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ABSTRACT OF THE DISSERTATION 
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by 

Jessica Audrey Lapierre 
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Professor Nazira El-Hage, Major Professor 

Early in infection, HIV crosses the blood-brain barrier and induces neuropathology. Viral 

presence in the CNS coupled with secretion of neurotoxic proteins causes 

neuroinflammation, glial dysfunction, excitotoxicity, and neuronal death. Despite advances 

in combined antiretroviral therapy, HIV-infected patients present with a spectrum of 

cognitive and psychomotor deficits collectively referred to as HIV-associated neurological 

disorders (HAND). A subset of HAND patients abuses drugs such as opiates like heroin 

and morphine show an exacerbation and rapid progression of HIV neuropathology; 

however, the mechanisms of this synergy are not well understood. Autophagy is a 

lysosomal degradative process which eliminates and recycles cytosolic components and 

is implicated in facilitating HIV-1 replication in the CNS and periphery, and in Tat-induced 

neurodegeneration. When a key initiator of autophagy Beclin 1 was silenced using 

siRNAs, there was a marked reduction of HIV-1 replication in human microglia and 

astrocytes and the corresponding inflammatory response. As such, the goal of the current 

study is to determine if diminished Beclin 1 is neuroprotective against Tat-and morphine-

induced neurodegeneration using heterozygous Beclin 1 (Becn1+/-) mice. Examination of 

Tat-and morphine-induced inflammatory molecule secretion revealed that Becn1+/- mixed 

astrocyte and microglia (glia) exhibited attenuated secretion of cytokine IL-6 and 
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chemokines RANTES and MCP-1 compared to control (C57BL/6J) glia, an effect 

mediated through the μ-opioid receptor. Dysregulation of autophagy-related gene 

expression and excessive intracellular calcium accumulation were limited in Becn1+/- glia. 

When determining the effects of Tat-and morphine co-exposure on neuronal survival in 

vitro, we found Becn1+/- neurons were particularly sensitive to injury, excitotoxicity, and 

toxic exposures; however, when C57BL/6J neurons were exposed to conditioned media 

of C57BL/6J and Becn1+/- glia treated with Tat and morphine, neurons treated with 

Becn1+/- supernatant had better outcomes than those treated with C57BL/6J conditioned 

media. Furthermore, despite minimal difference between strains in locomotor assessment, 

we observed significantly greater striatal neuron losses in adult C57BL/6J mice exposed 

to intrastriatal Tat-and systemic morphine compared to Becn1+/- mice. Our studies 

demonstrate the potential of targeting Beclin 1 in glia for the prevention of Tat and opiate-

induced CNS dysfunction. 
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CHAPTER 1: AN INTRODUCTION TO HIV-ASSOCIATED NEUROLOGICAL 

DISORDERS (HAND) AND AUTOPHAGY IN THE CONTEXT OF OPIATE ABUSE  

 

1.1  Introduction 

Human immunodeficiency virus (HIV) is a lentivirus member of the Retroviridae family 

which causes systemic infection and can ultimately lead to acquired immunodeficiency 

syndrome (AIDS) [1]. Currently, over 36 million people worldwide are living with HIV/AIDS 

with approximately 1 million people dying of AIDS-related illnesses [2]. Characterized as 

an immune system disorder, the virus targets primarily CD4+ T cells as well as antigen-

presenting cells such as macrophages and dendritic cells [3]. During infection, the HIV 

envelope glycoprotein gp120 interacts with the host CD4 receptor which induces a 

conformational change in the envelope protein allowing the gp41 protein to also bind host 

co-receptors C-C motif chemokine receptor 5 (CCR5) or C-X-C motif chemokine receptor 

4 (CXCR4) found on the surfaces of antigen presenting cells and memory CD4+ T cells 

[4]. The viral selectivity or preference for one co-receptor over the other is termed as 

tropism, whereby R5-tropic viruses prefer the CCR5 co-receptor and X4-tropic prefer the 

CXCR4 co-receptor. Once infection is established, the virus is able to efficiently evade 

antiviral defense mechanisms while depleting CD4+ T cells and other immune cells, 

creating viral reservoirs,  enhancing its own replication, and inducing the release of 

inflammatory cytokines in the process [5]. Despite all of this, it is not the systemic viremia 

that is responsible for the mortality due to HIV infection but rather the widespread 

exhaustion of the immune system leading to the increased susceptibility to opportunistic 

pathogens [6].  In addition, viral proteins which are produced and/or secreted by infected 

cells may trigger toxic effects to neighboring cells. These prospective apoptotic viral 

proteins including the envelope protein gp120, viral protein R (Vpr), viral infectivity protein 
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(Vif), negative factor (Nef) and the transactivator of transcription (Tat), are important in 

mediating the infectivity and replication of the virus [7]. It was only with the advent and 

evolution of antiretroviral therapy that viral titers have become manageable leading to a 

drastic decrease in the mortality of infected persons.  

 

Though HIV primarily affects the immune system, it can cross the blood brain barrier (BBB) 

during early infection and affect the nervous system [8, 9]. The most well characterized 

mechanism is termed the “Trojan horse” theory where infected monocytes (CD14+CD16+) 

cross the BBB due to increased response to chemokines such as CCL2 (also known as 

MCP-1) which are induced by viral presence in the CNS [10, 11]. Within 4 to 8 days of 

peripheral infection, the virus enters the CNS and is spread to various other cell types 

including other monocytes/macrophages, microglia, endothelial cells, and to a lesser 

extent, astrocytes [12]. The productive and latent infection within these replication-

competent cells, despite long term antiretroviral treatment, establishes and maintains the 

CNS as a viral reservoir capable of releasing neurotoxic viral proteins.   

 

Despite the advances in combined antiretroviral therapy (cART), HIV infection in the brain 

remains persistent while causing a myriad of neurological problems including cognitive 

dysfunction, behavioral changes, and motor impairment. These neurological side effects 

of HIV infection in the nervous system are collectively known as HIV-Associated 

Neurological Disorders (HAND) and are seen in a percentage of the HIV infected 

population [13, 14]. In addition, certain trends in co-morbidities have emerged within 

subsets of HIV infected patients such as within the opiate using community. With 

approximately 30% of HIV infected persons being injection drug users (IDU), research has 

shown that the neural dysfunction and progression of HAND is accelerated in opiate drug 
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abusers [15]. It is important to note that synthetic opioids are also used for analgesic 

treatment of neuropathic pain.  Numerous mechanisms have been proposed to explain 

opiate exacerbation of HIV pathogenesis, most of which are based upon host pathways 

utilized by the virus. One such target of increasing interest is the autophagy pathway which 

is utilized by HIV to enhance its own viral biogenesis [16]. 

 

The term “autophagy” was created by Christian de Duve in 1963, winner of the 1974 Nobel 

Prize in Physiology for the discovery of lysosomes and peroxisomes [17]. Derived from 

the Greek auto- meaning “self” and phagein meaning “to eat”, he described the observed 

cellular process wherein cytosolic organelles are delivered to the lysosome within double-

membraned vesicles as seen through electron microscope. Initially described as “focal 

cytoplasmic degradation,” studies documented the multistage process in which 

sequestered components of cytoplasm were brought to lysosomes for the reutilization of 

cellular materials [18]. It was with de Duve’s study of glucagon-induced cell degradation 

in the liver that lysosomes were recognized as the site of intracellular autophagy [19, 20]. 

Figure 1.1 Summary of mammalian autophagy pathways. 
Autophagy is classified as one of three types: Macroautophagy, microautophagy, and chaperone-
mediated autophagy. Macroautophagy (herein termed autophagy), can be broken down into 3 
stages: initiation, nucleation, and expansion representing the activation of the pathway, early 
formation of the phagophore membrane, and elongation of the membrane to form the completed 
autophagosome. Recreated from [21]. 
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The autophagy pathway can be characterized as one of three types (Figure 1.1; adapted 

from  [21]), macroautophagy, microautophagy, or chaperone-mediated autophagy, each 

mediated by their respective autophagy-related genes, all of which terminate at the 

lysosome [22]. These three pathways predominantly differ in the locations where 

engulfment occurs, and the proteins involved in the process. The most studied of these is 

macroautophagy and will henceforth be referred to as autophagy. From its discovery in 

1963 to today, the attention to autophagy in research has shifted from understanding of 

the mechanism to determining its roles in physiology and the pathogenesis of disease.  

 

Numerous connections between autophagy and the pathogenesis of HIV are reported. 

The role of autophagy as an immune regulator provides a link between the pathway and 

the HIV immune response. As such, exploring that link between autophagy and HIV 

pathogenesis is of increasing interest. During HIV infection, autophagy was reported to be 

downregulated in both macrophages and dendritic cells, with macrophages and CD4+ T 

cells shown to accumulate autophagic vacuoles [16, 23]. The effects of HIV on autophagy 

in immune cells may provide the ideal state for viral persistence, immune evasion, and 

cell death in the CNS and periphery. Based on this research, autophagy is of particular 

interest for study because of its contributions to HIV neuropathology. 

 

1.2  Brief overview of the HIV genome  

As previously mentioned, HIV is a lentivirus belonging to the Retroviridae family and is 

transmitted as a single stranded, positive-sense, enveloped RNA virus [1]. Measuring 

about 100 nm in diameter, each virus contains a lipid bilayer viral envelope that 

encompasses the capsid, or protein shell, and the matrix which in turn hold the genetic 

information [24]. Within the capsid are two single strands of RNA which contains the virus’s 
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nine genes encoding 15 viral proteins, and the viral enzymes reverse transcriptase (RT) 

and integrase (IN) that are responsible for conversion of RNA to DNA and integration of 

viral DNA into the host genome respectively (Figure 1.2) [25-27]. The viral genome 

contains various structural and functional proteins and enzymes allowing for the replication 

and production of new viruses, but these have other roles in HIV persistence and 

pathogenesis.   

 

The genes encoding the structural proteins include gag, pol, and env. Gag, or group-

specific antigen, codes for a precursor to the p55 gag polyprotein which is processed by 

the viral enzyme protease into the numerous structural peptides such as p17/MA, p24/CA, 

and p7/NC which make up the matrix, capsid, and nucleocapsid proteins [26, 27]. The pol 

gene codes for numerous viral enzymes which are essential to viral infection, integration, 

Figure 1.2 Diagram depicting components of HIV virion and the viral genome 
The HIV genome consists of 9 genes encoding 15 proteins utilized for viral replication and infection 
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and replication. These include the reverse transcriptase (RT), integrase (IN), RNase H, 

and protease (PR) enzymes, the last of which is used to process the primary protein 

products such as the gag proteins [27, 28].  The env protein might be considered one of 

the most important structural proteins in terms of the study of HIV in the sense that it 

encodes the gp160 envelope protein which is the main determinant of HIV tropism and 

infectious capability. Cleaved by a host cell protease, gp160 is processed in the 

endoplasmic reticulum into two proteins, glycoprotein gp120 and transmembrane protein 

gp41, whose respective functions are for CD4 receptor binding and target cell 

attachment/fusion in HIV entry [27, 29]. The remaining genes encode both essential and 

accessory regulatory proteins which function to enhance viral reproduction (Table 1.1). 

These include the essential proteins, Tat and regulator of RNA splicing and transport 

(Rev), and the accessory proteins, Nef, Vpr, Vif, and virus protein U (Vpu) [27]. Of these, 

it is the viral protein Tat which, due to its significant role in HIV replication and widespread 

effects in various tissues, will be the focus of the work presented.  

 

Structurally, HIV Tat is a 14-15kDa protein which is generally expressed as either a 72-

amino acid protein encoded by only one exon, or a 86-101 amino acid protein encoded by 

Table 1.1 HIV gene products and functions 
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two exons; these differences are dependent on viral strain and play significant roles in HIV 

infectivity (Figure 1.3) [30].  In the early stages of infection, very low levels of RNA 

transcripts are made, allowing for small production of Tat protein. Despite the limited 

amount of Tat, it facilitates the rapid enhancement of viral replication. As such, it is one of 

the first proteins to be expressed after initial infection [31]. The approximately 10 amino 

acid basic domain of Tat, consisting of mostly arginine and lysine residues, binds to an 

RNA stem-loop structure near the 5’ long terminal repeat (LTR) region which is known as 

the trans-activation response element or TAR region [32, 33]. Binding to TAR activates 

the recruitment and interaction with a host protein complex named positive transcription 

elongation factor b (P-TEFb) which consists of cyclin-dependent kinase (CDK9) and cyclin 

T1 (CycT1). Tat also associates with RNA polymerase II complexes through CDK9 and it 

is through both of these interactions that allow Tat to increase the rate of whole-genome 

transcription and the production of full-length viral RNA [32, 34, 35]. Tat is often considered 

one of the most interesting viral proteins to study due to its multifaceted characteristics 

and functions. The basic domain of Tat is largely used for binding not only to TAR, but 

also various cell surface receptors which confer its pathogenicity [31, 36]. The RGD 

domain found in exon 2 has also been shown to bind integrin receptors to facilitate cellular 

entry [37]. Additionally, Tat contains a protein transduction domain which allows for its 

passage across plasma membranes into cells, as well as a nuclear localization signal 

which facilitates further translocation into the nucleus [31, 38]. Given that Tat is actively 

secreted by HIV infected cells [39, 40], these characteristics make the protein a menace 

not only to infected cells, but also to bystander cells within the environment. 
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1.3  HIV-Associated Neurological Disorders (HAND) 

The term “AIDS dementia complex” (ADC) was coined in 1987 by Navia and Price to 

describe complications affecting central and peripheral nervous systems in HIV-infected 

patients [41, 42]. Progressive encephalopathy from HIV infection in the brains of patients 

was detected and later called sub-acute encephalitis or HIV-encephalitis (HIVE), which is 

the main pathology recognized [43]. Following autopsy of HIV-infected patients’ brain 

tissue, inspection revealed perivascular macrophage and lymphocyte infiltration, 

multinucleated giant cells, myelin loss, and white matter astrogliosis [44-47]. As imaging 

techniques improve, earlier diagnostic techniques for brain abnormalities through non-

invasive imaging methods such as functional magnetic resonance imaging (fMRI), 

positron emission tomography (PET), and magnetic resonance spectroscopy (MRS) are 

gradually coming to the forefront [48]. AIDS dementia was associated with motor deficits 

and neurological impairments; however, the symptoms observed in patients were broad 

with varying levels of severity. As such, the term HIV-associated neurological disorders 

(HAND) was implemented to encompass the range of neurological deficits attributed to 

Figure 1.3 Functional domains of HIV Tat 
HIV Tat protein comprised of an N-terminal proline-rich domain, a cysteine-rich domain, a core, a 
basic domain (basic), and a glutamine-rich domain within the 1-72 amino acid exon 1. Full length 
HIV Tat includes a second exon with an RGD (Arg-Gly-Asp) domain and contains 101 amino acids.  
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HIV infection in the CNS. HAND is thought to be a consequence of HIVE with its 

characteristic inflammation leading to cognitive, motor, and behavioral impairments. 

Clinically, HAND is differentiated into three categories based upon severity: asymptomatic 

neurological impairment (ANI), mild neurological disorder (MND), and HIV-associated 

dementia (HAD) being the most severe [49]. With the advent of combined anti-retroviral 

therapy (cART), the prevalence of HAD has drastically decreased; however, occurrence 

of ANI and MND have remained steady [50]. The risk of HAND increases with age, as do 

other risk factors such as cardiovascular disease, co-infection with hepatitis C, and 

substance abuse [51]. There are varying effects of HIV infection in the CNS, depending 

on the cell type affected, which produce the characteristics of HAND (Figure 1.4). 

 

1.3.1 Microglial activation contributions to HAND 

Perivascular macrophages and microglia are the predominant actively infected cell types 

within the CNS and aid in viral persistence as a cellular reservoir for HIV [52-54]. As such, 

glial reactions to infection and uninfected bystanders putative contributors to the 

neurotoxicity and neuroinflammation in HAND [47]. Functionally, microglia survey the CNS 

environment and aid in the clearance of debris, accumulated proteins, or invading 

pathogens and are the primary source of inflammatory cytokines in the brain [55]. 

However, when infected by HIV, microglia facilitate the biogenesis, replication, and 

release of new virions while still producing proinflammatory cytokines such as IL-1β, IL-6, 

TNF-α, MCP-1 and IL-8 [56]. In addition to the production of virus, infected microglia 

secrete the viral protein Tat which is neurotoxic [57]. Tat mRNA, protein, and antibodies 

to Tat are detectable in the CNS of HIV-infected patients with higher levels observed in 

HAND [58-60]. Secretion of Tat into the cellular environment can propagate microglial 

activation and enhanced secretion of neurotoxic factors which may add to neuronal injury.  
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1.3.2 Astrocytic dysfunction in HAND 

Astrocytes are the most abundant cell type in the brain and serve to maintain an optimal 

microenvironment for neurons. The functions of astrocytes are varied including uptake of 

neurotransmitters, BBB maintenance, nutrient metabolism, growth factor secretion, and 

modulating synaptic transmission [61, 62]. The extent of astrocyte infection is controversial 

because the level of virion production is markedly less than microglia [63]. Post-mortem 

studies looking at astrocyte activation following HIV infection have detected the presence 

of early HIV proteins such as Nef, Gag, and Rev which support the concept of astrocytic 

infection [64]. Regardless, the effects of HIV on astrocytes include impairing BBB function, 

HIV Tat inducing the production of cytokines, chemokines, and activation of nitric oxide 

synthase [65-68]. TNF-α released by activated microglia and astrocytes inhibits glutamate 

uptake in astrocytes through excitatory amino acid receptors. The buildup of extracellular 

glutamate can subsequently lead to neuronal excitotoxicity [69, 70].  

 

1.3.3 Cumulative effect of HIV infection on neurons 

In general, it is not believed that neurons can support HIV infection or sustain replication 

despite the expression of cell-surface receptors such as CCR5 and CXCR4 [71]. However, 

it has been well documented that the presence of these receptors still render neurons 

susceptible to injury by viral proteins such as Tat and gp120 and by glial-derived 

inflammatory cytokines, which may explain neuronal damage observed in HAND [72, 73]. 

In addition, neurons are subject to the fluctuations of the brain environment due to HIV-

infection in other brain cells. As discussed above, microglia and astrocytes which are 

normally charged with the maintenance of homeostasis, can be dysfunctional upon HIV 

infection leading to the influx of inflammatory cytokines (IL-1β, IL-6) and accumulation of 
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normally non-toxic substances (nitric oxide, glutamate) leading to excitotoxicity and 

neuronal death.  For example, it has been shown that Tat and gp120 are able to interact 

with N-methyl-D-aspartate receptors (NMDARs) which propagate excitatory signal 

transmission from glutamate binding through regulation of ion (Ca2+, Na+, K+) flux. The 

direct binding of Tat or gp120 to NMDARs on human neurons may cause lethal influx of 

calcium ions [74, 75]. These viral proteins may have direct toxicity on neurons through 

Figure 1.4 Overview of the effects of HIV on the CNS 

HIV-infected monocytes and circulating virus cross the blood brain barrier to spread infection in the 
CNS. Infected macrophages and microglial cells release neurotoxic viral proteins that trigger 
astrocyte activation, which results in increased glutamate release and reduced glutamate uptake. 
Elevated extracellular glutamate levels cause neuronal ion imbalances that lead to aberrant 
synaptodendritic pruning and neuronal injury. Infection and viral protein presence lead to microglial 
activation and increased production of chemokines and cytokines and reactive oxygen species that 
contribute to neuronal injury. 
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pathways such as mitogen-activated protein kinase (MAPK) p38 signaling cascades 

leading to caspase activation and apoptosis [76, 77].  

 

1.4  Interlinked epidemics between HIV and opiate drug abuse 

The use of injection drugs is a significant risk factor to the acquisition and spread of HIV 

due to the sharing of needles [78]. Those HIV infected individuals who use opiates for the 

treatment of neuropathic pain are also at risk for the exacerbation ofsevere HAND. Drugs 

of abuse (morphine, cocaine, and methamphetamine) have been reported to compromise 

the immune system which when in combination with HIV, leads to an exacerbated immune 

depletion. Studies have reported that drug users tend to have increased risk for HIV 

infection, poor adherence to and efficacy of cART, and increase viral replication [79]. With 

respect to HAND, drug abusers show a dramatic increase in neuroinflammation, oxidative 

stress, alteration in BBB integrity, and frequency of HIVE [80, 81]. In addition, chronic 

exposure to opioids has been shown to worsen brain pathology, even in patients adhering 

to cART treatment, with symptoms of heightened CNS inflammation and increased 

cognitive deficits [82-84]. Clinically, patients chronically using opiates are found to have 

higher levels of microglial activation driving immune cell recruitment and 

neuroinflammation [85]. As such, the clinical characteristics of HIV infection in the brain 

can be accelerated and exacerbated by drug abuse [86].  

 

Morphine is an opiate derived from the Papaver somniferum or opium poppy with 

analgesic characteristics that act directly on the CNS [87]. Within the brain, morphine is 

glucuronidated through the phase II metabolic actions of UDP-glucuronosyl transferase-
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2B7. Of the metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide 

(M6G) (Figure 1.5; adapted from [88]), only M6G is able to bind to μ-opioid receptors 

(MORs) and have analgesic effects [89]. Structurally, morphine mimics endogenous 

opioids such as endorphins and binds as an agonist primarily to MORs located throughout 

the brain (with high densities in the caudate nucleus, putamen, hypothalamus and 

amygdala) and elsewhere [90, 91]. The three most well-known classifications of opioid 

receptor are the  (mu),  (kappa), and  (delta) receptors, with -opioid receptor (MOR) 

having the strongest affinity for morphine, the -opioid receptor (DOR) having a mild 

affinity, and the -opioid receptor (KOR) having little to no affinity [92, 93]. These opioid 

receptors are inhibitory G-coupled protein receptors (GPCRs) which respond to ligand 

binding by activating inhibitory (Gi) protein second messengers which inhibit the activity of 

adenylate cyclase and prevent cyclic AMP (cAMP) production. Reduced cAMP leads to 

opening of K+ channels while additional G proteins block influx of Ca2+ leading to 

hyperpolarization and reduced likelihood of an action potential. This quieting along pain 

sensory pathways ultimately leads to the sensation of pain relief or nociception depending 

Figure 1.5 Morphine metabolism 
Morphine is primarily metabolized in the liver by uridine-5’-diphosphate (UDP) 
glucuronosyltransferase and at nanomolar concentrations in the brain to morphine-3-glucuronide 
(M3G) and morphine-6-glucuronide (M6G). 



14 

on the receptor activated (Figure 1.6) [94]. MOR activation is also associated with reward 

pathways of the dopaminergic system which constitute the risk of opiate abuse [95]. The 

DOR may supplement MOR activity given that it can also affect reward pathways; 

however, it can only modulate existing MOR activity and as such, has less risk for 

addiction. The KOR counteracts MOR/KOR activity and has an anti-reward effect [96, 97]. 

It is important to note that studies have found activation of opioid receptors in immune 

cells to modulate inflammatory processes which likely contributes to neuroinflammation 

[98]. Though a “typical” opiate abuser would be considered as an individual who abuses 

heroin, an alternatively derived form of morphine, there is rising abuse of prescription 

opiates [62]. Chronic opiate abuse was reported to advance neurodegenerative changes 

in the CNS similar to Alzheimer’s disease (AD) from a clinical study in Edinburgh, UK [99]. 

As such, there is compelling evidence to investigate the interactions of HIV and opiate 

abuse in the context of HAND. 

Figure 1.6 Mechanisms of opioid receptor signaling 
Morphine binding to the opioid receptor causes dissociation of inhibitory G-proteins Gα and Gβγ 
subunits which subsequently act on effector proteins and channels. Agonist stimulation leads to 
Gα-mediated inhibition of cyclic adenosine monophosphate (cAMP) production and K+ channel 
opening. Gβγ subunit binding to Ca2+ channels cause channel closing leading to hyperpolarization 
of the cell. AC = adenylate cyclase. 
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In vitro studies with HIV/Tat and morphine have demonstrated how opioid exposure can 

play a key role in the enhanced pathogenesis of the virus within the CNS. As described 

earlier, HIV can show differing effects on the CNS depending on the cell type being 

targeted. Tight junction proteins such as ZO-1 and occludin are dysregulated when 

exposed to morphine alone or in combination with Tat indicative of BBB integrity 

compromise. This dysfunction was also associated with increases in intracellular Ca2+ 

within brain microvascular endothelial cells and increased transmigration across the BBB 

[81].  In striatal neurons, morphine has been presented to enhance HIV/Tat toxicity 

through caspase cascade mechanisms mediated specifically through opioid receptors 

[100, 101]. Later studies showed that while HIV/Tat exposure in combination with 

morphine may have inherent toxicity to neurons, the most harmful of neurotoxic effects of 

are mediated through the activation of MORs on glial cells [102]. It is suggested that MOR 

agonists are able to potentiate the expression of the HIV co-receptors CCR5 and CXCR4 

on peripheral and brain cells which facilitates viral entry [103]. Within infected glial cells 

such as microglia and astrocytes, HIV/Tat release triggers cytokine release, subsequent 

neuroinflammation, destabilizes intracellular ion homeostasis, and increases extracellular 

glutamate, ATP levels, and ROS/RNS which have all been shown to be modulated by 

morphine co-exposure [104-107].This disruption in glial utility culminates in reactive 

microglia and astrocytes which ultimately causes neuronal injury [54]. It is therefore clear 

that presence of HIV in the CNS has detrimental effects to normal function on numerous 

levels. In addition, the abuse of opioids potentiates this damage and hastens the 

acceleration to neurological impairment. Despite this knowledge, an underlying 

mechanism mediating this exacerbation remains unclear. Herein we provide evidence 
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supporting the autophagy pathway as a potentially significant facilitator of HIV and opioid 

induced neurodegeneration.  

 

1.5  Mechanisms of Autophagy  

The process of autophagy is an evolutionarily conserved, highly regulated pathway in 

which cytosolic material including superfluous and damaged organelles, cytosolic 

proteins, and invasive microbes are degraded and recycled for components. This pathway 

is present at basal levels within all cells and acts as a response to increases in cellular 

stress as a means of avoiding cell death and an alternative to the ubiquitin-proteasome 

system. The defining feature of autophagy is the formation of the double-membrane bound 

phagophore and autophagosome (Figure 2) which when visualized using electron 

microscopy, acts as the gold standard for verifying activity [108]. The actions of autophagy 

are dependent on the genes and their respective proteins which have been categorized 

from studies in Saccharomyces cerevisiae. The autophagy machinery (Table 1.2; adapted 

from [108]) consists of over 34 autophagy-related genes (ATG) which have been identified 

from genetic studies in yeast, most having eukaryotic homologs with high protein 

sequence identity [109, 110].  

 

The autophagy pathway can be divided into three morphological stages (Figure 2): 

induction, elongation and closure, and maturation. Induction is the first step in the pathway 

and is a consequence of a variety of signaling pathways acting on one of two targets, 

mammalian target of rapamycin (mTOR) and adenosine monophosphate activated protein 

kinase (AMPK). These protein kinases act as sensors for the cellular environment with 

AMPK being activated upon starvation conditions (and mTOR being inhibited) to directly 

modulate the phosphorylation of the unc-51-like kinase (ULK1/2) complex [111, 112].  
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Under nutrient-rich conditions, mTOR phosphorylates thus inhibiting the ULK1/2 and 

ATG13 complex activity which in turn disrupts the interaction between ULK1/2 and AMPK 

[113, 114]. Alternatively, when autophagy is induced under starvation, mTOR is freed from 

the complex, leading to the activation of ULK1/2 and phosphorylation of ATG 13 and 

RB1CC1 [115]. Once the ULK 1/2 complex has been activated and translocates to the site 

of autophagosome formation, vesicle nucleation occurs which is characterized by the 

recruitment of the class III phosphatidylinositol 3-kinase (PI3K) nucleation complex 

consisting of Beclin 1, catalytic subunit type 3 (PIK3C3) also called vacuolar protein sorting 

34 (Vps34), PIK3 regulatory subunit 4 (PIK3R4) also called vacuolar protein sorting 15 

(Vps15), activating molecule in BECN1 regulated autophagy protein 1 (AMBRA1), ATG14 

or ultraviolet radiation associated (UVRAG), and Bax-interacting factor 1 (BIF1; also 

known as SH3GLB1) [116]. Beclin 1 interacts with and is negatively regulated by the anti-

Table 1.2 Mammalian autophagic machinery involved in autophagosome formation 
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apoptotic proteins BCL-2 and BCL-XL at the endoplasmic reticulum [117]. The 

displacement of BCL-2 by BCL-2 homology 3 (BH3)-only proteins or phosphorylation by 

c-Jun N-terminal kinase (JNK) causes the PI3K nucleation complex to be recruited to the 

induction site at the endoplasmic reticulum where it is phosphorylated by ULK1 [118]. 

Formation of the PI3K complex activates the kinase functions of PIK3C3 to phosphorylate 

phosphatidylinositol yielding the signaling lipid phosphatidylinositol 3-phosphate (PI3P) 

which is required for the assembly of the phagophore membrane [119].  

 

The next step in the autophagy process is membrane elongation which uses two ubiquitin-

like conjugation systems, the ATG5-ATG12/ATG16 complex and the LC3 complex [120]. 

In complex with WIPI 1/2 are ATG2 and the transmembrane protein ATG9 which conducts 

a membrane cycling system between peripheral sites and the phagophore assembly site 

or pre-autophagosomal structure (PAS) [121]. Under nutrient rich conditions, ATG9A 

localizes to the trans-Golgi network as well as to late endosomes. ATG9-positive 

membranes are shuttled to the phagophore assembly site for growth of the 

autophagosome based upon the activity of ULK 1/2 [122, 123]. During this process of 

phagophore formation, the PI3P molecule recruits ubiquitin-like conjugation systems 

ATG5-ATG12/ATG16 complex and the LC3 complex [120]. ATG5-ATG12/ATG16 

complex assembly is initiated by ATG7 acting as an E1-like enzyme on ATG12 followed 

by ATG10, an E2-like enzyme, which conjugates ATG5 to ATG12. ATG16 is also recruited 

and the complex localizes to the autophagosome elongation site. The LC3 complex 

contains microtubule associated 1A/1B-light chain 3 (LC3) and GABA receptor-associated 

protein (GABARAP) in addition to ATG7, ATG3 (E2-like enzyme), and ATG4. ATG4 is a 

cysteine protease and upon activation, cleaves pro-LC3 at its C-terminal glycine [124-

126]. The membrane lipid phosphatidylethanolamine (PE) is then conjugated to the newly 
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cleaved soluble LC3-I by ATG7 and ATG3. This conjugation product of LC3-PE, now 

known as LC3-II, is subsequently incorporated into the inner and outer membranes of the 

autophagosome while it reaches closure [127]. The ATG5-ATG12/ATG16 complex also 

plays a role in the lipidation process of LC3 by acting as an E3-like ligase to enable LC3-

PE conjugation. Isolation membrane bound LC3-II acts as both a scaffolding protein and 

an anchor for the binding of autophagy adaptors which mediate selectivity [128].  

 

Before autophagic clearance, ubiquitin binding proteins such as the adaptor protein 

sequestosome 1 (p62/SQSTM1) are tethered to the ubiquitin-like proteins LC3 or 

GABARAP and regulate protein cargo degradation [128-130]. Structures which have been 

targeted for degradation through autophagy are often ubiquitinated and bind autophagy 

receptors containing ubiquitin-binding domains and LC3-interacting regions (LIR) to 

encourage the cargos engulfment into autophagosomes [130].   P62/SQSTM1 is a widely 

multifunctional adaptor protein which is involved with biological processes such as 

removal of toxic protein aggregates and is indispensable for basal autophagy [131, 132]. 

With the autophagosome now whole and carrying its cytosolic cargo, it undergoes 

maturation during which the induction and elongation complexes dissociate from the 

membrane and can be delivered via microtubules upon close proximity to the lysosome 

[133]. The fusion of the autophagosome with acidic endosomes and lysosomes to form 

autolysosomes is mediated through soluble NSF attachment protein receptors (SNAREs) 

[134]. Once fusion has occurred, captured cargo is degraded by acidic hydrolytic enzymes 

and proteases within the lysosome yielding macromolecule components which can be 

recycled for alternative use [108].   
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1.6  Importance of Beclin 1 in autophagy 

Given that autophagy is a largely complex process with a number of contributing proteins, 

it is important to determine which proteins may play the most significant roles. In particular, 

the studies of this dissertation focus on the initiation protein Beclin 1. The mammalian 

Beclin 1 is encoded by the BECN1 gene with the yeast equivalent being autophagy-related 

gene 6 (Atg6) [135]; it plays a central role in autophagy and is also described as a 

haploinsufficient tumor suppressor [136, 137]. Notably, Beclin 1 participates in various 

other signaling pathways such as endocytosis, phagocytosis, vacuolar protein sorting, and 

cytokinesis, independent of its role in autophagy [138]. As previously described, Beclin 1 

acts as a subunit within the PI3K complex during autophagy initiation to mediate the 

formation of phosphatidylinositol 3-phosphate [129]. Much of its functional significance lies 

in its many interacting partners which are generally associated with formation of 

autophagosomes or with endocytosis. The mammalian protein consists of three domains: 

a central coiled-coil domain (CCD), an evolutionarily conserved domain (ECD) and a BH3-

only domain (Figure 1.7 adapted from [138]). The CCD domain of Beclin 1 interacts with 

the CCD of UVRAG, a positive regulator of autophagy. This interaction allows Beclin 1 to 

act as a type scaffold protein to allow UVRAG contact with PI3K and other proteins, 

promoting starvation-independent autophagy [139]. The ECD of Beclin 1 is essential for 

binding another autophagy protein Vps34 as well as its tumor suppressing functions [140]. 

The BH3-only domain ties Beclin 1 to the BCL-2 family of proteins which are pro-survival 

in function and sense cell damage or dysfunction. This domain interacts with the BH3 

domains on BCL-2 and BCL-XL and inhibit autophagy by blocking Beclin 1 interaction with 

PI3K; however, this interaction is largely diminished upon starvation [141]. Nutrient 

starvation, which induces autophagy, can stimulate the dissociation of Beclin 1 from its 

inhibitors, either by activating BH3-only proteins or by phosphorylation of BCL-2 that may 



21 

reduce its affinity for Beclin 1 and BH3-only proteins. As such, anti-apoptotic BCL-2 family 

members and pro-apoptotic BH3-only proteins may participate in the inhibition and 

induction of autophagy, respectively Despite being a BH3-only protein which are pro-

apoptotic, Beclin 1 is considered to be pro-survival [142]. Studies with Beclin 1 mutants 

have displayed the importance of the protein to numerous processes, particularly 

embryonic development, tumorigenesis, and protein aggregation diseases. Where 

homozygous beclin1-/- mice die early in embryogenesis, heterozygous beclin1+/- mice have 

not only decreased autophagy, but also increased incidence of spontaneous tumors [136, 

137].  

 

1.7  Functions of Autophagy 

1.7.1 Autophagy and basal metabolism and homeostasis  

The autophagy process can be described as either non-selective or selective dependent 

on the cargo being taken up: non-selective being used for the turnover of bulk cytoplasm 

and selective autophagy targeting specific organelles such as mitochondria (mitophagy), 

peroxisomes (pexophagy), or clearance of microbes (xenophagy) [108]. The basal 

Figure 1.7 Functional domains of the autophagy protein Beclin 1 
Beclin 1 contains distinct functional domains: BH3 interacting domain, coiled-coil domain, nuclear 
export signal, and evolutionarily conserved domain. Adapted from [138]  
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functions of autophagy serve to enhance cellular survival by adapting to fluctuations in 

nutrient conditions as well as to regulate cellular energy homeostasis. In the process, the 

pool of cellular precursors is replenished by degrading cytosolic proteins in response to 

starvation and nutrient depletion [143]. These catabolic products include amino acids, 

lipids, and sugars to be utilized for generation of new proteins, membranes, 

gluconeogenesis, ATP, nucleotide and carbohydrate synthesis, and glycolysis [144]. In 

the liver, amino acids generated through autophagy can be used for gluconeogenesis to 

maintain systemic glycemia under starvation conditions while autophagic degradation of 

liver lipid droplets also produced free fatty acids from triglycerides [145, 146].  ATP can 

also be generated by way of newly produced lipids and amino acids entering the 

tricarboxylic acid cycle and oxidative phosphorylation or through sugars undergoing 

glycolysis which also maintains sugar levels [144]. However, these functions can be 

abused in disease conditions such as cancer. Due to their rapid replicative characteristics, 

tumor cells exhibit metabolic stress additionally caused by decreased nutrient availability 

and hypoxic conditions. To counteract these stressors, tumors and their surrounding 

fibroblasts couple and reprogram their metabolism to use autophagy as a protector by 

reducing oxidative stress and maintaining genomic stability [147]. Additionally, the 

breakdown of glutamine in cancer cells yields ammonia which has been shown to also 

stimulate autophagy in nearby cells [148]. Metabolic coupling has also been seen under 

normal conditions in the brain where astrocytes and neurons exchange metabolites to 

maintain homeostasis [149, 150]. As research in autophagy has expanded, other functions 

have emerged beyond maintaining cellular homeostasis including the maintenance of 

mitochondria, cell differentiation and development, monitoring of unfolded proteins, 

protein secretion, and the trafficking of proteins to the plasma membrane [151-153].  

 



23 

Autophagy can be induced as a response to cellular stress from external stimuli such as 

oxidants, hypoxia, infectious agents, and stressors of the endoplasmic reticulum [154]. 

The degradative capabilities of autophagy are particularly important for the clearance of 

damaged and/or aggregated proteins and organelles, especially in situations where the 

proteasome clearance pathway has been impaired or overwhelmed [155, 156]. Genetic 

studies with mice have shown the importance of autophagic intracellular quality control of 

proteins. Deletion of autophagy genes such as Atg5 or Atg7 in the mouse liver induced 

the cytoplasmic accumulation of abnormal ubiquitinated proteins and organelles [157, 

158]. In addition, liver-specific Atg7-/- mice have been shown to develop hepatomegaly 

and hepatic failure illustrating the crucial role of autophagy in locations of high protein 

turnover such as the liver.  Ubiquitin accumulation has also been reported in other tissues 

such as some endocrine glands, the heart, skeletal muscle, and kidneys; however, to a 

lesser degree [158, 159]. 

 

1.7.2 Autophagy in apoptosis induction 

Outside of the pro-survival functions of autophagy, there are correlations to the induction 

of apoptosis which are not completely understood. Studies have observed an 

accumulation of autophagosomes preceding cell death which was originally termed 

autophagic cell death [160]. However, studies have been varied with autophagy being able 

to act as both a protagonist and antagonist of apoptosis, largely dependent on the cellular 

context and environment. Many links between apoptotic signaling and autophagy lie in the 

crosstalk between pro-apoptotic signals which can induce autophagy as well as the 

binding of Beclin 1 to pro-survival protein BCL-2 [141, 161]. Studies on mice lacking the 

BH3 proteins BAK and BAX which regulate the release of mitochondrial proteins during 

apoptosis demonstrated that upon exposure to DNA damaging stimuli, cell were still able 
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to die through autophagic cell death mediated by ATG5 and Beclin 1 [162]. In fact, a 

number of the ATG genes which regulate autophagy also regulate apoptosis regulators 

such as p53 and the death inducing signaling complex (DISC) [163]. Under normal 

conditions, autophagy plays several maintenance roles in a variety of tissues; however, 

as research in the topic expands, its roles in disease states are gradually coming to light. 

The formation and accumulation of protein aggregates has been associated with several 

human diseases known as conformational diseases or proteopathies. In these diseases, 

a particular protein may be misfolded as a result of mutation, improper clearance through 

either the proteasome or autophagy pathways, or defective chaperones [155]. These 

misfolded proteins tend to form aggregates leading to cellular dysfunction in organs such 

as the lungs, liver and brain [156]. 

 

1.7.3 Autophagy in infectious diseases 

The roles of autophagy in the adaptive and innate immune systems have been extensively 

studied over recent years with functions including the clearance of pathogens, facilitation 

of antigen presentation, and regulation of the inflammatory response [164, 165]. In 

particular, the clearance of potentially threatening intracellular pathogens through 

autophagy called xenophagy, acts as an additional defense mechanism [166]. While 

pathogens such as bacteria Mycobacterium tuberculosis and Pseudomonas aeruginosa 

and viruses like herpes simplex virus type 1 (HSV-1) are identifiable as substrates for 

autophagic clearance, a number of pathogens have evolved mechanisms of evasion to 

avoid degradation or manipulation to support growth such as HIV and hepatitis B and C 

viruses [164]. In addition to direct action on invading pathogens, autophagy can also 

regulate inflammation through signaling cascades of the inflammasome within myeloid 

cells of the innate immune system. This can result in modulation of cytokines such as IL1β, 
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IL-18, and IFNγ, activation of natural killer cells, and nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) signaling [167]. Though stimulation of autophagy 

may not be required for degradation, these cascades may be initiated by their targeting to 

the autophagosomes formed by basal autophagy. The contribution of autophagy to the 

functions of immune cells is widely dependent on cell type due to varying levels of basal 

autophagy; however, it is of particular importance to antigen-presenting cells which have 

the highest levels of basal autophagy [168]. Regardless, in most immune cells, autophagy 

aids in cellular survival by avoiding apoptotic or inflammasome activated pyroptotic 

mechanisms through the mounting of a strong autophagic response [169, 170].     

 

Despite the role of autophagy in immunity and pathogen clearance, the pathway’s 

interactions with HIV are complex due to the variety of cells affected which may or may 

not be infected. Dendritic cells, for example, have drastic downregulation of autophagy 

when exposed to viral envelope proteins by activating mTOR which results in protection 

of the virus from autophagy-mediated degradation and subsequent increase in CD4+ T 

cell infection [171]. This study also showed that inhibition of autophagy can impair toll-like 

receptor (TLR) mediated innate responses, affect antigen processing, as well as MHC 

class II antigen presentation to CD4+ T cells.  Studies with macrophages infected with HIV 

show an increased level of autophagic vacuoles and lack the viral envelope protein-

mediated manipulation of the autophagy pathway [23]. Further mechanistic studies 

showed that despite the preservation of the initial stages of autophagy in HIV-infected 

macrophages, the autophagosome maturation process is inhibited by the HIV viral protein 

Nef [16]. This protein which assists in viral replication has been shown to interact with 

Beclin 1 which inhibits the maturation stages of autophagy and prevents lysosomal 

degradation of HIV while promoting biogenesis thereby enhancing viral yields. Conversely, 
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uninfected macrophages do not show envelope protein induction of autophagy but are 

instead affected by Tat to activate Src-AKT and STAT3 or suppress STAT1 (through IFNγ 

inhibition) pathways to culminate in autophagy repression [172, 173]. Since macrophages 

are generally not susceptible to HIV mediated cell death, autophagy can also play a role 

in the promotion of macrophage viral reservoirs [3]. 

 

CD4+ T cells can have slightly different responses to HIV infection and thus different 

effects on autophagy which makes many studies inconclusive. Many CD4+ T cells appear 

to remain uninfected yet still die through what is termed bystander T cell death which is 

thought to be mediated by the host’s responses to viral infection leading to chronic 

inflammation [6, 174]. When uninfected bystander T cells were co-cultured with cells stably 

expressing either R5- or X4-tropic envelope proteins, they tended to favor undergoing 

apoptosis and accumulation of autophagic vacuoles; however, when productively infected 

with R5- or X4-tropic HIV, these T cells had diminished accumulation of autophagic 

vacuoles [23, 175]. It is necessary to note that the study does not distinguish the cause of 

autophagic vacuole accumulation between autophagy induction or defects in autophagic 

maturation, so the precise cause of apoptosis is yet to be determined. Nevertheless, this 

supports the idea that the virus has evolved mechanisms to evade the antiviral functions 

of autophagy [176]. For example, in infected T-cells the viral protein Vif is able to block 

envelope protein induced autophagy typically seen in bystander T cells to prevent the 

autophagic degradation of Tat and allow productive infection [177, 178]. At the clinical 

level, in peripheral blood mononuclear cells (PBMCs) of HIV-infected persons termed HIV 

controllers i.e. those who remain asymptomatic for many years or have viremia below 

detection limits, have a significant increase in autophagic vacuoles with elevated mRNA 

levels of Beclin 1, as compared to normal progressors [179]. Though the interactions 
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between HIV pathogenesis and the autophagy pathway within the periphery may be 

complex, it provides a foundation for the study of the role of autophagy in HIV infection 

within the brain and the pathogenesis of HAND.   

 

1.8  Autophagy and Neurodegeneration  

Several neurodegenerative diseases have been shown to have dysregulations in the 

autophagy pathway [180]. Although autophagy is not induced in the central nervous 

system under starvation conditions, it plays a significant role in protein quality control 

maintenance and cellular homeostasis [181].  In general, autophagic activity within the 

brain is low but the conservation of basal autophagy is particularly essential to the CNS in 

the case of neurons owing to the fact that they are post-mitotic and rely heavily on 

clearance mechanisms such as autophagy for cell survival [182]. The ability of neurons to 

survey cellular contents for altered proteins or damaged organelles and process their 

degradation is essential to the prevention of intracellular buildup and eventual 

neurotoxicity [183]. Neural specific Atg5 and Atg7 knockout mice show accumulation of 

abnormal ubiquitinated proteins within neurons along with neurodegeneration and 

progressive motor deficits [158, 184]. Development of molecular probes such as LC3-

tandem sensors, and tracking methods such as lysotracker in combination with 

pharmacological inhibitors have allowed for the identification and better understanding of 

the individual stages being affected in diverse neurodegenerative disease. These include 

defects in autophagy induction, enhancement of autophagy repression, alterations in 

cargo recognition, inefficient autophagosome/lysosome fusion, or faulty degradation of the 

autophagic content within the lysosomes [180]. Comprehending when and where the 

autophagic halt is occurring in these neurodegenerative diseases is essential for the 

targeting of the autophagy pathway in potential therapeutics. Presently, the best studied 
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examples of proteopathies include two of the major neurodegenerative diseases: 

Alzheimer’s (AD) and Parkinson’s (PD) disease both of which have correlates to 

malfunctions in autophagy.   Genetic studies using mice with defective autophagy proteins 

have shown age-dependent neurodegeneration coinciding with the accumulation of 

protein aggregates [184]. In addition, the use of pharmacological agents which induce 

autophagy have been shown to inhibit symptoms associated with neurodegeneration in 

mouse models of AD and PD [155].Given that autophagy is found to be altered in a number 

of the ‘classical’ neurodegenerative diseases, it’s roles in other neurological disorders is 

of interest for study. 

 

1.9  Autophagy in HAND  

In terms of HAND, dysregulation of autophagy has been shown in the CNS in a number 

of studies. When the post-mortem brains of patients showing HIVE were analyzed for 

fluctuations in autophagy proteins, ATG5, ATG7, Beclin 1, and LC3-II were found to be 

increased as compared to non-HIVE tissue samples which showed no change in 

autophagy level. The same study also showed an increased number of autophagosomes 

and lysosomes indicative of autophagic blockade prior to degradation [185]. Later studies 

suggest that these characteristics are age dependent with aged HIVE patients showing 

more extensive neurodegeneration and reduced autophagy as compared to younger HIVE 

patients which showed increased autophagy markers [186]. Dever et al also demonstrated 

the changes to ATG gene expression in post-mortem brain tissues of HIV infected patients 

presenting with or without neurocognitive impairment (NCI) or encephalitis and suggested 

that these genes may be differentially regulated at the mRNA or protein level within the 

brain based on infection stage [187].  
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In neuronal cultures, exposure to HIV lead to increase of autophagosomes and 

suppression of autophagy [188]. Other studies also showed a decrease in neuronal 

autophagy when exposed to the supernatant of infected microglia indicating the indirect 

neurotoxicity neurons are subjected to [187, 189, 190]. When exposed to Tat, there was 

a dose dependent decrease in the autophagosome markers LC3-II and p62/SQSTM1 in 

neurons suggesting Tat increases autophagic degradation which when unchecked, can 

lead to autophagic cell death [191]. The same study saw in Tat transgenic mice, Tat 

expression caused an increase in autophagosome accumulation within neurons along 

with neurodegeneration which was largely associated with lysosomal-associated 

membrane protein 2A (LAMP2A).  

 

The autophagy pathway has been shown to be induced in microglia when infected by HIV 

with increased conversion of LC3-1 to LC3-II and increased expression of Beclin 1 and 

ATG5. This was also associated with accumulation of autophagosomes and increases in 

cytokines and chemokines [192]. Induction of autophagy has also been shown upon Tat 

treatment in glial cells by increasing the anti-apoptotic/pro-autophagic factor BCL2-

associated athanogene 3 (BAG3) levels [193]. While autophagy induction might seem 

beneficial, HIV has evolved ways to block the maturation of the pathway to prevent 

lysosomal degradation. For example, the viral protein Nef was shown to mimic the fusion 

inhibitor bafilomycin A1 and prevent autophagic degradation which can ultimately lead to 

increased viral presence [194]. This induction and later blockade has also been shown in 

astrocytes [188]. Given these results, it can be said that the role of autophagy in HAND is 

a complicated one with effects being cell type dependent and specific to particular stages 

of the autophagy pathway. 
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1.10  Interplay between HAND, opiates, and autophagy 

While the characteristics of HAND and the opiate induced exacerbation of its 

neuropathology have been widely studied and reviewed, the underlying mechanisms 

which lead to these effects are still unclear. Based on the interactions between HIV and 

autophagy previously discussed, it is possible that the degradative pathway converges on 

the HIV and opiate interaction. Despite limited literature on the interactions of autophagy 

and morphine, studies have seen that chronic morphine or morphine addiction activates 

the autophagy pathway in rodent hippocampus [195, 196]. In these studies, chronic 

morphine treatment was associated with cell death and decreased mitochondrial DNA 

copy number which were mediated by autophagy. A separate study showed that morphine 

was able to magnify LPS-induced initiation of autophagy; however, similarly to what is 

seen in HIV, the later stages of autophagosomal maturation are halted thus inhibiting 

pathogen clearance [197]. This was also shown in neurons which were exposed to the 

supernatant of HIV infected microglia treated with morphine resulting in a significant 

elevation of p62/SQSTM1 expression suggesting the inhibition of autophagic clearance 

[187].  Taken together, if the morphine inducing effects on autophagy parallel the induction 

of autophagy though HIV infection, this may explain the phenomenon of opiate and HIV 

interaction while providing the autophagy pathway as an underlying mechanism and 

potential target for intervention.  

 

1.11  Modeling HAND in mice 

In the efforts to further study the mechanisms and pathology of HAND, one of the most 

useful tools has been the use of animal models. Non-human primate models of HAND 

have been utilized to understand the neuropathogenesis of HAND; however, there are 

limits to gaining mechanistic insight into HAND as well as high cost for maintaining these 
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animals. Alternatively, rodent models have been shown to be highly useful in the study of 

HAND for their low cost, ease of use, and capability for genetic manipulation in the 

understanding pathological mechanisms at work.  

 

1.11.1 Transgenic mouse models 

The generation of transgenic mouse models have provided a wealth of information on the 

roles of HIV genes and their corresponding gene product functions in mediating HAND 

pathogenesis. Often these mice possess either constitutive or inducible expression of HIV 

proteins allowing researchers to study the effects of continuous exposure to viral proteins. 

This can be seen as representative of patients under cART regimen which have systemic 

viral replication under control but still have the production of viral proteins from viral DNA 

integrated cells or viral reservoir locations such as the brain [198]. Most cART drugs target 

the protease or reverse transcriptase actions of HIV and do not prevent the early 

production of viral proteins such as Tat, Rev, and Nef [7]. 

 

(a) Tat transgenic mouse model 

Tat transgenic mouse models were established by Jones et al shortly after the effects of 

intraventricular injection of human HIV Tat into mice brains led to inflammation, gliosis and 

apoptosis [199]. In human infection, Tat is the first viral protein to be secreted and is largely 

able to cross cell membranes with studies of its effects being tissue specific. In the early 

studies, transgenic mice with constitutive expression of Tat in most peripheral tissues 

showed elevated levels of Tat in serum; however, these studies were unable to detect Tat 

in the brain and lacked neurological impairment [200-203].  Subsequently, two brain-

specific Tat transgenic mouse models were generated from independent labs which 

placed Tat expression under the control of a glial fibrillary acidic protein (GFAP) promoter 
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which could be induced in astrocytes by doxycycline administration and showed 

neurological abnormalities [204, 205]. The GFAP-Tat transgenic mouse generated by Kim 

et al showed damage induced by Tat expression to be largely localized to the cerebellum 

and cortex [205]. The damage induced by Tat expression in the Fitting et al. study was 

more understated with observations of reduced neuronal spine density and dendritic 

pruning [204]. Later studies also showed deficits in learning and memory accompanied 

with synaptic dysfunction and suppression of long-term potentiation [206, 207]. In addition, 

Tat transgenic mice have been used to study blood brain barrier integrity and show barrier 

destabilization along with immune cell recruitment [208].  In the context of opioids, HIV Tat 

transgenic mice administered morphine showed not only an alteration in analgesic 

efficacy, but also increases in microglial and astroglial activation [100, 102, 209]. In 

addition, Tat transgenic mice treated with morphine revealed significant decreases in the 

density of dendritic spines within the striatum [204]. 

 

(b) Gp120 transgenic mouse model 

The envelope protein gp120 is shed as a soluble protein in the brain by macrophages and 

astrocytes which can also interact with and cause damage to neurons. The desire to 

understand its role in mediating neurotoxicity led to the generation of two distinct 

transgenic mouse models which expressed the gp120 encoded section of the env gene 

under control of a promoter [210, 211]. The Berrada strain expressed viral gp160 under 

the promoter control of human neurofilament light chain (NfL) in neurons within the brain 

stem and anterior horns of the spinal cords in addition to exhibiting dendritic swellings on 

motor neurons. However, this strain showed no expression to be detected within the 

cerebral cortex [211]. The Toggas strain has been well studied and expresses soluble 

gp120 in the brain under control of the astrocyte specific GFAP promoter. Gp120-
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transgenic mice illustrated the protein’s neurotoxic effects with pathological damage to the 

neocortex and hippocampus which was strikingly similar to that seen in human AIDS 

brains [210]. These mice displayed decreased synaptic and dendritic density, neuronal 

loss, as well as microglial activation. Additional studies have shown that these mice have 

dysfunctional differentiation and proliferation of neural progenitor cells, abnormal short- 

and long-term potentiation, and deficits in spatial retention and swimming velocity [212-

215]. Neuronal injury in these models have been suggested to be mediated by the 

enhancement of glutamate signaling through NMDARs and excessive activation of Ca2+ 

signaling pathways [216, 217].  

 

(c) Transgenic rat model 

As an alternative and more comprehensive means of studying the effects of viral proteins 

on the brain, the HIV transgenic model was generated which incorporates the HIV genome 

directly into the rodent model. These rodents express all but 2 of the 9 HIV viral genes 

(gag and pol) which in turn render them non-infectious and useful for mechanistic studies 

of viral protein effects [218]. The non-infectious pro-virus pEVd1443 was first used to 

generate an HIV transgenic mouse; however, these mice had inconsistent distribution of 

the transgene, inefficient tat transactivation, and limited clinical manifestation typical of 

HIV exposure [35, 219, 220]. Later, the pro-virus was introduced into the fertilized egg of 

F344 and Sprague Dawley bred rats with the transgene being incorporated hemizygously 

[35, 220]. Despite no viral replication within these rats, the HIV viral proteins are 

continuously expressed throughout the life of the animals within a number of tissues 

including the lymph nodes, spleen, and brain [221]. Studies utilizing this model have 

reported alterations in sensorimotor gating, cognition, dopamine function, and 

neuroinflammation with marked decrease in specific brain areas such as the subcortex 
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[221-223]. In terms of substance abuse, studies with morphine have suggested that HIV 

transgenic rats exhibit higher anti-nociceptive effects than normal controls in conjunction 

with elevated expression of mu-opioid and chemokine receptors which can in turn be 

modulated by cytokines [224, 225]. Later studies also showed an elevation of MOR 

expression in HIV transgenic mice which was further elevated under LPS-induced immune 

challenge [226].  

 

1.11.2 Humanized mouse models  

Humanized mouse models for the study of HIV have been generated using 

immunodeficient mouse strains such as severe combined immunodeficiency (SCID) mice. 

These mice lack T and B lymphocytes and are incapable of mounting regular adaptive 

immune responses. As such, it is possible to directly inject HIV-infected human monocytes 

into the CNS of these immunocompromised mice [227]. Following stereotaxic injection 

into the basal ganglia [228], putamen or cortex [229], infected macrophages are able to 

express HIV p24 antigen as well as present the histopathological features of HIVE [229]. 

This includes infection of perivascular macrophages, astrocytosis, microglial activation, 

neuronal apoptosis, and dendritic damage [230]. These mice have also been used to study 

potential therapeutics for treating HIV-associated neuroinflammation. Additional 

humanized mouse models have also been proposed for further study of the physiological 

effects of HIV. The humanized immune system or HIS model uses immunodeficient mouse 

strains such as the NOD/Shi-scid IL2rγ-/- (NOG), NOD/LtSz-scid IL2rγ-/- (NSG), or 

BALB/cRag2-/-γc
-/- (BRG), all of which show defects in innate and adaptive immunity, and 

intravenously injecting CD34+ hematopoietic stem cells [231-233]. These cells mature into 

human immune cells which can later be infected with HIV and sustain infection; however, 

these models do not contain HIV-infected microglia or astrocytes. Jaeger and Nath 
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proposed a HIS-CNS model which suggests transplantation of both the human immune 

system and HIV-permissive cells of the human brain [227]. This would allow for the study 

of concurrent peripheral and CNS HIV-1 infection as well as the neuropathological 

characteristics of HAND. Studies which injected CD34+ hematopoietic stem cells into the 

brain were able to observe marked neuroinflammation, HIV replication in human 

mononuclear phagocytes, as well as encephalitis. Separately, NSG mouse transplantation 

with fetal brain cell cultures showed inclusion of human microglia in NSG mice [234]. 

 

1.11.3 Direct viral-injection models 

(a) EcoHIV 

An alternative approach to studying the effects of HIV was to modify the virus rather than 

the murine hosts. Previous studies which used human HIV co-receptors in mice failed to 

have efficient viral binding to either CCR5 or CXCR4 receptors and were poorly 

susceptible to HIV infection[235]. In the EcoHIV chimera virus, the gp120 coding region of 

HIV virus is replaced with the gp80 coding region of the murine leukemia virus [236]. This 

modified virus was selective to rodents and found to productively infect peripheral murine 

lymphocytes. These studies; however, showed limited detection in the brain following 

intraperitoneal injection of virus. Separately, Jones et al showed that as early as two-

weeks post infection, EcoHIV was able to alter BBB permeability [237]. Despite this 

apparent discrepancy, direct administration of virus into the brain by intracranial injection 

is a viable means of using EcoHIV to study the neurological effects of HIV and show robust 

HIV expression [238]. 
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(b) Viral protein injection 

In favor of determining the roles of individual viral proteins, direct injections of viral proteins 

into mice have been widely utilized [199, 239-241]. Direct injection of viral proteins into the 

CNS allows for uniform exposure without potential confounders such as the degree of 

doxycycline induction and effects associated with individual viral proteins. Neurotoxic 

responses following injection is rapid while also available to test targets which may 

ameliorate or exacerbate effects. For example, numerous studies have used direct 

injection of HIV Tat in conjunction with drugs of abuse to survey concurrent effects [241-

244]. Alternatively, parallel or subsequent exposure to potential therapeutic agents and 

whether they can ameliorate neurodegenerative effects are an additional benefit of the 

direct injection models.  

 

1.12  Potential applications and conclusions 

As investigation occurs into the mechanisms of HIV and opioid-induced 

neurodegeneration, the models for study have also expanded. In terms of studying the 

autophagy pathway, there are numerous means of examining its role in mediating HAND 

using the plentiful rodent models available. For example, to study how the autophagy 

pathway functions to mediate the direct effects of HIV/viral proteins, there are a number 

of autophagy-deficient mouse models available which can be combined with the direct 

injection method of HAND induction (Figure 1.8a) [136, 158, 184, 245]. This method of 

study allows for acute study of effects in the context of an autophagy deficient 

environment. The various existing autophagy models have mutations in varying stages of 

the pathway and can thus be used to determine the relative temporal importance in the 

autophagy/HIV interaction. A potential alternative approach would be to utilize both an 

autophagy-deficient mouse model and a viral protein/HIV transgenic mouse to create a 
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chimera which could have viral protein expression induced in an autophagy-deficient 

background (Figure 1.8b). Both models are capable of being used in conjunction with 

exposure to opioids by either subcutaneous morphine pellet or intraperitoneal injection for 

the study of HAND in the context of opioid abuse. The autophagy pathway poses an 

appealing target for ameliorating the effects of HAND in the opioid-abusing HIV-infected 

population. In addition, the humanized mouse models allow for the examination of 

potential therapeutics targeting the autophagy pathway with pharmacological inducers 

and inhibitors and the evaluation translational relevance which are the ultimate goal of 

these studies. The next steps in the field to determine how autophagy can be modulated 

to ameliorate the symptoms characteristic of HAND may lie in the pharmacological 

inhibition of specific stages in the pathway. For example, treatment of Tat-transgenic mice 

with the autophagy inducer rapamycin was able to reverse autophagosome accumulation 

and neurodegeneration [191]. Other avenues of treatment could include the use of siRNA 

Figure 1.8 Various mouse models which can be used to study autophagy in HAND 
pathogenesis 
(A.) Direct injection of neurotoxic viral proteins such as Tat or gp120 or the mouse-permissive 
chimera virus EcoHIV can be utilized to assess autophagy proteins which may contribute to 
neuropathogenesis. The stars (*) indicate the models used here with the viral protein Tat and the 
Beclin 1+/- mouse model. (B.) An alternate method to study autophagy protein contributions to HIV 
pathogenesis may generated by crossing inducible HIV-1 protein transgenic mice with autophagy-
protein-deficient mice creating a chimera. Both models can be used in combination with morphine 
co-exposure.  
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targeted towards autophagy proteins. Silencing of Beclin 1 in microglia and astrocytes was 

able to reduce inflammation as well as viral replication, making an attractive target for 

therapy [192, 246]. Based on this, the use of siRNA targeting Beclin 1 has been coupled 

to 1.) the guided drug delivery system of magneto-electric nanoparticles (MENPs), where 

is was able to cross the blood brain barrier without toxic effects [247] and 2.) a 

biodegradable linear polymer cationic polyethylenimine (PEI) complex for intranasal 

delivery to the brain. The realm of HAND and the mechanisms determining its 

pathogenesis are still not clear; however, the autophagy pathway is an up and coming 

facet showing great promise for future innovation. Furthermore, the established 

background provides the groundwork for the aims of this dissertation and advancing the 

understanding of HIV and opiate-induced neuropathogenesis.  

 

1.13 Dissertation hypothesis and specific aims 

Based on the existing literature presented in the previous chapter, HIV and opiate-induced 

neuropathogenesis is a relevant and significant burden. Our lab and others have shown 

the interactive effects of the HIV protein Tat and morphine in brain cells such as microglia 

and astrocytes to facilitate neuroinflammation and oxidative stress [79, 106]; however, the 

mechanisms at play are still widely unknown. Here we propose that the autophagy 

pathway, which is associated with HIV replication and persistence, may be a significant 

contributor to the virally-induced neuroinflammation and neuronal damage observed with 

HIV Tat and morphine co-exposure. In addition, previous in vitro data from our lab using 

human microglia treated with HIV-1 and morphine has shown induction of the autophagic 

pathway as well as accumulation of autophagosomes indicative of a halt in autophagic 

clearance [192]. When a key initiator of autophagy Beclin-1 was silenced using siRNA, 

there was a reduction of both HIV-1 replication in human microglia and astrocytes as well 
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as in the HIV-1 induced inflammatory response. These data suggest that induction of the 

autophagy pathway may serve as a mechanism mediating the damaging interactive 

effects of HIV Tat and morphine within the brain and that targeting of this pathway can be 

utilized to attenuate these effects. Given these findings, we hypothesize that by reducing 

the expression of the autophagy protein Beclin 1, the neurodegenerative effects of Tat 

and morphine exposure can be ameliorated at both the cellular and animal level. 

 

These hypotheses will be addressed in the experiments of the following Specific Aims: 

Specific Aim 1: To confirm if Tat and opiate-induced inflammation in astrocytes and 

microglia (glia) are mediated by the autophagy pathway 

These experiments assessed various aspects of glial dysfunction including 

neuroinflammation, oxidative stress, and calcium accumulation as a function of Tat and 

morphine treatment to mixed glial cell cultures (microglia and astrocytes) obtained from 

the striatum of wild type C57BL/6J and Beclin 1+/- (Becn1+/-) deficient mice. These mutant 

mice are heterozygous for the Becn1 allele and show expression compared to C57BL/6J 

littermates. 

 

Specific Aim 2: To examine the roles of autophagy in neuronal outcome upon Tat 

and opiate treatment 

Provided that neurons are the cell type ultimately affected by the disruption of homeostasis 

in the brain caused by HIV-1 infection, the cytoprotective or cytotoxic role of autophagy on 

neuronal damage, survival, and toxicity were gauged with respect to Tat and morphine 

exposure utilizing embryonically-derived neurons of C57BL/6J and Becn1+/- mice. 
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Specific Aim 3: To determine whether the in vitro observations seen in Specific 

Aims 1 and 2 translate to behavioral modifications and brain pathology in vivo seen 

in HIV-associated neurological impairment.  

C57BL/6J and Becn1+/- mice were exposed to intra-striatal Tat injections alone or in 

combination with subcutaneous morphine pellet implantation to evaluate effects on motor 

coordination and brain histology. 

 

We anticipate that this study will reveal what function, if any, the Beclin 1-dependent 

autophagy pathway plays in directly mediating the Tat and morphine neurodegenerative 

interactions within the murine brain which can then be modulated pharmacologically. 
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CHAPTER 2: CRITICAL ROLE OF BECLIN 1 IN HIV TAT AND MORPHINE-INDUCED 

GLIAL DYSFUNCTION 

Parts of this chapter appear in the Journal of Neuroimmune Pharmacology. 2018 May 11. 

doi: 10.1007/s11481-018-9788-3.  

 

2.1  Introduction 

HIV neuropathogenesis can be attributed to not only the propagation of infection in the 

brain, but also to viral proteins being secreted by infected cells that can also cause 

neurotoxicity. HIV Tat protein, responsible for regulating the initiation of HIV transcription 

and elongation, is released from HIV-infected cells and has been found to be neurotoxic 

independent of virus [57, 248]. The release of Tat contributes to the microglial-derived 

release of reactive oxygen species (ROS), nitric oxide (NO), calcium overload, and 

initiation inflammatory cascades, all of which impede neuronal survival [7, 249-252]. Other 

proteins within the HIV genome including Nef, gp120, Rev, Vpr and Vif also show varying 

effects on the brain and influence neurotoxicity through means of oxidative stress, 

secretion of pro-inflammatory molecules, and induction of apoptosis [7, 56]. Drugs of 

abuse such as opiates are known to increase risk of exposure to HIV infection and 

influence the progression to AIDS. IDU become highly susceptible to HIV not only because 

of shared contaminated needles but also due to opiate induced immune suppression 

[253]. Of HIV-infected patients that are IDU, a population show an accelerated progression 

of HIV-associated neural pathogenesis characterized by HIVE [86]. HIV viral proteins and 

drugs of abuse show similar mechanisms of injury such as proinflammatory response, 

oxidative stress, and induction of apoptosis [79]. As such, co-exposure to HIV and opiate 

metabolites such as morphine have been shown to enhance viral replication and 

exacerbate the detrimental effects of HIV/Tat in the infected brain and promote 
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progression to AIDS dementia [102, 103]. Despite studies to understand how the 

progression of HIV-associated neuronal pathogenesis is exacerbated by opiates, the 

mechanism is still not fully understood. 

 

Autophagy is a cellular process in which cytoplasmic contents such as organelles and 

proteins are encapsulated in the  double-layered membrane called an autophagosome 

and delivered to the lysosome for degradation and macromolecule recycling [254]. 

Autophagy can be initiated as a pro-survival response by a variety of stimuli such as 

environmental and cellular stress such as nutrient starvation, accumulation of aggregated 

proteins, or for pathogen internalization and degradation in innate immune cells [108]. This 

is particularly key in the brain cells since many are post-mitotic and require autophagy for 

maintaining homeostasis. Moreover, dysregulation in the autophagy pathway contributes 

to the development of a number of neurodegenerative diseases such as AD and PD [255]. 

Patterns of neurodegeneration similar to these diseases during HIV infection have been 

observed and linked to defects in the autophagy pathway. Though generally 

cytoprotective, autophagy plays an intricate role in viral replication with respect to infected 

cell type and can be induced or inhibited in order to bolster virus production at certain 

stages of the viral life cycle [23, 256].  

 

We have previously shown that siRNA mediated silencing of the BECN1 gene can 

significantly reduce HIV p24 levels and HIV and morphine-induced inflammatory cytokine 

and chemokine secretion from infected primary human microglia and astrocytes [192, 246, 

257, 258]. Beclin 1, a component of the phosphatidylinositol 3-kinase nucleation complex, 

regulates the initiation stages of autophagy preceding the formation of the isolation 

membrane of the autophagosome. As such, Beclin 1 poses an attractive target for future 
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therapeutic intervention and for gaining a better understanding of the interplay between 

HIV, autophagy, and drugs of abuse. In the present study, we use a mouse model 

possessing a monoallelic deletion of the mouse Becn1 gene as a potential therapeutic 

model to provide a direct link between the autophagy protein Beclin 1 and HIV Tat and 

their effects on glial dysfunction. The data also support the role of autophagy in mediating 

Tat and morphine-induced neuropathology.  

 

2.2  Materials and Methods 

2.2.1 Animals 

C57BL/6J mice (stock # 000664) and the Becn1 deficient mouse model (B6.129X1-

Becn1tm1Blev/J; stock #018429) were procured from The Jackson Laboratory (Bar Harbor, 

ME, USA) and bred in the animal facility at Florida International University. The 

Becn1tm1Blev mouse is heterozygous for the beclin1 allele and was originally generated by 

Qu et al. [136]. Briefly, a targeting vector was designed to replace exons 1 and 2 with a 

neomycin resistance cassette. The construct was electroporated into 129X1/SvJ-derived 

embryonic stem cells with correctly targeted cells injected into blastocysts and the 

resulting chimeric mice were bred to C57BL/6J. Offspring were backcrossed to C57BL/6J 

for 50 generations. Homozygous deletion of the targeted allele results in embryonic 

lethality. C57BL/6J and Becn1 mutant mice were bred as necessary for experiments to 

minimize colony population with cross-bred mice exhibiting Mendelian inheritance 

genetics. Of note, mice on a C57BL/6J background have a brownish (agouti) coat color 

which is believed to be a result of the effect of the Becn1 mutation on melanogenesis 

(Figure 2.1a). The guidelines of the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals were followed, and the Florida International University 

Institutional Animal Care and Use Committee approved all animal experimental protocols.  
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2.2.2 Mouse genotyping  

Genotyping of tail genomic DNA was performed to detect wild type and Becn1 knockout 

alleles by PCR amplification. The sense primer 5’-AGCCTCTGAAACTGGACACG-3’and 

the antisense primer 5’-TGGAAACAGGGTCTCATTCA-3’ were used to detect the wild 

type beclin1 allele (yielding a PCR product of 380 bp), and the sense primer 5’-

CTCCAGACTGCCTTGGGAAAA-3’ and the identical antisense primer were used to 

detect the knockout beclin1 allele (yielding a PCR product of approximately 400 bp). PCR 

was performed using AmpliTaq Gold® DNA Polymerase kit (Life Technologies) as per 

manufacturer’s instructions and the PCR product identified by agarose gel 

electrophoresis. 

 

2.2.3 Mixed glial murine cell cultures 

For primary murine glial culture, post-natal day 4-6 Becn1+/- mutant mice and C57BL/6J 

littermates were separated according to phenotypic coat color and sacrificed according to 

IACUC guidelines. Growth medium contained Dulbecco’s Modified Eagle’s Medium 

(DMEM; Invitrogen, Carlsbad, CA, USA)   supplemented with glucose (2 mg/mL; Sigma-

Aldrich), Na2HCO3 (6 mM; Invitrogen), 10% v/v heat inactivated fetal bovine serum (FBS; 

Hyclone, Logan, UT, USA), and 1% penicillin/streptomycin (100 U/mL / 100 µg/mL; 

Invitrogen) [101]. Striata were isolated and dissociated mechanically and enzymatically 

with 0.25% trypsin containing DNase (2.5 mg/ml) centrifuged, triturated, and twice filtered 

through 40 μM nylon mesh cell strainer. Cells were then plated and maintained in plates 

coated with poly-L-lysine (0.1mg/ml). Cultures were maintained for 5-10 days at 37˚C and 

5% CO2. 
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2.2.4 Immunocytochemistry 

4-well chambers containing adherent cells were washed with PBS, fixed in 4% 

paraformaldehyde, permeabilized with 0.1% Triton X-100, blocked in 0.1% Triton X-100 

with 1% milk/1% goat serum and immunolabeled. Primary antibodies anti-GFAP (catalog 

# MAB360, Millipore) and anti-Iba1 (catalog # 019-19741, Wako Chemicals) were each 

used at 1:400 and 1:50 dilutions for astrocyte and microglia visualization respectively. 

Immunoreactivity was visualized with secondary antibodies from Molecular Probes 

(Carlsbad, CA, USA). Cells were mounted with ProLong® Gold antifade reagent with DAPI 

(Thermo Fisher Scientific). Images were analyzed using a Zeiss (Germany) inverted 

fluorescence microscope with a 560 Axiovision camera. 

 

2.2.5 Western blotting  

Whole cell lysates were prepared in RIPA buffer supplemented with a mixture of protease 

and phosphatase inhibitors and separated by SDS-PAGE for western blotting. Primary 

antibodies: Beclin 1 – 1:500 (Novus Biologicals, NB500-249), LC3A/B – 1:1000 (Cell 

Signaling, 12741S), P62/SQSTM1 – 1:500 (Novus Biologicals, NBP1-48320), LAMP1 – 

1:500 (Novus Biologicals, NB120-19294), β-actin – 1:200 (Santa Cruz, sc-47778). 

Following primary antibodies, blots were incubated with horseradish peroxidase-

conjugated secondary antibodies (Cell Signaling Technology, 7076S; Sigma-Aldrich, 

A0545) used at a 1:1000 dilution. Immunoblots were exposed to SuperSignal West Femto 

Substrate (Thermo Fisher Scientific) and visualized using a ChemiDoc imaging system 

(Bio-Rad, Hercules, California). Protein expression was calculated using Image Lab 

software (Bio-Rad). 
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2.2.6 LC3 Autophagy Sensor 

Levels of autophagy in primary glia derived from C57BL/6J and Becn1+/- mice were 

assessed using the Premo™ Autophagy Sensor LC3B-GFP kit (Thermo Fisher Scientific, 

Grant Island, NY, USA) following manufacturer’s instructions. Cells were treated with 10 

µL of BacMam reagent containing the LC3B-GFP construct for 16 hours. Rapamycin 

(Sigma-Aldrich, St. Louis, MO, USA) was used at 2.5 µM as an autophagy inducer of 

autophagy. After incubation, cells were washed with PBS and mounted with ProLong® 

Gold anti-fade reagent with DAPI (Thermo Fisher Scientific). Images were analyzed for 

green fluorescence (LC3B positive autophagosomes) using a Zeiss (Germany) inverted 

fluorescence microscope with a 560 Axiovision camera 

 

2.2.7 Reagents and treatments 

Morphine sulfate (Sigma-Aldrich, St. Louis, MO) and HIV Tat1-86 IIIB (ImmunoDiagnostics, 

Woburn, MA) were used at concentrations ranging from 100 nM - 1 μM and 10 nM - 100 

nM respectively. The HIV Tat1-86 protein is derived from the CXCR4 tropic HIV-1 IIIB strain 

which was expressed in the E.coli expression system as a recombinant protein. 

Furthermore, it has been previously shown that the neurotoxic domain of Tat is well 

conserved across various strains of HIV [259]. This concentration of Tat has been shown 

to not only induce inflammatory cytokine production and other homeostatic dysregulations 

in glial cells in vitro, but also causes toxicity to neurons. Given that treatments of 100 

ng/mL and 1000 ng/mL correspond to approximately 8.3 nM and 83.3 nM concentrations 

respectively, we deemed the concentration range of 10 nM to 100 nM acceptable. It may 

also worth noting that both the Kruman and Nath studies utilize the HIV BRU Tat1-72 which 

may account for differences in extent of effects. In addition, this lab has used these 

concentrations in previous studies of Tat induced neuroinflammation [66, 102, 260, 261]. 
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Morphine at a concentration of 500 nM has been previously shown to fully activate MOR 

as well as enhance HIV Tat mediated neurotoxicity [101, 261]. µ-opioid receptor 

antagonist naltrexone (Sigma-Aldrich, St. Louis, MO) was used at a concentration of 500 

nM and was added 30 minutes prior to morphine exposure. Viral proteins Nef, Rev, and 

Gag were used at 1 and 5 nM envelope protein gp120 was used at 200 and 500 pM (NIH 

AIDS reagent program). 

 

2.2.8 ELISA 

Mouse glial cell culture supernatants were used to measure the levels of cytokines and 

chemokines, which have been shown to be released upon HIV Tat treatment [261]. These 

included interleukin (IL) -6, monocyte chemotactic protein-1 (MCP-1), regulated upon 

activation normal T-cell expressed and secreted (RANTES), and tumor necrosis factor 

alpha (TNF-α) which were assayed by ELISA (R&D Systems, Minneapolis, MN) according 

to the manufacturer’s instructions. The optical density was read at A450 with wavelength 

correction at A570 on a Synergy HTX plate reader (Biotek, Winooski, VT) 

 

2.2.9 Quantitative Reverse Transcription-Polymerase Chain Reaction 

Total RNA was isolated from glia following 24-hour treatments using the miRNeasy Mini 

Kit (Qiagen, Valencia, CA). Purity was assessed by microspot RNA reader (Synergy HT 

Multi-Mode Microplate Reader from BioTek) and RNA preparations with an OD260 

nm/OD280 nm absorbance ratio of at least 2.0 were used for cDNA synthesis. 1 µg of 

RNA was used for cDNA synthesis using High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems; Cat #: 4368814) as per the manufacturer’s protocol. Relative 

abundance of mRNA was assessed by SsoAdvanced Universal SYBR Green Supermix 

(BioRad, Cat #: 172-5271) in 20 µL real-time PCR reactions with gene specific primers 
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using a BioRad CFX96 real time system. All data were normalized to β-actin mRNA and 

presented as 2^-ΔΔCt for fold-change values. Primers used for amplification were as follows: 

mouse MOR, 5’-TGGAAACTTCCTGGTCATGT-3’ and 5’- 

AGATCACGATCTTGCAGAGG-3’ (182bp); mouse DOR, 5’-

GAGGATAAGTGGGGGATGGT-3’ and 5’-AGCCTCAGCCTCCACTATGA-3’ (175bp); 

mouse KOR, 5’-CCAGCATATTCACCTTGACC-3’ and 5’-

GAAGAGATCCCACCAGGAAT-3’ and mouse β-actin, 5’-

AAGAGCTATGAGCTGCCTGA-3’ and 5’-TACGGATGTCAACGTCACAC-3’ (160bp).  

 

2.2.10 Cell viability  

Toxicity of HIV Tat and morphine in mixed glial cultures was assessed using 12 mM MTT 

(3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide) for cell survival and 

proliferation (Millipore, Temecula, CA). Cells were plated in poly-L-lysine coated 96 well 

plates at a density of 3 x 104 cells/well from T75 flasks and cultured overnight followed by 

treatment with 100 nM HIV Tat and increasing concentrations of morphine ranging from 

100 nM to 1 μM. After 24 hours, cells were refed with 100 μL fresh media and 10 μL of 12 

mM MTT was added to each well except for control and incubated for 2 hours to allow the 

formation of formazan crystals. Media was removed from wells and formazan crystals 

dissolved using DMSO. Absorbance was read at 570 nm with reference at 630 nm on a 

Synergy HTX plate reader (Biotek, Winooski, VT).  

 

2.2.11  Reactive oxygen species (ROS) 

Levels of intracellular ROS production were measured using dichlorodihydrofluorescein 

diacetate (CM-H2 DCFDA, Invitrogen, Carlsbad, CA), which is de-acetylated to 

dichlorofluorescein (DCF). Mixed glial cells were incubated with 10 μM CM-H2 DCFDA in 
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warm PBS for 1 hour according to the manufacturer’s protocol, washed then treated. N-

acetylcysteine, a precursor to the antioxidant glutathione, was used as a control at 10μM 

and pre-treated for 1 hour. H2O2 (0.001% v/v) was added at time of treatment as a positive 

indicator of oxyradical species. Dichlorofluorescein (DCF) fluorescence was measured at 

an excitation wavelength (λex) of 485 nm and an emission wavelength (λem) of 520 nm over 

24 hours using a Synergy HTX plate reader (Biotek, Winooski, VT). Relative DCF 

fluorescence estimated the levels of ROS present and were reported as DCF mean 

fluorescence intensity (MFI).  

 

2.2.12 Nitric oxide (NO) production   

Measurement of NO was assessed from the supernatant of control and HIV Tat ± 

morphine treated cells after 0, 1, 6, and 24 hours. Collected supernatant was measured 

for the concentration of nitrite (the oxidized metabolite of NO) and evaluated using a nitric 

oxide assay kit (BioVision, Milpitas, CA) according to manufacturer’s instructions. 

Absorbance was measured at 540 nm using a Synergy HTX plate reader (Biotek, 

Winooski, VT). The concentration of NO in samples was calculated based on the standard 

curve using known concentrations of nitrite.  

 

2.2.13 Intracellular calcium [Ca2+]i measurements 

Levels of [Ca2+]i in glial cultures were measured using the fluorescent marker Fura-2-AM 

(Invitrogen, Carlsbad, CA). Cells were loaded with 5 μM Fura-2-AM for 30 minutes at 37°C, 

5% CO2. After three washes, the cells were incubated in growth medium for an additional 

30 minutes to complete de-esterification of the AM group of the fluorophores. Cells were 

pre-treated with 10μM of the cell permeant calcium chelator BAPTA-AM (Tocris 

Bioscience) as a negative control prior to addition of Fura-2-AM. Baseline measurements 
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were recorded, followed by exposure to Tat and/or morphine. Fura-2 ratio at 340/380 nm 

excitation measurements were taken every 10 seconds for 30 minutes. Data is presented 

as percent of control values ± SEM from a 3 separate experiments (15-25 cells). 

 

2.2.14 Statistical analysis 

Results are reported as mean ± SEM of 3-6 independent experiments. Data were 

analyzed using analysis of variance (ANOVA) techniques, followed by Tukey’s post hoc 

test for multiple comparisons (GraphPad Prism 7 software, La Jolla, CA). A value of p < 

0.05 was considered significant. 

 

2.3 Results 

2.3.1 Molecular characterization of Beclin 1 using primary glial cell cultures derived 

from C57BL/6J and autophagy deficient mouse   

Beclin 1-mediated autophagy is of key importance in maintaining brain homeostasis, with 

dual deletion of the Becn1 allele (Becn1-/-) being embryonically lethal and conditional 

knockout causing neurodegeneration in mice [137, 262]. In order to study the role of host 

autophagy in the context of HIV viral protein effects, we instead make use of a monoallelic 

deletion mutant of Beclin 1 (Becn1+/-). B6.129X1-Becn1tm1Blev/J mice are heterozygous 

for the Becn1 allele (Becn1+/-) and have a brown (agouti) coat color which is believed to 

be a result of the effect of the Becn1 mutation on melanogenesis and can thus be 

distinguished from wild type littermates phenotypically. This study makes use of primary 

glia derived from C57BL/6J and Becn1+/- pups according to defined breeding scheme 

(Figure 2.1a). We first characterized Beclin 1 expression within the primary mixed glia 

derived from the mutant Becn1+/- mice. Mice initially separated by coat color 4-6 days after 

birth were genotyped to confirm the BECN1 single allele mutation using DNA isolated from 
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mouse tails and amplified by PCR. Amplification of the wild type sequence (14946) yielded 

a PCR product of 380bp in both black and agouti pups as expected, whereas the mutant 

primer (oIMR8619) yields a product of 400bp only in agouti pups, confirming the mutation 

(Figure 2.1b,c). Knockdown of Beclin 1 protein in murine mixed glia was confirmed by 

western blot analysis and indicated a 60% reduction in expression levels (Figure 2.1d).  

 

Before continuing with the study, it was important to ascertain whether the Beclin 1 

deficient glial cells could induce autophagy and to what extent the mutation reduced this 

Figure 2.1 Characterization of Beclin 1-deficient mixed glia 
C57BL/6J (Beclin 1+/+) and Becn1+/- mutant breeding scheme (a). Primers corresponding to the wild 
type and mutant beclin1 DNA sequence used for genotyping (b). Pups at P4-P6 were distinguished 
by coat color and mutation of the beclin1 gene was confirmed at the DNA and protein levels by 
PCR genotyping (c) and western blot (d). Lanes are grouped according to sample number (pup #1 
vs pup #2) and labeled according to the primer sequence used for amplification. Wild type 
sequence generates a PCR product of 380 bp and mutant sequence generates a PCR product of 
400bp (indicated by black arrows). Beclin 1 protein expression from isolated primary glia was 
normalized to β-actin. Data is presented as the mean ± SEM of 4 mouse pups per strain. P < 0.05 
# vs. C57BL/6J 
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capability. To determine whether a single allele mutation in the BECN1 gene is sufficient 

to considerably impair the autophagy pathway, we compared induction of autophagy in 

C57BL/6J and Becn1+/- derived glia using a fluorescent autophagy marker LC3-GFP 

assay. Upon induction of autophagy, LC3 localizes to pre-autophagosomal and 

Figure 2.2 Autophagy induction in C57BL/6J and Becn1+/- glia 
Representative images assessing basal autophagy induction by LC3-GFP puncta quantification 
upon treatment with the autophagy inducer rapamycin. Data was quantified from 2 independent 
experiments, averaging puncta per cell for 5 fields of view presented as mean ± SEM. P < 0.05 * 
vs. Control; # vs. C57BL/6J. Two-way ANOVA followed by Tukey’s test.   
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autophagosomal membranes which can be indicated by the punctate appearance of GFP 

staining [263]. We observed that untreated Becn1+/- glia show a slight but insignificant 

decrease in LC3-GFP puncta as compared to untreated C57BL/6J glia (Figure 2.2); 

however, when treated with the mTOR inhibitor and autophagy inducer rapamycin, 

C57BL/6J glia showed a 64% increase in LC3-GFP puncta whereas there was no 

corresponding increase in Becn1+/- glia. These findings further demonstrate that a 60% 

reduction in protein levels due to the heterozygous deletion of the Becn1 allele correlates 

to a reduction of autophagic induction in glial cells upon autophagy induction. Morphology 

and glial cell components were also assessed by immunofluorescent labeling with the 

astrocyte marker, GFAP, and the microglia marker, Iba1 (Figure 2.3).  

 

Figure 2.3 Immunocytochemistry for glial cell presence identifying GFAP+ astrocytes in red 
and Iba1+ microglia in green 
Primary glial cultures were immunolabeled to assess cell population and morphology. Red: GFAP+ 
astrocytes, Green: Iba1+ microglia, Blue: DAPI stained nuclei.  
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2.3.2 Beclin 1+/- glia show reduced inflammatory molecule induction upon exposure 

to the viral protein Tat  

We have recently shown that HIV replication and viral-induced neuroinflammation are 

regulated via a Beclin 1-dependent pathway [192, 257, 258]. Given the established role of 

Tat as a mediator of neuroinflammation, we sought to determine whether the underlying 

mechanism is through Beclin 1. Mouse models, including the use of glial cells, have been 

widely used in the studies of HIV-induced neurotoxicity. While true that murine cells are 

restricted for HIV infection, exposure to viral proteins such as Tat, Nef, and gp120 elicit 

glial cell activation, inflammatory molecule secretion, macrophage infiltration into the brain, 

metabolic dysfunction, and signaling pathway alterations which are also seen in primary 

human glia, despite lacking infectious capability, and reflect levels seen 

pathophysiologically [65, 199, 240, 261, 264]. Glial cells derived from C57BL/6J and Beclin 

1 (Becn1+/-) deficient mice were treated with increasing concentrations of the viral protein 

Tat for 8 and 24 hours for assessment of cytokine and chemokine secretion by ELISA 

(Figure 2.4). After 8 hours post-treatment, Tat caused a significant concentration-

dependent increase in the release of RANTES, MCP-1, and IL-6 in C57BL/6J glia where 

Becn1+/- glia showed significantly less secretion by comparison (Figure 2.4; red, blue, and 

green arrows). These decreases were maintained at 24 hours for RANTES and IL-6 

secretion. At 100 nM Tat treatment, RANTES, MCP-1, and IL-6 secretion in Becn1+/- glia 

were reduced by 1.6, 2.7, and 1.3-fold at 8 hours, respectively; and 2.2, 1.3, and 1.2-fold 
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at 24 hours respectively. Secretion of the pro-inflammatory cytokine TNF-α was also 

assessed; however, no differences were seen between Tat treatments or glial strains (data 

not shown). From this data, it can be inferred that Tat utilizes Beclin 1 to induce 

inflammatory molecule secretion and that 60% reduction in Beclin 1 expression level, can 

decrease this cytokine and chemokine release. To confirm the effects of Tat on 

cytokine/chemokine secretion were dependent on active protein, Tat was heat inactivated 

for 30 minutes at 95°C before being treatment to C57BL/6J and Becn1+/- glia and 

incubated for 24 hours (Figure 2.5). Secretion of RANTES was reduced by 7-fold (Figure 

2.5a), and 3-fold in MCP-1 and IL-6 (Figure 2.5b,c) from glia treated with heat inactivated 

Tat illustrating the specific effects of active Tat on wild type and Beclin 1 mutant murine 

glia. Inflammatory effects of additional viral proteins were also surveyed though secretion 

was either less than that of Tat or showed no significant difference between the strains 

(Figure 2.6). Interestingly, the viral protein Nef also showed a significant degree of 

Figure 2.4 Beclin 1 facilitates Tat-induced inflammatory molecule secretion 
Indicated cytokines and chemokines secreted from C57BL/6J and Becn1+/- mixed glia supernatants 
were measured by ELISA at 8 (a) and 24 hours (b) following increasing concentrations of HIV Tat 
(10 nM, 50 nM, 100 nM). Arrows indicate decreased Tat-induced secretion of RANTES (red), MCP-
1 (blue), and IL-6 (green) from Becn1+/- derived glia. Values were determined from standard curves 
and are presented as the mean ± SEM of 5 independent experiments. P < 0.05 * vs. Control; # vs. 
C57BL/6. Two-way ANOVA followed by Tukey’s test.   
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cytokine and chemokine induction from glia at low concentrations (1 nM) and were nearly 

on par with that of Tat at a higher concentration (5 nM) after 24 hours of treatment. In 

addition, whereas lack of Beclin 1 mediated autophagy was able to stem Tat-induced 

cytokine/chemokine secretion, treatment with Nef at high concentrations was able to 

override any ameliorating effects of the Becn1+/- glia with the exception of MCP-1. This 

was further highlighted with the enhanced secretion of TNF-α at a high concentration of 

Nef treatment (Figure 2.6c,d; grey arrows). Overall, this supports the role of HIV Tat 

protein as a major facilitator of neuroinflammation in glia which can be regulated by the 

Figure 2.5 Inactive Tat is unable to interact with Beclin1 to induce cytokine secretion 
C57BL/6J and Becn1+/- derived glia were treated with heat inactivated Tat (50 nM or 100 nM) for 
24 hours and showed limited secretion of RANTES (a), MCP-1 (b), and IL-6 (c). Heat inactivated 
treatments are indicated in colored boxes. Values were determined from standard curves and are 
presented as the mean ± SEM of 3 independent experiments. P < 0.05 * vs. Control; # vs. 
C57BL/6J; $ vs. Tat (50 nM). Two-way ANOVA followed by Tukey’s test.   
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presence or absence of Beclin 1 while other viral proteins such as Nef play lesser but still 

significant factors potentially independent of Beclin 1.  
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Figure 2.6 Effects of viral proteins on inflammatory molecule secretion through Beclin 1 

Indicated cytokines and chemokines secreted from C57BL/6J and Becn1+/- mixed glia supernatants 
were measured by ELISA at 8 (a & c) and 24 hours (b & d) following treatments of recombinant 
viral proteins. Nef (1 Nm/5 nM), Rev (1 nM/5 nM), Gag (1 nM/5 nM), gp120 (200 pM/500 pM). a: 8 
hours, Nef (1 nM), Rev (1 nM), Gag (1 nM), gp120 (200 pM); b: 24 hours, Nef (1 nM), Rev (1 nM), 
Gag (1 nM), gp120 (200 pM); c: 8 hours, Nef (5 nM), Rev (5 nM), Gag (5 nM), gp120 (500 pM); d: 
24 hours, Nef (5 nM), Rev (5 nM), Gag (5 nM), gp120 (500 pM). Values were determined from 
standard curves and are presented as the mean ± SEM of 3 independent experiments. P < 0.05 * 
vs. Control; # vs. C57BL/6J. Two-way ANOVA followed by Tukey’s test.   
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Numerous studies have reported on the interplay between inflammation and autophagy, 

with induction of autophagy able to regulate inflammatory molecule secretion while 

conversely, cytokine secretion also being able to induce autophagy [265-267]. As such, 

we were interested in the effects of Tat on the expression of key autophagy proteins Beclin 

1, LC3, and the ubiquitin-binding protein, p62/SQSTM1 since these proteins represent the 

initiation, autophagosome formation, and maturation stages of the autophagy pathway 

[79]. Correlating to the effects of Tat on cytokine secretion, there were concentration 

dependent changes in expression of autophagy related proteins Beclin 1 and 

p62/SQSTM1 in C57BL/6J-derived glia (Figure 2.7) suggesting induction of the autophagy 

pathway as well as accumulation of p62/SQSTM1 upon Tat treatment. Becn1+/- glia show 

reduced expression of Beclin 1 as expected; however, these levels were elevated with 

increasing Tat concentration. Interestingly, p62/SQSTM1 expression was unchanged with 

increasing concentration of Tat, though significantly less than C57BL/6J, which may 

suggest autophagic degradation is still ongoing, perhaps through Beclin 1-independent 

mechanisms. Taken together, this data indicates that the inflammatory molecule secretion 

induced by Tat is somewhat facilitated through an association with Beclin 1 and possibly 

the activation of the autophagy pathway.  

Figure 2.7 Tat induction of autophagy dysregulation 
Whole cell lysates from C57BL/6J and Becn1+/- glia after 24-hours of treatment were subjected to 
immunoblotting with antibodies to Beclin 1 (a), LC3 (b), and p62/SQSTM1 (c). Densitometry was 
performed for quantification, and the ratios of each protein to β-actin are presented graphically. 
Error bars show the SEM of 3 independent experiments. P < 0.05 * vs. Control; # vs. C57BL/6J. 
Two-way ANOVA followed by Tukey’s test.   
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2.3.3 Beclin 1 mediates glial inflammation induced by Tat alone and in combination 

with morphine  

 Given the co-morbidity of opiate abuse and HIV infection, we were next interested in the 

role of Beclin 1 on the effects of co-exposure to Tat and morphine on cytokine and 

chemokine secretion. First, we sought to determine the effect of morphine on C57BL/6J 

and Becn1+/- glial cytokine secretion over a range of morphine concentrations (100 nM, 

250 nM, 500 nM, and 1000 nM) for 24 hours of exposure (Figure 2.8). While no significant 

difference to MCP-1 (Figure 2.8b) secretion was observed across the various 

concentrations of morphine, there were concentration dependent fluctuations in RANTES 

secretion from C57BL/6J glia and IL-6 secretion from both C57BL/6J and Becn1+/- glia 

(Figure 2.8a & 2.8c). In addition, Becn1+/- glia showed reduced levels of chemokine 

secretion as compared to C57BL/6J glia, while strain differences in IL-6 secretion were 

not significant. Despite these changes, overall, morphine-induced cytokine secretion is 

quite minimal and not comparable to that of Tat induced secretion making morphine 

treatment alone experimentally irrelevant (Figure 2.8).   

 

It has been shown that glial co-exposure to Tat and morphine provokes the enhanced 

secretion of cytokines and chemokines which contribute to the neuroinflammation 

characteristics of neuroAIDS [242, 261]. Moving forward with 500 nM morphine which has 

been previously shown to saturate MORs [261], we exposed C57BL/6J and Becn1+/- glia 

to Tat alone and in combination with morphine to confirm whether Beclin 1 is involved in 

the interactive effects of Tat and morphine-induced cytokine/chemokine secretion. MCP-

1, RANTES, and IL-6 secretion were induced by Tat treatment to C57BL/6J and 

significantly less in Becn1+/- glia (Figure 2.8). Co-exposure with morphine significantly 
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enhanced Tat-induced cytokine secretion from both strains of glia. Interestingly, co-

exposure with Tat and morphine in Becn1+/- glia showed a significant reduction of about 

1.8-fold in RANTES and a significant reduction of about 1.5 fold in MCP-1 secretion when 

compared to similarly treated C57BL/6J glia (Figure 2.8a & 2.8b; red and blue arrows) 

suggesting that 60% reduction in Beclin 1 protein expression is sufficient to significantly 

reduce Tat and morphine-induced RANTES and MCP-1 secretion. Despite this reduction 

in cytokine secretion from Becn1+/- glia, these cells are still expressing approximately 

40% of the Beclin 1 protein which may explain the enhancement in inflammatory 

molecules detected with combination Tat and morphine treatment.  Co-treating the murine 

glia with heat inactivated Tat and morphine showed significant reduction of RANTES and 

MCP-1 secretion and minimal induction of IL-6 secretion, further supporting the interactive 

Figure 2.8 Tat and morphine induced inflammatory effects show contribution of Beclin 1 
Cell culture supernatants from C57BL/6J and Becn1+/- derived glia after indicated treatment for 24-
hours were assessed for cytokine and chemokine secretion by ELISA (a-f). Cytokine secretion was 
assessed following 24-hour treatment with increasing concentrations of morphine: 100 nM, 250 nM, 
500 nM, and 1000 nM (a-c). Tat and morphine co-exposure were assessed after 24-hours (d-f). 
Arrows indicate reduction in RANTES (d, red), MCP-1 (e, blue), and IL-6 (f, green) secretion from 
Becn1+/- derived glia relative to C57BL/6J derived glia for given treatment. Values were determined 
from standard curves and are presented as the mean ± SEM of 4 independent experiments. P < 
0.05 * vs. Control; # vs. C57BL/6; $ vs. Tat. Two-way ANOVA followed by Tukey’s test.     
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effects of morphine and active Tat. Using the MOR antagonist naltrexone prior to morphine 

administration was able to significantly decrease RANTES, MCP-1 and IL-6 secretion to 

the levels of Tat alone indicating the interaction is acting through MOR. Of note, Tat and 

morphine enhanced MCP-1 release in Becn1+/- glia was significantly reduced to the level 

of Tat alone with pre-treatment of naltrexone, implying Beclin 1 and MOR dependent 

mechanisms (Figure 2.8e).  

 

Looking further at the actions of Tat and morphine occurring at the MOR which is widely 

present throughout the brain, particularly the striatum, mRNA levels were measured by 

qRT-PCR (Figure 2.9a). Analysis showed that with Tat treatment, mRNA levels of MOR 

were increased by 3.5-fold in C57BL/6J glia whereas in Becn1+/- glia, there was only a 

slight decrease in MOR as compared to the untreated control. The co-exposure of Tat and 

morphine to C57BL/6J glia also caused an increase in MOR mRNA, albeit, not as robust 

as Tat alone treatment. Addition of naltrexone to Tat and morphine treatment resulted in 

mRNA levels like that of combined Tat and morphine. Interestingly in Becn1+/- glia, Tat 

and morphine treatment led to higher MOR mRNA levels than that of Tat alone which was 

reduced to the level of Tat by naltrexone; however, this was not significantly different from 

untreated control. In addition, we also looked at how other opioid receptors might be 

contributing to these effects given that there is often co-stimulation of the different opioid 

receptors through off-target effects [96]. C57BL/6J glia treatment with Tat had significant 

effects on the mRNA levels of both the DOR (Figure 2.9b) and KOR (Figure 2.9c). When 

combined with morphine treatment, the trend observed was similar that that of the MOR 

with decreased levels compared to that of Tat alone though not significant. Intriguingly, 

these effects on DOR and KOR were less pronounced in the Becn1+/- treated glia with Tat 

treatment causing mild upregulation of DOR and showing no effects on KOR. 
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To ensure the combined treatment was not drastically or differentially reducing the viability 

of the glia and therefore reducing cytokine/chemokine production or mRNA, an MTT assay 

was performed to determine cell viability across a range of morphine concentrations 

(Figure 2.10). Approximately 20% cell death was observed with each of the treatments, 

with no significant difference between concentrations of morphine. This reinforces the idea 

that the effects of Tat and morphine on microglia and astrocytes are on cellular function 

rather than inducing toxicity in regard to both the wild type and mutant cells. Overall, from 

the data it can be taken that the autophagy pathway intercedes in Tat and morphine-

induced cytokine production. It is important to note that the observed 60% reduction of 

Beclin 1 protein expression (Figure 2.1) is sufficient to reduce Tat-induced inflammation 

but not sufficient to completely prevent the enhanced inflammation detected in Becn1+/- 

Figure 2.9 Differential effects on opioid receptor mRNA upon Tat and morphine exposure 
mRNA levels of murine μ-opioid (MOR), δ-opioid (DOR), and κ-opioid (KOR) were assessed by 
qRT-PCR following treatment with Tat and/or morphine in the presence and absence of naltrexone. 
Values were determined by 2^-ΔΔCT method and normalized to β-actin. Error bars show SEM for 
3 independent experiments. P < 0.05 * vs. Control; # vs. C57BL/6; $ vs. Tat. One-way ANOVA 
followed by Tukey’s test.     
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glia when co-exposed to morphine and Tat as compared to Tat-treated glia,  suggesting 

that additional mechanism(s) may be at work in regulating the release of inflammatory 

molecules in conjunction with Beclin 1 and the autophagy pathway, or that complete or 

>60% protein reduction is required for better inhibition of neuroinflammation. 

 

2.3.4 Tat and morphine use Beclin 1 to alter the autophagy pathway  

After determining the effects of Tat and morphine on cytokine release (Figure 2.8) and the 

concentration dependent effects of Tat on autophagy protein expression (Figure 2.9), we 

were interested to see how the autophagy pathway might be altered upon co-exposure 

with morphine. Beclin 1 expression was elevated with Tat treatment in both strains, 2-fold 

in C56BL/6J and 1.4-fold in Becn1+/- (Figure 2.11a,b). Co-exposure to morphine increased 

C57BL/6J Beclin 1 expression as compared to control; however, there was no enhancing 

interactive effect as compared to Tat. Morphine was seen to cause a slight elevation in 

Beclin 1 expression in both C57BL/6J and Becn1+/- derived glia. Interestingly, Tat and 

morphine co-exposure to Becn1+/- glia caused no change in Beclin 1 expression compared 

Figure 2.10 Glial toxicity of Tat and morphine 
Toxicity of combined Tat and increasing morphine dose in C57BL/6J and Becn1+/- derived glia was 
assessed by MTT assay. Data are presented as percent viability compared to Tat treated cells (a). 
Error bars show SEM for 3 independent experiments. P < 0.05 * vs. Control; # vs. C57BL/6; $ vs. 
Tat. Two-way ANOVA followed by Tukey’s test.     
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to control. The expression ratio of LC3 II/LC3 I showed small fluctuations following Tat 

and morphine treatments alone or in combination from which conclusions on 

autophagosome formation may not be drawn (Figure 2.11c,d). Surprisingly, morphine 

treatment to Becn1+/- glia reduced the LC3 II/ LC3 I ratio which may be suggestive of either 

reduced lipidation and reduced autophagosome formation or enhanced autophagic flux. 

Upon analysis of p62/SQSTM1, we observed Tat caused increases in expression within 

C57BL/6J glia that were not seen in Becn1+/- glia (Figure 2.11e,f) taken as accumulation 

of p62/SQSTM1 and halt of autophagic degradation. Similar to what was seen with Beclin 

1 expression, no additive effects on p62/SQSTM1 expression were seen with Tat and 

morphine co-exposure for either C57BL/6J or Becn1+/- glia; however, where C57BL/6J 

was slightly elevated with co-exposure, the Becn1+/- was on level with control. Although 

not considered an autophagy protein, we also looked at expression of lysosomal-

associated membrane protein1 or LAMP1, a transmembrane protein predominantly 

located across lysosomal membranes which acts as a glycoprotein carbohydrate ligand 

[268]. We found that C57BL/6J treatment with Tat alone or in combination with morphine 

increased the expression of LAMP1 which correlated with the observed changes in 

p62/SQSTM1 expression (Figure 2.12g,h). Coupling C57BL/6J LC3 and p62/SQSTM1 

expression, the data suggests that where Tat alone can prevent p62/SQSTM1 and thus 

autophagosome degradation, when in combination with morphine, the increase in LC3 II/I 

and p62/SQSTM1 may indicate increased number of autophagosomes which are also not 

being degraded. This is also supported by the increased expression of LAMP1 with Tat 

and morphine treatment which may imply an increased number of lysosomes or 

autolysosomes. By comparison, the reduced LC3 II/I and unchanged p62/SQSTM1 

expression in Becn1+/- glia treated with Tat alone or in combination with morphine, imply 

a degree of ongoing autophagic flux despite the reduction of Beclin 1. Analysis of 
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autophagy-related gene expression at the RNA level by qRT-PCR yielded no significant 

differences from Tat and/or morphine exposure within each strain (data not shown). The 

data provide evidence that Tat alone or in combination with morphine can initiate the 

autophagy pathway but prevent autophagosome degradation by the lysosome, which in 

the context of HIV, would allow for enhanced viral replication. However, by reducing the 

levels of Beclin 1, autophagosome degradation may persist, albeit at lowered levels. 

 

2.3.5 Tat and morphine induced effects on intracellular calcium are mediated by 

Beclin 1 

Although astrocytes are non-excitable compared to neurons, activation by ligands such as 

glutamate can trigger Ca2+ oscillations in glial cells leading to Ca2+ waves. These waves 

can be used as a means of communication amongst astrocytes and with surrounding 

neurons [269]. Astrocytic waves can not only modulate neuronal cytosolic Ca2+ but may 

also trigger the release of gliotransmitters like glutamate, ATP, D-serine, TNF-alpha, and 

Figure 2.11 Beclin 1-mediated autophagy dysregulation by Tat and morphine 
Whole cell lysates from C57BL/6J and Becn1+/- derived glia following 24 hours of the indicated 
treatments were subjected to immunoblotting with antibodies to Beclin 1 (a-b), LC3 (c-d), 
p62/SQSTM1 (e-f), and LAMP1 (g-h). Densitometry was performed for quantification on separate 
blots, and the ratios of each protein to β-actin are presented graphically. Error bars show the SEM 
of 3 independent experiments. P < 0.05 * vs. Control; # vs. C57BL/6J; $ vs. Tat. One-way ANOVA 
followed by Tukey’s test.   
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arachidonic acid metabolites [270]. Calcium excitotoxicity is a feature of HIV-induced 

neuronal death pathology which can be stimulated by inflammatory and oxyradical 

stressors potentially causing altered glutamate and NMDAR signaling and excessive 

release of calcium stores from the endoplasmic reticulum [271-274]. Previous studies, as 

well as our own recently published data, have shown that increases in intracellular calcium 

caused by HIV in human astrocytes can lead to neuronal injury [246, 251]. In these studies, 

we use Tat, which we have previously shown to induce calcium release in brain cells [261, 

264]. To assess the role of autophagy in glial calcium homeostasis we use the fluorescent 

indicator Fura-2. As expected, we observed a significant increase in [Ca2+]i in C57BL/6J 

glia treated with Tat, which was significantly increased in the presence of morphine (Figure 

2.12a). In contrast, Tat-induced [Ca2+]i was significantly reduced in Becn1+/- glia and 

further exacerbation with morphine was abrogated when compared to similarly treated 

C57BL/6J glia (Figure 2.12b). To ensure that the increased Fura-2 ratios corresponded to 

intracellular calcium release, we pre-treated murine glia with the intracellular calcium 

chelator, BAPTA/AM. Pre-treatment with BAPTA abrogated calcium levels in C57BL/6J 

and Becn1+/- derived glia confirming that the increased levels in Fura-2 ratios were due to 

the release of intracellular calcium. This data suggests that the reduction of Beclin 1 

expression allows primary murine glia to prevent Tat and morphine-induced excessive 

[Ca2+]i release.  
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2.3.6 Limited Tat and morphine-interactive effects on oxidative stress are not 

mediated by Beclin 1 

In conjunction with neuroinflammation, glial oxidative stress is an additional pathological 

effect common to HAND and is often characteristic of Tat-induced glial dysfunction [275, 

276]. The production of ROS and RNS, has not only been associated with the activation 

of intracellular inflammatory signaling, but also has been shown to cause lipid 

peroxidation, DNA damage, and facilitate excitotoxicity through the release of glutamate, 

ultimately leading to neuronal damage or death [250, 271, 277-280]. To evaluate the role 

of autophagy in mediating the effects of Tat and morphine on oxidative stress in mixed 

glia, intracellular ROS formation was assessed by DCF reactivity and reactive nitrogen 

species (RNS) determined nitrite accumulation. Peak levels of DCF fluorescence were 

recorded after 16 hours of treatment for both C57BL/6J and Becn1+/- glia (Figure 2.13). At 

16 hours, Tat treatment was seen to illicit the highest level DCF fluorescence for both 

C57BL/6J and Becn1+/- glia with no apparent additive effect with morphine. Notably, 

though the increases in ROS caused by Tat were not substantial, within the strains, Tat 

evoked a 35% increase in ROS in C57BL/6J glia compared to untreated control (Figure 

2.13a) whereas there was only a 20% increase in Becn1+/- glia (Figure 2.13b). In addition, 

although no enhancing effect with Tat and morphine was observed in either strain, when 

compared to untreated control, Tat and morphine raised ROS by 20% in C57BL/6J derived 

glia compared to a 13% increase in Becn1+/- derived glia. RNS assessed by NO production 

Figure 2.12 Tat and morphine enhanced intracellular calcium release is prevented by 
reduction of Beclin 1 expression 
Intracellular calcium release from C57BL/6J (a) and Becn1+/- (b) glia was assessed by Fura-2 over 
800 seconds following treatment with Tat ± morphine. The calcium channel blocker BAPTA was 
used as a control. Arrows indicate time of treatment. Results represent the percentage of control 
values and are the mean ± SEM from 3 independent experiments. P < 0.05 * vs. Control; # vs. 
C57BL/6J; $ vs. Tat . One-way ANOVA followed by Tukey’s test  
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was measured by Griess assay, which is based upon the accumulation of nitrite as the 

product of NO metabolism. C57BL/6J glia showed no significant differences in NO 

accumulation upon treatment with Tat alone or in combination with morphine (Figure 

2.13c) compared to untreated control. In Becn1+/- glia, we observed a temporary spike in 

NO accumulation early after Tat treatment which stabilizes at later time points (Figure 

2.13d). In addition, Tat and morphine causes a gradual accumulation of NO in Becn1+/- 

glia, which is only significantly different after 24 hours of treatment. These studies suggest 

an effect on ROS and NO production upon exposure to Tat but detect no interactive effect 

when combined with morphine with minimal intervention by Beclin 1.  
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2.4 Discussion 

In this chapter, we use glial cells from mouse possessing a monoallelic deletion of the 

Becn1 gene to examine to consequences of autophagy deficiency in regulating HIV and 

morphine-induced inflammation, specifically through Tat. Given that homozygous deletion 

of the Becn1 allele results in embryonic lethality, using a murine model with heterozygous 

deletion of the Becn1 allele provides a reduced autophagic environment while maintaining 

sufficient expression for growth and development. This model not only showed reduced 

expression of the autophagy protein Beclin 1 (Figure 2.1), but also showed less LC3 upon 

induction of autophagy by the mTOR inhibitor rapamycin (Figure 2.3). Studies in neuronal 

cells also indicated the necessity of initial stages of autophagosome formation for Tat-

induced GFP-LC3 puncta accumulation demonstrated by Beclin 1 knockdown [191]. The 

Premo™ LC3B-GFP Autophagy Sensor has been utilized in literature for the assessment 

of autophagosome formation in the presence and absence of autophagy inducers [281-

283]. Importantly, this assay only provides a static snapshot of LC3, specifically 

autophagosome formation, since GFP fluorescence is quenched within the lysosome. 

Given that LC3B-GFP puncta can result from both activation of the autophagy process or 

a defect in autophagosome maturation, further studies are necessary to distinguish the 

two events. Neuroinflammation is a well-documented characteristic of HIV associated 

dementia-like symptoms and plays a key role in HIV-induced neuropathogenesis [54].   In 

Figure 2.13 Beclin 1 is independent of oxidative stress induced by Tat with limited 
contribution of morphine 
ROS production was assessed by dichlorofluorescein diacetate fluorescence (DCF) over a period 
of 24 hours following the indicated treatments to C57BL/6J (a) and Becn1+/- (b) glia. Mean DCF 
relative fluorescence was used as an estimate of ROS and was compared for each treatment. 
Results are the mean ± SEM from 6 independent experiments. NO production by C57BL/6J (c) and 
Becn1+/- (d) glia were examined at 0, 1, 6 and 24 hours following the indicated treatments. Nitrite 
levels were assessed using the Griess reaction with conversion of known concentrations of nitrate 
to nitrite as standards. Results represent the mean ± SEM of 3 independent experiments. P < 0.05 
* vs. Control; # vs. C57BL/6J; $ vs. Tat. Two-way ANOVA followed by Tukey’s test   
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addition, studies have shown in vitro exacerbation of cytokine and chemokine secretion 

from astrocytes and microglia treated with HIV or Tat with co-exposure of morphine [242, 

261, 264, 284]. Kyei et al has previously shown that autophagy is used to augment viral 

biogenesis in macrophages by HIV [16] which provides a basis for studying the role of 

autophagy in mediating neurodegeneration both by HIV and in the context of drugs of 

abuse. Further, studies on viral proteins have illustrated not only their role in inducing 

neuroinflammation through the secretion of inflammatory cytokines, but also intervening 

in various stages of the autophagy pathway [16, 194, 285-290]. The viral protein Tat has 

long been demonstrated to induce damage to the brain in murine studies through cytokine 

driven inflammation and gliosis [199]. The penetrative capabilities of the recombinant 

protein across cell membranes is well documented. Extracellular Tat is able to be 

internalized through its basic domain within exon 1 and its RGD domain which is able to 

bind integrin receptors [37].  Given that Tat can enter the cell and possesses a nuclear 

localization signal allowing it to localize in the nucleus, there are a number of pathways 

such as NFκB which may be activated to induce these inflammatory effects [31, 291].  

 

From the viral proteins we assessed, Tat was found to have the most robust inflammatory 

response from the C57BL/6J and Becn1+/- glia; however, other proteins did show effects 

(Figure 2.6). This study used the viral proteins Rev, Gag, gp120, and Nef, many of which 

possess neurotoxic capacity, to examine interactions with Beclin1 and whether they 

mediate neurotoxic effects [7]. The protein Rev is responsible for post-transcriptional gene 

expression within the HIV genome and has been shown to possess neurotoxic properties 

by disrupting membrane phospholipids [287]. The viral protein Gag, which is present in 

the HIV nucleocapsid, interacts with LC3, localizing virus to the autophagosome and 

facilitating viral proliferation within. However, the nonstructural protein Nef, a facilitator of 
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viral replication, directly interacts with Beclin1, allowing the virus to escape the 

degradation phase of autophagy [16]. Nef causes toxicity to neurons and glial cells, in 

addition to inhibiting autophagy [194, 285, 290]. The envelope protein gp120 is 

responsible for viral entry into cells and is considered to determine viral tropism [289]. 

Neurotoxic in and of itself, gp120 has been shown to induce secretion of cytokines and 

chemokines such as IL-6, TNF-α, RANTES, and IL-1β [288]. In addition, studies in 

neuroblastoma cells have reported gp120 to induce autophagy with increases in Beclin1 

expression and LC3-GFP positive puncta [286]. While we saw no significant up regulation 

of the pro-inflammatory cytokine TNF- with Tat, there was a marked increase when 

treated with the viral protein Nef which was heightened by reduction of Beclin 1. Reports 

have shown that Nef is able to induce cytokine and chemokine secretion in astrocytes and 

microglia through the mitogen pathway (p38 MAPK) and the transcription factor, NF-κB 

[292, 293]. TNF-α, in particular, has been associated with elevated levels of Nef and 

increased infectivity in astrocytes [294, 295]. We also observed that the differences 

between strains which were seen with Tat treatment were absent with Nef treatment, apart 

from TNF-α. This may be explained by Nef’s ability to alter early endosomal compartments 

and vesicles, similar to that of the autophagosome in autophagy, in astrocytes [296, 297]. 

Comparing the effects of the individual viral proteins shown here to our laboratory’s 

previous data demonstrating the effects silencing Beclin 1 in HIV-infected microglia and 

astrocytes on inflammatory molecule secretion, it is clear that the viral proteins weigh 

different contributions to HIV-induced neuroinflammation [192, 246]. 

 

In our present study, Tat was shown to have a concentration dependent effect on 

neuroinflammation through the secretion of cytokines and chemokines, with lack of Beclin 

1 able to significantly attenuate these effects (Figure 2.4). This is consistent with previous 
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studies by our lab showing that silencing of Beclin 1 in microglia and astrocytes reduces 

HIV replication as well as HIV and morphine-induced inflammation [192, 246, 257]. In 

addition, here we provide evidence that Tat, an established promoter of 

neuroinflammation, can also be modulated by autophagy within brain glia using Beclin 1. 

We observe Tat concentration dependent changes to autophagy-associated proteins 

Beclin 1 and p62/SQSTM1 in C57BL/6J glia which are limited in the Becn1+/- glia (Figure 

2.7). Studies have shown that the effects of Tat on autophagy are largely dependent on 

conditions, concentration, and cell type, either activating or suppressing autophagy 

function in glial cells or neurons [191, 193, 298]. While activation of autophagy by Tat 

should direct the viral protein for degradation as shown in CD4+ T lymphocytes [178], 

dysregulation in the degradation of the autophagolysosome may allow for persistence of 

Tat and autophagosome accumulation [248]. The study by Sagnier et al also found that it 

is possible for Tat to exhibit ubiquitin-independent, direct interaction with p62/SQSTM1. 

Though there is a possibility the changes to p62/SQSTM1 within our studies may be 

independent of ubiquitination and LC3, this would require further study. Notably, the 

Sagnier study was performed in CD4+ T cells and it is likely that these interactions of Tat 

may be cell-type specific.   

 

The interactive effects of Tat and opiates on glial function have been previously reported 

by our lab and others [106, 264], yet the mechanistic role of Beclin 1-mediated autophagy 

has not been fully confirmed. Examining the interactive effects of Tat and morphine on 

cytokine and chemokine production, we observed that morphine was able to exacerbate 

the levels of RANTES, MCP-1, and IL-6 secretion induced by Tat, which were mediated 

by MOR (Figure 2.8). Although diminished Beclin 1 expression was able to significantly 

reduce Tat and morphine-induced cytokine secretion as compared to C57BL/6J derived 
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glia, this reduction alone was not sufficient to abrogate RANTES and MCP-1 release. This 

agrees with our previous studies which showed significant but not complete abrogation of 

cytokine and chemokine release in HIV and morphine-exposed microglia and astrocytes 

transfected with siRNA against Beclin 1 [192, 246]. Of note, previous studies by Turchan-

Cholewo et al on the effects of Tat and morphine on opioid receptor surface expression 

and mRNA levels imply cell-specificity with differing effects between primary murine 

astrocytes and microglia and cell lines [299]. That group suggested the cell type specificity 

of Tat and morphine action at the MOR may determine the role of opioid receptors in brain 

inflammatory signaling responses, which is supported by our qRT-PCR results (Figure 

2.9). Although morphine is a classical MOR ligand, we did detect alterations to DOR and 

KOR mRNA levels with both Tat and morphine treatments respectively. The same group 

found a similar trend in primary microglia with Tat-induced up regulation of DOR which 

was slightly decreased when combined with morphine, and little to no effect on KOR. 

Interestingly, in primary astrocytes Tat showed insignificant effects to DOR or KOR. Given 

that our system uses a mixed glial culture (astrocytes + microglia), our results may be an 

intermediate of those findings. Our studies also show increased opioid receptor mRNA 

with pre-treatment of naltrexone. This antagonist can reversibly bind MOR, and to a lesser 

extent DOR and KOR and has been reported to increase the density of opioid receptors, 

despite, by definition, being neutral or negative in efficacy [300]. It is important to note that 

the Turchan-Cholewo study used primary astrocytes and microglia from the forebrain 

unlike the striatum used in these studies. In addition, differential induction of chemokines 

and their receptors by Tat and morphine has been suggested to have cell type-specific 

bidirectional, cross-sensitization with opioid receptors which may also modulate their 

expression [301]. Therefore, it is possible that the Beclin 1-dependent responses to Tat 

and morphine are cell-type specific with the relative presence of microglia and astrocytes 
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potentially masking the ameliorating effects of autophagy reduction in our mixed-glial 

model. Another factor to examine is cell surface receptor dynamics. In general, morphine 

is considered a lower efficacy agonist and may only induce receptor internalization under 

certain conditions in certain cell types [302]. Given that Beclin 1 has functions outside of 

autophagy such as endocytosis (through its interaction with UVRAG and Vsp34), it is also 

possible alterations in trafficking machinery causing impaired internalization of the opioid 

receptors may explain the Tat and morphine-induced differences in mRNA between the 

strains [262, 303, 304].  

 

The autophagy pathway can be modulated by HIV or Tat exposure, with other HIV-

proteins also able to modulate autophagy. Other studies have reported that upon HIV 

treatment, human astrocytes show increased protein expression of Beclin 1 indicative of 

autophagy initiation in conjunction with elevated LC3 [188]. In addition, it has been 

reported that Tat is able to stimulate autophagy by increasing the levels of BAG3 in human 

glial cells shown by increased LC3 II protein via western blot and immunofluorescence 

[193]. Our studies agree as we detected elevated expression of Beclin 1 in C57BL/6J 

derived glia treated with Tat; however, though also increased relative to untreated control, 

no interactive effect was detected when co-administered with morphine (Figure 2.11a). 

This is consistent with our previous studies in HIV-infected human astrocytes and 

microglia co-exposed to morphine [192, 246]. It is of note that Tat exposure to Becn1+/- 

derived glia moderately increased Beclin 1 protein expression, albeit not as significantly, 

when compared with C57BL/6J derived glia and even less so with Tat and morphine 

treated Becn1+/- derived glia (Figure 2.11b). This seems to contradict the LC3-GFP studies 

in mutant glia which suggested that these cells inefficiently induce autophagy activation. 

A study in rat hepatocytes demonstrated that early inhibition of autophagy by the PI3K 
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inhibitor 3-methyladenine prevented LC3 lipidation while maintaining bulk cargo 

autophagic flux [305]. It is therefore a possibility that with the 60% reduction in Beclin 1 

protein expression in the mutant glial cells, may be able to carry out autophagy, if only to 

a lesser extent. In our studies here, we did not detect significant changes in LC3 II/I ratio 

with Tat treatment alone or in combination with morphine (Figure 2.7b, 2.11c,d). Tat 

treatment has shown to increase LC3 II expression in both astrocytes and neurons [191, 

193]. It is possible that these differences may be due to lack of antibody sensitivity for LC3 

II which may cause the signal ratio of LC3 I and LC3 II to be skewed and improperly reflect 

the ratio of cytosolic and membrane-bound LC3 [306, 307]. In addition, inhibitors of 

autophagic degradation such as bafilomycin A1 or chloroquine should also be utilized to 

establish LC3 II increase and thus confirm autophagosome accumulation. Despite being 

the most commonly utilized tool for assessing autophagy, it is important to note that LC3 

expression levels alone are not sufficient to determine autophagic flux due to the fact that 

LC3 II is in equilibrium in terms of its formation and degradation [308]. As such, data must 

be analyzed in conjunction with other markers such as the adaptor protein p62/SQSTM1 

or in the presence of autophagosomes [307]. Expression of LC3 and p62/SQSTM1 in Tat 

treated C57BL/6J derived glia was suggestive of reduced LC3 leading to the accumulation 

of p62/SQSTM1. When combined with morphine, p62/SQSTM1 protein levels were 

elevated compared to untreated control, which may indicate accumulation of 

autophagosomes due to impaired clearance (Figure 2.11c & 2.11e). Notably, these effects 

were significantly minimized in glia derived from the Becn1+/- mouse (Figure 2.11d & 

2.11f). If autophagic activation is associated with increased numbers of autophagosomes, 

we would expect a corresponding increase in the number of lysosomes [268]. Here we 

see increased expression of the lysosome protein LAMP1 when C57BL/6J but not Becn1+/- 

glia are treated with Tat alone or combined with morphine (Figure 2.11g,h). Studies in 
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human astrocytes demonstrated that late stage autophagy could be interrupted by the HIV 

protein Nef as characterized by LC3 and p62/SQSTM1 accumulation [194]. Similarly, 

although in neurons, Hui et al has reported that Tat can also disrupt endolysosome 

degradation [248]. Also, in HIVE patient post-mortem tissues, Zhou et al described 

increased expression autophagy proteins as well as the lysosomal marker LAMP1 [185]. 

As such, it is possible that Tat induces Beclin 1 expression to initiate autophagy in glia 

while concurrently preventing its own degradation through targeting of late stage 

autophagy (Figure 2.14). This type of hijacking of the autophagy pathway allows for the 

protection of viruses within the autophagosome and allows for the enhanced viral 

replication observed in HIV infected brain cells [309].  Our findings show that by reduction 

of Beclin 1-mediated autophagy, Tat and Tat and morphine-induced alterations to 

autophagy protein expression can be prevented and ultimately limit their effects; however, 

additional studies on autophagic flux are still needed to confirm impaired maturation. 

Subsequently, we can then determine whether autophagosome to lysosome fusion is 

occurring, and second determine any effects on autophagolysosome acidification. 

Moreover, the presence and accumulation of autophagosomes and lysosomes should be 

confirmed by electron microscopy.  
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Tat-induced neurotoxicity is largely facilitated through the activation of the brain glia which 

leads to oxidative stress through excitotoxic mechanisms often involving calcium [250]. 

Becn1+/- glia provided further evidence supporting the role of Beclin 1 in mediating calcium 

release in astrocytes. Similar to what was shown in HIV-infected human astrocytes, Tat 

was able to induce calcium release from C57BL/6J derived glia, which was significantly 

enhanced by co-exposure to morphine (Figure 2.12). Moreover, Tat or Tat and morphine-

induced calcium release was significantly decreased in Becn1+/- derived glia which 

paralleled the siBeclin 1 treatment decreases shown in HIV-infected human astrocytes. 

Provided that intracellular Ca2+ is a key second messenger to numerous signaling 

pathways and is essential to the maintenance of glial homeostasis, it was of key 

importance to this study to validate the role of Beclin 1 as a potential alleviating factor for 

Tat and morphine-induced calcium accumulation. It should be noted that intracellular 

Figure 2.14 Schematic diagram summarizing the differential effects of Tat and morphine on 
the autophagy pathway in C57BL/6J and Beclin 1-deficient mouse glia 
Green arrows indicate an induction/accumulation. Reducing the expression of Beclin 1 in mouse 
glia prevented excessive Tat and morphine associated induction of the autophagy pathway while 
also limiting the accumulation of the adaptor protein p62/SQSTM1 and the lysosomal protein 
LAMP1. Future studies on the fate of the autophagosome are currently pending to determine the 
mechanism by which the autophagy pathway is initiated by Tat and morphine, but the process 
halted before degradation may occur.      
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calcium assessments generally appear as oscillations over time with varying intensity 

which we did not observe in these studies. This may be due to over-loading of the Fura-

2-AM dye or over-exposure of the fluorescent readings, thus minimizing the oscillations 

for each reading point. Future studies will reduce the amount of Fura-2-AM from 5 μM to 

1 μM. We also recently showed using gene silencing against Beclin 1 and the autophagy 

inducer, rapamycin, a role of autophagy in buffering the release of calcium, ROS, and NO 

in HIV-infected human astrocytes exposed to morphine [246]. Analysis of ROS production 

in the present study did not detect an enhancing effect upon Tat and morphine treatment 

of either C57BL/6J or Becn1+/- derived glia (Figure 2.13a,b) contradictory to our previous 

study with HIV-infected astrocytes or studies in microglia [107]. This may be due to 

saturation of the fluorescent reading which may explain the H2O2 kinetics. Future studies 

will require further optimization of the DCF dye to identify a suitable range for 

measurement as well as microscopy to confirm loading. Interestingly, we were able detect 

a slight, albeit significant, interactive effect of Tat and morphine on RNS production in 

Becn1+/- derived glia (Figure 2.13c-d) similarly to what was seen previously seen in HIV-

infected human astrocytes [246]. It has been previously shown that interruption of the 

autophagy pathway may also aggravate toxicities due to the virus [310]. Using glia derived 

from a Beclin 1-deficient mouse we further confirmed that Tat and morphine-induced 

calcium, but not ROS and NO release, are mediated via a Beclin 1-mediated pathway. In 

conclusion, using glial cells derived from Beclin 1-deficient animal, we observe an 

association between the autophagy protein Beclin 1 and the HIV protein Tat, which may 

underlie a mechanism for glial neuropathology in the context of opiate abuse and provide 

insight into targeting of future therapeutics.  
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CHAPTER 3: BECLIN 1 IS A REGULATOR OF NEURONAL OUTCOME AND KEY 

COMPONENT IN MEDIATING NEURO-GLIAL INTERACTIONS UPON TAT AND 

MORPHINE EXPOSURE 

 

3.1 Introduction 

HIV exposure in the brain is associated with a host of neurological complications, despite 

advancements in cART. As research into the etiology of these deficits has expanded, the 

cause has been attributed to neuronal damage, dysfunction, and loss. Despite these 

findings, there is no evidence that supports HIV infection of neurons [311, 312]. Rather, 

numerous studies find that HIV exerts its harmful effects to neurons through either 1.) 

direct effects of viral protein products such as Tat or 2.) indirect effects mediated by the 

changes to the cellular environment regulated by local glial cells [66, 202, 240, 241, 290, 

296, 313, 314]. In particular, the viral protein Tat is considered one of the most important 

arbitrators of HIV-induced neurotoxicity with studies showing that Tat exposure into the 

mouse striatum leads to neuronal apoptosis, synaptic destruction, dendritic pruning and 

gliosis [239]. Secreted into the extracellular space by infected cells and unaffected by 

cART, Tat is able to bind extracellular receptors or cross membranes to enter neuronal 

cells, ultimately wreaking havoc on neuronal signaling, membrane permeability, and 

initiating apoptotic cascades [30, 260]. In addition, as discussed in the previous chapter, 

Tat exposure to glial populations results in glial activation, stimulation of 

neuroinflammation, oxidative stress, and homeostatic disruption, all of which culminate in 

severe stress for the neuronal bystander [60, 66, 67, 100, 202, 208, 275]. Tat triggers toxic 

glutamate release from glial cells which in turn activates AMPA receptors (AMPARs) and 

NMDARs which can trigger excitotoxicity through the opening of calcium channels and 

depletion of intracellular stores [315]. Moreover, in vitro studies have demonstrated that 
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Tat is able to increase neuronal Ca2+ flux through interaction with NMDARs which can 

cause excessive neuronal signaling and damage to synapses [251, 260, 273].  Synergistic 

effects of Tat and morphine in neurons have also been reported to enhance neuronal 

death and intracellular calcium accumulation illustrating their neurodegenerative effects 

[101, 204, 316, 317]. Furthermore, studies using inducible Tat transgenic mice have 

shown a variety of pathologies depending on brain location such as astrocytosis, neuronal 

collapse, degeneration of dendrites, and progressive loss of the cortex [205, 207]. 

Considering that both the direct and indirect attacks of HIV on neurons are bolstered by 

opiate co-exposure, the HIV-infected/drug abusing population is at considerable risk for 

neuronal damage and the clinical manifestations of HAND [86, 100].  

 

Currently, there is still much to be understood regarding the precise mechanisms of 

neuronal injury and death following Tat and opiate co-exposure. While effects such as 

excitotoxicity, mitochondrial dysfunction, dendritic damage, and neuronal apoptosis have 

been identified as being triggered by Tat and morphine, questions surrounding how these 

phenomena are being regulated remain unclear. Consequently, one such pathway which 

may be considered is the autophagy pathway. Studies have shown that it is possible for 

HIV or its proteins to induce neurodegeneration through the clearance pathway [185, 186, 

189-191]. In post-mortem brain tissues of HIV-infected persons with encephalitis, there 

was a marked increase in expression of autophagic proteins and autophagosome number 

as compared to uninfected brains or HIV brains without encephalitis [185]. Similar results 

were also reported when examining autophagy in the post-mortem brain tissues of HIV-

infected persons with varying degrees of NCI prior to death as well as history of drug 

abuse [187]. As reviewed earlier, autophagy has associations to both HIV pathogenesis 

and numerous neurodegenerative diseases, with dysregulation of the pathway frequently 
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leading to significant pathology. This is particularly important for post-mitotic cells such as 

neurons which rely on the pathway for excessive/damaged protein and organelle removal 

[183]. In addition, the balance of autophagy lies deeply intertwined with initiation of 

apoptosis and may provide the driving force in determining neuronal outcome.  It is on this 

basis that we sought to determine how the autophagy protein Beclin 1 mediates the 

neuronal responses triggered by Tat and morphine co-exposure.  

 

3.2 Materials and Methods 

3.2.1 Timed-pregnancy and primary murine neuron cell cultures 

Approximate timed pregnancies were utilized to retrieve embryonic neurons at stages of 

high neurogenesis. Briefly, male and female mice aged 8 to 15 weeks were kept isolated 

for at least 24 hours prior to mating. After 24 hours, females were introduced into the 

breeding cage with the males in the early evening. Female mice were monitored 

periodically for 48 hours after initial introduction to detect for the presence of a vaginal 

plug indicating intercourse. The day on which the plug is observed is considered day zero 

and mouse weight is recorded every 3 days to ensure pregnancy.  

 

Primary murine striatal neurons were obtained from the embryos of anaesthetized 

pregnant dams at a gestational age of approximately E15-E17. Tail clips of individual 

murine embryos were taken for genotyping confirmation of strain as described in chapter 

2.2.2. Brains from each embryo was considered as an independent sample (n=1).  Growth 

medium contained Neurobasal medium™ (Gibco/Life Technologies, Grand Island, NY) 

supplemented with B-27 (2% v/v; Gibco/Life Technologies), L-glutamine (0.5 mM), and 

1% penicillin/streptomycin.  The striatal area, which contains mostly medium spiny 

neurons, was dissected from whole brain and cell isolation performed similarly to as 
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described in chapter 2.2.3 for primary murine glia. Cells were plated and maintained in 24-

well plates or 4-well chambers coated with poly-L-Lysine for 5 to 7 days. 

 

3.2.2 Reagents and treatments 

Morphine sulfate (Sigma-Aldrich, St. Louis, MO) and Tat1-86 IIIB (ImmunoDiagnostics, 

Woburn, MA) were used to treat C57BL/6J and Becn1+/- neurons at the concentrations 

described in chapter 2.2.7. Supernatant from C57BL/6J and Becn1+/- primary glia treated 

with Tat and morphine alone or in combination for 24 hours as described in chapter 2.2.7 

was collected and added to neuronal cultures to assess neuronal survival. Conditioned 

media (CM) from treated primary glia was centrifuged and filtered through a 0.22 m filter 

to remove cellular debris leaving only soluble secretions and diluted 4-fold in neuronal 

growth media. Conditioned media (CM) was used to treat cultured C57BL/6J-derived 

neurons and untreated C57BL/6J neurons served as controls.  

 

3.2.3 Time-lapse assessment of neuronal survival  

Time-lapse digital images were assessed as described previously [257]. Briefly, images 

of neurons were recorded using an inverted microscope with an automated computer-

controlled stage and environmental chamber (37˚C, 5% CO2) (Zeiss). For each well, 6-10 

non-overlapping fields were selected. A total of 15-30 individual medium spiny striatal 

neurons were identified in each field by their distinctive morphology in digital images. 

Time-lapse images of the same series of fields were recorded at 30-minute intervals for 

36 hours after concurrent Tat and/or opiate treatment. At the end of each experiment, all 

preselected neurons were assessed for viability in digital images taken at each time point 

during the entire treatment period. Neuronal death was identified visually by the collapse 

and fragmentation of the cell body. Neuronal survival is reported as the percentage of 
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viable cells at a given time point compared to the initial time point 0.  Phase contrast 

images were taken at 20x magnification. 

 

3.2.4 Cell viability 

Viability of neurons was confirmed using a live/dead cell fluorescence assay, which 

combines fluorescent reagents to yield two-color discrimination of the population of live 

cells indicated by green fluorescence, from the dead-cell population indicated by red 

fluorescence (ScienCell Research Laboratories). Cells were imaged using an inverted 

fluorescence microscope.  Neuronal viability was also assessed by trypan blue exclusion 

assay and measured using an automated cell counter (Bio-Rad).   

 

3.2.5 Growth factor array 

Glial growth factor secretion was measured using the RayBio® C-Series Mouse Growth 

Factor Array 3 (catalog #: AAM-GF-3-8; RayBiotech). C57BL/6J and Becn1+/- glial cells 

were treated with Tat and morphine alone and in combination under reduced serum 

conditions (1% FBS) for 24 hours. Collected supernatant was used to semi-quantitatively 

detect the levels of 30 mouse proteins present in the cell culture media according to 

manufacturer’s instructions. Signal levels were detected by chemiluminescence and 

intensities normalized to positive control on each membrane and membranes normalized 

to the untreated media reference array. Results are presented as fold change relative to 

untreated media.  
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3.2.6 Intracellular calcium [Ca2+]i measurements 

Levels of [Ca2+]i release in neuronal cultures were measured as described in chapter 

2.2.13. Data is presented as percent of control values ± SEM from 4 separate experiments 

(15-25 cells). 

 

3.2.7 Immunohistochemistry 

Chambers containing treated neurons were immunolabeled as described in chapter 2.2.4. 

The primary antibody used was anti-MAP2 (Millipore, MAB378) at a 1:100 dilution for 

neuron visualization. Immunoreactivity was visualized with secondary antibodies from 

Molecular Probes (Carlsbad, CA, USA). Cells were mounted with ProLong® Gold antifade 

reagent with DAPI to label cell nuclei (Thermo Fisher Scientific). Images were analyzed 

using a Zeiss (Germany) inverted fluorescence microscope with a 560 Axiovision camera 

at 40x. Microtubule-associated protein 2 (MAP-2) fluorescently labeled neurons were used 

to assess dendritic beading following 24 hours of Tat ± morphine treatment. Neurons were 

assessed blindly from three independent experiments. The total number of beads were 

counted and divided by the total number of neurons assessed per treatment for each 

experiment.  

 

3.2.8 Statistical analysis 

Results are reported as mean ± SEM of 3-6 independent experiments. Data were 

analyzed using analysis of variance (ANOVA) techniques, followed by post hoc testing for 

multiple comparisons and/or repeated measures (GraphPad Prism 7 software, La Jolla, 

CA). A value of p < 0.05 was considered significant. 

 



89 

3.3 Results 

3.3.1 Neuronal Beclin 1 deficiency contributes to aberrant Tat-induced intracellular 

calcium accumulation and dendritic injury 

Neuronal signaling is heavily reliant on ion flux which regulates much of its functionality 

such as action potential firing and neurotransmitter release [318]. One of the most 

essential and highly regulated of these ions is intracellular calcium. The capability of Tat 

to have excitatory Ca2+ mobilization effects on neurons through interactions with both 

plasma membrane receptors and intracellular stores is well documented, along with 

highlighting the exacerbating effects of co-exposure with opiates ultimately leading to 

excitotoxicity [75, 316, 319]. Given the results on Ca2+ flux we observed in the mixed glial 

cultures (Figure 2.12), here we sought to determine what role, if any, Beclin 1-mediated 

autophagy plays in neuronal Tat and morphine-induced Ca2+ dysregulation. For these and 

future purposes, we isolated primary striatal neurons from the embryonic pups of 

C57BL/6J and Becn1+/- bred mice (Figure 3.1). Tail clips were taken from the E15-E17 

pups for genotyping as described in Chapter 2.2.2. As expected, Tat treatment to 

C57BL/6J neurons caused a significant increase in [Ca2+]i (1.63x increase) which was 

elevated when co-exposed with morphine (2.05x increase) when compared to the 

Figure 3.1 Primary culture and imaging of C57BL/6J and Becn1+/- neurons 
Primary neurons were isolated from the striatum of pups of cross-bred pregnant dams (C57BL/6J 
x Becn1+/-) at approximately E16. Genotyping on embryonic tails was performed to confirm strain. 
Morphology differences between strains were assessed by immunostaining with the neuronal 
marker MAP-2 (green). Nuclei are stained with DAPI (blue). 
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untreated C57BL/6J control (Figure 3.2a). To our surprise, Tat treatment to Becn1+/- 

neurons also caused a significant increase in [Ca2+]i (2.72x increase) compared to 

untreated Becn1+/- neurons (Figure 3.2b). This was significantly higher than the Tat-

induced increase seen in C57BL/6J neurons. Interestingly, while the combined addition of 

Tat and morphine to Becn1+/- neurons also caused an increase in [Ca2+]i compared to the 

untreated control (2.44x increase), the effect was less than that of Tat treatment alone. 

Morphine alone showed no significant effects to either C57BL/6J or Becn1+/- neurons. The 

calcium chelator BAPTA served as a negative control. This data suggests that reduced 

autophagy by proxy of Beclin 1 deficiency may intercede in Ca2+ signaling leading to 

intracellular accumulation which may be a hindrance to neuronal survival through 

excitotoxicity.  
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As neurons are subjected to stress within the environment, intracellular signaling 

cascades and responses are triggered which often manifest as structural changes.  An 

early morphological hallmark for neurotoxicity is the presence of beading or varicosities 

along neurites. A response to axonal and/or dendritic injury, its presence tends to parallel 

neuronal death and is observed in many neurological diseases [318, 320] and has also 

been reported as a result of HIV injury [321]. As such, we continued to examine the effects 

of neuronal Beclin 1 deficiency upon Tat and morphine neurotoxic challenge using 

immunocytochemistry. MAP-2 fluorescently immunolabeled neurons were observed 

qualitatively for neurite beading after 24 hours of Tat and/or morphine treatment (Figure 

3.3a; white arrows). Comparing the untreated C57BL/6J and Becn1+/- groups, the mutant 

neurons had a significant degree of beading without any neurotoxic exposure (2.36-fold 

higher). Tat treatment significantly increased neurite beading in both C57BL/6J and 

Becn1+/- neurons (2.82 and 2.29-fold increase compared to respective strain controls). 

Combined Tat and morphine treatment to C57BL/6J neurons caused a similar degree of 

neurite beading as observed in Tat treated neurons (2.64-fold increase compared to 

untreated control). Tat and morphine co-exposure to Becn1+/- neurons also caused neurite 

beading; however, to a lesser degree than Tat treatment alone (1.32-fold increase 

compared to control) (Figure 3.3b). Beading caused by morphine treatment alone was 

slight and considered a negligible increase. Taken together, it appears as though lack of 

Beclin 1 drives neurons to an excitotoxic/stressed state with a heightened sensitivity to 

neurotoxins such as Tat.     

Figure 3.2 Becn1+/- neurons exhibit increased intracellular calcium accumulation upon Tat 
exposure 
Intracellular calcium release from C57BL/6J (a) and Becn1+/- (b) neurons was assessed by Fura-2 
over 980 seconds following treatment with Tat ± morphine. The calcium chelator BAPTA-AM was 
used as a control. Arrows indicate time of treatment. Results represent the percentage of control 
values and are the mean ± SEM from 4 independent experiments. P < 0.05 * vs. Control; # vs. 
C57BL/6J; $ vs. Tat. One-way ANOVA followed by Tukey’s test.   
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3.3.2 Becn1+/- derived neurons show reduced viability with Tat and morphine 

exposure 

Neuronal autophagy is a key process in the maintenance of neurological health with 

aberrant or dysregulated activity being associated with the development of CNS disorders 

such as Alzheimer’s, Parkinson’s, and Huntington’s diseases [322, 323]. While glial 

contributions to neuroinflammation have been documented to have adverse effects on 

neuronal health and outcome, studies have shown that Tat can also directly induce toxicity 

and neuronal cell death which is enhanced by morphine co-exposure [87, 100, 102, 104, 

204, 241, 324, 325]. In addition, previous studies on the effects of Tat and morphine on 

primary human neurons indicated inhibition of autophagy, reduced endolysosome pH, 

accumulation of autophagosomes, and an observed obstruction of autophagosome to 

lysosome fusion [187, 248]. Given what we have observed in regard to the effects of 

reduced Beclin 1 on neuronal Ca2+ and dendritic injury, we sought to examine the role of 

Figure 3.3 Tat exposure to Becn1+/- neurons induces elevated dendritic beading 

C57BL/6J and Becn1+/- neurons treated with Tat  morphine for 24 h were immunolabeled with 
neuronal marker MAP-2 to identify morphological changes and dendritic beading indicative of injury 
(a). Total number of beads per treatment was quantified and averaged over total number of neurons 

assessed per treatment per experiment. Error bars show mean  SEM for 3 independent 
experiments. P < 0.05 * vs. Control; # vs. C57BL/6J; $ vs. Tat. Two-way ANOVA followed by 
Tukey’s test.          
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Beclin 1-mediated autophagy in Tat and morphine-induced neuronal outcome. Individual 

neurons were tracked over 36 hours using environmentally controlled time-lapse imaging 

to monitor morphological changes and cell death over time (Figure 3.4a) [86, 102, 326]. 

Tat treatment to C57BL/6J derived neurons showed only a slight, but statistically 

significant, decrease in viability (5%) that was further decreased when combined with 

morphine (11%) after 36 hours of exposure as determined by repeated measures two-way 

ANOVA (Figure 3.4b). No significant changes were seen with morphine treatment alone. 

Although mild toxic effects were induced in the C57BL/6J neurons by Tat and morphine, 

we observed marked increases in neuronal losses from Becn1+/- neurons from an early 

time point regardless of treatment when compared to C57BL/6J neurons (Figure 3.4c). 

Tat exposure caused a decrease in neuronal viability (10%); however, when combined 

with morphine, there was no significant enhancement of neuronal death (12%) 

comparable to that which was seen in C57BL/6J neurons. Neuronal viability was 

confirmed by fluorescent live/dead staining (Figure 3.4d) and trypan blue exclusion. 

Although the effects to C57BL/6J neuronal viability were not as drastic as have been 

reported in other studies, these results agree with existing literature in regard to the toxicity 

of Tat and morphine on neurons. In addition, these time-lapse results are analogous to 

what was observed in the neuronal calcium and dendritic beading studies with Tat and 

morphine co-treated Becn1+/- neurons. This supports the concept that a 60% reduction in 

Beclin 1-mediated autophagy has detrimental effects to neuronal health and enhances 
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injury when faced with stress, thus further confirming the essential role of Beclin 1 and 

autophagy in neuronal protection, which can significantly be hindered by Tat exposure.  
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3.3.3 Reduction of Beclin 1 expression in glia treated with Tat and morphine lessens 

indirect toxicity to neurons  

Having surveyed the direct effects of Tat and morphine on neuronal survival, we next 

questioned how these effects might be modulated in a more complex experimental system 

which incorporated glial contributions as a closer representation of the brain environment. 

As previously prefaced, excessive glial activation and dysfunction play a significant role in 

establishing HIV and Tat-induced neurotoxicity through the production of reactive species, 

glutamate release, and cytokine/chemokine secretion culminating in neuroinflammation 

and subsequent neuronal death [54, 86, 327, 328]. Using supernatant/conditioned media 

(CM) from C57BL/6J and Becn1+/- glia treated with Tat and/or morphine, we assessed 

whether the reduced expression of Beclin 1 in activated glia could ameliorate the 

neuroinflammation and subsequent indirect toxicity experienced by neurons in the CNS. 

Based on the poor survival outcomes of Becn1+/- neurons, these experiments proceeded 

with C57BL/6J neurons only. Time-lapse monitoring revealed a statistically significant 

Figure 3.4 Neurotoxic effects of Tat and morphine are more severe in Becn1+/- neurons 
Individual C57BL/6J (b) and Becn1+/- (c) neurons were assessed for survival following Tat and 
morphine treatment using time-lapse imaging over 36 h. Representative phase contrast images of 
individual neurons are shown at 20x magnification (a). Red circles depict dead neurons. Becn1+/- 

neurons were found to be highly susceptible to death independent of treatment. Error bars show 
the SEM for 3 independent experiments with at least 40 cells per experiment. P < 0.05 * vs. Control; 
$ vs. Tat. RM Two-way ANOVA followed by Tukey’s test (treatment effects). Neuronal viability was 
confirmed using a live/dead fluorescence assay (d). A representative image of dead (red) and live 
(green) cells acquired at 20x magnification is shown. Viability was manually quantified following 
the indicated treatments at 36 h. Error bars show SEM for replicates of a representative experiment. 
P < 0.05 * vs. Control; # vs. C57BL/6J; $ vs. Tat. Two-way ANOVA followed by Tukey’s test.             
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decrease in neuronal survival when given Tat-treated C57BL/6J CM (13% decrease) and 

was prominently enhanced when Tat was combined with morphine (30% decrease) 

(Figure 3.5b). Morphine-treated C57BL/6J CM did slightly decrease neuronal survival but 

was not significantly different from what was seen in the untreated CM (7% decrease). 

These studies yielded vastly different results when neurons were exposed to CM from 

Becn1+/- glia (Figure 3.5c). While the survival of neurons given untreated Becn1+/- CM was 

comparable to that of untreated C57BL/6J CM at 36 hours (C57BL/6J - 69%; Becn1+/- - 

74%), all other treatments were starkly different than the similarly treated wild type. Tat, 

morphine, and Tat + morphine treated Becn1+/- CM all reduced neuronal survival 

compared to untreated Becn1+/- CM, but there were no detectable differences between 

those 3 treatments (65%, 67%, and 65% respectively). Viability was confirmed by 

live/dead assay and trypan blue exclusion which showed similar results (Figure 3.5d). This 

data supports our hypothesis that targeting the autophagy pathway, specifically Beclin 1, 

in glial cells can diminish the indirect toxicity and neurodegeneration instigated by Tat and 

morphine co-exposure in the neuronal microenvironment. 
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3.3.4 Beclin 1 associated alterations in growth factor secretion upon Tat and 

morphine exposure  

Based on existing literature and the findings here, glial dysfunction is a clear arbitrator of 

neurotoxicity and neurodegeneration. As reviewed in Chapter 1, microglia and astrocytes 

have distinct and crucial functions in moderating the neuronal environment and neuronal 

homeostasis which are disrupted by HIV and its viral proteins. By that token however, 

when investigating the effects of HIV on glial function, it is essential to consider the effects 

duly in terms of gain of function (glial over-activation/production) and loss of function (glial 

shutdown/under-production). One key task of glial function in support of neuronal 

homeostasis is the production/secretion of growth/neurotrophic factors. Neurotrophic 

growth factors are endogenous soluble proteins which regulate a plethora of neuronal 

actions and functions. These include regulating neuronal survival, growth, morphological 

plasticity/synthesis, and protein synthesis for differentiated neurons [329, 330]. To 

evaluate the changes to soluble factor support potentially experienced by neurons due 

Figure 3.5 Decreased toxicity of neurons exposed to supernatant from Becn1+/- glia treated 
with Tat and morphine 
Individual C57BL/6J neurons were assessed for survival following exposure to supernatant from 
Tat and morphine treated C57BL/6J (b) and Becn1+/- (c) glia using time-lapse imaging over 36 h. 
Representative phase contrast images of individual neurons are shown at 20x magnification (a). 
Red circles depict dead neurons. Error bars show the SEM for 3 independent experiments with at 
least 30 cells per experiment. P < 0.05 * vs. Control; $ vs. Tat. RM Two-way ANOVA followed by 
Tukey’s test (treatment effects). Neuronal viability was confirmed using a live/dead fluorescence 
assay (d). A representative image of dead (red) and live (green) cells acquired at 20x magnification 
is shown. Viability was manually quantified following the indicated treatments at 36 h. Error bars 
show SEM for replicates of a representative experiment. P < 0.05 * vs. Control; # vs. C57BL/6J; $ 
vs. Tat. Two-way ANOVA followed by Tukey’s test.             
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glial Tat and morphine exposure, we measured growth factor secretion from C57BL/6J 

and Becn1+/- supernatant using the RayBio® C-Series Mouse Growth Factor Array. This 

array probed for the secretion of 30 growth factors, where from that 30, those with 

significant fold changes are included in Table 3.1. From that list, several growth factors 

have known associations to HIV-induced dysfunction and/or regulating neuronal health 

(Figure 3.6).   Basic fibroblast growth factor (bFGF), insulin-like growth factor 1 (IGF-1), 

macrophage colony-stimulating factor (M-CSF), and platelet-derived growth factor 

(PDGF) are all mitogenic growth factors which are secreted by cells to stimulate growth 

and differentiation, maintain cell survival, recruit circulating cells, and regulate the cellular 

microenvironment. Just as in the periphery, these functions are executed within the brain 

by the resident microglia, astrocyte, and neuronal cells in response to an initial stimulus. 

bFGF, for example, is secreted by astrocytes where, in addition to its promotion of cell 

survival and proliferation, it has been reported to stimulate the neurite expansion and 

branching of neurons [331, 332]. IGF-1 is primarily associated with astrocytes and neuron; 

when bound to its receptor IGF1R, triggers pro-survival signaling cascades, enhances 

nerve growth, and promotes synaptic plasticity (the process by which changes in synaptic 

activity strengthen or weaken synapse strength) [333-335]. M-CSF regulates myeloid cell 

activation and growth in the periphery but in the CNS, where it is produced by glial cells, 

promotes the survival and proliferation of microglia as well as regulates their activity [336, 

337]. In addition, some studies report neuroprotective actions of M-CSF in 

neurodegenerative disease models such as the AD mouse model [338].  PDGF is made 

by platelets and regulates cell growth and division but can also be made by astrocytes 

and is required for normal early development. Here we were able to detect significant 

differences in bFGF, IGF-1, and M-CSF between the wild type and mutant strains when 

exposed to Tat and morphine alone or in combination (Figure 3.6). Becn1+/- glia treated 
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with Tat and morphine both showed the highest levels of these neurotrophic growth factors 

with the difference between it and similarly treated C57BL/6J glia being quite substantial. 

This may represent Becn1+/- glia more efficiently responding to Tat and morphine 

exposure and subsequent neuronal damage through the secretion of mitogenic pro-

survival neurotrophic growth factors. As such, targeting Beclin 1 expression in glia may be 

considered beneficial to neuronal survival. Separately, the differences in PDGF-AA were 

more subtle and not statistically significant (Figure 3.6d). Others have described the 

neuroprotective potential of a PDGF isoform, PDGF-BB, which was shown to attenuate 

Tat and morphine-induced damage to human neurons; however, in our studies we found 

no detectable levels of PDGF-BB in either C57BL/6J or Becn1+/- supernatant [339]. In 

summary, this data establishes a role of Beclin 1 in regulating glial growth factor production 

and highlights a different, potentially overlooked, aspect of glial function and response 

which may contribute to enhancement of neuronal survival.  

Table 3.1 Soluble growth factor release in C57BL/6J and Becn1+/- glia treated with Tat and 
morphine 
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3.4 Discussion 

In this chapter, we examined the role of the autophagy protein Beclin 1 in mediating direct 

and indirect neuronal toxicity upon Tat and morphine co-exposure. As in the previous 

chapter, to do this we make use of mice possessing a monoallelic deletion of the Becn1 

gene and embryonically-derived primary neurons isolated from them. Neuronal autophagy 

is a highly sensitive process of which aberrant activation or inhibition frequently cause 

dysfunction leading to disease. These long-lived cells are post-mitotic and do not have the 

luxury of cell division to serve as a contingency under pathological conditions where 

damaged and dysfunctional organelles often accumulate. As such, neurons are heavily 

reliant on the proteasome and lysosome systems for the maintenance of neuronal function 

[158, 322, 340]. Tat exposure in neurons has been shown to greatly affect cellular 

Figure 3.6 Tat and morphine treatment in Becn1+/- glia increases secretion of neurotrophic 
growth factors 

Selected growth factors showed significant modulations in secretion from Tat  morphine exposure. 
P < 0.05 * vs. Control; # vs. C57BL/6J; $ vs. Tat. Two-way ANOVA followed by Tukey’s test.              
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autophagy, although to different extents. Hui et al found Tat1-72 to cause the accumulation 

of abnormally large endolysosomes with elevated pH paired with decreased expression 

of autophagy proteins LC3, ATG5, and increased p62/SQSTM1, implying an inhibition of 

autophagy in hippocampal neurons [248]. Another study by Fields et al reported that Tat1-

86 also caused a reduction of autophagy in cortical neuronal neurons also with abnormal 

accumulation of autophagosomes; however, though somewhat contradicting, found that 

Tat could reduce the autophagic blockade effects of the V-ATPase inhibitor bafilomycin 

A1 which suggests that Tat promotes autophagosome and lysosome fusion in neurons 

[191]. In studies of HIV exposure, one study reported inhibition of autophagy in cortical 

neurons exposed to supernatant from SIV infected microglia with decreased LC3 and 

increased p62/SQSTM1 which could be rescued by autophagy induction using rapamycin 

[189], whereas two separate studies found increased expression of autophagy proteins 

Beclin 1, ATG5, ATG7, and LC3 in the post-mortem tissues of HIVE patients [185, 187]. 

Taken together, it is apparent that the effects of HIV and the viral protein Tat on neuronal 

autophagy are complex.  

 

In these studies, we first investigated the direct effects of Tat and morphine co-exposure 

on neuronal function, structure, and survival to ascertain the part played by Beclin 1 in 

mediating these effects. Neuronal function is largely dependent on the various signaling 

pathways regulated by the levels of intracellular ions such as calcium. Excessive 

increases in intracellular calcium have been documented to be triggered by Tat interacting 

with/entering cells through receptors and surface proteins such as CXCR4, NMDAR, 

heparan sulfate proteoglycans, and low-density lipoprotein (LDL) receptor-related 

proteins, and often lead to neuronal cell death [319, 341-344]. The 

glutaminergic/ionotropic NMDARs may be activated by Tat leading to ionic imbalances 
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and excitotoxicity [273, 345]. Here we were able to detect Tat induced increases in 

intracellular calcium in C57BL/6J neurons as has been previously reported [251, 260]. 

This was further increased by the addition of morphine which was previously 

demonstrated by Fitting et al to converge on MORs and exacerbate calcium accumulation 

by mobilizing intracellular stores [316]. While these effects on C57BL/6J neurons were to 

be expected, we had not expected the heightened effects of Tat and morphine on Becn1+/- 

neurons compared to the wild type counterparts. Although we did not observe any additive 

or synergistic effects with Tat and morphine co-exposure in the Becn1+/- neurons, both 

treatments of Tat alone and in combination with morphine surpassed that which was seen 

in the C57BL/6J (Figure 3.2). From this it can be suggested that Beclin 1 and the 

autophagy pathway may have direct ties to mediating neuronal excitotoxicity. One study 

on traumatic brain injury found that glutamate could induce excitotoxity in cortical neurons 

through N-methyl D-aspartate receptor subtype 2B (NR2B) while in parallel activating the 

autophagy pathway and increasing expression autophagy proteins like Beclin 1 and LC3. 

When NRB2 was pharmacologically antagonized, this prevented both glutamate toxicity 

and autophagy induction [346]. A separate study found that NMDA-induced autophagy in 

cortical neurons as well as dendrimer-mediated siRNA delivery against Beclin1 was able 

to potentiate NMDA toxicity [347]. This may be correlated with studies of Tat which also 

showed that exposure can cause activation of neuronal autophagy [191]. These studies 

and the calcium data presented in this chapter suggest that Beclin 1 may be part of a 

defense mechanism against excitotoxicity and further establishes the neuroprotective role 

of autophagy in neurons within the context of Tat and morphine induced excitotoxity. 

Despite this, the question of how exactly autophagy proteins and structures interact with 

NMDARs to prevent calcium overload still stands. This may be through the triggering of 

pro-survival proteins such as BCL-2 or p53, mitochondrial membrane destabilization and 
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outer membrane puncture, targeting of Ca2+ or V-ATPases, or through phosphorylation 

signaling cascades involving development/cell division proteins such as CDK5 and Wnt/β-

Catenin all of which have been associated with induction of neuronal autophagy and 

glutamate excitotoxicity in models of ischemia or HAND [348-353]. Ultimately, more 

research into the exact mechanisms are still required. 

  

The neuroprotective functions of Beclin1 and autophagy was also illustrated by our 

findings in neurite beading (Figure 3.3). Here we saw that while Tat, alone and in 

combination with morphine, did increase neuronal beading as has been shown in previous 

studies [187, 316], this was significantly heightened in Becn1+/- neurons. Synaptodendritic 

injury is comprised of structural changes such as dendritic pruning and focal swelling 

displayed as varicosities or beads which disrupt communication at the synapse and axonal 

transport [321]. The development of these beads along the dendrites is considered a 

marker for neuronal injury and excitotoxic stress which links beading with intracellular ion 

flux. Functionally, when NMDARs are activated, the channel opens and allows for the 

influx of not only Ca2+ ions but also Na+ at a higher rate [354]. Elevated intracellular Na+ 

not only accompanies Ca2+ but is also able to modulate NMDAR gating and expression 

which exacerbates ionic imbalances [355-357]. It has been suggested this excess of [Na+]i 

and dysregulated [Ca2+]i causes the structural manifestation of neurite beading through 

not only excitotoxic influx on ions, but also the accompanied alterations in cellular 

energetics and ATP generation which are dependent on Na+/K+ ATPase activity and is 

also associated with autophagic cell death or autosis [356, 358, 359]. Further, a recent 

study in HIV-infected macrophages found that a Tat-Beclin 1 peptide was able to induce 

this form of autophagic cell death mediated by Na+/K+ ATPase activation [360]. Taken 

together, this may explain our beading results shown in Figure 3.3 from treated Becn1+/- 
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neurons and correlates it with our findings from Tat and morphine induced Ca2+ 

accumulation in Becn1+/- neurons shown in Figure 3.2. It should be noted that dendritic 

beading is a reversible occurrence so other assessments of neuron morphological 

damage can also be utilized in future experiments such as evaluating spine density, 

dendritic length and branching which may correlate to synaptic damage [361]. 

 

The importance of Beclin 1 and autophagy in regulating neuronal health was further 

confirmed when C57BL/6J and Becn1+/- neuronal survival was monitored over 36-hours 

by time-lapse imaging following Tat and/or morphine treatment. Previous studies have 

examined the effects of Tat and morphine alone and in combination on neuronal viability 

and have found the exacerbating effects to striatal neurons through apoptotic pathways 

[101]. We similarly found that 100 nM Tat treatment caused mild neuronal toxicity in 

C57BL/6J neurons which was augmented by morphine co-exposure (Figure 3.4b); 

however, this toxicity was magnified in similarly treated Becn1+/- neurons (Figure 3.4c). 

This reiterates the importance of Beclin 1 in neurons and corroborates the neurotoxicity 

suggested by the [Ca2+]i and neurite beading assessments (Figure 3.2 and 3.3). It should 

be noted that time-lapse assessment of viability monitors death over a duration of time but 

does not incorporate assessment of apoptosis. As discussed in chapter 1.7.2, Beclin 1 

and the autophagy process is tightly coordinated with apoptosis. Based on this, in future 

studies it is essential to distinguish the mechanisms of neuronal death, whether through 

apoptosis, autophagic cell death, or other contributing mechanisms which can be done 

using methods such as TUNEL and annexin V staining in combination with inducers and 

inhibitors of autophagy and apoptosis [362, 363]. Studies have demonstrated the 

neuroprotective functions of Beclin 1 in neurodegenerative diseases such as AD and PD 

[364, 365]. One study by McKnight et al highlighted the importance of Beclin 1 when they 
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showed how in cerebellar Purkinje , cortical, and hippocampal neurons where the protein 

is conditionally deleted, neurons experience rapid degeneration and increased mouse 

mortality as early 6 weeks with all mice dying by the age of 4 months [262]. This is 

understandable since complete Beclin 1 deletion (Becn1-/-) is shown to be embryonically 

lethal whereas the Becn1+/- mice used here have been shown to live up to 18 months, 

although they do exhibit late onset lung carcinomas, hepatocellular carcinomas and 

lymphomas [136, 137]. However, in the study by Pickford et al which uses the same 

heterozygous Becn1+/-mutant mice used in our study, neuronal Beclin 1 deficiency also 

resulted in synaptodendritic degeneration, abnormal lysosomes with electron dense 

granules, and reduced MAP-2 and synaptophysin (neuronal/synaptic markers) 

immunoreactivity in vivo, all of which were enhanced when Becn1+/- mice were crossed 

with the APP+ transgenic mouse, an AD mouse model [364]. Taken together, this 

establishes the compromised state of Becn1+/- striatal neurons as determined by [Ca2+]i 

accumulation and increased dendritic damage which is further exacerbated by Tat and 

morphine exposure, ultimately leading to rapid neuronal loss. 

 

As referenced earlier, the neuronal damage mediated by HIV and its viral proteins does 

occur independently without the contributions of the glial cells in the CNS environment, 

especially in the context of drug abuse. Glia-mediated neuroinflammation through the 

secretion of cytokines and chemokines is noted as a key facet of HAND, in addition to 

metabolic dysfunction, impaired neurotrophic activity, reactive gliosis, and oxidative stress 

all of which inevitably prompt neuronal injury and loss [60, 106, 312, 366]. In this study we 

examined the effects of glial conditioned media on neuronal survival as assessed by time-

lapse monitoring. The differences in C57BL/6J neuronal survival between the experiments 

of direct exposure to Tat and morphine and exposure to the glial secretions as a result of 
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Tat and morphine exposure were stark (Figures 3.4b and 3.5b). Neuronal viability was 

dramatically impaired when exposed to the CM from Tat or Tat + morphine treated 

C57BL/6J glia compared to the when the neurons were exposed directly. This coincides 

with existing literature which underscore the importance of glia in eliciting neuronal death 

upon Tat exposure [54, 56, 66, 87, 240]. This is particularly important in the context of Tat 

and morphine co-exposure [86, 87, 100, 106, 243, 261, 264, 284]. Zou et al for example 

demonstrated the importance of not only glia in mediating the neurodegenerative effects 

of Tat and morphine combined exposure, but also the necessity of glial MOR expression 

to potentiate these effects [102]. The study found that glial conditioned media enhanced 

the synergistic toxicity to neurons upon Tat and morphine exposure of which synergy was 

dependent on the presence of glial, but not neuronal, MOR expression as determined by 

using MOR1-/- knockout mice. These potentiating effects were even greater when neurons 

were placed into direct contact with glia, emphasizing the importance of soluble factor 

secretion in augmenting toxicity. Other studies which exposed neurons to the conditioned 

media of either SIV/HIV-infected microglia or Tat-treated glia also showed 

neurodegeneration in the forms of dendritic pruning and cell death which may be attributed 

to dysfunctional neuronal autophagy [187, 189]. When we examined the effects of Becn1+/- 

CM on neuronal survival, we observed an attenuation of Tat and morphine-induced toxicity 

compared to that of C57BL/6J CM. Based on the data presented in the previous chapter 

on inflammatory molecule secretion, reduction of Beclin 1 expression in glia is able to 

partially abrogate inflammation induced by Tat alone or in combination with morphine 

(Figure 2.8) which we have also seen with HIV-infected microglia and astrocytes [192, 

246]. In addition, although glutamate buffering was not shown here, our previous studies 

in human astrocytes demonstrated that silencing Beclin 1 by siRNA can also rescue 

impaired glutamate uptake caused by HIV infection which contributes to excitotoxicity in 
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neurons [246].   This supports the notion that targeting glial, but not neuronal, autophagy 

through Beclin 1 can help to attenuate Tat and morphine induced neurotoxicity. Our 

analysis of glial growth factor secretion following Tat and/or morphine exposure may 

further substantiate this concept. Tat and morphine were found to cause significant 

elevation of growth factors such as bFGF, IGF1, and M-CSF in Becn1+/- glia (Figure 3.6). 

While this may seem counterintuitive, studies have shown the upregulation of growth 

factors in neurodegenerative diseases such as AD, PD, and HAND [367, 368]. This may 

possibly be explained by glial efforts to counteract the neuronal damage such as dendritic 

beading being caused by toxic exposure in the brain [366]. bFGF for example has been 

documented to be significantly raised in reactive astrocyte dense areas of the brains of 

patients with AIDS dementia complex [367]. It was hypothesized that glia secrete 

neurotrophic factors to stimulate pro-survival cues in the ailing neurons but ultimately lose 

that battle. By that note, it is possible, through some yet to be determined mechanism, for 

Tat and morphine exposure within a Beclin 1-deficient host cell to trigger sufficient 

production of neurotrophic factors (while also limiting inflammatory molecule secretion) 

and activate neuroprotective mechanisms to prevent further, and possibly reverse, 

neuronal damage. The neuroprotective qualities of neurotrophic growth factors in 

response to oxidants or excitotoxicity have been documented and are considered in 

potential treatments for neurodegenerative disease [330, 339, 369-371]. As such, the 

capability of Beclin 1 to modulate not only Tat and morphine induced inflammation, but 

also neuroprotective growth factor secretion poses an attractive target in the design of 

future therapeutic interventions for HAND in the context of drug abuse and prevent further 

neuronal damage. Currently, further studies are ongoing to delve further into the 

mechanisms of autophagic cell death which are mediated by Tat and morphine exposure. 
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CHAPTER 4: CONTRIBUTIONS OF BECLIN 1 TO TAT AND OPIOID 

NEUROPATHOLOGY AND MOTOR IMPAIRMENT WITHIN THE MOUSE STRIATUM   

 

4.1 Introduction 

The umbrella term HAND encompasses a wide breadth of cognitive, motor, and behavioral 

abnormalities associated with CNS presence of HIV [52]. Currently, diagnosis of HAND is 

somewhat challenging since clinical features are no longer as pronounced as in the pre-

cART era. Initially, the AIDS Task Force of the American Academy of Neurology (AAN) 

founded the criteria by which the neurological stages of HIV are defined; however, these 

were revised to account to the lesser pronounced and more mild forms of neurological 

impairment [372]. The updated criteria of HAND assess neuropsychometric performance 

(NP) which includes attention information processing, language, memory (learning and 

recall), sensory perceptual skills, simple motor skills, and complex perceptual motor skills 

where deficits may appear in ANI or later progress from it.  However, initial early 

identification is reliant on self-reporting which may incorporate bias [373].  Neuroimaging 

is also increasingly being utilized to monitor metabolic, structural, and functional changes 

within HAND patients [374].     

 

Advancements in antiretroviral treatments have greatly changed the landscape of HIV and 

neurological decline. Adherence to cART significantly reduced both the incidence and rate 

of mortality due to HAD, the most severe manifestation of HAND. In spite of these 

therapeutic successes, the rates of the lesser forms of HAND, MND and ANI, have 

gradually been on the rise [375]. These two classifications also bring their own, more 

subtle, clinical manifestations which are still prevalent in the post-cART era and hinder the 

day to day quality of life in HIV infected persons.  There are a number of contributing 



114 

factors which may explain the continued prevalence of HAND clinical characteristics 

including variable antiretroviral penetrance to the brain, antiretroviral toxicity, and 

continuous exposure to secreted viral proteins, all of which are compounded by the 

increased life span of HIV infected individuals [376, 377].  

 

Although HIV has the capability of affecting multiple brain regions, pathology associated 

with infection has been most prominent in the basal ganglia, with the frontal cortex and 

hippocampus also displaying significant levels of viral burden [378-380]. Coinciding with 

these locations of high viral load, patients with HIV often presented with the inability to 

complete tasks, delayed speech output, impaired fine motor skills, and unsteady gait [13]. 

In addition, patient brain histopathology indicated cortical atrophy, formation of 

multinucleated giant cells, and immune cell infiltration leading to encephalitis [381, 382]. 

This was also found to be more rapid and severe in patients who were IDU, likely because 

virus laden areas like the basal ganglia are also highly rich in opioid receptor expression 

[380, 383]. Focusing on the basal ganglia, the motor disorders associated with HIV include 

Parkinsonism in more severe occurrences. In more mild cases of impairment, reports 

include isolated eye movement impairment, bradykinesia, impaired facial expression, and 

tremors [384-390]. In general, these clinical demonstrations in HAND are attributed to 

abnormalities within the basal ganglia, particularly the striatum upon virus or viral protein 

exposure. In vitro/vivo studies have reported neuronal loss, metabolic dysfunction 

(dopaminergic pathways), astrogliosis, and inflammation; however, there is still much to 

be understood in the regulation and eventual prospective treatments for this pathology. In 

this chapter, we first sought to recapitulate the motor deficits seen in HAND patients using 

an animal model treated with the viral protein Tat, which has been shown to induce brain 

pathology, and examine any potential additional dysfunction with morphine co-exposure. 
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In parallel, we also used the Becn1+/- mouse as a potential “therapeutic” model to 

determine whether any observable behavioral deficits and accompanying pathology of Tat 

and morphine co-exposure were modulated by the autophagy pathway, and if Beclin 1 

intervention can rescue this phenomenon.   

 

4.2 Materials and Methods 

The guidelines of the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals were followed, and the Florida International University Institutional 

Animal Care and Use Committee approved all animal experimental protocols for these 

studies.  

 

4.2.1 Animals 

C57BL/6J and Becn1+/- mice were obtained as described in Chapter 2.2.1 and bred. Mixed 

litters were separated after weaning for later age-matched experiments. Only adult male 

C57BL/6J and Becn1+/- mice age 3-5 months and weighing approximately 25-30g were 

used for these experiments. All mice were housed 3–5 per cage and were maintained in 

a temperature- and humidity-controlled room on a 12:12 h light/dark cycle with lights off at 

6:00 pm with ad libitum access to food and water. Mice from each strain were randomly 

divided into 4 treatment groups: (a) intrastriatal vehicle + placebo implant, (b) intrastriatal 

vehicle + morphine implant, (c) intrastriatal Tat + placebo implant, (d) intrastriatal Tat + 

morphine implant (Figure 4.1).    
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4.2.2 Chemicals 

Morphine sulfate (25 mg) and placebo pelleted implants were obtained from the National 

Institute on Drug Abuse (NIDA, Drug Supply System). Morphine pellets were continuous 

time-release pellets and were used to continuously deliver drugs for 5 days (approximately 

5 mg/day). Recombinant HIV Tat1-86 IIIB was purchased from ImmunoDiagnostics. 

 

4.2.3 Surgical Manipulation  

Mouse surgery was performed as using previously established protocols [244]. Mice were 

anesthetized by 2.5% isoflurane and subsequently placed in a mouse stereotaxic 

apparatus (Stoelting Co.) Under aseptic conditions, mice were administered sterile saline 

(vehicle control) or 10 g of Tat in a volume of 10 L that was injected over 5 minutes at 

a rate of 2 L/min into the striatum using a 33-gauge syringe (Hamilton Co.) attached to 

an automated infusion pump (Hamilton Co). Striatal injections were made at the 

coordinates AP = +0.7 mm, ML = 2.0 mm, and DV = -4.0 mm from the bregma (Figure 

Figure 4.1 Experimental design and surgical plan of Tat and morphine exposure 
Under anesthesia, 10ug (in 10 μl) of recombinant HIV Tat1-86 protein was injected into the striatum of C57BL/6J 
and Becn1+/- mice. Subsequently, a 25 mg morphine pellet was implanted subcutaneously beneath the 

scapula. Saline was used as a control for Tat. A placebo pellet was used as a control for morphine. 
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4.2) [242]. After 1 minute of incubation to allow tissue to return to original conformation 

and prevent backflow, the needle was slowly withdrawn. While still under anesthesia and 

maintaining aseptic conditions, subscapular skin was lifted, and a 3 mm incision made 

creating a subcutaneous pocket and the placebo or morphine pellet was inserted. Mice 

not given morphine were administered 0.25% bupivacaine (6 mg/kg) as local anesthesia 

before final skin closure using Vetbond surgical glue. Mice recovered on a heating pad 

(28C) until consciousness was regained and normal activity continued before being 

returned to cages. All animals were carefully monitored daily for signs of distress, weight 

loss, or changes in behavior.  

 

Figure 4.2 Stereotaxic coordinates and surgical example 

Striatum was located by stereotaxic reference (AP = +0.7 mm, ML = 2.0 mm, and DV = -4.0 mm) 
relative to the bregma. Injections were done in the caudate/putamen area. 
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4.2.4 Behavioral Assays 

After 2- and 5-days post-surgery, behavioral tests assessing motor skill were performed 

(Figure 4.3). On the day of behavior testing, mice were habituated in the testing room for 

one hour prior to assessment. Mice were allowed 3 attempts for each behavior test (unless 

otherwise stated) with a 5-minute time interval between trials and the best score recorded. 

Each animal was given a 10-minute rest period between behavior tests. Any mice 

perceived as being in distress or incapable of performing behavioral tasks were excluded 

from study results. All mice performed all of the behavior tests.  

 

Accelerating Rotarod 

The rotarod is an elevated rotating rod which exploits the natural fear of falling to evaluate 

balance, motor coordination and endurance. The Rotarod treadmill (San Diego 

Instruments) consists of a 1.25 in diameter cylindrical treadmill raised 18 in above the 

cushioned based connected to a computer-controlled motor driven drum which is 

programmed to operate in an accelerated mode. Each compartment possesses 7 

photobeams placed strategically below the running rod. When the animal falls off the 

rotating rod, the amount of time elapsed from starting until the photobeam was passed 

Figure 4.3 Representative images of motor skill behavioral assessments 
On days 2 and 5 post-surgery, mice were assessed in 3 tests to assess motor performance and 
skill. N= 4-8 mice per treatment. 
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was recorded by the computer automatically. All mice were naïve to the rotarod test until 

testing on day 2 post-surgery. Mice were placed on the elevated rod and the rod 

accelerated from 1 to 50 rpm in 5.0 rpm stages per 5 seconds with latency to fall recorded 

in seconds.  

 

Grip Strength 

The grip strength test (Chatillon force measurement; San Diego Instruments) assesses 

muscle weakness based on the instinctual tendency of mice to grasp objects with its 

forelimbs [391]. The apparatus is comprised of a push/pull digital force gauge meter 

connected to a computer for recording. Each mouse was weighed before forelimb grip 

strength test. The mice were held by the tail and lowered towards the computerized grid 

until it gripped the bar with both forepaws. The mouse was then gently and steadily pulled 

by the tail perpendicularly to the grid until the grid was released. Peak force was recorded 

in grams of force. Tests were repeated 5 times in 30 second intervals with the highest 

tension value being used as the animal’s measure of strength. Peak grip was normalized 

to mouse body weight for each animal. 

 

Horizontal Bar 

Horizontal bars are an additional measure of forelimb strength and coordination using 

elevated 2- and 4-mm diameter bars (44 cm length) suspended by metal poles (50 cm 

height). Holding the mouse by the tail, the mouse was placed on the benchtop and quickly 

slid backwards to align the mouse perpendicular to the bar and placed on the bar in the 

center of the two poles so that the mouse grasps the bar with its forelimbs only. Once 

grasping the bar, the mouse tail was released, and the timer started.  Mice were tested on 

ability to hold on to each bar and/or traverse the bar to the end poles (supporting the bar). 
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End point criterion was either falling from the bar, reaching the end pole, or reaching the 

maximum assessment time of 30 seconds. Duration of stay before falling or reaching the 

end pole was scored from 1-5, with 5 being the highest score. Scoring criterion are listed 

in Table 4.1. Mice were tested on the 2 mm bar followed by the 4 mm bar (to increase 

difficulty) for 3 trials on each bar. The best scores for each bar were then added.  

 

4.2.5 Tissue preparation and histology 

Following behavior experiments on day 5, mice were sacrificed, and brains collected 

intact. Brains were fixed for 24 hours in 4% paraformaldehyde, then serially submerged in 

15% and 30% sucrose for 24 hours, and finally embedded in in OCT compound and frozen 

for histology. Embedded frozen brain tissues were cut into coronal sections at 10 m 

thickness beginning at the forebrain and including the striatum (approximately ranging 

Section 18-25 in a mouse stereotaxic atlas [392]). Tissue sections were stained with cresyl 

violet acetate solution (Nissl) to stain the neuropil and identify the neuronal bodies within 

the brain as an indicator of decreased neuronal number. Briefly, sections were dehydrated 

in an ethanol series (70%, 95%, 100%), incubated in cresyl violet for 20 minutes, 

rehydrated, and cleared with xylene. Slides were then mounted with Permount and cover 

Table 4.1 Scoring used in horizontal bars assessment 
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slipped. Images of the striatum taken arbitrarily within a 600 m x/y distance from the 

injection epicenter were analyzed using a Zeiss (Germany) inverted fluorescence 

microscope with a 560 Axiovision camera in non-overlapping fields (Figure 4.4). In total, 

2 animals per group, 2 tissues per animal, and 4 images per tissue were used for 

histological assessment with representative images shown at 100x. Cells that contained 

Nissl substance in the cytoplasm, loose chromatin and prominent nucleoli were 

considered to be neurons and were manually counted semi-blind, whereas in contrast, 

glial cells lack a conspicuous nucleolus and contain less endoplasmic reticulum and were 

excluded [393-395]. Nissl+ glia identified by these morphological criteria were not 

considered in the estimation of total neuron numbers. Quantification was performed at 40x 

magnification. The data were represented as the number of cells per mm2.    

 

 

Figure 4.4 Post-fixed brain tissue and schematic representation of image sampling for 
histological assessment 
On day 5 post-surgery, mice were sacrificed, brain tissues collected, fixed, and frozen. Tissues 

were sectioned by cryostat in the coronal plane at 10 m and every 6th tissue used to Nissl staining. 

Images were taken approximately 600 m from the injection point. N=3 mice per treatment, per 
strain. 
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4.2.6 Statistical Analysis 

All data were analyzed with Prism7 software. Results are reported as the mean of each 

treatment group  SEM based upon total number of mice assessed. Data were analyzed 

by either one-way or two-way analysis of variance (ANOVA), followed by post hoc analysis 

using Tukey’s (treatment), Sidak’s (strain) tests for multiple comparisons. P values of 

<0.05 were considered statistically significant.  

 

4.3 Results 

With the introduction of cART, the manifestation of clinical symptoms in HIV patients has 

drastically decreased in severity with these deficiencies falling under the MND and ANI 

classifications of HAND [373]. In the study of the effects of Tat (and opiates) on brain 

function, many studies have focused on damage to the hippocampus and subsequent 

deterioration of cognitive function, memory, and behavior such as fear conditioning and 

anxiety [206, 207, 396]. Despite the occurrence of motor deficits being more prevalent in 

HAD within the pre-cART era, patients with HIV-associated neurological impairment may 

still show difficulties in motor coordination and fine motor skill, especially within the drug 

abusing population [397, 398]. Given the glial-induced inflammation and neuronal losses 

within striatal-derived cells observed in the previous chapters, we sought to determine if 

these effects could be recapitulated in vivo and translate to impaired motor skill, as well 

as determine what role Beclin 1 plays in regulating these behaviors.  Following intrastriatal 

injection (Saline vs Tat) and subcutaneous pellet implantation (Placebo vs Morphine), 

mice were assessed for motor impairment.  We first examined effects of Tat and morphine 

on mouse mortality (Figure 4.5). We found that while Tat/placebo treatment at 10 g to 

either C57BL/6J or Becn1+/- mice showed no significant effects on mortality (94%, 100% 

survival), Tat/morphine administration appeared to strongly affect survival with no 
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difference in mortality between the strains (50%, 50% survival). This may be a 

consequence of consistent morphine exposure since mice treated with saline/morphine 

also showed a decrease in survival and the C57BL/6J mice seemingly more affected by 

morphine than the Becn1+/- mice. This is particularly interesting since other studies have 

shown mice to tolerate 25 mg and 75 mg dosages of the extended release morphine 

pellets in studies [244, 399, 400]. Morphine is a well-studied analgesic with side effects 

that include constipation, respiratory depression, and hypothermia when entering the 

withdrawal state at approximately 24 hours after implantation which is when plasma drug 

concentrations are reported to peak [401-403]. As such, the study numbers shown 

represent the increased pool of test subjects to accommodate for these losses. 

 

Figure 4.5 Mortality of mice following intracranial injection and subcutaneous pellet 
implantation 
Morphine exposure led to significant mortality to both C57BL/6J and Becn1+/- mice over the 5-day 
experimental period with losses of up to 50% of mice.  
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4.3.1 Rotarod 

The accelerating rotarod test is a forced function test surveying utilizing fear of falling to 

assess motor activity as a function of gait, balance, coordination, and endurance [404, 

405].  To examine the effects of Tat and morphine co-administration on motor skill and 

whether Beclin 1 deficiency is a beneficial or detrimental factor in mediating these 

outcomes, the accelerating rotarod assay was performed. To our surprise, we detected 

no significant differences in latency to fall on day 2 between saline/placebo and 

Tat/placebo treated mice for either strain of mice (Figure 4.6a). Instead, we were able to 

observe a morphine effect in both strains of mice, with a significant decrease in latency 

for both saline/morphine and Tat/morphine treated mice. This further indicates the lack of 

a Tat effect given the absence of any additive or synergistic effects with Tat and morphine 

co-exposure. Similar results were also seen at day 5 post-surgery with no apparent Tat-

induced detriments in latency and a reduced morphine effect compared to day 2 (Figure 

Figure 4.6 Tat exposure causes no detectable impairment of rotarod performance in 
C57BL/6J or Becn1+/- mice  
Four different groups (Saline/Placebo, Tat/Placebo, Saline/Morphine, Tat/Morphine) per strain 
were injected with 10 μg of Tat protein into the striatum and implanted with a 25 mg extended 
release pellet subcutaneously on day 0. Motor activity was assessed on day 2 (a) and day 5 (b) 
post-surgery. There was no difference in Tat effect on day 2 or day 5. However, there was a 
morphine-induced decrease on both days. There was no difference between C57BL/6J or Becn1+/- 
mice on either day. P < 0.05 * vs. Control; # vs. C57BL/6J; $ vs. Tat. Two-way ANOVA followed by 
Tukey’s and Sidak’s test.           
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4.6b). Here we see no observable impairment of motor skills with Tat alone or in 

combination with morphine, rather, a morphine-induced diminishment which was 

indistinguishable between C57BL/6J and Becn1+/- strains. 

 

4.3.2 Forelimb Grip Strength 

The measurement of grip strength represents not only fine motor function but also 

neuromuscular capabilities which may be affected under experimental conditions [406]. 

As such, we sought to determine whether striatal-injected Tat, in the presence and 

absence of systemic morphine, would present as CNS motor deficits in C57BL/6J or 

Becn1+/- mice affecting the strength of the forelimbs.  Similar to what was seen in the 

rotarod experiments, we detected no significant differences in peak grip with Tat/placebo 

exposure on day 2 post-surgery within or between the strains (Figure 4.7a). Interestingly, 

at 5 days post-surgery, there was a slight decrease in C57BL/6J peak grip strength when 

treated with Tat/placebo; however, this difference was not statistically significant from 

saline/placebo treated C57BL/6J mice or from Tat/placebo treated Becn1+/- mice. In 

addition, there was a significant Tat/morphine combined effect at 5 days post-surgery for 

both C57BL/6J and Becn1+/- mice which was significant from saline/placebo treatments 

(Figure 4.7b). These data suggest that there might be a time-dependent effect of Tat on 

neuromuscular strength in C57BL/6J mice but not Becn1+/- but that the addition of 

morphine causes significant impairment regardless of strain.  
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4.3.3 Horizontal Bars 

We next examined how treated C57BL/6J and Becn1+/- mice would fare at horizontal bars, 

an additional test which also requires forelimb strength and coordination for sufficient 

performance. At 2 days post-surgery, we were able to detect a Tat effect for both 

C57BL/6J and Becn1+/- mice treated with Tat/placebo compared to the saline/placebo 

controls (Figure 4.8a). However, when examining the co-exposure effects with morphine, 

it appears as though the Tat effect is lost or potentially masked by the significant morphine 

effect. Comparing the saline/morphine and Tat/morphine treatments in C57BL/6J mice, 

there was a decrease, though statistically insignificant, in horizontal bar score and no 

difference with Becn1+/-. Only Tat/morphine treatment to Becn1+/- mice showed a 

statistically significant difference from Tat/placebo treatment. At day 5 post-surgery the 

effect of Tat on Becn1+/- mice seemed to be reverted with no significant difference from 

saline/placebo treated mice (Figure 4.8b). Whereas in C57BL/6J mice, similar to what was 

seen at 2 days-post surgery, there was a small decrease in horizontal bar score, though 

Figure 4.7 Tat and morphine exposure show delayed effects to grip strength 
To further compare the effects of Tat and morphine exposure in vivo forelimb grip strength was 
tested within the 4 treatment groups of the C57BL/6J and Becn1+/- strains on day 2 (a) and day 5 
(b). There was no detectable difference in grip strength with Tat exposure on day 2 and a moderate 
decrease on day 5 in C57BL/6J mice. Both C57BL/6J and Becn1+/- mice showed a significant 
difference in grip strength with co-administered Tat and morphine on day 5. P < 0.05 * vs. Control; 
# vs. C57BL/6J; $ vs. Tat. Two-way ANOVA followed by Tukey’s and Sidak’s test. 
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this difference also not statistically significant. Interestingly, Tat/placebo treated Becn1+/- 

mice did out-perform similarly treated C57BL/6J mice at both 2- and 5-days post-surgery 

which may suggest that lack of Beclin 1, at least in this particular motor assessment, 

reduces the effects of Tat on motor impairment. Once again, there was a significant 

morphine effect to both strains which may also have concealed the more understated Tat 

effects which were previously detected; however, this morphine effect was particularly 

apparent with the Becn1+/- mice, with Tat/morphine being significantly different from either 

the saline/placebo or the Tat/placebo. From this, we can infer that a test which assess 

coordinated motor skill and muscle strength like the horizontal bars test can be subtly 

affected by Tat intrastriatal exposure in a time-dependent fashion but is drowned out with 

morphine co-administration, particularly in Becn1+/- mice.  

 

Figure 4.8 Becn1+/- mice outperform C57BL/6J exposed to Tat but not co-treated with 
morphine in horizontal bars 
Horizontal bars assessment of motor coordination was done with the 4 treatment groups of the 
C57BL/6J and Becn1+/- strains on day 2 (a) and day 5 (b). There was a decrease in horizontal bars 
score with Tat treatment on day 2 in both strains though there was no significant difference between 
strains. Morphine also has a marked effect on day 2. Only C57BL/6J mice were still affected by Tat 
on day 5 and morphine effects were lessened but still present with Tat and morphine co-exposure 
causing minor decreases. P < 0.05 * vs. Control; # vs. C57BL/6J; $ vs. Tat. Two-way ANOVA 
followed by Tukey’s and Sidak’s test. 



128 

4.3.4 Striatal neuron losses caused by Tat and morphine co-exposure  

The detrimental effects of viral proteins on neuronal populations in vivo have been 

reported for brain areas including the striatum, hippocampus, and substantia nigra [241, 

407-409]. Following motor skill assessment, histological sections were stained by Nissl 

method to identify neuronal morphology and approximate any changes in neuronal 

number within the striatal area of interest (Figure 4.9a). Cells were identified as neurons 

based upon guidelines described by Garcia-Cabezas et al [393]. Nissl staining of the 

striatum revealed a significant reduction in the number of neurons of both C57BL/6J and 

Becn1+/- mice (1.4-fold, 1.5-fold respectively) which had been exposed to Tat (Figure 

4.9b,c). Additionally, we also observed an enhanced toxicity in C57BL/6J neurons within 

the Tat/morphine treatment group (1.8-fold decrease from control, 1.3-fold decrease from 

Tat/placebo) which was unseen in the similarly treated Becn1+/- group (1.1-fold decrease 

from control.) To our surprise, Tat/morphine treated mice displayed less neuronal death 

than the Tat/placebo treatment group (1.4 -fold increase from Tat/placebo). 

Saline/morphine treatment exhibited no neuronal losses to either C57BL/6J or Becn1+/- 

mice and may indicate mild neuroprotection [410, 411]. Our results show that Becn1+/- 

mice present less damage to neurons upon intrastriatal Tat and systemic morphine 

exposure compared to C57BL/6J mice which provides an additional glimpse into the role 

of Beclin 1 in mediating neuropathology.  
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4.4 Discussion 

In this chapter, we sought to examine the role of Beclin 1 in mediating Tat and morphine-

induced motor impairment in vivo. As in the previous chapters, to do this we make use 

mice possessing a monoallelic deletion of the Becn1 gene but here we use 3-5-month-old 

mice which underwent intra-striatal Tat exposure and subcutaneous morphine pellet 

implantation. In the previous chapter, we observed the death of striatal neurons in vitro 

following exposure to Tat and morphine. In addition, this death was significantly enhanced 

by the inclusion of conditioned media from C57BL/6J glia treated with Tat and morphine 

but less so when treated with conditioned media from Becn1+/- glia. From this, we 

questioned whether the observed striatal neuron death could be translated to in vivo motor 

impairment. The basal ganglia are a group of sub-cortical structures within the brain 

comprised of the dorsal striatum (caudate and putamen), ventral striatum (nucleus 

accumbens and olfactory tubercle), globus pallidus, substantia nigra, and subthalamic 

Figure 4.9 Tat and morphine co-exposure causes less neuronal loss in the Becn1+/- striatum 
Staining of striatal tissue for Nissl substance in saline/placebo, Tat/placebo, saline/morphine, 
Tat/morphine treated C57BL/6J and Becn1+/- mice (a). Panels show sections at 100x magnification 

of the striatum in coronal sections (a). Scale bars: 20 m. Black arrows indicate neurons. Neurons 
were quantified for each treatment and averaged based upon the striatal areas captured (~0.3 
mm2). Cell counting showed a reduced number of Nissl-stained striatal neurons when treated with 
Tat in both C57BL/6J and Becn1+/- mice. Morphine co-administration enhanced neuronal loss in 
C57BL/6J mice but not Becn1+/- mice. N=2 mice per group, 2 tissues per mouse, 4 images per 
tissue. P < 0.05 * vs. Control; $ vs. Tat. One-way ANOVA followed by Tukey’s test.       
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nucleus. These areas are primarily responsible for motor control in addition to motor 

learning, executive functions, and behavior [412]. Early studies of AIDS dementia reported 

clinical features similar to those seen in PD, a neurodegenerative disease of attributed to 

dopaminergic neuron death in the substantia nigra. These included bradykinesia, impaired 

manual dexterity, postural instability, rigidity, and gait abnormality [41, 42]. 

Neuropathological studies both in humans and animals have shown that the striatum is an 

area with heavy HIV burden and so the presentation of numerous motor deficits in early 

patients was quite prevalent, even without accompanying cognitive dysfunction [378, 385]. 

Fast forward several decades, and cART has radically changed the landscape of living 

with HIV with a severely decreased incidence of HAD; however, neurocognitive 

impairments still remained high [373, 413]. Whether due to lack of cART penetrance, 

inherent cART toxicity, or continued presence of HIV proteins in the CNS, there is still 

significant need to understand the driving forces leading to HAND and potential therapies 

to negate them, especially in the drug abusing population where neurodegeneration is not 

only enhanced but occurs at a faster rate.  

 

In these studies, we injected C57BL/6J and Becn1+/- mice with either saline or 10 g of 

Tat and subcutaneously implanted either a placebo pellet or 25 mg extended-release 

morphine pellet (Figure 4.1) and assessed for deficits in motor skill 2 and 5 days after 

surgery. We saw no observable effect of Tat on rotarod performance for either strain of 

mice, but a significant effect of morphine (Figure 4.6). Studies which have looked at the 

effect of HIV or its viral proteins on rotarod performance have been quite varied in their 

results with some studies finding significant impairment in accelerated rotarod 

performance [409, 414-417], and some studies finding no differences [214, 396, 399, 418-

420], as we have here. There were, however, two significant differences between those 
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studies and the ones performed here. The first difference lies is in how the mice were 

exposed to Tat. Many of the studies found in the literature make use of transgenic mouse 

models such as the doxycycline-inducible Tat transgenic mouse or the HIV transgenic rat 

models in their rotarod assessments of motor impairment as briefly summarized in 

Chapter 1.11.1. Those established transgenic mouse models used to study HIV 

neuropathogenesis are designed to produce virus/viral proteins under the control of a 

GFAP promoter so that the protein(s) of interest are produced within the brain upon the 

introduction of doxycycline into the diet [227]. As such, it is difficult to know exactly how 

much of a protein such as Tat is being produced in a specific area such as the striatum. 

Conversely, our study injects a pre-determined concentration of Tat directly into the 

striatum. Furthermore, our study presents a one-time exposure to Tat whereas the Tat 

transgenic models display a continuous production of the protein. Given that Tat is readily 

oxidized or taken up in to cells and has a short half-life [7, 421], injection of Tat may provide 

only brief snapshot of direct effects whereas the Tat transgenic mice are exposed to Tat 

more chronically which may explain why we did not see the pronounced difference in 

rotarod performance. In addition, other studies have used up to 25 g of the viral protein 

Tat when investigating its effects on neurodegeneration so it is possible that a higher 

concentration may be necessary to portray in vivo behavior impairments. While Tat 

concentrations in the serum of HIV patients have been reported to be between 2 and 40 

ng/mL, it is often through that concentrations in the brain are higher, and as such, future 

experiments at a higher concentration would still be clinically relevant [342, 422, 423]. The 

second difference lies in the assessment of rotarod performance in that the present study 

did not train the mice prior to surgery for assessment. It was also curious to see the distinct 

effect on rotarod performance caused by morphine in both strains. Similar to the literature 

on rotarod performance in HIV models, results on mouse/rat motor coordination following 
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morphine treatment are also divided with some reporting no differences with morphine 

exposure [424, 425], and others stating that morphine can compromise motor function at 

antinociceptive doses [426-429]. One study by Fitting et al which used the inducible Tat 

transgenic mouse model reported that poor rotarod performance was tied to rapid 

increases in Tat within the striatum and that acute morphine administration could increase 

the latencies of mice on the rotarod [209]. Taken together, more studies at higher 

concentrations of Tat may be needed to gain a better understanding of whether Beclin 1 

plays a translational role in motor coordination.   

 

When we surveyed the effects of Tat and morphine on forelimb grip strength, we also saw 

mild effects, many of which were not statistically significant and were apparent only on 

day 5 after surgery (Figure 4.7b).  Neurodegenerative diseases where the basal ganglia 

is affected will often show reduced strength of forelimbs, although we did not detect any 

in these studies [430]. It should be noted that although we normalize for body weight, other 

factors such as motivation to continue gripping the bar have been shown to affect the 

assessment of rodent grip strength [431]. One study examining the gender influences on 

Tat-induced neurological impairment using the inducible Tat transgenic mice however 

reported that forelimb strength was significantly reduced in male Tat+ mice compared to 

female Tat+ or Tat- mice of either gender [417]. Similar to what was seen in the rotarod, it 

is possible that at a higher exposure of Tat, deficits may become more apparent. 

Interestingly, there seemed to be an interactive effect, though independent of strain, in Tat 

and morphine treated mice on day 5. This has also been shown in studies on the effects 

of morphine on behavioral task performance in SIV-infected rhesus macaques [432]. 

Animals showed reduced performance in the behavioral tasks assessed like forelimb 

force, which was significantly further reduced after infection. Although this study uses large 
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animals in a chronic morphine paradigm, it demonstrated an effect of morphine to produce 

behavioral deficits and act synergistically with SIV to exacerbate motor deficits.   

 

Once termed the “string test” or “”coat hanger test”, the horizontal bars assessment 

measures both forelimb strength and coordination [433].  A combination of both the motor 

programming of the basal ganglia and the posture programming of the cerebellum, the 

horizontal bars test has been used to study motor defects caused by targeted null 

mutations and surgical/neurochemical lesions within those areas of motor ability [434]. 

Given that the mouse’s ability to grip the bar is inversely proportional the diameter of the 

bar, studies use increasing sizes (2 mm, 4mm, 6 mm) to increase difficulty and better 

differentiate mouse ability [433]. In these studies, we observed a Tat effect in both 

C57BL/6J and Becn1+/- mice on day 2, but only the C57BL/6J mice retained the deficits 

on day 5. Here we also detected a significant morphine effect to both strains of mice on 

both days of testing which was particularly prominent in Becn1+/- mice (Figure 4.8). From 

these results we may speculate that the lack of Beclin 1 might trigger a delayed 

compensatory or recovery mechanism which rescues the Tat effects on behavior by day 

5; however, in terms of Tat and morphine co-exposure, the addition of morphine may mask 

any benefits of Beclin 1 deficiency or simply does not have synergistic effects with Tat.   

While the manifestations of motor impairment in Tat and morphine co-exposed C57BL/6J 

and Becn1+/- mice might have been mild at the given concentrations of viral protein, deficits 

appear to be time dependent.  

 

Many of the deficits in neurodegenerative diseases stem from neuronal losses within the 

brain locations responsible for their function. The neuropathology and clinical presentation 

including anxiety, memory, learning, and motor deficits correlated with HAND are 
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associated with degeneration of sub-cortical structures such as the amygdala, 

hippocampus, and basal ganglia [13, 435]. Despite observing only modest impairment of 

motor function in certain assessments with Tat exposure alone or in combination with 

morphine within the strains, we were able to find significant differences in estimated 

neuronal number both with respect to treatment and strain (Figure 4.9). It is necessary to 

note this crude quantification did not span the entire length of the striatum and it is possible 

the areas assessed were not areas of significant impairment. These neuropathological 

analyses are consistent with our studies here and others presented elsewhere of neuronal 

Tat toxicity [199, 241, 408, 409]. Similar to the existing literature on Tat effects in locomotor 

skill, studies on the histological effects of Tat exposure are at odds with some reports 

finding no significant effect on the number of striatal neurons [436], and others finding 

great neuronal tissue losses [241, 408]. Opposite with our findings here, one such study 

stated that Tat production in the rat striatum caused impairment of behavioral 

performance, but found no extensive neuronal loss, attributing deficits to neuronal and 

synaptic dysfunction [409]. Likely, it is a combination of both striatal neuron death and 

dopaminergic malfunction leading poor motor performance. For example, Tat has been 

demonstrated to diminish expression of tyrosine hydroxylase (TH), the rate determinant 

of dopamine synthesis, in the substantia nigra following striatal injection, in addition to the 

loss of TH+ neurons, and development of subclinical PD-like disease when treated with 

the stimulant amphetamine [437]. Although the studies here lack the quantitative backing 

of stereology, it is an initial step into understanding how targeting of Beclin 1 in the context 

of Tat and opiate toxicity may be neuroprotective. As the study of Beclin 1 and autophagy 

in the context of Tat and opiate co-exposure is expanded, future studies will also look at 

other afflictions and diseases caused by HIV exposure.  
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In conclusion, the aforementioned data provide further evidence that exposure to Tat plays 

a meaningful role in the deterioration of motor function experienced by HAND patients and 

worsened in the drug abusing population. The autophagy protein Beclin 1 may yet still 

play a role in the manifestation of Tat and morphine-induced deficits. The absence of 

discernable motor impairments between either strains or with Tat administration in certain 

assessments, coupled with the presentation of neuronal loss within the striatum make for 

a complicated landscape requiring additional study. One possibility could be that the 

induced damage might not yet be sufficient to destabilize the functionality of striatal motor 

circuits.  In addition, motor function is a coordinated effort with other brain areas such as 

the cerebellum which will also play a role in motor performance. Given the data presented 

in previous chapters, future studies can advance the work further by incorporating more 

advanced models of HIV CNS infection to establish Beclin 1 as a glial target for reducing 

HIV and opiate induced neurodegeneration capable of rescuing motor and potentially 

cognitive deficits.  
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CHAPTER 5: FINAL CONCLUSIONS AND FUTURE DIRECTIONS 

 

The goal of this dissertation was to investigate the mechanisms underlying HIV and opiate-

induced exacerbation of neurodegeneration. Here we provide literature and experimental 

rationale supporting the role of the autophagy pathway, specifically the initiation protein 

Beclin 1, in mediating viral inflammation, neurotoxicity, and motor impairment. To do this, 

we utilize a heterozygous Beclin 1 deletion mutant, Becn1+/-, which displays an 

approximate 60% reduction in Beclin 1 expression. Given that mice are not permissive to 

HIV infection without genetic modification, we instead use the viral protein Tat which is 

secreted by HIV infected cells and demonstrates significant neurotoxicity [241, 438]. This 

is also currently relevant in terms of cART adherent patients which may exhibit reduced 

or undetectable levels of HIV in circulation but may still be producing Tat in locations of 

viral reservoirs such as the CNS. 

 

We first sought to characterize what effects a reduction in Beclin 1 expression would have 

on glial cell responses to Tat and opiate exposure. Tat is an established inducer of 

cytokine and chemokine secretion from microglia and astrocytes, inflicting widespread 

neuroinflammation as well as dysregulating typical functions performed by these cells 

within the microenvironment [66, 100, 106, 439]. Reduced expression of Beclin 1 in mixed 

glial cultures significantly reduced Tat and morphine-induced secretion of inflammatory 

molecules like RANTES, MCP-1, and to a smaller extent IL-6 as well as intracellular Ca2+. 

From this it can be taken that Beclin 1 can partake in the regulation of neuroinflammation.  

However, Becn1+/- glia did not appear to rescue oxidative stress in terms of ROS and NO 

production. This may be a pitfall of the study design and execution based upon the 

readings obtained for the positive control H2O2. In general, H2O2 release should increase 
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over time; however, here we observed an elevated but fairly steady state level of DCF 

fluorescence. From this it can be hypothesized that the signal reached maximally 

detectable levels and corresponding readings may be lacking the necessary sensitivity. 

Further optimization of the CM-H2 DCFDA dye concentrations are necessary in 

conjunction with validation by fluorescent microscopy. Additionally, we examined was the 

effects of Tat and morphine on the glial autophagy pathway which is a key pathway abused 

by HIV. We found that where Tat and morphine increased expression of autophagy 

proteins like Beclin 1, p62/SQSTM1 and LAMP1 in wild type C57BL/6J glia, this effect is 

negated in Becn1+/- without significant glial toxicity. These effects on the autophagy 

pathway suggest that Tat and morphine trigger the autophagy pathway (indicated by 

elevated Beclin 1 expression) but that maturation and degradation are inhibited (indicated 

by elevated p62/SQSTM1 and LAMP1), potentially causing autophagosome 

accumulation. By reducing Beclin 1 expression in Becn1+/-, it is possible to diminish, but 

not completely abrogate, autophagy activation caused by Tat and morphine exposure. 

Despite these findings, the prevention of autophagosome accumulation through reducing 

Beclin 1 can only be confirmed by electron microscopy. In addition, confirmation of 

impaired autophagic flux should be confirmed with the use of RFP-GFP-LC3B tandem 

sensors which use fluorescent tags to indicate autophagosome and lysosome co-

localization [308].  

 

From the basis of this chapter, future work can look at the exact mechanisms causing Tat 

and morphine to trigger autophagy. One can speculate it involves ion dysregulation and 

stress sensing mechanisms such as JNK or MAP kinase pathways. We and others have 

shown that Tat and morphine is able to increase intracellular calcium which is prevented 

in Becn1+/- glia; this ionic imbalance may subsequently lead to aberrant signaling and 
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activation of stress responses. MAPK signaling serves many roles in cell survival with JNK 

and p38 MAPK being shown to be activated by pro-inflammatory cytokines and 

environmental stress [440]. In addition, HIV or viral protein exposure can activate JNK 

and/or p38 MAPKs with inhibition of these pathways reducing toxic effects [60, 441]. 

Provided that JNK has the capability of phosphorylating BCL-2, separating it from Beclin1, 

it is possible that such pathways may explain the Tat-mediated activation of the autophagy 

pathway [442]. Currently, ongoing studies are interested in the protein-protein interactions 

going on within glial cells treated with Tat. Since Tat easily crosses cell membranes and 

its basic domain can interact with many structures, it is curious what, if any, interacting 

partners it has in the autophagy pathway. The viral protein Nef is known to interact with 

Beclin 1 [16], and we have also shown a significant Nef effect in respect to inflammatory 

molecule secretion (Figure 2.6). Since we have shown that reduction of Beclin 1 has 

inflammation and autophagic dysregulation alleviating capabilities within glia, determining 

direct interacting partners would further the understanding of these mechanisms. 

 

Next, given that the HIV and opiate effects on glia converge on neurons, we ventured to 

determine how Beclin 1 reduction would affect neuron response to these stressors. We 

found that Becn1+/- neurons are highly sensitive to injury and stressors such as Tat and 

morphine. While co-exposure to Tat and morphine caused elevations in intracellular 

calcium accumulation and dendritic beading in C57BL/6J neurons as has been previously 

published [204, 316], these were enhanced in Becn1+/- neurons, although Tat alone had 

a higher effect than Tat and morphine combined (Figures 3.2 and 3.3). This effect was 

further showcased upon assessment of neuronal viability by time-lapse recording showing 

significant neuronal death with or without treatment (Figure 3.4). Given that HIV 

neuropathogenesis is a glially-driven and with the promising reductions in inflammation 
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seen in Becn1+/- glia, we desired to see how neuronal outcome might vary with exposure 

to the indirect toxicity of supernatant from Tat and morphine treated C57BL/6J and Becn1/- 

glia. We found that C57BL/6J neurons treated with Becn1+/- supernatant had more 

favorable outcomes than those treated with C57BL/6J supernatant (Figure 3.5). When 

postulating what soluble components within the supernatant could be mediating these 

effects, we found that in addition to the stemming of inflammatory molecule secretion, this 

may also be due to increase secretion of neuroprotective growth factors (Figure 3.6). 

  

Our studies on the neuro-glial interactions are only in the preliminary stages. Now that we 

have found that reduced Beclin 1 in glia can reduce the Tat and morphine toxicity to 

neurons, future studies will examine neuronal functionality which can be just as important 

as neuronal viability. These would include studies on neurotransmitter release which is 

reported to be dysregulated with Tat exposure [416]. For example, the striatum is a 

location with predominantly GABAergic medium spiny neurons but receives both 

dopaminergic and glutamatergic inputs from various sources [412]. As such, glutamate 

uptake and dopamine release from these neurons are key aspects of function. One study 

on the effect of Tat and methamphetamine in rat striatal neurons showed that the 

treatment lead to striatal dopamine deficit which contributed to the manifestation of motor 

impairment [416]. The evaluation of neuronal viability performed here also requires further 

exploration into the mechanisms of neuronal death whether apoptosis dependent or 

independent pathways. Future studies can also take the co-culture paradigm further by 

direct contact of glia and neurons. Assessing how neuronal survival and responses 

(including neuronal autophagy) to Tat and morphine shift in the presence of Becn1+/- glia 

can provide confirmation that targeting of glial Beclin 1 is a viable therapeutic strategy for 

HIV and opiate neuropathogenesis.  
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Finally, we wanted to see if the beneficial results seen in Becn1+/- glia and with Becn1+/- 

supernatant on neurons could be translated into positive outcomes in motor impairment in 

vivo following Tat and morphine exposure. To do this we performed stereotaxic surgery 

on C57BL/6J and Becn1+/- mice and injected 10 g of Tat into the mouse striatum while 

also implanting a 25 mg extended-release morphine pellet (Figure 4.1). These surgical 

methods have been done before for analysis of glial dysfunction and tissue damage, but 

never in the context of autophagy [242, 244]. At 2- and 5-days post-surgery, motor activity 

was assessed by three motor coordination tests: rotarod, forelimb grip strength, and 

horizontal bars. To our surprise, we were unable to detect any Tat effects in rotarod on 

either day for either strain but noted a significant morphine effect to both strains on day 2 

(Figure 4.6). Forelimb grip strength performance showed a similar lack of effect on day 2; 

however, on day 5, we observed a Tat effect in C57BL/6J mice but not Becn1+/- mice, 

although not statistically significant (Figure 4.7). Both C57BL/6J and Becn1+/- mice showed 

an apparent Tat and morphine co-exposure effect. There were somewhat different results 

in the horizontal bars assessment of motor coordination (Figure 4.8). On day 2 we 

perceived a Tat effect in both C57BL/6J and Becn1+/- mice; however, the observed 

morphine effect was so robust, we theorize that it may be obscuring any potential 

synergistic effects of Tat and morphine. Interestingly, on day 5 C57BL/6J mice retained 

the observed Tat effect whereas Becn1+/- mice returned to control levels; the morphine 

effect however was still potent, though not to the extent of day 2 performance. Due to the 

varied results which can be quite common in animal studies, we found that the behavior 

data may not correlate with the in vitro results observed in Chapters 2 and 3. We also 

inspected histological changes within the striatum of treated mice by Nissl staining and 

found significantly reduced neuronal numbers in C57BL/6J mice treated with Tat that was 
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exacerbated by morphine co-exposure, whereas Becn1+/- mice showed losses only with 

Tat treatment. It is difficult to reconcile the seemingly contradicting results within the motor 

assessments and tissue evaluation. One can postulate that the neuronal losses seen 

within the tissue may not yet be extensive enough to translate into motor impairment. 

These studies were done for up to 5 days whereas in HIV patients, Tat exposure is more 

continuous allowing for more extended attack on the CNS.  Tat protein is also rapidly 

oxidized so it may be necessary to have more continuous exposure to the protein for 

detectable outcomes. However, it must be noted that assessment of Nissl staining was 

done manually instead of the more appropriate and accurate stereological quantification. 

This would also require screening of the entire striatum rather than the anterior most 

sections due to variable distribution and projections of neurons throughout the striatum. 

Another consideration would be the systems at play in motor coordination. Notably, each 

of the motor assessments yielded somewhat different results, likely because each test 

appraises slightly different aspects of motor coordination: rotarod measures motor 

coordination, grip strength measures muscular ability, and horizontal bars measure a mix 

of the previous two [434].  

 

There are many options for future studies to advance the work presented here. Continuing 

with this model, it might be necessary to increase the amount of Tat used for injections or 

to concentrate the protein to reduce the injection volume. While we detected no backflow 

of Tat from the injection site, such a volume (10 L) may leak into the ventricles or drain 

into the CSF or lymphatic system. One study performed 1 L canula injections of Tat at 

the same concentration used in our studies (10 g) in the rat striatum and saw significant 

motor impairment and neuronal death [416]. Separately, additional assessments and brain 

locations could be incorporated into the study design. For example, other brain locations 
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like the hippocampus are also affected by heavy HIV burden [207, 378, 379, 408]; it would 

be pertinent to see how other brain structures are affected by Tat and morphine co-

exposure within the Becn1+/- mice. Nociception is another clinically relevant avenue for 

study with these mice. Given that neuropathic pain is an issue afflicting HIV patients, how 

HIV and opioids interact to modulate pain perception is of particular importance, especially 

in the current opioid epidemic climate [209, 443]. Alternatively, the work could proceed 

with another, more advanced, injection model using the mouse permissive EcoHIV virus. 

As reviewed earlier (Chapter 1.11.3), this modified virus is infectious in mice and though 

it does not cross into the brain efficiently, can be directly injected into the brain and 

replicated vigorously [238]. Infecting Becn1+/- mice with this chimera virus (in combination 

with morphine pellet implantation) would provide a greater understanding and further proof 

of concept of the therapeutic potential of targeting Beclin 1 in HIV. As studies move more 

into treatment and translational paradigms to be used as adjuvants in conjunction with 

cART, humanized mouse models of HIV will be useful to see the therapeutic relevance of 

reducing Beclin 1 in the aim of ameliorating the neurodegenerative effects of HIV both in 

the aging AIDS population and the drug abusing population. Based on our results here, it 

would be essential to target glia specifically, as to not hinder neuronal survival by reducing 

autophagy in those cells as seen in Figure 3.4. Currently our lab has explored various 

drug delivery systems for delivering siRNA against Beclin 1 to the brain [257, 258], and 

with the studies shown here, we can continue to fine tune therapeutic strategies for what 

are hopefully widespread benefits to the HIV population and beyond. 

 

REFERENCES 
 

1. Weiss, R.A., How does HIV cause AIDS? Science, 1993. 260(5112): p. 1273-9. 
 
2. UNIAIDS. Global AIDS Update 2017. 2017  [cited 2018 September 18]; Available 

from: http://www.unaids.org/en/resources/fact-sheet. 

http://www.unaids.org/en/resources/fact-sheet


144 

 
3. Alexaki, A., Y. Liu, and B. Wigdahl, Cellular reservoirs of HIV-1 and their role in 

viral persistence. Curr HIV Res, 2008. 6(5): p. 388-400. 
 
4. Shaw, G.M. and E. Hunter, HIV transmission. Cold Spring Harb Perspect Med, 

2012. 2(11). 
 
5. Dinkins, C., J. Arko-Mensah, and V. Deretic, Autophagy and HIV. Semin Cell Dev 

Biol, 2010. 21(7): p. 712-8. 
 
6. Gallo, R.C. and L. Montagnier, The discovery of HIV as the cause of AIDS. N Engl 

J Med, 2003. 349(24): p. 2283-5. 
 
7. Nath, A., Human immunodeficiency virus (HIV) proteins in neuropathogenesis of 

HIV dementia. J Infect Dis, 2002. 186 Suppl 2: p. S193-8. 
 
8. Ivey, N.S., A.G. MacLean, and A.A. Lackner, Acquired immunodeficiency 

syndrome and the blood-brain barrier. J Neurovirol, 2009. 15(2): p. 111-22. 
 
9. Davis, L.E., et al., Early viral brain invasion in iatrogenic human immunodeficiency 

virus infection. Neurology, 1992. 42(9): p. 1736-9. 
 
10. Williams, D.W., et al., Mechanisms of HIV entry into the CNS: increased sensitivity 

of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-
A, and ALCAM in diapedesis. PLoS One, 2013. 8(7): p. e69270. 

 
11. Eugenin, E.A., et al., CCL2/monocyte chemoattractant protein-1 mediates 

enhanced transmigration of human immunodeficiency virus (HIV)-infected 
leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS 
invasion and NeuroAIDS. J Neurosci, 2006. 26(4): p. 1098-106. 

 
12. Thompson, K.A., et al., Brain cell reservoirs of latent virus in presymptomatic HIV-

infected individuals. Am J Pathol, 2011. 179(4): p. 1623-9. 
 
13. Ances, B.M. and R.J. Ellis, Dementia and neurocognitive disorders due to HIV-1 

infection. Semin Neurol, 2007. 27(1): p. 86-92. 
 
14. Gendelman, H.E., et al., The neuropathogenesis of the AIDS dementia complex. 

AIDS, 1997. 11 Suppl A: p. S35-45. 
 
15. Strathdee, S.A. and J.K. Stockman, Epidemiology of HIV among injecting and non-

injecting drug users: current trends and implications for interventions. Curr 
HIV/AIDS Rep, 2010. 7(2): p. 99-106. 

 
16. Kyei, G.B., et al., Autophagy pathway intersects with HIV-1 biosynthesis and 

regulates viral yields in macrophages. J Cell Biol, 2009. 186(2): p. 255-68. 
 
17. Klionsky, D.J., Autophagy revisited: a conversation with Christian de Duve. 

Autophagy, 2008. 4(6): p. 740-3. 
 



145 

18. Hruban, Z., et al., Focal cytoplasmic degradation. Am J Pathol, 1963. 42: p. 657-
83. 

 
19. Deter, R.L., P. Baudhuin, and C. De Duve, Participation of lysosomes in cellular 

autophagy induced in rat liver by glucagon. J Cell Biol, 1967. 35(2): p. C11-6. 
 
20. Deter, R.L. and C. De Duve, Influence of glucagon, an inducer of cellular 

autophagy, on some physical properties of rat liver lysosomes. J Cell Biol, 1967. 
33(2): p. 437-49. 

 
21. Kaur, J. and J. Debnath, Autophagy at the crossroads of catabolism and 

anabolism. Nat Rev Mol Cell Biol, 2015. 16(8): p. 461-72. 
 
22. Cesen, M.H., et al., Lysosomal pathways to cell death and their therapeutic 

applications. Exp Cell Res, 2012. 318(11): p. 1245-51. 
 
23. Espert, L., et al., Differential role of autophagy in CD4 T cells and macrophages 

during X4 and R5 HIV-1 infection. PLoS One, 2009. 4(6): p. e5787. 
 
24. Gentile, M., et al., Determination of the size of HIV using adenovirus type 2 as an 

internal length marker. J Virol Methods, 1994. 48(1): p. 43-52. 
 
25. Li, G. and E. De Clercq, HIV Genome-Wide Protein Associations: a Review of 30 

Years of Research. Microbiol Mol Biol Rev, 2016. 80(3): p. 679-731. 
 
26. Lu, K., X. Heng, and M.F. Summers, Structural determinants and mechanism of 

HIV-1 genome packaging. J Mol Biol, 2011. 410(4): p. 609-33. 
 
27. Frankel, A.D. and J.A. Young, HIV-1: fifteen proteins and an RNA. Annu Rev 

Biochem, 1998. 67: p. 1-25. 
 
28. Karacostas, V., et al., Overexpression of the HIV-1 gag-pol polyprotein results in 

intracellular activation of HIV-1 protease and inhibition of assembly and budding 
of virus-like particles. Virology, 1993. 193(2): p. 661-71. 

 
29. King, S.R., HIV: virology and mechanisms of disease. Ann Emerg Med, 1994. 

24(3): p. 443-9. 
 
30. Bagashev, A. and B.E. Sawaya, Roles and functions of HIV-1 Tat protein in the 

CNS: an overview. Virol J, 2013. 10: p. 358. 
 
31. Debaisieux, S., et al., The ins and outs of HIV-1 Tat. Traffic, 2012. 13(3): p. 355-

63. 
 
32. Feng, S. and E.C. Holland, HIV-1 tat trans-activation requires the loop sequence 

within tar. Nature, 1988. 334(6178): p. 165-7. 
 
33. Mujeeb, A., et al., NMR structure of a biologically active peptide containing the 

RNA-binding domain of human immunodeficiency virus type 1 Tat. Proc Natl Acad 
Sci U S A, 1994. 91(17): p. 8248-52. 



146 

 
34. Jones, K.A. and B.M. Peterlin, Control of RNA initiation and elongation at the HIV-

1 promoter. Annu Rev Biochem, 1994. 63: p. 717-43. 
 
35. Wei, P., et al., A novel CDK9-associated C-type cyclin interacts directly with HIV-

1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell, 1998. 
92(4): p. 451-62. 

 
36. Bayer, P., et al., Structural studies of HIV-1 Tat protein. J Mol Biol, 1995. 247(4): 

p. 529-35. 
 
37. Vogel, B.E., et al., A novel integrin specificity exemplified by binding of the alpha v 

beta 5 integrin to the basic domain of the HIV Tat protein and vitronectin. J Cell 
Biol, 1993. 121(2): p. 461-8. 

 
38. Green, M. and P.M. Loewenstein, Autonomous functional domains of chemically 

synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988. 
55(6): p. 1179-88. 

 
39. Chang, H.C., et al., HIV-1 Tat protein exits from cells via a leaderless secretory 

pathway and binds to extracellular matrix-associated heparan sulfate 
proteoglycans through its basic region. AIDS, 1997. 11(12): p. 1421-31. 

 
40. Tardieu, M., et al., Human immunodeficiency virus type 1-infected monocytic cells 

can destroy human neural cells after cell-to-cell adhesion. Ann Neurol, 1992. 32(1): 
p. 11-7. 

 
41. Navia, B.A., B.D. Jordan, and R.W. Price, The AIDS dementia complex: I. Clinical 

features. Ann Neurol, 1986. 19(6): p. 517-24. 
 
42. Navia, B.A. and R.W. Price, The acquired immunodeficiency syndrome dementia 

complex as the presenting or sole manifestation of human immunodeficiency virus 
infection. Arch Neurol, 1987. 44(1): p. 65-9. 

 
43. Rosca, E.C., et al., HIV-associated neurocognitive disorders: a historical review. 

Neurologist, 2012. 18(2): p. 64-7. 
 
44. Ragin, A.B., et al., Structural brain alterations can be detected early in HIV 

infection. Neurology, 2012. 79(24): p. 2328-34. 
 
45. Ragin, A.B., et al., Brain alterations within the first 100 days of HIV infection. Ann 

Clin Transl Neurol, 2015. 2(1): p. 12-21. 
 
46. Hawkins, C.P., et al., Pathological findings correlated with MRI in HIV infection. 

Neuroradiology, 1993. 35(4): p. 264-8. 
 
47. Gonzalez-Scarano, F. and J. Martin-Garcia, The neuropathogenesis of AIDS. Nat 

Rev Immunol, 2005. 5(1): p. 69-81. 
 



147 

48. Ances, B.M. and D.A. Hammoud, Neuroimaging of HIV-associated neurocognitive 
disorders (HAND). Curr Opin HIV AIDS, 2014. 9(6): p. 545-51. 

 
49. McArthur, J.C. and B.J. Brew, HIV-associated neurocognitive disorders: is there a 

hidden epidemic? AIDS, 2010. 24(9): p. 1367-70. 
 
50. Maschke, M., et al., Incidence and prevalence of neurological disorders associated 

with HIV since the introduction of highly active antiretroviral therapy (HAART). J 
Neurol Neurosurg Psychiatry, 2000. 69(3): p. 376-80. 

 
51. Saylor, D., et al., HIV-associated neurocognitive disorder - pathogenesis and 

prospects for treatment. Nat Rev Neurol, 2016. 12(5): p. 309. 
 
52. Nath, A., Pathobiology of human immunodeficiency virus dementia. Semin Neurol, 

1999. 19(2): p. 113-27. 
 
53. Resnick, L., et al., Early penetration of the blood-brain-barrier by HIV. Neurology, 

1988. 38(1): p. 9-14. 
 
54. Kaul, M., G.A. Garden, and S.A. Lipton, Pathways to neuronal injury and apoptosis 

in HIV-associated dementia. Nature, 2001. 410(6831): p. 988-94. 
 
55. Rock, R.B., et al., Role of microglia in central nervous system infections. Clin 

Microbiol Rev, 2004. 17(4): p. 942-64, table of contents. 
 
56. Kramer-Hammerle, S., et al., Cells of the central nervous system as targets and 

reservoirs of the human immunodeficiency virus. Virus Res, 2005. 111(2): p. 194-
213. 

 
57. Ensoli, B., et al., Release, uptake, and effects of extracellular human 

immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. 
J Virol, 1993. 67(1): p. 277-87. 

 
58. Hudson, L., et al., Detection of the human immunodeficiency virus regulatory 

protein tat in CNS tissues. J Neurovirol, 2000. 6(2): p. 145-55. 
 
59. Bachani, M., et al., Detection of anti-tat antibodies in CSF of individuals with HIV-

associated neurocognitive disorders. J Neurovirol, 2013. 19(1): p. 82-8. 
 
60. D'Aversa, T.G., K.O. Yu, and J.W. Berman, Expression of chemokines by human 

fetal microglia after treatment with the human immunodeficiency virus type 1 
protein Tat. J Neurovirol, 2004. 10(2): p. 86-97. 

 
61. Perez-Alvarez, A. and A. Araque, Astrocyte-neuron interaction at tripartite 

synapses. Curr Drug Targets, 2013. 14(11): p. 1220-4. 
 
62. Rao, V.R., A.P. Ruiz, and V.R. Prasad, Viral and cellular factors underlying 

neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS 
research and therapy, 2014. 11: p. 13. 

 



148 

63. Gorry, P.R., et al., Astrocyte infection by HIV-1: mechanisms of restricted virus 
replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV 
Res, 2003. 1(4): p. 463-73. 

 
64. Ranki, A., et al., Abundant expression of HIV Nef and Rev proteins in brain 

astrocytes in vivo is associated with dementia. AIDS, 1995. 9(9): p. 1001-8. 
 
65. Conant, K., et al., Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-

stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A, 
1998. 95(6): p. 3117-21. 

 
66. Nath, A., et al., Transient exposure to HIV-1 Tat protein results in cytokine 

production in macrophages and astrocytes. A hit and run phenomenon. J Biol 
Chem, 1999. 274(24): p. 17098-102. 

 
67. Liu, X., et al., Human immunodeficiency virus type 1 (HIV-1) tat induces nitric-oxide 

synthase in human astroglia. J Biol Chem, 2002. 277(42): p. 39312-9. 
 
68. Eugenin, E.A., et al., Human immunodeficiency virus infection of human astrocytes 

disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J 
Neurosci, 2011. 31(26): p. 9456-65. 

 
69. Fine, S.M., et al., Tumor necrosis factor alpha inhibits glutamate uptake by primary 

human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem, 
1996. 271(26): p. 15303-6. 

 
70. Holden, C.P., et al., Role of Na+/H+ exchangers, excitatory amino acid receptors 

and voltage-operated Ca2+ channels in human immunodeficiency virus type 1 
gp120-mediated increases in intracellular Ca2+ in human neurons and astrocytes. 
Neuroscience, 1999. 91(4): p. 1369-78. 

 
71. Meucci, O., et al., Expression of CX3CR1 chemokine receptors on neurons and 

their role in neuronal survival. Proc Natl Acad Sci U S A, 2000. 97(14): p. 8075-80. 
 
72. Everall, I., P. Luthert, and P. Lantos, A review of neuronal damage in human 

immunodeficiency virus infection: its assessment, possible mechanism and 
relationship to dementia. J Neuropathol Exp Neurol, 1993. 52(6): p. 561-6. 

 
73. Gendelman, H.E., et al., The neuropathogenesis of HIV-1 infection. J Leukoc Biol, 

1994. 56(3): p. 389-98. 
 
74. Lannuzel, A., et al., HIV-1 envelope proteins gp120 and gp160 potentiate NMDA-

induced [Ca2+]i increase, alter [Ca2+]i homeostasis and induce neurotoxicity in 
human embryonic neurons. Eur J Neurosci, 1995. 7(11): p. 2285-93. 

 
75. Nath, A., et al., Identification of a human immunodeficiency virus type 1 Tat epitope 

that is neuroexcitatory and neurotoxic. J Virol, 1996. 70(3): p. 1475-80. 
 
76. Kaul, M. and S.A. Lipton, Chemokines and activated macrophages in HIV gp120-

induced neuronal apoptosis. Proc Natl Acad Sci U S A, 1999. 96(14): p. 8212-6. 



149 

 
77. Adle-Biassette, H., et al., Neuronal apoptosis in HIV infection in adults. 

Neuropathol Appl Neurobiol, 1995. 21(3): p. 218-27. 
 
78. Pandhare, J. and C. Dash, A prospective on drug abuse-associated epigenetics 

and HIV-1 replication. Life Sci, 2011. 88(21-22): p. 995-9. 
 
79. Cao, L., et al., Role of Autophagy in HIV Pathogenesis and Drug Abuse. Mol 

Neurobiol, 2016. 
 
80. Samikkannu, T., et al., HIV-1 gp120 and morphine induced oxidative stress: role 

in cell cycle regulation. Front Microbiol, 2015. 6: p. 614. 
 
81. Mahajan, S.D., et al., Tight junction regulation by morphine and HIV-1 tat 

modulates blood-brain barrier permeability. J Clin Immunol, 2008. 28(5): p. 528-
41. 

 
82. Smith, D.B., P. Simmonds, and J.E. Bell, Brain viral burden, neuroinflammation 

and neurodegeneration in HAART-treated HIV positive injecting drug users. J 
Neurovirol, 2014. 20(1): p. 28-38. 

 
83. Anthony, I.C., et al., The effects of illicit drugs on the HIV infected brain. Front 

Biosci, 2008. 13: p. 1294-307. 
 
84. Byrd, D., et al., Impact of opiate addiction on neuroinflammation in HIV. J 

Neurovirol, 2012. 18(5): p. 364-73. 
 
85. Arango, J.C., et al., Does drug abuse influence the microglial response in AIDS 

and HIV encephalitis? AIDS, 2004. 18 Suppl 1: p. S69-74. 
 
86. Hauser, K.F., et al., Opiate drug use and the pathophysiology of neuroAIDS. Curr 

HIV Res, 2012. 10(5): p. 435-52. 
 
87. Hauser, K.F. and P.E. Knapp, Interactions of HIV and drugs of abuse: the 

importance of glia, neural progenitors, and host genetic factors. Int Rev Neurobiol, 
2014. 118: p. 231-313. 

 
88. Ouzzine, M., et al., The UDP-glucuronosyltransferases of the blood-brain barrier: 

their role in drug metabolism and detoxication. Front Cell Neurosci, 2014. 8: p. 
349. 

 
89. Smith, H.S., Opioid metabolism. Mayo Clin Proc, 2009. 84(7): p. 613-24. 
 
90. Arvidsson, U., et al., Distribution and targeting of a mu-opioid receptor (MOR1) in 

brain and spinal cord. J Neurosci, 1995. 15(5 Pt 1): p. 3328-41. 
 
91. Peng, J., S. Sarkar, and S.L. Chang, Opioid receptor expression in human brain 

and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol 
Depend, 2012. 124(3): p. 223-8. 

 



150 

92. Pasternak, G.W. and Y.X. Pan, Mu opioids and their receptors: evolution of a 
concept. Pharmacol Rev, 2013. 65(4): p. 1257-317. 

 
93. Yekkirala, A.S., A.E. Kalyuzhny, and P.S. Portoghese, Standard opioid agonists 

activate heteromeric opioid receptors: evidence for morphine and [d-Ala(2)-
MePhe(4)-Glyol(5)]enkephalin as selective mu-delta agonists. ACS Chem 
Neurosci, 2010. 1(2): p. 146-54. 

 
94. Dhawan, B.N., et al., International Union of Pharmacology. XII. Classification of 

opioid receptors. Pharmacol Rev, 1996. 48(4): p. 567-92. 
 
95. Wise, R.A. and P.P. Rompre, Brain dopamine and reward. Annu Rev Psychol, 

1989. 40: p. 191-225. 
 
96. Lutz, P.E. and B.L. Kieffer, Opioid receptors: distinct roles in mood disorders. 

Trends Neurosci, 2013. 36(3): p. 195-206. 
 
97. Al-Hasani, R. and M.R. Bruchas, Molecular mechanisms of opioid receptor-

dependent signaling and behavior. Anesthesiology, 2011. 115: p. 1363-81. 
 
98. Stein, C., M. Schafer, and H. Machelska, Attacking pain at its source: new 

perspectives on opioids. Nat Med, 2003. 9(8): p. 1003-8. 
 
99. Anthony, I.C., et al., Predisposition to accelerated Alzheimer-related changes in 

the brains of human immunodeficiency virus negative opiate abusers. Brain, 2010. 
133(Pt 12): p. 3685-98. 

 
100. Bruce-Keller, A.J., et al., Morphine causes rapid increases in glial activation and 

neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia, 2008. 
56(13): p. 1414-27. 

 
101. Gurwell, J.A., et al., Synergistic neurotoxicity of opioids and human 

immunodeficiency virus-1 Tat protein in striatal neurons in vitro. Neuroscience, 
2001. 102(3): p. 555-63. 

 
102. Zou, S., et al., Morphine potentiates neurodegenerative effects of HIV-1 Tat 

through actions at mu-opioid receptor-expressing glia. Brain, 2011. 134(Pt 12): p. 
3616-31. 

 
103. Steele, A.D., E.E. Henderson, and T.J. Rogers, Mu-opioid modulation of HIV-1 

coreceptor expression and HIV-1 replication. Virology, 2003. 309(1): p. 99-107. 
 
104. Sorrell, M.E. and K.F. Hauser, Ligand-gated purinergic receptors regulate HIV-1 

Tat and morphine related neurotoxicity in primary mouse striatal neuron-glia co-
cultures. J Neuroimmune Pharmacol, 2014. 9(2): p. 233-44. 

 
105. El-Hage, N., et al., A novel bivalent HIV-1 entry inhibitor reveals fundamental 

differences in CCR5-μ-opioid receptor interactions between human astroglia and 
microglia. AIDS (London, England), 2013. 27: p. 2181-90. 



151 

106. Hauser, K.F., et al., HIV-1 neuropathogenesis: glial mechanisms revealed through 
substance abuse. J Neurochem, 2007. 100(3): p. 567-86. 

 
107. Turchan-Cholewo, J., et al., Morphine and HIV-Tat increase microglial-free radical 

production and oxidative stress: possible role in cytokine regulation. J Neurochem, 
2009. 108(1): p. 202-15. 

 
108. Feng, Y., et al., The machinery of macroautophagy. Cell Res, 2014. 24(1): p. 24-

41. 
 
109. Tsukada, M. and Y. Ohsumi, Isolation and characterization of autophagy-defective 

mutants of Saccharomyces cerevisiae. FEBS Lett, 1993. 333(1-2): p. 169-74. 
 
110. Thumm, M., et al., Isolation of autophagocytosis mutants of Saccharomyces 

cerevisiae. FEBS Lett, 1994. 349(2): p. 275-80. 
 
111. Kim, J., et al., AMPK and mTOR regulate autophagy through direct 

phosphorylation of Ulk1. Nat Cell Biol, 2011. 13(2): p. 132-41. 
 
112. Mizushima, N., The role of the Atg1/ULK1 complex in autophagy regulation. Curr 

Opin Cell Biol, 2010. 22(2): p. 132-9. 
 
113. Kundu, M., ULK1, mammalian target of rapamycin, and mitochondria: linking 

nutrient availability and autophagy. Antioxid Redox Signal, 2011. 14(10): p. 1953-
8. 

 
114. Kim, J. and K.L. Guan, Regulation of the autophagy initiating kinase ULK1 by 

nutrients: roles of mTORC1 and AMPK. Cell Cycle, 2011. 10(9): p. 1337-8. 
 
115. Hosokawa, N., et al., Nutrient-dependent mTORC1 association with the ULK1-

Atg13-FIP200 complex required for autophagy. Mol Biol Cell, 2009. 20(7): p. 1981-
91. 

 
116. Itakura, E. and N. Mizushima, Characterization of autophagosome formation site 

by a hierarchical analysis of mammalian Atg proteins. Autophagy, 2010. 6(6): p. 
764-76. 

 
117. Pattingre, S., et al., Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent 

autophagy. Cell, 2005. 122(6): p. 927-39. 
 
118. Russell, R.C., et al., ULK1 induces autophagy by phosphorylating Beclin-1 and 

activating VPS34 lipid kinase. Nat Cell Biol, 2013. 15(7): p. 741-50. 
 
119. Axe, E.L., et al., Autophagosome formation from membrane compartments 

enriched in phosphatidylinositol 3-phosphate and dynamically connected to the 
endoplasmic reticulum. J Cell Biol, 2008. 182(4): p. 685-701. 

 
120. Geng, J. and D.J. Klionsky, The Atg8 and Atg12 ubiquitin-like conjugation systems 

in macroautophagy. 'Protein modifications: beyond the usual suspects' review 
series. EMBO Rep, 2008. 9(9): p. 859-64. 



152 

121. Mari, M., et al., An Atg9-containing compartment that functions in the early steps 
of autophagosome biogenesis. J Cell Biol, 2010. 190(6): p. 1005-22. 

 
122. Puri, C., et al., ATG16L1 meets ATG9 in recycling endosomes: additional roles for 

the plasma membrane and endocytosis in autophagosome biogenesis. 
Autophagy, 2014. 10(1): p. 182-4. 

 
123. Puri, C., et al., Diverse autophagosome membrane sources coalesce in recycling 

endosomes. Cell, 2013. 154(6): p. 1285-99. 
 
124. Tanida, I., et al., HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of 

three human Atg8 homologues and delipidates microtubule-associated protein 
light chain 3- and GABAA receptor-associated protein-phospholipid conjugates. J 
Biol Chem, 2004. 279(35): p. 36268-76. 

 
125. Fujita, N., et al., An Atg4B mutant hampers the lipidation of LC3 paralogues and 

causes defects in autophagosome closure. Mol Biol Cell, 2008. 19(11): p. 4651-9. 
 
126. Weidberg, H., et al., LC3 and GATE-16/GABARAP subfamilies are both essential 

yet act differently in autophagosome biogenesis. EMBO J, 2010. 29(11): p. 1792-
802. 

 
127. Kabeya, Y., et al., LC3, GABARAP and GATE16 localize to autophagosomal 

membrane depending on form-II formation. J Cell Sci, 2004. 117(Pt 13): p. 2805-
12. 

 
128. Weidberg, H., E. Shvets, and Z. Elazar, Biogenesis and cargo selectivity of 

autophagosomes. Annu Rev Biochem, 2011. 80: p. 125-56. 
 
129. Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 

2861-73. 
 
130. Shaid, S., et al., Ubiquitination and selective autophagy. Cell Death Differ, 2013. 

20(1): p. 21-30. 
 
131. Pankiv, S., et al., p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation 

of ubiquitinated protein aggregates by autophagy. J Biol Chem, 2007. 282(33): p. 
24131-45. 

 
132. Moscat, J., M.T. Diaz-Meco, and M.W. Wooten, Signal integration and 

diversification through the p62 scaffold protein. Trends Biochem Sci, 2007. 32(2): 
p. 95-100. 

 
133. Mizushima, N., et al., Dissection of autophagosome formation using Apg5-deficient 

mouse embryonic stem cells. J Cell Biol, 2001. 152(4): p. 657-68. 
 
134. Yoshimori, T. and T. Noda, Toward unraveling membrane biogenesis in 

mammalian autophagy. Curr Opin Cell Biol, 2008. 20(4): p. 401-7. 
 



153 

135. Nakatogawa, H., et al., Dynamics and diversity in autophagy mechanisms: lessons 
from yeast. Nat Rev Mol Cell Biol, 2009. 10(7): p. 458-67. 

 
136. Qu, X., et al., Promotion of tumorigenesis by heterozygous disruption of the beclin 

1 autophagy gene. J Clin Invest, 2003. 112(12): p. 1809-20. 
 
137. Yue, Z., et al., Beclin 1, an autophagy gene essential for early embryonic 

development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A, 
2003. 100(25): p. 15077-82. 

 
138. Wirawan, E., et al., Beclin1: a role in membrane dynamics and beyond. Autophagy, 

2012. 8(1): p. 6-17. 
 
139. Liang, C., et al., Autophagic and tumour suppressor activity of a novel Beclin1-

binding protein UVRAG. Nat Cell Biol, 2006. 8(7): p. 688-99. 
 
140. Furuya, N., et al., The evolutionarily conserved domain of Beclin 1 is required for 

Vps34 binding, autophagy and tumor suppressor function. Autophagy, 2005. 1(1): 
p. 46-52. 

 
141. Maiuri, M.C., et al., Functional and physical interaction between Bcl-X(L) and a 

BH3-like domain in Beclin-1. EMBO J, 2007. 26(10): p. 2527-39. 
 
142. Levine, B., S. Sinha, and G. Kroemer, Bcl-2 family members: dual regulators of 

apoptosis and autophagy. Autophagy, 2008. 4(5): p. 600-6. 
 
143. Mizushima, N. and M. Komatsu, Autophagy: renovation of cells and tissues. Cell, 

2011. 147(4): p. 728-41. 
 
144. Boya, P., F. Reggiori, and P. Codogno, Emerging regulation and functions of 

autophagy. Nat Cell Biol, 2013. 15(7): p. 713-20. 
 
145. Ezaki, J., et al., Liver autophagy contributes to the maintenance of blood glucose 

and amino acid levels. Autophagy, 2011. 7(7): p. 727-36. 
 
146. Singh, R., et al., Autophagy regulates lipid metabolism. Nature, 2009. 458(7242): 

p. 1131-5. 
 
147. White, E., Deconvoluting the context-dependent role for autophagy in cancer. Nat 

Rev Cancer, 2012. 12(6): p. 401-10. 
 
148. Eng, C.H. and R.T. Abraham, Glutaminolysis yields a metabolic by-product that 

stimulates autophagy. Autophagy, 2010. 6(7): p. 968-70. 
 
149. Di Malta, C., et al., Autophagy in astrocytes: a novel culprit in lysosomal storage 

disorders. Autophagy, 2012. 8(12): p. 1871-2. 
 
150. Di Malta, C., et al., Astrocyte dysfunction triggers neurodegeneration in a 

lysosomal storage disorder. Proc Natl Acad Sci U S A, 2012. 109(35): p. E2334-
42. 



154 

151. Deretic, V., S. Jiang, and N. Dupont, Autophagy intersections with conventional 
and unconventional secretion in tissue development, remodeling and 
inflammation. Trends Cell Biol, 2012. 22(8): p. 397-406. 

 
152. Cebollero, E., F. Reggiori, and C. Kraft, Reticulophagy and ribophagy: regulated 

degradation of protein production factories. Int J Cell Biol, 2012. 2012: p. 182834. 
 
153. Youle, R.J. and D.P. Narendra, Mechanisms of mitophagy. Nat Rev Mol Cell Biol, 

2011. 12(1): p. 9-14. 
 
154. Kroemer, G., G. Marino, and B. Levine, Autophagy and the integrated stress 

response. Mol Cell, 2010. 40(2): p. 280-93. 
 
155. Ryter, S.W., S.M. Cloonan, and A.M. Choi, Autophagy: a critical regulator of 

cellular metabolism and homeostasis. Mol Cells, 2013. 36(1): p. 7-16. 
 
156. Lamark, T. and T. Johansen, Aggrephagy: selective disposal of protein aggregates 

by macroautophagy. Int J Cell Biol, 2012. 2012: p. 736905. 
 
157. Komatsu, M., et al., Impairment of starvation-induced and constitutive autophagy 

in Atg7-deficient mice. J Cell Biol, 2005. 169(3): p. 425-34. 
 
158. Hara, T., et al., Suppression of basal autophagy in neural cells causes 

neurodegenerative disease in mice. Nature, 2006. 441(7095): p. 885-9. 
 
159. Nakai, A., et al., The role of autophagy in cardiomyocytes in the basal state and in 

response to hemodynamic stress. Nat Med, 2007. 13(5): p. 619-24. 
 
160. Maiuri, M.C., et al., Self-eating and self-killing: crosstalk between autophagy and 

apoptosis. Nat Rev Mol Cell Biol, 2007. 8(9): p. 741-52. 
 
161. Levine, B. and J. Yuan, Autophagy in cell death: an innocent convict? J Clin Invest, 

2005. 115(10): p. 2679-88. 
 
162. Shimizu, S., et al., Role of Bcl-2 family proteins in a non-apoptotic programmed 

cell death dependent on autophagy genes. Nat Cell Biol, 2004. 6(12): p. 1221-8. 
 
163. Yonekawa, T. and A. Thorburn, Autophagy and cell death. Essays Biochem, 2013. 

55: p. 105-17. 
 
164. Deretic, V. and B. Levine, Autophagy, immunity, and microbial adaptations. Cell 

Host Microbe, 2009. 5(6): p. 527-49. 
 
165. Levine, B., N. Mizushima, and H.W. Virgin, Autophagy in immunity and 

inflammation. Nature, 2011. 469(7330): p. 323-35. 
 
166. Levine, B., Eating oneself and uninvited guests: autophagy-related pathways in 

cellular defense. Cell, 2005. 120(2): p. 159-62. 



155 

167. Shi, C.S., et al., Activation of autophagy by inflammatory signals limits IL-1beta 
production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol, 
2012. 13(3): p. 255-63. 

 
168. Schmid, D., M. Pypaert, and C. Munz, Antigen-loading compartments for major 

histocompatibility complex class II molecules continuously receive input from 
autophagosomes. Immunity, 2007. 26(1): p. 79-92. 

 
169. Byrne, B.G., et al., Inflammasome components coordinate autophagy and 

pyroptosis as macrophage responses to infection. MBio, 2013. 4(1): p. e00620-12. 
 
170. Doitsh, G., et al., Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 

infection. Nature, 2014. 505(7484): p. 509-14. 
 
171. Blanchet, F.P., et al., Human immunodeficiency virus-1 inhibition of 

immunoamphisomes in dendritic cells impairs early innate and adaptive immune 
responses. Immunity, 2010. 32(5): p. 654-69. 

 
172. Li, J.C., et al., HIV-1 trans-activator protein dysregulates IFN-gamma signaling and 

contributes to the suppression of autophagy induction. AIDS, 2011. 25(1): p. 15-
25. 

 
173. Van Grol, J., et al., HIV-1 inhibits autophagy in bystander macrophage/monocytic 

cells through Src-Akt and STAT3. PLoS One, 2010. 5(7): p. e11733. 
 
174. Dinkins, C., M. Pilli, and J.H. Kehrl, Roles of autophagy in HIV infection. Immunol 

Cell Biol, 2015. 93(1): p. 11-7. 
 
175. Espert, L., et al., Autophagy is involved in T cell death after binding of HIV-1 

envelope proteins to CXCR4. J Clin Invest, 2006. 116(8): p. 2161-72. 
 
176. Espert, L., B. Beaumelle, and I. Vergne, Autophagy in Mycobacterium tuberculosis 

and HIV infections. Front Cell Infect Microbiol, 2015. 5: p. 49. 
 
177. Borel, S., et al., HIV-1 viral infectivity factor interacts with microtubule-associated 

protein light chain 3 and inhibits autophagy. AIDS, 2015. 29(3): p. 275-86. 
 
178. Sagnier, S., et al., Autophagy restricts HIV-1 infection by selectively degrading Tat 

in CD4+ T lymphocytes. J Virol, 2015. 89(1): p. 615-25. 
 
179. Nardacci, R., et al., Autophagy plays an important role in the containment of HIV-

1 in nonprogressor-infected patients. Autophagy, 2014. 10(7): p. 1167-78. 
 
180. Wong, E. and A.M. Cuervo, Autophagy gone awry in neurodegenerative diseases. 

Nat Neurosci, 2010. 13(7): p. 805-11. 
 
181. Mizushima, N., et al., In vivo analysis of autophagy in response to nutrient 

starvation using transgenic mice expressing a fluorescent autophagosome marker. 
Mol Biol Cell, 2004. 15(3): p. 1101-11. 



156 

182. Mizushima, N., Physiological functions of autophagy. Curr Top Microbiol Immunol, 
2009. 335: p. 71-84. 

 
183. Winslow, A.R. and D.C. Rubinsztein, Autophagy in neurodegeneration and 

development. Biochim Biophys Acta, 2008. 1782(12): p. 723-9. 
 
184. Komatsu, M., et al., Loss of autophagy in the central nervous system causes 

neurodegeneration in mice. Nature, 2006. 441(7095): p. 880-4. 
 
185. Zhou, D., E. Masliah, and S.A. Spector, Autophagy is increased in postmortem 

brains of persons with HIV-1-associated encephalitis. J Infect Dis, 2011. 203(11): 
p. 1647-57. 

 
186. Fields, J., et al., Age-dependent molecular alterations in the autophagy pathway in 

HIVE patients and in a gp120 tg mouse model: reversal with beclin-1 gene transfer. 
J Neurovirol, 2013. 19(1): p. 89-101. 

 
187. Dever, S.M., et al., Differing roles of autophagy in HIV-associated neurocognitive 

impairment and encephalitis with implications for morphine co-exposure. Front 
Microbiol, 2015. 6: p. 653. 

 
188. Mehla, R. and A. Chauhan, HIV-1 differentially modulates autophagy in neurons 

and astrocytes. J Neuroimmunol, 2015. 285: p. 106-18. 
 
189. Alirezaei, M., et al., Disruption of neuronal autophagy by infected microglia results 

in neurodegeneration. PLoS One, 2008. 3(8): p. e2906. 
 
190. Alirezaei, M., W.B. Kiosses, and H.S. Fox, Decreased neuronal autophagy in HIV 

dementia: a mechanism of indirect neurotoxicity. Autophagy, 2008. 4(7): p. 963-6. 
 
191. Fields, J., et al., HIV-1 Tat alters neuronal autophagy by modulating 

autophagosome fusion to the lysosome: implications for HIV-associated 
neurocognitive disorders. J Neurosci, 2015. 35(5): p. 1921-38. 

 
192. El-Hage, N., et al., HIV-1 and Morphine Regulation of Autophagy in Microglia: 

Limited Interactions in the Context of HIV-1 Infection and Opioid Abuse. Journal of 
virology, 2015. 89: p. 1024-35. 

 
193. Bruno, A.P., et al., HIV-1 Tat protein induces glial cell autophagy through 

enhancement of BAG3 protein levels. Cell Cycle, 2014. 13(23): p. 3640-4. 
 
194. Saribas, A.S., K. Khalili, and I.K. Sariyer, Dysregulation of autophagy by HIV-1 Nef 

in human astrocytes. Cell Cycle, 2015. 14(18): p. 2899-904. 
 
195. Feng, Y.M., et al., Decreased mitochondrial DNA copy number in the hippocampus 

and peripheral blood during opiate addiction is mediated by autophagy and can be 
salvaged by melatonin. Autophagy, 2013. 9(9): p. 1395-406. 

 



157 

196. Zhao, L., et al., Morphine induces Beclin 1- and ATG5-dependent autophagy in 
human neuroblastoma SH-SY5Y cells and in the rat hippocampus. Autophagy, 
2010. 6: p. 386-394. 

 
197. Wan, J., et al., Morphine potentiates LPS-induced autophagy initiation but inhibits 

autophagosomal maturation through distinct TLR4-dependent and independent 
pathways. Acta Physiol (Oxf), 2015. 214(2): p. 189-99. 

 
198. Letendre, S., Central nervous system complications in HIV disease: HIV-

associated neurocognitive disorder. Top Antivir Med, 2011. 19(4): p. 137-42. 
 
199. Jones, M., et al., Intraventricular injection of human immunodeficiency virus type 1 

(HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular 
enlargement. J Neuropathol Exp Neurol, 1998. 57(6): p. 563-70. 

 
200. Vogel, J., et al., The HIV tat gene induces dermal lesions resembling Kaposi's 

sarcoma in transgenic mice. Nature, 1988. 335(6191): p. 606-11. 
 
201. Vellutini, C., et al., Development of lymphoid hyperplasia in transgenic mice 

expressing the HIV tat gene. AIDS Res Hum Retroviruses, 1995. 11(1): p. 21-9. 
 
202. Garza, H.H., Jr., O. Prakash, and D.J. Carr, Aberrant regulation of cytokines in 

HIV-1 TAT72-transgenic mice. J Immunol, 1996. 156(10): p. 3631-7. 
 
203. Choi, J., et al., Molecular mechanism of decreased glutathione content in human 

immunodeficiency virus type 1 Tat-transgenic mice. J Biol Chem, 2000. 275(5): p. 
3693-8. 

 
204. Fitting, S., et al., Interactive comorbidity between opioid drug abuse and HIV-1 Tat: 

chronic exposure augments spine loss and sublethal dendritic pathology in striatal 
neurons. Am J Pathol, 2010. 177(3): p. 1397-410. 

 
205. Kim, B.O., et al., Neuropathologies in transgenic mice expressing human 

immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-
specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol, 2003. 
162(5): p. 1693-707. 

 
206. Carey, A.N., et al., Expression of HIV-Tat protein is associated with learning and 

memory deficits in the mouse. Behav Brain Res, 2012. 229(1): p. 48-56. 
 
207. Fitting, S., et al., Synaptic dysfunction in the hippocampus accompanies learning 

and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice. 
Biol Psychiatry, 2013. 73(5): p. 443-53. 

 
208. Leibrand, C.R., et al., HIV-1 Tat disrupts blood-brain barrier integrity and increases 

phagocytic perivascular macrophages and microglia in the dorsal striatum of 
transgenic mice. Neurosci Lett, 2017. 640: p. 136-143. 

 
209. Fitting, S., et al., Morphine efficacy is altered in conditional HIV-1 Tat transgenic 

mice. Eur J Pharmacol, 2012. 689(1-3): p. 96-103. 



158 

210. Toggas, S.M., et al., Central nervous system damage produced by expression of 
the HIV-1 coat protein gp120 in transgenic mice. Nature, 1994. 367(6459): p. 188-
93. 

 
211. Berrada, F., et al., Neuronal expression of human immunodeficiency virus type 1 

env proteins in transgenic mice: distribution in the central nervous system and 
pathological alterations. J Virol, 1995. 69(11): p. 6770-8. 

 
212. Okamoto, S., et al., HIV/gp120 decreases adult neural progenitor cell proliferation 

via checkpoint kinase-mediated cell-cycle withdrawal and G1 arrest. Cell Stem 
Cell, 2007. 1(2): p. 230-6. 

 
213. Lee, M.H., et al., Rescue of adult hippocampal neurogenesis in a mouse model of 

HIV neurologic disease. Neurobiol Dis, 2011. 41(3): p. 678-87. 
 
214. D'Hooge, R., et al., Age-related behavioural deficits in transgenic mice expressing 

the HIV-1 coat protein gp120. Eur J Neurosci, 1999. 11(12): p. 4398-402. 
 
215. Maung, R., et al., Genetic knockouts suggest a critical role for HIV co-receptors in 

models of HIV gp120-induced brain injury. J Neuroimmune Pharmacol, 2012. 7(2): 
p. 306-18. 

 
216. Toggas, S.M., E. Masliah, and L. Mucke, Prevention of HIV-1 gp120-induced 

neuronal damage in the central nervous system of transgenic mice by the NMDA 
receptor antagonist memantine. Brain Res, 1996. 706(2): p. 303-7. 

 
217. Krucker, T., et al., Transgenic mice with cerebral expression of human 

immunodeficiency virus type-1 coat protein gp120 show divergent changes in 
short- and long-term potentiation in CA1 hippocampus. Neuroscience, 1998. 83(3): 
p. 691-700. 

 
218. Vigorito, M., K.P. Connaghan, and S.L. Chang, The HIV-1 transgenic rat model of 

neuroHIV. Brain Behav Immun, 2015. 48: p. 336-49. 
 
219. Kopp, J.B., et al., Cutaneous disorders and viral gene expression in HIV-1 

transgenic mice. AIDS Res Hum Retroviruses, 1993. 9(3): p. 267-75. 
 
220. Reid, W., et al., An HIV-1 transgenic rat that develops HIV-related pathology and 

immunologic dysfunction. Proc Natl Acad Sci U S A, 2001. 98(16): p. 9271-6. 
 
221. Peng, J., et al., The HIV-1 transgenic rat as a model for HIV-1 infected individuals 

on HAART. J Neuroimmunol, 2010. 218(1-2): p. 94-101. 
 
222. Moran, L.M., et al., Neurobehavioral alterations in HIV-1 transgenic rats: evidence 

for dopaminergic dysfunction. Exp Neurol, 2013. 239: p. 139-47. 
 
223. Royal, W., 3rd, et al., Immune activation, viral gene product expression and 

neurotoxicity in the HIV-1 transgenic rat. J Neuroimmunol, 2012. 247(1-2): p. 16-
24. 



159 

224. Mahajan, S.D., et al., Morphine regulates gene expression of alpha- and beta-
chemokines and their receptors on astroglial cells via the opioid mu receptor. J 
Immunol, 2002. 169(7): p. 3589-99. 

 
225. Borner, C., et al., Transcriptional regulation of the human mu-opioid receptor gene 

by interleukin-6. Mol Pharmacol, 2004. 66(6): p. 1719-26. 
 
226. Chang, S.L., J.A. Beltran, and S. Swarup, Expression of the mu opioid receptor in 

the human immunodeficiency virus type 1 transgenic rat model. J Virol, 2007. 
81(16): p. 8406-11. 

 
227. Jaeger, L.B. and A. Nath, Modeling HIV-associated neurocognitive disorders in 

mice: new approaches in the changing face of HIV neuropathogenesis. Dis Model 
Mech, 2012. 5(3): p. 313-22. 

 
228. Eggert, D., et al., Neuroprotective activities of CEP-1347 in models of neuroAIDS. 

J Immunol, 2010. 184(2): p. 746-56. 
 
229. Persidsky, Y., et al., Human immunodeficiency virus encephalitis in SCID mice. 

Am J Pathol, 1996. 149(3): p. 1027-53. 
 
230. Persidsky, Y. and H.E. Gendelman, Development of laboratory and animal model 

systems for HIV-1 encephalitis and its associated dementia. J Leukoc Biol, 1997. 
62(1): p. 100-6. 

 
231. Ito, M., et al., NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse 

model for engraftment of human cells. Blood, 2002. 100(9): p. 3175-82. 
 
232. Shultz, L.D., et al., Human lymphoid and myeloid cell development in NOD/LtSz-

scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem 
cells. J Immunol, 2005. 174(10): p. 6477-89. 

 
233. Traggiai, E., et al., Development of a human adaptive immune system in cord 

blood cell-transplanted mice. Science, 2004. 304(5667): p. 104-7. 
 
234. Akkina, R., et al., Improvements and Limitations of Humanized Mouse Models for 

HIV Research: NIH/NIAID "Meet the Experts" 2015 Workshop Summary. AIDS 
Res Hum Retroviruses, 2016. 32(2): p. 109-19. 

 
235. van Maanen, M. and R.E. Sutton, Rodent models for HIV-1 infection and disease. 

Curr HIV Res, 2003. 1(1): p. 121-30. 
 
236. Potash, M.J., et al., A mouse model for study of systemic HIV-1 infection, antiviral 

immune responses, and neuroinvasiveness. Proc Natl Acad Sci U S A, 2005. 
102(10): p. 3760-5. 

 
237. Jones, L.D., J.W. Jackson, and S.B. Maggirwar, Modeling HIV-1 Induced 

Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier 
Dysfunction. PLoS One, 2016. 11(3): p. e0151702. 



160 

238. Kelschenbach, J.L., et al., Mice chronically infected with chimeric HIV resist 
peripheral and brain superinfection: a model of protective immunity to HIV. J 
Neuroimmune Pharmacol, 2012. 7(2): p. 380-7. 

 
239. Hayman, M., et al., Neurotoxicity of peptide analogues of the transactivating 

protein tat from Maedi-Visna virus and human immunodeficiency virus. 
Neuroscience, 1993. 53(1): p. 1-6. 

 
240. Philippon, V., et al., The basic domain of the lentiviral Tat protein is responsible for 

damages in mouse brain: involvement of cytokines. Virology, 1994. 205(2): p. 519-
29. 

 
241. Bansal, A.K., et al., Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat 

striatum. Brain Res, 2000. 879(1-2): p. 42-9. 
 
242. El-Hage, N., et al., HIV-1 Tat and opiate-induced changes in astrocytes promote 

chemotaxis of microglia through the expression of MCP-1 and alternative 
chemokines. Glia, 2006. 53(2): p. 132-46. 

 
243. El-Hage, N., et al., CCR2 mediates increases in glial activation caused by 

exposure to HIV-1 Tat and opiates. J Neuroimmunol, 2006. 178(1-2): p. 9-16. 
 
244. El-Hage, N., et al., CCL5/RANTES gene deletion attenuates opioid-induced 

increases in glial CCL2/MCP-1 immunoreactivity and activation in HIV-1 Tat-
exposed mice. J Neuroimmune Pharmacol, 2008. 3(4): p. 275-85. 

 
245. Cann, G.M., et al., Developmental expression of LC3alpha and beta: absence of 

fibronectin or autophagy phenotype in LC3beta knockout mice. Dev Dyn, 2008. 
237(1): p. 187-95. 

 
246. Rodriguez, M., et al., Importance of Autophagy in Mediating Human 

Immunodeficiency Virus (HIV) and Morphine-Induced Metabolic Dysfunction and 
Inflammation in Human Astrocytes. Viruses, 2017. 9(8): p. 201. 

 
247. Rodriguez, M., et al., Electro-Magnetic Nano-Particle Bound Beclin1 siRNA 

Crosses the Blood-Brain Barrier to Attenuate the Inflammatory Effects of HIV-1 
Infection in Vitro. J Neuroimmune Pharmacol, 2016. 

 
248. Hui, L., et al., Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN 

Neuro, 2012. 4(4): p. 243-52. 
 
249. Pulliam, L., et al., Human immunodeficiency virus-infected macrophages produce 

soluble factors that cause histological and neurochemical alterations in cultured 
human brains. J Clin Invest, 1991. 87(2): p. 503-12. 

 
250. Pocernich, C.B., et al., HIV-dementia, Tat-induced oxidative stress, and 

antioxidant therapeutic considerations. Brain Res Brain Res Rev, 2005. 50(1): p. 
14-26. 

 



161 

251. Haughey, N.J., et al., Involvement of inositol 1,4,5-trisphosphate-regulated stores 
of intracellular calcium in calcium dysregulation and neuron cell death caused by 
HIV-1 protein tat. J Neurochem, 1999. 73(4): p. 1363-74. 

 
252. New, D.R., et al., Human immunodeficiency virus type 1 Tat protein induces death 

by apoptosis in primary human neuron cultures. J Neurovirol, 1997. 3(2): p. 168-
73. 

 
253. Friedman, H., S. Pross, and T.W. Klein, Addictive drugs and their relationship with 

infectious diseases. FEMS Immunol Med Microbiol, 2006. 47(3): p. 330-42. 
 
254. Klionsky, D.J., et al., A comprehensive glossary of autophagy-related molecules 

and processes (2nd edition). Autophagy, 2011. 7(11): p. 1273-94. 
 
255. Kiriyama, Y. and H. Nochi, The Function of Autophagy in Neurodegenerative 

Diseases. Int J Mol Sci, 2015. 16(11): p. 26797-812. 
 
256. Zhou, D. and S.A. Spector, Human immunodeficiency virus type-1 infection inhibits 

autophagy. AIDS (London, England), 2008. 22: p. 695-9. 
 
257. Rodriguez, M., et al., Electro-Magnetic Nano-Particle Bound Beclin1 siRNA 

Crosses the Blood-Brain Barrier to Attenuate the Inflammatory Effects of HIV-1 
Infection in Vitro. J Neuroimmune Pharmacol, 2017. 12(1): p. 120-132. 

 
258. Rodriguez, M., et al., Intranasal drug delivery of small interfering RNA targeting 

Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV 
attenuation. Sci Rep, 2017. 7(1): p. 1862. 

 
259. Mayne, M., et al., HIV-1 tat molecular diversity and induction of TNF-alpha: 

implications for HIV-induced neurological disease. Neuroimmunomodulation, 
1998. 5(3-4): p. 184-92. 

 
260. Kruman, II, A. Nath, and M.P. Mattson, HIV-1 protein Tat induces apoptosis of 

hippocampal neurons by a mechanism involving caspase activation, calcium 
overload, and oxidative stress. Exp Neurol, 1998. 154(2): p. 276-88. 

 
261. El-Hage, N., et al., Synergistic increases in intracellular Ca2+, and the release of 

MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia, 
2005. 50(2): p. 91-106. 

 
262. McKnight, N.C., et al., Beclin 1 is required for neuron viability and regulates 

endosome pathways via the UVRAG-VPS34 complex. PLoS Genet, 2014. 10(10): 
p. e1004626. 

 
263. Kabeya, Y., et al., LC3, a mammalian homologue of yeast Apg8p, is localized in 

autophagosome membranes after processing. EMBO J, 2000. 19(21): p. 5720-8. 
 
264. El-Hage, N., et al., Morphine exacerbates HIV-1 Tat-induced cytokine production 

in astrocytes through convergent effects on [Ca(2+)](i), NF-kappaB trafficking and 
transcription. PLoS One, 2008. 3(12): p. e4093. 



162 

265. Sun, Q., et al., Inflammasome and autophagy regulation - a two-way street. Mol 
Med, 2017. 23. 

 
266. Deretic, V., T. Saitoh, and S. Akira, Autophagy in infection, inflammation and 

immunity. Nat Rev Immunol, 2013. 13(10): p. 722-37. 
 
267. Salminen, A., K. Kaarniranta, and A. Kauppinen, Beclin 1 interactome controls the 

crosstalk between apoptosis, autophagy and inflammasome activation: impact on 
the aging process. Ageing Res Rev, 2013. 12(2): p. 520-34. 

 
268. Eskelinen, E.L., Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and 

autophagy. Mol Aspects Med, 2006. 27(5-6): p. 495-502. 
 
269. Cornell-Bell, A.H., et al., Glutamate induces calcium waves in cultured astrocytes: 

long-range glial signaling. Science, 1990. 247(4941): p. 470-3. 
 
270. Wang, X., T. Takano, and M. Nedergaard, Astrocytic calcium signaling: 

mechanism and implications for functional brain imaging. Methods Mol Biol, 2009. 
489: p. 93-109. 

 
271. Barger, S.W., et al., Glutamate release from activated microglia requires the 

oxidative burst and lipid peroxidation. J Neurochem, 2007. 101(5): p. 1205-13. 
 
272. Norman, J.P., et al., HIV-1 Tat activates neuronal ryanodine receptors with rapid 

induction of the unfolded protein response and mitochondrial hyperpolarization. 
PLoS One, 2008. 3(11): p. e3731. 

 
273. Haughey, N.J., et al., HIV-1 Tat through phosphorylation of NMDA receptors 

potentiates glutamate excitotoxicity. J Neurochem, 2001. 78(3): p. 457-67. 
 
274. Kruman, II, et al., Evidence that Par-4 participates in the pathogenesis of HIV 

encephalitis. Am J Pathol, 1999. 155(1): p. 39-46. 
 
275. D'Aversa, T.G., E.A. Eugenin, and J.W. Berman, NeuroAIDS: contributions of the 

human immunodeficiency virus-1 proteins Tat and gp120 as well as CD40 to 
microglial activation. J Neurosci Res, 2005. 81(3): p. 436-46. 

 
276. Shi, B., et al., Neuronal apoptosis induced by HIV-1 Tat protein and TNF-alpha: 

potentiation of neurotoxicity mediated by oxidative stress and implications for HIV-
1 dementia. J Neurovirol, 1998. 4(3): p. 281-90. 

 
277. Steiner, J., et al., Oxidative stress and therapeutic approaches in HIV dementia. 

Antioxid Redox Signal, 2006. 8(11-12): p. 2089-100. 
 
278. Streit, W.J., S.A. Walter, and N.A. Pennell, Reactive microgliosis. Prog Neurobiol, 

1999. 57(6): p. 563-81. 
 
279. Droge, W., Free radicals in the physiological control of cell function. Physiol Rev, 

2002. 82(1): p. 47-95. 



163 

280. Kaul, N. and H.J. Forman, Activation of NF kappa B by the respiratory burst of 
macrophages. Free Radic Biol Med, 1996. 21(3): p. 401-5. 

 
281. Olsen, B.B., T.H. Svenstrup, and B. Guerra, Downregulation of protein kinase CK2 

induces autophagic cell death through modulation of the mTOR and MAPK 
signaling pathways in human glioblastoma cells. Int J Oncol, 2012. 41(6): p. 1967-
76. 

 
282. Fassina, L., et al., AUTOCOUNTER, an ImageJ JavaScript to analyze LC3B-GFP 

expression dynamics in autophagy-induced astrocytoma cells. Eur J Histochem, 
2012. 56(4): p. e44. 

 
283. Dolman, N.J., J.A. Kilgore, and M.W. Davidson, A review of reagents for 

fluorescence microscopy of cellular compartments and structures, part I: BacMam 
labeling and reagents for vesicular structures. Curr Protoc Cytom, 2013. Chapter 
12: p. Unit 12 30. 

 
284. Bokhari, S.M., et al., Morphine enhances Tat-induced activation in murine 

microglia. J Neurovirol, 2009. 15(3): p. 219-28. 
 
285. Campbell, G.R., et al., Human Immunodeficiency Virus Type 1 Nef Inhibits 

Autophagy through Transcription Factor EB Sequestration. PLoS Pathog, 2015. 
11(6): p. e1005018. 

 
286. Liu, Z., et al., ASPP2 Plays a Dual Role in gp120-Induced Autophagy and 

Apoptosis of Neuroblastoma Cells. Front Neurosci, 2017. 11: p. 150. 
 
287. Mabrouk, K., et al., Lethal neurotoxicity in mice of the basic domains of HIV and 

SIV Rev proteins. Study of these regions by circular dichroism. FEBS Lett, 1991. 
289(1): p. 13-7. 

 
288. Ronaldson, P.T. and R. Bendayan, HIV-1 viral envelope glycoprotein gp120 

triggers an inflammatory response in cultured rat astrocytes and regulates the 
functional expression of P-glycoprotein. Mol Pharmacol, 2006. 70(3): p. 1087-98. 

 
289. Silverstein, P.S., et al., HIV-1 gp120 and drugs of abuse: interactions in the central 

nervous system. Curr HIV Res, 2012. 10(5): p. 369-83. 
 
290. Trillo-Pazos, G., et al., Recombinant nef HIV-IIIB protein is toxic to human neurons 

in culture. Brain Res, 2000. 864(2): p. 315-26. 
 
291. Conant, K., et al., Extracellular human immunodeficiency virus type 1 Tat protein 

is associated with an increase in both NF-kappa B binding and protein kinase C 
activity in primary human astrocytes. J Virol, 1996. 70(3): p. 1384-9. 

 
292. Liu, X. and A. Kumar, Differential signaling mechanism for HIV-1 Nef-mediated 

production of IL-6 and IL-8 in human astrocytes. Sci Rep, 2015. 5: p. 9867. 
 
293. Si, Q., et al., Vpr- and Nef-dependent induction of RANTES/CCL5 in microglial 

cells. Virology, 2002. 301(2): p. 342-53. 



164 

294. Robichaud, G.A. and L. Poulin, HIV type 1 nef gene inhibits tumor necrosis factor 
alpha-induced apoptosis and promotes cell proliferation through the action of 
MAPK and JNK in human glial cells. AIDS Res Hum Retroviruses, 2000. 16(18): 
p. 1959-65. 

 
295. Fiala, M., et al., Regulation of HIV-1 infection in astrocytes: expression of Nef, 

TNF-alpha and IL-6 is enhanced in coculture of astrocytes with macrophages. J 
Neurovirol, 1996. 2(3): p. 158-66. 

 
296. Sami Saribas, A., et al., HIV-1 Nef is released in extracellular vesicles derived from 

astrocytes: evidence for Nef-mediated neurotoxicity. Cell Death Dis, 2017. 8(1): p. 
e2542. 

 
297. Madrid, R., et al., Nef-induced alteration of the early/recycling endosomal 

compartment correlates with enhancement of HIV-1 infectivity. J Biol Chem, 2005. 
280(6): p. 5032-44. 

 
298. Leymarie, O., L. Lepont, and C. Berlioz-Torrent, Canonical and Non-Canonical 

Autophagy in HIV-1 Replication Cycle. Viruses, 2017. 9(10). 
 
299. Turchan-Cholewo, J., et al., Cell-specific actions of HIV-Tat and morphine on 

opioid receptor expression in glia. J Neurosci Res, 2008. 86(9): p. 2100-10. 
 
300. Patel, C.N., et al., Chronic opioid antagonist treatment selectively regulates 

trafficking and signaling proteins in mouse spinal cord. Synapse, 2003. 50(1): p. 
67-76. 

 
301. Rogers, T.J. and P.K. Peterson, Opioid G protein-coupled receptors: signals at the 

crossroads of inflammation. Trends Immunol, 2003. 24(3): p. 116-21. 
 
302. Keith, D.E., et al., mu-Opioid receptor internalization: opiate drugs have differential 

effects on a conserved endocytic mechanism in vitro and in the mammalian brain. 
Mol Pharmacol, 1998. 53(3): p. 377-84. 

 
303. Thoresen, S.B., et al., A phosphatidylinositol 3-kinase class III sub-complex 

containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and 
degradative endocytic traffic. Exp Cell Res, 2010. 316(20): p. 3368-78. 

 
304. Itakura, E., et al., Beclin 1 forms two distinct phosphatidylinositol 3-kinase 

complexes with mammalian Atg14 and UVRAG. Mol Biol Cell, 2008. 19(12): p. 
5360-72. 

 
305. Engedal, N. and P.O. Seglen, Autophagy of cytoplasmic bulk cargo does not 

require LC3. Autophagy, 2016. 12(2): p. 439-41. 
 
306. Yoshii, S.R. and N. Mizushima, Monitoring and Measuring Autophagy. Int J Mol 

Sci, 2017. 18(9). 
 
307. Mizushima, N. and T. Yoshimori, How to interpret LC3 immunoblotting. Autophagy, 

2007. 3(6): p. 542-5. 



165 

308. Klionsky, D.J., et al., Guidelines for the use and interpretation of assays for 
monitoring autophagy (3rd edition). Autophagy, 2016. 12(1): p. 1-222. 

 
309. Meulendyke, K.A., J.D. Croteau, and M.C. Zink, HIV life cycle, innate immunity and 

autophagy in the central nervous system. Curr Opin HIV AIDS, 2014. 9(6): p. 565-
71. 

 
310. Cao, L., et al., Methamphetamine potentiates HIV-1 gp120-mediated autophagy 

via Beclin-1 and Atg5/7 as a pro-survival response in astrocytes. Cell Death Dis, 
2016. 7(10): p. e2425. 

 
311. Bagasra, O., et al., Cellular reservoirs of HIV-1 in the central nervous system of 

infected individuals: identification by the combination of in situ polymerase chain 
reaction and immunohistochemistry. AIDS, 1996. 10(6): p. 573-85. 

 
312. Nath, A., Eradication of human immunodeficiency virus from brain reservoirs. J 

Neurovirol, 2015. 21(3): p. 227-34. 
 
313. Sabatier, J.M., et al., Evidence for neurotoxic activity of tat from human 

immunodeficiency virus type 1. J Virol, 1991. 65(2): p. 961-7. 
 
314. Nath, A., et al., Synergistic neurotoxicity by human immunodeficiency virus 

proteins Tat and gp120: protection by memantine. Ann Neurol, 2000. 47(2): p. 186-
94. 

 
315. Longordo, F., et al., The human immunodeficiency virus-1 protein transactivator of 

transcription up-regulates N-methyl-D-aspartate receptor function by acting at 
metabotropic glutamate receptor 1 receptors coexisting on human and rat brain 
noradrenergic neurones. J Pharmacol Exp Ther, 2006. 317(3): p. 1097-105. 

 
316. Fitting, S., et al., Interactive HIV-1 Tat and morphine-induced synaptodendritic 

injury is triggered through focal disruptions in Na(+) influx, mitochondrial instability, 
and Ca(2)(+) overload. J Neurosci, 2014. 34(38): p. 12850-64. 

 
317. Hauser, K.F., et al., mu-Opioid receptor-induced Ca2+ mobilization and astroglial 

development: morphine inhibits DNA synthesis and stimulates cellular hypertrophy 
through a Ca(2+)-dependent mechanism. Brain Res, 1996. 720(1-2): p. 191-203. 

 
318. Hasbani, M.J., et al., Distinct Roles for Sodium, Chloride, and Calcium in 

Excitotoxic Dendritic Injury and Recovery. Experimental Neurology, 1998. 154: p. 
241-258. 

 
319. Lipton, S.A., AIDS-related dementia and calcium homeostasis. Ann N Y Acad Sci, 

1994. 747: p. 205-24. 
 
320. Greenwood, S.M., et al., Mitochondrial Dysfunction and Dendritic Beading during 

Neuronal Toxicity. Journal of Biological Chemistry, 2007. 282: p. 26235-26244. 
 
321. Ellis, R., D. Langford, and E. Masliah, HIV and antiretroviral therapy in the brain: 

neuronal injury and repair. Nat Rev Neurosci, 2007. 8(1): p. 33-44. 



166 

322. Frake, R.A., et al., Autophagy and neurodegeneration. J Clin Invest, 2015. 125(1): 
p. 65-74. 

 
323. Menzies, F.M., A. Fleming, and D.C. Rubinsztein, Compromised autophagy and 

neurodegenerative diseases. Nat Rev Neurosci, 2015. 16(6): p. 345-57. 
 
324. Fitting, S., et al., Opiate addiction therapies and HIV-1 Tat: interactive effects on 

glial [Ca(2)(+)]i, oxyradical and neuroinflammatory chemokine production and 
correlative neurotoxicity. Curr HIV Res, 2014. 12(6): p. 424-34. 

 
325. Zhao, T., et al., Silencing the PTEN gene is protective against neuronal death 

induced by human immunodeficiency virus type 1 Tat. J Neurovirol, 2007. 13(2): 
p. 97-106. 

 
326. Liao, D., et al., Distinct effects of individual opioids on the morphology of spines 

depend upon the internalization of mu opioid receptors. Mol Cell Neurosci, 2007. 
35(3): p. 456-69. 

 
327. Nath, A., Human immunodeficiency virus-associated neurocognitive disorder: 

pathophysiology in relation to drug addiction. Ann N Y Acad Sci, 2010. 1187: p. 
122-8. 

 
328. Kaul, M., et al., HIV-1 coreceptors CCR5 and CXCR4 both mediate neuronal cell 

death but CCR5 paradoxically can also contribute to protection. Cell Death Differ, 
2007. 14(2): p. 296-305. 

 
329. Johnson, E.M. and M.H. Tuszynski, 4 - NEUROTROPHIC FACTORS, in CNS 

Regeneration (Second Edition), J.H. Kordower and M.H. Tuszynski, Editors. 2008, 
Academic Press: San Diego. p. 95-144. 

 
330. Hefti, F., B. Knusel, and P.A. Lapchak, Protective effects of nerve growth factor 

and brain-derived neurotrophic factor on basal forebrain cholinergic neurons in 
adult rats with partial fimbrial transections. Prog Brain Res, 1993. 98: p. 257-63. 

 
331. Szebenyi, G., et al., Fibroblast growth factor-2 promotes axon branching of cortical 

neurons by influencing morphology and behavior of the primary growth cone. J 
Neurosci, 2001. 21(11): p. 3932-41. 

 
332. Katsuki, H., Y. Itsukaichi, and N. Matsuki, Distinct signaling pathways involved in 

multiple effects of basic fibroblast growth factor on cultured rat hippocampal 
neurons. Brain Res, 2000. 885(2): p. 240-50. 

 
333. Hu, P., et al., Loss of survival factors and activation of inflammatory cascades in 

brain sympathetic centers in type 1 diabetic mice. Am J Physiol Endocrinol Metab, 
2015. 308(8): p. E688-98. 

 
334. Ozdinler, P.H. and J.D. Macklis, IGF-I specifically enhances axon outgrowth of 

corticospinal motor neurons. Nat Neurosci, 2006. 9(11): p. 1371-81. 



167 

335. Corvin, A.P., et al., Insulin-like growth factor 1 (IGF1) and its active peptide (1-
3)IGF1 enhance the expression of synaptic markers in neuronal circuits through 
different cellular mechanisms. Neurosci Lett, 2012. 520(1): p. 51-6. 

 
336. Imai, Y. and S. Kohsaka, Intracellular signaling in M-CSF-induced microglia 

activation: role of Iba1. Glia, 2002. 40(2): p. 164-74. 
 
337. Hamilton, J.A., Colony-stimulating factors in inflammation and autoimmunity. Nat 

Rev Immunol, 2008. 8(7): p. 533-44. 
 
338. Luo, J., et al., Colony-stimulating factor 1 receptor (CSF1R) signaling in injured 

neurons facilitates protection and survival. J Exp Med, 2013. 210(1): p. 157-72. 
 
339. Malik, S., et al., A growth factor attenuates HIV-1 Tat and morphine induced 

damage to human neurons: implication in HIV/AIDS-drug abuse cases. PLoS One, 
2011. 6(3): p. e18116. 

 
340. Nixon, R.A. and A.M. Cataldo, The endosomal-lysosomal system of neurons: new 

roles. Trends Neurosci, 1995. 18(11): p. 489-96. 
 
341. Liu, Y., et al., Uptake of HIV-1 tat protein mediated by low-density lipoprotein 

receptor-related protein disrupts the neuronal metabolic balance of the receptor 
ligands. Nat Med, 2000. 6(12): p. 1380-7. 

 
342. Xiao, H., et al., Selective CXCR4 antagonism by Tat: implications for in vivo 

expansion of coreceptor use by HIV-1. Proc Natl Acad Sci U S A, 2000. 97(21): p. 
11466-71. 

 
343. Tyagi, M., et al., Internalization of HIV-1 tat requires cell surface heparan sulfate 

proteoglycans. J Biol Chem, 2001. 276(5): p. 3254-61. 
 
344. Marks, A.R., Intracellular calcium-release channels: regulators of cell life and 

death. Am J Physiol, 1997. 272(2 Pt 2): p. H597-605. 
 
345. Magnuson, D.S., et al., Human immunodeficiency virus type 1 tat activates non-N-

methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann 
Neurol, 1995. 37(3): p. 373-80. 

 
346. Bigford, G.E., et al., A novel protein complex in membrane rafts linking the NR2B 

glutamate receptor and autophagy is disrupted following traumatic brain injury. J 
Neurotrauma, 2009. 26(5): p. 703-20. 

 
347. Perez-Carrion, M.D., et al., Dendrimer-mediated siRNA delivery knocks down 

Beclin 1 and potentiates NMDA-mediated toxicity in rat cortical neurons. J 
Neurochem, 2012. 120(2): p. 259-68. 

 
348. Fields, J.A., et al., Mechanisms of HIV-1 Tat neurotoxicity via CDK5 translocation 

and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV 
Res, 2015. 13(1): p. 43-54. 



168 

349. Song, D.D., et al., Sphingosine kinase 2 activates autophagy and protects neurons 
against ischemic injury through interaction with Bcl-2 via its putative BH3 domain. 
Cell Death Dis, 2017. 8(7): p. e2912. 

 
350. Yang, Y., et al., RNF146 Inhibits Excessive Autophagy by Modulating the Wnt-

beta-Catenin Pathway in Glutamate Excitotoxicity Injury. Front Cell Neurosci, 
2017. 11: p. 59. 

 
351. Wang, Y., et al., p53 induction contributes to excitotoxic neuronal death in rat 

striatum through apoptotic and autophagic mechanisms. Eur J Neurosci, 2009. 
30(12): p. 2258-70. 

 
352. Bossy-Wetzel, E. and D.R. Green, Assays for cytochrome c release from 

mitochondria during apoptosis. Methods Enzymol, 2000. 322: p. 235-42. 
 
353. Mauvezin, C., et al., Autophagosome-lysosome fusion is independent of V-

ATPase-mediated acidification. Nat Commun, 2015. 6: p. 7007. 
 
354. Yu, X.M. and M.W. Salter, Gain control of NMDA-receptor currents by intracellular 

sodium. Nature, 1998. 396(6710): p. 469-74. 
 
355. Yu, X.M., The Role of Intracellular Sodium in the Regulation of NMDA-Receptor-

Mediated Channel Activity and Toxicity. Mol Neurobiol, 2006. 33(1): p. 63-80. 
 
356. Vander Jagt, T.A., J.A. Connor, and C.W. Shuttleworth, Localized loss of Ca2+ 

homeostasis in neuronal dendrites is a downstream consequence of metabolic 
compromise during extended NMDA exposures. J Neurosci, 2008. 28(19): p. 
5029-39. 

 
357. Xin, W.K., et al., A functional interaction of sodium and calcium in the regulation of 

NMDA receptor activity by remote NMDA receptors. J Neurosci, 2005. 25(1): p. 
139-48. 

 
358. Greenwood, S.M. and C.N. Connolly, Dendritic and mitochondrial changes during 

glutamate excitotoxicity. Neuropharmacology, 2007. 53(8): p. 891-8. 
 
359. Liu, Y., et al., Autosis is a Na+,K+-ATPase-regulated form of cell death triggered 

by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad 
Sci U S A, 2013. 110(51): p. 20364-71. 

 
360. Zhang, G., et al., Induction of a Na(+)/K(+)-ATPase-dependent form of autophagy 

triggers preferential cell death of human immunodeficiency virus type-1-infected 
macrophages. Autophagy, 2018. 14(8): p. 1359-1375. 

 
361. Ikegaya, Y., et al., Rapid and reversible changes in dendrite morphology and 

synaptic efficacy following NMDA receptor activation: implication for a cellular 
defense against excitotoxicity. J Cell Sci, 2001. 114(Pt 22): p. 4083-93. 

 
362. Tsujimoto, Y. and S. Shimizu, Another way to die: autophagic programmed cell 

death. Cell Death Differ, 2005. 12 Suppl 2: p. 1528-34. 



169 

363. Liu, Y. and B. Levine, Autosis and autophagic cell death: the dark side of 
autophagy. Cell Death Differ, 2015. 22(3): p. 367-76. 

 
364. Pickford, F., et al., The autophagy-related protein beclin 1 shows reduced 

expression in early Alzheimer disease and regulates amyloid beta accumulation in 
mice. J Clin Invest, 2008. 118(6): p. 2190-9. 

 
365. Spencer, B., et al., Beclin 1 gene transfer activates autophagy and ameliorates the 

neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy 
body diseases. J Neurosci, 2009. 29(43): p. 13578-88. 

 
366. Ellis, R., D. Langford, and E. Masliah, HIV and antiretroviral therapy in the brain: 

neuronal injury and repair. Nature Reviews Neuroscience, 2007. 8: p. 33-44. 
 
367. Boven, L.A., et al., Overexpression of nerve growth factor and basic fibroblast 

growth factor in AIDS dementia complex. J Neuroimmunol, 1999. 97(1-2): p. 154-
62. 

 
368. Isackson, P.J., Trophic factor response to neuronal stimuli or injury. Curr Opin 

Neurobiol, 1995. 5(3): p. 350-7. 
 
369. Mark, R.J., et al., Basic FGF attenuates amyloid beta-peptide-induced oxidative 

stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in 
hippocampal neurons. Brain Res, 1997. 756(1-2): p. 205-14. 

 
370. Pechan, P.A., et al., Glutamate induces the growth factors NGF, bFGF, the 

receptor FGF-R1 and c-fos mRNA expression in rat astrocyte culture. Neurosci 
Lett, 1993. 153(1): p. 111-4. 

 
371. Hefti, F., Neurotrophic factor therapy for nervous system degenerative diseases. J 

Neurobiol, 1994. 25(11): p. 1418-35. 
 
372. Nomenclature and research case definitions for neurologic manifestations of 

human immunodeficiency virus‐type 1 (HIV‐1) infection. Neurology, 1991. 41(6): 
p. 778-778. 

 
373. Antinori, A., et al., Updated research nosology for HIV-associated neurocognitive 

disorders. Neurology, 2007. 69(18): p. 1789-99. 
 
374. Clifford, D.B. and B.M. Ances, HIV-associated neurocognitive disorder. Lancet 

Infect Dis, 2013. 13(11): p. 976-86. 
 
375. Heaton, R.K., et al., HIV-associated neurocognitive disorders before and during 

the era of combination antiretroviral therapy: differences in rates, nature, and 
predictors. J Neurovirol, 2011. 17(1): p. 3-16. 

 
376. Woods, S.P., et al., Cognitive neuropsychology of HIV-associated neurocognitive 

disorders. Neuropsychol Rev, 2009. 19(2): p. 152-68. 



170 

377. Heaton, R.K., et al., HIV-associated neurocognitive disorders persist in the era of 
potent antiretroviral therapy: CHARTER Study. Neurology, 2010. 75(23): p. 2087-
96. 

 
378. Wiley, C.A., et al., Distribution of brain HIV load in AIDS. Brain Pathol, 1998. 8(2): 

p. 277-84. 
 
379. Moore, D.J., et al., Cortical and subcortical neurodegeneration is associated with 

HIV neurocognitive impairment. AIDS, 2006. 20(6): p. 879-87. 
 
380. Berger, J.R. and A. Nath, HIV dementia and the basal ganglia. Intervirology, 1997. 

40(2-3): p. 122-31. 
 
381. Aylward, E.H., et al., Reduced basal ganglia volume in HIV-1-associated dementia: 

results from quantitative neuroimaging. Neurology, 1993. 43(10): p. 2099-104. 
 
382. Albright, A.V., S.S. Soldan, and F. Gonzalez-Scarano, Pathogenesis of human 

immunodeficiency virus-induced neurological disease. J Neurovirol, 2003. 9(2): p. 
222-7. 

 
383. Wang, H., K.N. Gracy, and V.M. Pickel, Mu-opioid and NMDA-type glutamate 

receptors are often colocalized in spiny neurons within patches of the caudate-
putamen nucleus. J Comp Neurol, 1999. 412(1): p. 132-46. 

 
384. Mirsattari, S.M., C. Power, and A. Nath, Parkinsonism with HIV infection. Mov 

Disord, 1998. 13(4): p. 684-9. 
 
385. Berger, J.R. and G. Arendt, HIV dementia: the role of the basal ganglia and 

dopaminergic systems. J Psychopharmacol, 2000. 14(3): p. 214-21. 
 
386. Tse, W., et al., Movement disorders and AIDS: a review. Parkinsonism Relat 

Disord, 2004. 10(6): p. 323-34. 
 
387. Karlsen, N.R., I. Reinvang, and S.S. Froland, Slowed reaction time in 

asymptomatic HIV-positive patients. Acta Neurol Scand, 1992. 86(3): p. 242-6. 
 
388. Ogunrin, O. and F. Odiase, Motor speed and reaction time in HIV/AIDS patients: 

a case-control study. Afr J AIDS Res, 2006. 5(3): p. 217-20. 
 
389. Sweeney, J.A., et al., Pursuit eye movement dysfunction in HIV-1 seropositive 

individuals. J Psychiatry Neurosci, 1991. 16(5): p. 247-52. 
 
390. Valcour, V., et al., Aging exacerbates extrapyramidal motor signs in the era of 

highly active antiretroviral therapy. J Neurovirol, 2008. 14(5): p. 362-7. 
 
391. Smith, J.P., et al., Quantitative measurement of muscle strength in the mouse. J 

Neurosci Methods, 1995. 62(1-2): p. 15-9. 
 
392. Paxinos, G., Paxinos and Franklin's the mouse brain in stereotaxic coordinates, 

K.B.J. Franklin, Editor. 2013, Boston :: Amsterdam :. 



171 

393. Garcia-Cabezas, M.A., et al., Distinction of Neurons, Glia and Endothelial Cells in 
the Cerebral Cortex: An Algorithm Based on Cytological Features. Front 
Neuroanat, 2016. 10: p. 107. 

 
394. Sherwood, C.C., et al., Evolution of increased glia-neuron ratios in the human 

frontal cortex. Proc Natl Acad Sci U S A, 2006. 103(37): p. 13606-11. 
 
395. Pelvig, D.P., et al., Neocortical glial cell numbers in human brains. Neurobiol 

Aging, 2008. 29(11): p. 1754-62. 
 
396. Hahn, Y.K., et al., Central HIV-1 Tat exposure elevates anxiety and fear 

conditioned responses of male mice concurrent with altered mu-opioid receptor-
mediated G-protein activation and beta-arrestin 2 activity in the forebrain. 
Neurobiol Dis, 2016. 92(Pt B): p. 124-36. 

 
397. Goodkin, K., et al., Subtle neuropsychological impairment and minor cognitive-

motor disorder in HIV-1 infection. Neuroradiological, neurophysiological, 
neuroimmunological, and virological correlates. Neuroimaging Clin N Am, 1997. 
7(3): p. 561-79. 

 
398. Simioni, S., et al., Cognitive dysfunction in HIV patients despite long-standing 

suppression of viremia. AIDS, 2010. 24(9): p. 1243-50. 
 
399. Gonek, M., et al., CCR5 mediates HIV-1 Tat-induced neuroinflammation and 

influences morphine tolerance, dependence, and reward. Brain Behav Immun, 
2018. 69: p. 124-138. 

 
400. Gold, L.H., et al., Prolonged tolerance, dependence and abstinence following 

subcutaneous morphine pellet implantation in the rat. Eur J Pharmacol, 1994. 
253(1-2): p. 45-51. 

 
401. Belknap, J.K., Components of the opioid withdrawal syndrome in mice are 

thermoregulatory responses. Pharmacol Biochem Behav, 1989. 34(2): p. 241-5. 
 
402. McLane, V.D., et al., Long-term morphine delivery via slow release morphine 

pellets or osmotic pumps: Plasma concentration, analgesia, and naloxone-
precipitated withdrawal. Life Sci, 2017. 185: p. 1-7. 

 
403. Weiss, J., M.L. Thompson, and L. Shuster, Effects of naloxone and naltrexone on 

drug-induced hypothermia in mice. Neuropharmacology, 1984. 23(5): p. 483-9. 
 
404. Brooks, S.P. and S.B. Dunnett, Tests to assess motor phenotype in mice: a user's 

guide. Nat Rev Neurosci, 2009. 10(7): p. 519-29. 
 
405. Jones, B.J. and D.J. Roberts, The quantiative measurement of motor inco-

ordination in naive mice using an acelerating rotarod. J Pharm Pharmacol, 1968. 
20(4): p. 302-4. 

 



172 

406. Nevins, M.E., S.A. Nash, and P.M. Beardsley, Quantitative grip strength 
assessment as a means of evaluating muscle relaxation in mice. 
Psychopharmacology (Berl), 1993. 110(1-2): p. 92-6. 

 
407. Fitting, S., et al., Dose-dependent long-term effects of Tat in the rat hippocampal 

formation: a design-based stereological study. Hippocampus, 2010. 20(4): p. 469-
80. 

 
408. Maragos, W.F., et al., Neuronal injury in hippocampus with human 

immunodeficiency virus transactivating protein, Tat. Neuroscience, 2003. 117(1): 
p. 43-53. 

 
409. Bruce-Keller, A.J., et al., Synaptic transport of human immunodeficiency virus-Tat 

protein causes neurotoxicity and gliosis in rat brain. J Neurosci, 2003. 23(23): p. 
8417-22. 

 
410. Berrios, I., C. Castro, and D.P. Kuffler, Morphine: axon regeneration, 

neuroprotection, neurotoxicity, tolerance, and neuropathic pain. P R Health Sci J, 
2008. 27(2): p. 119-28. 

 
411. Wang, B., et al., The Neuroprotection of Low-Dose Morphine in Cellular and 

Animal Models of Parkinson's Disease Through Ameliorating Endoplasmic 
Reticulum (ER) Stress and Activating Autophagy. Front Mol Neurosci, 2018. 11: p. 
120. 

 
412. Lanciego, J.L., N. Luquin, and J.A. Obeso, Functional neuroanatomy of the basal 

ganglia. Cold Spring Harb Perspect Med, 2012. 2(12): p. a009621. 
 
413. Saylor, D., et al., HIV-associated neurocognitive disorder--pathogenesis and 

prospects for treatment. Nat Rev Neurol, 2016. 12(4): p. 234-48. 
 
414. Reid, W.C., et al., Neurobehavioral Abnormalities in the HIV-1 Transgenic Rat Do 

Not Correspond to Neuronal Hypometabolism on 18F-FDG-PET. PLoS One, 2016. 
11(3): p. e0152265. 

 
415. June, H.L., et al., Vitamin A deficiency and behavioral and motor deficits in the 

human immunodeficiency virus type 1 transgenic rat. J Neurovirol, 2009. 15(5-6): 
p. 380-9. 

 
416. Liu, Z., et al., HIV transactivator of transcription enhances methamphetamine-

induced Parkinson's-like behavior in the rats. Neuroreport, 2014. 25(11): p. 860-
864. 

 
417. Hahn, Y.K., et al., Effects of chronic HIV-1 Tat exposure in the CNS: heightened 

vulnerability of males versus females to changes in cell numbers, synaptic 
integrity, and behavior. Brain Struct Funct, 2015. 220(2): p. 605-23. 

 
418. Royal, W., 3rd, et al., Cigarette smoke and nicotine effects on brain 

proinflammatory responses and behavioral and motor function in HIV-1 transgenic 
rats. J Neurovirol, 2018. 24(2): p. 246-253. 



173 

419. Schier, C.J., et al., Selective Vulnerability of Striatal D2 versus D1 Dopamine 
Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice. 
J Neurosci, 2017. 37(23): p. 5758-5769. 

 
420. Paris, J.J., et al., 5alpha-reduced progestogens ameliorate mood-related 

behavioral pathology, neurotoxicity, and microgliosis associated with exposure to 
HIV-1 Tat. Brain Behav Immun, 2016. 55: p. 202-214. 

 
421. Desfosses, Y., et al., Regulation of human immunodeficiency virus type 1 gene 

expression by clade-specific Tat proteins. J Virol, 2005. 79(14): p. 9180-91. 
 
422. Wang, T., et al., HIV Tat protein affects circadian rhythmicity by interfering with the 

circadian system. HIV Med, 2014. 15(9): p. 565-70. 
 
423. Johnson, T.P., et al., Induction of IL-17 and nonclassical T-cell activation by HIV-

Tat protein. Proc Natl Acad Sci U S A, 2013. 110(33): p. 13588-93. 
 
424. Gonzalez-Cano, R., et al., Effects of Tetrodotoxin in Mouse Models of Visceral 

Pain. Mar Drugs, 2017. 15(6). 
 
425. Luccarini, P., et al., Synergistic antinociceptive effect of amitriptyline and morphine 

in the rat orofacial formalin test. Anesthesiology, 2004. 100(3): p. 690-6. 
 
426. Stone, L.S., et al., Morphine and clonidine combination therapy improves 

therapeutic window in mice: synergy in antinociceptive but not in sedative or 
cardiovascular effects. PLoS One, 2014. 9(10): p. e109903. 

 
427. Lilius, T., et al., Ketamine and norketamine attenuate oxycodone tolerance 

markedly less than that of morphine: from behaviour to drug availability. Br J 
Anaesth, 2018. 120(4): p. 818-826. 

 
428. Kazantzis, N.P., et al., Opioid and cannabinoid synergy in a mouse neuropathic 

pain model. Br J Pharmacol, 2016. 173(16): p. 2521-31. 
 
429. Cartmell, S.M., L. Gelgor, and D. Mitchell, A revised rotarod procedure for 

measuring the effect of antinociceptive drugs on motor function in the rat. J 
Pharmacol Methods, 1991. 26(2): p. 149-59. 

 
430. Prodoehl, J., D.M. Corcos, and D.E. Vaillancourt, Basal ganglia mechanisms 

underlying precision grip force control. Neurosci Biobehav Rev, 2009. 33(6): p. 
900-8. 

 
431. Maurissen, J.P., et al., Factors affecting grip strength testing. Neurotoxicol Teratol, 

2003. 25(5): p. 543-53. 
 
432. Marcario, J.K., et al., Effects of Morphine on Behavioral Task Performance in SIV-

Infected Rhesus Macaques. J Neuroimmune Pharmacol, 2016. 11(2): p. 348-57. 
 
433. Deacon, R.M., Measuring motor coordination in mice. J Vis Exp, 2013(75): p. 

e2609. 



174 

434. Lalonde, R. and C. Strazielle, Brain regions and genes affecting postural control. 
Prog Neurobiol, 2007. 81(1): p. 45-60. 

 
435. Kaul, M., et al., HIV-1 infection and AIDS: consequences for the central nervous 

system. Cell Death Differ, 2005. 12 Suppl 1: p. 878-92. 
 
436. Hahn, Y.K., et al., Chronic HIV-1 Tat and HIV reduce Rbfox3/NeuN: evidence for 

sex-related effects. Curr HIV Res, 2015. 13(1): p. 10-20. 
 
437. Zauli, G., et al., HIV-1 Tat-mediated inhibition of the tyrosine hydroxylase gene 

expression in dopaminergic neuronal cells. J Biol Chem, 2000. 275(6): p. 4159-65. 
 
438. King, J.E., et al., HIV tat and neurotoxicity. Microbes Infect, 2006. 8(5): p. 1347-

57. 
 
439. Khurdayan, V.K., et al., Preferential vulnerability of astroglia and glial precursors 

to combined opioid and HIV-1 Tat exposure in vitro. Eur J Neurosci, 2004. 19(12): 
p. 3171-82. 

 
440. Davis, R.J., Signal transduction by the JNK group of MAP kinases. Cell, 2000. 

103(2): p. 239-52. 
 
441. Barber, S.A., et al., Dysregulation of mitogen-activated protein kinase signaling 

pathways in simian immunodeficiency virus encephalitis. Am J Pathol, 2004. 
164(2): p. 355-62. 

 
442. Wei, Y., S. Sinha, and B. Levine, Dual role of JNK1-mediated phosphorylation of 

Bcl-2 in autophagy and apoptosis regulation. Autophagy, 2008. 4(7): p. 949-51. 
 
443. Kaplan, R., et al., A Titrated Morphine Analgesic Regimen Comparing Substance 

Users and Non-Users with AIDS-Related Pain. Journal of Pain and Symptom 
Management, 2000. 19: p. 265-273. 

 
 

  



175 

VITA 
 

JESSICA AUDREY LAPIERRE 
 

    Born, Hollywood, Florida 
 
2008-2012    B.S., Chemistry 
    B.A., Classical Studies 

University of Florida 
Gainesville, Florida 

 
2012-2014    M.S., Molecular Pharmacology and Toxicology 

University of Southern California 
Los Angeles, California 
 

2014 -2018   Doctoral Candidate 
Florida International University 
Miami, Florida 

 
PUBLICATIONS AND PRESENTATIONS 
 
Rodriguez M, Lapierre J, Ojha CR, Pawitwar SS, Muthu Karupan MK, Kashanchi F, El-
Hage N. (2018) Morphine Counteracts the Antiviral Effect of Antiretroviral Drugs and 
Causes Upregulation of P62/SQSTM1 and Histone Modifying Enzymes in HIV-Infected 
Astrocytes. NeuroVirology, 2018, Under revision. 
 
Ojha CR, Rodriguez M, Lapierre J, Muthu Karupan MK, Kashanchi F, El-Hage N. (2018) 
Toll-like Receptor 3 Regulates Zika Virus Infection and Associated Host Inflammatory 
Response in Primary Human Astrocytes. PLoS ONE, 2018, Accepted. PONE-D-18-23819 
 
Ojha CR, Rodriguez M, Lapierre J, Muthu Karupan MK, Branscome H, Kashanchi F, El-
Hage N. (2018) Complementary Mechanisms Potentially Involved in the Pathology of Zika 
Virus. Front. Immunol., October 2018 https://doi.org/10.3389/fimmu.2018.02340 PubMed 
PMID: 30374352 
 
Tiwari S, Lapierre J, Ojha CR, Martins K, Parira T, Dutta RK, Caobi A, Garbinsky L, 
Ceyhan Y, Esteban-Lopez M, El-Hage N (2018) Signaling Pathways and Therapeutic 
Perspectives Related to Environmental Factors Associated with Multiple Sclerosis. J 
Neuro Res. 2018; 00:1–16. doi:10.1002/jnr.24322. PubMed PMID: 30204260 
 
Lapierre J, Rodriguez M, Ojha CR, El-Hage N. (2018) Critical Role of Beclin1 in HIV Tat 
and Morphine-Induced Inflammation and Calcium Release in Glial Cells from Autophagy 
Deficient Mouse. J Neuroimmune Pharmacol. 2018. doi: 10.1007/s11481-018-9788-3. 
PubMed PMID: 29752681 
 
Rodriguez M, Lapierre J, Ojha CR, Estrada-Bueno H, Dever SM, Gewirtz DA, Kashanchi 
F, El-Hage N. (2017) Importance of Autophagy in Mediating Human Immunodeficiency 
Virus (HIV) and Morphine-Induced Metabolic Dysfunction and Inflammation in Human 
Astrocytes. Viruses. 2017;9(8):201. doi: 10.3390/v9080201. PubMed PMID: 28788100 
 



176 

Ojha CR, Lapierre J, Rodriguez M, Dever SM, Zadeh MA, DeMarino C, Pleet ML, 
Kashanchi F, El-Hage N. (2017) Interplay between Autophagy, Exosomes and HIV-1 
Associated Neurological Disorders: New Insights for Diagnosis and Therapeutic 
Applications. Viruses. 2017 Jul 6;9(7). pii: E176. doi: 10.3390/v9070176. PubMed PMID: 
28684681 
 
Rodriguez M, Lapierre J, Ojha CR, Kaushik A, Batrakova E, Kashanchi F, Dever SM, Nair 
M, El-Hage N (2017). Intranasal drug delivery of small interfering RNA targeting Beclin1 
encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci 
Rep. 2017 May 12;7(1):1862. doi: 10.1038/s41598-017-01819-9. PubMed PMID: 
28500326 
 
Pawitwar SS, Dhar S, Tiwari S, Ojha CR, Lapierre J, Martins K, Rodzinski A, Parira T, 
Paudel I, Li J, Dutta RK, Silva MR, Kaushik A, El-Hage N. (2017) Overview on the Current 
Status of Zika Virus Pathogenesis and Animal Related Research. J Neuroimmune 
Pharmacol. 2017 Sep;12(3):371-388. doi: 10.1007/s11481-017-9743-8. PubMed PMID: 
28444557 
 
Rodriguez M, Kaushik A, Lapierre J, Dever SM, El-Hage N, Nair M (2016). Electro-
magnetic nano-particle bound Beclin1 siRNA crosses the blood-brain barrier to attenuate 
the inflammatory effects of HIV-1 infection in vitro. J Neuroimmune Pharmacol. 2017 
Mar;12(1):120-132. doi: 10.1007/s11481-016-9688-3. PubMed PMID: 27287620 
 
Dever SM, Rodriguez M, Lapierre J, Costin B, El-Hage, N (2015). Differing roles of 
autophagy in HIV-associated neurocognitive impairment and encephalitis with 
implications for morphine co-exposure. Front. Microbiol. 2015, Jul 6; 6:653. doi: 
10.3389/fmicb.2015.00653. PubMed PMID: 26217309 
 
Lapierre J, Rodriguez M, Ojha CR, El-Hage N “Decreased autophagy modulates Tat and 
morphine-induced inflammatory molecules, growth factors and calcium release in glial 
cells from hemizygous Becn1+/- mouse.” 2018 Keystone Symposia: Selective Autophagy, 
Kyoto, Japan, April 22nd – 26th   2018 
 
Lapierre J, Rodriquez M, Ojha CR, Estrada-Bueno H, El-Hage N. “Molecular 
characterization of Beclin1 association with HIV-Tat and opiate-induced inflammation 
using glial cells from autophagy-deficient mice.” 2017 NIDA Diversity Supplement Trainee 
Workshop, Bethesda MD, May 3rd – 5th 2017 
 
Lapierre J, Rodriguez M, El-Hage N “Autophagy is cytoprotective in neurons and 
necessary against tat and morphine-induced toxicity in autophagy-deficient mice.”  23rd 
Scientific Conference of the Society on Neuroimmune Pharmacology, Philadelphia, PA, 
March 29th – April 1st  2017 
 
Lapierre J, Rodriquez M, El-Hage N. “Role of autophagy in HIV-1 Tat induced striatal 
motor neurodegeneration in combination with morphine co-exposure using heterozygous 
Beclin-1 mouse model.” 22nd Scientific Conference of the Society on Neuroimmune 
Pharmacology, Krakow, Poland, April 5th-9th 2016 
 


	HIV Tat and Morphine-induced Neurodegeneration in a Beclin 1 Hemizygous Mouse Model
	Recommended Citation

	 HIV Tat and Morphine induced Neurodegeneration in a Beclin 1 Hemizygous Mouse Model

