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ABSTRACT OF THE DISSERTATION 

MYCOBACTERIUM TUBERCULOSIS INHIBITORS: ACTION AND 

RESISTANCE 

By 

Pamela K. Garcia-Moreno 

Florida International University, 2018 

Miami, Florida 

Professor Yuk-Ching Tse-Dinh, Major Professor 

Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis, has 

been a global health problem for years. The emergence of drug resistance in this organism 

generates the necessity of exploring novel targets and developing new drugs. 

Topoisomerases are enzymes found in all kingdoms of life responsible for overcoming the 

topological barriers encountered during essential cellular processes. The genomes of 

mycobacteria encode only one type IA topoisomerase (MtopI), which has been validated 

as a novel TB drug target. The goal of this study is to obtain new information on the 

mechanism and resistance of endogenous and synthetic inhibitors of MtopI. 

Rv1495 is a M. tuberculosis toxin that belongs to the MazEF family (MazE is the 

antitoxin and MazF is the toxin), with endoribonuclease activity. Rv1495 (MazF homolog 

in M. tuberculosis) toxin has been shown to interact directly with the C-terminal domain 

of MtopI for mutual inhibition. In this study the interaction of Rv1495 with the positively 

charged C-terminal tail in Mtop I is reported.  This new information is useful for rational 

design and discovery of antibiotics for mycobacteria.  

 Ethacridine, an FDA approved drug has shown activity against MtopI. In this 

project we studied the mechanisms of resistance associated with this drug as well the use 
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of Ethacridine in combination with Moxifloxacin, to potentiate the bactericidal effect of 

this current second line drug for TB treatment. Results from sequencing of the genomic 

DNA isolated from the resistant mutants suggested the involvement of the Holliday-

junction Ruv resolvase. Further studies showed that co-treatment with Ethacridine can 

enhance the moxifloxacin-mediated killing of M. smegmatis. 

FP-11g, a novel fluoroquinophenoxazine inhibitor of bacterial topoisomerase I, has 

shown promising activity against M, tuberculosis. We explored the bactericidal activity 

and resistance mechanisms associated to FP-11g using M. smegmatis as model organism. 

Additionally, the inhibitory effect of FP-11g was also evaluated on M. abscessus. FP-11g 

at concentration 4X MIC showed complete bactericidal activity against M. smegmatis after 

24 hours. Inhibitory activity against M. abscessus was also observed. Results from 

sequencing of the genomic DNA isolated from the M. smegmatis resistant mutants revealed 

mutations in genes associated with general drug resistance. 
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1. INTRODUCTION 

In general, any disease or health disorder not related to bacterial infection could 

potentially be associated with bacterial infections. For instance, patients that suffer diabetes, 

HIV (Human Immunodeficiency Virus), cirrhosis, hematologic diseases, organ 

transplantation, drug addiction, traffic accidents, home accidents, work accidents, 

immunodeficiency diseases (lupus, arthritis, cancer and so on), and more prevalent, 

patients secluded in a hospital for long stays (nosocomial infections) or surgeries are at risk 

of developing a bacterial infection. On the other hand, bacterial infections can be the 

primary cause of the pathology and can be self-limited or require antibiotics for resolution; 

for instance, food poisoning.  Our ability to control pathogenic organisms rests with our 

capacity of preventing infections and resolve infections using antibiotics.  

The massive use of antibiotics in human health and animal health/production has 

generated a frightening increase in the drug resistance to diverse antibiotics(Van Puyvelde, 

Deborggraeve et al. 2018).  Two punctual examples are the use of fluoroquinolones and 

oxytetracyclines in fish farming (Cantas, Shah et al. 2013) and the indiscriminate use of 

antibiotics in clinical settings to “resolve” infections with a non-bacterial etiology; both 

generate an imbalance and  play a role in the selection and spreading of drug resistance. A 

substantial effort has been invested in decreasing the use of antibiotics through education 

and public policies in some countries, but  there is a long way to go, especially with training 

for adequate antibiotic prescriptions by physicians and the use of antibiotics in animal 

production in developing countries and countries with high demand for animal-derived 

products.  
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Although control of the use of antibiotics is a very important initiative to decrease and 

prevent the drug resistance, the study of novel targets, design and finding of new drugs is 

also a priority; studies have shown that the persistence of antibiotic resistance even if we 

reduce the use of antibiotics will continue since those resistant mutants will not disappear 

that easy (Andersson and Hughes 2011). Indeed, the need for new antimicrobial agents is 

urgent. 

The last report published by WHO (World Health Organization) “Global Priority List 

of Antibiotic-resistant Bacteria to Guide Research, Discovery, and Development of New 

Antibiotics” (World Health Organization 2017) summarizes the critical, high and medium 

priorities in regard to bacterial agents. In the WHO report Mycobacterium tuberculosis 

does not appear listed; but a note is included mentioning that the organism is already a 

global priority classified in the critical category. In fact, every year an extensive report of 

tuberculosis (TB) is created by the WHO to update statistics about the improvements and 

main needs in the battle against this global public health problem.   

Tuberculosis is an infectious disease caused by M. tuberculosis; most of the cases are 

related to pulmonary disease. However, the organism can affect any organ (extrapulmonary 

TB) including skin, bones, lymph nodes, meninges, liver, gastrointestinal mucosa, etc. 

Extrapulmonary TB seems to be associated with infant, elderly and the 

immunocompromised population (Gray and Cohn 2013, Boisson-Dupuis, Bustamante et 

al. 2015, Gounder, Moodley et al. 2017, Shivakoti, Sharma et al. 2017), while  pulmonary 

TB is also widely spread in immunocompetent individuals. 

The last TB report published by the World Health Organization (WHO) shows that we 

are still far from the complete elimination of this disease; Although, the estimated target 

by 2030 is the reduction of deaths associated with TB in 90% and the incidence in 80%, 
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previous reports estimated the same for 2015; much must be done to obtain these goals. 

Tuberculosis ranks above HIV/SIDA as the ninth cause of death associated with an 

infectious agent; an estimated incidence of 10.4 million cases was reported in 2016 where 

56% of cases would correspond to India, Indonesia, China, the Philippines and Pakistan. 

Additionally, 1.3 million deaths in HIV-negative people as well as 374,000 deaths in HIV-

positive population were reported for 2016 and 490,000 cases of Multidrug-Resistance 

(MDR) (World Health Organization 2017 ).  

Drug resistance is an important problem despite the efficiency of the first line drugs 

currently available for TB treatment. The causes for resistance are diverse: poor adherence 

to the treatment considering it takes a long time and generates side effects, poor quality of 

drugs, treatment of sensitive strains using drug regimens for drug resistant strains, 

transmission of the microorganisms in public places, among others.  The first line drugs 

group includes Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) and Pyrazinamide 

(PZA); these are the first choice when an active infection is diagnosed clinically or through 

laboratory tests. First-line drugs are the most effective known drugs against M. tuberculosis. 

However, if the bacteria develop resistance to the first line group of drugs, the second line 

drugs are the next choice; they are not as efficient in the elimination of the microorganism 

as first line drugs.  Second-line drugs include fluoroquinolones, aminoglycosides and 

cyclic peptides, which are drugs used also in other bacterial infections but have shown 

good activity against M. tuberculosis.  

MDR (Multi Drug Resistant), XDR (Extremely Drug Resistant) and TDR (Totally 

Drug Resistant Strains) are the current classification of the levels of resistance to first and 

second line drugs in TB.  The MDR strains are resistant to INH and RIF; XDR strains are 

resistant to at least INH and RIF, to any fluoroquinolones and to any second line injectable; 
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Lastly, TDR strains are resistant to all the currently drugs available for TB treatment  

((CDC) 2006, World Health Organization 2006, Migliori, De Iaco et al. 2007, Migliori, 

Ortmann et al. 2007, Velayati, Masjedi et al. 2009). All these categories of resistance in M. 

tuberculosis, especially the already described TDR, generate the urgent necessity of 

exploring novel targets and development of new drugs.  

In the last 40 years, only Bedaquiline and Delamanid have been approved for use in the 

TB treatment regimen as an alternative to the current treatment under specific regulations 

and in some countries (Gler, Skripconoka et al. 2012, Lessem, Cox et al. 2015, Zumla, 

Chakaya et al. 2015). Indeed, there are 17 drugs in phase I, II or III trials and various new 

combinations are being tested (Laughon and Nacy 2017, World Health Organization 2017 ) 

Figure 1. Drug development must continue to deal with drug resistance to current drugs 

and new drugs since bacteria are smart enough to develop very sophisticated resistance 

mechanisms.  

 

Figure 1. Current anti-TB drugs pipeline 

 

 

Drugs against M. tuberculosis are emerging after 5 decades of inactivity. Some are 
repurposed drugs (fluoroquinolones, rifamycins and oxazolidinones) and others new 
drugs such as Bedaquiline and Delamanid, which have been approved for treatment of 
MDR-TB cases by the US Food and Drug Administration. (Zumla, Nahid et al. 2013) 
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To maintain a productive drug pipeline for TB, clinical studies of promising drugs and 

basic studies about M. tuberculosis pathogenesis, novel targets, essential genes and 

mechanism of resistance in mycobacteria are imperative to continue the battle against this 

infectious disease.  

The drugs currently used in TB treatment have different targets in the bacteria; INH 

targets the Enoyl-acyl carrier protein reductase (inhA), important in the fatty acid 

biosynthesis pathway (Marrakchi, Laneelle et al. 2000), RIF targets RNA 

polymerase(Levin and Hatfull 1993, Horng, Jeng et al. 2015), EMB targets the arabinosyl 

transferase responsible for the polymerization of arabinose into arabinan (Belanger, Besra 

et al. 1996)  and  PZA inhibits multiple targets, among those the ribosomal protein S1 

(RpsA) (Cole 2011, Zhang, Shi et al. 2014). On the other hand, second-line drugs, 

fluoroquinolones, aminoglycosides and cyclic peptides, targets DNA gyrase (Drlica and 

Malik 2003, Mdluli and Ma 2007), 30S ribosomal subunit (16SrRNA) (Wilson 2014)  and 

diverse important proteins in the cell, respectively. However, as stated before, resistance 

to most of the current antibiotics against M. tuberculosis has been identified.  

Another important group of mycobacteria that are becoming a health problem in United 

States correspond to Non-tuberculous Mycobacteria (NTM). Infections caused by NTM 

are more difficult to treat than TB, especially because of the intrinsic resistance of these 

organisms to many currently available drugs. The NTM are opportunistic organism found 

in the environment, soil and water.  A recent report shows an increment in the reporting 

frequency of infections caused by NTM between 1994 and 2014 from four states in the 

United States. The more prevalent strains correspond to M. chelonae-abscessus group, M. 

fortuitum group and M. avium complex with increments of 322%, 194% and 149%, 

respectively (Figure 2) (Donohue 2018). 
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These opportunistic pathogens affect mainly people with predisposed conditions or 

after surgical interventions (wounds). People suffering chronic diseases such as Cystic 

Fibrosis, Chronic Obstructive Pulmonary Disease (COPD) and AIDS are more vulnerable 

to infections caused by NTM.  Cystic Fibrosis is an autosomal recessive disorder common 

in regions with northern European ancestry such as North America, Australia and Europe 

(Elborn 2016). The consequences of this condition include accumulation of mucus in the 

lungs and chronic infections: M. abscessus complex and M. avium complex are the most 

common species of NTM isolated in these patients (Furukawa and Flume 2018, Gardner, 

McClenaghan et al. 2018).  

 

Figure 2. Increment of infections caused by NTM in United States.  

 

 

 

Report of infections caused by NTM in 1994 and 2014 in four states: Mississippi, 
Missouri, Ohio and Wisconsin (rate per 100,000 persons).  M. chelonae-abscessus 
group showed a higher increase in cases number followed by M. fortuitum and M. 
avium. (Donohue 2018) 
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Infections caused by the M. abscessus complex are currently treated mainly with 

intravenous aminoglycosides+beta-lactam antibiotics and toxic drug combinations. Indeed, 

intravenous amikacin is considered the most activity antibiotic currently available against 

infections caused by M. abscessus. Most of the oral antibiotics tested in vitro does not show 

any activity against this organism. Macrolides are oral antibiotics efficient against NTM, 

however their efficiency depends on the genetic variations in the subspecies, which 

generates variable response to the drugs.  

The drug pipeline for treatment of drug resistant and opportunistic pathogens has to 

keep growing and continuous efforts and initiatives are needed. To explore novel and new 

targets is essential for the design and discovery of new drugs. In fact, an attractive target 

for drug discovery against bacterial agents and cancer cells are topoisomerases; these 

enzymes have been known as drug targets for about 45 years (Bush, Evans-Roberts et al. 

2015) and compounds targeting certain types of topoisomerases are available.  

In bacteria, drugs targeting type II topoisomerases are currently used as well as 

anticancer drugs targeting type IB topoisomerases. For instance, fluoroquinolones 

(ciprofloxacin, norfloxacin, levofloxacin, moxifloxacin) (Drlica and Malik 2003), potent 

antimicrobial agents for treatment of infections caused by gram-positives, gram-negatives 

and mycobacteria target DNA gyrase and generates cell death by creating toxic DNA 

gyrase-DNA covalent intermediates (poison inhibitors).  On the other hand, 

Aminocoumarins (Novobiocin, clorobiocin, coumermycin A1) are antimicrobial agents 

targeting DNA gyrase and type IV topoisomerase, but they inhibit the first step in 

topoisomerases function, DNA cleavage, then there is not formation of covalent 

intermediate. These compounds are classified as catalytic inhibitors (Heide 2009, Heide 

2014, Mayer and Janin 2014).  



8 
 

Compounds like etoposide and doxorubicin target type II topoisomerases in human 

cells (Nitiss 2002) while camptothecin derivates: topotecan and irinotecan, target type IB 

topoisomerases. Camptothecin-derived drugs are clinically accepted for cancer treatment 

and show less adverse side effects compared to the camptothecin, used in the past (Martino, 

Della Volpe et al. 2017). Both classes of human topoisomerase inhibitors, type II and type 

IB topoisomerase inhibitors, are classified as poison inhibitors (Pommier 2013). However, 

no drugs targeting bacterial or human type IA topoisomerases have yet been discovered  

(Figure 8).   

 

Why are topoisomerases relevant as drug targets? 

Topoisomerases are enzymes present in all living organisms. These enzymes solve all 

topological problems that are related to the physical structure of the double helix of the 

DNA and influence the DNA replication, transcription, recombination and DNA repair 

(Wang 2002, Viard and de la Tour 2007, Chen, Chan et al. 2013). Structurally, the DNA 

is a right-handed double helix strand with constrained ends that because its extension 

cannot be kept as an open structure in the cell. In eukaryotic organisms, the double helix is 

condensed around histones, small basic proteins H2A, H2B, H3, H4 (11 to 15 kDa) that 

form octamers; the resulting structure is called a nucleosome. Each nucleosome condenses 

147 DNA base pairs around the protein octamer. Nucleosomes are packed together to 

create chromatin.  Moreover, nucleosomes are connected by short regions of naked DNA 

(20 to 90 base pairs) named linkers, see  Figure 3  (Kouzine, Levens et al. 2014). 
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 Figure 3. Structural conformation of chromatin in eukaryotic cells  

 

In  prokaryotic organisms, specifically eubacteria,  the DNA molecule is associated 

with proteins such as: HU (heat-unstable), H-NS (heat-stable or histone-like nucleoid-

structuring), Dps (DNA-binding protein from starved cells), FIS (factor for inversion 

stimulation) and IHF (integration host factor), which all together form the nucleoid 

structure analogue of nucleus in eukaryotic cells (Travers and Muskhelishvili 2005). A 

published model for DNA condensation in bacteria establishes that H-NS protein binds to 

DNA through its DNA binding domains and the proximity with other DNA duplexes 

facilitate the formation of bridges between DNA molecules.  Hence, additional 

condensation is generated by oligomerization of H-NS molecules (Figure 4) (Dame, 

Wyman et al. 2000). 

The double stranded DNA is wrapped around a tetramer of histone proteins forming 
the nucleosomes. Several nucleosomes form the chromatin and two chromatins are 
part of a chromosome.  

https://www.creative-diagnostics.com/blog/index.php/what-are-histones/ 
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Figure 4. Model of DNA condensation by H-NS protein in the bacterial nucleoid. 

 

 

 

Packing and condensation of DNA in eukaryotic and prokaryotic organisms creates 

DNA entanglements that require continuous conformational changes due to dynamic 

nature of the chromatin.  Topoisomerases are essential to maintain the topology stability 

resolving DNA entanglements. Wrapping DNA around histones in eukaryotic cells or other 

proteins in prokaryotic cells, creates positive or negative supercoils; positive if the DNA is 

twisted in the same direction as the helix and negative when the DNA is twisted in the 

opposite direction. Other factors  playing a role in the supercoiling are the bending of the 

H-NS proteins (small ovals), form dimers or tetramers that have at least two DNA 
binding sites. A H-NS protein binds to a DNA strand and the proximity of another DNA 
strand lead the formation of intramolecular interaction. Further oligomerization of 
lateral H-NS proteins generates another level of compaction. (Dame, Wyman et al. 
2000) 
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DNA helix in space to form higher structures, unwinding or rewinding of DNA duplexes 

and chromatin remodeling (Chen, Chan et al. 2013, Gilbert and Allan 2014). All these 

phenomena generate supercoiling domains whose structures must have barriers to prevent 

topological stress produced by activities in neighbor domains and genes. The double helix 

DNA is separated permanently or temporary for activities such as replication, transcription 

and recombination. A very clear example of temporary separation of DNA is the twin 

supercoiled domain model (Liu and Wang 1987). The model described that during 

transcription the RNA polymerase has to rotate around the DNA strand to be transcribed, 

however a resistance to the rotation could be presented and as consequence the DNA has 

to rotate as well generating positive supercoiling ahead and negative supercoiling behind. 

RNA polymerase stalling because of torsional stress (Ma and Wang 2014), promote 

transcription of upstream genes (negative supercoiled DNA) or prevent the transcription of 

downstream genes (positive supercoiled DNA) (Gartenberg and Wang 1992, Revyakin, 

Ebright et al. 2004). The negative supercoiling can promote transcription by cooperation 

in the recruitment of transcription factors in eukaryotic cells (Tabuchi, Handa et al. 1993) 

or by helping RNA polymerase to form an open complex in prokaryotic cells.  In regard to 

the effects of positive supercoiling in downstream genes, transcription initiation can be 

inhibited (Revyakin, Ebright et al. 2004) or the mRNA production be reduced (Gartenberg 

and Wang 1992). According to the cell needs, all this supercoiling tension must be relaxed 

to avoid undesirable outcomes. Type IA and IB topoisomerases are involved in the removal 

of negative supercoiling generated upstream the transcription bubble; this prevents 

additional gene transcription. Two compounds, Top IB and Top II are important in the 

relaxation of positive supercoils ahead. Top IB is important specially in eukaryotic cells 

and Top IV and gyrase in prokaryotic organisms (Figure 5) (Vos, Tretter et al. 2011).  
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Permanent separation of DNA occurs during replication and hence accumulation of 

precatenanes upstream the replication fork and positive supercoils downstream (Figure 6) 

(Vos, Tretter et al. 2011) . In bacteria DNA gyrase is needed to relax the positive 

supercoiling ahead and Top IV is more associated to the unlinking of the precatenanes, but 

also can relax positive supercoils (Deweese and Osheroff 2009) .  

 

 

Figure 5. Topological stress during DNA transcription and topoisomerases functions. 

 

 

 

 

 

As the transcription bubble progresses, negative supercoils are left behind and positive 
supercoils ahead. The enzymes listed in the figure are responsible to resolve the DNA 
stress (Vos, Tretter et al. 2011) 
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Figure 6.  Topological stress during DNA replication and topoisomerases functions. 

 

 

 

According to the previous description about the important function of topoisomerases in 

DNA stability, the efforts for the development of drugs targeting these enzymes as well as 

the efficacy of current drugs targeting them are understandable. 

Classification of Topoisomerases  

Topoisomerases are classified primarily according to structure and mechanism into two 

types:  Type I and II Topoisomerases. Type I topoisomerases are monomeric enzymes that 

cleave only one strand (single strand) of DNA. Type II topoisomerases can be 

heterotetrameric or homodimeric and cleave both strands (duplex) (Figure 7) (Champoux 

2001) . 

 

Replisome progression generate positive supercoils ahead, which need to be removed 
to prevent premature termination of DNA replication. Additionally, the precatenanes 
behind the replisome can lead to DNA catenation and further abnormal DNA 
segregation during cellular division. (Vos, Tretter et al. 2011) 
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Figure 7. Type I and type II topoisomerases  

 

 
 
 
 
 
 

 

Type I topoisomerases are subdivided in top A and top B on the basis of polarity. All 

the topoisomerases contain a conserved tyrosine residue in their active site, the hydroxyl 

group from the tyrosine is responsible for a transesterification reaction either with the 5'-

phosphate of the DNA in case of type IA and IIA topoisomerases or with the 3'- phosphate 

in case of type IB topoisomerase (Figure 8) (Pommier 2013). The phosphotyrosyl transient 

covalent bond generates a DNA breakage allowing the passing through of the intact DNA 

strand in type IA topoisomerase. In type IB topoisomerases the mechanism is different; the 

broken 5'-end rotate around the intact DNA strand. In type IIA topoisomerase the double 

DNA breakage allow the passing through of a duplex DNA for relaxing positive 

supercoiling or decatenation processes (Figure 9) (Pommier 2013).  In Figure 10 the 

transient phosphotyrosyl covalent bond for type IA topoisomerase is schematized; the 

hydroxyl group from the tyrosine act as a nucleophile, attacking the 5'-phosphate in the 

DNA leaving a 3'-hydroxyl free group on the broken DNA strand (Viard and de la Tour 

A) Type I topoisomerase breaks only one DNA strand allowing the passage through 
the break or rotation of the intact single strand to change the DNA linking number. B) 
Type II topoisomerase generate a double DNA breakage and passage of the intact 
duplex DNA through the breakage.   
http://www.lookfordiagnosis.com/mesh_info.php?term=dna+topoisomerases%2C+ty
pe+i&lang=1 
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2007).  When the strand passage is complete the 3'-hydroxyl free group on the DNA acts 

now as the nucleophile attacking the covalent binding DNA-topoisomerase to rejoin the 

DNA and finishing the process.  

 

 

Figure 8. Classification of Topoisomerases 

 
 Type IA and IIA topoisomerases generates a 5’-phosphotyrosine bond when break the 
DNA while the type IB generates a 3’-phosphotyrosine bond. Type IB topoisomerases are 
found mainly in eukaryotic cells while type IA and IIA are found in prokaryotes as well. 
No drugs targeting type IA have yet been discovered.(Pommier 2013)  
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Figure 9. Catalytic mechanism of topoisomerases 

 

 

 

 

 A) type IA topoisomerase breaks a single DNA strand creating a 5’-phosphotyrosine 
end, the intact strand pass through the breakage. B) type IB topoisomerase breaks a 
single DNA strand creating a 3’-phosphotyrosine end. C) type IA topoisomerase breaks 
both strands in the DNA duplex and create two 5’-phosphotyrosine ends, the intact 
DNA duplex then pass through the breakage.(Pommier 2013)  
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Figure 10. Transient phosphotyrosyl covalent bond in type IA topoisomerase  

 

 

 

Topoisomerase IA in bacteria 

All bacteria species contain at least two genes coding for topoisomerases, a type IA 

topoisomerase and a type IIA topoisomerase (DNA gyrase) (Forterre and Gadelle 2009). 

As stated previously in the present document, drugs targeting DNA gyrase are currently in 

use but not drugs targeting topoisomerase IA have yet been discovered. Structural and 

mechanistic information for the enzyme, as well as high-throughput screening of 

compound libraries, are fundamental for the design and discovery of drugs targeting the 

enzyme. 

 Most of the knowledge about type IA topoisomerase comes from E. coli topoisomerase 

I and III. E. coli type IA topoisomerase. However, the recent elucidation of M. tuberculosis 

topoisomerase IA has generated valuable information, which will be useful to study the 

potential that this enzyme has as a drug target. 

 Active site of the topoisomerase IA showing the tyrosine responsible for the DNA 
breakage. The hydroxy group from the tyrosine creates a covalent intermediate with the 
5’-DNA phosphate. The covalent bound is reversible, resealing the DNA breakage. 
(Viard and de la Tour 2007)   
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E. coli topoisomerase IA is a monomeric protein with three main domains: N-terminal 

(67 kDa) domain, zinc binding domain and C-terminal binding domain (14 kDa). The N-

terminal domain contains four subdomains known as D1-D4 (Figure 11); this region 

contains the active residues on the D1 and D3 subdomains: D111, D113 Y319 and R321.  

 

Figure 11. E. coli type IA topoisomerase structure binding a ssDNA: N-terminal (TOP67) 
and C-terminal domains (TOP30C). 

 

 

 

 

 A) Domain arrangement in E. coli topoisomerase IA B) Structure of full-length E. coli 
topoisomerase IA with the ssDNA bound to the C-terminal domain (D5-D9 
subdomains) and Zinc (II) ions. D1-D4 subdomains form the N-terminal domain,  (Tan, 
Zhou et al. 2015).  
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The Y319 residue on D3 is responsible for the breakage of the G-strand from the 

ssDNA and formation of the covalent intermediate. The R321 residue has been shown also 

to be important for DNA cleavage, since it helps to keep the DNA in position (Tan, Zhou 

et al. 2015). Additionally, the TOPRIM is a conserved motif in the catalytic core, which 

contains two aspartate and one glutamate residue DDE (Figure 12). Because of their 

chemical nature, these acidic residues have been associated with binding of metal ions, 

such as Mg2+ in the catalytic core. For E. coli type IA topoisomerase, the TOPRIM residues 

correspond to E9, D111 and D113 (Sissi and Palumbo 2009, Zhang, Cheng et al. 2011).  In 

general, the active site on the  N-terminal domain of type IA topoisomerases is conserved 

among domains of life since this region hold the DNA cleavage and religation activities, 

primary functions of  this group of enzymes (Banda, Cao et al. 2017, Capranico, Marinello 

et al. 2017).  
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Figure 12. Residues in active site of E. coli type IA topoisomerase. 

 

 

The D1, D2, D3 and D4 domains in M. tuberculosis are similar to E. coli topoisomerase 

IA, their sequence identity corresponds to 56%, 26.9%, 49.6% and 49.2%, respectively 

(Figure 13). The D1 domain is the most conserved between these enzymes and it is also 

known as TOPRIM domain (Tan, Cao et al. 2016). The superposition of these two N-

terminal domain structures reveals a very similar conformation. The D1 domain have been 

found also to be conserved among other species. 

 Two residues, D111 and D113 part of the conserved TOPRIM domain are shown as 
well as the tyrosine responsible for the nucleophilic attack to the 5’-phosphate on the 
DNA strand (Tan, Zhou et al. 2015).  



21 
 

 

Figure 13. M. tuberculosis topoisomerase IA 740t structure.  

 

 

 

Unlike the N-terminal domain, the C-terminal domain in Topoisomerase IA from 

different species is more diverse. The C-terminal domain of E. coli topoisomerase IA 

contains a 4-Cys zinc ribbon domain (D5-D7) and two zinc ribbon like domain (D8-D9). 

The C-terminal domain is important in the primary interaction with the ssDNA, specially 

D5 and followed by D7, D8, D9. The four conserved cysteines on the 4-Cys zinc ribbon 

domain (D5-D7) coordinates Zn (III) ions while the two-zinc ribbon like domain (D8-D9) 

do not have Zn-binding site. The number of zinc bindings motifs are variable among 

species. The C-terminal subdomain D6 interacts with the N-terminal subdomain D2 and 

D4, which may be important in the regulation of the enzyme activity. In Figure 14, the 

N-terminal domain is formed by D1, D2, DE and D4 domains. The grey protrusion in 
D1 is considered part of D4 domain. In D2 there are two loop conformations colored 
magenta and red. The D3 domain contains the Y342 (catalytic residue) and in D4 there 
is an uncommon insertion colored purple. D5 domain is part of the C-terminal domain 
(Tan, Cao et al. 2016).  
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structure of E. coli topoisomerase IA schematizes two models that describe interactions 

with the DNA. On the left, the C-terminal domain interacts with the G-strand in ssDNA 

and on the right interacts with the T-strand in dsDNA.  

 

 

Figure 14. DNA-E. coli topoisomerase IA interaction 

 

 

 

 

The C-terminal domain in M. tuberculosis topoisomerase IA is divided into four 

regions known as D5, D6, D7 and D8. No D9 subdomain is present, instead a positively 

charge tail is the last region of the enzyme. The subdomains are separated according to the 

location of four different repeats GxxGPY.  Moreover, the C-terminal domain in M. 

tuberculosis topoisomerase IA and other mycobacteria species does not have zinc finger 

motifs, but the presence of three basic amino-acid stretches provides insights to their 

Two models of E. coli topoisomerase IA-DNA binding. On the left, B) Topoisomerase 
IA binds to a single chain of ssDNA. In this model the ssDNA G-strand interacts with 
the N-terminal and C-terminal domains. On the right side, C) The double chain model 
shows that the T-strand binds to the C-terminal domain while the G-strand binds to the 
N-terminal domain. In this model the D6 domain may act as a handle that push or pull 
the hinge between D2 and D4 that regulates the gate opening.   (Tan, Zhou et al. 2015).  
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relevance in DNA binding and relaxation activity (Ahmed, Bhat et al. 2013). In fact, it has 

been shown that these basic amino-acid stretches are indispensable for strand passage 

during DNA relaxation activity and the absence of them do not affect enzyme mechanisms 

such as DNA cleavage and rejoining (Figure 15).  

 

 

Figure 15. Basic amino acids stretches in C-terminal domain of Mycobacteria 
topoisomerase IA 

 

 

 

The topoisomerases’ interactions with natural partners have been also subject of study 

to understand the inhibition, regulation and cooperation processes associated with these 

enzymes.  The C-terminal domain from E.coli and M. tuberculosis topoisomerase IA for 

example, interacts with RNA polymerase, the β’ subunit to be exact, in a cooperative effort 

to relax the hyper negative supercoiled DNA behind the transcription bubble (Cheng, Zhu 

  Basic amino acids stretches highlighted in Multiple alignment of C-terminal domain 
Topoisomerase IA from diverse Mycobacteria species. M. tuberculosis (Mt), M. bovis 
(Mb), M. leprae (Ml), M.avium (Ma), M.  avium subsp. paratuberculosis (Ma(ptb)), M. 
smegmatis (Ms). (Ahmed, Bhat et al. 2013) 
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et al. 2003, Tiwari, Chapagain et al. 2016, Banda, Cao et al. 2017). Additionally, the 

interaction between a helicase like domain and topoisomerase IA is important to positively 

supercoil DNA maintaining its duplex structure (Viard and de la Tour 2007). There are 

interactions that negatively affect the topoisomerase IA activity such as toxin-antitoxin 

systems, whose toxin has the ability to deplete the topoisomerase activity under certain 

conditions. Diversity among C-terminal domains from different organisms and the 

existence of molecules that interact in vivo with this region for regulatory or functional 

purposes is an opportunity for the discovery of selective drugs.  

 

Topoisomerase IA is essential in Mycobacteria  

M. tuberculosis genome encodes only one copy of type I topoisomerase and one copy 

of type II topoisomerase (DNA gyrase). Growth and survival experiments in M. 

tuberculosis and M. smegmatis strains have shown that depletion in topoisomerase IA 

levels generate impairment not only in growth but also in cell survival (Figure 16). These 

results generate insights about the potential of Topoisomerase IA as a target in M. 

tuberculosis and NTM. In fact, anticancer drugs candidates and old antimicrobial agents 

are being repurposed as antimycobacterial agents and some of them have been found to be 

active against mycobacterial topoisomerase IA.  
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Figure 16. Topoisomerase IA is essential in Mycobacteria 

 

 

 

 

 

 

 

 

 

 

 

 Ahmed W et al.  2015.
  

Conclusion: TopI is essential for the growth and survival  of Mycobacterium tuberculosisThe final validation of TopoI essentiality for bacterial
growth was carried out by determining the cell viable
counts. The exponential phase cultures of conditional
mutant were treated with ATc for 72 h, followed by the
CFU determination. The cultures treated with ATc
showed a significant decrease in the cell viable counts in
comparison with the untreated culture (Supporting Infor-
mation, Fig. S1a and b). From all these results, it is
apparent that the TopoI expression is important for the

cell multiplication and its depletion by ATc led to the
arrest of cell growth.

Depletion of TopoI leads to the enhanced
susceptibility to novobiocin and INH

DNA gyrase and topoisomerase I function in concert to
maintain topological homeostasis, necessary for the accu-
rate operation of DNA transaction processes. To reveal

(a)

(b) (c)

Fig. 1. Construction of TopoIMt conditional

mutant. (a) Schematic representation of the

single crossover recombination events

employed to generate the MtbPptrtopoI

conditional mutant. (b) Analysis of the

genomic DNA isolated from WT (lane 1) and

MtbPptrtopoI (lane 2–6) by PCR using the

primers specific to promoter ptr (FP) and an

internal coding region (RP) of the topoI gene.

Specific amplification product obtained

confirms the accurate integration of ptr

promoter upstream of topoI gene. (c)

Expression analysis by immunoblotting. The

exponential phase cultures of the conditional

mutant were exposed to ATc (200 ng mL!1)

for 24 h, and the TopoI level was monitored.

(a)

(b)

Fig. 2. TopoI is essential for the growth of

Mycobacterium tuberculosis. (a) Effect of

TopoI depletion on growth. Exponential phase

cultures were 10-fold serially diluted and

spotted on Middlebrook 7H10 media

supplemented with or without ATc. The plates

were incubated at 37 °C, and bacterial

growth was monitored after 2 weeks of

incubation. (b) MtbPptrtopoI cultures were

grown in Middlebrook 7H9 medium with or

without ATc (200 ng mL!1) at 37 °C. The
growth was monitored by measurement of

OD595 nm every 24 h. Error bars represent the

SD obtained in three independent

experiments.
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Growth analysis indicated that TopoI mutant cells took
8 days to appear as colonies on 7H10 agar, as compared
with 4 days for the WT. The slower growth of the mutant
could be attributed to the reduced level of TopoI (Fig. 1a).
Notably, the mutant failed to grow in the Middlebrook
7H9 medium used for growth of WT cells, and growth
resumed only upon supplementation of 10 % ADC in the
medium (Fig. 1b). Additionally, the cultures showed
temperature sensitivity and exhibited very slow growth at
37 uC; mutant cultures reached the exponential phase after
96 h (data not shown). Growth was improved by lowering
the temperature to 30 uC. All the cultures were therefore
grown in the presence of 10 % ADC at 30 uC. From these
observations, it is apparent that an optimal TopoI expres-
sion is required for normal growth of Msm. To further
evaluate the necessity of TopoI for mycobacterial growth,
the cultures were grown in the presence of different
concentrations of ATc (Fig. 1c). The analysis indicated a
prolonged lag phase of the TopoI-depleted cells compared
with the WT. With an increase in ATc concentrations,
growth was severely compromised. Importantly, growth of
the mutant was rescued upon complementation with the
plasmid copy of Mtb topoI (MttopoI) or Msm topoI
(MstopoI) (Fig. 1d), confirming that the reduced TopoI
activity inside the cell resulted in reduced growth. The
rescue of Msm cells depleted of TopoI by complementing
with MttopoI-expressing plasmid suggests similar in vivo
roles of the enzymes, in accordance with their similar

biochemical properties (Godbole et al., 2012). The
requirement of additional growth supplements for growth
of the mutant indicated that cellular metabolism is affected
in this strain.

Colony morphology and surface phenotypes of
the mutant

The severely compromised growth rate, requirement of
nutrient supplements and low temperature for growth of
the TopoI mutant suggested an altered metabolism that
could affect colony and cell morphology. Indeed, the
TopoI-depleted strain acquired a rough colony morpho-
logy and cells tended to cluster towards the centre of the
colony while the WT strain maintained the smooth colony
morphology (Fig. 2a). Furthermore, scanning electron
microscopy of the conditional mutant strain revealed an
irregular cell structure and bulb-like protrusions on the cell
surface indicating a defective cell surface (data not shown).

The change in colony morphology and cell surface of the
mutant cells suggested modification of other cell surface-
related phenotypes. Because of a high lipid content, myco-
bacteria grown in the absence of detergents form a pellicle
in standing cultures (Etienne et al., 2002). In contrast to
the WT strain, the mutant was unable to form a pellicle
(Fig. 2d). A pellicle is the biofilm formed at the air–water
interface (Branda et al., 2005; Solano et al., 2002) and a
relationship exists between the ability to form a pellicle and
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Fig. 1. Optimal TopoI level is required for normal growth of Msm. (a) Expression analysis of TopoI by immunoblotting using the
TopoI-specific antibody demonstrates the effect of ATc on TopoI expression. (b) The TopoI conditional mutant requires
additional supplements for growth. The cultures were inoculated in 7H9 broth with or without ADC (as indicated) and incubated
at 30 6C. (c) Growth of WT and MsPptrtopoI in liquid culture in the presence of various concentrations of ATc. (d)
Complementation of TopoI mutant by ectopic expression of MstopoI or MttopoI. Exponential phase cultures were inoculated into
fresh 7H9-ADC media (with or without ATc) to an OD595 of 0.05. The cultures were incubated at 30 6C and growth was
monitored by measuring OD595 at constant time intervals. The graph obtained is the average of three independent experiments.
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Ravishankar et al. (2015).

On the top left-hand corner, a M. tuberculosis conditional mutant, which have low 
levels of Mtop IA in presence of the inducer (ATc) shows a repression in cells growth 
compared to the control cells with normal levels of Mtop IA (Ahmed, Menon et al. 
2014). On the top right-hand corner, survival kinetics study of M. tuberculosis top IA 
knockdown (KD) strains inside mice lungs. Bacterial survival was monitored through 
time by plating and cell counting showing that cells with low levels of Mtop IA are less 
likely to survive in mice lungs compared to cells with normal levels of Mtop IA 
(Ravishankar, Ambady et al. 2015). On the bottom left-hand corner, a M. smegmatis 
conditional mutant created using the same system already described in the M. 
tuberculosis graph. Decreased levels Mstop IA produces an impairment in cell growth 
compared to the strains with normal level of Mstop IA (Ahmed, Menon et al. 2015). 
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Synopsys  

 Novel and alternative antimicrobial agents as well as new targets are matters that must 

be addressed in the continuous battle against infectious diseases. M. tuberculosis is a 

declared public health problem worldwide and NTM are emerging as frequent human 

pathogens, several publications are exposing the increased incidence of these infections 

around the world: Netherlands, United States, Japan, South Korea, Taiwan are some of the 

countries reporting increase in NTM associated infections.      

In the dissertation project, two perspectives in the fight against infectious diseases are 

addressed, firstly, a novel and a repurposed antimicrobial agent are subject of study as 

potential drugs for treatment of infections caused by Mycobacteria. Furthermore, study of 

the interaction of Mtop IA with the MazF toxin in M. tuberculosis bring out insights about 

the relevance of the C-terminal domain in Mtop IA for the design of specific antimicrobial 

agents effective in TB treatment.  

In CHAPTER 2, Ethacridine, an FDA approved antimicrobial agent is brought out as 

an alternative for TB treatment because of its activity against M. tuberculosis and Mtop IA. 

The mechanisms of drug resistance to this drug as well as its combinatory effect with a 

currently used drug for TB treatment, Moxifloxacin.  

In CHAPTER 3, a novel compound, FP-11g, with promising activity against M. 

tuberculosis is evaluated against M. abscessus as wells as the mechanism of drug resistance 

to this drug. 

In CHAPTER 4, the ability of a M. tuberculosis toxin, MazF, to inhibit Mtop IA 

function in vitro is evaluated to identify the Mtop IA region responsible for this interaction. 

To elucidate this interaction is relevant for future design of drugs targeting specifically 

MtopIA. 
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2. Mtop IA inhibition by RV1495 as a model for drug discovery 

 Background information  

M. tuberculosis is a microorganism able to persist in the host for a long time through 

granuloma formation, however the molecular bases are not very well understood. Stress 

responsive Toxin-Antitoxin (TA) systems have been proposed as mediators of granuloma 

formation in M. tuberculosis since in other bacterial species (e.g., E. coli) TA systems are 

known to generate persisters. M. tuberculosis has a high number of TA systems compared 

to other mycobacteria (Figure 17), this could be associated with its virulence and latent 

infection (Sala, Bordes et al. 2014). In fact, TA systems up-regulation during antibiotic 

treatment has been reported in M. tuberculosiss (Keren, Minami et al. 2011).  Under stress 

conditions the antitoxins are degraded and the free toxins can target important cellular 

processes like replication and transcription that finally would inhibit the protein expression 

and cell growth to induce latency and facilitate cellular survival until the conditions become 

favorable (Sala, Bordes et al. 2014).   

 

Figure 17. Toxin-antitoxin systems in Mycobacteria 

 

 

Toxin- antitoxin information collected from TADB (toxin-antitoxin database), NCBI 
and BLASTP. In M. smegmatis the TAC system is incomplete and some toxin-antitoxin 
systems could not be classified. (Sala, Bordes et al. 2014) 
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The toxin Rv1495 belongs to the MazEF family (MazE is the antitoxin and MazF is 

the toxin), which include mainly endoribonucleases and in certain cases target ribosomal 

RNA (Zhu, Phadtare et al. 2008).  Recent studies have shown that besides being an 

endoribonuclease, The Rv1495 toxin (MazF homolog in M. tuberculosis) interacts with 

DNA topoisomerase I and they mutually inhibit each other (Figure 18), (Huang and He 

2010). The physical interaction between Rv1495 and MtopI/ M. smegmatis topoisomerase 

I has been demonstrated through bacterial two-hybrid assay and biochemical assays such 

as pull-down in the previous study.  The functional inhibition of MtopI/ M. smegmatis 

topoisomerase I by Rv1495 was established through a DNA relaxation assay and single-

stranded DNA cleavage assay by the same group. The DNA relaxation assay showed that 

increasing concentrations of the purified Rv1495 toxin generates a reduction of the Mtop I 

DNA relaxation efficiency (Figure 19).  The cleavage capacity of MtopI on ssDNA was 

also compromised as shown in (Figure 20), with the presence of increasing concentrations 

of Rv1495 decreases the amount of ssDNA cleavage product.  
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Figure 18. MazF-MazE Toxin-antitoxin system 

 

 

 

 

Figure 19. DNA relaxation activity of Mtop I in presence of increasing concentrations of 
Rv1495 

MazEMazF

Normal conditions Stress conditions

MazEMazF

mRNAMazF

Degraded

Endoribonuclease

Latent stage

Toxin Anti-toxin

MazF Mtop I

This interaction between Rv1495 and Mtop I is an 
opportunity for the design and discovery of  drugs 
targeting Mtop I

The reduction of 
Mtop I activity affects 
genomic processes 
including replication 
and transcription 

Under normal conditions the antitoxin prevents the toxin activation by forming a 
complex with it. When the cells are exposed to stress conditions, the toxin-antitoxin is 
dissociated, and the antitoxin degraded. MazF toxin interacts with the mRNA and Mtop 
IA to induce a latent stage that is important for cell survival in these conditions.  

On the left-hand, the relaxation activity of Mtop IA is tested using different enzyme 
concentrations 0.05, 0.10 and 0.15 μM. On the right hand, the relaxation activity of Mtop 
IA (0.125 μM) is tested in presence of variable concentrations of Rv1495:  0, 1.5, 3, 4.5 
and 6 μM. (Huang and He 2010)  
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Figure 20. DNA cleavage activity of MtopI in presence of increasing concentrations of 
Rv1495  

 

 

 

Additional information provided by this study also demonstrated that Rv1495 interacts 

with the C-terminal domain of Mtop I. The mRNA cleavage activity of Rv1495 was tested 

in presence of the MtopI N-terminal domain and C-terminal domain separately. As shown 

in Figure 21, when the concentration of the C-terminal domain is increased the capacity of 

Rv1495 to cleavage the mRNA substrate is decreased.  

 

 

On the left-hand, the ssDNA cleavage activity of Mtop IA is tested using different 
enzyme concentrations 0.1, 0.2, 0.3 and 0.4 μM. On the right hand, the cleavage activity 
of Mtop IA (0.2 μM) is tested in presence of variable concentrations of Rv1495:  3, 6 
and 6 μM. (Huang and He 2010)  
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Figure 21.  mRNA cleavage activity of Rv1495 in presence of Mtop I N-terminal and C-
terminal domain 

 

 

In the current project we followed up the findings on Rv1495-Mtop IA interaction to 

try to generate detailed information about the specific region on MtopI C-terminal domain 

that is responsible for the interaction with the Rv1495 toxin. 

 

 Research objectives  

To study the Rv1495-Mtop I interaction, as a potential model for the identification of 

antitubercular compounds that target Mtop I C-terminal domain 

• To establish a screening assay for the inhibition of Mtop I by Rv1495 toxin  

• To identify the critical amino acids and/or subdomain on Mtop I C-terminal domain 

responsible for its interaction with Rv1495 

• Protein expression and purification of Rv1495 toxin for identification of binding 

site by crystallography. This will enable design of small molecule Top I inhibitor 

selective for Mycobacteria. 

The mRNA cleavage of Rv1495 (0.6 μM) is tested in presence of diverse concentrations 
of Mtop IA N-terminal and C-terminal domain: 0.1, 0.2 and 0.3 μM. ( (Huang and He 
2010)  
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 Material and Methods  

 Preparation of E. coli AS17 Electrocompetent cells 

A 250 ml volume of LBN (Luria-Bertani broth with 0.16 M NaCl) media was 

inoculated with 2.5 ml of cells from overnight culture and incubated at 30°C with shaking. 

When cells reached exponential phase (O.D.600nm =0.4-0.8), the whole cell volume was 

spun down in five 50 ml tubes at 3600xg and 4°C for 10 min. All the pellets were 

resuspended in 50 ml of 10% glycerol and spun down at the same conditions. The same 

procedure was repeated four more times. Finally, the pellet was resuspended in 800 μL of 

10% glycerol. Aliquots of 60 μL were stored in 1.5 ml tubes and stored at -80°C. 

 

 Preparation of E. coli NEB-5 chemically competent cells 

The E. coli NEB-5 cells fhuA2a(argF-lacZ)U169 phoA glnV44 a80a(lacZ)M15 gyrA96 

recA1 relA1 endA1 thi-1 hsdR17 were growth following the same protocol for 

electrocompetent cells preparation. The total volume inoculated was 50 ml and when the 

cells reached exponential phase, the whole culture was spun down and the supernatant 

discarded. The pellet was resuspended in 5 ml of TSS buffer (LB broth containing 0.1 g/ml 

PEG8000, 5% DMSO, 30 mM MgCl2).  Aliquots of 100 μL of the competent cells were 

stored in 1.5 ml tubes at -80°C. 

 

 Transformation of chemically competent cells  

The plasmid DNA was added to a 60 μL or 0.1 ml aliquot of competent cells and 

incubated on ice for 30 min, afterwards the cells-DNA mix was exposed to heat shock in a 

water bath at 42 °C for exactly 45 second and immediately removed to place it on ice. The 

tube was left on ice for 2 min and then 0.9 ml of SOC medium added for cell recovery. 
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Cells were incubated shaking at 37 °C for 1 hour before aliquots were spread on LB plates 

with antibiotics for plasmid selection. 

 

 Transformation of electrocompetent cells 

The 0.1 cm cuvettes and cuvettes holder were pre-chilled at -20 °C and the 

electrocompetent cells thawed on ice for 5 minutes. One microliter of plasmid DNA was 

added to 60 μL of competent cells. The mixture was transferred to a cold electroporation 

cuvette, which was placed into the electroporator chamber slide. The micropulse was set 

to EC1 bacteria and the slide pushed into the chamber until the cuvette was in between the 

electrodes on the base of the chamber. The pulse bottom was pressed until hearing a beep, 

immediately the cuvette was removed from the chamber and 950 μL of SOC medium added 

to the cuvette. The cell suspension was transferred to a 14 ml tube and shaken at 30°C for 

1.5 hours before plating. 

 

 Complementation assays of E. coli AS17 cells with full length Mtop I and EtopI 

in the presence and absence of the Rv1495 toxin 

Escherichia coli topAts strains AS17 (Wang, Lynch et al. 2002) were used to test the 

specific inhibition of Mtop I by Rv1495 toxin. AS17 cells contain a topA allele coding for 

topoisomerase I that is thermosensitive. Under permissive temperature (30 °C) AS17 cells 

grow, but not at the same level as WT cells. On the other hand, when these cells are exposed 

to non-permissive temperature (42°C), the TopA activity is considerably reduced and the 

cells are not able to grow.  In our lab, AS17 cells which contain the pLIC plasmid 

expressing either E. coli topoisomerase I (EtopI) or Mtop I, which complement the 

thermosensitve TopA at 42 °C, are used for testing intraceullar inhibition of these 
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topoisomerase IA (Figure 22a). The AS17 cells containing pLIC vector, pLICEtop I or 

pLICMtop I were transformed with an additional plasmid expressing Rv1495 toxin (Figure 

22b). All the transformants were tested through complementation assays at 30 and 42°C in 

order to evaluate the Rv1495 inhibitory effect on topoisomerase I function (Figure 22c). 

For complementation assays, the cells were grown overnight at 30oC in LBN broth in 

presence of kanamycin (50 μg/ml) and carbenicillin (100 μg/ml), afterwards the O.D was 

adjusted to 1.0 and serial dilutions done with LBN broth in a 96 well plate. Five microliters 

of serially diluted cells were spotted in LBN plates (kanamycin 50 μg/ml and carbenicillin 

100 μg/ml) containing 0.2% arabinose 0.2% to induce the expression of the Rv1495 toxin. 

Differences in cell growth confirmed the inhibition of Mtop I by Rv1495 toxin. (IBC-16-

009-CR02). 
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Figure 22. Complementation of E. coli AS17 cells (thermo-sensitive Topoisomerase I) 
by recombinant topoisomerase I 
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A.) E. coli topAts strain AS17 containing pLICMtop IA plasmid, which complements 
the cell growth at 42°C. B.)  E. coli topAts strains AS17 containing pLICMtop IA and 
pBAD-Rv1495. Presence of Rv1495 in the E. coli AS17 cells reverse the growth 
complementation produced by Mtop IA. C.) On top, serial dilutions of E. coli topAts 

strains AS17 incubated at 30°C and 42°C. In the bottom, serial dilutions of E. coli topAts 

strains AS17 containing pLICMtop IA incubated at 30°C and 42°C. 
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 Random mutagenesis of pLICMtop I plasmid 

The Rv1495 toxin inhibits MtopI activity through its interaction with  the MtopI CTD 

(Huang and He 2010). We created a random mutant library of Mtop I using Escherichia 

coli XL-1 Red cells endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac mutD5 mutS mutT Tn10 

(Tetr) (Agilent technologies Catalog #200129), a strain deficient in three DNA repair 

pathways.  pLICMtop I WT plasmid was transformed into XL-1 Red chemically competent 

cells (two transformations were performed at the same time). The transformed cells (0.9 

ml of SOC) were separated in two aliquots (0.45 ml each) and spun down, 0.2 ml of 

supernatant removed, and pellets were resuspended in the remaining 0.2 ml for plating on 

four LBN kanamycin (50 μg/ml) agar plates for incubation at 37°C. After overnight 

incubation, all the isolated transformants (more than 200 cfu per plate) from the four plates 

were transferred to 100 ml of LBN kanamycin (50 μg/ml) and cultured overnight with 

shaking at 37°C. A second cycle of growth for the XL1 Red transformants was performed 

in order to increases the mutation rate in pLICMtopI plasmid, Five ml from the 100 ml 

culture was used to inoculate fresh 200 ml of LBN kanamyci (50 μg/ml) broth and 

incubated with shaking at 37 °C. Five ml from the first and second cycle cultures were 

spun down for plasmid preparation using Monarch® Plasmid Miniprep kit.  After plasmid 

preparation, the random libraries preparations were pooled together for further 

transformation of competent XL-1 Blue cells to prepare library stock.  

The XL-1 Blue cells recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F ́proAB 

lacIqZΔM15 Tn10 (Tetr)] (Agilent technologies Catalog #200236) are the maintenance 

cells used for storage of our mutant’s libraries. Fifty nanograms of pLICMtop I mutant 

library DNA from XL-1 Red cells was used for transformation of XL-1 Blue cells using 
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the chemically competent cells transformation protocol. Monarch® Plasmid Miniprep kit 

was used for XL1-Blue cells plasmid preparation (Figure 23).  

 

 Isolation of Mtop I mutant gene from pLIC Mtop I random mutant plasmid 

library 

The NEBcutter V2.0 online tool was used to identify unique restriction sites that 

allowed the linearization of Mtop I gene fraction from the plasmid. pLICMtop I mutant 

library from XL-1 Blue cells.  The plasmid was double digested with BamHI-HF® and 

NcoI-HF® from NEB: 1 μg of plasmid DNA was mix with 5 μl of 10X CutSmart Buffer 

and 1 μl (or 10 units) of each enzyme. The reaction was incubated at 37 °C for 15 minutes. 

Digested product was electrophoresed in a DNA agarose 1% gel for DNA separation and 

cutting of the gel band containing mutated MtopI. The band of interest was cut and DNA 

was purified from the gel using Monarch® DNA Gel Extraction Kit from NEB (Figure 23).  

 

 Isolation of pLIC WT vector from pLIC Mtop I WT plasmid  

The pLIC WT vector backbone was isolated from the pLICMtop I WT plasmid (no 

pre-treatment in XL-1 Red cells) through enzyme digestion using the BamHI-HF® and 

NcoI-HF® from NEB  and following the protocol already described for the isolation of 

Mtop I mutant gene (Figure 23).  
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 Ligation of linearized bands (pLIC WT and Mtop I mutant library) for 

creation of Mtop I random mutant library  

The NEBioCalculator v1.8.1 tool was used to set up the ligation reaction according to 

the size of the vector (5271 bp) and insert (2881 bp). In total, 1 μl of pLIC WT linearized 

vector backbone (concentration: 40.2 ng/μl) and 2 μl of Mtop I linearized gene (45 ng/μl) 

from the mutant library were added to the ligation reaction, which also contained 2 μl of 

10X T4 DNA ligase buffer, 14 μl of nuclease free water and 1 μl of T4 DNA ligase. The 

reaction was incubated overnight (14 h approximately) at 16°C in a thermocycler and then 

inactivated in a water bath heater at 65°C for 10 minutes.  

The XL-1 Blue competent cells were transformed with the ligation product for MtopI 

mutant library generation. Two transformations of 0.1 ml XL-1 Blue cells were performed, 

5 μl of ligation product was used for each transformation.  The same protocol as for XL-1 

Red competent cells was performed. Recovered cells were plated in LBN agar (kanamycin 

50 μg/ml); 0.15 ml was spread on each plate (total volume 0.9 ml).  After colonies 

formation, 1 ml of fresh LBN broth (kanamycin 50 μg/ml) was added to each plate 

containing 60 μl the colonies and the cells (more than 500 cfu per plate) collected in a 15 

ml tube.  Plasmid preparation of the mutant library was done using Monarch® DNA Gel 

Extraction Kit from NEB (Figure 23). 
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Figure 23. Scheme for generating plasmid library with random mutations in Mtop I gene 
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XL-1 Red cells is transformed with pLICMtop IA plasmid for insertion of random mutants throughout the plasmid. The mutant 
pLICMtop IA plasmid is recovered from the XL1 Red cells and excises to obtain the Mtop IA mutant region only. Additionally, a WT 
version of pLICMtop IA is excised to obtain the non-mutated pLIC region. Both fragments, Mtop IA mutant and non-mutated pLIC 
vector are ligated and used for transformation of E. coli AS17 pBAD-Rv1495, which are selected at 42ºC for further studies and 
sequencing if required.  
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 Selection of random mutant LICMtopI clone resistant to Rv1495 inhibition. 

The E. coli AS17 pBAD-Rv1495 electrocompetent competent cells were transformed 

with 50-100 ng of pLICMtop I mutant library. After recovery, 0.1 ml of cells were plated 

in two LBN agar containing kanamycin (50 μg/ml), carbenicillin (100 μg/ml) and 0.2% 

arabinose. One plate was incubated at 42ºC and the second one at 30ºC. Cells that are able 

to grow at 42ºC were considered MtopI mutants resistant to Rv1495 inhibition. The 

presence of arabinose in the plate induces the expression of the Rv1495 toxin from the 

BAD promoter. Rv1495 interacts with MtopI WT and inhibits the enzyme activity, hence 

no colonies should be isolated at 42ºC.  However, if mutations that affect the Rv1495-Mtop 

I interaction are present on pLICMtopI, the inhibition is abolished and the mutant MtopI 

transformants grow at 42ºC. pLICMtopI WT plasmid was used as control in the isolation 

of MtopI mutants. E. coli AS17 pBAD-Rv1495 cells were transformed with the WT 

version of LICMtop I and no colonies should grow at 42ºC.  There is nevertheless some 

LICMtop I WT background growth at 42ºC (probably due to selection of inactivating 

mutations on Rv1495), all selected LICMtop I mutant plasmids before being considered as 

true positives were submitted to an additional selection step. pLICMtop I mutant plasmid 

DNA was extracted and retransformed in E. coli AS17 pBAD-Rv1495 and the ratio of 

number of transformants obtained at 42/30oC was compared to the LICMtop I WT 

transformation. When the 42/30oC  ratio of transformants obtained from pLICMtopI was 

much greater than the WT pLICMtopI, the mutant pLICMtopI plasmid was considerate 

true positive and sent for DNA sequencing (Figure 23).  
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 Cloning of truncated versions of MtopI-840t and 910t in pLIC vector. 

MtopI-840t 

Generation of two truncated versions of Mtop I in pLIC vector were performed through 

Gibson cloning: for 840t cloning pLIC Forward CCGAATTCGAGCGCCGTCG and pLIC 

Reverse TTTCATGGTGATGGTGATGGTG primers were used to obtain linearized and 

truncated pLIC vector from pLICMtopI WT plasmid.  The MtopI Forward 

ccatcaccatcaccatgaaaACCTGTACTTCCAATCCAATGCA and MtopI Reverse 

tcgacggcgctcgaattcggATCCGTTATCCACTTCCAATG primers were used to obtain 

linearized LICMtopI-840t truncated clone from 2OT/MtopI-840t plasmid (an ampicillin 

resistant clone constructed in 2OT cloning vector for earlier studies of Nan Cao in our lab). 

The PCR conditions for the vector amplification included an initial denaturation for 30 

seconds at 98°C, followed by 35 cycles: denaturation for 10 seconds at 98°C, primer 

annealing for 30 seconds at 66°C and extension for 2 minute 30 seconds at 72°C. The PCR 

conditions for the Mtop I-840t gene amplification included an initial denaturation for 30 

seconds at 98°C, followed by 35 cycles: denaturation for 10 seconds at 98°C, primer 

annealing for 30 seconds at 72°C and extension for 1 minute 30 seconds at 72°C. The final 

extension for both amplification protocols was held for 5 minutes at 72°C. 

 

MtopI-910t 

The pLIC Forward TAATAACATTGGAAGTGGATAACGGATCCGAATTCGAG 

and pLIC Reverse TGCATTGGATTGGAAGTACAGGTTTTC primers were used to 

obtain linearized pLIC vector from pLICMtopI WT plasmid.  The MtopI Forward 

tgtacttccaatccaatgcaGCTGACCCGAAAACGAAGGG and MtopI Reverse primer 
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atccacttccaatgttattaCTAGGCTCGGCGATCGGC were used to create the MtopI-910t 

truncated gene from pLICMtop I WT plasmid.  The PCR conditions were similar to the 

previously describe for MtopI-840t cloning, only the annealing temperatures were 

modified: For vector amplification the annealing temperature was 68°C and for the insert 

was 70°C. 

 

 Complementation assay measuring 42/30oC ratio of E. coli AS17 

transformants with truncated versions of Mtop I in the presence and absence of 

the Rv1495 toxin 

The same protocol already described for MtopI full length complementation assay was 

followed with the truncated versions of Mtop I:  Mtop I-840t and Mtop I-910t. Additionally, 

0.1 ml of serial dilutions were spread in LBN agar containing kanamycin (50 μg/ml), 

carbenicillin (100 μg/ml) and 0.2% arabinose to obtain the exact colony counts and 42/30oC 

ratio. The 42/30 oC ratio of E. coli AS17/pLICMtopI truncated clones vs. AS17/pLIC Mtop 

I WT was compared in order to determine if the removed region of Mtop I is important for 

Rv1495-Mtop I interaction.  

 

 Cloning of the Rv1495 toxin in pGEX-4T-3 vector  

The Rv1495 toxin from M. tuberculosis was cloned through Gibson cloning in the 

pGEX-4T-3 vector containing GST tag for expression and affinity purification. Primers 

pGEX-4T-3 Forward, AATTCCCGGGTCGACTCG and pGEX-4T-3 reverse 

CGGGGATCCACGCGGAAC  were used for the amplification/linearization of  the vector. 

The PCR conditions for the vector amplification included an initial denaturation for 30 

seconds at 98°C, followed by 35 cycles: denaturation for 10 seconds at 98°C, primer 
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annealing for 30 seconds at 68°C and extension for 2 minutes at 72°C. Final extension was 

for 5 minutes at 72°C. 

Primers Rv1495 Forward tggttccgcgtggatccccgGTGAACGCGCCGTTGCGT and 

reverse ctcgagtcgacccgggaattTCATGGCCACGGTAGCCC were used for the 

amplification/linearization of the Rv1495 gene. The PCR conditions for the insert 

amplification included an initial denaturation for 30 seconds at 98°C, followed by 35 cycles: 

denaturation for 10 seconds at 98°C, primer annealing for 10 seconds at 72°C and extension 

for 20 seconds at 72°C. Final extension was for 2 minutes at 72°C.  

The size of PCR products was evaluated by electrophoresis in 1% agarose gel.  From 

the gel, the bands corresponding to the vector and insert were cut and DNA was purified 

using the Zymoclean™ Gel DNA Recovery kit. The DNA concentrations for each purified 

product (insert and vector) was quantified through UV spectrometry at A260 nm. For the 

Gibson cloning reaction, the NEBuilder ® HiFi DNA Assembly Master Mix kit was used. 

The number of picomoles of each fragment were first calculated based on their size: 

linearized pGEX-4T-3 4968 bp, linearized Rv1495 gene 358bp, in order to combine them 

in the proportions required for the Gibson cloning reaction. The reaction was incubated at 

50°C for 10 min in a thermocycler.  NEB® Turbo chemically competent E. coli cells were 

transformed with the cloning product and selected in LBN plates containing carbenicillin 

100 μg/ml. After plasmid preparation, transformants were selected and sent for DNA 

sequencing to confirm Rv1495 sequence.   
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 Expression and purification of Rv1495 toxin 

The E. coli BL21(DE3) chemically competent cells from Invitrogen were transformed 

with the pGEX-4T3-Rv1495 plasmid for protein expression. Cells were cultured overnight 

in 5 ml of LBN broth with carbenicillin 100 μg/ml at 37°C shaking.  Next day, four 2L 

flasks each of them with 500 ml of fresh 2x YT media (tryptone 16g, yeast extract 10g and 

NaCl 5.0 g in 1L of water) with 100 μg/ml carbenicillin was inoculated with the overnight 

culture (1:100 dilution) and incubated at 37°C shaking. When the cells reached exponential 

phase O.D600nm 0.4- 0.8, IPTG (0.6 mM) was added and the cells were induced for 4 hours 

at 37°C shaking. The induced cells were spun down, the supernatant removed and the 

pellets kept on ice. Cell lysis was performed in PBS, pH 7.3 (300 mM NaCl, 2.7 mM KCl, 

10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.3) with lysozyme at final concentration of 1 

mg/ml. The cell lysates were left on ice for 1 hour. Next, three cycles of freeze and thaw 

were performed: for each cycle the sample was frozen at -80°C for 1 hour and thawed in 

ice water for up to 2 hours. When the lysis is complete, a small fraction of the whole cell 

lysate was collected to evaluate the protein expression and solubility. The remaining 

soluble lysates were centrifugated at 32,000 rpm at 4°C for 2.5 hours and the supernatant 

transferred to fresh tubes for further dilution with PBS buffer with 0mM NaCl in order to 

reduce the salt concentration to 140 mM NaCl (the initial concentration for lysis purposes 

was 300 mM).  Fast protein liquid chromatography (FPLC) AKTA system and a 1 ml 

prepacked GSTrapTM HP column from GE Healthcare were used for protein purification. 

First, several system washes were performed with water and binding buffer (PBS, 140 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4,1.8 mM KH2PO4, pH 7.3). Afterwards, the column 

was attached to the system and equilibrated with 5 ml of binding buffer (five column 

volumes) with a flow rate of 0.1-0.2 ml/min. The sample was passed through the column 
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at the same rate followed by extensive washing. The elution buffer (50 mM Tris-HCl, 10 

mM reduced glutathione, pH 8.0) was applied to the column using flow rate of 0.5 ml/min. 

Collected fractions were evaluated with SDS PAGE in 10% gels and the Bradford protein 

assay. Fractions containing the Rv1495 fusion protein were pooled together for dialysis 

into storage buffer (50% glycerol, 100 mM KH2PO4 , 0.2 M EDTA). 

 

 Results  

 Growth complementation assays of E. coli AS17 cells with full length Mtop I 

and EtopI in the presence and absence of the Rv1495 toxin 

The pLICEtop and pLICMtop complemented the growth of E. coli AS17 cells at 42ºC. 

But when an additional plasmid pBAD-Rv1495 expressing the toxin was present in the cell, 

complementation of growth by recombinant Mtop I was greatly reduced (Figure 24), while 

EtopI still complemented the growth at the same level because the C-terminal domain of 

EtopI shares no homology with MtopI C-terminal domain. The 42/30oC ratio for 

AS17/pLICMtopI/pBADthio varies between 10-1 and 1, while for AS17/pLIC-Mtop 

I/pBAD-Rv1495 the ratio varies between 10-5 and 10-3. In this first experiment we were 

able to prove the specific inhibition of Mtop I by Rv1495 toxin.  
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Figure 24. Growth complementation of E. coli AS17 with pLICMtopI and pLICEtop full 

length 

 

 

 

 

 MtopI Random mutant selection and analysis  

The pLICMtopI mutant library showed a higher 42/30oC transformation efficiency 

ratio than pLICMtopI WT (Figure 25). Because of mutations generated on pLICMtopI in 

XL-1 Red cells, the interaction between pLICMtopI and Rv1495 might be affected, which 

would increase the number of transformants that can grow at 42ºC after transformation.  

Eight isolates containing mutated pLICMtopI and that grew at 42ºC were selected for 

plasmid preparation and further re-transformation of AS17/pBAD-Rv1495 to confirm that 

resistance to Rv1495 inhibition. 

1. AS17/pLIC /pBADthio

2. AS17/pLIC-Etop/pBADthio

3. AS17/pLIC-MtopI/pBADthio

4. AS17/pLIC-Etop/pBADthio-Rv1495

5. AS17/pLIC-MtopI/pBAD-Rv1495

Serial dilution of E.coli AS17 cells were spotted on LBN agar plates (kanamycin 50 μg/ml 

and carbenicillin 100 μg/ml) containing arabinose 0.2%. The plate was inoculated by 

duplicate and incubated at 30ºC (on the left) and 42ºC (on the right). E.coli AS17 cells 

containing either Etop I or Mtop IA showed growth complementation and the Rv1495 toxin 

the specific inhibitory effect of Mtop IA by the toxin. 1).AS17/pLIC/pBADthio 2). 

AS17/pLICEtop I/pBADthio 3). AS17/pLICMtop I/pBADthio 4). AS17/pLICEtop 

I/pBADthio-Rv1495 5). AS17/pLICMtop I/pBAD-Rv1495 
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Figure 25. Mtop IA random mutant selection and 42/30 ºC ratio.  

 

 

 

When AS17/pBAD-Rv1495 cells were re-transformed with purified mutant 

pLICMtopI plasmids, pLICMtop mutant 3 showed a very high cell recovery at 42ºC 

(Figure 26). Sequencing results did not reveal any mutations on MtopI coding region in 

mutant 3.  However Western Blot analysis showed that this mutant clone overexpressed 

MtopI protein compared to an AS17/pBAD-Rv1495/pLICMtopI WT.   The overexpression 

of Mtop I in the mutant 3 confirms MtopI as the target for in vivo growth inhibition by 

toxin Rv1495.  The result also indicates that mutations that confer resistance to Rv1495 by 

MtopI overexpression are likely to be less costly for cell growth compared to other 

mutations in the MtopI coding sequence that may decrease growth complementation of 

AS17 while conferring resistance to Rv1495. 

 

30 °C 42 °C

-2

-3

30 °C
42 °C

-2

-3

AS17 pBADno thio Rv1495 transformed with  
pLICMtop WT 

AS17 pBADno thio Rv1495 transformed with  
pLICMtop mutant library XL-1 blue (from ligation)

30 °C 42 °C

-2

-3

30 °C
42 °C

-2

-3

AS17 pBADno thio Rv1495 transformed with  
pLICMtop WT 

AS17 pBADno thio Rv1495 transformed with  
pLICMtop mutant library XL-1 blue (from ligation)

-3-3

42/30 ratio: 10-5 42/30 ratio: 10-4

pLICMtop I WT pLICMtop I mutant library

E.coli AS17 pBAD-Rv1495 cells were transformed either with pLICMtop I WT (left 

panel) or pLICMtop I mutant library (right panel).  The transformants were spread directly 

(top) and diluted (bottom) on LBN agar plates (kanamycin 50 μg/ml and carbenicillin 100 

μg/ml) containing arabinose 0.2%. Duplicates were spread for incubation at 42 ºC and 30 

ºC. Diluted plates were used for cell counting and calculation of 42/30ºC ratio.  
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Figure 26. E.coli AS17 pBAD-Rv1495 cells re-transformation with pLICMtop mutant 

library and Mtop IA expression. 

 

 

 

 

 

 Growth complementation assay of E. coli AS17 cells with truncated versions 

of MtopI in the presence and absence of the Rv1495 toxin 

The truncated versions of Mtop I designed for this study correspond to proteins with 

C-terminal subdomain missing; for MtopI 840t, the subdomain D8 and the tail, and for 

MtopI 910t only the tail region is absent (Figure 27). The growth complementation of E. 

coli AS17 at 42ºC with pLICMtop-840t was partial compared to pLIC/pBADthio control 

and pLICMtopI/pBADthio. However, it was also noticeable that in presence of the Rv1495 

1 2 3

pLICMtop I WT
control 

pLICMtop mut 1 pLICMtop mut 3 

1        2         3        4
1. Purified Mtop I
2. Western blot MW standards
3. AS17/pBAD-Rv1495/pLICMtop WT 
4. AS17/pBAD-Rv1495/pLICMtop mutant 3

A.

B.

1 2 3

pLICMtop I WT
control 

pLICMtop mut 1 pLICMtop mut 3 

1        2         3        4
1. Purified Mtop I
2. Western blot MW standards
3. AS17/pBAD-Rv1495/pLICMtop WT 
4. AS17/pBAD-Rv1495/pLICMtop mutant 3

A.

B.

A) E.coli AS17 pBAD-Rv1495 cells re-transformation with eight clones of pLICMtop I 

mutant library selected at 42 ºC . Mutant 1, 2,4,5,6,7 and 8 showed comparable growth to 

the pLICMtop I WT at 42 ºC.Mutant 3 showed a high recovery at 42 ºC (only mut 1 and 

mut 3 are shown in the figure). B.) Western blot of Mtop IA in E.coli AS17 pBAD-

Rv1495/pLICMtop mutant 3 revealed overexpression of Mtop IA compared to the E.coli 
AS17 pBAD-Rv1495/pLICMtop IA WT strain.  1). Purified Mtop I  2).Western blot MW 

standards  3.) AS17/pBAD-Rv1495/pLICMtop WT  4). AS17/pBAD-Rv1495/pLICMtop 

mut 3 
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toxin the partial complementation of pLICMtopI-840t is maintained and not diminished by 

the presence of the toxin (Figure 28)  

The growth complementation of E. coli AS17 at 42ºC with pLICMtopI-910t was better 

compared to pLICMtopI-840t, and not difference in growth complementation was detected 

when the toxin was present (Figure 29). These results indicate that the presence of the C-

terminal tail is required for the inhibition of MtopI activity by Rv1495.  

 

Figure 27. Truncated versions of Mtop I 

 

 

 

 

 

 

Y342

Y342

Y342
910

934

Mtop I is composed of two main domains: N- terminal domain and C-terminal domain. 

Each domain is divided in subdomains, different versions of C-terminal domain were 

designed to test Mtop IA truncated versions activity inhibition by Rv1495 toxin. The 

positively charged C-terminal tail is missing in the Mtop I 910t version while in Mtop I 

840t version a larger portion is missing: D8+tail.  
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Figure 28. Growth complementation of E. coli AS17 with pLICMtopI-840t 
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1

4

2

3
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6

30 °C 37 °C

42 °C1.AS17 pLIC/pBADthio

2.AS17 pLICMtop/pBADthio

3.AS17 pLICMtop/pBAD-Rv1495 clone 

4.AS17 pLICMtop 840t/pBAD-thio clone 2

5.AS17 pLICMtop 840t/pBAD-thio clone 3

6.AS17 pLICMtop 840t/pBAD-Rv1495

1).AS17/pLIC/pBADthio 2).AS17/pLICMtop I/pBADthio 3).AS17/pLICMtop I/pBAD-

Rv1495 4).AS17/pLICMtopI-840t/pBADthio clone 2 5).AS17/pLICMtopI-

840t/pBADthio clone 3 6).AS17/pLICMtopI-840t/pBAD-Rv1495.  Serial dilution of 

E.coli AS17 cells were spotted on LBN agar plates (kanamycin 50 μg/ml and carbenicillin 

100 μg/ml) containing arabinose 0.2%. The plate was inoculated by duplicate and 

incubated at 30ºC (on the left) and 42ºC (on the right). E.coli AS17 cells containing Mtop 

IA full lenght and Rv1495 toxin were used as control since the inhibitory effect was 

demonstrated previously. Partial growth complementation of E. coli AS17 with 

pLICMtopI-840t was not reversed in presence of Rv1495 toxin.  
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Figure 29. Growth complementation of E. coli AS17 with pLICMtopI-910t 

 

 

 

 

 

 42/30oC growth complementation ratio of E. coli AS17 with truncated versions 

of Mtop I-840t in the presence and absence of the Rv1495 toxin 

The pLICMtopI-840t plasmid complemented partially the growth of E. coli AS17 at 42ºC 

(Figure 28). In an alternative approach, the cell dilutions were also spread in LBN plates 

with kanamycin (50 μg/ml), carbenicillin (100 μg/ml) and 0.2% arabinose for colony 

counting and calculation of the 42/30oC ratio of each strain. As shown in Table 1, the 

closest the 42/30oC ratio to 1 the better the complementation of cell growth at 42ºC in 

presence of the respective plasmid. The growth complementation of AS17 

pLICMtopI/pBADthio showed a 42/30oC ratio of 1, indicating a complete growth 

complementation at 42ºC. However, when the toxin Rv1495 was present the 42/30oC ratio 

1

4

2

3

1

4

2

3

5

30 °C 42 °C

5

1).AS17/pLIC/pBADthio  2).AS17/pLICMtop I/pBADthio  3).AS17/pLICMtop I/pBAD-

Rv1495  4).AS17/pLICMtopI-910t/pBADthio 5).AS17/pLICMtopI-910t/pBAD-Rv1495.  

Serial dilution of E.coli AS17 cells were spotted on LBN agar plates (kanamycin 50 μg/ml 

and carbenicillin 100 μg/ml) containing arabinose 0.2%. The plate was inoculated by 

duplicate and incubated at 30ºC (on the left) and 42ºC (on the right). E.coli AS17 cells 

containing Mtop IA full lenght and Rv1495 toxin were used as control since the inhibitory 

effect was demonstrated previously. Partial growth complementation of E. coli AS17 with 

pLICMtopI-910t was not reversed in presence of Rv1495 toxin.  
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dropped to 10-5; the presence of the Rv1495 toxin prevented the growth complementation 

at 42ºC. These results were previously documented in the growth complementation assay.  

With regard to the AS17 pLICMtopI-840t/pBADthio, the growth complementation at 42ºC 

was weak, but indeed comparable to pLICMtopI-840t/pBAD-Rv1495, suggesting that 

Rv1495 is not interacting with MtopI-840t to inhibit its function. 

 

Table 1. 42/30 ºC ratio of E. coli AS17 pLICMtop I 840t 

E. coli AS17 cfu/ml  42/30 °C ratio 
30 °C     

pLIC/pBADthio  1x109 10-6 

pLICMtop/pBADthio  2.8x108 1 

pLICMtop/pBAD-Rv1495  1.4x108 10-5 

pLICMtop 840t/pBADthio  2.5x108 10-5 

pLICMtop 840t/pBAD-Rv1495  2.1x108 10-5 

42 °C     
pLIC/pBADthio  1x102   
pLICMtop/pBADthio  2x108   
pLICMtop/pBAD-Rv1495  3x103   
pLICMtop 840t/pBADthio  2x103   
pLICMtop 840t/pBAD-Rv1495  3.7x103   

In the 42/30 ratio only exponential number was included. 

 

 Rv1495 Expression and purification  

The Rv1495-GST fusion protein correspond to a 37 kDa protein; In Figure 30a, visible 

the band corresponding to this protein is visible in the whole cell lysate as well as in the 

soluble lysate confirming that the protein is soluble. Thirteen eluted fractions containing 

the protein were collected and divided in two different pools (pool 5 and pool 8), which 

were dialyzed in storage buffer and stored at -80ºC (Figure 30b and c). 
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Figure 30. Rv1495-GST expression and purification 

 

 

Discussion 

We have demonstrated that the Rv1495 toxin is most likely interacting with the C-

terminal tail of Mtop IA. As stated before, the C-terminal tail in Mycobacterial 

topoisomerase IA may not be important for cleavage and rejoining of DNA, but plays an 

important role in  DNA strand passage, being then important for the enzyme processivity 

(Ahmed, Bhat et al. 2013). Moreover, the C-terminal tail would interact in vivo with RNA 

polymerase in M. smegmatis and M. tuberculosis strains in order to play an important role 

in the rewinding of ssDNA when it exits the transcriptional bubble  (Banda, Cao et al. 

2017).  

According to our results the MazF toxin may be inhibiting the strand passage, Hence 

the enzyme would cleave and religate DNA continuously, but with no change in linking 

25 kDa

35 kDa

48 kDa

PL SL

Eluted fractions

19       20      21     22      23       24        25       26    C.

(A) Protein fractions after expression and before DNA purification to confirm presence of 

Rv1495-GST (37 kDa) in the whole cell (WC) as well as in the soluble fraction (SL). 

Protein ladder (PL) (B) First batch of eluted fraction pooled together before dialysis (pool 

5) (C) Second batch of eluted fraction pooled together before dialysis (pool 8) 
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number generated. As a consequence, the relaxation activity of MtopI would be diminished 

in presence of Rv1495. 

Significantly, this interaction suggests an opportunity for the design of inhibitors of 

MtopI that can be used to develop therapeutics specific for mycobacteria. Such therapeutics 

would be less damaging for the normal human microbiome.  The purified Rv1495 toxin 

will be co-crystalized with MtopI by our collaborator Dr. Kemin Tan at Argonne National 

Lab in order to characterize in greater detail the interactions responsible for the inhibition 

of MtopI.    
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3. Ethacridine is a Potent Inhibitor of Mycobacterial Topoisomerase I and Enhances 

Moxifloxacin Lethality 

 Background Information  

A collection of 1389 compounds was assembled by TB Alliance, a non-profit 

organization dedicated to anti-TB drug discovery, and a subset of hits from NIH screening 

of inhibitors of M. tuberculosis H37Rv growth at Southern Research Institute  (Maddry, 

Ananthan et al. 2009). They inhibited growth by 85-90% compared to untreated controls 

in liquid cultures at <10 µM against M. tuberculosis H37Rv and >50 µM against 

mammalian cells.  The cellular targets of these inhibitors are largely unknown. In our 

laboratory, topoisomerase I relaxation activity assays were conducted to determine if any 

of the compounds among the 1389 compounds assembled by TB Alliance can inhibit the 

catalytic activity of MtopI.  We found that ethacridine is a potent inhibitor of the MtopI 

relaxation activity (IC50 = 0.6 µM). The presence of three aromatic rings in the structure 

of Ethacridine is important for activity (Figure 31a).  

 

Figure 31. Ethacridine and m-AMSA structures  

An established eukaryotic type II topoisomerase poison inhibitor m-AMSA, is used for 

cancer treatment and have been also repurposed as Mtop IA inhibitor. This compound has 

Ethacridine m-AMSA

A) B)
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a similar structure to ethacridine (Figure 31b).  m-AMSA inhibits Mtop IA DNA relaxation 

activity completely at 10 µM and the MIC values for M. smegmatis and M. tuberculosis 

are 60 µM and 125 µM, respectively (Godbole, Ahmed et al. 2014). However, as stated 

before the activity of Ethacridine as antimycobacterial agent is superior and worth it of 

further investigation.  

 

 Research objectives   

To explore the mechanism of action of Ethacridine, an FDA approved drug, as a 

potential antimycobacterial agent.  

• To evaluate the Ethacridine mechanism of resistance and mode of action by 

isolating and characterizing resistant mutants  

• To evaluate the potentiation of Moxifloxacin (a second line drug for TB 

treatment) by Ethacridine against mycobacteria, using M. smegmatis mc2 155 

as model. 

 

 Material and Methods 

  Resistant mutant isolation  

M. smegmatis Ethacridine resistant mutants were isolated in LB plates containing 64X 

MIC of Ethacridine (400 µM).  Drug resistance was confirmed in Middlebrook 7H9 agar 

plates containing 0.2% glycerol and supplemented with 10% albumin, dextrose and sodium 

chloride (ADN) that also had the same concentration of Ethacridine used for resistant 

mutants’ isolation.  Previous attempts in the lab for isolation of Ethacridine resistant 

mutants on LB plates containing lower Ethacridine concentration did not result in stable 

resistant mutants that could be confirmed for growth in liquid media containing Ethacridine.   
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 Whole Genome Sequencing (WGS) 

The Ethacridine resistant mutants were sequenced in collaboration with the Sanford 

Burnham Prebys Medical Discovery Institute, Orlando, FL. Genomic DNA extraction was 

performed at FlU.  Mycobacterium smegmatis WT and mutant strains were cultured in 5 

ml of Middlebrook 7H9 ADN. After two days of incubation, 2 ml of cells were spun down 

at 16,000 rcf per min for DNA extraction. DNA extraction was performed using the 

BACTOZOLTM Bacterial DNA isolation kit (Molecular Research Center).  Following 

DNA solubilization, the DNA quality and concentration were evaluated. DNA quality and 

concentration were evaluated through the UV Absorbance 260/280 ratio (>1.8).  

Genomic DNA was sent to Sanford Burnham Genomics and Bioinformatics Division for 

sequencing; Illumina MiSeq® Next Generation Sequencer and Nextera XT library 

preparation kit was used for WGS and SoftGenetics NextGENe Software used for data 

analysis. Sequence of wild-type M. smegmatis mc2 155 (WT) from our lab was used as 

reference for alignment of all mutant sequences. 

 

 Minimal Inhibitory concentration (MIC)  

M. smegmatis strains were inoculated from LB/NaCl agar plates into 5 ml of 

Middlebrook 7H9 broth containing 0.2% glycerol, 0.05% Tween 80 and supplemented 

with ADN at 37°C with shaking. Cells were grown until stationary phase, diluted to optical 

density (O.D600nm) 0.1 and diluted once again 1:10 in fresh Middlebrook 7H9 broth 

containing 0.2% glycerol, 0.05% Tween with AND supplement. Fifty microliters of cells 

were then transferred to each well of a 96-well plate containing 50 μl of serially diluted 

compounds along the ordinate. An additional well containing 50 μl of media without any 

compound was also inoculated with 50 μl of cells corresponding to the growth control. The 
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96 well plate was incubated at 37°C with shaking. After 48 hours of incubation, 10 μl of 

0.02% resazurin was added to the each well in the 96 well plate containing 100 μl of 

cultured cells in presence of diluted compounds. The fluorescence reading at 560/590 nm 

(excitation/emission) was taken after 5h of incubation at 37°C. 

 

 Survival assays  

M. smegmatis strains (WT and Ethacridine resistant mutants) were cultured from 

LB/NaCl plates to Middlebrook 7H9 broth containing 0.2% glycerol, 0.05% Tween 80 and 

with ADN supplement at 37°C with shaking. The night before the assay, bacterial cells 

were cultured in Middlebrook 7H9 broth containing 0.2% glycerol and 0.05% Tween 80 

at 37°C with shaking. When cells reached exponential phase, optical density (O.D600nm) 

0.5-0.8, were adjusted to (O.D600nm)  0.5 and diluted 1:10 in Middlebrook 7H9 broth 

containing 0.2% glycerol and 0.05% Tween 80. Fifty microliters of cells were then 

transferred to a clear round-bottom 96-well plate containing 50 μl of serially diluted 

compounds. An additional well containing 50 μl of media without any compound was also 

inoculated with 50 μl of cells and used as growth control. The 96 well plate was incubated 

at 37°C with shaking.  

From the 96 well plate, treated and untreated cells (control) were diluted and spread for 

cell bactericidal effect evaluation. At time point 0h, cells in the control well were diluted 

up to 10-4 in 1.5 ml tubes (final volume 1 ml) and 0.1 ml plated on LB/NaCl agar plates to 

calculate the number of cells added (approximately 5x106 cfu/ml).  Cells incubated in 

presence of Ethacridine 6.25 μM, Moxifloxacin 0.16 μg/ml (2X MIC) and Moxifloxacin 

0.16 μg/ml/Ethacridine 6.25 μM were diluted and 0.1 ml plated on LB/NaCl agar plates at 

different time points (3, 6, 8, 9 and 12 hours). The cell survival percentage was calculated 
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by dividing the number of treated cells that survived the treatment by the total number of 

cells at time 0h.  

 

 Checkerboard assay  

M. smegmatis mc2 155 strain was cultured as previously described for MIC assay and 

50 μl of cells transferred to each well of a clear round-bottom 96-well plate containing 50 

μl of serially diluted compounds. Ethacridine was diluted along the ordinate while 

Moxifloxacin along the abscissa, as shown in Table 2. The 96 well plate was incubated at 

37°C with shaking. After 48 hours of incubation, 10 μl of 0.02% resazurin was added to 

each well of the 96 well plate containing 100 μl of cultured cells in presence of diluted 

compounds. The fluorescence reading at 560/590 nm (excitation/emission) was taken after 

5h of incubation at 37°C. The data generated was analyzed through the calculation of the 

Fractional Inhibitory Concentration (FIC), which allows the classification of the 

combinatory effect as: synergistic, additive, indifferent or antagonistic (Figure 32).  
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Table 2. Checkerboard assay for Ethacridine and Moxifloxacin  
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FIC value Interpretation 

≤ 0.5 

 

Synergy 

>0.5-1.0 Additive  

1-4 Indifference  

>4 Antagonism 

 

Figure 32. FIC Calculation and Interpretation.  

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10
A 25 µM 
B 12.5 µM 
C 6.25  µM 
D 3.125 µM 
E 1.56 µM 
F 0.78  µM 
G 0.39  µM 
H Only Cells 0.01 µg/ml 0.02 µg/ml 0.04 µg/ml 0.08 µg/ml 0.16 µg/ml 0.32 µg/ml 0.64 µg/ml

Ethacridine 

Moxifloxacin 

Distribution of drug dilution in a 96 wells plate 
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 Results  

 Ethacridine resistant mutant isolation and mutation frequency 

Two stable resistant isolates, mutant 3 and mutant 13, were isolated at 64X MIC 

Ethacridine.  The mutation frequency for resistance to Ethacridine was found to be 5x10-9.  

 

 Mutations detected in WGS of drug resistant mutant strains 

The mutations detected in mutant 3 and mutant 13 are shown in Table 3.  There are 

four common mutations were detected in mutant 3 and 13: a synonymous mutation on 4-

hydroxybenzoate transporter (no shown in the tables), and three non-synonymous 

mutations, first in MSMEG_2106, a transcriptional regulator, a second one in 

MSMEG_2945 ruvB gene coding for helicase of RuvAB Holliday junction resolvase, and 

the third one corresponded to a deletion in MSMEG_0318 gene; which codes for an AMP 

dependent synthetase and ligase.  Mutation in MSMEG_6071 coding for TrmH family 

RNA methyltransferase was found in mutant 3 but not mutant 13.  Mutation in 

MSMEG_1523 rpsD gene coding for 30S non-ribosomal protein S4 was found in mutant 

13 and not mutant 3.   
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Table 3. Mutations associated with Ethacridine resistance 

Ref: reference; SNV: single nucleotide variation; DEL: deletion; fs: frame shift

Gene Homolog in 
M.tuberculosis Region Freq Type 

Nucleotide Amino acid Functional 
annotation in 
M. smegmatis 

Functional 
annotation in M. 

tuberculosis Ref Allele Ref Allele 

MSMEG_2106 Rv3066 2184689 2 SNV C A F L 
Putative 
transcriptional 
regulator 

TetR 
transcriptional 
regulator that 
controls the 
expression of the 
Mmr multidrug 
efflux pump 

MSMEG_2945 Rv2592c 3005678 2 SNV G T M I 
ruvB Holliday 
junction DNA 
helicase RuvB 

ruvB Holliday 
junction DNA 
helicase RuvB 

MSMEG_0318 No 353901 2 DEL CGT delCGT fs  
AMP dependent 
synthetase and 
ligase 

N/A 

MSMEG_1523 Rv3458c 1613303 1 SNV A G D G 
rpsD 30S 
ribosomal protein 
S4 rpsD 

30S ribosomal 
protein S4 RpsD. 
This protein binds 
directly to 16S 
ribosomal RNA. 

MSMEG_6073 Rv3579c 6137851 1 SNV G A G R 
TrmH family 
RNA 
methyltransferase 

Possible 
tRNA/rRNA 
methyltransferase 
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 MIC of M. smegmatis WT and Ethacridine resistant mutants 3 and 13: Cross- 

resistance to other antimicrobial agents. 

Both Ethacridine resistant mutants 3 and 13 showed a two fold increase in Ethacridine 

MIC compared to the WT strain. Assay of cross-resistance Table 4 revealed that mutant 13 

does not have cross resistance to other drugs, however mutant 3 has around two-fold 

increased resistance to Moxifloxacin and Streptomycin compared to the WT strain.   This 

may be due to the mutation in TrmH family RNA methyltransferase found in mutant 3. 

Table 4. Cross-resistance to Moxifloxacin  

Strain Ethacridine  Moxifloxacin  Streptomycin  

MIC (µM) MIC (µg/ml) MIC (µg/ml) 

M. smegmatis WT  12.5 0.08-0.16 0.25-0.5 

M. smegmatis mut 3 25 0.16 0.5-1 

M. smegmatis mut 13 25 0.08-0.16 0.25-0.5 

 

 Combinatory effect of Moxifloxacin/Ethacridine on killing of M. smegmatis  

The RuvAB Holliday junction resolvase has been shown previously to be involved in 

killing of M. smegmatis by fluoroquinolones that inhibit the type IIA topoisomerase DNA 

gyrase (Long, Du et al. 2015) and may also be involved in the killing of M. smegmatis by 

topoisomerase IA inhibitors.  Interestingly, we found an increase in moxifloxacin lethality 

(2X MIC) in presence of Ethacridine 6.25 μM (Figure 33).  Calculation of FIC was used 

to evaluate the Ethacridine-Moxifloxacin combination on cell growth inhibition.   The MIC 

for each drug alone and in combination was the same, so the total for the FIC was 2 and 

according to the previous description a value between 1-4 is classified as indifference.  
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Figure 33. Effect of Moxifloxacin-Ethacridine combination in M. smegmatis survival  

 

 

 Discussion  

Ethacridine’s ability to inhibit M. tuberculosis growth and Mtop IA activity in vitro, as 

well as the fact it is an FDA approved drug merit further investigation of Ethacridine in 

drug repurposing for anti-TB treatment. Ethacridine is currently used as anti-septic in 

wounds and as an abortive agent (PubChem 2017) . In this project, the potential of 

Ethacridine as antimycobacterial agent was highlighted. Using M. smegmatis as a model 

to evaluate the bactericidal effect of this antimicrobial drug, it was found that ethacridine 

is bactericidal and additionally can be combined to further improve the bactericidal 

outcome with moxifloxacin, a second-line drug currently used for TB treatment. In fact, 

there are studies that highlight the relevance of using fluoroquinolones in combination with 
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Survival assay performed in Middlebrook 7H9 NO ADN revealed that when 
Ethacridine (6.25 μM) is combined with Moxifloxacin (0.16 μg/ml) the M. 
smegmatis lethality is increased compared to the lethality generated by each drug 
alone. 
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new drugs and repurposed agents in first line phase for shortening of TB treatment as well 

as in the treatment of drug resistant TB (Gillespie 2016, Yew and Koh 2016, Laughon and 

Nacy 2017).  One of the studies involved the use of Rifapentine-Moxifloxacin for drug 

sensitive TB and also the use of pretomanid-moxifloxacin-pyrazinamide regimen (STAND 

trial), which was replaced by BPaMZ regimen that includes also included bedaquiline. 

BPaMZ regimen has shown promising results, however the use of bedaquiline use in some 

countries with high MDR rates has been delayed (Lessem, Cox et al. 2015); partly because 

of side effects associated with bedaquiline. The ethacridine-moxifloxacin combination 

should be tested in animal models and clinical studies because both of them are FDA 

approved drugs and the ethacridine, included in the TB Alliance library, is active against 

M. tuberculosis with relatively low cytotoxicity.  It can be noted that Moxifloxacin and 

Ethacridine show an indifferent effect according to the checkerboard assay as well as 

potentiation in their bactericidal activity when they are combined.  

Due to the different mutations detected in the resistant mutants, ethacridine drug 

resistance cannot be associated with a specific mutation and the drug target is not clearly 

elucidated.  Mutation in Topoisomerase IA gene was not seen in the resistant mutants 

characterized.  This suggests that inhibition of MtopI by Ethacridine may depend on 

interaction between Ethacridine and DNA. The resistance mutations identified provide 

further information on drug resistance in mycobacteria in general or mechanisms of 

resistance associated to ethacridine specifically. Moreover, the development of a mutation 

on an essential gene that affect the cell survival has high likelihood to be costly and cells 

has many alternative resistance mechanisms related to drug transport and efflux to resist 

environmental toxins.  
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According to the results obtained on the Ethacridine resistant mutants, the mutation on 

MSMEG_2106, a putative transcriptional regulator in M. smegmatis may be the first line 

mechanism of resistance developed by the cells. This transcriptional regulator homolog in 

M. tuberculosis, Rv3066, has been characterized and classified as a TetR transcriptional 

regulator, important in the regulation of multidrug efflux pump (Mmr efflux pumps). 

Hence, drug efflux, a general mechanism, may be the primary mechanism of resistance 

before developing any mutation associated to the drug target.  

Mutation on ruvB gene, which codes for the helicase component of the RuvAB 

complex, was also a common mutation detected in the ethacridine resistant mutants. 

RuvAB is a protein complex important in the resolution of Holliday junctions during DNA 

recombination. Previous studies have shown that inhibition of RuvAB complex in M. 

smegmatis WT strains can potentiate Moxifloxacin cell lethality (Long, Du et al. 2015). 

Long, Du et al reported that RuvA inhibition, either by insertion of a negative mutation or 

interaction with small molecules, increases the moxifloxacin lethality in M. smegmatis.  

The simultaneous inhibition of RuvAB complex during Moxifloxacin treatment would 

cause impairment in a moxifloxacin DNA damage repair system requiring recombination.   

The presence of additional mutations in the Ethacridine resistant strains makes it 

difficult to associate the resistance pattern to only one of the mutations detected. In fact, 

topoisomerase IA may be the drug target but because of the essential nature of this protein 

in mycobacteria, no mutations can be generated.  Although other mutations were detected 

in resistant mutants, not all of them were discussed because they do not have homologous 

genes in M. tuberculosis or were not found in both ethacridine resistant mutants.  
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4. Mechanism and resistance for antimycobacterial activity of a 

fluoroquinophenoxazine compound  

 

 Background information  

Previous studies focusing on discovery of bacterial topoisomerase I inhibitors allowed 

the identification of a compound NSC649059 with inhibitory activity against E. coli 

topoisomerase I (IC50 = 0.8-2.0 µM) (Yu, Zhang et al. 2017). The activity of this 

fluoroquinophenoxazine derivated against topoisomerase I (Yu, Zhang et al. 2017) led to 

the design, synthesis and evaluation of fluoroquinophenoxazine analogs to test their 

activity against diverse topoisomerases. Indeed, other fluoroquinophenoxazine derivates 

such as: A-62176 (Permana, Snapka et al. 1994, Kang, Kim et al. 2008) and A-85226 (Fan, 

Sun et al. 1995) have been reported as anticancer activity (Figure 34). However, this class 

of compounds has not been widely studied as antimicrobial agents.  

 

 

Figure 34. Fluoroquinophenoxazine derivates  

 

 

 

On the left, the chemical structure of two fluoroquinophenoxazines derivates that 
has shown activity against diverse cancer cell lines. A-62176 has exhibit low IC50 
values against cancer cells (between 0.87-4.34 µM). On the right, the structure of 
a fluoroquinophenoxazine derivate that exhibited activity against E. coli 
topoisomerase IA and was used for the design of analogs that may have activity 
against bacterial topoisomerase IA such as FP-11g. (Yu, Zhang et al. 2017) 
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Among the set of fluoroquinophenoxazine analogs previously published in a 

collaborative work between the Tse-Dinh lab and Dr. Dianqing Sun’s group at University 

of Hawaii Hilo, compound (FP-11g), with a 6-bipiperidinyl lipophilic side chain (Figure 

35), inhibited the catalytic activity of E. coli topoisomerase I with strong potency (IC50 = 

0.48µM).  However, the whole-cell antibacterial activity on E. coli WT was limited.  

Interestingly, FP-11g showed promising antituberculosis activity (MIC = 2.5 µM, SI = 9.8).  

The selectivity index is defined as IC50/MIC:  IC50 for eukaryotic cells (toxicity) and MIC 

for prokaryotic cells, in this case M. tuberculosis. SI values ranging from 10 are acceptable.  

 

 

Figure 35. Schematization of fluoroquinophenoxazines synthesis 

 

 

 

 

 

Fluoquinophenoxazines from the NSC649059 scaffold were designed to 
improve the compound stability and solubility by introducing different amine 
functionalities (9-11). (Yu, Zhang et al. 2017) 
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 Research objectives  

To study the inhibitory effect and mechanisms of resistance associated with FP-11g 

compound in mycobacteria: 

• To determine the growth inhibitory and bactericidal concentration of FP-11g 

compound in M. smegmatis and M. abscessus strains. 

• To perform Whole Genome Sequence analysis of M. smegmatis mutants 

resistant to FP-11g for further characterization of mechanisms associated with 

resistance.  

 

 Material and Methods  

 MIC (minimum inhibitory concentration) against M. smegmatis and M. 

abscessus 

M. smegmatis mc2 155 (WT from ATCC) and FP-11g resistant mutants derived from 

WT were cultured in 5 ml Middlebrook 7H9 broth containing 0.2% glycerol, 0.05% Tween 

80 with or without a supplement of 10% albumin, dextrose, sodium chloride (ADN) at 

37°C with shaking. Stationary phase bacteria cultures were adjusted to an optical density 

(OD600) of 0.1 and subsequently diluted 1:10 using growth media. Fifty microliters (~105 

cfu) of the diluted culture were transferred to the individual wells of a clear round-bottom 

96-well plate containing 50 μl of serially diluted compounds. The 96-well plate was then 

incubated at 37°C with shaking. After 48 hours of incubation, resazurin (final concentration 

0.002%) was added to the individual wells and the fluorescence reading at 560/590 nm was 

taken with a BioTek Synergy plate reader after approximately 5h of incubation at 37°C.   

 A clinical isolate of M. abscessus bacterium (isolated at the Columbia University 

Medical Center) was cultured in Middlebrook 7H9 ADN broth it reached an optical density 



71 
 

(OD600) of 1.0. The culture was then stored at -80°C as 1 ml aliquots containing 15% 

glycerol. These frozen aliquots were subsequently used as the inoculum for M. abscessus 

MIC assays.  Prior to conducting each MIC assay, an aliquot of frozen M. abscessus was 

thawed and diluted 1:100 in Middlebrook 7H9 broth.  After dilution, the bacterial cells 

(~105 cfu) were added to the wells of a 96-well plate containing the serially diluted 

compounds as described for M. smegmatis cells and incubated at 37°C with no shaking for 

48 h. Subsequently, resazurin (final concentration 0.005%) was added to each well and 

fluorescence reading at 560/590 nm (excitation/emission) was taken after 24 h of 

incubation at 37°C. On the day of each MIC assay, thawed inoculum of M. abscessus was 

also serially diluted and spread plated on LB agar plates to confirm for the inoculum load 

of ~105 cfu/well. MIC determination for each bacteria was repeated at least three times.  

 

 MIC (minimum inhibitory concentration) M. smegmatis pTA-M+ and pTA-

nol strains 

M. smegmatis strains containing previously constructed plasmids in our laboratory 

(Sandhaus, Annamalai et al. 2016) were used to test the inhibitory mechanism of FP-11g 

against MtopI. M. smegmatis pTA-M+ contains a pKW08-Lx derived plasmid (Williams, 

Joyce et al. 2010), in which the luciferase gene has been replaced by MtopI gene to be 

under the control of the tetracycline-inducible Tet promoter.  Hence, pTA-M+ strain 

overexpresses Mtop I when the tetracycline inducer is added. On the other hand, the M. 

smegmatis pTA-nol, a strain that contains the pKW08 plasmid with no insert (luciferase 

luxAB genes removed) is used as a control. Both strains were grown in 5 ml of Middlebrook 

7H9 ADN containing 50 μg/ml hygromycin antibiotic required for the selection of pKW08 

plasmid. One day before the assay, fresh dilutions of the overnight cultures were made in 
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Middlebrook 7H9 media without ADN, with 50 μg/ml hygromycin. Stationary phase 

bacteria cultures were adjusted to O.D600 nm 0.1 and further diluted 1:10 in Middlebrook 

7H9 without ADN,  with 50 μg/ml hygromycin and 20 ng/ml tetracycline. After O.D. 

adjustment and dilution, 50 μl of cells were transferred to each well of a clear round-bottom 

96-well plate containing 50 μl of diluted FP-11g compound. The 96 well plate was 

incubated at 37°C without shaking. After 48 hours of incubation, 10 μl of resazurin 0.01% 

was added to each well of the 96 well plate containing 100 μl of cultured cells in presence 

of diluted compounds. The fluorescence reading at 560/590 nm was taken after 

approximately 5h of incubation at 37°C. 

 

 Survival assay M. smegmatis and M. abscessus 

The bactericidal effect of FP-11g compound was evaluated in 96-well plates using a 

protocol similar to the MIC assay. In brief, M. smegmatis was incubated at 37°C with 

shaking in the presence of  1X, 2X, 4X and 8X MIC of FP-11 g for 6, 10, 24 and 48 hours; 

M. abscessus was incubated at 37°C without shaking in the presence of  1X and 2X MIC 

of FP-11g for 24, 48 and 72 hours. At each time point 20 µl from the treatment wells were 

serially diluted (10 fold), spread on LB agar plates and incubated at 37°C for 4 or 7 days 

for counting the viable colonies of M. smegmatis and M. abscessus respectively.  Ten 

microliters from the treatment wells were also enriched in 5-ml of Middlebrook 7H9 broth 

if there are no viable colonies from a particular treatment-time combination on the LB agar 

plates. The survival percentage was calculated by dividing the number of viable colonies 

at each time point by the initial viable count prior to the treatment (time 0). Survival assays 

were repeated three times.  

 



73 
 

 Resistant mutants isolation  

M. smegmatis mc2 155 (from ATCC) was exposed to increasing concentrations of the 

antibacterial compound (FP-11g) in order to isolate mutant strains with different levels of 

resistance through stepwise exposure (Fujimoto-Nakamura, Ito et al. 2005).    M. smegmatis 

WT mc2 155 strain was first cultured in 5 ml of 7H9 ADN with no compound. After two 

days growth was visible and fresh 7H9 ADN media with no compound was inoculated by 

making 1:100 dilutions. Next day when the growth was visible, the O.D600nm of the culture 

was measured and adjusted to 0.1 using 7H9 ADN media. In total, 2x106 cells (100 µl of 

O.D. 0.1 adjusted culture) were spread on 7H9 ADN agar containing 8X MIC (2.5 μM) 

FP-11g for isolation of resistant mutants and calculation of mutation frequency. The 

isolated mutants were steaked on fresh 7H9 ADN agar and inoculated in 2ml of liquid 7H9 

ADN, both containing 8X MIC (2.5 μM). Only one of the mutants grew in liquid media 

and was considered an actual resistant mutant.  When growth was visible in liquid media, 

the culture was spun down, and the pellet used to inoculate fresh media containing 16X 

MIC FP-11g.  After bacteria cells grew, a fraction of the culture was plated on 7H9 ADN 

agar with no compound to isolate single resistant mutant colonies (PGM1, PGM2 shown 

in Table 6).  The stepwise mutant isolation was repeated starting with 4X MIC to isolate 

additional resistant mutants (PGM3 – PGM6 shown in Table 6).       

 

 Genomic DNA extraction 

M. smegmatis WT and mutant strains were cultured in 5 ml of Middlebrook 7H9 ADN. 

After two days of incubation, 2 ml of cells were spun down at 16,000 rcf per min for DNA 

extraction. DNA extraction was performed using the BACTOZOLTM Bacterial DNA 

isolation kit (Molecular Research Center).  Following DNA solubilization, the DNA 
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quality and concentration were evaluated. DNA quality was evaluated through the UV 

Absorbance 260/280nm ratio (>1.8) and DNA quantity was measured using a fluorescence-

based Qubit® dsDNA BR (Broad-Range) Assay Kit (Thermofisher, Cat # Q32853).  

 

 Library preparation 

The DNA concentration was first measured using the Qubit® dsDNA BR (Broad-

Range) Assay Kit and adjusted to 0.2 ng/μL with 10 mM Tris HCl pH 8.0. After 

concentration adjustment, all the Genomic DNAs were quantified once again to confirm 

the concentration. This process involved sequencing of 96 bacterial strains.  The following 

library preparation kits were used: Nextera XT DNA Library Prep Kit, 96 Indexes (FC-

131-1096) and Index Kit (96 Indexes) (FC-131-1002). Procedures followed in the Library 

preparation were based on Illumina Nextera XT DNA Library Prep Kit Reference guide 

(Document 15031942 v02, April 2017) 

 

Tagmentation: Tagment DNA buffer (10 μL) and normalized genomic DNA (5 μL) 

were added to each well of a new Hard-Shell skirted PCR plate and mixed by pipetting 

using a multichannel pipette.  Then, 5 μL of Amplicon Tagment Mix were added to each 

well, pipetted 5 times to mix and the plate was sealed. The PCR plate was centrifugated at 

280 x g at 20°C for 1 min and placed in the thermal cycler to run the tagmentation program: 

• 55°C for 5 minutes 

• Hold at 10°C 

The Neutralization Tagment buffer (5 μL) was added immediately to each well and 

mixed by pipetting; the plate was sealed and centrifugated at 280 x g at 20°C for 1 min. 

Afterwards, the plate was incubated at room temperature for 5 minutes.  
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Amplification: Index primers were vortexed and placed in the columns and rows of a 

TrueSeq Index Plate Fixture: Index 1 (i7) adapters placed in columns 1-12 and Index 2 (i5) 

adapters in rows A-H. Five microliters of each index were dispensed; Index 1 (i7) adapter 

down each column and index 2 (i5) adapter across each row. Using a multichannel pipette, 

15 μL of Nextera PCR Master Mix were added to each well containing index adapter. The 

plate was sealed, centrifugated at 280 x g at 20°C for 1 min. The plate was placed in the 

thermal cycler and run the PCR program: 

• 72°C for 3 minutes 

• 95°C for 30 seconds 

• 12 cycles of: 

• 95°C for 10 seconds 

• 55°C for 30 seconds 

• 72°C for 30 seconds 

• 72°C for 5 minutes 

• Hold at 10°C. 

• Total volume in each well of the plate: 50 μL 

DNA Clean up: This step uses AMPure XP magnetic beads to purify the DNA library 

and remove short library fragments. After amplification the 96 well plate was centrifuged 

at 280 x g at 20°C for 1 min. A fraction of the PCR product (50 μl) from each well were 

transferred to a new midi plate. Next, 30 μL AMPure XP beads were added to each well 

and the plate sealed. The plate was shaken at 1800 rpm for 2 minutes and incubated at room 

temperature for 5 minutes. In order to separate the liquid phase from the beads, the plate 

was place on a magnetic stand for approximately 2 minutes until the liquid is clear. The 
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supernatant was removed and discarded; afterwards the beads containing the DNA were 

washed twice with 200 μl of fresh 80% ethanol and dried on the magnetic stand for 15 

minutes with no shaking in this step.   

The midi plate was removed from the magnetic stand, 52.5 μl of resuspension buffer 

added to each well and the sealed plate shaken at 1800 rpm for 2 minutes. After 2 minutes 

of incubation at room temperature the plate was placed again on the magnetic stand for the 

separation of magnetic beads. The supernatant from each well was collected in a new PCR 

plate for further analysis.  

 

Bioanalyzer analysis: In our process, 20 random samples of the cleaned-up libraries 

were selected for the Bioanalyzer analysis and all them showed good tagmentation with 

fragments sizes starting at 400 bp (average fragment sizes for our two set of samples were 

668 and 634.1 bp respectively). A typical example of the library size distributions of one 

of the 20 samples is shown in Figure 36. 
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Figure 36. Library size distribution 

 

 

 

Normalization and pooling: As a first step in the normalization procedure, Qubit 

assay is used to quantify (ng/ul) the cleaned-up DNA libraries. 

Calculation of molar concentration of the libraries: Based on the average size of 

fragments estimated from the bioanalyzer run and the DNA concentration (ng/l), 

nanomolarity (nM) of the libraries are calculated as: 

Peaks showing ten different fragments sizes as well as the concentration (pg/μl) 
of each peak are shown. High size fragments prevail confirming the quality of the 
sample for WGS. No overtagmentation is acceptable for sequencing. 
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nM = concentration (ng/ μL) * 1x106 μL/1L * bp mol/ 660 g * 1/Bioanalyzer average 

size 

After calculating the molarity, Illumina protocol gives options for manual or bead-

based normalization based on the DNA yield. It is recommended that when a library yield 

is less than 10-15 nM, normalization should be done manually. Our final library yield was 

diverse with concentrations between 1.7 to 23.2 nM; Hence, normalization needed to be 

done manually. Based on the yield, libraries can be normalized at four different 

concentrations: 4 nM, 2 nM, 1 nM or 0.5 nM. As our libraries had concentration as low as 

1.7, they were normalized to 1 nM in a 96-well PCR plate (Final volume per well =50 µl). 

All the necessary dilution calculations were done using Microsoft Excel program. A sample 

of the normalization calculations is shown in Table 5. 

After samples are normalized to the same concentration (1 nM); these were pooled 

together as follow: Using a multichannel pipette 5 μL were transfered from each well to 

the first row in a fresh 96 well plate. The entire pooled libraries combined in row A 1-12 

were transferred in a 0.5 ml tube. Final volume: 480 μL (5 μL x 96, or in this case 40 ul x 

12). 
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Table 5. Normalization of samples for Whole Genome Sequencing 

 

 

 

 

 

Orig. Conc. Conversion Final Conc. Final Vol. Vol of C1 Added Vol
Sample 
Name C1 (ng/uL) nM C2 (nM) V2 (uL) V1 (uL) 10mM Tris HCl (uL)
PG1 4.4 9.9 1.00 50.0 5.1 44.9
PG2 4.1 9.2 1.00 50.0 5.4 44.6
PG3 4.9 11.1 1.00 50.0 4.5 45.5
PG4 4.7 10.8 1.00 50.0 4.6 45.4
PG5 3.8 8.7 1.00 50.0 5.8 44.2
PG6 3.2 7.3 1.00 50.0 6.9 43.1
PG7 5.3 12.0 1.00 50.0 4.2 45.8
PG8 3.3 7.4 1.00 50.0 6.8 43.2
TA1 4.4 10.5 1.00 50.0 4.8 45.2
TA2 1.8 4.4 1.00 50.0 11.5 38.5
TA3 3.4 8.2 1.00 50.0 6.1 43.9
TA4 8.1 19.3 1.00 50.0 2.6 47.4
PG9 6.2 14.0 1.00 50.0 3.6 46.4

PG10 5.8 13.1 1.00 50.0 3.8 46.2
PG11 5.0 11.3 1.00 50.0 4.4 45.6
PG12 4.2 9.5 1.00 50.0 5.3 44.7
PG13 4.3 9.9 1.00 50.0 5.1 44.9
PG14 3.9 8.9 1.00 50.0 5.6 44.4
PG15 3.4 7.7 1.00 50.0 6.5 43.5
PG16 3.34 7.6 1.00 50.0 6.6 43.4
TA5 5.3 12.7 1.00 50.0 4.0 46.0
TA6 3.0 7.2 1.00 50.0 7.0 43.0
TA7 5.1 12.1 1.00 50.0 4.1 45.9
TA8 5.4 12.9 1.00 50.0 3.9 46.1

PG17 5.0 11.4 1.00 50.0 4.4 45.6
PG18 5.6 12.6 1.00 50.0 4.0 46.0
PG19 5.3 12.1 1.00 50.0 4.1 45.9
PG20 5.0 11.3 1.00 50.0 4.4 45.6
PG21 4.0 9.1 1.00 50.0 5.5 44.5
PG22 3.9 8.8 1.00 50.0 5.7 44.3
PG23 5.8 13.1 1.00 50.0 3.8 46.2
PG24 4.1 9.3 1.00 50.0 5.4 44.6
TA9 4.6 11.0 1.00 50.0 4.5 45.5

TA10 5.5 13.2 1.00 50.0 3.8 46.2
TA11 8.3 19.8 1.00 50.0 2.5 47.5
TA12 7.3 17.5 1.00 50.0 2.9 47.1
PG25 1.9 4.3 1.00 50.0 11.5 38.5
PG26 2.3 5.3 1.00 50.0 9.4 40.6
PG27 2.8 6.3 1.00 50.0 7.9 42.1
PG28 2.5 5.6 1.00 50.0 9.0 41.0
PG29 2.3 5.3 1.00 50.0 9.5 40.5
PG30 2.7 6.2 1.00 50.0 8.1 41.9
PG31 3.4 7.7 1.00 50.0 6.5 43.5
PG32 3.7 8.3 1.00 50.0 6.0 44.0
TA13 3.9 9.3 1.00 50.0 5.4 44.6
TA14 3.3 7.8 1.00 50.0 6.4 43.6
TA15 4.4 10.4 1.00 50.0 4.8 45.2
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Denaturation and Dilution of Libraries: steps followed here are based on Illumina’s 

NextSeq System Denature and Dilute libraries guide (Document # 15048776 v02, January 

2016). This protocol varies according to the concentration of normalized samples. Twenty 

microliters of the pooled libraries (1 nM) were combined with equal volume (20 μL) of 0.2 

N NaOH in a 1.5-ml centrifuge tube, vortexed, centrifugated at 280 x g for 1 min and 

incubated at room temperature for 5 minutes. Next, 20 μL of 200 mM Tris-HCl pH 7.0 

added to the library and vortexed briefly, centrifugated at 280 x g for 1 min. Pre-chilled 

HT1 (940 μL) was added to the 20 pM denatured library and another cycle of vortexing 

and centrifugation done. Finally, 450 μL were taken from the 20 pM library and added to 

150 μL of pre-chilled HT1 to obtain a 15 pM denatured library. Six microliters of the PhiX 

control were added to 594 μL of diluted (15 pM) library and the resultant mix loaded to the 

pre-thawed reagent cartridge associated with the MiSeq Reagent kit v3. 

 

 Sequencing and Data Analysis 

Illumina MiSeq® Next Generation Sequencer was used for WGS of all genomic DNA 

previously normalized and pooled together. The PhiX Control v3 library was used in the 

run. CLC genomics workbench 10 software (QIAGEN) was used for data analysis. M. 

smegmatis WT sequence from our laboratory was used as reference to all mutant sequences. 
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 Results  

 Growth inhibition of M. smegmatis and M. abscessus  

The MIC of FP-11g for M. smegmatis mc2 155 was found to be between 0.3-0.6 μM 

in multiple measurements.  For the clinical M. abscessus strain, the MIC was 50 μM, 

compared to Clarithromycin MIC of 0.7-1.56 μg/ml (1-2 μM).  IC50 for 50% growth 

inhibition of the M. abscessus strain was estimated to be 3-6 μM. 

 

 MICs for M. smegmatis pTA-M+ and pTA-nol strains 

The inhibitory effect of FP-11g was the same for both strains, MIC 0.3 μM.  

 

 Bactericidal activity of FP-11g 

FP-11g showed strong bactericidal activity against M. smegmatis. When M. smegmatis 

cells were exposed to 2X MIC of FP-11g the cell viability was diminished almost 5 Log 

after 48 hours of incubation. For higher concentrations such as 4X MIC and 8X MIC, 24 

hours were enough to diminish cell viability by more than 5 Log and the bactericidal effect 

was complete at 48 hours, based on re-inoculation of non-diluted cultures in fresh 

Middlebrook 7H9 ADN media (Figure 37). The effect on M. abscessus when cells were 

exposed to 2X MIC of FP-11g corresponded to a diminished in cell viability above 3 Log 

after 72 hours (                    Figure 38) Because of the relatively high MIC value for M. 

abscessus, higher concentrations were not tested in the survival assay.  
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Figure 37. Bactericidal effect of FP-11g for M. smegmatis  
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1X (0.31 μM), 2X (0.625 μM), 4X (1.25 μM) and 8X (2.5 μM) MIC of FP-
11g were tested to determine their bactericidal effect on M. smegmatis at 
different time points. FP-11g exhibited bactericidal effect even at 1X MIC, 
reaching complete killing at 4X MIC after 24 hours. 
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                    Figure 38. Bactericidal effect of FP-11g for M. abscessus 

 

 

 

 Isolation and verification of resistant mutants 

The mutation frequency for resistance to FP-11g at 8X (MIC) was estimated to be  

5x10-7.  Six M. smegmatis strains (PGM1 – PGM6, Table 6) isolated from stepwise increase 

of FP-11g concentrations were verified to be resistant to the compound by determination 

of MIC.  An increase in the resistance to moxifloxacin was also observed but the fold-

increase in moxifloxacin was significantly lower than the fold-increase for FP-11g MIC. 
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1X (50 μM) and 2X (100 μM) MIC of FP-11g were tested to determine their 
bactericidal effect on M. abscessus at different times points. M. abscessus 
strain grow slower than M. smegmatis strain, this is the reason for cell plating 
up to 72 hours 
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Table 6. FP-11g resistant mutants, resistance levels and cross-resistance to Moxifloxacin     

   

 
 Mutations identified in WGS 

The mutations found in each of the resistant strain are listed in Table 7.  Mutations in 

ten different genes were detected and associated with deletions, insertions or SNV (Single 

Nucleotide Variations) Table 8.   All the resistant strains have SNV on MSMEG_0965 gene 

(mspA), which codes for the major porin in M. smegmatis. This porin is important for the 

permeation of nutrients and antibiotics inside the cell. Previous studies showed that 

deletion of this gene in M. smegmatis resulted in a reduced permeability to drugs such as 

β-lactams, fluoroquinolones and chloramphenicol (Stahl, Kubetzko et al. 2001, Stephan, 

Mailaender et al. 2004, Stephan, Bender et al. 2005, Danilchanka, Pavlenok et al. 2008)  

The mspA gene is present in fast-growing mycobacterias only (including M. abscessus) and 

is not found in M. tuberculosis (Kartmann, Stenger et al. 1999, Niederweis, Ehrt et al. 

1999).  

The second most frequent mutations (in 3 out of 6 mutants) detected correspond to 

MSMEG_5623 and MSMEG_6430.  MSMEG_5623 gene codes for a L-carnitine 

dehydratase homolog of unknown function in M. smegmatis, with no homolog in M. 

  M. smegmatis 
Strain 

FP-11g 
concentration for 
mutant isolation  
X MIC (0.31 μM) 

 FP-11g 
MIC (μM) 

Fold-
increase in 
FP-11g MIC  

Moxifloxacin 
MIC (μg/ml) 

Fold-
increase in 
Moxifloxacin 
MIC 

WT N/A 0.31 N/A 0.08-0.16 N/A 

PGM1 8X → 16X  2.5 8X 0.16 2X 

PGM2 8X → 16X 5 16X 0.32 4X 

PGM3 4X → 10X 5 16X 0.32 4X 

PGM4 4X → 13X 10 32X 0.32 4X 

PGM5 4X → 16X 5 16X 0.32 4X 

PGM6 4X → 16X 5 16X 0.16 2X 
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tuberculosis according to Tuberculist (http://svitsrv8.epfl.ch/tuberculist/). However, using 

the blast tool it was determined that this L-carnitine dehydratase homolog from M. 

smegmatis has 32% identity when aligned with the L-carnitine dehydratase from M. 

tuberculosis (Rv3272), including Asp33 (conserved amino acid) that corresponds to the 

amino acid mutated in FP-11g resistant strains.  MSMEG_6430, also a common mutation 

detected, is classified as a membrane protein that may have diverse functions in the cells, 

such as transportation of molecules through the membrane or serving as receptors for 

chemical signals (Overington, Al-Lazikani et al. 2006, Adams, Worth et al. 2012).  

Mutation was also detected in MSMEG_2820 which also codes for an unknown integral 

membrane protein.  The mutations in the membrane proteins detected here may affect the 

transport of FP-11g across the membrane. 

The rest of mutations were detected at lower frequencies. MSMEG_1513 codes for 

a hypothetical protein with no homolog in M. tuberculosis and has been classified as an 

oxidoreductase.  The MSMEG_0241 (Rv0202c) codes for MmpL11 (mycobacteria 

membrane protein large), a protein that belongs to a family of transporters and contribute 

to the cell wall biosynthesis in mycobacteria (Delmar, Chou et al. 2015).  MmpL proteins 

family has been associated with drug resistance in M. abscessus and M. tuberculosis 

(Nessar, Cambau et al. 2012).  MSMEG_0240 (homolog of Rv0201c) does not have known 

function. 
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Table 7. Mutations identified in each FP-11g resistant mutant 

Strain 
ID Region Gene Type 

Nucleotide Amino acid Functional annotation 
in M. smegmatis Ref Allele Ref Allele 

PGM1 

270553^270554 MSMEG_0241 INS - C L fs MmpL11 protein. 
Function unknown 

1039173 MSMEG_0965 SNV T C L P Porin MspA 

6498888^6498889 MSMEG_6430 INS - C S fs 
Hypothetical protein.  

Function unknown. Integral 
component of membrane 

PGM2 

270553^270554 MSMEG_0241 INS - C L fs MmpL11 protein. 
Function unknown 

1039173 MSMEG_0965 SNV T C L P Porin MspA 
4715711^4715712 MSMEG_4629 INS - T   pseudogene 

6498888^6498889 MSMEG_6430 INS - C S fs 
Hypothetical protein.  

Function unknown. Integral 
component of membrane 

6498891^6498892 MSMEG_6430 INS - C D fs 
Hypothetical protein.  

Function unknown. Integral 
component of membrane 

6498895 MSMEG_6430 SNV G C S C 
Hypothetical protein.  

Function unknown. Integral 
component of membrane 

6498901 MSMEG_6430 SNV G T T K 
Hypothetical protein.  

Function unknown. Integral 
component of membrane 

PGM3 1013796 MSMEG_0933 DEL C - R fs 
Conserved 

hypothetical protein. 
Function unknown 
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1039098 MSMEG_0965 SNV C T T I Porin MspA 

2883459 MSMEG_2820 SNV T G I S 
Hypothetical protein. 

Function unknown. Integral 
component of membrane 

5707525 MSMEG_5623 SNV C A D Y 
L-carnitine 

dehydratase. Function 
unknown 

PGM4 

1039098 MSMEG_0965 SNV C T T I Porin MspA 

1604708 MSMEG_1513 SNV G C S C 
Conserved 

hypothetical protein. 
Function unknown. 

oxidoreductase activity 

PGM5 

269640^269641 MSMEG_0240 INS - A M fs 
Conserved 

hypothetical protein. 
Function unknown 

1039098 MSMEG_0965 SNV C T T I Porin MspA 

1604708 MSMEG_1513 SNV G C S C 
Conserved 

hypothetical protein. 
Function unknown. 

oxidoreductase activity 

5707525 MSMEG_5623 SNV C A D Y 
L-carnitine 

dehydratase. Function 
unknown 

PGM6 

1039098 MSMEG_0965 SNV C T T I Porin MspA 

3612348 MSMEG_3552 SNV C G E Q 
Conserved 

hypothetical protein. 
Function unknown 

5707525 MSMEG_5623 SNV C A D Y 
L-carnitine 

dehydratase. Function 
unknown 

6498888^6498889 MSMEG_6430 INS - C S fs 
Hypothetical protein.  

Function unknown. Integral 
component of membrane 
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Ref: reference; SNV: single nucleotide variation; INS: insertion; DEL: deletion; fs: frame shift 

 

 

 

 

 

 

\ 

 

 

6498891^6498892 MSMEG_6430 INS - C D fs 
Hypothetical protein.  

Function unknown. Integral 
component of membrane 

6498895 MSMEG_6430 SNV G C S C 
Hypothetical protein.  

Function unknown. Integral 
component of membrane 

6498898^6498899 MSMEG_6430 INS - T P fs 
Hypothetical protein.  

Function unknown. Integral 
component of membrane 

6498901 MSMEG_6430 SNV G T T K 
Hypothetical protein.  

Function unknown. Integral 
component of membrane 
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Table 8. Summary of mutations associated with FP-11g resistance in M. smegmatis 

Gene Homolog 
in Mtb Region Freq Type 

Nucleotide Amino acid Functional annotation 
in M. smegmatis 

Functional annotation 
in M. tuberculosis Ref Allele Ref Allele 

MSMEG_0965 No 1039098 4 SNV C T T I Porin MspA N/A 
MSMEG_0965 No 1039173 2 SNV T C L P Porin MspA N/A 

MSMEG_2820 No 2883459 1 SNV T G I S 
Hypothetical protein. 
Function unknown. 

Integral component of 
membrane 

N/A 

MSMEG_6430 No 6498888^6498889 3 INS - C S fs 
Hypothetical protein.  
Function unknown. 

Integral component of 
membrane 

N/A 

MSMEG_6430 No 6498891^6498892 2 INS - C D fs 
Hypothetical protein.  
Function unknown. 

Integral component of 
membrane 

N/A 

MSMEG_6430 No 6498895 2 SNV G C S C 
Hypothetical protein.  
Function unknown. 

Integral component of 
membrane 

N/A 

MSMEG_6430 No 6498898^6498899 1 INS - T P fs 
Hypothetical protein.  
Function unknown. 

Integral component of 
membrane 

N/A 

MSMEG_6430 No 6498901 2 SNV G T T K Hypothetical protein.  
Function unknown. N/A 
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Integral component of 
membrane 

MSMEG_0241 Rv0202c 270553^270554 2 INS - C L fs MmpL11 protein. 
Function unknown 

unknown/cell wall and 
cellular processes 

MSMEG_5623 No 5707525 3 SNV C A D Y L-carnitine dehydratase. 
Function unknown N/A 

MSMEG_0933 Rv0486 1013796 1 DEL C - R fs 
Conserved hypothetical 

protein. Function 
unknown 

mshA gene: 
Glycosyltransferase 

MSMEG_0240 Rv0201c 269640^269641 1 INS - A M fs 
Conserved hypothetical 

protein. Function 
unknown 

conserved hypothetical 
/unknown 

MSMEG_1513 No 1604708 2 SNV G C S C 
Conserved hypothetical 

protein. Function 
unknown. 

oxidoreductase activity 
N/A 

MSMEG_4629  4715711^4715712 1 INS - T   pseudogene N/A 

MSMEG_3552 No 3612348 1 SNV C G E Q 
Conserved hypothetical 

protein. Function 
unknown 

N/A 

Freq: frequency; SNV: single nucleotide variation; INS: insertion; DEL: Deletion; Ref: reference; fs: frame shift 
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5. Discussion 

In previous studies, the FP-11g compound has been proposed as an antimycobacterial 

agent active against M. tuberculosis (MIC = 2.5 µM) (Yu, Zhang et al. 2017). In this project 

activity against the pathogenic non-tuberculosis mycobacteria (NTM) M. abscessus has 

been demonstrated as well. Compounds active against both species would be useful in 

clinical settings since in some cases the symptoms and clinical manifestations of infections 

caused by these two organisms are undifferentiable, consequently empiric treatment is 

required. Additionally, patients suffering cystic fibrosis or other immunosuppressive 

condition can be infected by different organisms at the same time. In fact, co-infections 

with M. abscessus and M. tuberculosis have been reported (Ishiekwene, Subran et al. 2017, 

Sohn, Wang et al. 2017).  The strong bactericidal effect against M. smegmatis make this 

compound and its potential derivatives worthy of future studies for its use as an anti-

mycobacterial agent. The finding of the growth inhibitory effect of FP-11g on M. abscessus 

is encouraging because of the lack of response of NTM clinical strains and subspecies of 

M. abscessus to all of the current antibiotics.  

No specific mutations found in FP-11g M. smegmatis resistant mutants could be 

definitiviely associated with the mechanism of action of this compound, but all of them 

may play a role in drug resistance. Experiments in M. tuberculosis has shown that 

expression of MspA porin promotes not only cell growth but also antibiotic susceptibility 

(Mailaender, Reiling et al. 2004). No porin genes has been identified in M. tuberculosis 

but some studies suggest the presence of these structures in this organism (Kartmann, 

Stenger et al. 1999). The mutation in MspA porin is likely to be the first mechanism of 

resistance developed by the cells, and hence the common mutation found. Changes in the 
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porin may interrupt the drug transportation into the cell and support cell survival.).  Since 

this porin is found in fast growing mycobacteria, it would be of significance in the treatment 

of atypical pathogenic mycobacteria including Mycobacterium abscessus studied here 

(Cavalli, Reynaud et al. 2017).  

Characterization of integral membrane proteins has been always a challenge due to 

the difficulty for the expression, solubility and crystallization of these proteins. Most of the 

information have been obtained through computational approaches, which predict the 

structural conformation of a protein based on the primary sequence and classify the 

different types of transmembrane proteins (Korepanova, Gao et al. 2005, Ding, Yuan et al. 

2012).  Transmembrane proteins could be associated with mechanisms of resistance to 

drugs that are not targeting them directly. Integral component of membrane are channels 

through the cellular membrane that transport amino acids, lipids, coenzymes, 

carbohydrates, nucleotides and other metabolites (He and De Buck 2010).  Mutations in 

integral membrane proteins detected here may affect drug transportation through the 

membrane. As mentioned before, any variation in channels that transport molecules 

through the cell wall will affect the intake of molecules including drugs and metabolites. 

These integral components of membrane could also be non-characterized efflux pumps that 

may be extruding the drug from the organism and support the drug resistance.   

In this study we detected the MmpL11 mutation in two resistant mutants. Previous 

studies with M. tuberculosis strains containing  mutations in MmpL proteins showed that 

all the mutant strains retained general drug susceptibility to diverse antibacterial agents; 

suggesting that MmpL proteins do not play a direct role in drug resistance (Domenech, 

Reed et al. 2005). Nonetheless, recent studies have divided the MmpL family from M. 

tuberculosis in two subgroups hydrophobe/amphiphile efflux (HAE) family that includes 
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member of the MmpL family that transport fatty acids and the RND transporters 

superfamily which include members of MmpL family associated with antibiotic efflux 

(Sandhu and Akhter 2015). In M. abscessus, MmpL has been associated with drug 

resistance through efflux pumps (Strnad and Winthrop 2018). Additionally, mutations on 

MmpL11 proteins has been associated to impairment of biofilm formation in M. smegmatis 

and absence of this gene has generated a reduced permeability to host antimicrobial agents 

(Purdy, Niederweis et al. 2009, Pacheco, Hsu et al. 2013), which is an evidence that this 

mutation may be playing a role in drug resistance.    

Absence of mutations in topA gene in the resistant mutants isolated may be because 

FP-11g acts as an unconventional catalytic inhibitor. These types of inhibitors are described 

as compound that binds to the DNA as well as to the topoisomerase enzyme to inhibits the 

topoisomerase activity (Akerman, Fagenson et al. 2014). Mutation that affect the essential 

activity of topoisomerase I could compromise cell growth to a significant extent and would 

less likely be selected for resistance than the mutations detected here that can limit 

compound transport into the cell. Further studies are required to identify other analogs 

FP11-g that can be confirmed more definitely as targeting topoisomerase I activity in its 

antimycobacterial mechanism of action.
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