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ABSTRACT OF THE DISSERTATION 

MULTIVARIATE ANALYSIS FOR THE QUANTIFICATION OF TRANSDERMAL 

VOLATILE ORGANIC COMPOUNDS IN HUMANS BY PROTON EXCHANGE 

MEMBRANE FUEL CELL SYSTEM 

by 

Ahmed Hasnain Jalal 

Florida International University, 2018 

Miami, Florida 

Professor Shekhar Bhansali, Major Professor 

In this research, a proton exchange membrane fuel cell (PEMFC) sensor was 

investigated for specific detection of volatile organic compounds (VOCs) for point-of-care 

(POC) diagnosis of the physiological conditions of humans. A PEMFC is an 

electrochemical transducer that converts chemical energy into electrical energy. A Redox 

reaction takes place at its electrodes whereas the volatile biomolecules (e.g. ethanol) are 

oxidized at the anode and ambient oxygen is reduced at the cathode. The compounds which 

were the focus of this investigation were ethanol (C2H5OH) and isoflurane (C3H2ClF5O), 

but theoretically, the sensor is not limited to only those VOCs given proper calibration.  

Detection in biosensing, which needs to be carried out in a controlled system, 

becomes complex in a multivariate environment. Major limitations of all types of 

biosensors would include poor selectivity, drifting, overlapping, and degradation of 

signals. Specific detection of VOCs in multi-dimensional environments is also a challenge 

in fuel cell sensing. Humidity, temperature, and the presence of other analytes interfere 
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with the functionality of the fuel cell and provide false readings. Hence, accurate and 

precise quantification of VOC(s) and calibration are the major challenges when using 

PEMFC biosensor. 

To resolve this problem, a statistical model was derived for the calibration of 

PEMFC employing multivariate analysis, such as the “Principal Component Regression 

(PCR)” method for the sensing of VOC(s). PCR can correlate larger data sets and provides 

an accurate fitting between a known and an unknown data set. PCR improves calibration 

for multivariate conditions as compared to the overlapping signals obtained when using 

linear (univariate) regression models.  

Results show that this biosensor investigated has a 75% accuracy improvement over 

the commercial alcohol breathalyzer used in this study when detecting ethanol. When 

detecting isoflurane, this sensor has an average deviation in the steady-state response of 

~14.29% from the gold-standard infrared spectroscopy system used in hospital operating 

theaters.  

The significance of this research lies in its versatility in dealing with the existing 

challenge of the accuracy and precision of the calibration of the PEMFC sensor. Also, this 

research may improve the diagnosis of several diseases through the detection of concerned 

biomarkers. 
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CHAPTER I 

INTRODUCTION 

 

 

1.1 Background 

 

Detection of volatile organic compounds (VOCs) as biomarkers of different 

diseases and disorders allows diagnosis and therapy of several ailments in real-time, non-

invasively [1]. The levels of VOCs provide an understanding of one’s physiological and 

pathophysiological condition. These VOCs are specific to certain diseases and can be 

employed as olfactory biomarkers of metabolic, genetic, infectious, cancerous, and other 

kinds of diseases [2]. Through their easy accessibility in different clinical bio-matrices, 

reliable and continuous monitoring of such conditions is made possible for management of 

wellness in real time. Non-invasive sensing techniques promote diagnostic management as 

and when necessary.  

Biological fluids, the source of hundreds of VOCs in the human body reflect the 

metabolic condition of an individual [2]. VOCs based on alkyl and chlorinated 

hydrocarbons, ketones, aldehydes, alcohols, aromatic compounds, furans, and esters are 

found in different biofluids of humans [3]. The metabolism and kinetics of these VOCs 

elucidate a window for therapeutic approaches to diagnose diseases noninvasively. Several 

physiological routes are involved in their distribution through the human body [3 4]. Many 

VOCs are generated by the disintegration of bio-compounds in the body [3 5]. Contrarily, 

many of them enter through inhalation from environmental or industrial exposures, fuels, 

insecticides, aerosol, air fresheners, cleansers, drugs, and food ingestion [6]. The 

metabolism and excretion rates of VOCs vary by disease and depend on the ambient 
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atmosphere as well as the physiological and pathophysiological pathways of individuals [7 

8]. Classification of this variation spectrum of VOCs in any biofluid from the normal 

standard can be a potential diagnostic tool for diseases, drug delivery, and detection of a 

toxic substance in the human body. Therefore, the close monitoring of VOCs has been in 

demand in diverse fields such as personal healthcare or safety, therapeutic monitoring, 

occupational health, rehabilitation center and law enforcement agencies [9 10 11]. 

Various noninvasive approaches for disease diagnostics by monitoring VOCs have 

garnered significant attention in the past. Early in the “Age of Pericles” (460 – 370 BC) 

Hippocrates was the first to investigate the odor of volatilome in living organisms to 

diagnose diseases [12]. Many years later, Wilhelm Peters (1815 -1883) discovered acetone 

in breath and urine to find an “unusual apple aroma” in diabetic patients and postulated 

acetone as a possible biomarker for its management [12]. The first drunkometer for breath 

analysis and alcohol measurement to assess drunkenness in clinical application was 

invented in mid 1900s by Rolla Harger [13]. Later, Borkenstein discovered a breathalyzer 

for breath alcohol testing [14].  Until the mid-20th century, classical analytical methods 

involving wet chemistry, micro-diffusion and breath analysis were popular for detecting 

excreted VOCs. Gas chromatography-mass spectrometry (GC-MS) have been popular 

most among others for accurate measurement of VOCs in breath analysis [15]. Most 

analytical devices are not only expensive and require additional vacuum for their operation, 

but lack portability and continuous measurement function. Portable photoionization 

detectors (PID), flame-ionization detectors (FID) have been used for the detection of VOCs 

either as the handheld device or along with a gas chromatography-mass spectrometry (GC-

MS) system [16]. Cross-selectivity is a major disadvantage with PID or FID, however, their 
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wide detection limits make these devices viable in many applications of sensing 

nonspecific VOCs. 

Delayed diagnosis of several diseases and exposure of hazardous VOCs for 

prolonged periods of time can be fatal [11 17]. A cost effective, user-friendly, minimally 

invasive, continuous, and real-time sensing techniques to diagnose diseases can greatly 

improve healthcare and personal safety management. Wearable sensors or sensor arrays 

(e-noses), through precise calibration, play an alternate role in easy-to-use, fast, precise, 

and continuous monitoring of specific diseases. According to the International Union of 

Pure and Applied Chemistry (IUPAC), “biosensors are considered as devices that 

transform biochemical information into an analytically useful signal.” [5] For timely 

evaluation of one’s concerned health condition, the biosensors need [5]: i. accurate 

measurement, ii. rapid assessment, and iii. selective detection. These properties of the 

sensor enable a physician to accurately diagnose the specific disease and initiate required 

therapy to prevent further aggravation of the disease. The phenotypic characteristics of 

their excretion can be analyzed through the observation of their real-time VOC data [18]. 

Besides biosensing techniques, various analytical methods are used to accurately measure 

VOCs in breath. However, they are not only expensive but also lack portability and 

continuous assessment [19 20 21 22 23].  

Biosensing techniques have prominent prospects in VOC detection on a wearable 

platform. There are different sensing techniques which have been employed for the 

detection of numerous VOCs, such as electrochemical, chemi-resistive, optical, 

piezoelectric, and surface acoustic wave (SAW) sensors [24 25 26 27 28]. The detail 

classification according to IUPAC is depicted in Figure 1-1. These sensors have been 
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miniaturized by advancements in micromachining and nanotechnology [29].  Incorporation 

of nanomaterials are known to influence their sensing performance and assists in a multi-

sensing arrays platform [29 30]. The use and combination of different kinds of 

nanomaterial is therefore gaining interest in the design of clinical and diagnostic tools, due 

to their advantages of higher surface-to-volume ratios. Their specific forms provide faster 

response and recovery times, in addition to support specific detection through suitable 

alterations of their physical and chemical properties. Assisting in very-large-scale 

integration manufacturing and miniaturization to enable portability, they allow integration 

in point-of-care (POC) devices [31]. 

Figure 1-1: Classification of biosensors 

 

Current VOC sensors in the market use mostly four measurement techniques [24 

25 26 27 28]: optical, electrochemical, chemi-resistive sensors and SAW sensors. Most of 

these sensors suffer from instability, non-linearity, cross-selectivity, inaccuracy at low 

concentrations, and some of them are not portable [5]. Electrochemical alcohol sensors 

have typically been found to be most suitable for long term sensing.  Among them, fuel 
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cell sensors offer simplicity, relatively high accuracy, sensitivity, long working lifetime, 

scalability and portability, hence they find use in breathalyzers.  

The challenge of selective detection is yet to be overcome in existing VOC sensing 

approaches. This is due to the complex composition of the sampling matrices. Different 

intrinsic (e.g. hysteresis, fouling effect) and extrinsic ambient parameters (e.g. humidity, 

temperature) can also interfere with precise detection in a multivariate environment, 

coupled with signal degradation over time [32 33 34]. Detection using multiple sensors on 

the same platform improves the response through elimination of mentioned interfering 

variables [34]. More detailed information on one’s physiological condition can be obtained 

through integration of e-noses on a multimodal sensing (e.g. skin temperature, gyroscope, 

etc.) platform [35]. Such sensing modalities provide a better understanding of one’s 

physiological condition enabling accurate detection in real-time [36]. 

The use of sensor arrays (e-noses) and techniques entailing different pattern 

recognition (unsupervised) and classification (supervised) approaches target specific VOC 

detection from a multivariate environment [37]. Different pattern recognition and machine 

learning approaches, such as principal component analysis (PCA), discrete factorial 

analysis (DFA), and partial least squares analysis (PLS), assist in reducing the redundancy 

of acquired data, aiming toward improved selectivity, specificity, and stability [38 39]. 

Once data are collected by multi-sensor arrays or e-noses, it goes through transformation, 

a filtering process, and is fed to a genetic algorithm for searching.  Further, a pre-defined 

prediction model and regression method promote precise calibration in a multivariate 

environment [40 41]. Such methods provide a pattern in diagnosis, through cross-validation 

in different population sectors.  
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In summary, this research focuses on providing a pragmatic solution for improving 

the calibration of the biosensor (e.g. PEMFC sensor), in a multivariate environment, using 

a multivariate analysis method.  

 

1.2 Problem statement 
 

Like other biosensors, fuel cell sensors are incapable of specific detection of a 

single VOC in a multi-dimensional environment. This is mainly due to the proton exchange 

membranes’ dependency on humidity and temperature which interfere with its 

functionality. Furthermore, the presence of other analytes can well interfere providing false 

readings, hindering calibration of the system in precise quantification of any volatile 

compound. A minimal drift or overlap of the signals, even in the nano-Ampere range, can 

cause substantial interference and provide false readings in the physiological range of any 

VOC(s). Employing multivariate analysis method, such as PCA; this research improves the 

calibration through reducing the redundancy and drifting and eliminates overlaps of the 

signals of the fuel cell sensor. However, the limitation of this classification approach is that 

it can only predict the unknown concentration based upon test data. During calibration, it 

is impractical to figure out the test data for each concentration within its physiological 

range.  

Therefore, principal component regression (PCR) method has been employed in 

this work, which estimates the specific current for any concentration of VOC. This method 

can correlate larger data sets and provides an accurate fitting between a known and an 

unknown data set. If the number of variables is closer to or larger than the sample size, the 

accuracy of estimation is impacted. PCR establishes a relationship between the response 
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variables (the concentration of VOC) and the predictor variables (current signals) to 

estimate the response variables. It is a three-step calibration process: i. redundancy is 

eliminated through PCA, ii. the measured variable is converted into latent variables, and 

iii. multiple linear regression steps are executed between the scores of the covariates 

obtained in PCA. Furthermore, this model has been employed for the determination of 

unknown concentrations of specific VOCs from human subjects and has been validated by 

a theoretical model and gold-standard commercial devices. The significance of this 

approach lies in its versatility dealing with the existing challenge of calibration of sub-ppm 

level measurement of VOCs (e.g. ethanol and isoflurane) by PEMFC sensor. 

 

1.3 Research goal and objectives 

 

The goal of this research is to provide a complete framework to identify an 

unknown concentration of VOC from human subjects with accuracy and precision. 

Considering the above-mentioned issues, the specific objectives are: 

1. To determine the suitable model for accurate determination of VOC in ppm/ppb 

level for PEMFC sensor;  

2. To quantify the unknown concentrations by fitting the predictor variables 

(current signals) in the developed model;  

3. To explore the scope of this model for the measurement of VOC(s) from human 

subjects in real time, continuously; and 

4. To validate the results of the PEMFC sensor by comparing with the 

commercial/gold standard devices. 
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1.4 Dissertation organization 

 

This dissertation is comprised of six chapters. Figure 1-2 summarizes the contents 

of the next five chapters followed by this chapter (Chapter I: Introduction).  

 

Figure 1-2: Dissertation Organization  
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CHAPTER II 

LITERATURE REVIEW 

 

 

This chapter provides a comprehensive literature review on the following topics: 

(a) different sources of VOCs; (b) Kinetics and metabolism of VOCs in the human body; (c) 

different sensing techniques of VOCs in humans; and (d) prospects and challenges of 

sensing VOCs in humans. Section 2.1 discusses the sources of VOCs. Section 2.2 focuses 

on the metabolism and kinetics of VOCs in humans. Section 2.3 delineates different 

sensing techniques. Finally, the challenges of VOC sensing in humans in real-time and 

their possible solutions have been presented in Section 2.4.    

 

2.1 Biofluids as the source of VOCs 

 

Recent research suggests that 1,849 VOCs have been found in different biofluids 

[42]. Such biofluids include blood, interstitial fluids, breath, sweat, saliva, urine, serum, 

breast- milk, tear, and feces (Figure 2-1a). Figure 2-1b shows that breath and skin are the  

 

 

Figure 2-1: a. Different biofluids of VOCs in the human body [43], b. VOC 

percentages in different biofluids following the data of a healthy human. [43] 
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potential sources of VOCs (54% of total amount), with 15%, 14%, 11%, and 6% of them 

being present in feces, saliva, urine, and blood, respectively [43]. These sources are feasible  

for either invasive or noninvasive detection of VOCs for diagnosis of diseases. 

 

2.1.1 Sources for invasive detection 
 

2.1.1.1 Blood and plasma 

Blood has been considered as a reliable matrix to characterize the physiological 

condition of an individual. There are 154 different VOCs that have been discovered in 

blood [3]. These VOCs are the biomarkers of many diseases and reflect the internal status 

of the human body pertaining to nutritional, metabolic, and immune conditions [43]. Blood 

contains different volatile compounds: typically, acetonitrile, ammonia, ethers, alkanes, 

alcohols, benzyl, and phenyl hydrocarbons [3]. The metabolic and immune status of 

humans can be determined by analyzing VOCs from the blood. For example, benzene and 

toluene levels in blood increase due to smoking, while tri-halo-methane levels in blood are 

high in swimmers with elevated levels of chloroform [44 45]. Levels above the normal for 

any of these exogenous compounds can be detrimental to human health. High doses of 

chloroform could lead to liver toxicity, providing a pathway for other fatal diseases with 

reduced red blood cells, causing anemia and DNA breakage. Horvath et al. suggests 

specific aroma(s) in blood is a suitable tool for screening different kinds of cancer or 

internal disorders, like ovarian carcinoma, lung cancer, hepatic encephalopathy, etc. [46]. 

Plasma derived endogenous VOCs in blood have attracted researchers for early cancer 

detection (e.g. gynecological, lung, etc.). Selyanchyn et al. introduced an analytical method 

to assess VOCs in blood for cancer detection [47]. In their work, VOCs of blood plasma 
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have differentiated between carcinogenic and benign controls precisely. Although blood 

tests are more consistent than detection from other biofluids, obtaining blood samples is 

arduous, inefficient, invasive and inapplicable for instantaneous POC applications.  

 

2.1.1.2 Interstitial fluids (ISFs) 

Different ISFs such as cerebrospinal fluid (CSF), peritoneal fluid, pleural fluid, 

biliary fluid, synovial fluid (SF), or pericardial fluid (PCF) are also analyzed to diagnose 

different diseases. The presence and analyses of VOCs in such biofluids are limited in the 

literature. Liu et al. explored 76 different pleural samples and found three major groups: 

ketones, alcohols and benzene derivatives dominating for cancer malignancy.  Among 76 

VOCs, nine of them including dichloromethane, ethyl acetate, n-heptane, ethyl-benzene, 

xylene, cyclo-hexanol, cyclo-hexanone, 2-ethyl-1-hexanol, and tetra-methyl benzene are 

potential compounds for screening lung cancer to differentiate malignant from benign 

pleural effusions. Conditions such as tuberculosis, pneumonia, congestive heart failure and 

cirrhosis are the cause of benign effusions, where 30% of malignant effusion is associated 

with lung cancer [48]. VOC analysis of biliary fluid can also distinguish malignant 

cholangiocarcinoma from benign biliary strictures. It can be used as a potential biomarker 

for pancreas cancer by classifying the concentration spectrums of tetra-methyl acetate, 

acetone, acetaldehyde, benzene, carbon disulfide, and pentane [49]. The presence of 

inflammation and oxidative stress modulate the release of VOCs from SF which cause 

osteoarthritis and rheumatoid arthritis. Tominaga et al. sightseen toxicological analysis for 

serial forensic autopsy cases and compared PCF with peripheral blood to reassess the 

postmortem distribution of ethanol and to examine the dispersal of other VOCs [50]. 
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However, the invasive nature of the detection mechanism from ISFs is always laborious, 

expensive and inefficient for real-time detection.  

 

2.1.2 Sources for noninvasive detection 
 

2.1.2.1 Urinary biofluid 

Urine tests are an established method to detect several diseases noninvasively. The 

aqueous urinary matrix contains a small percentage of VOCs [51]. Renal activities control 

the supply of endogenous and exogenous VOCs in urine. Endogenous VOCs comprise 

ketones, alcohols, heterocyclic compounds, different hydrocarbons, amines, aldehydes and 

organic acids [51]. Ketones are the most common VOCs that can be produced through 

breakdown of fatty acid due to oxidation. Ketone levels can rise from normal due to 

starvation (fasting ketosis, FK), consumption of low carb-high fat diet (nutritional ketosis, 

NK) and alcohol; and prolong exercise.  The raising state of NK provides energy to the 

brain of epileptic patients [52]. The elevated level of ketones in urine is also a biomarker 

of hyperglycemia or diabetic ketoacidosis (DKA). Inadequate ketogenesis causes 

hypoglycemia whereas excessive presence of ketones leads to ketoacidosis. However, 

DKA is a severe case with increasing to more than twice of ketone levels, as compared to 

other states of ketosis [11].  As ketone levels depend on multiple physiological parameters 

(e.g. energy stability, diet composition, physical activities and diseases), accurate diagnosis 

of one’s ketone profile is critical to identify an actual physiological condition [52]. Like 

ketones, other VOCs in urine are also possible biomarkers of many diseases and can 

provide a certain profile for the VOC depending on dehydration, diet, liquid and drug 

intake. Elevated levels of acetonitrile in urine confirms whether someone is a smoker or 



13 
 

not [53]. Urinary metabolomics studies have been employed to different cancer studies, 

such as breast, colorectal, esophageal cancer, pancreatic ductal adenocarcinoma, prostate 

and liver cancers [54]. Analyzing four different VOCs (2, 6-dimethyl-7-octen-2-ol, 

pentanal, 3-octanone, and 2-octanone), Khalid et al. demonstrated the detection of prostate 

cancer [55]. Matsumura et al. demonstrated ex-vivo analysis of urinary VOCs as 

biomarkers for lung cancer [56]. Arasaradnam et al. differentiated coeliac disease from 

irritable bowel syndrome (IBS) and Banday et al. demonstrated a tuberculosis diagnosis by 

using GC-MS [57 58]. Testing of urine in a noninvasive form of detection is reliable though 

sample collections, handling, and preservation. Also, urinary analysis is cumbersome 

complication. Hence, diagnosis of VOC biomarkers is technically complex from the 

urinary sample, and this biofluid is not suitable for continuous monitoring. 

 

2.1.2.2 Saliva  

Saliva is known to contain 360 different kinds of exogenous and endogenous VOCs 

[43]. Like breath, different food debris, drugs, xenobiotics and environmental pollutants 

can affect various exogenous compounds in detecting VOCs from saliva. Active and 

passive diffusion of VOCs from blood and ultrafiltration techniques are among the most 

common approaches used for VOC detection in saliva [59]. 300 different bacterial species 

have been explored as sources of VOCs in saliva. Major VOCs in saliva include acetic 

acid, ester, acetonitrile, mercaptan, methyl sulfide, different alkanes, diene, different 

aromatic compounds (e.g. benzene, toluene, xylene), polycyclic hydrocarbons (carane, 

copaene, etc.), alcohols (ethanol, propanol, butanol, etc.), and aldehydes (acetaldehyde, 

propanal, etc.) [3 42]. Recent research suggests salivary fluid can be a potential biofluid 
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for noninvasive, continuous, and instantaneous monitoring of different diseases. Several 

research groups investigated the integration of electrochemical sensors into mouth-guards 

for monitoring biomarkers [60]. In contrast with other biofluids, the salivary biofluid 

provides a significant amount of fluid for a greater functioning space for the placement of 

the sensing unit. With an abundance of VOCs in saliva, this is one of the promising 

biofluids for continuous and real-time monitoring of different diseases [60].  

 

2.1.2.3 Skin perspiration and sweat  

Human skin is the largest organ in human body and it offers long-lasting emanation 

of VOCs. Costello et al. mentioned 532 different VOCs are derived from skin secretion 

through diffusion of sweat [3]. Main VOCs from the skin of a healthy individual include 

ammonia, carboxylic acid, alcohols, hydrocarbons, ketenes, terrenes, aldehydes, esters, 

heterocyclic compounds, and volatile sulfur compounds [61]. The profiles of these VOCs 

differ due to heterogeneous distribution of sweat glands beneath the skin and the 

metabolism of symbiotic microbiota on the skin surface. The existing clusters of bacteria 

on the skin contribute to the odor of individuals [62]. Internal excretion of VOCs through 

skin, however, depends on secretion from its three major glands: i. apocrine gland, ii. 

eccrine gland and iii. sebaceous gland. Osmosis plays a major role in the transmission of 

VOCs through these glands and secretion through sweat. Secretion of VOCs can fluctuate 

with time and change with physiological conditions.  This emission pattern, as discussed, 

can vary with diet, xenobiotics, drugs, psychological stress, wounds, dehydration, shock, 

body temperature, age, menstrual cycle and ambient parameters (e.g. temperature, relative 

humidity, and pressure) [63]. Boman et al. verified VOC transmission through skin with 
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diffusion studies on different VOCs using Franz cell diffusion method [64]. Aside from 

endogenous VOCs, different xenobiotics can be emitted through skin after their 

metabolism in the body. For example, 1% of the overall consumption of alcohol is excreted 

in a diffusive manner from the exocrine sweat gland of the skin following a specific 

partition ratio (Henry’s law) [5]. Human sweat and skin perspiration are potential sources 

for noninvasive medical diagnostics with their simpler sample collection process. These 

also offer unique facilities of safety and continuous and real-time monitoring. 

 

2.1.2.4 Breath  

In 1971, Linus Pauling confirmed that human breath is a complex volatile mixture 

of more than 250 different VOCs. Considering endogenous and exogenous VOCs, 874 

types of VOCs have been found in exhaled breath [42]. Major VOCs of human breath in 

healthy individuals include acetone (1.2–900 ppb), ethanol (13–1,000 ppb), methanol 

(160– 2,000 ppb), isoprene (12–580 ppb), ammonia, and minor components include 

pentane and higher chains of alcohols, aldehydes, and ketones [65]. Internal conditions, 

environmental exposure, diet, and lifestyle (e.g. alcohol consumption) of individuals 

influence the concentration ratio of VOCs in their breath, called “exposomes”. Thus, the 

aroma of “exposomes” can vary from person to person. For example, smoking cigarettes 

leads to high concentrations of acetonitrile and furans. Likewise, elevated levels of 

isoprene are considered an indication of exertion, and enhance alveolar ventilation and 

cause the isoprene level to rise 3-4 fold [22]. Similarly, an acetonic smell might be 

associated with hysterical diabetes; or a pungent odor might indicate liver disease [66 67]. 

Similarly, elevated levels of ethane and pentane are symptoms of different chronic lung 
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diseases, such as malignant pleural mesothelioma (MPM), cystic fibrosis, asthma, or 

chronic obstructive pulmonary disease (COPD) [68]. Mazzatenta et al. described that the 

average amount of VOCs decreases in an Alzheimer patient. Comparing with healthy 

controls, it appeared the disease altered the brain metabolism due to the death of neurons 

and their pathological state [69]. Detection of specific VOC from breath is a challenge, as 

there is always a possibility to obtain false readings with the presence of exogenous 

compounds.  

 

2.1.2.5 Other sources  

Feces, tears and breast milk are other common sources of VOCs. Fecal samples 

currently constitute about 480 VOCs [43]. In feces, diverse exogenous elements are present 

due to the consumption of medication and nutrients, which generate extrinsic volatile and 

nonvolatile metabolites. Bacterial fermentation and microbiota are responsible for the 

specific odor of feces, which results from colonic fermentation of amino acids. Along with 

these, some putrefactive chemical compounds are also present, such as aliphatic amines, 

ammonia, branched-chain fatty acids, short chain fatty acids, derivatives of phenol or 

indole, and volatile sulfur containing compounds [43]. Different aldehydes, such as 

acetaldehyde, have been produced from the dietary and microbial metabolism, which have 

found relevance with colon and pancreas cancer [70]. Fecal VOCs, like those arising from 

vibrio cholera, can be potential biomarkers of different gastrointestinal diseases. Similarly, 

Gulber et al. recently mentioned the existence and detection mechanism of pheromone (a 

cocktail of VOCs) in the ocular matrix as a biomarker of emotion and mood [71]. Pellazari 

et al. studied the detection of VOC from maternal milk to reveal that 156 “purgeable” 
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compounds can be studied form it as pollutants that would affect a nursing infant [72]. GC-

MS studies on its analyses have shown that among the different VOCs present in human 

milk, 45 are odor-active constituents, comprising groups of monocyclic aromatic amines 

[73], phthalate esters [74], and benzene and alkyl-benzenes [75].  

 

2.2 Metabolism and kinetics of VOCs 
 

The mechanism of metabolism and kinetics of VOCs in the human body is an 

intricate process. The profiles of different VOCs vary based on several internal and external 

factors. The advancement of analytical tools allows for the total number and classification 

of VOCs in different biofluids to be better identified in the present days [42]. These VOCs 

are classified into two groups: endogenous and exogenous. The generation of exogenous 

VOC production follows five steps [76]: liberation, absorption, distribution, metabolism, 

and excretion. Contrarily, metabolism and excretion are the key mechanisms for the 

generation of endogenous VOCs. In both the cases, however, metabolism is a vital step in 

production through synthesis (anabolism) or breaking down of compounds (catabolism).  

 

2.2.1 Metabolism of VOCs 

 

The Endogenous VOCs are produced due to regular and abnormal metabolic 

processes occurring in the body. The most common reason for VOC generation is the 

destruction of cells from direct or indirect oxidative stress and inflammation of the human 

body [43]. Molecular oxygen is required to protect the cellular metabolism; therefore, 

equilibrium of oxygen is maintained within the human body through homeostasis. As a 

process of energy generation in mitochondria, 1% to 5% of oxygen molecules are reduced 



18 
 

to water molecules by the cytochrome through catalyzed electron transport chain reactions. 

This inter-cell energy conversion process relies on any of the following four processes [77]: 

i. reactive oxygen species (ROS), ii. hydrogen peroxide formation, iii. generation of 

hydroxyl radical; and iv. superoxide formation. Among them, ROS has been identified as 

the chief contributors to many neurological, inflammatory, cardiovascular, and 

immunological diseases, along with progression of aging [78]. The formation and 

disintegration of ROS in mitochondria trends towards equilibrium, and many hydrocarbons 

have been bound to the oxygen species in the process of mitochondria to cytoplasm 

conversion. Molecular structures of the cell with proteins, DNA, RNA, and poly-saturated 

fatty acids get affected and disintegrate due to the presence of accumulated ROS [79]. 

Different hydrocarbons have been generated during this process, and they may further 

oxidize and produce different kinds of alcohols, aldehydes, and ketones. Different 

microbials and enzymes are involved in the further metabolic processes, which therefore 

generates many different VOCs. For example, alcohol is metabolized by alcohol 

dehydrogenase due to three different kinds of enzymes: aldehyde dehydrogenase (ADH), 

cytochrome P450 2E1 (CYP2E1) and catalase [80]; these convert the ethanol into 

acetaldehyde and later into nontoxic acetic acid. Likewise, ADH enzymes enhance 

metabolic activity and produce carboxylic acids through the disintegration of aldehydes. 

Different VOCs are also generated from dead cells in the human body. 1, 3-di-tert-

butylbenzene, 2, 6-di-tertbutyl-1, 4-benzoquinone, and n-decane were found in dead lung 

cancer cells due to apoptosis and necrosis [4].  

Exogenous VOCs are mainly absorbed from food and drink, which reach to the 

gastro-intestinal tract, metabolized mostly in the liver and kidneys. The liver is the key 
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organ that is actively involved in both catabolism and anabolism of many exogenous 

VOCs, creating a route to stream blood from the intestine. Thus, VOCs in fecal samples in 

the gastro-intestinal tract go through a probable transformation in the liver before being 

distributed to the blood, reaching the lungs and appearing in breath. As mentioned earlier, 

the liver is the bed for large varieties of enzymes, where ADH is actively involved in the 

oxidation of non-polar VOCs, converting them into conjugate compounds [80]. Likewise, 

it contains a large quantity of CYP2E1; and is a mixed function oxidase system, actively 

involved with the transformation of xenobiotics.  Nonpolar hydrocarbons are transformed 

into polar alcohols/aldehydes, which convert to acids via the process.  

 

2.2.2 Kinetics of VOCs 

 

After metabolized in liver, VOCs are distributed through blood. The change in 

VOC over time in the liver is described by the mass balance equations as follows [81]: 

𝑉𝑙𝑖𝑣𝑒𝑟
𝑑𝐶𝑙𝑖𝑣𝑒𝑟

𝑑𝑡
= 𝑄(𝐶𝐿𝐵𝑀- 𝐶𝑙𝑖𝑣𝑒𝑟 ) + (𝑘𝑠𝑉𝑠𝑡𝑜𝑚𝑎𝑐ℎ𝐶𝑠𝑡𝑜𝑚𝑎𝑐ℎ) −

𝑉𝑚𝑎𝑥𝐶𝑙𝑖𝑣𝑒𝑟

𝑘𝑚+𝐶𝑙𝑖𝑣𝑒𝑟
          (1) 

𝑉𝐿𝐵𝑀
𝑑𝐶𝐿𝐵𝑀

𝑑𝑡
=  −𝑄(𝐶𝐿𝐵𝑀- 𝐶𝑙𝑖𝑣𝑒𝑟 )          (2)     

where, 𝑘𝑠𝑉𝑠𝑡𝑜𝑚𝑎𝑐ℎ𝐶𝑠𝑡𝑜𝑚𝑎𝑐ℎ  refers to the stomach emptying rate in mole/minute. 

The amount of liquid compound moving out of the liver and into the lean body mass (LBM) 

is governed by the difference respective to the compound’s concentrations (𝐶𝐿𝐵𝑀 and 

𝐶𝑙𝑖𝑣𝑒𝑟) at a rate controlled by the blood flow rate, Q. According to Michaelis-Menten 

kinetics, the present concentration limited by Vmax, follows enzymatic reactions 

represented by the end segment in equation 1 [82]. Equation 2 describes the change in its 

concentration in the LBM based on the concentration of that in the liver at a rate governed 
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by the blood flow rate, Q. Apart from the liver, the kidneys and lungs play a significant 

role to metabolize many VOCs. The mass balance equations (equation 1 and 2) can be 

similarly applicable for both the kidneys and lungs, considering their own parameters [81 

82]. The compound in the blood stream diffuses through the epidermis and stratum 

corneum. Blood boundary concentrations are driven by the body VOC concentration from 

the kinetic phenomenon that sets a concentration gradient through the epidermis and 

stratum. The total partial pressure is [83]:                                                     

𝑑𝑃𝑡

𝑑𝑡
= 𝐷𝑒

𝛿2𝑃𝑒

𝑑𝑥2 +  𝐷𝑠
𝛿 2𝑃𝑠

𝑑𝑥2                        (3) 

where, 0 ≤ 𝑥 < 𝐿𝑒 and 𝐿𝑒 ≤ 𝑥 < 𝐿𝑒 + 𝐿𝑠. For equations 3, 𝐷𝑒 and 𝐷𝑠 are the 

molecular diffusivity, 𝐿𝑒 and 𝐿𝑠 are the thickness of the epidermis and stratum conium, 

respectively.  

The exogenous VOCs can also reach inside the human body through inhalation; 

and limited amounts of them are absorbed through the skin. Inhalation of VOCs occurs 

through regular absorption process mostly in the alveoli of lungs. The VOC molecules 

diffuse through the thin capillaries and alveolar type I cells in both directions and reach 

equilibrium thermodynamically [84]. The partition coefficient of blood and air (λb:a) 

governs this phenomenon, and it is one of the major determinants of the pulmonary uptake 

of VOCs. Rapid blood flow in the lungs creates a higher concentration gradient of uptake 

VOCs, which results in rapid diffusion into blood. As per classical gas exchange theory, 

the alveolar partial pressure of VOC, normalized to the mixed venous partial pressure, is 

interrelated to the blood-air partition ratio (λb:a) and the ventilation to perfusion ratio 

(VA/Q) as follows [85 86]: 
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𝑃𝑎

𝑃𝑉
=

λb:a

λb:a+𝑉𝐴/𝑄
                 (4)       

Farhi’s equation represents alveolar concentration (Ca) that is derived as follows 

from equation 4 [87]: 

𝐶𝑎

𝐶𝑉
=

1

λb:a+𝑉𝐴/𝑄
               (5) 

Here, 𝐶𝑉 is the mixed venous concentration. Respiratory rate and the fraction of the 

molecules that exist at the alveolar tract are also the major factors of this transmission. The 

higher value of the coefficient ensures greater VOC uptake during inhalation, even in an 

order of 12 fold of magnitude [43]. The partition coefficient varies with respect to polarity 

and solubility of VOCs in the blood with the range of 10 < λb:a < 100. Here, the partition 

coefficient is λb:a < 10 for non-polar VOCs, and the highly blood-soluble polar VOCs have 

the partition coefficient as λb:a ≥ 100. The partition ratio of fat to blood, λf:b is also vital in 

kinetics of VOCs. These two physiochemical partition coefficients govern the balance 

concentration of VOCs in breath, blood and fat. Poulin and Krishnan projected the value 

of λb:a and λf:b from the known partition ratios of water-air  λw:a , and octanol-water (λo:w) as 

follows [79]: 

λ𝑏:𝑎 =  λ𝑜:𝑤 . λ𝑤:𝑎 . (𝑎 + 0.3b) + λ𝑤:𝑎 (𝑐 + 0.7𝑏)                   (6) 

λ𝑓:𝑎 =  λ𝑜:𝑤 . λ𝑤:𝑎 . (𝐴 + 0.3B) + λ𝑤:𝑎 (𝐶 + 0.7𝐵)           (7) 

where, a ≈ 0.0033 represents a portion of neutral lipids in blood, b ≈ 0.0024 

represent phospholipids in blood; c ≈ 0.82 is water in blood; A ≈ 0.798 is neutral lipids in 

adipose tissue (fat), B ≈ 0.002 is phospholipids in adipose tissue, and C ≈ 0.15 denotes 

water in adipose tissue. As discussed earlier, these absorbed compounds are distributed to 

other organs. 
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2.3 Different sensing techniques for the detection of VOCs 
 

Different analytical methods, such as GC-MS, are acclaimed for their precise and 

specific detection [88]. However, performance on a miniaturization scale has yet to be 

achieved. Such form factors for optical, chemi-resistive, and electrochemical approaches 

have been achieved through advances in nanotechnology involving micro/nano scale 

fabrication [24 25 27]. The advancement of the synthesis process cantailor the shape, size, 

and assembly of different nanomaterials with extensive variation of compositions and 

crystal structures, such as nanoparticles, nano-rod, nanotubes, nano-spheres, nanoflakes, 

nanosheets, hollow spheres, hierarchical nano-architectures, octahedral, etc. [31 89]. The 

large electroactive surface-area-to-volume-ratio of these crystals enhances the sensitivity, 

and their well-defined crystal lattice leads to control catalytic reactions for stability of the 

sensors [31]. The open pores and large voids of various nanostructures enhance response 

and recovery time of gas sensing [18]. These crystals are typically formed by different 

carbon allotropes (e.g. graphene, carbon nanotubes) and noble metals (e.g. Au, Ag, etc.) or 

metal oxides (e.g. SnO2, ZnO, TiO2, WO3, In2O3, etc.) [38 90]. Among them, ZnO and 

SnO2 were widely explored for biosensing for their high quantum yields, high refractive 

index, wide bandgap (~ 3.37 eV), and high binding [91 92]. The conductivity of these types 

of sensors can be altered through the variation of different parameters (e.g. radius, inter-

particle distance, di-electric constant of inter-particle medium) of nanoparticles [93]. Their 

sensing performance can be further improved through tailoring their surface area in a 

metal-organic-framework (MOF) [94]. Different potential VOC sensors for real-time 

detection, their sensing mechanism, limitations and prospects are discussed in the 

following section.  
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2.3.1 Optical sensors 
 

Optical sensing is a potential sensing method for the detection of VOCs in 

healthcare and wellness management. This detection approach is preferred over other 

conventional analytical techniques, different spectroscopic techniques (e.g. Surface-

enhanced Raman spectroscopy) and commercially available VOC detectors (e.g. PID, 

FID), as it provides comparatively better selectivity, reversibility, fast multiplexing 

features with elimination of electromagnetic interference, and portability [95]. The 

detection mechanism of optical sensors relies on the following properties of the 

electromagnetic waves: wavelength, phase, amplitude, intensity, and state of the 

polarization [96]. Recent advancements in optical sensing tools have concentrated on 

surface plasmon resonance (SPR), Bragg’s fiber, colorimetric, Fabry–Perot cavity (FPC), 

and fiber optic-based sensors [97]. Plasmonic sensors have the potential for VOC sensing, 

owing to their high sensitivity [98]. They were achieved by enabling the identification of 

extremely small wavelength shifts in an order of 10-3 nm via noble-metal nanoparticles 

extinction spectra (absorption and scattering). This minute shifting has been controlled 

through the alteration of size, shape and assembly of the nanoparticles and the ambient 

refractive index (RI) [99]. The working mechanism of SPR affinity VOC sensors depends 

on the change of RI, formed by the capture of VOC molecules following the concentration 

gradient at the thin-film surface and their interaction [100]. The sensor response is 

proportionate to the alteration of binding-induced refractive index (n), where the binding 

occurs within this thin film at the sensor surface of thickness (t). The relationship can be 

expressed as [101], 
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𝛥 𝑛 =
𝑑𝑛 

𝑑𝑐
 
𝛤

𝑡
       (8) 

where, (dn)/dc is the increment of RI with the concentration of analyte molecules 

and Γ denotes the surface concentration in mass/area.  

 Cheng et al. demonstrated the reversible and highly sensitive localized surface 

plasmon resonance (LSPR)-based sensor for the detection of toluene, n-octane, 

chlorobenzene, pentanol, and m-xylene. In their work, Ag-nanoparticles and Au-

nanoshells enhanced the surface area, which promoted significant adsorption of VOCs 

[102]. Chen et al. modified the thin film surface made of Ag-nanoparticles with the thiolate 

self-assemble monolayer, which enhanced the VOC-selectivity and reversibility [103]. 

Iitani et al. demonstrated fluorescence-based fiber optic bio-sniffers for the detection of 

acetaldehyde (AcH) from exhaled breath [104]. These bio-sniffers were calibrated with 

two different enzyme-mediated environments: alcohol dehydrogenase (ADH) and 

aldehyde dehydrogenase (ALDH), which make the sensor selective for AcH. It was 

operated over a wide dynamic range from 0.02 to 10 ppm, which covered the physiological 

range of breath AcH (1.2 ppm – 6 ppm) and showed rapid response (≤ 100s), as shown in 

Figure 2-2a and 2-2b. In another study, it was seen that ALDH2 extensively dominates the 

metabolic oxidation of AcH into acetic acid, with about 40% of Asians known to have 

lower metabolic action of ALDH2 (ALDH2[−]) than the others (ALDH2[+]) [105]. The 

bifurcated fiber optic bio-sniffers (Figure 2-2c) could be distinguished from ALDH2[−]) 

to (ALDH2[+] by 3-times greater signal, as shown in Figure 2-2d. Contrarily, Reddy et al. 

developed a hybrid FPC sensor for VOC detection on a micro-fabricated chip 

functionalized with µ-GC, employing a vapor-sensitive polymer on the substrate, as shown 

in Figure 2-2e [106]. The sensing mechanism relies on the alteration of the refractive index  
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with the concentration of VOCs (Figure 2-2f). The presence of the VOC in the polymer 

alters its thickness, which in turn changes its refractive index and shifts the wavelength to 

the degree of vapor sorption (Figure 2-2g). The kinetic and quantitative information of 

VOCs are obtained through the wavelength shifts inside the microfluidic channel. In the 

work of Reddy et al., chromatographic responses of four FPC sensors were grating sensors, 

 
 

Figure 2-2: Responses of (a) ADH-mediated and (b) ALDH-mediated fiber optic 

bio-sniffer to different concentrations of AcH [104]. (c) Bifurcated fiber optic 

bio-sniffers set-up to the ALDH2[+] and ALDH2[−] subjects [104], (d) Their time 

course of concentration of breath AcH after drinking which is about 3-fold 

difference at the concentration level [104]. (e) Cross-sectional view of the FP 

sensor array (top left), Top-view of the FP sensor array (top right), Image of an 

etched silicon chip containing the sensor array (bottom right), Image of 4 wells 

on chip (bottom left) [106], (f) principle of the Fabry–Perot cavity (FPC) sensor 

and interference pattern generated by an FP sensor and the effect of analyte 

absorption absorbance properties of light [106], (g) chromatographic responses 

of four FP sensors to a mixture of acetone , methanol, heptane, and toluene [106].  

 
 

(a) (b) (c) (d)

(e)

(f)

(g)
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µ-ring resonator sensors, photonic crystal obtained (Figure 2-2g) from a mixture of acetone 

(1), methanol (2), heptane (3), and toluene (4). Scholten et al. also developed an on-chip 

µ-ring resonator integrated with fluidic connections and optical fiber probes for sensing 

five different kinds of VOCs. Their findings revealed five different peaks, confirming the 

level of sensitivities in the following order of ethylbenzene, toluene, perchloroethylene, 

isopropyl alcohol and heptane, respectively [107]. Contrarily, Xiaoyi Mu mentioned a 

bioluminescent bio-reporter-integrated-circuit technique for detection of breath toluene 

from bioluminescent bacteria, through the translation of biochemical energy to photonic 

energy. Though this method limited the target analyte to specific bacteria with very low 

(10 ppb) limits of detection (LoD), its longer response time (few minutes to hours) proved 

to be a hindrance to real-time monitoring [96]. Thus, the specific detection of a single 

analyte on a miniaturized scale with the development of a single optical sensor is a 

challenge. Therefore, Mazzone’s group demonstrated the colorimetric sensor array 

combined with the prediction model to diagnose lung cancer. In their study, they collected 

229 subjects’ data and diagnosed 92 individuals as carcinogenic patients with the accuracy  

of 0.8 C-statistics [108]. A portable breath analyzer based on colorimetric detection that 

analyzed the data, processed it and communicated the information to the user via a cell 

phone for selective nitric oxide sensing in ppb-level (~ 50 ppbv) was also reportedly 

devised by Prabhakar et al. [109]. 

 

2.3.2 Chemi-resistive sensors 
 

Different monolithic metal-oxide-based chemi-resistive sensors have been 

receiving attention due to their high potential for miniaturization to develop portable and 
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wearable diagnostic tools. The operating principle of these sensors relies on the variation 

of resistivity with the depletion layer due to redox reaction, adsorption, and surface 

chemical reaction of analytes [110]. The width of the depletion layer is either reduced or 

increased in the n-type metal oxide. The commonly used n-type metal oxides, namely tin 

oxide (SnO2), tungsten oxide (WO3), and zinc oxide (ZnO), are widely used for VOC 

sensing [111]. In the absence of VOC molecules, the presence of atmospheric oxygen 

species O–, O2–, or O2– attributes electrons, which increase the depletion layer and 

resistivity, and vice versa.  The relationship between the reaction mechanism and electrical 

signal can be expressed by the Langmuir-Hinshelwood equation as follows [112]: 

𝑆(𝑡) =  𝑆𝑚𝑎𝑥
𝐶𝑣𝑜𝑐𝐾

1+ 𝐶𝑣𝑜𝑐𝐾
[1 − exp( −

1+ 𝐶𝑣𝑜𝑐𝐾

𝐾
 𝑘𝑡)]  (9) 

Here, Smax is the highest signal change in complete saturation, Cvoc represents the 

concentration of VOC, K is defined as the adsorption constant of the target compound, and 

k represents forward rate constant.                                

 P-type (nickel oxide, cobalt oxide) and zeolite-type MOS sensors are also used in the 

detection of VOCs [113 114]. Zeolite-based chemi-resistive sensors were reported for 

different VOCs, such as NH3, amine, SO2, different hydrocarbons and organic molecules 

[115]. The sensitivity and selectivity of any type of chemi-resistive sensor depends on the 

film thickness and working temperature [110]. Song et al described a ZnO–SnO2 nanofiber-

based ethanol gas sensor operating at 300 °C, providing high response, excellent linearity 

in the range of 1–300 ppm, quick response time (5s) and recovery time (6s), good 

reproducibility, stability, and selectivity [116]. Different metal oxide nanowires and 

ferroelectric WO3 nanoparticles have been utilized for selective acetone sensing in breath-

simulated media [114]. Choi et al. demonstrated a catalyst-functionalized method using 
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metal nano-particles (Pt) incorporated with WO3 hemitubes for highly sensitive acetone 

sensing at the operating temperature 250 - 350 °C [117]. In their work, Pt-functionalized 

WO3 hemitubes exhibited superior acetone sensitivity in the presence of H2S. Righettoni 

et al. also performed in-depth studies on detecting of acetone in exhaled breath using Si-

doped WO3 nanoparticles (Figure 2-3a) for the diagnosing of physical conditions including 

halitosis and diabetes [118]. In his work, it was clearly inferred that the nanowires’ 

response is greater than nanoparticles and nanoplatelets as a function of temperature for 

H2S (Figure 2-3b).  He also demonstrated thin-walled WO3 hemitubes made by polymeric 

fiber-templating-based sensors operating at 350 °C for the diagnosis of halitosis and 

diabetes, detecting H2S and acetone (~ 120 ppb), respectively (Figure 2-3c) [118]. 

Similarly, Fioravanti et al. demonstrated sub-ppm level acetone sensing with several metal-

oxide materials: several ZnO nanoparticles (ZnO bi-sphenoidal nano-aggregates, ZBP; 

ZnO nanosheets, ZnS; ZnO hexagonal prisms, ZEP), aggregated ZnO nanostructures with 

Zr-loaded WO3, and TiO.5SnO.5O2, where ZnO nanoparticles-based sensors exhibited 

better sensitivity than others (Figure 2-3d-2-3g) [119]. Employing vanadium pentoxide 

(V2O5) nanobelts, Liu et al. improved the performance of selectivity to ethanol in a 

multivariate environment at relatively low temperatures (150 °C) to save the overall power 

consumption [120].                                                                                                          

However, most of these chemi-resistive sensors require a high temperature to 

operate [121 122]. Moreover, semiconductor metal oxide-based sensors are more prone to 

interference and contamination in VOC detection. Portable, cost-effective breathalyzers 

(e.g. Figaro, Ketonix, BACtrack) are also commercially available for alcohol and acetone 

detection; meanwhile, wearable chemi-resistive sensors are still a challenge. Recently,  
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Tayebi et al. reported monolithic, micro-fabricated sensor arrays comprising different 

metal oxides, allowing independent temperature controls and readouts for VOC sensing on 

a wearable platform [123]. Though many breathalyzers are chemi-resistive-based, their 

high operating temperature and power management are key obstacles to overcome for 

 
Figure 2-3: (a) SEM image of WO3 nanoparticles [118], (b) WO3 based sensor 

response to 1000 ppm H2S for different structures as a function of temperature 

[118], (c) H2S and acetone response characteristics of WO3-based sensor [110]. 

SEM images of (d) ZNS, (e) ZBP and (f) ZEP, (g) Acetone response 

characteristics for different nanoparticles-based sensors [119]. SEM and TEM 

images (h, I, j, k) of the nano-fibrous paper and schematic of nano-fibrous paper-

based sensor [124], and (l) the sensor response sensitivities (ppm (M): water (−1.9 

× 10−4), ethanol (−1.5 × 10−5), and acetone (−1.1 × 10−5) [124].  
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design on a wearable platform [121]. Yan et al. illustrated nano-fibrous paper-based chemi-

resistive sensor fabricated with dendronized nanoparticles that show structurally tunable 

and negative signals in presence of ethanol and acetone at room temperature (Figure 2-3h-

2-3i) [124]. In their work, the electrical properties of the nano-fibrous membrane matrix 

with dendronized nanoparticles are harnessed for exploring the multiple 

hydrophilic/hydrogen bonding sites in a 3D structural edge for sensing applications in 

humidity-leading atmosphere, such as human breathing or sweating. 

 

2.3.3 Electrochemical sensors 

 

Electrochemical VOC sensors are considered among the most promising types of 

VOC sensors for wearables today. Electrochemical sensors work on the principle of redox 

reactions that target analytes undergo to produce measures, which correlate with the 

concentration of the analyte [97]. These sensors can be classified as: voltammetric, 

amperometric, or potentiometric. These kinds of techniques are most compatible for 

wearable sensing due to the ease of fabrication and miniaturization, rapid response, high 

accuracy, wide range of detection, biocompatibility, and low power consumption [110].  

Portable electrochemical sensors, like breathalyzers are available for alcohols, 

aldehydes, acetones, isoprene, etc.  Portable Halimeter® (114 × 254 ×267 mm/3.6 kg) is 

popular for VSC (volatile sulfur compounds, e.g. hydrogen sulfide, methyl mercaptan, 

other thiols, and dimethyl sulfide) sensing for chronic halitosis following the 

electrochemical voltammetric technique, which shows a detection limit of 5 ppb with 

response time of 1s [125]. Apart from this, fuel-cell-based miniaturized and portable 

alcohol breathalyzers are popular and widely used for drinking under the influence (DUI)  
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cases in real-time but cannot be used for continuous measurements [33 126]. Obermeier 

reported integrated e-noses with three different amperometric sensors for the detection of 

aldehyde, NO, and CO at sub-ppb levels for the diagnosis of lung cancer and treatment of 

those succumbing to oxidative stress [127]. Electrochemical sensing techniques have also 

been reported for continuous monitoring of propofolin exhaled breath of patients under 

anesthesia [128]. However, miniaturization is essential for the embedded sensing device in 

the continuous monitoring and POC wellness management. A significant advancement 

 

Figure 2-4: (a) Tattoo-based transdermal alcohol sensor and (b) its responses 

[130]. (c) schematic representation of micro-needle based chrono-amperometric 

sensor and (d) its responses [131].  
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towards wearables for continuous monitoring of alcohol from sweat or skin perspiration 

was achieved in the last few decades. Field trials of the sweat patch identified problems 

with ethanol collection and storage, evaporation loss, back diffusion, and bacterial 

metabolism [129]. Giner’s wrisTAS and SCRAM CAM bracelet are partially instantaneous 

(5 minutes to 2 hrs. interval) alcohol monitoring devices, through skin perspiration, using 

electro-chemical sensors [129 130]. These anklet and bracelet-based transdermal blood 

alcohol content (BAC) monitoring devices are used in semi-real-time and a continuous 

manner for preventing DUI and rehabilitation purposes. Kim et al. demonstrated integrated 

wearable epidermal tattoo-based amperometric biosensors with flexible iontophoretic 

sensing electrodes to improve the time in detection (Figure 2-4a– 2-4b) [130]. This new, 

skin-worn, low-cost, noninvasive alcohol monitoring device enables real-time alcohol 

measurements in sweat. BAC can be calculated from the following relationship [130]:  

BAC (gl-1) = 0.71 x sweat ethanol concentration (gl-1)     (10)  

where, r = 0.912. Mohan et al. demonstrated a micro-needle-based enzymatic 

electrochemical sensor for minimally-invasive, continuous monitoring of alcohol from 

interstitial fluid (ISF). Their three-electrode micro-needle sensor comprised of Pt and Ag 

wires with the Pt-wire functionalized with the alcohol oxidase (AOx) enzyme and a perm-

selective reagent layer (Figure 2-4c). The sensitivity of this sensor was known to be 0.062 

nA/mM, having a correlation coefficient of 0.9886 (Figure 2-4d) [131].  

An overview of sensing techniques, target VOC(s) and their availability in biofluids 

are listed in table 2-1. 

 

 

 



33 
 

Table 2-1. Comparative analysis of different sensing methods 

 

Sensing 

method 

Target VOC (s) Biofluid Detection 

Limit 

Response 

time 

Purpose 

GC-MS [132] VSC Breath 1 ppb 480s Halitosis 

Chemi-

resistive [133] 

VSC Breath 10 ppb 45s Halitosis 

Chemi-

resistive [134] 

H2S Breath 50 ppb  Halitosis 

Electrochemic

al [135] 

VSC Breath 5 ppb < 1s Halitosis 

Chemi-

resistive [136] 

H2S Breath 100 ppb 18s Halitosis 

Chemi-

resistive [137] 

H2S Breath  1s – 2s Halitosis 

Chemi-

resistive [138] 

H2S Breath 0.3 ppm  Halitosis 

Chemi-

resistive [139] 

H2S Breath 100 ppb 8.4s – 

11.6 s 

Halitosis 

Electrrochemi

cal (fuel cell) 

[84] 

Ethanol Skin 

perspiration 

5 ppm 5s DUI 
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Chemi-

resistive [140] 

Acetone Breath 1 ppm  Diabetes 

Chemi-

resistive [141] 

Acetone Breath 0.12 ppm 300s Diabetes 

Chemi-

resistive [139] 

Acetone Breath 100 ppb < 15s Diabetes 

Chemi-

resistive [141] 

Acetone Breath 120 ppb 300s Diabetes 

Chemi-

resistive [142] 

Acetone Breath 10 ppm 9s Diabetes 

Chemi-

resistive [143] 

Acetone Breath 1 ppm 0.5s Diabetes 

Chemi-

resistive [144] 

Acetone Breath 20 ppb 78s Diabetes 

Chemi-

resistive [145] 

Acetone Breath 200 ppb 3s -9s Diabetes 

Chemi-

resistive [146] 

Acetone Breath 120 ppb 15s Diabetes 

Chemi-

resistive [147]   

Acetone Breath 50 ppb 30s Diabetes 

µ-GC–MS 

[148] 

2-butanone, 

methyl acetate, 

toluene, m-

 0.04 –  

0.11 ppb 

15 min Occupati

onal 

health 
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xylene, isobutyl 

acetate 

µGC- µCR 

[88] 

Benzene, 

heptane, 

toluene, methyl 

isobutyl ketone, 

butyl acetate, 

m-xylene 

 100 ppm  ~ 10 min. Occupati

onal 

health 

PID [149] Benzene  Breath 10 ppm 1.5s Occupati

onal 

health 

PID [106] benzene, 

toluene, 

ethylbenzene, 

xylene 

Breath 10 ppb  Occupati

onal 

health 

Fabry–Perot 

interferometer 

[150] 

acetone, 

methanol, 

heptane, toluene 

 ~ 25 ppb 60 ms  

GC/MS [151] pentane Breath 10 -12  

mol/l 

 schizophr

enia 

GC/MS [152] methylated 

alkane, pentane, 

formaldehyde 

Breath 10 -12 

mol/l 

 Breast 

cancer 

Tunable laser 

absorption 

Carbonyl 

sulfide (COS) 

Breath 30 ppb 50 ms 
Liver and 

lung 

diseases  
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spectroscopy 

[153] 

Chemi-

resistive [154] 

Ethanol  10 ppm 4s DUI 

Chemi-

resistive [155] 

Isoprene Breath 1 ppm 65s Flu Virus 

Chemi-

resistive [119] 

Acetone Breath 0.1 ppm 40 – 60s diabetes 

GC-MS [156]  Propofol  Breath 2.8 – 22.5 

ppb 

 anesthesi

a  

Electrochemic

al fuel cell 

[127]  

Aldehydes Breath 1 ppmv 22 s oxidative 

stress/ 

cancer 

Electrochemic

al (micro-       

needle) [131] 

Alcohol Interstitial 

fluid 

5 mM 30s DUI 

Electrochemic

al (tattoo) 

[130]  

Ethanol Sweat 52 ppm 7.5 min DUI 

 

 

2.4 Challenges and solutions for precise detection of VOCs in real-time 

 

 

Clinical diagnosis of VOCs faced several challenges associated with the detection 

of ultra-low concentrations of target molecules in a collective, complex multivariate 
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environment. The development of continuous monitoring of VOC sensors faces several 

challenges in many respects, mostly from the following major fronts: i. standardizing 

sensors’ calibration, ii. development of wearable devices, iii. complexities of metabolism 

and VOCs’ kinetics in a multi-analyte system, and iv. inter/intra- person variability of 

VOCs’ profiles in such varied environments. Human anatomy and physiology is identical, 

therefore, the standardization of a generic sensing device for a specific VOC detection is 

critical. For the same person, the pharmacokinetics and kinetics of different VOCs can 

differ from time to time, depending on diet, drug consumption, body temperature, ambient 

environment and physiological condition. Moreover, most sensors are influenced by the 

fluctuation of these ambient parameters and exogenous compounds that generate false 

positive readings [33 130 157]. The performance of a sensor degrades with time due to the 

aging effect, contamination, the corrosion of materials and the alteration of internal 

properties due to chemical or physical variables (e.g. temperature, humidity, pressure, etc.)  

[33 113 130]. Different sensing parameters, such as reliability, sensitivity, selectivity, 

stability and reversibility are crucial in implementing the design of the sensor in the 

wearable platform. The major challenges and their possible solutions on major parameters 

of different VOC sensing in humans are described below.  

 

2.4.1 Sensitivity  

 

The precise detection of low concentration is always a challenge in VOC sensing. 

Different analytical techniques are widely used in breath analysis to trace sub-ppm 

concentrations of VOCs [4 6 158]. Solid-state chemi-resistive, optical and electrochemical 
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sensors have also attracted attention in VOC detection due to their miniaturization and 

portability, higher sensitivity, and detection limit. The sensitivity of the sensor can be 

measured as in Equation 11 below: 

𝑆 =
𝑅𝑎𝑖𝑟−𝑅𝑔𝑎𝑠

𝑅𝑎𝑖𝑟
 x 100                      (11) 

where, Rair and Rgas are the sensor resistances in normal air and under gas. Bur et 

al. improved sensitivity trough platinum gate gas-sensitive SiC field-effect transistor (SiC-

FET), having a detection limit of ~1 ppb for benzene and naphthalene and ~10 ppb for 

formaldehyde in humid atmospheres [159]. Barsen et al. developed screen-printed ceramic 

MOS sensors, which achieved detection limits as low as at sub-ppb levels, utilizing the 

recognized grain-boundary effect [160]. Different amplification protocols that target 

recycling and the proper selection of transducers have also been seen to improve the 

sensitivity and detection limit. The use of nanoparticles in different forms, such as 

nanowires, nanoflakes, nanorods, nanofibers, nanotubes, nano-spheres, and other 

nanostructures, reportedly improve the sensitivity manifold in VOC sensors by increasing 

the surface area. Modifying the nanoparticles and pore size in the synthesis of nanocubes 

and nanorods of SnO2, Kida’s group improved the sensitivity to 5 orders of magnitude in 

response to 100 ppm of ethanol on an optical sensing film [161]. Recently, Marques and 

McKnight referred to the sensitivity of alcohol monitoring devices (SCRAM for 

transdermal alcohol content) which were 65.3% and 86.5% for 0.02 g/dL and 0.08 g/dL 

concentrations, respectively [162].  
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2.4.2 Selectivity  
 

Cross-selectivity of sensors in a multivariate system is a prime concern in the 

detection of biomarkers. Non-specific detection of the existing sensors can generate false 

positive errors during measurements, from interactions with interfering compounds [130 

157]. For example, anbesol, containing benzyl alcohol, is an anesthetic oral pain relief gel 

used to treat toothaches and canker sores that can yield a positive BAC reading. To improve 

the selectivity of the VOC sensors, different approaches can be employed. Selective 

catalysts or nanoparticles can improve the signal-to-noise-ratio in the detection of the target 

VOC [163 164]. In some cases, the size, shape and phase composition of the nanoparticles 

play a role in differentiating different VOCs [165]. Pure and Si-doped WO3 nanoparticles 

based on chemi-resistive sensors allow the detection of acetone in ppb levels of 

concentration (~ 20 ppb), with a high signal-to-noise ratio [118]. It was found that Si-

doping increases and stabilizes the acetone-selective ε-WO3 phase, while increasing its 

thermal stability and sensing performance. Zhang et al. mentioned Ag-doped In2O3-

activated sensors for the selective detection of alcohol in presence of acetone, 

formaldehyde, ammonia, and H2 at low temperatures [166]. Cr2O3 nanoparticle-based 

chemi-resistive sensors are also known to have shown a better response to NH3 in the 

presence of other VOCs of higher concentrations at room temperature [111]. Doping of 

specific metal molecules in various metal oxides improves the selective detection of some 

VOCs [114]. Lanthanum-doped nano-crystalline thin-film of LaFeO3 demonstrated 

excellent selectivity and stability for the detection of ethanol in the transdermal range 

[167].  
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Polarity is another important factor that plays a role in VOC sensing, while polar 

and non-polar VOCs are selective to specific catalyst materials. The catalyst sensing 

element itself or the thin film of functionalized nanostructures on the sensing element can 

easily react with the polar compound through charge transfer and avoid reactions with non-

polar VOCs [168]. For example, a thin layer of self-assembled polycyclic aromatic 

hydrocarbon (PAH) covering RN-CNT chemi-resistive films could discriminate between 

polar and non-polar VOCs in a controlled environment. Using pulsed laser deposition 

(PLD), morphology of highly porous sensing layers has been known to contribute towards 

enhanced the selective detection of naphthalene [169]. Secondly, a different dynamic 

approach can improve the selectivity of VOC sensors. For example, temperature-cycled 

operation (TCO) is accepted as a vigorous and adaptable technique, especially in chemi-

resistive sensors where a certain temperature window is dedicated for specific types of 

compounds [170]. In a mixture of carbon monoxide, hydrogen and selective sorbent 

material (e.g., Tenax®, Car bopack X, Carboxen) is known to have the ability to entrap 

specific VOCs through thermal desorption (TD). Although the mentioned approaches 

improve selectivity, the detection of a specific compound from a multi-analyte system 

requires more robust techniques.  

Recently, data mining and pattern recognition techniques have become popular and 

established tools to interpret datasets from a multidimensional environment, with precise 

measurement and classification of the volatile compound being measured. For precise 

calibration, the system needs to have multiple wearable “e-noses.” Therefore, large and 

diverse data sets can be acquired based on diurnal activities and performances of the 

wearer. After acquiring the raw data from multiple input systems, it needs to be processed 
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using machine learning or deep learning tools. These tools are suitable to train the 

algorithms on dependent and independent variables and provide a desired estimation for a 

precise calibration model for individual VOCs [171]. Different machine learning tools [172 

173 174 175], such as PCA, canonic discriminant analysis (CDA), independent component 

analysis (ICA), DFA, PLS, artificial neural networks (ANNs), support vector machine 

(SVM) and hierarchical cluster analysis (HCA), have been reported to be adopted for 

specific VOC detection [21 22 23]. However, once a method of prediction has been 

established, the predictive accuracy is obtained through cross-validation of all the data sets. 

The prediction model improves the correlation of the data sets and infers a pattern, whereas 

the regression technique provides a specific concentration of the unknown value of future 

data streams in real-time through fitting with this pattern [ 40 176]. Mazzone’s group 

(Cleveland Clinic) demonstrated a chemi-resistive sensor array for the detection of lung 

cancer from exhaled breath [177]. They applied PCA and CDA techniques for the 

classification of malignancy and benignity of lung cells, and SVM was employed to 

generate a prediction model from the data. Their sensors demonstrated a sensitivity of 

71.4% and high specificity (91.9%) for lung cancer diagnosis. Similarly, Kim et al. studied 

WO3-based (or its alloy) sensor arrays to understand the selectivity of acetone in the 

presence of H2S, H2, CO, ethanol and toluene (Figure 2-5a). In his study, they showed how 

mixture of the VOCs could be selectively detected without interference employing PCA 

(Figure 2-5b) [22]. They also showed how overlapped signals of healthy breath and 

halitosis breath could be differentiated using PCA (Figure 2-5c). Saidi et al. applied the 

PCA method for the classification of Chronic Kidney Disease (CKD), diabetes mellitus 

(DM), Healthy Subjects with High Creatinine (HSHC) and Healthy Subjects with low  
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Figure 2-5: (a) The application of PCA for multiple biomarkers’ classification 

[22], (b) The classification of their mixtures using PCA [22], (c) Classification 

between simulated halitosis breath and healthy human breath [22], (d) Radar 

plots of four breath samples expressed as the area under conductance of 

temporal responses gathered from e-nose for CKD and DM patients and healthy 

subjects [23], (e) The PCA model built using the first set of measurements, fitting 

the second data set onto the clusters [23], (f) The PLS prediction model for 

creatinine content in the urine [23], (g) TGS2602 responses with 120 samples 

measured before and after calibration, performance of predicted concentrations 

on test samples (before and after calibration): (h) formaldehyde, and (i) benzene 

[190].  
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Creatinine (HSLC) [23]. The radar plot is derived from e-nose responses, which 

demonstrated a significant distinction between the four different patterns, as shown in 

Figure 5d. The PCA and SVMs’ results also presented a clear classification among the four 

groups. Moreover, this classification was further validated by analyzing 48 different 

samples from 8 new volunteers, which coordinated with the PCA model (Figure 2-5e). 

They also demonstrated the PLS model, which shows a significant correlation of 0.91 

between the e-noses’ results, as shown in Figure 2-5f [23]. Similarly, M. Philip et al. 

applied the Fuzzy logic model for the prediction of breast cancer with improved accuracy 

to their previously mentioned findings [178]. These studies reveal the prospects of machine 

learning toward the in-situ detection of specific VOC in a multi-analyte system.   

 

2.4.3 Stability 

 

The stability and shelf life of any VOC sensors are crucial parameters to consider 

when designing a sensor for POC application. These features affect a sensor’s reliability; 

and any false readings can be generated because of its instability. Multiple parameters, like 

relative humidity or temperature, and operational conditions (e.g. applied voltage) can 

change the sensor’s properties (e.g. impedance) in real-time. Hence, most of the VOC 

sensors require manual calibration or additional controlling equipment during 

measurements. However, wearable sensors are concerned with detection at sub-ppm or ppb 

levels in real-time. In an environment where humidity, pressure, and temperature change 

erratically, a minute’s change of humidity, pressure or temperature can cause significant 

variation in the signals that affect the calibration of a sensor. Potyrailo et al. established 

humidity and temperature as factors that can affect the calibration of methanol and ethanol 



44 
 

in detection [179]. Similarly, the signals of a fuel cell sensor directly depend on humidity 

and temperature [33]. Additionally, other intrinsic or extrinsic properties of the sensors, 

such as structure alteration, phase conversion, poisoning, degradation, bulk diffusion or 

interference, may cause shifts in the baseline signal of the sensor with time [180]. 

Moreover, continuous exposure of any VOCs may instigate fouling effects, chemical 

alteration, and hysteresis (irreversible) nonspecific adsorption on the sensor surface [181].  

Different approaches were considered to improve the stability. Deng et al. 

demonstrated improvements in the stability of thermodynamic properties of known 

unstable sensing materials (molecularly imprinted polymer, MIP) for the Quartz Tuning 

Fork (QTF) sensor [182]. This has been reported through the modification of MIP by 

mixing polystyrene. Their study showed the adsorption response increased with rising 

temperature for a new sensor, while it is vice-versa for an aged one. Their thermodynamic 

analysis on the calibrated data for VOC (e.g. o-xylene) demonstrated that a conversion 

takes place from endothermic to exothermic reaction through the alteration of MIP, which 

improves its stability and aging effect. Contrarily, different thermally stable metal oxides, 

such as ZnO, SnO2, TiO2, WO3, In2O3, TeO2, and Co3O4, formed thin film nanostructures 

in SAW sensors to improve thermal stability through controlling chemisorption or redox 

reaction of the target VOCs at certain elevated temperatures. This temperature-dependent 

property also enhances sensitivity and selectivity for specific VOCs [26]. However, 

Nguyen mentioned TinO2n−1 as a good catalyst to improve the stability of the ethanol fuel 

cell sensor [183]. Similarly, Pt is widely used as a catalyst in fuel-cell sensing due to its 

high resistivity to corrosion, allowing a stable electrical response [184]. A multi-varied 

sensing platform integrated with different e-noses can potentially improve selectivity and 
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reliability through various tools, as mentioned earlier. This sensing platform acquires a 

multidimensional signature from diverse transducers collectively, in which data are 

collected and processed using machine learning tools and pattern generation [185 186 187 

188 189].  Zhang et al. explored global affine transformation (GAT) and the Kennard–

Stone sequential algorithm (KSS) model for the calibration of SnO2 based e-noses for 

formaldehyde and benzene sensing (Figure 2-5g – 2-5i) [190]. The pattern matching relies 

on affine transformation, which can be extracted from the robust weighted least square 

(RWLS) algorithm and the Euclidean distance (dz) of the samples in the subspace. To 

evaluate the performance, the root mean square error of prediction (RMSEP) and mean 

absolute relative error of prediction (MAREP) were calculated from equations 12 and 13, 

as follows: 

𝑅𝑀𝑆𝐸𝑃 =  √
1

𝑛
∑ (𝜑𝑛

𝑁
𝑛=1 −  𝑇𝑛)2                (12) 

𝑀𝐴𝑅𝐸𝑃 =  √
1

𝑛
 |∑ (𝜑𝑛

𝑁
𝑛=1 − 𝑇𝑛)|     (13) 

where 𝜑𝑛 and 𝑇𝑛 denote the projected and real concentration samples for the nth 

variable, respectively. The applied algorithm eliminates the drifting effect and noise. Thus, 

any drift in response and interference issues can be minimized with desired quantification, 

considering known parameters affect the response.  

 

2.5 Conclusion 
 

VOCs as biomarkers provide a potential pathway for the simple, direct, and 

effective monitoring of certain health conditions, as discussed. However, challenges facing 
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the field of wearable VOC detection were addressed in the reliable calibration of a single 

biosensor. The sensitivity of the VOC sensors can improve significantly through the 

advancement of nanotechnology. However, specific detection by a single sensor from a 

multivariate surrounding is yet to be overcome in precise, accurate sensing for wearable 

applications. Most breathalyzer-based devices show 20% - 40% error, which makes these 

devices inefficient. G. Simpson mentioned that 90% of this ambiguity is due to the 

biological variables of the subject, and at least 23% of subjects will have their actual BAC 

overestimated [191]. However, the advancement of nanotechnology and micromachining 

promote the integration of multiple sensing modalities on a single platform. The integration 

of e-noses in a multimodal sensing platform through sensor-fusion have helped to do away 

with certain issues of selectivity in the specific diagnosis of a physiological condition of 

an individual. Pattern recognition and machine learning or deep learning tools have been 

being employed in multimodal sensing approaches via e-noses for precision and accuracy, 

as aforementioned. Such prospects provide pathways for the noninvasive detection of 

VOCs as biomarkers on a wearable platform for POC continuous monitoring and personal 

health management in real-time. 

In summary, this chapter presented a comprehensive literature review on sensing 

VOCs as biomarkers in humans. The potential sources of different VOCs for POC 

diagnosis in real-time were explored. Different sensing techniques and their challenges 

were elucidated. The probable solutions to resolve these challenges were delineated at the 

end of this chapter. 
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CHAPTER III 

PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SENSOR, ITS 

FABRICATION AND CHARACTERIZATION 

 

 

A proton exchange membrane fuel cell (PEMFC) has a multitude of applications, 

such as power generation, for transportation and stationary systems, such as powered 

vehicles, uninterruptible power supply (UPS), and mobile phone station and sensing of 

volatile compounds (e.g. ethanol, methanol, CO etc.). For the application of sensing, a fuel 

cell sensor needs to provide stable and interference-free signals with accurate and precise 

calibration. In this chapter, the first section presents the working mechanism of a PEM fuel 

cell sensor and the reasoning for the selection of nickel as a catalyst material. The final 

section discusses the fabrication process of nickel and monel (nickel alloy) catalysts-based 

fuel cell sensors.  

 

3.1 Polymer electrolyte membrane fuel cell (PEMFC) structure 
 

The polymer electrolyte membrane (PEM) fuel cell, also termed proton exchange 

membrane fuel cell, employs a proton-conducting polymer membrane as an 

electrolyte. Fundamentally, the typical structure of a PEMFC consists of seven elements, 

as shown in Figure 3-1: [192]: i. feeding channels, ii. the diffusion layer, iii. the catalytic 

layer in the anode; iv. proton-conducting membrane; v. the catalytic layer in the cathode, 

vi. the diffusion layer, and vii. feeding channels in the cathode. The PEMFC combines in 

a unit, where the electrodes and the electrolytes are assembled in a very compact form. In 
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this structure, membrane electrode assembly (MEA) is the core part, where the membrane 

is sandwiched between the catalytic layers of anode and cathode. In figure 3-1, it is evident  

that fuel (here H2) is oxidized at anode and oxygen (O2) is reduced at cathode through the 

diffusion layers. Typically, feeding channels are essential parts for power generation, 

which are absent in sensing application.  

 

3.2 PEM fuel cell for VOC sensing 

 

The fuel cell sensor has high specificity, accuracy, calibration stability and a long 

working life compared to other kinds of sensors. However, different biosensors suffer from 

  

Figure 3-1: Three-dimensional schematic diagram of a fuel cell [192] 
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high interference due to humidity, and they cannot be applied for continuous monitoring. 

For example, the ethanol sensor is widely used for the breathalyzer. These breathalyzers 

cannot be used for the continuous monitoring of ethanol for DUI offenders or for measuring 

blood alcohol concentration (BAC) through transdermal diffusion. The literature survey 

shows that there are a few reports for continuously monitoring alcohol through transdermal 

diffusion or perspiration with accuracy and precision. The present noninvasive way to 

measure the BAC is to measure the alcohol content in the breath. There are a few wearable 

continuous monitoring devices available because the pharmacokinetics of alcohol is 

complex due to the intricate nature of its distribution into the various tissues in the body. 

In detail, alcohol kinetics is dependent on absorption from the intestines into the blood, 

then elimination from the blood via the metabolism in the liver, and transportation into 

tissues via diffusion. This balance between absorption and the elimination of alcohol is 

reflected in the BAC. After a drink, the BAC rises until absorption is complete. After a 

maximum in the BAC is achieved, the BAC decreases during the elimination phase 

primarily due to the metabolism in the liver [5]. Therefore, the assumption that the supra-

dermal ethanol concentration is the same as that of the BAC will lead to false positive or 

false negative results. Moreover, the noninvasive and continuous monitoring of alcohol 

sensors suffers from humidity or other interference in operations in a multivariate 

environment, and shows false readings. These issues can be overcome by continually 

monitoring the concentration curves and standardizing with the BAC.  

In this research, a fuel cell-based sensor was constructed from different catalyst 

materials, such as stainless steel, nickel, and copper.   
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3.3 Fabrication of a fuel cell sensor 
 

3.3.1. Materials and apparatus 
 

A micro-perforated, stainless steel sheet (thickness 200 µm, 180 µm pore size) from 

the Advanced Materials Engineering Research Institute (AMERI) at Florida International 

University was used as the material for the electrodes. Copper, lead, and nickel sheets were 

purchased from McMaster-Carr and used for electro-deposition. Nafion424 reinforced with 

poly-tetrafluoro-ethylene (PTFE) as a PEM, 95% sulfuric acid, 37% hydrochloric acid, 

boric acid, copper sulphate, nickel chloride anhydrous, and nickel sulphamate were 

purchased from Sigma-Aldrich; these were utilized for the copper and nickel electroplating 

of stainless steel. Acetone and ethanol (95.27%) were purchased from Fisher Scientific Inc. 

The aqueous solutions were prepared with de-ionized (DI) water. 

     A hydraulic hot press (model 2100 from PHI) was used to prepare the 

sandwiched structure of the fuel cell sensor. For the electrochemical experiments, two 

potentiostat were utilized: CHI 1230B having MC470 and Autolab PGSTAT30. A 3D 

printer (model: Replicator2 from Makerbot) was employed for the chamber design of the 

experiments. A Bruker D5000 X-ray diffractometer from Siemens (presently Bruker) was 

used for the characterization of various catalysts. 

 

3.3.2 Design and construction of the fuel cell sensor 
 

     The dimensions of the working (anode), counter (cathode), and reference 

electrodes were 1.5 cm x 0.8 cm, 1.5 cm x 1 cm and 1.5 cm x 0.2 cm, respectively (shown 

in Figure 3.2a). Since the counter electrode is the primary current collector, the overall 
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dimensions of the counter electrode were designed to be substantially larger than the 

working and reference electrodes. In contrast, the dimensions of the reference electrode 

were designed to contain the smallest surface area. The electrolyte membrane, Nafion (1.5 

cm x 1 cm) was sandwiched between the electrodes to form the MEA, which was 

assembled in a 3D-printed chamber. In the two electrode micro-fuel cell sensor, the anode 

was positioned on the PEM and the cathode was on the opposite facet, which was made of 

PTFE. The three-electrode fuel cell sensor followed the same structure as the two-electrode 

system, except that it had a reference electrode, which was placed near (1 mm) the counter 

electrode on the same PTFE facet. The sandwich structure of MEA was made by hot 

 

Figure 3-2: (a) Design of the PEM fuel cell; (b) SEM image of a stainless steel 

micro-perforated sheet, spots 1, 2 and 3 are the points for EDX measurement; (c) 

EDX spectrum of the stainless steel micro-perforated sheet; and Cyclic 

voltammogram of fuel cell type sensor containing Nafion membrane sandwiched 

between stainless steel electrodes. The scan rate was 0.02 Vs-1. The CV was 

measured in the absence of ethanol and humidity. 
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pressing it at 75 ˚C and 2500 psi for 10 min. Before experiments, a constant relative 

humidity was maintained for each sensor by treating the sensors in the humidity chamber 

for 30 min at 24 ˚C. 

Contrary to a traditional fuel cell two-electrode system, a three-electrode one was 

developed to monitor the signals in these studies. The three-electrode system is more 

advantageous than the two-electrode system. For example, the electrochemical potential 

measurement in the two-electrode system (anode and cathode) shows the full cell reaction 

potential, whereas when using the three-electrode system, the half-cell potential can be 

measured. In these studies, the three-electrode system was constructed in such a way that 

working and reference were nearer to each other (Figure 3-2a). This design facilitates 

monitoring the anodic reaction of the fuel cell sensor. The importance of the design and 

the electrochemical reactions of the fuel cell-type ethanol sensor will be described in the 

later sections.  

The stainless-steel material (from AMERI lab) used for the fuel cell-type sensor 

construction was characterized using scanning electron microscope (SEM) and Energy-

dispersive X-ray (EDX) spectroscopy. The pores were of uniform size, with the diameter 

of 180 µm, with the inter space distance of 100 µm (Figure 3-2 b). For EDX studies, the 

electron beam was targeted on the three spots, as marked in Figure 3-2a. The obtained EDX 

spectra (Figure 3-2c) show that the concentration of the iron was higher than all the 

elements present. This high concentration of iron with chromium, nickel, manganese and 

molybdenum represents stainless steel alloy. The weight percent calculation from the EDX 

data is given in Table 3-1. Comparing the composition of the materials in Table 3-1 with 

the literature proves that the stainless steel used in this work was the SS-304 type  
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[193]. The carbon content listed in Table 3-1 is high compared to the composition in the 

stainless steel because it is hard to eliminate the carbon contamination surface of the 

analyzed sample. Similarly, tungsten impurity was noticed in the results, however it exists  

in a negligible amount. Even though the SS-304 type stainless steel was used as an example 

for these studies, the other stainless-steel alloys, metals, and carbon materials modified 

with nanomaterials can be used for the fuel cell-type ethanol sensor construction. 

The electrochemical activity of the fuel cell-type sensor was measured using the 

cyclic voltammogram (CV) technique, as given in Figure 3-2d. The iron present in the 

electrodes showed a redox property during CV measurements. The CV measurements were 

carried out in the potential range of -0.4 to 0.4 V at the scan rate of 0.02 Vs-1. In the CV 

(Figure 3-2d), the anodic peak potential of Fe2+ oxidation (Epa) is at the same potential of 

the cathodic peak potential of Fe3+ reduction at formal potential E0 = 0, where the peak 

separation ΔE = 0. This result indicates the reaction is a highly surface-confined process, 

which proves: (i) the presence of iron on the electrode surface and (ii) the electrodes are 

electrochemically active and suitable for fuel cell-type sensor construction. 

 

Table 3-1. EDX spectrum analysis weight% data of micro-perforated stainless-

steel sheet used in fuel cell type ethanol sensor. 

 

   C  Cr  Mn  Fe  Ni  Mo   W 

Spot 1    9.15   15.53    1.88   63.00    8.58    1.52    0.34 

Spot 2    9.28   15.70    1.67   63.39    8.44    1.51    0.00 

Spot 3   10.68   15.38    1.73   61.51    8.87    1.82  

C Carbon; Cr Chromium; Mn Manganese; Fe Iron; Ni Nickel; Mo Molybdenum; W Tungsten. 
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3.3.3 Electrode preparation  
 

Three kinds of catalysts (stainless steel, copper, and nickel) were studied for ethanol 

sensing, where stainless steel was always the base metal. For copper and nickel studies, 

they were electroplated on the stainless steel. Before electroplating the porous metal sheet, 

it was cleaned thoroughly with a detergent, deionized (DI) water, and acetone in an 

ultrasound bath for 5 min. Then, the sheet was anodically electro-cleaned by placing the 

lead cathode in 25% H2SO4 for 5 min. below room temperature, with a current density of 

13.94 Am-2. After a thorough wash in DI-water, the stainless-steel sheet was cleaned at 

room temperature for 45s with a solution of HCl, H2SO4 and DI-water with a volumetric 

ratio of 1:10:1000. Afterward, to improve the metal-metal adhesion, “Wood’s Nickel 

Strike” [194 195] was performed to deposit a thin layer of nickel or copper onto the 

stainless-steel sheet. For nickel electroplating, “Watt’s deposition method” was employed 

at 50 ˚C and a 0.2 A and 2 V rating [195]. The electrolyte for Wood’s nickel strike includes 

HCl and anhydrous nickel chloride. The electrolyte for Watt’s deposition method includes 

nickel sulfamate, nickel chloride, and boric acid. The nickel-deposited sheets were rinsed 

in DI-water and baked at 190 ˚C for 2h. For copper electroplating copper sulphate solution 

was employed for the copper deposition. Copper electroplated sheets were air dried at room 

temperature. 

 

3.3.4 Characterization of the electrodes 
 

X-ray diffraction (XRD) analysis was used to understand the fingerprint 

characterization and the phase identification of the crystalline structure of the catalysts on 
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the electrode [193 196 197]. As shown in Figures 3-3a-3-3c, for stainless steel, two strong 

peaks were observed at the angles of 43.62˚ and 74.64˚. These two peaks represent SS 

(111) and SS (220) structures, respectively. A small peak was also found at 50.48˚. From 

the miller indices, it was assured that the stainless-steel sample represents the SS-304 type 

[193], and its structure is in a single-phase face-centered cubic (FCC) pattern. For the 

nickel sample, three strong peaks were obtained at 44.5˚, 51.78˚, and 78.7˚, which 

correspond to Ni (111), Ni (200), and Ni (220), respectively [196]. This result confirms 

that the electroplating of nickel was well crystalline. For copper sample, the peaks were 

found at 43.38˚, 50.54˚, and 74.14˚, which correspond to the Bragg reflections of Cu (111), 

Cu (200), and Cu (220), respectively. Comparing this data with the Joint Committee on 

Powder Diffraction Standards (JSPDS) data sheet confirmed that the specimen is face-

centered cubic (FCC) copper crystalline [197]. 

 

3.3.5 Nickel as a catalyst for ethanol sensing 
 

     The performance of three different sensors made of copper, stainless steel and 

nickel was evaluated by the amperometric response (Figure 3-4a – 3-4c). The setup 

 

Figure 3-3: XRD profile of (a) stainless steel, (b) nickel and (c) copper 
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includes the fuel cell sensor in a chamber where 10 μl of 15.8 M pure ethanol was applied 

on the 0.2 cm2 opening of the working electrode. Hence, the contact area remained the 

same for all three sensors. The counter electrode had an opening for the oxygen reduction 

reaction. All the sensors showed an ethanol response within 2s. However, the steady-state  

signals were achieved after 700s by the stainless-steel sensor and 2s by nickel. Though 

copper showed a good current response (20 μA) initially, there was no steady-state 

response. This instability of the copper can be attributed to the quick and irreversible 

oxidation reaction of the copper on the cathode. The steady-state current obtained from 

stainless steel and nickel sensors were 0.2 μA and 60 μA, respectively. The amperometric 

results revealed that nickel provided a 300 times higher current than the stainless steel 

(Figure 3-4). Moreover, nickel showed a more stable response among these three catalysts, 

whereas copper showed poor stability. Therefore, for the following studies, nickel was 

selected as the catalyst material.  

 

 

 

 

Figure 3-4: Amperometric responses for the 15.8M pure ethanol for various 

catalysts: (a) stainless steel, (b) nickel and (c) copper 
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3.4 Fabrication of the Monel-based fuel cell sensor 

 

3.4.1 Materials and apparatus 
 

Monel (Nickel 400 containing minimum 63% Nickel and 28% Copper) wire mesh 

from TWP Inc. has been employed as the electrode material. Its noncorrosive nature 

prevents oxidation and provides signal stability compared with pure copper or nickel. Laser 

cutting of the Monel sheet was executed at SBC Industries in Miami to provide specific 

shapes and dimensions of the all electrodes. Nafion perfluorinated 424, reinforced with 

PTFE fibers (thickness 0.03 cm), from Sigma Aldrich was used as proton exchange 

membrane (PEM).   

 

3.4.2 Design and fabrication of the micro fuel cell  
 

The dimensions of the working electrode (WE), counter electrode (CE), and reference 

electrode (RE) (1 cm x 1 cm x 0.025 cm) of the micro-fuel cell were considered, 

respectively (the cross-sectional and top views are shown in figure 3-5a). The electrolyte 

membrane, Nafion (2 cm x 1 cm x 0.02 cm), was sandwiched between the electrodes to 

form the MEA. The overall area of the CE electrode was designed to be substantially larger 

than the WE and RE, as mentioned earlier. In contrast, the area of the RE was designed to 

contain the smallest surface area, and it was placed maintaining a specific distance from 

the CE on the same side of the membrane. This distance (L= 0.55 cm) was kept greater 

than three times (𝐿/δ > 3)  the membrane thickness (δ = 0.02 cm) to avoid the 

asymmetrical current distribution and potential variation on WE due to the edging effect 

[198]. The WE was placed on the opposite side of the CE in such a way that the maximum 
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area of the WE overlapped with that of CE. The Monel sheet was cut according to the 

design that was created at SolidWorks CAD with a tool, as shown in Figure 3-5b. After 

laser cutting, the micro-porous wire mesh of Monel was cleaned thoroughly with detergent, 

DI water, and isopropanol (IPA) in an ultrasound bath for 5 min.  

An aluminum mold was designed using the SolidWorks CAD tool for hot pressing, 

shown in Figure 3-5c and 3-5d. The mold was designed in the 7x6 matrix so that 42 PEMFC  

sensors could be fabricated simultaneously. The sandwich structure of the three-electrode 

fuel cell was achieved by placing the strips of the Monel electrode pieces (Figure 3-5b) 

with the membrane inside the mold according to design. Subsequently, the MEA was hot 

pressed at 75 ˚C and 2500 psi for 10 min. by the hydraulic press (model 2100 from PHI), 

 

Figure 3-5: (a) design of the three-electrode fuel cell sensor; (b) the strips of the 

Monel electrodes after laser cutting; the CAD design of the aluminum-made mold 

(c) the bottom part and (d) the top part (e) the three-electrode fuel cell sensor after 

fabrication 
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like that which was mentioned in section 3.3.2. The fabricated arrays of fuel cells were 

kept at room temperature for 1-2 hrs. inside the mold, and it was observed that the 

electrodes properly adhered to the membrane through the thermal cycling process [199, 

200]. Finally, the fuel cell sensor was cut from the strips using a guillotine.  

 

3.5 The working mechanism of the PEM fuel cell  
 

The hydrophilic sulfonic acid group governs the kinetics of proton transfer, where 

the transportation mechanism can be explained by the widely accepted cluster channel 

model proposed by Hsu and Gierke [201]. In this model, the sulfonated acid groups form 

water-filled clusters over which the protons are transported, as shown in Fig 3-6a and 3-

6b. From this model, it can be inferred that only under the conditions of an optimum 

hydration level can Nafion transport protons across. The conductivity of these ions is 

proportionally related to relative humidity (RH) in the environment. A relationship of 

proton conductivity vs. % of RH is plotted in Figure 3-6c. This plot supports our claim that 

a change in RH leads to a linear change in ionic conductivity. Proton conductivity (𝜎) in 

 

Figure 3-6: (a) The cluster channel model with the (b) Cluster [202], (c) %RH vs. 

conductivity [202] 

(a) (b) (c)
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polyelectrolytes also depends on temperature (𝜎𝑇 =  𝜎0𝑒
𝐸𝑎
𝑘𝑇) and the hydrophilic volume 

fraction, 𝜎~(𝜑 − 𝜑𝑐 )
2 [202].  This volume fraction has also been seen to share a quadratic 

relation with the diffusion of water molecules, 𝐷𝑤 ~𝜑2 [202]. H2O diffusion flux (𝐽𝐻2O) is 

generally controlled by the electro-osmotic drag (EOD), diffusion and applied electric 

force, where 𝐽𝐻2O is assumed to be a linear superposition of EOD and diffusion [203]: 

𝐽𝐻2O = 𝜉𝜎 +  𝑐𝑤𝐷𝑤
𝑑𝑎𝑤

𝑑𝑥
      (1) 

where, 𝜉 (= 𝐹 
𝑑𝐽𝐻2O

𝑑𝜎
)is the EOD coefficient, F is the Faraday constant, 𝜎 is current 

density, 𝑐𝑤 is the concentration of water in mol/cm3, 𝐷𝑤 is the diffusivity of water in cm2 

s-1, and 𝑎𝑤  (=  
𝑃w

𝑃𝑤
0 ) is water activity due to partial pressure of the vapor phase of water 

molecules. The diffusion of H+ ions is governed by the Grotthuss mechanism, en masse 

diffusion, and surface diffusion, where the relationship among them for a single pore is 

given by the following equation [204]: 

𝜎𝑝 =  𝜎𝐻+
Ʃ + 𝜎𝐻+ 

𝐺 + 𝜎𝐻+
𝐸        (2) 

In the above equation, 𝜎𝐻+
Ʃ , 𝜎𝐻+

𝐸 , and  𝜎𝐻+ 
𝐺 represent H+ ion conductivity for the 

surface, en masse, and Grotthuss diffusion. Combining equation (2) with Nernst-Einstein 

equation, the overall membrane conductivity, 𝜎𝐻+ is found, as follows [204]: 

𝜎𝐻+ =
𝜀𝑖

𝜏
 [ 

𝐹2

𝑅𝑇
 (𝐷𝐻+

Ʃ 𝐶𝐻+
Ʃ  + 𝐷𝐻+

𝐺 𝐶𝐻+
𝐶  + 

𝐷
𝐻+
𝑊

1+𝛿𝑐 
 𝐶𝐻+)]    (3) 

where 𝜀𝑖 is the molar fraction of the water per acidic chain, 𝜏 is the tortuosity factor 

of the pore, 𝐶𝐻+
Ʃ  and  𝐶𝐻+ are the surface and bulk membrane distribution of the proton 

concentration, respectively, and 𝐷𝐻+
Ʃ , 𝐷𝐻+

𝐺  and 𝐷𝐻+
𝑊  are the surface, en masse, and Stefan-

Maxwell diffusion coefficients, of the hydronium ion, respectively. 
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In a PEM galvanic cell, H+ ions are contributed by the fuel, for example, ethanol 

[205 206]. These ions are transferred through Nafion, and the flow of electrons is regulated 

through the circuit. The operation of a PEM galvanic cell depends primarily on (i) the redox 

reaction at the electrode surface, (ii) the PEM’s hydration and its ability to transport protons 

from the anode to the cathode, and (iii) the catalyst’s ability to enhance the redox reaction. 

In Figure 3-7, the reaction mechanism is depicted for transdermal ethanol detection by the 

PEMFC sensor. Here, the target compound ethanol is exposed (oxidized), and ambient 

oxygen is reduced at the cathode [207]. The electromotive force in this PEM galvanic cell 

is caused by the standard potential (E0), given by the Nernst equation (1). 

𝐸 = 𝐸0 −
RT

𝑛𝐹
𝑙𝑛 𝑄𝑟       (4) 

where, E is the half-cell potential, n is number of electrons transferred, F is the 

Faraday constant, R is the molar gas constant, T is temperature and Qr is the reaction 

quotient. The standard potential drives the faradic current in the presence of the target 

 

Figure 3-7: The working mechanism of PEM galvanic cell  
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analyte. This generated current depends on: the open circuit potential (OCP) of the 

reactions, applied potential across the electrodes, and the rate of the reaction.   
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CHAPTER IV 

CALIBRATION OF THE FUEL CELL SENSING PLATFORM FOR VOC 

SENSING IN A TWO-ANALYTE SYSTEM 

 

 

This chapter is divided into three major sections. The first section presents the 

development of a nickel-based PEMFC sensing platform for the detection of VOC(s), such 

as alcohol. The second section focuses on the detection mechanism of the alcohol by the 

fuel cell sensor and its improvement of calibration by eliminating the noise of major 

interfering compounds, such as humidity. Finally, the third section explores the prospect 

of this wearable alcohol-sensing device.  

 

4.1 Background of wearable alcohol measurement systems 

A continuous wearable alcohol measurement system has been sought in numerous 

fields, ranging from law enforcement to clinical monitoring to safety systems [208 209]. 

Breath alcohol (BA) measurement devices are used by law enforcement agencies for the 

random monitoring of drivers to determine whether they are driving under influence of 

alcohol [10 210 211 212]. Since law enforcement involves measuring the BA content of a 

random population at one point in time, breath analyzers are adequate. However, in a 

clinical application focused on understanding the consumption and metabolism of alcohol, 

measurements are required over extended periods, ideally starting from 30 min. before 

consumption and extending to 8h. after the last drink. Given that alcohol is generally 

consumed in the evenings and the subject will likely sleep following his ingestion of 

alcohol, breath analyzer, a continuous alcohol sensor, is preferred. The simplest approach 
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to continuous monitoring of alcohol is a wearable sensor that uses alcohol vapors 

emanating from the skin and secreted with sweat [213 214 215]. 

After alcohol ingestion, a very small proportion (1% of overall alcohol 

consumption) is excreted with sweat from the exocrine sweat gland or in a diffusive manner 

[162]. The sweat is mostly composed of water (~99% of overall volume), with a small 

amount of nitrogenous compounds, metal and nonmetal ions, metabolites, xenobiotics, 

organic volatile compounds, and so on [216]. Hence, the elimination of cross selectivity 

with different compounds, especially with the water content of sweat or atmospheric 

humidity, is challenging for any transdermal alcohol sensors. The reaction kinetics [217] 

and maximum power density [218] of the PEMFC sensor are directly dependent on relative 

humidity. In the electrochemical sensing, therefore, humidity has an adverse impact on the 

calibration of the sensors. Like humidity, other volatile compounds released from the skin, 

such as aldehydes and ketones [219], will undergo a reaction in the anode, creating an 

interference signal. Only a selective and accurate alcohol measurement device would be 

the possible solution to overcome this issue. This can be achieved in two ways: first, to 

develop a highly selective sensor that can offer an accurate signal for only alcohol, or 

second, electrically eliminate the noise signals following a robust electrochemical 

technique. 

Wearable transdermal alcohol measurement devices have been built before, e.g. 

“GinerWrisTAS” [205]. However, this device did not have a data acquisition system and 

required a humid chamber for measurements. Others [205] integrated the data acquisition 

system and incorporated PEM as an electrolyte. However, these sensors suffered from false 

positive readings due to the presence of VOCs, the lack of selectivity, and the need for 
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frequent manual calibrations. Both fuel cell/electrochemical breathalyzers and wearable 

devices measure interactions between the sensor and VOCs, such as acetone, 

acetophenone, isoprene, etc. [220]. The interactions lead to a change in potential and 

generate a signal. When these devices are used to for the measurement of alcohol, the 

VOCs trigger false positives. 

To address the needs of the target users, a complete wearable system needs to be 

developed. Such a system should be able to recalibrate and reference itself to its 

environment, minimizing the effect of VOCs, thus enabling long-term quantitative 

monitoring. The platform needs to provide real-time statistical analysis for different vapor 

footprints, including alcohol, so it can be calibrated to the needs of the user. Such systems 

should also be low power to ensure long usage life between charges. This paper presents 

such a sensing system that can communicate with external devices through Bluetooth for 

longitudinal data analysis to ensure functionality. Finally, the sensor was packaged into a 

wristwatch format. 

 

4.2 Experimental  

4.2.1 Materials and Methods  

Materials for PEMFC sensor fabrication were discussed in section 3.3. 

The MICRO5 PID sensor was purchased from BW Technologies. Potentiostat (CHI 

1230B with MC470) was purchased from CH instruments Inc. LMP91000 miniaturized 

potentiostat with analog front end (AFE), a 16-bit ultra-low power microcontroller 

(MSP430F5529LP), RN42 Bluetooth chip and the LP2591 power management system 

were purchased from Texas Instruments (TI). The MCP72831 charge controller, a 12-bit 
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digital-to-analog converter (ADC) with integrated electrically erasable programmable 

read-only memory (EEPROM), and an I2C compatible serial interface from Microchip 

were purchased. 

The fabricated PEMFC sensor (as mentioned in section 3.3) was interfaced with the 

AFE of the LMP91000 on a wearable platform. The WE, RE, and CE of the sensor were 

connected to the corresponding pins of the AFE. The AFE was linked to the microcontroller 

via an inter-integrated circuit (I2C) interface. The Bluetooth module was connected via a 

universal asynchronous receiver/transmitter (UART) peripheral of the MSP430. The liquid 

 
Figure 4-1: (a) Block diagram and schematic of peripheral connections in the 

alcohol monitoring device, (b) the top and (c) bottom layer of the PCB board, 

where the top layer consists of a LMP91000, microprocessor and other 

integrated electronic components, and the bottom layer consist of Bluetooth 

component 
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crystal display (LCD) used the serial peripheral interface (SPI) of the MSP430. The 

connections and their functions are discussed in the results and discussion. The peripheral 

connection is depicted in the block diagram, as shown in Figure 4-1a. The printed circuit 

board (PCB) was manufactured on a two-layer board using a 1.6 mm-thick FR-4 substrate, 

with 28.35 g copper and an area of 6.45 cm2. All the electronic components, including the 

microcontroller, AFE, power management system, and associated circuitry, were mounted 

on the top layer, as shown in Figure 4-1b. The Bluetooth chip was solely mounted on the 

bottom layer Bluetooth (Figure 4-1c). 

Standard solutions of ethanol and vapor were calibrated using the MICRO5 PID 

sensor. OCP and amperometric studies of the fuel cell were with the commercial 

potentiostat. Ethanol vapor was generated by bubbling a constant flow of air through a 

15.8M-ethanol solution. Ethanol vapor was passed through a custom 3D printed chamber 

(~0.7 cm3) containing a standard PID sensor or the WE of developed sensor for 

measurements. The chamber was designed in such a way that the CE was exposed to the 

atmosphere.  

 

4.3 Results and Discussions 

4.3.1 The Electrochemical Mechanism of the Ethanol Fuel Cell Sensor 

The operation of the PEM fuel cell sensor depends primarily on (i) the redox 

reaction at the anode and cathode surface, (ii) the PEM’s hydration and its ability to 

transport protons from the anode to the cathode, and (iii) the catalyst’s ability to enhance 

the redox reaction. The redox reactions of the ethanol fuel cell can be represented by 
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equations (1), (2), and Figure 4-2a. The overall fuel cell reaction can be represented by 

equation (3) [221]: 

C2H5OH + 3H2O → 12H+ + 12e- + 2CO2       (E
0 = 0.085V)  (1) 

3O2 + 12H+ +12e-
→ 6H2O                            (E0 = 1.23V)  (2) 

                     C2H5OH + 3O2→ 2CO2 + 3H2O              (E0 = 1.145V)        (3) 

In this reaction, protons are exchanged from the anode to the cathode through the 

PEM, and the electrons flow through the internal circuit. The E0 values given in  equations 

(1) and (2) are the thermodynamic standard potentials vs. standard hydrogen electrode 

(SHE), and the E0 value in equation (3) is the equilibrium potential difference, which 

represents 12 electrons per ethanol molecule. However, the thermodynamic values are 

practically of little use, as practical systems don’t operate under reversible conditions. To 

obtain the characteristics of the constructed three-electrode PEMFC sensor, the OCP 

technique (time vs. voltage) was used. In these studies, to enhance oxygen reduction and 

 
Figure 4-2: Schematic of ethanol oxidation and oxygen reduction in a fuel cell 

sensor, where a', b', c', and d' represent WE, CE, PEM and RE, respectively. (b) 

OCP of a fuel cell sensor in the presence (continuous green) and absence (dashed 

blue) of 95% ethanol in 100% humidity. 
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ethanol oxidation, Ni was used as a catalyst [28 221]. The effect of humidity on H+ ion 

transport was minimized by treating each sensor in a humid chamber for 30 min. at room 

temperature, as it is established that the rate and amount of proton exchange depend on the 

water content of the PEM [222]. The OCP measurements were taken over a period of 

1,000s in a closed chamber containing the fuel cell sensor. Even though the steady-state 

potential of the sensor was attained within 5s, t = 100s was chosen to introduce the ethanol 

to illustrate the stability of the baseline. The response time of the sensor can be seen to be 

less than 2s (Figure 4-2b). The same figure shows that the OCP of ethanol oxidation (100% 

humid condition) was 0.07 V. In our sensor, we consider thermodynamic standard potential 

instead of equilibrium potential difference, as the fuel cell sensor is a three-electrode 

system and measurements were half-cell measurements. According to the Nernst equation, 

the OCP of ethanol should be much higher than the thermodynamic standard potential of 

ethanol (0.085V). This low ethanol OCP value is due to the mixed potential generated 

because of both ethanol and humidity.  

The experimental results in Figure 4-2b also revealed that there was a ~-0.2 V 

deviation in OCP for 100% humidity (absence of ethanol) compared to the OCP in the 

presence of ethanol. This deviation varies with the percent change in humidity at the rate 

of 2.7 mV for each percentage decrease in humidity (Figure 4-3). The humidity level varies 

inconsistently in practical conditions, and the exposure to various humidity percentages 

revealed that the reference value of the sensors’ OCP signal oscillates for the sample size, 

n = 5. Therefore, deriving a relationship between humidity and the ethanol, the OCP signal 

generation for calibration was not possible based on empirical results. Hence, quantifying 

ethanol based on the OCP technique alone was inaccurate, even though significant signals 
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were measured for ethanol in OCP. However, the OCP signal variation between ethanol 

and the humidity (-0.2 V) provided a significant opportunity to design a multimodal 

method to eliminate interference. Like humidity, any organic volatile compounds capable 

of oxidizing on the anode has its own OCP signature, which is an important characteristic 

supporting the selective detection of desired compound in a given binary system. 

 

4.3.2 A Method to Eliminate the Interfering Signal 

Selectivity is the biggest challenge in the successful construction of any fuel cell 

sensor. In the diffusion control process, OCP, due to any given reaction, is independent of 

its concentration. However, in the case of low concentration and low volume 

measurements, the rate of the reaction, rate of diffusion, and rate of evaporation are the 

limiting parameters. If the concentration of the interfering compound is much higher than 

 

Figure 4-3: Plot representing the effect of humidity (%) on the OCP of the 

micro-PEMFC sensor in the absence of ethanol, where there was a 2.7 mV 

change in OCP for each percentage decrease in humidity for n = 5. 
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the ethanol, the sensors’ accuracy will be low. This is because, as discussed above, the 

experimental potential of each compound varies due to the mixed potential, which in turn 

affects the current generated by the fuel cell. To improve accuracy, a multimodal method 

containing both OCP and the amperometric techniques was employed for subsequent 

measurements. 

During the redox reaction, the current flow between the electrodes can be measured 

using the amperometric method as the faradaic current. This generated current depends on: 

the formal potential of the reactions, the applied potential across the electrodes, and the 

rate of the redox reaction. For example, the amperometric measurement of ethanol at a 

fixed potential (-0.05V) in the presence of high humidity given in Figure 4-4a revealed that 

there is a response for not only ethanol but the humidity as well. The same figure showed 

that if the applied potential was lower than the OCP of ethanol, it resulted in a negative 

current response, and vice versa for the humidity. The response depended on the difference 

(ΔV) between OCP and the applied potential, resulting in a variation in the output current. 

This showed that the rate of faradaic reactions on the electrode surface could be 

manipulated using external voltage. As a step toward eliminating humidity interference 

signals, a signal due to humidity was taken as an example for the following studies. A 

similar method can be applied for eliminating the signals of all other organic, volatile 

compounds. However, the method reported here is only applicable for a binary chemical 

system and has not been validated for multiple interfering compounds. 

The selectivity of ethanol in the presence of humidity was achieved through the 

following steps: (i) identifying the OCP in the presence of humidity, and (ii) applying the 

obtained OCP value across the WE and RE, and measuring the current flow between the  
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Figure 4-4: (a) Amperometric plot showing humidity and ethanol signals, (b) 

calibration plot of current vs. voltage scan in presence of humidity showing the 

voltage at 0A, (c) amperometric studies after calibration showing only the ethanol 

signal, where the interfering signal was eliminated, (d) anodic polarization curves 

of the micro-fuel cell sensor in the presence of 50 ppm of ethanol and 46% of 

humidity. (e) OCP signature comparison of ethanol in two and three-electrode 

systems. 
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CE and WE. In this process, the current signal due to humidity was eliminated, and the 

current flow due to ethanol oxidation for that potential was recorded. The experiments with 

humidity (> 90%) showed that the OCP of the fuel cell sensor varied between -0.05 V to –

0.2 V. By keeping the potential exactly at the experimental potential (Ecell) at any given 

humidity level (in the absence of ethanol), the current flow due to humidity was eliminated. 

The identification of the Ecell at any given humidity was carried out by a series of 

amperometric studies, where various potentials were applied across the electrodes and the 

current was measured (Figure 4-4b). From the applied potential vs. current plot, the exact 

Ecell at which the current falls to zero was identified for that humidity. Even though the 

steady-state OCP measurements can be used to measure this Ecell value, the amperometric 

method was used to find the Ecell to significantly improve the accuracy. Attaining OCP, the 

steady-state value would vary depending on the environment and the need for prolonged 

scans in real-time calibrations. The amperometric results after calibration (Figure 4-4c) 

show the ethanol signal only, and the signal interference due to humidity was eliminated. 

In a separate study, the anodic polarization of the micro-fuel cell (Figure 4-4d) 

showed a linear increase in the current, from -0.3 V to -0.08 V, indicating the mixed 

potential signal of both humidity and ethanol. In the same curve, there was a change in 

slope in the region of -0.08 V to 0 V, indicating the activation polarization for ethanol 

oxidation. The active region of the ethanol oxidation was in the range of -0.8 V to 0.2 V. 

The region greater than 0.2 V was the concentration polarization, where the reaction is 

diffusion-limited.  
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4.3.3 Improving the Stability of the OCP Signature 

To achieve the chemical specificity, it was imperative that the sensor had a precise 

Ecell for each chemical compound in any given electrochemical system. The current fuel 

cell sensors in the market are made of a two-electrode set-up; maintaining a precise Ecell is 

generally not possible with a two-electrode system due to the potential drop across the cell 

because of electrolyte resistance and the possible polarization of the CE. It is well known 

that during amperometric measurements, the electrodes are polarized, which in turn 

perturbs the electrochemical system. However, a precise Ecell can be maintained in this 

process using a three-electrode system, in which the potential of the WE is measured 

relative to the RE. Further, due to the high impedance between the WE and RE, the current 

passes between the WE and CE, avoiding the polarization of the RE. The electromotive 

force in a three-electrode system caused by the standard potential (E0) is given as the Nernst 

equation (4). 

E0 = -ΔG0/nF          (4) 

where ΔG0, n, and F are respectively Gibb’s free energy, the number of electrons, 

and the Faraday constant. The stability of the Ecell was tested using the OCP technique, and 

the two and three-electrode systems were compared, as seen in Figure 4-4e. The results 

showed that after the addition of ethanol, there were erratic changes in the OCP of the two-

electrode fuel cell sensor, while the three-electrode configuration resulted in a stable OCP 

of the three-electrode system.  
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4.3.4 Algorithm for the Sensor Auto-Calibration  

Based on the experimental observations reported in section 3.2, a flow chart (Figure 

4-5) was developed for implementing an algorithm that would result in the chip-

potentiostat having auto-calibration ability and selectivity to ethanol in highly humid 

conditions. The nullification of the current signal produced by humidity was achieved by 

the two following functions: 

Function 1: auto-calibrate the fuel cell sensor at certain intervals (which depend on 

the steady-state response of the nickel catalyst). 

 
Figure 4-5: Flow chart representing steps involved in selective ethanol detection. 
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Function 2: measure ethanol using the amperometric measurement. 

The calibration (1st function) was necessary to know the humidity signal and 

nullify this in the second function. The 1st function involved OCP and amperometric 

measurements; the 2nd function involved amperometric measurements. In the 1st function, 

if the value was lower than the threshold OCP, it indicated no ethanol presence, and the 

system proceeded to amperometric measurements. In this step, the Ecell for 0 A was 

identified by measuring the current across the electrodes while scanning the potential. The 

obtained Ecell value was stored in the system. This stored value was the bias voltage for 

amperometric measurements in the 2nd function, where the current was measured and 

fitted against a pre-determined calibration curve. In the device memory, there will be 

multiple pre-determined calibration curves stored for each biasing voltage. These curves 

were used, as the current signal magnitude in the 2nd function depends on the biasing 

potential. The final step is to display the BAC from the calibration curve fitting. This 

process nullifies the interfering signal in any given environment.  

 

4.3.5 The Configuration of the Analog Front-End Alcohol-Sensing Device  

A schematic of the potentiostat is given in Figure 4-6a. The arrangement of the 

circuit is that of a non-inverting operational amplifier. The voltage supplied by source E 

was closely followed by the voltage between the RE and WE terminals. Z1 and Z2 are the 

characteristic impedances of the fuel cell between the respective terminals. Any change in 

impedance due to ethanol coming in contact with the WE was reflected by the change in 

current Ic (current at CE), as show in Figure 4-2a. As described in previous sections, the  



77 
 

impedance at the negative terminal of the amplifier was very high, which made the current 

flowing through the RE negligible. 

The LMP91000 can be configured to perform different types of electro-analytical 

techniques. The detection method used in the system was amperometric. Referring to 

Figure 4-6b, amplifier A1 is the control amplifier that implements the potentiostat circuit. 

The variable bias block of the LMP was used to provide a user configured potential across 

positive and negative terminals of A1. This potential was held constant between the 

reference and working terminals by the potentiostat. The transition from minimal current  

flow to voltage was made available by the trans-impedance amplifier (TIA), whose forward 

voltage gain is dependent upon on a feedback resistor Rtia. It can be connected either 

internally or externally to the feedback path of the TIA, as depicted in the internal block 

diagram of the AFE of LMP91000 in Figure 4-6b. It converts the current flowing from the 

CE and WE to a proportional voltage. Its output is connected to the Vout pin (this pin can 

be toggled to give output of the temperature sensor of the LMP) and the C2 pin. 

The LMP was configured via the microcontroller to perform three-electrode 

amperometry following the functional block diagram sketched in Figure 4-6b. The 

microcontroller was connected to the LMP via the I2C interface, as depicted in Figure 4-

1a and 4-6b. The serial clock line and serial data bus line on the I2C bus were connected 

to 3.3 Vdc from the system power management unit, with one external pull-up resistor each. 

The schematic representation in Figure 4-6b was derived for the 3-lead amperometric cells 

in the potentiostat configuration. The output voltage available at the Vout pin of the 

LMP91000 was then routed to the microcontroller’s general-purpose input/output (GPIO), 
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where it was conditioned by an internal analog-to-digital converter (ADC) for 

interpretation. The TIA gain is adjusted to provide a voltage proportional to cell current. It 

can be internally programmed via software for a range of 2.5 kΩ ≤Rtia ≤350 kΩ and 

externally configured, as required. 

The internal feedback resistor was optimized for an optimal TIA amplifier gain 

using a value of Rtia = 120kΩ. This provided a large enough signal gain to manipulate the 

 
Figure 4-6: (a) Block diagram of a simple potentiostat, where CA is the control 

amplifier, Ic is the current at the counter electrode, Z1 is the impedance across 

the counter and reference electrode, Z2 is the impedance across the reference 

and working electrode, and E is a voltage source. (b) Functional block diagram 

of LMP91000 AFE with the fuel cell sensor. 
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data and provided sufficient headroom for voltage swings because of changes in alcohol 

concentration. The module-enable (MENB) was tied to ground to signal a communication-

ready status to the microcontroller. In the case of multiple alcohol sensors, the MENB line 

of each AFE sensing device on the I2C bus can be individually toggled through to extract 

data from each sensor. The voltage reference (VREF) to the AFE sensing device was 

externally provided by the digital-to-analog converter (MCP4724), and was adjustable 

through software. It can meet a wide range of supply voltages to the LMP91000 and specify 

bias voltages with accuracy. The load resistor was set to its lowest internal resistance value 

of Rload = 100 Ω to draw the maximum current from the sensor and subsequently become 

amplified by the TIA.  

 

4.3.6 Microcontroller Operation and the Alcohol Concentration Measurement 

Technique  

MSP430F5529LP was chosen due to its small LQFP-80 pin packaging size and low 

power mode settings that allow power consumption down to 1.4 µA in LPM3, a low 

operating voltage range of 1.8 𝑉𝐷𝐶 ≤ 𝑉𝐵𝑎𝑡𝑡 ≤ 3.7 𝑉𝐷𝐶, and portability to other 

microprocessing units if desired due to the simplicity of the C programming language. 

Features that made this microcontroller attractive for our application were its ability to 

store 128 kB of non-volatile flash memory and 8 kB of RAM, allowing the software to 

execute during power-on and reset events, and a 12-bit ADC that was used to measure the 

analog output of the LMP. 

The MCU has the capability to communicate via SPI, UART, and I2C. The alcohol 

sensing platform uses I2C to communicate with the LMP91000 and MCP4724, UART to 
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communicate with the RN-42 Bluetooth module, and SPI to communicate with the 

monochrome LCD. The present configuration for the MCU was shown in Figure 4-1b. In 

the figure, the MCU can be programmed and debugged on-chip and on a minimally system-

invasive procedure simply by connecting two Spy-Bi-Wire emulator cables. The external 

circuitry, shown in Figure 4-1b, consists of bypass capacitors and ground connections 

required for proper MCU operation. This configuration was derived from a device-specific 

datasheet and user guide. The algorithm for interpreting sensor data was adapted from 

[223]; under this configuration, two additional cables were routed from the C1 and C2 pins 

to the GPIO pins. The data from C1 and C2 consists of the analog output voltage Vout, and 

this voltage presents at the inverting input of the TIA, which is directly connected to the 

electrodes of the sensor, and is the same voltage at the non-inverting input of the WE TIA. 

This was a fixed percentage of the VREF or divided reference voltage (𝑉𝑅𝐸𝐹𝐷𝐼𝑉
), and is 

chosen dependent on current flow to the WE. This allowed the computation of the current 

flowing at the WE of the three-electrode system (IWE), as follows. 𝐼𝑊𝐸=(𝑉𝑜𝑢𝑡 −

𝑉𝑅𝐸𝐹𝐷𝐼𝑉
)/𝑅𝑡𝑖𝑎 has been established using the aforementioned-procedure. Rtia was chosen 

depending on the sensitivity of the sensor, given in ppm, as previously discussed. The 

current of the sensor was then calibrated via software as a function of all described 

parameters.  

 

4.3.7 Power Management, Data Transmission and User Interactivity  

The developed wearable platform operated on a 3.7VDC lithium-ion (Li-ion) 

battery capable of providing up to 1000mAh. Battery replacement was a trivial task in the 

platform. The unregulated battery voltage was regulated to provide a constant 3VDC 
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source to the system through a battery voltage range of 3𝑉𝐷𝐶 ≤ 𝑉𝐷𝐶 ≤ 3.7𝑉𝐷𝐶. The system 

was designed to prevent Li ion battery drainage below a 3 VDC - 2.4 VDC threshold, as this 

can potentially cause an unsafe condition [224] through means of a Power Management 

Unit LP5921. The system operates with a current draw of 2 mA during normal operation 

with Bluetooth disabled. When Bluetooth capabilities were enabled by the user, the current 

consumption of the system increased to approximately 40 mA. As shown in the block 

diagram in Figure 4-1a, the Li-ion battery can be recharged on the wearable platform 

through a micro-USB device connected directly to a Li-ion battery charging circuit, which 

allows simultaneous system operation and charging functions. 

The AFE LMP91000 was chosen as the signal path solution between the 

MSP430F5529LP and the sensor due to its ability to detect a current in the nano-Ampere 

(nA) range and provide an output voltage proportional to current times’ gain factor. To 

ensure a reliable AFE sensing operation, automatic system calibration based on a sensor’s 

OCP and a reliable reference voltage to the AFE sensing device, the DAC device 

(MCP4725) provided a configurable reference voltage to the AFE sensing device, of which 

a fixed percentage would be applied across the sensor for biasing purposes, as determined 

during calibration time. Having a fixed voltage percentage that was software 

programmable allows the platform to configure itself to any sensor to eliminate 

abnormalities that may be present. Information sent from the Bluetooth module to the 

receiving device is encrypted using a simple algorithm to avoid data compromise, and is 

subsequently decrypted at the authorized receiving device and displayed to the user.  
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4.3.8 Comparison of MC470 and LMP91000 

To validate the device, data from the commercially available electrochemical 

device MC470 was compared with the constructed LMP91000 device, as shown in Figure 

4-7a and 4-7b, respectively. During these experiments, both the devices were placed in an 

identical setup with similar parameters, as given in the experimental section. The 

concentration of ethanol used for these experiments was 7.272 M. The experiments were 

carried out for 700s, where the humidity was introduced after 50s and the ethanol was 

introduced after 200s. The biasing potential was kept constant at -0.2 V for both the 

experiments. Both results show there was interference due to humidity, and there was a 

response to ethanol (Figure 4-7a and 4-7b). Comparing the results in the same figure shows 

that the LMP91000 device has a 30-times higher current signal due to the presence of an 

amplifier in the device. 

The effect of ethanol concentration on the fuel cell sensor was studied for sensor 

evaluation. In these experiments, there were ten different concentrations tested in the 

physiological range of transdermal ethanol (5ppm to 800ppm). The optimized sensor 

 
Figure 4-7 Amperometric data obtained in (a) a commercial MC470 potentiostat 

and (b) a LMP91000 potentiostat in the presence of ethanol and humidity (c) 

concentration vs. current plot showing the linear response of the sensor with the 

RSD of 30%. 
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operating parameters were 42% humidity at 25 ˚C, at -0.05 V biasing potential. The 

concentration vs. current plot given in Figure 6c shows that the sensor response is linear, 

from 50 ppm to 800 ppm, with the sensitivity of -0.23 nA ppm-1 cm-2 (RSD=30%), with 

the lowest detection limit of 5ppm. The RSD value for concentration below 50ppm was 

55%, which went down to 18% for the concentrations higher than 50ppm. These results 

prove that the device, along with the sensor, has the capability to measure even the  ethanol 

concentration within the physiological range. 

Bland-Altman plots were used to characterize the repeatability and reproducibility 

of the sensor (Figure 4-8a and 4-8b). The plots show the average and difference between 

two measurements of current on the x-axis and y-axis, respectively. In the repeatability 

experiments, two sensors were studied, and the data was collected multiple times (n=10), 

whereas for reproducibility, ten different sensors were studied, and the data was collected 

twice in each sensor. The concentration of ethanol and percentage of humidity used in these 

experiments were 50ppm and 46%, respectively. Bland-Altman plots show that an absence 

 

Figure 4-8. Bland-Altman plots representing (a) repeatability and (b) 

reproducibility of the micro-fuel cell sensor in the presence of 50 ppm of ethanol 

and 46% humidity. The biasing potential was -0.05V. 
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of bias in measures of repeatability (p=0.0004) and reproducibility (p=0.0004) were 

considered statistically significant. The correlation coefficient values for repeatability (r2 

= 0.8123) and reproducibility (r2 = 0.8102) are closer to unity, indicating a strong 

relationship between multiple measurements. The limits of agreement are expressed as 

averages of the differences ±1.96 SD. The limits of agreement for repeatability were 21.43 

and 57.60, and for reproducibility it was 251.1 and -209.9.  

 

4.4 Conclusion  

A miniaturized alcohol monitoring system containing a micro-fuel cell sensor with 

a compact potentiostat has been developed. The device includes data processing and 

transmission units with low power consumption, which can also provide a highly stable 

signal. The multi-modal technique provided a pathway to design a method to eliminate the 

major interfering factor, humidity, in an alcohol-based monitoring device. An algorithm 

was developed to implement self-calibration in the developed device to improve ethanol 

selectivity. The method in this investigation for eliminating signal response caused by 

humidity demonstrated a potential pathway for eliminating any organic volatile compound 

interfering signals. The modification of nickel-plated electrode with the thin film catalyst 

could be a prospective development of the present work, where sensitivity and detection 

limit can be improved several folds. 
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CHAPTER V 

MULTIVARIATE ANALYSIS FOR IMPROVING THE CALIBRATION OF A 

FUEL CELL SENSOR FOR SENSING VOC  

 

 

This results and discussion of this chapter is divided into three major sections. The 

first section presents the limitations of the linear calibration of a fuel cell sensor. The 

second section focuses on the improvement of the calibration of the fuel cell sensor 

employing a classification method, such as PCA and its limitations. Finally, the resolution 

of the overlapping of the signals employing the multivariate regression method, such as 

PCR, is discussed. 

 

5.1 Background 

Fuel cells are electrochemical devices that convert chemical energy into electricity, 

as discussed earlier. These devices are found in many different forms, specifically designed 

for intended roles. For example, miniaturized PEMFC have been widely used in 

breathalyzers. The PEMFCs operate at low temperatures and therefore can be used as a 

sensor in wearable devices. Compared to infrared-based sensors, PEM fuel cell sensors 

have portability and a long working lifetime as advantages [225]. However, both these 

sensors suffer from high interference due to humidity and volatile compounds. Due to high 

signal interference in a multivariate environment, these sensors cannot be used for 

continuous monitoring. These signal interferences also lead to signal fluctuation and 

overlapping over time. Therefore, the standalone sensor provides false positive and 

negative results, which makes the linear calibration model obsolete for the quantification 

of isoflurane or any volatile compound. Moreover, these environments exist in biological 
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fluids and vapors. The fuel cell sensors alone are incapable of specifically separating a 

single VOC signal in the biological environment. The non-specific detection of existing 

sensors is mainly due to the PEM’s dependency on different ambient parameters, such as 

humidity, pressure, and temperature, for its function. 

Data mining and pattern recognition techniques have become popular for the 

selective and accurate detection of volatile compounds in a multi-dimensional 

environment. These tools interpret datasets from single or multiple sensors to selectively 

quantify a specific compound. This can be achieved by training the computational 

algorithms with large and diverse data sets before implementing the sensor for real-time 

measurements. Among these techniques, multivariate statistics is a robust tool that provides 

precision measurement and classification [40 41 226]. The most common multivariate 

statistical techniques are PCA, DFA, and PLS [15 39 227]. PCA is a pattern recognition 

method that reduces the redundancy and dimensionality of the data sets through the 

simplification and interpretation of the data by the first few major components. These data 

plots contain most of the variance in the data without having preceding information on the 

data sets. This work presents a study of PCA with predicative regression model-driven 

isoflurane biosensor regression.  

 

5.2 Experimental 

 Materials and the sensor fabrication approach were described in section 3.3.  
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5.2.1 Sensor set-up and measurement protocols 

A chamber was used for the sensor setup, where the cathode had a window of (1.5 

cm x 1 cm) so that the atmospheric oxygen could interact with the counter electrode. On 

the other side, the sealed chamber had an opening of 1 cm diameter cylinder (1.57 cm3) to 

expose the working electrode to the isoflurane environment. During the experiment, the 

headspace remained constant at a height of 2 cm. During the measurement, the 

concentration of isoflurane at the headspace was calculated using Henry’s formula at 

constant temperature, as follows [228]: 

Concentration of isoflurane in the liquid phase

Concentration of isoflurane in the vapor phase
 = Kw/a    (1) 

Here, Kw/a is the “Ostwald partition coefficient.” If a diluted isoflurane solution is 

brought to equilibrium in air, the partial pressure of isoflurane in the vapor phase is a 

function of the system temperature (25 ˚C) and the isoflurane concentration in the liquid 

phase. The partition coefficient of isoflurane is 0.61 at 25 ˚C [229].  Different 

concentrations (40 ppm, 80 ppm, 160 ppm, 320 ppm, and 775 ppm) of isoflurane were 

exposed to the working electrode of the fuel cell and measured by the amperometric 

method at the applied potential of -0.3 V.  

 

5.2.2 Reaction mechanism 

The reaction mechanism of the fuel cell involves oxidation at the anode and 

reduction at the cathode. The anodic reaction can be expressed by equation (2 – 4), where 

the oxidative addition of isoflurane occurs instead of a direct oxidation reaction. 

Anode reaction: 
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Ni + R − Cl → RNi(II)− + Cl−    (2) 

Cl2 + H2O  → HCl + HClO     (3) 

4HCl + 2Ni + 12H2O → 2NiCl2. 6H2O + 4H+ + 4e− (4) 

where, R-Cl is the isoflurane. As given in equation (3), the byproduct HCl is 

oxidized on the anode, and the electrons are produced in this process. On the cathode, the 

oxygen is reduced, as given in equation 5. 

Cathode reaction: 

𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2O     (5) 

During this reaction, the electrons and H+ ions flow from the anode to cathode, 

generating a faradic current proportional to the concentration of isoflurane. This faradic 

current was detected by the amperometric method for this study. The biasing voltage across 

the working and reference electrode was -0.3 V.  

 

5.3 Results and discussion  

5.3.1 Linear calibration of the fuel cell sensor 
 

The amperometric signals from different concentrations of isoflurane exposure 

vary within sub-nano Ampere, causing signal overlapping at narrow concentration ranges. 

In the case of low concentration and low measurement volumes, the rate of the reaction, 

rate of diffusion, and rate of evaporation are the limiting parameters. If the concentration 

of the interfering compound (example: humidity) is much higher than the isoflurane, the 

sensors’ accuracy will be low. These limitations of the fuel cell sensor were studied in the 

presence of isoflurane with five different concentrations in ambient temperature and 
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humidity, as given in the experimental section. Each concentration was measured eight 

times and plotted in a linear plot, as given in Figure 5-1a. Even though the current signal 

increases with respect to the concentration of isoflurane, the linear calibration plot shows: 

(i) significant overlapping between the concentrations, (ii) excellent linearity with R2 = 

0.9307, and (iii) very low sensitivity (0.0112 nA ppm-1 cm-2). The magnification of each 

data point (in Figure 5-1b) reveals that there was a significant overlapping of the signals 

between the different concentrations, which impedes reliability at the ppm level of 

detection. For example, the overlapping between 80 ppm to 160 ppm and 160 ppm to 320 

ppm were determined as 2.03 nA and 0.9 nA, respectively. Although the sensor shows 

excellent linearity, its poor sensitivity and the overlapping of the signals in the calibration 

curve significantly affect the determination. To overcome these calibration issues, PCA 

was explored.   

 

 

 

 
Figure 5-1: (a) Linear calibration plot of isoflurane measured in the fuel cell 

sensor and (b) Overlapping amperometric signals in the linear calibration plot 

(inset: the overlapping was in the sub-nano Ampere range). 
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5.3.2 The implementation of principal component analysis (PCA) 

PCA is a powerful technique to eliminate redundancy and dimensionality in data 

sets. This method was applied to the above-mentioned data by the following algorithm: (i) 

standardizing the data, (ii) obtaining the eigenvectors and eigenvalues (d) from the 

covariance or correlation matrix (iii) sorting eigenvalues in descending order and choosing 

the k eigenvectors that correspond to the k largest eigenvalues. k is the number of 

dimensions of the new feature subspace (k ≤ d). Mathematically, for a response matrix X, 

each element xij concerns the jth measurement value for the ith considered data, and the kth 

principal component is noted PCk [227]: 

PCk = ∑ 𝛼𝑖𝑘
𝑛
𝑖−1 𝑥𝑖𝑗    (6) 

where n is the number of variables and 𝛼𝑖𝑘 is the eigenvector for the ith variable. 

Then, the original data was multiplied by the eigenvectors to re-orient the data onto the 

new axes, and these newly oriented data were plotted subsequently. 

For the mathematical calculations, two response variables — steady-state current 

(Iss) and difference (ΔI) between Iss and control signal were considered, as shown in Figure 

5-2a. The (40 X 2) matrix was created for each variable, and 5 datasets (5 different 

concentrations) contain the (8 X 2) matrix. The mean of each data set was governed and 

standardized. A covariance matrix was developed for those two variables, and the 

eigenvectors (V) were determined from this matrix. The eigenvalues (d) were 14.3088 and 

1.8255, respectively. Here, the number of dimensions of the principal components, k = 2 

in the subspace, and eigenvalues (or, eigenvectors) are equal to the principal components 

(k = d); therefore, both were considered as principal components. The data variances of the 

first and second principal components are 88.68% and 11.31%, respectively. The final 
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datasets were plotted from the standardized eigenvector data. It is observed from the plot 

that there is a marginal overlap between the domains of 160 ppm, 320 ppm, and 750 ppm.  

Results show that (in Figure 5-2b), data can be separated into five different clusters 

corresponding to specific concentrations, which removes the redundancy and reduces the 

dimensionality of the linear calibration data of isoflurane. The same figures show 8 data 

points having a maximum of 2 outliers from each cluster or concentration group. The 

clusters are obvious and distinguishable, though there are few overlapping between the 

data points due to indefinite variables (Figure 5-2b). The indefinite variables can be listed 

as: (i) fuel cell membrane degradation over time, (ii) electrode surface fouling, (ii) 

membrane water content variation and (iii) temperature variation. It is observed from the 

both subspaces that the cluster of 750 ppm dispersed more, compared with the other data 

sets, due to the above-mentioned reasons. Although the clusters of the PCA are isolated 

from each other for the five different concentrations, this cluster model is incapable of 

determining any regression model for the isoflurane concentrations within the 

physiological range.   

 
Figure 5-2: (a) The variables (Iss and ΔI), which are considered for PCA, and (b) 

PCA for the five different concentrations of isoflurane, considering two 

variables. 
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5.3.3 Regression analysis for calibration 

The objective of this study was to develop a PCA regression model from the data 

matrix. It was achieved by considering all the data points from the data matrix of the above-

mentioned variables. In these calculations, the matrix was expressed in another form, given 

in equation 7 [226]. 

  𝐷 = 𝑅𝐶                                      (7)  

where R and C are the scores and loading matrix, respectively. The eigenvalues (d), 

eigenvectors (V) and covariance matrix (Z) are directly related to the data matrix, D. To 

minimize the residual error, the eigenvectors were derived by subtracting d and V from Z. 

This iteration process was continued for eigenvectors until the eigenvalue reached below 

0.001 of the maximum one. Equation 7 was modified by employing a transformation 

matrix, as R and C matrices do not exhibit any chemical and physical connotation. This 

transformation can be executed, as follows: 

𝐷 = (𝑅𝑇)(𝑇−1𝐶)                                                              (8) 

Here, T is a square matrix having dimension n, and n is the number of significant 

factors determined by PCA. This transformation matrix can be expressed as below: 

𝑇 =  |
xcos(𝛿) −ysin(𝛿)
zsin(𝛿) wcos(𝛿)

|                                              (9) 

The values of the coefficients a, b, c, and d are unity when this matrix is orthogonal, 

or else they can be determined considering the information of the real factors. In our case, 

x = 1, y = -2.5, z = 2, w = 5, and 𝛿 = 354°. For regression fitting, loading fractions C1 and 

1-C1 were determined empirically from PCA and fitted with respect to the concentration 

of isoflurane [28], as shown in Figure 5-3. As all the experimental parameters are constant, 
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the sum of the loading fractions was approximately unity (1). Therefore, the regression plot 

was obtained from the loading fraction (1-C1) vs. concentration (y). A polynomial function 

was fitted with the regression curve using MATLAB, following the equation below: 

𝑦 =  𝛼(1 − 𝐶1)2 +  𝛽(1 − 𝐶1) +  𝛾     (10) 

Here, the values of coefficients α, β, and γ are 1.87 x 104, -2.437 x 104, and 7.974 

x 103, respectively. Any isoflurane concentration within the physiological range can be 

determined by fitting the loading fraction (x) in this regression model, as shown in Figure 

5-3. 

 

5.3.4 The operation of the miniaturized potentiostat 

A wearable platform (Figure 5-4a) with a miniaturized potentiostat has been 

developed for a sustainable solution for isoflurane detection. It was housed with an 

 
Figure 5-3: PCA regression model for the calibration of a micro-fuel cell sensor 

for isoflurane detection. 
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integrated data acquisition system, Li-ion battery, and a three-electrode fuel cell sensor. 

The fabricated three-electrode sensor (shown in Figure 5-4b) was integrated with four-

layers of printed circuit board (PCB), as shown in Figure 5-4c. This customized four-

layered PCB for data acquisition was designed to accommodate a miniaturized potentiostat 

(LMP91000, as shown in Figure 5-4d), an ADC, and a low power data processing 

microcontroller – nRF51822 (incorporated with a 32-bit ARM® Cortex™ M0 CPU with 

256kB/128kB flash + 32kB/16kB RAM). This device uses nRF51822 from a Nordic 

semiconductor as an integrated wireless microcontroller with Bluetooth low energy (BLE)  

capabilities to provide wireless communication and peripheral controls. This embedded 

2.4GHz transceiver with nRF51822 supports BLE for wireless data transmission. The 

detection method used in this system was amperometric, and the functionality of the 

potentiostat has been reported previously [33].  

This LMP91000 potentiostat can be configured to perform electro-analysis for 

isoflurane. The device begins amperometric operation when it detects a voltage less than 

 
Figure 5-4: (a) Wearable device for isoflurane detection, (b) Design of a micro-

fuel cell sensor (c) Printed circuit board of four layers’ miniaturized potentiostat 

(left) its size, and (right) and its design, (d) LMP91000 potentiostat integrated 

with a three-electrode micro-fuel cell sensor. 

(a)
(b)

(c)

(d)
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0.02 V across the sensor electrodes (reference and working). The current generated from 

the working electrode was determined, as follows [33]: 

𝐼𝑊= 
(𝑉𝑜−𝑉𝑅𝐸𝐹𝐷𝐼𝑉

)

𝑅𝑡𝑖𝑎
                            (11) 

Here, 𝐼𝑊 is the current generated from the micro fuel cell, 𝑉𝑜 represents output 

voltage, 𝑉𝑅𝐸𝐹𝐷𝐼𝑉
 represents divided reference voltage, and 𝑅𝑡𝑖𝑎 is the feedback resistance 

of the trans-impedance amplifier (shown in Figure 5-4d). This detected current (𝐼𝑊) 

corresponds to the concentration of isoflurane, which can be determined through 

calibration. The current from LMP91000 is converted to a potential and fed to the internal 

ADC of the wireless microcontroller. This information is then sent wirelessly via Bluetooth 

to the end device (e.g. smartphone), which can send the data to the cloud.  

 

 

5.3.5 Power management of wearable device 

The algorithm for precise calibration requires computational power, which is 

demanding on both devices used. Hence, the calibration algorithm for precise results can 

be done on the cloud once the data are uploaded. This saves battery power and 

comparatively limited computational power over the device and phone. The power 

consumption of the device depends on different parameters: i. run time current drawn from 

the central processing unit (CPU), ii. BLE transmission and communication, and iii. 

LMP91000’s amperometric operation. Since most of these operations only occur for the 

emergency period, the modules that run them can be pushed to a lower power state, thereby 

reducing their consumption. The CPU runs for a short time during BLE transmission and 

the ADC of analog output from LMP91000. The remaining time can be utilized by the 
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CPU to run other peripheral operations consuming ~ 2.6 µA at a lower power.  LMP91000, 

while in the amperometric mode, consumes ~10 µA. It consumes an average current of 

~7.95 µA over time, with a total uptime of 39%. Including ~5 µA for cell conditioning, the 

current for this sensor is calculated as 9.75 µA with the LMP in “stand mode” for 60% of 

the time. While the nRF51822 runs for ~5 seconds at a lower power from the CPU, it can 

be shown that the total power consumption is ~56 µW. Using a 3.7 V and 365 mAh battery, 

the operational lifetime of the system is ~ 5 days. 

 

5.3.6 Database management and user interactivity 

The database system was designed around the required flow of information, which 

is a general design for such systems (shown in in Figure 5-5a). The device captures the raw 

data and sends it via BLE or Bluetooth smart to a compatible smartphone. The smartphone 

serves as a gateway for the data to the cloud. The cloud hosts the database, storing data of 

relevant subjects/users securely. The data can be accessed in a hierarchical scheme, with 

the server admin having the highest level of access. This is to ensure the proper handling 

of sensitive medical information. Anlaytic tools can be built on the cloud to provide data 

analysis for the corresponding isoflurane level in blood. An APP or a web portal was 

developed at the end interface for the anesthesiologist to monitor this data.  

The database system consists of three layers (shown in Figure 5-5b): i. user 

interface (UI), ii. logic, and iii. data. Each of the three layers of this system is a subsystem 

of the whole. User interface allows the anesthesiologist to control the system with 

touchscreen presses. It provides him with an option to scan for and connect to a device, 

initiating the connection services in the next layer via an APP or a web portal. The UI 
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displays to him the state of the patient and measurements of the isoflurane concentration 

in blood, and allows him to select what kind of graphs they would like to view, as shown 

in Figure 5-5b.  

The UI is programmed in Java and XML. Logic is the bridge between the UI and 

data subsystems, and it transmits data between th UI and the data subsystems (shown in 

Figure 5-5b). This subsystem is made up of the BLE Connection service and the DB 

 

 

Figure 5-5: (a) Block diagram of the wearable device operation for isoflurane 

measurement, and (b) Different layers of the database subsystems. 
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Connection service. They allow the app to connect to the micro-fuel cell sensor device and 

the database, respectively. The BLE Connection service also manages this sensor on the 

device and formats the data from them to make it readable. Contrarily, data subsystems 

consist of the BLE biosensing device, from which the data originates, and the database, 

where the data are stored. In between this, the data moves through the Logic layer for 

processing. The database runs on a MS SQL Server. 

 

5.4 Conclusion 

PCA and its predictive regression analysis were successfully implemented for the 

isolation of signals in the sub-nano Ampere range of the isoflurane data. The conventional 

linear calibration method is limited in isolating signals for minimal fluctuations due to 

lower sensitivity (0.0112 nA ppm-1 cm-2), which has substantial standard deviations. PCA 

accurately classified and discriminated different concentrations in the data subspace. The 

eigenvalues for two variables were 14.3088 and 1.8255, respectively, which inferred the 

command of the 1st principal component (88.68%).  The cluster plot of PCA is unable to 

demonstrate the relationship between inter-calibration points. Therefore, a predictive 

model is derived from PCA, which can be employed for regression fitting. Last, a 

miniaturized fuel cell sensor was designed in a wearable format for isoflurane detection 

that can operate in a low power mode, having ~5 days battery life. 
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CHAPTER VI 

DETERMINING ALCOHOL AND ISOFLURANE FROM HUMAN 

SAMPLES/SUBJECTS  

 

 

This chapter is divided into two major sections. The first section presents the POC 

detection of alcohol from perspiration of the human skin. The second section focuses on 

the analyses, results, and discussion of the application of the PEMFC sensors for the 

detection of isoflurane from human sweat (in vitro) and human subjects (in vivo). 

 

6.1 Wearable device and its components 

 

A watch-style wearable platform with a miniaturized potentiostat was constructed 

for the detection of VOCs, like ethanol or isoflurane, in humans. The sensor fabrication 

was described in detail in section 3.4. The development of said wearable device was 

mentioned in sections 5.3.4 and 5.3.5. 

 

6.2 Determining alcohol from human skins 
 

6.2.1 Protocol-sensor calibration and human study 

During calibration and measurements, the headspace for alcohol vapor was 

maintained constant at a height of 0.1 cm and area of 1 cm x 1 cm for every data set. The 

concentration of alcohol at the headspace was calculated using Henry’s formula at a 

constant temperature [228]. Different concentrations (50 ppm, 100 ppm, 200 ppm, 400 

ppm, 600 ppm, 800 ppm, and 1000 ppm) of alcohol were exposed to the WE, and the 
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corresponding currents were recorded at the potential of -0.05 V. The recordings were used 

to build the PCR model. 

Human studies were executed for 5 anonymous subjects (S1, S2, S3, S4, and S5) 

with their written consent to take part, following the Institutional Ethical Guidelines (IRB-

17-0300-AM01). The measurements (control variables) were made at 25˚C and 55% 

relative humidity. All data collected were from the upper side of the wrist, like when 

wearing a watch. The gap between the sensor and the skin was 0.1 cm during measurements 

to maintain a constant headspace volume. Each subject started drinking after 30 min. of 

wearing the device. Each shot contained 50 ml, 35% alcohol from the same brand, and 6 

consecutive shots were consumed by each subject at 10 min. intervals. Commercial 

breathalyzer device data was also collected after 5 minutes of drinking each shot. The 

details of this study were summarized in Table 6.1, as below: 

 

Table 6-1. Human subjects study for transdermal alcohol determination 

 

No. of 

Subject 

Age 

(Yrs.) 

Wei-

ght 

(Kg) 

Distributi

on factor 

(Vd) 

Amount 

contains 

in each 

shot 

(ml) 

Total 

Amo-

unt 

(ml) 

Interval 

in 

between 

of shots 

(min.) 

No. 

of 

shot 

Alcohol 

Conc. 

(%) 

S1 65 88.9 0.68 50 250 10 6 35 

S2 28 80.74 0.68 50 250 10 6 35 
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S3 32 84.37 0.68 50 250 10 6 35 

S4 21 77.11 0.6 50 250 10 6 35 

S5 30 81.193 0.68 50 250 10 6 35 

 

 

6.2.2 Sensor calibration for alcohol vapor quantification  

The linear regression calibration of the fuel cell sensor for alcohol vapors was 

investigated within the physiological range. The data set contained amperometric signals 

of seven different concentrations were obtained, with over 88 samples of each 

concentration. The results for the same concentrations varied within the sub-nano Ampere, 

causing signal overlap. The plausible causes of signal overlap include: i. deviation of the 

baseline over time due to the change in H+ ion counts in PEM, ii. change in reaction rate 

of the electrodes due to transient fouling, iii. slight variation in the ambient environment, 

                                 

Figure 6-1: The PCR model of the fuel cell sensor for alcohol vapor. 
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such as humidity interference. The signal overlaps between the alcohol concentrations were 

resolved by employing a PCR model, which was derived from the sensor data. PCR was 

executed by MATLAB considering all the data points from the matrix of 7 x 88, where the 

number of sample concentrations was 7 and the data frequency was 88.  

The values of the coefficients a, b, c, and d are unity when this matrix is orthogonal, 

or else they can be determined considering the information of the real factors. In this case, 

a = 2, b = - 20.5, c = 2.5, d = 20, and δ = 355°. For regression fitting, loading fractions C1 

and 1-C1 were determined empirically from PCR and fitted with respect to the 

concentration of alcohol, as shown in Figure 6-1. As all the experimental parameters are 

constant, the sum of the loading fractions was approximately unity (1). Hence, the 

regression plot was obtained from the plot of a loading fraction (1-C1) vs. concentration 

(y), where the coefficient of determination (R2) was 98.15%. A polynomial function was 

fitted with the regression curve using MATLAB, following the equation below: 

𝑥 =  𝛼(1 − 𝐶1)2 +  𝛽(1 − 𝐶1) +  𝛾            (1) 

Here, the values of coefficients α, β, and γ were 1.218x107, -1.99x107, and 

8.124x106, respectively. An unknown vapor concentration (x) can be determined by fitting 

the loading fraction (1-C1) in this regression model. The algorithm of this model was 

programmed in the microcontroller of the device for accurate data fitting.  

 

6.2.3 Human studies -validation of the transdermal alcohol sensor 

The BAC readings from the transdermal alcohol sensor and the breathalyzer were 

validated by comparing theoretical values (Figure 6-2). The % of the BAC values of the 

theoretical model were calculated from equation 2 [230]. The plots show a linear 



103 
 

relationship between theoretical % of the BAC with the dose of alcohol ingestion, with 

respect to time for all three subjects (blue dots in Fig. 6-2). For this model, alcohol 

consumption at every 10 min (6 consecutive shots) was considered for all subjects, where 

each shot contained 50 ml or 35% of alcohol. 

%𝐵𝐴𝐶 =   
(𝑣𝑜𝑙.  𝑖𝑛𝑔𝑒𝑠𝑡𝑒𝑑 (𝑚𝑙) 𝑥 % 𝑎𝑙𝑐𝑜ℎ𝑜𝑙 𝑥 𝑆.𝐺.  𝑒𝑡ℎ.𝑥 1000)

𝑉𝑑 𝑥 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑥 10
 𝑥 0.001       (2) 

S.G.eth.  is the specific gravity of ethanol and Vd is the volume of distribution, which 

is 0.68 and 0.6 for males and females, respectively. 

 Breathalyzer data showed a nonlinear response with each shot for all 5 

subjects (yellow dots in Fig. 6-2). The average deviation of the breathalyzer results away 

from the theoretical values was about 162%. Even at the first shot it showed a high false 

positive reading and intoxication (subjects 2 and 3), then gradually correlated with the 

theoretical values in consecutive shots. The deviation and the false positive signals can be 

                                 

Figure 6-2: The comparison of a transdermal alcohol sensor and breathalyzer 

with the theoretical model for 5 human subjects (a) S1, (b) S2, (c) S3, S4, and S5. 
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corroborated to the mouth-alcohol contamination [231 232]. It is evident from these results 

that the discrete % of the BAC data recorded from a breathalyzer have limitations for the 

accurate determination of alcohol. 

The same human subjects tested with the transdermal alcohol sensor showed a 

significant correlation with the theoretical values with minimal deviation (red dots in 

Figure 2), a 75% improvement in accuracy compared to the breathalyzer. The device 

provided continuous % of the BAC data, which was processed and fitted into the above 

PCR model to determine accurate transdermal alcohol content (TrAC), where it was 

converted into % of the BAC by the following equation 3 [130]: 

BAC (gl-1) = 0.71 x TrAC (gl-1)                     (3) 

where the correlation coefficient, r = 0.912. In all three subjects, the transdermal alcohol 

sensor provided slightly lower values at the first few shots and higher values in consecutive 

shots compared to theoretical values. These deviations can be attributed to the slow alcohol 

metabolism at the beginning, where it takes a while for the full concentration to vaporize 

from the skin. However, with the consecutive shots, there was an accumulation of alcohol 

vapor at the epidermis [129]. In subjects 2 and 3, the sensor values deviated further from 

the theoretical model, which can be attributed to i. a variation in self-reported body weight, 

ii. unknown physiological conditions, including food/drug consumption prior to alcohol 

ingestion, iii. a variation in metabolism rate from person to person. Moreover, these 

variations were influenced by numerous factors, such as age, race, thickness of fat and skin 

layer, ingestion of food or medication, etc. [233]. These mentioned factors are not included 

in our theoretical model, as they are the subject of future work. 
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6.3 Determination of isoflurane from human sweat 

6.3.1 Linear calibration of the fuel cell sensor for isoflurane detection 

The amperometric signal of the sensor from five different concentrations of 

isoflurane exposure at ambient temperature and humidity were studied. Each concentration 

was measured 8032 times and plotted in a linear plot, as given in Figure 6-3a. The results 

show that the current increases with respect to the concentration of isoflurane. The linear 

calibration plot shows: (i) a significant overlap between the concentrations, (ii) excellent 

linearity with R2 = 0.8605, and (iii) very low sensitivity (~ 0.038 nA ppm-1 cm-2). The 

relative standard deviations (RSD) for the five different concentrations were determined to 

be 5.84%, 5.77%, 6.09%, 6.76%, and 10.62%, respectively. From Figure 6-3a, it has been 

revealed that there was a significant overlap of the signals between different concentrations 

due to higher RSD, which impedes the reliability at the ppm level of detection. For 

example, the overlapping between 80 ppm to 160 ppm and 160 ppm to 320 ppm were 

determined to be 2.05 nA and 2.24 nA, respectively. Although the sensor shows excellent 

linearity, its poor sensitivity and the overlapping of the signals in the calibration curve 

significantly affects the determination of any given sample. This sub-nano Ampere signal 

overlaps at narrow concentration ranges and can be attributed to the limiting parameters, 

such as (i) the rate of the reaction, (ii) the rate of diffusion, and (iii) the rate of evaporation. 

If the concentration of the interfering compounds (e.g. humidity) is much higher than the 

isoflurane, the sensors’ accuracy will be reduced, as discussed earlier. To overcome this 

calibration issue, PCR was explored.  
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6.3.2 PCR for the calibration of a fuel cell sensor for isoflurane  

PCR was executed by MATLAB considering all the data points from the matrix of 

5 X 8032, where the number of sample concentration was 5 and the data frequency was 

8032. The values of the coefficients a, b, c, and d are unity when this matrix is orthogonal, 

or else they can be determined considering the information of the real factors. In our case, 

x = 1, y = - 2.5, z = 2, w = 5, and δ = 351°. For regression fitting, loading fractions C1 and 

1-C1 were determined empirically from PCR and fitted with respect to the concentration 

of isoflurane, as shown in Figure 6-3b. As all the experimental parameters are constant, the 

sum of the loading fractions was approximately unity (1). Therefore, the regression plot 

was obtained from the plot of the loading fraction (1-C1) vs. concentration (y), where the 

coefficient of the obtained determination (R2) was 99.77%. A polynomial function was 

fitted with the regression curve using MATLAB, following the equation below: 

𝑐 =  𝛼(1 − 𝐶1)2 +  𝛽(1 − 𝐶1) +  𝛾         (4) 

                                 

Figure 6-3: (a) Linear calibration of isoflurane measured in a fuel cell sensor, 

inset:  fuel cell sensor and (b) Calibration curve obtained from the PCR model. 
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Here, the values of coefficients α, β, and γ are 1.789x104, -2.329x104, and 

7.626x103, respectively. An unknown concentration can be determined by fitting the 

loading fraction (1-C1) in this regression model.   

 

6.3.3 The measurement of isoflurane vapor from sweat samples (in vitro) 

In humans, a minimal percentage of isoflurane is excreted through the skin by 

sensible and insensible perspiration [234 235]. This study was designed to determine the 

feasibility of the fuel cell sensor to measure the isoflurane vapor released from the sweat. 

The headspace of human sweat samples with various isoflurane concentrations was 

measured and compared with theoretical values to validate the sensor readings. Four 

different sweat solutions with isoflurane concentrations v/v%: 0.01%, 0.013%, 0.02%, and 

0.038%, respectively, were tested. The theoretical isoflurane vapor concentrations were 

derived through Henry’s formula [228]. The readings from the sensor were fitted with both 

linear regression and PCR models (Figure 6-4) to identify deviations from the theoretical 

                    

Figure 6-4: The PCR model of the fuel cell sensor for alcohol vapor. 
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values. Due to overlapping signals in the linear regression model, there was significant 

deviation from theoretical values (~67.72%), resulting in low resolution and inaccuracy 

(Table 6-2). The data from the PCR model improved compared to linear regression with a 

minimal deviation of about 12.74%. This ~81% improvement can be attributed to the 

consideration of covariates in the PCR model, compared to  the univariate in linear 

regression. These results show the micro-fuel cell sensor, along with PCR fitting, can be 

used to determine the isoflurane vapor concentrations from the sweat. 

Table 6-2. Comparison of PCR with linear regression for isoflurane detection in sweat 

 

Sample Theoretical 

(ppm) 

Linear regression 

(ppm) 

Deviation 

(%) 

PCR 

(ppm) 

Deviation 

(%) 

S1 112 216.91 93.67 141.59 26.42 

S2 144 258.24 79.33 147.36 02.33 

S3 216 338.4 56.66 192.63 10.82 

S4 350 480.24 37.21 310.08 11.41 

 

The micro-fuel cell sensor device was successfully implemented for determination 

of transdermal isoflurane. The isoflurane vapor concentrations derived from PCR 

correlated with theoretical values compared to the linear regression model. PCR enabled 

isolation of signals in the sub-nano Ampere range and improved resolution of signal on an 

average of five times compared to the linear regression. PCR accurately classified and 

discriminated different concentrations in the subspace. Hence, PCR method was 



109 
 

implemented for the in vivo determination of transdermal isoflurane  with for the different 

anonymous humans subjects, as described below in section  6.4. 

 

6.4  Transdermal isoflurane determination from human subjects (in vivo) 

 

6.4.1 Protocol-sensor calibration and human study 

During calibration and measurements, the headspace for isoflurane vapor was 

maintained constant at a height of 0.1 cm and area of 1 cm x 1 cm for every data set. The 

concentration of isoflurane at the headspace was calculated using Henry’s formula at 

constant temperature [228]. Different concentrations (50 ppm, 100 ppm, 200 ppm, and 400 

ppm) of isoflurane were exposed to the WE, and the corresponding currents were recorded 

at the potential of -0.05 V. The recordings were used to build the PCR model, as similar to 

the previous alcohol study. 

The human studies were executed for 4 anonymous subjects (S1, S2, S3, and S4) 

during their surgeries in the operation theater at 20˚C and 55% relative humidity, under 

IRB-20180767. The controlled environment in the operating theater ensured a constant 

temperature and a relative humidity level during the measurements. The isoflurane delivery 

to each subject was also maintained the same during the surgery. All the subjects wore the 

device on the front side of their wrists. The gap between the sensor and the skin was 

maintained at 0.1 cm during measurements to keep the headspace area the same. Each 

subject wore the device before 20 min. of isoflurane exposure for a stable steady-state 

baseline of the signals. The gold standard infrared spectroscopy (IR) data were also 
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collected after the exposure of isoflurane during surgery. The details of this study are as 

shown in Table 6-3 below: 

Table 6-3. Human subjects’ study for transdermal isoflurane determination 

 

No. of 

Subject 

Age 

(Yrs.) 

Weight 

(Kg) 

Height 

(cm) 

Duration of exposure 

(min.) 

Case 

S1 41 124.738 170.18 74 Umbilical hernia 

repair 

S2 64 82.554 175.26 52 Cysto-retroscopy 

with resection of 

bladder tumor 

S3 70 131.542 190.5 145 Excision leucoma 

S4 44 127.006 165.1 145  Laparoscopic 

cholecystic 

 

6.4.2 The calibration of a fuel cell-based wearable device for isoflurane vapor 

quantification  

The linear regression calibration of the fuel cell sensor for isoflurane vapors was 

investigated under the physiological range. The data set contained amperometric signals of  

four different concentrations obtained over 20 times. Like alcohol, PCR was executed by 

MATLAB considering all the data points from the matrix of 4 x 20, where the number of 

sample concentrations was 4 and the data frequency was 20.  
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The values of the coefficients a, b, c, and d are unity when this matrix is orthogonal, 

or else they can be determined considering the information of the real factors. In this case, 

a = 1, b = - 2.5, c = 2, d = 5, and δ = 351°. For regression fitting, loading fractions C1 and 

1-C1 were determined empirically from PCR and fitted with respect to the concentration of 

isoflurane, as shown in Figure 6-5. As all the experimental parameters are constant, the 

sum of the loading fractions was approximately unity (1). Hence, the regression plot was 

obtained from the plot of the loading fraction (1-C1) vs. concentration (y), where the 

coefficient of determination (R2) obtained was ~99%. A polynomial function was fitted 

with the regression curve using MATLAB, following the equation below: 

𝑥 =  𝛼(1 − 𝐶1)2 +  𝛽(1 − 𝐶1) +  𝛾            (5) 

Here, the values of coefficients α, β, and γ were 4.316x105, -4.544x105, and 

1.184x105, respectively. An unknown isoflurane concentration (x) can be determined by 

fitting the loading fraction (1-C1) in this regression model. The algorithm of this model was 

programmed in the microcontroller of the device for accurate data fitting.  

 

                                 

Figure 6-5: The PCR model of the fuel cell sensor for isoflurane vapor. 
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6.4.3 Human studies -validation of the transdermal isoflurane sensor 

This study was executed in a controlled environment following the protocols 

mentioned in section 6.4.1. All data collected were from the front side of the wrist as shown 

in Figure 6-6a. The blood isoflurane readings from the fuel cell sensor were validated by 

comparing the concentrations measured by the gold standard IR device (Figure 6-6b – 6-

6e). These plots showed comparisons between blood isoflurane levels of two devices with 

the exposure of isoflurane, with respect to time for four anonymous subjects. The average 

deviation of the steady-state fuel cell responses from the IR device for the subjects 1-4 

were 18.04%, 3.11%, 5.89%, and 30.12%, respectively. The average deviation from the 

steady-state responses of IR was ~14.29%. It is evident from these results that the discrete 

% of blood isoflurane data, recorded from fuel cell sensors, have a moderate deviation for 

the determination of isoflurane. 

 These deviations can be attributed to the lower diffusion rate of transdermal 

isoflurane at the beginning, where it took a while to reach to steady-state levels. The sensor 

values deviated further from the IR device for the following reasons:  i. minute errors in  

calibration set-up, ii. the variation of the thickness of skins, which affected the 

measurements of transdermal isoflurane concentrations, iii. unknown physiological 

conditions, including food/drug consumption prior to isoflurane exposure, iii. the variation 

in metabolism rate from person to person [237]. Moreover, this variation was influenced 

by numerous factors, such as age, race, or suction during operation.  
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Figure 6-6: (a) Fuel cell-based device on the wrists of the subjects, (b to d) 

Comparison of fuel cell sensors and gold standard infrared spectroscopy devices 

for the blood isoflurane determination with for 4 human subjects  S1, S2, S3, and 

S4. 
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CHAPTER VII 

CONCLUSIONS 

 

 

7.1 Summary and conclusions 

In summary, we report the design, fabrication and calibration of a micro-fuel cell 

sensor and improvement in its calibration by employing a multivariate analysis. This study 

addresses an enduring problem in the biosensing field — the importance of eliminating 

interfering signals toward the precise detection of VOCs in a multivariate environment. 

Initially, this approach has been demonstrated in vitro through the detection of alcohol, 

while eliminating the contribution of major interfering compounds (e.g. humidity) in a 

micro-fuel cell sensor system. This signal separation method is novel and significant for 

potential transdermal alcohol detection. However, many other VOCs exist in a multi-

dimensional environment [238, 239, 240], which require more robust tools for the detection 

of sub-ppm/ppb level of measurements.  

Hence, this work developed a fuel cell-based, wearable sensing platform, 

incorporating multivariate analysis methods to improve specificity and precision. The 

traditional linear regression method has limitations of signal overlap for the calibration of 

a fuel cell sensor. Multivariate calibration methods, such as PCR, establish an accurate 

relationship between a response variable (the concentration of analyte) and predictor 

variables (sub-nA currents) for estimating the response variable based on the values of the 

predictor variables. Therefore, PCR can contribute to eliminating the redundancy of the 

data sets and improving calibration based upon the new variables, which were derived from 

the principal components. 
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In this work, a complete wearable platform has been developed, capable of 

providing a comprehensive, low-power, high-accuracy, selective and easily sustainable 

electrochemical sensor. Moreover, this device has been implemented on human subjects 

for transdermal alcohol measurements and demonstrated 62% better accuracy compared to 

a commercial breathalyzer in an unstructured study. Due to limitations with blood sample 

collection, the unstructured study improved our confidence to move on to another VOC: 

anesthetic isoflurane detection. This study allowed us to control humidity and temperature 

in the operating theater. This also allowed control with the isoflurane delivery. By 

comparing to the gold-standard IR device present within the operation theater, our wearable 

fuel cell biosensor showed an average accuracy of ~14.29%. This shows that there is a 

potential to replace the rather large IR device with the wearable biosensor developed in 

this study. 

Therefore, this work could lead to significant improvements in specific detection 

of VOCs. These improvements could be felt at point of care facilities during the 

rehabilitation processes and/or during the monitoring of various biomarkers and diseases. 

 

7.2 Recommendations for future research 

For the further improvement of VOC sensing with fuel cells, this work needs to 

improve in the following domains. They are: 

1. A calibration chamber needs to be designed to execute and understand the 

fundamental relationship of relative humidity and temperature with the signals 

of different concentrations of specific VOC. 
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2. An integrated humidity sensor, temperature sensor and fuel cell sensor need to 

be fabricated in a single platform. 

3. A prediction model can be derived from the large data sets [241], correlating 

humidity and temperature data, for the precise calibration of any analyte. 

 

  



117 
 

REFERENCES 

 

1. Schwoebel, H.; Schubert, R.; Sklorz, M.; Kischkel, S.; Zimmermann, R.; Schubert, 

J. K.; Miekisch, W. Phase-Resolved Real-time Breath Analysis during Exercise by means 

of Smart Processing of PTR-MS Data. Anal. Bioanal. Chem. 2011, 401 (7), 2079–2091. 

 

2. Shirasu, M.; Touhara, K. The Scent of Disease: Volatile Organic Compounds of 

the Human Body Related to Disease and Disorder. J. Biochem. 2011, 150 (3), 257–266. 

 

3. de Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; 

Osborne, D.; Ratcliffe, N. M. A Review of the Volatiles from the Healthy Human Body. 

J. Breath Res. 2014, 8 (1), 14001. 

 

4. Mochalski, P.; Sponring, A.; King, J.; Unterkofler, K.; Troppmair, J.; Amann, A. 

Release and Uptake of Volatile Organic Compounds by Human Hepatocellular 

Carcinoma Cells (HepG2) in Vitro. Cancer Cell Int. 2013, 13 (1), 72. 

 

5. Jalal, A. H.;  Alam, F.; RoyChoudhury, S.; Umasankar, Y.; Pala, N.; Bhansali, S. 

Prospects and challenges of volatile organic compound sensors in human healthcare, ACS 

Sensors. 2018. 3 (7), 1246-1263. 

 

6. Potera, C. Scented Products Emit a Bouquet of VOCs. Environ. Health Perspect. 

2011, 119 (1), A16. 

 

7. Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R. N. 

Variation in Volatile Organic Compounds in the Breath of Normal Humans. J. 

Chromatogr. B Biomed. Sci. Appl. 1999, 729 (1–2), 75–88. 

 

8. Filipiak, W.; Mochalski, P.; Filipiak, A.; Ager, C.; Cumeras, R.; Davis, C. E.; 

Agapiou, A.; Unterkofler, K.; Troppmair, J. A Compendium of Volatile Organic 

Compounds (VOCs) Released By Human Cell Lines. Curr. Med. Chem. 2016, 23 (20), 

2112–2131. 

 

9. Program, N. R. C. (US) C. on R. and E. of the A. C. S. D. Occupational Health and 

Workplace Monitoring at Chemical Agent Disposal Facilities; National Academies Press 

(US), 2001. 

 

10. Mason, M. F.; Dubowski, K. M. Alcohol, Traffic, and Chemical Testing in the 

United States: A Résumé and Some Remaining Problems. Clin. Chem. 1974, 20 (2), 126 

– 140. 
 

 

 



118 
 

11. Jalal, A. H.; Umasankar, Y.; Chowdhury, M.; Bhansali, S. A Fuel Cell Based 

Sensing Platform for Selective Detection of Acetone in Hyperglycemic Patients. 

ECS Trans. 2017, 80 (10), 1369–1378. 

 

12. Opitz, P.; Herbarth, O. The volatilome – investigation of volatile organic 

metabolites (VOM) as potential tumor markers in patients with head and neck 

squamous cell carcinoma (HNSCC). J. of Otolaryngology – Head and Neck 

Surgery. 2018, 47 (42), 1 – 13.  

 

13. Jones, A. W. Measuring Alcohol in Blood and Breath for Forensic Purposes - A 

Historical Review. Forensic Sci. Rev. 1996, 8 (1), 13–44. 

 

14. Borkenstein, R. F.; Smith, H. W. The Breathalyzer and Its Applications. Med. Sci. 

Law 1961, 2 (1), 13–22. 

 

15. Saidi, T.; Zaim, O.; Moufid, M.; El Bari, N.; Ionescu, R.; Bouchikhi, B. Exhaled 

Breath Analysis Using Electronic Nose and Gas Chromatography–mass 

Spectrometry for Non-Invasive Diagnosis of Chronic Kidney Disease, Diabetes 

Mellitus and Healthy Subjects. Sensors Actuators B Chem. 2018, 257, 178–188. 

 

16. Agbroko, S. O.; Covington, J. A Novel, Low-Cost, Portable PID Sensor for 

Detection of VOC. Proceedings 2017, 1 (4), 482. 

 

17. Salomaa, E.-R.; Sällinen, S.; Hiekkanen, H.; Liippo, K. Delays in the Diagnosis 

and Treatment of Lung Cancer. Chest 2005, 128 (4), 2282–2288. 

 

18. Tricoli, A.; Nasiri, N.; De, S. Wearable and Miniaturized Sensor Technologies for 

Personalized and Preventive Medicine. Adv. Funct. Mater. 2017, 27 (15), 1605271. 

 

19. Brattoli, M.; Cisternino, E.; Dambruoso, P. R.; de Gennaro, G.; Giungato, P.; 

Mazzone, A.; Palmisani, J.; Tutino, M. Gas Chromatography Analysis with 

Olfactometric Detection (GC-O) as a Useful Methodology for Chemical 

Characterization of Odorous Compounds. Sensors (Basel). 2013, 13 (12), 16759–

16800. 

 

20. Lindinger, W.; Jordan, A. Proton-Transfer-Reaction Mass Spectrometry (PTR–

MS): On-Line Monitoring of Volatile Organic Compounds at Pptv Levels. Chem. 

Soc. Rev. 1998, 27 (5), 347. 

 

21. Španěl, P.; Smith, D. Selected Ion Flow Tube Mass Spectrometry for On-Line 

Trace Gas Analysis in Biology and Medicine. Eur. J. Mass Spectrom. 2007, 13 (1), 

77–82. 

 

 



119 
 

22. Wang, C.; Sahay, P. Breath Analysis Using Laser Spectroscopic Techniques: 

Breath Biomarkers, Spectral Fingerprints, and Detection Limits. Sensors 2009, 9 

(10), 8230–8262. 

 

23. Gloess, A. N.; Yeretzian, C.; Knochenmuss, R.; Groessl, M. On-Line Analysis of 

Coffee Roasting with Ion Mobility Spectrometry–mass Spectrometry (IMS–MS). 

Int. J. Mass Spectrom. 2018, 424, 49–57. 

 

24. Kadir, R. A.; Rani, R. A.; Zoolfakar, A. S.; Ou, J. Z.; Shafiei, M.; Wlodarski, W.; 

Kalantar-zadeh, K. Nb2O5 Schottky Based Ethanol Vapour Sensors: Effect of 

Metallic Catalysts. Sensors Actuators B Chem. 2014, 202, 74–82. 

 

25. Kim, H.-J.; Lee, J.-H. Highly Sensitive and Selective Gas Sensors Using P-Type 

Oxide Semiconductors: Overview. Sensors Actuators B Chem. 2014, 192, 607–

627. 

 

26. Devkota, J.; Ohodnicki, P. R.; Greve, D. W. SAW Sensors for Chemical Vapors 

and Gases. Sensors (Basel). 2017, 17(4), 1-28. 

 

27. Semwal, V.; Shrivastav, A. M.; Verma, R.; Gupta, B. D. Surface Plasmon 

Resonance Based Fiber Optic Ethanol Sensor Using Layers of 

Silver/silicon/hydrogel Entrapped with ADH/NAD. Sensors Actuators B Chem. 

2016, 230, 485–492. 

 

28. Jalal, A. H.; Umasankar, Y.; Bhansali, S. Development and Characterization of 

Fuel Cell Sensor for Potential Transdermal Ethanol Sensing. ECS Trans. 2016, 72 

(31), 25–31. 

 

29. Kim, N.-H.; Choi, S.-J.; Yang, D.-J.; Bae, J.; Park, J.; Kim, I.-D. Highly Sensitive 

and Selective Hydrogen Sulfide and Toluene Sensors Using Pd Functionalized 

WO3 Nanofibers for Potential Diagnosis of Halitosis and Lung Cancer. Sensors 

Actuators B Chem. 2014, 193, 574–581. 

 

30. Vishinkin, R.; Haick, H. Nanoscale Sensor Technologies for Disease Detection via 

Volatolomics. Small 2015, 11 (46), 6142–6164. 

 

31. Broza Y. Y., Haick H. Nanomaterial-based sensors for Detection of Disease by 

Volatile Organic Compounds, Nanomedicine. 2013, 8(5), 785-806. 

 

32. Paska, Y.; Haick, H. Interactive Effect of Hysteresis and Surface Chemistry on 

Gated Silicon Nanowire Gas Sensors, ACS Appl. Mater. Interfaces, 2012, 4 (5), 

2604–2617. 

 

 



120 
 

33. Jalal, A. H.; Umasankar, Y.; Gonzalez, P. J.; Alfonso, A.; Bhansali, S. Multimodal 

Technique to Eliminate Humidity Interference for Specific Detection of Ethanol. 

Biosens. and Bioelectron. 2017, 87, 522–530. 

 

34. Romain, A. and Nicolas, J. Long term Stability of Metal Oxide-based Gas Sensors 

for E-nose Environmental Applications: An Overview, In AIP Conference 

Proceedings 1137, 2009, 443. 

  

35. Dieffenderfer, J.; Goodell, H.; Mills, S.; McKnight, M.; Yao, S.; Lin, F.; Beppler, 

E.; Bent, B.; Lee, B.; Misra, V.; Zhu, Y.; Oralkan, O.; Strohmaier, J.; Muth, J.; 

Peden, D.; Bozkurt, A. Low Power Wearable Systems for Continuous Monitoring 

of Environment and Health for Chronic Respiratory Disease, IEEE J Biomed 

Health Inform., 2016, 20(5), 1251–1264. 

 

36. Yao, S.; Swetha, P.; Zhu, Y. Nanomaterial-Enabled Wearable Sensors for 

Healthcare, Adv. Healthcare Mater. 2018, 1-27. 

 

37. Pattar, S.;  Buyya, R.;  Venugopal, K. R.;  Iyengar, S. S.;  Patnaik, L. M. Searching 

for the IoT Resources: Fundamentals, Requirements, Comprehensive Review and 

Future Directions, IEEE Communications Surveys & Tutorials, 2018, 1-32. 

 

38. Kim, S. J.; Choi, S. J.;  Jang, J. S.; Cho, H. J.; Kim, I. D.  Innovative Nanosensor 

for Disease Diagnosis. Accounts of Chem. Res., 50 (7), 2017, 1587–1596. 

 

39. Delpha, C. ; Siadat, M.;  Lumbreras, M. An Electronic Nose for the Identification 

of Forane R134a in an Air Conditioned Atmosphere. Sensors Actuators B, 2000, 

69, 243–247. 

 

40. Yang, J.; Acharya, R.; Zhu, X.;. Köse, M. E.; Schanze, K. S. Pyrophosphate Sensor 

Based on Principal Component Analysis of Conjugated Polyelectrolyte 

Fluorescence, ACS Omega, 2016, 1 (4), 648–655. 

 

41. Jalal, A. H.; Alam, F.; Ahmed, A.; Ahad, M. A. Precise calibration of optical fiber 

sensor for ammonia sensing using multivariate analysis, SPIE Defense + 

Commercial Sensing. 2018, 10654, 106540W-1 – 106540W-7.                  

  

42. Amann, A.; Costello, B. de L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; 

Ratcliffe, N.; Risby, T. The Human Volatilome: Volatile Organic Compounds 

(VOCs) in Exhaled Breath, Skin Emanations, Urine, Feces and Saliva. J. Breath 

Res. 2014, 8 (3), 34001.        

  

43. Broza, Y. Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A.; Haick, H. Hybrid 

Volatolomics and Disease Detection. Angew. Chemie Int. Ed. 2015, 54 (38), 

11036–11048. 



121 
 

44.  Hajimiragha, H.; Ewers, U.; Brockhaus, A.; Boettger, A. Levels of Benzene and 

Other Volatile Aromatic Compounds in the Blood of Non-Smokers and Smokers. 

Int. Arch. Occup. Environ. Health 1989, 61 (8), 513–518.    

  

45. Aggazzotti, G.; Fantuzzi, G.; Righi, E.; Predieri, G. Blood and Breath Analyses as 

Biological Indicators of Exposure to Trihalomethanes in Indoor Swimming Pools. 

Sci. Total Environ. 1998, 217 (1–2), 155–163.     

  

46. Horvath, G.; Andersson, H.; Paulsson, G. Characteristic Odour in the Blood 

Reveals Ovarian Carcinoma. BMC Cancer 2010, 10 (1), 643. 

 

47. Selyanchyn, R.; Nozoe, T.; Matsui, H.; Kadosawa, T.; Lee, S.-W. TD-GC-MS 

Investigation of the VOCs Released from Blood Plasma of Dogs with Cancer. 

Diagnostics (Basel, Switzerland) 2013, 3 (1), 68–83.    

  

48. Liu, H.; Wang, H.; Li, C.; Wang, L.; Pan, Z.; Wang, L. Investigation of Volatile 

Organic Metabolites in Lung Cancer Pleural Effusions by Solid-Phase 

Microextraction and Gas Chromatography/mass Spectrometry. J. Chromatogr. B. 

Analyt. Technol. Biomed. Life Sci. 2014, 945–946, 53–59.    

  

49. Lourdusamy, V.; Tharian, B.; Navaneethan, U. Biomarkers in Bile-Complementing 

Advanced Endoscopic Imaging in the Diagnosis of Indeterminate Biliary Strictures. 

World J. Gastrointest. Endosc. 2015, 7 (4), 308.     

  

50. Tominaga, M.; Ishikawa, T.; Michiue, T.; Oritani, S.; Koide, I.; Kuramoto, Y.; 

Ogawa, M.; Maeda, H. Postmortem Analyses of Gaseous and Volatile Substances 

in Pericardial Fluid and Bone Marrow Aspirate. J. Anal. Toxicol. 2013, 37 (3), 147–

151.           

  

51. Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A. C.; Wilson, M. R.; Knox, C.; Bjorndahl, 

T. C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; Dame, Z. T.; Poelzer, J.; Huynh, J.; 

Yallou, F. S.; Psychogios, N.; Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D. S. 

The Human Urine Metabolome. PLoS One 2013, 8 (9), e73076. 

 

52. Prabhakar, A.; Quach, A.; Zhang, H.; Terrera, M.; Jackemeyer,D.; Xian, X.; Tsow, 

F.; Tao, N.;  Forzani, E. S.; Acetone as Biomarker for ketosis Buildup Capability - 

A Study in Healthy Individuals Under Combined High Fat and Starvation Diets. 

Nutrition Journal 2015, 14 (41), 1–11.  

 

53. McKee, H. C.; Rhoades, J. W.; Campbell, J.; Gross, A. L. Acetonitrile in Body 

Fluids Related to Smoking. Public Heal. reports (Washington, D.C.  1896) 1962, 

77 (7), 553–554.         

  

54. Wang, C.; Feng, Y.; Wang, M.; Pi, X.; Tong, H.; Wang, Y.; Zhu, L.; Li, E. Volatile 

Organic Metabolites Identify Patients with Mesangial Proliferative 



122 
 

Glomerulonephritis, IgA Nephropathy and Normal Controls. Sci. Rep. 2015, 5 (1), 

14744.           

  

55. Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Al-Kateb, H.; 

Jones, P.; Probert, C. S.; Ratcliffe, N. Urinary Volatile Organic Compounds for the 

Detection of Prostate Cancer. PLoS One 2015, 10 (11), e0143283. 

 

56. Matsumura, K.; Opiekun, M.; Oka, H.; Vachani, A.; Albelda, S. M.; Yamazaki, K.; 

Beauchamp, G. K. Urinary Volatile Compounds as Biomarkers for Lung Cancer: 

A Proof of Principle Study Using Odor Signatures in Mouse Models of Lung 

Cancer. PLoS One 2010, 5 (1), e8819.      

  

57. Arasaradnam, R. P.; Westenbrink, E.; McFarlane, M. J.; Harbord, R.; Chambers, 

S.; O’Connell, N.; Bailey, C.; Nwokolo, C. U.; Bardhan, K. D.; Savage, R.; 

Covington, J. A. Differentiating Coeliac Disease from Irritable Bowel Syndrome 

by Urinary Volatile Organic Compound Analysis – A Pilot Study. PLoS One 2014, 

9 (10), e107312. 

 

58. Banday, K. M.; Pasikanti, K. K.; Chan, E. C.; Singla R.; Rao, K. V.; Chauhan, V. 

S.; Nanda, R. K. Use of Urine Volatile Organic Compounds to Discriminate 

Tuberculosis Patients from Healthy Subjects. Anal Chem. 2011, 83  (14), 5526-

5534.           

  

59. Soini, H. A.; Klouckova, I.; Wiesler, D.; Oberzaucher, E.; Grammer, K.; Dixon, S. 

J.; Xu, Y.; Brereton, R. G.; Penn, D. J.; Novotny, M. V. Analysis of Volatile 

Organic Compounds in Human Saliva by a Static Sorptive Extraction Method and 

Gas Chromatography-Mass Spectrometry. J. Chem. Ecol. 2010, 36 (9), 1035–1042. 

 

60. Kim, J.; Imani, S.; de Araujo, W. R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T. 

R. L. C.; Mercier, P. P.; Wang, J. Wearable Salivary Uric Acid Mouthguard 

Biosensor with Integrated Wireless Electronics. Biosens. Bioelectron. 2015, 74, 

1061–1068. 

 

61. Gallagher, M.; Wysocki, C. J.; Leyden, J. J.; Spielman, A. I.; Sun, X.; Preti, G. 

Analyses of Volatile Organic Compounds from Human Skin. Br. J. Dermatol. 2008, 

159 (4), 780–791. 

 

62. Sanford, J. A.; Gallo, R. L. Functions of the Skin Microbiota in Health and Disease. 

Semin. Immunol. 2013, 25 (5), 370–377. 

 

63. Gajjar, R. M.; Miller, M. A.;  Kasting, G. B. Evaporation of Volatile Organic 

Compounds from Human Skin In Vitro. The Annals of Occupational Hygiene, 

2013, 57 (7), 853–865.        

  



123 
 

64. Boman, A.; Maibach, H.I. Percutaneous Absorption of Organic Solvents. 

International Journal of Occupational and Environmental Health. 2013, 6, 93-95. 

 

65. Fenske, J. D.; Paulson, S. E. Human Breath Emissions of VOCs. J. Air Waste 

Manage. Assoc. 1999, 49 (5), 594–598. 

 

66. Wang, Z.; Wang, C. Is Breath Acetone a Biomarker of Diabetes? A Historical 

Review on Breath Acetone Measurements. J. Breath Res. 2013, 7 (3), 37109. 

 

67. Tangerman, A.; Meuwese-Arends, M. T.; van Tongeren, J. H. A New Sensitive 

Assay for Measuring Volatile Sulphur Compounds in Human Breath by Tenax 

Trapping and Gas Chromatography and Its Application in Liver Cirrhosis. Clin. 

Chim. Acta. 1983, 130 (1), 103–110. 

 

68. Boots, A. W.; Smolinska, A.; van Berkel, J. J. B. N.; Fijten, R. R. R.; Stobberingh, 

E. E.; Boumans, M. L. L.; Moonen, E. J.; Wouters, E. F. M.; Dallinga, J. W.; Van 

Schooten, F. J. Identification of Microorganisms Based on Headspace Analysis of 

Volatile Organic Compounds by Gas Chromatography–mass Spectrometry. J. 

Breath Res. 2014, 8 (2), 27106. 

 

69. Mazzatenta, A.; Pokorski, M.; Sartucci, F.; Domenici, L.; Di Giulio, C. Volatile 

Organic Compounds (VOCs) Fingerprint of Alzheimer’s Disease. Respir. Physiol. 

Neurobiol. 2015, 209, 81–84. 

 

70. Singh, S.; Arcaroli, J.; Thompson, D. C.; Messersmith, W.; Vasiliou, V. 

Acetaldehyde and Retinaldehyde-Metabolizing Enzymes in Colon and Pancreatic 

Cancers. Adv. Exp. Med. Biol. 2015, 815, 281–294.     

  

71. Gubler, D.; Device and Method of Using Volatile Organic Compounds That Affect 

Mood, Emotion or a Physiologic State. Patent Application US 2017/0173047 A1, 

2016.           

  

72. Pellizzari, E. D.; Hartwell, T. D.; Harris, B. S.; Waddell, R. D.; Whitaker, D. A.; 

Erickson, M. D. Purgeable Organic Compounds in Mother’s Milk. Bull. Environ. 

Contam. Toxicol. 1982, 28 (3), 322–328. 

 

73. DeBruin, L. S.; Pawliszyn, J. B.; Josephy, P. D. Detection of Monocyclic Aromatic 

Amines, Possible Mammary Carcinogens, in Human Milk. Chem. Res. Toxicol. 

1999, 12 (1), 78–82. 

 

74. Zhu, J.; Phillips, S. P.; Feng, Y. ; Yang, X. Phthalate Esters in Human Milk:  

Concentration Variations over a 6-Month Postpartum Time. Environ. Sci. Technol. 

2006, 40, 5276-5281. 



124 
 

75. Hung, C.; Hung, I.; Yen, J.; Hwang, B.; Soong, W. Determination of Benzene and 

Alkylbenzenes in Milk by Purge and Trap Gas Chromatography. Toxicol. Environ. 

Chem. 1998, 67 (1–2), 1–7. 

 

76. Meyer, M. R.; Maurer, H. H. Absorption, Distribution, Metabolism and Excretion 

Pharmacogenomics of Drugs of Abuse. Pharmacogenomics 2011, 12 (2), 215–233. 

 

77. Turrens, J. F. Mitochondrial Formation of Reactive Oxygen Species. J. Physiol. 

2003, 552 (2), 335–344. 

 

78. Deleidi, M.; JÃ¤ggle, M.; Rubino, G. Immune Aging, Dysmetabolism, and 

Inflammation in Neurological Diseases. Front. Neurosci. 2015, 9, 172. 

 

79. Haick, H.; Broza, Y. Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, 

Origin, and Implementation of Breath Volatile Cancer Markers. Chem. Soc. Rev. 

2014, 43 (5), 1423–1449. 

 

80. Zakhari, S. Overview: How Is Alcohol Metabolized by the Body? Alcohol 

Research & Health.2006, 29 (4), 245-254. 

 

81. Krishnan, K.; White, P. Pharmacokinetics and Toxicokinetics. In Haschek and 

Rousseaux’s Handbook of Toxicologic Pathology; Elsevier, 2013; pp 39–59. 

 

82. Buerk, D. G.; Saidel, G. M. Local Kinetics of Oxygen Metabolism in Brain and 

Liver Tissues. Microvasc. Res. 1978, 16 (3), 391–405. 

 

83. Stücker, M.; Struk A.;Altmeyer P.; Herde M.;Baumgärtl H.;Lübbers D. W. The 

Cutaneous Uptake of Atmospheric Oxygen Contributes Significantly to the Oxygen 

Supply of Human Dermis and Epidermis. Journal of Physiology.2002, 538(3),985–

994.  

 

84. Maren, T. H. Principles of Drug Action. The Basis of Pharmacology. Avram 

Goldstein, Lewis Aronow, and Sumner M. Kalman. Harper and Row, New York, 

1968. Xii + 884 Pp., Illus. $18.50. Science (80-. ). 1969, 166 (3907), 858–858. 

 

85. Hlastala, M.  P. Physiological Errors Associated With Alcohol Breath Testing. the 

Champion, 1985, 16–19.  

 

86.  Jones, A. W. Physiological Aspects of Breath Alcohol Measurement. Alcohol, 

drugs and driving, 1990, 6 (2), 1–25. 

 

87. King, J.; Unterkofler, K.; Teschl, G.; Teschl, S.; Koc, H.; Hinterhuber, H.; Amann, 

A. A Mathematical Model for Breath Gas Analysis of Volatile Organic Compounds 

with Special Emphasis on Acetone.  J Math Biol. 2011, 63 (5), 959-999. 



125 
 

88. Wang, J.; Nuñovero, N.; Lin, Z.; Nidetz, R.; Buggaveeti, S.; Zhan, C.; Kurabayashi, 

K.; Steinecker, W. H.; Zellers, E. T. A Wearable MEMS Gas Chromatograph for 

Multi-Vapor Determinations. Procedia Engineering, 2016,  168, 1398 – 1401. 

 

89. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. 

Arabian J. of Chemistry, 2017, 1-24. 

 

90. Mirzaei, A.;  Leonardi, S. G.; Neri G. Detection of Hazardous Volatile Organic 

Compounds (VOCs) by Metal Oxide Nanostructures-based Gas Sensors: A 

Review. Ceramics International. 2016, 42, 15119–15141. 

 

91. Li, B.;  Sauve, G.; Iovu, M. C.; Jeffries-EL, M.; Zhang, R.; Cooper, J.;  Santhanam, 

S.;  Schultz, L.;  Revelli, J. C.; Kusne, A. G.; Kowalewski, T.; Snyder, J. L.;  Weiss, 

L. E.; Fedder, G. K.; McCullough, R. D.; Lambeth, D. N. Volatile Organic 

Compound Detection Using Nanostructured Copolymers. Nano Letters, 2006, 6 

(8), 1598-1602. 

 

92. Alam, F.; Jalal, A. H.;  Sinha, R.; Umasankar, Y.;  Bhansali, S.; Pala, N. 

Sonochemically Synthesized ZnO Nanostructure-based L-lactate Enzymatic 

Sensors on Flexible Substrates, MRS Advances. 2018, 3 (5), 277-282. 

 

93. Han, L.; Shi, X.; Wu, W.; Kirk, F. L.; Luo, J.; Wang, L.; Mott, D.; Cousineau, L.; 

Lim, S. I.; Lu, S.; Zhong, C. Nanoparticle-structured Sensing Array Materials and 

Pattern Recognition for VOC Detection, Sensors and Actuators B. 2005, 106,  431–

441. 

 

94. Leidinger, M.; Rieger, M.; Weishaupt, D.; Sauerwald, T.; Nägele, M.; Hürttlen, J.; 

Schütze, A. Trace Gas VOC Detection Using Metal-Organic Frameworks as 

Preconcentrators and Semiconductor Gas Sensors, Procedia Engineering. 2015. 

120, 1042 – 1045. 

 

95. Jalal, A. H.; Yu, J.; Agwu Nnanna, A. G. Fabrication and Calibration of Oxazine-

Based Optic Fiber Sensor for Detection of Ammonia in Water. Appl. Opt. 2012, 51 

(17), 3768 – 3775. 

 

96. Mu, X. Wearable Gas Sensor Microsystem for Personal Healthcare and 

Environmental Monitoring. Thesis, Michigan State University, 2013, 1–134. 

 

97. Pasha, S. K.; Jalal, A. H.; Singh, A.; Bhansali, S. Chapter 1: Nanobiotechnology: 

An Abrupt Merger. In Nanobiotechnology for Sensing Applications; Apple 

Academic Press Inc., 2016, pp 1–42. 

 

98. RoyChoudhury, S.; Rawat, V.; Jalal, A. H.; Kale, S. N.; Bhansali, S. Recent 

Advances in Metamaterial Split-ring-resonator Circuits as Biosensors and 

Therapeutic Agents. Biosensors and Bioelectronics, 2016, 86, 595–608. 



126 
 

99. Bingham, J. M.; Anker, J. N.; Kreno, L. E.; Van Duyne R. P. Gas Sensing with 

High-Resolution Localized Surface Plasmon Resonance Spectroscopy. J. Am. 

Chem. Soc. 2010. 132 (49), 17358–17359. 

 

100. Homola, J. Present and Future of Surface Plasmon Resonance Biosensor. 

Anal Bioanal Chem. 2003. 377, 528–539. 

 

101. Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical 

and Biological Species. Chem. Rev. 2008. 108, 462−493. 

 

102. Cheng, C.; Chen, Y.; Lu, C. Organic Vapour Sensing Using Localized 

Surface Plasmon Resonance Spectrum of Metallic Nanoparticles Self Assemble 

Monolayer. Talanta. 2007. 73, 358–365. 

 

103. Chen, Y.; Lu, C. Surface Modification on Silver Nanoparticles for 

Enhancing Vapor Selectivity of Localized Surface Plasmon Resonance Sensors. 

Sensors and Actuators B, 2009. 135, 492–498. 

 

104. Iitani, K.; Chien, P.; Suzuki, T.; Toma, K.; Arakawa, T.; Iwasaki, Y.;  

Mitsubayashi, K. Fiber-Optic Bio-sniffer (Biochemical Gas Sensor) Using Reverse 

Reaction of Alcohol Dehydrogenase for Exhaled Acetaldehyde. ACS Sens. 2018, 

3, 425−431. 

 

105. Brooks, P. J.; Enoch, M. A.; Goldman, D.; Li, T. K.; Yokoyama, A. The 

Alcohol Flushing Response: An Unrecognized Risk Factor for Esophageal Cancer 

from Alcohol Consumption. PLoS Med. 2009, 6, 0258−0263. 

 

106. Reddy, K.; Guo, Y.; Liu, J.; Lee, W.; Khaing Oo, M. K.; Fan, X. Rapid, 

Sensitive, and Multiplexed on-Chip Optical Sensors for Micro-Gas 

Chromatography. Lab Chip 2012, 12 (5), 901. 

 

107. Scholten, K.; Collin, W. R.; Fan, X.; Zellers, E. T. Nanoparticle-coated 

Micro-optofluidic Ring Resonator as a Detector for Microscale Gas  

Chromatographic Vapor Analysis. Nanoscale, 2015, 7, 9282–9289. 

 

108. Mazzone, P. J.; Wang, X.; Xu, Y.; Mekhail, T.; Beukemann, M. C.;  Na, J.;  

Kemling, J. W.;  Suslick, K. S.; Sasidhar, M. Exhaled Breath Analysis with a 

Colorimetric Sensor Array for the Identification and Characterization of Lung 

Cancer. J Thorac Oncol. 2012, 7(1), 137–142. 

 

109. Prabhakar, A.; Iglesias, R. A.; Shan, X.; Xian, X.; Zhang, L.; Tsow, F.; 

Forzani, E. S.; Tao, N. Online Sample Conditioning for Portable Breath Analyzers. 

Anal. Chem. 2012, 84 (16), 7172–7178. 



127 
 

110. Lakkis, S.; Younes, R.; Alayli, Y.; Sawan, M. Review of Recent Trends in 

Gas Sensing Technologies and Their Miniaturization Potential. Sens. Rev. 2014, 

34 (1), 24–35. 

 

111. Kanan, S. M.; El-Kadri, O. M.; Abu-Yousef, I. A.; Kanan, M. C. 

Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection. 

Sensors 2009, 9 (10), 8158–8196. 

 

112. Krivec, M.; Gunnigle, G.; Abram, A.; Maier, D.; Waldner, R.; Gostner, J.; 

Überall, F.; Leitner, R. Quantitative Ethylene Measurements with MOx Chemi-

resistive Sensors at Different Relative Air Humidities. Sensors 2015, 15 (11), 

28088–28098. 

 

113. Itoh, T.; Matsubara, I.; Kadosaki, M.; Sakai, Y.; Shin, W.; Izu, N.; 

Nishibori, M. Effects of High-Humidity Aging on Platinum, Palladium, and Gold 

Loaded Tin Oxide--Volatile Organic Compound Sensors. Sensors (Basel). 2010, 

10 (7), 6513–6521. 

 

114. Xu, X.; Wang, J.; Long, Y. Zeolite-Based Materials for Gas Sensors. 

Sensors 2006, 6 (12), 1751–1764. 

 

115. Rodríguez-González, L.; Franke, M. E.; Simon, U. Electrical Detection of 

Different Amines with Proton-Conductive H-ZSM-5. Stud. Surf. Sci. Catal. 2005, 

158, 2049–2056. 

 

116. Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L. A Highly Sensitive Ethanol 

Sensor Based on Mesoporous ZnO–SnO2 Nanofibers. Nanotechnology 2009, 20 

(7), 75501. 

 

117. Choi, S.-J.; Lee, I.; Jang, B.-H.; Youn, D.-Y.; Ryu, W.-H.; Park, C. O.; Kim, 

I.-D. Selective Diagnosis of Diabetes Using Pt-Functionalized WO3 Hemitube 

Networks As a Sensing Layer of Acetone in Exhaled Breath. Anal. Chem. 2013, 85 

(3), 1792–1796. 

 

118. Righettoni, M.; Amann, A.; Pratsinis, S. E. Breath Analysis by 

Nanostructured Metal Oxides as Chemo-resistive Gas Sensors. Materials Today. 

2015, 18 (3), 163–171. 

 

119. Fioravanti, A.; Morandi, S.; Carotta, M. C. Chemoresistive Gas Sensors for 

Sub-ppm Acetone Detection. Procedia Eng. 2016, 168, 485–488. 

 

120. Liu, J.; Wang, X.; Peng, Q.; Li, Y. Vanadium Pentoxide Nanobelts: Highly 

Selective and Stable Ethanol Sensor Materials. Adv. Mater. 2005, 17 (6), 764–767. 

 



128 
 

121. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: 

Sensitivity and Influencing Factors. Sensors 2010, 10 (3), 2088–2106. 

 

122. Cao, M.; Wang, Y.; Chen, T.; Antonietti, M.; Niederberger, M. A Highly 

Sensitive and Fast-Responding Ethanol Sensor Based on CdIn2O4 Nanocrystals 

Synthesized by a Nonaqueous Sol−Gel Route. Chem. Mater. 2008, 20 (18), 5781–

5786. 

 

123. Tayebi, N.; Su, X. Sensitive and Selective gas/VOC Detection Using MOS 

Sensor Array for Wearable and Mobile Applications. In 2017 ISOCS/IEEE 

International Symposium on Olfaction and Electronic Nose (ISOEN); IEEE, 2017; 

pp 1–3. 

 

124. Yan, S.; Liu, X.; Skeete, Z.; He, N.; Xie, Z.-H.; Zhao, W.; Lombardi, J. P.; 

Liu, K.; Kang, N.; Luo, J.; Hsiao, B. S.; Poliks, M.; Gitsov, I.; Zhong, C.-J. 

Decoration of Nanofibrous Paper Chemiresistors with Dendronized Nanoparticles 

toward Structurally Tunable Negative-Going Response Characteristics to Human 

Breathing and Sweating. Adv. Mater. Interfaces 2017, 4 (22), 1700380. 

 

125. Kim, I.-D.; Choi, S.-J.; Kim, S.-J.; Jang, J.-S. Exhaled Breath Sensors; In 

Smart Sensors for Health and Environment Monitoring, Springer Dordrecht, New 

York, 2015; pp 19–49. 

 

126. Umasankar, Y.; Jalal, A. H.; Gonzalez, P. J.; Chowdhury, M.; Alfonso, A.; 

Bhansali, S. Wearable Alcohol Monitoring Device with Auto-Calibration Ability 

for High Chemical Specificity. In 2016 IEEE 13th International Conference on 

Wearable and Implantable Body Sensor Networks (BSN); IEEE, San Francisco, 

CA, 2016; pp 353–358. 

 

127. Obermeier, J.; Trefz, P.; Wex, K.; Sabel, B.; Schubert, J. K.; Miekisch, W. 

Electrochemical Sensor System for Breath Analysis of Aldehydes, CO and NO. J. 

Breath Res. 2015, 9 (1), 16008. 

 

128. Grossherr, M.; Hengstenberg, A.; Dibbelt, L.; Meier, T.; Gehring, H. 

Continuous Monitoring of Propofol Concentration in Expired Air During Artificial 

Ventilation in Patients: A Feasibility Study: 3AP3-8. European Journal of 

Anaesthesiology (EJA), 2008, 25, 33. 

 

129. Swift, R. M.; Martin, C. S.; Swette, L.; LaConti, A.; Kackley, N. Studies on 

a Wearable, Electronic, Transdermal Alcohol Sensor. Alcohol. Clin. Exp. Res. 

1992, 16 (4), 721–725.  

 

130. Kim, J.; Jeerapan, I.; Imani, S.; Cho, T. N.; Bandodkar, A.; Cinti, S.; 

Mercier, P. P.; Wang, J. Noninvasive Alcohol Monitoring Using a Wearable 



129 
 

Tattoo-Based Iontophoretic-Biosensing System. ACS Sensors 2016, 1 (8), 1011–

1019. 

 

131. Mohan A. M. V., Windmiller J. R., Mishra R. K., Wang J. Continuous 

Minimally-invasive Alcohol Monitoring Using Microneedle Sensor Arrays. 

Biosens Bioelectron. 2017,91,574-579. 

 

132. Tangerman, A.; Winkel, E. G. The Portable Gas Chromatograph 

OralChromaTM: A Method of Choice to Detect Oral and Extra-Oral Halitosis. J. 

Breath Res. 2008, 2 (1), 17010. 

 

133. Tanda, N.; Washio, J.; Ikawa, K.; Suzuki, K.; Koseki, T.; Iwakura, M. A 

New Portable Sulfide Monitor with a Zinc-Oxide Semiconductor Sensor for Daily 

Use and Field Study. J. Dent. 2007, 35 (7), 552–557. 

  

134. Ponzoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S. Z.; Xu, N. S.; 

Ding, Y.; Wang, Z. L. Ultrasensitive and Highly Selective Gas Sensors Using 

Three-Dimensional Tungsten Oxide Nanowire Networks. Appl. Phys. Lett. 2006, 

88 (20), 203101. 

  

135. Kim, J. G.; Kim, Y. J.; Yoo, S. H.; Lee, S. J.; Chung, J. W.; Kim, M. H.; 

Park, D. K.; Hahm, K.-B. Halimeter ppb Levels as the Predictor of Erosive 

Gastroesophageal Reflux Disease. Gut Liver 2010, 4 (3), 320–325. 

 

136. Choi, S.-J.; Kim, M. P.; Lee, S.-J.; Kim, B. J.; Kim, I.-D. Facile Au Catalyst 

Loading on the Inner Shell of Hollow SnO2 Spheres Using Au-Decorated Block 

Copolymer Sphere Templates and Their Selective H2S Sensing Characteristics. 

Nanoscale. 2014, 6 (20), 11898–11903. 

 

137. Dong, K.-Y.; Choi, J.-K.; Hwang, I.-S.; Lee, J.-W.; Kang, B. H.; Ham, D.-

J.; Lee, J.-H.; Ju, B.-K. Enhanced H2S Sensing Characteristics of Pt Doped SnO2 

Nanofibers Sensors with Micro Heater. Sensors Actuators B Chem. 2011, 157 (1), 

154–161. 

 

138. Shin, J.; Choi, S.-J.; Youn, D.-Y.; Kim, I.-D. Exhaled VOCs Sensing 

Properties of WO3 Nanofibers Functionalized by Pt and IrO2 Nanoparticles for 

Diagnosis of Diabetes and Halitosis. J. Electroceramics 2012, 29 (2), 106–116. 

 

139. Choi, S.-J.; Fuchs, F.; Demadrille, R.; Grévin, B.; Jang, B.-H.; Lee, S.-J.; 

Lee, J.-H.; Tuller, H. L.; Kim, I.-D. Fast Responding Exhaled-Breath Sensors Using 

WO3 Hemitubes Functionalized by Graphene-Based Electronic Sensitizers for 

Diagnosis of Diseases. ACS Appl. Mater. Interfaces. 2014, 6 (12), 9061–9070. 

 

140. Choi, S.-J.; Jang, B.-H.; Lee, S.-J.; Min, B. K.; Rothschild, A.; Kim, I.-D. 

Selective Detection of Acetone and Hydrogen Sulfide for the Diagnosis of Diabetes 



130 
 

and Halitosis Using SnO 2 Nanofibers Functionalized with Reduced Graphene 

Oxide Nanosheets. ACS Appl. Mater. Interfaces. 2014, 6 (4), 2588–2597. 

 

141. Choi, S.-J.; Lee, I.; Jang, B.-H.; Youn, D.-Y.; Ryu, W.-H.; Park, C. O.; Kim, 

I.-D. Selective Diagnosis of Diabetes Using Pt-Functionalized WO3 Hemitube 

Networks As a Sensing Layer of Acetone in Exhaled Breath. Anal. Chem. 2013, 85 

(3), 1792–1796. 

 

142. Xiao, Y.; Lu, L.; Zhang, A.; Zhang, Y.; Sun, L.; Huo, L.; Li, F. Highly 

Enhanced Acetone Sensing Performances of Porous and Single Crystalline ZnO 

Nanosheets: High Percentage of Exposed (100) Facets Working Together with 

Surface Modification with Pd Nanoparticles. ACS Appl. Mater. Interfaces 2012, 4 

(8), 3797–3804. 

 

143. Gunawan, P.; Mei, L.; Teo, J.; Ma, J.; Highfield, J.; Li, Q.; Zhong, Z. 

Ultrahigh Sensitivity of Au/1D α-Fe2O3 to Acetone and the Sensing Mechanism. 

Langmuir. 2012, 28 (39), 14090–14099. 

 

144. Righettoni, M.; Tricoli, A.; Pratsinis, S. E. Si:WO3 Sensors for Highly 

Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. 

Anal. Chem. 2010, 82 (9), 3581–3587. 

 

145. Xiao, T.; Wang, X.-Y.; Zhao, Z.-H.; Li, L.; Zhang, L.; Yao, H.-C.; Wang, 

J.-S.; Li, Z.-J. Highly Sensitive and Selective Acetone Sensor Based on C-Doped 

WO3 for Potential Diagnosis of Diabetes Mellitus. Sensors Actuators B Chem. 

2014, 199, 210–219. 

 

146. Shin, J.; Choi, S.-J.; Lee, I.; Youn, D.-Y.; Park, C. O.; Lee, J.-H.; Tuller, H. 

L.; Kim, I.-D. Thin-Wall Assembled SnO 2 Fibers Functionalized by Catalytic Pt 

Nanoparticles and Their Superior Exhaled-Breath-Sensing Properties for the 

Diagnosis of Diabetes. Adv. Funct. Mater. 2013, 23 (19), 2357–2367. 

 

147. Shi, J.; Hu, G.; Sun, Y.; Geng, M.; Wu, J.; Liu, Y.; Ge, M.; Tao, J.; Cao, 

M.; Dai, N. WO3 Nanocrystals: Synthesis and Application in Highly Sensitive 

Detection of Acetone. Sensors Actuators B Chem. 2011, 156 (2), 820–824. 

 

148. Jian, R.-S.; Sung, L.-Y.; Lu, C.-J. Measuring Real-Time Concentration 

Trends of Individual VOC in an Elementary School Using a Sub-ppb Detection 

μGC and a Single GC-MS Analysis. Chemosphere 2014, 99, 261–266. 

 

149. Peng, F.; Luoa, T.; Yuan, Y.; Qiu, L. Performance of Optimized TVOCs 

Sensor. Procedia Eng. 2010, 7, 392–398. 

 



131 
 

150. Peng, F. M.; Xie, P. H.; Shi, Y. G.; Wang, J. D.; Liu, W. Q.; Li, H. Y. 

Photoionization Detector for Portable Rapid GC. Chromatographia. 2007, 65 (5–

6), 331–336. 

 

151. Phillips, M.; Sabas, M.; Greenberg, J. Increased Pentane and Carbon 

Disulfide in the Breath of Patients with Schizophrenia. J. Clin. Pathol. 1993, 46 (9), 

861–864. 

 

152. Phillips, M.; Cataneo, R. N.; Ditkoff, B. A.; Fisher, P.; Greenberg, J.; 

Gunawardena, R.; Kwon, C. S.; Tietje, O.; Wong, C. Prediction of Breast Cancer 

Using Volatile Biomarkers in the Breath. Prediction of Breast Cancer Using 

Volatile Biomarkers in the Breath. Breast Cancer Res. Treat. 2006, 99 (1), 19–21. 

 

153. Roller, C.; Kosterev, A. A.; Tittel, F. K.; Uehara, K.; Gmachl, C.; Sivco, D. 

L. Carbonyl Sulfide Detection with a Thermoelectrically Cooled Midinfrared 

Quantum Cascade Laser. Opt. Lett. 2003, 28 (21), 2052–2054. 

 

154. Van Hieu, N.; Kim, H.-R.; Ju, B.-K.; Lee, J.-H. Enhanced Performance of 

SnO2 Nanowires Ethanol Sensor by Functionalizing with La2O3. Sensors Actuators 

B Chem. 2008, 133 (1), 228–234. 

 

155. Gouma, P.-I.; Wang, L.; Simon, S.; Stanacevic, M. Novel Isoprene Sensor 

for a Flu Virus Breath Monitor. Sensors 2017, 17 (1), 199. 

 

156. Grossherr, M.; Hengstenberg, A.; Meier, T.; Dibbelt, L.; Igl, B. W.; Ziegler, 

A.; Schmucker, P.; Gehring, H. Propofol Concentration in Exhaled Air and Arterial 

Plasma in Mechanically Ventilated Patients Undergoing Cardiac Surgery. Br. J. 

Anaesth. 2009, 102 (5), 608–613. 

 

157. Kim, S.-S.; Young, C.; Vidakovic, B.; Gabram-Mendola, S. G. A.; Bayer, 

C. W.; Mizaikoff, B. Potential and Challenges for Mid-Infrared Sensors in Breath 

Diagnostics. IEEE Sens. J. 2010, 10 (1), 145–158. 

 

158. Jian, R.-S.; Sung, L.-Y.; Lu, C.-J. Measuring Real-Time Concentration 

Trends of Individual VOC in an Elementary School Using a Sub-Ppb Detection 

μGC and a Single GC–MS Analysis. Chemosphere 2014, 99, 261–266. 

 

159. Bur, C.; Andersson, M. E.; Lloyd Spetz, A.; Schutze, A. Detecting Volatile 

Organic Compounds in the Ppb Range With Gas Sensitive Platinum Gate SiC-Field 

Effect Transistors. IEEE Sens. J. 2014, 14 (9), 3221–3228.  

 

160. Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. 

Electroceramics 2001, 7 (3), 143–167. 

 



132 
 

161. Kida, T.; Suematsu, K.; Hara, K.; Kanie, K.; Muramatsu, A. Ultrasensitive 

Detection of Volatile Organic Compounds by a Pore Tuning Approach Using 

Anisotropically Shaped SnO2 Nanocrystals. ACS Appl. Mater. Interfaces 2016, 8 

(51), 35485–35495. 

 

162. Marques, P. R.; McKnight, A. S. Field and Laboratory Alcohol Detection 

With 2 Types of Transdermal Devices. Alcohol. Clin. Exp. Res. 2009, 33 (4), 703–

711. 

 

163. Vaddiraju, S.; Gleason, K. K. Selective Sensing of Volatile Organic 

Compounds Using Novel Conducting Polymer–metal Nanoparticle Hybrids. 

Nanotechnology 2010, 21 (12), 125503.  

 

164. Huang, G. G; Wang, C.; Tang, H.; Huang, Y.; Yang, J. ZnO Nanoparticle-

Modified Infrared Internal Reflection Elements for Selective Detection of Volatile 

Organic Compounds. Anal. Chem., 2006, 78 (7), 2397–2404. 

 

165. Segev-Bar, M.; Haick, H. Flexible Sensors Based on Nanoparticles. ACS 

Nano 2013, 7 (10), 8366–8378. 

 

166. Zhang, Y.; Zheng, Z.; Yang, F. Highly Sensitive and Selective Alcohol 

Sensors Based on Ag-Doped In2O3 Coating. Ind. Eng. Chem. Res. 2010, 49 (8), 

3539–3543. 

 

167. Zhao, S.; Sin, J. K. O.; Xu, B.; Zhao, M.; Peng, Z.; Cai, H. A High 

Performance Ethanol Sensor Based on Field-Effect Transistor Using a LaFeO3 

Nano-Crystalline Thin-Film as a Gate Electrode. Sensors Actuators B Chem. 2000, 

64 (1–3), 83–87. 

 

168. Paska, Y.; Stelzner, T.; Christiansen, S.; Haick, H. Enhanced Sensing of 

Nonpolar Volatile Organic Compounds by Silicon Nanowire Field Effect 

Transistors. ACS Nano 2011, 5 (7), 5620–5626. 

 

169. Leidinger, M.; Huotari, J.; Sauerwald, T.; Lappalainen, J.; Schütze, A. 

Selective Detection of Naphthalene with Nanostructured WO3 Gas Sensors 

Prepared by Pulsed Laser Deposition. J. Sensors Sens. Syst. 2016, 5 (1), 147–156. 

 

170. Reimann, P.; Dausend, A.; Darsch, S.; Schüler, M.; Schütze; A. Improving 

MOS Virtual Multisensor Systems by Combining Temperature Cycled Operation 

with Impedance Spectroscopy.  AIP Conference Proceedings 1362, 249, 2011. 

 

171. Kim, E.; Lee, S.; Kim, J.; Kim, C.; Byun, Y.; Kim, H.; Lee, T. Pattern 

Recognition for Selective Odor Detection with Gas Sensor Arrays. Sensors 2012, 

12 (12), 16262–16273. 



133 
 

172. Parvez, Imtiaz; Jamei, Mahdi; Sundararajan, Aditya; Sarwat, A. I.. RSS 

based loop-free compass routing protocol for data communication in advanced 

metering infrastructure (AMI) of Smart Grid. In Computational Intelligence 

Applications in Smart Grid (CIASG), 2014 IEEE Symposium on, pp. 1-6. IEEE, 

2014. 

 

173. Sriyananda, M. G. S.; Parvez, Imtiaz; Güvenç, Ismail; Bennis, Mehdi; 

Sarwat, A. I. Multi-armed bandit for LTE-U and WiFi coexistence in unlicensed 

bands." In WCNC, pp. 1-6. 2016. 

 

174. Parvez, Imtiaz; Sarwat, A. I.; Wei, L.; Sundararajan; A. Securing metering 

infrastructure of smart grid: A machine learning and localization based key 

management approach.Energies. 2016. 9 (9), 691. 

 

175. Parvez, Imtiaz;  Sriyananda, M. G. S.; Guvenc, Ismail; Bennis, Mehdi; 

Sarwat, A. I. CBRS Spectrum Sharing between LTE-U and WiFi: A Multiarmed 

Bandit Approach. 2016. 

 

176. Jalal, A. H.; Umasankar, Y.; Christopher, F.; Pretto, E. A.; Bhansali , S. A 

Model for Safe Transport of Critical Patients in Unmanned Drones with a 'Watch' 

Style Continuous Anesthesia Sensor, J. of Electrochem. Soc. 2018, 165 (8), B3071 

– B3077. 

 

177. Machado, R. F.; Laskowski, D.; Deffenderfer, O. Burch, T.; Zheng, S.; 

Mazzone, P. J.; Mekhail, T.; Jennings, C.;  Stoller, J. K.; Pyle, J.; Duncan, J.; 

Dweik, R. A.; Erzurum, S. C. Detection of Lung Cancer by Sensor Array Analyses 

of Exhaled Breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. 

 

178. Phillips, M.; Cataneo, R. N.; Ditkoff, B. A.; Fisher, P.; Greenberg, J.; 

Gunawardena, R.; Kwon, C. S.; Tietje, O.; Wong, C. Prediction of Breast Cancer 

Using Volatile Biomarkers in the Breath. Breast Cancer Res. Treat. 2006, 99 (1), 

19–21. 

 

179. Potyrailo, R. A. Bio-Inspired Device Offers New Model for Vapor Sensing. 

SPIE Newsroom, 2011, 1-2. 

 

180. Korotcenkov, G.; Cho, B. K. Instability of Metal Oxide-Based 

Conductometric Gas Sensors and Approaches to Stability Improvement (Short 

Survey). Sensors Actuators B. 2011, 156 (2), 527–538. 

 

181. Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P; Tian, L.; Pan, T.; Li, R.; 

Khine, M.; Kim, J.;  Wang, J.; Kim, J. Wearable Sensors: Modalities, Challenges, 

and Prospects. Lab Chip. 2018, 18, 217-248. 



134 
 

182. Deng,Y.; Liu, N. Y.; Tsow,F.; Xian, X.; Forzani, E. S. Adsorption 

Thermodynamic Analysis of a Quartz Tuning Fork Based Sensor for Volatile 

Organic Compounds Detection. ACS Sens. 2017, 2, 1662-1668. 

 

183. Nguyen, S. T.; Lee, J-M.; Yang, Y. and Wang, X. Excellent Durability of 

Substoichiometric Titanium Oxide as a Catalyst Support for Pd in Alkaline Direct 

Ethanol Fuel Cells. Ind. Eng. Chem. Res., 2012, 51 (30), 9966–9972. 

 

184. Hong, S.; Hou, M.; Zhang, H.; Jiang, Y.; Shao, Z.; Yi, B. A High-

Performance PEM Fuel Cell with Ultralow Platinum Electrode via Electrospinning 

and Underpotential Deposition. Electrochimica Acta, 2017, 245, 403-409. 

 

185. Parvez, Imtiaz; Khan, Tanwir; Sarwat, A. I.; Parvez Z. Laa-lte and wifi 

based smart grid metering infrastructure in 3.5 ghz band." In Humanitarian 

Technology Conference (R10-HTC), 2017 IEEE Region 10, pp. 151-155. IEEE, 

2017. 

 

186. Parvez, Imtiaz; Sarwat, A. I.; Pinto, J.; Parvez, Z.; Khandaker, M. A. A 

gossip algorithm based clock synchronization scheme for smart grid applications. 

In Power Symposium (NAPS), 2017 North American, pp. 1-6. IEEE, 2017. 

 

187. Parvez, Imtiaz; Islam, N.; Rupasinghe, N.; Sarwat, A. I.; Güvenç; I. LAA-

based LTE and ZigBee coexistence for unlicensed-band smart grid 

communications." In SoutheastCon, 2016, pp. 1-6. IEEE, 2016. 

 

188. Parvez, Imtiaz; Rahmati, A.;  Guvenc, I.;  Sarwat, A. I.; Dai, H. A survey 

on low latency towards 5G: RAN, core network and caching solutions. IEEE 

Communications Surveys & Tutorials, 2018. 

 

189. Sarwat, A. I.; Sundararajan, A.; Parvez, I.; Moghaddami, M.; Moghadasi, 

A. Toward a Smart City of Interdependent Critical Infrastructure Networks. In 

Sustainable Interdependent Networks, pp. 21-45. Springer, Cham, 2018. 

 

190. Zhang, L.; Tian, F.; Kadri, C.; Xiao, B.; Li, H.; Pan, L.; Zhou, H. On-line 

Sensor Calibration Transfer Among Electronic Nose Instruments for Monitoring 

Volatile Organic Chemicals in Indoor Air quality. Sensors and Actuators B, 2011, 

160, 899–909. 

 

191. Simpson, G. Accuracy and Precision of Breath-Alcohol Measurements for 

a Random Subject in the Post absorptive State. Clin. Chem. 1987, 33 (2), 261-268. 

192. Feroldi, D.; Basualdo, M. Description of PEM Fuel Cells System. 2012, 49 

– 72.  

 

193. Kuo, C.; Lin, C.; Lai, G.; Chen, Y.; Chang, Y.; Wu, W. Mat. Trans., 2007, 

48(9), 2319. 



135 
 

194. Dini, J. W.  Plating on Invar, VascoMax C-200, and 440C stainless steel. 

Surface and Coatings Tech.. 1996, 78, 14-18. 

 

195. Watts, O. P. Rapid Nickel Plating. Am. Electrochem. Soc., Trans. 1916, 29, 

395-400.  

 

196. Geng, J.; Jefferson D. A.; Johnson, F. G. The unusual nanostructure of 

nickel–boron catalyst, Chem. Comm., 2007, (9), 969. 

 

197. Theivasanthi, T.; Alagar M. Nano sized copper particles by electrolytic 

synthesis and characterizations, Int. J. of the Phy. Sci., 2011, 6(15), 3662. 

 

198. Kulikovsky, A. A.; Berg, P. Positioning of a reference electrode in a PEM 

fuel cell. J. of The Electrochem. Soc., 2015, 162 (8),  F843–F848.   

 

199. Jalal, A. H.; Roy, S.; Alam, F. Thermal cycling layer by layer dip coating 

method for oxazine formation on clad modified optical fiber core, 2014 IEEE 

Int.conf. on advances in elec. Engg. (ICAEE), Vellore, India, January 9-11, pp. 1 – 

4.              

  

200. Nnanna, A. G. A.; Jalal, A. H. Oxazine-based sensor for contaminants 

detection, fabrication method therefor, and uses thereof., Patent No.  US 8,735,165 

B2. 2014.          

  

201. Sedesheva, Y. S., Ivanov, V. S., Wozniak, A. I., and Yegorov, A. S., Proton-

Exchange membranes based on sulfonated polymers, Oriental J. of Chem., 2016, 

32, 2283-2296.         

  

202. Spiege, C., Mathematical modeling of polymer exchange membrane fuel 

cells, PhD dissertation, University of South Florida, 2008.    

  

203. Cheah, M. J., Kevrekidis, I. G., and Benziger, J., Effect of interfacial water 

transport resistance on coupled proton and water transport across Nafion, J. Phys. 

Chem. B, 115, 10239–10250, 2011.       

  

204. Choi, P., Jalani, N. H., and Datta, R., Thermodynamics and proton transport 

in Nafion, J. of The Electrochem. Soc., 152, 123-130, 2005. 

 

205. Robertson, R.; Vanlaar, W.; Simpson, H. Continuous Transdermal Alcohol 

Monitoring: A Primer for Criminal Justice Professionals. The Traffic Injury 

Research Foundation. 2007, pp. 1 – 29. 

 

206. Antolini, E., Catalysts for direct ethanol fuel cells. J. Power Sources 170, 

1–12, 2007. 



136 
 

207. Friedl, J., Stimming, U., Model catalyst studies on hydrogen and ethanol 

oxidation for fuel cells. Electrochim. Acta 101, 41–58, 2013. 

 

208. Goodman, R. A.; Mercy, J. A.; Loya, F.; Rosenberg, M. L.; Smith, J. C.; 

Allen, N. H.; Vargas, L.; Kolts, R. Alcohol use and interpersonal violence: alcohol 

detected in homicide victims. Am. J. Public Health, 1986,  76, 144–9.  

  

209. Room, R.; Babor, T.; Rehm, J. Alcohol and public health. Lancet, 2005, 

365, 519–530.     

210.  

211. Dubowski, K. M. Quality Assurance in Breath-Alcohol Analysis. J. Anal. 

Toxicol. 1994, 18, 306–311. 

 

212. Polissar, N. L.; Suwanvijit, W.; Gullberg, R. G. The Accuracy of Handheld 

Pre-Arrest Breath Test Instruments as a Predictor of the Evidential Breath Alcohol 

Test Results. J. Forensic Sci. 2015, 60, 482–487.  

 

213. Zuba, D. Accuracy and reliability of breath alcohol testing by handheld 

electrochemical analysers. Forensic Science International. 2008, 178 (2–3), e29-

e33. 

 

214. Sakai, J. T.; Mikulich-Gilbertson, S.K., Long, R.J., Crowley, T.J., 2006. 

Validity of transdermal alcohol monitoring: fixed and self-regulated dosing. 

Alcohol. Clin. Exp. Res. 30, 26–33.  

 

215. Alam, F.; Sinha, R.; Jalal, A. H.; Manickam, P.; Vabbina, P. K.; Bhansali, 

S.; Pala, N. Sonochemically synthesized zinc oxide nanoflakes based 

electrochemical immunosensor for ethyl glucuronide (EtG) detection, ECS 

Transactions. 2017, 80 (10), 1287-1294.      

  

216. Alam, F.; Jalal, A. H.; Sinha, R.; Umasankar, Y.; Bhansali, S.; Pala, N. ZnO 

nanoflakes-based mediator free flexible biosensors for the selective detection of 

ethyl glucuronide (EtG) and lactate, SPIE Defense + Commercial Sensing. 2018, 

10639, 106392O-1 – 106392O-6.       

  

217. Jadoon, S., Karim, S., Akram, M.R., Kalsoom Khan, A., Zia, M.A., Siddiqi, 

A.R., Murtaza, G., Recent Developments in Sweat Analysis and Its Applications. 

Int. J. Anal. Chem. 2015, 2015, 1–7.  

 

218. Zhang, J., Tang, Y., Song, C., Xia, Z., Li, H., Wang, H., Zhang, J., 2008. 

PEM fuel cell relative humidity (RH) and its effect on performance at high 

temperatures. Electrochim. Acta 53, 5315–5321.  

 



137 
 

219. Lee, P.H., Hwang, S.S., 2009. Performance Characteristics of a PEM Fuel 

Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels. 

Sensors (Basel). 9, 9104–21. doi:10.3390/s91109104 

 

220. Mochalski, P., King, J., Unterkofler, K., Hinterhuber, H., Amann, A., 2014. 

Emission rates of selected volatile organic compounds from skin of healthy 

volunteers. J. Chromatogr. B 959, 62–70.  

 

221. Acevedo, C. A.; Sánchez, E. Y.; Reyes, J. G.; Young, M. E. Volatile 

Organic Compounds Produced by Human Skin Cells. Biol. Res. 2007, 40, 347–

355. 

 

222. Antolini, E., 2007. Catalysts for direct ethanol fuel cells. J. Power Sources 

170, 1–12. 

 

223. Junming, H.; Liangfei, X.; Jianqiu, L.; Ouyang, M.; Siliang, C.; Fang 

Chuan, F., Water management in a self-humidifying PEM fuel cell system by 

exhaust gas recirculation, in: 2014 IEEE Conference and Expo Transportation 

Electrification Asia-Pacific (ITEC Asia-Pacific). IEEE, pp. 1–6. 2014. 

 

224. Mihajlovic, Z.; Milosavljevic, V.; Rajs, V.; Milivojcevic, F.; Zivanov, M.; 

Miniature low cost electrochemical sensor module for measurement of gas 

concentration, in: 2014 22nd Telecommunications Forum Telfor (TELFOR). IEEE, 

pp. 702–705, 2014. 

 

225. Hruska, L. W. Smart batteries and lithium ion voltage profiles, in: The 

Twelfth Annual Battery Conference on Applications and Advances. IEEE, pp. 205–

210, 1997. 

 

226. Kim, S. S.;  Young, C.; Vidakovic, B. Gabram-Mendola, S. G. A.; Bayer, 

C. W.; Mizaikoff, B. Potential and Challenges for Mid-Infrared Sensors in Breath 

Diagnostics. IEEE Sens. J., 2010, 10 (1), 145–158. 

 

227. Kose, M. E.; Omar, A.; Virgin, C. A.; Carroll B. F.; Schanze, K. S. Principal 

Component Analysis Calibration Method for Dual-Luminophore Oxygen and 

Temperature Sensor Films:  Application to Luminescence Imaging, Langmuir, 

2005, 21, 9110−9120.  

 

228. Delpha, C.; Lumbreras M.;  Siadat, M. An intelligent gas sensor application 

for the discrimination of forane 134a and carbon dioxide gas concentrations: the 

effect of relative humidity. In ETFA 2001 8th International Conference on 

Emerging Technologies and Factory Automation. Proceedings, Antibes-Juan les 

Pins, France, 393-399, 2001.            

 

            



138 
 

229. K. M. Dubowski. Breath-alcohol simulators: scientific basis and actual 

performance. J. of analytical toxicology. 1979, 3, 177-182. 

 

230. Honemann, W.; Washington, J.; Honemann, M. C.; Nietgen G. W.; 

Durieux, M. E. Partition Coefficients of Volatile Anesthetics in Aqueous 

Electrolyte Solutions at Various Temperatures. Anesthesiology, 1998, 89, 1032-

1035. 

 

231. William, R. H.; Leikin, J. B. Medicolegal issues and specimen collection 

for ethanol testing. Laboratory medicine. 1999, 30 (8), 531-537. 

232. Modell, J. G.; Taylor, J. P.; Lee, J. Y. Breath alcohol values following 

mouthwash use. JAMA. 1993, 270, 2955–2956. 

233. Labianca, D. A. The chemical basis of the Breathalyzer: A critical analysis. 

J. Chem. Educ. 1990, 67, 259–261. 

 

234. Anderson, J. C.; Hlastala, M. P. The kinetics of transdermal ethanol 

exchange. J. Appl. Physiol. 2006, 100, pp. 649–655.     

  

235. Lockhart, S. H.; Yasuda, N.; Peterson, N.; Laster, M.; Taheri, S.; Weiskopf, 

R. B.; Eger, E. I. Comparison of percutaneous losses of sevoflurane and isoflurane 

in humans. Anesthesia & Analgesia. 1991, 72 (2),212–215. 

 

236. Lu, C.-C.; Tsai, C.-S.; Hu, O. Y.-P.; Chen, R.-M.; Chen, T.-L.; Ho, S. T. 

Pharmacokinetics of isoflurane in human blood, Pharmacology. 2008, 81, 344–349. 
  

237. Alam, F.; RoyChoudhury, S.; Jalal, A. H.; Umasankar, Y.; Forouzanfar, S.; 

Akter, N.; Bhansali, S.; Pala, N. Lactate biosensing: the emerging point-of-care and 

personal health monitoring, Biosensors and Bioelectronics, 2018, 117, 818-829. 

  

238. Jalal, A. H.; Roy, S.;  Ahad, M. A. Comparative analysis of the performance 

of polymer based opto-chemical sensor in detecting ammonia in diverse mediums, 

2013 Proceedings of IEEE Southeastcon, Jacksonville, FL, 2013, pp. 1-4.  

  

239. Jalal, A. H.; Roy, S.;  Ahad, M. A. Evanescent-based clad-modified polymer 

optical fiber sensor for ammonia gas detection, International conference on 

engineering research, innovation and education, Sylhet, Bangladesh, , 2013, pp. 

536 – 541. 

 

240. Jalal, A. H. Reversible evanescent-based opto-chemical sensor for in-situ 

detection of contaminants in static and dynamic fluid system, Thesis, Purdue 

University, 2010, 1 – 96. 

 



139 
 

241. Siddiquee, M. R.; Marquez, J. S.; Atri, R.; Ramon, R.; Mayrand, R. P.;  Bai, 

O. Movement artefact removal from NIRS signal using multi-channel IMU data, 

BioMedical Engineering OnLine, 2018, 17(1), pp.120. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



140 
 

VITA 

AHMED HASNAIN JALAL 

 

Doctor of Philosophy (2014 – 2018)  

Department : Electrical and Computer Engineering (ECE) 

University : Florida International University (FIU), Miami, FL 

 

M.S. in Engineering (2008 – 2010)   

Department : Electrical and Computer Engineering (ECE) 

University : Purdue University Northwest, Hammond, IN 

 

B.S. in Engineering (2001 – 2007) 

Department : Electrical and Electronic Engineering (EEE) 

University : Chittagong University of Engineering and Technology (CUET) 

 

PUBLICATIONS 

 

1. Fahmida Alam, Sohini RoyChoudhury, Ahmed Hasnain Jalal, Yogeswaran 

Umasankar, Shahrzad Forouzanfar, Naznin Akter, Shekhar Bhansali, Nezih Pala. 

Lactate biosensing: the emerging point-of-care and personal health monitoring, 

Biosensors and Bioelectronics, vol. 117, pp. 818-829, October 15, 2018.  

2. Ahmed Hasnain Jalal, Fahmida Alam, Sohini RoyChoudhury, Yogeswaran 

Umasankar, Nezih Pala, Shekhar Bhansali. Prospects and challenges of volatile organic 

compound sensors in human healthcare, ACS Sensors, Vol. 3 (7), pp. 1246-1263, June 

8, 2018.  

3. Ahmed Hasnain Jalal, Yogeswaran Umasankar, Fraker Christopher, Ernesto A. Pretto, 

Shekhar Bhansali. A model for safe transport of critical patients in unmanned drones 

with a 'watch' style continuous anesthesia sensor, J. of Electrochemical Society (Focus 

Issue on Ubiquitous Sensors and Systems for IoT), vol. 165, Issue 8, pp. B3071 – 

B3077, April 6, 2018.                                                     

4. Ahmed Hasnain Jalal, Yogeswaran Umasankar, Pablo J. Gonzalez, Alejandro Alfonso, 

Shekhar Bhansali. Multimodal technique to eliminate humidity interference for specific 

detection of ethanol, Biosensors and Bioelectronics, vol. 87, pp. 595-608, January 15, 

2017.     

5. Sohini RoyChoudhury, Vaishali Rawat, Ahmed Hasnain Jalal, Sangeeta N. Kale, 

Shekhar Bhansali. Recent advances in metamaterial split-ring-resonator circuits as 

biosensors and therapeutic agents, Biosensors and Bioelectronics, vol. 86, pp. 522–530, 

December 15, 2016.  

6. Syed Khalid Pasha, Ahmed Hasnain Jalal, Aparajita Singh, Shekhar Bhansali. “Chapter 

1: Nanobiotechnology: An Abrupt Merger”, Nanobiotechnology for Sensing 

Applications: From Lab to Field, Apple Academic Press - CRC Press, ISBN 978-1-77-

188328-3, pp. 1-42, August 23, 2016.   

7. A. G. Agwu Nnanna, Ahmed Hasnain Jalal. Patent No.  US 8,735,165 B2. Oxazine-

based sensor for contaminants detection, fabrication method therefor, and uses thereof. 

May 27, 2014. 



141 
 

8. Ahmed Hasnain Jalal, Jinsong Yu, A. G. Agwu Nnanna. Fabrication and calibration of 

oxazine-based optic fiber sensor for detection of ammonia in water, J. of Applied 

Optics, Vol. 51, Issue 17, pp. 3768 – 3775, June 10, 2012. (I.F.: 1.65)                                               

9. Ahmed Hasnain Jalal, Fahmida Alam, Ashfaq Ahmed, Mohammad A. Ahad. Precise 

calibration of optical fiber sensor for ammonia sensing using multivariate analysis, 

SPIE Defense + Commercial Sensing, vol. 10654, 106540W-1 – 106540W-7, 2018.              

10. Fahmida Alam, Ahmed Hasnain Jalal, Raju Sinha, Yogeswaran Umasankar, Shekhar 

Bhansali, Nezih Pala. ZnO nanoflakes-based mediator free flexible biosensors for the 

selective detection of ethyl glucuronide (EtG) and lactate, SPIE Defense + Commercial 

Sensing, vol. 10639, pp. 106392O-1 – 106392O-6, 2018.  

11. Fahmida Alam, Ahmed Hasnain Jalal, Raju Sinha, Yogeswaran Umasankar, Shekhar 

Bhansali, Nezih Pala. Sonochemically synthesized ZnO nanostructure-based L-lactate 

enzymatic sensors on flexible substrates, MRS Advances, vol. 3 (5), pp. 277-282, 2018. 

12. Ahmed Hasnain Jalal, Yogeswaran Umasankar, Mustahsin Chowdhury, Shekhar 

Bhansali. A fuel cell sensing platform for selective detection of acetone in 

hyperglycemic patients, ECS Transactions, vol. 80 (10), pp. 1369 – 1378, 2017. 

13. Fahmida Alam, Raju Sinha, Ahmed Hasnain Jalal, Pandiaraj Manickam, Phani Kiran 

Vabbina, Shekhar Bhansali, Nezih Pala. Sonochemically synthesized zinc oxide 

nanoflakes based electrochemical immunosensor for ethyl glucuronide (EtG) detection, 

ECS Transactions, vol. 80 (10), pp. 1287-1294, 2017.  

14. Ahmed Hasnain Jalal, Yogeswaran Umasankar, Shekhar Bhansali. Development and 

characterization of fuel cell sensor for potential transdermal ethanol sensing, ECS 

Transections, vol. 72 (31), pp. 25-31, 2016. 

15. Yogeswaran Umasankar, Ahmed Hasnain Jalal, Pablo J. Gonzalez, Mustahsin 

Chowdhury, Alejandro Alfonso, Shekhar Bhansali. Wearable alcohol monitoring 

device with auto-calibration ability for high chemical specificity, IEEE 13th 

International conference on wearable and implantable body sensor networks (BSN), 

San Francisco, California, June 14 – 17, 2016. 

16. Ahmed Hasnain Jalal, Sajib Roy, Fahmida Alam. Thermal cycling layer by layer dip 

coating method for oxazine formation on clad modified optical fiber core, IEEE 

International conference on advances in electrical engineering, Vellore, India, January 

9-11, 2014.  

17. Ahmed Hasnain Jalal, Sajib Roy, Mohammad A. Ahad. Comparative analysis of the 

performance of polymer based opto-chemical sensor in detecting ammonia in diverse 

mediums, IEEE Southeast conference, Jacksonville, Florida, April 4-7, 2013. 

18. Ahmed Hasnain Jalal, Sajib Roy, Mohammad A. Ahad. Evanescent-based clad-

modified polymer optical fiber sensor for ammonia gas detection, International 

conference on engineering research, innovation and education, Sylhet, Bangladesh, 

January 11-13, 2013.  


	Florida International University
	FIU Digital Commons
	11-5-2018

	Multivariate Analysis for the Quantification of Transdermal Volatile Organic Compounds in Humans by Proton Exchange Membrane Fuel Cell System
	Ahmed Hasnain Jalal
	Recommended Citation


	Multivariate Analysis for the Quantification of Transdermal Volatile Organic Compounds (VOCs) in Humans

