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This dissertation presents a series of neuroimaging investigations and achievements that 

strive to deepen and broaden our understanding of human problem solving and physics 

learning. Neuroscience conceives of dynamic relationships between behavior, experience, 

and brain structure and function, but how neural changes enable human learning across 

classroom instruction remains an open question. At the same time, physics is a 

challenging area of study in which introductory students regularly struggle to achieve 

success across university instruction. Research and initiatives in neuroeducation promise 

a new understanding into the interactions between biology and education, including the 

neural mechanisms of learning and development. These insights may be particularly 

useful in understanding how students learn, which is crucial for helping them succeed. 

Towards this end, we utilize methods in functional magnetic resonance imaging (fMRI), 

as informed by education theory, research, and practice, to investigate the neural
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mechanisms of problem solving and learning in students across semester-long University-

level introductory physics learning environments. 

In the first study, we review and synthesize the neuroimaging problem solving literature 

and perform quantitative coordinate-based meta-analysis on 280 problem solving 

experiments to characterize the common and dissociable brain networks that underlie 

human problem solving across different representational contexts. Then, we describe the 

Understanding the Neural Mechanisms of Physics Learning project, which was designed 

to study functional brain changes associated with learning and problem solving in 

undergraduate physics students before and after a semester of introductory physics 

instruction. We present the development, facilitation, and data acquisition for this 

longitudinal data collection project. We then perform a sequence of fMRI analyses of 

these data and characterize the first-time observations of brain networks underlying 

physics problem solving in students after university physics instruction. We measure 

sustained and sequential brain activity and functional connectivity during physics 

problem solving, test brain-behavior relationships between accuracy, difficulty, strategy, 

and conceptualization of physics ideas, and describe differences in student physics-

related brain function linked with dissociations in conceptual approach. The implications 

of these results to inform effective instructional practices are discussed. Then, we 

consider how classroom learning impacts the development of student brain function by 

examining changes in physics problem solving-related brain activity in students before 

and after they completed a semester-long Modeling Instruction physics course. Our 

results provide the first neurobiological evidence that physics learning environments 

drive the functional reorganization of large-scale brain networks in physics students. 
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Through this collection of work, we demonstrate how neuroscience studies of learning 

can be grounded in educational theory and pedagogy, and provide deep insights into the 

neural mechanisms by which students learn physics. 
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Chapter 1  

Introduction 

 

1.1 Motivation and Background 

Problem solving is an integral construct relevant to understanding how individuals learn 

and acquire critical thinking skills in STEM (science, technology, engineering, and 

mathematics). However, the neurobiological mechanisms supporting these STEM skills, 

particularly in the domain of physics, are understudied and not well understood. 

Improved understanding of how students process information offers the potential to 

enhance reasoning and problem solving abilities, learning trajectories, and instructional 

techniques. Neuroscience conceives of dynamic relationships between behavior, 

experience, and brain structure and function (Greenough et al., 1987; Kandel et al., 2012; 

Kolb et al., 2014), but how neural changes enable human learning across classroom 

instruction remains an open question. Physics in particular is a challenging subject area in 

which students regularly struggle, as it requires the combined learning and recall of 

content knowledge and the acquisition of problem solving skills. We do not fully 

understand the mechanisms for how students develop problem solving skills in physics, 

nor what neurobiology underlies the different outcomes for students going through 

university physics instruction. The discipline of cognitive neuroscience provides 
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neuroimaging tools (e.g., functional magnetic resonance imaging, fMRI) that may be 

useful in characterizing brain function associated with such complex mental operations.  

To address these questions, the present NSF-supported project seeks to bridge cognitive 

neuroscience with education research by using fMRI to determine how learning 

environments may drive the functional reorganization of large-scale brain networks in 

physics students. The objective of the project is to characterize the neural correlates of 

physics problem solving and the influence of learning on knowledge organization and 

brain function.  As such, the overall goal of the study is to delineate the neural correlates 

of problem solving and learning within the context of university introductory physics. 

Specifically, the investigations presented in the collection of work aim to: 1) determine 

the neurobiological substrates supporting human problem solving in general and across 

multiple content domains, 2) characterize brain function specifically associated with 

physics-based problem solving using fMRI, and 3) elucidate the influence of physics 

instruction on such brain activity. What follows in the introduction is a summary of 

relevant background literature and findings from neuroimaging and education research, 

as well as a brief overview of the methodological techniques used in the following 

chapters. 

1.1.1 The Neuroscience of Learning 

Neuroscience is the study of the relationship between the brain and behavior. A 

fundamental question that guides much of human neuroscience today concerns how 

external experiences and brain function exchange influence. Questions such as how does 

brain function govern individuals’ interactions with or perception of the world, in what 
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ways do experiences shape how the brain works, and what does the brain have to do with 

learning all fall within the purview of cognitive neuroscience. Neuroimaging, which is 

the non-invasive process of imaging the human brain, has provided powerful tools to help 

answer these basic questions. Through these techniques we know that learning indeed 

changes the physical structure of the brain (Draganski et al., 2004; Maguire et al., 2000; 

Mårtensson et al., 2012; May, 2011; Sakai, 2005; Zatorre et al., 2012). We also know that 

learning alters brain activity in specific ways by modifying the organization of functional 

brain networks across experience, training, and environmental changes (Bassett et al., 

2015; Lewis et al., 2009; Mason and Just, 2015; Schinazi and Epstein, 2010; Ungerleider 

et al., 2002).  

Neuroimaging learning experiments have traditionally investigated task-related changes 

in brain function that occur as part of the acquisition of new information or skills (e.g., 

during information encoding), or those associated with recalled information after training 

interventions (Karuza et al., 2014). Some common learning neuroimaging paradigms 

include sequence learning in which temporally-varied finger motions or visual/auditory 

stimuli are memorized, artificial grammar learning wherein individuals learn rule-

governed letter strings that are generated by novel underlying grammatical structures, or 

statistical learning of probabilistic sequences where judgments are made on pattern 

structures (Karuza et al., 2014). These and similar investigations have documented 

various task-specific regional changes in brain function linked with encoding and 

information recall after training intervals. Many of these studies have focused on short-

term or in-scanner interventions (Chein and Schneider, 2005; Delazer et al., 2003; 

Fletcher, 1999; Mason and Just, 2015; Poldrack, 1998). More recently, researchers have 
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successfully demonstrated proof-of-concept that fMRI can in fact measure longer-term 

training-related neural developments (Bassett et al., 2015, 2011), including those across 

classroom learning (Huber et al., 2018; Mackey et al., 2013, 2012; Shaywitz et al., 2004). 

In one such study, researchers utilized a year-long classroom intervention to assess 

reading fluency-related brain function in children with reading disabilities, finding that 

children who underwent remedial educational interventions showed critical developments 

in the neural circuits supporting reading that were linked to increased success (Shaywitz 

et al., 2004). Other studies have begun to consider brain function of other school 

learning-related tasks: one observed individual differences in arithmetic-related brain 

function correlated with variability in high school mathematical competences (Price et 

al., 2013); another described specific neural representations as well as patterns in brain 

function are linked to physics and learning how mechanical systems function (Mason and 

Just, 2016, 2015).  Moreover, recent work has indicated that brain-based measures may 

be able to predict future success in STEM classroom environments (van Kesteren et al., 

2014). These developments open the possibility for neuroscience investigations to be 

increasingly integrated with classroom measurements and practices (Patten and 

Campbell, 2011). 

Within the context of science learning, problem solving skill development is a critical 

aspect of success across instruction. In the neuroscience domain, problem solving has 

been studied in the context of sentence-based inference (Prado et al., 2011), mathematics 

(Arsalidou and Taylor, 2011), and visuospatial reasoning (Ferrer et al., 2009; Knauff et 

al., 2002). Findings derived from fMRI suggest the neural substrates supporting problem 

solving vary across task type (Newman et al., 2011), and that specific cognitive strategies 
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may be responsible for group differences at the neural level (Boghi et al., 2006; Keller 

and Menon, 2009). In general, fMRI studies have characterized problem solving within 

particular contexts or content domains, but the neural mechanisms specific to physics 

problem solving have not been studied and are currently unknown. Likewise, 

neuroimaging investigations on learning and skill acquisition have only recently started 

to consider changes in the brain across real-world contexts (Bassett et al., 2015; Mackey 

et al., 2013; van Kesteren et al., 2014), and the nascent field of neuroeducation hopes to 

answer how student’s brains develop across classroom instruction, thereby informing 

effective teaching methods (Carew and Magsamen, 2010; Owens and Tanner, 2017). 

1.1.2 Physics Learning and Problem Solving: An Education Research Perspective 

As described above, many neuroimaging investigations consider learning as the process 

by which the brain encodes new information to achieve successful and subsequent recall 

(Bassett et al., 2015; Delazer et al., 2005; Fletcher, 1999; Liu et al., 2014; Smolen et al., 

2016; Steinemann et al., 2016; Yonelinas, 2002). Memory formation, and how effectively 

information can be recalled, is thus often the critically emphasized criterion in 

neuroimaging studies for establishing whether or not learning has occurred. Education 

research on learning however, especially within physics or other STEM domains, takes a 

somewhat different focus. Curriculum and assessments frequently probe for “learning as 

understanding” (National Research Council, 2000). Within this learning-as-understanding 

view, the ability to access content knowledge is essential but not sufficient for successful 

learning. Physics in particular is a domain that emphasizes the ability to think and solve 

problems, and therefore physics learning obligates students to acquire knowledge that is 
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both accessible and useable (Redish, 2003; Sabella and Redish, 2007). That is, students 

who memorize physics facts without understanding their meaning or context usually 

struggle to apply their knowledge to solve problems. Learning how to select and then 

apply content knowledge via critical thinking is necessary in learning how to do physics. 

Viewpoints on how students build knowledge and develop critical thinking skills vary. 

One theme in education research focuses on how students apply physics concepts within 

reasoning. When students enter a physics classroom, they already possess a wealth of 

prior knowledge, skills, and ideas that help them construct new understanding 

(McDermott and Redish, 1999; Thacker, 2003; Tuminaro and Redish, 2007) . However, 

if their preconceptions conflict with what is being taught in the class, then students may 

struggle to learn and apply new concepts within reasoning (McDermott, 1991). To some 

teachers and education researchers, concept learning necessitates first identifying 

student’s conflicting conceptions and then helping them change incorrect conceptions to 

correct ones (Chi et al., 1994; Dykstra et al., 1992; Posner et al., 1982; Slotta et al., 

1995). Another view considers physics thinking as being made up of more short-term, 

contextually primed knowledge pieces referred to as “phenomenological primitives” or 

“resources,” that students activate when solving problems (diSessa, 1993; Hammer, 

1996a; Hammer et al., 2005; Redish, 2003). Under the resources view, concept learning 

involves helping students assemble and appropriately link their primed resources with 

physical laws to facilitate successful problem solving. The resources view may be a 

particularly useful framework within which to consider physics learning and guide 

instructional practice, insofar as evidence suggests students can have very different 
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responses to similar questions depending on how the question is framed (Tuminaro and 

Redish, 2007). 

Thus, effective physics instruction needs to provide students with relevant content 

knowledge required to solve problems, and also help them learn to organize that 

knowledge in ways that facilitate retrieval and reasoning (National Research Council, 

2000). When instruction fails to do this students may exit their classes with large and 

unmanageable knowledge bases made up of a conglomeration of knowledge pieces that 

include disconnected concepts, definitions, equations, and/or laws (e.g., velocity is a 

vector quantity, 𝐹 = 𝑚𝑎 , energy is conserved). On the other hand, when physics 

instruction is successful, students learn to build connections between related knowledge 

elements, thus forming coherent and organized knowledge structures that they can use to 

construct models to explain physical phenomena and solve problems (Redish, 1994). 

Given this framework of knowledge and learning, what instructional practices best 

support successful physics learning? Research in science education finds physics students 

receiving instruction in active-learning environments, as compared to those in courses 

that engage students primarily as passive listeners during class, regularly demonstrate 

increased conceptual understanding, perform better on course examinations, and are more 

likely to pass introductory classes (Freeman et al., 2014; Hake, 1998). Physics courses 

that use active engagement techniques can take a multitude of formats. Active-learning 

instructional methods dedicate class time to explicitly actively engaging students with the 

course material and can include experimentation (Waldrop et al., 2015), argumentation 

(Jimenez-Aleixandre et al., 2000), peer-to-peer instruction and other formative 
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assessment methods (Crouch and Mazur, 2001; Moss and Brookhart, 2009), scientific 

inquiry (Bybee et al., 2000), and/or cooperative learning (Frey et al., 2009). One active-

learning format class currently implemented at Florida International University (FIU) is 

called Modeling Instruction. Modeling Instruction is a theory-driven curriculum 

intervention and pedagogy in physics in which students participate in active-learning 

studio classrooms where they develop, test, and verify physics models through inquiry-

based collaborative group activities (Brewe, 2008). Similar to the results observed in 

other active-learning environments, FIU Modeling Instruction students show greater 

positive shifts in conceptual physics reasoning skills across instruction, relative to their 

lecture instruction peers (Brewe et al., 2010b). Based on the theory that science is built 

upon the continual practice of developing, verifying, and revising models, Modeling 

Instruction teaches students to build, test, and revise physics models through inquiry-

based collaborative group activities. This instructional method is thought to explicitly 

help students develop organized physics knowledge structures that they can use to 

successfully solve problems. The current project, described in more detail in §1.1.3 

Building a Bridge Between Education and Cognitive Neuroscience and §3.1 Project 

Overview, collects data from students in Modeling Instruction as well as Lecture 

Instructions classrooms at Florida International University. 

1.1.3 Building a Bridge Between Education and Cognitive Neuroscience 

Education research examines and incorporates student’s actions, concerns, and 

performances to assess and build educational practices that support learning. If student’s 

needs are not being appropriately addressed then education research can help structure 
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better pedagogies or learning environments to improve educational outcomes. However, 

such research is unable to investigate important foundational features of learning such as 

how content knowledge and critical thinking skills are supported in the brain. 

Neuroscience, on the other hand, while having supplied valuable insight into the various 

mechanisms that underlie learning-related cognition, has by in large produced 

investigations that insufficiently consider student learning from an integrative social, 

cognitive, and affective perspective. If left unconnected with the findings and values of 

educational research and instructional practice, neuroscientific investigations of learning 

will remain inadequately adapted to relate essential facets of student’s experiences with 

strategies that impact or impede learning. 

To bridge this divide, neuroeducation is emerging as a cross-disciplinary field that 

applies neuroscience methods and techniques to consider learning from a perspective 

informed by education theory, research, and practice. Neuroeducation research and 

initiatives promise a new understanding into the interactions between biology and 

education, including the neural mechanisms of learning and development (Ansari and 

Coch, 2006; Coch and Ansari, 2009; Goswami, 2004; Mason, 2009). Grounding 

neuroscience studies of learning in educational theory and pedagogy can edify the extent 

to which neurobiological changes are influenced or supported by intrapersonal and 

environmental factors. We can thus work to clarify, define, and create new models of 

learning that provide insight into the underpinnings of student learning difficulties and 

how to prevent them (Butterworth et al., 2011; Kaufmann et al., 2009; Pera, 2014). Proof 

of concept has already been established demonstrating educational related changes in the 

brain can be measured by fMRI (Mackey et al., 2013; Shaywitz et al., 2004; van Kesteren 
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et al., 2014). Researchers are also beginning to call for further studies that combine fMRI 

data and behavioral measures to investigate human learning (Karuza et al., 2014), which 

can be applied to investigating student concept formation across classroom instruction. At 

the same time, research institutions are beginning to develop and implement models for 

longitudinal neuroeducational studies which may provide distinct advantages for 

detecting the time-dependent mechanisms by which the brain acquires new knowledge 

across long-term learning (Koizumi, 2011). 

Neuroeducation remains a developing field wherein basic research must first be 

established before wider educational tools can be refined for use in classrooms. Despite 

the promises of this new field of research, some argue that studying the brain may never 

yield the eventual curricular developments and insights that neuroeducation researchers 

hope may one day aid teachers and benefit students (Bruer, 2006, 1997). It has also been 

wisely pointed out that educators know much more about which learning techniques work 

in their classrooms than neuroscientists do, and we must be careful to resist the urge to 

treat the results of brain scans as asserting more consequence or authority than behavioral 

observations of student’s experiences and successes (Coch and Ansari, 2009). The 

collected works that make up this dissertation are aligned with the perspective that 

neuroeducation research must be integrated with, and not a proxy for, educational and 

qualitative research perspectives and techniques, and thus must share a common set of 

concerns and values that place students in the forefront.  

In answer to these calls, the four achievements and investigations presented in this 

collected work are part of a larger neuroeducation project entitled Exploring the Neural 
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Mechanisms of Physics Learning. Designed around the epistemology and theory behind 

Modeling Instruction, the larger project seeks to gather and assess evidence of human 

learning and knowledge organization across classroom instruction, as measured by 

longitudinal fMRI of student brain activity across semester-long University Physics 

learning experiences. By investigating the role instructional settings play in influencing 

neural organization, these sets of studies have the potential to provide deep insight into 

the ways in which students learn physics. While the larger Exploring the Neural 

Mechanisms of Physics Learning project is ongoing, the present collection of work 

presents the development of and initial studies that make up this ambitious 

neuroeducation project. With a focus on the domain of physics, we thus take up the 

challenge of establishing a foundational knowledge on the neurobiology of classroom 

learning in attempt to connect findings of neural mechanisms with those of effective 

classroom practices. Through this collection of work, we aspire to demonstrate the value 

of these investigations and thus guide future neuroeducation research directions driven by 

these common goals. 

1.2 A Primer on Brain Function and Neuroimaging 

Neuroscience is a broad field encompassing multiple subdisciplines, of which systems-

level human functional neuroimaging is just one. The studies presented in this collection 

use the techniques and language of neuroimaging. However, the broader content and 

motivation for these investigations cross boundaries across multiple disciplines including 

education, biology, and psychology. Thus, as an aid to readers who may not be familiar 

with neurobiology or the terminology, techniques, and major findings of neuroimaging 
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relevant to this work, a brief primer on brain function and neuroimaging methodology 

and analysis are provided below. 

1.2.1 Neuronal Foundations  

Two types of cells make up the brain: neurons and glia. Neurons send and receive 

electrical signals, called action potentials, across vast cellular networks by inducing 

changes in neuronal membrane polarity characterized by a quick depolarization across 

the cell boundary followed by a longer period of repolarization and refractory 

hyperpolarization that then level out to baseline (Kandel et al., 2013). These signals make 

up the basis of how the brain receives, transmits, and analyzes information. Glial cells 

support the overall function of this system of neuron-to-neuron communication. A single 

long projection from a neuron’s cell body, called the axon, sends action potentials, while 

numerous shorter projections from the cell body, called dendrites, receive signals from 

neighboring axons (Kandel et al., 2013). To increases the speed by which action 

potentials travel across neurons, axons are surrounded by insulating sheaths of myelin, 

which is a fatty substance formed by glia. Myelinated axons are known as “white matter” 

and their dendritic and neuron cell body counterparts are known as “gray matter”. 

Cognition is said to occur within the gray matter where signals are received and initiated, 

thus we focus all analyses presented in this collection of work within gray matter areas of 

the brain. 

When an individual experiences sensory stimuli or engages in motor, cognitive, 

emotional, or other processes, action potentials are fired across sets of neurons in specific 

areas of the brain. In order for an action potential to fire, ATP is consumed locally in the 



 13 

region. This process requires oxygen to be drawn from the blood in surrounding 

capillaries. After oxygen is consumed, blood flow to the region increases so as to 

replenish the resulting regional lack of oxygenated blood (Huettel et al., 2009a). The 

displacement of deoxygenated hemoglobin with oxygenated hemoglobin, two substances 

in the blood that have slightly different magnetic properties, form the basis for how we 

are able to trace where cognition occurs in the brain (Huettel et al., 2009a). 

1.2.2 Functional Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI), developed in the early 1970s and based on the 

principle of nuclear magnetic resonance, is a non-invasive technique used to image the 

body (Huettel et al., 2009b). Different biological substances have different magnetic 

susceptibilities and therefore behave differently when placed in a strong magnetic field. 

This effect allows for contrast in signal intensities between various soft tissues and fluid 

types in MRI images. When a human is placed in a large static magnetic field (3T is a 

common MRI field strength), nuclei magnetic moments within the body align with and 

precess about the axis of the external field. The effect produces a net bulk nuclear 

magnetization of 𝑴 = 𝑴! +𝑴!", where 𝑴! is in the direction of the external field and 

𝑴!" is transverse to the external field (Huettel et al., 2009c). A radio frequency (RF) 

pulse is then tuned to the Larmor frequency (i.e., the precessional rate) and applied to the 

tissue along the transverse direction. The RF pulse causes nuclei spins to flip into their 

higher energy, antiparallel states. This induces precessional phase coherence across 

nuclei magnetic moments and results in an increased 𝑴!" and decreased 𝑴!. After the 

pulse is removed, spins return to their lower energy states parallel to the longitudinal 
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static field as 𝑀!−𝑀! ∝ −𝑒!!/!!  recovers and 𝑀!" ∝ 𝑒!/!!  decays (Kuperman, 2014). 

Critically, the decay rates for the longitudinal, 𝑇!, and transverse, 𝑇!, processes depend 

on the tissue type. From Faraday’s Law, the time-varying magnetization induces a 

voltage in the radio frequency coils that surround the person within the scanner. These 

voltages are known as the magnetic resonance (MR) signal. Careful tuning and 

sequencing of RF pulses via magnetic field gradients constrain precessional frequencies 

to become spatially dependent, which allows for localization of the MR signal. Echo-

planar imaging is one such technique, and used here in the dissertation, to collect a fast 

sequence of spatially dependent two-dimensional MR images by rapidly changing 

magnetic gradients following the RF pulse from the head coil. The image of these 

transverse magnetizations linked to each spatial location is then reconstructed via inverse 

Fourier transform of the MR signal, 𝑆 𝑘 ∝ 𝑀!"𝑒!"#𝑑𝑉 , where 𝑘  is the spatial 

frequency of the gradient fields and integration is performed across the volume being 

imaged (Kuperman, 2014).  

The images produced as a result of MRI are black and white spatial volumes in which 

volumetric pixels, or “voxels”, are shaded according to the mean signal intensity detected 

at that spatial location. Structural MRI images are typically high-resolution (~1x1x1mm3 

voxel) volumes whereas functional MRI images are lower resolution (~3x3x3mm3 

voxel). Functional magnetic resonance imaging utilizes rapid pulse sequences that 

acquire a full volume every “repetition time”, or TR, which is the time interval between 

successive RF pulses. The rapid collection of fMRI images results in a 4D (3 spatial x 1 

time) data set. Within a single voxel, the collection of sequential signal intensities across 
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time is known as the voxel’s “time series”. These time series make up the fundamental 

unit of analysis in fMRI data. Researchers are able to determine how the brain is engaged 

during cognition via the statistical analysis of time series that represent how specific 

brain areas function across time. In general, the result of such analyses is a full brain 

volume in which a single statistic, representing the result of one or multiple tests, is 

assigned to each voxel. Typically, these 3D images are depicted as sequential 2D slices 

that highlight different “levels” or heights of the full brain volume. 

1.2.1.1 fMRI Experimental Setup 

When a person participates in a fMRI experiment they agree to have one or more MRI 

scans performed of their brain. As part of this process, the individual lies supine in the 

MRI scanner while their head rests within a radio frequency head coil that emits RF 

pulses and collects data on their brain function. Soft pads are placed around the 

participant’s head to reduce head motion. Participants are also provided with hearing 

protection to reduce scanner noise, a fiber optic button press with which to answer 

questions and respond to stimuli during the scan, and a signaling device in case of 

emergencies if they need to exit the scanner. Before the start of each scan, a display 

screen is set up at the end of the MRI scanner’s bore. Questions and stimuli are projected 

onto this screen from a computer located in the MRI control room, and participants can 

view this display screen via a mirror that has been mounted at an angle to the top of the 

head coil. During a functional MRI run (e.g., a period in which the MRI scanner is 

collecting data), the person is asked to engage in cognitive tasks presented on the view 

screen or lie quietly while the MRI collects data on their brain function. “Task-based” 
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fMRI refers to runs in which the participant completes cognitive tasks. “Resting-state” 

fMRI refers to the runs in which functional data is collected on a participant’s brain 

function, but the participant is not provided any specific task to complete while in the 

scanner. Such scans are used to collect data on the spontaneous neural fluctuations 

associated with this task-free state (Biswal et al., 1995). Between runs the experimenter 

in the MRI control room can provide feedback or instructions on upcoming tasks via a 

microphone connected to the participant’s headphones. 

The stimuli presented during task-based fMRI are usually presented as either a “block” 

design or an “event” design. The stimuli, which could be individual questions or tasks, 

are referred to as “trials”, and the trial types (e.g., memory problems vs. physics 

problems) are known as a “conditions”. In block design tasks, participants complete 

multiple trials of the same condition for some time interval (e.g., a “block”, usually ~10-

30 seconds in length; Huettel et al., 2009d). Blocks are usually followed by short periods 

of “rest” in which central fixation cross appears on the screen. This interleaved block/rest 

procedure allows the experimenter to determine when a MR signal corresponds to a 

specific conditions or when it relates to baseline task-free brain function. During the 

analysis of fMRI data (see §1.2.2.3 fMRI Preprocessing and Analysis) blocks of different 

conditions are “contrasted” so that brain activity associated with only specific cognitive 

functions can effectively be isolated from the overall task-free signal. Event related 

designs are similar to block designs, but individual trials are instead either continually 

presented across the run (for “fast” event related design) or are interspersed across longer 

periods of rest (“slow” event related designs). The application and development of these 
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design types in the contexts of the current project are discussed in more detail in §3.2 

Task Development. 

1.2.2.2 The Blood Oxygenation Dependent Signal 

As was introduced above, oxygenated and deoxygenated hemoglobin (HB) possess 

different magnetic properties that allow for their contrast via MRI. Oxygenated HB is 

relatively more diamagnetic while deoxygenated HB is more paramagnetic, and the 

resulting contrast between their transverse decay curves is known as the Blood 

Oxygenation Level Dependent (BOLD) contrast (Huettel et al., 2009a). When an action 

potential is fired across neurons, oxygen is initially drawn away from regional capillaries, 

followed by an increase in oxygenated blood flow to the area. This process is known as 

the brain’s hemodynamic response (HDR). In fMRI, we measure the brain’s HDR via the 

BOLD contrast as the change in MR signal following local neuronal activity. 

Measurements of the BOLD signal provide us with an indirect measure of neuronal 

activity following cognition. 

1.2.2.3 fMRI Preprocessing and Analysis 

At 3T field strength, the range of BOLD signal accounts for approximately 2-5% change 

in the overall observed signal (Poldrack et al., 2011). Thus, BOLD fMRI is particularly 

sensitive to sources of noise including head motion, physiological noise, thermal and 

equipment noise, and magnetic susceptibility artifacts. Preprocessing of fMRI data must 

be performed before statistical analyses are carried out to clean and diminish the effect of 

factors that distort or otherwise obscure the BOLD signal. In addition to reducing such 

undesired variability from the data, preprocessing also prepares fMRI data for statistical 
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comparison across individuals so that group-level inferences can be made. Determining 

and advancing best practices in fMRI preprocessing is an active field of research and we 

will not review all techniques for cleaning and processing fMRI data here. Briefly, some 

components of this process include motion correction to reduce the effects of in-scanner 

head motion, spatial interpolation to estimate signal in spatial locations that were not 

sampled during the scan, co-registration to link brain regions across time-indexed 

functional volumes and to high-resolution anatomical markers, temporal filtering to 

remove low frequency equipment noise and frequencies associated with physiological 

(e.g., heart rate and respiration) processes, “prewhitening” to remove task-uncorrelated 

noise and decrease the effects of temporal autocorrelation in time series, spatial 

smoothing to improve statistical power and increase signal to noise, and spatial 

normalization to transform functional images from subject native space to a standardized 

brain space (commonly used templates include the Montreal Neurological Institute (MNI) 

and Talairach standardized brain spaces) to allow for comparison of subject-level fMRI 

results across individuals (Poldrack et al., 2011). 

After preprocessing, statistical analyses across time series and study participants are then 

performed. Many methods for analyzing fMRI data exist. However, the most commonly 

implemented analyses, and the ones presented in this body of work, all rely on 

multileveled modeling techniques. Typically, after fMRI data have undergone cleaning 

and pre-processing, analyses are first performed at the so-called “subject-level” in which 

parallel analyses are conducted on time series data for each study participant at each 

voxel. The results of these subject-specific results are then brought into the “group-level” 

for comparison across individuals. That is, participant-specific analyses are contrasted or 
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otherwise mathematically compiled across all individuals participating in the study so 

that generalization can be made across a larger population. All neuroimaging analyses 

presented in this dissertation use a hierarchical general linear modeling (GLM) approach.  

The GLM is a statistical linear modeling technique commonly used in fMRI data analysis 

that incorporates multiple analysis types including correlation, t-tests, multiple linear 

regression, and analysis of variance (ANOVA) (Beckmann et al., 2003; Monti, 2011; 

Poldrack et al., 2011). The GLM relates a continuous dependent variable with one or 

more independent categorical and/or continuous variables called “regressors” by 

performing least squares regression. The multiple linear regression form of the GLM is 

𝒀 = 𝑿𝜷+ 𝝐, where 𝒀 is a vector of length 𝑁 representing the dependent variable (the 

data), 𝑿 is the 𝑁×𝑀 matrix of regressors, called the “design matrix”, of which each 

column corresponds to a single regressor 𝑋! , 𝜷 = [𝛽!,𝛽!,𝛽!,… ,𝛽!]′ is a vector 

representing the parameter coefficients for each regressor, and 𝝐 is the the random vector 

of errors of length 𝑁. The assumptions of the GLM are that any two elements in the error 

vector are uncorrelated, 𝐶𝑜𝑟 𝜖! , 𝜖! = 0, and that the errors follow a multivariate normal 

distribution with mean 0 and variance 𝜎! , 𝝐~𝑁(0,𝜎!𝑰), where 𝑰 is the 𝑁×𝑁 identity 

matrix. Provided 𝑿!𝑿 is invertible (e.g., no column in 𝑿 is a linear combination of any 

other column in 𝑿), minimizing the sum-of-squares of the residuals gives a vector of 

parameter estimates. Hypothesis tests can then be performed on linear combinations, 

called “contrasts”, 𝒄𝜷 = 0, of the parameter estimates. The form of 𝒄 determines what 

kind of test is being performed (e.g., a one-sample t-test, two-sample t-test, paired t-test, 

two-way ANOVA, and so on). In each case, the test statistic is given by 𝑡 = 𝒄𝜷
𝒄 𝑿!𝑿 !!𝒄!!!

. 
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If desired, these t scores can be transformed into standardized z values (Poldrack et al., 

2011). 

In subject-level fMRI GLM analyses, 𝒀 represents a single voxel time series and each 𝑋! 

represents an explanatory variable that purportedly accounts for some portion of the 

variance contained within the time series data. For example, in block design experiments, 

conditions are modeled as boxcar functions that indicate the onset and offset of each 

block. These condition regressors make up the columns in the design matrix 𝑿. As 

another example, in resting-state designs in which 𝒀 cannot be modeled via some task 

condition, the time series from other voxels or regions of interest are used as the 

explanatory variable. Analyses of this type are referred to as “functional connectivity” 

analyses because they measure temporally correlated changes in the BOLD signal across 

distributed brain regions. So-called “nuisance” regressors such as head motion 

parameters, respiration rate, or other task-unrelated variables that may influence signals 

can also be included as regressors in the design matrix at the subject-level. In this way, a 

GLM is performed at each voxel and for each participant in the study. If more than one 

functional run was acquired from the same individual, and GLMs of each run were 

performed separately, then voxel-wise one-sample t-tests are performed to average the 

parameter estimates across each run. The result of these subject-level analyses is a 3D 

volume for each participant in the study in which each voxel contains a set of beta 

weights that correspond to the regressors of interest. 

The results of these subject-level analyses are then carried into one or more higher-level 

statistical analyses at the group-level. In group-level analyses, 𝒀 represents the vector of 
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parameter estimates within a single voxel across all participants in the study. That is, the 

input data might be 𝒀 = [𝑌!"#.!,!"#.! ,𝑌!"#.!,!"#.! ,… ,𝑌!"#.!,!"#.!]′ . In this level of 

analysis, each 𝑋!  represents an explanatory variable that models factors such as 

participant group, scanning session, or other measures of interest. Voxel-wise statistical 

tests are conducted to contrast the resultant subject-level beta maps across the factors of 

interest (e.g., Group 1 vs. Group 2, Session 1 vs. Session 2, or so on). The result of a 

group-level analysis is a single 3D volume wherein each voxel contains a single statistic, 

typically either a z or t score, which corresponds to the result of the statistical test that 

was run. Because a very large number of hypothesis tests are performed at the group-

level (one for each voxel in the brain), correction for multiple comparisons must be 

performed to reduce false positives. Correction for multiple comparisons is usually 

accomplished by first applying a strict uncorrected “cluster defining threshold” to the 

statistic at each voxel, usually P < 0.001. Then “cluster extent thresholding” is performed 

to determine what size clusters constitute significant activations, which is typically 

familywise error corrected at a level of P < 0.05 (Eklund et al., 2016; Mumford et al., 

2016). 

1.2.3 Brain Function at the Macroscopic Level 

The human brain is made up of distinct functional regions. The primary objective of 

neuroimaging is to map how brain regions are linked with particular functional roles. The 

four primary divisions of the cerebral cortex, which is the heavily folded outer layer of 

the brain, are the frontal, parietal, occipital, and temporal lobes. The frontal lobe, in the 

anterior portion of the cortex, is linked to diverse cognitive functions including executive 
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functions such as cognitive control, reasoning, planning, memory, learning, and those 

processes guiding goal-directed actions (Donoso et al., 2014; Goldman-Rakic, 1987; 

Miller, 2000; Miller and Cohen, 2001; Siddiqui et al., 2008). The parietal lobe, located in 

the posterior and superior portion of the cortex, is responsible for a number of operations 

including somatic, spatial, and attentional processing, as well as the analysis of visual 

information (Behrmann et al., 2004; Behrmann and Shomstein, 2009; Goldberg, 2001; 

Patel et al., 2009). Located beneath the lateral fissure in both hemispheres, the temporal 

lobe’s primary function is processing auditory sounds, including speech and language 

comprehension (Abhang et al., 2016; Baars et al., 2010). However, this region is also 

linked to a diverse set of cognitive functions including social processing, long-term 

memory formation, facial recognition, emotion processing, and understanding written 

language, among others (Abhang et al., 2016; Baars et al., 2010; Dharani and Dharani, 

2015; Olson et al., 2013). The occipital cortex, which encompasses the posterior and 

inferior part of the cortex, is primarily responsible for vision, with occipital cortex sub-

divisions attributed to primary visual areas (e.g., those responsible for the perception of 

color, motion, and shape), as well as areas engaged in higher-level visual integration and 

interpretation, as influenced by expectation and attention (Galetta, 2017). The structures 

that lie immediately underneath the cortex are collectively known as the limbic system. 

These interconnected sets of regions are responsible for multiple behaviors and functions 

including autonomic bodily processes, and those associated with emotion, learning, and 

memory (Isaacson, 2001). Each of the above described general brain regions contains 

sub-areas that have specific names and that are implicated in various cognitive functions.  
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1.2.4 Functional Brain Networks  

The human brain constitutes a complex interconnected system in which a multitude of 

networks continually and dynamically processes and relay information across sets of 

brain regions. Naïvely, early neuroscientists conceived of brain function as primarily 

described by simple one-to-one mappings between brain areas and specific behaviors or 

functions (Kandel et al., 2012). It has been widely demonstrated that this is not the case. 

While some regions do appear to show various degrees of functional specialization (i.e., 

the primary visual cortex, the motor cortex, or the fusiform face area, to name a few), the 

vast majority of brain function appears to instead rely on distributed processing wherein 

large constellations of brain areas, colloquially referred to as networks, operate in tandem 

of achieve specific aims. Individual regions are often implicated by multiple cognitive 

functions, and areas that are activated within one functional network can also be activated 

within other, functionally distinct networks. Indeed, some brain regions appear to be 

particularly important “nodes” that allow for information exchanges across networks 

(Buckner et al., 2009; Leech and Sharp, 2014). Moreover, advances in neuroimaging 

have begun to consider these processes within a “systems-level” model of brain function 

in which multiple temporally independent, and in some cases spatially overlapping, brain 

networks continually interact to support brain function during task and at rest (Bassett 

and Gazzaniga, 2011; Sporns, 2011). Three major networks known to be involved in a 

range of human brain function are the central executive network (Bressler and Menon, 

2010; Seeley et al., 2007), the default mode network (Raichle et al., 2001), and the 

salience network (Menon, 2015; Seeley et al., 2007). Other commonly observed networks 

are the dorsal attention network and networks associated with motor control, visual, and 
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auditory processes (Damoiseaux et al., 2006; Laird et al., 2011; Smith et al., 2009; van 

den Heuvel and Hulshoff Pol, 2010). Hierarchical fractionations within these networks 

have also been observed (Laird et al., 2017; Leech et al., 2011). Overall, and depending 

on the cognitive state of the individual, these whole-brain networks can be highly 

integrated or segregated, and their interactions dynamically vary over time (Bassett et al., 

2015; Fransson et al., 2018; Sporns, 2013). 

1.3 Dissertation Structure 

This dissertation is the compilation of four independent achievements. First, I present a 

quantitative meta-analysis of 280 problem-solving experiments from the cognitive 

neuroimaging literature. The work provides a comprehensive set of observations on the 

brain networks underlying human problem solving across and within specific content 

domains, thus laying the foundations on which to interpret results from physics problem-

solving specific neuroimaging experiments that follow. The meta-analysis was published 

in the journal Neuroscience and Biobehavioral Reviews (Bartley et al., 2018).  

The bulk of my graduate work focused on data acquisition for a broad, NSF-funded 

neuroeducation study entitled Exploring the Neural Mechanisms of Physics Learning. 

Thus, I next present a summary of the development, piloting, and acquisition of a large 

set of longitudinal neuroimaging and behavioral neuroeducation data. I present the 

creation of three novel fMRI paradigms that probe specific psychological constructs 

linked with problem solving (e.g., semantic memory and reasoning), outline task 

parameters, scan procedures, and describe a series of data acquisitions that were carried 

out over the course of three years, as called for within the larger data collection project. I 
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provide an overview of the recruitment and scanning efforts of this project resulting in a 

large fMRI data sets from 121 undergraduate students, before and after a semester of 

introductory physics (PHY 2048) at Florida International University, who completed 229 

MRI scans accounting for more than 340 scan hours. 

Third, I present the first of a series of manuscripts prepared from these data that focused 

on measuring and characterizing the brain networks linked with physics problem-solving 

in college-level introductory students immediately after the completion of a semester of 

university physics instruction. This study presents first-time observations of physics 

problem solving-related brain networks in students and serves to elucidate how the 

underlying neural mechanisms of physics problem-solving are associated with strategy 

and the neurobiological basis of differences in physics conceptualizations during 

reasoning. This manuscript is currently under review and is expected to be published by 

the end of 2018.  

The fourth and final achievement presents an fMRI investigation that focuses on physics 

reasoning-related brain networks in students as resulting from a semester of university 

physics instruction. The theoretical motivation of the wider Exploring the Neural 

Mechanisms of Physics Learning project seeks to investigate how students develop 

mental models across physics instruction, thus this investigation focused all analyses on 

students who completed physics Modeling Instruction. The study explores pre- to post-

instruction changes in functional brain networks across Modeling Instruction. The paper 

was published in a special edition of Frontiers Research Topics for Active Learning: 
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Theoretical Perspectives, Empirical Studies and Design Profiles (Brewe and Bartley et 

al., 2018).  

The combined outcomes of the analyses presented in this work are a set of statistical 

parametric images that describe the first ever observations of: (1) the brain networks 

associated with domain-specific as well as content-general problem solving, (2) the 

neural substrates of physics problem solving in introductory physics students and, (3) the 

brain-based impact of real-world educational experience at the university level. Future 

work and additional analyses associated with the project are beyond the scope of this 

dissertation. Preparations of these studies are discussed in the Conclusions and Future 

Work chapter. 
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Chapter 2  

Meta-Analytic Evidence for a Core Problem Solving Network Across Multiple 

Representational Domains 

 

2.1 Abstract 

Problem solving is a complex skill engaging multi-stepped reasoning processes to find 

unknown solutions. The breadth of real-world contexts requiring problem solving is 

mirrored by a similarly broad, yet unfocused neuroimaging literature, and the domain-

general or context-specific brain networks associated with problem solving are not well 

understood. To more fully characterize those brain networks, we performed activation 

likelihood estimation meta-analysis on 280 neuroimaging problem solving experiments 

reporting 3,166 foci from 1,919 individuals across 131 papers. The general map of 

problem solving revealed broad fronto-cingulo-parietal convergence, regions similarly 

identified when considering separate mathematical, verbal, and visuospatial problem 

solving domain-specific analyses. Conjunction analysis revealed a common network 

supporting problem solving across diverse contexts, and difference maps distinguished 

functionally-selective sub-networks specific to task type. Our results suggest cooperation 

between representationally specialized sub-network and whole-brain systems provide a 

neural basis for problem solving, with the core network contributing general purpose 

resources to perform cognitive operations and manage problem demand. Further 
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characterization of cross-network dynamics could inform neuroeducational studies on 

problem solving skill development. 

2.2 Introduction 

Problem solving has been investigated across human and animal models for decades; it is 

a process that is central to numerous everyday tasks involving the execution of a 

complex, multi-step sequence of goal-oriented objectives. In humans, problem solving 

has been used to quantify general intelligence (Jung and Haier, 2007; Savage, 1974), 

assess educational or learning outcomes (Hmelo-Silver, 2004; Jonassen, 1997; Pellegrino 

and Hilton, 2012; Yerushalmi et al., 2007), understand age-related cognitive declines 

(Mienaltowski, 2011; Paas et al., 2001), or characterize neurocognitive or developmental 

disorders (Kodituwakku, 2009; Ozonoff and Jensen, 1999; Sachdev et al., 2014), and has 

been investigated across multiple research domains including medicine (Elstein, 2002), 

economics (von Hippel, 1994), education (Jonassen, 2000; NCTM, 2010), physics (Hsu 

et al., 2004; Maloney, 2011), psychology (Davidson and Sternberg, 2003; Simon A. and 

Newell, 1971), and cognitive neuroscience (Fink et al., 2009; Unterrainer and Owen, 

2006).  

Given this universal and multidisciplinary interest in problem solving, numerous 

definitions of the construct have been articulated by experts from different domains with 

varying theoretical knowledge bases. In the present study, we adopt the definition of a 

problem as a “situation in which you are trying to reach some goal, and must find a 

means for getting there” (Chi & Glaser, 1985, pp. 229). The act of problem solving then 

involves identifying and/or performing critical thinking processes related to evaluating 
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the problem, planning or sequencing actions to solve it, and executing operations that 

conform to some rule set (e.g., semantic, algebraic, logical, mechanical, or other 

delimiting frameworks) to arrive at a correct, or sometimes most appropriate, previously 

unknown solution. Within this operational definition, problem solving can be considered 

as a sequential and/or parallel orchestration of a series of integrative cognitive maneuvers 

wherein solutions are systematically, but not necessarily immediately, derived.  Such 

framing acknowledges that problem solving encompasses iterative algorithmic steps, as 

well as exploratory and innovative processes wherein solution paths draw on creativity 

and insight. It is of note that an important component of solving a problem may be in the 

initial characterization of the problem itself, a step in which one must identify the rule set 

implied or relevant to the problem’s context. In this way, the problem solving processes 

can be highly content-specific while simultaneously grounded in a common framework 

that is context-independent. Thus, problem solving-related processes are dynamic, 

frequently involve the confluence of learning, cognitive ability, and previously acquired 

knowledge, and span developmental stage and social context. Problem solving can range 

from formative human experiences such as a toddler interacting with environmental 

affordances as objects and tools are tested to replicate observed functions, to more 

technical or abstract undertakings such as scientists drawing on experiment, technique, 

and knowledge to address unresolved questions from their discipline. 

In human functional neuroimaging research, numerous and diverse experimental tasks 

have been used to elicit cognitive processes viewed as central to problem solving. 

Various neuroimaging studies have considered problem solving from the perspectives of 

mathematical calculation (e.g., Dehaene et al., 1999), deductive or inductive reasoning 
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(e.g., Goel, 2007), insight solution generation (e.g., Luo and Niki, 2003), verbal or 

picture-based analogical reasoning (e.g., Bunge et al., 2005), fluid intelligence (e.g., 

Prabhakaran et al., 1997), or puzzle solving and game-play (e.g., Atherton et al., 2003). 

However, little is known about the neurobiological processes underlying problem solving 

as a general endeavor, and a broad comparison of activation results across these multiple 

diverse problem solving tasks has not been conducted. Thus, it is not known if there 

exists a constellation of common brain regions supporting general problem solving, 

irrespective of topic, scope, or discipline, or if problem solving is a relatively specific 

mental activity that instead relies more strongly on particular neural correlates most 

relevant to the problem’s specific context and features. By addressing this question, we 

may be better able to characterize the nature of problem solving across its many 

interdisciplinary conceptions in the service of facilitating improvements to strategies 

promoting problem solving skill development. 

While problem solving remains a relatively equivocally defined construct, particularly 

within the neuroimaging literature, initial insight into the neural substrates of many of the 

constituent processes noted above may be gleaned from the executive function domain. 

For example, Minzenberg et al. (2009) and Niendam et al. (2012) characterized executive 

functions as those mental processes that direct, regulate, and integrate goal-oriented 

behavior. Cognitive control is a term often used synonymously with, or to emphasize the 

regulatory aspects of, executive function wherein many cognitive processes together 

dynamically manage information to guide actions and achieve a common purpose 

(Miller, 2000). This ‘managerial system’ responsible for directing necessarily coherent, 

purposeful, and stepwise actions is likely a central element across many, if not all, forms 
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of problem solving. Yet, it remains unclear which of the neural correlates of cognitive 

control are also essential for problem solving, and whether a common network exists 

linked with problem solving across contexts.  

Brain regions associated with executive function have been relatively well studied, are 

often collectively referred to as the Central Executive Network (CEN), and typically 

reveal functionally connected inter- and intra-hemispheric regions across association 

cortices. Early perspectives on executive function attempted to map specific and 

theoretically distinct cognitive processes onto individual brain regions (Luria, 1966; 

Shallice, 1988). However, as experimental techniques in fMRI deepened the scientific 

understanding of cognitive control, consensus shifted away from simple one-to-one 

function-structure mappings and towards a more system-based perspective wherein 

whole-brain distributed networks support multiple cognitive constructs (Carpenter, 2000; 

Menon and Uddin, 2010). Goal-oriented, complex cognition is maintained by such 

multiregional interactions (Cocchi et al., 2013), and intra-hemispheric frontoparietal 

connections may be one neurobiological aspect contributing to species-specific 

behavioral differences between human and non-human primates (Wey et al., 2013). The 

dorsolateral prefrontal cortex (dlPFC), medial prefrontal cortex (mPFC), and posterior 

parietal cortex (PPC) are together frequently implicated across executive function 

paradigms such as working memory n-back tasks (Owen et al., 2005; Curtis, 2003), 

attentional control tasks including go/no-go and Stroop paradigms (Cieslik, 2015), and 

others such as the oddball vigilance task, tower maze planning task, and Wisconsin card 

sorting flexibility task (Lie et al., 2006; Linden, 1999; Unterrainer and Owen, 2006). 
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In an extensive meta-analysis across executive function tasks, Niendam and colleagues 

(2012) considered 193 neuroimaging studies reporting outcomes from flexibility, 

inhibition, working memory, initiation, planning, and vigilance paradigms. Those authors 

identified a cross-domain cognitive control system including dlPFC, frontopolar cortex, 

orbitofrontal cortex, anterior cingulate cortex (ACC), superior and inferior parietal and 

occipito-temporal cortex, cerebellum, and limbic areas such as the caudate, putamen, and 

thalamus. This so-called superordinate cognitive control system constituted a shared 

network supporting various disparate paradigm activations, and thus suggested that 

multiple executive functions are supported across a common set of fronto-cingulo-limbic-

parietal brain regions. Similar observations of common prefrontal, insular, and parietal 

brain regions responsible for a diversity of goal-oriented tasks have also been 

demonstrated across attentional processes (Duncan, 2006) and show enhanced 

involvement when task demands are increased, regardless the type of task performed 

(Duncan and Owen, 2000; Fedorenko et al., 2013). This system has been termed the 

multiple demand (MD) network because of its high flexibility across contexts and has 

been argued to be critically involved in task control, attentional focusing, managing 

cognitive load, and may play a central role in interfacing with different brain systems that 

accomplish sub-tasks or specific cognitive operations within structured mental operations 

(Duncan, 2013, 2010). Given the close ties between problem solving and this multitude 

of diverse cognitive functions, a reasonable working hypothesis is that a similar network 

is associated with problem solving across diverse representational domains. 

While a collection of brain regions commonly activated across problem solving tasks 

may be indicative of a supervisory control network, there is also evidence for 
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simultaneous domain-specific regional involvement during problem solving. Neural 

findings from individual problem solving studies support the notion of a supervisory 

control network that also subtends functionally specific regional interactions. For 

example, in an investigation of math and word problem solving, Newman and others 

(2011) identified a common set of CEN regions, including superior parietal lobule (SPL) 

and horizontal intraparietal sulcus (IPS), that supported both representational modalities 

of problem solving. In addition to this common problem solving network, they also 

observed distinct activations across Broca’s and Wernicke’s areas in word but not 

number problems, and identified enhanced activation in IPS specific to number but not 

word problems. These results highlight the importance of not only a common network for 

problem solving, but also the separate and distinctive interaction of regions specific to 

problem solving representation. 

To date, results from the wide range of neuroimaging problem solving paradigms have 

not been collectively assessed to identify common and differential brain activation 

patterns across problem solving representational contexts and distinct domains. To this 

end, we first identified a set of published neuroimaging experiments that utilized high-

level critical thinking and reasoning tasks. If the tasks were consistent with our 

operational definition of problem solving, we selected related experimental contrasts 

according to inclusion criteria. These tasks involved healthy adults answering novel 

questions by way of generating or verifying solutions. We then applied a quantitative, 

coordinate-based meta-analysis method to comprehensively synthesize this literature 

corpus with the purpose of identifying the neural networks associated with problem 

solving. Using this methodology, we sought to: (1) determine if convergent 
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neurobiological substrates are present across the diversity of problem solving tasks; and 

conversely, (2) identify those brain regions exhibiting consistent functional specificity 

within distinct representation domains. 

2.3 Methods 

To identify consistent and dissociable brain activation patterns linked with problem 

solving, we conducted a series of Activation Likelihood Estimation (ALE) meta-analyses 

(Turkeltaub et al., 2002; Laird et al., 2005; Eickhoff et al., 2009; 2012; Turkeltaub et al., 

2012) delineating convergent results reported within and across distinct representational 

categories.  

2.3.1 Literature Search and Experiment Selection Criteria 

We began by establishing our definition of problem solving, independent of any literature 

searches or reviews. Then, a search to compile a comprehensive set of peer-reviewed 

functional neuroimaging studies investigating problem solving published in English 

between January 1st 1997 and March 14, 2015 was performed across multiple literature 

indexing services, including PubMed (www.pubmed.com), Web of Science 

(www.webofknowledge.com), and Google Scholar (www.scholar.google.com). Searches 

were constructed to identify functional magnetic resonance imaging (fMRI) or positron 

emission tomography (PET) studies indexed by keywords such as problem solving, 

calculation, verbal reasoning, visuospatial reasoning, insight, deductive reasoning, 

inductive reasoning, or fluid reasoning. References within papers matching these search 

criteria were examined and appropriate studies not previously identified were added to 

the pool of potential papers for inclusion. To avoid bias introduced by the selection 
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process, we gathered a large corpus of papers extending across a range of experiments, 

ensuring cluster convergence was not due to the particular studies selected but rather was 

representative of a general result across a spectrum of experiments. We determined if 

tasks in these studies were reasonably described by the two-part problem solving 

definition we had adopted (i.e., first having a goal, followed by a need to figure out a way 

to reach it). Once the set of problem solving tasks were identified, associated studies were 

filtered to identify problem solving experiments/contrasts that isolated one or more of the 

cognitive processes central to the problem solving task. Of those identified, we selected 

only those contrasts reporting either blood oxygen level dependent (BOLD) or regional 

cerebral blood flow (rCBF) signal increases; results associated with BOLD or rCBF 

decreases were excluded. Group-level effects in healthy adult individuals were targeted, 

while disease-, age-, and gender-related group comparisons were excluded. Experiments 

were further filtered to include only those that reported task-related increases as 

stereotactic coordinate results in either Talairach or Montreal Neurological Institute 

(MNI) standardized space. The final set of experiments was constrained to include only 

whole-brain analyses and exclude region of interest (ROI) results.  

Three main paradigm groupings emerged as separate problem solving domains within the 

neuroimaging literature: tasks in which participants solved computational or 

mathematical problems, language-based or verbal problems, or picture-based or 

visuospatial problems. Representational domains were defined by the stimulus modality 

used: mathematical problems involved number manipulation, verbal problems presented 

questions with sentence, word, or letter stimuli, and visuospatial problems involved 

pictorial or spatial tasks. Within these representational sets, five distinct contrast types 
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were included in the meta-analyses: contrasts in which (1) a baseline condition was 

subtracted from a problem solving task (i.e., problem solving > baseline), (2) problem 

solving questions were parametrically compared across varying difficulty, abstraction, or 

complexity (e.g., complex problem solving > simple problem solving), (3) untrained, 

previously unseen, and novel problems were solved and contrasted with previously 

memorized or solved problems of the same type (i.e., untrained problem solving > trained 

problem solving), (4) problem solving was compared across different rule sets or 

representational modalities (i.e., problem solving type 1 > problem solving type 2; e.g., 

multiplication problems > addition problems or word problems > number problems), or 

(5) distinct and sequential problem solving phases were contrasted with each other (e.g., 

problem solving late phase > problem solving early phase). Several studies used problem 

solving to investigate differences between healthy controls and either patient populations 

or populations with intellectually gifted individuals (e.g., mathematical prodigies or high-

IQ individuals). Experiments were included from these studies if within-group results for 

healthy controls were separately reported, without any group interaction effects or 

comparison with an experimental group.  

2.3.2 Activation Likelihood Estimation 

Stereotactic coordinates were extracted from the identified set of problem solving 

contrasts. To reduce disparity between MNI and Talairach coordinates (Laird et al., 

2010), foci originally reported in Talairach space were transformed into MNI space using 

the tal2icbm algorithm (Lancaster, 2007). A series of activation likelihood estimation 

meta-analyses was performed in the MATLAB environment to assess concordance across 
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studies and within each problem solving representational domain using the revised non-

additive ALE algorithm (Laird et al., 2005; Eickhoff et al., 2009; Turkeltaub et al., 2012). 

This random-effects approach models activation foci as three-dimensional Gaussian 

probability distributions whose widths reflect variances in experimental sample size and 

uncertainty inherent to spatial normalization. The ALE algorithm first computes a set of 

modeled activation (MA) maps by selecting the maximum probability associated with 

any one Gaussian within each experiment (Turkeltaub et al., 2012). This method was 

employed to alleviate artificial conflation of MA values due to within-experiment 

coordinate proximity and thus limits the maximum contribution any single experiment 

can have on the overall ALE results. After the within-experiment activations were 

modeled, voxel-wise focal overlap across experiments was determined by computing the 

union of all activation probabilities (known as the voxel’s ALE score), a quantity 

representing convergence of results across studies. This union was anatomically 

constrained by a grey matter mask based on the ICBM tissue probability maps of Evans 

et al. (1994). Statistical significance within this so-called ALE map was determined by 

comparing the distribution of ALE scores to a null-distribution modeled by 10,000 

permutations of random data, each containing identical characteristics to those of the 

actual experiments (e.g., simulated subject and foci numbers). Computationally, foci 

from the dataset were replaced with coordinates randomly selected from the gray matter 

template and the union of their values was computed to form the empirically derived null-

distribution used to test the null hypothesis of randomly distributed activations. Then, 

above-chance clustering between experiments was assessed by computing P-values given 

by the proportion of ALE scores equal to or greater than those obtained under the null-
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distribution. A correction for multiple comparisons was implemented by using a voxel-

level threshold of P < 0.001, and then ALE results were family-wise error (FWE) 

corrected at a cluster extent threshold of P < 0.05 (Eickhoff et al., 2017).  

First, to identify common activation patterns across problem solving, coordinate results 

from all representational domains (i.e., mathematical, verbal, and visuospatial domains) 

were pooled and assessed for convergence. The resulting ‘global network’ was agnostic 

to variants in problem solving type and therefore useful in evaluating whether a content-

general problem solving meta-analytic network could be identified. Here, and in 

following sections, we refer to the term ‘meta-analytic network’ (or simply ‘network’) as 

a collection of brain regions that together represent the common activation patterns 

resulting from meta-analytic results. Because clusters revealed by the global network 

need not be similarly observable across sub-domains, we performed follow-up 

characterizations of within-domain activation patterns to resolve context-relevant 

networks. To investigate which brain regions were consistently activated within content-

specific tasks, we delineated experiments by representational domain and separately 

assessed coordinate convergence across mathematical, verbal, and visuospatial problem 

solving variants. We then inspected these within-domain ALE maps for three-way 

conjunctions to identify overlap indicative of common and convergent activation among 

all types of problem solving (i.e., a core network). Specifically, we conducted a 

conservative minimum statistic conjunction analysis (Nichols, 2005) to identify 

significant voxels commonly present across all domain-specific problem solving ALE 

maps.  
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Next, to decipher the functional role of this core network and identify specific cognitive 

processes contributing to problem solving in general, we performed functional decoding 

(which is a statistical approach used to determine psychologically-linked terms given 

observed brain activation patterns) on the resulting conjunction map (Poldrack, 2011). To 

do this, we fit a Generalized Correspondence Latent Dirichlet Allocation (GC-LDA; 

Rubin et al., 2016, 2017) model with 200 topics to the Neurosynth literature corpus 

(Yarkoni et al., 2011). The GC-LDA model associates each topic with a probability 

distribution across terms from article abstracts and with a spatial distribution (in this case 

as a bilateral pair of Gaussian distributions) across voxels in MNI space. These topics 

reflect words and foci which frequently co-occur across studies in the literature and 

facilitate distinguishing the conceptual structure associated with terms that can be 

imprecise or variously defined across studies. Next, we fed the conjunction map into the 

decoding algorithm, which used the 𝑃 𝑡𝑜𝑝𝑖𝑐|𝑣𝑜𝑥𝑒𝑙  distribution estimated by the topic 

model to estimate 𝑃 𝑡𝑜𝑝𝑖𝑐|𝑚𝑎𝑝 . Finally, we expanded the topic weights to word 

weights by computing the dot product between the 𝑃 𝑡𝑜𝑝𝑖𝑐|𝑚𝑎𝑝  vector and the 

𝑃 𝑤𝑜𝑟𝑑|𝑡𝑜𝑝𝑖𝑐  distribution estimated by the model.  

Then, to statistically compare each problem solving domain and isolate differential 

activations patterns selective to each of the three problem solving types, we ran formal 

contrast ALE meta-analyses using methods described in detail in Laird et al. (2005) and 

Bzdok et al. (2015). These three-way ALE contrasts were determined by computing 

difference maps across pairs of domain-specific ALE images and then assessing the 

conjunction, using the minimum statistic approach, across the difference maps. For 

example, to isolate the brain activity specifically associated with mathematical problem 
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solving, we first calculated the contrasts of Mathematical – Verbal problem solving and 

Mathematical – Visuospatial problem solving. We then computed the conjunction 

between these two differences (i.e., [Mathematical – Verbal] ∩  [Mathematical – 

Visuospatial]), which isolated brain regions uniquely contributing to mathematical 

problem solving separated from verbal and visuospatial modalities. Similar conjunction 

analyses were performed for verbal ([Verbal – Mathematical] ∩ [Verbal – Visuospatial]) 

and visuospatial specific contrasts ([Visuospatial – Mathematical] ∩ [Visuospatial – 

Verbal]). This method for computing the contrasts of multiple ALE images determines 

which clusters are statistically selective in one ALE map from those regions shared with 

all other ALE maps. Thus, we assessed domain specificity by examining if one task 

domain demonstrated greater convergence compared to both of the other task domains. 

All contrast analyses were generated with voxel-wise thresholding at P < 0.01 (false-

discovery rate corrected) using 250 mm3 minimum cluster volumes and 10,000 

permutations. The anatomical locations of the observed clusters are labeled and reported 

in MNI space. 

Lastly, we conducted a meta-analysis in which we considered the role of cognitive 

demand within problem solving. Our approach in this analysis was similar to that 

previously adopted by Duncan and Owen (2000) in their observation of the multiple 

demand network. We selected contrasts for this final meta-analysis that compared high to 

low demands across problem tasks (i.e. Complex > Simple Problem Solving) that were 

otherwise identical. In this way, we assessed convergence across a range of different 

problem solving experiments, each of which isolated the specific neural underpinning 
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associated with problem difficulty while still controlling for additional factors potentially 

impacting demand (e.g. task type).   

2.4 Results 

2.4.1 Literature Search Results 

The results of the problem solving literature search across mathematical, verbal, and 

visuospatial domains are described in detail below; the specific contrasts are detailed in 

Table A.1, along with the numbers of foci and subjects, task, stimulus, contrast 

classification, and neuroimaging modality. 

2.4.1.1 Mathematical Problem Solving Paradigms 

Numerical calculation was the most widely studied representational domain within the 

neuroimaging problem solving literature. Overall, the literature search identified 99 

mathematical problem solving contrasts, yielding 1,044 activation foci from 41 published 

papers. A total of 65 of these contrasts compared problem solving with a rest or low-level 

baseline condition, 21 contrasted two different forms of mathematical problem solving, 

and 13 compared complex versus simple conditions. Although operand tasks took 

varying forms, basic paradigm structure involved mental binary operations (i.e., addition, 

subtraction, multiplication, division) being performed on integer Arabic numerals to 

arrive at single valued answers. A 2011 meta-analysis on number sense and calculation 

(Arsalidou and Taylor, 2011) previously identified several mathematical problem solving 

studies relevant to the investigation at hand. Thus, these experiments were included in 
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this meta-analysis, along with additional neuroimaging studies matching our inclusion 

criteria. Included paradigms are further described below and in Table A.1a. 

Number Operation Tasks 

The majority of included calculation paradigms involved mental quantity manipulations 

of either one- or two-digit Arabic numerals so as to generate, select, or verify solutions to 

mathematical expressions (e.g., “6 + 8” or “12 x 55”). Most number operation tasks 

presented two numeric values on which a single binary operation was performed. 

However, tasks of this class also included operand manipulations on multi-number lists. 

Participants responded to numerical and symbolic stimuli by either overtly speaking 

solutions, internally identifying them, or using a button press to select the correct value 

from a list of answer choices. Calculation verification paradigms presented participants 

with numerical equations such as “5 – 13 = -8” and participants decided if the statements 

were true or false. Most numerical operand paradigms utilized visual stimuli of Arabic 

digits and/or binary mathematical operands, however some tasks also presented subjects 

with Roman numerals, auditory Arabic numerals, or English words of Arabic numerals. 

Baseline or control conditions for operand tasks took one of several forms including 

identifying, matching, or comparing target number values. In identification conditions, 

participants overtly recited values or pressed a button when a target number, letter, word, 

or symbol appeared on a screen. Baseline matching conditions instructed participants to 

select an identical number to a previously presented stimulus. In comparison tasks, 

participants viewed number pairs and identified the digit of larger value. Number 

comparison, which is sometimes used to measure numeric distance or number sense, did 
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not fit our cognitively demanding definition for problem solving; thus, we considered 

these tasks as appropriate high-level control conditions for calculation tasks (i.e., 

Calculation > Comparison).  

The present meta-analysis additionally included high-level contrasts such as 

Multiplication > Addition, Complex > Simple, Number Problems > Word Problems, or 

Exact Calculation > Approximation. While these control conditions were themselves 

instances of problem solving, their cognitive subtractions yielded coordinate results 

specific to characteristics central in mathematical problem solving (i.e., in the respective 

above examples these were operand type, difficulty level, representation modality, 

solution method). Because we sought to include results from multiple varieties of 

questions and across characteristics, we likewise included reverse contrasts such as 

Addition > Multiplication and so on. Although these reverse contrasts yielded disjoint 

sets of activation patterns, we considered each contrast as an independent experiment 

targeting specific qualities inherent to mathematical problem solving. Because both sets 

of coordinate results highlighted specific characteristics within the general umbrella of 

mathematical problem solving, they were included. The literature search produced 80 

(out of 99 total mathematical problem solving) number operations contrasts associated 

with 776 activation foci from 30 papers for inclusion in the meta-analysis. 

Paced Auditory/Visual Serial Addition Test 

The paced addition serial attention test (PASAT), modified PASAT (mPASAT), or paced 

visual serial attention test (PVSAT) are neuropsychological tests widely used to study 

cognitive impairments, attention, information processing speed, and working memory 
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(Tombaugh, 2006). The primary procedure in this paradigm involves mentally and 

serially adding digits together. Participants are presented with either an auditory (PASAT 

or mPASAT) or a visual (PVSAT) sequence of numbers, with individual digits ranging 

between 0 and 9, and are instructed to mentally add the first and second numbers. This 

sum is then mentally added to the third value, and so on, until the sum of digits equals 10. 

The participant indicates the sum equals 10 with a button press or hand gesture and 

begins the serial summation again. While the paradigm has been used to investigate 

working memory (Lazeron et al., 2003; Mainero et al., 2004) this calculation task 

employs sequential addition of an unknown number of random digits until a final value is 

determined. Thus, the paradigm implicates multi-stepped analytical thinking within the 

rule set of addition until completion, with the goal of correctly identifying the closing 

number in the additive sequence. Accordingly, we characterized the PA/VSAT task as a 

mathematically-based problem solving paradigm and included these tasks in the 

mathematical meta-analysis. The literature search yielded 7 (out of 99 total mathematical 

problem solving) PA/VSAT contrasts, which included 138 activation foci from 6 papers. 

Additional Mathematical Tasks 

Several neuroimaging paradigms targeted mathematical problem solving processes 

employing less common number or math-based stimuli. Such tasks included percent 

estimation problems (“what is 44 percent of 70?”; Venkatraman et al., 2006), equation-

based algebraic or calculus problem manipulations (Krueger et al., 2008; Newman et al., 

2011), or other algorithm-based problems such as pyramid problems (Delazer et al., 

2005) or number bisection problems (Wood et al., 2008). In pyramid problems 
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participants viewed non-standard operation expressions such as 54$3 and were trained to 

perform the corresponding “$” algorithm (in this example, 54+53+52 where 54 is the 

‘base number’ and 3 is the ‘addition span number’). Number bisection problems cued 

participants with ordered number triplets such as (44,62,87) and participants determined 

if the middle value was also the mean of the flanking numbers. The literature search 

yielded 12 additional (out of 99 total) mathematical contrasts reporting 130 activation 

foci from 5 papers for inclusion in the meta-analysis. 

2.4.1.2 Verbal Problem Solving Paradigms 

Neuroimaging problem solving paradigms in the verbal domain asked questions via 

letter, word, or sentence stimuli, and participants used logic or content knowledge to 

comprehend, generate, or identify solutions. Overall, the literature search identified 93 

verbal problem solving contrasts, which reported 1,028 activation foci from 43 published 

papers. Of the 93 verbal contrasts identified, 49 compared problem solving with a 

baseline condition, 13 contrasted complex to simple problem solving in the verbal 

domain, 22 contrasted differing types of verbal problem solving, 7 identified activation at 

distinct problem solving phases by contrasting distinct stages in the problem solving 

process, and two compared untrained to trained verbal problem solving. Paradigms in this 

category included deductive and inductive reasoning sentences, riddles and insight 

questions, paragraph-based word problems, and word or letter string analogy sets. These 

paradigms displayed diversity in stimuli and reasoning methods used, and participants 

responded via button press to either select from a set of solution options, indicate if a 

given problem was logical or illogical, or if they had been successfully able to arrive at a 
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solution to the verbal problem before the time expired and an answer was revealed. 

Included paradigms are described below and in Table A.1b. 

Deductive Reasoning Paradigms 

Deduction is a logical process in which specific conclusions are inferred from general 

rules. Neuroimaging paradigms typically explore mechanisms supporting deductive 

reasoning across categorical (e.g., All A’s are B’s, All B’s are C’s, therefore all A’s are 

C’s), relational (e.g., A is to the right of B, B is to the right of C, A is to the right of C), or 

propositional (e.g., If A then B; A; Therefore B) argument types. In these paradigms, 

subjects considered sentence- or letter-based arguments and determined if a given 

conclusion logically followed from the premises. Participants were instructed to respond 

to questions by pressing a button to indicate if the argument was valid or invalid. 

Deductive reasoning control conditions typically asked logic questions whose answers 

were trivially false (e.g., “if A is to the right of B and B is the right of C, is D is to the 

right of F?”) A 2011 neuroimaging meta-analysis (Prado et al., 2011) of deductive 

reasoning tasks served as an initial model for studies included in our language-based 

problem solving analysis. We included appropriate studies from this deduction meta-

analysis and updated and extended the corpus of deductive linguistic papers for the 

present study.  

While the majority of included verbal deductive reasoning paradigms took one of the 

conditional forms described above, several paradigms also included in this category 

presented linguistically challenging word problems that required logical deduction. For 

example, in Newman et al. (2011) participants viewed statements such as, “The day 
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before my favorite day is two days after Thursday”, and then determined which day was 

the favorite. Another study (Kroger et al., 2008) presented word problems such as, 

“There are five students in a room. Three or more of these students are joggers. Three or 

more of these students are writers. Three or more of these students are dancers. Does it 

follow that at least one of the students in the room is all three: a jogger, a writer, and a 

dancer?”. Some of these studies, as in Zarnhofer et al. (2013), asked participants to solve 

arithmetic word problems (e.g., “Anna goes for a walk. She walks 4 km/h. What distance 

does she cover in 3 hours?”). These problems, although mathematical in nature, were 

included in the verbal meta-analysis because their stimuli were sentence-based. The 

literature search produced 60 (out of 93 total verbal problem solving) deductive reasoning 

contrasts associated with 688 activation foci published in 25 papers for inclusion in the 

meta-analysis. 

Verbal Inductive/Probabilistic Reasoning Paradigms  

While deductive reasoning is used to make claims on specific information by applying 

general rules, inductive reasoning is a procedure by which broad rules are inferred from 

particular instances (e.g., “Mike is a basketball player, Mike is tall. All basketball players 

are tall.”). While counterexamples can disprove inductive reasoning statements, they can 

never be fully logically proved. Thus, in inductive neuroimaging paradigms, participants 

determine if the concluding statements are plausible or not plausible. These inductive 

tasks are sometimes also referred to as probabilistic reasoning tasks.  

Paradigms in this category frequently took a categorical form and the task was to 

determine of the statement had a greater chance of being true or false (e.g., “House cats 
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have 32 teeth; Lions have 32 teeth; All felines have 32 teeth?”; Goel and Dolan, 2004). 

Other probabilistic paradigms included in this analysis presented participants with event 

frequencies from hypothetical experiments with known outcomes and participants 

probabilistically determined which experiment the results came from. For example, in 

Blackwood et al. (2004), participants viewed a serial presentation of positive and 

negative words. They were told these words had been drawn from a survey that received 

a positive to negative response ratio of either 60:40 or 40:60. Participants were asked to 

choose which survey the viewed words had likely been drawn from. The literature search 

yielded 5 (out of 93 total verbal problem solving) inductive reasoning contrasts that 

included 34 activation foci from 4 papers for inclusion in the meta-analysis. 

Verbal Analogy Problems 

Analogical reasoning relies on the ability to draw conclusions about relationships from 

given information and/or by using background knowledge. Typical analogy problems 

across the neuroimaging literature, such as those in Luo et al. (2003), present participants 

with dual word pairs and subjects determine if these formed analogous or general 

semantically related sets (e.g., analogy: “drummer, band” = “soldier, army”; semantic: 

“refrigerator, kitchen” = “lounge, room”). Other linguistic analogy tasks were sentence-

based and asked participants to complete phrases such as, “black is to white and high is to 

….?” (Wendelken et al., 2008). We also included analogy tasks in this meta-analysis that 

involved semantic word retrieval (Wagner et al., 2001) in which participants viewed a 

cue word and then target words that were either unrelated, weakly related, or strongly 

related to the cue (e.g., strongly related: “cue = rain; targets = pillow, puddle, book, 
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sneaker”; weakly related: “cue = candle; targets = design, halo, exists, bald”); subjects 

selected the target word most related to the cue. 

Analogy tasks sometimes used purely letter-based representations; for example, in Geake 

and Hansen (2005) participants viewed two successive non-word letters strings that 

revealed an order- or alphabetic-based transformation rule (e.g., ird implies dri). Subjects 

were then shown a third letter string and choose or generated the letter string that best 

followed the transformation rule (e.g., ykw implies ?). Many so-called “fluid analogy” 

problems, such as in this example, required both semantic and content knowledge to 

choose the most plausible answer. A similar paradigm, drawn from the Educational 

Testing Service Kit of Factor Referenced Cognitive Sets (Ekstrom et al., 1976), presented 

participants with non-word letter strings with some common alphabetic or translational 

rule, and participants were asked to identify the “odd one out” from a set of choices 

(Duncan et al., 2000). The literature search produced 9 (out of 93 total verbal problem 

solving) analogy contrasts that reported a total of 78 activation foci from 5 papers. 

Insight Problem Solving  

Insight question paradigms are language-based paradigms that targeted the “aha” moment 

within problem solving and frequently take the form of sentence- or character-based 

riddle problems. Riddle solving involves careful consideration of phrasings and/or 

semantic indicators such as syntactic or logographic structure. Neuroimaging riddle 

paradigms, such as in (Luo and Niki, 2003), used problems like “What can move heavy 

logs, but cannot move a small nail?” (solution: “a river”). Other riddle-like paradigms 

relied on word play within Chinese character idioms (or “Chengyu”) whose figurative 
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meanings are often distinct from their literal ones (e.g., an English-language idiom of 

similar kind is “kick the bucket”, which has the figurative meaning “to die”; Zhang, 

2012). The goal of these paradigms is to identify the expression’s metaphoric meaning by 

decomposing constituent characters into meaningful semantic chunks. For example, in 

Qiu et al. (2010), participants were given phrases such as 右眼难见, which translates to 

“having eyes but being unable to see”, and were asked to derive the idiom’s underlying 

meaning. In this case, the answer is 盲 (which means “blind”), and is derived by 

combining the phonetic symbol 亡 with the semantic radical 目 that appears as a 

constituent chunk in the Chengyu component 眼. Insight paradigms based on chunk 

decomposition of logograms took multiple but similar forms in the neuroimaging 

literature and appropriate studies were included in this meta-analysis. 

Other neuroimaging paradigms that study insight are anagrams puzzles in which letters 

from words have been scrambled beyond the point of recognition. Participants, such as 

those in Aziz-Zadeh et al. (2009), were presented with these scrambled words and are 

asked to determine the original word. Several additional non-standard insight problem 

solving paradigms were identified as appropriate for this meta-analysis; one such study 

(Luo et al., 2013) considered insight in scientific problem solving specifically. In that 

study, subjects were presented with paragraph-based real world scientific and engineering 

questions, some of which contained explicit hints towards a solution path. Participants 

were asked to determine solutions to these scientific/engineering questions and insight 

moments were facilitated by heuristic use. The literature search yielded 19 (out of 93 
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total verbal problem solving) insight contrasts reporting 215 activation foci from 12 

papers. 

2.4.1.3 Visuospatial Problem Solving Paradigms 

In our third and final representational domain, we identified neuroimaging experiments 

using visuospatial problem solving to study analogic or relational reasoning by pattern 

identification, visualization, induction, and visual processing. Overall, the literature 

search identified 88 visuospatial problem solving contrasts which reported 1094 

activation foci published in 50 papers. A total of 47 of these contrasts took the general 

form of visuospatial problem solving versus a baseline condition, 14 considered complex 

versus simple visuospatial problem solving, 16 contrasted two types of visuospatial 

problem solving, 10 contrasted untrained to trained visuospatial problem solving, and one 

contrasted problem solving across different phases. The visual problems sets identified as 

part of this literature search varied significantly across studies and many experiments in 

this representational domain utilized novel task paradigms. In all included visuospatial 

problem solving paradigms, participants used reasoning to respond to picture stimuli. 

Included paradigms are described below and in Table A.1c. 

Visuospatial Fluid Reasoning Tasks 

Fluid reasoning (sometimes called fluid intelligence, “Spearman's g”, or simply “Gf” or 

“g”; Spearman, 1928) is the ability to reason in novel situations, independent of prior 

knowledge or culturally embedded context (Ferrer et al., 2009). Two canonical 

neuropsychological paradigms frequently used to investigate the visuospatial component 

of fluid reasoning are the Raven’s Progressive Matrices (RPM; Raven, 2000) and the 
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Cattell’s Culture Fair Test (Cattell, 1973). In the former, participants view 3 x 3 picture 

grids whose images progress horizontally and/or vertically by an analogical rule. 

Participants must determine the rule(s) of progression and, from a set of options, choose 

the image that completes the final grid entry. Similarly, the Culture Fair Test presents a 

set of drawings sharing a relational rule. Participants identify this rule and select either 

the “odd one out” from the image set, or choose an additional image that follows 

similarly. Each paradigm contains problems that parametrically increase in complexity 

level (“low” to “high” g) and simple problems are often used as control conditions to 

more complex fluid reasoning questions. 

Variations of these two visuospatial reasoning tasks have been used across the literature 

and were also included in this meta-analysis. The Nagliri Nonverbal Intelligence Test 

(Kalbfleisch et al., 2007), the Fluid Intelligence Test (Ebisch et al., 2012), the Geometric 

Analogical Reasoning Task (Preusse et al., 2011), and the Nonverbal Reasoning Task 

(Hampshire et al. 2011) all require subject’s use of relational integration abilities to 

identify visual pattern-based rules and make rule-based judgments on images. The 

literature search produced 19 (out of 88 total visuospatial problem solving) fluid 

reasoning contrasts associated with 200 activation foci from 11 papers that were included 

in the meta-analysis. 

Visual Analogy Problems 

Similar to fluid reasoning paradigms, visual analogy problems use picture-based stimuli 

to depict a deducible visuospatial rule set. In these types of tasks, participants viewed 

dual shape or image pairs (with A:B and C:D structure) that were related via pattern, 
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color, geometric form, or physical appearance. Participants selected the answer that 

followed the visual analogical rule or indicated if an item did or did not follow that rule. 

For example, in Watson and Chatterjee (2012), problems presented colored shape strings 

illustrating a progression rule and participants choose from answer options putatively 

illustrating the same rule (e.g., target: red triangle, blue triangle, red circle; answer 

options: red diamond, blue diamond, red diamond or red diamond, blue diamond, red 

square). Similarly, Preusse et al. (2010) used a task where the rule set was given by 

mirror symmetry of geometric ensembles. Participants in this study viewed dual square 

grids in which blocked shapes depicted transformations about vertical, horizontal, and/or 

diagonal axes. The task was to indicate if a second grid pair followed the same reflection 

rule as the first. 

Not all analogical problems of this category portrayed visual rules via abstract shapes. 

For example, Cho et al. (2010) used the People Pieces Analogy Task (Sternberg, 1977) to 

elicit analogical reasoning by presenting subjects with two analogical pairs of drawings 

of human forms. Each pair shared some common quality (e.g., width, height, gender…) 

and participants were given a list of these dimensions. They were asked if dual sets of 

people pairs correspond across a given dimension. This task involved problem solving 

across scales of both relational complexity and levels of attention interference. The 

literature search across visual analogy problems yielded 5 (out of 88 total visuospatial 

problem solving) analogical reasoning contrasts reporting 28 activation foci from 4 

papers.  
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Tower of London Task 

In the Tower of London (TOL) (Shallice, 1982) or Tower of Hanoi task (Zhang and 

Norman, 1994), participants are presented with an initial and target configuration of 

stacked colored balls or disks (e.g., red, green, blue) that lie along three columns. These 

colored objects can be moved one at a time and from the top of each stack, and placed on 

the top of any of the three columns. Participants are tasked with identifying the minimum 

number of moves needed to transform an initial arrangement into a final configuration. 

This paradigm is frequently used as an assessment of planning within problem solving. 

Control tasks for TOL sometimes involved simply counting the number of balls present 

in a configuration or watching balls change positions and counting the number of moves 

(Wagner et al., 2006). The literature search yielded 12 (out of 88 total visuospatial 

problem solving) Tower of London and Tower of Hanoi contrasts containing 161 

activation foci, as reported in 9 papers included in the meta-analysis.  

Spatial Navigation Problem Solving Tasks 

Navigation neuroimaging paradigms generally focus on probing the neural mechanisms 

of spatial memory (e.g., task objective: “remember the location of objects/places 

encountered in a virtual environment and recall the placements later) or spatial planning 

and learning (e.g., task objective: “find your way from a starting point to a target location 

within a map/virtual environment.”) Tasks of the latter variety aligned with our 

operational definition of problem solving and appropriate experiments of this kind were 

included in the present meta-analysis. Experiments displayed pictures of mazes or maps 

from allocentric or egocentric reference frames, and baseline conditions often took the 
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form of route following along visually guided paths. We included relevant experiments 

identified in a 2014 neuroimaging meta-analysis of spatial navigation (Boccia et al., 

2014) and updated and extended the corpus of navigation problem solving papers for the 

present study.  

The majority of included tasks asked participants to make one or several critical decisions 

at intersection points during navigation, and subjects learned through trial and error 

which sequence of decisions led to the desired end location. Other contrasts involved 

navigating mazes that had been learned during a training session but that appeared within 

scanning as shuffled or with significantly altered visual features, making navigation 

difficult or in some cases impossible. Tasks of this type sometimes involved navigation 

along learned routes containing unexpected features inhibiting passage (e.g., a 

“roadblock” requiring detour planning as in Campbell et al., 2009 or Iaria et al., 2008). 

Spatial navigation tasks not included in this study were those that lacked the crucial 

problem solving component of figuring out a means in order to reaching the task goal, for 

example tasks wherein participants memorized a spatial layout during training and 

traversed the same environment during scanning, paradigms involving navigation from 

one familiar landmark to another within a participant's home city, or tasks in which the 

target location was clearly visible from the starting location. The literature search yielded 

39 (out of 88 total visuospatial problem solving) visuospatial navigation problem solving 

contrasts associated with 531 activation foci from 18 published papers for inclusion in the 

meta-analysis. 
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Visuospatial Relational Reasoning 

As in verbal deduction paradigms, relational reasoning problems in the visuospatial 

domain explore transitive inference across relational argument types (e.g., A is to the left 

of B, B is to the left of C, A is to the left of C). Typically, participants completing these 

tasks undergo initial out-of-scanner training where they encode multiple ordered shape 

pairs (e.g., A<B, B<C, C<D, and so on). Taken together these pairs implicitly represented 

elements drawn from an ordered shape string (e.g., A<B<C<D<…<N). Then, during 

MRI scanning, participants viewed non-sequential pairs of encoded relational shapes and 

selected the right-most shape (e.g., C in A<C or D in B<D; Acuna, 2002; Heckers et al., 

2004). 

Variations on these relational paradigms involved conditional rule completion or 

falsifications tasks wherein participants viewed colored shape configurations and were 

asked if they could complete or falsify a relational rule (e.g., "if there is not a red square 

on the left, then there is a yellow circle on the right"; Eslinger et al., 2009; Houdé et al., 

2000). One such falsification task depicted five colored balls of equal or unequal weights 

appearing across four balance scales (Wendelken and Bunge, 2010). The scales were 

drawn balanced or tipped to indicate the relative ball weights. The task was to determine 

if a fifth scale drawing violated or verified the inferred weight rule. The literature search 

produced 6 (out of 88 total visuospatial problem solving) relational reasoning contrasts 

associated with 75 activation foci from 5 papers. 
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Visual Inductive/Probabilistic Reasoning Paradigms 

Inductive reasoning paradigms wherein general rules are inferred from specific instances 

were less ubiquitously used in the visuospatial domain. However, appropriate paradigms 

that presented visual information and asked participants to decide on generalizable rules 

or plausible answer choices were included in this analysis. In one such task (Goel and 

Dolan, 2000) participants considered sets of animal drawings where the animal’s physical 

characteristics (e.g., tail length, abdomen shape) varied along several degrees of 

similarity. The task was to generate a rule to determine if all animals in a set were likely 

of the same species. Another task (Blackwood et al., 2004) showed serial images of blue 

and red balls and participants determined if the balls had been drawn from a bottle 

containing either a 40:60 or a 60:40 ratio of blue to red balls. In another task (Lu et al., 

2010) participants viewed inverted triangles displaying numeric values at each vertex. 

Each triangle followed a known (e.g., left – right) or unknown (e.g., bottom + right = left, 

right + left = bottom) calculation rule. Participants performed simple calculation (control 

condition) or inferred the triangle’s rule from a target triangle and then applied that rule 

to a new triangle (activation condition). We included this paradigm in the visuospatial 

problem solving meta-analysis, even though numerical calculation was involved, because 

the target problems used visuospatial stimuli to illustrate spatially encoded induction 

rules. The literature search yielded 4 (out of 88 total visuospatial problem solving) 

inductive reasoning contrasts associated with 46 activation foci from 3 published papers 

for inclusion in the meta-analysis. 
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Additional Visuospatial Tasks 

We also included visual problem solving within game-play contexts. Strategy-based 

board games such as Chess or Go involve abstract reasoning, planning, and visuospatial 

processing. Although not prevalent in the literature, some studies (Atherton et al., 2003; 

Chen et al., 2003) have investigated the neural correlates involved in this level of 

strategic game-play. Participants in these experiments viewed in-progress game boards 

and either identified the position of target pieces (control condition) or determined the 

best next move within a mid-game board configuration (activation condition). The 

literature search yielded 3 (out of 88 total visuospatial problem solving) additional 

visuospatial contrasts containing 53 activation foci from 2 papers. 

2.4.2 Global Meta-Analysis 

After completing the literature search, an ALE meta-analysis was performed across the 

total set of 131 papers that examined problem solving within all modalities and 

paradigms to identify convergent brain regions associated across all problem solving task 

described above. When multiple contrasts were reported within a single paper they were 

modeled as separate experiments provided they met our inclusions criteria (with 2.10 

contrast included on average per paper, and no single paper contributing more than seven 

separate contrasts.) This global problem solving meta-analysis included 280 contrasts, 

which reported a total of 3,166 foci from 1,919 individuals. Convergence across 

experiments was observed in the frontal and parietal cortices, bilaterally including the 

superior, middle, and inferior frontal gyri (SFG, MFG, and IFG), as well as the dlPFC, 

dorsomedial prefrontal cortex (dmPFC), and ACC (Figure 2.1; coordinates listed in 
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Table 2.1). Bilateral parietal regions were observed across the medial posterior parietal 

cortex including the SPL, inferior parietal lobule (IPL), and precuneus. In addition to 

these frontoparietal clusters, consistent activation was observed in the bilateral anterior 

insular cortex (aIC), extending into the claustrum, lentiform nucleus, caudate, and 

anterior thalamus. Primary visual regions were also implicated in problem solving with 

bilateral convergence occurring in the inferior and lateral occipital gyri (IOG and LOG), 

including the lingual gyrus (LG) and fusiform gyrus (FG).  

 

 
Figure 2.1. Global Problem Solving Meta-Analysis. The global problem solving meta-
analysis identified convergence across 131 papers reporting coordinate results from a 
diverse range of problem solving experiments. Multiple problem solving modalities were 
represented in this set, with 280 experimental contrasts across 1,919 subjects. The broad 
engagement across whole-brain systems depicted by this map represents the overall 
neural underpinnings of problem solving. 
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Table 2.1. Coordinates of convergent activation from the global problem solving meta-
analysis. 

	
Global	Problem	Solving	Meta-Analysis:	Cluster	Results	

	
Cluster	

	
Center	of	Mass	
(MNI	space)	

	
Cluster		
Extent		
(mm3)	

	
Mean	ALE		
Score	

	 X	 Y	 Z	 	 	
1	 -8	 -60	 44	 43272	 4.964	
2	 -40	 14	 28	 34880	 5.142	
3	 0	 16	 48	 14136	 5.195	
4	 48	 22	 26	 10424	 4.716	
5	 34	 24	 -2	 4376	 4.997	
6	 28	 4	 56	 4152	 4.715	
7	 26	 -90	 -2	 3944	 3.877	
8	 -44	 -68	 -10	 3392	 4.342	
9	 -22	 -90	 -6	 3256	 3.653	
10	 12	 8	 0	 1824	 4.033	
11	 -10	 -2	 8	 1184	 3.546	
	 	 	 	 	 	

 

2.4.3 Mathematical Problem Solving Meta-Analysis 

We next investigated 99 experiments reporting a total of 1,044 foci across 41 papers 

wherein 560 participants completed mental mathematical problem solving tasks using 

number, mathematical symbols, and/or letter- or symbol-based stimuli. Significant ALE-

based convergence across these studies was observed in the frontoparietal cortices, 

including the dlPFC, dmPFC, ACC, SPL, IPL, and precuneus (Figure 2.2A, Table 2.2a). 

Similar to the global analysis, multiple bilateral MFG clusters were observed alongside 

convergence in SFG extending into the ACC. Peak ALE scores were observed in large 

bilateral clusters centered about the IFG, aIC, and in portions of anterior prefrontal cortex 

(PFC). These frontal regions included somewhat larger left-lateralized ALE clusters. In 

addition to frontal regions, sizeable posterior parietal clusters were observed in the 



 61 

supramarginal gyrus as well as bilateral IPL and SPL. Unlike other representation-

specific analyses, the mathematical problem solving analysis displayed bilateral occipital 

convergence in the IOG, LOG, FG, and LG. 

2.4.4 Verbal Problem Solving Meta-Analysis 

Convergence across 93 verbal-based problem solving experiments reporting 1,028 foci in 

43 papers and including 650 participants was next tested. Similar patterns of convergence 

occurred across the bilateral dlPFC, dmPFC, and posterior parietal regions, although 

somewhat smaller clusters were observed compared to the calculation analysis (Figure 

2.2B, Table 2.2b). Verbal problem solving revealed left-emphasized MFG convergence 

extending from precentral gyrus / presupplementary motor area (Pre-SMA), across 

dlPFC, left MFG, and left orbitofrontal cortex. Specific to this domain were clusters in 

the left-lateralized middle temporal gyrus as well as bilateral thalamus. Convergence was 

also observed in the LG, and clusters were observed in the cerebellar uvula and 

pryamis/tuber. 

2.4.5 Visuospatial Problem Solving Meta-Analysis 

The third and final domain-based ALE meta-analysis included 88 experiments revealing 

1094 activation foci appearing in 50 papers in which 745 participants engaged in picture-

based problem solving tasks. Within the visuospatial domain, problem solving meta-

analysis revealed similar regions of convergence as in the global as well as language- and 

mathematical-based problem solving analyses, including medial posterior parietal cortex, 

bilateral horizontal IPS, right SPL, precuneus, bilateral aIC, and bilateral mid and 

superior frontal gyri (Figure 2.2C, Table 2.2c). Multiple precuneus, posterior cingulate, 
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parahippocampus, and retrosplenial cortex clusters were observed for this visuospatial 

analysis that were not revealed by the other representational domains. Additionally, the 

cortical clusters were overall more strongly lateralized compared to the mathematical and 

verbal meta-analyses, and larger regions of dlPFC convergence were observed in the 

right compared to left hemisphere. 

 
 

 
Figure 2.2. Representational Domain-specific and Conjunction Problem Solving 
Meta-Analyses. Problem solving experiments were categorized into three 
representational variants. Within-domain meta-analytic maps are shown for (a) 
mathematical problem solving (red) = 99 experiments, (b) verbal problem solving (green) 
= 93 experiments, and (c) visuospatial problem solving (blue) = 88 experiments. A 
common set of brain regions, present across this heterogeneous set of 280 problem 
solving contrasts, is depicted in (d), which shows the minimum statistic conjunction 
between all three within-domain maps (pink). 
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Table 2.2. Coordinates of convergent activation from the (a) mathematical, (b) verbal, 
and (c) visuospatial problem solving meta-analyses. 

	
a)	Mathematical	Problem	Solving	Meta-Analysis:	Cluster	Results	

	
Cluster	

	
Center	of	Mass	
(MNI	space)	

	
Cluster		
Extent		
(mm3)	

	
Mean	ALE		
Score	

	 X	 Y	 Z	 	 	
1	 -40	 12	 28	 23472	 4.757	
2	 -32	 -58	 46	 20760	 4.952	
3	 34	 -56	 46	 12232	 4.667	
4	 -2	 14	 50	 8520	 4.587	
5	 -38	 -78	 -8	 6000	 4.090	
6	 48	 14	 26	 5776	 4.554	
7	 36	 22	 -2	 4048	 4.602	
8	 30	 -92	 -2	 2136	 3.881	
9	 44	 44	 18	 1744	 4.158	
	
b)	Verbal	Problem	Solving	Meta-Analysis:	Cluster	Results	

	
Cluster	

	
Center	of	Mass	
(MNI	space)	

	
Cluster	
Extent	
(mm3)	

	
Mean	ALE	
Score	

	 X	 Y	 Z	 	 	
1	 -44	 12	 32	 15312	 4.338	
2	 0	 18	 46	 9480	 4.319	
3	 -36	 -58	 46	 9040	 3.971	
4	 28	 -58	 48	 3912	 4.052	
5	 -46	 42	 -4	 3096	 4.058	
6	 -56	 -38	 2	 2296	 3.895	
7	 46	 16	 26	 2056	 3.709	
8	 14	 10	 -6	 1536	 4.127	
9	 28	 0	 56	 1528	 3.713	
10	 -32	 18	 -2	 1472	 3.861	
11	 -6	 -76	 -32	 1296	 4.356	
12	 -16	 6	 -2	 1248	 4.057	
13	 32	 -60	 -32	 1088	 3.837	
14	 -14	 -90	 -6	 1072	 3.594	
	
c)	Visuospatial	Problem	Solving	Meta-Analysis:	Cluster	Results	

	
Cluster	

	
Center	of	Mass	
(MNI	space)	

	
Cluster	
Extent	
(mm3)	

	
Mean	ALE	
Score	

	 X	 Y	 Z	 	 	
1	 -6	 -64	 44	 12112	 3.717	
2	 -26	 -2	 56	 3848	 4.211	
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3	 26	 2	 56	 3104	 3.990	
4	 46	 28	 28	 2912	 3.761	
5	 -22	 -48	 -8	 2832	 4.169	
6	 2	 18	 46	 2424	 3.895	
7	 26	 -44	 -8	 2136	 4.228	
8	 16	 -50	 10	 1920	 3.638	
9	 -30	 22	 2	 1672	 3.902	
10	 -14	 -56	 10	 1504	 3.597	
11	 30	 22	 -4	 1416	 3.787	
12	 -46	 30	 26	 1000	 3.551	
13	 42	 -46	 48	 984	 3.820	
	 	 	 	 	 	

2.4.6 Conjunction Across Domains 

Next, we sought to identify a core set of brain regions commonly linked with problem 

solving across all representational domains by performing a conjunction analysis 

(Nichols, 2005) across the mathematical, verbal, and visuospatial ALE results. Nine 

clusters were identified in this conjunction analysis (Figure 2.2D, Table 2.3). These 

clusters included the dorsal aspect of the cingulate gyrus/SFG, as well as left dlPFC, 

inferior middle frontal gyri (IMFG), left aIC, and the horizontal segment of the IPS, with 

greater cluster extent observed in the left hemisphere. Table 2.4 illustrates the ten top 

terms most associated with the core problem solving network resulting, as resulting from 

formal reverse inference analysis. 

Table 2.3. Coordinates of convergent activation from the minimum statistic conjunction 
across mathematical, verbal, and visuospatial problem solving meta-analyses. 

	
Conjunction	Across	Domains:	Cluster	Results	

	
Cluster	

	
Center	of	Mass	
(MNI	space)	

	
Cluster		
Extent		
(mm3)	

	
Mean	ALE		
Score	

	 X	 Y	 Z	 	 	
1	 2	 18	 48	 1536	 3.795	
2	 -36	 -54	 42	 864	 3.402	
3	 -28	 0	 56	 800	 3.846	
4	 -32	 20	 0	 560	 3.641	
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5	 -48	 28	 24	 120	 3.229	
6	 -20	 -70	 48	 96	 3.411	
7	 26	 -66	 42	 88	 3.235	
8	 48	 26	 26	 40	 3.147	
9	 38	 -48	 48	 32	 3.251	
	 	 	 	 	 	

Table 2.4. Top ten associated terms resulting from the functional decoding of the 
conjunction network. 

Functional	Decoding	Analysis:	Conjunction	Network	
	
	

	
Term	

	
Weight	

1	 Monitoring	 17.512	
2	 Attention	 16.065	
3	 Working_memory	 15.302	
4	 Switching	 14.104	
5	 Motor	 13.421	
6	 Number	 12.447	
7	 Aging	 10.583	
8	 Memory	 10.412	
9	 Demands	 9.792	
10	 Attentional	 9.444	
	 	 	 	 	

2.4.7 Contrast Analyses  

Then, to examine functional specialization we performed formal contrast meta-analyses 

(Bzdok et al., 2015; Laird et al., 2005) and identified regions of domain specificity for 

mathematical problem solving (Figure 2.3A, Table 2.5a), verbal problem solving 

(Figure 2.3B, Table 2.5b), and visuospatial problem solving (Figure 2.3C, Table 2.5c). 

Mathematical problem solving uniquely recruited multiple clusters within a dorsal, 

frontal, insular, and occipital network of regions. Superior parietal lobules, IPS, and 

postcentral sulci were observed bilaterally along with the left posterior precuneus and 

bilateral pars opercularis/IFG. The left of these IFG clusters showed significant extent 

along the precentral sulcal boundary towards the precentral gyrus. Mathematical-specific 

clusters were also observed in the bilateral anterior insula cortices, bilateral occipital 

poles, and in the left temporo-occipital part of the left inferior temporal gyrus. Verbal 
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problem solving was specifically associated with convergence in a strongly left-

emphasized set of frontal, temporal, and occipital areas. Large clusters occurred in 

Wernicke’s area / left posterior temporal gyrus, Broca’s area / left pars triangularis, 

bilateral dorsal striatum (putamen and caudate), and in the left angular gyrus. Clusters 

with lesser extent were observed in the left dlPFC, left lingual gyrus, and in the 

dorsomedial PFC. This contrast analysis revealed two additional clusters selectively 

observed in verbal problem solving studies in the left posterior lobe and the right anterior 

lobe of the cerebellum. Visuospatial problem solving studies showed domain-specific 

fronto-parietal convergence bilaterally in the superior frontal sulci, precentral sulci, and 

in right dlPFC, with cluster extent from rostral to caudal subdivisions. Visuospatial-

specific clusters were additionally observed for bilateral precuneus, right inferior parietal 

lobule, posterior cingulate, retrosplenial cortex, and parahippocampus. 

 
Figure 2.3. Contrast Problem Solving Meta-Analyses. Contrast analysis for (a) 
mathematical problem solving ([Mathematical – Verbal] ∩ [Mathematical – 
Visuospatial]; rose), (b) verbal problem solving ([Verbal– Mathematical] ∩ [Verbal – 
Visuospatial]; green), and (c) visuospatial problem solving ([Visuospatial – Verbal] ∩ 
[Visuospatial – Mathematical]; light blue) shows representational specificity across 
distinct cortical areas. The difference maps show context-bound variations across 
problem solving types, confirming problem solving within specific domains relies on 
differential sets of functionally precise neural circuitry. 
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Table 2.5. Coordinates of convergent activation from the contrast analyses across (a) 
mathematical, (b) verbal, and (c) visuospatial problem solving meta-analyses. 

	
a)	Mathematical	Contrast	Analysis:	Cluster	Results	

	
Cluster	

	
Center	of	Mass	
(MNI	space)	

	
Cluster		
Extent		
(mm3)	

	
Mean	ALE		
Score	

	 X	 Y	 Z	 	 	
1	 -36	 -54	 46	 7128	 2.341	
2	 36	 -58	 48	 3560	 2.347	
3	 -48	 6	 30	 2120	 2.028	
4	 -48	 -66	 -14	 1176	 2.019	
5	 40	 20	 -4	 1096	 2.078	
6	 52	 14	 22	 1096	 2.077	
7	 -22	 -96	 0	 664	 2.101	
8	 34	 -94	 0	 528	 2.134	
9	 -36	 28	 -2	 504	 1.951	
10	 -48	 36	 20	 464	 1.946	
11	 2	 4	 62	 464	 1.891	
12	 46	 -32	 48	 424	 2.093	
13	 40	 44	 16	 392	 1.967	
14	 -10	 -76	 54	 264	 1.928	
15	 -10	 18	 48	 24	 1.774	
16	 10	 20	 34	 24	 1.752	
17	 42	 46	 28	 16	 1.736	
	
b)	Verbal	Problem	Solving	Meta-Analysis:	Cluster	Results	

	
Cluster	

	
Center	of	Mass	
(MNI	space)	

	
Cluster	
Extent	
(mm3)	

	
Mean	ALE	
Score	

	 X	 Y	 Z	 	 	
1	 -54	 -38	 0	 2248	 2.997	
2	 -50	 20	 14	 1840	 2.411	
3	 -6	 -76	 -32	 1168	 2.755	
4	 -18	 6	 -4	 1016	 2.473	
5	 -46	 44	 -4	 928	 1.908	
6	 16	 10	 -6	 768	 2.220	
7	 32	 -58	 -32	 760	 2.220	
8	 -44	 16	 42	 688	 1.848	
9	 -48	 -62	 38	 432	 2.081	
10	 -8	 6	 44	 248	 1.884	
11	 -8	 28	 44	 216	 1.807	
12	 -52	 24	 -6	 80	 1.819	
13	 24	 -60	 46	 48	 1.734	
14	 8	 12	 54	 32	 1.816	
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15	 -8	 -90	 -4	 32	 1.730	
16	 -20	 -64	 48	 16	 1.736	
17	 -14	 -88	 -8	 16	 1.734	
	
c)	Visuospatial	Problem	Solving	Meta-Analysis:	Cluster	Results	

	
Cluster	

	
Center	of	Mass	
(MNI	space)	

	
Cluster	
Extent	
(mm3)	

	
Mean	ALE	
Score	

	 X	 Y	 Z	 	 	
1	 -22	 -48	 -8	 2648	 2.876	
2	 26	 -44	 -8	 2128	 3.413	
3	 14	 -70	 44	 2000	 2.024	
4	 16	 -50	 10	 1840	 3.256	
5	 -14	 -56	 10	 1408	 2.716	
6	 -10	 -60	 44	 1176	 2.351	
7	 52	 32	 24	 576	 2.226	
8	 22	 0	 56	 544	 1.923	
9	 -22	 -10	 54	 472	 1.992	
10	 40	 26	 38	 288	 2.014	
11	 44	 -50	 50	 232	 1.957	
12	 28	 20	 -6	 144	 1.770	
13	 -4	 -66	 58	 96	 1.929	
14	 -12	 -72	 34	 72	 1.777	
15	 -28	 16	 10	 48	 1.747	
16	 -24	 14	 62	 16	 1.708	
	 	 	 	 	 	

2.4.8 Problem Demand Analysis  

Lastly, we wished to examine the common activation patterns associated with problem 

solving demand  generalized across problem type. We employed a similar selection 

procedure to that adopted by Duncan and Owen (2000) in their observation of their 

multiple demand network by locating convergent neural correlates associated with task 

load while simultaneously controlling for variability across problem type. We selected 

contrasts that compared problem difficulty across different levels of identical problem 

tasks (see Table A.1d). We tested convergence across 41 Complex > Simple problem 

solving experiments reporting 505 foci in 21 papers and including 355 participants. 

Patterns of co-activation associated with problem demand were similar to common 
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activity patterns revealed by the global, domain, and conjunction analyses. Bilateral 

dlPFC, dmPFC/ACC, left precentral sulcus, bilateral aIC, left lateral frontopolar cortex, 

left precuneus, bilateral SPL, IPL, and horizontal IPS were associated with increased 

problem demand (Figure 2.4 purple, Table 2.6). This problem demand network showed 

significant overlap with each of the within-domain meta-analytic maps, as well as with 

the conjunction network. 

 
Figure 2.4. Problem Demand Meta-Analyses and Domain-Specific Overlays. High 
vs. low demand problem solving meta-analysis (= 41 experiments), as compared across 
problem solving by representational domains. Meta-analysis of problem solving tasks 
contrasting high vs. low demand (transparent purple) are overlaid with the three 
representational domain meta-analysis and the conjunction meta-analysis: (a) 
mathematical domain (red), (b) verbal domain (green), (c) visuospatial domain (blue), 
and (d) conjunction across domains (pink). 



 70 

 
Table 2.6. Coordinates of convergent activation from the problem demand analysis. 

	
Problem	Demand	Meta-Analysis:	Cluster	Results	

	
Cluster	

	
Center	of	Mass	
(MNI	space)	

	
Cluster		
Extent		
(mm3)	

	
Mean	ALE		
Score	

	 X	 Y	 Z	 	 	
1	 2	 20	 46	 8000	 4.666	
2	 46	 18	 30	 6048	 4.156	
3	 -30	 -62	 46	 5888	 3.863	
4	 -46	 18	 30	 5488	 3.903	
5	 -48	 42	 -4	 2952	 3.816	
6	 -26	 -2	 56	 2008	 4.388	
7	 30	 -60	 48	 1960	 3.703	
8	 -32	 20	 -2	 1712	 4.010	
9	 34	 24	 -6	 1496	 3.496	
      

2.5 Discussion 

We assessed the diverse collection of problem solving neuroimaging studies and 

performed multiple quantitative coordinate-based meta-analyses to identify common and 

distinct brain networks consistently engaged across various tasks. This study is the first to 

systematically explore convergent brain areas evoked by problem solving across its 

multiple representationally diverse forms. The meta-analytic corpus of 131 studies 

included paradigms that, while traditionally considered distinct, met a common 

operational definition of problem solving wherein participants performed multi-stepped, 

solution-driven critical thinking operations bounded by mathematical, verbal, or 

visuospatial rule sets. Global analysis across domains revealed broad involvement of 

frontal, parietal, insular, and occipital regions. Separate domain-specific analyses 

revealed consistent but unique convergent activation patterns in the dlPFC, mPFC, IPLs, 

aIC, and in temporal, occipital, and subcortical structures. To delineate content-general or 
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content-specific convergence of activation, we then performed formal conjunction and 

contrast analyses across mathematical, verbal, and visuospatial networks. We thus 

identified a core system of dlPFC, dmPFC, IPS, and SPL areas that subtends all types of 

problem solving. Domain-specific maps revealed multiple clusters in left temporal gyrus, 

bilateral insula, occipital pole, bilateral pars opercularis, and areas across the superior 

parietal lobules that displayed functional selectivity within task sub-types. Lastly, 

problem demand was associated with activation across a broad set of frontal, parietal, and 

insular areas similar to those revealed in the domain and conjunction analyses.  

2.5.1 A Core Problem Solving Network  

Results from the global problem solving meta-analysis provide evidence that problem 

solving processes across traditionally distinct paradigms involving diverse content types 

engage regions within a consistent and broad network of fronto-cingulo-limbic-parietal 

regions. This network included frontal gyri, especially in dorsal lateral and dorsal medial 

PFC, anterior cingulate, parietal lobules, precuneus, occipitotemporal gyri, anterior 

insula, caudate, putamen, and thalamus. Of these regions, robust problem solving-related 

convergence was observed across principal nodes in the well-characterized central 

executive (Minzenberg et al., 2009; Niendam et al., 2012), Multiple Demand (Duncan, 

2013, 2010, 2006; Duncan and Owen, 2000), and salience networks (Seeley et al., 2007). 

From a systems-level perspective of brain function, in which distinct distributed networks 

dynamically interact to flexibly guide complex behaviors (Cohen et al., 2004), our 

findings suggest generalized problem solving relies on a cooperation between perceptual 

and regulatory systems. Specifically, the aIC has been described as a node connecting 
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central executive and salience networks which translates pertinent bottom-up information 

from sensory and limbic inputs to CEN areas, thereby negotiating network switching 

between internally focused (i.e., autobiographical) and externally directed (i.e., goal-

oriented) states (Cocchi et al., 2013; Goulden et al., 2014; Menon and Uddin, 2010; 

Uddin, 2015). This interaction is thought to initiate CEN regions to implement top-down 

control and direct coordinated responses and behavior. Multiple areas across the PFC 

have been implicated in a range of broad executive functions including working memory 

(Curtis and D’Esposito, 2003; Owen et al., 2005), planning (Owen, 1997), flexibility 

(Armbruster et al., 2012; Leber et al., 2008), language comprehension (Ferstl et al., 

2008), reasoning (Donoso et al., 2014; Krawczyk et al., 2011), and decision making 

(Keuken et al., 2014). Observed parietal CEN areas are also associated with a dorsal 

attention network and regions within the superior and inferior parietal lobules support a 

range of processes including learning (Sarma et al., 2016), visuospatial working memory 

(Zago and Tzourio-Mazoyer, 2002), congruency in space, time, and number sense 

(Riemer et al., 2016), calculation (Arsalidou and Taylor, 2011; Dehaene et al., 2003), 

metacognitive monitoring of information retrieval (Elman et al., 2012), and visual 

attention (Behrmann et al., 2004; Blankenburg et al., 2010; Duncan, 2006). The 

convergent activation within CEN and salience networks identified in the global problem 

solving analysis suggests the areas and their associated cognitive functions, as influenced 

by bottom-up signals mediated by aIC, play critical roles in problem solving across 

content domains. 

While the global analysis identified common regions of convergence, domain-separated 

problem solving meta-analyses revealed distinct networks that, importantly, showed 
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agreement across a focused set of frontoparietal areas. These conjunction results suggest 

problem solving consistently relies on a network-level subdivision of core executive 

regions that may bring to bear common cognitive and attentional elements fundamental to 

all problem solving processes. Our functional decoding analysis revealed this core 

network as being associated with psychologically-linked terms such as “monitoring”, 

“switching”, “attention”/“attentional”, “working memory”/“memory”, and “demands”, 

indicating the core network likely provides multiple general purpose resources including 

supervisory control (e.g., managerial support directing or monitoring cognition), 

attentional and memory processes, and perceptual and cognitive resources to achieve a 

broad range of problem solving tasks. One proposed role of such distributed network 

subdivisions is in actively managing the explicit within-network engagement of brain 

areas to accomplish specific actions and goals (Cole et al., 2013; Fedorenko and 

Thompson-Schill, 2014; Mill et al., 2017; Telesford et al., 2016). In this way, particular 

zones may be differentially engaged based on the demands and resources required to 

complete a task, and shared zones may be involved with mental operations that are 

critical to, and potentially transferable across, multiple task types (Cole et al., 2013; 

Duncan, 2010; Niendam et al., 2012). Common centralized activity across a range of 

tasks may also be responsible for making available basic cognitive resources, such as 

working memory maintenance or adaptable processing elements, that are critical in 

performing demanding tasks (Cabeza and Nyberg, 2000; Fuster, 2013). Indeed, these 

core regions are frequently functionally coupled across diverse paradigms (Duncan and 

Owen, 2000; Niendam et al., 2012) and likely are central in providing flexible attentional 

focus in many forms of human cognition (Duncan, 2013, 2006). Thus, the within-domain 
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problem solving conjunction map engaging dmPFC, mid-DLPFC, IMFG/inferior frontal 

junction, left precentral gyrus, precuneus, left horizontal IPS, and bilateral areas in the 

SPL may represent a shared sub-network that commonly provides subordinate processing 

resources (e.g., those engaged in order to carry out directed cognitive tasks) as well as 

broader administrative support across problem solving in general.  Focused parietal 

cortex activity, such as that observed here, has previously been implicated in start-cue 

processes, and dedicated sections of the dmPFC and dlPFC are believe to form a core 

system responsible for information maintenance, monitoring, and intentioned sustaining 

of goal-oriented task-sets (Dosenbach et al., 2006; Miller and Cohen, 2001). Mid-dlPFC 

and IMFG/IFJ regions are thought to accomplish process-relevant attentional shifting and 

task coordination (Brass et al., 2005; Bunge et al., 2002; Derrfuss et al., 2004). 

Additionally, it has been proposed that a similar set of core regions common across 

demanding cognitive tasks together may also act to flexibly trigger specific context-

dependent schemata appropriate for task performance (Cieslik et al., 2015). These 

observations are consistent with the Multiple Demand system, proposed by Duncan et al. 

(2010, 2006; Duncan and Owen, 2000), that functions by reducing complex reasoning 

processes into sub-parts and engaging brain areas to carry out cognitive operations 

necessary for successive task steps. Thus, it is plausible that the common engagement of 

these multiple core CEN sub-regions during problem solving may support managerial 

processes involving initiating, sustaining, and directing attentional demands between 

multiple sub-goals that are part of inherently complex multi-stepped processes, while 

simultaneously providing basic cognitive resources to aid in processing within a wider set 

of functionally- and situationally-relevant sub-networks. Though additional empirical 
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work should be conducted to establish definitive functional roles and mechanisms, we 

posit that this common network provides shared general purpose cognitive processes that 

commonly guide cognitive operations during problem solving to access, manage, and 

allocate relevant executive resources.  

2.5.2 Representational Domain Specificity 

The set of regions observed as common across all problem solving contrasts represents a 

necessary but insufficient neural system for accomplishing the demands of problem 

solving within particular contexts. Separate verbal, visuospatial, and mathematical meta-

analyses revealed robust networks each containing regional dissociations across domains. 

Therefore, to better characterize domain specificities in the context of problem solving 

type, we performed contrast analyses examining brain function selective to each domain. 

Our aim was to identify any segregated areas that may be responsible for particular roles, 

and thereby distinguish and describe the multilevel processes occurring within context-

specific problem solving. 

In the case of mathematical problem solving, the explicit recruitment of fronto-parietal, 

occipito-temporal, intraparietal sulcal, and aIC sub-regions is consistent with 

accumulating evidence that a specific constellation of cortical areas is critically involved 

in calculation and together may act as a circuit for mathematical cognition. Numerical 

manipulation, number ordering, arithmetic, and magnitude processing all engage a set of 

such sub-areas (Ansari, 2008; Arsalidou and Taylor, 2011; Bueti and Walsh, 2009; 

Dehaene et al., 2003; Piazza and Eger, 2016). Moreover, the left temporo-occipital part of 

the inferior temporal gyrus, which was identified in this analysis, has been characterized 
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as a “number form brain area” responsible for processing visual numerals (Grotheer et 

al., 2016; Merkley et al., 2016; Shum et al., 2013). The so-called triple-code model of 

number processing (Dehaene, 1992; Dehaene and Cohen, 1995) conceives of a ventral 

visual pathway that communicates numeral information from occipital poles to the 

number form area, where numerals are then represented in a mental scratchpad. 

Information is then routed along either a temporo-occipital pathway to the IPS/SPL for 

magnitude representation, or onto language processing areas where numbers are 

represented syntactically and/or fact-based knowledge is accessed. According to this 

model, prefrontal circuits then enact the sequential multi-stepped operations necessary for 

calculation. Our results coincide with this model and we posit that the contrast clusters 

here revealed constitute a functional sub-system to execute mathematically relevant 

reasoning processes. 

While consensus has not yet been reached on functional pathways subtending linguistic 

and verbal processes in language-brain research (Poeppel and Hickok, 2004), it is clear 

that specific cortical areas, in line with those uncovered in the present verbal contrast 

analysis, play vital roles in language processing (Binder et al., 1997). Significant domain-

selective convergence during verbal problem solving occurred in the classical Wernicke’s 

and Broca’s areas, which support a broad range of language processes (DeWitt and 

Rauschecker, 2013; Gough et al., 2005; Lesser et al., 1986; Poeppel et al., 2008; Wagner 

et al., 2001). Left-hemispheric language lateralization (Powell et al., 2006) was observed 

across several clusters in posterior and superior temporal sulcus/parieto-temporal 

junction, areas that co-activate with dorsal-stream language regions (Erickson et al., 

2017) and may be responsible for verbal working memory subroutines (Poeppel and 
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Hickok, 2004). Additionally, this contrast also identified verbal-selectivity in the left 

angular gyrus, a region involved with reading comprehension and semantic processing 

(Seghier, 2013). Sub-cortical basal ganglia clusters (dorsal striatum/caudate) may support 

reasoning and decision-making (Robertson et al., 2015), linguistic computation (Monti et 

al., 2009; Poeppel and Hickok, 2004), and grammatical processing (Ullman, 2001). Thus, 

within the verbal domain, we posit that these identified regions are responsible for 

actualizing verbally-relevant operations as they are applied within the context of 

language-based problem solving. 

Visuospatial-selective activity in the superior fontal sulci during problem solving 

topographically corresponds to the primary cortical oculomotor areas, the so-called 

human frontal eye fields (FEFs; Cieslik et al., 2016; Grosbras et al., 2005; Lobel et al., 

2001; Vernet et al., 2014), associated with eye movements and visual awareness 

processes, including covert (i.e. non-motor) attention shifts during visual discrimination 

(Grosbras et al., 2005; Muggleton et al., 2003; Vernet et al., 2014). The observed right 

hemispheric visuospatially-selective MFG cluster in conjunction with the FEFs has been 

implicated in visual search and spatial working memory tasks (Grosbras et al., 2005). 

Further, as part of the brain’s gaze control system, the FEFs project to PFC and parietal 

areas, and increased interaction of regions within this system occurs during visuospatial 

judgment, visual focus, and when visuospatial cognitive demands are increased (de Graaf 

et al., 2010; Edin et al., 2007; Vannini et al., 2004). It has been suggested that, when 

actively managing visuospatial working memory demands (Courtney et al., 1998), FEFs 

send top-down signals to PPC for visuospatial feature analysis. This analysis is then 

focused to task-relevant features in the visual stimuli via signals from the MFG (de Graaf 
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et al., 2010), a finding that is consistent with our visuospatially-specific observations. 

These contrast results suggest that visuospatial problem solving engages a neural 

subsystem to allocate oculomotor and attentional capabilities for visually salient stimuli. 

While these above representational domain results provide convincing evidence that 

distinct subsystems support problem solving within particular domains, we add a cautious 

note that these findings should not be interpreted as having an overly selective functional 

role in modality type. For example, the insula is one of the most commonly activated 

regions of the brain (Behrens et al., 2013; Chang et al., 2013), yet its involvement in the 

mathematical contrast results certainly should not be interpreted as the region exhibiting 

functional selectivity for mathematics. The same holds true for the within-domain maps: 

these results can resemble similar findings from relatively unrelated studies across the 

literature (e.g., the mathematical domain network shares activity within regions also 

observed during target detection and response inhibition, tasks which arguably have little 

mathematical demand; Hampshire et al., 2010). Rather, we believe our results serve to 

highlight the full constellation of brain regions that separately and/or cooperatively 

support problem solving within specific representational types.  

2.5.3 Cognitive Demand in Problem Solving 

The above domain-general, representational, and contrast analyses focused on identifying 

brain activity associated with or independent of problem type, as defined by 

representational modality. Included experiments spanned a diverse set of contrasts, 

allowing us to broadly assess convergence in neural activity linked with distinct varieties 

of problem solving. However, this pooling across varied contrasts simultaneously limited 
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our ability to delineate neural correlates associated with specific cognitive processes 

central to problem solving. To address this limitation, we adopted the approach of 

Duncan and Owen (2000) and included only contrasts that clearly isolated the same 

aspect of problem solving, namely problem difficulty, while also controlling for task 

type. In this way we were able to cleanly isolate the neural activation patterns associated 

with cognitive demand across a breadth of problem solving tasks. 

The observed clusters in the dlPFC, frontopolar cortex, dmPFC, aIC, and horizontal IPS 

represent the collection of brain regions that consistently respond to increases in problem 

demand, independent of problem type. We note that our observations are consistent with 

previous findings regarding the brain’s multiple demand (MD) system (Camilleri et al., 

2018; Duncan, 2010, 2006; Duncan and Owen, 2000; Fedorenko et al., 2013). Significant 

overlap was observed between the problem demand regions and each within-domain 

problem network. Thus, general problem solving seems to be broadly linked to the wider 

MD system common across diverse tasks and responsible for flexibly accomplishing 

multiple attentional and cognitive functions. The MD system is also thought to play a key 

role in focusing specific cognitive operations and interfacing with multiple brain systems 

to execute structured and successive goal-oriented subtasks (Duncan, 2010). It is not a 

particularly surprising result that a challenging problem would draw on enhanced 

recruitment of this MD system, but what is perhaps more insightful is that our results 

seem to suggest this is generally the case, regardless of the type or context of the problem 

task.  
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2.5.4 A Model for Multi-Network Cooperation in Problem Solving 

Viewed collectively, these global, common, domain-specific, and demand-related results 

outline a set of related yet dissociable networks engaged during problem solving. The 

core set of activated regions appears to be centrally involved in problem demand, and 

formal reverse inference suggests activation across these areas provide a set of general 

cognitive resources that, perhaps, interface across broader brain systems and focus 

attention within directed sequential action (Duncan, 2010). At the same time, contrast 

results highlight separate representationally-specific sets of coordinated activation 

patterns that appear to be honed for achieving precise operations. Together, activity 

across these domain-general and domain-specific areas combine to form different aspects 

of the overall activation patterns revealed by problem solving within representational 

domains. Fundamentally, meta-analytic results are unequipped to evaluate such 

functional network dynamics, although these processes almost certainly play an essential 

role within problem solving. While the particular analyses we conducted cannot isolate 

mechanisms in how these dissociable activation patterns come together to achieve the 

aggregational cognitive maneuvers that make up problem solving, empirical 

neuroimaging studies have begun to explore these dynamics in regional functional 

connectivity and network interactions. Additional work is still needed to elucidate how 

such processes may support the large variety of problem solving processes humans face 

on a day-to-day basis. Here, we outline one possible interpretation of how our multiple 

network observations may come together to holistically achieve problem solving across 

diverse contexts.  
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We propose a speculative model of general problem solving brain function that arises 

from a series of sub-network and systems-level interactions that together orchestrate 

multifaceted cognitive procedures. In our model, the core problem solving network exerts 

executive control over cognitive steps to flexibly monitor and maintain neural resources. 

This process may involve top-down signals dispatched from the core regions to trigger 

and coordinate distinct subroutines adapted to domain or context-specific demands. Sub-

processes that occur within broader networks, perhaps similar to those resolved by our 

within-domain or global analyses, would likely engage multiple whole-brain systems 

including salience and executive networks (Bressler and Menon, 2010). The role of these 

system-level interactions in problem solving may be to facilitate integrative cross-

network communication, search for and detect solution relevant stimuli, and funnel 

information into linked sub-routines to adaptively focus attention to achieve smaller, 

targeted reasoning procedures accomplishing focused cognition (Cohen and D’Esposito, 

2016; Duncan, 2013; Uddin, 2017). We propose that honed processes, as directed by the 

core network, may participate in feedback loops delivering ascending analyzed 

information back to whole-brain systems to sustain multi-stepped analytics and trigger 

confirmatory metacognitive processes (e.g., consistency checking or error detection; 

Mayer, 1998). If this is the case, the core network may aid in sustaining problem solving-

related activity by re-dispatching or re-directing reasoning subroutines as needed, 

ultimately informing decision making processes to produce problem solutions. Of course, 

meta-analytic results alone cannot confirm this model, and a considerable amount of 

additional research is needed to probe the dynamic cross-network connectivity patterns 
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we have here suggested. However, existing work that sheds light on network dynamics 

within problem solving, outlined below, seem to be consistent with this proposed model. 

Complex network interactions such as those we have proposed here would likely take on 

diverse forms within problem solving, and understanding the ways in which multilevel 

systems share information may be key in revealing the neural basis of problem solving 

efficacy. In language tasks, electrocorticography has resolved dynamics across multiple 

left hemispheric sub-networks, and while these networks appear to coordinate with 

similar stepwise profiles across subjects, individual differences in response times were 

also reported alongside subject-by-subject variation in sub-network duration during task 

engagement (Collard et al., 2016). This suggests common network sequences subtend 

task completion, but also distinctive contributions from these dynamics may influence 

behavioral differences. In fact, performance in problem solving has been explicitly linked 

to variations in how brain systems interact across problem steps. Anderson et al. (2012) 

revealed shifting combinations of whole-brain neural sub-states in children as they solved 

algebra problems; individuals with high error rates utilized more sub-states at each 

problem step than their high-performing peers, and reliance on multiple states decreased 

as error-prone students achieved competency through practice. Such practice-related 

interactional changes have also been observed in the case of motor learning where 

connectivity between visual and motor systems decreased as learning occurred over time, 

suggesting whole-brain systems operate with increased autonomy as procedures become 

rote and cognitive load diminishes (Bassett et al., 2015). These findings suggest that 

difficulties in problem solving may be accompanied by increased cross-network 

complexity, perhaps as characterized by cognitive lingering or looping between 
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unnecessary or convoluted neural states, and that ease in solution derivation may rely on 

more efficient multileveled network dynamics. 

Yet solving truly novel problems is rarely easy, and these network dynamics should be 

considered in the context of problem solving as an implicitly challenging act that requires 

forging exploratory paths towards unknown solutions. These processes can demand 

substantial cognitive load and may require a certain degree of initial lingering within 

inefficient operations in order to flip positions of uncertainty towards coordinated and 

meaningful maneuvers. It is likely, then, that successful problem solving relies on a 

balance of multileveled and complex network crosstalk that eventually transitions 

towards efficient cooperation between whole-brain systems and targeted sub-processes. 

The use of creativity within problem solving is one resource that aids in flipping initial 

ineffectual processes towards productive solution derivations (Aldous, 2007; Fink et al., 

2009; Lubart and Mouchiroud, 2003), and increased dynamic coupling between salience, 

DMN, and CEN regions has been observed to support such creative idea production 

(Beaty et al., 2015). At the same time, creative processes in problem solving go hand in 

hand with shifting attentional focus across problem features (Friedman et al., 2003; 

Wegbreit et al., 2012; Wiley and Jarosz, 2012), and increased effective connectivity 

between salience and CEN regions has been observed in individuals with a strong ability 

to engage in attentional switching, but not for those with reduced capacity to shift 

attentional stances during tasks (Kondo et al., 2004). It is likely, then, that differences in 

problem solving success may be characterized by the nature and process of coupling 

between salience, CEN, and DMN systems. Individuals experiencing difficulty in solving 

problems may rely on more elongated creativity and attentional shifting mechanisms that 
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drive connectivity loops between fronto-cingulo-parietal regions. In contrast, individuals 

with more experience in problem solving may be better able to transition that sustained 

cross-system driving towards more effective honed sub-processes useful in solution 

derivation. Understanding the processes by which networks interact may prove to be 

important when understanding individual or group-level differences in problem solving 

competency. Meta-analytic techniques such as those employed in the present study 

cannot resolve brain dynamics or measure between-network connectivity, but the broad 

and processes-specific nature of our results suggest cooperation between large-scale brain 

systems and functionally specific sub-networks may play a crucial role in problem 

solving. Observing how these interactions occur may help elucidate remaining questions 

in how to better support problem solving success across individuals. 

2.5.5 Limitations and Future Work 

This study broadly, and for the first time, characterized the common and dissociable 

neural correlates underlying multiple examples of human problem solving. The 

investigation synthesized findings from a corpus of neuroimaging experiments reporting 

coordinate-based results across varied problem solving manifestations in healthy subjects. 

We included a wide variety of problem tasks and contrasts so that we could determine 

convergent brain activity associated with domain general problem solving networks. 

However, this approach had two main limitations. First, while this set of studies was 

sufficiently diverse, problem solving as a whole is widely investigated across disciplines 

and contexts. Thus, the mathematical, verbal, and visuospatial paradigms we examined 

constitute a subset of the larger breadth of human problem solving. However, while the 
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neural substrates uncovered in this study may best model a particular slice of possible 

human problem solving processes, it is tenable that similar systems of coordinating 

perceptual, regulatory, and/or contextually bound channels are also broadly 

representative of generalizable neural mechanisms across the scope of human problem 

solving. 

The second limitation stems from the diversity of contrasts chosen. We modeled problem 

solving as a general process by including a wide variety of contrasts. This broad focus 

identified commonalities across problem tasks and contexts, but simultaneously restricted 

our ability to resolve the differential contributions specific cognitive processes had on the 

resulting meta-analytic maps. However, unlike our domain-general or representationally 

specific results, the problem demand analysis included contrasts of only one type (i.e., 

complex > simple problems), and was thus able to identify such common activation 

patterns linked with problem difficulty. Further investigations seeking to isolate other 

specific constituent processes or characteristics central within problem solving can take a 

similar approach. 

Further, all problem solving instances in this study were conducted in a laboratory 

environment. Yet, there is a growing cross-disciplinary appreciation of the many ways 

social, motivational, and affective processes can impact problem solving abilities 

(Beilock and Decaro, 2007; DeBellis and Goldin, 2006; Heller et al., 1992; Mayer, 1998). 

Thus, the mental processes underlying problem solving in a controlled setting may not 

identically resemble those of problem solving outside the laboratory. Additional studies 

bridging problem solving neuroimaging investigations with social and affective 
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neuroscience need to be conducted before we are able to explore these topics with meta-

analytic tools. Given these limitations, it is likely that the neural representations of 

problem solving occurring across naturalistic settings and contexts may involve different 

sets of activation patterns than those reported in this study. However, our finding of a 

shared core network that may play a role in coordinating, engaging, or negotiating 

sensory signals likely holds even for more distributed or complex networks. Integrating 

neuroimaging research in problem solving with multileveled experimental methods that 

explicitly attend to ecological significance may more appropriately characterize the ways 

affective and social factors influence the neural makeup of problem solving. 

Lastly, meta-analytic results are of course limited by the quality and volume of studies 

available in the neuroimaging literature. There are several sources of error inherent to 

fMRI analyses, such as inter-subject anatomical variability and spatial smoothing, that 

can lead to decreased resolution in group-level fMRI analyses (Nieto-Castañón and 

Fedorenko, 2012), and in turn cause specious spatial overlap in meta-analytic results. 

This issue impacts both fMRI group-level analyses and meta-analysis in general. The 

results we present in this study show centralized and consistent co-activation patterns 

across multiple task types and domains, and because of the coherences across our set of 

problem solving network findings, they are not likely simply the product of sources of 

noise. However, spatial error may still have contributed to a lack of specificity in our 

observations. 

This study leverages the existing wealth of problem solving activation-location findings 

to reveal patterns of domain-general and context-specific brain networks associated with 
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diverse problem solving tasks. We propose that the coordinated set of these multiple 

systems may provide supervisory, attentional, and perceptual support to accomplish 

problem solving across contexts.  Promising next steps in problem solving research may 

be to further measure these stepwise neural profiles, with an explicit consideration on 

how naturalistic settings and behavioral factors can impact network interactions. Previous 

work has linked similar brain areas as those revealed here to inter-individual variability in 

cognitive ability (Goodkind et al., 2015; Muller et al., 2015), but it is currently unclear 

how variations in network or sub-network connectivity patterns may aid or inhibit 

individual differences in problem solving success, and by understanding these processes 

from both a behavioral and neuroscientific perspective we may be better able to 

characterize how problem solving skills develop across training. Such insight could 

inform interventions to address the challenges posed by cognitive dysfunction or 

affective deterrents on problem solving success (Ferrari, 2011). Neuroscience-based 

interventions have already been used to successfully improve problem solving 

performance in students via mindset shifting (e.g., from intelligence-as-fixed stances to 

beliefs in malleable cognitive abilities; Blackwell et al., 2007; Dweck and Leggett, 1988). 

Such interventions have not yet been widely applied in cases of cognitive deficits, but a 

detailed mapping of the neural bases of problem solving could be used to develop tools 

and strategies to mitigate disadvantaging impacts of dyslexia or dyscalculia (Butterworth 

et al., 2011; Gabrieli, 2009; Kaufmann, 2008). Arguably, one of the fundamental goals of 

neuroimaging research as a whole is to impact and improve people’s everyday 

experiences and behaviors. In this sense, one of the most promising future directions of 

neuroimaging problem solving research is to inform evidence-based educational 
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interventions that aid in successful reasoning and skill development. Thus, understanding 

the neural mechanisms of problem solving, especially with a focus on how cognitive, 

affective, and environmental factors can influence network dynamics and neural 

development, has wide reaching applications. 

2.6 Conclusions  

In the present study, we performed multiple problem solving meta-analyses to answer the 

questions: “How is content-general problem solving supported in the brain?”, “Does a 

common network direct all types of problem solving processes?”, and “What neural 

underpinnings selectively represent problem solving within specific content variants?”. 

By considering a comprehensive set of problem solving tasks that, heretofore, have only 

been considered separately, we provide evidence for a common brain-based mechanism 

for human problem solving in which a shared frontoparietal system provides dual 

attentional and regulatory support across diverse problem solving tasks, and we identify 

distinguishable activation patterns that may uniquely contribute to specific 

representationally-linked functions in problem solving across contexts. Our results 

suggest multiple convergent neural systems, including salience and cognitive control 

networks, give rise to generalized problem solving. Unique circuits within these networks 

support context-specific sub-classes of problem solving, and consistency across diverse 

stimulus modalities demonstrates a core network that supports problem solving 

independent of content or focus. This core network appears to play a key role in 

managing problem demand. The current work provides a novel neurobiological 

perspective on the wider study of problem solving across knowledge domains and may 
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serve to inform neuroeducational techniques aiming to understand more about the 

acquisition of problem solving skills. 
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Chapter 3  

Data Acquisition 

 

The overall Understanding the Neural Mechanisms of Physics Learning project, of which 

the first three publications are presented in this dissertation, was designed to study 

functional brain changes associated with physics learning in undergraduate students 

before and after a semester of introductory physics (PHY 2048) at Florida International 

University. Chapter 3 presents the development, facilitation, and acquisition of these 

data. 

3.1 Project Overview 

As part of the Physics Learning project, two cohorts of students were recruited each 

academic year: Fall semester students underwent “pre” behavioral testing and 

neuroimaging scanning in August and “post” behavioral testing and fMRI scanning in 

December. Spring semester students underwent “pre” testing and scanning in January and 

“post” testing and fMRI in May. Pre- instruction fMRI sessions began the week before 

each regular academic session and finished before the first exams of each physics course, 

no more than 4 weeks into the 15-week semester. Post-instruction MRI scanning 

commenced immediately after final exams and concluded within 4 weeks of the mid-

semester academic break (Figure 3.1). Each cohort included two groups of students who 

were enrolled in either a traditional Lecture-based class or a Modeling Instruction class. 
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In total, the project called for 100 students, aged 18-25, including 50 from lecture and 50 

from MI classes that were enrolled across the span of six academic semesters. 

 

Figure 3.1. Study Design. Schematic of data collection timeline across the two study 
groups, Lecture Instruction (LI) and Modeling Instruction (MI). 
 

3.2 Task Development 

Three MRI paradigms were developed and/or adapted to the MRI environment as part of 

the overall Understanding the Neural Mechanisms of Physics Learning project. They 

were the Force Concept Inventory (FCI; (Hestenes et al., 1992)) task, the Retrieval task, 

and the General Reasoning task. Resting state data, in which participants engaged in task-

free (e.g., mind wandering) thought while in the scanner, were also collected in addition 

to the three task-base paradigms. All tasks were programmed for presentation for the 

MRI environment using the E-Prime (Psychology Software Tools, Inc., Pittsburgh, PA) 

software library. Stimuli were projected from a computer located the MRI control room 

onto a screen placed at the back of the MRI scanner, and students viewed questions 

through a mirror view screen mounted to the radio frequency head coil. Participants were 

given a fiber optic keypad to hold in their right hand with which to respond to each 

question. All questions were in multiple-choice format. 



 92 

3.2.1 FCI Paradigm 

To probe the neural mechanisms underlying conceptual physics reasoning, we developed 

a scanner-adapted version of the Force Concept Inventory, which is a widely used test of 

physics conceptual reasoning typically given pre- and post-instruction to measure 

learning gains. Extensive FCI data from introductory physics classrooms show consistent 

significant differences between interactive vs. traditional lecture environments (Hake, 

1998). The widespread use and robust interpretation of the FCI made for an ideal 

instrument to be adapted to the MRI environment. In addition to FCI questions, students 

answered high-level baseline contrast questions testing general reading comprehension. 

To allow for individual differences in reading comprehension, processing speeds, and 

physics problem solving strategies, all paradigm questions were self-paced with a 

maximum time per question of 45 seconds followed by 10 seconds of fixation, to allow 

for the brain’s HRF to relax to baseline. A schematic depicting the in-scanner timing for 

the MRI-adapted FCI paradigm is provided in Figure 3.2. 

 

 

Figure 3.2. FCI Paradigm Structure. The timing and presentation of the FCI paradigm, 
and adapted for presentation in the MRI scanner 
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Force Concept Inventory problems present physical scenarios involving objects at rest or 

in motion. Solution derivation requires extracting meaningful and relevant information 

about a scene, then appropriately applying physical laws to infer causal motion or 

interactions between forces and objects. The FCI is typically administered as an in-class 

multiple-choice exam consisting of questions about intuitive, every-day scenarios. We 

adapted and modified parts of the paper-based FCI exam for in-scanner display to 

accommodate presentation and timing requirements inherent to the MRI environment. All 

adaptions were made to remain as true as possible to the original in-class exam, with no 

changes fundamentally altering any physics-related content being tested. Original FCI 

question text was edited for brevity, placement of visual features was standardized across 

questions, and items were presented in a pseudo-randomized order. To encourage 

participant compliance and avoid fatigue or excessive head motion, we presented a 

reduced exam composed of 9 items from the original test. Included items (FCI 2, 3, 6, 7, 

8, 12, 14, 27, and 29) probed student understanding of Newton’s 1st and 2nd laws of 

motion. These questions were selected to span multiple difficulty levels (34.6% to 73.6% 

correct rate; (Morris et al., 2012)) and because their incorrect answer options probe a 

diversity of non-Newtonian conceptions about physics. Additionally, technological 

constraints associated with the four-button MRI-compatible keypad required that we 

eliminate one answer option from each of the originally five-answer choice FCI items. 

We removed the least commonly selected answer chosen by students across all ability 

levels, as reported in the item response curves of (Morris et al., 2012). These answer 

options were 2E, 3D, 6D, 7D, 8C, 12A, 14E, 27E, and 29C, and in-scanner FCI answer 
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options appropriately were reordered. The visual presentation of the in-scanner FCI 

questions, as they appeared to students in the scanner, is provided in Figure A.1. 

In-scanner FCI and control questions were presented in a self-paced, three-phase 

sequence of view screens, emulating the flow of information in the original FCI exam. In 

the first problem initiation phase students viewed paired text and figure description a 

physical scenario (Phase I). Text was displayed on the top left portion of the view screen 

and did not exceed three sentences in length; the figure appeared at the top right portion 

of the view screen and depicted visual information necessary for answer making (e.g., 

kinematic trajectories or the spatial configuration of key features.) Students were 

instructed to press a keypad when they had completely read all text and felt they 

understood the physical scene. The button press triggered the start of the second question 

presentation phase (Phase II), which added a single, left-justified sentence to the middle 

portion of the view screen asking the student a physics question about the scenario. The 

student was instructed to press the keypad after fully reading the question in order to 

initiate the third and final answer selection phase (Phase III) wherein four possible 

answer choices, labeled A through D, were revealed at the bottom left of the view screen. 

Students were instructed to choose the correct answer and to explicitly mentally justify 

why the answer they selected made the most sense to them. Upon answer selection, all 

information on the view screen was replaced with a central fixation cross of variable 

duration. Variable response times per block resulted in randomized interstimulus 

intervals between questions. 
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Force Concept Inventory questions were interleaved with control questions that did not 

require physics reasoning or problem solving, constituting a high-level baseline 

comparison. Control questions displayed text and figure depictions of everyday physical 

scenarios and tested students on general reading comprehension and/or shape 

discrimination instead of physics content. Control items shared visual and linguistic 

characteristics to the FCI questions, containing words typically used in introductory 

Newtonian mechanics as well as visual presentation and self-paced timing paralleling that 

of the FCI problems. Text complexity for FCI and Control questions was measured using 

the Educational Testing Service’s TextEvaluator tool (https://textevaluator.ets.org

/textevaluator/) and no significant differences in linguistic complexity were present 

between conditions (total words per question: FCI = 31.4, Control = 31.3; Average words 

per sentence: FCI = 11.1, Control = 9.8; Syntactic complexity: FCI = 33.2, Control = 

32.7; Academic Vocabulary: FCI = 22.7, Control = 32.6; Word Unfamiliarity: FCI = 

36.7, Control = 32.3; Lexical Cohesion: FCI = 56.3, Control = 53.4; p<0.05).  

3.2.2 Retrieval Paradigm 

We developed a novel block-design paradigm to measure physics-based semantic 

memory to provide data necessary to identify whether brain networks evoked during FCI 

are similar to physics fact retrieval. In this paradigm, students answered questions on 

physics retrieval (e.g., “What is the value of the acceleration due to gravity on Earth”? 

with answer choices such as “9.81 !
!!

 ”, “15 𝑘𝑔”, “10 𝑙𝑖𝑡𝑒𝑟𝑠”, “11 !"
!!

 ”), general retrieval 

(e.g., “What is the tallest mountain in the world”? with answer choices such as “Mount 

Rushmore”, “Rainier Mountain”, “Mount Everest”, “Mount Logan”), and low-level 
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baseline items (e.g., “Press a key that corresponds to the letter n” with answer choices 

such as “5”, “n”, “#”, “S”). A schematic of the timing for the Retrieval paradigm is 

provided in Figure 3.3. 

 

Figure 3.3. Retrieval Paradigm Structure. The structure and timing for the Retrieval 
paradigm 

 

3.2.3 General Reasoning Paradigm 

We adapted a fast event-related paradigm from canonical transitive inference deductive 

reasoning paradigms to assess general reasoning ability (Goel et al., 2009; Stollstorff et 

al., 2012). The task provided data necessary to identify whether brain networks evoked 

during the FCI are similar to reasoning outside of the domain of physics. In this task 

students viewed sequential relational statements (e.g., “The Fork is to the left of the 

Plate” and “The Fork is to the right of the Cup”) followed by a putative conclusion (e.g., 

“The Cup is to the left of the Plate”?). Students were instructed to indicate via button 

press if the conclusion logically followed from the statements. A schematic of the in-

scanner timing for the General Reasoning paradigm is provided in Figure 3.4. 
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Figure 3.4. General Reasoning Paradigm Structure. The structure and timing for the 
General Reasoning paradigm. 

 

3.2.4 Resting-State Paradigm 

Resting state analyses examine the temporal correlation between time series of 

anatomically distinct brain regions when individuals engage in wakeful rest. Such 

measures are thought to reflect the underlying functional architecture of the brain, which 

is likely modulated by both behavior and experience (Cole et al., 2010; Lewis et al., 

2009; van den Heuvel et al., 2009). We included a resting-state paradigm because we 

anticipated learning-related changes in task-based networks may accompany functional 

connectivity changes in the resting brain (Guidotti et al., 2015; Lewis et al., 2009; 

Mackey et al., 2013). Thus, we collected 12 minutes of resting state data wherein 

participants were instructed to lie quietly with their eyes closed in the MRI scanner and to 

not fall asleep. 

3.2.5 Behavioral Data 

In additional to fMRI data, we acquired a battery of matched pre/post behavioral 

assessments to aid in screening and as covariates in fMRI analyses. Participants 

completed an Edinburgh Handedness Inventory (Oldfield, 1971) which shows 

correspondence to language lateralization in the brain, the Wechsler Adult Intelligence 

Scale (WAIS) (Wechsler, 1958) to measure cognitive ability and generalized intelligence 
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quotient (IQ), the Way-Finding Strategy Scale (Lawton, 1994) to measure differences in 

spatial anxiety and orientation strategies, the Mathematics Anxiety Rating Scale 

(Alexander and Martray, 1989) to measure anxiety related to calculation and performing 

mathematical tasks, the Science Anxiety Questionnaire (Mallow, 2006) to assess the 

degree to which each student experienced anxiety related to performing science tasks, the 

Beck Anxiety Inventory (Beck et al., 1988) as a control measure to assess the presence of 

generalized anxiety across study participants, a Mental Rotation Test (Shepard and 

Metzler, 1988; Vandenberg and Kuse, 1978) to measure student’s visualization and 

spatial rotation abilities, a novel FCI Reasoning Survey (Figure A.1) to measure 

confidence level and overall strategy students applied within FCI problem solving, and 

measures on course grade earned in introductory physics classes. We included some of 

these measures as covariates in fMRI analyses in the present collection of work in order 

to explore brain-behavior correlations during physics reasoning. Additional publications 

are being prepared that utilize the remainder of these assessments and questionnaires. 

3.3 Participant Recruitment 

Participant recruitment is a consistent and common challenge across neuroimaging 

experiments.  In general, individuals wishing to take part in neuroimaging studies initiate 

contact with project researchers to undergo required safety and eligibility screening, but 

many regularly either do not match demographic or experimental requirements, or they 

fail to meet metal safety, general health, neuropsychological, or certain medication 

restrictions. Even when participants do meet all necessary conditions they sometimes 

may simply no longer wish to take part in the study and withdraw from participating. 
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These challenges are common to all MRI experiments and across neuroimaging research 

institutes, and were particularly challenging due to the necessarily restrictive windows for 

recruitment and scanning and because of the pre/post study design requiring multiple 

MRI visits per student. Thus, participant recruitment and retention made up an essential 

and extensive portion of the project. A summary of these efforts is provided below. 

The overall Understanding the Neural Mechanisms of Physics Learning project aimed to 

understand the brain-based mechanisms of physics learning and problem solving; towards 

this end, experiment design relied on pre- and post-instruction MRI scanning sessions. At 

the beginning of each academic semester, potentially eligible students were identified, 

contacted, screened, scheduled, and underwent MRI scanning before the conclusion of 

the first four weeks of university physics instruction. Because of the limited pre- and 

post-instruction data collection windows that were central to this study design, beginning-

of-semester efforts to successfully identify and collect data from eligible participants 

within a short timeframe proved to be particularly challenging, yet target enrollment was 

ultimately achieved across three academic years and six student cohorts (Figure 3.5).  

 

 
Figure 3.5. Project Timeline. “C” = Cohort; “pre” = before course; “post” = after 
course. 
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Appropriately distributing recruitment responsibilities among study researchers and lab 

members was essential in establishing parallel lines of facilitation across the recruitment 

pipeline to supporting fluid communication between interested students and the study 

team. Recruitment strategies included identifying and emailing potentially eligible 

individuals to inform them about the opportunity to participate, making multiple in-class 

study announcements inviting interested students to contract the research team, 

distributing recruitment flyers, responding to email and phone messages from interested 

students, reviewing Qualtrics survey responses to parse potentially eligible from 

ineligible participants, conducting phone calls necessary for MRI contraindications and 

screening, balancing student schedules with those of the MRI facility and medical staff to 

secure scan slots, coordinating participant reminder messages to ensure student 

compliance with scan schedules, managing, replenishing and distributing, participant 

payments from appropriate institutional channels, synchronization with the on-campus 

behavioral data collection team to schedule pre- and post-instruction cognitive 

assessments, arranging participant transportation to and from the off-campus MRI 

scanner (located at the University of Miami), coordinating research assistant and 

administrational aid necessary in conducting back-to-back data collection sessions across 

study participants, running MRI task training, and ultimately collecting brain data. 

Across the three years of data collection, which involved managing participant 

recruitment, communication, scheduling, coordination, and data collection, we 

successfully identified and enrolled 134 total student participants (69 modeling, 65 

lecture; 56 women, 78 men). However, not all enrolled participants completed their 

physics courses or chose to participant in both pre- and post-instruction data collection 
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sessions. Of the 134 consented individuals, matched fMRI data sets were collected from 

107 students (55 modeling, 52 traditional; 48 women, 59 men) who all successfully 

completed introductory physics. The enrolled study participants included 113 subjects 

who completed all study procedures (five pilot participants and 108 student participants), 

14 subjects who were removed from the study, three who were non-responsive for post-

instruction scheduling, three students who were no longer interested in participating after 

completing their first study visit, and one student who was unable to schedule their final 

visit due to scheduling conflicts. A breakdown of enrollment efforts is detailed below and 

outlined in Figure 3.6. 

 

 

Figure 3.6. Data Collection Summary. Efforts are presented across the three data 
acquisition years. 
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3.4 MRI Scanning 

3.4.1 Task Training 

All study participants completed a training session at an E-prime equipped computer and 

within a mock MRI scanner immediately prior to undergoing imaging. Training 

familiarized students with the MRI environment, provided instruction on how to 

complete all paradigms, and promoted participant compliance by providing feedback on 

head motion, stimuli visibility, and to answer any questions about the scan. During 

training, students answered example physics, retrieval, and general reasoning problems. 

For FCI training problems, students were instructed to read all text on the view screen 

completely before pressing the button to move on to the next problem solving stage. 

Students were not informed of the accuracy of their answers and were not guided on how 

to solve the physics questions. All training physics questions were adapted from FCI 

questions not included in the in-scanner FCI test, or from questions from a similar 

physics conceptual exam called the Force and Motion Concept Inventory (Thornton, 

1998). A timeline of training sessions is provided in Figure 3.7.  

 

Figure 3.7. Training Protocol. Task training was performed before each MRI scanning 
session suing questions that were similar but not identical to the questions that were 
presented in the MRI scanner. The order of training tasks paralleled the order presented 
in the MRI scanner. 
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Figure 3.8. MRI Scan Protocol. MRI scanning commenced immediately after task 
training completion. The order and duration of all runs for all MRI paradigms are 
provided above. 

 

3.4.2 fMRI Data Acquisition  

Data collection for all structural and functional images was carried out on a GE 

Healthcare Discovery 750W 3.0T MRI scanner using a 32-channel phased-array radio 

frequency coil. Functional images were acquired using an gradient-echo, echo-planar 

sequence, with 42 interleaved slices acquired obliquely (30° from the anterior 

commissure/posterior commissure plane) to maximize signal in frontal regions (TR/TE = 

2000/30ms, flip angle = 75°, FOV = 220x220 mm, matrix size = 64x64, voxel 

dimensions = 3.4×3.4×3.4 mm, slice spacing = 0 mm, with a bottom-up interleaved 

acquisition). For anatomical reference we acquired 3D high-resolution T1-weighted 

series using a 3D fast spoiled gradient recall brain volume (FSPGR BRAVO) sequence 

(TI = 650ms, flip angle=12°, bandwidth = 25.0kHz, voxel dimensions - 1×1×1mm, 

FOV=256mm, slice thickness = 1.0mm). A projector presented all visual stimuli to a 

screen located at the back of the MRI scanner. Response data were acquired via a fiber 

optic button pad that participants held in their right hand. The full MRI scan protocol, 

including the order and duration of all paradigms, is provided in Figure 3.8. 
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3.4.3 Post-Scan Debriefing Procedures 

Immediately after training students underwent MRI scanning wherein they answered a 

series of physics and control questions. While in the scanner and between FCI functional 

runs, participants were reminded to explicitly think about why the answer their chosen 

answer seemed the most correct to them. Then, after exiting the scanner, students 

completed a written survey outlining their problem solving process for each FCI question 

Figure A.1. In the survey, students indicated the degree to which they used knowledge 

and reasoning to arrive at their provided answer and the degree to which they relied on a 

“gut feeling” to answer the question. After the scan students received compensation for 

their time ($50 for the first MRI scan, $100 for the second MRI scan) and, at the post-

instruction session, received a photographic print out of their brain as a souvenir. 
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Chapter 4  

Brain networks supporting physics cognition and knowledge organization in 

undergraduate students 

 

4.1 Abstract 

The ability to make predictions about objects and their interactions in the physical world 

is central to our everyday experiences. But formal physics reasoning is neither simple nor 

easy, and many undergraduate students invoke intuitive, but incorrect, ideas of physical 

causality when solving problems. Here, we used fMRI to probe physics problem-solving 

brain networks in 107 students after introductory college-level physics instruction. We 

measured sustained and sequential brain activity and functional connectivity during 

physics problem solving, and tested brain-behavior relationships between accuracy, 

difficulty, strategy, and conceptualization of physics ideas. Further, we applied module 

analysis to response distributions, defining groups of students who answered using 

similar physics conceptions, and probed for brain differences linked with different 

conceptual approaches. We observed integrated central executive, attentional, visual 

motion, and default mode brain systems that support distinct physics problem solving 

phases, with solution generation relying on cooperation between executive and episodic 

memory systems. Although accuracy alone did not impact brain function, differences in 

brain activity were associated with varying levels of coherence in students’ physics 

concepts, which influenced success. Our analyses demonstrate that episodic associations 
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and control processes operate in tandem to support physics reasoning, offering insight 

into effective classroom practices to promote student success. 

4.2 Significance Statement 

Understanding how students learn is crucial for helping them succeed. We examined 

brain function during a task known to be challenging for many students – physics 

problem solving – to characterize underlying neural mechanisms and determine how 

these support comprehension and proficiency. We found integrated executive, attentional, 

visual motion, and default mode brain systems cooperate to achieve sequential and 

sustained physics-related cognition. While accuracy alone did not predict brain function, 

dissociable brain patterns were observed when students solved problems using different 

physics conceptions, and increased success was linked to conceptual coherence.  

4.3 Introduction 

New innovations in transforming science education to promote success and broaden 

participation require an understanding of how students learn. Learning interventions, both 

long- and short-term, yield measurable brain changes, and classroom science instruction 

likely influences and regulates the neural processes by which students consolidate, 

access, and store information (Mackey et al., 2013, 2012; van Kesteren et al., 2014). 

Physics in particular can be a challenging discipline for many students as it requires both 

a conceptual understanding and recall of physical principles, along with acquisition of 

procedural skills for solving problems. Evidence suggests cognition about physical 

concepts (e.g., velocity, acceleration, force) are encoded into specific neural 

representations (Mason and Just, 2016), and these representations may change during 
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progressive stages of physics learning (Mason and Just, 2015). Problem solving is known 

to engage an extensive frontoparietal central executive network (CEN), both generally 

across domains of knowledge (Bartley et al., 2018) and specifically regarding physics 

concepts (Riekki et al., 2018). Collectively, these findings highlight a putative role for 

science education in shaping functional brain architecture and underscore the complexity 

of neural processes linked with proficiency in physics problem solving. 

Insight into the scientific learning process may be gained by considering the obstacles 

students encounter. A wealth of cognitive science and education research has identified 

consistent patterns in how students think about physics, with a preponderance of studies 

focusing on difficulties mastering Newtonian mechanics (Halloun and Hestenes, 1985; 

McDermott, 1984; McDermott and Redish, 1999). Physics students consistently struggle 

to learn key concepts and novice students are known to invoke intuitive but incorrect 

ideas of physical causality when solving problems (Hammer, 1996a). These misleading 

conceptions frequently interfere with a student’s ability to successfully acquire new 

physics knowledge (McDermott, 1991). The anterior cingulate cortex (ACC) may be 

engaged when students view physically causal scenes that conflict with their strongly 

held intuitions (Dunbar et al., 2007), yet little is known about the underlying neural 

processes of how students tackle conflicting physics conceptions during reasoning. These 

so-called “folk physics” notions (Baron-Cohen et al., 2001; diSessa, 1993; Solomon and 

Zaitchik, 2012) may be implicitly linked to associative memory, with naïve reasoning 

arising from context-based extrapolations of remembered personal experiences (McLaren 

et al., 2013). Alternatively, students may activate patterns of associations between 

knowledge elements (e.g., memories, beliefs, facts) during physics reasoning that display 



 108 

varying levels of coherence (integration of concepts) and robustness (applicability across 

contexts; (Redish, 2003)). However, such claims have not been evaluated at the 

neurobiological level. 

We acquired functional magnetic resonance imaging (fMRI) data from 107 

undergraduate students after the conclusion of a semester of university-level physics 

instruction. During fMRI, students were presented with questions adapted from the Force 

Concept Inventory (FCI; (Hestenes et al., 1992)), a widely adopted test of conceptual 

problem solving that presents scenarios of objects at rest or in motion and asks students 

to choose between a Newtonian solution and several reasonable Non-Newtonian 

alternatives, each of which mirror common confusions. Physics and baseline perceptual 

questions (Figure 4.1) were presented as blocks composed of three sequential phases: 

problem initiation, question presentation, and answer selection. Brain activity across full 

questions, as well as within each phase, was assessed. We then explored putative links 

between the neural substrates of physics problem solving and accuracy, difficulty, 

strategy, and student conceptualization of physics ideas. First, we probed for brain-

behavior correlations revealed by parametric modulation of the BOLD signal in a priori 

reasoning and memory-linked regions of interest (ROIs; Figure 4.2a) located in the left 

dorsolateral prefrontal cortex (dlPFC), ACC, left posterior parietal cortex (PPC), left 

hippocampus, and retrosplenial cortex (RSC), and across the whole brain. Second, 

because student response patterns across FCI questions are heterogeneous and even 

incorrect answer choices provide meaningful information about students’ conceptions 

(Savinainen and Scott, 2002), we distinguished sub-types of “physics thinkers” based on 

their FCI answer choices. Specifically, we applied community detection to FCI answer 
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distributions to identify sub-groups of similarly responding students and contrasted brain 

activity between groups to examine differential ways of thinking about the behavior of 

physical phenomena. 

 

Figure 4.1. In-Scanner FCI Paradigm. Three-phase sequential progression of an 
exemplar in-scanner (a) Force Concept Inventory (FCI) question and (b) Control 
question. 
 

4.4 Materials and Methods 

4.4.1 Participants 

One hundred and seven healthy right-handed participants who took part in this study 

were undergraduate students enrolled in introductory calculus-based physics at Florida 

International University in Miami, Florida (age 18-25 years; mean: 20.2, SD: 1.39; 48 

women). Study participants were selected from a large set of applicants (N=496, from 22 

different physics course sections) who responded to in-class recruitment announcements 

made at the beginning of the academic semester. Participants were free of cognitive 
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impairments, neurological and psychiatric conditions, did not use psychotropic 

medications (i.e. stimulants, anti-anxiety/anti-depressants, recreational drugs), and had 

never previously completed a university-level physics course. Of the 107 individuals who 

underwent post-instruction MRI scanning, 11 were college freshmen, 51 were 

sophomores, 32 were juniors, and 13 were seniors. The introductory physics course 

emphasized problem-solving skill development and covered topics in Newtonian 

mechanics, including motion along straight lines and in two and three dimensions, 

Newton’s laws of motion, work and energy, momentum and collisions, and rotational 

dynamics. MRI scans commenced immediately after the completion of the physics 

courses final exam and concluded no more than two weeks after the end of the academic 

semester. Written informed consent was provided prior to participating in the study in 

accordance with Institutional Review Board approval and students received monetary 

compensation for their time. 

4.4.2 FCI Task  

The Force Concept Inventory, a widely used (Von Korff et al., 2016) and reliable (Lasry 

et al., 2011) test of conceptual understanding in Newtonian Physics (Hestenes et al., 

1992), that includes a series of questions about physical scenarios was adapted for the 

MRI environment. FCI questions do not require mathematical calculation; rather they 

force students to choose between a correct answer and multiple commonsense 

alternatives. The task included three phases: participants viewed a figure and descriptive 

text presenting a physical scenario (Phase I), a physics question was presented (Phase II), 

and participants viewed four possible answers and were instructed to choose the correct 
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answer and mentally justify why their solution made the most sense (Phase III). 

Participants provided a self-paced button press to advance between phases and provide 

their final answer; a fixation cross was shown after answer selection before presentation 

of the next scenario. Question blocks were of maximum duration 45s and were followed 

by a fixation cross of minimum duration 10s. Control questions presented everyday 

physical scenarios and queried students on general reading comprehension instead of 

physics content. Control questions also included three phases (Control I, Control II, and 

Control III) to match the presentation of FCI questions.  

 

 

Figure 4.2. Regions of Interest. a) The hypothesis-driven ROIs (blue) selected from 
coordinate results of problem solving (dlPFC, PPC, and ACC; (Bartley et al., 2018)) and 
episodic, spatial, and declarative memory (hippocampus and RSC; (Andrews-Hanna et 
al., 2014; Robinson et al., 2015)) meta-analyses. b) The seeds selected for further 
exploration of task-based functional connectivity via psychophysiological interaction 
analysis (PPI; green). These regions were derived from peak group-level results from the 
FCI > Control (all phases) contrast. 
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4.4.3 FCI Problem Difficulty and Post-Scan Strategy Questionnaire 

Post-scan debriefing included a paper-based questionnaire in which students rated the 

degree to which they had used “knowledge and reasoning” or had relied on a “gut 

feeling” to solve each FCI question. Normative question difficulty was measured as the 

percent of students who answered incorrectly on FCI questions from a dataset of more 

than 4,500 student responses to the FCI administered at Harvard University, Mississippi 

State University, and Rice University and reported in (Morris et al., 2012). Problem 

solving strategy was measured as a self-reported measure assessed immediately after scan 

completion. Students were given a post-scan, written questionnaire depicting each in-

scanner FCI question with the statements “I used knowledge and reasoning to arrive at 

my answer” and “I relied on a ‘gut feeling’ to arrive at my answer” (Figure A.1). 

Students rated their agreement/disagreement with each statement for each FCI question 

on a 5-point Likert scale. 

4.4.4 fMRI Acquisition and Pre-Processing 

Functional images were acquired on a GE 3T Healthcare Discovery 750W scanner with 

an interleaved gradient-echo, echo planar imaging (EPI) sequence (TR/TE = 2000/30ms, 

flip angle = 75°, FOV = 220x220mm, matrix size = 64x64, voxel dimensions = 

3.4×3.4×3.4mm, 42 axial oblique slices, 172 volumes/run × 3 runs). A T1-weighted 

series was acquired using a 3D fast spoiled gradient recall brain volume (FSPGR 

BRAVO) sequence with 186 contiguous sagittal slices (TI = 650ms, bandwidth = 

25.0kHz, flip angle = 12°, FOV = 256x256mm, and slice thickness = 1.0mm). Pre-

processing was performed using tools from the FSL (www.fmrib.ox.ac.uk/fsl) and AFNI 
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(http://afni.nimh.nih.gov/afni) software libraries. To allow for image intensity 

stabilization, the first five frames of each functional run were discarded. All functional 

and structural images were aligned to a common stereotactic origin and spatial orientation 

to match that of the MNI152 template. Rigid-body motion correction was performed on 

functional runs by aligning all images in each run to the middle volume. Anatomical and 

functional images were skull stripped, functional images were high-pass filtered (110s), 

and a 12-degree-of-freedom affine transformation was applied to co-register the series 

with each participant’s structural volume. Non-linear resampling was applied to 

transform all images into MNI152 2mm space and functional volumes were spatially 

smoothed using a 5mm Gaussian kernel. Additionally, all motion-corrected non-

registered 4D data underwent visual inspection and TRs associated with visually 

identified motion artifacts were flagged for exclusion in further analysis and their 

corresponding FD values were recorded. The minimum of the distribution of these 

artifact-linked FDs was used as a common scrubbing threshold across subjects during 

analyses. TRs with excessive motion (including one frame before and two frames after) 

were scrubbed if they met or exceeded a threshold of 0.35mm FD (Power et al., 2011). 

Runs containing excessive motion (≥33% of within-block motion) were discarded from 

the analysis, resulting in the omission of three runs from two individuals. Six motion 

parameters (translations and rotations) were included as nuisance regressors in all 

analyses. 
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4.4.5 General Linear Model Analyses 

Stimulus timing files were created for each participant based on question phase 

onset/offset times. FCI and control questions were modeled as blocks from question onset 

to the onset of a concluding fixation cross triggered by answer selection. The contrast 

FCI > Control was modeled across full question duration; three additional GLM analyses 

were performed for the individual phases. Timing files were convolved with a Gamma-

modeled hemodynamic response function and the first temporal derivative of each 

convolved regressor was included in analyses to account for any offsets in peak BOLD 

response. General linear modeling for within- and between-subject analyses was 

performed in FSL using FEAT. Group-level activation maps for the contrasts FCI > 

Control, Phase I > Control I, Phase II > Control II, and Phase III > Control III were 

thresholded with a cluster defining threshold (CDT) of P < 0.001 and a cluster extent 

threshold (CET) of P < 0.05 (FWE corrected). Meta-analytic functional decoding for the 

FCI > Control, Phase I > Control I, Phase II > Control II, and Phase III > Control III 

contrasts was performed on the resulting unthresholded z-statistic maps with a 200-topic 

GC-LDA (Rubin et al., 2016) topic model trained on the Neurosynth database (Yarkoni 

et al., 2011). 

4.4.6 Task-Based Functional Connectivity Analysis 

We tested for psychophysiological interaction (PPI) effects associated with the FCI task 

across three seeds modeled as 10mm spheres and centered on peaks from the overall FCI 

> Control map located in the left V5/MT+, left dlPFC, and RSC (Figure 4.2b). ROIs 

were transformed into native space and time series were extracted from unsmoothed data 
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and included as regressors in separate within-subject PPI analyses performed on spatially 

smoothed 4D data sets. Design matrices for the within-subject PPI analyses contained 

regressors for the ROI time series, the condition difference vector modeling the 

differences between FCI and Control timing files, a vector representing the sum of the 

FCI and Control conditions, and the interaction between the task difference vector and 

ROI time series. The interaction term was calculated by zero-centering the task 

explanatory variable, and the mean of the ROI time series was set to zero. All task and 

interaction regressors, but not the ROI time series, were convolved with a Gamma-

modeled hemodynamic response. PPI analyses were carried out separately for each ROI 

and resultant beta maps were averaged within-subject and carried into three separate 

group-level analyses. ROI-to-voxel task-based functional connectivity analyses were 

thresholded at a significance of P < 0.001 CDT, P < 0.05 CET (FWE corrected).  

4.4.8 Definitions of A Priori Regions of Interest and PPI Seeds 

Five a priori regions of interest (ROIs) were selected for inspection of potential physics 

problem solving-related brain activity correlations with problem solving strategy, 

accuracy, and difficulty. ROIs were meta-analytically defined to include areas associated 

with problem-solving (e.g., left dorsolateral prefrontal cortex (dlPFC), ACC, left 

posterior parietal cortex (PPC; (Bartley et al., 2018)) and episodic and spatial memory 

(e.g., left hippocampus and retrosplenial cortex (RSC); (Andrews-Hanna et al., 2014; 

Robinson et al., 2015)). A recent meta-analysis on problem-solving revealed the left 

dlPFC, the left PPC, and the ACC as critically involved in problem solving involving 

mathematical, visual, or verbal stimuli (Bartley et al., 2018). Centroid meta-analytic 
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coordinates from these regions were used as seeds in the present analysis. In addition, to 

investigate to putative connection between memory-related processes during physics 

problem-solving and behavioral measures, we selected two functionally-relevant ROIs 

from memory neuroimaging literature in the left hippocampus and RSC to explore 

potential involvement long-term and episodic memory retrieval plays within physics 

reasoning. These two regions were chosen to investigate the role long-term memory 

and/or autobiographical memory, especially when involving spatial thinking, may have 

on behavioral measures during physics problem-solving. For the hippocampal seed, a 

region was chosen the left middle hippocampus based on connectivity-based parcellation 

findings suggesting this region is particularly involved in declarative memory (Robinson 

et al., 2015). The RSC seed was drawn from peak coordinates from meta-analytic results 

on the neural correlates on autobiographical memory (Andrews-Hanna et al., 2014). In 

that study, the RSC was identified as a region simultaneously present within a core 

autobiographical memory network, as well as particularly involved in memory retrieval 

of events characterized by spatial context and visuospatial processing. The five ROIs 

were modeled as 10mm spherical seeds (Figure 4.2a). Solving physics problems relies 

on deduction and knowledge recall; thus, we hypothesized that the fMRI signal in the 

problem-solving and hippocampus ROIs would parametrically increase with problem 

difficulty and reasoning strategy. Specifically, we expected difficulty to modulate activity 

in ACC and dlPFC and reasoning strategy to modulate activity in ACC, dlPFC, PPC, and 

hippocampus. If students reported using physical intuition (i.e., they answered via a “gut 

feeling”), we expected a positive parametric effect in RSC, an area linked to visualization 

and memory of autobiographical experiences (Vann et al., 2009). Additionally, due to the 
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influence of strongly held yet non-physical conceptions on confidence bias in 

introductory Newtonian mechanics (Potgieter et al., 2010), we did not expect accuracy-

related parametric effects to be present in any ROI. 

4.4.7 Brain-Behavior Correlates 

Separate within-subject parametric modulation analyses were performed for accuracy, 

difficulty, and self-reported problem-solving strategy. All parametric modulator analyses 

contained identical design matrices to those of the FCI > Control (all phases) subject-

level analyses but included a parametric modulator regressor wherein question duration 

was modeled by student-specific FCI > Control response times and regressor heights 

were modulated by question-specific accuracy, self-reported strategy (as assessed by 

post-scan strategy questionnaires), and question difficulty. Accuracy was modeled with 

regressor heights of 1, 0, or -1 corresponding to correct, no response, or incorrect answer 

provided. Difficulty was measured as a normative miss rate per FCI question, as 

measured externally (Morris et al., 2012). Problem-solving strategy was measured on a 

Likert scale by a post-scan questionnaire (Figure A.1). In this way, accuracy and 

problem solving strategy were subject-specific measures and question difficulty was 

modeled externally as a normative metric of how challenging (% incorrect) each FCI 

question generally is for introductory physics students, as measured across a large body 

(>4,500) of university students who had taken the exam. If any parametric modulator had 

zero variance within a run (i.e., the student reported using an identical strategy for all 

questions, or they answered all questions either correctly or incorrectly) then the run was 
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discarded to avoid rank deficiency in the design matrix. Resulting beta maps were then 

averaged across within-subject runs.  

Brain-behavior correlations were tested via two separate analyses	In the first analysis we 

extracted within-subject parametric modulator beta values within the five hypothesis-

driven ROIs (Figure 4.2a) and conducted one sample t-tests on the beta distributions to 

test for significant variations from baseline. In this first analysis we tested the hypotheses 

that 1) fMRI signal in the ACC and the left dlPFC would parametrically increase with 

problem difficulty, that 2) signal in the ACC, dlPFC, PPC, and hippocampus ROIs would 

parametrically increase with reasoning strategy (i.e., they answered using “knowledge 

and reasoning”), that 3) fMRI signal in the RSC would parametrically increase if 

students reported using physical intuition (i.e., they answered via a “gut feeling”), and 

that 4) no accuracy-related parametric effects would be present in any ROI.  

In the second analysis, whole-brain beta maps resulting from the parametric modulation 

GLMs were averaged across groups to determine if significant network-level activity, 

outside that of any selected hypothesis driven ROIs, was present during problem solving 

associated with the behavioral measures. Group-level analyses were performed with 

whole-brain beta maps resulting from the parametric modulation GLMs to determine if 

significant network-level activity was present during problem solving associated with the 

behavioral measures. Meta-analytic functional decoding was performed for significant 

whole-brain results on the resulting unthresholded whole-brain z-statistic maps with a 

200-topic GC-LDA (Rubin et al., 2016) topic model trained on the Neurosynth database. 



 119 

4.4.9 Description of Conceptual Modules and How They Were Computed 

Recent work has identified distinct communities of non-Newtonian FCI answer choices 

given by frequency of co-occurring student responses to the original FCI exam (Brewe et 

al., 2016). These so-called “conceptual modules” represent dissociable incorrect physics 

conceptions that students commonly hold Table 4.1. The present analysis made use of 

these conceptual modules to detect group differences in how students approached within-

scanner FCI questions (see §4.4.10 Student Response Profiles). The set of these 

previously derived conceptual modules and how they were computed are outlined below. 

Full details on these findings and their interpretations can be found in (Brewe et al., 

2016). 

The original creators of the FCI described a taxonomy of “misconceptions” probed by 

their test and provide a list of FCI answer choices that they believed indicated the 

presence of these incorrect physics beliefs (Hestenes et al., 1992). Brewe et al. (2016) 

sought a more data-driven approach towards identifying conceptually linked sets of 

incorrect FCI answer choices and their associated underlying physical interpretations. To 

do this they applied a community detection algorithm to a large set of FCI student 

responses and identified nine conceptual modules representing dissociable incorrect 

physics conceptions present in the FCI. Similar communities to those Brewe et al. (2016) 

described have been separately identified and analogously interpreted via factor analysis 

in other investigations (Scott et al., 2012; Scott and Schumayer, 2017), and many of the 

conceptions they described parallel those discussed in related work on naïve physics 

ideas and the conceptual difficulties students face in Newtonian physics (Clement, 1983; 
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diSessa, 1993; McDermott, 1984) According to the characterizations of Brewe et al. 

(2016), some conceptual modules appear to represent coherent sets of student’s physics 

conceptions while others may be more consistent with a “knowledge-in-pieces” view of 

student physics thinking (Andrea A. diSessa, 1983). The presence of coherent non-

Newtonian conceptions in the FCI has been observed in previous findings (Savinainen 

and Viiri, 2008; Scott et al., 2012; Scott and Schumayer, 2017) and is consistent with the 

notion that students often hold highly integrated, yet incorrect, collections of physical 

conceptions that they apply across diverse contexts (Hammer, 1996a; Redish, 2003)). 

Such coherent knowledge structures are frequently referred to as mental models. In 

contrast, when student’s incorrectly reason through physics problems by way of drawing 

upon physics ideas that are more loosely connected, the knowledge structures are said to 

be more fragmented (Andrea A. diSessa, 1983; diSessa, 1993; Hammer, 1996b; Redish, 

2003). Students who rely on less coherently organized knowledge structures such as these 

tend to have a difficult time applying the same knowledge across contexts and situations 

(Redish, 2003). 

Brewe et al.’s (2016) conceptual modules were identified through a process of treating 

student FCI answer responses as a bipartite network represented as a Students X 

Responses matrix. This matrix was then multiplied by its transpose to project the bipartite 

network into a Responses X Responses matrix, which was weighted by the number of 

students choosing each answer pair. So for example, assuming three students choose 

answer A on FCI question 2, and two of these three students chose answer C on FCI 

question 3 with the third student choosing D on FCI question 3, then the answer 

projection of the bipartite network would be an edge with weight 2 between answers 2A 
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and 3C and a edge with weight 1 between answers 2A and 3D. At this point, the answer 

projection network represents the network of responses, but it is too densely connected to 

analyze. Backboning or sparsifying the network is a process that aims to reduce the 

number of edges by retaining only the ‘important’ edges while preserving as many 

connected nodes as possible. In order to sparsify this network, the researchers used a 

locally adaptive non-parametric sparsification (LANS) algorithm (Foti et al., 2011) which 

works with non-parametric distributions. A community detection algorithm (InfoMap R; 

D. Edler and M. Rosvall, The MapEquation software package, available online at 

http://www.mapequation.org; (Rosvall and Bergstrom, 2008)) was then applied to 

sparsified network to identify groups of responses that are more commonly connected 

together than to the rest of the network. 

Table 4.1. Conceptual modules, their constituent FCI answer choices, and their 
descriptions. Bolded FCI answer choices represent the items that we adapted for in-
scanner presentation. In cases where (Brewe et al., 2016) did not describe student 
conceptualizations associated with a module, we have provided additional interpretations 
that add/expand upon the original descriptions to aid in interpretation of outcomes in the 
present study. Modules that we have elaborated upon are marked with an obelisk †. 
Additionally, where appropriate we provide external references that describe further 
observations of the common incorrect physical conceptions detailed by a conceptual 
module. 
	
Common	Non-Newtonian	Conceptual	Modules	(Brewe	et	al.,	2016)	
	 Module	 Constituent	FCI	

Answer	Choices		
Detailed	Conceptual	Description	

m1	 Moving	objects	
experience	an	
“impetus”	
force	

2B,	 3B,	 5E,	 6A,	 7A,	
7E,	 8D,	 8E,	 13C,	
14A,	14C,	 17D,	 18E,	
19B,	20A,	21A,	22D,	
23D,	23E,	24C,	24D,	
25A,	 25B,	 25E,	 26A,	
27B,	30E	

If	an	object	is	moving,	then	there	must	be	a	force	actively	
causing	the	motion.	This	fictional	force	is	referred	to	as	an	
“impetus”	 force.	 Students	 who	 hold	 this	 view	 may	 also	
believe	that,	 if	an	object’s	motion	becomes	diminished,	a	
diminishing	 impetus	 force	must	 have	 caused	 the	 change.	
This	(incorrect)	Galilean	model	was	held	by	many	medieval	
physicists	 and	 is	 often	 characterized	 by	 a	 common	
confusion	among	students	between	the	concepts	of	force	
and	 velocity.	 The	 impetus	 force	 fallacy	 is	 a	 prevalent,	
particularly	coherent,	and	persistent	model	that	students’	
usually	 apply	 across	 contextually	 diverse	 situations	
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(Hammer,	1996b;	Savinainen	and	Viiri,	2008).	
	

m2	 More	force	
yields	more	
result	

1A,	 2C,	 2E,	 3E,	 4A,	
10C,	 11E,	 15C,	 19C,	
20E,	 21D,	 26B,	 26C,	
26D,	27D,	28D,	30A	

If	 a	 force	 acts	 on	 an	 object	 and	 is	 increased,	 then	
something	 about	 the	object’s	motion	must	 also	 increase.	
This	 idea	 is	 correct	 if	 the	 increased	 quantity	 is	
acceleration.	 However,	 students	 holding	 this	 view	 often	
assign	 the	 increased	 quantity	 incorrectly	 and/or	 without	
justification	 (e.g.,	 displacement,	 time,	 velocity,	 or	 an	
additional	non-physical	force).	Similarly,	how	the	quantity	
increases	 (e.g.,	 constantly	 or	 scaled	 by	 a	 factor)	 is	 often	
assigned	 incorrectly	 and/or	without	 justification.	Because	
of	 the	 vague/unstructured	 nature	 of	 what	 quantity	
increases	and	how,	this	module	is	applied	in	different	and	
sometimes	conflicting	ways	depending	on	the	problem	or	
context.	 This	 module	 is	 compatible	 with	 the	 physics	
phenomenological	primitive,	or	p-prim,	 known	as	 “Ohm’s	
p-prim”	 (diSessa,	 1993).	 P-prims	 are	 irreducible,	 loosely	
connected	 sets	 of	 intuitive	 physics	 knowledge	 that	
students	 use	 to	 explain	 physical	 phenomena	 (diSessa,	
1993).	 Ohm’s	 p-prim	 asserts	 that	 how	 much	 result	
something	 receives	 is	 proportional	 to	 the	 amount	 of	
resistance	 it	 gives	 (more	 effort	 implies	 more	 result	 and	
more	 resistance	 implies	 less	 result).	 In	 contrast	 to	 more	
stable	and	consistent	 sets	of	physics	 ideas,	 such	as	 those	
describe	 in	m1,	p-prims	such	as	the	one	paralleled	 in	this	
module	 illustrate	 more	 fragmentary	 intuitive	 knowledge	
pieces	 that	 describes	 contextually	 situated	 emergent	
knowledge	 that	 student’s	 use	when	 reasoning	 (Hammer,	
1996b).	 
	

m3	 Competing	
forces	cause	
motion,	or	
acceleration	
and	velocity	
are	not	
distinguished	
	

4D,	 6C,	 11B,	 16C,	
17A,	20B,	20C,	25D,	
28C	

This	 module	 is	 described	 by	 two	 competing	
interpretations:	 1)	 competing	 forces	 cause	 motion	 (e.g.,	
motion	occurs	because	one	force	“wins”	out	over	another	
competing	 force),	 and/or	 2)	 students	 fail	 to	 discriminate	
between	velocity	and	acceleration,	thus	a	net	force	yields	
a	velocity.	
	

m4	 A	moving	
object’s	
impetus	
eventually	
“runs	out”†	
	

5D,	 8E,	 10D,	 11C,	
15D,	16D,	18D	

This	module	is	likely	a	variant	of	the	impetus	force	module	
(m1).	However,	the	ways	in	which	this	module	varies	from	
m1	 is	 not	 specified	 in	 the	 original	 paper	 (Brewe	 et	 al.,	
2016).	 We	 interpret	 this	 module	 as	 representing	 an	
impetus	 conception	 of	 force	 wherein	 a	 moving	 objects’	
impetus	 force	 “runs	 out”	 over	 time.	 This	 is	 characterized	
by	 the	 belief	 that	 objects	 have	 a	 natural	 tendency	 to	
remain	 still.	 That	 is,	 students	 who	 hold	 this	 view	 may	
believe	objects	set	in	motion	by	an	active	agent	stores	the	
external	 force	 as	 it	moves,	 but	 then	 releases	 its	 impetus	
over	 time	 due	 to	 a	 natural	 tendency	 of	 all	 objects	 to	
remain	inactive.	
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m5	 Confusion	in	
relating	an	
object’s	speed	
and	path†	

5C,	 9C,	 12C,	 12D,	
13B,	 18C,	 19A,	 22C,	
27A	

This	 module	 is	 less	 consistent,	 and	 therefore	 less	
characterized	 by	 concrete,	 coherent	 non-physical	 beliefs.	
In	 (Brewe	 et	 al.,	 2016),	 the	 module	 is	 described	 as	
indicating	 an	 indistinct	 lack	 of	 understanding	 about	
velocity.	 We	 further	 characterize	 it	 here	 as	 students	
reaching	 an	 incorrect	 conclusion	 that	 involves	 relating	 a	
moving	 object’s	 path	 to	 its	 speed.	 However,	 the	 way	 in	
which	 students	 relate	 path	 to	 speed	 is	 not	 applied	
consistently,	 indicating	 students	 do	 not	 have	 a	 clear	
strategy	and	may	be	confused.	
	

m6	 A	sudden	force	
on	an	object	
induces	an	
instantaneous	
path	change	
	

7C,	 8A,	 9B,	 15E,	
16E,	 17E,	 21B,	 23C,	
28A	

The	 module	 is	 characterized	 by	 the	 belief	 that	 when	 a	
moving	 object	 undergoes	 a	 quick	 change	 in	 force	 it	 will	
instantaneously	 (e.g.,	 over	 an	 infinitesimally	 small	 time	
interval)	 alter	 its	 path	 to	 move	 in	 the	 direction	 of	 the	
external	force.		
	

m7	 An	object’s	
mass	
determines	
how	it	falls	

1D,	 2D,	 9D,	 10E,	
18A,	19D,	23A	

The	incorrect	belief	that	objects	of	different	masses	fall	at	
different	 rates	and	traverse	different	horizontal	distances	
as	 they	 fall.	 This	 view	 is	 frequently	 compatible	 with	 the	
Aristotelian	 view	 of	 falling	 bodies	wherein	more	massive	
objects	 fall	 faster,	 although	 there	 is	 evidence	 that	
student’s	 naïve	 conceptions	 about	 how	 mass	 relates	 to	
trajectory	 don’t	 share	 the	 same	 coherence	 as	 Aristotle’s	
description	 (Whitaker,	 1983).	 FCI	 answer	 choices	 in	 this	
module	suggest	students	may	view	this	supposed	mass	to	
time	of	flight/distance	relationship	as	not	linearly	related.	
This	module	may	be	an	 iteration	of	 the	more	 force	yields	
more	result	module	(m2).	
	

m8	 Indistinct	
confusion	
regarding	
downward	
force	or	
scenario	
description†	

	

14B,	21C,	22A,	29D	 This	model	 was	 originally	 proposed	 as	 reflecting	 student	
confusion	 with	 interpreting	 the	 physical	 scenario	
described	in	a	particular	FCI	question	(Brewe	et	al.,	2016).	
However,	 because	 the	 module	 is	 composed	 of	 answer	
choices	 not	 related	 to	 a	 single	 FCI	 question,	 we	 have	
extended	 this	 interpretation	 to	 describe	 an	 indistinct	
confusion	 about	 either	 the	 scenario	 descriptions	 or	
downward	force.	Two	answer	choices	in	this	module	(21C,	
22A)	 indicate	 students	 may	 be	 confused	 about	 the	
physical	 scenario	 described	 in	 one	 FCI	 question	 (in	
particular	 the	 length	 of	 time	 a	 force	 is	 applied	 to	 an	
object).	 An	 additional	 item	 (29D)	 indicates	 students	
believe	air	exerts	a	dominant	downward	force	on	objects,	
while	 another	 item	 (14B)	 indicates	 students	 believe	
objects	 fall	 vertically	 even	 after	 being	 released	 with	 an	
initial	 horizontal	 velocity.	 Thus,	 this	 module	 involves	
disjoint	 ideas	 that	 are	 difficult	 to	 characterize	 as	 a	 single	
coherent	conceptual	structure.	We	interpret	it	as	involving	
unidentifiable	 confusions	about	 force	and/or	 the	physical	
description	of	a	question.	
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m9	 Confusion	
regarding	
gravitational	
action†		

1B,	 3A,	 5A,	 11A,	
28B,	29C,	30B	

Multiple	 answer	 items	 in	 this	 set	 (1B,	 3A,	 5A,	 11A,	 30B)	
share	 a	 focus	 on	 the	 gravitational	 force	 as	 acting	 in	
replacement	 of,	 or	 dominant	 to	 other	 forces.	 Thus,	 the	
module	is	described	in	terms	of	gravity	as	being	a	constant	
factor	 in	 each	 incorrect	 answer	 (Brewe	 et	 al.,	 2016).	We	
additionally	 observe	 that	 this	 confusion	 about	
gravitational	 action	 appears	 to	 impact	 how	 students	
predict	 resulting	 motion	 or	 itemize	 which	 forces	 act	 on	
moving	 and/or	 stationary	 objects.	 How	 gravity	 impacts	
motion	and/or	free	body	diagrams	differs	from	answer	to	
answer,	 indicating	 this	module	may	 represent	 somewhat	
inconsistent	ideas	about	gravity.	
	

4.4.10 Student Response Profiles 

Given evidence indicating student responses to the FCI provide insight into how students 

think about physics problems (Savinainen and Scott, 2002), we performed a module 

analysis, similar to that in Brewe et al. (2016), of the observed FCI answer distributions 

to identify student response profiles. The data were treated as a bipartite matrix of 

Students x Responses. This bipartite matrix was computed and then projected into a 

weighted adjacency matrix of students, 𝐴 = 𝑀𝑀!, where 𝑀 is the bipartite matrix. Each 

element in 𝐴 represents the count of how many times one student agreed with any other 

student (values from 0 to 9, for 9 questions). Next, we performed nonparametric 

sparsification on 𝐴 (Foti et al., 2011) to identify the backbone of the graph. Backboning 

identifies important links within a network and reduces the number of spurious links. A 

significance value was computed for each edge weight and the edge weights were 

thresholded at P < 0.01. We performed community detection (InfoMap R; (Rosvall and 

Bergstrom, 2008)) on the backbone network to identify sub-groups of students who 

provided similar responses to the FCI prompts. We then assessed the scaled within-group 

overlap of incorrect FCI responses across a set of nine previously measured physics 
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modules consisting of jointly selected incorrect FCI response items ((Brewe et al., 2016); 

Table 4.1). Each group’s relative conceptual module representation was scaled by group 

size to allow for comparisons across groups of different sizes. Alignment with conceptual 

modules indicates students draw on specific non-Newtonian physics conceptions. Finally, 

we tested for network differences across student groups. An omnibus test was conducted 

for the FCI > Control contrast as well as for the three whole-brain PPI maps. Significant 

F-test results were further interrogated with post hoc t-tests across groups. Maps were 

thresholded at P < 0.001 CDT, P < 0.05 CET (FWE corrected). 

4.4.11 Data Availability 

A GitHub repository was created at http://github.com/nbclab/PhysicsLearning/FCI to 

archive the source files for this study, including the e-Prime stimulus files, data analysis 

processing scripts, behavioral data, statistical brain images, and module analysis files. 

4.5 Results 

4.5.1 Physics problem solving engages visual motion, central executive, and default 

mode processes 

FCI responses (mean accuracy = 61%, mean response time (RT) = 20.2s) were consistent 

with previous reports (Lasry et al., 2013; Savinainen and Scott, 2002) and significantly 

differed (p<0.001) from control responses (mean accuracy = 98%, mean RT = 15.8s), 

suggesting overall task compliance. Maps of FCI > Control blocks revealed activation 

across a fronto-temporo-parietal network, including the prefrontal cortex (PFC), left 

dorsal striatum, PPC, RSC, and dorsal posterior cingulate cortex, lateral occipitotemporal 
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cortex (V5/MT+), and cerebellum (Figure 4.3a; Table 4.2). To tease apart constituent 

neural processes, we analyzed sequential phases of the problem-solving process and 

observed multiple dissociable whole-brain networks linked with problem initiation 

(Phase I), question presentation (Phase II), and answer selection (Phase III). Phase I was 

associated with a similar activity pattern as the FCI > Control contrast, Phase II maps 

were characterized by right-emphasized dorsal posterior parietal and V5/MT+ 

engagement, and Phase III maps included medial anterior and posterior nodes of the 

default mode network (DMN; Figure 4.3b-d; Table 4.3). These network transitions from 

fronto-temporo-parietal (Phase I) to dorsal attention (DAN; Phase II) followed by default 

mode cooperation (Phase III) elucidates the important role V5-DMN-CEN interactions 

may have within physics reasoning processes. Meta-analytic functional decoding was 

performed on the resulting unthresholded z-statistic maps using Neurosynth (Rubin et al., 

2016), indicating that switching, default mode, motion perception, and reasoning 

processes underlie physics problem solving (Figure 4.3 radar plots; Table 4.4).  

Decoding sequential phases indicated problem initiation may reflect visuospatial 

attention, perceptual/motor, and memory retrieval; question presentation was associated 

with switching, visual short-term memory, and numbers, and answer selection was linked 

to DMN-related terms (e.g., unconstrained (free), mentalizing, and ambiguous), 

consistent with mental exploration of a solution. Next, to assess information exchange 

across GLM-identified regions during problem solving, we performed task-based 

functional connectivity (FC) analyses for three seeds centered on peaks of the overall FCI 

> Control map located in the left V5/MT+, the left dlPFC, and the RSC. 

Psychophysiological interaction (PPI) results (Figure 4.4; Table 4.5) revealed greater 
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physics problem solving-related coupling (relative to control conditions) of the left 

V5/MT+ with DAN brain areas, the left dlPFC with V5/MT+ and DMN areas, and the 

RSC with frontoparietal, DMN, and salience network (SN) regions. These outcomes 

suggest complex visual information may be carried through a dorsal stream to 

frontoparietal regions that direct CEN-DMN network exchanges during physics 

reasoning. 

 

 

Figure 4.3. Physics Problem Solving-Related Brain Activation. Activation of FCI > 
Control for a) problem solving across all phases, b-d) across each sequential problem 
phase, and e) parametric modulation across all phases by problem difficulty. Adjacent 
radar plots depict functional decoding results of the top ten weighted terms for each 
network. 
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Figure 4.4. Physics Problem Solving-Related Functional Brain Connectivity. Whole-
brain PPI task-based functional connectivity associated with FCI > Control for a) left 
V5/MT+, b) left dlPFC, and c) RSC seeds. 
 
Table 4.2. Center of mass activation coordinates for the FCI > Control contrast as 
reported in MNI space. Cluster region labels are based off those reported by the 
IBASPM116 Human Brain Atlas.  
	

	
Cluster	

	
Hemisphere	

	
Center	of	Mass	
(MNI	space)	

	
Cluster	
Extent	
(mm3)	

Mean	Z	
Score	

	
Region	Labels	

	 	 X	 Y	 Z	 	 	 	

1	 B	 -34	 30	 26	 85072	 5.676	

Frontal_Mid_L,	Frontal_Sup_L,	
Frontal_Inf_Tri_L,	
Frontal_Sup_Medial_L,	Precentral_L,	
Frontal_Inf_Oper_L,	
Frontal_Inf_Orb_L,	
Frontal_Mid_Orb_L,	
Supp_Motor_Area_L,	
Frontal_Sup_Orb_L,	
Frontal_Mid_Orb_L,	Rolandic_Oper_L,	
Cingulum_Mid_L,	Cingulum_Ant_L,	
Frontal_Sup_Medial_R,	
Supp_Motor_Area_R,	
Temporal_Pole_Sup_L	

2	 R	 50	 -50	 26	 57088	 5.222	

Temporal_Inf_R,	SupraMarginal_R,	
Parietal_Inf_R,	Temporal_Mid_R,	
Occipital_Mid_R,	Parietal_Sup_R,	
Angular_R,	Postcentral_R,	
Occipital_Inf_R,	Fusiform_R,	
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Precuneus_R,	Cerebellum_Crus1_R,	
Occipital_Sup_R,	Cerebellum_6_R	

3	 L	 -46	 -54	 42	 49632	 6.386	

Parietal_Inf_L,	Angular_L,	
SupraMarginal_L,	Parietal_Sup_L,	
Occipital_Mid_L,	Precuneus_L,	
Postcentral_L,	Occipital_Sup_L,	
Temporal_Sup_L,	Temporal_Mid_L	

4	 R	 46	 28	 18	 36576	 4.746	

Frontal_Mid_R,	Frontal_Inf_Tri_R,	
Frontal_Inf_Oper_R,	
Frontal_Mid_Orb_R,	
Frontal_Inf_Orb_R,	Frontal_Sup_R,	
Precentral_R,	Rolandic_Oper_R,	
Insula_R	

5	 L	 -54	 -58	 -8	 17864	 5.243	

Temporal_Inf_L,	Temporal_Mid_L,	
Occipital_Inf_L,	Occipital_Mid_L,	
Cerebellum_Crus1_L	

6	 R	 28	 -70	 -44	 13744	 5.257	 No	label	generated	
7	 L	 -32	 -74	 -52	 6120	 4.148	 No	label	generated	

8	 L	 -8	 -56	 16	 1680	 3.666	
Precuneus_L,	Calcarine_L,	
Cingulum_Post_L,	Cuneus_L	

9	 L	 -12	 10	 8	 1392	 3.997	 Caudate_L	
	 	 	 	 	 	 	 	

 
Table 4.3. Center of mass activation coordinates for the contrasts (a) FCI Phase I > 
Control Phase I, (b) FCI Phase II > Control Phase II, and (c) FCI Phase III > Control 
Phase III as reported in MNI space. Cluster region labels are based off those reported by 
the IBASPM116 Human Brain Atlas. 
	

a)	FCI	Phase	I	>	Control	Phase	I	
	

Cluster	
	

Hemisphere	
	

Center	of	Mass	
(MNI	space)	

	
Cluster	
Extent	
(mm3)	

Mean	Z	
Score	

	
Labels	

	 	 X	 Y	 Z	 	 	 	

1	 B	 -16	 -46	 24	 295832	 4.570	

Precentral_L,	Parietal_Inf_L,	
Occipital_Mid_L,	Postcentral_L,	
Frontal_Inf_Tri_L,	Frontal_Mid_L,	
Lingual_R,	Calcarine_R,	Parietal_Sup_L,	
Occipital_Mid_R,	Calcarine_L,	
Temporal_Inf_L,	Precuneus_L,	
Parietal_Sup_R,	Frontal_Inf_Oper_L,	
Occipital_Sup_L,	Temporal_Mid_L,	
Parietal_Inf_R,	Supp_Motor_Area_L,	
Lingual_L,	Frontal_Sup_L,	
Cerebelum_Crus1_L,	
Cerebelum_Crus1_R,	Angular_L,	
SupraMarginal_L,	Precuneus_R,	
Occipital_Sup_R,	Fusiform_L,	
Cerebelum_6_R,	Angular_R,	
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Frontal_Sup_Medial_L,	Cuneus_R,	
Occipital_Inf_L,	SupraMarginal_R,	
Cuneus_L,	Fusiform_R,	Cerebelum_6_L,	
Cerebelum_Crus2_R,	
Frontal_Inf_Orb_L,	
Cerebelum_Crus2_L,	
Frontal_Mid_Orb_L,	Insula_L,	
Cerebelum_8_R,	Postcentral_R,	
Supp_Motor_Area_R,	Rolandic_Oper_L,	
Cerebelum_7b_R,	Cingulum_Mid_L,	
Cerebelum_7b_L,	
Frontal_Sup_Medial_R,	
Cerebelum_9_R,	Cingulum_Mid_R,	
Cerebelum_4_5_R,	Cerebelum_8_L,	
Occipital_Inf_R,	Vermis_7,	
Cingulum_Ant_L,	Vermis_8,	
Frontal_Sup_Orb_L,	Vermis_6,	
Temporal_Mid_R,	Temporal_Sup_L,	
Vermis_4_5	

2	 R	 42	 12	 36	 26408	 3.970	

Frontal_Mid_R,	Frontal_Inf_Oper_R,	
Frontal_Inf_Tri_R,	Precentral_R,	
Frontal_Sup_R,	Rolandic_Oper_R	

3	 R	 56	 -54	 -16	 11680	 4.148	

Temporal_Inf_R,	Temporal_Mid_R,	
Cerebelum_Crus1_R,	Fusiform_R,	
Occipital_Inf_R	

4	 B	 -10	 -24	 -4	 11048	 3.788	

Thalamus_L,	Hippocampus_L,	
ParaHippocampal_L,	Lingual_L,	
Thalamus_R,	Precuneus_L,	
Cerebelum_4_5_L,	Vermis_3,	
Pallidum_L,	Amygdala_L	

5	 B	 -4	 -26	 26	 5664	 3.862	

Cingulum_Post_L,	Cingulum_Mid_L,	
Precuneus_L,	Cingulum_Ant_L,	
Cingulum_Mid_R,	Calcarine_L	

6	 R	 34	 24	 -8	 2280	 4.186	 Insula_R,	Frontal_Inf_Orb_R	
7	 L	 -32	 -72	 -60	 1408	 3.814	 	

b)	FCI	Phase	II	<	Control	Phase	II	

1	 R	 40	 -56	 32	 43064	 4.630	

Occipital_Mid_R,	Parietal_Sup_R,	
Temporal_Inf_R,	Postcentral_R,	
Parietal_Inf_R,	SupraMarginal_R,	
Occipital_Inf_R,	Precuneus_R,	
Fusiform_R,	Occipital_Sup_R,	
Temporal_Mid_R,	Angular_R,	
Cerebelum_Crus1_R,	Cerebelum_6_R	

2	 L	 -34	 -64	 32	 30072	 4.405	

Occipital_Mid_L,	Parietal_Sup_L,	
Parietal_Inf_L,	Occipital_Inf_L,	
Precuneus_L,	Temporal_Inf_L,	
SupraMarginal_L,	Occipital_Sup_L,	
Temporal_Mid_L,	Postcentral_L,	
Angular_L	

3	 L	 -26	 -2	 54	 8344	 5.003	 Frontal_Mid_L,	Frontal_Sup_L,	
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Precentral_L	

4	 L	 -48	 40	 4	 6760	 3.888	
Frontal_Inf_Tri_L,	Frontal_Inf_Orb_L,	
Frontal_Mid_Orb_L,	Frontal_Mid_L	

5	 R	 26	 -2	 52	 6528	 4.770	
Frontal_Sup_R,	Frontal_Mid_R,	
Precentral_R	

6	 R	 52	 10	 20	 3168	 4.3639	
Frontal_Inf_Oper_R,	Precentral_R,	
Rolandic_Oper_R,	Frontal_Inf_Tri_R	

7	 L	 -50	 6	 20	 1464	 3.670	
Frontal_Inf_Oper_L,	Precentral_L,	
Rolandic_Oper_L	

c)	FCI	Phase	III	<	Control	Phase	III	

1	 L	 -54	 -56	 26	 50152	 5.606	

Temporal_Mid_L,	Angular_L,	
Parietal_Inf_L,	SupraMarginal_L,	
Occipital_Mid_L,	Temporal_Inf_L,	
Temporal_Sup_L,	Parietal_Sup_L,	
Occipital_Inf_L	

2	 B	 -14	 42	 32	 50128	 4.809	

Frontal_Sup_L,	Frontal_Sup_Medial_L,	
Frontal_Mid_L,	Frontal_Mid_Orb_L,	
Frontal_Sup_Medial_R,	
Frontal_Mid_Orb_R,	
Supp_Motor_Area_L,	Frontal_Sup_R,	
Frontal_Sup_Orb_L,	Precentral_L,	
Rectus_L,	Frontal_Sup_Orb_R,	
Rectus_R,	Frontal_Mid_Orb_L,	
Supp_Motor_Area_R,	
Frontal_Inf_Oper_L	

3	 R	 58	 -54	 26	 27744	 4.478	

Angular_R,	Temporal_Mid_R,	
SupraMarginal_R,	Parietal_Inf_R,	
Temporal_Inf_R,	Occipital_Mid_R,	
Temporal_Sup_R,	Postcentral_R	

4	 L	 -48	 36	 -10	 21792	 4.617	

Frontal_Inf_Orb_L,	Frontal_Inf_Tri_L,	
Frontal_Mid_Orb_L,	
Frontal_Inf_Oper_L,	Frontal_Mid_L,	
Temporal_Pole_Sup_L	

5	 B	 -4	 -48	 26	 20344	 4.496	

Precuneus_L,	Cingulum_Post_L,	
Cingulum_Mid_L,	Cuneus_L,	
Cingulum_Post_R,	Precuneus_R,	
Cingulum_Mid_R,	Calcarine_L,	
Cerebelum_4_5_L,	Lingual_L,	
Vermis_4_5,	Cingulum_Ant_L	

6	 R	 28	 -78	 -44	 11680	 4.961	 	

7	 R	 54	 34	 -4	 10160	 3.929	

Frontal_Inf_Tri_R,	Frontal_Inf_Orb_R,	
Frontal_Inf_Oper_R,	
Frontal_Mid_Orb_R,	Frontal_Mid_R	

8	 L	 -30	 -80	 -50	 5560	 3.823	 	
9	 L	 -12	 10	 12	 1240	 3.877	 Caudate_L	
10	 L	 -14	 -8	 18	 64	 3.214	 Caudate_L,	Thalamus_L	
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Table 4.4. Meta-analytic functional decoding for unthresholded z-statistic (a) FCI > 
Control (all phases), (b) FCI Phase I > Control Phase I, (c) FCI Phase II > Control Phase 
II, (d) FCI Phase III > Control Phase III, and (e) problem difficulty modulator maps. 
Decoding was performed with a 200-topic GC-LDA (Rubin et al., 2016) topic model 
trained on the Neurosynth database. The top ten terms returned are provided along with 
their associated Neurosynth correlation values. 

	

a)	Full	Questions	
Term	 Weight	
switching	 309.71084	
default	 276.1635173	
motion	 252.5753468	
reasoning	 214.5672386	
gestures	 211.2976516	
ambiguous	 180.1752178	
default_mode	 147.8986879	
switch	 137.3589833	
body	 135.9365735	
relational	 117.1724557	
b)	Phase	I:	Problem	Initiation	
Term	 Weight	
visual	 6280.671847	
motor	 3552.329718	
spatial	 2180.073879	
attention	 1794.573378	
memory	 1503.498075	
perceptual	 1334.731314	
working_memory	 1212.675255	
words	 1171.632954	
retrieval	 1047.038397	
sensory	 1044.932068	
c)	Phase	II:	Question	Presentation	
Term	 Weight	
switching	 174.7799387	
visuo	 143.0582605	
grasping	 95.3737437	
switch	 83.24127548	
vstm	 80.24913636	
numbers	 80.15246068	
numerical	 78.16072276	
drawing	 68.03863533	
grasp	 63.52682393	
hands	 62.93979874	
d)	Phase	III:	Answer	Selection	
Term	 Weight	
default	 649.6765185	
default_mode_network	 447.7949888	
mentalizing	 329.1184083	
default_mode	 240.3050669	
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intrinsic	 215.4858992	
mental_states	 186.8147481	
seed	 150.9431503	
free	 124.7647576	
mind	 121.8747808	
ambiguous	 111.3774804	
e)	Difficulty	Modulator	
Term	 Weight	
visual	 4998.611373	
spatial	 2165.71031	
motion	 1454.923421	
motor	 1451.786037	
face	 1361.697261	
perceptual	 1270.365251	
body	 1211.229165	
faces	 1162.215922	
perception	 1046.94595	
memory	 785.0733801	

 
 
Table 4.5. Center of mass coordinates for psychophysiological interaction (PPI) task-
based functional connectivity between (a) V5/MT+ , (b) dlPFC, and (c) RSC, and seeds 
associated with the contrast FCI > Control, as reported in MNI space. Cluster region 
labels are based off those reported by the IBASPM116 Human Brain Atlas. 
	

a)	Left	V5/MT+	Seed	
	

Cluster	
	

Hemisphere	
	

Center	of	Mass	
(MNI	space)	

	
Cluster	
Extent	
(mm3)	

Mean	Z	
Score	

	
Labels	

	 	 X	 Y	 Z	 	 	 	

1	 R	 54	 -30	 40	 14128	 4.104	

SupraMarginal_R,	Postcentral_R,	
Parietal_Inf_R,	Parietal_Sup_R,	
Rolandic_Oper_R	

2	 R	 50	 -62	 -8	 11176	 4.334	

Temporal_Inf_R,	Temporal_Mid_R,	
Occipital_Inf_R,	Fusiform_R,	
Occipital_Mid_R	

3	 L	 -48	 -72	 -2	 5344	 4.131	
Occipital_Mid_L,	Occipital_Inf_L,	
Temporal_Mid_L,	Temporal_Inf_L	

4	 R	 24	 -70	 46	 2216	 3.607	

Occipital_Sup_R,	Parietal_Sup_R,	
Precuneus_R,	Occipital_Mid_R,	
Angular_R,	Cuneus_R	

5	 L	 -60	 -24	 34	 1776	 3.386	
SupraMarginal_L,	Parietal_Inf_L,	
Postcentral_L	

6	 L	 -32	 -54	 54	 1256	 3.369	 Parietal_Inf_L,	Parietal_Sup_L	

b)	Left	dlPFC	Seed	

1	 R	 46	 -60	 0	 39504	 4.181	
Temporal_Mid_R,	Temporal_Inf_R,	
Occipital_Mid_R,	Fusiform_R,	
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Occipital_Inf_R,	Cerebelum_Crus1_R,	
Temporal_Sup_R,	Cerebelum_4_5_R,	
Angular_R,	Cerebelum_6_R,	
SupraMarginal_R,	ParaHippocampal_R	

2	 L	 -44	 -72	 4	 28432	 4.200	

Occipital_Mid_L,	Temporal_Mid_L,	
Fusiform_L,	Occipital_Inf_L,	
Temporal_Inf_L,	Cerebelum_6_L,	
Angular_L,	Cerebelum_4_5_L,	
Parietal_Inf_L	

3	 B	 4	 -50	 24	 8096	 3.489	

Precuneus_R,	Precuneus_L,	
Cingulum_Post_L,	Cingulum_Mid_R,	
Cingulum_Post_R,	Cingulum_Mid_L,	
Vermis_4_5,	Calcarine_R,	Cuneus_L,	
Cuneus_R,	Lingual_R	

4	 B	 4	 62	 -2	 4168	 3.517	

Frontal_Sup_Medial_R,	
Frontal_Mid_Orb_L,	
Frontal_Mid_Orb_R,	
Frontal_Sup_Medial_L,	Frontal_Sup_R	

5	 R	 58	 -24	 40	 1672	 3.631	 SupraMarginal_R,	Postcentral_R	

c)	Left	RSC	Seed	

1	 B	 0	 36	 22	 23072	 3.727	

Frontal_Sup_Medial_L,	
Supp_Motor_Area_L,	
Cingulum_Ant_R,	Cingulum_Ant_L,	
Frontal_Mid_Orb_R,	
Frontal_Sup_Medial_R,	
Cingulum_Mid_R,	Frontal_Mid_Orb_L,	
Cingulum_Mid_L,	
Supp_Motor_Area_R,	Frontal_Sup_L,	
Rectus_R	

2	 L	 -32	 -64	 -18	 12432	 3.972	

Fusiform_L,	Cerebelum_6_L,	
Cerebelum_Crus1_L,	Lingual_L,	
Temporal_Inf_L,	Occipital_Inf_L,	
Cerebelum_4_5_L,	Calcarine_L	

3	 L	 -28	 -70	 36	 7952	 4.007	

Occipital_Mid_L,	Parietal_Sup_L,	
Parietal_Inf_L,	Occipital_Sup_L,	
Angular_L	

4	 L	 -44	 12	 26	 4512	 3.499	

Frontal_Inf_Tri_L,	Precentral_L,	
Frontal_Inf_Oper_L,	Postcentral_L,	
Rolandic_Oper_L	

5	 B	 0	 -34	 28	 3832	 3.708	
Cingulum_Mid_L,	Cingulum_Post_L,	
Cingulum_Mid_R,	Cingulum_Post_R	

6	 L	 -56	 -32	 -6	 3480	 3.798	 Temporal_Mid_L	

7	 R	 30	 -64	 44	 2816	 3.588	

Angular_R,	Parietal_Sup_R,	
Occipital_Sup_R,	Occipital_Mid_R,	
Parietal_Inf_R	

8	 R	 30	 44	 26	 1944	 3.563	 Frontal_Mid_R,	Frontal_Sup_R	

9	 R	 38	 16	 -2	 1296	 3.620	
Insula_R,	Frontal_Inf_Orb_R,	
Frontal_Inf_Oper_R	

10	 B	 -2	 -50	 10	 1104	 3.570	
Precuneus_L,	Cingulum_Post_L,	
Vermis_4_5,	Cingulum_Post_R,	
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Calcarine_L,	Lingual_L	

11	 R	 30	 22	 -20	 1104	 3.654	

Frontal_Inf_Orb_R,	Insula_R,	
Temporal_Pole_Sup_R,	
Temporal_Pole_Mid_R	

	 	 	 	 	 	 	 	
 

4.5.2 Difficulty, but not accuracy and strategy, modulate brain activity during 

problem solving 

To relate brain function to behavioral measures impacting student success, we tested our 

hypotheses that activity in meta-analytically derived ROIs (e.g., left dlPFC, left PPC, 

ACC, left hippocampus, and RSC) would be parametrically modulated by student-

reported strategy and normative problem difficulty (Morris et al., 2012), but not answer 

accuracy. Brain-behavior correlations were tested via two separate analyses. In the first 

analysis we extracted within-subject parametric modulator beta values from the five 

hypothesis-driven ROIs and conducted one sample t-tests to determine if 1) fMRI signal 

in the ACC and the left dlPFC as parametrically increased with problem difficulty, 2) 

signal in the ACC, dlPFC, PPC, and hippocampus was parametrically increased with 

reasoning strategy, 3) signal in the RSC parametrically increased when students reported 

using physical intuition, and 4) no accuracy-related parametric effects were present in 

any ROI. No significant variations in BOLD signal from baselines were observed within 

the ROIs tested. Beta distributions across all ROIs are shown in Figure 4.5. While no 

significant BOLD signal modulations were observed in these a priori ROIs, the second 

exploratory whole-brain parametric modulation analysis revealed DAN and occipital 

activity were positively modulated by problem difficulty (Figure 4.3e; Table 4.6). This 

indicates that the physics reasoning network is consistently activated regardless of 
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whether or not a correct answer is achieved and does not reflect students’ perception of 

their reasoning strategy. Importantly, the most salient relation appears to be between 

degree of difficulty and engagement of brain regions linked with visuospatial perceptual, 

memory, and attentional processes, as assessed by functional decoding (Figure 4.3e 

right) suggesting that memory-guided spatial or motion perception and visualization may 

be especially taxed when problem difficulty is increased. 

Table 4.6. Activation coordinates associated with the whole-brain parametric modulation 
of the FCI > Control (all phases) contrast by normative problem difficulty, as reported in 
MNI space. Cluster region labels are based off those reported by the IBASPM116 Human 
Brain Atlas. 
	

Whole-Brain	Activity	Correlated	with	Problem	Difficulty	
	

Cluster	
	

Hemisphere	
	

Center	of	Mass	
(MNI	space)	

	
Cluster	
Extent	
(mm3)	

Mean	Z	
Score	

	
Labels	

	 	 X	 Y	 Z	 	 	 	

1	 B	 38	 -60	 16	 118720	 5.750	

Occipital_Mid_R,	Fusiform_R,	
Parietal_Sup_R,	Temporal_Inf_R,	
Temporal_Mid_R,	Cerebelum_6_R,	
SupraMarginal_R,	Precuneus_R,	
Postcentral_R,	Occipital_Inf_R,	
Occipital_Sup_R,	Parietal_Inf_R,	
Cerebelum_Crus1_R,	Angular_R,	
Cerebelum_4_5_R,	Cuneus_R,	
Lingual_R,	Calcarine_R,	
ParaHippocampal_R,	
Rolandic_Oper_R,	
Cerebelum_Crus2_R,	Precuneus_L	

2	 L	 -36	 -62	 16	 95296	 5.539	

Occipital_Mid_L,	Parietal_Inf_L,	
Parietal_Sup_L,	Fusiform_L,	
Occipital_Inf_L,	Cerebelum_6_L,	
Temporal_Inf_L,	Cerebelum_Crus1_L,	
Occipital_Sup_L,	SupraMarginal_L,	
Temporal_Mid_L,	Precuneus_L,	
Postcentral_L,	Cerebelum_8_L,	
Cerebelum_9_L,	Cerebelum_4_5_L,	
Cerebelum_Crus2_L,	Angular_L,	
Cerebelum_7b_L,	Lingual_L,	Cuneus_L	

3	 R	 40	 4	 34	 21960	 4.593	
Precentral_R,	Frontal_Inf_Oper_R,	
Frontal_Sup_R,	Frontal_Mid_R,	
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Insula_R,	Rolandic_Oper_R,	
Frontal_Inf_Tri_R,	Putamen_R,	
Supp_Motor_Area_R,	
Temporal_Pole_Sup_R	

4	 L	 -26	 -6	 54	 7560	 4.714	
Precentral_L,	Frontal_Sup_L,	
Frontal_Mid_L,	Supp_Motor_Area_L	

5	 L	 -20	 -72	 -56	 3104	 4.079	 	

6	 L	 -54	 4	 28	 2848	 4.192	
Precentral_L,	Frontal_Inf_Oper_L,	
Rolandic_Oper_L	

7	 R	 22	 -48	 -58	 2760	 3.873	 	
8	 R	 46	 38	 6	 1752	 3.721	 Frontal_Inf_Tri_R,	Frontal_Mid_R	
9	 L	 -40	 -2	 6	 1352	 4.289	 Insula_L,	Rolandic_Oper_L	

10	 R	 18	 -30	 -6	 848	 3.440	
Thalamus_R,	ParaHippocampal_R,	
Hippocampus_R,	Lingual_R	

	
	 	 	 	 	 	 	 	

 

Figure 4.5. Beta Weight Distributions. Mean beta weight distributions for the four 
parametric modulator analyses within the a priori ROIs. a) Problem accuracy, b) 
difficulty, and c-d) strategy are shown. 
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4.5.3 Students demonstrate dissociable brain activity linked to knowledge 

fragmentation 

We next performed module analysis (Brewe et al., 2016) on students’ answer patterns to 

probe potential relationships between brain activity and students’ conceptual coherence 

(i.e., integration of physics knowledge; (Redish, 2003)) and to assess if distinct reasoning 

profiles were rooted in underlying functional brain differences. We analyzed answer 

distributions using a community detection algorithm (Rosvall and Bergstrom, 2008) to 

parse student sub-groups who provided similar responses across FCI questions. Percent 

overlap was assessed between answers provided by each group and previously identified 

“conceptual modules” present in the FCI test ((Brewe et al., 2016); Table 4.1). 

Conceptual modules are communities of incorrect FCI answer choices that are usually 

selected together. They represent students’ dissociable non-Newtonian (incorrect) notions 

about physical phenomena, some of which demonstrate a high degree of conceptual 

coherence, while others are more suggestive of a fragmented collection of physics ideas 

(Brewe et al., 2016; diSessa, 1993; Scott and Schumayer, 2017). The set of conceptual 

modules selected by a group (their reasoning profile) represents distinguishable 

arrangements of student’s (mis)interpretations and confusions about the physical world. 

Module analysis detected thirteen student groups across 107 students who answered 

similarly to each other during FCI problem solving (Figure 4.6a), and four of these 

groups had 10 or more members (i.e., normative groups). 

Next, we sought to identify any differences that may be present in physics problem 

solving-related brain function associated with differences in conceptual approach by 
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contrasting the brain activity of the normative groups. All fMRI data had been scrubbed 

during preprocessing with a common framewise displacement (FD) threshold during 

preprocessing to eliminate visually identifiable artifacts. However, not all movement 

artifacts are identifiable via visual inspection of fMRI data, and even small head motions 

can cause large signal changes that can interfere with the interpretation of fMRI results 

(Havsteen et al., 2017). So, to avoid any potential motion-related confounds during group 

comparison of brain function, a one-way ANOVA of mean FD values across the four 

normative (n ≥ 10) groups was conducted and a significant difference of in-scanner 

motion (F(3, 178) = 8.213, p << 0.001) was detected (mean FD: Group A = 0.072mm, 

Group B = 0.062mm, Group C = 0.073mm, and Group D = 0.092mm). Post hoc tests 

revealed a single normative group (Group D) showed significantly increased motion 

relative to all other normative groups (p < 0.05; Figure 4.7), but no other differences in 

in-scanner motion existed. Thus, to avoid any potential confounds related to differences 

in head motion across normative groups, the high motion group was excluded from 

further analyses. The remaining three groups’ answer distributions were characterized 

based on prevalence of conceptual modules (Figure 4.6b). These groups, composed of 

24, 17, and 10 students, were carried into group-level neuroimaging analyses to assess 

brain activity and connectivity differences during problem solving. Center of mass 

activation coordinates for the FCI > Control contrast of group differences between the 

final three normative sub-groups identified by module analysis are shown in  

Table 4.7.  

Table 4.7. Center of mass coordinates associated, as reported in MNI space, of brain 
activation (FCI > Control, all Phases) group differences between normative sub-groups 
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identified by module analysis of student answer distributions. Omnibus test results are 
listed in (a) and (b), with F-scores converted to z statistics. Results from post hoc t-tests 
investigating differences across each pair of sub-groups are listed in (c)-(h). Cluster 
region labels are based off those reported by the IBASPM116 Human Brain Atlas. 
	

a)	Whole-brain	one-way	ANOVA:	Group	A	or	B	vs.	Group	C	
	

Cluster	
	

Hemisphere	
	

Center	of	Mass	
(MNI	space)	

	
Cluster	
Extent	
(mm3)	

Mean	Z	
Score	

	
Labels	

	 	 X	 Y	 Z	 	 	 	

1	 B	 0	 -78	 6	 12384	 3.627	

Calcarine_L,	Lingual_L,	Calcarine_R,	
Cuneus_R,	Cuneus_L,	Lingual_R,	
Occipital_Sup_L,	Cerebelum_6_L,	
Precuneus_R	

2	 L	 -48	 -18	 54	 4728	 3.504	
Postcentral_L,	Precentral_L,	
Parietal_Inf_L	

3	 L	 -8	 10	 36	 1608	 3.621	
Cingulum_Mid_L,	Cingulum_Ant_L,	
Supp_Motor_Area_L	

4	 L	 -44	 50	 -4	 1592	 3.534	

Frontal_Mid_Orb_L,	Frontal_Mid_L,	
Frontal_Inf_Orb_L,	Frontal_Inf_Tri_L,	
Frontal_Sup_L	

b)	Whole-brain	one-way	ANOVA:	Group	A	or	C	vs.	Group	B	

1	 B	 0	 -78	 6	 12368	 3.627	

Calcarine_L,	Lingual_L,	Calcarine_R,	
Cuneus_R,	Cuneus_L,	Lingual_R,	
Occipital_Sup_L,	Cerebelum_6_L,	
Precuneus_R	

2	 L	 -48	 -18	 54	 4720	 3.504	
Postcentral_L,	Precentral_L,	
Parietal_Inf_L	

3	 L	 -8	 10	 36	 1608	 3.620	
Cingulum_Mid_L,	Cingulum_Ant_L,	
Supp_Motor_Area_L	

4	 L	 -44	 50	 -4	 1592	 3.533	

Frontal_Mid_Orb_L,	Frontal_Mid_L,	
Frontal_Inf_Orb_L,	Frontal_Inf_Tri_L,	
Frontal_Sup_L	

c)	Group	A	>	Group	B	
No	significant	group	differences	detected	

d)	Group	B	>	Group	A	
No	significant	group	differences	detected	

e)	Group	A	>	Group	C	

2	 L	 -44	 48	 -2	 2592	 3.409	

Frontal_Mid_Orb_L,	
Frontal_Inf_Tri_L,	Frontal_Mid_L,	
Frontal_Inf_Orb_L	

3	 R	 38	 -70	 -50	 2400	 3.356	 	

4	 L	 -58	 -62	 -4	 1752	 3.418	
Temporal_Mid_L,	Temporal_Inf_L,	
Occipital_Inf_L,	Occipital_Mid_L	

5	 R	 60	 -50	 -12	 1464	 3.409	 Temporal_Inf_R,	Temporal_Mid_R	

f)	Group	C	>	Group	A	
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1	 B	 -2	 -80	 6	 14232	 3.673	

Calcarine_L,	Lingual_L,	Calcarine_R,	
Cuneus_R,	Cuneus_L,	Lingual_R,	
Occipital_Inf_L,	Occipital_Mid_L,	
Fusiform_L,	Cerebelum_6_L,	
Cerebelum_Crus1_L,	Occipital_Sup_L	

2	 L	 -46	 -18	 54	 9496	 3.643	
Postcentral_L,	Precentral_L,	
Parietal_Inf_	

3	 B	 0	 10	 42	 6640	 3.522	

Supp_Motor_Area_R,	
Cingulum_Mid_L,	Cingulum_Mid_R,	
Supp_Motor_Area_L,	
Cingulum_Ant_L,	Cingulum_Ant_R,	
Frontal_Sup_R	

4	 R	 46	 -12	 52	 3648	 3.464	
Precentral_R,	Frontal_Mid_R,	
Postcentral_R	

5	 R	 46	 12	 -10	 2688	 3.640	
Insula_R,	Temporal_Pole_Sup_R,	
Frontal_Inf_Orb_R	

6	 L	 -48	 8	 -8	 1840	 3.410	

Temporal_Pole_Sup_L,	Insula_L,	
Temporal_Mid_L,	Temporal_Sup_L,	
Rolandic_Oper_L	

7	 L	 -56	 -24	 8	 1680	 3.414	

Temporal_Sup_L,	Temporal_Mid_L,	
Postcentral_L,	Heschl_L,	
Rolandic_Oper_L	

g)	Group	B	>	Group	C	

1	 L	 -48	 48	 -6	 1328	 3.465	

Frontal_Mid_Orb_L,	
Frontal_Inf_Orb_L,	Frontal_Inf_Tri_L,	
Frontal_Mid_L	

h)	Group	C	>	Group	B	

1	 B	 2	 -72	 8	 10664	 3.448	

Lingual_L,	Lingual_R,	Calcarine_L,	
Cuneus_R,	Calcarine_R,	Precuneus_R,	
Vermis_6,	Cuneus_L,	
Cerebelum_4_5_L,	Vermis_4_5,	
Cerebelum_6_L,	Cerebelum_6_R	

2	 L	 -20	 -50	 -8	 256	 3.243	 Lingual_L,	Fusiform_L	
3	 R	 26	 -74	 6	 40	 3.175	 No	label	generated	
	 	 	 	 	 	 	 	

 

Group A (n=24) achieved an accuracy rate of 77% across all FCI questions, indicative of 

being highly Newtonian thinkers (Savinainen and Scott, 2002). Of the non-Newtonian 

responses provided by this group, incorrect answers almost exclusively aligned with a 

common naïve physics idea known as the ‘impetus force’ (m1, Figure 4.6b top), which is 

the incorrect belief that moving objects experience a propelling force. Group B (n=17) 

achieved an accuracy rate of 73% across all FCI questions, which is also indicative of 
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high Newtonian thinking. The reasoning profile for Group B (Figure 4.6b middle) 

indicated that students gave incorrect answers by either falling victim to the impetus force 

fallacy (m1) or to another common, but less coherent set of physics conceptions that we 

term the ‘confusion about gravitational action’ module (m9). Group C (n=10) achieved 

an accuracy rate of 53% across all FCI questions, indicative of non-Newtonian thinking. 

The reasoning profile for Group C (Figure 4.6b bottom) indicated that students’ incorrect 

answers were primarily associated with 5 conceptual modules that each occurred at 

relatively similar rates: the ‘impetus force’ module (m1), ‘more force yields more result’ 

module (m2), ‘confusion relating speed and path’ module (m5), ‘sudden forces induce 

instantaneous path change’ module (m6), and ‘an object’s mass determines how it falls’ 

module (m7). 
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Figure 4.6. Module Analysis, Reasoning Profiles, and Group Differences in Brain 
Activity. a) Module analysis of student responses across FCI answer distributions. Heat 
map colors represent student responses to multiple-choice FCI questions and black 
horizontal lines distinguish groups identified by community detection. b) Scaled within-
group overlap of incorrect FCI responses across a nine previously measured physics 
conceptual models ((Brewe et al., 2016); Table 4.1) for top three normative groups. c) 
Group differences in problem solving-related brain networks (FCI > Control, all phases) 
across the three normative groups. Increased activity is shown for Groups A and B 
relative to Group C (top) and Group C relative to Groups A and B (bottom). No 
significant differences were observed between Groups A and B. 
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Figure 4.7. Mean Framewise Displacement Distributions for Normative Groups. 
Mean framewise displacement (FD; mm) for the four normative (n ≥ 10) sub-groups 
identified by module analysis of FCI answer distributions. ANOVA indicated a 
significant difference in mean FD head motion between groups one or more of the groups 
(p << 0.001). Post-hoc multiple comparison Turkey HSD tests indicated students in 
Group D showed to significantly greater head motion (p < 0.05) relative to groups A-C, 
thus Group D was excluded from further analysis. 
 

We performed a whole-brain, one-way ANOVA to identify between-group differences in 

physics-related brain activity (FCI > Control, all phases). Omnibus results indicated that 

one or more sub-groups showed significantly different brain activity during problem 

solving. Post hoc tests were performed across each combination of group pairs (Figure 

4.6c;  

Table 4.7). Group A (vs. C) students demonstrated greater activity during problem 

solving in the left lateral orbitofrontal cortex (lOFC) as well as in the left inferior parietal 

lobule, bilateral V5/MT+, and right cerebellum. Group B (vs. C) students also exhibited 

greater activity in the left lOFC. Group C (vs. both A and B) students showed greater 
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activity in the cuneus extending into the lingual gyri. Additionally, Group C students also 

showed increased activity relative to Group A in the caudal medial frontal gyrus, ACC, 

bilateral precentral and postcentral gyri along the precentral sulcus, bilateral anterior 

insular cortex (aIC), and left superior temporal gyrus. Overall, student who answered 

using more coherent physics conceptions, even if incorrect, showed increased reliance on 

a lOFC-V5/MT+ network, whereas students who held less consistent ideas involving 

multiple conceptual approaches showed increased primary visual and salience activity, 

suggesting the absence of stable and coordinated physics conceptions may force students 

to rely more heavily on scenario visualization and stimuli detection during problem 

solving. Further work investigating these differences could yield valuable instructional 

implications. 

4.5.4 Response Times 

Average response times (RT) for FCI and control questions across all students were 20.2s 

and 15.7s respectively (FCI Phase I: 6.4s, Control Phase I: 6.8s; FCI Phase II: 5.1s, 

Control Phase II: 2.8s; FCI Phase III: 8.6s, Control Phase III: 6.1s; Figure 4.8). 

Reasoning sub-group FCI and control RTs (across all phases) were 21.2s and 15.7s for 

Group A, 18.1s and 14.4s for Group B, and 20.1s and 16.8s for Group C (Figure 4.9). 

We conducted statistical comparisons to determine if differences in RT were present 

across problem phases, conditions, and reasoning sub-groups. 
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Figure 4.8. Mean Response Times Across FCI Phases. Mean response times (RT; ms) 
across all students for the FCI and Control condition (all phases) as well as each 
sequential phase. Kernel density estimates of RT distributions are plotted on the left and 
the interaction across conditions is provided on the right, with 95% confidence intervals 
shown as vertical error bars. Students spent significantly more time answering FCI 
questions compared to Control questions, except within Phase I, and significantly more 
time in both conditions in Phase III, Phase I, and Phase II, respectively (p << 0.001). 
 
 

 

Figure 4.9. Mean Response Times Across Normative Groups. Mean response times 
(RT; ms) for normative sub-groups across all Phases for FCI and Control conditions. 
Kernel density estimates of RT distributions are plotted on the left, and the interaction 
across conditions and groups is provided on the right, with 95% confidence intervals 
shown as vertical error bars. Significant differences were observed between FCI and 
Control RTs across all sub-groups (p << 0.001). Turkey HSD post hoc tests indicated no 
significant pairwise RT differences in either condition between sub-groups. 
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In a comparison across all 107 student responses, significant RT differences were 

detected between FCI and Control conditions across full question blocks (all phases; p << 

0.001). A two-way mixed effects ANOVA: condition (FCI, Control) x Phase (Phase I, 

Phase II, Phase III) was also conducted to compare the main effects of phase and 

condition and the interaction between phase and condition on RT. A significant two-way 

interaction between phase and condition was detected (F(2,535) = 62.860, p << 0.001), 

indicating RTs differed across conditions and phases. Turkey HSD post hoc tests were 

conducted on the family of six estimates and all but two pairwise comparisons were 

significant (see  

 
 
 
 
 
 
Table 4.8 for a summary these multiple comparisons.) No significant RT differences 

were detected between conditions at Phase I, or between Phase III FCI RT and Phase I 

Control RT. All other comparisons were significant at p < 0.001 except for the Phase I, 

Control RT - Phase III, Control RT contrast, which was significant at p < 0.05. These 

results indicate students spent significantly more time answering FCI questions as 

compared to Control questions, except within Phase I. Students also spent significantly 

more time in Phases III, I, and II, respectively across both conditions. 

Additionally, to investigate potential RT differences across normative reasoning groups, 

we conducted one-way ANOVAs testing within-condition mean RT across reasoning 

sub-groups. A significant difference in RT across sub-groups was detected for the FCI 
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condition (F(2,48) = 4.315, p < 0.05) but not for the Control condition RTs (F(2,48) = 

2.269, p = .114). However, turkey HSD post hoc tests revealed no significant pairwise 

FCI RT differences between normative groups after correcting for multiple comparisons. 

A two-way mixed effects ANOVA: condition (FCI, Control) x Group (Group A, Group 

B, Group C) was also conducted to compare the main effects of group and condition and 

the interaction between group and condition on RT. The effect of group was significant, 

yielding an F ratio of F(2,48) = 3.8139, p < 0.05. However, as before, post hoc multiple 

comparison Turkey HSD tests indicated no significant pairwise differences between 

groups (p < 0.05, adjusted for multiple comparison using the Holm method.) The effect 

of condition yielded an F ratio of F(1,48) = 100.5341, p << 0.001, indicating a significant 

difference in RT between FCI and Control conditions. The interaction effect between 

condition and group was not significant, F(2,48) = 2.1661, p = 0.1257. 

RT differences between conditions, phases, and groups were influenced by students’ 

ability to choose when they felt ready to progress to the next phase and when they had 

finished answering each question. This self-paced task structure emulated that of real-

world problem-solving processes and ensured measured brain activity associated with 

each phase corresponded to intervals in which students were initiating problem solving 

(Phase I), reading and comprehending the question (Phase II), and choosing an answer 

(Phase III). While it is possible that RT differences may have impacted the brain 

activation results we were able to detect, we nonetheless believe allowing for students’ 

authentic and variable problem solving approach was of critical importance in measuring 

students’ problem solving processes. We hold that these RT differences are a central to 

part of the problem-solving processes. 



 149 

 
 
 
 
 
 
Table 4.8. Two-way mixed effects ANOVA of condition on response time (RT). A 
significant interaction was detected in the two-way mixed effects ANOVA of Condition 
of (FCI, Control) x Phase (Phase I, Phase II, Phase III) on RT across all 107 students. 
Results from follow up Turkey HSD post hoc tests on the family of six estimates are 
provided below. 

	 	 	 	 	
Contrast	 Estimate	 SE	 df	 t	ratio	 P	value	
Phase	I	Control	-	Phase	II	Control	 3966.642	 198.0183	 535	 20.032	 <.0001	
Phase	I	Control	-	Phase	III	Control	 592.2531	 198.0183	 535	 2.991	 0.0344	
Phase	I	Control	-	Phase	I	FCI	 329.6553	 198.0183	 535	 1.665	 0.5558	
Phase	I	Control	-	Phase	II	FCI	 1633.9599	 198.0183	 535	 8.252	 <.0001	
Phase	I	Control	-	Phase	III	FCI	 -1850.9198	 198.0183	 535	 -9.347	 <.0001	
Phase	II	Control	-	Phase	III	Control	 -3374.3889	 198.0183	 535	 -17.041	 <.0001	
Phase	II	Control	-	Phase	I	FCI	 -3636.9866	 198.0183	 535	 -18.367	 <.0001	
Phase	II	Control	-	Phase	II	FCI	 -2332.6821	 198.0183	 535	 -11.78	 <.0001	
Phase	II	Control	-	Phase	III	FCI	 -5817.5617	 198.0183	 535	 -29.379	 <.0001	
Phase	III	Control	-	Phase	I	FCI	 -262.5977	 198.0183	 535	 -1.326	 0.7704	
Phase	III	Control	-	Phase	II	FCI	 1041.7068	 198.0183	 535	 5.261	 <.0001	
Phase	III	Control	-	Phase	III	FCI	 -2443.1728	 198.0183	 535	 -12.338	 <.0001	
Phase	I	FCI	-	Phase	II	FCI	 1304.3045	 198.0183	 535	 6.587	 <.0001	
Phase	I	FCI	-	Phase	III	FCI	 -2180.5751	 198.0183	 535	 -11.012	 <.0001	
Phase	II	FCI	-	Phase	III	FCI	 -3484.8796	 198.0183	 535	 -17.599	 <.0001	

4.6 Discussion 

In this study, we investigated the neural mechanisms underlying physics reasoning across 

107 students and identified a fronto-temporo-parietal brain network linked with problem 

solving. Initiation, question presentation, and answer selection phases evoked integrated 

V5/MT+, CEN, DAN, and DMN systems. Notably, during answer selection wherein 

students deliberated between possible outcomes linked to conflicting physics 

conceptions, they engaged concurrent V5/MT+, lateral fronto-parietal, and DMN activity, 

evidencing V5 -CEN-DMN engagement as critical for physics reasoning. Follow-up PPI 

analyses investigating task-based FC between V5/MT+, dlPFC, and RSC found evidence 
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that physics reasoning initiates dorsal stream activity and CEN-DMN information 

exchange. Strategy and accuracy did not modulate brain activity during reasoning; 

however, increased difficulty elicited enhanced DAN engagement, representative of 

reliance on executive functions during demanding problems. Importantly, whole brain 

activity was not modulated by problem-solving accuracy, but module analysis resulting in 

a dissociation of student reasoning sub-groups (i.e., problem solvers grouped by similar 

conceptualizations of physics ideas) yielded ranked performance differences across 

groups that were linked to conceptual approach. Compellingly, students from groups who 

applied more Newtonian and coherent physics conceptions showed enhanced engagement 

of a fronto-temporal network, whereas students who relied on less coherent, non-

Newtonian conceptions engaged enhanced visual and SN area activity during problem 

solving. These insights aid in characterizing the underlying neural processes of how 

students tackle conflicting physics conceptions during reasoning. 

4.6.1 Visualization, association, and mental exploration inform physics problem 

solving.  

When students solve physics problems they activate a network of bilateral dlPFC, left 

lOFC, PPC, RSC, and V5/MT+ areas, consistent with previous CEN-supported problem-

solving findings across knowledge domains (Bartley et al., 2018). Yet, V5/MT+ and RSC 

involvement with the CEN appear to be a feature of physics problem solving in 

particular. Both areas support visuospatial information processing (Kravitz et al., 2011), 

with V5/MT+ linked to imagining implied motion and maintaining motion information in 

working memory (Galashan et al., 2014; Kourtzi and Kanwisher, 2000; Senior et al., 



 151 

2000), and RSC supporting spatial cognition and episodic memory retrieval, especially 

when imagined scenes are mentally transformed between specific viewpoints (Vann et 

al., 2009). Thus, these regions may aid in the mental imagery of motion, as informed by 

remembered physical scenarios, and build internal representations of physical systems, 

which is considered an essential step in physics solution generation (National Research 

Council, 2012a). Shifts in physics-related brain activity across problem phases indicate 

reliance on memory-linked associations. We find V5/MT+, CEN, DAN, and DMN 

transitions support sequential problem-solving phases. Notably, answer generation 

elicited concurrent DMN, lateral fronto-parietal, and V5/MT+ activity. Interestingly, 

while CEN-supported tasks often evoke DMN deactivations, this DMN-CEN coherence 

likely indicates reliance on episodic and semantic memory retrieval processes (Andrews-

Hanna et al., 2014; Binder et al., 2009) during physics cognition, a notion consistent with 

the constructivist theory of learning (Fosnot and Perry, 2013). Additionally, the PCC is 

functionally heterogeneous, connecting DMN and fronto-parietal networks, and serving 

as a possible hub across brain systems to direct attentional focus (Leech and Sharp, 

2014). Further, the FCI is differentiated from other fMRI tasks by its relatively long 

trials, requiring sustained cognition to generate answers. The DMN may thus be activated 

along with the CEN to allow for mental exploration necessary in solution derivation.  

4.6.2 Problem solving-related brain activity differs based on how students think, not 

how correct they are.  

We find students’ problem solving-related brain function cannot be categorized by 

simply considering their “incorrect” vs. “correct” answers. Rather, module analysis 
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indicates variance in conceptual approach better characterizes brain differences, which in 

turn impacts success rate. An existing framework of learning conceptualizes physics 

cognition as relying on dual “knowledge structure” and “control structure” processes 

(Redish, 2003). Under this model, students apply executive functions to select or inhibit 

associational patterns that ground how they describe the physical world. Here, 

associational patterns, known as knowledge structures, are conceptualized as flexible, 

contextually-primed collections of linked knowledge elements called “resources” that 

students activate to scaffold reasoning. Ideally, students learn to activate stable 

associations between physical laws, enabling long deductive chains to be carried out 

during problem solving. However, when this does not occur, student’s non-Newtonian 

processes can vary: strongly associated yet inappropriate resources may stably activate 

across contexts, or more basic, axiomatic physical beliefs (e.g., intuitive notions such as 

closer is stronger or more effort gives more result; (diSessa, 1993)) may form weak, 

unstable links that do not support ancillary deductive elaboration. These differences are 

described along an axis of “compilation” or memory chunking. Students without pre-

compiled knowledge structures require additional cognitive resources to assemble 

associations during reasoning, whereas physics experts can access well-developed 

associational patterns that do not need to be actively assembled during problem solving. 

We adopt this resources framework to interpret brain function with the goal of relating 

neuroimaging findings to classroom instruction. Physics-related CEN and DAN 

activations were linked to varied cognitive terms consistent with the idea of a control 

structure, and DMN involvement during reasoning may reflect associational mappings 

within semantic or episodic memory circuits (Andrews-Hanna et al., 2014; Binder et al., 
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2009). Thus, dlPFC-RSC FC may support the idea that control processes guide 

knowledge structure selection. Under this interpretation, reasoning sub-groups may be 

thought of as differentiated by knowledge structure use. Groups A and B applied 

predominantly Newtonian (i.e., compiled) thinking, but Group C was less consistent in 

their approach. Of the non-Newtonian modules activated, Group A consistently used an 

arguably concrete impetus model, Group B applied an impetus model while also 

expressing confusion about gravitational action, and Group C utilized multiple modules 

characterized by simple, vague, or confused ideas that differed across problems. We 

argue these groups can be described along a continuum of knowledge compilation, 

coherence, and robustness. Groups A and, to a lesser extent, B demonstrated stable, 

strongly associated knowledge structures, whereas Group C showed more labile 

associational patterns that were limited by problem context. In this manner, less coherent, 

more variable knowledge structures were associated with increased primary visual and 

SN activity, whereas pre-compiled, stable reasoning strategies more strongly activated 

lOFC and V5/MT+, areas implicated by physics thinking in the CEN. These findings 

suggest that chunked knowledge can reduce working memory demands, allowing for 

increased focus on other control structure aspects of problem solving (Redish, 2003). 

However, when students continually re-identify associational patterns across problems, 

they may rely more heavily on visually guided SN activity to select which problem 

features deserve their attention (Sarathy, 2018). 
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4.6.3 Relating neuroeducational findings to the classroom.  

A fundamental goal of neuroeducation research is to bridge understanding of brain 

function with meaningful classroom practices. Under a resources framework, our results 

suggest physics students struggle most when they do not understand how to choose 

appropriate and coherently chunked resources from long-term memory, thus relying on 

increased SN activity during problem solving. Learning obstacles also occur when 

students access compiled but non-physical conceptions during reasoning, allowing for 

increased CEN brain function linked to control processes. While the latter still represents 

a type of incorrect physics thinking, it more closely resembles the kind of cognition 

instructors aim to teach (Redish, 2003). These insights can inform classroom practice: 

physics instruction that explicitly attends to how students select, link, and reorganize 

resources is essential in developing appropriately compiled knowledge to map back onto 

control processes (Redish, 2003). Learning physics is complex, yet a disproportionate 

focus is often placed on whether students answer questions correctly. Our results indicate 

the conceptual foundations of wrong answers reveal much more about student’s ability to 

succeed, can explain functional brain differences during reasoning, and may guide 

instruction. A focus on accuracy alone over-simplifies the complex processes engaged 

during physics reasoning. Instructors should facilitate conceptual change that emphasizes 

and leverages students’ existing conceptions to transition resources into stable and 

accessible collections that help connect what students believe with what they predict. 

In sum, we find the neural mechanisms underlying conceptual physics problem solving 

are characterized by integrated visual motion, central executive, attentional, and default 
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mode brain systems, with solution generation relying on critical DMN-CEN engagement 

during reasoning. Furthermore, we explored whether measures of student success show 

underlying neurobiological bases, finding that students’ physics conceptions manifest as 

brain differences along an axis of relative knowledge fragmentation and robustness. 

Critically, accuracy alone did not predict brain function, but students achieved increased 

success when they made use of stable, strongly associated knowledge structures. We 

acknowledge that our results may be specific to the FCI questions used here, and that 

additional or varied brain dynamics may be more relevant for different kinds of physics 

problem solving. Despite this concern, we are confident that our findings serve to deepen 

understanding into how students learn. Together, our results demonstrate associational 

and control processes operate in tandem to support physics problem solving and offer 

insight into effective classroom practices to promote student success. 
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Chapter 5  

Toward a neurobiological basis for understanding learning in University Modeling 

Instruction physics courses 

 

5.1 Abstract 

Modeling Instruction (MI) for University Physics is a curricular and pedagogical 

approach to active learning in introductory physics. A basic tenet of science is that it is a 

model-driven endeavor that involves building models, then validating, deploying, and 

ultimately revising them in an iterative fashion. MI was developed to provide students a 

facsimile in the university classroom of this foundational scientific practice. As a 

curriculum, MI employs conceptual scientific models as the basis for the course content, 

and thus learning in a MI classroom involves students appropriating scientific models for 

their own use. Over the last ten years, substantial evidence has accumulated supporting 

MI’s efficacy, including gains in conceptual understanding, odds of success, attitudes 

toward learning, self-efficacy, and social networks centered around physics learning. 

However, we still do not fully understand the mechanisms of how students learn physics 

and develop mental models of physical phenomena. Herein, we explore the hypothesis 

that the MI curriculum and pedagogy promotes student engagement via conceptual model 

building. This emphasis on conceptual model building, in turn, leads to improved 

knowledge organization and problem solving abilities that manifest as quantifiable 

functional brain changes that can be assessed with functional magnetic resonance 
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imaging (fMRI). We conducted a neuroeducation study wherein students completed a 

physics reasoning task while undergoing fMRI scanning before (pre) and after (post) 

completing a MI introductory physics course. Preliminary results indicated that 

performance of the physics reasoning task was linked with increased brain activity 

notably in lateral prefrontal and parietal cortices that previously have been associated 

with attention, working memory, and problem solving, and are collectively referred to as 

the central executive network. Critically, assessment of changes in brain activity during 

the physics reasoning task from pre- versus post-instruction identified increased activity 

after the course notably in the posterior cingulate cortex (a brain region previously linked 

with episodic memory and self-referential thought) and in the frontal poles (regions 

linked with learning). These preliminary outcomes highlight brain regions linked with 

physics reasoning and, critically, suggest that brain activity during physics reasoning is 

modifiable by thoughtfully designed curriculum and pedagogy.  

5.2 Introduction 

Active learning is neither a curriculum nor a pedagogy. Active learning is a class of 

pedagogies and curriculum materials that strive to more fully engage students and 

promote critical thinking about course material. Students learn more effectively when 

they engage in investigations, discussions, model building, problem solving, and other 

active explorations (National Research Council, 2012b; Reaching Students: What 

Research Says about Effective Instruction in Undergraduate Science and Engineering, 

2014). However, typical university instruction in physics (and other Science, Technology, 

Engineering, and Mathematics [STEM] fields) has been lecture-based. While lectures can 



 158 

be interesting, and some students clearly have been trained to become engaged during 

lectures (Schwartz and Bransford, 1998), for the majority of students, lectures are passive 

activities. This mismatch between the ways that students learn and the way many classes 

are taught is the primary motivation for the transformation of STEM instruction. When 

classrooms are transformed, the evidence is overwhelming; students learn more and are 

more likely to succeed in active learning settings (Scott Freeman et al., 2014). 

Multiple transformative curricula and pedagogical approaches have been developed for 

introductory physics to promote active learning. For example, Peer Instruction emerged 

to enhance standard lecture-based approaches by incorporating conceptual questions for 

discussion and, in turn, facilitated development of personal response systems (Crouch 

and Mazur, 2001). Tutorials in Physics were developed to supplement standard lectures 

through use in recitation sections (McDermott et al., 2001). Other materials such as 

Student Centered Active Learning Environment with Upside-down Pedagogies [SCALE-

UP] (Beichner and Saul, 2003) and Investigative Science Learning Environments [ISLE] 

(Etkina, Murthy, & Zou, 2006; Etkina & Van Heuvelen, 2007) implement a studio-format 

that integrates lab and lecture, including greater amounts of conceptual reasoning and 

greater emphasis on exploration. Modeling Instruction (MI) is an active learning 

approach (Brewe, 2008) similar to SCALE-UP and ISLE in that it is a complete course 

transformation integrating lab and lecture components into one studio format class. 

However, MI is distinct from other reforms in that it was built around an explicit 

epistemological theory of science, and this foundation is one of the motivations for using 

functional magnetic resonance imaging (fMRI) to study how learning physics may 

impact brain network development.  
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Hestenes (1987) avers that science by its very nature is a modeling endeavor. Science 

proceeds by developing models that describe and ultimately predict phenomena. As a 

model is developed, it is validated through the interplay between the predictions 

generated by the model and the evidence that emerges supporting such predictions. Once 

a valid model has been developed, the model is deployed to new situations. This is a 

process which Kuhn (1970) called “normal science”, whereby scientists use existing 

prevalent models to explore the models’ limits of applicability and search for places 

where the models give rise to predictions in contrast with evidence. Ultimately, models 

reach their limits of applicability and need to be revised or in some cases abandoned 

entirely, beginning what Kuhn called “revolutionary science.” When this happens, a new 

model is proposed, and the cycle begins anew.  

The modeling theory of science is the theoretical and epistemological basis of MI. This, 

however, is a theory of science, not a theory of science instruction. It translates to 

instruction through the premise that, if modeling is how science proceeds and we believe 

students should be engaged in authentic scientific practices, then instruction should be 

designed to engage students in the process of modeling. Wells, Hestenes, and 

Swackhamer, (1995) describe the Modeling Cycle as the recursive process of engaging 

students in model development, validation, deployment, and revision. 

In this paper, we first provide an overview of the theoretical background, development 

process and critical features behind MI as a transformative curricula and model-building 

endeavor. This overview serves to motivate why scientific model development in 

students resulting from university instruction warrants further investigation not only at 
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the academic (e.g., grades) and social level (e.g., social networks) but also at the 

neurobiological level as a putatively measurable phenomena that occurs within the brain. 

Then, we shift focus to present results from a fMRI study in which we measured brain 

activity among students engaged in physics reasoning and model use before and after 

they completed a MI course. We subsequently discuss the results which show distinctive 

brain activity related to physics reasoning and that instruction consistent with a Modeling 

theory of science modifies brain activity from pre to post course.  

5.2.1 Role of Conceptual Models in Introductory Physics Curriculum  

Building instruction around modeling necessitates a working understanding of models. 

To date, research in the MI context has focused on conceptual models, which are 

instructionally useful, rather than mental models, which have been difficult to directly 

observe. Herein, we seek to expand upon existing research by adopting neuroimaging 

techniques to interrogate mental models among students receiving instruction via an 

explicit conceptual modeling approach (i.e., MI). We operate from the following 

definition of a conceptual model: conceptual models are purposeful coordinated sets of 

representations (e.g., graphs, equations, diagrams, or written descriptions) of a particular 

class of phenomena that exist in the shared social domain of discourse. This definition 

has several features worth elaborating. First, it fits on a t-shirt. Second, this definition 

establishes the domain, purpose, and composition of conceptual models, which we 

expand upon below. Finally, this definition of conceptual models has helped us design 

research to look for evidence of the modeling process in classrooms. Figure 5.1 

illustrates the relationship between conceptual and mental models.  
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Attempting to synthesize the many definitions and descriptions of models is not our 

purpose. Instead, we aim to highlight some of the features of our definition that were 

relevant to the development of the MI approach based on building, validating, deploying 

and revising models. These features (i.e., the composition, purpose, and domain of 

conceptual models), then will be used to structure the investigations into the nature of 

student’s mental model formation as measured via brain-based fMRI data. 

  
Figure 5.1. Conceptual and Mental Models Schematic. Schematic of the relationship 
between conceptual and mental models in physics curriculum. 
 

5.2.1.1 Composition 

Conceptual models are composed of representations. Representations are human 

inventions/constructs that stand in for the phenomena (Giere, 2005; Morgan and 

Morrison, 1999; Schwarz et al., 2009; Center for the Study of Language and Information 
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(U.S.), 2006; Windschitl and al, 2008). In physics, common types of representations 

include graphs, vector diagrams, equations, simulations, words, and pictures (Krieger, 

1987). From the MI perspective, this means that instruction should focus on helping 

students to identify, use, and interpret representational tools that are useful in describing 

physical systems. Instruction around model building necessarily focuses on what 

representations are common to a discipline, how they are used, and how information can 

be extracted from them. Further, the coordination of these representations helps to build a 

more robust model, and provide a variety of ways to extract information from the model 

(Halloun, 2004; Hestenes, 1992).  

5.2.1.2 Purpose 

Morgan & Morrison (1999) described mental models as mediators of thought, 

autonomous from, but in correspondence with the system they represent. This mediating 

function of models establishes the roles that models have within science as the center of 

thought, explanation, and prediction (Craik, 1943; Johnson-Laird, 1983). For example, 

Craik (1943) stated, “If the organism carries a ‘small-scale model’ of external reality and 

of its own possible actions within its head, it is able to try out various alternatives…” 

Instructionally, if models fill this role of mediators of thought, then models should 

structure the organization of the curriculum. Models also allow students to address new 

phenomena (Gouvea and Passmore, 2017; Odenbaugh, 2005; Svoboda and Passmore, 

2013). This purpose is built into the instructional modeling cycle where students are 

encouraged to understand new phenomena by deploying existing models to extract 

information about and characterize the phenomena. When existing models do not work, 
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students are expected to adapt or redevelop models that can account for these new 

phenomena. 

5.2.1.3 Domain 

We propose a distinction between scientific conceptual and mental model domains and 

place conceptual models in the shared social domain of discourse. This perspective 

differs from other conceptualizations where mental models within individuals’ 

minds/brains are implicitly or explicitly the center of focus (Greca & Moreira, 2001; 

Greca & Moreira, 2000). Specifically, to infer the status of a student’s mental model, 

investigators typically assess students’ actions or behaviors, such as writing, speaking, 

drawing, predicting, or arguing (I. Halloun, 1996; Justi and Gilbert, 2000; Lehrer and 

Schauble, 2006). Thus, evidence of model-based reasoning exists external to the 

individual and is contingent on an external evaluation. Instructionally, our efforts have 

been to help students develop models as a distributed cognitive element. Meaning that 

each individual student will have an instantiation of the shared model, but the visible 

elements of the model exist external to individuals through writing, speaking, drawing, 

diagraming, predicting, and/or simulating. This notion of shared models improves team 

performance and the learning process (Mathieu, Heffner, Goodwin, Salas, & Cannon-

Bowers 2000). As such, the design of the MI curriculum and pedagogy focuses not on 

mental models per se, but on the social construction of a model. In other words, we focus 

students on using consistent representational tools to build models of phenomena in an 

interactive team environment. Models are shared among class members and agreed upon 

before deploying these models to analyze new situations. We provide a more detailed 
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description of the classroom setting in Section 1.3 but much of class time is spent in 

small groups developing models of specific phenomena on small portable whiteboards, 

which are then presented at larger “board meetings.” The interplay between smaller and 

larger groups provides a vehicle for students to use diagrams, equations, or graphs to 

represent elements of the model.  

We do not reject that individuals have internal mental models, or that these mental 

models include connections between representations and concepts, or interactions 

between mathematics and intuition, for example. As Rogoff (1990) points out, cognitive 

functions are essential components of purposeful action. We are aligned with the notion 

that scientific conceptual models are distributed cognitive elements, which are then 

appropriated by individuals. During the appropriation, students construct the mental 

models in correspondence with the scientific conceptual models. Rather our point is that 

assessing external behaviors speaks to the conceptual model domain and assessing the 

mental model domain would benefit from directly considering the brain.  

5.2.2 Role of Conceptual Models in Instruction 

For instructional purposes, models represent an appropriate and accessible level of 

abstraction (Halloun, 2004). Within a larger context, models occupy the middle level of a 

conceptual hierarchy (Table 1; Halloun, 2004; Matthews, 2007) which is best illustrated 

by a representative example (Lakoff, 1987). Veterinarians are not likely to study the 

superordinate category of animals, which is too broad a categorization to be useful. Nor 

are they likely to study the subordinate category of retrievers; this is too specific to be 
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broadly useful. Instead, dogs are likely to be the level of focus. This level is referred to as 

the “basic” level and is considered the ideal focus for instruction (Halloun, 2004).    

Table 5.1. Conceptual and Categorical Hierarchies 
 

	

Hierarchy					
		

Conceptual	
		

	
	

Categorical	
		

	

Theory	
		

	
		

Animal	
		

Model	
		

	 Dog	
		

Concept	 	 Retriever	
 

In the MI classroom, building basic conceptual models begins with considering a specific 

phenomenon to be described. Once a target phenomenon is established, the next step is to 

characterize the phenomena through relevant representational tools. For example, using 

velocity versus time graphs to represent the motion of a moving object. As students 

create representations of the object’s motion, a model of this specific phenomenon is 

being developed, or what we call a specific model. These specific models are not 

generally applicable, they pertain to the specific details of the situation being considered. 

By necessity, specific models are predecessors to basic models. Specific models are made 

more robust as additional representational tools are introduced and integrated with 

existing ones. Introduction of representational tools and the subsequent negotiation of 

their use and interpretation are motivated by specific phenomena to be modeled, so the 

models created are always specific models.  

However, a desirable scientific skill is to reason based on general models (Nersessian, 

1995, 2002a, 2002b). As such, the MI curriculum and pedagogy is specifically designed 

to facilitate the students’ transition from specific to basic models. Basic models, which 
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are general and represent entire classes of phenomena (such as a constant acceleration 

model), are abstracted from a collection of specific models (Halloun, 2004; I. A. Halloun, 

1996). For example, the general features of a basic constant acceleration model can be 

abstracted from specific models of objects undergoing constant acceleration, such as 

objects in free fall, or uniformly slowing down. This is achieved in the MI classroom by 

having students consider a number of specific models, and then identifying the features 

that are similar to all such models. For example, all constant acceleration models include 

a linear velocity time graph. These similar features are then compiled into one model that 

can be used for all situations, a basic model. Basic models are useful because they are not 

tied to a specific phenomenon, much like the Standard Model is a basic model built up 

and abstracted from the specific models of atomic collisions, particle interactions, etc. 

Basic models are essential in science as they promote abstract reasoning about novel 

phenomena (Nersessian, 1995); when physicists seek to understand interactions of atomic 

particles they start by using the Standard Model. 

Once a basic model is established, students deploy the model in a variety of settings. This 

deployment phase is most aligned with the standard problem solving that happens in 

physics classes. The purpose is to develop skill at adapting the representations that make 

up the model to new situations and extracting information about the situation from the 

representations.  

The final stage in the MI instructional cycle is revision. Revision of a basic model 

happens when students encounter a phenomenon that does not fit with the model’s 

assumptions. An example often encountered comes when students attempt to generate a 



 167 

specific model of two-dimensional motion on the basis of a one-dimensional constant 

acceleration model. The one-dimensional case is inadequate without modification to 

understand motion in two dimensions, and thus must be revised. In some cases, revision 

involves a simple modification of the representational tools, and in other cases, it requires 

starting with an entirely different model.  

In summary, the modeling cycle of MI describes the progression of course content. In 

addition, MI also interweaves social interactions designed to facilitate discourse in the 

service of building conceptual models. Next, we more fully describe the precise aspects 

of the MI learning environment that support the development, validation, deployment, 

and revision of models.  

5.2.3 Features of MI Learning Environment 

Basic conceptual models are often well-developed for scientists and course instructors, 

yet these models are not well-developed for the students in introductory physics courses. 

Accordingly, the first contextual feature of the MI classroom is to support students in re-

developing constituent basic models within their own learning environment. The MI 

instructor’s role is thus to guide students through the development of these basic 

conceptual models by establishing activities and providing scaffolding to manage student 

discourse and promote model building and deployment. In this way, the MI curriculum 

and pedagogy can be considered a guided inquiry approach. Students are not expected to 

discover physical laws without strong instructor guidance who chooses activities, 

introduces representational tools, and guides students toward their appropriate use and 

interpretation. In this way, the instructor is a guide to the disciplinary norms and tools. 
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5.2.3.1 Student participation in a model-centered learning environment 

Accomplishing this fundamental re-development of basic conceptual models requires 

students to be active and engaged participants in the learning environment. Accordingly, 

there are specific ways MI students are expected to participate in the re-development of 

basic conceptual models. First, students are expected to be involved in identifying the 

way that tools such as pictures, diagrams, graphs, and equations are used to represent 

phenomena. They are not expected to invent or discover these tools, but instead to 

determine with instructor guidance how these tools are used and how to interpret these 

representations. For example, how does a vector representation of forces describe 

interactions the object is involved in, and what do these forces allow us to infer about the 

current state of the object and its future behavior? Second, students are expected to be 

involved in the interpretation of these representational tools and drawing inferences from 

them as they pertain to physical laws. Third, students are expected to then deploy these 

established basic conceptual models by extending them to novel situations. Finally, 

students are expected to communicate basic conceptual models. This promotes greater 

expertise with the models when presenting to others and facilitates competence in 

scientific communication skills. 

5.2.3.2 Studio format 

MI is designed for implementation in a studio-format classroom. In studio physics 

classrooms students are able to flexibly engage in various types of activities, which may 

include labs, conceptual reasoning, or problem-solving activities. At Florida International 

University (FIU), the MI classroom integrates both the lecture and lab components of the 
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introductory physics course and meets for a total of six hours per week across three days. 

Typically, students work in small groups of three to complete in-class activities. This 

small group work is summarized on small portable whiteboards. These whiteboards are 

then presented in larger group “board meetings” where all students in the class actively 

participate.  

5.2.3.3 Small group participation 

During the small group component, students work on model-building activities. In these 

groups, students begin the process of reaching consensus by creating whiteboards for 

sharing or “publishing” their lab results and/or solutions to problems. The instructor’s 

role is to circulate through the classroom, asking questions, introducing new content, and 

examining the whiteboards that are being prepared. This small group work allows 

students to work together on a model-building activity, generate conceptual models, and 

practice communicating scientific information in a relatively ‘low-stakes’ setting.  

5.2.3.4 Large group participation: The “Board Meeting” 

The practice of having students first work in small groups and then present their 

outcomes to a larger group provides students with multiple opportunities to negotiate the 

use of conceptual models. The board meetings involve all students in the class gathering 

in a circle such that every member can see every other member and every groups’ boards. 

During the board meeting, the instructor assumes the role of disciplinary expert and 

guides the discourse toward a shared conceptual model. Facilitating the discussion 

involves moderating the groups’ whiteboard presentations, addressing student questions, 

and helping groups clarify their presentations and understanding. The instructor’s 
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guidance during the board meetings relies heavily on providing student groups with 

formative feedback. The explicit goal of these board meetings is to reach consensus 

regarding the conceptual models.  In addition to the explicit goals, tacit goals include 

establishing the norms of a discourse community and encouraging students to utilize 

scientific argumentation strategies (Passmore & Svoboda, 2012). These strategies include 

supporting claims with evidence and reasoning based on the shared conceptual models.  

5.2.3.5 Pairing large and small group interactions 

The combined interaction structure is designed to elicit target conceptual models. The 

structure of these interactions also mimics the structure of science in general and physics 

in particular as practiced in a research setting. Students work in small research groups, 

building up and synthesizing the conceptual model that is subsequently ‘published’ at the 

board meeting, much like a scientific meeting. Both the small and large group settings 

rely on the pedagogical skill of the instructor. In MI-like environments (which are less 

‘instructor-centered’ than traditional classrooms), the trajectory of the learning takes 

varied paths based on the input of the participants. For this reason, the curriculum and 

pedagogy of MI are less like a script for an actor to follow, and more like a set of 

guidelines for an improvisational comedienne.  

5.2.3.6 Impact on student outcomes 

The combination of curriculum materials designed to recursively implement the modeling 

cycle and a learning environment and pedagogy that are similarly supportive have been 

shown to be effective at promoting learning. Like other transformed curricula in 

university physics, MI promotes both conceptual understanding and student success in 
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introductory physics (Brewe et al., 2010b). A survival analysis suggests that the increased 

success rate in introductory physics is not a result of lowered standards, as students from 

MI classes showed equivalent likelihood of success in completing a major in physics as 

students from lecture classes (Rodriguez et al., 2016). MI students also report improved 

attitudes about learning physics (Brewe et al., 2013, 2009) and these attitudinal shifts are 

equitable in terms of ethnicity (Traxler and Brewe, 2015). The group interactions in a MI 

class promote more well-developed classroom networks (Brewe et al., 2010a), and these 

networks are known to facilitate retention in physics courses (Zwolak et al., 2017). 

Positive shifts in self-efficacy associated with participating in MI have been documented, 

(Sawtelle, Brewe, & Kramer, 2010) although not consistently (Dou et al., 2016). We are 

in the process of studying qualitatively the construction of a conceptual model in MI 

(Sawtelle & Brewe, Under Review) and investigating students’ representational choices 

in problem solving (McPadden and Brewe, 2017). These studies are consistent with 

students constructing and using conceptual models to solve problems and analyze 

physical systems. The successes coming from the MI classroom motivate our current 

research into the neurobiological mechanisms of reasoning in physics. 

5.2.4 Investigating Mental Model Development Using Neuroimaging 

While prior assessments of MI’s impact on students has typically focused on the social 

construction of conceptual models (Brewe, 2011, 2008; Sawtelle et al., 2012), here we 

consider MI’s potential impact on mental models using brain imaging techniques. This 

study aimed to investigate brain activation during a physics reasoning task and changes in 

brain activation after MI course instruction relative to before such instruction. Previous 
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neuroimaging studies have localized brain activity associated with reasoning across 

various modalities (e.g., mathematics, formal logic, and fluid reasoning; Arsalidou and 

Taylor, 2011, Prado et al., 2011, Prabhakaran et al., 1997), but no investigations have 

probed for such brain activity in the field of physics or across physics classroom 

instruction. Because of this, no standardized tasks have been adapted for the MRI 

environment to examine such brain activation. Therefore, as a first step, we sought to 

develop a novel neuroimaging paradigm to probe brain activity during physics reasoning. 

We focused the development of this task on mental model use during physics reasoning, 

as previous research has provide evidence that students’ use a variety of mental models 

during conceptual physics reasoning (Hegerty, 2004; Nersessian, 1999). Thus, we 

adapted items from the well-known Force Concept Inventory (FCI; (Hestenes et al., 

1992)) which is known to engage conceptual physics reasoning. FCI questions were 

modified to fit with the parameters of the MRI data collection, and to investigate physics 

reasoning, (see Section 5.3.2 for further details. Simultaneously, to facilitate formation of 

neuroanatomical hypotheses regarding the brain networks we might observe during 

physics reasoning, we conducted a neuroimaging meta-analysis (Bartley et al., 2018) of 

fMRI studies that investigated problem solving across a diversity of representation 

modalities. Briefly, the primary outcome of that meta-analysis was that similar reasoning 

tasks using mathematical, verbal, and visuospatial stimuli involving attention, working 

memory, and cognitive control, activated the dorsolateral prefrontal and parietal regions. 

Participants completed this physics reasoning task while undergoing functional magnetic 

resonance imaging (fMRI) scanning, both before (pre) and after (post) completing a 

physics course in order to investigate the putative impact of physics instruction on brain 
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function. Driving this neuroeducation project were two main hypotheses: 1) This novel 

physics reasoning task would induce increased activity in brain regions previously 

associated with attention, working memory, and problem solving (e.g., lateral prefrontal 

and parietal regions), and 2) Activation patterns would differ from pre- to post-course, 

indicating that brain activity can be modified as a result of physics instruction. 

A few prior studies have demonstrated that short- and long-term course instruction can 

impact brain function. Differences in brain function have been observed from pre- to 

post-course among students enrolled in a 90-day Law School Admission Test preparation 

course (Mackey et al., 2013). Mason and Just (2015) showed that providing information 

to research participants about mechanical systems while in the MRI scanner, which they 

called physics instruction, led to changes in knowledge representation during successive 

stages of learning. In a separate study, they were also able to use machine learning and 

factor analysis to identify neural representations of four physics concepts: motion 

visualization, periodicity, algebraic forms, and energy flow (Mason and Just, 2016). 

However, to our knowledge, this is the first neuroeducational study to consider the 

impact of a full, semester-long physics class on the brain. 

5.2.4.1 Brief primer on neuroimaging studies 

This manuscript is intended for an educational research audience, with the expectation 

that readers have not had extensive experience with neuroimaging as a research 

methodology. As such, this section provides a brief overview of neuroimaging studies, 

particularly fMRI. In neuroimaging studies, researchers develop an experimental task to 

isolate mental operations of interest that participants perform lying in a MRI scanner 
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while a series of three-dimensional brain images are acquired. Typically, these brain 

images are acquired approximately every 2 seconds and are composed of small volume 

elements called voxels, which in this study measured 3.4 mm3. Within each voxel, the 

blood’s changing oxygen levels (known as the blood-oxygenation level-dependent 

[BOLD] signal) are measured. Task-related changes in the BOLD signal provide an 

indirect measure of brain activity. In one implementation of fMRI experimental design, 

brain images are collected in blocks. During ‘active task’ blocks, participants are 

presented a stimulus (e.g., a physics question) engendering cognitive processes of interest 

(e.g., physics reasoning) and are instructed to make a response using a MRI-compatible 

keypad. During carefully constructed ‘control task’ blocks, participants are also presented 

with stimuli and give responses; however, the stimuli presented do not engender the 

cognitive processes of interest. Contrasting active blocks with control blocks presumably 

isolates task-related brain activity associated with the cognitive processes of interest and 

excluding those common to both conditions (e.g., visual processing, word reading, button 

pressing). 

Following data collection, fMRI data are processed to correct for in-scanner head 

movement and fitted to a standardized brain template to enable averaging over a group of 

participants. BOLD time series from each voxel are input into a general linear model 

including distinct regressors for various task events (and other known sources of noise) to 

characterize the degree to which variability in the BOLD signal correlates with those task 

events. Resulting beta weights from active and control task blocks can then be contrasted 

and significant differences are interpreted as differences in brain activity between blocks. 

This procedure is repeated for the BOLD time series across all voxels in the entire brain. 
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Additional multi-level modeling can be performed on these results, as was done in this 

study, to test for changes in brain activity across repeated measures (i.e., from pre- to 

post-instruction). 

5.3 Methods 

5.3.1 Participants 

Participants were drawn from MI classes at FIU over the course of three years (academic 

years 2014-2017). We recruited 55 students (33 male, and 22 female) in the age range of 

18-25 years old (mean ± SD: 20.1 ± 1.4). All participants were screened to be right-

handed, not using psychotropic medications, and free of psychiatric conditions, cognitive 

or neurological impairments and MRI contraindications. Volunteers invited to participate 

had not previously taken a college physics course and met either a GPA (>2.24) or SAT 

Math (>500) inclusion criteria. These criteria were implemented to minimize between-

participant variability that could confound brain measurements associated with the 

experimental conditions. Written informed consent to a protocol approved by the FIU 

Institutional Review Board was obtained from all participants. Imaging data were 

collected on a General Electric 3-Tesla Healthcare Discovery 750W MRI scanner located 

in the Neuroimaging Suite (NIS) of the Department of Psychology at the University of 

Miami (Coral Gables, FL). Each participant completed a 90-minute MRI scanning 

session at both a pre- and post-instruction time point. The pre-session scans were 

scheduled within the first four weeks of the semester and the post-session scans were 

completed in the first two weeks following the semester. All participants were 



 176 

compensated for their time participating in the MRI assessment ($50 for pre- and $100 

for post-scans). 

5.3.2 Physics Reasoning Task 

We adapted a set of questions from the Force Concept Inventory (FCI) for presentation in 
the MRI scanner (Figure 5.2A). The FCI was chosen given the substantial amount of 
extant data from students in MI at FIU on this measure (Brewe et al., 2010b), established 
reliability measures (Lasry et al., 2011), and known time requirements (Lasry et al., 
2013). The FCI is a 30 question, multiple choice conceptual survey of students 
understanding of Newtonian mechanics (Hestenes et al., 1992). Each question has five 
multiple choice options, one correct and four distractors which were originally generated 
from student responses to open-ended versions of the same questions. The questions 
present ‘every-day scenarios’, do not require any mathematical calculations, and are 
presented as text describing the scenario accompanied by a representational diagram. To 
ensure that MRI data collection sessions were manageable and well-tolerated by 
participants, we reduced the number of FCI questions from 30 to nine (FCI 2, 3, 6, 7, 12, 
14, 27 and 29). These nine questions were selected to span a range of difficulty levels that 
were simultaneously challenging enough to tax the mental resources of participants, but 
not necessarily the most difficult items in the FCI, as determined by item response curves 
in Morris et al. (2012) ( 

 
 
 
Table 5.2). Additionally, because measurement of brain networks via fMRI require the 

repeated observations across multiple yet similar experimental trials, we sought to narrow 

the broad range of physics-related cognition being probed in this task and selected 
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questions that required students to determine the trajectories and motion of objects as 

resulting from different scenarios and combinations of initial velocities and/or force 

configurations. Given technical constraints associated with the use of a four-button MRI-

compatible keypad, the questions were modified by removing the least chosen of the five 

multiple choice options, as indicated by the item response curves of Morris et al. (2012). 

In the current neuroimaging task implementation, each question was parsed into three 

self-paced presentation phases; participants were allowed to control the timing of these 

phases. The first phase of the question involved presentation of the text describing the 

phenomena and an accompanying diagram. The second phase posed the question, and the 

third phase presented the multi-choice answer options. FCI responses were assessed for 

overall and item-specific accuracy. 

In addition to FCI questions, participants answered a series of ‘control questions’ (Figure 

5.2B), each of which had similar characteristics to the FCI questions in terms of reading 

requirements, visual complexity, and overall design. However, control questions did not 

inquire about physics-related content, instead these questions focused on reading 

comprehension and shape discrimination. Control questions allowed us to isolate 

cognitive processes presumably related to physics reasoning when contrasting FCI 

(‘active task’) versus control questions (‘control task’).  

FCI and control questions were presented in pseudo-random orders within three task 

runs. Each question was followed by 20 seconds of ‘rest’, during which participants 

maintained their gaze on a fixation cross centrally projected on the screen. These three 

runs lasted approximately six minutes each. Participants received instruction and practice 
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on the task in a carefully managed mock scanner training session to ensure correct 

performance during the MRI session. In addition to acquainting participants to the task, 

the mock scanner also allows participants to experience what the actual MRI scan will be 

like. 

 

Figure 5.2. fMRI Task. Example items from the physics reasoning fMRI task. A) FCI 
questions described a physical scenario using pictures and words and then asked a 
physics question followed by four potential answers. B) Control question shared basic 
visual and linguistic features with FCI questions, however control questions did not ask 
students to engage in physics reasoning. 
 

5.3.3 Data Analysis 

Details on fMRI data acquisition parameters can be found in the supplementary materials. 

Prior to analysis, the data were preprocessed using commonly used neuroimaging 

analysis software packages: FSL (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl) and 

AFNI (Analysis of Functional NeuroImages, http://afni.nimh.nih.gov/afni). Standard 
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fMRI preprocessing procedures involved motion correction to remove signal artifacts 

associated with head motion, high-pass filtering to remove low frequency trends in the 

signal associated with non-brain noise sources (i.e. cardiac or respiratory), and spatial 

smoothing to increase signal to noise ratio during analysis. The data were then mapped to 

a standardized brain atlas (MNI152) to allow for group-level assessments. 

We conducted two primary analyses to identify: 1) brain regions linked with physics 

reasoning (task effect) and 2) changes in brain activity associated with physics instruction 

(instruction effect). To delineate brain regions linked with physics reasoning at the pre-

instruction time point, each preprocessed fMRI data set was input into a voxel-level 

General Linear Model (GLM) including regressors for the FCI and control task 

conditions (and various nuisance signals).  Contrast images were created for each 

participant by subtracting the beta weights associated with the control questions from 

those for the FCI questions representing the degree to which each voxel responded more 

during physics reasoning as compared to the control condition (FCI>control). These 

participant-level contrast images were then input into a group-level, one-sample t-test and 

significant physics reasoning-related brain activations were defined using a threshold of 

Pcorrected < 0.05 (Pvoxel-level < 0.001, family-wise error [FWE] cluster correction). To 

delineate brain regions showing physics reasoning-related activation changes following a 

MI course, the participant-level FCI>Control task contrast images (described above) from 

the pre- and post-instruction data collection sessions were input into a group-level, paired 

samples t-test. Both Pre>Post and Post>Pre contrasts were computed and significant 

instruction-related brain activity changes were defined using a Pcorrected < 0.05 threshold 

(Pvoxel-level < 0.001, FWE cluster correction). Follow up correlational analyses were also 
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conducted between the BOLD signal change across instruction (Post > Pre) in the four 

largest significant clusters (≥ 1000 voxels) identified in the instruction effect analysis 

described above and accuracy post-instruction on the FCI using P < 0.0125, Bonferroni 

corrected. Because the clusters probed showed significant extent across multiple brain 

areas, BOLD signal was extracted from spherical seeds centered at the peaks z-score of 

each cluster. 

5.4 Results 

5.4.1 Accuracy 

 
 
 
 
Table 5.2 includes the accuracy results of student responses for the nine questions in the 

pre and post-instruction scans along with item difficulties based in classical test theory, 

Morris et al. (2012). A paired-samples t-test was conducted to compare post- versus pre-

instruction means. Cohen’s d, was calculated to identify the magnitude of the effect, and 

95% confidence intervals on the effect. The results of the t-test (t(55) = 6.31, p < 0.001) 

and Cohen’s d (d = 0.84) with a 95% confidence interval of 0.45 – 1.23 indicate with a 

high degree of confidence that response accuracy increased after instruction. These 

results are consistent with prior results examining increased FCI accuracy after course 

instruction (Brewe et al., 2010). Furthermore, these accuracy results from participants in 

the scanner are in line with the classical test theory item difficulty (outside the scanner 

performance), where difficulty is calculated as the average score on a particular item. 
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Table 5.2. Overall and individual item accuracy for pre and post instruction FCI 
questions in the scanner. Item difficulty measures from Morris et al. (2012) are included 
for comparison. 

	 Pre	 Post	 Change	 Item	Difficulty	

FCI	Question	 	%	 %	 (Post-Pre)	 (Morris	et	al.,	2012)		

2	 29.5%	 39.3%	 +9.8%	 34.6%	

3	 42.6%	 58.9%	 +16.3%	 51.5%	

6	 78.7%	 78.6%	 -0.1%	 73.6%	

7	 54.1%	 71.4%	 +17.3%	 66.4%	

8	 39.3%	 46.4%	 +7.1%	 50.4%	

12	 45.9%	 69.6%	 23.7%	 65.2%	

14	 24.6%	 41.1%	 16.4%	 39.5%	

27	 44.3%	 46.4%	 2.1%	 59.4%	

29	 42.6%	 85.7%	 43.1%	 50.8%	

Total	 44.6%	 59.7%	 15.1%	 	
 

5.4.2 Task Effect  

MI students exhibited physics reasoning-related brain activity (FCI>Control) at the pre-

instruction time point in four general brain areas, the prefrontal cortex, the parietal cortex, 

the temporal lobes, and the right cerebellum (Figure 3 red; Table 5.3). More specifically, 

in the prefrontal cortex (PFC), activation peaks were observed in the left superior frontal 

gyrus (SFG), dorsomedial PFC (dmPFC), bilateral dorsolateral PFC (dlPFC), inferior 

frontal gyri (IFG), and orbitofrontal cortex (OFC). Within the posterior parietal cortex, 

brain activity was observed bilaterally in the supramarginal gyri, intraparietal sulcus 

(IPS), and angular gryi. Large bilateral clusters of activation during physics reasoning 
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were also observed in middle temporal (MT) and medial superior temporal (MST) areas. 

These same patterns of task-related brain activity from the pre-instruction stage were also 

observed when performing a similar assessment at the post-instruction stage (data not 

shown). 

5.4.3 Instruction Effect 

Significant increases in brain activity following instruction (Post > Pre) were observed 

within prefrontal and parietal cortices (Figure 5.3 blue; Table 5.4). In particular, three 

clusters of increased PFC activity were identified in the left dlPFC along the inferior 

precentral sulcus, and bilaterally in the frontal poles. Parietal areas demonstrating 

increased activation after instruction were located in the posterior cingulate cortex (PCC) 

extending into retrosplenial cortex and the precuneus and in the left angular gyrus. No 

brain regions showed significantly more task-related activity at the pre-instruction stage 

as compared to post-instruction (Pre > Post). Follow up correlation analysis between the 

left PCC, left angular gyrus, left orbital frontal pole, and left DLPFC and accuracy on the 

FCI yielded no significant correlation (rpcc = -0.12, pcorrected = 1; rag = -0.07, pcorrected = 1; 

rofc = -0.01, pcorrected = 1; rdlpfc = 0.02, pcorrected = 1). 

 

Table 5.3. Task effects: Coordinates of brain activity associated with the FCI>Control 
task. Cluster region labels are based off those reported by the IBASPM116 Human Brain 
Atlas. Center of mass coordinates for the contrast FCI>Control are reported in MNI 
space. 
	
	
Regions	Within	Cluster	

	
Cluster	Size	

(mm3)	

	
Center	of	Mass	
(MNI	space)	

	
Mean	Z	
Score	

	 	 X	 Y	 Z	 	
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Left	DLPFC,	Left	Superior	Frontal	Gyrus,	Left	
Inferior	Frontal	Gyrus,	and	Left	Lateral	
Frontopolar	Cortex	

64856	 -36	 26	 28	 4.62	

Left	Supramarginal	Gyrus,	Left	Inferior	Parietal	
Lobule,	Left	Angular	Gyrus,	and	Left	Superior	
Parietal	Lobule	

40016	 -48	 -50	 42	 4.88	

Right	Inferior	Parietal	Lobule,	Right	
Supramarginal	Gyrus,	and	Right	Superior	
Parietal	Lobule	

21560	 52	 -36	 44	 4.82	

Right	Medial	Temporal	Area,	Right	Inferior	
Temporal	Gyrus,	Right	Occipital	Temporal	
Gyrus,	Right	Angular	Gyrus	

20616	 52	 -60	 0	 4.34	

Right	Inferior	Frontal	Gyrus,	Right	DLPFC,	and	
Right	Lateral	Frontopolar	Cortex	

17928	 50	 26	 12	 4.05	

Left	Medial	Temporal	Area,	Left	Inferior	
Temporal	Gyrus,	Left	Middle	Occipital	Gyrus	 15176	 -54	 -64	 -4	 4.78	

Right	Cerebellum	 7968	 34	 -72	 -44	 4.20	
 

 

 

Figure 5.3. Physics Reasoning and Learning-Related Brain Activity. Group-level 
fMRI results. (Red) Task effect: Brain regions showing increased activity during the 
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physics reasoning task (FCI>control) at the pre-instruction stage. (Blue) Instruction 
effect: Brain regions showing increased activity at the post- relative to pre-instruction 
(Post>Pre) scan during the physics reasoning task. 
 

Table 5.4. Instruction effect: Coordinates for brain regions showing greater activity 
(Post>Pre) following task instruction. Cluster region labels are based off those reported 
by the IBASPM116 Human Brain Atlas. Center of mass coordinates for the contrast 
Post>Pre are reported in MNI space. 
	
	
Regions	Within	Cluster	

	
Cluster	Size	

(mm3)	

	
Center	of	Mass	
(MNI	space)	

	
Mean	Z	
Score	

	 	 X	 Y	 Z	 	
Left	Precuneus,	Left	Posterior	Cingulate	
Cortex,	and	Left	Retrosplenial	Cortex	 9288	 -6	 -54	 26	 3.54	

Left	Angular	Gyrus,	Left	Superior	Parietal	
Lobule,	Left	Intraparietal	Sulcus,	and	Left	
Supramarginal	Gyrus	

8040	 -38	 -66	 42	 3.74	

Left	Anterior	Superior	Frontal	Gyrus	and	Left	
Orbital	Frontal/Frontopolar	Cortex	 3336	 -22	 66	 -2	 3.56	

Left	DLPFC	and	Left	Inferior	Frontal	Gyrus	 1968	 -44	 14	 36	 3.54	
Right	Orbital	Frontal/Frontopolar	Cortex,	Right	
Anterior	Superior	Frontal	Gyrus	 1264	 20	 68	 -8	 3.69	

 

5.5 Discussion 

This neuroeducational study represents an initial effort to understand how physics 

reasoning may translate to the level of brain function assessed by fMRI and how 

instruction brings about changes in brain activity. To this end, we have provided fMRI 

results of brain activation from two main assessments. First, we observed that the physics 

reasoning task (FCI>Control questions) was associated with increased brain activity 

notably in lateral prefrontal and parietal regions. Second, we observed that students who 

completed the MI course showed increased activation during the physics reasoning task 

after the course in the posterior cingulate cortex and frontal pole regions.  
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5.5.1 Accuracy and Physics Reasoning 

Participant responses to the FCI questions in the scanner show accuracy that is in line 

with published item difficulties and post course improvement in accuracy are consistent 

with Brewe et al. (2010). This suggests that the MRI version of the task we developed is 

prompting physics reasoning that is consistent with that observed out of scanner 

environment. Effect sizes from pre- to post-instruction indicate similar performance on 

this task with modified FCI questions as on the full FCI. This improvement is indicative 

of a shift in physics reasoning as a result of instruction. We do not interpret these changes 

as recall effects for two reasons, the results of the FCI were not discussed with students, 

and the task itself was not identified as being derived from the FCI. Further, Henderson 

(2002) has shown that recall effects over the duration of a full semester are minimal. 

While accuracy is important for characterizing and to some degree validating the task that 

was developed for the fMRI environment, we did not expect accuracy to correlate with 

brain activity. Instead, physics reasoning, regardless of accuracy, is linked to brain 

activity.  

5.5.2 Task Effect: Brain Activity Linked with Physics Reasoning 

Our initial analysis identified brain activity among college students associated with 

physics reasoning (FCI > control) in lateral prefrontal and parietal regions. One 

interpretation is that activity in these regions supports cognitive processes critical for 

answering physics reasoning problems such as attention, working memory, spatial 

reasoning, and mathematical cognition. More specifically, the lateral PFC’s role in 

executive functions such as working memory and planning are well-characterized 
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(Bressler and Menon, 2010) and these areas are important in manipulating representations 

in working memory and reasoning (Andrews-Hanna, 2012; Barbey et al., 2013). Lateral 

parietal regions are involved in motor functioning as well as spatial reasoning, 

mathematical cognition, and attention (Wendelken, 2015). Such an interpretation is 

reasonable in the context of the current task which likely involves generating mental 

simulations and representations in the service of identifying the correct answer choice. 

From a large-scale brain network perspective, the brain regions showing physics 

reasoning-related activation resemble one commonly observed functional brain network 

known as the central executive network (CEN). The CEN, consisting of lateral prefrontal 

and parietal regions (Bressler and Menon, 2010), is generally associated with externally 

oriented attentional and executive processes (e.g., working memory, response selection, 

and inhibition; (Cole and Schneider, 2007; Seeley et al., 2007).  

The task-related brain regions we observed were generally similar when separately 

considering data collected during the pre- and post-instruction scans. While speaking to 

the consistency of such brain activity, this analysis is not intended to determine which 

brain regions differ as a function of completing a MI course (see below). We suspect that 

such task-related brain activity would be similar among students in other instructional 

environments. 

5.5.3 Instruction Effect: Changes in Brain Activity Post-instruction Versus Pre-

instruction 

Our second analysis identified increased brain activity among students completing the 

physics reasoning task after taking a MI course (Post > Pre) in the posterior cingulate 
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cortex, frontal poles, dlPFC, and angular gyrus. These brain regions (PCC, angular gyrus) 

overlap with regions of another commonly observed large-scale functional brain network 

known as the default-mode network (DMN). The DMN, consisting of posterior cingulate 

cortex (PCC), angular gyri, medial PFC, and middle temporal gyri (Laird et al., 2009; 

Raichle et al., 2001), is generally associated with internally oriented cognitive processes 

(i.e., self-reflection, mind wandering, autobiographical memory, planning; (Buckner et 

al., 2008). However, other lines of evidence also implicate DMN involvement in complex 

tasks such as narrative comprehension (Simony et al., 2016), semantic processing (Binder 

et al., 2009; Binder and Desai, 2011) or the generation and manipulation of mental 

images (Andrews-Hanna, 2012). In the context of the current task, one interpretation is 

that students may generate mental images to simulate events and formulate predictions. 

Additionally, post-instruction increase in DMN activity was observed during physics 

reasoning (which we show is supported by the CEN), and such coupling between the 

DMN and CEN during cognition has been hypothesized to arise during controlling 

attentional focus, thereby aiding in efficient cognitive function (Leech & Sharp, 2014). 

Other brain regions showing greater activation during physics reasoning after the MI 

course included the dlPFC and the frontopolar cortex. The frontopolar cortex is a 

component of a decision-making network often involved with learning (Koechlin and 

Hyafil, 2007). The dlPFC is critically linked with the manipulation of verbal and spatial 

information in working memory (Barbey et al., 2013). Given previous links with, for 

example,  mental simulation, working memory, mathematical calculations, and attention, 

we speculate that post-instruction increased activity in the PCC, angular gyrus, dlFPC 
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and frontal pole may reflect enhanced mental operations and/or models involved with 

physics reasoning and/or generation of predictions about physical outcomes.  

The PCC, left angular gyrus, left frontal pole, and left DLPFC were the four regions of 

greatest extent to show increased activity (Post > Pre), however, we did not see 

correlation between change in activity within these areas and accuracy on the FCI after 

instruction. The FCI is a cognitively demanding task which includes intuitive but wrong 

answers. Thus, it may simply be that even wrong answers on the FCI require significant 

mental effort. Inaccurate physics reasoning likely still involves many of the same mental 

operations successful physics reasoning does (i.e., mental imagery, visualization, 

prediction generation, and decision making, to name a few). Measures of accuracy in and 

of themselves may not display a simple one-to-one relationship with changes in brain 

activity across instruction. Rather, these changes in brain activity may be related to more 

complex behavioral changes in how student’s reason through physics questions post- 

relative to pre-instruction. These might include shifts in strategy or an increased access to 

physics knowledge and problem solving resources.  

We posit that the observed pre to post-instruction changes in brain activation during 

physics reasoning are consistent with what one may expect to observe as students 

develop refined mental models during classroom learning. Physics reasoning, regardless 

of an individual’s familiarity with the material, is a process continually scaffolded by 

mental model use (Giere, 2005; Koponen, 2006; Nersessian, 1995, 1999, 2002a, 2002b), 

and effective physics learning is engendered by building and deploying strategies to 

appropriately implement mental models during reasoning (Hestenes et al., 1987). In this 
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study, we framed our exploration of learning-induced changes in brain activity in the 

context of the MI classroom because this pedagogical approach has been shown to 

effectively encourage the development and flexible implementation of models during 

physics reasoning (Brewe, 2008; Brewe et al., 2010b). Our experimental results do not go 

as far as to implicate MI as any more or less effective than other instructional strategies at 

supporting instructional-related changes in student’s brain networks. However, if we 

accept that physics reasoning inherently relies on mental model use, we can begin to 

consider a more truly neuroeducational interpretation of physics learning in which shifts 

in network engagement across instruction bring about student conceptual change. 

Characterizing these neurobiological changes may ultimately help researchers and 

educators understand which instructional strategies may best support successful model 

development. We hold that the mental models student’s deployed at the beginning of the 

semester during reasoning, upheld by a variety of CEN-supported attentional and 

executive processes, shifted after instruction, as evidenced by student’s overall increased 

accuracy during reasoning. This instruction-induced shift in model use promoted 

increased involvement from key DMN and CEN regions within reasoning. This study 

represents an initial step in neuroeducational research demonstrating that such shifts, 

indicative of learning, are measurable and detectable using non-invasive brain imaging 

techniques. Additional work is needed to understand the relationship between external 

conceptual models as studied in science education, with mental models and related 

cognitive constructs as studied in neuroimaging literature. 

This project has several limitations. First, we focused on the MI class and did not assess 

the brain activity of students from traditional lecture course sections or other active 
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learning environments. Based on the data presented, we do not make claims that MI is a 

better or the only instructional tool capable of inducing brain network alterations. Rather, 

in the current study, we used MI as an exemplar case. It remains to be determined if 

different pedagogies differentially influence how physics reasoning-related brain 

networks develop. As noted above and consistent with recommendations (Scott Freeman 

et al., 2014), we will explore this in the future and a future direction could investigate 

differences among active learning formats. Second, these analyses addressed brain 

activation and did not consider correlation with other behavioral measures, such as 

mental rotations, science anxiety, or academic performance measures would could further 

aid in the interpretation of these fMRI outcomes. Third, consideration of potential 

differences between female and male students remains for future investigations. 

Notwithstanding these limitations and future direction, these preliminary outcomes 

implicate brain regions linked with physics reasoning and, critically, suggest that brain 

activity during physics reasoning is modifiable over the course of a semester of physics 

instruciton. Further work should investigate differences between MI and lecture 

instruction, as well as addressing differences among different active learning strategies 

across disciplines. Studying active learning broadly has the potential to more clearly 

elaborate how these pedagogies impact student learning and brain function. 

5.6 Supplemental Material 

5.6.1 Data Acquisition 

Imaging data were collected on a General Electric 3 Tesla Healthcare Discovery 750W 

MRI scanner using a 32-channel phased-array radio frequency coil. High-resolution T1-
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weighted series were acquired for anatomical reference with a 3D fast spoiled gradient 

recall brain volume (FSPGR BRAVO) sequence. T1-weighted sagittal slices were 

acquired with TI = 650ms, bandwidth = 25.0kHz, flip angle = 12°, voxel dimensions = 

1×1×1 mm, and slice thickness = 1.0mm. Functional data were acquired using an 

interleaved gradient-echo, echo planar imaging (EPI) pulse sequence (TR/TE = 

2000/30ms, flip angle = 75°, field of view = 220x220 mm, matrix size = 64x64, voxel 

dimensions = 3.4×3.4×3.4 mm, slice spacing = 0 mm, with a bottom-up interleaved 

acquisition). A total of 42 axial oblique slices were collected for each participant. These 

slices were acquired at a 30° angle from the anterior commissure/posterior commissure 

plane so as to reduce signal dropout due to proximity to the sinus cavity. 

5.6.2 Data Preprocessing and Analysis 

Preprocessing and analysis were carried out in FSL (FMRIB, www.fmrib.ox.ac.uk/fsl) 

for this study. The AFNI software library (http://afni.nimh.nih.gov/afni) was used to 

perform initial image orientation prior to preprocessing: the first five frames of each 

functional run were discarded to allow for stabilization of the MR signal across the brain, 

and, to ensure L/R orientation consistency across all volumes, spatial orientation and 

stereotactic origin for functional and structural images were matched to that of the 

standardized MNI152 template. These data were then fed into FSL’s FEAT tool. 

Preprocessing involved rigid-body motion correction of functional runs by using FSL’s 

MCFLIRT. Anatomical and functional images were skull stripped with BET and 

functional volumes were spatially smoothed using a 5mm Gaussian kernel. Functional 

images were then high-pass filtered at a threshold of 110s. Affine transformations (12-



 192 

degree-of-freedom) were then performed using FLIRT to co-register functional series 

with each participant’s structural volume. All images were then transformed into 

standardized MNI152 space using non-linear resampling in FNIRT. 

Each FCI and control question was modeled as a single block in which block duration 

was given by the onset of each question to the onset of a central concluding fixation 

cross. The fixation cross was presented between each question and allowed for the brain’s 

hemodynamic response to return to baseline before beginning the next question. All 

questions (FCI and Control) were self-paced: all question text was replaced by the central 

fixation cross when the student selected their answer choice. Stimulus timing files were 

convolved with a Gamma function to model the brain’s hemodynamic response and the 

first temporal derivatives of each stimulus timing file were computed. General linear 

modeling (GLM) was performed in FSL using FEAT to assess the contrast of 

FCI>Control. The GLM design matrix contained regressors for FCI and Control 

questions, as well as regressors of no interest for the stimulus derivatives to account for 

any offsets in peak BOLD response, as well as six standard motion parameters (3 

translation, 3 rotation). Additionally, image scrubbing was performed at the subject-level 

analyses to discard volumes containing motion greater than .35mm Framewise 

Displacement.  
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Chapter 6  

Conclusions and Future Work 

 

6.1 Summary of Findings 

The work presented in the previous chapters aimed to gather and assess evidence of 

human learning and knowledge organization as measured by the functional magnetic 

resonance imaging of student brain activity across semester-long university-level 

introductory physics learning experiences. This project sought to extend neuroimaging 

advances into the realm of education research by investigating the socially and 

ecologically relevant challenges that face physics education today. Each study in this 

collection of work contains its own concluding remarks; however, I will attempt to frame 

these findings in the overall context of the larger project here. 

In the first study, we comprehensively synthesized a large corpus of neuroimaging 

literature that had previously been only considered separately. Through eight separate 

quantitative coordinate-based meta-analyses we identified convergent brain activity 

associated with human problem solving across its multiple forms. The major findings 

from this set of investigations were that 1) problem solving engages the central executive 

network (CEN) across a wide range of contexts, 2) specific CEN sub-networks separately 

support mathematical, verbal, and visuospatial problem solving variants, and 3) a 

convergent core neural system subtended all types of problem solving. Based on these 

results we proposed a model of general problem solving-related brain function that 
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described cross-network cooperation between regulatory, perceptual, and context-specific 

circuits to carry out the iterative cognitive steps needed to solve problems. These 

observations provided specific neuroanatomical predictions that we applied to inform and 

elucidate the physics problem solving-specific fMRI analyses of Chapter 4. Additionally, 

the understanding of problem solving-related brain function across knowledge domains 

gained this study can inform innovative neuroeducation investigations on how students 

may acquire problem solving skills across classroom instruction. 

The following section presented the overview and implementation of just such an 

investigation. In Chapter 3, I presented an overview of a very large longitudinal data 

collection project, entitled Exploring the Neural Mechanisms of Physics Learning, which 

was designed to gather and assess evidence of human learning, as measured by the fMRI 

of student brain activity, across semester-long university-level physics classroom 

instruction. In this section I described the creation of three novel neuroimaging 

paradigms to measure brain networks associated with physics problem solving, physics 

memory retrieval, and general reasoning. I also presented a summary of recruitment and 

data acquisition procedures that accompanied the facilitation of this project through 

completion. Pre- and post-instruction fMRI and behavioral data sets were acquired from 

121 physics students who completed 229 total MRI scans. Analyses of data acquired as 

part of this broader project are ongoing (see §6.2 Future Work for details) and the 

following chapters presented the first set of publications that resulted from this larger 

project. 
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To our knowledge, the brain activity underlying physics problem solving in introductory 

physics students has never before been observed. Thus, the natural first goal in the larger 

neuroeducation project was to characterize the neural mechanisms of physics problem 

solving after University-level instruction had already occurred. Towards this end and in 

Chapter 4, we assessed the post-instruction brain function of 107 students during physics 

reasoning, investigated how these networks shifted across different stages of problem 

solving, and probed for putative relationships between brain function and accuracy, 

difficulty, strategy, and students’ conceptualization of physics ideas. Primary findings 

resulting from this set of analyses were that 1) physics problem solving is supported by 

the CEN (similar to the problem solving observations of Chapter 2) and additionally 

engages V5/MT+, an area linked to motion visualization, 2) different stages of physics 

problem-solving engage different brain networks, with solution generation relying on 

critical interactions between the default mode network (DMN) and CEN that may 

indicate episodic and semantic memory retrieval processes during physics reasoning, 

consistent with the constructivist theory of learning. Additionally, while 3) problem 

accuracy did not modulate brain activity, 4) variance in conceptual approach during 

physics reasoning characterized brain differences, and these in turn impacted success 

rate. Specifically, students who applied more coherent physics conceptions showed 

enhanced frontal and V5/MT+ engagement during reasoning, whereas those who held 

less coherent physics conceptions engaged relatively more visual and salience network 

areas during problem solving. These findings are consistent with the “resources” 

framework of physics thinking and we find evidence that brain differences during physics 
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reasoning are observable along an axis knowledge compilation, coherence, and 

robustness.  

In our opinion, this study exemplifies the potential of neuroeducation research to provide 

valuable insight into student classroom learning. Guided by education research and 

theory, our neuroimaging results indicate student’s conceptual foundations reveal 

significantly more about their ability to succeed than simply counting right vs. wrong 

answers does. A focus on accuracy alone over-simplifies the complex processes that are 

engaged during physics reasoning. Instead, physics instruction may benefit students by 

explicitly instructing them on how students select, link, and reorganize their physics 

conceptions. 

Finally, Chapter 5 presents findings on the functional reorganization of physics problem 

solving-related brain as resulting from University-level classroom learning. Motivated by 

the assertion that science involves the iterative deployment, validation, and revision of 

models (Brewe, 2008; Hestenes, 1987), this investigation sought to provide 

neurobiological evidence of physics learning through the explicit development of physics 

mental models. Modeling Instruction is a curriculum and pedagogy that explicitly 

structures class time around providing students with opportunities to build, test, and 

revise physics models, and has been shown to effectively encourage the development and 

flexible implementation of models during physics reasoning (Brewe, 2008; Brewe et al., 

2010b). Because of this, we focused our investigations in this study on pre- and post-

instruction physics problem solving-related fMRI from Modeling Instruction students. 

Students who completed the Modeling Instruction course 1) showed significantly 
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increase accuracy during physics reasoning after the course, indicating they learned how 

to solve physics problems, 2) engaged physics problem-related brain activity in the CEN-

V5/MT+ network, in agreement with the findings of Chapter 4, and 3) demonstrated 

large-scale network reorganization during reasoning after Modeling Instruction, with Post 

> Pre physics problem solving-related brain activity being linked with increased activity 

in the DMN. We note that these results are consistent with the CEN-DMN coherence 

observed during the reasoning and answer making stage of problem solving, as reported 

in Chapter 4. We posit that these Pre- to Post-instruction changes in brain activation 

during physics reasoning are consistent with what one may expect to observe as students 

develop refined mental models during classroom learning. 

6.2 Future Work 

The studies presented in this dissertation constitute the first of several ongoing 

investigations resulting from the broader Exploring the Neural Mechanisms of Physics 

Learning project. These investigations involve analyses of fMRI data collected across the 

retrieval, general reasoning, and resting-state paradigms, and explore correlations 

between these brain networks and behavioral measures such as STEM anxiety, GPA, and 

course grade. Group comparisons across Lecture and Modeling Instruction class types are 

being considered to assess any potential effects pedagogy may have on the development 

of brain networks across learning. Additionally, gender effects associated with reasoning 

and retrieval-related brain networks are being investigated. Dynamic functional 

connectivity, as measured via sliding window graph theory, is also being used as a 
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methodology to investigate how individual difference measures of class performance may 

load onto different task-related brain networks. 

Through the collection of work presented in this dissertation, we have provided 

neurobiological evidence of physics problem solving and learning as measured across 

classroom instructional environments. Future work will continue to investigate how 

instructional environments, group differences, or behavioral factors may impact student 

brain function. This novel neuroeducation project is the first of its kind to consider how 

learning environments drive functional reorganization of brain networks in physics 

students. We hope that the outcomes of the project will continue to have broad 

applicability to how we understand human learning in STEM.  
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Appendices 

A.1 Neuroimaging Studies Included in the Problem Solving Meta-Analyses 

The following are supplemental materials published alongside the text and figures 

presented in Chapter 3 of this dissertation. 

Table A.1. Published neuroimaging studies included in the problem solving meta-
analyses. Table a) lists the mathematical problem solving experiments included in the 
mathematical domain analysis, table b) lists the verbal problem solving experiments 
included in the verbal domain meta-analysis, table c) lists the visuospatial problem 
solving experiments included in the visuospatial domain meta-analysis, and table d) lists 
the problem solving experiments included in the problem demand meta-analysis.  
 
a)	Mathematical	Problem	Solving	Experiments	

Publication	 Contrast	 #Foci	 Subjects	 Paradigm	
Classification	

Stimulus	
Type	

Task	
Performed	

Contrast	
Classification	

Imag
ing	
Mod
ality	

Andres	et	
al.,	2011	

1.	
Multiply	
>	
Subtract	

7	 10	 Number	
Operand	

Number
s,	Letters	

Multiplicati
on,	
Subtraction	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Audoin	et	
al.,	2005	

1.	PASAT	
-	Repeat,	
Healthy	
Controls	

45	 18	 PASAT	/	
PVSAT	

Auditory	
numbers	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	

Chochon	et	
al.,	1999	

1.	
Multiplic
ation	vs.	
Control	

12	 8	 Number	
Operand	

Number
s,	Letters	

Multiplicati
on,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Subtracti
on	vs.	
Control	

14	 	 Number	
Operand	

Number
s,	Letters	

Multiplicati
on,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Multiplic
ation	vs.	
Digit	
Naming	

4	 	 Number	
Operand	

Number
s,	Letters	

Multiplicati
on,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	
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	 4.	
Multiplic
ation	vs.	
Compari
son	

1	 	 Number	
Operand	

Number
s,	Letters	

Multiplicati
on,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 5.	
Subtracti
on	vs.	
Digit	
Naming	

11	 	 Number	
Operand	

Number
s,	Letters	

Multiplicati
on,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 6.	
Subtracti
on	vs.	
Compari
son	

13	 	 Number	
Operand	

Number
s,	Letters	

Multiplicati
on,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 7.	
Subtracti
on	vs.	
Multiplic
ation	

4	 	 Number	
Operand	

Number
s,	Letters	

Multiplicati
on,	
Subtraction	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Christodoul
ou	et	al.,	
2001	

1.	
Healthy	
Controls:	
mPASAT	
>	control	

24	 7	 PASAT	/	
PVSAT	

Auditory	
numbers	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	

Cowell	et	
al.,	2000	

1.	
Simple	
Mental	
Calculati
on	
Activatio
ns	

6	 12	 Number	
Operand	

Words	 Addition,	
Subtraction
,	
Multiplicati
on,	
Division	

Problem	
Solving	>	
Baseline	

PET	

De	Pisapia	
et	al.,	2006	

1.	Multi-
operand	
Mental	
Arithmet
ic	

9	 20	 Number	
Operand	

Number,	
Symbols	

Addition,	
Subtraction
,	
Multiplicati
on	

Problem	
Solving	>	
Baseline	

fMRI	

Dehaene	et	
al.,	1999	

1.	Exact	
Addition	
-	
Approxi
mate	
Addition	

7	 7	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition	 Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
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Delazer	et	
al.,	2003	

1.	
Untraine
d	
Multiplic
ation	Set	
vs.	
Number	
Matchin
g	

13	 13	 Number	
Operand	

Number
s,	Math	
Symbols	

Multiplicati
on	

Problem	
Solving	>	
Baseline	

fMRI	

Delazer	et	
al.,	2005	

1.	New	
Strategy	
Problem
s	vs.	
Number	
Matchin
g	

5	 9	 Additional	PS	
Type	

Number,	
Symbols	

Multi-
operand	
Algorithm	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Trained	
Strategy	
Problem
s	vs.	
Trained	
Drill	
Problem
s	

6	 	 Additional	PS	
Type	

Number,	
Symbols	

Multi-
operand	
Algorithm	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Fehr	et	al.,	
2007	

1.	
Addition
:	
Complex	
>	Simple	

17	 11	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction
,	
Multiplicati
on,	
Division	

Complex	>	
Simple	

fMRI	

	 2.	
Subtracti
on:	
Complex	
>	Simple	

18	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction
,	
Multiplicati
on,	
Division	

Complex	>	
Simple	

fMRI	

	 3.	
Multiplic
ation:	
Complex	
>	Simple	

9	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction
,	
Multiplicati
on,	
Division	

Complex	>	
Simple	

fMRI	

	 4.	
Division:	
Complex	
>	Simple	

15	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction
,	
Multiplicati
on,	
Division	

Complex	>	
Simple	

fMRI	
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Grabner	et	
al.,	2007	

1.	Multi-
Digit	
Multiplic
ation	>	
Single-
Digit	
Multiplic
ation	

15	 12	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on	
Verification	

Complex	>	
Simple	

fMRI	

Gruber	et	
al.,	2001	

1.	
Compou
nd	
Number	
Calculati
on	>	
Number	
Matchin
g	

7	 6	 Number	
Operand	

Number,	
Symbols,	
Letters	

Multiplicati
on,	
Division	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Simple	
Number	
Calculati
on	>	
Number	
Matchin
g	

8	 	 Number	
Operand	

Number,	
Symbols,	
Letters	

Multiplicati
on,	
Division	

Problem	
Solving	>	
Baseline	

fMRI	

Hanakawa	
et	al.,	2003	

1.	
Numeric
al	
Mental	
Operatio
ns	>	
Number	
Repeatin
g	

9	 16	 Number	
Operand	

Number
s	

Addition,	
Subtraction
,	
Multiplicati
on,	
Division	

Problem	
Solving	>	
Baseline	

fMRI	

Hugdahl	et	
al.,	2004	

1.	
Healthy	
Subjects:	
Mental	
Arithmet
ic	-	
Number	
Vigilance	
Task	

4	 12	 PASAT	/	
PVSAT	

Number
s	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	

Ischebeck	
et	al.,	2006	

1.	
Multiplic
ation	
Untraine
d	vs.	
Number	
Matchin
g	

13	 12	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	
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	 2.	
Subtracti
on	
Untraine
d	vs.	
Number	
Matchin
g	

21	 	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Subtracti
on	
Untraine
d	vs.	
Multiplic
ation	
Untraine
d	

2	 	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on,	
Subtraction	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Ischebeck	
et	al.,	2009	

1.	
Differen
ces:	
Division	
>	
Multiplic
ation	

2	 17	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on,	
Division	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Kawashima	
et	al.,	2004	

1.	Adults	
only:	
Addition	
Task	-	
Fixation	
Control	

10	 8	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction
,	
Multiplicati
on	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	Adults	
only:	
Subtracti
on	Task	-	
Fixation	
Control	

8	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction
,	
Multiplicati
on	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	Adults	
only:	
Multiplic
ation	
Task	-	
Fixation	
Control	

10	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction
,	
Multiplicati
on	

Problem	
Solving	>	
Baseline	

fMRI	

Kong	et	al.,	
2005	

1.	
Addition	
Without	
Carrying	
vs.	Rest	

5	 16	 Number	
Operand	

Number
s,	
Equation
s	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	
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	 2.	
Addition	
With	
Carrying	
vs.	Rest	

14	 	 Number	
Operand	

Number
s,	
Equation
s	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Subtracti
on	
Without	
Borrowi
ng	vs.	
Rest	

11	 	 Number	
Operand	

Number
s,	
Equation
s	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 4.	
Subtracti
on	With	
Borrowi
ng	vs.	
Rest	

10	 	 Number	
Operand	

Number
s,	
Equation
s	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 5.	Main	
Effect	of	
Arithmet
ic	Type:	
Subtracti
on	vs.	
Addition	

5	 	 Number	
Operand	

Number
s,	
Equation
s	

Addition,	
Subtraction	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 6.	Main	
Effect	of	
Procedur
e	
Complex
ity:	
Carrying
/Borrowi
ng	vs.	No	
Carrying
/Borrowi
ng	

4	 	 Number	
Operand	

Number
s,	
Equation
s	

Addition,	
Subtraction	

Complex	>	
Simple	

fMRI	

Krueger	et	
al.,	2008	

1.	
Integral	
Calculus	
Equation	
Verificati
on	-	Font	
Verificati
on	

12	 18	 Additional	PS	
Type	

Number
s,	Math	
Symbols	

Integral	
Calculus	

Problem	
Solving	>	
Baseline	

fMRI	

Kuo	et	al.,	
2008	

1.	Single	
Addition	
>	
Number	
Matchin
g	

13	 11	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	
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	 2.	Single	
Subtracti
on	>	
Number	
Matchin
g	

17	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	Dual	
Addition	
>	
Number	
Matchin
g	

15	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 4.	Dual	
Subtracti
on	>	
Number	
Matchin
g	

21	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

	 5.	Dual	
Operatio
n	>	
Number	
Matchin
g	

26	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

Lazeron	et	
al.,	2003	

1.	PVSAT	
vs.	
Fixation	

11	 9	 PASAT	/	
PVSAT	

Number
s	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	

	 2.	High	
Speed	
PVSAT	
vs.	Low	
Speed	
PVSAT	

10	 	 PASAT	/	
PVSAT	

Number
s	

Addition	 Complex	>	
Simple	

fMRI	

Lee,	2000	 1.	
Multiplic
ation	>	
Subtracti
on	

6	 11	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on,	
Subtraction	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	
	

2.	
Subtracti
on	>	
Multiplic
ation	

8	 	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on,	
Subtraction	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Mainero	et	
al.,	2004	

1.	
Healthy	
Controls:	
PASAT	
activatio
ns	

37	 22	 PASAT	/	
PVSAT	

Auditory	
numbers	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	
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Maruishi	et	
al.,	2007	

1.	
Healthy	
Controls:	
PVSAT	-	
Number	
Control	
Task	

7	 12	 PASAT	/	
PVSAT	

Number
s	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	

Menon	et	
al.,	2000	

1.	Slow	
Presenta
tion:	3-
Operand	
Math	
Problem
s	-	
Number	
Control	
Conditio
n	

16	 16	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition	
and	
Subtraction	
Verification	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	Slow	
Presenta
tion:	2-
Operand	
Math	
Problem
s	-	
Number	
Control	
Conditio
n	

6	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition	
and	
Subtraction	
Verification	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	Fast	
Presenta
tion:	3-
Operand	
Math	
Problem
s	-	
Number	
Control	
Conditio
n	

5	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition	
and	
Subtraction	
Verification	

Problem	
Solving	>	
Baseline	

fMRI	

	 4.	Main	
Effect	of	
Operand	

3	 	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition	
and	
Subtraction	
Verification	

Problem	
Solving	>	
Baseline	

fMRI	

Molko	et	
al.,	2003	

1.	
Healthy	
Controls:	
Calculati
on	>	
Rest	

11	 14	 Number	
Operand	

Number,	
Symbols,	
Letters	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	
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	 2.	
Healthy	
Controls:	
Effect	of	
Number	
Size	
During	
Exact	
Calculati
on	

7	 	 Number	
Operand	

Number,	
Symbols,	
Letters	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	

Montojo	
and	
Courtney,	
2008	

1.	
Calculati
on	with	
NMBR,	
RULE,	
BOTH	
switchin
g	>	
Calculati
on	with	
HOLD	
for	
Number	
and	Rule	

6	 16	 Number	
Operand	

Number
s	

Addition,	
Subtraction	

Complex	>	
Simple	

fMRI	

	 2.	Main	
Effect:	
Calculati
on	
(NMBR	
Switchin
g,	RULE	
Switchin
g,	
Switchin
g	BOTH	
Number	
and	
Rule)	

7	 	 Number	
Operand	

Number
s	

Addition,	
Subtraction	

Complex	>	
Simple	

fMRI	

	 3.	Main	
Effect:	
Event	
(all	
screens	
CUE,	
CALC,	
ANSW)	

11	 	 Number	
Operand	

Number
s	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	
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	 4.	
Calculati
on	
Switchin
g	NMBR	
only	>	
Calculati
on	
Switchin
g	RULE	
only	

5	 	 Number	
Operand	

Number
s	

Addition,	
Subtraction	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 5.	
Calculati
on	
Switchin
g	BOTH	
Number	
and	Rule	
>	
Calculati
on	
Switchin
g	NMBR	
Only	

5	 	 Number	
Operand	

Number
s	

Addition,	
Subtraction	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 6.	
Calculati
on	
Switchin
g	BOTH	
Number	
and	Rule	
>	
Calculati
on	
Switchin
g	RULE	
Only	

8	 	 Number	
Operand	

Number
s	

Addition,	
Subtraction	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Newman	et	
al.,	2011	

1.	Easy	
Number	
Problem
s	-	
Fixation	

9	 15	 Additional	PS	
Type	

Number
s	

Algebra	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	Hard	
Number	
Problem
s	-	
Fixation	

11	 	 Additional	PS	
Type	

Number
s	

Algebra	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	
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	 3.	
Number	
Problem
s	>	Word	
Problem
s	

6	 	 Additional	PS	
Type	

Number
s,	Words	

Algebra	
Problems	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Pesenti	et	
al.,	2000	

1.	
Addition	
vs.	Rest	

21	 8	 Number	
Operand	

Number,	
Symbols	

Addition	 Problem	
Solving	>	
Baseline	

PET	

	 2.	
Addition	
vs.	
Compari
son	of	
Numeric
al	
Magnitu
des	

2	 	 Number	
Operand	

Number,	
Symbols	

Addition	 Problem	
Solving	>	
Baseline	

PET	

	 3.	
Addition	
vs.	
Characte
rs	
Orientati
on	

5	 	 Number	
Operand	

Number,	
Symbols	

Addition	 Problem	
Solving	>	
Baseline	

PET	

Rickard	et	
al.,	2000	

1.	
Conjunct
ion:	
Calculati
on	>	
Detect	
Ones	
and	
Calculati
on	>	
Number	
Compari
son	

8	 8	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on	
Verification	

Problem	
Solving	>	
Baseline	

fMRI	

Rivera	et	
al.,	2002	

1.	
Healthy	
Controls:	
2-
Operand	
Calculati
on	-	
Number	
Control	
Task	

12	 16	 Number	
Operand	

Number
s,	
Equation
s	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	
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	 2	
Healthy	
Controls:	
3-
Operand	
Calculati
on	-	
Number	
Control	
Task	

9	 	 Number	
Operand	

Number
s,	
Equation
s	

Addition,	
Subtraction	

Problem	
Solving	>	
Baseline	

fMRI	

Rosenberg-
Lee	et	al.,	
2011	

1.	
Subtracti
on:	
Calculati
on	-	
Identific
ation	

4	 20	 Number	
Operand	

Number
s,	
Equation
s	

Subtraction	
Verification	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Multiplic
ation:	
Calculati
on	-	
Identific
ation	

6	 	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on	
Verification	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Division:	
Calculati
on	-	
Identific
ation	

6	 	 Number	
Operand	

Number
s,	
Equation
s	

Division	
Verification	

Problem	
Solving	>	
Baseline	

fMRI	

	 4.	
Multiplic
ation	-	
Subtracti
on	

3	 	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on	
Verification
,	
Subtraction	
Verification	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 5.	
Multiplic
ation	-	
Addition	

2	 	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on	
Verification
,	Addition	
Verification	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 6.	
Division	
-	
Multiplic
ation	

9	 	 Number	
Operand	

Number
s,	
Equation
s	

Multiplicati
on	
Verification
,	Division	
Verification	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
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Simon	et	
al.,	2002	

1.	
Calculati
on	vs.	
Calculati
on	
Control	

23	 10	 Number	
Operand	

Number
s,	Letters	

Subtraction	 Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Calculati
on	Only	
(regions	
active	in	
calculati
on	but	
not	in	
five	
other	
non-
calculati
on	tasks)	

1	 	 Number	
Operand	

Number
s,	Letters	

Subtraction	 Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Simon	et	
al.,	2004	

1.	
Calculati
on	Only	
(regions	
active	in	
calculati
on	but	
not	in	
five	
other	
non-
calculati
on	tasks)	

11	 10	 Number	
Operand	

Number
s,	Letters	

Subtraction	 Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Stanescu-
Cosson	et	
al.,	2000	

1.	Exact	
and	
Approxi
mate	
Calculati
on	vs.	
Letter	
Matchin
g	

16	 7	 Number	
Operand	

Number
s,	Letters	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Calculati
on	with	
Small	
Number
s	vs.	
Letter	
Matchin
g	

7	 	 Number	
Operand	

Number
s,	Letters	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	
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	 3.	Exact	
Calculati
on	>	
Approxi
mation	

12	 	 Number	
Operand	

Number
s,	Letters	

Addition	 Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Venkatram
an	et	al.,	
2006	

1.	Peak	
Activatio
ns:	Exact	
Addition	
in	Base-7	

18	 20	 Additional	PS	
Type	

Words	
spelling	
out	
numbers	

Addition,	
Percent	
Estimation	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	Peak	
Activatio
ns:	
Percenta
ge	
Estimati
on	in	
Base-10	

17	 	 Additional	PS	
Type	

Words	
spelling	
out	
numbers	

Addition,	
Percent	
Estimation	

Problem	
Solving	>	
Baseline	

fMRI	

Wood	et	
al.,	2008	

1.	NBT:	
Large	
Bisection	
Range	>	
Small	
Bisection	
Range	

18	 17	 Additional	PS	
Type	

Number
s	

Number	
Bisection	
Task	(NBT)	

Complex	>	
Simple	

fMRI	

	 2.	NBT:	
Decade	
Crossing	
>	No	
Decade	
Crossing	

17	 	 Additional	PS	
Type	

Number
s	

Number	
Bisection	
Task	(NBT)	

Complex	>	
Simple	

fMRI	

	 3.	NBT:	
Large	
Problem	
Size	>	
Small	
Problem	
Size	

6	 	 Additional	PS	
Type	

Number
s	

Number	
Bisection	
Task	(NBT)	

Complex	>	
Simple	

fMRI	

	 4.	NBT:	
Large	
Distance	
to	Mean	
>	Small	
Distance	
to	Mean	

5	 	 Additional	PS	
Type	

Number
s	

Number	
Bisection	
Task	(NBT)	

Complex	>	
Simple	

fMRI	
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Wu	et	al.,	
2009	

1.	
Mental	
Arithmet
ic	with	
Roman	
Numeral
s:	
Calculati
on	-	
Identific
ation	

4	 18	 Number	
Operand	

Arabic	
and	
Roman	
Numeral
s,	
Equation
s	

Addition	
and	
Subtraction	
Verification	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Mental	
Arithmet
ic	with	
Arabic	
Numeral
s:	
Calculati
on	-	
Identific
ation	

3	 	 Number	
Operand	

Arabic	
and	
Roman	
Numeral
s,	
Equation
s	

Addition	
and	
Subtraction	
Verification	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Mental	
Arithmet
ic:	
Arabic	
Numeral
s	-	
Roman	
Numeral
s	

2	 	 Number	
Operand	

Arabic	
and	
Roman	
Numeral
s,	
Equation
s	

Addition	
and	
Subtraction	
Verification	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 4.	
Mental	
Arithmet
ic:	
Roman	
Numeral
s	-	
Arabic	
Numeral
s	

6	 	 Number	
Operand	

Arabic	
and	
Roman	
Numeral
s,	
Equation
s	

Addition	
and	
Subtraction	
Verification	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Zago	et	al.,	
2001	

1.	
Comput
ation	vs.	
Number	
Reading	

14	 6	 Number	
Operand	

Number
s	

Multiplicati
on,	Read	

Problem	
Solving	>	
Baseline	

PET	
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Zago	et	al.,	
2008	

1.	
Number
s	
Manipul
ation	-	
Number	
Mainten
ance	

18	 14	 Number	
Operand	

Number
s,	Math	
Symbols	

Addition	 Problem	
Solving	>	
Baseline	

fMRI	

Zhou	et	al.,	
2007	

1.	
Addition
:	Large	
Number
s	>	
Fixation	

15	 20	 Number	
Operand	

Number
s	

Addition,	
Multiplicati
on	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Addition
:	Small	
Number
s	>	
Fixation	

15	 	 Number	
Operand	

Number
s	

Addition,	
Multiplicati
on	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Multiplic
ation:	
Large	
Number
s	>	
Fixation	

16	 	 Number	
Operand	

Number
s	

Addition,	
Multiplicati
on	

Problem	
Solving	>	
Baseline	

fMRI	

	 4.	
Multiplic
ation:	
Small	
Number
s	>	
Fixation	

16	 	 Number	
Operand	

Number
s	

Addition,	
Multiplicati
on	

Problem	
Solving	>	
Baseline	

fMRI	

b)	Verbal	Problem	Solving	Experiments	

Publication	 Contrast	 #Foci	 Subjects	 Paradigm	
Classification	

Stimulus	
Type	

Task	
Performed	

Contrast	
Classification	

Imag
ing	
Mod
ality	

Aziz-Zadeh	
et	al.,	2009	

1.	Insight	
Derived	
Solution
s	>	
Solution
s	
Derived	
by	
Searchin
g	for	
Answers	

8	 10	 Insight	
Problems	

Words,	
Letters	

Anagram	
Problems	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
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Blackwood	
et	al.,	2004	

1.	
Uncertai
n	
Decision
s	>	
Certain	
Decision
s,	Words	
Task	>	
Balls	
Task	

7	 8	 Inductive/Pro
babilistic	
Reasoning	

Words	 Probabilisti
c	
Reasoning	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Canessa	et	
al.,	2005	

1.	
Conditio
nal	
Problem
s	Using	
Descripti
ve	
Words	
vs.	
Baseline	

18	 12	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Conditio
nal	
Problem
s	Using	
Social	
Exchang
e	Words	
vs.	
Baseline	

23	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

Christoff	et	
al.,	2009	

1.	
Concrete	
Problem
s	vs.	
Highly	
and	
Moderat
ely	
Abstract	
Problem
s		

2	 16	 Insight	
Problems	

Words,	
Letters	

Anagram	
Problems	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
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	 2.	
Moderat
ely	
Abstract	
Problem
s	vs.	
Highly	
Abstract	
and	
Concrete	
Problem
s	

2	 	 Insight	
Problems	

Words,	
Letters	

Anagram	
Problems	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 3.	Highly	
Abstract		
Problem
s	vs.	
Moderat
ely	
Abstract	
and	
Concrete	
Problem
s	

5	 	 Insight	
Problems	

Words,	
Letters	

Anagram	
Problems	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Duncan	et	
al.,	2000	

1.	High	g	
Letter	
Set	
Problem
s	vs.	Low	
g	Letter	
Set	
Problem
s	

3	 13	 Analogy	
Problems	

Letters	 Factor	
Referenced	
Cognitive	
Tests	(ETS)	

Complex	>	
Simple	

PET	

Fangmeier	
et	al.,	2006	

1.	
Reasonin
g	
Processi
ng	
Phase:	
Premise	
2	-	
Premise	
1	

6	 12	 Deductive	
Reasoning	

Letters	 Relational	
Reasoning	
Questions	

Problem	
Solving:	
Phase	I	>	
Phase	II	

fMRI	

	 2.	
Reasonin
g	
Integrati
on	
Phase:	
Premise	
2	-	
Conclusi
on	

9	 	 Deductive	
Reasoning	

Letters	 Relational	
Reasoning	
Questions	

Problem	
Solving:	
Phase	I	>	
Phase	II	

fMRI	
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	 3.	
Reasonin
g	
Validatio
n	Phase:		
Conclusi
on	-	
Premise	
2	

9	 	 Deductive	
Reasoning	

Letters	 Relational	
Reasoning	
Questions	

Problem	
Solving:	
Phase	I	>	
Phase	II	

fMRI	

	 4.	
Reasonin
g	-	
Mainten
ance	
Baseline,	
Integrati
on	Phase	

4	 	 Deductive	
Reasoning	

Letters	 Relational	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 5.	
Reasonin
g	-	
Mainten
ance	
Baseline,	
Reasonin
g	
Validatio
n	Phase	

8	 	 Deductive	
Reasoning	

Letters	 Relational	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

Fangmeier	
and	Knauff,	
2009	

1.	
Reasonin
g	
Processi
ng	
Phase:	
Premise	
2	-	
Premise	
1	

6	 12	 Deductive	
Reasoning	

Auditory	
Presente
d	Letters	

Deductive	
Reasoning	
Questions	

Problem	
Solving:	
Phase	I	>	
Phase	II	

fMRI	

	 2.	
Reasonin
g	
Validatio
n	Phase:	
Premise	
2	-	
Conclusi
on	

9	 	 Deductive	
Reasoning	

Auditory	
Presente
d	Letters	

Deductive	
Reasoning	
Questions	

Problem	
Solving:	
Phase	I	>	
Phase	II	

fMRI	
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Geake	and	
Hansen,	
2005	

1.	Main	
Effect:	
Increasin
g	
Analogic
al	Depth	
in	Fluid	
Analogy	
Letter	
Strings	

15	 12	 Analogy	
Problems	

Letter	
Strings	

Fluid	
Analogy	
Problems	

Complex	>	
Simple	

fMRI	

Goel	et	al.,	
1997	

1.	
Deductio
n	
Sentenc
e	
Problem
s	>	
Baseline	
Sentenc
es	

3	 10	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
and	
Probabilisti
c/Inductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

PET	

	 2.	
Inductio
n	
Sentenc
e	
Problem
s	>	
Baseline	
Sentenc
es	

6	 	 Inductive/Pro
babilistic	
Reasoning	

Sentenc
es	

Deductive	
and	
Inductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

PET	

	 3.	
Inductio
n	
Sentenc
e	
Problem
s	>	
Deductio
n	
Sentenc
es	

2	 	 Inductive/Pro
babilistic	
Reasoning	

Sentenc
es	

Deductive	
and	
Inductive	
Reasoning	
Questions	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

PET	

Goel	et	al.,	
1998	

1.	
Syllogis
m	-	
Baseline	

4	 12	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

PET	

	 2.	Spatial	
Relation
al	
Question
s	-	
Baseline	

5	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

PET	



 219 

	 3.	Non-
spatial	
Relation
al	
Question
s	-	
Baseline	

3	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

PET	

Goel	et	al.,	
2000	

1.	Main	
Effect	of	
Reasonin
g:	
(Content
-Based	
or	
Content-
Free	
Syllogis
ms)	>	
Syllogis
m	
Baseline	

13	 11	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Content-
based	
Syllogis
m	>	
Syllogis
m	
Baseline	

7	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Content-
free	
Syllogis
m	>	
Syllogis
m	
Baseline	

11	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 4.	
(Content
-Rich	
Reasonin
g	-	
Syllogis
m	
Baseline)	
and	
(Content
-Free	
Reasonin
g	-	
Syllogis
m	
Baseline)	

10	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
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	 5.	
Content-
Free	
Syllogis
ms	>	
Content-
Rich	
Syllogis
ms	

10	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Goel	and	
Dolan,	
2001	

1.	Main	
Effect	of	
Reasonin
g:	
(Abstract	
+	
Concrete	
Reasonin
g)	-	
(Abstract	
+	
Concrete	
Baseline)	

18	 14	 Deductive	
Reasoning	

Sentenc
es	

Relational	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Concrete	
Reasonin
g	-	
Concrete	
Baseline	

12	 	 Deductive	
Reasoning	

Sentenc
es	

Relational	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Abstract	
Reasonin
g	-	
Abstract	
Baseline	

5	 	 Deductive	
Reasoning	

Sentenc
es	

Relational	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 4.	
(Abstract	
Reasonin
g	-	
Abstract	
Baseline)	
and	
(Concret
e	
Reasonin
g	-	
Concrete	
Baseline)	

21	 	 Deductive	
Reasoning	

Sentenc
es	

Relational	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	
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Goel	and	
Dolan,	
2004	

1.	Main	
Effect	of	
Reasonin
g:	All	
Reasonin
g	-	
Baseline	
Problem
s	

13	 16	 Both	
Deductive	
and	Inductive	
Reasoning	

Sentenc
es	

Deductive	
and	
Probabilisti
c/Inductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Deductiv
e	
Reasonin
g	-	
Baseline	
Problem
s	

12	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
and	
Probabilisti
c/Inductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Inductiv
e	
Reasonin
g	-	
Baseline	
Problem
s	

11	 	 Inductive/Pro
babilistic	
Reasoning	

Sentenc
es	

Deductive	
and	
Probabilisti
c/Inductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

Goel	et	al.,	
2004	

1.	
Unfamili
ar	
Environ
mental	
Reasonin
g	-	
Unfamili
ar	
Environ
mental	
Baseline	

14	 14	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Familiar	
Environ
mental	
Reasonin
g	-	
Familiar	
Environ
mental	
Baseline	

5	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	
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Goel	et	al.,	
2009	

1.	Main	
Effect	of	
Reasonin
g:	All	
Reasonin
g	-	
Baseline	

10	 17	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

Hao	et	al.,	
2013	

1.	
Scientific	
Problem	
Solving	
With	
Insight	
Features	
Highlight
ed	>	
Scientific	
Problem	
Solving	
Without	
Insight	
Features	
Highlight
ed	

2	 17	 Insight	
Problems	

Sentenc
es	

Scientific	
Insightful	
Problem	
Solving	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Jung-
Beeman	et	
al.,	2004	

1.	Insight	
Solution
s	>	Non-
insight	
Solution
s	

7	 18	 Insight	
Problems	

Words	 Insight	
Problem	
Solving	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Knauff	et	
al.,	2002	

1.	
(Relation
al	or	
Conditio
nal	
Reasonin
g)	vs.	
Baseline	

18	 12	 Deductive	
Reasoning	

Auditory	
Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

Knauff	et	
al.,	2003	

1.	
Deductiv
e	
Reasonin
g:	
Visuospa
tial	
Relation
al	Words	
>	Rest	

4	 12	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	
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	 2.	
Deductiv
e	
Reasonin
g:	Visual	
Words	>	
Rest	

6	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Deductiv
e	
Reasonin
g:	Spatial	
Words	>	
Rest	

4	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 4.	
Deductiv
e	
Reasonin
g:	Non-
Visual,	
Spatial,	
or	
Visuospa
tial	
Words	>	
Rest	

3	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 5.	
Deductiv
e	
Reasonin
g:	All	
Word	
Types	>	
Rest	

9	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

Kroger	et	
al.,	2008	

1.	Main	
Effect	of	
Problem	
Type:	
Logic	
Word	
Problem
s	-	Math	
Problem
s	

16	 12	 Deductive	
Reasoning	

Sentenc
es	

Logic	Word	
Problems	
(Mental	
Venn	
Diagram	
Problems)	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Luo	and	
Niki,	2003	

1.	Insight	
Achieve
d	in	
Riddle	
Problem	
Solving	-	
Baseline	

39	 7	 Insight	
Problems	

Japanese	
Characte
rs	/	
Sentenc
es	

Riddle	
Insight	
Problem	
Solving	

Problem	
Solving	>	
Baseline	

fMRI	
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Luo	et	al.,	
2003	

1.	
Analogic
al	
Problem	
Solving	>	
Semanti
c	
Identific
ation	of	
Words	

11	 10	 Analogy	
Problems	

Chinese	
Characte
rs	

Analogy	
Word	Pairs	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Luo	et	al.,	
2006	

1.	
Positive	
Activatio
ns	in	
Tight	
Chunk	
Decomp
osition	
Problem
s	>	No	
Activatio
ns	in	
Loose	
Chunk	
Decomp
osition	
Problem
s	

19	 13	 Insight	
Problems	

Chinese	
Characte
rs	

Insight	
Problem	
Solving	
(Chinese	
Character	
Decomposi
tion)	

Complex	>	
Simple	

fMRI	

Luo	et	al.,	
2013	

1.	New	
Scientific	
Insight	
Problem
s	>	Old	
Scientific	
Insight	
Problem
s,	
Experim
ent	1	

1	 19	 Insight	
Problems	

Sentenc
es	

Scientific	
Insightful	
Problem	
Solving	

Untrained	>	
Trained	

fMRI	

	 2.	New	
Scientific	
Insight	
Problem
s	>	Old	
Scientific	
Insight	
Problem
s,	
Experim
ent	2	

2	 17	 Insight	
Problems	

Sentenc
es	

Scientific	
Insightful	
Problem	
Solving	

Untrained	>	
Trained	

fMRI	
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Monti	et	
al.,	2007	

1.	
Premise	
Phase	1	
>	
Fixation:	
Colored	
Block	or	
Pseudo-
Word	
Logic	
Stateme
nts,	
Experim
ent	1	

34	 10	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Colored	
Block	or	
Pseudo-
Word	
Logic	
Stateme
nts:	
Complex	
-	Simple	
Deductio
ns,	
Experim
ent	1	

31	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Complex	>	
Simple	

fMRI	

	 3.	
Premise	
Phase	1	
>	
Fixation:	
Face	or	
House	
Logic	
Stateme
nts,	
Experim
ent	2	

42	 12	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 4.	Face	
or	House	
Logic	
Stateme
nts:	
Complex	
-	Simple	
Deductio
ns,	
Experim
ent	2	

26	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Complex	>	
Simple	

fMRI	
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Monti	et	
al.,	2009	

1.	
Logical	
Problem
s:	
Inferenc
e		-	
Gramma
r	
Identific
ation	
Baseline	

26	 15	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Linguisti
c	
Problem
s:	
Inferenc
e		-	
Gramma
r	
Identific
ation	
Baseline	

44	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

Newman	et	
al.,	2011	

1.	Word	
Problem	
Solving	-	
Number	
Problem	
Solving	

10	 15	 Deductive	
Reasoning	

Sentenc
es	

Logic	Word	
Problems	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 2.	Easy	
Word	
Problem	
Solving	-	
Fixation	

14	 	 Deductive	
Reasoning	

Sentenc
es	

Logic	Word	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	Hard	
Word	
Problem	
Solving	-	
Fixation	

17	 	 Deductive	
Reasoning	

Sentenc
es	

Logic	Word	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	

Noveck	et	
al.,	2004	

1.	
Modus	
Ponens	
Conditio
nal	
Problem
s	-	
Baseline	
Problem
s	

4	 16	 Deductive	
Reasoning	

Sentenc
es	

Conditional	
Reasoning	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	



 227 

	 2.	
Modus	
Tollens	
Conditio
nal	
Problem
s	-	
Baseline	
Problem
s	

6	 	 Deductive	
Reasoning	

Sentenc
es	

Conditional	
Reasoning	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Modus	
Tollens	
Conditio
nal	
Problem
s	-	
Modus	
Ponens	
Conditio
nal	
Problem
s	

4	 	 Deductive	
Reasoning	

Sentenc
es	

Conditional	
Reasoning	
Problems	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Osherson	
et	al.,	1998	

1.	Logic	
Problem
s	vs.	
Probabili
stic	
Reasonin
g	
Problem
s	

8	 10	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
and	
Inductive/P
robabilistic	
Reasoning	
Problems	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

PET	

	 2.	Logic	
Problem
s	vs.	
Baseline	
Non-
Meaning
ful	
Problem
s	

8	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
and	
Inductive/P
robabilistic	
Reasoning	
Problems	

Problem	
Solving	>	
Baseline	

PET	
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	 3.	
Probabili
stic	
Reasonin
g	
Problem
s	vs.	
Baseline	
Non-
Meaning
ful	
Problem
s	

8	 	 Inductive/Pro
babilistic	
Reasoning	

Sentenc
es	

Deductive	
and	
Inductive/P
robabilistic	
Reasoning	
Problems	

Problem	
Solving	>	
Baseline	

PET	

Parsons	
and	
Osherson,	
2001	

1.	
Deductio
n	
Reasonin
g	-	
Probabili
stic	
Reasonin
g	

24	 10	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
and	
Probabilisti
c/Inductive	
Reasoning	
Questions	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

PET	

Prado	and	
Noveck,	
2007	

1.	
Verificati
on	Task:	
2-
Mismatc
h	>	1-
Mismatc
h	>	0-
Mismatc
h	

10	 20	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Complex	>	
Simple	

fMRI	

	 2.	
Falsificat
ion	Task:	
2-
Mismatc
h	>	1-
Mismatc
h	>	0-
Mismatc
h	

6	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Complex	>	
Simple	

fMRI	

Qiu	et	al.,	
2010	

1.	Aha	
Solution
s	>	No-
Aha	
Solution
s	

19	 16	 Insight	
Problems	

Chinese	
Characte
rs	

Riddle	
Insight	
Problem	
Solving	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
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Reverberi	
et	al.,	2007	

1.	
Propositi
onal	
Deductiv
e	
Inferenc
e:	
(Conditi
onal:	
Integrabl
e>Non)	>	
(Disjunct
ive:	
Integrabl
e>Non)	

8	 14	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Complex	>	
Simple	

fMRI	

Reverberi	
et	al.,	2010	

1.	
Conditio
nal	
Problem
s	>	
Baseline	

4	 26	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Syllogisti
c	
Problem
s	>	
Baseline	

9	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

Rodriguez-
Moreno	
and	Hirsch,	
2009	

1.	
Syllogisti
c	
Reasonin
g	in	
Premise	
2	Stage	>	
Control	
Sentenc
es	

5	 12	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Syllogisti
c	
Reasonin
g	in	
Conclusi
on	Stage	
>	
Control	
Sentenc
es	

9	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

Ruff	et	al.,	
2003	

1.	
Reasonin
g	vs.	
Rest	

9	 12	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	
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	 2.	
Reasonin
g	vs.	
Mainten
ance	

6	 	 Deductive	
Reasoning	

Sentenc
es	

Deductive	
Reasoning	
Questions	

Problem	
Solving	>	
Baseline	

fMRI	

Tian	et	al.,	
2011	

1.	
Successf
ul	Riddle	
Problem	
Solving	>	
Unsucce
ssful	
Riddle	
Problem	
Solving	

7	 16	 Insight	
Problems	

Chinese	
Characte
rs	

Riddle	
Insight	
Problem	
Solving	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Wagner	et	
al.,	2001	

1.	Strong	
or	Weak	
Associati
ons:	4	
Word	
Answer	
Choices	
>	2	
Word	
Answer	
Choices	

6	 14	 Analogy	
Problems	

Words	 Global	
Similarity	
Task	
(Semantic	
Association	
Questions)	

Complex	>	
Simple	

fMRI	

	 2.	
Answer	
Choice:	
Weakly	
Associat
ed	to	
Cue	
Word	>	
Strongly	
Associat
ed	to	
Cue	
Word	

22	 	 Analogy	
Problems	

Words	 Global	
Similarity	
Task	
(Semantic	
Association	
Questions)	

Complex	>	
Simple	

fMRI	



 231 

Wendelken	
et	al.,	2008	

1.	
(Compar
e	
Semanti
c	or	
Analogy	
Word	
Pairs)	-	
(Comple
te	
Semanti
c	or	
Analogy	
Word	
Pairs),	
Primary	
Analysis	

10	 20	 Analogy	
Problems	

Words	 Analogical	
Reasoning	
Problems	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 2.	All	
Correctly	
Answere
d	
Semanti
c	or	
Analogy	
Question
s	>	
Baseline	

9	 	 Analogy	
Problems	

Words	 Analogical	
Reasoning	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Compare	
Semanti
c	Word	
Pairs	>	
Baseline	

1	 	 Analogy	
Problems	

Words	 Analogical	
Reasoning	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	

	 4.	
Compare	
Analogy	
Word	
Pairs	>	
Baseline	

1	 	 Analogy	
Problems	

Words	 Analogical	
Reasoning	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	
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Wu	et	al.,	
2013	

1.	
Spatially	
Tight	
Characte
r	Chunk	
Decomp
osition	
Solution
s	>	
Spatially	
Loose	
Characte
r	Chunk	
Decomp
osition	
Solution
s	

24	 16	 Insight	
Problems	

Chinese	
Characte
rs	

Insight	
Problem	
Solving	
(Chinese	
Character	
Decomposi
tion)	

Complex	>	
Simple	

fMRI	

	 2.	
Spatially	
Tight	
Pseudoc
haracter	
Chunk	
Decomp
osition	
Solution
s	>	
Spatially	
Loose	
Pseudoc
haracter	
Chunk	
Decomp
osition	
Solution
s	

24	 	 Insight	
Problems	

Chinese	
Characte
rs	

Insight	
Problem	
Solving	
(Chinese	
Character	
Decomposi
tion)	

Complex	>	
Simple	

fMRI	

	 3.	
Spatially	
Tight	
Characte
r	Chunk	
Decomp
osition	
Solution
s	>	
Spatially	
Tight	
Pseudoc
haracter	
Chunk	
Decomp
osition	

9	 	 Insight	
Problems	

Chinese	
Characte
rs	

Insight	
Problem	
Solving	
(Chinese	
Character	
Decomposi
tion)	

Complex	>	
Simple	

fMRI	
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Zarnhofer	
et	al.,	2013	

1.	
Activatio
ns:	
Problem
s	Solving	
Using	a	
Self-
Reporte
d	
Visualiza
tion	
Strategy	

3	 36	 Deductive	
Reasoning	

Sentenc
es	

Arithmetic	
Word	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Activatio
ns:	
Problem
s	Solving	
Using	a	
Self-
Reporte
d	
Verbaliz
ation	
Strategy	

6	 	 Deductive	
Reasoning	

Sentenc
es	

Arithmetic	
Word	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	

Zhao	et	al.,	
2013	

1.	Insight	
Solution
s	>	Non-
insight	
Solution
s,	Early	
Period	of	
Solution	
Forming	

11	 17	 Insight	
Problems	

Chinese	
Characte
rs	

Riddle	
Insight	
Problem	
Solving	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 2.	Insight	
Solution
s	>	Non-
insight	
Solution
s,	Late	
Period	of	
Solution	
Forming	

15	 	 Insight	
Problems	

Chinese	
Characte
rs	

Riddle	
Insight	
Problem	
Solving	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Zhao	et	al.,	
2014	
	

1.	Insight	
Solution
s	>	Rest	

12	 17	 Insight	
Problems	

Chinese	
Characte
rs	

Riddle	
Insight	
Problem	
Solving	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	Insight	
Solution
s	>	Non-
insight	
Solution
s	

7	 	 Insight	
Problems	

Chinese	
Characte
rs	

Riddle	
Insight	
Problem	
Solving	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	



 234 

c)	Visuospatial	Problem	Solving	Experiments	

Publication	 Contrast	 #Foci	 Subjects	 Paradigm	
Classification	

Stimulus	
Type	

Task	
Performed	

Contrast	
Classification	

Imag
ing	
Mod
ality	

Acuna,	
2002	

1.	
Transitiv
e	
Inferenc
e	Shape	
Task	>	
Height	
Compari
son	
Shape	
Task	

15	 17	 Visuospatial	
Relational	
Reasoning	

Pictures	 Transitive	
Inference	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Atherton	
et	al.,	2003	

1.	
Identify	
Best	
Next	
Move	>	
Identify	
Chess	
Piece	

19	 8	 Additional	PS	
Type	

Pictures	 Chess	
Strategy	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Bagga	et	
al.,	2014	

1.	Visual	
Reasonin
g	>	
Control,	
Healthy	
Controls	

6	 18	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures,	
Words	

Linearly	
Progressing	
Shape	Task	

Problem	
Solving	>	
Baseline	

fMRI	

Baker	et	
al.,	1996	

1.	TOL	>	
Baseline	

20	 6	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

PET	

Barra	et	al.,	
2012	

1.	
Encoding	
and	
Shortcut	
Navigati
on	Mean	
Activatio
ns:	
(Route	+	
Slanted	
+	Survey	
Perspect
ives)	>	
Baseline	

20	 26	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	
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	 2.	
Encoding	
and	
Shortcut	
Navigati
on:	First	
Person	
Route	>	
Slanted	
Perspect
ive	

10	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
	

	 3.	
Encoding	
and	
Shortcut	
Navigati
on:	
Slanted	
>	First	
Person	
Route	
Perspect
ive	

3	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
	

	 4.	
Encoding	
and	
Shortcut	
Navigati
on:	First	
Person	
Route	>	
Ariel	
Survey	
Perspect
ive	

15	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
	

	 5.	
Encoding	
and	
Shortcut	
Navigati
on:	Ariel	
Survey	>	
First	
Person	
Route	
Perspect
ive	

3	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
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	 6.	All	
Perspect
ives:	
Shortcut	
Task	>	
Passive	
Navigati
on	
Encoding	

28	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
	

Beaucham
p	et	al.,	
2003	

1.	TOL	>	
One-
Move	
Baseline,	
Experim
ental	
Scan	1	

11	 12	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

PET	

	 2.	TOL	>	
One-
Move	
Baseline,	
Experim
ental	
Scan	10	

1	 	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

fMRI	

Blackwood	
et	al.,	2004	

1.	
Uncertai
n	
Decision
s	>	
Certain	
Decision
s,	Balls	
Task	>	
Words	
Task	

7	 8	 Inductive/Pro
babilistic	
Reasoning	

Pictures	 Picture-
Based	
Probabilisti
c	
Reasoning	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Brown	and	
Stern,	2014	

1.	
Critical	
Decision	
Period:	
Overlapp
ing	>	
Non-
overlapp
ing	
Novel	
Mazes	

27	 16	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Complex	>	
Simple	

fMRI	
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	 2.	Novel	
Maze	
Problem
s:	Early	
Reinforc
ement	
Learning	
Stage	

30	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	
	

Campbell	
et	al.,	2009	

1.	
Significa
nt	
Activatio
ns:	
Spatial	
Navigati
on	
Roadblo
ck	
Planning	
Task	>	
Baseline	

19	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Significa
nt	
Activatio
ns:	
Virtual	
Tower	of	
London	
Planning	
Task	>	
Baseline	

18	 	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

fMRI	
	

Chen	et	al.,	
2003	

1.	
Identify	
Best	
Next	Go	
Move	>	
Identify	
Go	
Stones	
With	
Dots	

17	 6	 Additional	PS	
Type	

Pictures	 Go	
Strategy	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Identify	
Best	
Next	Go	
Move	>	
Fixate	on	
Empty	
Go	
Board	

17	 	 Additional	PS	
Type	

Pictures	 Go	
Strategy	
Task	

Problem	
Solving	>	
Baseline	

fMRI	
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Cho	et	al.,	
2010	

1.	Main	
Effect:	
Relation
al	
Complex
ity	in	
Analogy	
Picture	
Problem
s	

9	 17	 Visual	
Analogical	
Reasoning	

Pictures	 People	
Pieces	
Analogy	
Task	

Complex	>	
Simple	

fMRI	

Christoff	et	
al.,	2001	

1.	RPM:	
2-
relationa
l	
problem
s	vs.	1-
relationa
l	
problem
s	

7	 10	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Raven's	
Progressive	
Matrices	/	
Raven's	
Advanced	
Progressive	
Matrices	

Complex	>	
Simple	

fMRI	

Desco	et	
al.,	2011	

1.	RAPM	
Activatio
ns	>	
RAPM	
Baseline,	
Controls	

12	 14	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Raven's	
Progressive	
Matrices	/	
Raven's	
Advanced	
Progressive	
Matrices	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	TOL	
Activatio
ns	>	TOL	
Baseline,	
Controls	

21	 	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

fMRI	

Duncan	et	
al.,	2000	

1.	Shape	
Problem
s:	High	g	
Question
s	vs.	Low	
g	
Question
s	

15	 13	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Catell's	
Culture	
Fair	Test	

Complex	>	
Simple	

PET	

	 2.	
Imbedde
d	Circle	
Problem
s:	High	g	
Question
s	vs.	Low	
g	
Question
s	

7	 	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Catell's	
Culture	
Fair	Test	

Complex	>	
Simple	

PET	
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Ebisch	et	
al.,	2012	

1.	
Conjunct
ion	of	Gf	
problem
s:	
(Inductio
n	-	
Visualiza
tion)	and	
(Inductio
n	-	
Spatial	
Relation
ships)	

5	 10	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Fluid	
Intelligence	
Test	(FIT;	
similar	to	
RPM)	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 2.	
Conjunct
ion	of	Gf	
problem
s:	
(Visualiz
ation	-	
Inductio
n)	and	
(Visualiz
ation	-	
Spatial	
Relation
ships)	

3	 	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Fluid	
Intelligence	
Test	(FIT;	
similar	to	
RPM)	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Elliott	et	
al.,	1997	

1.	TOL:	
Solution	
Planning	
>	
Solution	
Guessing	

10	 6	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

PET	

Eslinger	et	
al.,	2009	

1.	
Relation
al	
Reasonin
g	
Pattern	
Solving	>	
Baseline,	
Whole	
Group	

17	 16	 Visuospatial	
Relational	
Reasoning	

Pictures	 Shape-
Based	
Relational	
Reasoning	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Fincham	et	
al.,	2002	

1.	Goal	
Processi
ng	
During	
Problem	
Solving	>	
Baseline	

13	 8	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

fMRI	
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Gagnon	et	
al.,	2012	

1.	
Blindfold
ed	
Sighted	
Controls:	
Maze	
Navigati
on	>	
Baseline	

5	 14	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Goel	and	
Dolan,	
2000	

1.	
Inductio
n	
Reasonin
g	of	
Samenes
s	
Between	
Animal	
Pictures	
-	
Perceptu
al	
Baseline	

12	 10	 Inductive/Pro
babilistic	
Reasoning	

Pictures	 Animal	
Picture	
Rule	Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	Rule	
Applicati
on	of	
Samenes
s	
Between	
Animal	
Pictures	
-	
Perceptu
al	
Baseline	

12	 	 Inductive/Pro
babilistic	
Reasoning	

Pictures	 Animal	
Picture	
Rule	Task	

Problem	
Solving	>	
Baseline	

fMRI	

Grön	et	al.,	
2000	

1.	Whole	
Group:	
Maze	
Problem	
Navigati
on	>	
Baseline	

18	 24	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Hampshire	
et	al.,	2011	

1.	Visual	
Reasonin
g	>	
Baseline,	
Simultan
eous	
Picture	
Presenta
tion	

11	 16	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Nonverbal	
Reasoning	
Problems	

Problem	
Solving	>	
Baseline	

fMRI	



 241 

	 2.	Main	
Effect:	
Visual	
Rule	
Complex
ity,	
Simultan
eous	
Picture	
Presenta
tion	

9	 	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Nonverbal	
Reasoning	
Problems	

Complex	>	
Simple	

fMRI	

	 3.	Main	
Effect:	
Analogic
al	
Distance
,	
Simultan
eous	
Picture	
Presenta
tion	

6	 	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Nonverbal	
Reasoning	
Problems	

Complex	>	
Simple	

fMRI	

	 4.	Visual	
Reasonin
g	Rule	
Complex
ity	-	
Analogic
al	
Distance
,	
Simultan
eous	
Picture	
Presenta
tion	

9	 	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Nonverbal	
Reasoning	
Problems	

Complex	>	
Simple	

fMRI	

	 5.	Main	
Effect:	
Rule	
Complex
ity,	
Successi
ve	
Picture	
Presenta
tion	

5	 	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Nonverbal	
Reasoning	
Problems	

Complex	>	
Simple	

fMRI	
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	 6.	Main	
Effect:	
Analogic
al	
Distance
,	
Successi
ve	
Picture	
Presenta
tion	

5	 	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Nonverbal	
Reasoning	
Problems	

Complex	>	
Simple	

fMRI	

Hartley	et	
al.,	2003	

1.	
Wayfindi
ng	>	Trail	
Followin
g	

8	 16	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Wayfindi
ng	>	
Route	
Followin
g	

12	 16	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Untrained	>	
Trained	

fMRI	

Heckers	et	
al.,	2004	

1.	Main	
Effect:	
Transitiv
e	
Inferenc
e	

13	 16	 Visuospatial	
Relational	
Reasoning	

Pictures	 Transitive	
Inference	
Picture	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Hirshhorn	
et	al.,	2012	

1.	
Session	
1	
Conjunct
ion:	
(Blocked
-Route	
Problem	
Solving	>	
Baseline)	
and	
(Distanc
e	and	
Proximit
y	
Judgmen
t	>	
Baseline)	

15	 13	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	
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Houdé	et	
al.,	2000	

1.	
Relation
al	
Deductio
n	After	
Logic	
Training	
>	
Relation
al	
Deductio
n	Before	
Logic	
Training	

19	 8	 Visuospatial	
Relational	
Reasoning	

Pictures	 Shape	
Relational	
Deduction	
Task	

Untrained	>	
Trained	

PET	

Iaria	et	al.,	
2003	

1.	Maze	
Task	>	
Visuomo
tor	
Control	
Task	

17	 14	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Iaria	et	al.,	
2008	

1.	
Unexpec
ted	
Renaviga
tion:	
Blocked	
Path	
with	
Solution	
>	
Learned	
Path	
with	
Trivial	
Detour	

7	 10	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Untrained	>	
Trained	

fMRI	

	 2.	
Unexpec
ted	
Renaviga
tion:	
Blocked	
Path	
without	
Solution	
>	
Learned	
Path	
with	
Trivial	
Detour	

3	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Untrained	>	
Trained	

fMRI	
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	 3.	
Unexpec
ted	
Renaviga
tion:	
Blocked	
Path	
with	
Solution	
>	
Learned	
Path	
with	
Trivial	
Perceptu
al	
Change	

11	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Untrained	>	
Trained	

fMRI	

	 4.	
Unexpec
ted	
Renaviga
tion:	
Blocked	
Path	
without	
Solution	
>	
Learned	
Path	
with	
Trivial	
Perceptu
al	
Change	

2	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Untrained	>	
Trained	

fMRI	

Kalbfleisch	
et	al.,	2007	

1.	NNAT	
Hard	>	
NNAT	
Easy	

18	 14	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Naglieri	
Nonverbal	
Ability	Test	
(NNAT)	

Complex	>	
Simple	

fMRI	

Kroger	et	
al.,	2002	

1.	RPM:	
Complex
ity	levels	
3-4	-	
Distracto
r	levels	
3-4	

8	 8	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Raven's	
Progressive	
Matrices	/	
Raven's	
Advanced	
Progressive	
Matrices	

Problem	
Solving	>	
Baseline	

fMRI	
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Lu	et	al.,	
2010	

1.	
Triangle	
Number	
Problem:	
Calculati
on	Via	
Location
-Based	
Rule	
Inductio
n	>	
Simple	
Calculati
on	

15	 20	 Inductive/Pro
babilistic	
Reasoning	

Pictures,	
Number
s	

Spatially	
Dependent	
Calculation	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Marsh	et	
al.,	2010	

1.	Novel	
Maze	
Navigati
on	
During	
Spatial	
Learning	
Phase	>	
Trail	
Followin
g	

9	 25	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Masunaga	
et	al.,	2008	

1.	
Catell's	
Culture	
Fair	Test	
>	
Control	
Image	
Task	

16	 18	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Catell's	
Culture	
Fair	Test	

Problem	
Solving	>	
Baseline	

fMRI	

Melrose	et	
al.,	2007	

1.	
Problem	
Solving	
Using	
Reasonin
g	>	
Problem	
Using	
With	
Matchin
g	

14	 19	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Linearly	
Progressing	
Shapes	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Problem	
Solving	
Using	
Reasonin
g	>	
Reasonin
g	
Control	

33	 	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Linearly	
Progressing	
Shapes	
Task	

Problem	
Solving	>	
Baseline	

fMRI	
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Perfetti	et	
al.,	2009	

1.	RPM:	
Problem	
Solving	>	
Baseline,	
Whole	
Group	

11	 18	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Raven's	
Progressive	
Matrices	/	
Raven's	
Advanced	
Progressive	
Matrices	

Problem	
Solving	>	
Baseline	

fMRI	

Preusse	et	
al.,	2010	

1.	Time	
Point	1:	
Main	
Effect	of	
Task	
Difficulty	

4	 22	 Visual	
Analogical	
Reasoning	

Pictures	 Geometric	
Analogical	
Reasoning	
Task	(like	
RPM)	

Complex	>	
Simple	

fMRI	

	 2.	Time	
Point	2:	
Main	
Effect	of	
Task	
Difficulty	

4	 17	 Visual	
Analogical	
Reasoning	

Pictures	 Geometric	
Analogical	
Reasoning	
Task	(like	
RPM)	

Complex	>	
Simple	

fMRI	

Rauchs	et	
al.,	2008	

1.	
Navigate	
to	Target	
Location
:	Blocked	
Route	>	
Learned	
Route	

28	 16	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Untrained	>	
Trained	

fMRI	

	 2.	
Navigate	
to	Target	
Location
:	Blocked	
Route	>	
Learned	
Route	
Devoid	
of	
Familiar	
Landmar
ks	

14	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	
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	 3.	
Navigate	
to	Target	
Location	
within	
Blocked	
Route	
Conditio
n:	
Detour	>	
Well-
Known	
Part	of	
Route	

15	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Untrained	>	
Trained	

fMRI	

Sherrill	et	
al.,	2013	

1.	Maze	
Navigati
on	
Phase:	
First	
Person	
Perspect
ive	>	
Previousl
y	
Encoded	
Ariel	
Map	
Perspect
ive	

14	 18	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	Maze	
Navigati
on	
Phase:	
Third	
Person	
Perspect
ive	>	
Previousl
y	
Encoded	
Ariel	
Map	
Perspect
ive	

14	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	
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	 3.	Maze	
Navigati
on	
Phase:	
First	
Person	
Perspect
ive	>	
Third	
Person	
Perspect
ive	

8	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 4.	Maze	
Navigati
on	
Phase:	
Third	
Person	
Perspect
ive	>	
First	
Person	
Perspect
ive	

10	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Siemerkus	
et	al.,	2012	

1.	Novel	
Maze	
Navigati
on	in	
Healthy	
Controls:	
Decide	
Which	
Directio
n	at	
Intersect
ion	>	
Baseline	

25	 16	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Unterraine
r	et	al.,	
2005	

1.	
Perform
ance	
Related	
Activatio
ns	
During	
TOL	
Planning	
phase	

6	 20	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

fMRI	

van	den	
Heuvel	et	
al.,	2005	

1.	TOL	
Planning	
Phase	>	
Baseline,	
Normals	

19	 22	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

fMRI	
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	 2.	
Increase
d	
Activatio
n	
Correlati
ng	with	
Task	
Difficulty
,	
Normals	

21	 	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Complex	>	
Simple	

fMRI	

Van	Horn	
et	al.,	1998	

1.	Naïve	
Maze	
Navigati
on	>	
Baseline	

15	 15	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Practice
d	Maze	
Navigati
on	>	
Baseline	

7	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	Maze	
Navigati
on:	
Naïve	>	
Practice
d	

22	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Untrained	>	
Trained	

fMRI	

Wagner	et	
al.,	2006	

1.	TOL	
Planning	
Phase	>	
Ball	
Counting	

10	 7	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	TOL	
Planning	
Phase	>	
Indicate	
Number	
of	
Moved	
Balls	

11	 	 Tower	of	
London	Task	

Pictures	 Tower	of	
London	

Problem	
Solving	>	
Baseline	

fMRI	
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Watson	
and	
Chatterjee,	
2012	

1.	
Shape/C
olor	
Analogy	
Question
s	>	
Shape/C
olor	
Matchin
g	
Question
s	

3	 23	 Visual	
Analogical	
Reasoning	

Pictures	 Color	and	
Shape	
Analogy	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Wendelken	
and	Bunge,	
2010	

1.	
Transitiv
e	
Inferenc
e	
Problem
s	>	
Direct	
Compari
son	
Problem
s	

3	 16	 Visuospatial	
Relational	
Reasoning	

Pictures	 Picture-
Based	
Transitive	
Inference	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

	 2.	
Specific	
Relation
al	
Encoding	
Problem
s	>	
General	
Relation	
Problem
s	

8	 	 Visuospatial	
Relational	
Reasoning	

Pictures	 Picture-
Based	
Transitive	
Inference	
Task	

Problem	
Solving	Type	I	
>	Problem	
Solving	Type	
II	

fMRI	

Weniger	et	
al.,	2010	

1.	Maze	
Navigati
on:	
Decide	
Which	
Directio
n	at	
Intersect
ion	>	
Baseline	

17	 19	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	
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Weniger	et	
al.,	2013	

1.	Novel	
Maze	
Navigati
on	in	
Healthy	
Controls:	
Decide	
Which	
Directio
n	at	
Intersect
ion	>	
Baseline	

26	 14	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Wharton	et	
al.,	2000	

1.	
Analogy	
Shape	
Question
s	-	Literal		
Shape	
Matchin
g	

8	 12	 Visual	
Analogical	
Reasoning	

Pictures	 Patterned	
Shape	
Analogy	
Task	

Problem	
Solving	>	
Baseline	

PET	

Xu	et	al.,	
2010	

1.	
Navigate	
to	Target	
Location
:	All	
Landmar
ks	
Remove
d	>	Line	
Followin
g	

18	 20	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 2.	
Navigate	
to	Target	
Location
:	Blocked	
Path	>	
Line	
Followin
g	

14	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 3.	
Navigate	
to	Target	
Location
:	Blocked	
Path	>	
Learned	
Route	

7	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	
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	 4.	
Navigate	
to	Target	
Location
:	All	
Landmar
ks	
Remove
d	>	
Blocked	
Path	

1	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

	 5.	
Navigate	
to	Target	
Location
:	Blocked	
Path	>	
All	
Landmar
ks	
Remove
d	

6	 	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

Yoshida	
and	Ishii,	
2006	

1.	Maze	
Navigati
on:	Goal-
Search	>	
Visuomo
tor	
Control	

8	 13	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Problem	
Solving	>	
Baseline	

fMRI	

d)	Problem	Demand	Experiments	

Publication	 Contrast	 #Foci	 Subjects	 Paradigm	
Classification	

Stimulus	
Type	

Task	
Performed	

Representation	
Classification	

Imag
ing	
Mod
ality	

Brown	and	
Stern,	2014	

1.	
Critical	
Decision	
Period:	
Overlapp
ing	>	
Non-
overlapp
ing	
Novel	
Mazes	

27	 16	 Spatial	
Navigation	
Problem	
Solving	

Pictures	 Maze	
Navigation	
Task	

Visuospatial	 fMRI	
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Christoff	et	
al.,	2001	

1.	RPM:	
2-
relationa
l	
problem
s	vs.	1-
relationa
l	
problem
s	

7	 10	 Visuospatial	
Fluid	
Reasoning	
Task	

Pictures	 Raven's	
Progressive	
Matrices	/	
Raven's	
Advanced	
Progressive	
Matrices	

Visuospatial	 fMRI	
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A.2 Post-scan FCI Questionnaire 
Figure A.1 Post-scan FCI Reasoning Questionnaire. All participants completed a 
reasoning and strategy questionnaire immediately after exiting the MRI scanner. The 
questionnaire asked students to select how they arrived at the answers they provided to 
the nine in-scanner MRI questions while in the scanner. Their answers were used in to 
perform the parametric modulation analyses of Chapter 4  
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