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ABSTRACT OF THE DISSERTATION 

THIN FILM BASED BIOSENSORS FOR POINT OF CARE DIAGNOSIS 

OF CORTISOL 

by 

Syed Khalid Pasha 

Florida International University, 2018 

Miami, Florida 

Professor Shekhar Bhansali, Major Professor 

In this research, the design and development strategies for thin film-based 

biosensors are explored to achieve rapid, sensitive, selective, and label-free detection 

of cortisol in the physiological range [0.05µg/dL(saliva) to 25µg/dL(blood)]. Cortisol 

is a steroid hormone which is related to the physiological stress. Increased cortisol 

levels have been associated with stress-related diseases, including chronic fatigue 

syndrome, irritable bowel syndrome and post-traumatic stress disorder. Therefore, 

accurate measurement of cortisol in saliva, serum, plasma, urine, sweat, and hair, is 

gaining increasing clinical significance to predict multiple physical and mental 

diseases. 

Thin film based electrochemical immunosensors were fabricated using a self-

assembled monolayer (SAM) functionalized by specific antibodies to detect cortisol 

in the presence of a redox probe. The fabricated electrochemical cortisol 

immunosensors were able to detect cortisol in human saliva samples at 10 pM level 

sensitivities.  The results of the sensor were validated using the standard Enzyme 

Linked Immuno Sorbent Assay (ELISA) technique. To improve the signal 

amplification and label-free cortisol detection, copper nanoparticles were on the 

screen-printed carbon electrodes (SPCE) for the fabrication of electrochemical 
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cortisol immunosensor. This SPCE-based sensor showed a sensitivity of 4.21µA/M 

and limit of detection 6.6nM. 

However, both SAM and SPCE based immunosensors exhibited a 

shortcoming of thermal stability due to the biological nature of antibodies at room 

temperature. To overcome this challenge, an antibody-free sensing platform based on 

molecular imprinted polymer (MIP) was developed.  The design of this cortisol sensor 

depends on the selection of an appropriate polymer-base, wherein the sensing is 

dependent on the cortisol molecule’s adsorption on the polymer substrate. A poly-

pyrrole, a conducting polymer, was selected to fabricate MIP using electrochemical 

polymerization of pyrrole.  The MIP based sensor detected cortisol in the 

physiological range at room temperature. The performance of this sensor was tested 

on saliva samples and the results were validated by the conventional ELISA 

technique. This MIP based cortisol sensor is cost-effective, easy to fabricate, 

temperature stable, and reusable.  

Aiming to perform cortisol sensing at point-of-care (POC), an Extended Gate 

Field Effect Transistor (EGFET) was integrated with a developed MIP cortisol sensor. 

The as developed MIP-EGFET sensor was used to detect the cortisol concentration in 

the range of 10 pM to 100 nM. Some of the salient features of the developed sensor 

are its ability to provide a direct readout and a simpler electronic system. These 

attributes enable the POC device development of the reduced form factor. 

A sensing strategy consisting of integrating MIP cortisol sensor with an 

extended gate field effect transistor (EGFET) configuration was demonstrated to 

perform cortisol sensing at point-of-care (POC). The MIP-EGFET configuration 

protects the active device from the liquid environment and enables the relatively 

simple, label-free, portable and direct measurement system for cortisol sensing.  
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 INTRODUCTION 

1.1 Motivation 

Everyday experiences, events and lifestyle have been known to cause 

psychological stress, leading to adverse health outcomes. Although the human body 

reacts to stress in different ways, a typical response is the release of hormones and 

neurotransmitters. Prolonged exposure to stress causes the activation of signaling 

pathways from the brain that leads to the release of cortisol from the adrenal cortex. 

Various signaling pathways are affected by psychological stress. Cortisol “a steroid 

hormone” has been widely used for estimation of stress and exposure to chemicals. 

Cortisol secretion levels have been correlated to stress levels in patients suffering 

from stress disorders such as Post Traumatic Stress Disorder (PTSD), Cushing's 

syndrome, insomnia and burnout. Cortisol has also been  used as a marker for 

determining  the effect of exposure to external chemicals, such as the effects of 

organophosphates on the central nervous system, which alter the endocrine system, 

leading to an imbalance in cortisol secretion. The secretion of cortisol in individuals 

depends on the circadian rhythm and the environment. Hence its variations during the 

day at Point of Care (POC) are essential for personalized diagnosis and treatment. The 

detection of cortisol is based on immunoassays like chromatography, Enzyme Linked 

Immuno Sorbent Assay (ELISA) and Radioactive Immune Assay (RIA). These 

systems are bulky, expensive, require labels to operate and do not provide quick 

results. In contrast, Electrochemical (EC)/electrical (FET, chemiresistive, etc.) sensors 

demonstrate better sensing performance, can be made label-free, micro-fabricated, can 

provide faster results and are suitable for miniaturization. Due to their advantages 
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over optical, spectroscopic and mechanical sensors, electrochemical/electrical sensors 

were extensively explored for application towards POC systems [2-8].  

Electrochemical cortisol sensing platforms reported in this research have the 

potential to be integrated into a POC system for online continuous monitoring of 

cortisol as a function of one’s environment.  

POC sensing systems consist of biosensors and bio-analytical devices. These 

systems are crucial for detection of a targeted analyte outside controlled environments 

of diagnostic labs and hospitals. These devices have a major impact on the 

applications of personal care, health, food, and environmental monitoring. An ideal 

POC biosensor device allows real-time, rapid, label-free, and multiplexed detection 

with high selectivity and sensitivity [8]. 

However, there are several challenges in implementing POC sensors. The 

requirement of redox media for electrochemical sensing adds to design complication 

for POC devices. The lack of robustness due to the temperature sensitivity of 

detection molecules (antibodies, enzymes) pose logistical challenges involving 

increased costs associated with storage at temperatures below zero. The complexity of 

the electronic system associated with these devices also prevents them from being 

miniaturized for POC application. To address the above challenges in thin film-based 

detection of cortisol, this research was performed with the following specific aims in 

mind. 
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1.2 Specific Aims 

1.2.1 Specific Aim 1: Electrochemical immunosensors on a gold thin film based 

Inter Digitated Electrodes (IDEs) and their validation against ELISA using Human 

saliva samples 

The first activity to be undertaken in this research was the fabrication of 

electrochemical immunosensors on Au thin film-based IDEs. The Au surface was 

functionalized using SAM of DTSP molecules. Cortisol specific Antibodies were then 

immobilized on this functionalized surface, and non-binding sites blocked using 

Ethanolamine (EA). These sensors were calibrated and used for detection of cortisol 

in human saliva samples. The same samples were tested for cortisol using the standard 

ELISA process. The results obtained using both procedures were compared to validate 

the electrochemical immunosensing protocol. 

1.2.2 Specific Aim 2: Nano enabled signal amplification in SAM based 

electrochemical cortisol Immunosensors.  

Electrochemical sensors have a limitation where a redox label is required for 

sensing. In order to address the issue of label-free sensing, SPCE were modified 

electrochemically with Cu/CuO nanoparticles. The nano-modified SPCE were 

characterized by SEM, XRD and by CV. These nano-enabled SPCE were then used to 

fabricate SAM based Immunosensors using cortisol specific antibodies. The nano-

enabled immunosensors were then used to detect the different concentration of 

cortisol in a test sample.  
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1.2.3 Specific Aim 3: Biomimetic sensors for label-free, temperature stable and 

repeatable measurements of cortisol 

 MIPs were explored to address the challenges associated with previously 

fabricated immunosensors (temperature stability, label-free sensing, repeatability and 

direct output of sensing data). MIP thin film were formed on an SPCE surface using 

electro-polymerization of pyrrole. The substrates were then optimized and 

characterized. 

The MIP modified electrodes were then be used for electrochemical sensing 

and demonstrate cortisol detection. The fabricated sensors overcame some of the 

challenges associated with the ECIS described above. These sensors do not use 

expensive antibodies. Hence, the fabrication costs associated with them are meager. 

Repeatable sensing of cortisol was also demonstrated with the same MIP based 

electrode to allow for potential wearable applications. 

1.2.4 Specific Aim 4: Integration of EGFET with MIP based substrate for 

Sensing Cortisol- A direct approach. 

The electrochemical sensors have limitations with regards to label-free sensing 

and providing a direct readout of the sensing results. To address these limitations, a 

much simpler approach to sensing was explored.  The MIP based electrodes were 

integrated with a FET to give an EGFET configuration. The EGFET-MIP sensors thus 

fabricated allowed label-free detection of cortisol and provided direct readout by 

modulating drain current as a function of cortisol concentration. This approach also 

allows for less complexity regarding auxiliary instrumentation which is required for 

miniaturized devices. 
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1.3 Dissertation Organization 

In this Dissertation, we report the development of biosensors for the detection 

of cortisol which has potential application towards the point of care use. In Chapter 1, 

the motivation for this research and specific aims are discussed. In Chapter 2, cortisol 

and its importance in the body are presented. Also discussed are the state of the art 

techniques available for the detection of cortisol. In Chapter 3, the fabrication and 

characterization of electrochemical immunosensors based on the gold thin film is 

presented. The results related to the validation of these sensors against standard 

ELISA technique were also discussed in this chapter. Chapter 4 reports the 

development of a nano-modified electrochemical immunosensor for achieving label-

free sensing of cortisol. Chapter 5 and 6 present the design, fabrication, validation, 

and application of Molecular Imprinted Polymer based sensors in electrochemical and 

electronic (EGFET) configuration. These chapters address the issues associated with 

the devices reported in the previous chapters. The summary of the research 

undertaken, and future prospects are discussed in Chapter 7. 
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 BACKGROUND AND LITERATURE REVIEW 

2.1 Biosensing 

Medicine and healthcare have been evolving ever since the dawn of humanity. 

They are based on a system of observation and treatment of symptoms. The only tools 

available for diagnosis in early times were the sense of smell, sight, touch, and 

hearing. Patients were treated based on how their symptoms responded to a medicine. 

It was the case until the late nineteenth century. The evolution of scientific tools such 

as microscopes, stethoscopes, etc. helped in the diagnosis of diseases. During the 20th 

century, the development of chemical analysis tools such as gas chromatography [9], 

paper chromatography, mass spectroscopy, etc. enabled researchers to estimate the 

amount of targeted chemicals in a healthy and diseased specimen. The development 

of chemical analysis techniques allowed health care providers to form their diagnosis 

better and treat the patients accordingly. The detection of biochemical markers and 

their association with certain diseases paved the way for modern medicine and health 

care. The improved accuracy of the diagnosis saved countless lives. However, the 

bulky nature of the detecting equipment, the sample collections techniques, elaborate 

sample preparation and longer times to detection have made these diagnostic 

techniques expensive and limited them to labs [10-17].  

Efforts are being made to make the detection of biomolecules fast, easy and 

cheap. One of the pioneering works in the development of such a system was by 

Leland C Clark in 1965[18]. He pioneered the development of an oxygen sensor. This 

sensor was later modified to detect glucose molecules in a drop of blood. This 
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technology resulted in a portable glucose meter still being used by millions of 

diabetics across the world to monitor their blood glucose levels every day. 

However, there are very few biosensing systems available in the markets that 

come close to achieving a cheap, portable and easy to use system. The conventional 

techniques of diagnosis involve sample collection, shipping to the diagnostic lab, and 

involve elaborate sample preparation techniques before analysis. Despite being 

expensive, cumbersome and time-consuming, these techniques are still a viable option 

for quantification of biomolecules.   

The proposed market share of personalized healthcare monitoring systems is 

estimated globally to be more than $ 20 billion [19]. In order to bridge the high supply 

gap, researchers focused on the development of POC sensors. Several modes of 

biosensing were explored (optical electrochemical, electrical, etc.) to achieve easy, 

miniaturized and cost-effective devices.   

Today most of the biosensors used are affinity-based. That means they are 

based on the interaction between molecules that are complementary to each other. 

Some of these complementary interactions are antibody-antigen coupling, aptamer-

protein, DNA hybridization, etc. 

According to the World health organization, world over, chronic diseases are a 

leading cause of death and disability. Diseases such as cardiovascular, obstructive 

cardiopulmonary, diabetes and cancer, etc. are significant concerns that adversely 

affect the lives of millions across the globe [20]. These diseases are linked by 

common and preventable lifestyle choice risk factors such as unhealthy diet, physical 

inactivity, chronic stress, etc. Among these factors, chronic stress affects the 

functioning of the body and inhibits normal functioning of the immune system. The 
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estimation of Stress is, therefore, a necessary tool that can help provide proper 

diagnostics and healthcare to patients. This research will focus on the detection of 

cortisol as the primary biomarker for detection of stress. 

2.2 Why Cortisol? 

Cortisol is a steroid hormone produced in the body as a response to stressor 

events (physical and psychological). As a steroid hormone, cortisol is produced as 

part of the body’s stress response. It is secreted by the hypothalamic-pituitary-adrenal 

(HPA) system.  Normal levels of cortisol secretion follow a circadian rhythm and 

fluctuate significantly through a 24-hour cycle with cortisol levels highest during 

daybreak (30 minutes after awakening) and progressively lower as the day progresses 

to a minimum during night sleep [21, 22] (Figure 1).  

Apart from the day-night cycle, several controllable factors can affect cortisol 

levels such as eating patterns and physical activity. While the abnormal increase in 

cortisol levels inhibits inflammation, depresses the immune system, increases fatty 

Figure 1: Chemical structure of cortisol and typical diurnal variation of cortisol levels over a 

24-hour cycle [21,22]. 
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and amino acid levels in blood [23], it is essential in maintaining a healthy metabolic 

rate and help in the daily functioning of many bodily functions [24-26]. Excess 

cortisol levels in the body have been shown to be associated with the development of 

Cushing’s disease with the symptoms of obesity, fatigue and bone fragility [23]. On 

the other hand, a decrease in cortisol levels leads to Addison’s disease which 

manifests in the form of weight loss, fatigue, darkening of skin folds and scars [27]. 

The most dominant effect on cortisol variation comes from psychological/emotional 

stress, which is why cortisol is popularly called the “Stress-hormone” [28].  

Increasing level of psychological stress due to competitive living style is 

becoming a serious concern in the everyday schedule. Also, life-threatening diseases 

like heart attack, depression, and brain pain are the health challenges faced by most 

developed countries [29]. The accurate and precise detection of psychological stress is 

thus gaining attention for personalized health monitoring and diagnostics.  The stress 

cycles (Figure 2) in human find its ways into the nervous system and upsets the 

chemistry of the entire body [30].  Cortisol abnormalities are often a good indicator of 

chronic conditions such as Addison’s disease, Cushing’s syndrome, and adrenal 

insufficiencies [23-26, 29]. Hence, real-time and continuous monitoring of cortisol 

levels is required to obtain valuable information that could assist doctors in better 

diagnosis and treatment of cortisol related conditions. In clinical practice, total 

cortisol, which is the sum of free and protein-bound fractions, is measured. However, 

free cortisol is the biologically active fraction [31] which is responsible for all cortisol 

related activities in the body. Hence, to diagnose and properly treat cortisol-related 

conditions, regular estimation of free cortisol is required. The state-of-the-art in 

cortisol detection is mostly limited to laboratory-based techniques such as 

chromatography [32-34], RIA [35], ECLIA [16, 36-39], ELISA [12, 40-42], SPR [43-
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45], QCM [46] etc. Detection of 24-hour cortisol levels is currently a cumbersome 

process, which either involves admitting the patient for the time of the study [47] or 

the patient depositing samples (blood, saliva, sweat or urine) into vials at specified 

intervals during the 24-hour period and shipping of them to a diagnostic laboratory 

[48]. The typical turnaround time is 3 to 8 days and is still not a true representation of 

cortisol levels in stressful environments. At best they provide a momentary data that is 

difficult to relate to the stressor events at the patient end. There is currently a need to 

investigate cortisol sensing platforms that can be deployed at point-of-care (POC). 

Figure 2: Stress cycle and its effect on human nervous system 
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2.2.1 Secretion of Cortisol. 

Cortisol is secreted from the adrenal glands located above the kidneys. 

Cortisol is the product of the Hypothalamic-Pituitary-Adrenal (HPA) axis, which is 

the main component of the human body’s adaptive system to maintain regulated 

physiological processes under changing environmental factors. The HPA axis is a 

complex signaling system between the hypothalamus in the brain, the pituitary glands 

and the adrenal glands [24]. A typical response to an environmental trigger is initiated 

by the hypothalamus that releases a hormone called the CRH (Corticotrophin 

Releasing Hormone) that travels to the pituitary glands. Specialized cells that work 

synergistically with the pituitary glands release ACTH (Adrenocorticotrophic 

Hormone) into the bloodstream that travels to the adrenal cortex. The adrenal cortex 

responds by increasing the production of cortisol. Since the adrenal glands have no 

visible innervation, it can be inferred that ACTH is the sole stimulant for initiating 

Psychological Stress

Challenge is the
quantification 
of stress 

Cortisol

Blood/Serum

Hair

Urine
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b) 

Figure 3: Cortisol secretion regulated by the HPA axis and various bio-fluids 

used for cortisol estimation 
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cortisol production. The adrenal glands do not store cortisol, but they aid in the 

production of cortisol. Cholesterol undergoes multiple catalyzed oxidation reactions 

to result in the formation of cortisol. This entire process takes place in a time space of 

a few minutes. The HPA axis is a negative feedback system, where Cortisol plays a 

critical rule in the homeostasis of the HPA axis (Figure 3). Moderate homeostatic 

alterations in the HPA axis is beneficial for the physiological and psychological 

development of the human body, sustained and prolonged exposure to environmental 

triggers such as stress leads to abnormal levels of cortisol in the circulatory system 

[24]. Secreted cortisol finds its way into the circulatory system and can be found in 

detectable quantities in several biofluids. In this section, an assessment of the 

advantages and disadvantages of using various biofluids such as urine, blood, sweat, 

interstitial fluid (ISF) and saliva for the detection of cortisol is presented.  

2.2.1.1 Urine 

Cortisol level in urine is measured over a 24-hour period and is referred to as 

the 24-hour urinary free cortisol (UFC) test. Only free cortisol, which is the active 

form of cortisol in the human body, is found in urine and is hence a relevant biofluid 

for the detection of cortisol. The excretion of hormones, salts and other waste 

chemicals through urine is a well-characterized process with good knowledge about 

the concentration of these waste substances under normal function. Observation of 

extreme variation in concentrations of hormones such as cortisol can be used to 

diagnose abnormalities in the adrenal function. Measurement of cortisol in urine 

typically requires the collection of all the urine generated over a 24-hour period. The 

normal range for cortisol in urine is 10 to 100 μg/24hrs [49]. A review of the reported 

literature for urinary cortisol assays has been presented by Brossaud et. Al. [49] 
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While the 24-hour urinary free cortisol test provides a means for a non-

invasive, painless method of obtaining body fluid for cortisol measurement, it also 

poses several drawbacks with respect to convenience and reliability. Since the 

collection of the urine is spanned over a 24-hour period, sample collection becomes 

an inconvenient process where the patient needs to carry the special urine collection 

container all day long or must remain confined to a location for the 24-hour period. 

The container also needs to be stored under refrigeration from the time of collection 

until it is delivered to a diagnostic lab for testing. Also, several factors such as 

pregnancy and medication such as diuretics can alter the concentration of cortisol in 

urine making it a less reliable biofluid for cortisol detection. These several additional 

factors have severely limited the use of urine to cases where patients are admitted to 

the hospital for long-term treatments. The requirement of 24-hour sample collection 

renders urine unfit for real-time detection.   

2.2.1.2 Interstitial Fluid (ISF) 

ISF is an extracellular fluid that surrounds the cells in the human body.  In 

composition, it is similar to blood plasma. Metabolites and proteins move into ISF as 

they move from capillaries to cells.  In general, small to moderate sized molecules, 

including glucose, ethanol, and cortisol are found in ISF in similar proportion as in 

blood.  Thus, periodic calibration using blood sampling is not required to obtain the 

concentration of these metabolites from ISF. ISF is present just below the skin, but the 

low permeability of the epidermal keratinized layer (the stratum corneum) blocks the 

permeation of the fluid through the skin. However, obtaining ISF for detection of a 

target biomarker could require an invasive approach as it is not readily accessible. 

Several approaches have been reported in the literature to obtain ISF in a minimally 

invasive, painless process. Venugopal et al. [50] have reported the construction of an 



 14 

ISF harvesting system that utilizes a low-energy laser to create micropores in the 

stratum corneum (the uppermost layer of dead cells). 

 

Figure 4:  Left to right- Cross-section of micropore generated through laser ablation; 

Four pores relative to the size of a penny; Handheld laser source used to create micro-

pores [51]. 

The diameter of the micropores is approximately equal to that of a human hair. 

The micropores only penetrate the stratum corneum and, hence, this procedure is 

virtually painless. ISF is drawn through these micropores continuously by application 

of a small amount of vacuum pressure (Figure 4). Harvesting of ISF using this set-up 

is reported at a rate of 10µl/hr. Coupled with an electrochemical detection system, 

Venugopal et al. [51] have reported the detection of cortisol using the same micro-

poration set-up. Cortisol levels in ISF were found to be 3 – 4 times larger than that in 

saliva, which makes ISF an attractive biofluid for detection of cortisol. While this set-

up may provide a means to access ISF for cortisol detection, the low harvesting rate 

(10µl/hr) would limit its applicability for obtaining instantaneous cortisol values in a 

point of care setting. Micromachined microneedles for transdermal application are 

another option to harvest ISF [52, 53]. Microneedles have been used extensively for 

transdermal drug delivery [53, 54]. Mukerjee et al., have reported the design, 

fabrication, and testing of a hollow microneedle array containing fluidic 

microchannels for the transdermal extraction of ISF from human skin [55]. Wang et 

al. [56] have also reported the fabrication of glass microneedles for ISF extraction for 

glucose monitoring. These approaches show promise for creating painless, minimally 
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invasive methods for extraction of ISF. Microneedles based transdermal ISF 

extraction may find suitable application in wearable biosensing system, where there is 

a critical need to continuously sample body fluids such as ISF at a low sampling rate. 

However, concerns regarding biocompatibility and biodegradation of the 

microneedles, protection from infection due to the usage of needles and other sterility 

issues will need to be carefully addressed for successful implementation. 

2.2.1.3 Sweat  

Sweat analysis is a well-established method for certain diagnosis of conditions 

such as cystic fibrosis and drug abuse. Sweat patches could be used as effective non-

invasive tools to collect biofluids [57]. Cortisol in sweat has been measured by 

Russell et al., [58] with cortisol concentrations ranging from 141.7 ng/mL (daytime) 

to 8.16 ng/mL. It is hypothesized that there exists a strong correlation between 

cortisol levels in sweat and hair due the path that cortisol traverses from serum, 

sebum, and sweat to the hair. However, very little is known about cortisol in sweat, 

and several inherent drawbacks exist in obtaining reliable samples to measure cortisol 

in sweat accurately. Perspiration is dependent on several factors such as weather 

conditions (humidity, temperature), geographic conditions, physical activity levels, 

ambient temperature or conditioned temperature and genetic make of the patient. 

Development of microfluidic sweat collection cloth has been proposed as further 

advancement in sweat-based cortisol detection where sweat will be collected using the 

cloth patches and analyzed using an integrated device [59]. 

2.2.1.4 Blood 

More than 90% of cortisol in blood is in an inactive state being bound to 

corticosteroid binding globulin (CBG) and serum albumin. Only 10% of total cortisol 
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is in a biologically active state to participate in cortisol-initiated processes. Typically 

assays for measuring cortisol in blood involves measuring the total cortisol (bound + 

free) and then the active fraction, called the Cortisol Free Index (CFI) is deduced 

using the Coolen’s equation [60]. Blood sampling for cortisol detection has been the 

oldest form of biofluid sampling. The nominal value for cortisol in blood varies from 

25µg/dL (9AM) to 2µg/dL (midnight). Blood, however, is afflicted by many 

drawbacks, which has made it a last choice sampling fluid. Sampling blood required 

attention from medical staff and specialized, sterile equipment with an ever-existing 

concern for infections. While cortisol is an unstable molecule at room temperature, its 

presence in plasma requires special handling and storage condition as it is considered 

a biohazard. Since sampling blood requires puncture of veins, a painful procedure, the 

stress experienced by patients prior to and during sampling may elevate cortisol levels 

[26]. Although the typical response time for cortisol spiking is 10 to 15 minutes in 

humans, prior knowledge of venipuncture can initiate the stress response induced 

cortisol spiking. Also, the costs associated with staff, equipment, handling, and 

storage makes blood-based assay a shunned option. 

2.2.1.5 Saliva 

Over the last few years, saliva has gained considerable attention as a biofluid 

for analysis and detection of cortisol concentrations. This has come about mainly due 

to inherent advantages associated with saliva. First and foremost, a well-documented 

and studied the strong correlation between salivary and blood cortisol levels [61, 62]. 

Also, of high importance is the fact that cortisol in saliva exists entirely in the free 

state unlike in blood (90% bound), resulting in detection of the relevant (biologically 

active) form of cortisol. This is mainly due to the filtering of the CBG and Albumin-

bound cortisol during the capillary exchange and other intracellular mechanisms at the 
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salivary ducts. Harvesting sample for analysis is almost entirely non-invasive with 

little or no discomfort to the specimen providing the sample [63]. The last few years 

have seen the establishment of standardized procedures for the collection of saliva, 

which has led to lesser variability in analyzed results. The samples can be harvested 

with minimum efforts that have facilitated patients to collect their own samples at 

home. The advantages associated with salivary techniques have led to saliva being on 

the verge of becoming the preferred source of body fluid for detection of cortisol. 

Also, the ease of sample collection, handling, and storage has heightened its prospects 

for applying in point of care sensors for real-time and continuous detection of cortisol. 

However, there are certain aspects that may adversely affect the prospects of 

saliva-based cortisol detection. Since only the active component of cortisol (free 

cortisol) is present in saliva, the concentration of cortisol is much lower than that of 

blood. Moreover, the room temperature instability of salivary cortisol possesses the 

problem of storage during on-site detection, the nominal values for cortisol in saliva 

during the diurnal cycle varies from 0.5µg/dL to 0.05 µg/dL, which requires high 

sensitivity assays with low detection limits for efficient detection of cortisol 

concentration in saliva. Strict compliance with the standard operating procedure for 

saliva collection can lead to erroneous results. Sometimes, the presence of blood due 

to oral lesions may lead to elevated levels of cortisol and cause erroneous results. 

Salivary cortisol assays have been reported in the literature extensively for 

characterizing the circadian rhythm [64], Cushing’s syndrome [65], Addison’s disease 

[66], adrenal abnormalities [67] and stress-related disorders [68].  

The detailed explanation of cortisol detection in various bio-fluids using 

different techniques with recent advancements with further research & development at 

POC detection is explained in the next section. 
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2.2.2 Different methods of Cortisol detection 

Among the label-free technologies for biomarkers detection, salivary 

electrochemical immunosensing has emerged as the most promising technologies for 

POC cortisol detection systems. Electrochemical immunosensing is based on the 

principle of measuring the changes in electrical properties of a conductive material 

due to the adsorption of an analyte on the surface functionalized with antibodies [8, 

69, 70]. The electrical change is attributed to the change in the concentration of the 

electroactive redox species at the electrode. The mature processing capability of the 

micro-fabrication industry has allowed the building of microelectrodes that are highly 

sensitive and provide low detection limits. The simplicity of electronic circuitry for 

electrochemical detection and cheap volume manufacturing has driven efforts to bring 

electrochemical immunosensing up to speed with other immunosensing techniques 

[71, 72]. 

In recent years there have been many reports of electrochemical sensing of 

cortisol using electrochemical impedance spectroscopy [73] and cyclic voltammetry 

(CV) [74] based electrochemical cortisol immunosensor. Immunosensor has also been 

integrated with microfluidic systems for POC sensing [74, 75]. These reports 

demonstrate a workable cortisol sensing system using commercial cortisol sample. 

However, their application in the field is still lacking. 

2.2.3 Optical/ radiological immunosensing 

Amongst one of the first biosensing techniques, RIA holds a special place. It is 

an in vitro assay measuring accurately, the amount of antigen presents in a sample. 

The technique was introduced by Berson and Yalow in the ’60s [76]. They performed 
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an assay to determine the concentration of insulin in plasma. The technique relies on 

the specificity of antibodies to antigens. A chemical label is tagged to either an 

antigen whose concentration needs to be detected or to the antibodies. The label reacts 

as a part of the assay and produces a signal that can be measured in the solution. In 

the case of RIA, such a label is a radioactive compound, the activity of which is 

measured using a radiation counter. Other labels cause a change in color/ fluorescence 

of the solution. This change is dependent on the concentration of the target to be 

detected. These techniques are standardized and available commercially [16, 32, 33, 

35-39]. They show good sensitivity in the order of a few picograms in a solution. 

However, the accompanying instrumentation, elaborate sample procedure and 

extensive labor involved in processing the samples make it a costly affair.  Among all 

the available labeled immunoassays, ELISA has been found to be the most sensitive 

and versatile and today, is considered the gold standard in protein concentration 

determination. ELISA is typically performed in a sandwich format, where an 

enzymatic substrate is added to the secondary antibody to amplify the colorimetric or 

fluorescent signal, thereby providing high sensitivity. Detection of cortisol using 

ELISA is used widely [12, 41] and often has been the technique used to validate 

results obtained from newer techniques being developed for cortisol detection [42]. 

Manenschijn et al., collected hair samples of 195 healthy individuals, 9 

hypercortisolemic and one hypocortisolemic patient to estimate cortisol using a 

salivary ELISA kit [40]. A positive correlation between hair cortisol and both waist 

circumference (r = 0.392, p = 0.007) and waist-to-hip ratio (WHR) (r = 0.425, p = 

0.003) was found and no correlations were found between hair cortisol levels and 

blood pressure or age. While ELISA is the most widely used technique in research 
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labs and industry, the method is limited by the need for large sample and reagent 

volumes and complexity arising from multiple assay steps and large incubation times.   

2.3 Electrochemical Immunosensors 

Among the immunosensors, electrochemical immunosensors have been 

explored for detection of cortisol in recent times. In electrochemistry, the chemical 

changes can be related to the flow of electrons that give rise to oxidative or reductive 

species. Electrochemical immunosensing is based on the principle of measuring the 

changes in electrical properties of a conductive material due to the adsorption of an 

analyte on the surface functionalized with antibodies [8, 69, 77].  

The change in the electrical charge due to the change in concentration of 

electro-active species at the electrode surface caused by the change of analyte 

concentration is utilized for sensing. The processing capabilities of the 

microelectronics industry have allowed fabrication of microelectrodes that provide 

high sensitivity and low detection limits. 

The use of electrochemical immunosensing has advantages over conventional 

techniques. Fast response times (from sampling to result), ease of fabrication, bulk 

manufacture ability, small sample volumes and miniaturized supporting electronics 

makes them a suitable candidate for Point of care detection of cortisol. [8, 78]. Sun et 

al., reported cortisol antibodies immobilized on micro-fabricated Au electrodes for 

immune-electrochemical sensing using alkaline phosphatase (AP) enzyme for 

determination of salivary cortisol [79]. During the biochemical reaction, p-nitrophenol 

(pNP) generated via reaction between AP enzyme attached to the cortisol and 

antibodies in p-nitrophenyl phosphate (pNPP) solution pNP was detected using CV at 
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room temperature (Fig. 11). The fabricated immunosensor exhibited a detection limit 

of cortisol in saliva as 0.27 ng/mL with an incubation time of 10 min.   

Dithiobis (succinimidyl propionate) (DTSP) self-assembled monolayer (SAM) 

modified interdigitated µ-electrodes (IDEs) were used for the immobilization of 

Cortisol specific monoclonal antibody  (C-Mab) to detect cortisol using 

electrochemical impedance (EIS) technique [80]. EIS immunosensor exhibited the 

sensitivity of 2.855 kΩ/(pg/mL) and found to detect cortisol in the range of 0.36 

pg/mL to 0.36 ng/mL nM in saliva. This group has further used the same 

immunosensing strategy to detect cortisol in ISF in vitro [73, 81]. EA/C-

Mab/DTSP/Au based biosensor can accurately detect cortisol in the range of 0.36 

pg/mL to 0.36 ng/mL with the detection limit of 0.36 pg/mL. The performance of this 

EIS based immunosensor was validated using ELISA. Authors purposed the 

feasibility of using impedance-based biosensor as a disposable cortisol detector, 

capable of working with complex bodily fluids (e.g., saliva and ISF) at point-of-care. 

2.3.1 Cyclic Voltammetry 

One of the most common electrochemical tools that are used for such 

biosensing is CV [82]. It is a powerful technique that is used for analysis of oxidized 

and reduced species. Using an electrochemical cell that typically comprises of 

working, reference and counter electrode, antibodies and antigen binding is estimated 

as a function of the redox current in the presence of a conducting media. For taking a 

CV scan, a varying potential is applied to a 3-electrode system and the response 

current measured. The positive peak in the voltammogram is known as the oxidation 

peak and the negative peak is the reduction peak. The oxidation and reduction 

responses can be explained using the Nernst equations. This equation relates the 
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potential of an electrochemical cell (E) to the standard potential of a species (E0) and 

the relative activities16 of the oxidized (Ox) and reduced (Red) analyte in the system 

at equilibrium.  

  

𝐸 = 𝐸0 +  
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Equation 1 

 

 

Where R is the universal gas constant, F is the Faraday’s constant, n is the 

number of electrons and T is the temperature. 

While looking at a one-electron reduction system, the Nernst equation can be 

utilized in such a way as to replace the activities with their concentrations (more 

easily determined by experimentation). The standard potential can be substituted with 

formal potential E0’ and n is equal to one. 

  

𝐸 =  𝐸0′ + 2.3026 
𝑅𝑇

𝐹
 𝑙𝑜𝑔10

[𝐹𝑐+]

[𝐹𝑐]
 

 

 

Equation 2 

 

This equation is an excellent model to predict the change in the system with 

respect to change in the concentration of the chemical species or the electrode 

potential. Most of the CV system utilizes a working electrode, a reference electrode 

and a counter electrode in an electrochemical cell. One can link the change in 

oxidation and reduction potentials to the electron transfer at the surface of the 

working electrode (Figure 5). This phenomenon can be utilized for biosensing where 

the surface of the electrode is functionalized with detecting molecules not limited to 

antibody-enzyme, and aptamers.  
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The interactions between the antigen and the detecting moieties result in a 

change in the redox current [82]. We explored interdigitated microelectrodes of gold 

as a substrate for a CV based immunosensor. The developed sensor was used to detect 

the various concentrations of cortisol. The above sensor was further used to detect 

cortisol in human saliva samples and was benchmarked against optical 

immunosensing technique (ELISA) [83]. 

2.4 Limitations of Electrochemical Immunosensors 

Electrochemical immunosensors utilize biomolecules (antibodies and 

enzymes) for the detection of analytes. However, this causes the sensor to be unstable 

at room temperature and a constant need for storing available sensors in the 

refrigerator.  This prevents Point of Care application of electrochemical sensors. 

Though label-free sensing techniques have been devised, they have not seen 

production yet. Another important factor while considering electrochemical sensing is 

the complexity of accompanying instrumentation. There have been efforts for making 

cheap and portable electronics that can fully realize the potential of electrochemical 

sensors for point of care. 

Figure 5: Schematic of strategies used for electrochemical immunosensing 
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2.5 Label-free Detection 

To overcome the tedious processes, cost and shortcomings of the current 

detection methods, the focus has shifted to developing label-free immunosensing 

techniques with high sensitivity, lower detection limits and broader detection range 

[84]. One such technique that demonstrates label-free detection is based on Surface 

Plasma Resonance (SPR) [44]. 

SPR works on the principle of oscillation of valence electrons in a conducting 

substrate irradiated with light. SPR is highly sensitive to adsorption of molecules onto 

the substrate, where the resonance curves shift to higher wavelengths with adsorption 

of molecules onto the surface. SPR has shown promise as a method to quantitatively 

measure the capture of the analyte on substrates coated with antibodies. The 

associated detection optics and electronic for SPR measurement can be reduced to 

miniaturized form factors and has hence attracted efforts to create point-of-care 

immunosensors [43]. More recently, detection of cortisol in saliva [45] and other 

biofluids using SPR has been reported in the literature. On the same lines as SPR, 

another technique gaining ground for immune-sensing is based on the resonance 

property of quartz crystal microbalance (QCM) [46]. Cortisol antibody was layered 

onto the Au gold electrodes of a 10 MHz piezoelectric crystal to fabricate a 

piezoelectric crystal immunosensor for the detection of cortisol [85]. Piezoelectric 

crystal was pre-cleaned, protein-A and immunosensors detected cortisol at 

concentration range 3.628 μg/mL. The proposed sensor includes elements of 

simplicity, short analysis time, cost-effectiveness and selectivity. However, there is a 

scope for improvement with respect to its detection limit.  



 25 

Label-free sensing has also been demonstrated using Nanomaterials while 

doing CV measurements. Kaushik et all used Nanoparticles of Ag/AgOx core-shell 

nanoparticles in a polymer matrix of Polyaniline to make an immunosensor for 

cortisol. This work tries to explore the fabrication and utilization of Copper oxide 

nanoparticles on a screen-printed carbon electrode for sensing purpose. The modified 

SPCE was used for making a cortisol immunosensor to demonstrate Label-free 

sensing. The fabricated sensor showed a sensitivity of 421 uA/M and had a limit of 

detection as 6.6 nM cortisol. 

2.6 Reusable Sensors- MIPs 

In nature, antibodies have receptor sites that can bind to specific antigens and 

function as an ultimate sensor. However, replication of such a sensing system by 

artificial means has been quite challenging. The use of antibodies in biosensors has 

been indispensable due to their sensitive and selective properties. However, their 

production requires significant effort and cost. This system can be mimicked using 

molecularly imprinted polymers at much less cost and effort. MIP are synthetic 

polymers having highly specific recognition sites selective towards the target analyte. 

The MIP-based biomimetic sensors have a considerable impact owing to their 

potential application. They have advantages such as low cost, easy storage, and 

applicability in harsh conditions. They also have long lifetimes as compared to 

enzymes, antibodies, and proteins which require temperature and pH-controlled 

environments for storage. Another attractive feature of MIP based biosensor is its 

reversible binding with the target analyte which makes it highly reusable where 

frequent/continuous monitoring is required. MIPs can be described as analogs to the 

antibody-antigen mechanism. Their operation can be best described as a lock and key 
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mechanism that allows them to bind to target molecules selectively. The schematic 

below (Figure 6) shows the fabrication scheme of a cortisol specific MIP sensor. 

Several production methods such as bulk polymerization, precipitation 

polymerization, and emulsion have been demonstrated for the fabrication of MIPs. 

However, controlled production and transfer of MIP to a transducer surface have been 

challenging. This research will explore an electrochemical technique for the 

manufacture of MIP. Electrochemical MIP fabrication enables control over thickness, 

morphology, and reproducibility. 

 

2.7 The Field Effect Transistor  

The FET was first proposed in the 1930s by Lilienfield [86] and developed for 

practical use in 1960 by Kahng and Atalla [87]. The rapid growth and expansion of 

the modern semiconductor industry can be attributed to the development of metal-

oxide-semiconductor-field-effect transistor (MOSFET) or the FET as it is known in 

short. The FET has been an essential device for VLSI circuits and has been used in 

Figure 6: Schematic for fabrication of cortisol MIP biosensor on 

SPCE surface. 
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logic/ semiconductor memory devices as well. This has primarily been enabled due to 

the miniaturization, cost reduction, and longer lifetimes offered by switching to ICs as 

compared to Vacuum tubes. The integration of millions of complex active and passive 

devices on a single silicon wafer has enabled a new and wide array of applications. 

Ushering in a technological revolution that has changed the way we communicate 

control and process data in a matter of few decades [88]. 

The basic structure of a FET is composed of a semiconducting channel 

between two conductor pads known as source and drain. The channel is sandwiched 

between the substrate and an overlying oxide layer. The oxide layer is coated with a 

conductive layer to form what is known as a gate (Figure 7).  

Application of voltage on the gate controls the amount of current that flows 

between the source and drain pads (due to the application of a source to drain 

voltage). This mechanism allows the FET to be used as a variable resistor and a 

switch. The growth of semiconductor industry led to the growth of thin film 

fabrication industry as well, leading to the facilitation of the development of FETs 

made entirely of thin films of metals/ semiconductors/ insulators. These thin film 

transistors (TFTs) were first produced in 1965 [89]. They were made for scanning 

Figure 7: A typical top gated Si thin film transistor 
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image sensors and were CdSe TFTs. The fabrication of TFTs on insulating substrates 

helped in reduction of parasitic losses that were associated with the silicon substrate. 

The patent by Edgar [86] describes the first thin film transistor. Under the normal 

operating condition, a typical TFT, by the application of a voltage bias to the gate 

electrode induces the accumulation of the electrons (in case of an n-type 

semiconductor) in the semiconductor channel. 

A simultaneous application of a Positive voltage to the drain results in a flow 

of electrons from source to drain. The initial development of MOSFETs was much 

rapid than TFTs, however, with the emerging technology and applications of TFTs 

towards thin, flexible, large area electronics, sensing, smart labels, lighting, etc. this 

field has rapidly caught up.  Several configurations have been reported and developed 

for TFT applications. These can be classified according to the device structure. There 

are four types of FET structure – coplanar (top gated), coplanar (bottom gated), 

staggered (top gated) and inverted staggered (bottom gated). The position of the gate, 

source and drain electrodes with respect to the insulator and semiconductor layer 

Figure 8: Different configurations of a TFT [1] 



 29 

(Figure 8) defines these differences. In a coplanar structure, all three electrodes are on 

one side of the semiconductor layer. However, in a staggered structure, the gate 

electrode is on one side of the semiconducting layer while the source and drain 

electrodes are on the other side [90].  

2.7.1 ISFET as a biosensor 

Another form of FET that is commonly used in sensing applications is Ion 

Sensitive FET or ISFET. First invented by Bergveld [91]. It is used for measuring ion 

concentrations in a solution. The figure below shows the typical ISFET configuration. 

It consists of a source and drain pads with a semiconducting channel encompassing 

them. The channel is typically covered with a gate insulator such as SiO2, Si3N4, 

Al2O3, etc. The channel and the gate insulator are then surrounded with a well to 

enclose the solution under test. The gating action is achieved with the help of an 

external electrode suspended in the solution. The solution acts as a gate electrode. 

Presence of an ion layer between the substrate and the oxide layer results in a voltage 

between them. The hydrolysis of OH bonds on the surface of the gate insulator varies 

as the pH of the solution varies. Resulting in a change in the drain current. The 

external electrode provides a reference potential against which the drain current can 

be calibrated. Today ISFET based sensing devices have been used for various 

applications. Rothberg et al. have shown an IC device for DNA Sequencing. The 

device contains 1.2 million wells with ISFETs in them. They were able to sequence 

three bacterial and a human genome using this device. Their device showed proton 

sensitivity of 58mV/pH. Kiani Sasakia et al. [92] reported Graphene-based electrolyte 

gated FET. They claimed that a label-free biosensor to measure enzyme activity was 

possible using ISFETs, their device had sample volumes as low as 20 microliters. 
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EGFET have been claimed to be an extension of traditional ISFET architecture by 

Viera et al. [93]. They claim to have improved upon the ISFET design by isolating the 

chemical environment from the FET and used this scheme to detect Glucose with a 

detection limit of 0.027mM. Still, in another study, the sensor chips have been 

integrated with a microfluidic channel to monitor potassium and pH levels [94]. 

2.7.2 Extended Gate FET  

This configuration of FET is widely used for the fabrication of biosensors. It is 

derived from the ISFET configuration of the FET [95]. 

In this configuration, the gate of the FET is connected externally to a 

functionalized substrate. The substrate is often bound by a well to hold a specific 

amount of liquid. An external electrode is dipped in the liquid. This electrode is 

connected to an external supply that provides a voltage to the gate through the 

externally connected substrate. The substrate serves as an ion sensitive site. This 

configuration allows the active FET device to be isolated from the harsh chemical 

environment and allows the device to function stably. Also, this configuration can 

lead to a simple plug and play architecture enabling the user to discard the sensing 

substrate when it is saturated or becomes nonfunctional. 

This research will explore the use of MIP based sensing substrate along with a 

commercially available FET for use in an EGFET configuration. The use of cortisol 

specific MIP on an SPCE will allow the sensor to provide direct sensor readout (in the 

form of drain current concerning cortisol concentration). The above configuration will 

also address the challenges of label-free and repeatable sensing. 
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2.8 Conclusion 

Several techniques allow sensitive detection of cortisol in a sample. However, 

most of the state of art techniques suffer from limitations that prevent their 

widespread use. This chapter serves to introduce the reader to some of the common 

cortisol detection methods and them with their main advantages and limitations. Some 

techniques are introduced in the latter part of the chapter (CV, MIP, EGFET) that can 

address the issues of the earlier recorded methods. The subsequent chapter will record 

the developments and validation of a thin film based electrochemical immunosensor 

for the detection of cortisol. 
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 ELECTROCHEMICAL IMMUNOSENSING OF SALIVARY 

CORTISOL.  

3.1 Abstract  

This chapter will discuss the development and validation of Au thin film based 

electrochemical immunosensors for detection of cortisol. A self-assembled monolayer 

of DTSP was functionalized on a thin film Au based IDEs. Cortisol specific 

antibodies were then immobilized, and the non-binding sites were blocked using EA 

on the SAM layer. The sensors were characterized at each layer using CV. The 

fabricated immunosensors were characterized using different cortisol concentration. 

These sensors were then validated by detecting cortisol in human saliva samples and 

comparing the results with standard ELISA process. The fabricated sensors had a 

detection range from 10 pg/mL to 100 ng/mL and a detection limit of 10 pg/mL. 

These sensors performed well as compared to the ELISA results. 

3.2 Introduction 

Among the label-free technologies for biomarkers detection, salivary 

electrochemical immunosensing has emerged as the most promising technologies for 

POC cortisol detection systems.  The cortisol concentration in saliva is lower than 

total serum cortisol by a factor of 10, and the correlation between serum and salivary 

markers is substantial [77] [96]. Salivary cortisol concentrations accurately reflect the 

serum concentration at various times of day (morning, evening and around midnight) 

[37]. Moreover, the salivary cortisol contains only free cortisol making protocol easier 

[25]. Electrochemical immunosensing is based on the principle of measuring the 

changes in electrical properties of a conductive material due to the adsorption of an 
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analyte on the surface functionalized with antibodies [4, 8, 69]. The electrical change 

is attributed to the change in the concentration of the electroactive redox species at the 

electrode. The mature processing capability of the micro-fabrication industry has 

allowed the building of microelectrodes that are highly sensitive and provide low 

detection limits. The simplicity of electronic circuitry for electrochemical detection 

and low-cost volume manufacturing has driven efforts to bring electrochemical 

immunosensing up to speed with other immunosensing techniques [71, 72].  

In recent years there have been many reports of electrochemical sensing of 

cortisol using electrochemical impedance spectroscopy [80] and CV [97].  SAM [73, 

81], Au nanowires [98], Au-PANI nanocomposite [99], and AgO@Ag-PANI 

nanocomposite[4] based electrochemical cortisol immunosensor were reported. 

Immunosensor were also integrated with microfluidic systems for POC sensing [74, 

75]. 

These reports demonstrate a workable cortisol sensing system using 

commercial cortisol sample. However, their application for field use is not explored 

yet. In this paper, we report on the ability of the sensor to detect cortisol in saliva 

samples of farm workers. IDEs functionalized with DTSP-SAM followed by covalent 

immobilization of Anti-Cab were used to detect the concentration of cortisol present 

in the saliva samples. The results obtained from the electrochemical detection were 

validated through ELISA protocol currently in use.  

This work aimed to establish a cortisol sensing protocol using saliva samples 

collected from human subjects and its validation with the standard ELISA technique, 

which was not reported earlier. This protocol will be used to understand the 

behavioral change of farm workers on exposure to pesticides. 
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3.3 Materials and Methods 

3.3.1 Saliva sample Collection  

Saliva samples were derived from a biologically-relevant sample of two 

female agricultural workers of reproductive age who engage in shift-work. Evidence 

indicates that cortisol levels vary significantly among female shift workers [70, 100-

102] and that stress associated with agricultural work is associated with cortisol level 

variation [103-107], as is exposure to cortisol [108]. Farmworkers were 24 and 39 

years of age and were recruited based on the following criteria:  be at least 18 years of 

age, and work in agricultural fieldwork, work early morning shifts, and have exposure 

to pesticides.  These samples were drawn from another study measuring the effects of 

a behavioral study to assess pesticide exposures and stress response. Recruitment, 

analyses and other procedures for this study were approved by the Human Subjects 

Boards at the Penn State University and the Florida International University.   

Samples were collected at awakening, before their first work break, at their 

lunch break (before eating), upon arrival from work and before bedtime. Samples 

were stored by participants’ at freezing (-20oC) until the project team transferred them 

and stored at -80oC in the field lab. The standard protocol requires the storage saliva 

samples to at -20oC or lower for the preservation of natural and biological properties 

over extended periods and during transportation. Saliva samples were collected by 

each farmworker using a Salivette (Sarstedt Inc., Rommelsdorf, Germany), which 

consists of a small cotton roll inside a centrifuge tube. Each farmworker took the 

Salivette home after receiving written and oral instruction on how to collect saliva.  

Participants collected a saliva sample by chewing on the cotton roll for 60 seconds.  
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The collected saliva samples were stored at -20oC to maintain its biological 

characteristics. Before the sensing, the saliva samples were brought to room 

temperature and centrifuged at 3500 rpm for 15 min to extract saliva from salivettes. 

The separated saliva was then pipetted out and kept at -20oC when not in use. These 

samples were further used to detect cortisol using electrochemical immunosensors and 

ELISA. 

3.3.2 Immunosensor Fabrication 

3.3.2.1 Electrochemical Cleaning of IDEs 

The IDEs (chamber volume ~5 µL, electrode width, and electrode gap 10 µm) 

were procured from Micrux Technologies (Fig 1). The IDEs were electrochemically 

cleaned prior to DTSP-SAM modification through performing CV, Autolab 

Potentiostat/Galvanostat (Eco Chemie, Netherlands)] using 5 µL of 0.1 M H2SO4 as a 

function of varying scanning cycles at a scan rate of 50 mV/S. The parameters of the 

IDE cleaning process were optimized using CV techniques in 5 µL PBS (pH 7.4) 

containing 5 mM K4[Fe(CN)6]
3-/4- at a scan rate of 50 mV/s (Fig 2A). The magnitude 

of the current response obtained was found to increase with increasing cleaning 

scanning cycles (5-10). The higher current response was observed in the case of IDEs 

cleaned using 9 cycles and higher. However, the electrode started to etch after 9 

scanning cycles. Thus, IDEs were cleaned using 7 scanning cycles in 5 µL, 0.1M 

H2SO4. All IDEs were cleaned using the same process and exhibited identical current 

response (within ~ 2% variation, Fig 2B) without morphological damage.  
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3.3.2.2 Fabrication of DTSP-SAM onto IDEs and Electrochemical Cortisol 

Immunosensing 

DTSP, Sodium Borohydride (NaBH4), monoclonal anti-cortisol antibody 

(Anti-Cab), Cortisol and all other chemicals were purchased from Sigma-Aldrich and 

were used without any further purification. For fabrication of DTSP-SAM, the IDEs 

were immersed in 2 mg/mL solution of DTSP in acetone for 2h. During the SAM 

fabrication, DTSP was reduced using NaBH4 (10 mg/mL in DI water). After SAM 

modification, all DTSP/IDEs were rinsed with acetone and then by DI water to 

remove unbound DTSP particles. Anti-Cab (5 µL) was covalently immobilized via a 

facile reaction between the amino group of antibodies and reactive succinimidyl 

group of the DTSP SAM surface. The DTSP-SAM/IDE were incubated with Anit-Cab 

for 2hrs followed by carefully washing with PBS (pH 7.4, 10 mM) to remove any 

unbound molecules [74]. Phosphate buffer saline (PBS) solution (10mM, pH 7.4) was 

prepared by dissolving 1 PBS tablet in 200 mL of de-ionized (DI) water and used to 

prepare the Anti-Cab (1mg/mL) and cortisol solutions. The non-binding sites of Anti-

Cab/DTSP/IDEs bioelectrode were blocked using 5 µL of EA. The incubation time 

was 10 min.  EA/Anti-Cab/DTSP/IDEs were washed with PBS and stored in a 

refrigerator at 4oC when not in use. The fabrication of SAM onto IDEs and 

immunosensor development is shown in Figure 1A.  

3.3.2.3 Measurement of Cortisol  

The fabricated EA/Anti-Cab/DTSP-SAM/IDEs immunoelectrodes were used to 

detect the various concentration of cortisol using CV techniques in 5µL PBS (pH 7.4) 

containing 5 mM [Fe (CN)6]
3-/4- as redox moieties. The pH of 7.4 was chosen for 

electrochemical response studies of immunosensor, as this is the recommended pH for 

biomolecules to presume higher biological activity [73]. The electrochemical and 
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immuno-chemical reaction on IDEs surface is shown Figure 1B. The fabricated 

immunoelectrodes were used to detect cortisol in saliva samples of two specimens 

collected at different time intervals. 5 µl of saliva sample was placed on the 

electrochemical immunosensor. The saliva sample was incubated for 30 minutes on 

the sensor to ensure proper binding. Immunoelectrodes were then washed using PBS 

~10 mL to remove unbound saliva. 

Cortisol Enzyme Immunoassay Kit was procured form Arbor Assays, MI and 

a standard protocol were adopted to detect saliva cortisol. In Brief, 50 µl of 4X diluted 

saliva was used for the detection of cortisol.  

3.4  Results and Discussions  

3.4.1 Electrochemical Characterization 

CV technique was used to optimize the step-wise fabrication of 

electrochemical immunosensor which is utilized to detect cortisol. Figure 9 shows the 

results of the CV studies for IDEs (a), DTSP-SAM/IDEs (b), Anti-Cab/DTSP-

SAM/IDEs immunoelectrode (c) and EA/Anti-Cab/DTSP-SAM/IDEs (d) in 5µL PBS 

(pH 7.4) containing 5 mM Fe(II)/Fe(III) at 50 mV/s in a potential range from -0.6 to 

0.6 V. CV of IDEs exhibited a well-defined oxidation and reduction peaks of redox 

moieties present in the electrolyte. The magnitude of electrochemical current response 

decreases after modifying IDEs by DTSP-SAM. This suggests that SAM hinders the 

electron transport from Fe(II)/Fe(III) to IDEs due to strong Thiol bonding between 

DTSP-SAM and Au of IDEs which indicates successful DTSP-SAM fabrication. 

After the immobilization of Anti-Cab, the magnitude of current from DTSP-

SAM/IDEs further decreases due to the covalent binding between Anti-Cab and DTSP 
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via amide bond formation. The magnitude of current from EA/Anti-Cab/DTSP-

SAM/IDEs immunoelectrode was lower than Anti-Cab/DTSP-SAM/IDEs 

immunoelectrode. This reduction of current is a clear indication that the non-

conducting EA blocks the non-binding sites on immunoelectrode and reduce the 

electron transport from the electrolyte to IDEs.    

The CV studies of electrodes and immuno-electrodes have been performed as 

a function of scan rate (10-100 mV/s). A linear relationship between the magnitude of 

oxidation/reduction current and the square root of scan rate (data not shown) has been 

observed for all electrodes. This confirms that the assay is a linear-diffusion-driven 

process. It obeys Randles-Sevcik equation ip = (2.69x105) n2/3ACD1/2v1/2, where n is 

the number of transferred electrons, A is the active area of the electrode, C is the bulk 

concentration of the redox species, D is the diffusion coefficient, and v is the scan 

rate[109]. The magnitude of the current response is also linearly related to differences 
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Figure 9: CV studies of IDEs (a) DTSP-SAM modified IDEs (b), Anti-Cab 

immobilized DTSP-SAM/IDEs electrode (c), and EA immobilized Anti-Cab/DTSP-

SAM/IDEs immunoelectrode (d) using 5 µL PBS (pH 7.4) containing 5 mM 

[Fe(CV)6]3-/4- at 50 mV/s. 
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in potentials revealing the facile electron transport from the electrode to the IDE 

surface.  

3.4.2 Electrochemical Response Studies of Cortisol 

Electrochemical response studies of developed DTSP-SAM-modified IDEs  

immunosensor as a function of cortisol concentration (10 pg/mL to 100 ng/mL) was 

performed using CV technique in 5 µL PBS (pH 7.4) containing 5mM [Fe(CN)6]3-/4- 

with a potential range of -0.6 to 0.6 V at a scan rate of 0.5mV/s. Prior to 

electrochemical measurement, 5 µL of each cortisol sample was incubated on the 

immunosensor surface for 30 mins for complete binding of Anti-Cab with standard 

cortisol solution. A washing step using 30 µL of PBS was performed to remove the 

unbound cortisol from the sensor surface. All the CV measurements were performed 

in triplets. The result of CV studies indicates that the magnitude of current response 

decreases on the addition of cortisol due to the formation of insulating immuno-

complex between Anti-Cab and cortisol which further inhibit the electron transport 

from the electrolyte to IDEs surface (Figure 10). 

Figure 10: Electrochemical response of EA/Anti-Cab/DTSP-SAM/IDEs 

immunoelectrode after addition of standard cortisol solution 
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A calibration curve (Figure 11) plotted between the magnitude of current response 

and logarithm of cortisol concentration was found to be linearly dependent and follow 

the equation [Y = 1.5 × 10-5 + 6× 10-6 log (Cortisol concentration); R = 0.99]. The 

fabricated EA/Anti-Cab/DTSP-SAM/IDEs immunosensor exhibited linearity in the 

range of 0.1 to 100 ng/mL, a detection limit of 10 pg/mL, a sensitivity of 6 

µA/(pg/mL) with the regression coefficient of 0.99 and standard deviation of 0.6 A. 

 The confirmation of Anti-Cab onto DTSP-SAM/IDEs electrode and its affinity 

with cortisol was understood through the association constant (Ka, 3 × 1012 L mol−1) 

between Anti-Cab and cortisol, calculated using Lineweaver–Burke-like plot. Ka value 

greater than 1011 is accepted as a demonstration of high affinity [110]. Figure 12 

shows the results of the CV studies of EA/Anti-Cab/DTSP-SAM/IDEs immuno-

electrode with respects to interferents such as PSA (100 pg/mL), NSE (100 pg/mL), 

EGFR (100 pg/mL) and BSA+Cortisol (100 pg/mL) with respect to cortisol (100 

pg/mL). The interferents were dispensed on the immunosensor (EA/AntiC-

Figure 11: Calibration curve plotted between the magnitudes of current response 

obtained and logarithm of cortisol concentration (10 pg/mL to 100 ng/mL) 



 41 

Abs/DTSP-SAM/μIDEs), and their electrochemical response was measured. The 

change in electrochemical response of the interferents was compared to that of the 

immunosensor, and it was found to be of the order of 1-2%. As compared to the 

change in the response of Cortisol signal, which was in the order of 13-14 %, the 

effects of interferents can be conveniently neglected. This demonstrates that the effect 

of interferents on EA/Anti-Cab/DTSP-SAM/IDEs immunosensor is minimal and the 

antibodies are selective to the cortisol molecule. A CV study was also carried out to 

study the shelf life of the EA/Anti-Cab/DTSP-SAM/IDEs immunoelectrode at 

intervals of 1 week (data not shown). The results of the study showed electrodes were 

stable for 28 days and beyond that time the electrochemical response reduced. 

3.4.3 Electrochemical Immunosensing of Saliva Cortisol 

The IDEs based electrochemical immunosensor for cortisol sensing was 

utilized for testing of cortisol concentrations in saliva samples. 05 µL of the saliva 

sample was incubated on the electrochemical immunosensor for a period of 30 mins. 
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Figure 12: CV studies of EA/Anti-Cab/DTSP-SAM/IDEs immuno-electrode with respects 

to interferents such as PSA (100 pg/mL), NSE (100pg/mL), EGFR (100pg/mL) and 

BSA+Cortisol (100 pg/mL) with respect to cortisol (100 pg/mL) 
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A washing step using 30 µL of PBS was performed to remove the saliva and any 

unbound cortisol from the sensor surface. 5 µl of Ferri Ferro solution was then used to 

perform CV. The electrochemical response studies of EA/Anti-Cab/DTSP-SAM/IDEs 

immunoelectrodes carried out using CV in 5 µL of PBS containing 5mM Fe(II)/ 

Fe(III) as the redox probe at a scan rate of 50 mV/s. A very significant change in 

current response of immunosensor is observed on adding each saliva samples. 

Cortisol concentration was read using the calibration curve developed in 

electrochemical response studies (section 3.2).  All samples were measured in 

triplicates, and the average was computed to validate with the ELISA technique as 

presented in Table 1 and Table 2.  

Table 1: Cortisol Values as measured in saliva samples using the developed 

immunosensor 

Sample Saliva Collection 

Time and Date 

Measured 

Electrochemical 

Response (µA) 

Cortisol Concentration  

(Obtained Concn. x 2.2) 

(nMol/L) 

Final Cortisol 

Concentration 

(ng/dL) 

A 3/26/2013 (9:47AM) 7.16 3.63 131.78 

 3/27/2013 (10:00AM) 7.38 3.81 138.37 

 3/27/2013 (10:03PM) 12.23 0.90 32.94 

 3/28/2013 (2:00AM) 8.89 1.818 65.89 

B 3/26/2013 (10:13AM) 5.24 9.09 329.45 

 3/27/2013 (1:42AM) 7.76 2.727 98.83 

 3/27/2013 (10:13AM) 4.26 14.54 428.29 

 3/28/2013 (3:02AM) 9.17 1.93 69.18 

 

Table 2: Cortisol Values measured in saliva samples using Cortisol ELISA kit 

Sample Saliva Collection 

Time and Date 

Measured 

Response (4x 

dilution) 

(%B/Bo) 

Cortisol Concentration 

(pg/mL) 4X dilution 

Final Cortisol 

Concentration 

(ng/dL) 

A 3/26/2013 (9:47AM) 64.133 389 155.6 

 3/27/2013 (10:00AM) 66.909 360 144 

 3/27/2013 (10:03PM) 56.113 594 237.6 

 3/28/2013 (2:00AM) 81.758 182 72.8 

B 3/26/2013 (10:13AM) 41.705 995 398 

 3/27/2013 (1:42AM) 99.559 125 50 

 3/27/2013 (10:13AM) 40.956 1187 474.8 

 3/28/2013 (3:02AM) 96.695 87 34.8 
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3.4.4 Detection of Salivary Cortisol using ELISA 

Saliva samples from the same salivette were tested for cortisol using ELISA 

(Arbor Assays, MI). This was done to validate the results obtained from the 

electrochemical immunosensor. The protocol prescribed by the ELISA kit vendor was 

followed for cortisol detection in saliva samples. A calibration curve for cortisol 

measurement was established, the assay was performed in a 96-well titer plate 

consisting of six known standard cortisol concentrations (100, 200, 400, 800, 1600 

and 3200 pg/mL) and the saliva samples. The calibration curve obtained from the 

measurement of the standard solutions is presented in Fig 6. Next, the saliva samples 

were diluted 1:4 in the provided assay buffer and 50 µL of saliva samples were 

utilized for each measurement. Saliva samples from each of the salivettes were tested 

in triplicate sets, and the average value was utilized to determine the final cortisol 

concentration and is presented in  

Table 2. Figure 13 presents the comparison of results obtained for cortisol 

detection in saliva samples tested using the electrochemical immunosensor and 

ELISA. The trend observed for the electrochemical measurements were mostly 

consistent with that obtained from ELISA, except for the saliva sample from 

Specimen A [3/27/2013 (10:03pm)], in which the ELISA value was observed to be a 

high value at night time. This observed difference may be due to an experimental 

error of denatured saliva sample. 
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Since both methods have different transduction techniques to detect cortisol 

concentration, the results were in different magnitudes. To compare and correlate 

these responses, one was scaled to the other. All values of cortisol concentration 

obtained from the corresponding electrochemical calibration curve were adjusted by a 

factor of 2.2 to compare them with values obtained using ELISA assays. A good 

correlation was achieved between the two sets of data, thus enabling quantitative 

validation of the electrochemical immunosensing of Cortisol in a biologically relevant 

fluid such as saliva. 

 

Figure 13: Comparison of cortisol concentration measured by ELISA and 

Electrochemical measurement on saliva samples from Specimen A & B at specific 

time intervals over three days. 
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3.5 Conclusions 

The electrochemical immunosensing platform was utilized for a low-cost and 

label-free detection of cortisol via covalent immobilization of Anti-Cab onto DTSP-

SAM-modified IDEs (chamber volume 5 µL, electrode width 10 µm and electrode 

gap 10 µm). The fabricated electrochemical immunosensor exhibited a detection 

range from 10 pg/mL to 100 ng/mL, a detection limit of 10 pg/mL, and a sensitivity of 

6 µA/(pg/mL) with the regression coefficient of 0.99. The sensor has been used for 

salivary cortisol detection in clinically relevant samples, and sensing performance has 

successfully validated using conventional ELISA method. The cortisol value in saliva 

samples of two specimens collected at different time intervals using DSTP-

SAM/IDEs correlates (within 2-5%) with those obtained using ELISA. The developed 

sensor can reliably detect cortisol in saliva within a physiological range which can be 

used as a marker to understand various physical, behavioral and psychological 

variables which may affect the central nervous system. 
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 NANO ENABLED SIGNAL AMPLIFICATION IN SAM BASED 

ELECTROCHEMICAL CORTISOL IMMUNOSENSORS 

4.1 Abstract 

Electrochemical immunosensors function by measuring the changes in the 

electrical properties such as current, potential, conductance, capacitance, and 

impedance during an immunochemical reaction between antigen (target molecule) 

and the antibody [111, 112]. Although capacitive and impedimetric immunosensors 

can be directly utilized to investigate the antibody-antigen interaction without the 

need of other reagents and separation steps, their analytical sensitivity is limited in 

clinical applications. Amperometric immunosensors based on the measurement of 

currents resulting from the electrochemical oxidation or reduction of electroactive 

species has attracted more interests for high sensitivity and low complexity 

instrumentation [112]. However, amperometric immunosensors requires labeling of 

either antigen or antibody, since both the reaction partners are electrochemically inert. 

Labeling is a time-consuming process, costly and denatures the biomolecules. 

Amperometric immunosensors that utilize an electrolyte solution containing 

reversible redox species have been widely used as mediator probes instead of labeling 

antibodies/antigens; however, this causes electrode contamination, reagent-

consumption and operation inconvenience., label-free amperometric immunosensors 

have been proposed to address the above issues. One possible way to achieve label-

free sensing was by integrating of signal generating probe on electrode surfaces itself. 

This was achieved by electrochemical fabrication of Copper based nanoparticles on 

SPCE working surface. 
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4.2 Introduction 

The use of nanomaterials as signal generating probes for electrochemical 

detection of biomarkers have been reviewed earlier [111]. However, the selection of 

signal generating probe is vital for electrochemical immunosensor, especially for 

label-free electrochemical immunosensor, since it is responsible for three major tasks: 

(i) being redox active and produce electrochemical signals for corresponding 

immunocomplex formation, (ii) increasing specific surface area of electrode to 

immobilize more antibodies and (iii) improving conductivity for sensitive detection of 

antigen. For electrochemical devices, nanoparticles, carbon nanotubes, and graphene 

have been used to catalyze electrochemical reactions and to improve electron transfer. 

Nanoparticles, especially have also been used as labels to generate an intense signal in 

comparison with electroactive molecules or organometallic complexes like ferrocene. 

Indeed, due to their high number of atoms, a large number of electrons can be 

exchanged through oxidation or reduction. 

Group 11 metals (Cu, Ag, and Au), which are very weak chemisorbing agents, 

often display marked catalytic and electrocatalytic properties. Some types of copper 

electrodes showed an excellent electrocatalytic activity for DNA detection without 

observable self-poisoning. Copper electrodes undergo oxidation at unexpectedly low 

potentials, typically within the so-called double layer region, to form surface-bonded 

copper (I) hydrous oxide species. 

A reagent-less and label-free voltammetric immunosensing strategy was 

demonstrated by employing a nanomaterial integrated electrode as a signal generating 

probe. Copper/copper oxide (Cu/CuxO) nanoparticles integrated SPCE were used to 

construct the immunosensing platform. The stress biomarker, cortisol was employed 
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as a model analyte. Cortisol specific monoclonal antibodies (C-Mab) were covalently 

immobilized on the surface of the Cu/CuxO-SPCE functionalized with DTSP-SAM. 

The formation of Cu/CuxO nanoparticles on the surface of SPCE was characterized by 

SEM and XRD analysis. The redox signal of the Cu/CuxO nanoparticles could be 

detected directly through CV and used as signal generation probe for the direct 

detection of cortisol. The formation of immunocomplexes leads to a decrease in the 

electrochemical redox signal of Cu/CuO nanoparticles. This was due to the increased 

spatial blocking of the electrode surface. The proposed immunosensing strategy 

allows a rapid and sensitive means of cortisol analysis with a limit of detection of 

about 1 pg/mL. The Cu/CuxO platform can be further applied for designing other 

label-free immunoassays. 

4.3 Experimental 

4.3.1 Materials and methods 

SPCE from Zensor was used for the construction of biosensor. The thiol-based 

crosslinker, DTSP, and sodium borohydride (NaBH4) were purchased from Thermo 

Fisher Scientific. Copper (II) Chloride (CuCl2), Potassium chloride (KCl) and 

Sodium Hydroxide (NaOH), used for deposition of copper nanoparticles were 

purchased from Sigma Aldrich. The buffer solution used for characterization was 

prepared from sodium phosphate monobasic (NaH2PO4) and sodium phosphate 

dibasic (Na2HPO4), also purchased from Sigma Aldrich. All the chemicals were of 

analytical grade and were used without further purification. 
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4.3.2 Measurement and apparatus 

CV and amperometry were employed using a potentiostat from CHI 

Instruments Inc. Electrochemical Instrumentation (Austin, TX, USA) to record the 

amperometry and voltammetry plots. The three-electrode configuration system used 

in this work consisted of a carbon working electrode and silver reference electrode 

and an external Pt mesh as a counter electrode. This was placed at the bottom of a 6 

ml electrochemical cell for cleaning and deposition with constant stirring through a 

magnetic stirrer on a heater under different temperature variants. SEM images of the 

nanostructures on the sensor surface were taken using SEM 6330/JEOL FE-SEM 

4.3.3 Electro-synthesis of copper nanostructures 

Before carrying out the nano-assembly on to the SPCE, the working electrode 

surface of SPCE was electrochemically pretreated by immersing it in 0.1 M H2SO4 

and cycling the potential between - 0.5 and 1.0 V at 100 mV/s. The primary purpose 

of this pretreatment was to remove organic ink constituents or contaminants and to 

increase the surface roughness of the SPCE. After pretreatment, the SPCE was 

washed well with deionized water and dried in air. Amperometry was used for the 

electro-deposition of copper nanoparticles onto the working electrode of SPCE.  Cu 

nanoparticles were deposited onto the electrode at a constant potential, and then they 

were oxidized into CuO by potential cycling. Briefly, a constant potential of -0.35 V 

was applied to the electrode in the precursor solution of 0.1 M KCl and 0.01 M CuCl2 

which had been pre-purged with N2 for 15 min. The electrode was then rinsed several 

times with water and dried with a flow of N2 before it was repeatedly scanned in a 0.1 

M NaOH with CV under the potential range of -0.5 to 0.3V at 100 mV/s for 20 cycles, 

allowing the Cu nanoparticles to be oxidized into CuO nanoparticles. This was 
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followed by rinsing in DI water and characterization in 0.1M PBS after purging with 

N2. 

4.3.4 Biosensor fabrication and enzyme immobilization 

Formation of a self-assembled monolayer (SAM) of DTSP on the metal 

nanostructure integrated SPCE followed by anti-cortisol antibody immobilization. 

DTSP solution (10 mg/ml) was prepared using acetone and incubated on the electrode 

for 2hrs for SAM formation where the enzyme was covalently immobilized with 

DTSP via crosslinking. DTSP solution was first reduced using NaBH4 and then 

dispensed on the nano-material integrated electrodes at room temperature for SAM 

formation. The DTSP SAM-modified electrodes were then rinsed with acetone to 

eliminate any unbound DTSP followed by cleaning in DI water. [12] Cortisol 

antibodies were then covalently attached to the SAM-modified electrode by drop-

casting with 100ul of anti-cortisol antibody solutions It is from the facile reaction 

between the amino group of the antibody and reactive succinimidyl group of the 

DTSP on the SAM surface below, that the covalent binding results [13]. The non-

binding sites of Ab/Cu-CuO/SPCE bioelectrode were obstructed by immobilizing 

10μL of bovine serum albumin (BSA) for an hour followed by rinsing in PBS and 

dried with N2 at room temperature. 
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4.4 Results and discussion  

Figure 14: CV of copper nanoparticles being overoxidized for three cycles 

Figure 15: SEM image of the copper Oxide Nanoparticle deposited SPCE. The Particle size 

ranges from ~150nm. 
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The Copper Oxide nanoparticle modified SPCE was characterized by CV 

using the potentiometer form CHI instruments. The CV scans in Figure 14 show the 

overoxidation of copper nanoparticles to copper oxide at potentials higher than 0.5 V 

over three cycles. With each subsequent cycle the overoxidation potential shifts 

towards the higher side, and at the end of the third cycle, it is observed to be at 0.6 V. 

The resulting copper oxide nanoparticles were characterized by SEM [JEOL 

JSM-6330F FESEM]. Figure 15 shows the SEM image of the CuO modified SPCEs 

showing the dispersion of nanoparticles. XRD studies of the nano-functionalized 

electrode surface show the presence of Copper and Copper Oxide peaks. 

The SEM image in Figure 15 shows the uniform distribution of copper oxide 

nanoparticles on the SPCE.  The estimated average particle size is ~150 nm. The 

XRD graph in Figure 16 shows the presence of a prominent copper peak and smaller 

Figure 16: XRD image of Copper/ Copper oxide nanoparticles on the SPCE 
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copper oxide peak. This indicates the formation of a core-shell structure of a CuO/Cu 

nanoparticle. The core of nanoparticle consists of Cu surrounded by a shell of CuO. 

The fabricated immunosensors were used to detect the various concentration of 

cortisol using CV with PBS as the electrolyte. The CV scans for PBS shows the 

oxidation response current at 431 µA. After the Anti-cortisol antibody 

immobilization, the magnitude the oxidation current response went down to 213 µA. 

this indicates successful binding of the antibodies to the sensor surface. The reduction 

in current response can be explained due to the hindrance in electron transport caused 

by the insulating nature of the antibodies. The electrochemical response current of the 

fabricated immunosensor was studied in PBS (pH-7) as a function of cortisol 

concentration. Figure 18 shows the oxidation peak current of immunosensor from 

cortisol Concentrations of 100µM to 1pM. The decrease in the magnitude of 

electrochemical oxidation response can be explained due to the formation of cortisol 

and anti-cortisol antibody immunocomplex. This hinders the electron transport from 

the surface of the electrode to the electrolyte. A calibration curve of the current 
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response to the logarithmic cortisol concentration has been plotted in Figure 17. The 

curve reveals a linear correlation from 100 µM to 100 pM with a sensitivity of 4.21 

µA/M and the standard deviation of 0.0094. The formula 3xSD/m was used to 

estimated Limit of detection, which was found to be 6.6nM  

 

 

 

 

 

Figure 17: Concentration curve of the Cortisol immunosensor showing 

linear concentration from 10 M to 10 nM samples of cortisol. 

Figure 18: Different concentration of cortisol dispersed on the immunosensor 

and their oxidation response current. 
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4.5 Conclusion 

A label-free immunosensor specific to cortisol using Copper/copper oxide 

nanoparticles was successfully fabricated on the SPCEs. The fabricated 

immunosensor was characterized by CV, SEM, and XRD. The sensors were used to 

detect the different concentration of cortisol with PBS as the electrolyte medium. The 

sensitivity of the fabricated sensor was determined to be 4.21 µA/M and the limit of 

detection 6.6 nM. Though this research enables the label-free immunosensing of 

cortisol, it has some inherent challenges associated. The Antibodies are temperature 

dependent and limit the shelf life of the sensors. The cost associated with the 

fabrication of immunosensors is high due to the expensive nature of antibodies. The 

next chapter seeks to investigate polymers for electrochemical detection of Cortisol. 

This new technique aims to make the sensor cost effective, temperature stable and 

make repeatable measurements possible with the same sensor element. 
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 BIO-MIMETIC SENSOR FOR LABEL-FREE DETECTION OF 

CORTISOL USING MOLECULARLY IMPRINTED POLYMERS APPROACH 

5.1 Abstract 

We report here, an in situ electro-polymerized MIP based electrochemical 

sensor for the detection of cortisol. Cortisol specific MIP films were prepared by 

electro-polymerizing pyrrole monomer on the electrode surface in the presence of 

cortisol as a template molecule. After eluting the cortisol through electrochemical 

overoxidation, cortisol specific imprinted sites created on the polymeric matrix were 

used to detect cortisol using a redox mediator Fe(II)/Fe(III). The imprinted matrix was 

characterized using CV and scanning electron microscopy (SEM). The effect of 

current responses on electro-polymerization cycle, monomer concentration, elution 

cycles (target removal), pH of the supporting electrolyte, and rebinding time was 

investigated and optimized. The MIP based cortisol sensor exhibited a detection limit 

of 1 pM L-1 cortisol. Moreover, the sensor showed good selectivity and reusability the 

sensitivity remained >90% after 7 cycles of elution/rebinding, while the sensitivity 

only decreased to 90% after 4 weeks of storage at room temperature. The reusable 

MIP sensor has been applied to detect cortisol in real samples and validated with 

ELISA. These features make the MIP based cortisol sensing attractive for reusable 

and continuous cortisol monitoring applications.   

5.2 Introduction 

Current, analytical methods such as ELISA and electrochemical 

immunosensors are widely used to detect cortisol [77, 83, 113-115]. These analytical 

techniques involve the use of cortisol specific antibody as a biorecognition element 
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and provide selective detection of cortisol. However, instability of antibodies, the 

need for refrigerated transport and storage, and the high cost of producing immune-

reagents are the severe roadblocks to the commercialization of immunosensor for 

point-of-care (POC) applications [78, 116]. Therefore, the design and synthesis of 

artificial receptor systems as stable mimics to the conventional antibodies with high 

target binding affinity is in demand for diagnostic applications. One technique that is 

being increasingly adopted for the generation of artificial bioreceptors is molecular 

imprinting [117, 118]. 

Molecular imprinting is a technique for creating specific recognition sites in 

synthetic polymeric matrices that are structurally complementary to target molecules. 

MIPs are synthetic polymers having recognition sites selective towards the target 

analyte. They are versatile, stable and cost-effective substitutes for the natural 

antibodies [119-122]. They have a considerable impact and potential applications in 

biosensor commercialization owing to their number of merits such as low cost, easy 

storage, and applicability in harsh conditions. MIPs possess longer lifetimes over the 

enzymes, antibodies, and proteins [123-126]. Another attractive feature of MIP based 

biosensor is its reversible binding with the target analyte, which makes the MIP 

sensors reusable where frequent/continuous monitoring is required.   

Traditional polymerization techniques such as bulk polymerization, 

precipitation polymerization, and emulsion have been widely used for the synthesis of 

MIPs. However, controlled integration of MIPs onto the transducer surface still 

remains a challenge. Electrochemical polymerization is an attractive method for 

patterning MIPs directly onto the surface of biochips. Moreover, the 

electropolymerization process allows us to  control the thickness, morphology, and 

reproducibility of MIP films by tuning the experimental parameters such as the 
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concentration of target/monomer, polymerization cycles, and applied potential [127-

130]. Various electroactive monomers, such as pyrrole, aniline, and o-

phenylenediamine were explored as potential materials for synthesis MIPs by 

electropolymerization. Among them, polypyrrole (PPy) based MIP has received 

interest because of its facile electropolymerization, high conductivity, and stability in 

ambient conditions [131-133]. In the past years, attempts were made to synthesize 

MIPs for separation of cortisol [134-136]. However, no attempts were made to obtain 

an in situ fabricated MIPs for the electrochemical detection of cortisol. In this work, 

for the first time, we report a facile electrochemical strategy to fabricate a stable 

cortisol MIP sensor using PPy. One of the key aspects in designing reproducible MIP 

biosensor is controlled removal of template molecule from the polymer matrix. To 

remove the entrapped template molecule from the polymeric matrix, different 

strategies have been performed. The first and most straightforward approach is 

extraction with an appropriate solvent. In some cases, the target extraction involves 

temperature, microwave, or ultrasonic assisted approaches to increase the rate of 

extraction. However, these methods cause imprinted cavities to distort and, 

consequently, makes the MIPs less efficient towards rebinding and selectivity [137]. 

In the current work, an electrochemical elution approach was performed using CV to 

extract the cortisol from the polymeric matrix. The effect of electrochemical 

extraction cycles on the template removal was also investigated. 

Moreover, we demonstrate an efficient and fast protocol for removing the 

template cortisol from the polymeric matrix, which improves the facile fabrication 

cortisol imprinted biosensor. The biosensor was then applied to detect human salivary 

cortisol levels, and the results were validated using the ELISA technique. 
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5.3 Experimental  

5.3.1 Materials 

Pyrrole monomer (≥98%), potassium ferricyanide (K3[Fe(CN)6]), potassium 

ferrocyanide (K4[Fe(CN)6]), potassium chloride was purchased from Sigma-Aldrich 

Co., USA. Phosphate buffer solution (PBS) (0.1 M, pH 7.2) was prepared by 

dissolving 1 tablet in 200 mL of de-ionized (DI) water. A stock solution of cortisol 

was prepared by dissolving 1 mg of cortisol in 1 mL of ethanol. Working aliquots 

were prepared by diluting the cortisol stock solution with PBS. A standard stock 

solution of K3[Fe(CN)6])/ K4[Fe(CN)6] (5 mM) was prepared in PBS. Cortisol 

enzyme immunoassay kit was procured from Arbor Assays, MI and a standard 

protocol were adopted to detect saliva cortisol. In Brief, 50 µl of 4X diluted saliva 

was used for the detection of cortisol. All other reagents were of analytical grade and 

solutions were prepared using double distilled water. 

5.3.2 Preparation of MIP and non-imprinted polymer (NIP) modified electrodes 

Prior to the electrosynthesis of MIP, the SPCE was cleaned to remove organic 

ink constituents/contaminants and to increase surface roughness. The pre-treatment of 

the SPCE was carried out by cycling the potential between -1.5 V to 1.5 V at a scan 

rate of 100 mV/s in 0.1 M H2SO4 for 10 cycles [111, 138]. The SPCE was then 

washed with deionized water and dried at room temperature. The electrosynthesis of 

MIP films was performed using CV by cycling the potential range  between 0 and 0.9 

V at a scan rate of 50 mV/s for 10 cycles in 0.1 M PBS containing 0.8 M pyrrole and 

0.1 M KCl. 10 mM cortisol was added to the solution as a template molecule before 

the polymerization. As the polymer matrix grows on the working electrode, cortisol 



 60 

molecules diffuse toward the electrode surface and get entrapped in the polymer 

matrix.  

After the polymerization, polymerization, the entrapped cortisol molecules 

were extracted from the conducting polymer matrix to produce a surface 

complementary in shape and functionality to the original template, cortisol. The 

extraction was performed through over-oxidizing the PPy by cycling the potential 

range between -0.2 to 0.8 V for 40 cycles in 0.1 M PBS solution. The identical 

procedure (polymerization followed by overoxidation) was used to fabricate NIP 

electrode but without adding cortisol as a template. Modified electrodes were then 

dried under nitrogen flow and stored at room temperature.  

5.4 Cortisol sensing using MIP  

The electrochemical detection of cortisol by the MIP sensor was performed by 

placing 5 µL of an appropriate concentration of cortisol solutions at the working 

electrode, for 10 min without stirring. The sensors were washed with water to remove 

any material that may have been absorbed on the surface. Subsequently, the 

electrochemical measurements were carried out in the presence of 40 µL of 5 mM 

K3[Fe(CN)6]/K4[Fe(CN)6] solution containing 0.1 M PBS at room temperature.  

5.5 Results and Discussion 

5.5.1 Fabrication of cortisol MIP and NIP electrodes 

Formation of cortisol specific MIP films on the electrode surface was achieved 

by electrochemical polymerization of pyrrole in the presence of cortisol. The polymer 

growth was monitored through the changes in the current response obtained during 
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polymerization cycles. The voltammograms obtained during electro-polymerization of 

pyrrole in the absence (dotted lines) and in the presence of cortisol (solid lines), from 

0 V to 0.9 V at 50 mV/s using 0.1 M KCl as supporting electrolyte are compared in 

Fig. 1A. In both the cases, the oxidation currents were increased remarkably at each 

voltage sweep, suggesting a controlled growth of the polymer, suggesting the 

thickness of the polymer film can be controlled by the regulating the scan cycles. 

During the polymerization, cortisol molecules diffuse towards the electrode and bind 

to the PPy conducting matrix through hydrogen bonding (Scheme 1). Although the 

two voltammograms look similar in shape, the capacitive currents observed for the 

electropolymerization in the presence of cortisol (solid lines) is significantly higher 

than those obtained in its absence (dotted lines). The increased capacitive current of 

the polymer film in the presence of cortisol confirms the binding of cortisol, an 

electro-inactive molecule, with the polymer.  

Removal of cortisol templates from the polymeric matrix is necessary to form 

complementary imprinted sites for the subsequent rebinding. The electrochemical 

over-oxidation process was used to remove cortisol molecules from the PPy matrix. 

Figure 19: CV scans taken during the electropolymerization of pyrrole in the absence 

(dotted lines) and in the presence (solid lines) of 10 mM cortisol onto the SPCE. 

Scan rate: 50 mV/s. 
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The polymer matrix was over-oxidized by scanning the potential in a range of -0.2 V 

to +0.8 V for 40 cycles in 0.1 M PBS at a scan rate of 50 mV/s (Figure 19). For 

clarity, the initial five scans were shown in Figure 20. During the elution scans, a 

broad irreversible voltammetric peak was observed at ~ 0.3 V due to the 

overoxidation of PPy (Li and Qian, 2000). As seen in Figure 20, no cathodic peak was 

observed during the reverse scan, which indicates that the over-oxidation of PPy is 

electrochemically irreversible. The above process causes the removal of cortisol from 

the PPy matrix while oxygen-containing groups, such as carboxyl, are incorporated 

into the polymer backbone. The decrease in the current response during subsequent 

scan cycles is due to a decrease in conductivity of the PPy film. Since the over-

oxidation was performed here in a neutral condition, the degradation of PPy matrix 

was avoided. The NIP fabrication process involves the same protocol as used to 

fabricate MIP (polymerization followed by overoxidation) but without the addition of 

cortisol as a template. 

 

Figure 20: Recorded voltammograms during the elution of cortisol from the PPy matrix 

at 0.1 M PBS; scan rate of 50 mV/s. 
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5.5.2 Electrochemical characterization of cortisol specific MIP 

The electrochemical behavior of stepwise fabrication of cortisol MIP sensor 

was studied in 5 mM K4[Fe(CN)6]/K3[Fe(CN)6] solution containing 0.1 M PBS. The 

results are shown in Figure 21. The CVs of [Fe(CN)6]
3-/[Fe(CN)6]

4- redox probe was 

chosen as a marker to investigate the changes in the electrode behavior after each step 

of the sensor assembly. As shown in curve (a), well-defined reversible redox peaks 

for the [Fe(CN)6]
3-/[Fe(CN)6]

4- redox couple were observed with bare SPCE. The PPy 

modified SPCE showed an apparent increase in the peak current for the redox probe 

along with the increase in capacitive currents (curve b). This was attributed to the 

increase in active surface area by conducting PPy matrix on the SPCE surface. The 

permeability of the porous PPy film is also responsible for the increased electron 

transport kinetics. [Fe(CN)6]
3-/[Fe(CN)6]

4- is an anion; due to the electrostatic 

interactions, the [Fe(CN)6]
3-/[Fe(CN)6]

4- ions inserts easily into the positively charged 

PPy film and thus involved in rapid electron transfer kinetics. The peak current 

response observed for cortisol loaded PPy matrix (curve (c)) was much lower than the 

one observed for PPy matrix without cortisol (curve (b)). This confirms that cortisol 

was effectively loaded onto the PPy matrix and hinders the electrochemical response 

of [Fe(CN)6]
3-/[Fe(CN)6]

4-.  
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It is interesting to note that, removal of cortisol from the PPy matrix 

drastically decreases the current response of the redox probe (curve (d)). The voltage 

induced overoxidation leads to conductivity loss in PPy due to the introduction of 

carbonyl and carboxyl groups in the polymer backbone. The inset of Figure 21 depicts 

the enlarged version of the curve d, showing the redox currents observed with the 

overoxidized PPy matrix. 

5.5.3 Surface morphological characterization of cortisol MIP electrodes 

Surface morphologies of MIP and NIP modified electrodes are obtained at the 

magnification of x30,000x and are shown in Figure 22(A) shows the SEM image of 

PPy coated SPCE. After electropolymerization, the surface of the SPCE is coated with 

a microporous PPy matrix with cauliflower-like structure constituted by micro-

spherical grains. The average diameter of the grain is 343.47 nm. When pyrrole was 

polymerized in the presence of cortisol, an increase in grain size is noted (Figure 

22C). The average diameter of the grains increased to 616.32 nm, suggesting the 

incorporation of cortisol to the polymeric matrix. Overoxidation of PPy matrix 

Figure 21: CV scans of 5 mM K4[Fe(CN)6]/K3[Fe(CN)6] solution at (a) bare SPCE, (b) PPy-

SPCE, (c) Cortisol-PPy-SPCE and (d) MIP-PPy-SPCE; scan rate of 50 mVs-1; (Inset: 

Enlarged version of curve d). 
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leading to an increase in porosity and decrease in grain size due to the removal of 

cortisol from the matrix (The average diameter of the grain size is 342.83 nm).  

 

 

Figure 22: SEM images of (A) PPy-SPCE, (B) Cortisol-PPy-SPCE, (C) MIP-

PPy-SPCE, and (D) NIP-PPy-SPCE 

 

For comparison, the SEM image of the NIP modified electrode is given in 

Figure 22D. As can be seen from the SEM images, the surface of the MIP modified 

electrode is rough due to cavities of cortisol whereas the surface of the NIP modified 

electrode is smooth without the imprinting cavities.  The distribution of polymer grain 

size is given in Figure 23.  
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5.5.4 Optimization of experimental parameters 

The thickness of MIP film is an important factor affecting the film’s 

recognition ability, reproducibility and it could be controlled by tuning the 

concentration of monomer and a number of polymerization cycles.  

Figure 23: Polymer grain size distributions observed for (A) PPy-SPCE, (B) Cortisol-PPy-

SPCE, (C) MIP-PPy-SPCE, and (d) NIP-PPy-SPCE 
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5.5.5 Effect of concentration of pyrrole monomer. 

The effect of monomer concentrations on the electrochemical response of the MIP 

sensor was investigated. The cortisol MIP electrodes were prepared in solutions of a 

constant concentration of cortisol (10 mM) and different pyrrole concentrations in the 

range of 0.2 M to 1.2 M (Figure 24). The polymerization and elution of cortisol to 

form MIP electrodes were followed as mentioned in the previous section. The 

Figure 24: Effect of the monomer concentration on the response of the sensor to cortisol 

Figure 25: Effect of the different cycles of the electro polymerization of MIP 
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fabricated MIP electrodes were then characterized using CV in 5 mM 

K4[Fe(CN)6]/K3[Fe(CN)6] solution containing 0.1 M PBS. The current response of the 

[Fe(CN)6]
3-/[Fe(CN)6]

4- redox probe increased with increase in monomer 

concentration and reached a maximum value at 0.8 M. The current response then 

decreased with further increase in the concentration of pyrrole monomer. This 

behavior can be attributed to the formation of a very thick layer of MIP at higher 

concentration of monomer which in turn affects the electron transfer of [Fe(CN)6]
3-

/[Fe(CN)6]
4- redox couple. Thus, the optimized 0.8 M pyrrole monomer concentration 

was chosen for the electrochemical polymerization to obtain the highest sensitivity for 

the determination of cortisol.  

 

Figure 26: Effect of electrochemical extraction cycle on the current response 



  

5.5.6 Effect of number of electropolymerization cycles and rate 

Since the thickness of polymer matrix can also be tuned via controlling the 

number of electro-polymerization cycles, the number of scan cycles used for MIP 

synthesis was optimized. A series of MIP electrodes were fabricated by following the 

experimental procedure mentioned in section 2.3 but with a different number of 

polymerization cycles to find out the optimal number of polymerization cycle. The 

electrochemical elution of cortisol template from the polymeric matrix was performed 

using CV as detailed in section 3.1. As shown in Figure 25, the current response of 

the redox probe [Fe(CN)6]
3-/[Fe(CN)6]

4- reached maximum after the tenth cycle of 

polymerization, and then decreased with further increase in the number of 

polymerization cycles. MIP films that were formed at less than 10 scan cycles were 

found to be thin and less stable at the working electrode whereas higher than 10 

cycles formed thicker sensing layer which hinders the electron transfer of [Fe(CN)6]
3-

/[Fe(CN)6]
4- redox probe. The current response changes of cortisol on MIP modified 

electrode implied that the optimum polymerization cycle was to be 10.  

  

Figure 27: concentration Curve after testing the Elute using ELISA
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5.5.7 Optimization of the extraction cycle 

Controlling and enhancing the formation of imprinting sites by regulating the 

removal of target molecules from the polymeric matrix is essential to fabricate 

reproducible MIP biosensors. An effective method is needed to regenerate the 

imprinting sites after the binding event to make the MIP sensors reusable. In this 

study, voltage induced target removal was performed to create imprinting sites. The 

electrochemical elution of cortisol template from the polymeric matrix was performed 

using CV as detailed in section 3.1. To optimize the extraction cycles, different 

extraction cycles (5-40) were performed on the cortisol embedded PPy modified 

SPCE. The MIP sensors were characterized after each cycle of target removal, using 

the redox probe [Fe(CN)6]
3-/[Fe(CN)6]

4-. As the number of elution cycles increases, 

the current response of the MIP sensor also increases indicating the controlled release 

of cortisol molecule. The maximum current response of the electrode is obtained at 

Figure 28: CV studies of the cortisol MIP sensor as a function of scan rate (50-150 

mV/s), inset: magnitude of current response vs. scan rate. 
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the 25th cycle (Figure 26). Thus, the extraction cycles were optimized at 25 for 

complete extraction of the template from the polymeric matrix. 

5.5.8 Effect of binding time and scan rate 

The typical CV curves of the cortisol MIP sensor in [Fe(CN)6]
3-/[Fe(CN)6]

4- 

redox probe at different scan rates ranging from 50 to 150 50 mV/s were studied and 

are shown in Figure 28. As is observed in Figure 28, both the cathodic and anodic 

peak currents were increased with an increase in scan rate from 50 to 150 mV/s. The 

anodic and cathodic peak currents both are linearly proportional to the square root of 

the appropriate scan rate, suggesting a diffusion-controlled behavior with an electron 

transfer process [139].  

The effect of the incubation time on the performance of the cortisol MIP 

sensor was also investigated (Figure 29). After the extraction of cortisol, the MIP 

sensors were left in contact with a standard solution of 10 pM cortisol for different 

Figure 29: Effect of incubation time on current response of the cortisol MIP 



 72 

incubation times (0-30 min). With increasing incubation time, the current responses of 

the [Fe(CN)6]
3-/[Fe(CN)6]

4- redox probe decreases and then stabilize when the 

incubation time is longer than 15 min. Thus, an incubation time of 15 min is adopted 

in the subsequent work.  

5.5.9 Effect of pH 

To evaluate the influence of the pH on the performance of the cortisol MIP 

sensor, the sensor was tested with a series of PBS with different pH, ranging from 5.8 

to 7.8 (data not shown). The experimental results show that an increase in pH from 

5.8 to 7.2 resulted in an increased peak current of [Fe(CN)6]
3-/[Fe(CN)6]

4- redox 

probe; further increase in pH resulted in a decrease in peak current. The results 

showed that the maximum current response occurred at pH 7.2. The optimum pH 7.2 

was hence chosen for all the experiments.  

5.5.10 Calibration curve of the sensor 

The typical CV scans obtained for several concentrations of cortisol in 0.1 M 

PBS containing five mM [Fe(CN)6]
3-/[Fe(CN)6]

 4- using the cortisol MIP sensor at 50 

mV/s are shown in Error! Reference source not found.. The figure depicts the 

magnitude of electrochemical current response which decreases as a function of 

increasing cortisol concentration when incubated for 15 min. The decrease in current 

response is attributed to the binding of cortisol molecules to the MIP sites that hinder 

electron transport of [Fe(CN)6]
3-/[Fe(CN)6]

4- redox probe. A calibration curve 

between the magnitude of the current response and logarithm of cortisol concentration 

has been plotted (inset, Error! Reference source not found.). Cathodic peak current 

observed at -0.35 V was used to plot calibration curves. The current responses to 
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cortisol obtained with the MIP sensor were linear from 1 pM to 10 μM (r2=0.9925), 

with a detection limit of 1 pM.  

Figure 31: Electrochemical response studies of MIP-PPy-SPCE as a function of 

cortisol concentration (1 pM to10 uM) using five mM K4[Fe(CN)6]/K3[Fe(CN)6] 

solution, inset: calibration curve between the magnitude of response current and 

logarithm of cortisol concentration 

Figure 30: The change in peak current values observed at cortisol 

MIP (blue) and NIP (red) electrode in the presence of cortisol and 

other interferents individually each at 100 nM. 
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5.5.11 Selectivity, reproducibility, and repeatability 

 
𝛽 =  

𝐼𝑝𝑎 (𝑀𝐼𝑃 𝑠𝑒𝑛𝑠𝑜𝑟)

𝐼𝑝𝑎 (𝑁𝐼𝑃 𝑠𝑒𝑛𝑠𝑜𝑟)
                                                      

Equation: 3 

 

One of the significant limitations of currently available commercial cortisol 

immunoassay kits and immunosensors is their cross-reactivity and interference with 

the cortisol structural analogs viz. progesterone and prednisolone [140, 141]. As 

recently reviewed by Krasowski and his team, commercially available cortisol 

immunoassay kits still have cross-reactivity more than 100% with the analogous 

molecules, especially prednisolone [142]. So, there is a real need to develop an assay 

for cortisol detection which has lower cross-reactivity with the analogous. Earlier, 

Ramstorm and his group have evaluated the application of synthetic polymer capable 

Figure 32: Molecular structure of cortisol and its structural 

analogs prednisolone, progesterone and lactate. 
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of molecular recognition of cortisol with reduced cross-reactivity [136]. The MIP 

prepared by this method showed only 36% cross-reactivity with the analog 

prednisolone. In this work, selectivity assay for cortisol MIP sensor was carried out 

using three interfering analytes, progesterone, prednisolone, and lactate. The change 

in peak current values observed at MIP and NIP electrodes in the presence of cortisol 

and other interferents individually each at 100 nM is shown in Figure 31.  

The imprinting factor (β), a measure of the strength of interaction between the 

target molecule and MIP sensor was calculated according to  

 
𝛽 =  

𝐼𝑝𝑎 (𝑀𝐼𝑃 𝑠𝑒𝑛𝑠𝑜𝑟)

𝐼𝑝𝑎 (𝑁𝐼𝑃 𝑠𝑒𝑛𝑠𝑜𝑟)
                                                      

Equation: 3 

 

where Ipa is the cathodic peak current. 

Table 3: Reproducibility experiments of the MIP-PPy-SPCE sensor 

Cortisol MIP 

sensors 

1 2 3 4 5 RSD 

Current (µA) 30.11 29.61 28.24 30.39 28.59 4.16% 

 

Table 4:  Repeatability experiments of the cortisol MIP-PPy-SPCE sensor 

Cortisol 

solutions 

1 2 3 4 5 RSD 

Current (µA) 28.15 29.10 29.85 30.98 31.80 4.81% 

 

The values of β were 10.25, 1.27, 1.41, and 1.33 for cortisol, lactate, 

progesterone, and prednisolone respectively. From the values obtained, the MIP 

sensor shows higher binding capability towards cortisol (maximum β value) over 

other interferents. The above results revealed that the MIP sensor exhibited higher 

recognition selectivity toward cortisol. The cross-reactivity percentage was also 

calculated using the current values. It showed that lactate has very negligible 
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interference (1.5%) while progesterone (11.4%) and prednisolone (18.3%) have 

slightly higher cross-reactivity with cortisol detection. The chemical structures of 

cortisol and other interferents are shown in Figure 32. As can be seen from the figure, 

prednisolone and progesterone have chemical structures very similar to cortisol and 

thus interfere with cortisol measurement. However, the percentage of cross-reactivity 

of the present MIP sensors is much lower than the conventional immunoassay. Even 

this small percentage of cross-reactivity of the cortisol MIP sensors will be addressed 

in the future by computational modeling [143].    

The controlled fabrication process provided good reproducibility for the MIP 

sensors. Five sensors were prepared freshly and used to detect the same concentration 

of cortisol (100 nM). These sensors were used to investigate their reproducibility. 

Based on the current responses obtained, the relative standard deviation (RSD) was 

calculated to be as 4.16%, confirming that the sensor had good reproducibility (Table 

3). The RSD was determined by five successive measurements of a 100 nM cortisol 

solution using the same cortisol MIP electrode (i.e., used each time after elution 

process) and was estimated to be 4.81% ( 

Table 4). After the binding event, sensors were regenerated by electrochemical 

elution and were reused to detect cortisol. The experimental results demonstrated that 

the cortisol MIP sensor could be regenerated seven times; after that, the adhesion of 

the polymer to the electrode is weakened. The stability of the sensor has been 

examined by monitoring the current response for 10 nM cortisol solution at regular 

intervals (2 days) for four weeks. After four weeks, the sensor retained 90% of the 

current response. Suggesting, that the proposed sensor has acceptable stability. 
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5.5.12  Analytical applications 

To further investigate the feasibility of the newly developed cortisol MIP 

sensor for clinical analysis, cortisol measurement in human saliva samples were 

performed. The protocol to detect cortisol using the sensor and ELISA is adopted 

from our previous work (Pasha et al., 2013). In brief, five µl of saliva samples were 

placed on the biosensor and were allowed to incubate for 15 min to ensure proper 

binding. The MIP sensors were then washed using 0.1 M PBS to remove unbound 

saliva. This was followed by the recording CV scans in 5 mM 

K4[Fe(CN)6]/K3[Fe(CN)6] solution containing 0.1 M PBS. These results obtained 

using the MIP cortisol sensor and estimation performed using ELISA are comparable 

(Table 5). These results, therefore, confirm the suitability of the electrode for the real 

sample applications. 

Table 5: Comparison of saliva cortisol estimated using ELISA and cortisol 

MIP sensor. 

Saliva 

samples 

Salivary Cortisol (ELISA) 

(µg/dL) 

Salivary 

Cortisol (MIP sensor) 

(nM/L) 

Sample 

1 
0.237 6.75 

Sample 

2 
0.155 4.32 

Sample 

3 
0.144 4.13 

Sample 

4 
0.072 2.16 

 

5.6 Conclusion 

In summary, a novel electrochemical sensor for the determination of cortisol 

was designed for the first time using molecular imprinting technique. The cortisol 
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MIP sensor was created by electropolymerization of pyrrole monomer in the presence 

of cortisol template, followed by removal of cortisol under optimized conditions. The 

electrochemistry of [Fe(CN)6]
3-/[Fe(CN)6]

4- redox probe was used to characterize 

stepwise fabrication of sensor and detection of cortisol. The sensor response was 

linear to the cortisol concentration in the range 1 pM to 10 μM (r2=0.984), with a 

detection limit of 1 pM. The sensor exhibited good sensitivity, short response time 

and regenerated seven times. Also, the sensor showed good repeatability, stability, 

and selectivity, and was applied to detect cortisol in real samples. Despite the 

advantages of this approach, the use of electrochemical sensing requires complex 

auxiliary electronics for detection. The output of the system is not a direct readout and 

has to be correlated to the concentration of the curve by complex calculations. Apart 

from that, the presence of electrolytic redox species as the label makes it difficult for 

portable use. 

The next chapter will discuss the application of MIP in an EGFET 

configuration to address the above issues. 
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 INTEGRATION OF MIP WITH EGFET FOR DIRECT SENSING OF 

CORTISOL 

6.1 Abstract 

Electrochemical immunosensing offers a fast and effective method for 

detection of cortisol. However, it suffers from limitations such as difficulty in 

implementing label-free sensing. One of the challenges for implementing 

electrochemical immunosensing is the failure to provide a direct sensing readout for 

the detected biomolecule. In this chapter, we will address the challenges faced by the 

electrochemical method. The MIP sensor fabrication reported in the previous chapters 

will be used in an EGFET configuration to provide label-free and repeatable sensing. 

The proposed system is easy to implement and is cost effective. The most significant 

advantage of using this method is the simplicity of the sensing system as it provides a 

value of current that can be directly related to cortisol concentration. Another 

advantage of the system is that it requires a simplistic approach to auxiliary 

electronics. Thus, paving the way for miniaturized sensing devices. 

6.2 Introduction 

The first semiconductor device in the form of a transistor ushered in a 

revolution for modern electronics. The days of vacuum tubes were gone, and power-

hungry equipment made way for sleek and efficient devices. The development of 

oxide semiconductor FET further allowed the rapid growth of semiconductor 

electronics. The MOSFET has been one of the most critical devices for VLSI circuits. 

This has enabled applications of electronics in control systems, data communication, 

storage and processing at affordable costs. 
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The effect of electric field on the conductivity of a conducting channel in a 

semiconductor of the FET defines its current carrying capability (thus the name Field 

Effect Transistor). MOSFETs, JFET, TFET, etc. are some of the types of FETs that 

are available. However, despite individual differences, all FETs share a basic 

underlying principle.  

Two heavily doped n-type regions are created in a p-type substrate. These 

regions serve as source and drain for the device. A thin layer of insulator (generally 

silicon dioxide is deposited between the source and the drain. This insulating layer is 

coated with a thin film of metal to serve as a gate contact pad. Metal contacts are 

layered on top of the source and drain as well. 

While in operation, the source is grounded, and a positive voltage applied 

between the source gate (Vgs). The application of a Vgs causes an accumulation of 

electrons between the source and drain regions. These accumulated electrons start to 

form a conducting channel. Vgs determine the thickness of this channel. Now the 

application of a drain voltage causes a current to flow between the drain and the 

source. The magnitude of this current is dependent on the resistance of the channel 

which in turn is dependent on the gate voltage.  

The following equation can express the magnitude of drain current. 

 
𝐼𝑑 = 𝛽(𝑉𝑔𝑠 − 𝑉𝑇 −

1

2
𝑉𝑑𝑠)𝑉𝑑𝑠𝐼𝑑 

Equation 5 

 

Where VT is known as the threshold voltage. The threshold voltage is the 

value of Vgs beyond which the narrow conduction channel starts forming. 

β is the trans-conductance parameter and expressed as 
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𝛽 = 𝜇𝐶𝑜𝑥

𝑊

𝐿
 

Equation 6 

 

β is a function of the mobility of the electrons (μ) in the inversion layer, the 

gate insulator capacitance per area (Cox) and the channel width to length ratio (W/L). 

A closer look at the trans-conductance parameter shows the linearity of the 

FET device. As the Vds is increased, the current Id through the channel increases. 

Effectively the FET behaves as a resistor whose resistance can be calculated by the 

slope of the line from Vd vs. Id curves. 

However, the channel width is uniform for small values of Vds. As Vds is 

increased, the channel becomes narrower near the drain as compared to the source; 

this results in the rolling of Id vs. Vd curve as shown in the figure below. 

These properties of FET were first utilized by Bergveld et al. 

electrophysiological applications resulting in a Configuration Called ISFET. With this 

pioneering work, ISFET based sensors gained focus in the rapidly growing field of 

biosensors and were utilized in several different ways. Fast response time, high 

sensitivity, batch processing and the possibility of integrating on a single chip have 

pushed FET sensors in the forefront of sensing technology.  

6.3 EGFET 

The EGFET is based on the principle of an ion sensitive FET. The ISFET 

consists of a gate insulator, where the electrolyte can be immobilized. Instead of 

having a direct metal contact on the gate, an external electrode dips in the electrolyte. 
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In the presence of a constant external gate voltage, a change in the 

concentration of the ions present in the electrolyte can cause a potential change at the 

surface of the gate insulator. The potential change, in turn, is responsible for the 

modulation of the drain-source current in the FET. By using this configuration of 

ISFET, biosensing applications are made possible. This is possible by immobilizing 

bio sensitive moieties on the gate insulator surface. However, this configuration can 

destroy the device due to often harsh chemical nature of the electrolytes used. The 

EGFETS avoid this problem by isolating the chemical environment from the FET 

itself. The system consists of an external functionalized substrate that is connecte4d to 

the gate as shown in the figure below. The substrate has a well that limits the 

electrolyte volume. The external electrode touches the electrolyte, and a gate voltage 

is applied across it. The interaction between the ions present in the electrolyte and the 

functional group present on the extended gate substrate causes a surface potential 

change. This change of potential causes a change in the flow of current to the gate of 

the FET. In turn, the gate current modulates the Drain-Source currents. 

The Modulation of drain current due to the presence of biomolecules on the 

surface of the extended gate makes it possible to use the FET as a biosensor. This 

configuration also allows for the stabilization of FET by isolating it from changes 

happening due to light and temperature variations as the gate material is not directly 

exposed to the environment. In this research, we will be using EGFET configuration 

along with molecularly imprinted polymers for the sensing of Cortisol. 

This configuration will result in a system that provides a direct output as a 

change in drain current due to variation in cortisol concentration. An SPCE was used 

to fabricate MIP specific to cortisol. We report the fabrication and characterization of 

MIP in detail in previous chapters. 
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6.4 Materials and methods 

The SPCE was a three-electrode system with an Ag/AgCL reference and two 

Carbon electrodes. It was purchased from Zensor was used for the construction of 

MIP biosensor. The thiol-based crosslinker, DTSP, and NaBH4 were purchased from 

Thermo Fisher Scientific. Copper (II) Chloride (CuCl2), KCl and NaOH, used for 

deposition of copper nanoparticles were obtained from Sigma Aldrich. The buffer 

solution used for characterization was prepared from NaH2PO4 and Na2HPO4. These 

chemicals were also purchased from Sigma Aldrich. All the chemicals were of 

analytical grade and were used without further purification. The commercial 

prepackaged FET IC (CD4007ube) was purchased from Texas Instruments.  

6.5 Fabrication of EGFET sensor 

Formation of MIP on the SPCE – the fabrication and characterization of the 

MIP modified SPCE surface has been detailed in the previous chapter. The MIP 

electrode was connected to the gate of the FET sensor as shown in Figure 33 below. 

The gate of the FET was connected to the working electrode of the SPCE. The gate 

voltage source was connected to the Reference electrode of the SPCE. The source and 

drain were grounded and connected to the power source respectively. The output and 

transfer characteristics of the FET (CD4007UB) were measured using the Keithley 

4200 source meter. The output and transfer characteristics were measured by 

connecting the gate directly to the Vg power supply and varying the gate voltage. 

After establishing the baseline measurements of the transistor, measurements were 

made with 50 µL of PBS with different pH values. Subsequent measurements were 

made in PBS solution (7.6pH) after incubating different cortisol concentrations on the 

MIP modified, extended gate. 
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6.6 Results and Discussions 

The system was first tested without the extended gate to compare the output 

and transfer characteristics as described in the Datasheet. The MIP modified, 

Figure 34: current response of the EGFET after the addition of PBS at different 

pH Values. 

Figure 33: Scheme of the EGFET - MIP based sensing system 
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extended gate was then connected to the FET and output characteristics were repeated 

with different pH solutions of PBS. 

6.6.1 Study of pH response of the sensor 

To evaluate the MIP EGFET sensor, it was tested with a series of PBS 

solution with different pH values. The gate voltage was kept constant at 5V for this 

study. The response of the system indicates that the current drops as the pH value 

change from more neutral to a hydrogen-rich environment at pH 5.5, indicating the 

formation of an ionic double layer. With lower pH values, the no of H+ ions in the 

solution is higher. This causes a stronger charge interaction at the surface of the MIP. 

This interaction results in a lower gate voltage. Thus, a lower drain current. The 

highest response was obtained when PBS solution of pH 7.6 was used. This value is 

closer to the pH of the biological system. Subsequent experiments were performed 

Figure 35: Output characteristics of the EGFET after adding different cortisol 

concentrations at a constant gate voltage of 5V 
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using the same. 

6.6.2 Drain current response of the sensor with respect to different cortisol 

concentrations 

Cortisol stock solution was prepared by dissolving Lyophilized Cortisol 

powder in Ethanol and PBS solution of pH~7.4. The stock solution was then diluted 

to obtain different cortisol concentrations. The MIP modified electrode was incubated 

with 10 µL of cortisol for 30 minutes. It was then washed away with DI water and 

dried with nitrogen. 50 µL of PBS was then dispensed on the electrode, and the I-V 

measurements were made then. Figure 35 And Figure 36 shows the output 

characteristics of different cortisol concentrations immobilized on the MIP modified, 

extended gate. The Drain-source voltage was swept while the Gate voltage was kept 

Figure 36: Different cortisol concentration at a lower gate voltage(1V). The reduction in 

drain current with increasing cortisol can be hypothesized due to cortisol molecules 

occupying empty sites in the MIP matrix and reducing electron transport in the polymer 

matrix. The reduced gate current, causes a reduction in the accumulated charges at the actual 

gate. Thus, causing a decrease in source drain current due to the reduced gate voltage. 
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at 5 Volt and 1 Volt respectively.  

Figure 35 And Figure 36, shows a decrease in drain current can be observed as 

cortisol concentration increases. The cortisol molecules occupy the empty sites in the 

polymer matrix. The occupation of conductive sites by cortisol causes a change in the 

interaction of charge carrier with the polymer surface. The change in surface charges 

restricts the flow of current across the MIP thin film. The reduced current, in effect, 

decreases the electron density in the gate region of the n-type MOSFET working in 

enhancement mode. This change in Drain current due to increased cortisol 

concentration was used for sensing purpose [144]. 

Figure 37 shows the concentration curve for cortisol as plotted from the Vd vs. 

Id data obtained in Figure 36. Drain current values at 2 Volts were chosen and plotted 

against their respective concentration on a logarithmic scale. 
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Figure 37: The concentration curve of the EGFET device from 1 pM to 100 

nM cortisol concentration vs. the current measured at 2 Volts Vd and 1Volt Vgs 
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6.7 Conclusions 

MIP based EGFET sensors were fabricated in this chapter. The MIP cortisol 

sensor fabricated on SPCE in the previous chapter was used for this research. The 

working electrode was connected to the gate of the FET and the Ag/AgCl reference 

electrode was supplied with a gate voltage using an external power supply. The 

EGFET could detect the changes in PBS solutions of Different Concentrations. It was 

also able to detect the various concentration of Cortisol in PBS solution. The Limit of 

detection of this sensor was found to be 1 pM.  The fabricated sensor paves the way 

for label-free, fast, low cost and direct sensing of cortisol. This work has potential 

applications in POC sensing of cortisol. 

Figure 38: Vgs-Id curve of the EGFET-MIP device at different 

cortisol concentrations. The drain voltage was kept as 1V 
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 SUMMARY AND FUTURE WORK 

7.1 Summary 

The POC sensors are essential tools for providing healthcare and offer 

accurate, timely, affordable and manageable diagnostics of targeted diseases. This 

research aimed to explore different methodologies for sensing cortisol that would 

enable fast, selective, sensitive, label-free and temperature stable sensors. Thin Film-

based electrochemical immunosensors were fabricated using self-assembled 

monolayer functionalized by the anti-cortisol antibody. These sensors were validated 

against Standard ELISA process using human saliva samples. The developed system 

was fast, reliable and utilized electrochemical approach towards sense. However, it 

suffered from some shortcomings. A redox label is required for making 

electrochemical measurements. The sensors were sensitive to temperature variations, 

and the system provided indirect output. 

Further research in Nanomaterial modified electrode for label-free sensing was 

conducted. Copper/Copper oxide nanoparticles were fabricated on SPCE. These nano-

modified electrodes were used to fabricate immunosensors specific to cortisol. The 

significant advantage of using this methodology was the avoidance of a Redox 

medium for electrochemical measurements. The fabricated immunosensors had a 

linear correlation from 100 µM to 100 pM (cortisol concentration) with a sensitivity 

of 4.21 µA/M and the standard deviation of 0.0094. The estimated Limit of detection 

was found to be 6.6 nM. However, the sensing system was still plagued with 

temperature instability. The detecting moieties (antibodies and enzymes) were 

sensitive to temperature changes and were denatured easily at higher than room 

temperatures. A biomimetic sensor based on molecular imprinted polymer 
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(polypyrrole) was explored at this for cortisol detection to mitigate this challenge. The 

MIP based sensors were cheap to fabricate, temperature stable, gave label-free 

detection and were reusable. The performance of the resulting sensors was 

comparable to those of commercially available technologies (ELISA). The MIP 

sensors were fabricated on SPCE and biosensing of cortisol was demonstrated using 

CV. Though CV is a viable technique for POC biosensing, it does not provide a direct 

readout. A much simpler system is reported where MIP is along with a FET in an 

extended gate configuration. This system was easy to construct, can be ported to 

miniaturized electronics and can provide a direct readout. In this last study, cortisol of 

different concentration was detected in a label-free setting to pave the way for truly 

miniaturized reusable, cheap, fast and accurate biosensing system for POC. The 

performance of all the sensors fabricated in this study is summarised in Table 6 

below. The MIP-EGFET sensor meets all the criteria in the table that makes it the best 

candidate to explore POC/wearable sensors for detection of Cortisol. 

Table 6: Comparison of Cortisol sensors fabricated during this research 

 SAM based 

Electrochemical 

immunosensor 

Cu/CuO 

Nanomodified 

Electrochemical 

immunosensor 

MIP based 

Electrochemical 

Sensor 

MIP-

EGFET 

sensor 

Sensing 

element 

Cortisol specific 

Monoclonal 

Antibodies 

Cortisol specific 

Monoclonal 

Antibodies 

MIP MIP 

Mode of 

detection  

CV CV CV EGFET 

Label free No  Yes  Yes  Yes 

Reusable No  No Yes  Yes 

Direct 

readout 

No  No  No  Yes 

Selective to Yes Yes  Yes  Yes 
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Cortisol 

Limit of 

detection 

for cortisol 

10 pg/mL 0.002 pg/mL 0.0004 pg/mL 0.0004 

pg/mL 

 

7.2 Future work 

This research has validated techniques and methods which has potential 

application for POC sensing of cortisol (a vital Steroid Biomarker for detection of 

stress). This work focused on addressing critical issues that face sensing systems for 

POC application. There are still challenges that require addressing before a 

commercially viable system is available. The molecularly Imprinted Technique is a 

promising technique for biosensing application. However, there is much room for 

improvement regarding having an extremely selective polymer.  

The selectivity of the MIP can be improved by computationally exploring the 

interaction between the polymer and the bioanalyte.  

The Simulation studies of different binding sites at the polymer can be useful 

for better understanding of loading/elution mechanism of the target molecule. 

Computationally exploring the energy required for effective removal of the target 

molecule without affecting the molecular backbone etc. 

At the device end, the EGFET configuration is promising. It can be 

incorporated with miniaturized electronics to provide a direct readout in handheld or 

wearable device form and integrated with MIP based sensing electrodes.     
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