
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-5-2018

A Method and Tool for Finding Concurrency Bugs Involving A Method and Tool for Finding Concurrency Bugs Involving

Multiple Variables with Application to Modern Distributed Multiple Variables with Application to Modern Distributed

Systems Systems

Zhuo Sun
Florida International University, zsun003@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Software Engineering Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Sun, Zhuo, "A Method and Tool for Finding Concurrency Bugs Involving Multiple Variables with Application
to Modern Distributed Systems" (2018). FIU Electronic Theses and Dissertations. 3896.
https://digitalcommons.fiu.edu/etd/3896

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.fiu.edu%2Fetd%2F3896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.fiu.edu%2Fetd%2F3896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3896?utm_source=digitalcommons.fiu.edu%2Fetd%2F3896&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A METHOD AND TOOL FOR FINDING CONCURRENCY BUGS INVOLVING

MULTIPLE VARIABLES WITH APPLICATION TO MODERN DISTRIBUTED

SYSTEMS

A dissertation submitted in partial ful�llment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Zhuo Sun

2018

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Zhuo Sun, and entitled A Method and Tool for Finding
Concurrency Bugs Involving Multiple Variables with Application to Modern Dis-
tributed Systems, having been approved in respect to style and intellectual content,
is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Shu-Ching Chen

Peter J. Clarke

Ning Xie

Armando Barreto

Xudong He, Major Professor

Date of Defense: November 5, 2018

The dissertation of Zhuo Sun is approved.

Dean John L. Volakis
College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2018

ii

c© Copyright 2018 by Zhuo Sun

All rights reserved.

iii

DEDICATION

To my parents, my husband and my daughter.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Xudong He, who o�ered invaluable advice

and patience throughout my Ph.D study at Florida International University. I

cannot ask for a better advisor.

I would also like to thank all my committee members for taking their time to serve

on the committee and provide feedback for my dissertation work.

v

ABSTRACT OF THE DISSERTATION

A METHOD AND TOOL FOR FINDING CONCURRENCY BUGS INVOLVING

MULTIPLE VARIABLES WITH APPLICATION TO MODERN DISTRIBUTED

SYSTEMS

by

Zhuo Sun

Florida International University, 2018

Miami, Florida

Professor Xudong He, Major Professor

Concurrency bugs are extremely hard to detect due to huge interleaving space.

They are happening in the real world more often because of the prevalence of multi-

threaded programs taking advantage of multi-core hardware, and microservice based

distributed systems moving more and more applications to the cloud. As the most

common non-deadlock concurrency bugs, atomicity violations are studied in many

recent works, however, those methods are applicable only to single-variable atomicity

violation, and don't consider the speci�c challenge in distributed systems that have

both pessimistic and optimistic concurrency control.

This dissertation presents a tool using model checking to predict atomicity vi-

olation concurrency bugs involving two shared variables or shared resources. We

developed a unique method inferring correlation between shared variables in multi-

threaded programs and shared resources in microservice based distributed systems,

that is based on dynamic analysis and is able to detect the correlation that would

be missed by static analysis. For multi-threaded programs, we use a binary instru-

mentation tool to capture runtime information about shared variables and synchro-

nization events, and for microservice based distributed systems, we use a web proxy

to capture HTTP based tra�c about API calls and the shared resources they access

vi

including distributed locks. Based on the detected correlation and runtime trace,

the tool is powerful and can explore a vast interleaving space of a multi-threaded

program or a microservice based distributed system given a small set of captured

test runs. It is applicable to large real-world systems and can predict atomicity vi-

olations missed by other related works for multi-threaded programs and a couple of

previous unknown atomicity violation in real world open source microservice based

systems. A limitation is that redundant model checking may be performed if two

recorded interleaved traces yield the same partial order model.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 1
1.2 Research Problem . 2
1.3 Contributions . 3
1.4 Chapter Organization . 4

2. BACKGROUND . 5
2.1 Linear Time Temporal Logic . 5
2.2 Model Checking . 7
2.3 Spin Model Checker . 10
2.4 High Level Petri Nets . 13

3. PREDICTING MULTI-VARIABLE ATOMICITY VIOLATION 17
3.1 Introduction . 17
3.2 Motivation . 18
3.3 Predicting Single Variable Atomicity Violation 21
3.3.1 Description of the Partial Order Thread Model 22
3.3.2 Implementation of the Partial Order Thread Model 24
3.3.3 Three-access Atomicity Violation . 24
3.4 Variable Correlation Analysis . 27
3.5 Algorithm to Infer Access Correlation from a Single Trace 28
3.5.1 Memory Access Correlation Table . 28
3.5.2 Recommendation of Possible Access Correlation 29
3.6 Algorithm to Infer Access Correlation from Multiple Traces 29
3.6.1 Global Variables . 31
3.6.2 Variables Dynamically Allocated in the Heap 31
3.7 Serializability of Two-Variable Two-Thread Interleavings 31
3.8 Predict Two-Variable Atomicity Violation 32
3.8.1 McPatom-MV1: Use Existing McPatom with Patterns of Single Vari-

able Atomicity Violation . 33
3.8.2 McPatom-MV2: Extend McPatom with Patterns of Two Variables

Atomicity Violation . 35
3.8.2.1 Patterns of Two-thread Atomicity Violations involving Two Variables 35
3.8.2.2 Automatically Encoding Traces to Promela Code 38
3.8.2.3 Automatically Encoding Atomicity Violation Patterns into Linear

Time Temporal Logic (LTL) Formulas 39
3.9 Evaluation . 42
3.9.1 Variable Correlation Analysis . 43
3.9.2 Two-Variable Atomicity Violation Detection 43
3.10 Related Works . 45

viii

3.10.1 MUVI . 45
3.10.2 Generation of Unit Tests for Correlated Variables 47
3.10.3 ColorSafe . 48
3.10.4 UNICORN . 48
3.11 Summary . 49

4. ATOMICITY VIOLATION IN DISTRIBUTED SYSTEMS 51
4.1 Introduction . 51
4.2 Motivation . 52
4.3 Background - Data Consistency and Data Access in Distributed Systems 55
4.3.1 ACID of Traditional Relational Database 57
4.3.2 CAP Theorem . 57
4.3.3 Consistency Types . 58
4.3.4 Data Access via HTTP based API calls 59
4.3.5 Distributed Locks - Pessimistic Concurrency Control 59
4.3.6 Write-with-Version - Optimistic Concurrency Control 60
4.4 Predict Atomicity Violation in Distributed Systems 61
4.4.1 Overview of Our Method . 61
4.4.2 Tracing the Execution of Microservices 63
4.4.3 De�ning and Encoding Unserializable Interleaving Patterns between

Two Processes . 64
4.4.3.1 Unserializable Interleaving Patterns with Single Resource Involved . 66
4.4.3.2 Unserializable Interleaving Patterns with Multiple Resources Involved 68
4.4.4 Analyzing the Trace . 68
4.4.4.1 Description of the Partial Order Process Model 68
4.4.4.2 Automatically Encoding Traces to Promela Code 70
4.4.4.3 Automatically Encoding Atomicity Violation Patterns into Linear

Time Temporal Logic (LTL) Formulas 71
4.4.4.4 Automatically Build a Petri Net Model From Predicted Trace 72
4.5 Evaluation . 75
4.5.1 HospitalRun: an open source electronic medical record system 75
4.5.2 Google Cloud Storage FUSE: A user-space �le system for interacting

with Google Cloud Storage . 80
4.6 Related Works . 85
4.7 Summary . 86

5. CONCLUSION . 88
5.1 Summary . 88
5.2 Future Work . 89

BIBLIOGRAPHY . 90

PUBLICATIONS BY ZHUO SUN . 97

ix

VITA . 99

x

LIST OF TABLES

TABLE PAGE

3.1 Atomicity violation bugs with multiple variables involved 44

xi

LIST OF FIGURES

FIGURE PAGE

2.1 Intuition for the main LTL operators . 8

2.2 Promela Code Modeling Mutex Locks 12

2.3 A Sample of Partial Promela Code . 12

2.4 Dining Philosophers Problem in PrT nets 16

3.1 Mozilla bug 1 . 19

3.2 Mozilla bug 2 . 20

3.3 MySQL bug . 21

3.4 A Sample of a Partial Trace (The format of each line: thread handle,
unix epoch timestamp, �le name - line number, action) 25

3.5 Con�ict graph for a single-variable two-thread interleaving 26

3.6 Unserializable Interleavings with two threads. In (1)(2)(3)(5), W in
Thread 2 unexpectedly changes the value; In (4), An intermediate
value in Thread 1 is read by Thread 2. 26

3.7 Overview of the method predicting atomicity violations 34

3.8 Comparison of methods about coverage of atomicity violation 35

3.9 Unserializable Interleavings with two variables and two threads. 36

3.10 All Interleaving Forms of Two Variables and Two Threads 38

3.11 A Sample of Partial Promela Code . 40

3.12 Atomicity Violation in MySQL-169 . 45

3.13 Examples of Experiment Result . 46

4.1 Overview of the Method for Distributed Systems 63

4.2 An Example of Trace . 64

4.3 An Example of Trace With Locks . 65

4.4 An Example of Trace for Write-with-Version 65

4.5 The Interleaving Pattern of Write-with-Version 66

xii

4.6 Unserializable Interleavings with two processes. In (1)(2)(3)(5), W in
Process 2 unexpectedly changes the value; In (4), An intermediate
value in Process 1 is read by Process 2. (3) is the pattern to recognize
write-with-version as valid concurrency control, by making sure there
is no writing returning con�ict beforehand, marked asW409 since 409
is the HTTP status code for con�ict. Other accesses marked R200 and
W200 mean read with success and write with success correspondingly. 67

4.7 A Sample of Partial Promela Code . 71

4.8 Petri Net Modeling Method Overview 74

4.9 An Example of Petri Net Model . 74

4.10 An Example of Petri Net Model With Atomic Transitions 75

4.11 A Sample of Partial Trace . 77

4.12 Screenshot when reproducing the predicted atomicity violation 78

4.13 Partial Promela Code of the HospitalRun trace 79

4.14 Petri net model for the predicted atomicity violation 81

4.15 Examples of Google Cloud Storage JSON API 81

4.16 A Sample of Partial Trace of GCS-FUSE 83

4.17 Partial Promela Code of the GCS-FUSE trace 84

4.18 Petri net model for the predicted atomicity violation 85

xiii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Multi-core hardware is a growing industry trend, for both high performance servers

and low power mobile devices. Multi-threaded programs can exploit multi-core

processors at their full potential. In the real world, most servers and high-end

critical software are multi-threaded. Unfortunately, multi-threaded programs are

prone to bugs due to the inherent complexity caused by concurrency. It is di�cult

to detect concurrency bugs due to the huge number of possible interleavings. Many

concurrency bugs escape from testing into software releases and cause some of the

most serious computer-related accidents in history, including a blackout leaving tens

of millions of people without electricity [1].

Among di�erent types of concurrency bugs, atomicity violation bugs are the most

common ones. Atomicity violation bugs are caused by violations to the atomicity of

certain code regions without proper synchronization. They widely exist in real world

systems and contributed to about 70% of the examined non-deadlock concurrency

bugs [2]. Therefore, techniques for detecting atomicity violation bugs are extremely

important.

Studies in recent years have been focusing on single-variable atomicity violation.

However, those methods are unable to predict or �nd atomicity violations with

multiple variables involved. Many variables are inherently correlated and need to

be accessed together with their correlated peers in a consistent manner [3]. These

variables need to be either updated together or accessed together to avoid multi-

variable atomicity violation.

1

Beyond the concurrency bugs in multi-threaded systems, there are concurrency

bugs in distributed systems. With more and more large-scale distributed systems,

there are billions of end users relying on the correctness of the distributed systems.

More than 60% of distributed concurrency bugs are triggered by a single untimely

message delivery that commits order violation or atomicity violation [4].

1.2 Research Problem

Atomicity is a semantic correctness property for concurrent programs. When proper

synchronization is missing to enforce atomicity, atomicity violation bugs may occur,

also known as unserializable interleavings that are not equivalent to a serial exe-

cution. For the case with a single shared variable involved, whether a two-thread

interleaving is equivalent to a serial execution can be determined by checking if its

con�ict graph is acyclic [5].

Most concurrency bugs involve two threads, instead of a large number of threads,

based on the study in [6], in which 101 out of 105 bugs involved only two threads.

Thus atomicity violation bugs in a multi-threaded program can be explored through

every pair of threads. McPatom [7] is inspired by the works in [2][8], which addressed

a special case of unserializable interleavings with three accesses of the same shared

variable.

Existing atomicity violation detection tools mostly focus on the bugs that have

a single variable involved. The tools study the accesses to the same shared variable.

But the atomicity violation bugs caused by unserializable accesses to multiple shared

variables actually contribute signi�cantly to the existing known ones [3].

Multiple variable atomicity can be achieved by ensuring the atomicity of each

pair of shared variables. So in the sequel, we focus on two-variable atomicity. For

2

the case with two shared variables involved, a method is desired to check if the

two variables are correlated and determine whether a two-thread interleaving is

equivalent to a serial execution, that is the problem to discuss in this work.

Predicting atomicity violation for distributed system is also challenging due to its

complex non-deterministic nature that involve single resource or multiple resources,

and the existence of both pessimistic and optimistic concurrency control.

1.3 Contributions

The typical software development process relies on software testing for quality as-

surance, but testing cannot ensure every possible scenario is covered. In concurrent

systems, it is even more di�cult if not impossible to test every feasible thread inter-

leavings due to non-determinism, making concurrency bugs the most troublesome

in all types of software bugs. This frustrates both testing and reproduction for bug

diagnosis. Many variables are inherently correlated and need to be accessed together

with their correlated peers in a consistent manner [3], that makes it even more chal-

lenging when the correlated variables are involved in an atomicity violation. Tools

to automatically predict multi-variable atomicity violation would save cost in soft-

ware testing, and even more by avoiding it in production. This dissertation predicts

a class of atomicity violation that the existing tools are not able to detect. The

contribution of this work is as follows:

1. This dissertation presents a method to infer access correlation from an instru-

mented interleaved trace that only records events related to atomicity viola-

tions. Such an interleaved trace is much smaller than the program behavior in

a complete execution. Furthermore, the extracted model and inferred access

correlation enable the checking of all alternative traces with the same causal

3

relationships as the interleaved trace with multiple variables or multiple re-

sources involved.

2. This dissertation proposes a complete set of the patterns of unserializable in-

terleavings involving two threads or processes (most concurrency bugs involve

only two threads [6]) containing any number of accesses to multiple shared

variable or resources. These patterns generalize and cover the three accesses

proposed in [2][8]. These atomicity violation patterns become property speci-

�cations to be checked.

3. This dissertation o�ers a unique prediction tool, for detecting multi-variable

atomicity violation bugs through model checking for both multi-threaded pro-

grams and microservice based distributed systems.

4. This dissertation reports a couple of previous unknown atomicity violations in

real world open source microservice based systems.

1.4 Chapter Organization

The remainder of this dissertation is organized as follows. Chapter 2 discusses

the background and how it is related to this work. Chapter 3 presents our work

in predicting multi-variable atomicity violations, based on access correlation be-

tween variables and atomicity violation pattern of variable accesses. Chapter 4

discusses atomicity violations in microservice based distributed systems and the

methods to predict atomicity violations, by applying what was learned from Chap-

ter 3 and studying the di�erence in distributed systems while there are similarities

between protecting shared variables in multi-threaded programs and shared data in

distributed systems that run on multiple processes or multiple machines. Chapter

5 concludes the work.

4

CHAPTER 2

BACKGROUND

This chapter discusses the background related to the research work in this dis-

sertation. Model checking is a method for formally verifying �nite-state concurrent

systems against the speci�cations of the systems which are expressed as temporal

logic formulas. E�cient symbolic algorithms are developed to traverse the model of

the system and check if the speci�cation of the system holds or not.

2.1 Linear Time Temporal Logic

Linear Time Temporal Logic (LTL) formula, proposed in [9], can be used to express

both safety and liveness properties, by encoding about the future of paths. Linear

Temporal Logic is an in�nite sequence of states where each state in time has a

unique successor based on a linear time perspective. A system satis�es the LTL

formula if and only if the formula holds for all paths of the system. An LTL formula

f may contain any lowercase propositional symbol p from a �nite set of propositions

P , combined with unary or binary, boolean and/or temporal operators, using the

grammar shown in the Formula 2.1, Formula 2.2 and Formula 2.3 [10].

f ::=p (2.1)

|true

|false

|(f)

|f binop f

|unop f

5

unop ::=� (always) (2.2)

|♦ (eventually)

|! (logic negation)

binop ::=U (strong until) (2.3)

|X (next)

|&& (logical and)

||| (logical or)

| ⇒ (implication)

| ⇔ (equivalence)

Figure 2.1 illustrates the intuition behind the main LTL operators in the Formula

2.1. An interpretation for a LTL formula is an in�nite word ξ = x0x1... over the

alphabet 2P , i.e. a mapping from the naturals to 2P [11]. The elements of 2P are

interpreted as assigning truth values to the elements of P : elements in the set are

assigned true, elements not in the set are assigned false. We write ξi for the su�x

of ξ starting at xi. The semantics of LTL is then shown in the following.

1. ξ |= q i� q ∈ x0, for q ∈ P , that means q holds at the current state.

2. ξ |= ¬ϕ i� not ξ |= ϕ, that means ϕ doesn't hold at the current state.

3. ξ |= ϕ ∧ ψ i� ξ |= ϕ and ξ |= ψ, that means both ϕ and ψ hold at the current

state.

4. ξ |= ϕ ∨ ψ i� ξ |= ϕ or ξ |= ψ, that means either ϕ or ψ hold at the current

state.

6

5. ξ |= Xϕ i� ξ1 |= ϕ, that means ϕ holds at the next state.

6. ξ |= ϕ ∪ ψ i� there is an i ≥ 0 such that ξi |= ψ and ξj |= ϕ for all 0 ≤ j < i,

that means ϕ holds at least until ψ which holds at the current or a future

state.

7. ξ |= �ϕ i� ξi |= ϕ for all i ≥ 0, that means ϕ holds at the entire subsequent

path,

8. ξ |= ♦ϕ i� there is an i ≥ 0 such that ξi |= ϕ, that means ϕ eventually holds

at a state in the subsequent path,

LTL formulas can specify both safety and liveness, where safety means something

�bad� will never happen and liveness means something �good� will happen. For

example, no violation of mutual exclusion is a safety property, can be speci�ed as

�(¬inCSA ∨ ¬inCSB) for a pair of threads A and B where inCS means in critical

sections. And starvation freedom is an example of livenss, whenever process A

wants to enter the critical section, provided process B never stays in the critical

section forever, A gets to enter eventually. Starvation freedom can be speci�ed as

�♦(B = InCS ⇒ X(B = OutCS))⇒ �(A = RequestCS ⇒ ♦(A = InCS)).

2.2 Model Checking

Almost all computing systems involve asynchronous concurrency, in the form of

threads or message passing. The design and analysis of concurrent systems has

proved to be one of the most vexing practical problems in computer science [12].

The di�culty is largely caused by the �interleavings� problem. That is, the developer

of a concurrent system faces with the huge number of possible orderings of actions

that can be generated by independent processes or threads, which causes errors

7

Figure 2.1: Intuition for the main LTL operators

that are hard to reproduce. The errors might not manifest frequently but they

make systems unacceptably unreliable. Model checking is one possible solution to

the problem.

Edmund M. Clarke de�nes model checking as follows in the book [13]. Let AP

be a set of atomic propositions. A Kripke structure M over AP is a four tuple

M = (S, S0, R, L) where

1. S is a �nite set of states.

2. S0 ⊆ S is the set of initial states, and can be omitted when we are not

concerned with the set of initial states S0.

3. R ⊆ S × S is a transition relation that must be total, that is, for every state

s ∈ S there is a state s′ ∈ S such that R(s, s′).

4. L : S → 2AP is a function that labels each state with the set of atomic

propositions true in that state.

8

Given a Kripke structure M = (S,R, L) that represents a �nite-state concur-

rent system and a temporal logic formula f expressing some desired speci�cation,

the model checking problem is to �nd the set of all states in S that satisfy f :

{s ∈ S | M, s |= f}

Ken McMillan de�ned the model checking in the foreword of [12]:�Model checking

is a fully automated veri�cation technique that constructs a graph representing all

possible states of the system and the transitions between them. This state graph

can be thought of as a �nite folding of an in�nite computation tree containing all

possible executions of the system. Using the state graph, we can de�nitively answer

questions about the system's behavior posed in temporal logic, a specialized notation

for specifying systems that evolve in time.�

Unfortunately, because the �computation tree� explicitly represents all possible

interleavings of concurrent executions, the size of the state graph is huge even for

simple systems, that is the well known state explosion problem [14]. Partial order

methods have been proposed and developed to address the state explosion problems

in many research works, such as [15][16] and unfolding approaches [17] [12]. What's

more, [18] combines the partial order methods with on-the-�y model checking [19,

20].

In this dissertation based on traces of accesses of shared variable or resources,

although the total number of possible interleavings to check can explode quickly as

the number of accesses increase, however, the number of actual interleavings are

drastically smaller due to the constraints imposed by happen-before relationships

between threads. Another way to vastly reduce the possible interleavings is to reduce

number of variables to check, in this dissertation we take advantage of the nature of

atomicity violations and considers only a pair of threads or processes and accesses

to a single or two shared variables or resources at one time, groups all reading

9

event sequences in each thread or process into atomic blocks to achieve partial order

reductions.

2.3 Spin Model Checker

Spin model checker [10] uses the combination of partial order methods with on-

the-�y model checking [18] to reduce the number of reachable states that must be

explored to complete a veri�cation.

SPIN takes design speci�cations written in the veri�cation language Promela

(a Process Meta Language) [21] as models to check, and it takes correctness claims

speci�ed in the syntax of standard Linear Temporal Logic (LTL) [9] as the properties

to verify. The speci�cation of a concurrent system in PROMELA consists of one

or more user-de�ned process templates, or proctype de�nitions, and at least one

process instantiation, in which the process can represent threads in multi-threaded

programs or machines in distributed systems. The process templates de�ne the

behavior of processes.

In Promela programs, (1) the execution of every statement is conditional on its

executability. Statements are either executable or blocked. The executability is

the basic means of synchronization. A process can wait for an event to happen by

waiting for a statement to become executable. A condition can only be executed

(passed) when it holds. If the condition does not hold, execution blocks until it

does. (2) Variables are used to store either global information about the system as

a whole, or information local to one speci�c process, depending on where the decla-

ration for the variable is placed. Variables can be declared as arrays, for example,

short locked[N] declares an array of N short. (3) The state of a variable can only be

changed or inspected by processes. The behavior of a process is de�ned in a proc-

10

type declaration. (4) A proctype de�nition only declares process behavior, it does

not execute it. Initially just one process will be executed: a process of type init, that

must be declared explicitly in every Promela speci�cation, to instantiate processes.

(5) By pre�xing a sequence of statements enclosed in curly braces with the keyword

atomic it is indicated that the sequence is to be executed as one indivisible unit,

non-interleaved with any other processes. (6) The selection structure using keyword

if and fi contains multiple execution sequences, each preceded by a double colon.

Only one sequence from the list will be executed. A sequence can be selected only

if its �rst statement is executable. The �rst statement is therefore called a guard.

If more than one guard is executable, one of the corresponding sequences is selected

nondeterministically. If all guards are unexecutable the process will block until at

least one of them can be selected.

In this dissertation we automatically generate Promela code for all synchroniza-

tion primitives [7]. We present Promela code for mutex locks as an example. We

model synchronization events to capture the happen-before relationships between

threads, to prune infeasible interleavings. The Promela code shown in Figure 2.2

models the POSIX Thread routines pthread_mutex_lock and pthread_mutex_unlock.

The atomic construct groups indivisible statements together to ensure no interleav-

ing within an atomic sequence. Lock inline function accepts a lock l as its argument.

If lock l is not locked, Lock function locks it and sets the owner to the thread that

is the prede�ned variable _pid for the executing process in Promela. If lock l is in

locked status, no guards are executable so that the thread is blocked until lock l is

available according to Promela semantics. Unlock inline function simply sets lock

l to unlocked status. It is exactly what is required to model locking and unlocking

of a mutex lock. Figure 2.3 gives an example of proctype that is used to simulate a

thread or a process.

11

Figure 2.2: Promela Code Modeling Mutex Locks

#define NUM_LOCKS 100

short locked[NUM_LOCKS] = -1;

inline Lock(l) {

if

:: atomic {(locked[l] == -1) -> locked[l] = _pid}

fi;

}

inline Unlock(l) {

assert(locked[l] == _pid);

locked[l] = -1;

}

Figure 2.3: A Sample of Partial Promela Code

proctype t1()

{

...

}

proctype t2()

{

...

}

init

{

run t1();

run t2();

...

}

12

SPIN essentially is a model checker generator. It takes models in PROMELA

and properties in LTL as inputs to generate a model checker, the generated model

checker search through the states to give counter examples for the LTL properties.

The counter examples can be used to drive simulation and presentation, in the

context of this dissertation, of predicted atomicity violation as shown in Chapter 3

and Chapter 4.

2.4 High Level Petri Nets

Petri nets, developed in early 1960s by Carl Adam Petri, are a data driven for-

mal model for modeling the control structure and dependency of concurrent and

distributed systems [22]. A Petri net is de�ned by a net structure N = (P, T, F),

where P is a �nite set of places represented by circles, T is a �nite set of transitions

represented by bars or boxes and F is the set of directed arcs F ⊆ P × T ∪ T ×P .

Places represent system states; transitions represent state transitions; and directed

arcs represent the control �ows and dependencies between states.

High level Petri nets (HLPNs) generalize the original Petri nets with data de�-

nition and processing capabilities: (1) each place needs to have a data type from a

domain of Types, (2) each arc needs to have a label from a domain of Labels, (3)

each transition needs to have a logic formula from a domain of Formulas de�ning

the precondition and post-condition of a transition �ring, and (4) each place is empty

or contain some initial tokens from a domain of Tokens as initial states. The above

static semantic domains are traditionally de�ned using an algebraic speci�cation

Σ = (S,Op,Eq) with a family of sorts (types) S and the associated operations Op,

and a set of equations Eq de�ning the meaning of the operations. In the context of

this dissertation we use a simpli�ed de�nition of a type of HLPNs called predicate

13

transition (PrT) nets [23]. The static semantics of a PrT net is de�ned using the

following mappings:

1. ϕ : P → Types associates each place p in P with a type in Types. In a PrT

net, places are often called predicates to highlight their roles as in predicate

logic.

2. L : F → Labels is a sort-respecting labeling of arcs. We use the following

abbreviation in the sequel: L̄(x, y) = L(x, y) if (x, y) ∈ F, or Ø otherwise;

3. R : T → Formulas is a well-de�ned constraining mapping, which associates

each transition t in T with a �rst order logic formula de�ning the meaning of

the transition.

4. M0 : P → Tokens is a sort-respecting initial marking which assigns a set of

tokens to each place p in P .

Based on the above de�nitions, a PrT net is de�ned as PN = (P, T, F,Σ, ϕ, L,R,M0).

A PrT net is executable and its dynamic semantics is de�ned on markings and tran-

sition �rings. Markings of a PrT net PN are mappings M : P → Tokens and

denotes the states of PN . Given a markingM , a transition t ∈ T is enabled if there

is a token substitution α of variables on the incoming arcs and in the constraint for-

mula satisfying: ∀p : p ∈ P.(L̄(p, t) : α) ⊆ M(p)) ∧ R(t) : α. An enabled transition

t under marking M with substitution α can �re and results in a new marking M ′

de�ned by M ′(p) = M(p)− L̄(p, t) : α for p ∈ P , which is denoted as M [t/α > M ′.

As in low level Petri nets, two enabled transitions may �re at the same time as long

as they are not in con�ict by �ring one transition disable another transition. An

execution sequence, E = M0[t0/α0 > M1[t1/α1 > ... > Mn[tn/αn > ..., of PN starts

from the initial marking and contains successive execution steps Ti of non-con�ict

transition �rings. The behavior of PN is the set of all E.

14

Taking dining philosophers problem as an example, Figure 2.4 shows a PrT net

speci�cation. Two philosopher states are denoted by places Thinking and Eating

respectively, two philosopher actions are denoted by two transitions Pickup and

Putdown, and the available chopstick state are de�ned by the place Chopstick.

The PrT net de�nition is as follows: (1) Place Types: ϕ(Thinking) = PHIL,

ϕ(Eating) = PHIL × CHOP × CHOP , ϕ(Chopstick) = CHOP , where types

PHIL and CHOP are induced from integers. (2) Arc Labels: L(Thinking, Putdown

) = ph, and the rest are similar as shown in Figure 2.4. (3) Transition Con-

straints: R(Pickup) = (ch1 = ph) ∧ (ch2 = ph ⊕ 1), R(Putdown) = true where

⊕ is modulus k addition. (4) Initial Marking: M0 = {mk|k = 2, 3, ...} where

mk(Thinking) = {1, 2, ...k} andmk(Eating) = ∅ andmk(Chopstick) = {1, 2, ..., k}.

Since Petri net is very well suited to model the message passing, shared data and

distributed locks that are all we need to analyze atomicity violation in distributed

systems, this disseration automatically build Petri net models for predicted atomic-

ity violations in distributed systems to help manually con�rming them being a false

positive or not.

15

Figure 2.4: Dining Philosophers Problem in PrT nets

16

CHAPTER 3

PREDICTING MULTI-VARIABLE ATOMICITY VIOLATION

3.1 Introduction

Multi-core hardware is a growing industry trend, for both high performance servers

and low power mobile devices. Multi-threaded programs can exploit multi-core

processors at their full potential. In the real world, most servers and high-end

critical software are multi-threaded. Unfortunately, multi-threaded programs are

prone to bugs due to the inherent complexity caused by concurrency. It is di�cult

to detect concurrency bugs due to the huge number of possible interleavings. Many

concurrency bugs escape from testing into software releases and cause some of the

most serious computer-related accidents in history, including a blackout leaving tens

of millions of people without electricity [1].

Among di�erent types of concurrency bugs, atomicity violation bugs are the most

common ones. Atomicity violation bugs are caused by violations to the atomicity

of certain code regions without proper synchronization. They widely exist in the

real world systems and contributed to about 70% of the examined non-deadlock

concurrency bugs according to a research in the year 2006 [2]. Therefore, techniques

for detecting atomicity violation bugs are extremely important.

The studies in recent years have been focused on single-variable atomicity viola-

tion. However, those methods are unable to predict or �nd atomicity violations with

multiple variables involved. Many variables are inherently correlated and need to be

accessed together with their correlated peers in a consistent manner [3]. These vari-

ables need to be either updated together or accessed together to avoid two-variable

atomicity violation.

17

This chapter presents a method for predicting two-variable atomicity violation,

based on access correlation between variables and atomicity violation pattern of

variable accesses and in this chapter we make the following contributions [24]:

1. A method to infer access correlation from an instrumented interleaved trace

that only records events related to atomicity violations. Such an interleaved

trace is much smaller than the program behavior in a complete execution.

Furthermore the extracted thread model and inferred access correlation enable

the checking of all alternative traces with the same causal relationships as the

interleaved trace with multiple variables involved.

2. A complete set of the patterns of unserializable interleavings involving two

threads (most concurrency bugs involve only two threads [6]) containing any

number of accesses to multiple shared variable (either user-de�ned or ev-

ery word sized dynamically allocated memory accessed by multiple threads).

These patterns generalize and cover the three accesses proposed in [2][8]. These

atomicity violation patterns become property speci�cations to be checked.

3. A unique prediction tool - McPatom-MV, for detecting two-variable atomicity

violation bugs through model checking.

3.2 Motivation

Multiple variable atomicity can be achieved by ensuring the atomicity of each pair

of shared variables. So in the sequel, we focus on two-variable atomicity.

Existing atomicity violation detection tools mostly focus on the bugs that have

a single variable involved. The tools study the accesses to the same shared variable.

But the atomicity violation bugs caused by unserializable accesses to multiple shared

variables actually contribute signi�cantly to the existing known ones [3]. There are

18

Figure 3.1: Mozilla bug 1

a few well known two-variable atomicity violations. In the sequel, we use real-world

examples [3] to show what could be atomicity violation bugs in the real world, and

also one of the most challenging ones to show the bene�t of our methods against

the existing tools.

Figure 3.1 shows an example from Mozilla-0.8, each single shared variable is

synchronized properly by using the lock so that there is no data race and no single

variable atomicity violation. However, the two variables table and empty as part

of the same structure cache are correlated by its nature, empty is used to indicate

whether table is empty or not so that the two variables have to be updated together.

In the interleaved execution as shown in Figure 3.1, they are not updated together

though, which ends up with table being empty but with the variable empty being

false that indicates table is not empty.

Figure 3.2 gives an example from Mozilla-0.9, the two variables totalStrings

and lengthSum are part of the same structure rt, and are correlated to each other.

The interleaved execution as shown in the �gure is a violation of atomicity in terms

19

Figure 3.2: Mozilla bug 2

of two variables because it reads an intermediate value and results in inconsistent

values between the variables.

In the examples discussed above, the correlated variables are accessed in adjacent

statements, however, with complicated cases, the statements can be encapsulated

into di�erent functions so that the statements are not adjacent to each other any

more but their access to the correlated variables will be next or very close to each

other in the sequence of statements during runtime. Static source code analysis

methods can identify such correlation across functions by analyzing the function

call graph, but is unable to guarantee to �nd all such cases due to its limitation of

static analysis. Analyzing the correlation based on dynamic runtime traces makes it

easier to analyze such correlation because it does not have to analyze the call graph.

It can �nd such correlation as long as it manifests in the traced execution. It has

an assumption though, the correlated variables need to be accessed in the sample

runnings which should be able to cover most cases with good suits of test cases. The

20

Figure 3.3: MySQL bug

runtime method can complement static methods and has the bene�t that it won't

miss the common cases.

Figure 3.3 shows an example from MySQL that separate our method from other

similar methods in the related works. It may cause failure of database recovery -

table t has one row as in the interleaving in the �gure but it will have no row during

database recovery due to the sequence of �INSERT� then �DELETE� in database

log.

Our method based on dynamic execution traces is able to detect it as discussed

in the following.

3.3 Predicting Single Variable Atomicity Violation

In this section, we brie�y discuss the tool McPatom as in [7], which is generalized

in this paper to support two-variable atomicity violation.

21

3.3.1 Description of the Partial Order Thread Model

A multi-threaded program runs with multiple threads and variables. The access to

local variables has no impact to concurrency, thus not be able to cause concurrency

bugs. The variables allocated dynamically in the heap can be potentially accessed

by multiple threads, can be involved in concurrency bugs. Those variables can be

potentially involved in concurrency bugs are de�ned as shared variables, that are

addresses of global variables and every word sized dynamically allocated memory

accessed by multiple threads. The same memory address does not necessarily mean

the same variable though since it can be reused through the memory management

functions, so memory allocation and deallocation instructions are also monitored in

order to di�erentiate the variables in case the same memory address is reused.

For a multi-threaded program P , an execution σ = s1, ..., sn of is a sequence of

executed statements. An execution can be projected to a sequence of annotated

shared variable accesses and synchronization events, which is the trace to analyze

in this work. Formally, a trace, τ = e1, ..., em is a sequence of events where each

event ei(1 ≤ i ≤ m) is a tuple 〈tidi, timestampi, actioni〉 in which tidi is a thread

handle, timestampi is a time stamp based on real time and actioni is one of the

following: (read/write/allocate/deallocate, a shared variable), (a synchronization

routine, a synchronization variable) or (a thread management operation, a thread

handle). McPatom uses POSIX Threads in which a synchronization routine is a

routine related to semaphores, mutex locks, condition variables and barriers, does

not handle user-de�ned synchronization primitives. McPatom also assumes a shared

variable as a synchronization variable if it is accessed by synchronization routines,

thus does not treat its accesses as shared variable accesses.

22

Given a trace τ = e1, ..., em containing shared variable accesses and syn-

chronization events, a partial order thread model (Eτ ,≺) is de�ned as

follows:

1. Eτ = {ei | ei in τ}

(a) ≺ is a partial order relation such that, for any ei, ej ∈ E (i 6= j), ei ≺ ej

i�

i. tidi = tidj and i < j, or

ii. tidi 6= tidj, actioni = (Signal, cvar), actionj = (Wait, cvar) and

∀k � ((j < k < i) ∧ (actionk 6= (Signal, cvar)) in which cvar is a

condition variable, or

iii. tidi 6= tidj, actioni = (Wait, bvar) and (i < j) ∧ ∃k � ((tidk = tidj) ∧

(k < j) ∧ actionk = (Wait, bvar) ∧ ∀h � ((tidh = tidk) ⇒ ¬(k < h <

j))) in which bvar is a barrier variable, or

iv. tidi 6= tidj, actioni = (Create, tidj), or

v. tidi 6= tidj, actionj = (Join, tidi).

(b) Mutual exclusion: for any ei, ej, em, en ∈ E (i 6= j 6= m 6= n), ej ≺ em or

en ≺ ei i�

i. tidi = tidj, actioni = (Lock, lvar), actionj = (Unlock, lvar), and

ii. tidm = tidn, actionm = (Lock, lvar), actionn = (Unlock, lvar).

The partial order above de�nes the causal relation and is similar to the happened-

before relation given in [25]. The above de�nition ensures (1) shared variable ac-

cesses within the same thread are ordered, and (2) the constraint of synchronization

is preserved regarding its impact to the shared variable accesses across multiple

23

threads. Therefore, it captures alternative traces that obey the same causal rela-

tion as τ and thus equivalent to the original trace, and each alternative trace τ ′

is a result of rearranging the order of some shared variable accesses across di�er-

ent threads without breaking the constraint by ≺. The partial order thread model

enables exploration of all possible alternative traces that correspond to a set of

feasible interleavings in a multi-threaded program. However, the model provides

an over-approximation without considering data-�ow, thus cannot guarantee each

alternative trace captured in the model can be projected back to some feasible in-

terleaved execution in the multi-threaded program P , that is the reason of false

positives.

3.3.2 Implementation of the Partial Order Thread Model

McPatom uses Pin binary instrumentation framework [26] to instrument a running

executable and capture runtime information into a trace, speci�cally including, ev-

ery access (read/write/allocate/deallocate) to every shared variable and every syn-

chronization event using POSIX Thread (locks, condition variables, barriers, thread

joining and etc.). For each event in the trace, McPatom also �nds the correspond-

ing source code information including �le name and line number through the debug

information contained in the executable, that can be used to help to locate the

predicted bugs and also to �nd the variable correlation across multiple traces. A

sample of a partial trace is shown in Figure 3.4.

3.3.3 Three-access Atomicity Violation

Many recent works focused on three-access atomicity violations [2][8][6], which in-

volve one shared variable, two threads and three accesses to the variable. If two

24

4913812332 , 1515882591 , sample.c-812, Read , threads

4913812332 , 1515882591 , sample.c-126, Create , 4915489248

4915489248 , 1515882591 , sample.c-310, Lock , lockVar

4915489248 , 1515882591 , sample.c-311, Read , sharedVar

4915489248 , 1515882591 , sample.c-311, Write , sharedVar

4915489248 , 1515882591 , sample.c-312, Signal , condVar

4915489248 , 1515882591 , sample.c-313, Unlock , lockVar

Figure 3.4: A Sample of a Partial Trace (The format of each line: thread handle,
unix epoch timestamp, �le name - line number, action)

consecutive accesses of a shared variable in a thread are interleaved with an access

to the same variable from another thread, and the interleaving is unserializable, the

atomicity of the two consecutive accesses is violated and it is a potential atomicity

violation bug. The explanation of unserializable interleavings of three accesses and

many real world atomicity violation bugs can be found in [2]. The related works

above focus on three-access atomicity violations because (1) there are many real

world atomicity violation bugs involving only three accesses, and (2) checking only

three accesses in a pair of threads can greatly reduce the complexity of algorithms.

De�nition 1 (Serializability). A two-thread interleaving is serializable if and only if

it is equivalent to a serial execution, which executes a code region without another

thread interleaved in between. The code region is typically enforced as atomic

explicitly in the code.

Con�ict graph is used in the context of concurrency control in databases [5]. It

contains 1) a node for each memory access; 2) an arc from node Ai to node Aj if Ai

precedes and con�icts with Aj where con�icts means at least one of Ai and Aj is a

write.

De�nition 2 (Serializability with single variable). A single-variable two-thread in-

terleaving is equivalent to a serial execution if and only if its con�ict graph is acyclic

according to the Serializability Theorem [5].

25

Figure 3.5: Con�ict graph for a single-variable two-thread interleaving

Figure 3.6: Unserializable Interleavings with two threads. In (1)(2)(3)(5), W in
Thread 2 unexpectedly changes the value; In (4), An intermediate value in Thread
1 is read by Thread 2.

Figure 3.5 shows two examples of con�ict graphs for a single-variable two-thread

interleaving, one is cyclic and another is acyclic between two threads. The cyclic

one is unserializable while the acyclic one is serializable.

Figure 3.6 shows all possible scenarios of unserializable interleavings with only

one access from Thread 2. If any of the unserializable interleaving patterns are

matched, it indicates a potential atomicity violation. In the �gure, R+ means one

or more read accesses and R∗ means zero or more read accesses.

26

3.4 Variable Correlation Analysis

The discussions in Section 3.2 provides the motivation to predict two-variable atom-

icity violation, and focus on a pair of variables, however, only the variables that are

correlated with each other can potentially cause atomicity violations. Many vari-

ables are inherently correlated and need to be accessed together with their correlated

peers in a consistent manner. A pair of variables need to be accessed together, that

is the atomicity to ensure otherwise there could be atomicity violation.

The correlation is usually in the developer's mind or even not realized by de-

velopers especially for developers maintaining the software or components but not

the original author, so the most important thing to predict atomicity violation bugs

with two-variable involved is to infer the correlation automatically, since it is very

impracticable to expect developers to enforce or somehow mark the correlation be-

tween variables, if not impossible.

De�nition 3 (Variable Correlation). Two variables x and y are correlated if every

time variable x is accessed, variable y is also accessed shortly afterward, formally

denoted as access(x)⇒ access(y).

The important question to answer is how we measure the correlation. There can

be multiple possible ways.

It can be measured in source code distance [3]: if two accesses appear in the

same function with less thanMaxDistance statements apart, these two accesses are

considered together, whereMaxDistance is an adjustable threshold. The limitation

is it assumes all correlated accesses happen in the same function, however, the

correlated accesses can happen in di�erent functions that are called in the same

function. The measure in source code distance is not able to cover that problem.

27

It can also be measured in dynamic execution distance, that is the distance in the

trace of dynamic execution. The measure is excluded in [3] because it is believed that

two correlated accesses can easily be separated by a loop or a function invocation

and thus have a large dynamic execution trace. We design the trace to be just for

memory accesses of shared variables, that makes dynamic execution distance a good

measure, and avoid the limitation in the measure of source code distance discussed

above.

3.5 Algorithm to Infer Access Correlation from a Single Trace

The trace is a sequence of memory accesses, the idea is to infer access correlation

from their distance in the trace, which indicates the possibility whether any pair of

accesses should be atomic.

We instrument the memory allocation/deallocation instructions to get memory

addresses that should be treated as shared variables. When a memory address is

deallocated and allocated again, we treat it as a separate variable.

3.5.1 Memory Access Correlation Table

For n memory addresses or variables v1...vn, the memory access table is a n × n

matrix C, C = [cxy] where 1 ≤ x, y ≤ n and cxy is calculated as follows for the

correlation between vx and vy. For memory accesses Ai(vx) and Aj(vy) in the trace,

where Ai(vx) is the ith access that read or write the variable vx and Aj(vy) is the

jth access that read or write the variable vy, if there is a sequence AiAk...AmAj ,

suppose the memory accesses from Ak to Am access variables other than vx and vy

and j ≥ i + 1, add the distance j − i − 1 to a list of distances dxy. After getting

28

distances of all pairs of vx and vy added into the list dxy, we can calculate cxy based

on dxy.

In the list of distances dxy, there could be shorter ones and longer ones in which

there could be a presence of outliers. One of the common ways of �nding outliers in

a list is to mark any point that is more than two standard deviations from the mean

as a potential outlier. But the presence of outliers could have a strong e�ect on

the mean and the standard deviation, making those ways unreliable to �nd outliers.

Median Absolute Deviation (MAD) [27] proposes to use absolute deviation around

the median as a way of dealing with the problem of outliers. We use MAD to �lter

out outliers in dxy then get the mean of the rest in dxy as cxy, as shown in Algorithm

3.1, where 1.4826 is a constant linked to the assumption of normality of the data,

disregarding the abnormality induced by outliers.

3.5.2 Recommendation of Possible Access Correlation

The lower value in the table C = [cxy] above, the more likely the pair of access

is correlated. It is hard to de�ne a threshold to decide whether a pair of accesses

should be treated as correlated, but it is easy to give a sorted list for either prioritized

checking atomicity violation or manual con�rmation.

3.6 Algorithm to Infer Access Correlation fromMultiple Traces

To infer access correlation from multiple traces, we need to identify the same vari-

ables across multiple traces. There are two types of shared variables: 1) global

variables; 2) variables dynamically allocated in the heap.

29

Program 3.1 Quantify the correlation between pairs of shared variables

FindCorre latedVars (t r a c eF i l e)
{

Find pairsInAtLeastTwoThreads ;
f o r (x , y) in pairsInAtLeastTwoThreads
{

f o r each thread thd
{

Acce s sL i s t ax = ac c e s s e s o f x ;
Acce s sL i s t ay = ac c e s s e s o f y ;
Acce s sL i s t a = sor t ed (ax + ay) ;
i = 0 ;
whi l e (i + 1 < a . l ength)
{

i f (v a r i ab l e o f a [i] !=
va r i ab l e o f a [i +1]) :

D i s t anceL i s t dxy ;
dxy . append (a [i +1]−a [i]) ;

i += 1
}

}
mad = median (abs (dxy−median (dxy)))

∗ 1 . 4 826 ;
f o r d in dxy
{

Abso luteDev ia t i onL i s t ad ;
ad [d] = abs (d−median (dxy)) / mad ;
i f ad [d] < 2 :

d i s t anceL i s tNoOut l i e r . append (d) ;
}
AverageDistance c [x , y] =

average (d i s t anceL i s tNoOut l i e r) ;
}
re turn so r t ed (c)

}

30

3.6.1 Global Variables

With the symbol table contained in the executable, we are able to �nd the mapping

from address to variable name.

3.6.2 Variables Dynamically Allocated in the Heap

With debug information built into the executable, we can �nd the �le name and

line numbers in the source code for each read or write access. Because our goal is to

�nd the correlation between shared variables, we can assume the shared variables

accessed from the same line of code are highly correlated, thus we can assume there

is only one shared variable for any line of source code.

With the assumption above, we can treat a unique pair of �le name and line

number accessing shared memory as a shared variable so that we can infer access

correlation across multiple traces.

3.7 Serializability of Two-Variable Two-Thread Interleavings

The de�nition of serializability of single-variable atomicity violations in the sections

above is not applicable to the atomicity violation with multiple variables involved.

Two-variable atomicity can be achieved by ensuring the atomicity of each pair of

shared variables. So in the sequel, we focus on two-variable atomicity violation.

Given two shared variables x and y, and A ∈ {Read,Write}, R = Read, W =

Write, Let Rx denote reading variable x, Wx denote writing variable x, Ry denote

reading variable y and Wy denote writing variable y. When treating each pair of

correlated shared variables as a single one, De�nition 2 and the patterns in McPatom

[7] can be applied and resulting is called as McPatom-MV1. MUVI [3] requires the

31

writes of both variables in forming atomicity violation. Both of the above methods

can �nd possible atomicity violation, however, are overall restrictive and can result

in false positive predictions.

De�nition 4 (Con�ict graph with two variables). Given two variables x and y,

there is at least one access of x and y in one thread denoted as A1
x and A

1
y, and at

least one access of x and y in another thread denoted as A2
x and A2

y, the con�ict

graph contains a node for each memory access, and an arc if A1
v con�icts with A

2
v

i.e. at least one of them is a write.

The de�nition of con�ict graph above is generalization of the con�ict graph for

single variable [28] [5].

De�nition 5 (Serializability with two variables). A two-variable two-thread inter-

leaving is equivalent to a serial execution if the two variables are correlated and the

con�ict graph is acyclic between two threads.

3.8 Predict Two-Variable Atomicity Violation

This section discusses the simple method using the existing McPatom with patterns

of single variable atomicity violation, and another method extending McPatom with

patterns of two variables atomicity violation. Two methods are independent of each

other.

The framework contains the following major steps: (1) using Pin [26] to in-

strument an interleaved execution of a multi-threaded program and to record an

interleaved trace containing only atomicity violation impacting events including all

shared variable accesses and all synchronization routines (locks, condition variables,

barriers and thread management events); (2) projecting the interleaved trace into a

32

partial order thread model of abstract threads, which maintains the causal relation

within actual threads imposed by the synchronization routines, and treats two cor-

related shared variable as a single one using the patterns of single variable or keeps

two correlated shared variables using the patterns of two variables; (3) automati-

cally translating the partial order thread model into a Promela program for model

checking in Spin [10]; (4) de�ning a complete set of atomicity violation patterns

as in Figure 3.6 [7] involving a pair of threads accessing every single shared vari-

able and automatically translating them into temporal logic formulas; (5) de�ning

a complete set of atomicity violation patterns involving a pair of threads accessing

every pair of two shared variables and automatically translating them into temporal

logic formulas; (6) using Spin to model check the atomicity violation patterns; and

(7) mapping the violation reported in Spin to the execution trace in the original

multi-threaded program.

Figure 3.7 gives an overview of McPatom framework. If using the patterns of

two-thread atomicity violations with a single variable, the thread model in Promela

treats the two correlated shared variables as a single one. If using the patterns of

two-thread atomicity violations with two variables, the thread model in Promela

keeps the two correlated shared variable.

3.8.1 McPatom-MV1: Use Existing McPatom with Patterns

of Single Variable Atomicity Violation

Using the pairs of correlated memory accesses inferred above, we can integrate

McPatom to �nd atomicity violations for each individual trace, by treating each

pair of correlation memory accesses as a single variable, since McPatom works on

predicting single variable atomicity violation from a single trace.

33

Figure 3.7: Overview of the method predicting atomicity violations

When analyzing a single trace, multiple executions of the same line of source

code can access di�erent memory addresses that are dynamically allocated in the

heap, and di�erent memory addresses are counted as di�erent variables. Let L1, L2

be two lines of code denoted by �le name and line number, we can infer access

correlation between L1 and L2 as discussed above. Let's denote a line in the trace

as t, there are two lines of traces t1 and t2 and two memory addresses A1 and A2,

such that t1 = L1A1 and t2 = L2A2 which means t1 accesses the memory address

A1 from the line of source code L1 and the similar for t2.

If A1 and A2 are correlated as the algorithm in Section 3.5, treat t1 and t2 as

the same shared variable.

If L1 and L2 are correlated as the algorithm in Section 3.6, treat t1 and t2 as the

same shared variable.

34

Figure 3.8: Comparison of methods about coverage of atomicity violation

3.8.2 McPatom-MV2: Extend McPatom with Patterns of

Two Variables Atomicity Violation

McPatom-MV1 above is straightforward to leverage the existing McPatom. How-

ever, it can report more atomicity violations than other methods as shown in Figure

3.8 that potentially means more false positives. To reduce false positives, we pro-

pose the following access patterns speci�cally for two-variable atomicity violation.

The result is called McPatom-MV2, having better coverage than MUVI [3] because

MUVI only consider the inconsistent updates that start with write and it cannot

take all shared variables into consideration due to the limitation of static analysis.

3.8.2.1 Patterns of Two-thread Atomicity Violations involving Two Vari-

ables

In the sequel, a two-variable atomicity violation refers to a two-thread atomicity

violation involving any number of accesses of two shared variable x and y, and

A ∈ {Read,Write}, R = Read, W = Write, Rx denotes reading variable x, Wx

denotes writing variable x, Ry denotes reading variable y and Wy denotes writing

variable y. This section gives a set of patterns covering all possible two-variable

atomicity violations.

35

Figure 3.9: Unserializable Interleavings with two variables and two threads.

Based on De�nition 4 and De�nition 5, we propose the pattern as in Figure 3.9 as

a complete set of patterns for unserializable interleaving that can be used to predict

atomicity violations with two variables and two threads involved. In pattern 1, Rx

and Wy are interleaved by WxAy or AyWx from thread 2 where Wx from thread 2

unexpectedly changes x that makes it unserializable if Wy is dependent on Rx in

thread 1; in pattern 2, Rx and Ry are interleaved by WxWy or WyWx in thread 2

where Wx and Wy unexpectedly change x and y that makes Rx and Ry in thread

1 reading inconsistent value; in pattern 3, Wx and Wy are interleaved by AxAy or

AyAx in thread 2 where thread 2 could read inconsistent value of x and y or write

x to make x and y inconsistent; in pattern 4, Wx and Ry are interleaved by WyAx

or AxWy in thread 2 where Wy from thread 2 unexpectedly change y and Ax could

unexpectedly read or change x from Wx of thread 1 thus causing unexpected value

in Ry.

36

Theorem 1 (Completeness of the set of Patterns in Figure 3.9). The set of patterns

in Figure 3.9 is complete, i.e. it includes all possible unserializable interleavings

between two threads with two variables involved.

Proof. Let At11 , A
t2
2 , ..., A

tn
n be a sequence of atomic accesses in an interleaved ex-

ecution of two threads with two variables involved, in which Atii (ti ∈ {1, 2},

Atii ∈ {Read,Write}, 1 ≤ i ≤ n) denotes an atomic access from thread ti to

the two shared variables. Let every subsequence of At11 , A
t2
2 , ..., A

tn
n be of the form

1) X1
1 , X

2
2 , Y

2
3 , Y

1
4 where X1

1 and Y 1
4 of Thread 1 are accesses Atii (ti = 1), X2

2 and

Y 2
3 of Thread 2 are accesses Atii (ti = 2), or of the similar form 2) X1

1 , Y
2
2 , X

2
3 , Y

1
4 , 3)

X1
1 , X

2
2 , Y

1
3 , Y

2
4 , or 4) X

1
1 , Y

2
2 , Y

1
3 , X

2
4 . The forms are shown in Figure 3.10. Form 2

can be proved similarly, Form 3 is impossible to have con�ict graph as there is no

cycle between two threads and Form 4 can be reduced to Form 2. The following

proof is based on Form 1. Let Pi be pattern i. If X1
1 , X

2
2 , Y

2
3 , Y

1
4 does not match with

any of the patterns in Figure 3.9, X1
1 , X

2
2 , Y

2
3 , Y

1
4 satis�es ¬P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4.

Since operator ∧ is commutative, we can select a speci�c order and carry out an

incremental analysis of possible X1
1 , X

2
2 , Y

2
3 , Y

1
4 based on each of Pi(1 ≤ i ≤ 4).

The details of each step are omitted and as a result, when X1
1 , X

2
2 , Y

2
3 , Y

1
4 satis�es

¬P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4, X1
1 , X

2
2 , Y

2
3 , Y

1
4 can only be one of the following:

1) X1
1 = Wx, X2

2 = Rx, Y 2
3 = Ry, Y 1

4 = Ry

2)X1
1 = Wx, X2

2 = Wx, Y 2
3 = Ry, Y 1

4 = Ry

3) X1
1 = Rx, X2

2 = Rx, Y 2
3 = Ry, Y 1

4 = Ry

4) X1
1 = Rx, X2

2 = Wx, Y 2
3 = Ry, Y 1

4 = Ry

5) X1
1 = Rx, X2

2 = Rx, Y 2
3 = Wy, Y 1

4 = Ry

6) X1
1 = Rx, X2

2 = Rx, Y 2
3 = Wy, Y 1

4 = Wy

7) X1
1 = Rx, X2

2 = Rx, Y 2
3 = Ry, Y 1

4 = Wy

37

Figure 3.10: All Interleaving Forms of Two Variables and Two Threads

According to the Serializability De�nition 5, an interleaved sequence is serial-

izable if and only if its con�ict graph is acyclic. All of the above seven patterns

are serializable. Therefore, the completeness of the set of patterns in Figure 3.9 is

proved.

3.8.2.2 Automatically Encoding Traces to Promela Code

McPatom-MV2 automatically encodes a trace to multiple Promela �les with each

one containing a pair of shared variables. It de�nes each shared variable v in the pair

of shared variables (x, y) as a short in Promela, automatically assigns a unique value

for all reading accesses and a unique value for all writing accesses in each thread.

Formally, let rw ∈ {r, w}, and tid be thread ID, then v=rw+tid for each access of

38

v. McPatom sets r to be 0, and w to be 10000. For example, given two threads:

t1(tid=1) and t2(tid=2), and a shared variable v, McPatom makes assignments as

below for each scenario of accesses.

• Assign 10000+1 to v for each writing access of v in thread t1,

• Assign 1 to v for each reading access of v in thread t1,

• Assign 10000+2 to v for each writing access of v in thread t2,

• Assign 2 to v for each reading access of v in thread t2.

McPatom-MV2 automatically generates Promela code for all synchronization primi-

tives, like McPatom [7]. Figure 3.11 gives a sample of partial Promela code encoding

a trace.

3.8.2.3 Automatically Encoding Atomicity Violation Patterns into Lin-

ear Time Temporal Logic (LTL) Formulas

A pattern is a sequence of accesses, for example, R1
yW

2
y . Every two adjacent accesses

in the sequence can be captured in a LTL formula, for example R1
yW

2
y can be cap-

tured in y == r+1 && X(y == r+1 U y == w+2) where X denotes Next and �U�

denotes Until. For every pair of shared variable x and y, and every pair of threads

t1 and t2, McPatom-MV2 automatically de�nes a pair of LTL formulas including

Formula 3.1 for each pattern in Figure 3.9 and another LTL formula reversing the

view of t1 and t2, another pair of LTL formulas reversing the view of x and y. Let

x and y be a pair of shared variables, r = 0 and w = 10000 as de�ned in 3.8.2.2,

Ai ∈ {r, w}, and tidi ∈ {1, 2} where i ∈ {1, 2, 3, 4} as there are four accesses in the

pattern.

39

proctype t1() { ... }

proctype t2()

{

Lock(lock1);

v_tab = 0 + 2; /* mysql -binlog.c - 53 - (In trace:

15612) */

v_tab = 10000 + 2; /* mysql -binlog.c - 53 - (In

trace: 15613) */

Unlock(lock1); /* mysql -binlog.c - 54 - (In trace:

15617) */

Lock(lock2);

v_numLines_binlog = 0 + 2; /* mysql -binlog.c - 32 -

(In trace: 95478) */

v_numLines_binlog = 10000 + 2; /* mysql -binlog.c -

32 - (In trace: 95479) */

Unlock(lock2); /* mysql -binlog.c - 60 - (In trace:

95482) */

ThdJoin !2;

}

init

{

run t1(); /* mysql -binlog.c - 103 - (In trace: 4) */

run t2(); /* mysql -binlog.c - 104 - (In trace: 5) */

run t3(); /* mysql -binlog.c - 106 - (In trace: 6) */

...

}

Figure 3.11: A Sample of Partial Promela Code

40

[]! <> ((x == A1 + tid1)&& X

((x == A1 + tid1)U

((x == r + tid2)U

(x == A2 + tid2 && X

(x == A2 + tid2 U (3.1)

((y == r + tid3 && x == A2 + tid2) U

((y == A3 + tid3 && x == A2 + tid2) && X

((y == A3 + tid3 && x == A2 + tid2)U

((y == r + tid4 && x == A2 + tid2)U

(y == A4 + tid4 && x == A2 + tid2))))))))))}

where �[]� denotes Always, �!� denotes Logical Negation, �<>� denotes Even-

tually. These formulas specify that the atomicity violation patterns do not occur.

Note that the patterns need to be extended to cover all forms in Figure 3.10, and

the LTL formula allows extra read accesses of the same variable in the same thread

to precede each of the four accesses in the pattern, that is r in the Formula 3.1,

because it happens in the real world and it preserves the con�ict graph in De�nition

4. Formula 3.1 captures a pattern with A1A2A3A4 where A1 and A2 are accesses

of x and A3 and A4 are accesses of y, and each of A2A3A4 can be preceded with

insigni�cant read accesses of the same variable from the same thread.

Using Figure 3.9 (2) as a concrete example, the pattern []! <> R1
xW

2
xW

2
yR

1
y can

be captured in the formula in LTL below.

41

[]! <> ((x == r + 1)&& X

((x == r + 1)U

((x == r + 2)U

(x == w + 2 && X

(x == w + 2 U (3.2)

((y == r + 2 && x == w + 2) U

((y == w + 2 && x == w + 2) && X

((y == w + 2 && x == w + 2)U

((y == r + 1 && x == w + 2)U

(y == r + 1 && x == w + 2))))))))))}

In Formula 3.2, Line 1 and 2 denote A1 of x from thread 1, that is R1
x; Line 3

denotes insigni�cant accesses r of x from thread 2 that exist or doesn't exist in the

trace; Line 4 and Line 5 denote A2 of x from thread 2, that is W 2
x ; Line 6 denotes

insigni�cant accesses r of y while making sure x is still w + 2; Line 7 and Line 8

denote A3 of y from thread 2, that isW 2
y ; Line 9 denotes insigni�cant accesses r of y;

Line 10 denotes A4 of y from thread 2, that is R1
y. Therefore, Formula 3.2 captures

[]! <> R1
xW

2
xW

2
yR

1
y and ensures that pattern R1

xW
2
xW

2
yR

1
y in Figure 3.9 (2) does not

occur in the partial order thread model. LTL formula to capture []! <> R1
xW

2
yW

2
xR

1
y

is similar.

3.9 Evaluation

All of our experiments are conducted on a machine with 2 Core 2.3GHz CPU, 4GB

of memory, running Debian 8.7 as the operating system. We use Pin tool 2.14 for

42

binary instrumentation and SPIN tool 6.4.6 for model checking. The tool and the

results can be downloaded from https://users.cs.�u.edu/~zsun003/qrs18/

3.9.1 Variable Correlation Analysis

Our variable correlation analysis based on dynamic trace is e�cient. For MUVI [3]

it takes about 3 hours to infer variable correlation for 3-4 million lines of code. We

applied our method to the latest Apache Httpd 2.4.29 and it takes about 3 seconds

to infer variable correlation for 1 million lines of code. We inferred 971 pairs of

variable correlation, comparable to the one reported in MUVI. We not only give

the list of variable correlation for reference by programmers or other tools but also

give the quali�ed weight for each pair in terms of average distance between the pair

of variables. MUVI took a sample of 100 correlations and manually whether they

are true to give a false positive rate. We believe it is an error-prone process and it

would be better for application developers to justify it so that we provide quanti�ed

weight and a ranked list.

3.9.2 Two-Variable Atomicity Violation Detection

Table 3.1 shows four real-world two-variable atomicity violation bugs. Our method

can detect all of them. For MySQL-169, the correlation between t � rows and

binlog is conditional, [3] is unable to detect it because t � rows can be accessed

many times and binlog is only modi�ed after the �nal update of t � rows, and

the static method doesn't get the correlation. ColorSafe [29] is unable to detect it

because the t and binlog are not allocated together. UNICORN [30] is likely unable

to detect it because the length between accesses of t and binlog is beyond the limit

of its sliding window size.

43

Table 3.1: Atomicity violation bugs with multiple variables involved
BugId App Description

Moz-js1 Mozilla-
Suite
v0.9

Writes of correlated variables are interleaved
by remote thread's writes, causing the empty
�ag to be false for an empty table and system

crash. Shown in Figure 3.1
Moz-js2 Mozilla-

Suite
v0.8

Writes of correlated variables are interleaved
by remote thread's reads which read

intermediate inconsistent values. Shown in
Figure 3.2

MySQL-
2011

MySQL
v4.0.16

http://bugs.mysql.com/bug.php?id=2011
Read to log �le's name and log �le are

interleaved by remote thread rotating logs
thus writing log �le's name and log �le.

MySQL-169 MySQL
v3.23.56

http://bugs.mysql.com/bug.php?id=169
Table deletion and log writing are interleaved
by remote thread's table insertion and log

writing. Shown in Figure 3.3

Regarding performance, it takes about average 2 minutes for Spin model checkers

to check all properties for a pair of variables.

Using MySQL-169 as an example, here is how to run the tool that generates

a trail �le for each possible atomicity violation, and how the trail can tell what is

the interleaved execution with related source code information that is an atomicity

violation. Running the tool is easy, for example,

~/McPatomMV$ sh runMcPatomMV. sh t e s tda ta /mysql−b in log12 /

t r a c e . out Benchmark/mysql−b in l og

where the �rst parameter speci�es the path to store the trace output which can

be any empty folder, and the second parameter speci�es the executable to run and

trace. After the tool is �nish, it prints the results. But to check results anytime,

the script as shown in Figure 3.13 can be used to print the trail again. Each trail is

an atomicity violation. Note that 10000+1 means Write from thread 1, 0+2 means

44

Figure 3.12: Atomicity Violation in MySQL-169

== Atomicity v i o l a t i o n in the bug MySQL−169
Thread 1 Thread 2

Write (v_tab)
Write (v_tab)
Write (v_numLines_binlog)

Write (v_numLines_binlog)

Read from thread 2, so the p23.trail in Figure 3.13 below is a pattern that violates

atomicity (Pattern 3 in the paper).

3.10 Related Works

There are many recent works on tackling atomicity violations. Some works proposed

techniques to detect atomicity violations on actual program executions through

testing [31], runtime monitoring ([2], [28], and [32]) or predict atomicity violations

based on actual program executions [7][33][8][34][35][6][36][37][38][39][40][41].

We discuss the works related to two-variable atomicity violation in this section.

3.10.1 MUVI

MUVI [3] automatically infers commonly existing two-variable access correlations

through code analysis. It combines static program analysis and data mining tech-

niques to automatically infer two-variable correlations. Firstly, it parses the source

code and collects each function's variable access information, including the set of

variables accessed within each function, the access types and locations in source

code. Secondly, it uses a frequent pattern mining technique to �nd out all the vari-

able sets that frequently appear together and produces a pool of variable access

correlation candidates.

45

Figure 3.13: Examples of Experiment Result

== The t oo l to show the atomic i ty v i o l a t i o n and r e l a t e d
source code .

~/McPatomMV/ te s tda ta /mysql−bin log12$. . / . . / p r i n t t r a i l . sh
spin_numLines_binlog−tab . pml . p23 . t r a i l

v_tab = 0 + 3 ; /∗ mysql−b in l og . c − l i n e 85 − (In t r a c e :
13) ∗/

v_tab = 10000 + 3 ; /∗ mysql−b in l og . c − l i n e 89 − (In
t r a c e : 230) ∗/

v_tab = 10000 + 1 ; /∗ mysql−b in l og . c − l i n e 40 − (In
t r a c e : 334) ∗/

v_tab = 0 + 2 ; /∗ mysql−b in l og . c − l i n e 53 − (In t r a c e :
8) ∗/

v_tab = 10000 + 2 ; /∗ mysql−b in l og . c − l i n e 53 − (In
t r a c e : 9) ∗/

v_numLines_binlog = 0 + 2 ; /∗ mysql−b in l og . c − l i n e 32
− (In t r a c e : 28) ∗/

v_numLines_binlog = 10000 + 2 ; /∗ mysql−b in l og . c − l i n e
32 − (In t r a c e : 41) ∗/

v_numLines_binlog = 0 + 1 ; /∗ mysql−b in l og . c − l i n e 32
− (In t r a c e : 349) ∗/

v_numLines_binlog = 10000 + 1 ; /∗ mysql−b in l og . c − l i n e
32 − (In t r a c e : 350) ∗/

spin_numLines_binlog−tab . pml . p24 . t r a i l
v_tab = 0 + 3 ; /∗ mysql−b in l og . c − l i n e 85 − (In t r a c e :

13) ∗/
v_tab = 10000 + 3 ; /∗ mysql−b in l og . c − l i n e 89 − (In

t r a c e : 230) ∗/
v_tab = 0 + 2 ; /∗ mysql−b in l og . c − l i n e 53 − (In t r a c e :

8) ∗/
v_tab = 10000 + 2 ; /∗ mysql−b in l og . c − l i n e 53 − (In

t r a c e : 9) ∗/
v_tab = 10000 + 1 ; /∗ mysql−b in l og . c − l i n e 40 − (In

t r a c e : 334) ∗/
v_numLines_binlog = 0 + 1 ; /∗ mysql−b in l og . c − l i n e 32
− (In t r a c e : 349) ∗/

v_numLines_binlog = 10000 + 1 ; /∗ mysql−b in l og . c − l i n e
32 − (In t r a c e : 350) ∗/

v_numLines_binlog = 0 + 2 ; /∗ mysql−b in l og . c − l i n e 32
− (In t r a c e : 28) ∗/

v_numLines_binlog = 10000 + 2 ; /∗ mysql−b in l og . c − l i n e
32 − (In t r a c e : 41) ∗/

46

MUVI considers two types of variables: global variables and structure �elds. It

cannot take all shared variables into consideration, that is an inherent limitation for

the static method because it is di�cult to �nd shared variables precisely in a static

way and it is impossible to deal with all variables so that it has to choose a limited

set of variables for consideration. Instead, the dynamic method used in our works

can �nd correlations even if they are dynamically allocated and not belong to the

same structure. In another aspect, for the correlated structure �elds that are not

shared, �nding them is useless to �nd atomicity violations.

3.10.2 Generation of Unit Tests for Correlated Variables

In [42] test cases are automatically generated to prevent the race condition in cor-

related variables in concurrent programs. Its approach to identifying correlations

between variables is based on static analysis of given program, similar to MUVI

[3]. Besides identifying the variables that are accessed often near to each other, it

also considers variables that are data and/or control dependent on each other. The

variable written in an assignment is considered to be data-dependent on each vari-

able that is read in the assignment. The variable written in a control �ow branch

is considered to be control-dependent on variables that are read in the branching

condition. The approach as an extension of MUVI [3] shares the same limitation

that it cannot take all shared variables into consideration due to it static analysis.

Our method based on dynamic analysis can catch those dependencies thus be able

to �nd the same correlation.

47

3.10.3 ColorSafe

ColorSafe [29] groups related data into colors, and then monitors access interleavings

in the �color space�. It has two modes of operation: debugging mode and deployment

mode. In debugging mode, it detects only interleavings that are actually unserial-

izable, i.e., it cannot predict bugs that do not manifest. In deployment mode, it

attempts to dynamically avoid atomicity violations by detecting when an atomicity

violation is likely to happen and dynamically starting a special form of transac-

tion to prevent an unserializable interleaving from happening. However, since it

does not take synchronizations into consideration, it produces false positives and in

correspondence triggers unnecessary bug avoidance actions.

It is related to our work in detecting two-variable atomicity violation based

on related data. It explores both manual coloring and automatic coloring. For

automatic coloring, it is based on memory allocation, that is, it gives the same color

to data allocated together. However, there are a lot of examples on two-variable

atomicity violation in which the correlated variables are not allocated together. [3]

gives two examples in which although the �elds in each pair belong to the same

structure, i.e. they are allocated together, but they do not have access correlation

as they are accessed together in only 3�4 functions and are accessed separately

in 68 or 87 functions. Instead, our work infers correlation from execution traces

using heuristics, in order to detect bugs regardless how the correlated variables are

allocated.

3.10.4 UNICORN

UNICORN [30] detects order violations, single-variable, and two-variable atomicity

violations. It monitors pairs of memory accesses for each shared variable, combines

48

the pairs into problematic patterns, and ranks the patterns by their suspiciousness

scores. There are three steps. It �rstly executes a program multiple times, monitors

memory-access pairs within a �xed-sized sliding window, and marks each program

execution as either passing or failing. Secondly, it combines memory-access pairs

into problematic memory-access patterns using a second �xed-sized sliding window

for maintaining pairs. Thirdly, it computes the suspiciousness of the patterns and

orders them in decreasing order of suspiciousness to recommend possible bugs.

The pairs include only the directly adjacent accesses for each shared variable.

And, for single variable atomicity violation, it follows the three-accesses pattern;

for multiple variable atomicity violation, it follows the four-accesses pattern. Thus

UNICORN has a limitation not be able to check atomicity violation involving more

accesses.

It uses a small �xed-sized window to identify the most suspicious memory-access

patterns, to reduce time and space overhead. Hence for those accesses with a dis-

tance more than the length of the window, it is impossible to detect.

It instruments the source program statically using LLVM, and monitors shared

variable accesses during runtime. It does not instrument the synchronization instruc-

tions and it is based on observed executions, therefore, it cannot predict concurrency

bugs and can only detect concurrency bugs when they manifest. In the experiment,

to increase the probability of program failures, it inserted random arti�cial delays

into the programs.

3.11 Summary

Concurrency bugs are extremely hard to detect using testing techniques due to huge

interleaving space. As the most common non-deadlock concurrency bugs, atomicity

49

violations are studied in many recent works, however, those methods are applicable

only to single-variable atomicity violation. This chapter presents enhanced tools

McPatom-MV1 and McPatom-MV2 based on McPatom using model checking to

predict atomicity violation concurrency bugs involving two variables. We developed

a unique method inferring the correlation between variables, that is based on dy-

namic analysis and is able to detect the correlation that would be missed by static

analysis.

The tools McPatom-MV1 and McPatom-MV2 is powerful and can explore a vast

interleaving space of a multi-threaded program based on a small set of instrumented

test runs. It is applicable to large real-world systems and can predict atomicity

violations missed by other related works. A limitation inherent from McPatom is

that redundant model checking may be performed if two recorded interleaved traces

yield the same partial order thread model.

50

CHAPTER 4

ATOMICITY VIOLATION IN DISTRIBUTED SYSTEMS

4.1 Introduction

Reliability of distributed systems is extremely important, especially with the preva-

lence of big data and cloud computing, that bring a lot of stakeholders such as

application's developers and customers into the world of distributed systems and

their inherent complexity. Unfortunately, distributed concurrency bugs exist every-

where, are very challenging to detect during testing, and similar to the concurrency

bugs for multi-threaded programs. Various models have been proposed [43] to ana-

lyze or predict the reliability of large-scale distributed systems, but reliability issues

with these systems still exist. Distributed system's reliability depends on the relia-

bility of each individual component, what's more, it also depends on the reliability

of the communication between components that typically runs over network and

by nature is not reliable, therefore, untimely message delivery or lost messages are

common and need to be tolerated to ensure the reliability of the whole distributed

systems. Transparent fault detection and fault recovery scheme are typically im-

plemented to provide seamless interaction to end users, that includes methods of

automatic redelivery of messages and thus causes duplicated delivery of messages.

All those factors above contribute to the complexity of ensuring the reliability of

distributed systems.

More than 60% of distributed concurrency bugs are triggered by a single un-

timely message delivery that commits order violation or atomicity violation [4, 44].

We study the multiple variable atomicity violations for multi-threaded programs in

Chapter 3. This chapter aims to extend what we learn from Chapter 3 and de-

velop methods to analyze and predict atomicity violation in distributed systems, by

51

studying the shared data and distributed lock being used to protect shared data in

distributed systems.

Studies in the recent years have been focused on the infrastructure of distributed

systems that manage the hardware and coordination between them. However, even

the infrastructure is reliable, the application that is running on top of the infrastruc-

ture is not guaranteed to be reliable, actually with the prevalence of applications

moving to microservices architecture that is essentially distributed systems to pro-

vide demanded scalability and availability, it is becoming common to �nd the need

to improve the reliability of applications running on distributed infrastructure. Un-

fortunately distributed concurrency bugs for applications don't receive the same at-

tention as for the underlying infrastructure, developers lack awareness of distributed

concurrency bugs and don't have tools to assist debugging. As a result, distributed

concurrency bugs are common and developers tend to live with the bugs until they

cause serious problems because they are rare and extremely hard to �nd.

4.2 Motivation

Developers assume atomicity or transactions in distributed systems, in a similar

way as multi-threading programs. In distributed systems, there is a layer processing

data, also known as data layer or transaction layer, and there is another layer as

application layer that orchestrates transactions onto the transaction layer.

The transaction layer could be implemented using traditional relations database

that provides ACID guarantee (ACID is atomicity, consistency, isolation, and dura-

bility, more discussions are shown in Section 4.3.1), in that case, atomicity violation

can still happen across di�erent transactions, similar to the way atomicity violation

52

can manifest in a data race free multi-threading program that uses locks but not

enough locks.

The transaction layer could also be implemented using key-value store that

doesn't provide ACID guarantee, in that case, atomicity violation is more likely

to happen, and it is the application layer to do transactions in a way that can

prevent atomicity violation. That is what to be discussed in this section.

As shown in Program 4.1, there are two functions that are two possible transac-

tions without distributed locks running on two separated machines. Let the account

balance starts with 50,000, the �rst transaction withdraws 25,000 that changes the

balance to be 25,000, and the second transaction deposits 5,000 that changes the

balance to be 30,000. However, if two customer representatives access the same

bank account simultaneously, data integrity could be violated because of atomicity

violation, in the following order.

1. Customer representative 1 fetches bank Account with balance as 50,000

2. Customer representative 2 fetches bank Account with balance as 50,000

3. Customer representative 1 withdraws 25,000 and updates bank Account bal-

ance to be 25,000

4. Customer representative 2 deposits 5,000 and updates Bank Account balance

= 55,000

The above case is a critical disaster to the bank, can be �xed by using a distributed

lock to protect read and write (that is Get and Update in the example).

In a practical case, a customer not only has a balance but also have other cus-

tomer information such as addresses, contact information, and transactions which

can be stored into many di�erent tables. As a practice to enable system scaling

horizontally, the bank doesn't use foreign keys in any of those tables so that each

53

Program 4.1 Atomicity Violation Without Distributed Locks

withdraw (accountId , withdrawAmount) { // Bank withdrawal

transaction

// Fetch BankAccount object from key -value data

store

BankAccount account = datastore.Get(accountId) as

BankAccount;

// assume balance = 50,000 and withdrawAmount =

25 ,000

if (account != null && account.IsActive)

{

// Withdraw money and reduce the balance

account.Balance -= withdrawAmount;

// Update key -value store with new balance =

25 ,000

datastore.Update(accountId , account);

}

}

deposit (accountId , depositAmount) { // Bank deposit

transaction

// Fetch BankAccount object from key -value data

store

BankAccount account = datastore.Get(accountId) as

BankAccount;

// assume balance = 25,000 and depositAmount =

5,000

if (account != null && account.IsActive)

{

// Deposit money and increment the balance

account.Balance += depositAmount;

// Update cache with new balance = 30,000

datastore.Update ("Key", account);

}

}

54

table is isolated from each other. To ensure consistency it makes a lot of sense to

lock a customer during an update, at customer level or �ner-grained level such as

customer address level, to avoid atomicity violation.

4.3 Background - Data Consistency and Data Access in Dis-

tributed Systems

Microservices is a software architecture pattern to application development in dis-

tributed systems being adopted by large companies for cloud infrastructure and ap-

plications in the cloud, such as Amazon AWS and Microsoft Azure. That has grown

in popularity in recent years. It is a type of software architecture where large appli-

cations are made up of small, self-contained components working together through

APIs as the interface between components. Each service has a limited scope, con-

centrates on a particular task and is highly independent. This setup allows easy and

large scaling individual components whenever necessary, making the overall systems

essentially distributed systems, where components located on networked computers

communicate and coordinate their actions by passing messages.

How the microservices communicate with each other depends on application's

requirements, but many developers use RESTful API over HTTP with JSON format

for the data, and naturally to facilitate object-oriented programming the data is

typically stored in document-oriented database, or document store, that is designed

for storing, retrieving and managing JSON formatted documents and are one of the

main categories of NoSQL databases.

Document-oriented databases are inherently a subclass of the key-value store,

another NoSQL database concept. Document databases contrast strongly with the

traditional relational database (RDB). Relational databases generally store data

55

in separate tables that are de�ned by the programmer, and a single object may

be spread across several tables. Document databases store all information for a

given object in a single instance in the database, and every stored object can be

di�erent from every other. This makes mapping objects into the database a sim-

ple task, normally eliminating anything similar to an object-relational mapping.

This makes document stores attractive for programming web applications, which

are subject to continual change in place, and where the speed of deployment is

an important issue. One of the advantages frequently cited for document-oriented

databases is their performance. Operating with simpler data structures than those

of SQL databases, document-oriented databases have often shown faster speeds of

storage and retrieval. However, while they may o�er advantages in handling larger

volumes of unstructured data more rapidly, they typically lack the ACID (atomic-

ity, consistency, isolation, and durability) properties because of trading o� ACID

compliance for other properties, such as 100% availability and faster speeds.

In this section, we discuss ACID of traditional relational databases and what that

helps to ensure correctness of distributed systems and discuss CAP theorem which

applies to all distributed systems especially for key-value stores that don't provide

the ACID guarantee. Based on CAP theorem, we list di�erent consistent types of

a single item in distributed systems, in which eventual consistency is popular to

provide better availability than strong consistency but strong consistency is some-

times required but ignored by developers and once it is ignored in many di�erent

places of the distributed systems and it becomes very hard to �nd them before they

cause serious harms. Our goal essentially is to analyze and predict such violation of

strong consistency that leads to atomicity violation bugs. We also discuss the data

access pattern commonly being used in recent distributed systems, that present us

opportunities to analyze distributed systems without having access to source code

56

by examining the data access in the network tra�c. Finally, we discuss distributed

locks and write-with-version that can be used to achieve strong consistency when

necessary to avoid atomicity violation bugs.

4.3.1 ACID of Traditional Relational Database

The ACID properties of traditional relational database help to ensure the data

integrity. While it is typically not present for key-value stores, it is helpful to

understand what we need to ensure correctness of a distributed system. ACID

consists of 4 features.

• Atomic: The transaction should either succeed to a new state or fail to the

original state. In other words, all or nothing should be committed.

• Consistent: Any transaction will bring the system from one valid state to

another.� Note that it is di�erent from the consistency in CAP Theorem, as

the consistency of ACID is for the state of the whole system, however, the

CAP is about the consistency of a single item.

• Isolated: Transactions cannot interfere with each other. This feature ensures

only one transaction can occur simultaneously for a single item.

• Durable: Once a transaction has been committed, it will remain so. The

database should persist everything after the transaction is completed.

4.3.2 CAP Theorem

The CAP theorem [45, 46], also named Brewer's theorem after computer scientist

Eric Brewer, states that it is impossible for a distributed data store to simultaneously

provide more than two out of the following three guarantees:

57

• Consistency: Every read receives the most recent write or an error

• Availability: Every request receives a non-error response - without the guar-

antee that it contains the most recent write

• Partition tolerance: The system continues to operate despite an arbitrary

number of messages being dropped (or delayed) by the network between nodes

In particular, the CAP theorem implies that in the presence of a network partition

that is part of any distributed system, one has to choose between consistency and

availability. Note that consistency, as de�ned in the CAP theorem, is quite di�erent

from the consistency guaranteed in ACID database transactions. The consistency

in ACID of traditional databases is for the whole system while the consistency in

CAP theorem is for a single item. We discuss the consistency of a single item in the

following section to clarify why atomicity violation bugs exist in distributed systems.

4.3.3 Consistency Types

To discuss further on the consistency of a single item, there are a few di�erent

consistency types.

• Strong consistency: Strong consistency is a consistency model where all subse-

quent accesses after the update to a single item will always return the updated

value.

• Weak consistency: It is a consistency model used in distributed computing

where subsequent accesses cannot guarantee returning the updated value.

• Eventual consistency: Eventual consistency is a special type of weak consis-

tency model in which if no new updates are made to a given single data item,

eventually all accesses to that item will return the last updated value.

58

For most cases, eventual consistency is acceptable and provides better availability

which is important. However, there are cases strong consistency is desired but

ignored by developers that would lead to serious atomicity violation bugs.

4.3.4 Data Access via HTTP based API calls

In microservice, developers access data via HTTP interfaces and most projects

follow RESTful architectural style when using HTTP interfaces. In the world of

RESTful architectural style, a resource is a state representation of data and each

resource is addressable at a unique path. A resource can have child resources, that is

nested resources, for example, http://{host}/customers/{customerId}/balance has

a resource that is a customer identi�ed by customerId and a child resource named

balance. For such RESTful design, we can detect all data access by checking URI

(Uniform Resource Identi�er) in the web tra�c. And for those not exactly following

RESTful design, such as the resource path in HTTP header or body rather than in

HTTP URI, a speci�c rule can be de�ned accordingly to extract the resource path

properly from web tra�c. In this work, we focus on the data accesses that follows

RESTful design.

4.3.5 Distributed Locks - Pessimistic Concurrency Control

One of the common problems found when building large scale distributed systems is

how to ensure that only one process (or one server) across a cluster of servers access

a resource. The resource can be a database, a �le or data entries in a database.

Without ACID guarantee by popular No-SQL databases, it is important to protect

the accesses to data in the database that are shared by multiple processes or servers

59

when necessary. Actually, even with the ACID guarantee, there could be a need to

protect the accesses across multiple transactions at the application level.

For many cases, eventual consistency is acceptable and would be the chosen

model to provide better availability. However, there are cases where strong consis-

tency is necessary. To achieve strong consistency of shared data, it needs a simple

way to coordinate the execution of processes and ensure there is only one process ac-

cessing the resource at a time when needed. There are a lot of works on distributed

lock management [47, 48, 49, 50], which is also known as pessimistic concurrency

control [51]. When the atomicity of accesses to shared data is not enforced through

distributed locks, it can be violated just like how atomicity violation manifests in

multi-threaded programs.

As shown in Section 4.3.4, it is acceptable to assume the microservices are

designed and implemented following RESTful way in which each resource has a

unique URI to allow retrieval or updating. Similar to what is presented in Section

4.3.4 where each customer has a unique URI http://{host}/customers/{customerId}

and the balance of a customer can be queried or updated at http://{host}/ cus-

tomers/{customerId}/balance, the distributed lock also has its URI such as http://

{host}/ locks/{lockId}, in which lockId can be its resource URI http://{host}/locks/

customers/{customerId}. A HTTP POST operation is to acquire a lock and a HTTP

Delete operation is to release the lock with the same lock Id.

4.3.6 Write-with-Version - Optimistic Concurrency Control

Distributed locks guarantee the strong consistency with the cost of performance be-

cause it takes extra time to acquire a lock and even more time to wait for a lock

in case it has been acquired by others. It is applicable to all memory access pat-

60

terns. Write-with-version is the technique to guarantee strong consistency for certain

memory access pattern that is read-then-write, without using distributed locks and

its performance cost. Write-with-version is also known as optimistic concurrency

control [52, 51].

To implement write-with-version, the data store is designed to provide a version

number for each resource. Each time data is changed in resources, the version

number changes. For instance, whenever a client retrieves data for a resource, it

also receives the version of the resource since the version is part of the resource.

And when a client performs an update, it provides the version of the resource that

it is changing. If the provided version in the update request doesn't match the

actual version of the resource in the data store, the update is rejected, typically

with a HTTP error code 409 that means con�ict, thus prevent inconsistency. It is

ultimately the responsibility of client developers to deal with such update failure,

which typically is reading again before write.

4.4 Predict Atomicity Violation in Distributed Systems

4.4.1 Overview of Our Method

Based on the method using the existing McPatom with patterns of single variable

atomicity violation, and another method in Chapter 3 extending McPatom with

patterns of two variables atomicity violation, this section discusses a new method

to predict atomicity violation in distributed systems, by applying what was learned

from the above methods and studying the di�erence in distributed systems while

there are similarities between protecting shared variables in multi-threaded programs

61

and shared data in distributed systems that run on multiple processes or multiple

machines.

The framework contains the following major steps: (1) using Web Proxy Fid-

dler [53] to log web tra�c of a microservice that provides RESTful API for data

access and to record an interleaved trace containing only atomicity violation im-

pacting events including all shared data accesses and all distributed lock accesses;

(2) projecting the interleaved trace into a partial order process model of abstract

processes, which maintains the causal relation within actual processes imposed by

the distributed locks and write-with-version, and treats two correlated shared data

as a single one using the patterns of single variable or keeps two correlated shared

data using the patterns of two variables; (3) automatically translating the partial

order process model into a Promela program for model checking in Spin [10]; (4)

de�ning a complete set of atomicity violation patterns as in Figure 3.6 [7] involving

a pair of processes accessing every single shared data and automatically translating

them into temporal logic formulas; (5) de�ning a complete set of atomicity violation

patterns involving a pair of processes accessing every pair of two shared data and

automatically translating them into temporal logic formulas; (6) using Spin to model

check the atomicity violation patterns; and (7) presenting the violation reported in

Spin to a Petri net model for easy manual inspection.

Figure 4.1 gives an overview of the method. If using the patterns of two-thread

atomicity violations with a single variable, the thread model in Promela treats the

two correlated shared variables as a single one. If using the patterns of two-thread

atomicity violations with two variables, the thread model in Promela keeps the two

correlated shared variable.

62

Figure 4.1: Overview of the Method for Distributed Systems

4.4.2 Tracing the Execution of Microservices

Microservices run over HTTP in a sequence of RESTful API calls on a cluster of

machines, we use a popular free web debugging proxy named Fiddler to capture all

HTTP tra�c from each machine in the cluster of the microservice, that includes all

API calls to retrieve or update shared data, and acquire or release locks.

Each API call has a unique tracking Id to track all events during the API call

from beginning to end. The tracking Id can be any Id that is unique in HTTP

headers. A machine has concurrent API calls, and as a result, a cluster of machines

also has concurrent API calls. Among those API calls, HttpGet is a reading of

shared data, HttpPut is a write of shared data. For shared data, HttpPost and

HttpDelete are out of consideration as they either create or delete resources and are

not related to the typical cases of reading and writing the same resource. However,

HttpPost is the one to acquire a lock due to its nature of creating a resource, and

HttpDelete is the one to release a lock by its nature of deleting a resource.

Figure 4.2 shows a possible trace for the example in Program 4.1,

Figure 4.3 shows another trace of a microservice using distributed locks, in which

�HttpPost http://localhost/locks/action�is a trace of acquiring a lock with lock Id

63

Figure 4.2: An Example of Trace

trackingId Event ResourceUri Response

trackingId -1 HttpGet http :// localhost/accounts /123456/

balance 200OK

trackingId -1 HttpPut http :// localhost/accounts /123456/

balance 200OK

trackingId -2 HttpGet http :// localhost/accounts /123456/

balance 200OK

trackingId -2 HttpPut http :// localhost/accounts /123456/

balance 200OK

�action� that is used to protect the resource with resource Id �action�, and the

corresponding �HttpDelete�is a trace of releasing the lock.

Figure 4.4 gives an example of the trace that involves write-with-version, which

guarantee the strong consistency like distributed locks but without using distributed

locks. The group of events by trackingId-1 simply read and write the resource suc-

cessfully, however, in the group of events by trackingId-2 it get a response with

HTTP status code 409Con�ict and then read and write the same resource success-

fully, which is considered the pattern of write-with-version, essentially like using a

distributed lock that guarantees the strong consistency between reads and writes.

Figure 4.5 presents a visualization of the trace in an interleaving between two track-

ings that are on two processes or two machines.

4.4.3 De�ning and Encoding Unserializable Interleaving Pat-

terns between Two Processes

Based on the work of Chapter 3 that de�nes the unserializable interleaving patterns

between two threads, this section proposes patterns to solve the problem between

two processes in distributed systems with di�erent challenges that are distributed

64

Figure 4.3: An Example of Trace With Locks

trackingId Event ResourceUri Response

trackingId -1 HttpPost http :// localhost/locks/action 200OK

trackingId -1 HttpPut http :// localhost/action 200OK

trackingId -1 HttpDelete http :// localhost/locks/action 200

OK

trackingId -1 HttpPost http :// localhost/locks/length 200OK

trackingId -1 HttpPut http :// localhost/length 200OK

trackingId -1 HttpDelete http :// localhost/locks/length 200

OK

trackingId -2 HttpPost http :// localhost/locks/action 200OK

trackingId -2 HttpGet http :// localhost/action 200OK

trackingId -2 HttpDelete http :// localhost/locks/action 200

OK

trackingId -2 HttpPost http :// localhost/locks/length 200OK

trackingId -2 HttpGet http :// localhost/length 200OK

trackingId -2 HttpDelete http :// localhost/locks/length 200

OK

Figure 4.4: An Example of Trace for Write-with-Version

trackingId Event ResourceUri Response

trackingId -1 HttpGet http :// localhost :5984/ main/

patient_2_e9ecad62 -b2f0 -428a-8ecc -6797 ef420d98 200OK

trackingId -2 HttpGet http :// localhost :5984/ main/

patient_2_e9ecad62 -b2f0 -428a-8ecc -6797 ef420d98 200OK

trackingId -1 HttpPut http :// localhost :5984/ main/

patient_2_e9ecad62 -b2f0 -428a-8ecc -6797 ef420d98 200OK

trackingId -2 HttpPut http :// localhost :5984/ main/

patient_2_e9ecad62 -b2f0 -428a-8ecc -6797 ef420d98 409

Conflict

trackingId -2 HttpGet http :// localhost :5984/ main/

patient_2_e9ecad62 -b2f0 -428a-8ecc -6797 ef420d98 200OK

trackingId -2 HttpPut http :// localhost :5984/ main/

patient_2_e9ecad62 -b2f0 -428a-8ecc -6797 ef420d98 200OK

65

Figure 4.5: The Interleaving Pattern of Write-with-Version

locks and write-with-version, since write-with-version can be considered equivalent

to a pair of read and write with proper distributed locks while preserving the seman-

tics about strong consistency. To accommodate the cases of write-with-version, the

pattern needs to take the API calling response code into consideration to identify

the scenario of version con�ict.

4.4.3.1 Unserializable Interleaving Patterns with Single Resource In-

volved

Figure 4.6 shows all possible scenarios of unserializable interleavings with only one

access from Process 2. If any of the unserializable interleaving patterns is matched,

it indicates a potential atomicity violation.

66

Figure 4.6: Unserializable Interleavings with two processes. In (1)(2)(3)(5), W in
Process 2 unexpectedly changes the value; In (4), An intermediate value in Process
1 is read by Process 2. (3) is the pattern to recognize write-with-version as valid
concurrency control, by making sure there is no writing returning con�ict before-
hand, marked asW409 since 409 is the HTTP status code for con�ict. Other accesses
marked R200 and W200 mean read with success and write with success correspond-
ingly.

67

4.4.3.2 Unserializable Interleaving Patterns with Multiple Resources In-

volved

For the case with multiple resources involved, it is not a�ected by write-with-version

which is for the same resource, so it is not necessary to check the response code of

API calling, and Figure 3.9 can be simply reused.

4.4.4 Analyzing the Trace

The unique tracking Id of API calls can be used to group all events captured in

Fiddler web proxy into API call processes in which each process has a unique tracking

Id and contains multiple events about shared data and distributed locks.

4.4.4.1 Description of the Partial Order Process Model

For a multi-process microservice running R, an execution σ = s1, ..., sn of is a

sequence of executed accesses of resources. An execution can be projected to a

sequence of annotated shared data accesses and synchronization events, which is the

trace to analyze in this work. Formally, a trace, τ = e1, ..., em is a sequence of events

where each event ei(1 ≤ i ≤ m) is a tuple 〈tidi, timestampi, actioni, responsei〉 in

which tidi is a tracking Id of API calls, timestampi is a time stamp based on real time

and actioni is one of the following: (read/write, a shared resource) or (lock/unlock, a

lock resource), and responsei is the result of the action which is HTTP status code

such as 200OK, 201Created, 409Con�ict and etc. in the context of microservice

based systems.

Given a trace τ = e1, ..., em containing shared data accesses and lock

events, a partial order process model (Eτ ,≺) is de�ned as follows:

68

1. Eτ = {ei | ei in τ}

(a) ≺ is a partial order relation such that, for any ei, ej ∈ E (i 6= j), ei ≺ ej

i� tidi = tidj and i < j

(b) Mutual exclusion: for any ei, ej, em, en ∈ E (i 6= j 6= m 6= n), ej ≺ em or

en ≺ ei i�

i. tidi = tidj, actioni = (Lock, lvar), actionj = (Unlock, lvar), and

ii. tidm = tidn, actionm = (Lock, lvar), actionn = (Unlock, lvar) in

which lvar is a lock resource.

The partial order above de�nes the causal relation and is similar to the happened-

before relation given in Section 3.3.1. The above de�nition ensures (1) shared data

accesses within the same process are ordered, and (2) the constraint of lock is pre-

served regarding its impact to the shared data accesses across multiple processes.

Therefore, it captures alternative traces that obey the same causal relation as τ

and thus equivalent to the original trace, and each alternative trace τ ′ is a result

of rearranging the order of some shared data accesses across di�erent processes

without breaking the constraint by ≺. The partial order process model enables

exploration of all possible alternative traces that correspond to a set of feasible in-

terleavings in a multi-process microservice running. However, the model provides

an over-approximation without considering data-�ow and dependencies between mi-

croservices processes, thus cannot guarantee each alternative trace captured in the

model can be projected back to some feasible interleaved execution in the multi-

process microservice running R, that is the reason for false positives.

69

4.4.4.2 Automatically Encoding Traces to Promela Code

The method in [7] to automatically encoding traces to Promela code can be modi�ed

by adding support of response code to build a partial order process model in Promela

for each shared resource. And to check for atomicity violation involving multiple

resources, the method in Section 3.4 can be applied to infer correlations between

shared resources.

This work automatically encodes a trace to multiple Promela �le with each one

containing a single shared resource, or a pair of shared resources. It de�nes each

shared resource v as a short in Promela, automatically assigns a unique value for all

reading accesses and a unique value for all writing accesses in each thread. Formally,

let rw ∈ {r, w}, and tid be tracking Id of the API calling, then v=rw+tid for each

access of v. Our work sets r to be 0, and w to be 10000 in case of failure such

as 409Con�ict and to be 20000 in case of success such as 200OK, 201Created. For

example, given two tracking: t1(tid=1) and t2(tid=2), and a shared resource v, our

work makes assignments as below for each scenario of accesses.

• Assign 10000+1 to v for each writing access of v in tracking t1 that has failing

response 409Con�ict,

• Assign 20000+1 to v for each writing access of v in tracking t1 that has

successful response 200OK,

• Assign 1 to v for each reading access of v in tracking t1,

• Assign 10000+2 to v for each writing access of v in tracking t2 that has failing

response 409Con�ict,

• Assign 20000+2 to v for each writing access of v in tracking t2 that has

successful response 200OK,

• Assign 2 to v for each reading access of v in tracking t2.

70

proctype t1 () { . . . }
proctype t2 ()
{

v_patient_2_e9ecad62−b2f0−428a−8ecc−6797 ef420d98 = 2 ;
v_patient_2_e9ecad62−b2f0−428a−8ecc−6797 ef420d98 = 10002 ;
v_patient_2_e9ecad62−b2f0−428a−8ecc−6797 ef420d98 = 2 ;
v_patient_2_e9ecad62−b2f0−428a−8ecc−6797 ef420d98 = 20002 ;

}

i n i t
{

run t1 () ;
run t2 () ;
. . .

}

Figure 4.7: A Sample of Partial Promela Code

Our work automatically generates Promela code for all synchronization primitives,

like McPatom [7]. Figure 4.7 gives a sample of partial Promela code encoding a

trace for Figure 4.4.

The resulting Promela code can be model checked with the patterns to predict

alternative traces which is missing locks or write-with-version that are necessary to

prevent atomicity violations. The following section discusses encoding the patterns

into LTL formulas for the model checking tool Spin to use.

4.4.4.3 Automatically Encoding Atomicity Violation Patterns into Lin-

ear Time Temporal Logic (LTL) Formulas

For every shared resource and every pair of tracking t1 and t2, our work automat-

ically de�nes a LTL formula (4.1) for each pattern in Figure 4.6 and another LTL

formula (4.2) reversing the view of t1 and t2. Let v be a shared resource, r = 0,

w200 = 20000 and w409 = 10000 as de�ned in section 4.4.4.2, Ai ∈ {r, w200, w409},

71

and tidi , tidi ∈ {1, 2}.

[]! <> ((v == A1 + tid1)&&

X((v == A2 + tid2)U((v == A3 + tid3)&& (4.1)

X((v == A4 + tid4)U(v == A5 + tid5)))))

[]! <> ((v == A1 + tid1)&&

X((v == A2 + tid2)U((v == A3 + tid3)&& (4.2)

X((v == A4 + tid4)U(v == A5 + tid5)))))

where �[]� denotes Always, �!� denotes Logical Negation, �<>� denotes Even-

tually, �X� denotes Next and �U� denotes Until. These formulas specify that the

atomicity violation patterns do not occur.

Using Figure 4.6 (3) as a concrete example, one formula in LTL is shown below:

[]! <> ((!(v = w409 + 1)X(v == r + 1))&&

X((v == r + 1)U((v == w200 + 2)&& (4.3)

X((v == w200 + 2)U(v == w200 + 1)))))

The predicted trace can be false positives and need to be examined to con�rm.

To make it easier to manually inspect the predictions, we propose a method to build

a Petri net model from the predicted trace as in the following section.

4.4.4.4 Automatically Build a Petri Net Model From Predicted Trace

Petri net model is a natural choice to model the message passing, shared data and

distributed locks that are all we need to analyze atomicity violation in distributed

systems. Petri nets de�ne elementary process steps as transitions that can model

message passing and processing, and de�ne data repositories as places. Each token

in a place is a resource that could be shared data, and a transition consuming a token

72

from a place essentially locks the token and its representing shared data, a transition

producing a token essentially unlocks the token and its representing shared data.

Modeling running of microservice is essentially modeling multiple processes in

which each process has multiple sequential transitions. Each transition can access

shared data including read access and write access, and for each shared data, its

access in each process can be summarized as read, write, read-then-write, write-

then-read. As shown in Figure 4.8, A process can have multiple transitions T1, T2

and more, their sequence is modeled by using a place between transitions. If it is

a single read access T3 can be used and if it is a single write access, T4 can be

used. In the case of read-then-write, a combination of T3 and T4 can be used like

T5. When it is write-then-read, two transitions T6 and T7 are needed to model its

sequence. A transition is atomic thus implying a proper distributed lock is used,

so in case there is no distributed lock to guard multiple accesses, the corresponding

transition can be labeled as �NonAtomic� to alert developers to check whether it is

a case to add a distributed lock.

Our tool generates a simple text �le describing the places, transitions and the

edges between them, and use Graphviz [54] to visualize it. Petri nets in the following

Figures are manually built to include annotations for easier understanding in this

dissertation.

The automatically built Petri net model can be used to visually inspect a model

to check whether the locking is su�cient to avoid atomicity violation.

For the example in Program 4.1, we build a Petri net model as shown in Figure

4.9 with manually annotations. Because of no distribution lock in place to guard

its atomicity, we mark the transition in the Petri net model as �NonAtomic�. In the

model, ϕ(AccountBalance) = P(accountId× balance) where an account is queried

73

Figure 4.8: Petri Net Modeling Method Overview

or updated by its accountId. Two transitions can be two �Deposit�, two �Withdraw�,

or what is shown in 4.1 that is one �Deposit� and one �Withdraw�.

There are cases that distributed lock is used but not enough or properly, as shown

in the example of Figure 4.3. A Petri net model is built as in Figure 4.10, in which

we don't mark any transition as �NonAtomic� as there are distributed locks being

used to ensure those transitions being atomic. However, when we inspect the Petri

Figure 4.9: An Example of Petri Net Model

74

Figure 4.10: An Example of Petri Net Model With Atomic Transitions

net model, it is clear that there is a possible atomicity violation if the transitions are

�red in the order: T1, T3, T4, T2 which essentially read inconsistent intermediate

states.

4.5 Evaluation

All of our experiments are conducted on a machine with 2 Core 2.3GHz CPU, 4GB

of memory, running Debian 8.7 as the operating system. We use Fiddler v5.0 for web

tra�c logging and SPIN tool 6.4.6 for model checking. Our experiments discover

two bugs that were not known.

4.5.1 HospitalRun: an open source electronic medical record

system

HospitalRun [55] is a freely available modern software platform for developing world

hospitals, that uses CouchDB [56] as the underlying NoSQL data store through its

75

HTTP based RESTful API. It has been forked more than 1000 times in Github

by other developers and has 233 thousands lines of code. The project is based on

Node.js and we are able to con�gure Node.js to use the proxy set up by Fiddler

Web Proxy so that it captures all HTTP/HTTPS tra�c to and from the underlying

CouchDB.

Our tool captured a trace of 292KB and found an atomicity violation that was

not reported and we can reproduce. It took about 2 seconds to infer the correla-

tion between shared resources and less than one minute for Spin model checkers

to check all properties for a shared resource or a pair of shared resources. Fol-

lowing are the relevant trace when trying to reproduce the predicted atomicity

violation. HttpPost was used to query resources with multiple resource keys to

query in the HTTP body. We had to de�ne a special rule to interpret a HttpPost

on the API endpoint /main/_all_docs?include_docs=true to be a reading event

with the resource to be read in the HTTP body. As shown in Figure 4.11, it read

the resource visit_2_�493467-7087-407d-b9f9-f0cc03fbc167 then wrote the resource

billingLineItem _2_13f5c098-b31c-4e70-ae4a-b5f92792c725 in tracking 1, which is

meant to query the list of imaging requested for a visit then generate a bill item for

the visit based on all imaging requests. It got one imaging request and then gen-

erated a bill item for the invoice. However, before generating the invoice, another

API came in to update the resource visit_2_�493467-7087-407d-b9f9-f0cc03fbc167

with an extra imaging request that resulted in two imaging requests for the visit to

charge, so that the invoice missed the new imaging request and became a loss for

the hospital.

It can happen when the administrator open the invoice page and left for a while

so that upon coming back to the invoice page and generate an invoice it triggered

the atomicity violation bug. As shown in Figure 4.12, it has two imaging request

76

Figure 4.11: A Sample of Partial Trace

POST http :// localhost :5984/ main/_all_docs?include_docs=

true HTTP /1.1

{"keys ":[" visit_2_ff493467 -7087 -407d-b9f9 -f0cc03fbc167 "]}

user -agent: 1

HTTP /1.1 200 OK

{"id":" visit_2_ff493467 -7087 -407d-b9f9 -f0cc03fbc167 ","key

":" visit_2_ff493467 -7087 -407d-b9f9 -f0cc03fbc167 ","

value ":{" imaging ":["0 df33a57 -2149 -43ef-a72d -2947

b1e3e6d7 "] ,...}}}}

PUT http :// localhost :5984/ main/visit_2_ff493467 -7087 -407d

-b9f9 -f0cc03fbc167 HTTP /1.1

{"_rev ":"2 -36 bf667062d2faf0f1a963b0e4747b1f ","_id":"

visit_2_ff493467 -7087 -407d-b9f9 -f0cc03fbc167 ","data

":{" imaging ":["0 df33a57 -2149 -43ef-a72d -2947 b1e3e6d7

" ,"5636ab7c -99a1 -4e26 -99df -55 cc05cb4556 "]...}}}

user -agent: 2

HTTP /1.1 201 Created

PUT http :// localhost :5984/ main/billingLineItem_2_13f5c098

-b31c -4e70 -ae4a -b5f92792c725 HTTP /1.1

{"_rev ":"1-6 ebb79c0cf3869dd521d561fca2000da ","_id":"

billingLineItem_2_13f5c098 -b31c -4e70 -ae4a -b5f92792c725

","data ":{" amountOwed ":150 ,...}}}

user -agent: 1

HTTP /1.1 201 Created

77

Figure 4.12: Screenshot when reproducing the predicted atomicity violation

including one Xray and one CT, according to the pricing, the total should be $950,

however, the generated invoice is $150 because it is missing one imaging request

caused by the atomicity violation.

Our tool found the two shared resources visit_2_�493467-7087-407d-b9f9-f0cc03

fbc167 and billingLineItem_2_13f5c098-b31c-4e70-ae4a-b5f92792c725 are correlated

because they often show up together in the trace which is as expected since the bill

item is for the correlated visit. Then for each pair of correlated resources, our tool

generated Promela code that includes one example as shown in Figure 4.13.

The model checking tool Spin gave a trace of predicted atomicity violation,

according to the pattern (1) in Figure 3.9, based on that, our tool generated a Petri

net model as shown in Figure 4.14, in which the type is de�ned as below with Id

being a string for the unique Id and V alue being a string for the value of the resource

speci�ed by the Id. Each place is a power set that allows to query the existence of

a Id and update the value for a Id. When the transition is �red in the order of T1,

78

Figure 4.13: Partial Promela Code of the HospitalRun trace

proctype t1()

{

...

v_visit_2_ff493467 -7087 -407d-b9f9 -f0cc03fbc167 = 1;

v_billingLineItem_2_13f5c098 -b31c -4e70 -ae4a -

b5f92792c725 = 20001;

...

}

proctype t2()

{

...

v_visit_2_ff493467 -7087 -407d-b9f9 -f0cc03fbc167 = 20002;

...

}

init

{

run t1();

run t2();

}

79

T2 and T3, it simulates the predicted atomicity violation.

ϕ(V isit) =P(Id× V alue)

ϕ(BillingLineItem) =P(Id× V alue)

R(T1) =∃ (v ∈ V isit) � (

v[1] = V isitIdToQuery

∧ V isit′ = V isit

)

R(T2) =∃ (v ∈ V isit) � (

v[1] = V isitIdToQuery

∧ V isit′ = V isit \ {v} ∪ {(v[1], visitIdNewV alue)}

)

R(T3) =∃ (b ∈ BillingLineItem) � (

b[1] = BillingLineItemIdToQuery

∧BillingLineItem′ = BillingLineItem \ {b} ∪ {(b[1], NewV alue)}

)

4.5.2 Google Cloud Storage FUSE: A user-space �le system

for interacting with Google Cloud Storage

Google Cloud Storage FUSE (GCS-FUSE) is a Google-developed open source FUSE

adapter that allows to mount Google Cloud Storage buckets as �le systems on Linux

80

Figure 4.14: Petri net model for the predicted atomicity violation

Figure 4.15: Examples of Google Cloud Storage JSON API

get GET /b/bucket/o/object Retrieves an

object or its metadata.

insert POST /upload/storage/v1/b/bucket/o Stores a

new object and metadata.

insert POST /b/bucket1/o/object1/copyTo/bucket2/o/

object2 Copies an existing object to another object

update PUT /b/bucket/o/object Updates an object 's

metadata.

delete DELETE /b/bucket/o/object Deletes an object

and its metadata.

81

or macOS systems. It is based on Google Cloud Storage JSON API which is RESTful

as shown in a few example API calls in Figure 4.15.

Here are a few steps to facilitate capturing web tra�c of GCS-FUSE.

1. Copy root certi�cate generated by web proxy to /etc/ssl/certs/

2. export http_proxy=127.0.0.1:8888

3. export https_proxy=127.0.0.1:8888

4. Run GCS-FUSE in foreground mode:

gcsfuse --foreground gcs-fuse-av ~/projects/gcs-fuse/

Our tool captured a trace of 224KB and found an atomicity violation that was not

reported and we can reproduce. It took less than one minute for Spin model checkers

to check all properties. Following Figure 4.16 shows the relevant traces. GCS-FUSE

uses a generation number to represent the version of a �le inode in the �le system,

and increase the generation whenever making a change to the �le inode. When up-

loading a �le to the existing �le inode, GCS-FUSE uploads the �le to a temporary

stream with a bigger generation number and copies the temporary stream to the des-

tination �le inode as shown in the API �/copyTo/b/{blockName}/o/{objectName}�

of Figure 4.16.

GCS-FUSE doesn't follow exactly RESTful API design about the resource URI,

but we can de�ne simple rules to �gure out object names from the URIs according

to the pattern shown in Figure 4.15. For the object as shared resource, our tool

generated Promela code that includes one example as shown in Figure 4.17.

The model checking tool Spin gave a trace of predicted atomicity violation,

according to the pattern (3) in Figure 4.6, based on that, our tool generated a Petri

net model as shown in Figure 4.18, in which the type is de�ned as below with Id

82

Figure 4.16: A Sample of Partial Trace of GCS-FUSE

GET https ://www.googleapis.com/download/storage/v1/b/gcs -

fuse -av/o/atom.bib?alt=media&generation

=1540133382180427 HTTP /1.1

user -agent: 1

HTTP /1.1 200 OK

POST https ://www.googleapis.com/storage/v1/b/gcs -fuse -av/

o/. goutputstream -BMRWQZ/copyTo/b/gcs -fuse -av/o/atom.

bib?ifSourceMetagenerationMatch =1& projection=full&

sourceGeneration =1540135196194955 HTTP /1.1

user -agent: 1

HTTP /1.1 200 OK

GET https ://www.googleapis.com/download/storage/v1/b/gcs -

fuse -av/o/atom.bib?alt=media&generation

=1540133382180427 HTTP /1.1

user -agent: 2

HTTP /1.1 200 OK

POST https ://www.googleapis.com/storage/v1/b/gcs -fuse -av/

o/. goutputstream -3 RY5QZ/copyTo/b/gcs -fuse -av/o/atom.

bib?ifSourceMetagenerationMatch =1& projection=full&

sourceGeneration =1540135201098064 HTTP /1.1

user -agent: 2

HTTP /1.1 200 OK

83

Figure 4.17: Partial Promela Code of the GCS-FUSE trace

proctype t1()

{

...

v_atom_bib = 1;

v_atom_bib = 20001;

...

}

proctype t2()

{

...

v_atom_bib = 2;

v_atom_bib = 20002;

...

}

init

{

run t1();

run t2();

}

84

Figure 4.18: Petri net model for the predicted atomicity violation

being a string for the unique Id and V alue being a string for the value of the resource

speci�ed by the Id. The place is a power set that allows to query the existence of a

Id and update the value for a Id. When the transition is �red in the order of T1,

T2, T3, and T4, it simulates the predicted atomicity violation.

ϕ(Object) =P(Id× V alue)

4.6 Related Works

DCatch [57] predicted distributed concurrency bugs including atomicity violation

bugs by analyzing the correct execution of distributed systems. It designed a set

of happens-before rules, runtime tracing tools and trace analysis tools. Its focus

was on the infrastructure software that helps to run a distributed system. Our

work focuses on the applications that are run on top of the infrastructure software,

that are designed in microservice based architecture style and uses RESTful API

for shared data access.

85

In [58] a formal framework is presented based on Petri nets for the process �ow

in microservices architecture style. It helped to analyze the process �ow de�ned in

an orchestration engine that is in charge of enacting a script to de�ne the high-level

control and data �ows. It can be applied to the speci�c orchestration languages

to model the communication between microservices that are de�ned by the orches-

tration. However, in the real world microservices are much more than those ones

de�ned in orchestration. Our work is �exible to model the communication between

any microservices.

In [59] it was investigated how to extract a process model from system event

logs. The research area of process mining focused on extracting information about

processes by checking system event logs including which activities are performed,

at what time, by whom and in the context of which case (i.e., process instance).

By explicitly using the case context, process discovery algorithms are capable of

constructing process models that accurately describe the process [59]. Our captured

web tra�c about API calls in microservices is similar to the interested data in system

event logs, including which API is called, at what time, on what resources and in the

context of which tracking Id. Our extracted Petri nets models accurately describe

the shared data, their accesses, and the related distributed locks.

4.7 Summary

Distributed concurrency bugs often have really simple causes and can be caught by

simple tests [44], however, they are extremely hard to troubleshoot and detect due to

its complex non-deterministic nature. As the most common distributed concurrency

bugs, atomicity violations are studied in recent works [44, 57, 4]. This paper presents

86

a tool based on McPatom [7] using model checking to predict atomicity violation

distributed concurrency bugs, in the microservice based modern distributed systems.

The tool is powerful and it is able to capture runtime trace of shared resources

and infer the correlation between shared resources. The tool can explore a vast

interleaving space of a microservice based modern distributed system given a small

set of captured test runs. It is applicable to large real-world systems and predicts

an atomicity violation in a popular open source project.

87

CHAPTER 5

CONCLUSION

5.1 Summary

This dissertation presents methods and tools for modeling and analyzing concur-

rent software systems that run as multi-threaded programs or microservice based

distributed systems, to predict atomicity violation bugs and improve the reliability

of concurrent software. For multi-threaded programs, we use binary instrumenta-

tion tool to capture runtime information about shared variables and synchroniza-

tion events, and for microservice based distributed systems, we use a web proxy

to capture HTTP based tra�c about API calls and the shared resources they ac-

cess including distributed locks. Based on the capture traces, we develop methods

to extract a partial order model and apply model checking techniques by de�n-

ing the atomicity violation patterns in LTL formulas. We also develop methods

to infer the correlation between shared variables in multi-threaded programs and

shared resources in microservice based distributed systems and de�ne patterns for

multi-variable atomicity violation.

Our tool using model checking to predict atomicity violation concurrency bugs is

powerful and can explore a vast interleaving space of non-deterministic programs in-

cluding multi-threaded programs and microservice based distributed systems, given

a small set of captured test runs. Our tool is applicable to large real-world systems.

The experiment result shows the scalability of our methods is promising compared

to related works and our methods are able to detect well-known atomicity violations

in multi-threaded programs and also discover a couple of new atomicity violations

in real-world microservice based distributed systems.

88

5.2 Future Work

For the microservice based distributed systems, we predict atomicity violations and

present them in Petri net models. The Petri net models are small ones only covering

the relevant resources in a relevant pattern. Additional methods can be developed

based on existing process mining algorithms to give a larger Petri net model covering

more resources and better picture of the overall systems, that makes it possible

to do more analysis based on Petri net models. And the partial order process

model we de�ne for microservice based distributed systems doesn't take barriers

into consideration as they are rarely used in microservice based distributed systems,

can be enhanced to add barriers to reduce false positives when barriers are used in

the microservice based distributed system.

We can also support the logging framework chosen by the authors of the mi-

croservice such as log4j and log4j2, to adapt to more distributed systems that might

have more complicated data design and not follow RESTful API and resource de-

sign. Using logging frameworks also make it more �exible to get more information

between correlated variables and resources so that it can improve the con�dence

when inferring the correlation between them thus helping to �nd the real atomicity

violations.

89

BIBLIOGRAPHY

[1] K. Poulsen, �Software bug contributed to blackout.� URL: http://www.secu
rityfocus.com/news/8016, 2004. [Online; Accessed: 07/16/2011].

[2] S. Lu, J. Tucek, F. Qin, and Y. Zhou, �AVIO: detecting atomicity violations via
access interleaving invariants,� in Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS'06), (San Jose, CA, USA), pp. 37�48, 2006.

[3] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou,
�MUVI: automatically inferring multi-variable access correlations and detect-
ing related semantic and concurrency bugs,� Proceedings of twenty-�rst ACM
SIGOPS symposium on Operating systems principles (SOSP '07), pp. 103�116,
Oct. 2007.

[4] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, �Taxdc: A
taxonomy of non-deterministic concurrency bugs in datacenter distributed sys-
tems,� in Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
'16, (New York, NY, USA), pp. 517�530, ACM, 2016.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and
recovery in database systems, vol. 5. Addison-wesley New York, 1987.

[6] S. Lu, S. Park, and Y. Zhou, �Finding Atomicity-Violation bugs through un-
serializable interleaving testing,� IEEE Transactions on Software Engineering,
vol. PP, no. 99, p. 1, 2011.

[7] R. Zeng, Z. Sun, S. Liu, and X. He, �McPatom: a predictive analysis tool
for atomicity violation using model checking,� in Proceedings of the 19th in-
ternational conference on Model Checking Software (SPIN'12), (Oxford, UK),
pp. 191�207, 2012.

[8] C. Wang, R. Limaye, M. Ganai, and A. Gupta, �Trace-based symbolic analysis
for atomicity violations,� in Proceedings of the International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS'10),
(Paphos, Cyprus), pp. 328�342, 2010.

[9] A. Pnueli, �The Temporal Logic of Programs,� in Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS '77, (Washington, DC,
USA), pp. 46�57, IEEE Computer Society, 1977.

90

http://www.securityfocus.com/news/8016
http://www.securityfocus.com/news/8016

[10] G. Holzmann, The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

[11] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, �Simple On-the-�y Automatic
Veri�cation of Linear Temporal Logic,� in Protocol Speci�cation, Testing and
Veri�cation XV: Proceedings of the Fifteenth IFIP WG6.1 International Sym-
posium on Protocol Speci�cation, Testing and Veri�cation, Warsaw, Poland,
June 1995 (P. Dembi«ski and M. �redniawa, eds.), IFIP Advances in Infor-
mation and Communication Technology, pp. 3�18, Boston, MA: Springer US,
1996.

[12] J. Esparza and K. Heljanko, Unfoldings: a partial-order approach to model
checking. Monographs in theoretical computer science: an EATCS series,
Berlin: Springer, 2008. OCLC: ocn209334163.

[13] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[14] A. Valmari, �The state explosion problem,� in Lectures on Petri Nets I: Basic
Models: Advances in Petri Nets (W. Reisig and G. Rozenberg, eds.), Lecture
Notes in Computer Science, pp. 429�528, Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998.

[15] A. Valmari, �A Stubborn Attack on State Explosion,� Form. Methods Syst.
Des., vol. 1, pp. 297�322, Dec. 1992.

[16] D. Peled, �All from one, one for all: on model checking using representatives,�
in Computer Aided Veri�cation (C. Courcoubetis, ed.), Lecture Notes in Com-
puter Science, pp. 409�423, Springer Berlin Heidelberg, 1993.

[17] K. L. McMillan, �Using Unfoldings to Avoid the State Explosion Problem in
the Veri�cation of Asynchronous Circuits,� in Proceedings of the Fourth Inter-
national Workshop on Computer Aided Veri�cation, CAV '92, (London, UK,
UK), pp. 164�177, Springer-Verlag, 1993.

[18] D. Peled, �Combining partial order reductions with on-the-�y model-checking,�
Formal Methods in System Design, vol. 8, pp. 39�64, Jan. 1996.

[19] R. P. Kurshan, �Reducibility in analysis of coordination,� in Discrete Event
Systems: Models and Applications (P. Varaiya and A. B. Kurzhanski, eds.),
Lecture Notes in Control and Information Sciences, pp. 19�39, Springer Berlin
Heidelberg, 1988.

91

[20] J.-C. Fernandez, L. Mounier, C. Jard, and T. Jéron, �On-the-�y veri�cation of
�nite transition systems,� Formal Methods in System Design, vol. 1, pp. 251�
273, Oct. 1992.

[21] G. J. Holzmann, Design and Validation of Computer Protocols. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1991.

[22] X. He, �Modeling and Analyzing Cyber Physical Systems Using High Level Petri
Nets,� in 2018 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), pp. 469�476, July 2018.

[23] H. J. Genrich, �Predicate/Transition Nets,� in Petri Nets: Central Models and
Their Properties (W. Brauer, W. Reisig, and G. Rozenberg, eds.), Lecture Notes
in Computer Science, pp. 207�247, Springer Berlin Heidelberg, 1987.

[24] Z. Sun, R. Zeng, and X. He, �A Method for Predicting Two-Variable Atomic-
ity Violations,� in 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS), pp. 103�110, July 2018.

[25] L. Lamport, �Time, clocks, and the ordering of events in a distributed system,�
Communications of the ACM, vol. 21, pp. 558�565, July 1978.

[26] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, �Pin: building customized program analysis tools
with dynamic instrumentation,� in the 2005 ACM Conference on Programming
Language Design and Implementation (PLDI'05), (Chicago, IL, USA), pp. 190�
200, 2005.

[27] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, �Detecting outliers: Do
not use standard deviation around the mean, use absolute deviation around the
median,� Journal of Experimental Social Psychology, vol. 49, pp. 764�766, July
2013.

[28] C. Flanagan, S. N. Freund, and J. Yi, �Velodrome: a sound and complete
dynamic atomicity checker for multithreaded programs,� in Proceedings of the
2008 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI'08), (Tucson, AZ, USA), pp. 293�303, 2008.

[29] B. Lucia, L. Ceze, and K. Strauss, �ColorSafe: architectural support for de-
bugging and dynamically avoiding multi-variable atomicity violations,� in Pro-
ceedings of the 37th annual international symposium on Computer architecture
- ISCA '10, (Saint-Malo, France), p. 222, 2010.

92

[30] S. Park, R. Vuduc, and M. J. Harrold, �Unicorn: a uni�ed approach for lo-
calizing non-deadlock concurrency bugs,� Software Testing, Veri�cation and
Reliability, vol. 25, no. 3, pp. 167�190, 2015.

[31] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu,
�Finding and reproducing heisenbugs in concurrent programs,� in Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation
(OSDI'08), (San Diego, CA, USA), pp. 267�280, 2008.

[32] L. Wang and S. D. Stoller, �Runtime analysis of atomicity for multithreaded
programs,� IEEE Transactions on Software Engineering, vol. 32, pp. 93�110,
2006.

[33] F. Sorrentino, A. Farzan, and P. Madhusudan, �Penelope: weaving threads
to expose atomicity violations,� in Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE'10),
(Santa Fe, NM, USA), pp. 37�46, 2010.

[34] A. Farzan and P. Madhusudan, �The complexity of predicting atomicity vi-
olations,� in Proceedings of the 15th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS'09), (York,
UK), pp. 155�169, 2009.

[35] F. Chen, T. F. Serbanuta, and G. Rosu, �jPredictor: a predictive runtime
analysis tool for java,� in Proceedings of the 30th International Conference on
Software Engineering (ICSE'08), (Leipzig, Germany), pp. 221�230, 2008.

[36] T. Serbanuta, F. Chen, and G. Rosu, �Maximal causal models for sequentially
consistent systems,� in Proceedings of the 3rd International Conference on Run-
time Veri�cation (RV'12), (Istanbul, Turkey), pp. 136�150, 2012.

[37] K. Sen, G. Rosu, and G. Agha, �Detecting errors in multithreaded programs
by generalized predictive analysis of executions,� in Proceedings of the 7th IFIP
International Conference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS'05), (Athens, Greece), pp. 211�226, 2005.

[38] A. Sinha, S. Malik, C. Wang, and A. Gupta, �Predictive analysis for detecting
serializability violations through trace segmentation,� in Proceedings of the 9th
International Conference on Formal Methods and Models for Codesign (MEM-
OCODE'11), (Cambridge, UK), pp. 99�108, 2011.

93

[39] V. Kahlon and C. Wang, �Universal causality graphs: a precise happens-before
model for detecting bugs in concurrent programs,� in Proceedings of the 22nd In-
ternational Conference on Computer Aided Veri�cation (CAV'10), (Edinburgh,
United Kingdom), pp. 434�449, 2010.

[40] M. K. Ganai, �Scalable and precise symbolic analysis for atomicity violations,�
in Proceedings of the 2011 26th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE'11), (Lawrence, KS, USA), pp. 123�132,
2011.

[41] J. Yi, C. Sadowski, and C. Flanagan, �SideTrack: generalizing dynamic atom-
icity analysis,� in Proceedings of the 7th Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging (PADTAD'09), (Chicago, IL, USA),
pp. 8:1�8:10, 2009.

[42] A. Jannesari and F. Wolf, �Automatic generation of unit tests for correlated
variables in parallel programs,� International Journal of Parallel Programming,
vol. 44, pp. 644�662, June 2016.

[43] W. Ahmed and Y. W. Wu, �A survey on reliability in distributed systems,�
Journal of Computer and System Sciences, vol. 79, pp. 1243�1255, Dec. 2013.

[44] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. Jain, and
M. Stumm, �Simple Testing Can Prevent Most Critical Failures: An Analysis of
Production Failures in Distributed Data-Intensive Systems.,� in OSDI, pp. 249�
265, 2014.

[45] E. A. Brewer, �Towards Robust Distributed Systems (Abstract),� in Proceed-
ings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing, PODC '00, (New York, NY, USA), pp. 7�, ACM, 2000.

[46] S. Gilbert and N. Lynch, �Brewer's Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services,� SIGACT News, vol. 33, pp. 51�59,
June 2002.

[47] P. Schwan et al., �Lustre: Building a �le system for 1000-node clusters,� in
Proceedings of the 2003 Linux symposium, vol. 2003, pp. 380�386, 2003.

[48] W. E. Snaman and D. W. Thiel, �The vax/vms distributed lock manager,�
Digital Technical Journal, vol. 5, no. 2, p. 44, 1987.

94

[49] K. Thomas, �Programming locking applications,� IBM Corporation, vol. 2,
no. 00, p. 1, 2001.

[50] F. Junqueira and B. Reed, ZooKeeper: distributed process coordination. "
O'Reilly Media, Inc.", 2013.

[51] D. A. Menascé and T. Nakanishi, �Optimistic versus pessimistic concurrency
control mechanisms in database management systems,� Information Systems,
vol. 7, pp. 13�27, Jan. 1982.

[52] H. T. Kung and J. T. Robinson, �On Optimistic Methods for Concurrency
Control,� ACM Trans. Database Syst., vol. 6, pp. 213�226, June 1981.

[53] �Fiddler - free web debugging proxy.� URL: https://www.telerik.com/fidd
ler. [Online; Accessed: 08/26/2018].

[54] �Graphviz - graph visualization software.� URL: https://www.graphviz.org/.
[Online; Accessed: 08/26/2018].

[55] �Hospitalrun - freely available, modern software platform for developing world
hospitals.� URL: https://cure.org/2016/01/cure-international-offers
-freely-available-open-source-software-platform-to-developing-wo

rld-hospitals/. [Online; Accessed: 08/26/2018].

[56] �Apache couchdb - nosql data store with an intuitive http/json api and de-
signed for reliability.� URL: http://couchdb.apache.org. [Online; Accessed:
08/26/2018].

[57] H. Liu, G. Li, J. F. Lukman, J. Li, S. Lu, H. S. Gunawi, and C. Tian, �Dcatch:
Automatically detecting distributed concurrency bugs in cloud systems,� in
Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS '17,
(New York, NY, USA), pp. 677�691, ACM, 2017.

[58] M. Camilli, C. Bellettini, L. Capra, and M. Monga, �A Formal Framework
for Specifying and Verifying Microservices Based Process Flows,� in Software
Engineering and Formal Methods (A. Cerone and M. Roveri, eds.), Lecture
Notes in Computer Science, pp. 187�202, Springer International Publishing,
2018.

[59] B. F. Dongen, A. K. A. D. Medeiros, and L. Wen, �Process mining: Overview
and outlook of petri net discovery algorithms,� in Transactions on Petri Nets

95

https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.graphviz.org/
https://cure.org/2016/01/cure-international-offers-freely-available-open-source-software-platform-to-developing-world-hospitals/
https://cure.org/2016/01/cure-international-offers-freely-available-open-source-software-platform-to-developing-world-hospitals/
https://cure.org/2016/01/cure-international-offers-freely-available-open-source-software-platform-to-developing-world-hospitals/
http://couchdb.apache.org

and Other Models of Concurrency II: Special Issue on Concurrency in Process-
Aware Information Systems, pp. 225�242, Springer-Verlag, 2009.

96

PUBLICATIONS BY ZHUO SUN

[1] Zhuo Sun, Reng Zeng, and Xudong He. A Method for Predicting Two-Variable
Atomicity Violations. In 18th IEEE International Conference on Software Qual-
ity, Reliability and Security, QRS 2018, Lisbon, Portugal, July 16-20, 2018,
pages 103�110, 2018.

[2] Xudong He, Reng Zeng, Su Liu, Zhuo Sun, and Kyungmin Bae. A term rewriting
approach to analyze high level petri nets. In 10th International Symposium on
Theoretical Aspects of Software Engineering, TASE 2016, Shanghai, China, July
17-19, 2016, pages 109�112, 2016.

[3] Reng Zeng, Zhuo Sun, Su Liu, and Xudong He. A method for improving the pre-
cision and coverage of atomicity violation predictions. In Tools and Algorithms
for the Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
pages 116�130, 2015.

[4] Su Liu, Reng Zeng, Zhuo Sun, and Xudong He. Bounded model checking high
level petri nets in pipe+veri�er. In Formal Methods and Software Engineer-
ing - 16th International Conference on Formal Engineering Methods, ICFEM
2014, Luxembourg, Luxembourg, November 3-5, 2014. Proceedings, pages 348�
363, 2014.

[5] Reng Zeng, Zhuo Sun, Su Liu, and Xudong He. Mcpatom: A predictive analysis
tool for atomicity violation using model checking. In Model Checking Software
- 19th International Workshop, SPIN 2012, Oxford, UK, July 23-24, 2012. Pro-
ceedings, pages 191�207, 2012.

[6] Su Liu, Reng Zeng, Zhuo Sun, and Xudong He. SAMAT - A tool for software
architecture modeling and analysis. In Proceedings of the 24th International
Conference on Software Engineering & Knowledge Engineering (SEKE'2012),
Hotel So�tel, Redwood City, San Francisco Bay, USA July 1-3, 2012, pages
352�358, 2012.

[7] Zhuo Sun, Masoumeh Karimi, Deng Pan, Zhenyu Yang, and Niki Pissinou.
Bu�ered crossbar based parallel packet switch. In Proceedings of the Global
Communications Conference, 2010. GLOBECOM 2010, 6-10 December 2010,
Miami, Florida, USA, pages 1�5, 2010.

97

[8] Masoumeh Karimi, Zhuo Sun, Deng Pan, and Zhenyu Yang. Reducing crosspoint
bu�ers for performance guaranteed asynchronous crossbar scheduling. In Pro-
ceedings of the Global Communications Conference, 2010. GLOBECOM 2010,
6-10 December 2010, Miami, Florida, USA, pages 1�5, 2010.

[9] Yechang Fang, Kang Yen, Deng Pan, and Zhuo Sun. Bu�er management
algorithm design and implementation based on network processors. CoRR,
abs/1005.0905, 2010.

[10] Masoumeh Karimi, Zhuo Sun, Deng Pan, and Zesheng Chen. Packet-mode
asynchronous scheduling algorithm for partially bu�ered crossbar switches. In
Proceedings of the Global Communications Conference, 2009. GLOBECOM
2009, Honolulu, Hawaii, USA, 30 November - 4 December 2009, pages 1�6,
2009.

98

VITA

ZHUO SUN

1998�2002 B.E., Computer Science
Guangxi University
Nanning, China

2003�2005 M.E., Software Engineering
Sun Yat-Sen University
Guangzhou, China

2005�2007 Software Quality Engineer
Nortel Networks
Guangzhou, China

2008�2011 Master, Telecommunication
Florida International University
Miami, Florida

2011�2018 Doctoral Candidate, Computer Science
Florida International University
Miami, Florida

2016�2018 Software Automation Engineer
Motorola Solutions
Plantation, Florida

99

	A Method and Tool for Finding Concurrency Bugs Involving Multiple Variables with Application to Modern Distributed Systems
	Recommended Citation

	Introduction
	Motivation
	Research Problem
	Contributions
	Chapter Organization

	Background
	Linear Time Temporal Logic
	Model Checking
	Spin Model Checker
	High Level Petri Nets

	Predicting Multi-variable Atomicity Violation
	Introduction
	Motivation
	Predicting Single Variable Atomicity Violation
	Description of the Partial Order Thread Model
	Implementation of the Partial Order Thread Model
	Three-access Atomicity Violation

	Variable Correlation Analysis
	Algorithm to Infer Access Correlation from a Single Trace
	Memory Access Correlation Table
	Recommendation of Possible Access Correlation

	Algorithm to Infer Access Correlation from Multiple Traces
	Global Variables
	Variables Dynamically Allocated in the Heap

	Serializability of Two-Variable Two-Thread Interleavings
	Predict Two-Variable Atomicity Violation
	McPatom-MV1: Use Existing McPatom with Patterns of Single Variable Atomicity Violation
	McPatom-MV2: Extend McPatom with Patterns of Two Variables Atomicity Violation
	Patterns of Two-thread Atomicity Violations involving Two Variables
	Automatically Encoding Traces to Promela Code
	Automatically Encoding Atomicity Violation Patterns into Linear Time Temporal Logic (LTL) Formulas

	Evaluation
	Variable Correlation Analysis
	Two-Variable Atomicity Violation Detection

	Related Works
	MUVI
	Generation of Unit Tests for Correlated Variables
	ColorSafe
	UNICORN

	Summary

	Atomicity Violation in Distributed Systems
	Introduction
	Motivation
	Background - Data Consistency and Data Access in Distributed Systems
	ACID of Traditional Relational Database
	CAP Theorem
	Consistency Types
	Data Access via HTTP based API calls
	Distributed Locks - Pessimistic Concurrency Control
	Write-with-Version - Optimistic Concurrency Control

	Predict Atomicity Violation in Distributed Systems
	Overview of Our Method
	Tracing the Execution of Microservices
	Defining and Encoding Unserializable Interleaving Patterns between Two Processes
	Unserializable Interleaving Patterns with Single Resource Involved
	Unserializable Interleaving Patterns with Multiple Resources Involved

	Analyzing the Trace
	Description of the Partial Order Process Model
	Automatically Encoding Traces to Promela Code
	Automatically Encoding Atomicity Violation Patterns into Linear Time Temporal Logic (LTL) Formulas
	Automatically Build a Petri Net Model From Predicted Trace

	Evaluation
	HospitalRun: an open source electronic medical record system
	Google Cloud Storage FUSE: A user-space file system for interacting with Google Cloud Storage

	Related Works
	Summary

	Conclusion
	Summary
	Future Work

	Bibliography
	Publications by Zhuo Sun
	VITA

