Wide Web, pages 285–
295. ACM, 2001.

[SM86] Gerard Salton and Michael J McGill. Introduction to modern informa-
tion retrieval. 1986.

[SM08] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix
factorization using markov chain monte carlo. In Proceedings of the 25th
international conference on Machine learning, pages 880–887. ACM,
2008.

[SPUP02] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M
Pennock. Methods and metrics for cold-start recommendations. In
Proceedings of the 25th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 253–260.
ACM, 2002.

[STvdS16] Linqi Song, Cem Tekin, and Mihaela van der Schaar. Online learning
in large-scale contextual recommender systems. IEEE Transactions on
Services Computing, 9(3):433–445, 2016.

[TJL+15] Liang Tang, Yexi Jiang, Lei Li, Chunqiu Zeng, and Tao Li. Personalized
recommendation via parameter-free contextual bandits. In Proceedings
of the 38th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 323–332. ACM, 2015.

[TJLL14] Liang Tang, Yexi Jiang, Lei Li, and Tao Li. Ensemble contextual ban-
dits for personalized recommendation. In Proceedings of the 8th ACM
Conference on Recommender Systems, pages 73–80. ACM, 2014.

[TLS12] Liang Tang, Tao Li, and Larisa Shwartz. Discovering lag intervals for
temporal dependencies. In Proceedings of the 18th ACM SIGKDD in-

124



ternational conference on Knowledge discovery and data mining, pages
633–641. ACM, 2012.

[TLS+13] Liang Tang, Tao Li, Larisa Shwartz, Florian Pinel, and Genady Ya
Grabarnik. An integrated framework for optimizing automatic monitor-
ing systems in large it infrastructures. In SIGKDD, pages 1249–1257.
ACM, 2013.

[TLSG13] Liang Tang, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik. Rec-
ommending resolutions for problems identified by monitoring. In I-
FIP/IEEE IM, pages 134–142. IEEE, 2013.

[TM00] Kristina Toutanova and Christopher D Manning. Enriching the knowl-
edge sources used in a maximum entropy part-of-speech tagger. In SIG-
DAT, pages 63–70. ACL, 2000.

[Tok10] Michel Tokic. Adaptive ε-greedy exploration in reinforcement learning
based on value differences. In KI 2010: Advances in Artificial Intelli-
gence, pages 203–210. Springer, 2010.

[urla] AI Impacts IT Service management. https://www.servicedeskshow.
com/feature/how-ai-will-impact-it-service-management.

[urlb] HP OpenView : Network and Systems Management Products. http:

//www8.hp.com/us/en/software/enterprise-software.html.

[urlc] IBM Cognitive Computing. http://research.ibm.com/

artificial-intelligence/.

[urld] IBM Enterprise IT Automation Services. http://www.redbooks.ibm.

com/redpapers/pdfs/redp5363.pdf.

[urle] IBM Enterprise IT Automation Services. www.redbooks.ibm.com/

redpapers/pdfs/redp5363.pdf.

[urlf] IBM Tivoli : Integrated Service Management. http://ibm.com/

software/tivoli/.

[urlg] ITIL. http://www.itlibrary.org/.

[Wel84] Terry A. Welch. A technique for high-performance data compression.
Computer, 17(6):8–19, 1984.

125



[WHLE17] Xin Wang, Steven CH Hoi, Chenghao Liu, and Martin Ester. Interac-
tive social recommendation. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management, pages 357–366.
ACM, 2017.

[WHS17] Liwei Wu, Cho-Jui Hsieh, and James Sharpnack. Large-scale collab-
orative ranking in near-linear time. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 515–524. ACM, 2017.

[WLI+18] Qing Wang, Tao Li, SS Iyengar, Larisa Shwartz, and Genady Ya
Grabarnik. Online it ticket automation recommendation using hierar-
chical multi-armed bandit algorithms. In Proceedings of the 2018 SIAM
International Conference on Data Mining, pages 657–665. SIAM, 2018.

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, K-
laus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, ukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine
translation system: Bridging the gap between human and machine
translation. CoRR, abs/1609.08144, 2016.

[WWGW16] Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang.
Contextual bandits in a collaborative environment. In Proceedings of
the 39th International ACM SIGIR conference on Research and Devel-
opment in Information Retrieval, pages 529–538. ACM, 2016.

[WWW16] Huazheng Wang, Qingyun Wu, and Hongning Wang. Learning hidden
features for contextual bandits. In Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowledge Management,
pages 1633–1642. ACM, 2016.

[WWW17] Huazheng Wang, Qingyun Wu, and Hongning Wang. Factorization ban-
dits for interactive recommendation. In AAAI, pages 2695–2702, 2017.

[WZZ+17a] Qing Wang, Chunqiu Zeng, Wubai Zhou, Tao Li, Larisa Shwartz, and
Genady Ya Grabarnik. Online interactive collaborative filtering us-
ing multi-armed bandit with dependent arms. arXiv preprint arX-
iv:1708.03058, 2017.

126



[WZZ+17b] Qing Wang, Wubai Zhou, Chunqiu Zeng, Tao Li, Larisa Shwartz, and
Genady Ya Grabarnik. Constructing the knowledge base for cognitive
it service management. In Services Computing (SCC), 2017 IEEE In-
ternational Conference on, pages 410–417. IEEE, 2017.

[XHF+09] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I
Jordan. Detecting large-scale system problems by mining console logs.
In Proceedings of the 22nd ACM SIGOPS, pages 117–132. ACM, 2009.

[YHG12] Yisong Yue, Sue Ann Hong, and Carlos Guestrin. Hierarchical ex-
ploration for accelerating contextual bandits. arXiv preprint arX-
iv:1206.6454, 2012.

[ZB16] Li Zhou and Emma Brunskill. Latent contextual bandits and their ap-
plication to personalized recommendations for new users. arXiv preprint
arXiv:1604.06743, 2016.

[ZL15] Chunqiu Zeng and Tao Li. Event pattern mining. Event Mining: Algo-
rithms and Applications, pages 71–121, 2015.

[ZLSG14] Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik.
Hierarchical multi-label classification over ticket data using contextu-
al loss. In Network Operations and Management Symposium (NOMS),
2014 IEEE, pages 1–8. IEEE, 2014.

[ZLSG15a] Wubai Zhou, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik. Rec-
ommending ticket resolution using feature adaptation. In CNSM, pages
15–21. IEEE, 2015.

[ZLSG15b] Wubai Zhou, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik. Rec-
ommending ticket resolution using feature adaptation. In CNSM, pages
15–21. IEEE, 2015.

[ZTL+14] Chunqiu Zeng, Liang Tang, Tao Li, Larisa Shwartz, and Genady Ya
Grabarnik. Mining temporal lag from fluctuating events for correlation
and root cause analysis. In Network and Service Management (CNSM),
2014 10th International Conference on, pages 19–27. IEEE, 2014.

[ZTL+15] Wubai Zhou, Liang Tang, Tao Li, Larisa Shwartz, and Genady Ya
Grabarnik. Resolution recommendation for event tickets in service man-
agement. In IFIP/IEEE IM, pages 287–295. IEEE, 2015.

127



[ZTZ+17] Chunqiu Zeng, Liang Tang, Wubai Zhou, Tao Li, Larisa Shwartz,
Genady Grabarnik, et al. An integrated framework for mining temporal
logs from fluctuating events. IEEE Transactions on Services Computing,
2017.

[ZWML16] Chunqiu Zeng, Qing Wang, Shekoofeh Mokhtari, and Tao Li. Online
context-aware recommendation with time varying multi-armed bandit.
In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 2025–2034. ACM, 2016.

[ZWW+16] Chunqiu Zeng, Qing Wang, Wentao Wang, Tao Li, and Larisa Shwartz.
Online inference for time-varying temporal dependency discovery from
time series. In Big Data (Big Data), 2016 IEEE International Confer-
ence on, pages 1281–1290. IEEE, 2016.

[ZXB+17] Wubai Zhou, Wei Xue, Ramesh Baral, Qing Wang, Chunqiu Zeng, Tao
Li, Jian Xu, Zheng Liu, Larisa Shwartz, and Genady Ya Grabarnik.
Star: A system for ticket analysis and resolution. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 2181–2190. ACM, 2017.

[ZXS17] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating
structured queries from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103, 2017.

[ZYS17] Shuai Zhang, Lina Yao, and Aixin Sun. Deep learning based recom-
mender system: A survey and new perspectives. arXiv preprint arX-
iv:1707.07435, 2017.

[ZYZ11] Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha. Functional matrix
factorizations for cold-start recommendation. In Proceedings of the 34th
international ACM SIGIR conference on Research and development in
Information Retrieval, pages 315–324. ACM, 2011.

[ZZL+17] Chunqiu Zeng, Wubai Zhou, Tao Li, Larisa Shwartz, and Genady Y
Grabarnik. Knowledge guided hierarchical multi-label classification over
ticket data. IEEE Transactions on Network and Service Management,
2017.

[ZZW13] Xiaoxue Zhao, Weinan Zhang, and Jun Wang. Interactive collaborative
filtering. In Proceedings of the 22nd ACM international conference on

128



Conference on information and knowledge management, pages 1411–
1420. ACM, 2013.

129



VITA

QING WANG

2014-Present Ph.D., Computer Science
Florida International University, Miami, Florida

2013 M.S., Computer Science
Xidian University, Xi’an, P.R. China

2009 B.A., Computer Science
Zhengzhou University, Zhengzhou, P.R. China

PUBLICATIONS

Hongjun Li, Biao Cai, Shaojie Qiao, Qing Wang, Yan Wang, ExTCKNN: Expand-
ing Tree-based Continuous K Nearest Neighbor Query in Road Networks with Traffic
Rules, In IEEE Access, 2018.

Qing Wang, Chunqiu Zeng, S. S. Iyengar, Tao Li, Larisa Shwartz, Genady Y. Grabarnik,
AISTAR: An Intelligent Integrated System for Online IT Ticket Automation Recom-
mendation, In Proceedings of the 6th annual IEEE International Conference on Big
Data (IEEE Big Data), 2018.

Qing Wang, Chunqiu Zeng, Wubai Zhou, Tao Li, S. S. Iyengar, Larisa Shwartz,
Genady Y. Grabarnik, Online Interactive Collaborative Filtering Using Multi-armed
Bandit with Dependent Arms, In IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 2018.

Qing Wang, S. S. Iyengar, Tao Li, Larisa Shwartz, Genady Ya. Graharnik, Online
IT automation recommendation Using Hierarchical Multi-armed Bandit Algorithms,
SIAM International Conference on Data Mining (SDM), 2018.

Wubai Zhou, Wei Xue, Ramesh Baral, Qing Wang, Chunqiu Zeng, Tao Li, Jian Xu,
Zheng Liu, Larisa Shwartz, Genady Ya.Grabarnik, STAR: A System for Ticket Anal-
ysis and Resolution, In Proceedings of the 23nd annual ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (SIGKDD), 2017.

Wei Xue, Wubai Zhou, Tao Li, Qing Wang, MTNA: A Neural Multi-Task Model for
Aspect Category Classification and Aspect Term Extraction on Restaurant Reviews,
In Proceedings of the 8th International Joint Conference on Natural Language Pro-
cessing (IJCNLP), 2017.

Qing Wang, Wubai Zhou, Chunqiu Zeng, Tao Li, Larisa Shwartz, Genady Ya.Grabarnik,
Constructing the Knowledge Base for Cognitive IT Service Management, In Proceed-
ings of the 14th IEEE International Conference on Services Computing (IEEE SCC),
2017.

130



Chunqiu Zeng, Qing Wang, Wentao Wang, Tao Li, Larisa Shwartz, Online Inference
for Time-Varying Temporal Dependency Discovery from Time Series, in Proceedings
of the 4th annual IEEE International Conference on Big Data (IEEE Big Data), 2016.

Tao Li, Wubai Zhou, Chunqiu Zeng, Qing Wang, Qifeng Zhou, Dingding Wang, Jia X-
u, Yue Huang, Wentao Wang, Minjing Zhang, Steve Luis, Shu-Ching Chen, Naphtali
Rishe, DI-DAP: An Efficient Disaster Information Delivery and Analysis Platform
in Disaster Management, in Proceedings of the 25th ACM Conference on Information
and Knowledge Management (CIKM), 2016.

Chunqiu Zeng, Qing Wang, Shekoofeh Mokhtari, Tao Li, Online Context-Aware Rec-
ommendation with Time Varying Multi-Armed Bandit, in Proceedings of the 22nd
annual ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (SIGKDD), 2016.

Tao Li, Chunqiu Zeng, Wubai Zhou, Wei Xue, Yue Huang, Zheng Liu, Qifeng Zhou,
Bin Xia, Qing Wang, Wentao Wang, Xiaolong Zhu, FIU-Miner (A Fast, Integrated,
and User-Friendly System for Data Mining) and Its Applications, In Knowledge and
Information Systems (KAIS), 2016.

131


	Intelligent Data Mining Techniques for Automatic Service Management
	Recommended Citation

	Intelligent Data Mining Techniques for Automatic Service Management

