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ABSTRACT OF THE DISSERTATION 

FOLDING ANALYSIS OF REDUCED BOVINE PANCREATIC TRYPSIN 

INHIBITOR (BPTI) WITH AROMATIC THIOLS AND DISULFIDES IN VITRO 

by 

Na Zhang 

Florida International University, 2018 

Miami, Florida 

Professor Watson J. Lees, Major Professor 

Almost all therapeutic proteins contain disulfide bonds to stabilize their native 

structure. Recombinant DNA technology enables many therapeutic proteins to be produced 

in bacteria, but the expression of native proteins is not always efficient due to the limited 

ability of bacteria to form disulfide bonds in vivo. It is often necessary to employ in vitro 

oxidative folding process to form the native disulfide bonds to obtain the native structure 

of disulfide-containing proteins. Aromatic disulfides are small molecules designed to 

match some of the physical properties of the active site of protein disulfide isomerase (PDI), 

which catalyzes the folding process of disulfide-containing proteins in eukaryotes.  

Three aromatic thiols with varying charges, PA, SA and QAS thiol, were used to fold 

reduced BPTI in vitro. Bovine pancreatic trypsin inhibitor (BPTI) is positively charged (pI 

= 10.5) at pH 7.3, and we hypothesized that mixed disulfide intermediates formed between 

BPTI and negatively charged small molecule thiols were more likely to precipitate due to 

their minimized net charge. Protein precipitation was observed during folding with 

negatively charged thiols, PA and SA, but not positively charged thiol QAS. At the folding 

pH of 7.3, almost 90% of native BPTI was produced in 2 h with the conditions of 0.25 mM 
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QAS disulfide and 10 mM QAS thiol. Only 25% of native BPTI was produced in 2 h with 

the best conditions for glutathione and glutathione disulfide. Aromatic thiols with an 

elongated alkyl group on the aromatic ring, butyl, hexyl and octyl thiol, were hypothesized 

to increased interactions with the hydrophobic core of disulfide-containing proteins during 

folding, allowing more facile access to buried disulfide bonds. However, the longer the 

hydrocarbon chain, the more likely protein precipitation was to occur. About 90% native 

BPTI was formed in 1 h with 0.25 mM hexyl disulfide and 10 mM hexyl thiol. A method 

using capillary electrophoresis (CE) to analysis the oxidative folding process of reduced 

BPTI with small molecule thiols and disulfides was also developed. Folding of reduced 

BPTI with QAS disulfide was analyzed using CE in a shorter run time. The consumption 

of protein samples and solvent solutions was minimized.  
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 Background 

 Protein folding and misfolding 

Proteins are large organic molecules universally found in all living organisms and are 

crucial to almost all biological processes, including catalyzing enzymatic reactions, 

transporting other molecules, and providing immune protection.1 Proteins have four levels 

of organization called primary, secondary, tertiary, and quaternary structures. The primary 

structure of a protein is simply a polypeptide chain composed of a series of amino acid 

residues linked by peptide bonds in a specific order. The secondary structure refers to local 

folding of the polypeptide chains into coils or sheets by hydrogen bonding interactions 

such as α-helixes and β-sheets. The tertiary structure is the three-dimensional structure of 

a polypeptide chain. The distribution of amino acids shows that the interior of a cytosolic 

protein consists of nonpolar residues with the hydrophobic side chains buried inside the 

protein. If a protein consists of more than one polypeptide chain, each polypeptide chain is 

considered as a protein subunit and the interaction between subunits results in the formation 

of a specific three dimensional spatial arrangement called the quaternary structure. 

 

Figure 1 Four levels of protein organization 

 The mechanism of protein folding 

Most proteins have a specific three-dimensional structure as their biologically 

functional structure. Protein folding is the process by which a polypeptide chain forms its 
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functional three-dimensional structure from a random coil through a series of 

conformational changes.2 Protein folding kinetics can be described by a rugged energy 

landscape which has many local energy minima and maxima.3 In order to obtain the native 

conformation of the protein, the polypeptide chain needs to acquire enough energy to 

overcome any kinetic energy barrier. Theoretical and experimental results have revealed 

that only a limited number of all possible conformations can be formed during the folding 

process. Some folding intermediates get caught into local minima, which are considered as 

kinetic traps.  

The formation of the correctly folded protein is related to its amino acid sequence as 

well as the folding environment, which in most cases is the cellular milieu.4 The primary 

structure information of a protein determines the possible folding pathways to the native 

conformation. Any changes in the folding environment can also change the favored folding 

pathway and in some cases can lead to protein misfolding. In most cases protein folding is 

spontaneous and involves different types of forces including non-covalent forces (e.g., 

hydrophobic interactions, hydrogen bonding and van der Waals forces) and covalent 

disulfide bonds.5 Disulfide bonds are the only covalent bonds formed during folding, and 

they play an important role in stabilizing the native structure of many proteins. 

 The significance of protein folding 

Therapeutic proteins are revolutionizing the treatment of a wide range of diseases.6 In 

2016, ten protein-based therapeutics were amongst the top 25 best-selling drugs. More than 

200 therapeutic peptides and proteins have been approved by the FDA for clinical use 

including insulin and Herceptin®. With the development of recombinant DNA technology, 

numerous therapeutic proteins can be efficiently overexpressed in Escherichia coli.7 
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Escherichia coli has been considered as a major expression host for recombinant protein 

production since it has relatively simple, cost-effective, and well-characterized genetics.8 

During overexpression, proteins, especially disulfide-containing ones, tend to misfold and 

aggregate, forming inclusion bodies which mainly contain inactive proteins. The formation 

of inclusion bodies has some advantages, as it allows bacteria to produce high expression 

levels of the targeted protein efficiently, and helps to protect the expressed protein from 

being degraded by cellular proteases. However, in many cases the lack of certain 

posttranslational modification abilities, and insufficiencies in disulfide bond formation, 

prohibits E. coli from producing the biologically functional proteins.9 In order to obtain the 

active form of the protein, inclusion bodies need to be resolubilized with denaturants and 

the resulting proteins refolded to the native form under appropriate in vitro conditions 

(Figure 2).10 Various methods have been adopted to produce the folded structures of 

proteins in vitro from inclusion bodies with a reasonable yield.  

 

Figure 2 Protein expression in E. coli 
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Almost all pharmaceutically relevant proteins contain disulfide bonds which help to 

stabilize the active structure of the protein. During in vitro oxidative folding of disulfide-

containing proteins, the correct disulfide bonds are formed and the protein becomes active. 

However, the in vitro folding process is usually time-consuming and low in yield because 

of slow thiol-disulfide interchange reactions. Therefore, it is important to develop an 

effective in vitro oxidative folding process in order to form the active protein structure. 

 Protein misfolding 

Correctly folded proteins are essential to the regulation of almost all biological 

processes in living organisms.11 The biological function of a protein depends on its native 

three-dimensional structure. Environmental factors or genetic mutations may alter a 

protein’s three-dimensional structure, leading to protein misfolding. Misfolded proteins 

may aggregate, resulting the formation of amyloid-like deposits in the cell.12 Proteins with 

aberrant conformations can be toxic to cells, especially neurons, and lose the biological 

functions of natively folded proteins. Numerous diseases have been shown to be related to 

protein misfolding. These diseases are grouped together as protein conformational 

disorders (PCDs), and examples include Alzheimer’s disease (AD), Parkinson disease (PD), 

type II diabetes, and amyotrophic lateral sclerosis (ALS).13  

More than 50% of pathologic amyloid related proteins contain disulfide bonds, 

providing the evidence that disulfide bond formation has an important effect on protein 

aggregate formation and the cytotoxicity of aggregated proteins.14 Studies of amyloid fibril 

formation by human lysozyme have confirmed that native disulfide bond influenced the 

cytotoxicity and morphology of the fibrils significantly. Disulfide bonds inhibited the 

aggregation of lysozyme and the resulting formation of amyloid fibrils, by stabilizing the 
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folded state of the protein thermodynamically. About 25% of proteins that misfold in 

neurodegenerative diseases contain disulfide bonds, and most are related to systemic 

pathologies. It has been demonstrated that disulfide bonds coevolved with proteins in order 

to minimize the propensity to misfold the protein and form toxic aggregates.15 

Understanding the fundamental aspect of how disulfide-containing proteins fold to the 

active form may help minimize the accumulation of misfolded proteins.  

 Oxidative protein folding 

 Disulfide bond formation 

Oxidative protein folding analysis is focused on both the formation of native disulfide 

bonds and the conformational folding of the protein to its native three-dimensional 

structure.16 Disulfide folding intermediates during oxidative folding can be isolated and 

characterized to elucidate the oxidative folding pathways, and the process explains how 

disulfide-containing proteins obtain their native structure. Disulfide bonds are formed by 

the oxidation between two thiol groups of cysteine residues. Disulfide bonds can stabilize 

the native protein structure by significantly lowering the entropy of the unfolded state.17 

Since the 1960s, oxidative folding studies have been conducted using many disulfide-

containing proteins on the basis of the disappearance and reformation of disulfide bonds in 

the protein structure. It has been shown that bovine pancreatic ribonuclease A (RNase A) 

can unfold completely if the four native disulfide bonds in the structure are broken, but the 

active form of the protein is obtained when the disulfide bonds are formed under optimal 

conditions.18 
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 Thiol-disulfide interchange reactions 

Disulfide bond formation is a reversible process involved in stabilizing proteins, 

protecting proteins from oxidative damage, and regulating the biological activities of 

proteins. Disulfide bonds are formed via thiol-disulfide interchange reactions (Figure 

3).16,19 These reactions involve the exchange of two redox equivalents, in which the thiolate 

anion serves as an electron donor and the disulfide as an electron acceptor. Reversible thiol-

disulfide interchange reactions are initiated by the nucleophilic attack of a thiolate anion 

(R1S
-) on the sulfur atom of a disulfide (R2-S-S-R3) bond, followed by the displacement of 

the other sulfur atom (R3S
-) and the formation of a new disulfide (R1-S-S-R2). The 

formation of a trisulfide anionic transition state intermediate (δ-S-S-Sδ-) is the rate-

determining step in the thiol-disulfide exchange reaction.20 The rate of a thiol-disulfide 

interchange reaction is highly affected by the accessibility of the reactive groups and the 

distance between the two sulfur atoms for exchange to meet the steric requirement of the 

reaction.21-22 

 

Figure 3 Mechanism of thiol-disulfide interchange reaction 

The formation of protein disulfide bonds in a polypeptide can be promoted by 

molecular chaperones or redox reagents consisting of small molecule thiols (RSH) and 

disulfides (RSSR). The two classes of thiol-disulfide interchange reactions that take place 

during protein folding are intramolecular and intermolecular reactions (Figure 4).16, 23 

Intramolecular disulfide bond formation occurs between two cysteine groups within the 
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polypeptide chain, in which a protein thiolate attacks a disulfide bond of the same protein, 

which is called a disulfide shuffling reaction. The oxidative state of the protein and the 

number of disulfide bonds within the protein will not change in the disulfide shuffling 

reaction since both participants are protein-bounded. Disulfide bonds can also be formed 

intermolecularly by thiol-disulfide exchanges with a redox reagent, which involves the 

formations of a mixed disulfide intermediate between the protein and the redox reagent. 

To form the protein disulfide bond, the mixed disulfide intermediate can then be attacked 

by another protein thiolate group to initiate an intramolecular thiol-disulfide interchange 

reaction. A new protein disulfide bond is formed in the redox reaction, and the oxidative 

state of the protein is changed. 

 

Figure 4 Protein disulfide formation through intramolecular (a) and intermulecular (b) 

thiol-disulfide interchange reaction 

 Oxidative protein folding in vivo 

Disulfide bonds are crucial to the stability and biological functions of many 

extracellular proteins. In vivo oxidative folding of disulfide-containing proteins is assisted 

by various molecular chaperones which aid in forming native disulfide bonds in the three-

dimensional structure.24-26  
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 Oxidative protein folding in prokaryotic cells 

In bacteria, the folding of disulfide-containing proteins is facilitated by an oxidative-

reduction cycling process involving a series of thiol-disulfide oxidoreductases.27 Thiol 

oxidase disulfide bond A (DsbA) is an enzyme found in the periplasm that is responsible 

for disulfide bond formation. Disulfide bond A (DsbA) contains a thioredoxin-like domain 

with a CXXC motif in its catalytic site.28 Disulfide bond A (DsbA) has a high reactive 

catalytic ability that can oxidize the protein to form disulfide bonds randomly without 

distinguishing among cysteines. Reduced DsbA is then oxidized back to its disulfide form 

by DsbB through a thiol-disulfide interchange reaction. Since the formation of protein 

disulfide bonds catalyzed by DsbA is a rapid and indiscriminate process, non-native 

disulfide bonds can be formed in proteins containing multiple cysteine residues. Reduced 

catalytically active proteins DsbC and DsbG are found to be involved in catalyzing 

isomerization of non-native disulfide bonds to native disulfide bonds in the protein being 

folded (disulfide shuffling).27 In the isomerization pathway, DsbC needs to be reduced by 

membrane protein DsbD in order to maintain its active form in the periplasm. 

 Oxidative protein folding in eukaryotic cells 

In eukaryotic cells, nascent polypeptides with cysteine residues are translocated from 

the cytosol to the endoplasmic reticulum (ER) which provides a more oxidizing 

environment to form protein disulfide bonds. The formation of disulfide bonds in the ER 

is catalyzed by members of the protein disulfide isomerase (PDI) family.29 PDI proteins 

are dithiol-disulfide oxidoreductases containing four thioredoxin (a-b-b′-a′) domains 

forming a twisted U-shaped structure. However only the a and a′ domains have the CXXC 

active site motifs that can facilitate disulfide bond formation and isomerization in proteins 
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through thiol-disulfide interchange reactions (Figure 5).30 The N-terminal active site 

cysteine in the CXXC motif of PDI has a low pKa value (pKa = 6.7), so that the thiol group 

can remain in the thiolate form and have high nucleophilic activity at physiological pH.31  

 

Figure 5 PDI-catalyzed protein disulfide bond formation and isomerization 

Protein disulfide isomerase (PDI)-catalyzed disulfide formation occurs between 

oxidized PDI and the protein substrate with free thiols. Oxidized PDI with the active site 

cysteine in the disulfide form can directly interact with the thiol in the substrate to form a 

mixed disulfide intermediate between protein and PDI. The free thiol in the protein attacks 

the mixed disulfide to form a protein disulfide bond and reduced PDI is released. Reduced 

PDI can then be oxidized by cellular oxidizing agents such as ER oxidoreductin 1 protein 

(Ero1p) in the ER to reform oxidized PDI.32-33 During the rearrangement of non-native 

disulfide bonds in the protein substrate, the thiolate ion in the active site of reduced PDI 

acts as a nucleophile to attack the sulfur atom in the protein disulfide yielding a mixed 

disulfide intermediate. Then the native protein disulfide bond is produced via further thiol-

disulfide interchanges.  
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In addition, glutathione (GSH) and glutathione disulfide (GSSG) are important redox 

agents in eukaryotic cells.34-35 The ratio of GSH/GSSG is about 3:1 in the ER which is 

more oxidizing compared to the ratio of 100:1 in the cytosol. Glutathione disulfide (GSSG) 

was found not to directly interact with Erop1 as a source of oxidizing equivalents in the 

PDI-catalyzed protein disulfide bond formation process.36 Glutathione (GSH)  can reduce 

the disulfides in PDI and protein substrate to produce GSSG, so the redox buffer of 

GSH/GSSG is generated from a balance between Ero1p-mediated oxidation and GSH-

mediated reduction in the ER, which is able to reduce and rearrange incorrect protein 

disulfide bonds. 

 Oxidative protein folding in vitro 

Oxidative protein folding involves thiol-disulfide interchange reactions, which are 

usually considered as the rate-limiting steps of the process. In vitro folding of disulfide-

containing proteins is conducted in the presence of redox agents that mimic the in vivo 

folding environment which has a series of protein chaperones and catalysts to facilitate 

thiol-disulfide exchanges efficiently. Many efforts have been taken to develop redox agents 

to improve the folding yield and rate of disulfide-containing proteins in vitro. 

 Traditional small molecule thiols and disulfides  

Traditionally, redox buffers containing aliphatic small molecules, such as glutathione 

disulfide (GSSG) and glutathione (GSH), have been widely employed to facilitate the in 

vitro folding of many disulfide-containing proteins (Figure 6).37 In the redox buffer, GSSG 

acts as a stoichiometric thiol oxidant that can interact with the free thiols of proteins to 

form disulfide bonds in the protein, and GSH catalyzes the rearrangement of non-native 

disulfide bond to native protein disulfide bonds. The optimal concentrations of GSSG and 
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GSH to fold several disulfide-containing proteins efficiently has been determined in 

previous studies and found to be similar to the concentrations found in vivo in the ER. The 

folding pathways of some model proteins, such as lysozyme and RNase A, have been 

elucidated and demonstrated as the accumulation and rearrangement of kinetically stable 

folding intermediates containing various numbers of disulfide bonds using GSH and GSSG 

as the redox folding buffer.38  

 

Figure 6 Structures of glutathione (GSH) and glutathione disulfide (GSSG)  

Subsequent studies have used redox buffers containing reduced/oxidized dithiothreitol 

(DTTred/DTTox) to improve the oxidative folding process (Figure 7).22 Reduced 

dithiothreitol (DTTred) is a strong reducing agent that can promote protein disulfide bond 

reduction. The formation of a disulfide bond is conducted through two steps of thiol-

disulfide interchange reactions. Oxidized dithiothreitol (DTTox) can be attacked by the 

protein thiolate ion to form a mixed disulfide bond between protein and DTT. The mixed 

disulfide bond can then be attacked by another thiolate ion in the protein, leading to the 

formation of a protein disulfide bond. Since the thiol of DTT is more reactive than the thiol 

in the protein structure, DTT is more likely to close the ring rapidly leading to the formation 

of oxidized DTT with a disulfide-bonded closed-ring structure. Compared to GSH, the 
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advantage of DTT is that oxidative folding reactions with DTT rarely accumulate mixed 

disulfide intermediate species.22, 39 

 

Figure 7 Structures of reduced and oxidized dithiothreitol (DTT) 

 Selenoglutathione and the derivatives  

Besides small molecule thiols and disulfides, selenium-containing analogs such as 

selenoglutathione (GSeSeG) and its derivative molecules have been employed as redox 

buffer for in vitro oxidative protein folding (Figure 8).40-41 Selenoglutathione (GSeSeG), a 

selenium-containing analog of GSSG, has been successfully synthesized and characterized 

in previous studies.42 Diselenides are thermodynamically more stable with lower redox 

potentials (E°′ = -407 mV) than disulfides. However, selenium has much higher 

polarizability compared to sulfur, making it a great electrophile in nucleophilic attack 

reactions for thiol-disulfide interchanges. Diselenides can be used to facilitate the 

isomerization of non-native disulfide bonds and kinetically trapped folding intermediates. 

Selenols have a low pKa (pKa = 5.2), and are completely deprotonated to the active ionized 

form at physiological pH.43 Therefore, the use of selenium-containing analogs in redox 

buffers can expand the pH range of the folding reactions to acidic conditions. 

Redox buffers containing GSeSeG and its derivatives showed enhanced folding rates 

and yields for many disulfide-containing proteins.44 Even a low concentration ((20 µM) of 

GSeSeG was able to fold reduced RNase A 2 times faster than the same amount of GSSG.42 

Additionally, many commercially available small molecule diselenide compounds such as 
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selenocystamine were also used to fold many disulfide-containing proteins both in vivo and 

in vitro. Redox buffers consisting of diselenides can significantly increase the oxidative 

folding rate and yield because of the enhanced reactivity of diselenides in thiol-disulfide 

interchange reactions. Diselenides can rearrange kinetically trapped intermediates to native 

protein faster compared to their disulfide analogs.45   

 

Figure 8 Structures of selenoglutathione and selenocystamine 

 Aromatic thiols and disulfides 

Although PDI showed enhanced oxidative folding abilities in vitro, its application is 

limited owing to the high cost and the requirement of stoichiometric amounts for desirable 

catalytic activity. Water soluble aromatic thiols have thiol pKa values (pKa=4-7) close to 

the solvent-exposed thiol pKa value of PDI (pKa = 6.7), and lower than those of aliphatic 

thiols (pKa = 7-11), such as GSH with a thiol pKa value of 8.7. The p-Substituted aromatic 

thiols and their corresponding disulfides are selected to fold reduced BPTI in vitro to 

minimize the steric hindrance. The thiolate ions of aromatic thiols with low thiol pKa 

values are more stable than aliphatic thiols, so the corresponding aromatic disulfides are 

more reactive than the corresponding aliphatic disulfides as the aromatic thiolate ions are 

better leaving groups in the thiol-disulfide interchange reaction.46 
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During oxidative protein folding, redox buffers containing aromatic thiols and 

disulfides can catalyze the formation and isomerization of protein disulfide bonds. The 

protein thiolate reacts with small molecule disulfide to form a mixed protein-small 

molecule disulfide, which is followed by the nucleophilic attack of another protein thiolate 

on the mixed disulfide to form a protein disulfide bond (Figure 9). Aromatic thiolate anions 

can help rearrange non-native disulfide to native disulfide bond through the formation of a 

mixed disulfide intermediate. Thus aromatic thiols and disulfides have been used to 

improve protein folding rates as they enhance the rates of the underlying thiol-disulfide 

interchange reactions in comparison to aliphatic thiols and disulfides. The folding rate of 

ribonuclease A was increased up to 23-fold with aromatic thiols/disulfides versus the rate 

measured with GSH/GSSG.46 When folding lysozyme with aromatic thiols, the folding rate 

was increased by 11-fold and the folding yield was increased 20% compared to the folding 

results with GSH/GSSG.47 

 

Figure 9 Thiol-disulfide interchanges of a protein with aromatic thiols and disulfides 
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 In vitro oxidative folding of disulfide-containing proteins 

Oxidative folding of disulfide-containing proteins in vitro is always challenging 

because of the complicated folding process, involving multiple kinetically stable folding 

intermediates. With more than two disulfide bonds in the protein structure, protein folding 

can be slow and low yielding.48 Disulfide-containing proteins, including RNase A, 

lysozyme and BPTI, have been widely used as models to investigate the in vitro oxidative 

folding pathways because they are relatively small proteins with three or four native 

disulfide bonds in their native structures. These model proteins have been folded with 

various redox buffers under different pH and temperature. Folding intermediates with 

different types of disulfide bonds are trapped in the reactions, which can be used to analyze 

the protein disulfide bond formation through thiol-disulfide interchange reactions. 

Oxidative folding reactions can be quenched by alkylation or acidification.37 Commonly 

used alkylating reagents such as iodoacetate (IAA) and iodoacetamide (IAM) can rapidly 

block free thiol groups in a protein structure. Acidification is also used since the folding 

reaction can be rapidly quenched by lowering the pH through the addition of acid. The 

reversibility of the acid quenching process makes it possible to purify the folding 

intermediates at specific time points for further studies. 

 Folding of ribonuclease A (RNase A) 

Bovine pancreatic ribonuclease A (RNase A) is one of the best-studied proteins for 

protein folding investigations, and was the model protein for Anfinsen’s protein folding 

studies.2 Ribonuclease A (RNase A) has 124 amino acid residues with four native disulfide 

bonds between Cys26-Cys40, Cys85-Cys95, Cys58-Cys110, and Cys65-Cys72 (Figure 10). 
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The folding pathways of RNase A were characterized by the disulfide bonds found in the 

protein folding intermediates.  

 

Figure 10 Structure of bovine pancreatic ribonuclease A (RNase A) (PDB: 7RSA) 

Two folding stages were observed during the oxidative folding process of RNase A 

under typical folding conditions.23 At the early stage, also called the quasi-steady-state, 

reduced RNase A tends to fold rapidly in the presence of DTTox to an unstructured 

ensemble of intermediates with one to four random disulfide linkages. For the folding 

ensembles, nS species represent the unstructured folding ensemble with n disulfide bonds 

that can interconverted rapidly with each other via thiol-disulfide interchange reactions. A 

preequilibrium was observed between reduced protein and unstructured 1S-4S folding 

species which do not have stable structures. The 4S ensemble is a fully oxidized structure 

containing four disulfide bonds but without correct native structure. The unstructured 3S 

ensembles are likely to reshuffle to structured three-disulfide bond containing folding 

species (3S* species) including des[40-95] and des[65-72] at the late stage. Des species 

describes the folding ensemble that has a native-like structure containing n-1 native 

disulfide bonds if there are n native disulfide bonds in the protein.49-50 A small amount of 

2S species (<5%) can also refold to 3S* species via thiol-disulfide interchange reactions.51 
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Once 3S* species are formed, the three native disulfide bonds in either des[40-95] or 

des[65-72] are protected by the structure, but the remaining free thiols can  be accessed by 

the solvent. Therefore, both 3S* species can be oxidized to the native form efficiently 

(Figure 11). 

 

Figure 11 Oxidative folding pathway of RNase A49-50 

Both reduced and scrambled RNase A were folded with aromatic thiols to improve the 

in vitro folding rates and yields. Scrambled RNase A is a fully oxidized form of the protein 

with non-native disulfide bonds. Aromatic thiols have been demonstrated to have enhanced 

nucleophilicity and better leaving group ability compared to aliphatic thiols such as GSH. 

When GSH was replaced with an aromatic thiol in the redox buffer, the folding rate of both 

forms of RNase A was increased about 6 times compared to the traditional folding 

conditions. The replacement of not only GSH with aromatic thiol but also GSSG with an 

aromatic disulfide did not enhance the folding rate further since aromatic disulfide can be 

rapidly formed during the folding with redox buffers containing GSSG/aromatic thiol.52 

Folding of scrambled RNase A with aromatic thiols at different pH values showed that the 

best folding conditions were related to the concentration of active thiolate anions and not 

total thiol. The optimal folding concentration of total aromatic thiol decreased when the 

folding pH increased from 6.0-7.7. At pH 6.0, folding of scrambled RNase A showed up 
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to 23-fold faster folding rate with the optimal concentrations of aromatic thiols compared 

to GSH. Aromatic thiols having pKa values one unit lower than the folding pH were found 

to have better reactivity in protein folding reactions.46 

Folding reaction of RNase A were also conducted in the presence of GSeSeG and the 

folding results were illustrated in terms of the catalytic activity to produce CMP from 

cCMP.42 Compared to GSSG, GSeSeG with the same concentration increased the folding 

rate of reduced RNase A by two-folds under aerobic folding conditions. When GSSG was 

replaced by GSeSeG, the folding rate and yield of RNase with the best conditions of GSSG 

and GSH pair can be maintained with only 10 times less concentration of GSeSeG. Since 

selenols have low pKa values, oxidative folding of RNase A can also be conducted 

effectively in acidic conditions. In comparison, the pH of traditional folding reactions was 

usually higher than 7 in order to keep GSH in its active thiolate form. 

 Folding of lysozyme  

Hen egg white lysozyme (HEWL) is a glycosidase with 129 amino acid residues 

containing four native disulfide bonds at positions 6-127, 30-115, 64-80, and 76-94 (Figure 

12).53 Oxidative folding with lysozyme has been widely studied with different types of 

redox buffers and major folding intermediates have also been isolated and characterized. 

Lysozyme is an ideal protein to study protein folding as the yield of native lysozyme is 

very sensitive to the folding conditions with a range from 20% to 90% with different types 

and concentrations of the protein folding aids.54 Lysozyme may have non-productive 

aggregation during folding caused by nonspecific hydrophobic interactions. Some 

denaturants, such as guanidine hydrochloride (GdnHCl) and L-arginine, can be added to 

the redox buffer.55 When the GdnHCl concentration in the folding buffers was increased, 
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the folding yield of native lysozyme was increased but the folding rate decreased. 

Therefore, folding reactions of lysozyme needs to be conducted in the presence of optimal 

concentrations of GdnHCl that can minimize protein aggregation but yet provide desirable 

folding rates and yields.   

 

Figure 12 Structure of hen-egg-white lysozyme (PDB: 6LYZ) 

The redox buffers that consisted of GSH and GSSG have been traditionally used to 

fold denatured-reduced lysozyme, and the optimal concentration ratio of GSH:GSSG to 

fold the protein was determined to be around 10:1. In the presence of 1 mM GSH and 0.2 

mM GSSG and 2 M urea, three kinetically stable three-disulfide intermediates were 

accumulated, des[76-94], des[6-127] and des[64-80], during the folding of lysozyme, 

which were determined to be native-like structures with three of the four native disulfide 

bonds. Among the three folding intermediates, des[76-94] accumulated to the highest 

percentage, and accounted for 40% of the total protein at one point (Figure 13).56 At the 

late stage of the folding reaction, des[76-94] was the only predominate intermediate, 

suggesting that the folding from the kinetic trap des[76-94] to native protein was the rate-

limiting step during the folding of lysozyme. Since Cys94 in the des[76-94] structure was 

buried, des[76-94] needs to unfold and then form the disulfide bond between  Cys76 and 
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Cys 94 in order to obtain the native structure. The rearrangement of des[76-94] and native 

protein production were facilitated by adding urea and PDI as folding aids.  Des[76-94] 

was reduced to a two-disulfide intermediates by PDI, and then re-oxidized to des[64-80] 

or des[6-127], which were folded to native protein rapidly. 

 

Figure 13 Oxidative folding pathway of reduced lysozyme56 

The redox buffers containing aromatic thiols and disulfides have been used to improve 

the folding rate and yield of reduced lysozyme. Aromatic thiols were expected to improve 

the folding rates owing to their better leaving group ability and better nucleophilicity 

compared to aliphatic thiols with similar thiol pKa values. When folding lysozyme with 

optimal concentrations of aromatic thiols, the folding rate was increased by 11-fold and the 

folding yield was increased 20% compared to the folding results with GSH/GSSG.47  

Folding of lysozyme with GSeSeG showed that a higher folding rate and yield of 

native lysozyme was obtained with GSeSeG and GSH compared to the folding with redox 

buffer with the same concentrations of GSSG and GSH.45 In addition, folding of higher 

concentrations of reduced lysozyme with GSeSeG shown higher folding rate and yield 

relative to GSSG. Folding of 140 μM of lysozyme with GSeSeG/GSH obtained 50% of 

native protein in 48 h, while only 10% of native protein was produced with the same 

concentrations of GSSG/GSH. 
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 In vitro oxidative folding of bovine pancreatic trypsin inhibitor (BPTI) 

Bovine pancreatic trypsin inhibitor (BPTI), also known as the protein based drug 

aprotinin, is a small globular protein that has been extensively studied for protein 

conformation, folding pathways, and protein/protein interactions.57 In the structure of BPTI, 

there are 58 amino acid residues with three disulfide bonds between Cys 5-Cys 55, Cys 14-

Cys 38 and Cys 30-Cys 51, which help to stabilize the native form of the protein (Figure 

14). The in vitro oxidative folding pathway of reduced BPTI has been characterized on the 

basis of disulfide bond formation and rearrangement of well-populated folding 

intermediates. Folding intermediates with one or two disulfide bonds have been identified 

and characterized in the folding of reduced BPTI with DTTox or GSH/GSSG. 

 

Figure 14 Structure of bovine panreatic trypsin inhibiotr (BPTI) (PDB: 1BPI) 

 Folding of BPTI with traditional small molecule thiols and disulfides 

The folding pathway of reduced BPTI has been developed by Creighton’s group in the 

presence of DTTox at pH 8.7. Bovine pancreatic trypsin inhibitor (BPTI) contains six 

cysteine residues, which can form 74 possible folding intermediates with different numbers 

of protein disulfide bonds during folding. However, only several folding intermediates are 

predominant in the folding pathway of reduced BPTI (Figure 15).58-59 At the early stage of 

the folding process, the formation of one-disulfide folding intermediates is relatively 
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random and rapidly reaches an equilibrium. The predominant one-disulfide intermediate 

[30-51] accumulates and can be further oxidized to two-disulfide folding intermediates. 

The second disulfide is formed between [14-38], [5-14], or [5-38] via intermolecular thiol-

disulfide interchange reactions with DTTox, so two-disulfide intermediates with non-native 

disulfide bonds are formed in Creighton’s folding pathway. A native-like intermediate with 

two native disulfide bonds [5-55] and [14-38] can also be formed during folding. The two-

disulfide intermediate [5-55, 14-38] has two remaining thiol groups buried in the 

hydrophobic core of the structure, making it difficult to oxidize to native protein through a 

direct oxidation pathway. Instead, disulfide bond rearrangement can occur to form a two-

disulfide intermediate [30-51, 14-38], which can be further rearranged to another native-

like structure with two native disulfide bonds [30-51] and [5-55]. Since Cys14 and Cys 38 

are both solvent accessible, [30-51, 5-55] can be further folded to native protein. 

 

Figure 15 Oxidative folding pathway of reduced BPTI developed by Creighton’s group58 

Subsequently, the folding pathway of reduced BPTI was reexamined by Kim’s group, 

showing that only folding intermediates with native disulfide bonds were accumulated 
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during folding.37 The reactions were conducted under anaerobic conditions in the presence 

of GSSG at pH 7.3. Since the cysteine thiol has a pKa value close to 8.7, the net charge of 

folding intermediates can differ at the folding pH of 8.7. Therefore, folding of reduced 

BPTI at neutral pH 7.3 allowed simplification of the folding intermediate analysis. In 

addition, folding reactions were quenched by the addition of formic acid instead of 

alkylation by iodoacetic acid used in previous studies. The reversibility of the acid 

quenching process makes it possible to obtain the folding intermediates formed at specific 

time points and then to refold then again at more basic pH. Therefore, acid quenching was 

used and the folding intermediates were purified by RP-HPLC.  

The folding pathway of reduced BPTI with GSSG was proposed on the basis of the 

formation and rearrangement of disulfide bonds, which is called the rearrangement type 

pathway (Figure 16).37 Two one-disulfide intermediates, [5-55] and [30-51], were 

accumulated via rapid thiol-disulfide interchange reactions from reduced BPTI.  Then two 

predominant two-disulfide intermediates were formed by the oxidation of the two cysteines 

thiols between Cys14 and Cys38, which were entitled as N* ([5-55; 14-38]) and N' ([14-

38; 30-51]). Since two free thiols, in both N' and N*, were buried in the hydrophobic core 

of the structure, the rearrangement rate to native structure was slow, which made N’ and 

N* kinetic traps. Both N' and N* had to undergo intramolecular disulfide bond 

rearrangement in order to reach the native state. Once N' and N* were rearranged to another 

two-disulfide intermediate NSH, the native protein was produced with the rapid formation 

of the third disulfide bond [14-38] in NSH. 
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Figure 16 Oxidative folding pathway of reduced BPTI developed by Kim’s group37 

It has been demonstrated that a new one-disulfide intermediate [14-38] was observed 

at the early stage of reduced BPTI folding with GSSG.60 However, [14-38] was less 

thermodynamically stable than the other well-populated one-disulfide intermediates [30-

51] and [5-55], so it rapidly rearranged to [30-51] or [5-55]. The transient level of one-

disulfide intermediate [14-38] was shown to be related to the formation rate of mixed 

disulfide bonds of GSSG and either Cys14 or Cys38. During folding with higher 

concentration of GSSG, more [14-38] was formed at the early folding stage. However, the 

maximal formation level of one-disulfide intermediates [30-51] and [5-55] was not affected 

by high concentration of GSSG. Interestingly, the disulfide bond [14-38] was also the last 

one formed in the native structure, as shown in the folding pathway of reduced BPTI.  

The two-disulfide intermediate N' was further investigated under different 

concentrations of GSSG.61 With moderate concentrations of GSSG, the two remaining free 

thiols in N' were buried in the hydrophobic core and not accessible to GSSG, so N' was 

rearranged to NSH instead of direct oxidation of the free thiols with GSSG. Although the 

rate of NSH disulfide bond rearrangement was slow, it was still 150 times faster than the 

rate of free thiols in N' reacting with GSSG directly. When the folding was conducted under 
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high GSSG concentrations, N' reacted with GSSG to form mixed disulfides N'(SG) 

between either Cys5 or Cys 55 in the protein and GSSG including N'[5-SSG] and N'[55-

SSG]. Singly mixed disulfide N'(SG) was rapidly oxidized to a doubly mixed disulfide 

intermediate N'[5-SSG; 55-SSG] with no free thiol groups, which became a nonproductive 

dead-end folding intermediate in the folding process. Therefore, folding with only high 

concentrations of oxidizing agents such as GSSG (0.25 mM) was not efficient through the 

formation of mixed disulfide intermediates via growth type pathway (Figure 17). 

 

Figure 17 Oxidative folding of N' via growth type and rearragment type pathway61  

The difference between Creighton’s and Kim’s folding pathways of reduced BPTI is 

the accumulation of nonnative disulfide intermediates. In Creighton’s folding pathway, 

nonnative disulfide folding intermediates were kinetically stable and well-populated during 

folding.62 Creighton et al. stated that formation of folding intermediates with only native 

disulfide bonds in Kim’s folding pathway was incorrect, since the amount of the folding 

intermediates did not equate with the kinetic importance of the intermediates. In addition, 

the disulfide bond formation between Cys14 and Cys 38 was essential to form two-

disulfide intermediates, N' and N*, in Kim’s pathway. If Cys 14 or Cys 38 was blocked, 

the folding process could be stopped at the early folding stage. However, it has been shown 
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that the folding of the protein with blocked Cys14 or Cys38 could still be folded to native-

like structure NSH with two disulfide bonds [30-51] and [5-55].63 

 In response, Kim claimed that only folding intermediates containing native disulfide 

bonds were accumulated at both folding pHs of 7.3 and 8.7, the latter of which was identical 

to the pH in Creighton’s folding experiments.64 Folding to N' and N* was the preferred 

folding pathways of reduced BPTI, so there were alternate routes if Cys14 and Cys 38 

residues were blocked. The folding rate of any intermediates II to NSH was almost the same 

when folding with wild-type reduced BPTI and mutant BPTI with blocked Cys14 or 

Cys38.65 The folding pathway could be simplified by the formation of any types of one-

disulfide intermediate I and two-disulfide intermediates II other than NSH. Therefore, 

Kim’s group confirmed folding intermediates with native disulfide bonds were 

predominant in the folding pathway of reduced BPTI. 

 Folding of BPTI with selenoglutathione (GSeSeG) 

It has been confirmed that GSeSeG possessed increased catalytic efficiency on 

oxidative folding of reduced BPTI under both aerobic and anaerobic conditions.42 The 

folding rates and yields of native BPTI were improved in the presence of GSeSeG relative 

to GSSG. Under anaerobic conditions, the folding of reduced BPTI with 150 µM GSeSeG 

showed a fast folding rate. The accumulation of major folding intermediates was observed 

within 1 min. The folding process was completed in 24 h. In comparison, folding of reduced 

BPTI with the same concentration of GSSG was relatively slow and only formed 50% of 

native protein after 24 h. The effect of GSeSeG was even more striking when folding 

reactions of reduced BPTI were conducted aerobically. In the presence of atmospheric 
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oxygen, selenols can be reoxidized back to diselenide, which can be further used to fold 

the protein to the native form. The folding rate of reduced BPTI was increased significantly.  

Two kinetically stable folding intermediates N' and N* were also folded individually 

by the addition of different concentrations of GSeSeG. As shown in Kim’s folding pathway 

of reduced BPTI, N' and N* have native-like structures and the two remaining thiol groups 

are buried in the hydrophobic core of the structure, which are considered as kinetic traps. 

Folding of N' with GSeSeG showed different folding intermediate distributions compared 

to the folding with GSSG. The accumulation of the two-disulfide intermediate NSH was 

caused by the fast reaction between NSH and GSeSeG. A mixed selenosulfide folding 

intermediate N'(SeG) was accumulated at the early folding stage. When increasing the 

concentration of GSeSeG, more N'(SeG) and other nonproductive folding intermediates 

were accumulated and remained at high levels throughout the folding process. These 

intermediates became kinetic traps. Therefore, GSeSeG only showed a moderate increase 

in the folding rate of N' compared to GSSG. 

Since GSeSeG is more reactive than GSSG, N* was folded to a singly mixed 

selenosulfide intermediate N*(SeG) through direct oxidation. N*(SeG) was then attacked 

by the other free thiol in the protein through intramolecular selenol-disulfide interchanges, 

leading to the formation of native protein. A doubly mixed selenosulfide intermediate 

N*(SeG)2 was observed at higher GSeSeG concentrations. Owing to the lack of free thiols 

in the protein structure, the formation of N*(SeG)2 was nonproductive and delayed the 

folding process. Nonetheless, folding of N* to native protein using optimal concentrations 

of GSeSeG showed higher folding rates than with GSSG that were comparable to the 

folding rate of N' to native protein. GSeSeG/GSeH could also be used to rescue the kinetic 
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traps that were observed during the folding of disulfide-containing proteins with traditional 

redox buffers containing GSSG/GSH. 

Two selenoproteins, C5U BPTI and C5U/C38U BPTI, were prepared by replacing 

Cys5 and Cys14/Cys38 in wild type BPTI,  respectively.44 The folding of C5U BPTI analog 

was completed in 3 h and more than 50% of the native protein formed within 1 min. The 

free selenol group in C5U N' promoted the thiol/disulfide interchange, so C5U N' did not 

accumulate and rapidly rearranged to C5U NSH and ultimately the native structure. During 

the folding of the C14U/C38U BPTI analog, the rate of thiol-disulfide interchange 

reactions was increased by the presence of a diselenide bond in the protein structure. The 

folding of BPTI analogs with selenocysteine substitutions showed a folding pathway that 

was similar to the wild type BPTI but with higher folding rates and yields. 

 Experimental methods used in protein folding analysis 

Protein folding/unfolding is known as a complicated process since many folding 

intermediates can be accumulated which need to be characterized in order to elucidate the 

folding pathways of the target protein. A number of analytical techniques have been used 

to monitor protein conformational changes during the folding and unfolding process.66  

 Hydrogen/deuterium exchange (HDX)  

The structural dynamics of the protein has been determined by hydrogen/deuterium 

exchange (HDX) during the protein folding process.67 The HDX process was conducted 

by exposing a protein to D2O solvent during folding, so that some of the hydrogen atoms 

in the protein structure were exchanged with the deuterium atom rapidly and the deuteron 

was incorporated into the protein structure. The HDX exchange reactions were most likely 

to occur within less ordered regions in the protein structure, where the hydrogen atoms are 
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exposed to the D2O solvent and lacked hydrogen bonding interactions.68 The H to D 

exchange rates are affected by protein conformational change, so the measurement of 

protein deuteration change can help better understand how protein folds and unfolds over 

time. Usually hydrogens in the peptide backbone amide linkages (NHs) are deuterated and 

it is advantageous to monitor the HDX of amide hydrogen since almost all amino acids 

(except proline) contain an amide hydrogen. As a result, the secondary structures of the 

protein, such as α-helices and β-sheets, are closely related to the hydrogen bonding 

interactions formed by amide hydrogens. 

Many methods have been used to monitor the HDX process, such as nuclear magnetic 

resonance (NMR) spectroscopy and mass spectrometry (MS). Due to the magnetic property 

difference, hydrogen and deuterium can be distinguished using NMR spectroscopy.69 BPTI 

and its homologous proteins were shown to be ideal models to study structural changes 

using HDX-NMR methods as they contain two hydrogen-bonded α-helices and a small β-

sheet in the protein structure.70-71 Since the mass of deuterium was different from that of 

hydrogen, HDX-MS is also an important way to detect protein conformational changes and 

dynamics. Continuous labeling of the protein sample with deuterium from the D2O solvent 

was conducted. Next the reaction was quenched with an acid at specific time points and 

the quenched protein samples were then analyzed by MS to determine protein structural 

information on the basis of changes in the number of deuteration sites in the protein.72 The 

advantages of HDX-MS are that only a small amount of protein is required and samples 

with multiple proteins can also be analyzed when liquid chromatography (LC) separation 

of the protein mixture is carried out prior to MS analysis.73 
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 Chromatographic methods 

Size exclusion chromatography (SEC) is known as a useful tool to remove small 

molecule denaturants and separate folding intermediates in protein folding and unfolding 

analysis.74 On-column protein folding of RNase A has been successfully conducted using 

gel filtration chromatography. RNase A was refolded on a Sephacryl column and the 

recovery of native RNase A was above 90% relative to the denatured protein. 

Improvements of protein folding analysis with gel filtration have been achieved by using a 

concentration gradient of denaturants and a pH gradient of the elution buffer.75 A single-

chain variable fragment (scFv) fusion protein was refolded on a Superdex 30 prep-grade 

column with a urea and a pH gradient. The protein sample with the higher molecular weight 

was eluted faster from the column than urea and buffer salts. As the protein was eluted into 

the refolding buffer though the different pH and urea concentration, folded scFv fragments 

were produced and the yield was improved compared to the folding without gradient 

elution.76 

Ion exchange chromatography (IEC) was first used by Creighton in protein folding 

analysis.77 Folding reactions of reduced BPTI were conducted with GSSG and quenched 

with iodoacetate at certain time points. Iodoacetate would alkylate free thiols in the protein 

structure and introduced an additional negative charge to the protein folding intermediates, 

making it possible to separate the trapped intermediates at each time point using the IEC 

method. Since the proteins were positively charged at the folding pH, cation exchange 

chromatography was conducted using CM-cellulose as the stationary phase. A 

concentration gradient of NaCl was used in the elution buffer, so the folding intermediates 

with various net charges was separated by chromatography. The dual gradient elution 
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method of changing urea concentration and pH has also been used in IEC analysis in order 

to improve the protein folding yield.78 When reduced lysozyme was folded by dual gradient 

IEC on a SP Sepharose Fast Flow column, The activity of native lysozyme to lyse 

suspensions of Micrococcus lysodeikticus was more than 95% and increased by 25% 

compared to the IEC folding with gradient elution.  

Reversed phase-high performance liquid chromatography (RP-HPLC) has been 

commonly used for in vitro oxidative protein folding analysis, as RP-HPLC efficiently 

allows the separation of native protein and folding intermediates formed during the folding 

process.37 The folding analysis of reduced BPTI showed that HPLC was a more accurate 

and sensitive method to separate folding intermediates trapped at specific time point 

comparted to the IEC analysis. More protein peaks were obtained on HPLC chromatograms 

when the folding intermediates collected by IEC were analyzed by HPLC. In order to 

develop the oxidative folding pathway of reduced BPTI, the folding intermediates formed 

during the folding process were purified by using HPLC on a semipreparative C18 column 

and further oxidized to native protein.  

 Capillary electrophoresis (CE) 

Protein folding and unfolding kinetics have been accurately monitored by capillary 

zone electrophoresis (CZE), which directly determines the appearance and disappearance 

of intermediates during the folding/unfolding process.79 The thermodynamic parameters of 

the lysozyme folding process, such as enthalpy change (ΔH) and entropy change (ΔS), 

were quantitatively  characterized when free solution CE was applied to the folding 

analysis, which showed the relationship between the mobility and the changes of protein 

charge and composition.80 
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Electrospray ionization mass spectrometry (ESI MS) provides a sensitive method to 

analyze protein folding intermediates by determining the molecular weight of 

intermediates formed during the unfolding/folding process. Disulfide-containing proteins 

tend to have different charge state distributions with a change in the folding conditions. 

Proteins unfold further with the reduction of disulfide bonds and this reduction allows more 

acidic/basic amino acid residues to be exposed for protonation/deprotonation, so the 

folding intermediates with different disulfide bond formation can be characterized by 

different charge states.81 On-line capillary isoelectric focusing-electrospray ionization 

mass spectrometry (CIEF-ESI MS) was also used to monitor the oxidative folding process 

of reduced RNase A with redox buffers containing GSH and GSSG.82 Folding reactions 

were quenched by alkylating with iodoacetate (IAA) the free thiol groups of the folding 

intermediates at specific time points. Since the introduction of IAA to the folding 

intermediate structure added a -1 charge and a molar mass of 58 at each alkylation site, 

folding intermediates with different numbers of disulfide bonds were separated by the pI 

difference, and directly characterized by ESI MS according to their molecular mass 

difference. 
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 Objectives 

The overall aim of the present project is to improve the oxidative folding of reduced 

BPTI with aromatic thiols and their corresponding disulfides in vitro compared to 

traditional aliphatic small molecules such as GSH and GSSG. 

2.1 Investigation of the thiol pKa and charge effects of aromatic thiols on the folding 

of reduced BPTI. 

The pKa values of small molecule thiols have been shown to be correlated to the 

folding reaction rates of disulfide-containing proteins. BPTI with an isoelectric point (pI) 

close to 10.5 is positively charged at the folding solution pH of 7.3. The charges of small 

molecules affect the formation of native protein and the folding intermediates. Therefore, 

aromatic thiols with varying thiol pKa values can be charges are used to fold reduced BPTI 

in vitro. 

2.2 Oxidative folding analysis of reduced BPTI using aromatic thiols and disulfides 

with different hydrophobicity. 

Aromatic thiols with an elongated alkyl group on the aromatic ring are expected to 

increase interactions with the hydrophobic core of disulfide-containing proteins s during 

folding, allowing more facile access to buried disulfide bonds. The folding rate of reduced 

BPTI can be improved in the presence of redox buffers containing aromatic thiols and 

disulfides with long hydrophobic chains. 

2.3 Determination of the oxidative folding kinetics of reduced BPTI with small 

molecule thiols and disulfides using capillary electrophoresis. 

Capillary electrophoresis (CE) has great potential for the analysis of macromolecule 

kinetics, due to its low volume sample requirement (sub μL), high resolution and lack of 



34 

 

stationary phase interaction. Capillary electrophoresis has been used to monitor protein 

folding and unfolding. Hence CE should be a useful technique to study the folding of 

reduced BPTI with small molecule thiols and disulfides. 
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 Investigation of charge effects of aromatic thiols on reduced BPTI folding 

 Abstract  

Oxidative folding of disulfide-containing proteins, such as lysozyme and ribonuclease 

A, has confirmed that aromatic thiols and disulfides can increase both the folding yield and 

rate compared to traditional redox buffers. In the present study, three aromatic thiols, 

including sulfonic acid thiol (SA), phosphoric acid thiol (PA), and quaternary ammonium 

salt thiol (QAS), and their corresponding disulfides with different charges were used to 

folding reduced BPTI in vitro. Reduced BPTI was folded with varying concentrations of 

each aromatic thiol and its disulfide at pH 7.3 to determine the best folding conditions. 

Redox buffers containing aromatic thiols and disulfides significantly increased the folding 

rate of reduced BPTI compared to the traditional redox buffer containing GSH and GSSG. 

With the best concentrations of positively charged QAS thiol and disulfide, almost 90% of 

native BPTI was produced within 2 h. In comparison, after 2 h only 25% of native protein 

was produced when folding with the best concentrations of GSH and GSSG, and it required 

2 d to obtain 90% native protein. Protein precipitation occurred during the folding with SA 

and PA thiols presumably caused by the aggregation of mixed disulfide folding 

intermediates formed by positively charged protein and negatively charged SA or PA thiol.  

 Introduction 

Aromatic thiols are small molecules that were designed by mimicking the physical 

properties of the active site of protein disulfide isomerase (PDI), which is an enzyme that 

catalyzes the folding of disulfide-containing proteins in eukaryotes. During oxidative 

protein folding, a protein thiolate reacts with a small molecule disulfide to form a mixed 

disulfide bond, which is followed by the nucleophilic attack of another protein thiolate on 
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the mixed disulfide to form a native disulfide bond. Compare to GSH (pKa = 8.7), aromatic 

thiols have low pKa values between 5 to 7, which are also lower than the folding solution 

pH of 7.3. The reaction rate of small molecule thiols is related to the concentration of 

deprotonated thiolate anions, and a large proportion of the aromatic thiols is in the active 

thiolate form at pH 7.3. In comparison, most of GSH is in the thiol form at pH 7.3, which 

is unreactive in thiol-disulfide interchange reactions. Thus aromatic thiols and disulfides 

are expected to improve protein folding as they enhance the rates of the underlying thiol-

disulfide interchange reactions compared to aliphatic thiols and disulfides such as 

GSH/GSSG.  

Aromatic thiols and disulfides increased both the folding yield and rate of disulfide-

containing proteins compared to traditional redox buffers, such as GSH/GSSG. The folding 

rate of RNase A was increased up to 23-fold with aromatic thiols and disulfides versus the 

rate measured with GSH/GSSG.46 When folding lysozyme with aromatic thiols, the folding 

rate was increased by 11-fold and the folding yield in terms of the native protein activity 

was increased 20% compared to the folding results with GSH/GSSG.47 However, the 

folding of reduced BPTI with aromatic thiols and disulfides has not been studied.  

Folding of reduced BPTI with aliphatic thiols and disulfide has been widely 

investigated in previous studies, but the process is always slow and low yielding. Three 

aromatic thiols, including SA, PA and QAS, and their corresponding disulfides were used 

to fold reduced BPTI in vitro (Figure 18). All three aromatic thiols have low thiol pKa 

values and are p-substituted which minimizes steric hindrance. Bovine pancreatic trypsin 

inhibitor (BPTI) has a pI of 10.5 and thus is positively charged at the folding pH of 7.3. 

Aromatic thiols SA and PA are negatively charged and QAS is positively charged, which 
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can lead to charge effects on the formation of folding intermediates containing disulfide 

bonds between proteins and small molecule aromatic thiols. In addition, the best conditions 

of each aromatic thiol and its corresponding disulfide to folding reduced BPTI were 

determined and the results were compared with that of folding with redox buffers 

containing GSH and GSSG. 

 

Figure 18 Aromatic thiols SA, PA and QAS and their corresponding disulfides 

 Experimental section 

 Materials 

Native BPTI, Trisma base, bis-tris propane, guanidine hydrochloride (GdnHCl), 

potassium choride (KCl), dithiothreitol (DTT), ethylenediaminetetraacetic acid (EDTA), 

reduced glutathione (GSH), glutathione disulfide (GSSG) were purchased from Sigma 

Aldrich. Sephadex™ G-25 Fine was purchased from GE Healthcare. Trifloroacetic acid 

(TFA), acetonitrile (ACN) and concentrated hydrochloric acid (HCl) were purchased from 

Fisher Scientific. Nanopure deionized water was generated from a Barnstead water system. 

All aromatic thiols and disulfides for protein folding reactions were synthesized and 
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purified in the lab. The absorbance and UV spectra were determined with a Cary 300 

spectrophotometer. The pH was measured with a VWR symphony SB20 pH meter. 

All RP-HPLC analysis was performed on a Hitachi D-7000 system equipped with a 

L-7400 UV-Vis detector. Three C18 columns including Alltech Macrosphere C18 

preparative column (250 × 22 mm), Vydac C18 semi-preparative column (250 × 10 mm) 

and Vydac C18 analytical column (250 × 4.6 mm) were used for different purposes. 

 Preparation of reduced BPTI 

Tris buffer was prepared by dissolving 1.213 g Trizma base (0.01 mol), 1.491 g KCl 

(0.02 mol) and 0.0373 g EDTA (0.10 mmol) in 80 mL deionized water. The pH of the 

solution was adjusted to 8.7 with concentrated HCl (12.1 N) and the volume adjusted to 

100 mL by the addition of deionized water. The final Tris buffer contained 0.10 M Trizma, 

0.20 M KCl and 1.0 mM EDTA. The reduction mixture was prepared by dissolving 5.731 

g GdnHCl (0.06 mol) and 0.0771 g DTT (0.5 mmol) with Tris buffer in a 25 ˚C water bath. 

The final volume of the reduction mixture was 10 mL and the final concentration was 6 M 

GdnHCl and 0.05 M DTT.  

In order to unfold the protein, Native BPTI was added to the reduction mixture to get 

the final concentration of 6.5 mg/mL. The resulting solution was kept in a water bath at 25 

˚C for 1 h, followed by the addition of 0.2 N HCl to adjust the pH of the solution to between 

2 and 3. Then the protein was purified by gel filtration on a Sephadex G-25 column using 

0.01 N HCl as the mobile phase. The protein content of collected factions was determined 

by measuring the absorbance at 280 nm with a UV-Vis spectrophotometer. The reduced 

protein has an extinction coefficient of 5377 cm-1M-1 at 280 nm.38 All fractions containing 

reduced protein were combined and lyophilized. The lyophilized protein was dissolved in 
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0.01 N HCl and purified by RP-HPLC on a C18 preparative column. The mobile phase 

was a mixture of solvent A with 0.1% TFA in water and solvent B with 90% acetonitrile 

with 0.1% TFA in water. The flow rate was 5 mL/min and following linear elution gradient 

was used: 0 min, 90% buffer A; 20 min, 65% buffer A; 100 min 61% buffer A, 120 min, 

50% buffer A. The absorbance for reduced BPTI preparation was monitored at 280 nm.  

All fractions containing reduced BPTI were collected. The purity of the collected protein 

samples was analyzed on a Vydac C18 analytical column. The absorbance was monitored 

at 229 nm with a flow rate of 1 mL/min. The elution gradient for analyzing each fraction 

was: 0 min, 90% solvent A; 15 min, 73% solvent A; 35 min, 71% solvent A, 50 min, 69% 

solvent A; 70 min, 65% solvent A. The pure reduced BPTI was lyophilized and then 

dissolved in 0.01 N HCl solution.  

 Preparation of SA, PA and QAS thiols and disulfides 

Three aromatic thiols with different p-substituents, PA, SA and QAS thiols, were 

synthesized in the lab following previous literature pocedures.47,83 The corresponding 

disulfides were prepared by letting the thiol solutions stir in air until the thiols were 

completely oxidized to their corresponding disulfides. Then aromatic thiols and disulfides 

were purified by RP-HPLC using a Vydac C18 semi-preparative column. Each time 2 mL 

of aromatic thiol or disulfide sample was injected on to an HPLC column manually. The 

column was heated to 50 ˚C and the flow rate was 3 mL/min. The mobile phase was a 

mixture of solvent A (0.1% TFA in water) and solvent B (90% acetonitrile with 0.1% TFA 

in water). The following elution gradient was used: 0 min, 90% solvent A; 4 min, 85%, 20 

min, 75% solvent A; 30 min, 60% solvent A; 50 min, 55% solvent A, 70 min, 50% solvent 

A. The absorbance was monitored at 252 nm. The collected fractions were analyzed by 
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RP-HPLC on a C18 analytical column. All fractions containing only aromatic thiol or 

aromatic disulfide were combined. All thiol and disulfide samples were lyophilized, 

dissolved in deoxygenated water, and kept at -20 ˚C prior to folding studies. 

 Folding of reduced BPTI with aromatic thiols and disulfides 

Reduced BPTI was folded with different concentrations and combinations of aromatic 

thiols and their corresponding disulfides in refolding buffer at pH 7.3. The 1.5 × refolding 

buffer was prepared by mixing bis-tris propane (15 mmol, 4.23 g), KCl (30 mmol, 2.24 g), 

EDTA (0.15 mmol, 0.056 g) in 80 mL of deionized water. The pH of the buffer solution 

was adjusted to 7.3 with concentrated HCl and the solution was made to 100 mL by the 

addition of deionized water. The buffer was then deoxygenated by passing argon through 

it for 30 min. Reduced BPTI was diluted to a final concentration of 30 μM by the addition 

of the refolding buffer. The final refolding buffer contained 0.10 M bis-tris propane, 0.20 

M KCl and 1.0 mM EDTA.  

The redox buffers consisting of each aromatic thiol and its corresponding disulfide 

were used to fold reduced BPTI in vitro. Folding reactions were conducted at pH 7.3 in a 

25 ˚C water bath under argon. At certain refolding time points, 300 μL aliquots of the 

reaction mixture were removed and quenched with formic acid. Acid quenched samples 

were stored on an ice bath immediately prior to HPLC analysis. All samples were analyzed 

by RP-HPLC on a Vydac C18 analytical column. The column temperature was maintained 

at 50 ˚C and the flow rate was 1 mL/min. Two linear gradient elution methods were used. 

The first method was 110 min analyzing time with the following gradient: 0 min, 90% 

solvent A; 15 min, 75% solvent A; 35 min, 73% solvent A; 50 min, 72% solvent A; 110 

min, 70% solvent A. The second method was 40 min with gradient as 0 min, 90% solvent 
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A; 40 min, 60% solvent A. The absorbance was monitored at 229 nm. The best 

concentration combinations of each aromatic thiol and its disulfide to fold reduced BPTI 

were determined. The initial folding rates and rate constants were determined by fitting the 

native protein yields versus the refolding time to a single exponential function 

protein yield% = A(1 − e−𝑘t). The folding results of reduce BPTI with redox buffers 

containing each aromatic thiol and disulfide were compared with the folding with aliphatic 

small molecules GSH and GSSG. 

 Results and discussion 

 Folding of reduced BPTI with QAS thiol and disulfide 

3.4.1.1 Folding of reduced BPTI analyzed with the 110 min method 

The redox buffers containing positively charged small molecule QAS thiol and its 

corresponding disulfide were used to fold reduced BPTI. When reduced BPTI was folded 

with different concentrations of QAS disulfide (0.09, 0.25, and 0.5 mM), the folding 

reactions were quenched with 20 µL of formic acid at 5, 15, 60, 240, 480, and 1440 min 

time points (Figure 19). All folding reaction samples were analyzed by RP-HPLC with the 

110 min method. Folding of reduced BPTI in the absence of QAS thiol indicated slow 

folding rates and low native protein yield at 12 h. About 75% of native BPTI was obtained 

with 0.25 and 0.5 mM QAS disulfide in 12 h.  

When the folding of reduced BPTI was conducted with QAS disulfide (0.09 and 0.25 

mM) and different concentrations of QAS thiol (1, 2, 5 and 10 mM), about 90% of native 

protein was produced in 4 h at all folding conditions (Figure 20). The folding rate was 

dependent on the thiol concentration as the folding reaction was completed in a shorter 

time with higher concentrations of QAS thiol. More than 90% native protein was produced 
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in 1 h under some folding conditions (Figure 21). Folding of reduced BPTI with 0.09 mM 

QAS disulfide, and 5 and 10 mM thiol showed that about 90% of native protein was 

produced in 1 h, but the native protein percentage decreased with longer refolding time. 

Thiol oxidation and the increase of total protein peak area was observed under the folding 

conditions with higher QAS thiol concentrations. In order to minimize thiol oxidation, 

reaction samples at same folding conditions with QAS thiol and disulfide were quenched 

with different acids including phosphoric acid, HCl and formic acid. All acid quenched 

samples were analyzed by RP-HPLC. The results showed that quenching with 80 µL of 

formic acid controlled thiol oxidation of the folding reactions effectively. Therefore, the 

following folding reaction samples were quenched with 80 µL of formic acid prior to 

HPLC analysis. Two kinetically stable folding intermediates were observed at 38 and 42 

min retention time during the folding of reduced BPTI with 0.25 mM QAS disulfide and 

thiol, which were also correlated with the thiol concentration (Figure 22). 

 

Figure 19 Folding of reduced BPTI with QAS disulfide only 

0 250 500 750 1000 1250 1500
0

20

40

60

80

100

 
 

%
 N

at
iv

e 
B

P
T

I

Retention time (min)

 0.09 mM QAS disulfide

 0.25 mM QAS disulfide

 0.5 mM QAS disulfide



 

43 

 

  

Figure 20 HPLC chromatograms of reduced BPTI folding with QAS disulfide and thiol 

analyzed with the 110 min method 

 

Figure 21 Folding of reduced BPTI with QAS disulfide and thiol analyzed with the 110 

min method 
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Figure 22 Folding intermediates of reduced BPTI with 0.25 mM QAS disulfide and thiol 

3.4.1.2 Folding of reduced BPTI analyzed with the 40 min method 

To analyze folding reaction samples quickly, a new HPLC analysis method was 

developed by changing the elution gradient of the mobile phase. The following linear 

gradient was used: 0 min, 90% buffer A; 40 min, 60% buffer A, which only took 40 min 

to analyze each reaction sample. The validity of the new method was determined using the 

best condition of the traditional redox buffer containing 5 mM GSSG and 5 mM GSH, 

showing that lower native protein percentage was obtained than the results using the 110 

min method in previous studies at the same time points.38 When reduced BPTI was folded 

with 5 mM GSSG and 5 mM GSH, almost 90% native protein was produced in 2 d. More 

folding intermediates were observed from the HPLC chromatograms, leading to lower 

native protein yields (Figure 23).  

Compared to the new method, the old method overestimated the percentage of native 

BPTI at different folding time points. The long analysis time broadened the folding 

intermediate peaks, resulting in the neglect of some folding intermediate peaks. Therefore, 

the new method was used to analyze the protein folding process faster. Additional folding 
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intermediates were detected with the 40 min method analysis on HPLC chromatograms, 

which allowed the determination on more accurate native protein yields. 

 

Figure 23 HPLC chromatograms of reduced BPTI folding with 5 mM GSSG and 5 mM 

GSH analyzed by the 40 min method 

Folding reactions of reduced BPTI were conducted with different concentrations of 

QAS disulfide (0.09, 0.25, 1 and 2.5 mM) and QAS thiol (1, 2, 5, 10 and 20 mM). All 

reaction samples were analyzed by RP-HPLC with the new 40 min method. The short 

method allowed the folding analysis to be completed in a shorter time, which also 

minimized the oxidation of folding reactions samples in air. Folding analysis using the new 

method confirmed that QAS disulfide and thiol folded reduced BPTI to its native form 

faster than GSSG and GSH.  

Reduced BPTI was folded with 0.09 mM QAS and different concentrations of thiol (1, 

2, 5 and 10 Mm) (Figure 24). With higher concentrations of QAS thiol, the folding rates of 

reduced protein were increased. When folding reduced BPTI with redox buffer consisted 

of 0.09 mM disulfide and 10 mM thiol, about 90% native protein was produced in 4 h 

(Figure 26). The folding rates were calculated by fitting the data of native protein percent 

yield against the refolding time to the single exponential function protein yield% =
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A(1 − e−𝑘t). The initial folding rate of reduced BPTI with 0.09 mM disulfide and 10 mM 

thiol was 4.48 ± 0.13 %/min and the maximal folding yield was calculated to be 90 ± 1% 

(Table 1). 

 

Figure 24 HPLC chromatograms of reduced BPTI folding with 0.09 mM QAS disulfide 

and thiol analyzed with the 40 min method 

When reduced BPTI was folded with 0.25 mM QAS disulfide and different 

concentrations of QAS thiol (1, 2, 5, 10 and 20 mM), about 90% of native BPTI was 

produced in 4 h under most of the folding conditions (Figure 25). With 0.25 mM QAS 

disulfide and 10 mM thiol, the folding process was completed in 2 h in terms of the 

formation of 90% native protein (Figure 26). The maximal folding yield was calculated as 

91 ± 1% and the initial folding rate reached 4.90 ± 0.23 %/min (Table 1). The redox buffer 

containing 0.25 mM disulfide and 20 mM QAS thiol was also used to fold reduced BPTI. 

The initial folding rate was increased, but the folding yield of native protein was slightly 

decreased.  
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Figure 25 HPLC chromatograms of reduced BPTI folding with 0.25 mM QAS disulfide 

and thiol analyzed with the 40 min method 

When the folding of reduced BPTI was conducted with 1 mM QAS disulfide and 

different concentrations of thiol (1, 2, 5, 10 and 20 mM), the folding yields decreased 

because of the formation of mixed disulfide intermediates, compared to folding with 0.25 

mM QAS disulfide and the same thiol concentrations. The initial folding rates also 

decreased when high concentration ratios of QAS disulfide to thiol were used in the redox 

buffer. The initial rates of folding with 1 mM QAS disulfide, and 1 and 2 mM thiol were 

determined to be 1.21 and 1.70 %/min, respectively. With 1 mM QAS disulfide and 10 

mM thiol, the folding yield of native protein reached 88%. According to the exponential 

curve model, the maximal folding yield was calculated to be 88 ± 2%, and the initial folding 

rate was 6.20 ± 0.17 %/min (Table 1).  
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protein were produced when the folding reactions were quenched at 4 h time point. High 

concentrations of QAS disulfide promoted the formation of mixed disulfide folding 

intermediates between protein and small molecule thiols. With slow rearrangement of 

mixed disulfide intermediates during the folding process, the folding of reduced BPTI with 

2.5 mM QAS disulfide and QAS thiol became slow and low yielding (Table 1). 

 

 

Figure 26 Folding of reduced BPTI with QAS disulfide and thiol analyzed with the 40 min 

method 
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Table 1 Folding of reduced BPTI with QAS disulifide and thiol 

Redox buffers 
A 

(%native protein) 

k 

(min-1) 

Initial rate 

(%/min) 
QAS disulfide 

(mM) 

QAS thiol 

(mM) 

0.09 

1 85 ± 2 0.014 ± 0.001 1.22 ± 0.08 

2 84 ± 1 0.024 ± 0.001 2.00 ± 0.06 

5 87 ± 1 0.046 ± 0.002 4.03 ± 0.22 

10 90 ± 1 0.050 ± 0.001 4.48 ± 0.13 

0.25 

1 84 ± 3 0.016 ± 0.001 1.37 ± 0.12 

2 86 ± 4 0.025 ± 0.001 2.17 ± 0.30 

5 87 ± 3 0.029 ± 0.002 2.52 ± 0.25 

10 91 ± 1 0.054 ± 0.001 4.90 ± 0.23 

20 86 ± 2 0.071 ± 0.001 6.09 ± 0.46 

1 

1 84 ± 3 0.014 ± 0.001 1.21 ± 0.12 

2 80 ± 1 0.021 ± 0.001 1.70 ± 0.08 

5 86 ± 2 0.045 ± 0.004 3.82 ± 0.39 

10 88 ± 2 0.051 ± 0.005 4.51 ± 0.45 

20 82 ± 1 0.076 ± 0.002 6.20 ± 0.17 

2.5 

1 68 ± 4 0.014 ± 0.002 0.92 ± 0.13 

2 71 ± 3 0.021 ± 0.003 1.49 ± 0.20 

5 87 ± 1 0.039 ± 0.002 3.37 ± 0.16 

10 87 ± 2 0.053 ± 0.004 4.64 ± 0.34 

 Folding of reduced BPTI with PA thiol and disulfide 

Folding of reduced BPTI was conducted in the presence of redox buffers containing 

negatively charged PA thiol and its corresponding disulfide. Since PA thiol has a higher 

pKa value of 6.6 than QAS thiol with pKa of 5.5, it is less reactive than QAS in thiol-

disulfide interchange reactions. Therefore, the time points to quench the reactions were set 

as 15, 60, 120, 240, 480 and 1440 min. The redox buffers containing of 0.09 mM PA 

disulfide and 1, 2, 5 and 10 mM PA thiol were used in the reduced BPTI folding reactions, 

and protein precipitation was observed at all folding conditions (Figure 27). Protein 

precipitation was proposed to be the result of the negative charge of PA thiol, which 

facilitated the formation of aggregated mixed disulfide intermediated. These intermediates 
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formed between negatively charged PA thiol and positively charged BPTI protein during 

the early folding stage.84 The folding yields of native BPTI with different concentration 

combinations of PA thiol and disulfide were calculated on the basis of the protein peak 

area on the chromatograms, which represented the soluble form of the protein in the folding 

reactions. The results showed the folding process was completed in 24 h at all conditions 

in terms of the formation of about 90% of native BPTI when only analyzing the soluble 

forms (Figure 28).  

 

Figure 27 HPLC chromatograms of reduced BPTI with PA disulfide and thiol 

 

Figure 28 Folding of reduced BPTI with 0.09 mM PA disulfide and thiol 
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When the results of the folding reaction of reduced BPTI with PA thiol and disulfide 

were fitted to the exponential function, the folding rates and rate constants were calculated 

at different folding conditions. Native protein yields at different folding conditions with 

PA thiol and disulfide were affected by the protein precipitation issue, so the curve fits 

showed high relative errors. When reduced BPTI was folded with 0.09 mM PA disulfide 

and 1 mM thiol, native protein yield reached a maximum of 92% ± 5% and the initial rate 

was determined to be 2.18 ± 0.55 %/min (Table 2).  

Table 2 Folding of reduced BPTI with PA disulifde and thiol 

Redox buffers 
A 

(%native protein) 

k 

(min-1) 

Initial rate 

(%/min) 
PA disulfide 

(mM) 

PA thiol 

(mM) 

0.09 

1* 92 ± 5 0.024 ± 0.006 2.18 ± 0.55 

2* 88 ± 4 0.015 ± 0.003 1.33 ± 0.25 

5* 83 ± 5 0.018 ± 0.004 1.50 ± 0.38 

10* 88 ± 3 0.010 ± 0.001 0.88 ± 0.10 

*Protein precipitation occurred during folding. 

 Folding of reduced BPTI with SA thiol and disulfide 

3.4.3.1 Folding of reduced BPTI analyzed with the 110 min method 

Compared to PA thiol with two negative charges on the phosphonate group, SA thiol 

with only one negative charge was expected to minimize the occurrence of protein 

precipitation caused by charge effects of aromatic thiols and disulfides. Folding reactions 

of reduced BPTI were conducted with different concentrations of SA thiol and disulfide. 

Reduced BPTI was first folded with 0.25 mM SA disulfide. Aliquots of 300 μL were 

removed and quenched with 20 μL formic acid at 15, 60, 120, 240, 480 and 720 min time 

points (Figure 29). Acid quenched reaction samples were analyzed by RP-HPLC with the 

110 min method. The folding results showed that only 42% of native BPTI was produced 
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in 12 h folding time. A kinetically stable folding intermediate was clearly observed at all 

folding time points, which was possibly a mixed disulfide intermediate that were difficult 

to convert to native protein because of the absence of reducing agents in thiol-disulfide 

rearrangement reactions.  

 

Figure 29 Folding of reduced BPTI with 0.25 mM SA disulfide 

 

Figure 30 Folding of reduced BPTI with 0.125 mM SA disulfide and thiol 
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(Figure 30). The change in SA thiol concentration led to different folding rates and 

disappearance rates of folding intermediates. The folding rate of reduced BPTI with SA 

thiol and disulfide was thiol-dependent as the reaction with 5 mM SA thiol showed a faster 

rate than that with 2 mM SA thiol and the same SA disulfide concentration. When reduced 

BPTI was folded with 0.125 mM and 5 mM SA thiol, protein precipitation was observed 

during folding.  

Then reduced BPTI was folded with a series of redox buffers containing different 

concentrations of SA disulfide (0.09 and 0.25 mM) and thiol (1, 2, 5 and 10 mM), 

respectively. At higher concentrations of SA, including 0.09 mM SA disulfide, and 5 and 

10 mM thiol, and 0.25 mM disulfide, protein precipitation was observed. The HPLC 

chromatograms showed low protein peak intensities due to protein loss by precipitation 

(Figure 31). The higher the concentration of small molecule thiol and disulfide, the greater 

the protein precipitation.  

Nevertheless, native protein yield with SA thiol and disulfide was obtained using the 

soluble form of the protein in the reaction mixture. Protein peak areas were summed and 

the native protein percentage was calculated from HPLC chromatograms, reflecting that 

redox buffers containing SA thiol and disulfide facilitated the oxidative folding process of 

reduced BPTI. All folding reactions with 0.09 mM SA disulfide and thiol were completed 

in 4 h in terms of the formation of 90% of native protein (Figure 32). Folding with 0.25 

mM disulfide and all thiol concentration showed low native protein yield caused by large 

amounts of protein precipitates.  
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Figure 31 HPLC chromatograms of reduced BPTI with SA disulfide and thiol 

 

Figure 32 Folding of reduced BPTI with SA disulfide and thiol analyzed with the 110 min 

method 
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One folding intermediate accumulated in all folding reactions with both 0.09 and 0.25 

mM SA disulfide and various thiol concentrations according to the HPLC chromatograms. 

With 0.25 mM SA disulfide and low thiol concentrations, additional folding intermediates 

accumulated owing to low thiol-disulfide interchange activity. Increasing the SA thiol 

concentration with 0.25 mM SA disulfide helped the mixed disulfides rearrange, thus the 

folding intermediate concentrations decreased (Figure 33). 

 

Figure 33 Folding intermediates of reduced BPTI folding with SA disulfide and thiol 

Table 3 Folding of reduced BPTI with SA disulifde and thiol analyzed with the 110 min 

method 

Redox buffers 
A 

(%native protein) 

k 

(min-1) 

Initial rate 

(%/min) 
SA disulfide 

(mM) 

SA thiol 

(mM) 

0.09 

1 92 ± 2 0.017 ± 0.002 1.56 ± 0.15 

2 92 ± 2 0.029 ± 0.003 2.72 ± 0.31 

5* 93 ± 4 0.065 ± 0.013 6.02 ± 1.26 

10* 96 ± 3 0.100 ± 0.017 9.65 ± 1.67 

0.125 
2 89 ± 5 0.024 ± 0.006 2.11 ± 0.53 

5* 91 ± 1 0.050 ± 0.003 4.57 ± 0.32 

0.25 

1* 91 ± 4 0.039 ± 0.008 3.59 ± 0.78 

2* 93 ± 2 0.077 ± 0.010 7.18 ± 0.92 

5* 90 ± 2 0.137 ± 0.015 12.39 ± 1.36 

10* 85 ± 1 0.169 ± 0.011 14.35 ± 0.99 

*Protein precipitation occurred during folding.  
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The folding rates of reduced BPTI folding with SA thiol and disulfide were determined 

by fitting the native protein yield versus refolding time to a single exponential function 

(Table 3). The function is defined asprotein yield% = A(1 − e−𝑘t) , where A is the 

maximum protein yield and k is the folding rate constant. The initial folding rates were 

calculated as A ∗ 𝑘 at different concentrations of SA thiol and disulfide. The best folding 

concentration was defined as the redox buffer concentration combinations of SA thiol and 

disulfide at which the initial folding rate reached a maximum. Since protein precipitation 

was observed during folding at high concentrations of SA thiol and disulfide, the best 

folding condition without protein precipitation was found to be 0.09 mM SA disulfide and 

2 mM thiol, which showed the folding rate constant k = 0.029 ± 0.003 min-1, and the initial 

folding rate 2.72 ± 0.31 %/min. 

3.4.3.2 Folding of reduced BPTI analyzed with the 40 min method 

Faster folding analysis of reduced BPTI with SA disulfide and thiol was achieved with 

RP-HPLC using the 40 min method. Compared to the analysis with the same folding 

conditions using the 110 min method, lower folding yields and rates were obtained when 

the reactions were analyzed using the 40 min method. Less than 90% of native protein was 

produced in 8 h folding time. Protein precipitation was also observed at higher 

concentrations of SA disulfide and thiol. With 0.09 mM SA disulfide and 2 mM thiol, about 

85% of native protein was obtained in 8 h, and the initial folding rate was calculated to be 

0.89 ± 0.28 %/min. 
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Figure 34 Folding of reduced BPTI with SA disulfide and thiol analyzed with the 40 min 

method 

Table 4 Folding of reduced BPTI with SA disulifde and thiol analyzed with the 40 min 

method 

Redox buffers 
A 

(%native protein) 

k 

(min-1) 

Initial rate 

(%/min) 
SA disulfide 

(mM) 

SA thiol 

(mM) 

0.09 

1 87 ± 8 0.009 ± 0.002 0.79 ± 0.22 

2 84 ± 8 0.011 ± 0.003 0.89 ± 0.28 

5* 84 ± 7 0.023 ± 0.008 1.93 ± 0.70 

10* 83 ± 6 0.032 ± 0.010 2.63 ± 0.85 

0.25 

1* 67 ± 8 0.010 ± 0.003 0.67 ± 0.23 

2* 75 ± 9 0.016 ± 0.007 1.23 ± 0.51 

5* 77 ± 8 0.028 ± 0.013 2.15 ± 0.99 

10* 75 ± 6 0.042 ± 0.017 3.17 ± 1.28 

*Protein precipitation occurred during folding. 

 Conclusion 

Oxidative folding of reduced BPTI was studied in the presence of positively or 

negatively charged p-substituted aromatic thiols and their corresponding disulfides. 

Compared to aliphatic thiols, such as GSH, all three aromatic thiols, SA, PA and QAS, 

were shown to facilitate the folding of reduced BPTI. Previous studies showed that about 

90% of native BPTI was produced in 48 h with 5 mM GSSG and 5 mM GSH, which has 
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been determined to be the best concentration combinations of GSSG and GSH. In 

comparison, about 90% of native protein was obtained within 8 h at all folding conditions 

of redox buffers containing SA thiol and disulfide. Folding of reduced BPTI with PA thiol 

and disulfide produced about 90% native protein in 24 h. With all folding concentration 

combinations of QAS disulfide and thiol, the best condition to fold reduced BPTI was 

determined to be 0.25 mM QAS disulfide and 10 mM thiol in terms of the time to produce 

90% of native protein. With 0.25 mM QAS disulfide and 10 mM thiol, about 90% of the 

native protein was produced in 2 h, while after 2 h, only 25% of native BPTI was obtained 

with 5 mM GSH and 5 mM GSSG (Figure 35). The maximal folding yields and initial 

folding rates were calculated on the basis of the relationship between the native protein 

yield and the refolding time. When reduced BPTI was folded with 5 mM GSSG and 5 mM 

GSH, the initial folding rate was 0.21 ± 0.04 %/min. In comparison, folding with three 

aromatic thiols and their corresponding disulfides, including QAS, PA and SA, increased 

the initial folding rates by up to 20 times (Figure 36).  

 

Figure 35 Comparison of reduced BPTI folding with GSSG/GSH and QAS disulfide/thiol 
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Figure 36 The charge effect of small molecules on the folding of reduced BPTI 

*Protein precipitation occurred during the folding with PA thiol and its disulfide  

Protein precipitation was observed during the folding with PA and SA thiols and their 

corresponding disulfides. Since the folding reactions were all conducted at pH 7.3, reduced 

BPTI with an isoelectric point (pI) of 10.5 was positively charged during folding, and 

aromatic thiols SA and PA were both negatively charged. During the protein folding 

process, mixed disulfide intermediates that formed disulfide bonds between protein and 

SA or PA thiol were produced through thiol-disulfide interchange reactions. Therefore, the 

net charge of mixed disulfide intermediates could become close to zero, leading to the 

occurrence of protein precipitation. However, folding of reduced BPTI with positively 

charged QAS thiol and disulfide showed no protein precipitation at all folding conditions. 
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 Investigation of hydrophobicity effects of aromatic thiols on reduced BPTI folding 

 Abstract 

Aromatic thiols and disulfides with varying hydrophobicity were shown to have 

different efficiencies on the folding of disulfide-containing proteins. Four aromatic thiols 

with different lengths of an alkyl group on the aromatic ring, called methyl (QAS), butyl, 

hexyl and octyl thiols, were synthesized in the lab. All four thiols and their corresponding 

disulfides were used as redox buffers to fold reduced BPTI in vitro in the present study. 

Compared to the folding with QAS thiol and disulfide, folding of reduced BPTI with hexyl 

thiol and disulfide showed faster folding rates and yields. About 90% of native protein was 

produced in 1 h with the best concentrations of hexyl thiol and its disulfide. Protein 

precipitation was observed during the folding with high concentrations of hexyl and octyl 

thiols and their corresponding disulfides, indicating that the longer the hydrocarbon chain 

of the small molecule aromatic thiols, the more likely protein precipitation will occur. 

About 85% of native protein was produced in 4 h when folding with butyl thiol and its 

disulfide due to the formation of a prominent kinetically stable folding intermediate. 

 Introduction 

Oxidative folding of disulfide-containing proteins involves thiol-disulfide interchange 

reactions. Folding of reduced BPTI under traditional redox buffer conditions showed the 

accumulation of many kinetically stable folding intermediates, such as N' and N*. The 

remaining free thiols in N' and N* were buried in the hydrophobic core of the structure and 

were not accessible to solvents. The conversion of these folding intermediates to native 

proteins are usually the rate-limiting steps of the folding process. In order to improve the 

folding rates of disulfide-containing proteins, aromatic thiols and disulfides were used as 
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redox buffers to fold proteins in vitro. As shown in a previous chapter, folding of reduced 

BPTI with aromatic thiols and their corresponding disulfides achieved faster folding rates 

and yields compared to folding with GSH and GSSG. Some kinetically stable folding 

intermediates were observed and remained throughout the folding process, which 

prolonged the folding process. Newly synthesized aromatic thiols with an elongated alkyl 

group on the aromatic ring, including butyl, hexyl, and octyl thiols, were expected to 

increase interactions with the hydrophobic core of disulfide-containing proteins s during 

folding, allowing more facile access to buried disulfide bonds (Figure 37).85 Therefore, the 

buried thiols in the hydrophobic core of protein folding intermediates can be more easily 

accessed by aromatic small molecules, and the intermediates can then be oxidized and 

rearranged to the native form of the protein more efficiently.  

 

Figure 37 Structures of aromatic butyl, hexyl, and octyl thiols and disulfides 
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 Experimental section 

 Preparation of butyl, hexyl, and octyl thiols and disulfides 

Aromatic thiols with different elongated alkyl groups, including butyl, hexyl, and octyl 

thiols, were synthesized in the lab. Aromatic disulfides were prepared by oxidizing their 

corresponding thiols directly by atmosphere oxygen. Aromatic thiol solutions were stirred 

in air until the thiol was oxidized to its corresponding disulfide completely. The three 

aromatic thiols and disulfides were purified by RP-HPLC on a Vydac C18 semi-preparative 

column. For each injection, 2 mL of the sample solution was loaded on to the HPLC 

manually. Two solvents were used in the mobile phase. Solvent A was 0.1% TFA in water, 

and solvent B was 90% acetonitrile in water with 0.1 % TFA. A linear gradient elution was 

utilized: 0 min, 90% solvent A; 4 min, 85%, 20 min, 75% solvent A; 30 min, 60% solvent 

A; 50 min, 55% solvent A, 70 min, 50% solvent A. A flow rate of 3 mL/min was used and 

the HPLC column temperature was maintained at 50 ˚C. The absorbance was monitored at 

252 nm. The purity of collected sample fractions was then analyzed by RP-HPLC on a 

Vydac C18 analytical column. The retentions time of the three aromatic thiols and 

disulfides were also determined with a gradient of 0 min, 90% solvent A; 40 min, 60% 

solvent A. All pure fractions containing aromatic thiols or disulfides were combined and 

lyophilized. The lyophilized small molecule samples were dissolved in deoxygenated 

water and stored at -20 ˚C for future use. 

 pKa determination of three aromatic thiols using UV-vis method 

The pKa values of the three aromatic thiols were determined using a UV-Vis method 

on a spectrophotometer.83, 86 Buffer solutions with different pH values were prepared with 

a concentration of 50 mM. The buffers were chosen as follows: glycine-HCl buffer, pH 2.5, 
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3.0, 3.3; 2,2-dimethylsuccinate buffer, pH 3.7, 4.0, 4.3, 4.7, 5.0, 5.3, 5.7, 6.0, 6.3, 6.7; Tris-

HCl buffer, pH 7.0, 7.3, 7.7, 8.0, 8.3, 8.7; glycine-NaOH buffer, pH 9.0, 9.5, 10.0, 10.5; 

H3PO4 buffer, pH 11. Each lyophilized thiol was dissolved in deoxygenated water to have 

a final concentration of 1.5 mM. Then 100 µL of the thiol solution was added to 900 µL of 

each buffer solution with varying pH. The UV spectrum of each diluted solution was 

measured on a UV-Vis spectrophotometer. All three thiols and their corresponding 

thiolates had distinguishable spectra. The λmax values of each thiol and the corresponding 

thiolate were determined from UV spectra. The absorbance data at the λmax of the thiol 

were plotted as a function of buffer pH. The plot was compared with plot derived from 

theory. The pKa value of each aromatic thiol was calculated from the best-fit curve.  

 Folding of reduced BPTI with aromatic thiols and disulfides  

Reduced BPTI and 1.5 × refolding buffer (pH 7.3) were prepared as described 

previously.  Reduced BPTI was diluted to a final concentration of 30 μM with 1.5 × 

refolding buffer (pH 7.3). Reduced BPTI was folded in the presence of different 

concentration combinations of aromatic thiols (1, 2, 5 and 10 mM) and their corresponding 

disulfides (0.09, 0.125, 0.25, 1 and 2.5 mM). Folding reactions of reduced BPTI were 

conducted in a 25 ˚C water bath under argon at pH 7.3. At certain folding time points, 300 

μL aliquots of the reaction mixture were removed and quenched with 80 μL of formic acid 

and stored on an ice bath immediately. All three aromatic disulfides had retention times 

longer than that of native protein when the quenched folding reaction samples were 

analyzed by RP-HPLC directly, and the peak corresponding to aromatic disulfides 

overlapped with the protein folding intermediates on HPLC chromatograms. Therefore, an 

additional gel filtration step was utilized to remove small molecule thiols and disulfides 
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from the acid-quenched reaction mixtures prior to HPLC analysis. Acid-quenched folding 

samples were purified on a pipet column with Sephadex G-25 as the solid phase and 0.01 

N HCl as the mobile phase. Sample fractions containing proteins after gel filtration were 

collected and then analyzed on a Vydac C18 analytical column. A linear gradient elution 

was utilized: 0 min, 90% solvent A; 40 min, 60% solvent A. The flow rate was 1 mL/min. 

The absorbance was monitored at 229 nm and the temperature of the analytical column 

was maintained at 50 ˚C. The best concentration combinations of each aromatic thiol and 

its corresponding disulfide in terms the refolding time to obtain 90% native protein were 

determined. The rate constants and initial folding rates were calculated by fitting the native 

protein yield (%) versus the refolding time (min) to a single exponential function, 

protein yield% = A(1 − e−𝑘t), where A is the maximal folding yield and k is the folding 

rate constant. 

 Results and discussion 

 pKa determination of aromatic thiols 

Aromatic thiols were diluted with 24 buffers with various pH. The UV spectra of all 

diluted solutions measured with a UV-Vis spectrophotometer. All three aromatic thiols and 

their corresponding thiolates obtained distinguishable spectra (Figure 38). The thiol 

absorbed at 252 nm and the corresponding thiolate absorbed at 282 nm. The isosbestic 

point of all three aromatic thiols was at 262 nm. The plot was made using the absorbance 

at 252 nm against buffer pH, and compared with the theoretical plot. All thiol pKa values 

were found to be 5.5 (Figure 39). 
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Figure 38 UV-Vis spectra of hexyl thiol at various pH 

  

 

Figure 39 pKa determination of three aromatic thiols 
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 Folding of reduced BPTI with octyl thiol and disulfide 

Reduced BPTI was initially folded with different concentrations of octyl disulfide 

(0.09, 0.125, and 0.25 mM). Folding reactions were quenched at 15, 30, 60, 120, 240 and 

480 min. With the increase of octyl disulfide concentration, the folding yield of reduced 

BPTI was increased. Although about 60% of native protein was produced in 8 h with 0.25 

mM octyl disulfide, protein precipitation was observed during the folding process. In the 

absence of aromatic thiol, low native protein yield was obtained owing to slow thiol-

disulfide interchange reactions during the folding process. With 0.125 mM octyl disulfide, 

only about 25 % of native protein was formed after 8 h (Figure 40).  

 

Figure 40 Folding of reduced BPTI with octyl disulfide 

Folding of reduced BPTI were conducted in the presence of 0.09 mM octyl disulfide 

and different concentrations of thiol (1, 2, 5 and 10 mM). After 8 h refolding time, a high 

percentage of folding intermediates were observed, indicating a low folding yield of native 

protein (Figure 41). Protein precipitation was observed during the folding with 0.09 mM 

octyl disulfide and 10 mM thiol. Nonetheless, the folding yield with 0.09 mM octyl 

disulfide and thiol was increased compared to the folding with only 0.09 mM octyl 
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disulfide. With 0.09 mM octyl disulfide and 5 mM thiol, about 66% of native protein was 

formed after 8 h (Figure 42). 

 

Figure 41 HPLC chromatograms of reduced BPTI folding with octyl disulfide and thiol 

In order to increase the native protein yield, octyl disulfide concentration in the redox 

buffers was increased. Since protein precipitation was observed during the folding of 

reduced BPTI with only 0.25 mM octyl disulfide, folding reactions were not conducted 

with 0.25 mM octyl disulfide and thiol. Instead, redox buffers containing 0.125 mM octyl 

disulfide and different concentrations of octyl thiol (1, 2, 5 and 10 mM) were used to fold 

reduced BPTI. However, the folding yield of native protein showed no significant increase 

in 8 h. Protein precipitation occurred during the folding with 5 and 10 mM octyl thiol. The 

folding yield of native protein without precipitation was only about 60% in 8 h with 0.125 

mM octyl disulfide and 2 mM thiol.  

Compared to QAS thiol (methyl thiol) and its corresponding disulfide, octyl thiol and 

its disulfide contained a long hydrophobic chain in their structure. With higher 

concentrations of octyl thiol and disulfide, folding intermediates with mixed disulfide 

bonds between the protein and the octyl thiol group increased, resulting in more 
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hydrophobic interactions as the hydrophobic chain length was increased. These 

hydrophobic protein folding intermediates formed during the folding process tended to 

aggregate together in the aqueous solution, leading to the occurrence of protein 

precipitation.  

The folding rate constants and initial folding rates of reduced BPTI with different 

concentrations of octyl disulfide and thiol were calculated by fitting the results of native 

protein yield against the refolding time to a single exponential function showing as  

protein yield% = A(1 − e−𝑘t).  With the increase of octyl thiol and disulfide 

concentration, the maximal folding yields (A) and the initial folding rates (A*k) were 

increased. The redox buffer containing octyl thiol and disulfide producing the highest yield 

of native protein without protein precipitation was determined to be 0.09 mM octyl 

disulfide and 5 mM thiol. The maximal folding yield of native protein with 0.09 mM octyl 

disulfide and 5 mM thiol was calculated to be 62 ± 4%, and the initial folding rate was 1.40 

± 0.31 %/min (Table 5). 

   

Figure 42 Folding of reduced BPTI with octyl disulfide and thiol 

 

0 100 200 300 400 500
0

20

40

60

80

100

%
 N

at
iv

e 
B

P
T

I

Refolding time (min)

 0.09 mM octyl

 0.09 mM octyl + 1 mM thiol

 0.09 mM octyl + 2 mM thiol

 0.09 mM octyl + 5 mM thiol

 0.09 mM octyl + 10 mM thiol

0 100 200 300 400 500
0

20

40

60

80

100

%
 N

at
iv

e 
B

P
T

I

Refolding time (min)

 0.125 mM octyl

 0.125 mM octyl + 1 mM thiol

 0.125 mM octyl + 2 mM thiol

 0.125 mM octyl + 5 mM thiol

 0.125 mM octyl + 10 mM thiol



 

69 

 

Table 5 Folding of reduced BPTI with octyl disulifde and thiol 

Redox buffers 
A 

(%native protein) 

k 

(min-1) 

Initial rate 

(%/min) 
Octyl disulfide 

(mM) 

Octyl thiol 

(mM) 

0.09 

0 15 ± 2 0.006 ± 0.002 0.09 ± 0.03 

1 27 ± 2 0.025 ± 0.006 0.67 ± 0.18 

2 39 ± 4 0.025 ± 0.008 0.99 ± 0.35 

5 62 ± 4 0.023 ± 0.005 1.40 ± 0.31 

10* 54 ± 0.3 0.066 ± 0.002 3.56 ± 0.11 

0.125 

0 25 ± 3 0.017 ± 0.006 0.42 ± 0.16 

1 26 ± 3 0.024 ± 0.011 0.62 ± 0.29 

2 51 ± 2 0.063 ± 0.013 3.20 ± 0.67 

5* 71 ± 2 0.125 ± 0.025 8.84 ± 1.77 

10* 57 ± 1 0.109 ± 0.014 6.18 ± 0.80 

0.25 0* 64 ± 3 0.023 ± 0.004 1.49 ± 0.27 

*Protein precipitation occurred during folding. 

 Folding of reduced BPTI with hexyl thiol and disulfide 

Compared to octyl thiol, hexyl thiol with a shorter alkyl group was expected to 

minimize protein precipitation that occurred during folding. To detect the effects of 

concentration on folding, different mixtures of hexyl disulfide (0.09, 0.25 and 0.5 mM) 

were examined in the folding reactions (Figure 43). At 5, 30, 60, 240, 480 and 1440 min 

time points, aliquots of the reaction mixture were quenched with formic acid. No protein 

precipitation was observed during folding. With 0.09 mM hexyl disulfide, only about 27% 

native protein was obtained in 24 h. As the hexyl disulfide concentration rose to 0.25 and 

0.5 mM, about 80% of native protein was produced in 4 h and the yield remained the same 

at 24 h owning to the lack of reducing agents that could catalyze the rearrangement of 

mixed disulfide folding intermediates.  

Folding reactions of reduced BPTI were then conducted with 0.09 mM hexyl disulfide 

and different concentrations of hexyl thiol (1, 2, 5 and 10 mM). Aliquots of the reaction 
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mixtures were quenched at 5, 15, 30, 60, 120 and 240 min. Higher folding yields of native 

BPTI were achieved compared to the folding with only hexyl disulfide in the redox buffers. 

HPLC chromatograms showed that the rates of native protein formation and folding 

intermediate rearrangement were increased with higher concentration of hexyl thiol (Figure 

44). The folding of reduced BPTI was completed in 2 h in terms of the formation of about 

90% of native protein in the presence of 0.09 mM hexyl disulfide and 10 mM thiol (Figure 

45). The initial folding rate reached 9.3 ± 1.1 %/min when reduced BPTI was folded with 

0.09 mM hexyl disulfide and 10 mM thiol (Table 6).  

 

Figure 43 Folding of reduced BPTI with hexyl disulfide 

Folding of reduced BPTI with 0.25 mM hexyl disulfide and different concentrations 

of hexyl thiol (1, 2, 5 and 10 mM) showed higher folding yields in 4 h (Figure 45). About 

90% of native BPTI was obtained at all thiol concentrations, and the folding process was 

completed in 1 h with 0.25 mM hexyl disulfide, and 5 and10 mM hexyl thiol. Compared 

to the folding with 0.09 mM hexyl disulfide and thiol, the folding rates and native protein 

yields were increased with 0.25 mM hexyl disulfide and the same concentration of thiol. 

With curve fitting calculations, the maximal folding yield of reduced BPTI was 90 ± 1%, 
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and the initial folding rate was 9.42 ± 0.54 %/min when reduced BPTI was folded with 

0.25 mM hexyl disulfide and 10 mM thiol (Table 6). 

 

Figure 44 HPLC chromatograms of reduced BPTI with hexyl disulfide and thiol 

Table 6 Folding of reduced BPTI with hexyl disulfide and thiol 

Redox buffers 
A 

(%native protein) 

k 

(min-1) 

Initial rate 

(%/min) 
Hexyl disulfide 

(mM) 

Hexyl thiol 

(mM) 

0.09 

1 77 ± 3 0.017 ± 0.002 1.34 ± 0.14 

2 85 ± 1 0.032 ± 0.001 2.73 ± 0.11 

5 85 ± 3 0.077 ± 0.010 6.57 ± 0.85 

10 88 ± 2 0.106 ± 0.012 9.29 ± 1.11 

0.25 

1 88 ± 3 0.020 ± 0.002 1.78 ± 0.18 

2 92 ± 2 0.040 ± 0.001 3.63 ± 0.34 

5 91 ± 1 0.066 ± 0.010 5.97 ± 0.23 

10 90 ± 1 0.105 ± 0.012 9.42 ± 0.54 

1 

1 106 ± 4 0.008 ± 0.001 0.84 ± 0.07 

2 95 ± 3 0.016 ± 0.001 1.49 ± 0.12 

5* 94 ± 1 0.039 ± 0.002 3.73 ± 0.16 

10* 95 ± 1 0.054 ± 0.003 5.14 ± 0.26 

2.5 

1* 127 ± 8 0.003 ± 0.003 0.42 ± 0.05 

2* 100 ± 4 0.008 ± 0.008 0.79 ± 0.06 

5* 98 ± 4 0.017 ± 0.017 1.69 ± 0.18 

10* 98 ± 2 0.024 ± 0.001 2.40 ± 0.12 

*Protein precipitation occurred during folding. 
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Figure 45 Folding of reduced BPTI with hexyl disulfide and thiol 

When reduced BPTI was folded with 1 mM hexyl disulfide and different 

concentrations of thiol (1, 2, 5 and 10 mM), protein precipitation was observed with 1 mM 

hexyl disulfide, and 5 and 10 mM thiol. The folding yields of native protein were calculated 

using the soluble form of the protein after folding reactions. About 90% of native protein 

was produced in 4 h with 1 mM hexyl disulfide and 2 mM thiol. The maximal folding yield 

of native protein was 95 ± 3%, and the initial folding rate was determined to be 1.49 ± 

0.12 %/min. The initial folding rates were decreased with 1 mM hexyl disulfide and 

different concentrations of hexyl thiol compared to the rates with lower hexyl disulfide 

concentrations.  
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When the hexyl disulfide concentration in the redox buffers was increased to 2.5 mM, 

protein precipitation occurred at all thiol concentrations. High concentrations of hexyl thiol 

and disulfide tend to form more hydrophobic folding intermediates during folding, leading 

to a higher propensity of protein precipitation. The folding process of reduced BPTI with 

2.5 mM hexyl disulfide, and 1 and 2 mM thiol was not completed in 4 h due to a high 

concentration ratio of hexyl disulfide and thiol, which led to slow thiol-disulfide 

rearrangement during folding. When the folding results of reduced BPTI with 2.5 mM 

disulfide and thiol were fitted to the exponential function, high errors were shown with low 

thiol concentrations. All initial folding rates with 2.5 mM hexyl disulfide and thiol were 

determined to be lower than the rates with other hexyl disulfide concentrations and the 

same thiol concentration. With 2.5 mM hexyl disulfide and 10 mM thiol, the initial folding 

rate was 2.40 ± 0.12 %/min compared to 9.42 ± 0.54 %/min with 0.25 mM hexyl disulfide 

and 10 mM thiol. 

The folding yields of native BPTI with 2 mM hexyl thiol and different concentrations 

of disulfide (0.09, 0.25, 1 and 2.5 mM) were then plotted against the refolding time (Figure 

46). Reduced BPTI folding with 0.25 mM hexyl disulfide obtained fastest folding, showing 

that about 90% of native protein was produced in 2 h. The folding rates were increased 

when changing the disulfide concentration from 0.09 mM to 0.25 mM, while the rate 

decreased when the disulfide concentration was further increased to 1 mM and 2.5 mM 

(Figure 47). Therefore, 0.25 mM hexyl disulfide was determined to be the optimal disulfide 

concentration to fold reduced BPTI effectively. 
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Figure 46 Folding of reduced BPTI with 2 mM hexyl thiol and disulfide 

 

Figure 47 Initial folding rates of reduced BPTI with 2 mM hexyl thiol and disulfide 
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thiol, the native protein yield was increased with increasing concentrations of butyl thiol. 

With 0.09 mM butyl disulfide and 10 mM thiol, about 83% of native protein was produced 

in 1 h and the folding yield remained the same at 4 h. The folding data of native protein 

yield against the refolding time was fitted to the single exponential function. When reduced 

BPTI was folded with 0.09 mM butyl disulfide and 10 mM thiol, the maximal folding yield 

was calculated to be 81 ± 2%, and the initial folding rate was 3.07 ± 0.21 %/min (Table 7). 

 

  

Figure 48 Folding of reduced BPTI with butyl disulfide and thiol 
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Table 7 Folding of reduced BPTI with butyl disulfide and thiol 

Redox buffers 
A 

(%native protein) 

k 

(min-1) 

Initial rate 

(%/min) 
Butyl disulfide 

(mM) 

Butyl thiol 

(mM) 

0.09 

1 64 ± 4 0.010 ± 0.001 0.63 ± 0.08 

2 77 ± 2 0.009 ± 0.001 0.71 ± 0.05 

5 75 ± 2 0.028 ± 0.002 2.11 ± 0.15 

10 81 ± 2 0.038 ± 0.003 3.07 ± 0.21 

0.25 

1 89 ± 15 0.005 ± 0.001 0.44 ± 0.14 

2 84 ± 6 0.006 ± 0.001 0.54 ± 0.08 

5 85 ± 3 0.023 ± 0.002 1.97 ± 0.18 

10 85 ± 2 0.039 ± 0.003 3.33 ± 0.27 

1 

1 54 ± 12 0.004 ± 0.001 0.19 ± 0.08 

2 52 ± 3 0.006 ± 0.001 0.33 ± 0.04 

5 72 ± 3 0.014 ± 0.002 0.99 ± 0.12 

10 81 ± 5 0.023 ± 0.004 1.85 ± 0.37 

2.5 

1 20 ± 3 0.007 ± 0.002 0.14 ± 0.04 

2 34 ± 5 0.005 ± 0.001 0.18 ± 0.05 

5 60 ± 3 0.006 ± 0.001 0.38 ± 0.03 

10 101 ± 7 0.006 ± 0.001 0.63 ± 0.09 

When the folding of reduced BPTI was conducted with 0.25 mM butyl disulfide, and 

5 and 10 mM butyl thiol, native protein yield was about 85% after 2 h, which was a slight 

increase compared to folding with 0.09 mM butyl disulfide and the same thiol 

concentrations. The initial folding rate of reduced BPTI with 0.25 mM butyl disulfide and 

10 mM thiol was 3.33 ± 0.27 %/min. With 0.25 mM butyl disulfide and lower thiol 

concentration, 1 and 2 mM, the folding of reduced BPTI was not completed as only about 

65% of native protein was produced in 4 h.  

Low native protein yields were obtained with higher concentrations of butyl disulfide 

(1 and 2.5 mM) and different concentrations of butyl thiol, and the folding process was not 

completed in 4 h. At the same butyl disulfide concentration, the folding yield of native 

protein was increased with increasing butyl thiol concentrations in the redox buffer. When 
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reduced BPTI was folded with redox buffers containing 1 mM butyl disulfide and thiol, 

the folding yield was about 80% with 10 mM butyl thiol in 4 h relative to 30% with 1 mM 

thiol. Folding of reduced BPTI with 2.5 mM butyl disulfide and thiol was not completed 

and the initial folding rates at all conditions were lower than the rates with 1 mM butyl 

disulfide and the same concentration of thiol.  

During the folding of reduced BPTI with butyl thiol and disulfide, a kinetically stable 

intermediate was produced at all folding conditions (Figure 49).  With 0.09 mM butyl 

disulfide and 10 mM thiol, about 10% of the intermediate still remained after 4 h, leading 

to a native protein yield of lower than 90% (Figure 50). With a high concentration ratio of 

butyl disulfide and thiol, [RSSR]:[RSH], the rearrangement of the folding intermediate to 

native protein through thiol-disulfide interchange was slow. With 1 mM butyl disulfide and 

1 mM thiol, about 24% of the folding intermediate was produced after 4 h refolding time. 

In comparison, when the thiol concentration was increased to 10 mM, about 8% of the 

folding intermediate was accumulated within 4 h. 

 

Figure 49 HPLC chromatograms of reduced BPTI folding with butyl disulfide and thiol 
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Figure 50 Folding intermediate formation of reduced BPTI with butyl disulfide and thiol 

In summary, high yields of native protein yield were not obtained during folding with 

butyl disulfide and thiol owing to the formation of a prominent kinetically stable 

intermediate at all folding conditions. The best folding concentration of butyl thiol and 

disulfide to fold reduced BPTI was determined to be 0.25 mM butyl disulfide and 10 mM 

thiol, which produced 85% of native protein in 2 h folding time, which was the fastest 

initial folding rate when compared to other butyl thiol and disulfide mixtures.  

 Conclusion  
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thiols had an elongated hydrocarbon chain in the structure, which were more hydrophobic 

than QAS thiol (methyl thiol). Compared to traditional redox buffers such as GSH/GSH, 

all aromatic thiols and their corresponding disulfides in the study facilitated the folding of 

reduced BPTI (Figure 51). As stated in a previous chapter, more than 90% of native BPTI 

was produced in 2 h with 0.25 mM QAS disulfide and 10 mM QAS thiol, and only about 

25% of native protein was obtained with 5 mM GSSG and 5 mM GSH. Within 4 h refolding 

time, about 66% of native BPTI was produced using the optimal concentration of octyl 

disulfide and thiol (0.09 mM octyl disulfide and 5 mM octyl thiol). At 0.25 mM butyl 

disulfide and 10 mM butyl thiol, about 85% of native protein was obtained in 2 h. More 

importantly, more than 90% of native protein was produced in 1 h with the optimal 

condition of hexyl disulfide and thiol (0.25 mM hexyl disulfide and 10 mM hexyl thiol). 

 

Figure 51 Reduced BPTI folding with aromatic thiols/disulfides and GSH/GSSG 

The initial folding rates of reduced BPTI with redox buffers containing the optimal 

combinations of each thiol and its corresponding disulfide were calculated by the curve 

fitting to the exponential function. Aromatic thiols and disulfides significantly increased 
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0 50 100 150 200 250
0

20

40

60

80

100

%
 N

at
iv

e 
B

P
T

I

Refolding time (min)

QAS
Hexyl

Butyl

GSH/GSSG

Octyl



 

80 

 

disulfide obtained the highest initial folding rate, which was 9.42 ± 0.54 %/min (Figure 

52).  

 

Figure 52 The effect of n-alkyl chain length of small molecule thiols and disulfides on the 

folding of reduced BPTI 

The formation of kinetically stable folding intermediates affected the native protein 

yields of reduced BPTI folding with different small molecule thiols and disulfides (Figure 

53). During the folding of reduced BPTI with traditional redox buffer containing 

GSSG/GSH, large amounts of kinetically stable intermediates, N  ́ and N* were 

accumulated. For both QAS and hexyl thiols, more than 90% of native protein was obtained 

and only about 4% of a kinetically stable folding intermediate was observed after 4 h. When 

reduced BPTI was folded with the best redox buffer condition of butyl thiol and disulfide, 

8% of a folding intermediate still remained after 4 h leading to diminished yield of native 

protein.  
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Figure 53 Folding intermdiates of reduced BPTI with aromatic thiols and disulfides, and 

GSH/GSSG (N' and N*) 

When the folding of reduced BPTI was conducted with high concentrations of octyl 

and hexyl thiols and the corresponding disulfide respectively, protein precipitation was 

observed owing to the higher hydrophobicity of mixed disulfide intermediates during the 

folding process. The longer the hydrocarbon chain in the aromatic thiol structure and the 

higher concentration of aromatic thiol and disulfide, the greater the propensity for protein 

precipitation was to occur. With all redox buffer conditions tested in the folding study, no 

protein precipitation was observed at all concentration combinations of butyl thiol and its 

disulfide. However, protein precipitation was observed when folding with 1 mM hexyl 

disulfide and 5 mM hexyl thiol or higher redox buffer concentration. When reduced BPTI 

was folded with octyl thiol and disulfide, more than 0.25 mM octyl disulfide would lead to 

the occurrence of protein precipitation. 
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 Oxidative folding of reduced BPTI using aromatic thiols with varying pKa values 

 Abstract  

Aromatic thiols and disulfides have been used to improve the folding rates and yields 

of many disulfide-containing proteins including RNase A and BPTI. Aromatic thiols 

having different pKa values will have a different distribution of thiol and thiolate ions at a 

given folding pH, and only the thiolate form of the thiol is the active nucleophile during 

the nucleophilic attack in a thiol-disulfide interchange reaction. Understanding how thiol 

pKa values of aromatic thiols affect the folding efficiency of disulfide-containing proteins 

is important in protein folding studies. An extended thiol, designed based on the QAS thiol 

structure, was determined to have a  a higher thiol pKa value. Folding of reduced BPTI 

was conducted with different concentrations of extended thiol and its corresponding 

disulfide. 

 Introduction 

Aromatic thiols and disulfides have been shown to increase the folding rate and yield 

of disulfide-containing proteins compared to aliphatic thiols and disulfides such as GSH 

and GSSG. Thiol-disulfide interchange reactions are considered to be the rate-limiting 

steps during the folding process of disulfide-containing proteins with small molecule thiols 

and disulfides. In thiol-disulfide interchange reactions, the overall reaction rate is affected 

by the nucleophilicity of the attacking sulfur, electrophilicity of the center atom, and the 

stability of the leaving group. The active form of the thiol as a nucleophile is the thiolate, 

and the thiolate concentration is related to the thiol pKa value and the folding pH. Aromatic 

thiols have lower pKa values (pKa = 4-7) than GSH with a thiol pKa value of 8.7. Aromatic 

thiols possess high nucleophilic ability at the folding pH of 7.3 as almost all thiols are in 
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the active thiolate form. In addition, aromatic thiols with lower thiol pKa values make the 

corresponding disulfides more reactive, which can facilitate the formation of mixed 

disulfide bonds between the protein thiol group and the aromatic thiol. Therefore, an 

optimal thiol pKa value of aromatic thiols needs to be determined in order to maintain 

faster folding rates of the reaction as well as form fewer mixed disulfide intermediates 

during folding. 

An extended thiol was predicted to have a higher thiol pKa than that of QAS thiol, but 

still lower than the pKa of GSH. Therefore, redox buffers containing extend thiol and its 

corresponding disulfide were expected to enhance the folding rate of reduced BPTI and 

reduce the formation mixed disulfide folding intermediates compared to QAS thiol and 

disulfide. 

 

Figure 54 Structures of extended thiol and its disulfide 

 Experimental section   

 Extended thiol and disulfide purification 

Extended thiol was synthesized in the lab and the corresponding disulfide was 

prepared by stirring the thiol solution in air until the thiol was oxidized to the disulfide. 

Samples were taken from the thiol solution and analyzed by RP-HPLC on a Vydac C18 

analytical column until the thiol oxidization was complete. Extended thiol and its disulfide 
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were purified by RP-HPLC on a Vydac C18 semi-preparative column. Samples of extended 

thiol and disulfide were manually injected on to the HPLC and the sample volume was 2 

mL for each injection. Two solvents were used in HPLC purification. Solvent A was 0.1% 

TFA in water, and solvent B was 90% acetonitrile in water with 0.1 % TFA. To elute the 

sample from the column, a linear gradient was used: 0 min, 90% solvent A; 4 min, 85%, 

20 min, 75% solvent A; 30 min, 60% solvent A; 50 min, 55% solvent A. The absorbance 

was monitored at 252 nm, and the flow rate was maintained at 2 mL/min. The purity of all 

collected sample fractions was determined using a Vydac C18 analytical column. The 

linear gradient to analyze the sample fractions was 0 min, 90% solvent A; 40 min, 60% 

solvent A. All sample fractions containing pure extended thiol or disulfide were combined 

and lyophilized in the freeze dryer. The lyophilized extended thiol and disulfide samples 

were dissolved in deoxygenated water respectively and stored at -20 ˚C for oxidative 

folding studies of reduced BPTI. 

 pKa determination of extended thiol 

The extended thiol pKa value was determined using the UV-Vis method. Buffer 

solutions with varying pH values ranging from 2.5-11 with a concentration of 50 mM were 

prepared as described previously, including glycine buffer (pH 2.5-2.2 and pH 9.0-10.5), 

2,2-dimethylsuccinate buffer (pH 3.7-6.7), Tris buffer (pH 7.0-8.7), and phosphate buffer 

(pH = 11). Extended thiol solution was diluted with deoxygenated H2O to a final 

concentration of 1 mM. Extended thiol solution (100 µL) was then mixed with 900 µL of 

each buffer solution. The UV-Vis spectra of all 24 sample solutions was measured on a 

UV-Vis spectrophotometer. The λmax values of extended thiol and the corresponding 

thiolate were determined by UV spectra. The absorbance data at the λmax of the thiol were 
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plotted as a function of buffer pH. The plot was compared with the plots on the basis of the 

theory. Then the pKa value of extended thiol was calculated from the best-fit curve.  

 Folding of reduced BPTI with extended thiol and disulfide 

A stock solution of reduced BPTI with 1 mg/mL was diluted with 1.5 × refolding 

buffer (pH 7.3) to a final concentration of 30 μM. Folding reactions of reduced BPTI were 

conducted in a 25 ˚C water bath under argon at pH 7.3 in the presence of different 

concentration combinations of extended thiol and its corresponding disulfides. At specific 

time points (5, 15, 30, 60, 120 and 240 min), 300 μL aliquots of the reaction mixture were 

removed from the vial and quenched with 80 μL of formic acid and stored on an ice bath 

immediately. Since the peak of extended disulfide overlapped with the peaks of protein 

folding intermediates on the chromatograms, all acid-quenched folding mixtures were 

purified on a pipet column with Sephadex G-25 resin as the solid phase to remove small 

molecule thiol and disulfide. Protein samples were eluted from the column with 0.01 N 

HCl and then analyzed on a Vydac C18 analytical column. The HPLC eluent was 

monitored at 229 nm and the column temperature was maintained at 50 ˚C. A linear 

gradient with a flow rate of 1 mL/min was utilized: 0 min, 90% solvent A; 40 min, 60% 

solvent A. The best conditions of extended thiol and its corresponding disulfide in terms 

of refolding time to obtain 90% native protein were determined. The rate constants and 

initial folding rates were calculated by fitting the folding results to a single exponential 

curve, protein yield% = A(1 − e−𝑘t), where A is the maximal folding yield and k is the 

folding rate constant. 
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 Results and discussion 

 Extended thiol pKa determination  

Extended thiol and its thiolate has distinguishable spectra as the thiol absorbed at 250 

nm and the thiolate absorbed at 275 nm (Figure 55). The isosbestic point of the extended 

thiol solution was at 259 nm. The extended thiol pKa value was determined by comparing 

the absorbance at 250 nm against buffer pH with theoretical values for the distribution of 

the thiol and thiolate at different pH. The pKa of extended thiol was calculated to be 6.0, 

which was higher than that of QAS thiol (Figure 56). 

 

Figure 55 UV-Vis spectra of extended thiol at various pH 

 

Figure 56 Extended thiol pKa determination 
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 Folding of reduced BPTI with extended thiol and disulfide 

Reduced BPTI was folded in the presence of different concentrations of extended 

disulfide (0.09, 0.25 and 1 mM). Protein precipitation occurred when the folding was 

conducted with 1 mM extended disulfide leading to low protein peak intensities on the 

HPLC chromatograms (Figure 57). More than 75% native protein was obtained with 0.25 

mM disulfide in 8 h, which was higher than the folding yield of 70% native protein from 

the folding with 0.09 mM extended disulfide (Figure 58). 

 

Figure 57 HPLC chromatograms of reduced BPTI folding with extended disulfide 

 

Figure 58 Folding of reduced BPTI with extended disulfide 

 

0 100 200 300 400 500
0

20

40

60

80

100
 0.09 mM extended disulfide

 0.25 mM extended disulfide

 1 mM extended disulfide

%
 N

at
iv

e 
B

P
T

I

Refolding time (min)

1 mM extended disulfide

R
ef

o
ld

in
g
 t
im

e 
(m

in
)

480 

240 

120 

60 

15 

5

Retention time (min)

0.25 mM extended disulfide

R
ef

o
ld

in
g
 t
im

e 
(m

in
)

480

240

120

60 

15 

5 

Retention time (min)



 

88 

 

 

Figure 59 HPLC chromatograms of reduced BPTI folding with 0.09 mM extended disulfide 

and thiol  

 

Figure 60 Folding of reduced BPTI with extended disulfide and thiol 

Redox buffers containing different concentration combinations of extended disulfide 

(0.09 and 0.25 mM) and thiol (1, 2, 5 and 10 mM) were used to fold reduced BPTI. Protein 

precipitation was observed with extended disulfide and high concentrations of thiol (5 and 

10 mM) (Figure 59). After 8 h folding time, some protein folding intermediates still 

remained kinetically stable on the HPLC chromatograms, leading to the formation of less 

than 90% of native protein (Figure 60). The best redox buffer condition to fold reduced 
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and 2 mM thiol, which showed about 87% of native protein was produced in 8 h and the 

initial rate of the reaction was 1.70 ± 0.10 %/min (Table 8). 

Table 8 Folding of reduced BPTI with extended disulifde and thiol 

Redox buffers 
A 

(%native protein) 

k 

(min-1) 

Initial rate 

(%/min) 
Hexyl disulfide 

(mM) 

Hexyl thiol 

(mM) 

0.09 

1 82 ± 3 0.018 ± 0.002 1.48 ± 0.20 

2 83 ± 2 0.028 ± 0.002 2.31 ± 0.21 

5* 74 ± 4 0.069 ± 0.016 5.07 ± 1.19 

10* 79 ± 1 0.040 ± 0.003 3.14 ± 0.22 

0.25 

1 84 ± 1 0.015 ± 0.001 1.23 ± 0.05 

2 87 ± 1 0.020 ± 0.001 1.70 ± 0.10 

5* 80 ± 1 0.027 ± 0.002 2.18 ± 0.15 

10* 77 ± 2 0.042 ± 0.005 3.22 ± 0.41 

*Protein precipitation occurred during folding. 

 Conclusion 

Nucleophilic attack of a thiolate ion on a disulfide is involved in thiol disulfide 

interchange reactions, so the concentration of the thiolate ion has important effects on the 

folding reaction rate during the oxidative folding process of disulfide-containing proteins. 

The active form thiolate concentration is a function of the total thiol concentration in the 

reaction and the thiol pKa value. Folding of reduced BPTI using aromatic thiols with lower 

pKa values will have higher folding reaction rate at the same folding conditions, but tend 

to form more mixed disulfides between the protein and the aromatic thiol because of high 

reactivity of the corresponding aromatic disulfide. Compared to aromatic thiol QAS with 

a pKa value of 5.5, the newly synthesized extended thiol had a higher pKa value which 

was determined to be 6.0. The folding of reduced BPTI with extended thiol and disulfide 

was expected to be slower than the folding with QAS thiol and disulfide, but with fewer 

formation of mixed disulfide intermediates. However, when extended thiol and its 
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corresponding disulfide were used in the redox buffers to fold reduced BPTI, less than 90% 

of native protein was produced in 8 h. When folding of reduced BPTI with higher 

concentrations of extended thiol and disulfide, protein precipitation was observed. More 

aromatic thiols with different pKa values should be used to fold reduced BPTI at same 

folding conditions in order to better determine the relationship between thiol pKa values 

and the folding reaction rates. 
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 Folding analysis of reduced BPTI using capillary electrophoresis 

 Abstract 

A new method to analyze the folding of reduced BPTI with QAS disulfide was 

developed using capillary electrophoresis (CE) on an uncoated silica capillary. Phosphate 

buffers with a low pH value (pH = 2.5) were utilized to reduce the deprotonation of silanols 

on the inner surface of the capillary. The addition of hydroxyethyl cellulose (HEC) to the 

buffers minimized the adsorption of positively charged proteins to the silica capillary wall. 

The capillary was also flushed with 0.1 M HCl to maintain the silanol groups on the 

capillary wall fully protonated and suppress the EOF. Folding reaction mixtures of reduced 

BPTI were analyzed within 20 min on CE. A more rapid and sensitive method to analyze 

the oxidative folding process of reduced BPTI on CE was obtained relative to traditional 

HPLC analysis. 

 Introduction 

Since the early 1980s, Capillary electrophoresis (CE) has become a powerful 

analytical technique for many macromolecules including proteins and DNA fragments. 

Compared to traditional HPLC analysis, CE has many advantages, such as minute amounts 

of sample required, short analysis time, high resolution and efficiency. In CE methods, 

analytes can migrate with different velocities through electrolyte solutions on the basis of 

their different properties such as charge, mass or the partitioning between two different 

phases. Therefore, different types of CE methods have been developed, including capillary 

zone electrophoresis (CZE), capillary isoelectric focusing (CIEF) and micellar 

electrokinetic chromatography (MEKC).87 Among all CE techniques, CZE is the most 

commonly used and simplest method. The separation by CZE is based on the 
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electrophoretic mobility differences of analytes in an electric field.88 Electrophoretic 

mobility is related to the size, friction and charge of each analyte. Peaks for analytes with 

different electrophoretic mobility appear on the electropherogram when analytes pass 

through UV-Vis detector at specific wavelengths. 

Protein adsorption can occur through ionic and nonionic interactions between the silica 

wall of the capillary and the protein, especially when the separation is conducted at the pH 

value below the isoelectric point (pI) of the protein.89 Peak broadening and tailing are likely 

to be observed during the separation of proteins on an uncoated silica capillary, leading to 

low separation efficiencies. Since the pKa of SiOH is about 3, the inner wall of the uncoated 

silica capillary is negatively charged because of the deprotonation of SiOH to SiO- when 

the buffer pH is above 3, resulting in a bulk electroosmotic flow (EOF) in the capillary 

under the applied electric filed.90 Approaches to minimize protein adsorption in CE 

analysis have been demonstrated in many studies.91-92 The simplest way is to use separation 

buffers with extreme pH values to keep the silanol groups fully protonated or ionized. With 

low buffer pH, silanol groups on the capillary wall tend to be protonated, thereby reducing 

the electrostatic interactions with protein analytes and the magnitude of the EOF 

concomitantly. In addition, proteins are positively charged at pH lower than the pI values, 

which assures that all proteins can migrate toward the same direction in the electric field.93  

Capillary wall coatings, including dynamic or static coatings, are used to reduce 

protein-wall interactions and alter the EOF. Small molecule additives such as amines and 

zwitterionic reagents can significantly reduce protein adsorption by interacting with the 

negatively charged silanol groups on the capillary wall. The addition of protonated 

positively charged amines to the background electrolyte can slow down the EOF and 
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improve protein separation efficiencies.94 High concentrations of zwitterions can minimize 

protein adsorption to the silica wall and prevent protein-protein interactions during CE 

analysis. Since zwitterionic reagents do not contribute to the ionic strength and 

conductivity of the buffer solutions, high separation voltage can be applied to the CE 

process to shorten the migration time of analytes.95-96 Polymer wall coatings of silica 

capillary have also been widely used by adding water soluble polymers to the buffer 

solutions. Capillaries dynamically coated with polymers, such as polyethylene oxide, 

cellulose and their derivatives, showed decreased EOF under basic pH buffer conditions. 

At lower pH, higher protein separation efficiencies were obtained using polymer coated 

capillaries, especially for basic proteins.97  

Since the pI value of BPTI is close to 10.5, it has positive net charges when the buffer 

pH is lower than its pI value. In the present study, the folding process of reduced BPTI 

with QAS disulfide was analyzed using CE-UV. Native protein and mixed disulfide folding 

intermediates with different molecular weight and charges were expected to be separated 

under an applied electric field in CE. Phosphate buffers with pH 2.5 were used in the 

process which reduced the negative charges on the inner surface of the capillary. 

Hydroxyethyl cellulose (HEC) was used as a BGE additive in order to suppress protein 

adsorption to the silica capillary wall and improve protein separation efficiencies. The 

sensitivity of CE is limited when the sample has a low concentration and only a minute 

amount of sample is injected into capillary for analysis compared to HPLC analysis. 

Therefore, sample stacking was conducted during the CE analysis in order to achieve better 

sensitivity. Protein samples were prepared in 1 mM HCl in order to have lower ionic 

strength than the running buffer (0.02 M phosphate buffer) for CE analysis. Hydrodynamic 
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injection with a long injection time (300 s) was used to introduce large sample volumes to 

the capillary. The difference in conductivity caused that the analytes migrated rapidly and 

concentrated at the boundary between the sample solution and the running buffer. 

 Experimental section 

 Materials 

Sodium phosphate monobasic monohydrate (NaH2PO4H2O) for electrophoresis was 

purchased from Sigma Aldrich. Phosphoric acid (H3PO4), sodium hydroxide (NaOH) and 

2-hydroxyethyl cellulose (HEC, MW = 90,000) were purchased from Fisher Scientific. є-

Amino-N-caproic acid (EACA) was purchased from MP Biomedicals.  

All experiments were performed on an Agilent Technologies equipped with a diode 

array detector. Data acquisition was performed with Chemstations software. The detection 

was monitored by UV at 214 and 280 nm. The capillary temperature was 25 ˚C for all the 

experiments. Electrophoretic analysis was performed on an uncoated fused-silica capillary 

(total length of 48 cm, effective length of 40 cm, i.d. of 75 µm, o.d. of 363 µm) from 

Polymicro Technologies. Prior to the first use, the capillary was conditioned with 0.1 

M NaOH and deionized water for 15 min, respectively. Before daily use, the capillary was 

conditioned with 0.1 M HCl, deionized water, and BGE (running buffer) for 5 min, 

consecutively.   

 Protein separation using CE-UV 

A stock solution of native BPII was prepared by dissolving the protein with 1 mM HCl 

to a final concentration of 0.1 mg/mL. A series of native BPTI solutions with varying 

concentrations was prepared from the stock solution. Reduced BPTI was prepared and 

purified as described in chapter 3. Lyophilized reduced BPTI was diluted to 0.1 mg/mL 
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with 1mM HCl. All protein samples were analyzed using CE-UV. Phosphate buffers (pH 

2.5) were used in CE-UV analysis. The rinsing buffer was 0.04 M phosphate buffer (pH 

2.5) prepared using NaH2PO4 and H3PO4. The running buffer was 0.02 M phosphate buffer 

(pH 2.5). Prior to each injection, the capillary was preconditioned with the rinsing buffer 

for 1 min and the running buffer for 3 min. Protein samples were injected 

hydrodynamically to the capillary at 5 mbar for 300 s. The applied separation voltage was 

20 kV, and the absorbance was monitored by UV at 214 and 280 nm. After each injection, 

the capillary was postconditioned with deionized water for 2 min. In order to minimize 

protein adsorption on the uncoated silica capillary wall, different concentrations of HEC 

were added to the rinsing and running buffers for CE analysis. 

 Protein folding analysis of reduced BPTI using CE-UV 

Reduced BPTI (30 µM) was folded with 0.25 mM QAS disulfide in the folding buffer 

containing 0.10 M bis-tris propane, 0.20 M KCl and 1.0 mM EDTA at pH 7.3 in a 25 ˚C 

water bath. At certain folding time points, 300 µL aliquots of the folding reaction mixture 

were removed and quenched with 80 µL formic acid. Each acid-quenched reaction sample 

was loaded to a Sephadex G-25 pipet column. Protein sample fractions were eluted using 

1 mM HCl as the mobile phase. Sample fractions containing protein were collected and 

analyzed by CE-UV. The CE separation for protein folding analysis was conducted as 

described above.  

 Results and discussion 

 Protein separations using phosphate buffers (pH 2.5) 

A separation of native and reduced BPTI was conducted with capillary electrophoresis 

on an uncoated silica capillary (Figure 61). A phosphate buffer (0.02 M, pH 2.5) was used 
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as the running buffer to suppress the charge effects on the silica capillary wall. Native and 

reduced BPTI were separated within 20 min. However, broad peaks and low intensities 

were obtained for both proteins on the electropherograms, indicating the occurrence of 

protein absorption to the inner surface of the capillary wall.  

The uncoated capillary was conditioned with 0.1 M HCl before runs to diminish the 

EOF and remove the adsorbed proteins from the inner wall of the capillary. Acid flushing 

also kept the silanol groups on the capillary wall protonated. Native BPTI was diluted with 

1 mM HCl to different concentrations (0.001-0.1 mg/mL) and analyzed with CE (Figure 

62). The protein analysis was reproducible and the migration time % RSD was about 2.22%. 

After acid flushing of the capillary, protein peak width was reduced and high absorbance 

intensity of native BPTI was observed on the electropherogram indicating the reduced 

protein adsorption on the silica wall of the capillary. Good linearity for the absorbance of 

native BPTI at 214 nm against the protein sample concentration was obtained with a high 

correlation coefficient (R2) of 0.9946 (Figure 63).  

 

Figure 61 Electropherograms of native and reduced BPTI  

a: Native BPTI; b: Reduced BPTI; c: Native and reduced BPTI  
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Figure 62 Electropherograms of native BPTI using phosphate buffers 

 

Figure 63 CE analysis of native BPTI using phosphate buffers 

Reduced BPTI was folded with 0.25 mM QAS disulfide at pH 7.3, and 300 µL of the 
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column and eluted with 1 mM HCl to remove small molecules. The eluted protein samples 
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two major peaks were observed from the electropherogram. According to HPLC folding 
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indicating that protein samples were not well separated on CE using current buffer 

condition.  

 

Figure 64 Electropherograms of reduced BPTI folding with 0.25 mM QAS disulfide 

 Protein separations using phosphate buffers (pH 2.5) with additives  
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indicating that an intermediate HEC level in the buffer solution tended to inhibit protein 

adsorption to the silica capillary wall.98  

 

Figure 65 Electropherograms of native BPTI using phosphate buffers with 0.1% HEC 

 

Figure 66 Native BPTI analysis using phosphate buffers with HEC 
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peak versus total peak area. Protein folding intermediates converted to native protein when 

increasing the refolding time, resulting in the increase of native protein yield (Figure 68).  

  

Figure 67 Electropherograms of reduced BPTI folding with 0.25 mM QAS disulfide using 

phosphate buffers with 0.1% HEC 

 

Figure 68 Folding analysis of reduced BPTI with 0.25 mM QAS disulfide 
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the detection of protein analysis at 214 nm with high sensitivity. However, when 600 mM 

EACA-phosphate buffer (pH 5.5) was used as the running buffer to analyze native BPTI 

on CE-UV, an asymmetrical peak with low intensity was observed on the electropherogram. 

The sensitivity of protein analysis on CE was not increased by the addition of EACA in the 

running buffer, possibly due to the use of long sample stacking injection method and low 

protein sample concentration. 

 Conclusion 

A method using CE-UV has been developed for the oxidative folding analysis of 

reduced BPTI with small molecule QAS disulfide. The method allowed rapid separation 

of reduced and native BPTI with good reproducibility and high sensitivity. After the 

folding of reduced BPTI with 0.25 mM QAS disulfide, protein folding intermediates with 

different sizes and charges were expected to be separated on CE. Capillary conditioning 

with 0.1 M HCl was shown to be an effective way to maintain reproducibility of protein 

separations from injection to injection. Phosphate buffers containing 0.1% HEC (pH 2.5) 

were utilized in order to reduce protein adsorption to the silica capillary wall during the 

protein separation analysis on CE. Compared to traditional HPLC analysis, CE-UV 

provided a new method to analyze the folding process of reduced BPTI with low solvent 

consumption and shorter analysis time.  
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 Conclusions and future research 

Reduced BPTI was folded with different aromatic thiols and their corresponding 

disulfides in vitro. The best folding conditions and reaction rate constants were determined 

by changing the concentration combinations of each aromatic thiol and its disulfide. 

Three aromatic thiols, including negatively charged PA and SA thiols and positively 

charged QAS thiol, showed different efficiencies on the folding of reduced BPTI. At the 

folding pH 7.3, BPTI is positively charged as it has a pI value of 10.5. Mixed disulfide 

folding intermediates were formed during the folding of reduced BPTI with all three thiols 

and disulfides. Protein precipitation was observed during the process when reduced BPTI 

was folded with negatively charged PA or SA thiol, presumably due to the minimized net 

charge of mixed disulfide folding intermediates. In comparison, no protein precipitation 

occurred during the folding of reduced BPTI with positively charged QAS thiol and 

disulfide. With the redox buffer containing 0.25 mM QAS disulfide and 10 mM QAS thiol, 

reduced BPTI was folded to 90% native protein in 2 h with an initial rate of 4.90 ± 

0.23 %/min, which was determined to be the best folding concentration combination. 

The hydrophobicity of small molecule thiols and disulfides was shown to have effects 

on the folding rate and yield of reduced BPTI. Three aromatic thiols, butyl, hexyl and octyl 

thiol, were synthesized to have an elongated alkyl group to increase the hydrophobicity of 

these small molecules compared to QAS thiol with a methyl group on the same position of 

the structure. Aromatic thiols and disulfides with greater hydrophobicity will increase the 

interactions with the hydrophobic core of the protein, and should help the formation and 

rearrangement of mixed disulfide intermediates during folding. However, the results 

showed that the longer the hydrocarbon chain in the small molecule structure, the higher 
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the tendency of protein precipitation. Folding of reduced BPTI with octyl thiol and 

disulfide formed protein precipitation in all the reaction mixtures. Folding of reduced BPTI 

with the best concentration combination of hexyl thiol and its disulfide was completed in 

1 h in terms of the formation of 90% native protein. The initial folding rate of the reduced 

BPTI folding reaction with 0.25 mM hexyl disulfide and 10 mM hexyl thiol was 

determined to be 9.42 ± 0.54 %/min, which was 40 times that of folding with the traditional 

redox buffer containing 5 mM GSSG and 5 mM GSH. 

Folding intermediates formed during the folding of reduced BPTI with the best 

concentration combinations of aromatic thiols and their corresponding disulfides are 

expected to be isolated in order to further understand the oxidative folding process. 

Kinetically stable folding intermediates will be reacted with aromatic thiols and disulfides 

respectively and the folding rate constants and initial folding rates will be determined. With 

further characterization of the folding intermediates, the oxidative folding mechanism of 

reduced BPTI with aromatic thiols and disulfides will be elucidated. The rate constants of 

the folding intermediates will be used to model the oxidative folding pathways of reduced 

BPTI using aromatic thiols and their corresponding disulfides. 

A new method to analyze the folding of reduced BPTI with small molecule aromatic 

disulfide was developed using CE on an uncoated silica capillary. The analysis was 

conducted at pH 2.5 to reduce deprotonation of silanol groups on the capillary wall. The 

separation of native and reduced BPTI was completed in a short run time with injection of 

only a small amount of sample. Good linearity with high correlation coefficient was 

obtained for the analysis of native protein with the concentration ranging from 0.001-0.1 

mg/mL. The folding of reduced BPTI with 0.25 mM QAS disulfide was analyzed using 
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CE, showing that folding intermediates were accumulated at each folding time point and 

separated on the electropherogram. Dynamic wall coating of the capillary and acid flushing 

was performed in order to reduce protein adsorption to the silica capillary wall. The 

addition of HEC to the running buffer effectively reduced protein adsorption and increased 

protein separation resolution. More capillary wall coating methods, such as the addition of 

amines and zwitterionic reagents, are expected to be used in protein folding analysis on CE 

in order to improve the separation sensitivity and resolution. 
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