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ABSTRACT OF THE DISSERTATION 

INTERIOR DAMAGE OF RESIDENTIAL BUILDING DUE TO WIND-DRIVEN 

RAIN INTRUSION 

by 

Farzaneh Raji 

Florida International University, 2018 

Miami, Florida 

Professor Ioannis Zisis, Major Professor 

 

This research aims to experimentally investigate the interior damage in residential 

buildings caused by rainwater intrusion during hurricane events. The first step, to 

experimentally evaluate the wind-driven rain effects on the building’s interior, is to 

accurately simulate the rain field associated with the hurricane. The wind-driven rain 

simulation was performed at the 12-fan Wall of Wind Experimental Facility at Florida 

International University. The characteristic of the simulated rain field was compared to a 

target characteristic obtained from the recorded data from past hurricanes to validate the 

simulation.  

In the next step, the large-scale models were subjected to the simulated rain field 

to observe the water propagation inside the models. The gable and hip roof models were 

prepared with three different exterior damage conditions, including the light damage 

state, minor damage state, and moderate damage state, to investigate the effect of 
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envelope openings on the water propagation path. Each model was tested at three wind 

angles of 0˚, 45˚ and 90˚ to assess the effects of wind direction. The interior of the 

models was divided into 6 different room compartments separated by partition walls, as 

well as 6 different attic compartments divided by short divider pieces. Finally, the results 

were used to evaluate the share of each interior component from the total amount of 

water that intrudes into the building.  

The last phase of the research concentrated on the experimental evaluation of the 

sustained damage by partition walls subjected to water intrusion. The full-scale model 

was subjected to the simulated rain field at the Wall of Wind Experimental Facility test 

section. The interior of the model was built to simulate the actual interior of a residential 

building. The experimental results were used to evaluate the sustained damage by the 

partition.  

This research made a great step forward in clarifying the mechanism of interior 

damage sustained in residential buildings due to rain intrusion during hurricanes. Most 

important, the results can be used in Hurricane Loss Models to predict the sustained 

damage on residential buildings at different hurricane hazard levels.   
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

 Problem Statement  

While past experiences have proven the vulnerability of low-rise buildings to 

hurricane events, the number of economic losses caused by hurricanes has increased 

dramatically in the past few decades. According to the National Science Board, 2007, the 

average annual hurricane-induced economic losses in constant 2006 dollars were $1.3 

billion in 1949-1989, $10.1 billion in 1990-1995, and exceeded $35 billion in the first 

decade of this century. This vulnerability to hurricane impact becomes more detrimental 

in states like Florida, with a high concentration of population along the coast.  

To ensure the economic sustainability of Florida and other coastal states, and to 

improve the safety of their citizens, it is required to develop sustainable coastal 

communities and hazard-resilient coasts. This requires the accurate projection of risks 

and subsequent development of risk mitigation strategies to allow sustainable coastal 

living. 

Although probabilistic simulating models (HAZUS, 2009 and FPHLM, 2015) are 

already in use for estimating hurricane risk, these models are imperfect due to high levels 

of simplifications. One of the major deficiencies of these models is related to estimating 

hurricane losses occurring at interior components of buildings. Despite the fact that 

interior damage could make up 50% to 100 % of the total damage costs, most of the past 

studies focused only on exterior damages. As a result, the analytical tools of loss 

estimation models are designed based on empirical and judgmental relations that 

calculate the amount of interior loss as a function of exterior damage.  
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Considering the importance of the accurate evaluation of interior damages on the 

one hand, and the inadequacy of existing methods on the other hand, this project aims to 

propose an improved method for the evaluation of interior damages that occur in 

residential buildings due to Wind-Driven Rain (WDR) during hurricane events. This 

improved method can later be applied in loss estimation models, and enhances their risk 

prediction accuracy.  

Interior damage, which includes damage to the ceilings, drywall partitions, 

carpeting, cabinets, and utilities, is mainly due to rainwater ingress through defects or 

breaches of the building envelope. This has also been confirmed by many post-disaster 

surveys (Mileti, 1999, Van de Lindt et al., 2007, FEMA, 2005, FEMA P-942, 2013, 

FEMA 488, 2005 and Bhinderwala, 1995). 

While experimental studies are required for assessing the performance of building 

interiors at water intrusion caused by wind-driven rain, there is no standard methodology 

for performing these tests. Therefore, there is a need to establish a framework for large-

scale testing with respect to designing interior components, setting the envelope 

conditions, simulating the environmental conditions and determining monitoring 

protocols. One of the main objectives of this project is to develop such a framework for 

the large-scale testing of a low-rise building under WDR. For this purpose, experimental 

tests were performed at the Wall of Wind (WOW) Experimental Facility (EF) at Florida 

International University (FIU).  

Understanding the WDR effects on a building requires a broad knowledge over 

several scientific fields, such as meteorological characteristics of the environmental 
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conditions (rain, wind, solar radiation, humidity, etc.), the physical mechanism of rain 

deposition on the building façade, and the hydrothermal behavior of building 

components. Considering the broad extent of science related to this subject, three main 

fields of concentration can be defined from previous studies that investigated WDR:  

1. Understanding characteristics of the free-field WDR and its relation to the 

horizontal rainfall and wind speed. This includes the meteorological investigation 

of horizontal rainfall, the size distribution of raindrops and the raindrop’s 

velocity. Some of the well-known studies on this subject are Best, 1950, 

Waldvogel, 1974, Mualem & Assouline, 1986 Dingle & Lee, 1972 and Lacy, 

1977. These studies resulted in the experimental relations for the estimation of the 

rain size distribution. The rain size distribution is a parameter that determines the 

characteristics of a wind-driven rain field. Realistic simulation of the wind-driven 

rain requires accurate estimation of the rain size distribution. 

2. Quantifying the amount of impinging water into the building envelope, which can 

be performed either by experimental testing or CFD modeling (Choi, 1999 and 

Blocken & Carmeliet, 2002). The results of this type of studies can lead to semi-

empirical relations, which determine the amount of water deposition into a 

building envelope using the Rain Admittance Factor (Straube & Burnett, 2000) or 

the Wall Factor (ISO, 2009). These studies resulted in experimental relations to 

determine the amount of water that reaches the building exterior subjected to 

wind-driven rain. Since the amount of water intrusion into the building interior 

depends on the amount of water deposition on the building exterior, accurate 
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estimation of the water exposure at the building exterior can significantly affect 

the prediction of water intrusion into the building interior.  

3. Predicting the amount of water intrusion through pre-existing defects and 

envelope breaches, and evaluating the performance of the building under WDR 

water infiltration (the effect on the building envelope). This area of study includes 

two main phases. The first phase is to evaluate how much of the deposited water 

on a building envelope would penetrate the building due to envelope breaches 

(ASTM E331, 2009 and ASTM E547, 2009b). The basis of all these methods is to 

measure the amount of intruded water when the building envelope is exposed to 

water spray with a predefined rain rate and the pressure difference between the 

interior and exterior. These methods are limited by two main weak points. First, 

they do not model the Rain Size Distribution (RSD), which represents actual rain 

characteristics. Second, they apply pressure differences in order to capture the 

effects of wind velocity, so they do not accurately simulate the droplet velocity. 

The second phase is to evaluate the effects of the intruded water on the 

hygrothermal behavior of the building envelope, which is usually performed by 

investigating the Heat, Air and Moisture (HAM) transfer characteristics. There are 

three main methods to perform HAM studies, including numerical modeling 

(Mendes & Philippi, 2005), field measurements (Desta, Langmans, & Roels, 

2011) and laboratory testing. For laboratory tests, the water spray method, direct 

insertion method (Korsgaard & Rode, 1992), or both (Tsongas, Govan, & 

McGillis, 1998 and Hens & Fatin, 1995), can be implemented to simulate the 

intruded wind-driven rainwater.     
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While these three areas are like the links of a chain that should be consequentially 

followed for the accurate investigation of the WDR effects on the building envelope, 

most of the previous studies have mainly concentrated on one area and considered it 

separate from the whole system. While these simplified approaches to the problem can be 

justified by its complexity and a huge amount of effort required to consider all the related 

tasks, they can be problematic and lead to erroneous results.  For example, many of the 

studies performed on the amount and effect of rain ingress into the building envelope 

(step 3) have skipped the preceding investigation of the amount of impinging rain on the 

building façade (step 2) by simply relying on the existing data in the literature. In this 

case, the erroneous estimation of the amount and intensity of water deposition can lead to 

an inaccurate prediction of the amount and intensity of water ingress and, as a result, the 

erroneous evaluation of hygrothermal performance. One of the novel aspects of this 

project is that it incorporates all the steps required for investigating the WDR effects, 

starting from actual WDR simulation to rain deposition on the building envelope, and 

rain infiltration through envelope defects and breaches in an integral approach.  

Another unique aspect of this study is that it investigates the effect of water 

intrusion at envelope breaches caused during severe wind events. Although the most 

significant interior damage is caused by water intrusion at large envelope beaches, none 

of the previous studies have investigated the building performance for these extreme 

situations.  

Almost all the previous studies have neglected the hurricane-induced damages, 

and only assessed the water intrusion at pre-existing defects caused by improper design, 
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defective workmanship, and inappropriate maintenance. In this study, the water intrusion 

through the hurricane-induced envelope breaches is investigated, as well as the water 

ingress through the pre-existing defects. 

 Research Objectives and Methodology  

The primary objectives of the research project can be summarized as: 

• Develop a methodology for investigating the WDR effects on a building’s 

interior. 

• Propose quantitative measures for describing the extent of damages at interior 

components of a building (increase in moisture content of interior components). 

• Generate test-based data on interior damages due to WDR using large-scale 

models. 

• Obtain a relation between the intruded water and expected interior damage. 

  Methodology  

To accomplish these goals, the following tasks were performed: 

1. First, the wind-driven rain needed to be simulated at the test section of the WOW 

EF. The generated rain field simulated the rain characteristics during a hurricane 

event. The rain size distribution was selected as a criterion that presents the 

characteristics of the rain field in a hurricane event. To accurately simulate the 

rain field, the rain size distribution of the generated rain was matched to the target 

rain size distribution associated with hurricanes. To do so, preliminary tests were 

performed to investigate the effect of nozzle type and water pressure on the 
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generated rain size distribution. Based on the obtained information, the proper 

nozzle type was selected and installed in front of the fan to simulate the rain field.    

2. Then, the large-scale models were constructed to simulate generic low-rise 

residential buildings. These models were tested at the simulated rain field to 

investigate the water propagation path on the building interior during a hurricane 

event. The large-scale models were designed to allow water intrusion through 

envelope breaches and defects. The envelope breaches were mainly exterior 

damages caused by hurricanes, so they were depended on hurricane severity and, 

as a result, maximum gust speed. Since the envelope breaches presented the 

condition of building subjected to different wind speeds, the extent of envelope 

breaches for each level of wind intensity was estimated. The estimation was 

performed using the available data from hurricane loss modeling (Cope, 2004). 

The level of exterior damages was determined for each wind intensity, then 

envelope breaches were generated in the model by sequentially and partially 

removing panels representing the roof and windows.  

3. Next, the results of the large-scale tests were modified to be implemented into the 

Florida Public Hurricane Loss Model (FPHLM). Additionally, some minor 

adjustments were applied to FPHLM to adopt the new interior loss evaluation 

module. Therefore, the FPHLM relations were derived to capture the water 

propagation matrices developed based on the large-scale experimental test results.   

4. Based on the information obtained from step 3, the most critical cases were 

selected for further investigation during the full-scale experiments. Since 

performing the WDR test for full-scale models was a costly and time-consuming 
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task, the tests were performed only for the most critical model configurations and 

wind angles. The results of these full-scale tests were presented as graphs 

showing the amount of increase in the moisture content of different interior 

components as a function of the volume of water that reaches each interior wall 

surface. This increase in moisture content was used to determine the damage 

extent of interior components using qualitative measures. 

 Organization of Dissertation 

This dissertation is organized into five chapters. The first chapter provides an 

introduction to the research and explains the goal and objective of the study. The 

literature review of the dissertation topic is included in the first chapter. It also provides a 

brief description of the applied methodology and tasks performed at different phases of 

the research.  

The second chapter is dedicated to the simulation of a rain field at WOW EF test 

section. In this chapter, the rain size distributions generated by different nozzle types at 

different water pressures are experimentally investigated. Based on these experiments, 

the appropriate nozzle type is selected to simulate the rain field at the test section. Two 

droplet measurement devises are used to measure the rain size distribution of the 

simulated rain field. Calibration of the rain field is achieved based on the close match of 

the rain size distributing at the test section to the target rain size distribution.  

The experimental water propagation study is presented in the third chapter. This 

chapter describes the preparation of the large-scale model to simulate the water 

propagation inside the building once the water intrudes through the envelope breaches 



10 
 

and defects. A discussion on how the decision is made for the location and the area of the 

envelope breaches and defects at different exterior damage states is also provided. The 

results of the water propagation tests are presented and discussed. Finally, how to 

implement these results into the FPHLM model is explained.  

The fourth chapter presents the full-scale experimental evaluation of the moisture-

induced damages of the building interior. The model preparation and moisture 

measurements are explained in this chapter. Discussion on how the test results are used to 

develop water volume-damage relationships, and how these relationships can be used for 

the prediction of moisture-induced damages, is also provided.  

Chapter five is the last chapter and includes the summary and conclusion of the 

dissertation.  
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CHAPTER 2.  RAIN FIELD SIMULATION 

 Introduction 

This section is dedicated to the explanation of the experimental tests performed to 

calibrate the simulated rain field at the WOW EF facility. To simulate the actual rain 

characteristics during a hurricane event, it was tried to model the rain field with matching 

rain size distribution to a target rains size distribution obtained by Baheru, 2014 (Figure 

1). The target rain size distribution was achieved by fitting a Gamma distribution to the 

normalized rain size distribution observed during three past hurricanes, including 

Hurricane Alex (2004), Hurricane Charley (2004) and Hurricane Gaston (2004), 

presented in the study by A. Tokay, Bashor, Habib, & Kasparis, 2008. The data 

collocation during these hurricanes was performed using the Joss-Waldvogel disdrometer 

(JWD). This disdrometer was commercialized in 1967, and has been used in many 

previous field measurements.  

 

Figure 1. Normalized target Rain size distribution, Baheru 2014 
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To convert this normalized rain size distribution to the dimensional rain size 

distribution, which can be simulated at the laboratory, the rain parameters should have 

been selected, including liquid water content (W in g/m3) and mass-weighted mean 

diameter (Dmass, in mm). These two parameters were selected based on the horizontal 

target Rain Rate (RR) of 25.4 mm/hr. and the RR - W and RR - Dmass relations presented 

in Baheru, 2014. Using those relations, W and Dmass were selected as 1.21 g/m3 and 1.77 

mm. Given the W and Dmass, the normalizing number concentration parameter Nw, was 

calculated as 10.05 × 103 (1/m3 mm) by using EQ. 1 as follows: 

𝑁𝑁𝑤𝑤 =
44

𝜋𝜋𝜋𝜋𝑤𝑤
�

𝐷𝐷
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚4 � EQ. 1 

 

The full-scale target rain size distribution was calculated from the normalized rain 

size distribution, as shown in Figure 2. 

 
Figure 2. Full-scale target rain size distribution 
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Because damage estimation experiments were designed for a 1:4 scaled 

residential building model, the rain field was calibrated with the 1:4 scale, and the target 

rain size distribution was also transferred to the scale of 1:4 (Figure 3). 

 
Figure 3. 1:4 scaled rain size distribution 

Complete similarity between the full-scale and scaled-down model requires an 

identical air density ratio, Reynolds number (Re), and Froude number (Fr) between the 

model and prototype. The similarity of water-to-air density ratio is held by default. 

However, it is impractical to maintain the similarity of Reynolds and Froude numbers, 

simultaneously. Therefore, based on the possible effects on the test results, the similarity 

of the Froude number was preferred over the Reynolds number. Based on the Froude 

number’s similarity, the following equation was used to relate the drop diameter (D) and 

raindrop size distribution, (N), between the model scale (ms) and full-scale (fs) model: 

𝐷𝐷𝑚𝑚𝑚𝑚 =  𝜆𝜆𝐿𝐿 ∙ 𝐷𝐷𝑓𝑓𝑚𝑚 ;         𝑁𝑁𝑚𝑚𝑚𝑚= 𝑁𝑁𝑓𝑓𝑚𝑚/𝜆𝜆𝐿𝐿4 EQ. 2 

In this equation, 𝜆𝜆𝐿𝐿, is the length scale. Based on this equation, the 1:4 scaled target rain 

size distribution was obtained from the full-scale target rain size distribution by dividing 
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the vertical axis (raindrop size distribution N(D)) to 𝜆𝜆𝐿𝐿
4 and multiplying the horizontal 

axis (drop diameter, D), to 𝜆𝜆𝐿𝐿. 

 Droplet Measurement Devices  

Parsivel2 from OTT Hydromet and the precipitation imaging probe (PIP) were the 

two-droplet measurement devices used in this study. While the PIP is famous for its high 

precision for measuring the wind-driven rain, there are several studies confirming the 

inadequacy of Parsivel performance, especially when the wind is introduced into the 

measurements (A. Tokay, Petersen, W. A., Gatlin, P., & Wingo, M., 2013,  Lopez, 2011 

and Friedrich, 2013).  

Lopez, 2011, showed that the inaccuracy of Parsivel for wind-driven rain 

measurement is mainly associated with the oblique trajectory angle of the raindrops 

caused by the wind. He concluded that when the wind angle is perpendicular to the laser 

plane of Parsivel, the droplet measurements are in good agreement with the results of the 

PIP. However, the results showed that Parsivel underestimates the number of small drop 

sizes (less than 0.68 mm), even when the wind angle is perpendicular to the laser field.   

Tokay et al. compared the droplet measurement accuracy of Parsivel2, Parsivel, 

and the Joss–Waldvogel (JW) disdrometer (A. Tokay, Wolff, & Petersen, 2014). It was 

shown that the accuracy of the Parsivel2 is increased for small drop sizes in the range of 

0.34–0.58mm, and it was concluded that Parsivel2 is certainly an improved version of 

Parsivel for the raindrop size and rainfall measurements. 
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In this study, the droplet measurement is performed for wind-driven rain with the 

wind angle perpendicular to the laser field of the sensors. According to Lopez, 2011, the 

accuracy of Parsivel in this situation is intact for larger sizes (larger than 0.68mm). On 

the other hand, a higher accuracy is expected for smaller droplets (smaller than 0.5mm) 

for the Parsivel2, therefore it was decided to use both Parsivel2 and the PIP for the droplet 

measurements.   

 Measurement of Rain Size Distribution at Stagnant Air  

In order to decide on the type and number of nozzles, several preliminary tests 

were performed on stagnant air. The main advantage of these tests was that they did not 

require turning on the WOW EF fans, which would have increased the experimental cost. 

These experiments allowed for testing different nozzle types and different water 

pressures. To perform these tests, a single nozzle was mounted above the sensors, and the 

sprayed droplets moved in the vertical direction through the stagnant air (see Figure 4). 

The rain size measurement was performed using both Parsivel2 and PIP, and the resulting 

RSDs were compared to investigate the accuracy of Parsivel2. Based on the measured 

RSDs, the most proper nozzle type was selected. The effect of water pressure on the RSD 

of the selected nozzle is investigated in the next step.  
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Figure 4. Droplet measurement using Parsivel and PIP for single-nozzle spray in the 

stagnant air 

 

2.3.1. Nozzle types 

Six different nozzle types were selected for the preliminary testing. The selection 

of these nozzles was based on the previous experiment performed by Baheru, 2014. In 

that study, Teejet extended range flat 8008-E was selected for the rain simulation. A 

water pressure of 52 psi was reported at the nozzle’s tip during the experiment. 

According to the nozzle manual (TeeJet Technologies, 2015), the TEEJET 8008 – E 

nozzle generates medium-size droplets (See Table 1 for details on drop sizes) at 40-60 psi 

pressures. Since the resulting RSD using the TEEJET 8008 – E showed a higher number 

concentration than the target RSD for drop sizes larger than 0.6 mm, this study attempted 

to test the nozzles that generated finer droplets. 
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Figure 5. Target and achieved RSD, Baheru, 2014 

Table 2 displays the tested nozzles, along with their nozzle sizes, at different 

water pressures. The water pressure for a single nozzle test was expected to vary between 

40 to 50 psi. The same water pressure range was observed during the experiments. 
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Table 1. Droplet Size Classification based on ASABE S572.1 

Size Classification VMD* Range (Microns) 

Extremely Fine <60 

Very Fine 61-105 

Fine 106-235 

Medium 236-340 

Coarse 341-403 

Very Coarse 404-502 

Extremely Coarse 503-665 

Ultra-Coarse >665 

      * Volume Median Diameter  

Table 2. Tested nozzles 

 Water Pressure PSI 
type 15 20 25 30 40 50 60 

XR8008 VC VC C C M M M 
XR11001 F F F F F F VF 

XR110015 F F F F F F F 
XRC11002 M F F F F F F 
XRC11004 M F F F F F F 
XRC80015 M M M M M F F 

*VC: Very Coarse, C: Coarse, M: Medium, F: fine, VF: Very fine 

 Figure 6 compares the droplet size distribution for different nozzles, measured 

using Parsivel (Figure 6a) and PIP (Figure 6b). As can be observed from Figure 6a, the 

Parsivel measurement showed that all the tested nozzles except for XR110015 lead to a 

higher number concentration than the XR8008E nozzle for drop sizes larger than 0.73 

mm. PIP data resulted in an almost similar trend, except that 0.33 mm was the limit 
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where the number concentration of nozzles (except for the XR110015 nozzle) exceeded 

the number concentration of the XR8008E nozzle. While the similar trend confirms the 

fact that XR110015 can be a potential substitute for the XR8008E nozzle to modify the 

rain size distribution (decrease the number concentration for drop sizes larger than 0.6 

mm to obtain a better match with target RSD), the difference between the results of 

Parsivel and the PIP needs to be further investigated. 

 

 
Figure 6. Droplet size distribution for different nozzles measured by (a) Parsivel and (b) 

PIP 
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Figure 7 compares the results of Parsivel and PIP for the XR8008E nozzle. As can 

be observed from this figure, Parsivel data lay below the PIP curve for drop sizes less 

than 0.7 mm. This observation can be attributed to the underestimation of the number 

concentration for fine droplets by Parsivel. The same observation can be made when 

comparing the RSD of other nozzle types using Parsivel and PIP. Therefore, it can be 

concluded that even in the stagnant air situation, where there is no obliqueness in the 

trajectory angle of the droplets, the measurement of Parsivel is not accurate enough for 

drop sizes less than 0.6 mm. Although this level of inaccuracy can be important for this 

study where the droplets are simulated with the scale of 1:4, in real situations, the 

performance of Parsivel can be accurate enough since the concentration of the raindrops 

lies between 1 to 3 mm. 

 
Figure 7. Comparing the RSD obtained from Parsivel and the PIP, for the XR8008E 

nozzle 
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constant, increasing the number of nozzles that fed on the pipeline can lead to a decrease 

in water pressure at the tips of the nozzles. In this section, the RSD generated by the 

XR8008E nozzle at different water pressures was investigated to assess the effect of 

water pressure on the generated drop sizes. The XR8008E nozzle was selected, as 

according to the manual the size range of this nozzle was highly dependent on water 

pressure. To alter the water pressure at the tips of the nozzle, the tests were performed 

with different numbers of nozzles installed on the pipeline. For each test, only one of the 

nozzles sprayed water above the droplet measurement device, while the water from the 

rest of the nozzles was sprayed out of the measurement field and could not participate in 

the measured RSD.  Table 3 shows the water pressure as a function of the number of 

installed nozzles.  

Table 3. Water pressure at tips of nozzles as a function of the number of nozzles 

 

 

 

Number of 
nozzles 

Pressure 
[psi] 

2 42 
4 28 
6 16 
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Figure 8. Effect of water pressure on RSD of droplets generated by the XR8008E nozzle 

Figure 8 displays the RSD obtained for the RX8008E nozzle at different water 

pressures by the PIP. As can be observed from this figure, increasing the water pressure 

from 16 to 42 psi can lead to a slight increase in the concentration of the droplets. This 

increase becomes even more significant when the droplet size is increased.  

 Calibration of the WOW EF Rain Field  

The simulation of the Wind-driven Rain (WDR) was performed at the 12-fan 

WOW EF at FIU. The WOW EF is a state-of-the-art wind engineering research 

laboratory consisting of a 2X6 array of 700-horsepower fans with a test section 4.3 m 

high and 6.1 m wide (Chowdhury et al., 2017). 

The calibration of the WDR requires the simultaneous simulation of wind and 

rain. The wind field was calibrated to simulate the atmospheric boundary layer associated 

with suburban terrain. The mean wind speed profile, along with the turbulence intensity 

for the generated flow, is presented in Figure 9. These graphs are normalized according to 

the roof height of the large-scale model (0.76 m).   
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Figure 9. Mean velocity (left) and turbulence intensity profiles (right) 

Once the RSDs generated by different nozzle types were compared, the decision 

was made to use only the XR8008E and XR110015 nozzles for simulation of the rain 

field at the WOW EF test section. To generate the raindrops, the nozzles were attached to 

the water hoses mounted on the spires in front of the fans (Figure 10). The sprayed water 

droplets could then be carried by the wind flow generated by the fans and simulate the 

WDR field. The calibration was performed based on a trial-and-error procedure. Three 

different nozzle arrangements were selected to be tested, including: 

• Case 1: Nine XR8008E nozzles on each side spire and ten XR8008E nozzles on 

the center spire.  

• Case 2: A combination of five XR8008E in between four XR110015 on each side 

spire and five XR8008E nozzles in between five XR110015 nozzles on the center 

spire.  

• Case 3: Nine XR110015 nozzles on each side spire and ten XR110015 nozzles on 

the center spire.  
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Figure 10. Vertical spires in front of the WOW EF, where the nozzles will be installed on 

the hoses 

Each case was tested for a duration of 5 minutes, and the RSD of the generated 

rain was measured at the center of the test section using the PIP droplet merriment 

device. The comparison of the RSD results between case 1 and case 2 is presented in 

Figure 11. It can be observed that case 1, with only the XR8008E nozzle type, can result 

in a much better match to the target compared to case 2, where half of the XR8008E 

nozzles are replaced by XR110015 nozzles. Moreover, it could be predicted that 

replacing all of the XR8008E nozzles with XR110015 nozzles in case 3 would worsen 

the agreement to the target RSD. Therefore, it was decided to omit case 3 from the 

experiment. Considering the good match of the RSD in case 1, it was decided to select 

the case 1 nozzle arrangement for simulation of the rain field at the WOW EF.  

As shown in Figure 11, the PIP measurement results are presented in the range of 

0.2 to 1.0 mm. This is the range of reliable measurement for the PIP device based on the 

calibration performed using the spinning disk calibrator (Baheru, 2014).  For drop sizes 

less than 0.2 mm, the readings were not steady and reliable. On the other hand, it was 
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improbable to generate droplets larger than 1.0 mm using the TEEJET 8008 – E nozzle 

with the median-volume diameter of 0.349 – 0.428 mm. 

 
Figure 11. RSD results at the WOW EF test section 

 

To compare the simulation results to the target RSD, Figure 12 shows the 

normalized simulated RSD, along with the normalized target RSD and the field 

measurement data. 
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Figure 12. Normalized RSD simulated at WOW EF test section 

Once the desired nozzle type and arrangement were selected, the uniformity of the 

generated rain field was assessed by measuring the RSD at different locations of the test 

section. In addition to the center of the test section, P1 (6.10, 0, 0.76), the RSD 

measurement was performed at five more locations, including P2 (6.10, 0.81, 0.76), P3 

(6.10, -0.81, 0.76), P4 (6.10, 1.62, 0.76), P5 (6.10, -1.62, 0.76) and P6 (6.10, 0, 1.52). The 

coordinate axes for locating the measurement points and the turntable are shown in 

Figure 13.  
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Figure 13. Coordinate axis and turntable 

The RSDs at different locations are presented in Figure 14, along with the target 

RSD. It can be observed that all RSD graphs lie in an acceptable margin from the target 

RSD, and it can be concluded that the generated rain field can adequately simulate the 

rain characteristics associated with hurricane events.  

 
Figure 14. Comparison of RSD at the different location across the test section 
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were 21.5 cm wide, 26 cm long and 12 cm deep. The water could get into these buckets 

through the vertical opening on the front face with the area of 217.5 cm2. The TB3 rain 

gauge is instrumented with an internal bucket with the capacity of 0.254 mm. Every time 

the bucket reaches its capacity, it tilts and registers an electric pulse. The history of these 

pulses is recorded by an ML1-FL data logger and is used in the calculation of the rain 

rate.   

 
Figure 15. TB3 rain gauge connected to vertical rain-collecting bucket  

Figure 16 shows the recorded rain rate at measurement locations of 0.76 m height 

(P1 through P5). As was expected from the uniformity of RSD, the rain rate is also 

uniform across the test section. Finally, the mean vertical rain rate of 180 mm/hr is 

reported at the height of 0.76 m. As will be explained in the next chapter, this is the 

height of the building models used for the large-scale water propagation tests.  
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Figure 16. Vertical Rain Rate (RRv) at different locations across the test section 

Once the RSD and rain rate were compared at different locations of the WOW EF 

facility test section, and the uniformity of the simulated rain field was validated, we could 

conclude that the rain filed was adequately simulated. In the next phase of the study, 

large-scale building models were subjected to the simulated WDR field that could 

represent the characteristics of rain during typical hurricane events.  
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CHAPTER 3.  EXPERIMENTAL WATER PROPAGATION TESTS 

 Introduction 

The preparation of the large-scale models and water propagation tests are 

presented in this section. Once the rain field was calibrated at the WOW EF test section, 

the next step was to prepare and test the large-scale models to investigate the propagation 

of the water inside the building. Since the water propagation path is directly affected by 

the envelope opening where the water intrudes into the building, the decision about the 

area and location of the envelope breaches had to be made. Using the Florida Public 

Hurricane Loss Model (FPHLM) as reference, it was decided to test models at three 

exterior damage conditions, i.e. light, minor and moderate. The roof type can also affect 

the water flow path, so two roof types—hip and gable—were considered. Also, to capture 

the effect of wind direction, each model configuration was tested at three wind angles of 

0˚, 45˚ and 90˚.  

 Model preparation 

The experimental tests were performed on 1:4 scaled models. Since the layout of 

the model should represent a typical low-rise residential building, it was decided to use 

the same layout as the one used for the Florida Public Hurricane Loss Model (FPHLM, 

2015). The consistency of the layout allowed for the future implementation of the results 

into the loss model.  

The building model was built out of wood and had horizontal dimensions of 9.14 

by 6.10 m, with a roof edge height of 3.05 m (all dimensions are equivalent full-scale). 



33 
 

The model was tested with two roof types, gable and hip, both having a pitch angle of 

5:12 and overhang length of 0.3m. The full-scale dimensions of the tested models are 

presented in Figure 17.  

 
Figure 17. Building models (full-scale dimensions in meter) 

The interior of the building was divided into six 3.05 × 3.05 m2 compartments. 

Similarly, the attic space was divided into six 3.05 × 3.05 m2 compartments. The 

windows are 1.22 m tall and are installed 0.81 m above the floor. Also, there is an 

opening on each internal partition to simulate the internal wind flow through the interior 

doors during the tests (Figure 18). 

 
Figure 18. Partition openings 
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 Exterior Damage State 

To capture the effect of envelope openings on the water propagation path inside 

the building, the models were tested at three different exterior damage states, representing 

the light, minor and moderate damage of the building envelope. The area and location of 

the exterior openings associated with each of these damage states were estimated based 

on the damage matrices developed for the FPHLM model (FPHLM, 2015). The extracted 

information from the damage matrices is presented in Table 4 and  

Table 5 for gable and hip roof models, respectively.  The percentage of the total 

building damage associated with each damage state is presented in the second column. 

The third and fourth columns show the percentage of the removed roof sheathing and 

roof cover, respectively. The number of the broken windows is displayed in the fifth 

column.  
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Table 4. Damage condition of the gable roof model for each damage state 

Damage State Total building 
Damage 

Removed Roof 
Sheathing 

Removed 
Roof Cover 

Broken 
Windows 

Light (DS0) up to 6% 0% 5% 0 

Minor (DS1) 10% 15% 20% 2 

Moderate (DS2) 20% 35% 40% 4 

 

Table 5. Damage condition of hip roof model for each damage state  

Damage State Total building 
Damage 

Removed Roof 
Sheathing 

Removed 
Roof Cover 

Broken 
Windows 

Light  up to 6% 0% 5% 0 

Minor 10% 10% 15% 2 

Moderate 20% 30% 35% 4 

 

The pre-existing defects of the building envelope can also lead to water intrusion 

into the building interior during a hurricane event. These defects are usually caused by 

poor construction or previous minor damages endured from past events. To include the 

effects of these openings on the water propagation path, two types of envelope defects 

were included in the models. The seal cracks (500mm x 4mm full-scale) below the 

windows and the missing sealant of ducts (60mm x 4mm full-scale) located at 1.78 m 

height above the floor were included. The defect opening type was only considered for 

the light damage model to represent the exterior state of the building envelope before the 

occurrence of severing wind-induced damages.  

Once the decision was made on the location and area of the defects and breaches, 

the models were prepared to simulate the water propagation path for each of the desired 
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exterior damage conditions. The locations and dimensions of the gable and hip roof 

breaches are displayed in Figure 19. The next section describes how these breaches were 

made in the wood building model.  Figure 20 shows the layout of the wall defects for 

DS0, as well as the wall breaches for the DS1 and DS2 model configurations.  
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 Gable roof Hip roof 

a) 

  

b) 

  

c) 

  

Removed sheathing,  Removed Roof Cover Removed 

Figure 19. Gable and hip roof breaches at (a) light damage, (b) minor damage and (c) 
moderate damage states (scaled model dimensions in cm) 
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(a) 

 

(b) 

 

(c) 

Figure 20. Wall breaches at (a) light damage, (b) minor damage and (c) moderate damage 
states (full scale dimensions) 

 

 Model Preparation 

As shown in Figure 21, the 1:4 scaled models were built out of wood. The 

building roof was constructed by attaching the 0.3 × 0.61 m2 plywood pieces on the 

roof’s wooden frame. These plywood pieces were the 1:4 scaled-down models of 4 by 8 

plywood sheathing that is commonly used in residential building construction. This 

modeling approach simulated the roof sheathing removal by removing the plywood 

sheathing pieces, and roof cover removal by unsealing the gap between the plywood 

sheathing pieces (Figure 22).  
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(a) 

 
(b) 

                  Figure 21. 1:4 scaled models out of wood, (a) hip and (b) gable 

 
Figure 22. The unsealed gap between the sheathing   

To accurately simulate the internal wind flow and to distinguish between the roof 

and wall water ingress, the attic space was separated from the room compartments by the 

plywood ceiling. Each of the six attic compartments was connected to a distinct bucket 

using a plastic tube. Therefore, the water that reached the attic compartments was 

separately accumulated in six buckets. These buckets were weighed at the end of each 

test to obtain the amount of water reaching each attic compartment (Figure 23). The same 

method was used to separately measure the amount of water reaching the floor on each of 

the room compartments.  
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Figure 23. Water collection buckets 

As shown in Figure 24, the internal walls were coved by superabsorbent pads, and 

the volume of water that reached each wall surface was measured based on the weight of 

absorbed water by the pad during the test. Additionally, the infrared camera was used to 

better observe the water traces across the surface of the walls.  

(a)  (b) 

Figure 24. Superabsorbent pads covering the interior wall and the infrared photo 

Each roof type model (i.e. gable and hip) was prepared for each of the three 

damage states (i.e. light damage, minor damage, and moderate damage) and was tested at 

three different wind angles (i.e. 0°, 45° and 90°)—see Figure 25. During each test, the 

model was subjected to 5 minutes of WDR. After each test, the buckets and pads were 
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weighed to measure the amount of water reaching each interior component, and infrared 

photos were taken off the pads. Each test was performed at the wind speed of 13.41 m/s 

and rain rate of 86 mm/hr at the roof eave height of the model. 

 

DS0           DS1        DS2 

Figure 25. Wind direction notation for each damage state 

 Test Results and Discussions  

The results of the large-scale experimental investigation of the water propagation 

inside the building are presented in this section. As explained earlier in this chapter, the 

tests were performed for eighteen model configurations, including two roof types, three 

damage states and three wind angles of attack. The next three subsections explain the 

results for the light, minor and moderate damage states, respectively. For each subsection, 

the results for water accumulation on the room and attic compartments are discussed, 

separately.  

3.5.1. Light Damage State 

For the light damage state configuration, since the area of the envelope defects is 

very small, it was expected that the direct impinging rain into the building interior would 
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have a minimal effect on the water propagation path inside the building. Additionally, 

since the internal wind flow is negligible, the gravity is the main propeller for the water 

propagation inside the building. In this case, it was expected that the major mode of water 

propagation is the water runoff on the interior walls below the opening toward the floor.   

3.5.1.1 Room compartments 

The water propagation inside the room compartments of the light damage state 

models is presented in Figure 26. This figure shows the amount of water that reaches 

each interior surface (i.e. wall and flooring), for gable and hip roof models subjected to 

0˚, 45˚ and 90˚ wind angels of attack. For all cases, the mode of water propagation is the 

water runoff on the defected wall surface from the opening toward the floor. As expected, 

the water trace can only be observed on the windward defected walls and flooring below 

them.  
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Figure 26. Room compartments’ numbering and water propagation into interior walls 
and floorings in grams, for the light damage state model 

 

3.5.1.2 Attic compartments 

Figure 27 shows the water propagation into the attic compartments of the light 

damage state models. The results are separately presented for gable and hip roof models, 

as well as 0°, 45°, and 90° wind directions. In this case, also, the area of the roof 

openings is very small, and as a result, the internal wind flow is too weak to govern the 

internal water propagation. Therefore, the gravity is the major force that controls the 

movement of the infiltrated water through the roof openings. This results in the attic 

compartment directly below the roof defect (roof compartment 1) being the only affected 

attic compartment. 

For the gable roof model, the highest amount of water accumulation occurs at the 

0° wind angle. This wind direction results in more surface runoff water at the roof 
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opening compared to the 45˚ and 90˚ wind directions, where flow separation at the roof 

edge deviates the runoff water flow from the opening.  

The 0° wind direction results in the highest amount of water intrusion into the hip 

roof’s attic. The wind flow, in this case, pushes the runoff water from the center line of 

the windward roof surface toward the hip lines. Since the roof defect is located on the hip 

line, a part of this runoff water can infiltrate through the opening and get into the attic. 

Similarly, at the 90° wind direction, the runoff water is directed toward the hip lines by 

the wind flow. However, in this case, the area of the windward roof surface is smaller 

compared to the windward roof surface at the 0˚ wind angle, which results in a lower 

volume of surface runoff water at the roof opening. As a result, the amount of water that 

gets into the attic at the 90˚ wind direction is smaller compared to 0˚. However, at the 45˚ 

wind direction, a different flow path is observed for the runoff water. In this case, the 

wind flow directly hits the defected hip line and pushes the runoff water away from the 

hip line toward the centers of the windward roof surfaces, and results in the minimum 

amount of water infiltration.  
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Figure 27. Attic compartments’ numbering and water propagation in grams, for the light 
damage state model 

3.5.2. Minor Damage State 

The exterior openings of the model at the minor damage state were large enough 

to allow direct impinging rain into the building interior, as well as the internal wind flow. 

It was expected that any of the interior walls of the room compartments with an opening 

experience the water trace on their surfaces. Similarly, water accumulation could occur 

on any attic compartment.  

3.5.2.1 Room compartments 

The water propagation inside the room compartments of the minor damage state 

model is presented in Figure 28. The results are displayed separately for two roof types 

(i.e. gable and hip) and three wind angles (0°, 45°, and 90°). 

At the 0˚ wind angle of attack, for both gable and hip roof models, the least 

amount of water (less than 1%) is absorbed by the west wall of room compartment 1. At 
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this wind angle, the wind hits the south wall perpendicularly, and then it is redirected 

toward the east and west edges of the building. As the wind flows from the vertical center 

line of the windward wall toward the building edges, it enters through the window 

opening with an inclined angle directing toward the northeast corner of the room 

compartment 1 (Figure 29). This inclined direction of the internal wind flow is the reason 

for the minimum amount of water absorption by the west wall of room compartment 1. 

The infrared photos shown in Figure 30 also depict this explanation. As can be observed 

from these photos, only a slight amount of water can be noted on the west wall, while the 

trace of water on the east and north wall expands to the same height as the window’s top 

edge. For the south wall, in addition to the wet area below the window, a narrow margin 

of moisture trace can be noted around the window.  

The 45˚ wind direction results in a minimum amount of water absorption by the 

east wall of room compartment 1 (1% of the total intruded water into the room 

compartment) for both gable and hip roof types. The maximum amount of water 

absorption occurs at the west wall, with 26% and 30% of the total intruded water for 

gable and hip roof models, respectively. In this case, the external wind flow enters the 

room compartment 1 through the window opening with an inclined angle toward the west 

wall (Figure 31). As shown in Figure 32, the infrared photos support this rationale. The 

west wall, which is the direct target of the wind flow, gets wet up to almost the same 

height as the top edge of the open window, while the moisture trace can only be observed 

on the left side of the north wall (the side closer to the west wall). Similarly, the bottom 

left corner of the south wall (the corner adjacent to the west wall) is the location where a 
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notable moisture trace is observed. Finally, and as expected, the east wall is barely 

affected by the water.  

For the 90˚ wind direction, non-traceable water absorption is recorded at all 

interior surfaces for both gable and hip roof models. In this case, there is no opening on 

the exterior windward wall to allow water intrusion into the room compartments.   
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Figure 28. Room compartments’ numbering and water propagation into interior walls 
and floorings in grams, for the minor damage state model 
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Figure 29. Schematic view of wind flow at a 0° wind direction 

 
Figure 30. Infrared photos of the walls of room compartment 1, subjected to a 0° wind 

direction  

 



49 
 

 
Figure 31. Schematic view of wind flow at a 45° wind direction 

 
 

 
 

Figure 32. Infrared photos of the walls of room compartment 1, subjected to 45° wind  

3.5.2.2 Attic compartments 

Figure 33 shows the water propagation into different attic compartments of the 

gable and hip roof models subjected to wind angles of 0°, 45°, and 90°. The 0˚ wind 

direction results in the highest amount of water deposition on the attic compartment 1 and 
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2 for both gable and hip roof models. These are the immediate attic compartments 

exposed to the wind flow, therefore significant amount of water intrusion—73% and 95% 

of the total ingress water into the gable and hip roof, respectively—was expected. Also, 

for both gable and hip roof models, the symmetric configuration of the model for the 0˚ 

wind angle should result in similar amount of water accumulation on the attic 

compartments 1 and 2. As expected in the case of the gable roof model, there is only 1% 

difference between the accumulated water on room compartments 1 and 2.  However, for 

the hip roof model, the difference between the recorded water for compartments 1 and 2 

is 11%. This difference might be caused by the minor details in the physical model. As 

explained earlier, the models were built out of wood and, because of the nature of the 

water flow, even minor cracks or uneven sheathing surface could change the water flow 

path and result in different amount of water accumulation on the attic compartments 1 

and 2. This justification was affirmed by the observation of the water flow path on the 

roof surface. This observation showed how minor physical details can change the water 

flow path (Figure 34).  

The attic compartments 1 and 2 of the gable roof model are the ones with the 

highest amount of water accumulation at 45˚ wind direction. In this case, 35% and 36% 

of the total ingress water through the gable roof openings are accumulated at attic 

compartments 1 and 2, respectively. When the hip roof model is tested at the 45˚ wind 

direction, the attic compartment 2 receives the highest amount of water (38% of the total 

ingress water).  
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As shown in Figure 33, the least amount of water intrusion through the gable roof 

openings occurs at the 90˚ wind angle of attack. At this wind direction, the flow 

separation at the gable end results in the minimum amount of direct impinging rain into 

the roof openings located upstream of the wind flow. On the other hand, the wind flow 

reattachment to the roof surface downstream of the flow pushes the surface runoff water 

toward the west side roof openings. Similar results were obtained by Baheru, 2014, for 

the rainwater deposition on the building envelope.   

For the hip roof model subjected to the 90˚ wind direction, the attic compartments 

1 and 3, with 40% and 44% of the total amount of water intrusion through the roof, are 

those with the highest amount of water accumulation. In this case, the roof openings 

above compartments 1 and 3 are parallel to the wind flow, rather than being directly 

exposed to it. However, the wind flow pushes the surface runoff water on the windward 

roof surface (east roof side) toward the hip lines and results in water infiltration into the 

attic compartments 1 and 3.  
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Figure 33.  Attic compartments’ numbering and water propagation in grams, for the 
minor damage state model  

 

 
Figure 34. Water path on the model affected by the construction details 

3.5.3. Moderate Damage State 

This section explains the water propagation into the room and attic compartments 

of the moderate damage state model. Similar to the case of the minor damage state, the 

envelope openings in the moderate damage state model are also large. Therefore, the 
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direct impinging and internal wind flow significantly affects the moisture propagation on 

the interior surfaces, as will be further discussed in this section.   

3.5.3.1 Room compartments 

The water distribution into the room compartments of the moderate damage state 

model is presented in Figure 35. The results are shown for two roof type models (i.e. 

gable and hip) and three wind directions (i.e. 0˚, 45˚ and 90˚). 

The same water propagation pattern as the one for the minor damage state can be 

noted for the room compartment 1 for the moderate damage state at the 0° wind angle. 

Similarly, the west wall of room compartment 1 attracts the least amount of water. For 

the gable roof model, only 5.7% of the total ingress water into the room compartment 1 

reaches the west wall, and for the hip roof model, this wall has only a 0.5% share of the 

total ingress water. The mirrored water propagation pattern can be observed for the room 

compartment 2, which was expected based on the symmetric configuration of the model 

with respect to the wind direction. Therefore, the east wall of room compartment 2 is the 

one with the least share of water absorption. As shown in Figure 36, the 0° wind flow is 

perpendicular to the south wall, and once it hits the building the flow is redirected toward 

the east and west side of the building. The internal wind flow has an inclined angle 

toward the east wall of room compartment 1 and west wall of room compartment 2, 

rather than directly targeting the interior north walls. The infrared photos also agree with 

these observations. As shown in Figure 37-a, the west wall of the room compartment 2 

gets wet up to the same height as the opening top edge. The moisture trace extends to the 

west side of the north wall, then gradually fades near the east side of this wall and leaves 
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only a thin line on the east wall, where it finally disappears. The mirror of the same 

pattern can be observed in the room compartment 2, as shown in Figure 37-b.   

For the 45˚ wind direction, the water distribution in the room compartment 1 is 

very similar to what was observed for the minor damage state. The notable observation in 

both cases is that the west wall attracts more water compared to the rest of the interior 

wall. For the gable roof model, the water absorbed by the west wall is 27% of the total 

intruded water into room compartment 1, and for the hip roof model, this amount equals 

34%. As discussed in the minor damage state, the inclined direction of the internal wind 

flow toward the west wall is the reason for this observation (Figure 38). The very same 

thing happens for the room compartment 2, and the west wall absorbs the highest amount 

of water. However, in this case, the amount of intruded water is generally lower 

compared to the room compartment 1. This can be justified by the less strong internal 

wind flow inside the room compartment 2 compared to room compartment 1. The less 

powerful wind flow can result in a lesser amount of water deposition on the interior 

surfaces.  

The thermography results agreed well with this reasoning. Figure 39 shows the 

notable trace of moisture on the west walls of room compartments 1 and 2. It can also be 

noted that the extent of the moist area is smaller on the west wall of room compartment 2 

compared to room compartment 1. The trace on the west wall fades as it gets closer to the 

north wall, especially in the room compartment 2. However, it leaves an inclined pattern 

on the north wall and finally disappears on the east wall.  
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The 90˚ wind direction does not allow any traceable water intrusion into the 

building interior since there is no envelope opening on the windward exterior walls in this 

case. This is the reason for the zero values recorded on the interior walls and floorings for 

the moderate damage state model subjected to the 90˚ wind angle of attack.  

Figure 35. Room compartments’ numbering and water propagation into interior walls 
and floorings in grams, for the moderate damage state model  

 

 
Figure 36. Schematic view of wind flow at the 0° wind direction 
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(a) Room compartment 2 

 

(b) Room compartment 1 

Figure 37. Infrared photos of the walls of room compartments 1 and 2, subjected to the 
0° wind direction 

 

Figure 38. Schematic view of wind flow at 45° the wind direction 
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(a) Room compartment 2 

 

(b) Room compartment 1 

Figure 39. Infrared photos of the walls of room compartments 1 and 2, subjected to the 
45° wind direction 

3.5.3.2 Attic compartments 

Figure 40 displays the findings of the experimental tests on the distribution of 

water into the attics of the gable and hip roof models subjected to the 0˚, 45˚ and 90˚ 

wind angles of attack. It can be noted that the attic compartments 1 and 2 are the ones 

that attract the highest amount of water at the 0° wind direction. For the gable roof 

model, 76% of the total intruded water through the roof openings is accumulated on only 

these two compartments. For the hip roof, these two compartments attract 83% of the 

total ingress water through the roof. Another notable observation is that for the gable roof 

model subjected to the 0˚ wind direction, the middle attic compartments (compartments 5 

and 6) attract no water at all. This might be due to the undisturbed interior wind flow 

inside the damaged gable roof. In this case, the model configuration allows for the direct 

flow of the wind through the attic without deviating from its normal to ridge direction.  
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At the 45˚ wind angle, the attic compartment 2 attracts the highest amount of 

water, which is 39% and 23% of the total ingress water into the gable and hip roof 

models, respectively. This attic compartment is subjected to a considerable amount of 

direct impinging rain, as well as the surface runoff water in both gable and hip roof 

models at the 45˚ wind direction, which justifies the considerable amount of water 

accumulation.  

The attic compartments of gable roof model experience a minimal water intrusion 

at the 90° wind angle. At this wind direction, the flow separation at the gable end 

prevents the raindrops from getting through the roof openings into the attic 

compartments. However, the same wind direction results in a considerable amount of 

water accumulation on the attic compartments 1 and 3 of the hip roof model. These attic 

compartments can attract both the direct impinging rain and the surface runoff water on 

the windward roof side. Also, it should be noted that almost the same amount of water is 

accumulated in these two compartments (only a 6% difference), which could be expected 

based on the symmetric configuration of the model with respect to the wind angle.  
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Figure 40. Attic compartments’ numbering and water propagation in grams (% of total 
water intruded through roof openings), for the moderate damage state model  

 Implementation into FPHLM 

This section explains how the raw results of the experimental large-scale tests are 

processed so that they can be implemented into the FPHLM model. One of the objectives 

of this research was to obtain experimental data that can be used to improve the interior 

loss estimation module of the FPHLM program. The current FPHLM model can estimate 

how much water can intrude into the building interior, but it cannot calculate how this 

water is distributed among different interior components. By implementing the 

experimental water propagation results into the FPHLM program, it can be modified to 

calculate the amount of water that reaches each interior component and estimate the 

sustained loss based on this information.   

To implement the experimental results to the FPHLM program, the obtained data 

needed to be modified.  To understand the necessity of these modifications requires a 
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brief introduction to the FPHLM procedure for the calculation of the amount of water 

intrusion into the building interior. The current method applied in the FPHLM for the 

evaluation of the amount of water intrusion is summarized in the following paragraphs. 

More comprehensive information on the procedure can be found in the literature 

(Johnson, 2015, Johnson et al., 2018, G. L. Pita, 2012 and G. Pita et al., 2012). 

The assumptions made by the FPHLM regarding the calculation of the amount of 

water intrusion into the building interior can be summarized as follows:  

• The wind speed during a hurricane event is variant. The hurricane starts with a, low 

wind speed then at some point it reaches the maximum wind speed of Vmax.  

• For a given building model, a specific maximum wind speed is associated with any of 

the predefined damage states (section 3.3) depending on the construction type of the 

building. In other words, a minimum value of Vmax is required to generate a specific 

level of the exterior damage state (e.g. DS0, DS1 or DS2) depending on the building 

construction type. This is based on the idea that the stronger the building construction, 

the higher the wind speed required for generating the same level of exterior damage.  

• Before the occurrence of Vmax, there was not any wind-induced damage on the 

building envelope caused by the pertinent hurricane. Therefore, the water intrusion 

occurs only at the pre-existing openings, including the building defects and the roof 

damages that have occurred during the previous low wind speed events. The model 

configuration at Damage State 0 in the experimental tests corresponds to the envelope 

opening in this situation. 
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• The occurrence of Vmax results in the generation of wind-induced damages on the 

building envelope, unless the Vmax is lower than the wind speed associated with the 

DS0 (which means the value of Vmax has been too low to generate the exterior 

damage). In the case that Vmax is large enough to result in wind-induced exterior 

damages on the building envelope, the water intrusion after Vmax occurs, at both pre-

existing defects and wind, induces exterior breaches. However, the simultaneous water 

intrusion through the envelope defects and breaches was not considered in the 

experimental tests, so there is a need to apply the modification to the test results to 

include the water ingress through the defects and wind-induced breaches at the same 

time. Section 3.6.1 describes how these modifications are applied to the experimental 

test results.     

• In the FPHLM model, it is assumed that during a hurricane event the hurricane eye 

rotates around the building and, as a result, the wind angle of attack can change from 

0˚ to 315˚ in 45 ˚ increments (8 octants). At each wind direction, the water can intrude 

into the building through the existing envelope breaches, so it is necessary to 

determine the water propagation inside the building for each of the eight wind angle of 

attacks (octants). Section 3.6.2 explains how the water propagation data are developed 

for eight octants, and how this data will be implemented into the FPHLM model.    

3.6.1. Generalization of the experimental test results 

As mentioned earlier, the experimental tests did not account for the water 

intrusion at defects. In other words, the model configuration for DS1 and DS2 did not 

include the envelope defects (the existing opening in the DS0). Instead, they only 
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incorporated the wind-induced breaches associated with DS1 or DS2. On the other hand, 

in reality (also in the FPHLM model), once the wind induced-damages occur on the 

building envelope, the water can intrude not only through these breaches but also through 

the pre-existing defects. To include this effect in the experimental test results, it was 

decided to add the volume of water intruded during the DS0 experimental tests to the 

amount of water accumulated during DS1 to obtain the total volume of water intrusion at 

DS1 through both defects and breaches. Similarly, for DS2, the volume of intruded water 

during DS0 was added to the amount of water intrusion during DS2.  

However, there were some matters that should have been considered for the 

procedure of adding DS0 results to DS1 or DS2 results. For example, if there was a 

defect in DS0 at a window that was assumed to be broken in the DS1 or DS2 model, the 

volume of water intrusion through that defect in the DS0 test should have not been added 

to the volume of water intrusion through the broken window at that location in the DS1 or 

DS2 tests. The reason is that once the whole window breaks, the amount of surface runoff 

water in the DS0 case that intruded through the defects now can impinge inside the 

building and is included in the water intrusion obtained by DS1 or DS2. Therefore, 

adding the volume of water at DS0 to the DS1 or DS2, in this case, results in double-

counting the amount of intruded water. Also, for the roof water intrusion, the area of the 

roof opening at DS1 and DS2 covered the area of roof opening at the DS0 model, so there 

was no need to add the water intrusion at DS0 to the water intrusion at DS1 or DS2. 

Table 6 summarizes the water intrusion results after this modification. In the first column, 

P1 to P24 refer to the interior partitions, while F1 to F6 and C1 to C6 refer to Flooring 
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and Ceiling components, respectively. The naming convention of the interior components 

is shown in Figure 41. 
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 Table 6. The modified volume of water reaching different interior components at 
different model configurations 

 Volume of water reaching each interior component (ml) 
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P1 147 145 0 129 160 0 130 236 0 197 142 0 135 90 0 250 132 0 
P2 0 0 0 0 0 0 10 310 0 7 349 0 2 287 0 78 301 0 
P3 0 0 0 0 0 0 259 96 0 220 40 0 190 40 0 171 80 0 
P4 0 16 133 0 14 29 210 26 133 200 22 133 174 26 29 205 41 29 
P5 119 119 0 109 167 0 119 119 0 168 121 0 109 167 0 162 173 0 
P6 0 0 0 0 0 0 0 0 0 114 241 0 0 0 0 101 208 0 
P7 0 0 0 0 0 0 0 0 0 258 138 0 0 0 0 252 151 0 
P8 0 0 0 0 0 0 0 0 0 57 56 0 0 0 0 102 30 0 
P9 0 25 34 0 31 37 0 25 34 0 25 34 0 31 37 0 31 37 

P10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F1 356 443 192 366 407 234 731 615 192 801 723 192 696 876 234 664 789 234 
F2 372 165 0 340 130 0 372 165 0 651 29 0 340 130 0 691 122 0 
F3 0 181 204 0 159 220 0 181 204 0 181 204 0 159 220 0 159 220 
F4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1 157 36 95 172 58 0 691 433 395 1306 828 1026 426 376 3 1516 810 24 
C2 0 0 0 0 0 0 775 894 64 1212 911 68 421 384 86 1536 1456 0 
C3 0 0 0 0 0 0 9 406 419 44 839 1089 98 11 3 506 327 28 
C4 0 0 0 0 0 0 7 389 59 49 379 54 87 78 78 471 806 10 
C5 0 0 0 0 0 0 5 35 0 138 418 27 27 12 2 0 324 0 
C6 0 0 0 0 0 0 60 157 51 271 631 0 102 204 0 0 10 0 
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(a) (b) 
Figure 41. The naming convention for (a) interior partition and flooring components, and 

(b) ceiling components  

It should be noted that for the FPHLM implementation, it is important to use the 

normalized share of each interior component so that the results can be used for any 

duration of rain and amount of total water intrusion. In other words, the results should be 

presented as the share of each interior components form the total volume of intruded 

water, so that the volume of the water reaching each component can be calculated for any 

given value of water intrusion. Because the water intrusion from the roof openings was 

separately measured from the water intrusion from the wall openings in the experimental 

tests, it was decided to use total volume of water intrusion through the wall opening for 

normalizing the results of room components and total volume of water intrusion through 

the ceiling for the normalization of the ceiling components. Therefore, the experimental 

results were normalized to present the share of each interior room compartment (P1 to 

P24 and F1 to F6) from the total volume of water that intrudes through the wall openings. 

Similarly, for the ceiling components (C1 to C6), the volume of water at each ceiling 

component was normalized to the total volume of water that intrudes through the roof 

opening. The figure below presents the normalized results for each interior component at 
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each model configuration. The location of the interior compartments is shown in Figure 

41.  



67 
 

Table 7. The normalized share of different interior components at different configurations 

 
Normalized share of different interior components 
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P1 15% 13% 0% 14% 15% 0% 7% 13% 0% 7% 7% 0% 8% 5% 0% 9% 6% 0% 
P2 0% 0% 0% 0% 0% 0% 1% 17% 0% 0% 17% 0% 0% 16% 0% 3% 14% 0% 
P3 0% 0% 0% 0% 0% 0% 14% 5% 0% 8% 2% 0% 12% 2% 0% 6% 4% 0% 
P4 0% 1% 24% 0% 1% 6% 11% 1% 24% 7% 1% 24% 11% 1% 6% 8% 2% 6% 
P5 12% 11% 0% 12% 16% 0% 6% 7% 0% 6% 6% 0% 7% 9% 0% 6% 8% 0% 
P6 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 12% 0% 0% 0% 0% 4% 9% 0% 
P7 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 7% 0% 0% 0% 0% 9% 7% 0% 
P8 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 3% 0% 0% 0% 0% 4% 1% 0% 
P9 0% 2% 6% 0% 3% 7% 0% 1% 6% 0% 1% 6% 0% 2% 7% 0% 1% 7% 

P10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P11 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P12 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P13 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P14 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P15 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P16 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P17 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P18 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P19 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P20 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P21 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P22 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P23 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
P24 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
F1 36% 40% 34% 39% 38% 45% 40% 35% 34% 30% 35% 34% 42% 48% 45% 25% 36% 45% 
F2 37% 15% 0% 36% 12% 0% 20% 9% 0% 24% 1% 0% 21% 7% 0% 26% 6% 0% 
F3 0% 17% 36% 0% 15% 42% 0% 10% 36% 0% 9% 36% 0% 9% 42% 0% 7% 42% 
F4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
F5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
F6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
C1 100% 100% 100% 100% 100% 0% 45% 19% 40% 43% 21% 45% 37% 35% 2% 38% 22% 39% 
C2 0% 0% 0% 0% 0% 0% 50% 39% 6% 40% 23% 3% 36% 36% 50% 38% 39% 0% 
C3 0% 0% 0% 0% 0% 0% 1% 18% 42% 1% 21% 48% 8% 1% 2% 13% 9% 45% 
C4 0% 0% 0% 0% 0% 0% 0% 17% 6% 2% 9% 2% 7% 7% 45% 12% 22% 16% 
C5 0% 0% 0% 0% 0% 0% 0% 2% 0% 5% 10% 1% 2% 1% 1% 0% 9% 0% 
C6 0% 0% 0% 0% 0% 0% 4% 7% 5% 9% 16% 0% 9% 19% 0% 0% 0% 0% 
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3.6.2. Calculation of water intrusion for all eight octants 

As mentioned earlier, the water propagation calculation in the FPHLM model has 

been performed for the eight 45˚ octants. The experimental tests were performed at only 

three wind angles of attack, including 0˚, 45˚ and 90˚. The first step for FPHLM 

implementation was to expand the results for all the desired wind directions. Because of 

the symmetrical model, it was possible to generate the results for 135˚ to 315˚ based on 

the results obtained from the 0˚, 45˚ and 90˚ tests. Finally, the experimental test results 

were presented by six Water Propagation Matrices (WPM) for two building roof types 

and three exteriors Damage States (Table 8 to Table 13). Each matrix is composed of 

thirty-six rows for thirty-six interior components, and eight columns for eight different 

wind directions. The values presented in these tables are the normalized share of different 

interior components. For the room components, including P1 to P24 and F1 to F6, the 

values are normalized to the total volume of water that enters through the wall openings. 

For Ceiling components (C1 to C6), the values are normalized to the total volume of 

water that intrudes through the roof openings. 
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Table 8. Water Propagation Matrix for Hip roof at DS0 
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P1 15% 13% 0% 0% 0% 0% 0% 11% 
P2 0% 0% 0% 0% 0% 0% 0% 0% 
P3 0% 0% 0% 0% 0% 0% 0% 0% 
P4 0% 1% 24% 2% 0% 0% 0% 0% 
P5 12% 11% 0% 0% 0% 0% 0% 13% 
P6 0% 0% 0% 0% 0% 2% 24% 1% 
P7 0% 0% 0% 0% 0% 0% 0% 0% 
P8 0% 0% 0% 0% 0% 0% 0% 0% 
P9 0% 2% 6% 1% 0% 0% 0% 0% 

P10 0% 0% 0% 0% 0% 0% 0% 0% 
P11 0% 0% 0% 0% 0% 0% 0% 0% 
P12 0% 0% 0% 13% 15% 11% 0% 0% 
P13 0% 0% 0% 0% 0% 0% 0% 0% 
P14 0% 0% 0% 0% 0% 0% 0% 0% 
P15 0% 0% 0% 0% 0% 1% 6% 2% 
P16 0% 0% 0% 11% 12% 13% 0% 0% 
P17 0% 0% 0% 0% 0% 0% 0% 0% 
P18 0% 0% 0% 0% 0% 0% 0% 0% 
P19 0% 0% 0% 0% 0% 0% 0% 0% 
P20 0% 0% 0% 0% 0% 0% 0% 0% 
P21 0% 0% 0% 0% 0% 0% 0% 0% 
P22 0% 0% 0% 0% 0% 0% 0% 0% 
P23 0% 0% 0% 0% 0% 0% 0% 0% 
P24 0% 0% 0% 0% 0% 0% 0% 0% 
F1 36% 40% 34% 17% 0% 0% 0% 15% 
F2 37% 15% 0% 0% 0% 17% 34% 40% 
F3 0% 17% 36% 40% 36% 15% 0% 0% 
F4 0% 0% 0% 15% 37% 40% 36% 17% 
F5 0% 0% 0% 0% 0% 0% 0% 0% 
F6 0% 0% 0% 0% 0% 0% 0% 0% 
C1 100% 100% 100% 0% 0% 0% 0% 0% 
C2 0% 0% 0% 0% 0% 0% 100% 100% 
C3 0% 0% 0% 100% 100% 0% 0% 0% 
C4 0% 0% 0% 0% 0% 100% 0% 0% 
C5 0% 0% 0% 0% 0% 0% 0% 0% 
C6 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 9. Water Propagation Matrix for Hip roof at DS1 

In
te

rio
r c

om
po

ne
nt

 

G
ab

le
-D

S0
-0

°w
in

d 

G
ab

le
-D

S0
-4

5°
w

in
d 

G
ab

le
-D

S0
-9

0°
w

in
d 

G
ab

le
-D

S0
-1

35
°w

in
d 

G
ab

le
-D

S0
-1

80
°w

in
d 

G
ab

le
-D

S0
-2

25
°w

in
d 

G
ab

le
-D

S0
-2

70
°w

in
d 

G
ab

le
-D

S0
-3

15
°w

in
d 

P1 14% 15% 0% 0% 0% 0% 0% 16% 
P2 0% 0% 0% 0% 0% 0% 0% 0% 
P3 0% 0% 0% 0% 0% 0% 0% 0% 
P4 0% 1% 6% 3% 0% 0% 0% 0% 
P5 12% 16% 0% 0% 0% 0% 0% 15% 
P6 0% 0% 0% 0% 0% 3% 6% 1% 
P7 0% 0% 0% 0% 0% 0% 0% 0% 
P8 0% 0% 0% 0% 0% 0% 0% 0% 
P9 0% 3% 7% 1% 0% 0% 0% 0% 

P10 0% 0% 0% 0% 0% 0% 0% 0% 
P11 0% 0% 0% 0% 0% 0% 0% 0% 
P12 0% 0% 0% 15% 14% 16% 0% 0% 
P13 0% 0% 0% 0% 0% 0% 0% 0% 
P14 0% 0% 0% 0% 0% 0% 0% 0% 
P15 0% 0% 0% 0% 0% 1% 7% 3% 
P16 0% 0% 0% 16% 12% 15% 0% 0% 
P17 0% 0% 0% 0% 0% 0% 0% 0% 
P18 0% 0% 0% 0% 0% 0% 0% 0% 
P19 0% 0% 0% 0% 0% 0% 0% 0% 
P20 0% 0% 0% 0% 0% 0% 0% 0% 
P21 0% 0% 0% 0% 0% 0% 0% 0% 
P22 0% 0% 0% 0% 0% 0% 0% 0% 
P23 0% 0% 0% 0% 0% 0% 0% 0% 
P24 0% 0% 0% 0% 0% 0% 0% 0% 
F1 39% 38% 45% 15% 0% 0% 0% 12% 
F2 36% 12% 0% 0% 0% 15% 45% 38% 
F3 0% 15% 42% 38% 39% 12% 0% 0% 
F4 0% 0% 0% 12% 36% 38% 42% 15% 
F5 0% 0% 0% 0% 0% 0% 0% 0% 
F6 0% 0% 0% 0% 0% 0% 0% 0% 
C1 100% 100% 0% 0% 0% 0% 0% 0% 
C2 0% 0% 0% 0% 0% 0% 0% 100% 
C3 0% 0% 0% 100% 100% 0% 0% 0% 
C4 0% 0% 0% 0% 0% 100% 0% 0% 
C5 0% 0% 0% 0% 0% 0% 0% 0% 
C6 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 10. Water Propagation Matrix for Hip roof at DS2 
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P1 7% 13% 0% 0% 0% 0% 0% 9% 
P2 1% 17% 0% 0% 0% 0% 0% 4% 
P3 14% 5% 0% 0% 0% 0% 0% 10% 
P4 11% 1% 24% 2% 0% 0% 0% 17% 
P5 6% 7% 0% 0% 0% 0% 0% 10% 
P6 0% 0% 0% 0% 0% 1% 6% 1% 
P7 0% 0% 0% 0% 0% 0% 0% 0% 
P8 0% 0% 0% 0% 0% 0% 0% 0% 
P9 0% 1% 6% 1% 0% 0% 0% 0% 

P10 0% 0% 0% 0% 0% 0% 0% 0% 
P11 0% 0% 0% 0% 0% 0% 0% 0% 
P12 0% 0% 0% 10% 6% 7% 0% 0% 
P13 0% 0% 0% 4% 1% 20% 0% 0% 
P14 0% 0% 0% 10% 14% 2% 0% 0% 
P15 0% 0% 0% 17% 11% 1% 24% 2% 
P16 0% 0% 0% 9% 7% 8% 0% 0% 
P17 0% 0% 0% 0% 0% 0% 0% 0% 
P18 0% 0% 0% 0% 0% 0% 0% 0% 
P19 0% 0% 0% 0% 0% 0% 0% 0% 
P20 0% 0% 0% 0% 0% 0% 0% 0% 
P21 0% 0% 0% 0% 0% 0% 0% 0% 
P22 0% 0% 0% 0% 0% 0% 0% 0% 
P23 0% 0% 0% 0% 0% 0% 0% 0% 
P24 0% 0% 0% 0% 0% 0% 0% 0% 
F1 40% 35% 34% 13% 0% 0% 0% 2% 
F2 20% 9% 0% 0% 0% 10% 36% 32% 
F3 0% 10% 36% 32% 20% 9% 0% 0% 
F4 0% 0% 0% 2% 40% 41% 34% 13% 
F5 0% 0% 0% 0% 0% 0% 0% 0% 
F6 0% 0% 0% 0% 0% 0% 0% 0% 
C1 45% 19% 40% 18% 0% 17% 6% 39% 
C2 50% 39% 6% 17% 1% 18% 42% 19% 
C3 1% 18% 42% 19% 50% 39% 6% 17% 
C4 0% 17% 6% 39% 45% 19% 40% 18% 
C5 0% 2% 0% 7% 4% 7% 5% 2% 
C6 4% 7% 5% 2% 0% 2% 0% 7% 
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Table 11. Water Propagation Matrix for Gable roof at DS0 
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P1 7% 7% 0% 0% 0% 0% 0% 6% 
P2 0% 17% 0% 0% 0% 0% 0% 3% 
P3 8% 2% 0% 0% 0% 0% 0% 7% 
P4 7% 1% 24% 1% 0% 0% 0% 12% 
P5 6% 6% 0% 0% 0% 0% 0% 7% 
P6 4% 12% 0% 0% 0% 1% 24% 1% 
P7 10% 7% 0% 0% 0% 0% 0% 2% 
P8 2% 3% 0% 0% 0% 0% 0% 17% 
P9 0% 1% 6% 1% 7% 12% 0% 0% 

P10 0% 0% 0% 2% 8% 7% 0% 0% 
P11 0% 0% 0% 17% 0% 3% 0% 0% 
P12 0% 0% 0% 7% 7% 6% 0% 0% 
P13 0% 0% 0% 3% 2% 17% 0% 0% 
P14 0% 0% 0% 7% 10% 2% 0% 0% 
P15 0% 0% 0% 12% 4% 1% 6% 1% 
P16 0% 0% 0% 6% 6% 7% 0% 0% 
P17 0% 0% 0% 0% 0% 0% 0% 0% 
P18 0% 0% 0% 0% 0% 0% 0% 0% 
P19 0% 0% 0% 0% 0% 0% 0% 0% 
P20 0% 0% 0% 0% 0% 0% 0% 0% 
P21 0% 0% 0% 0% 0% 0% 0% 0% 
P22 0% 0% 0% 0% 0% 0% 0% 0% 
P23 0% 0% 0% 0% 0% 0% 0% 0% 
P24 0% 0% 0% 0% 0% 0% 0% 0% 
F1 30% 35% 34% 9% 0% 0% 0% 1% 
F2 24% 1% 0% 0% 0% 9% 34% 35% 
F3 0% 9% 36% 35% 30% 1% 0% 0% 
F4 0% 0% 0% 1% 24% 35% 36% 9% 
F5 0% 0% 0% 0% 0% 0% 0% 0% 
F6 0% 0% 0% 0% 0% 0% 0% 0% 
C1 43% 21% 45% 21% 1% 9% 3% 23% 
C2 40% 23% 3% 9% 2% 21% 45% 21% 
C3 1% 21% 48% 21% 43% 23% 2% 9% 
C4 2% 9% 2% 23% 40%` 21% 48% 21% 
C5 5% 10% 1% 16% 9% 16% 1% 10% 
C6 9% 16% 0% 10% 5% 10% 0% 16% 
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Table 12. Water Propagation Matrix for Gable roof at DS1 
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P1 8% 5% 0% 0% 0% 0% 0% 12% 
P2 0% 16% 0% 0% 0% 0% 0% 2% 
P3 12% 2% 0% 0% 0% 0% 0% 10% 
P4 11% 1% 6% 2% 0% 0% 0% 14% 
P5 7% 9% 0% 0% 0% 0% 0% 11% 
P6 0% 0% 0% 0% 0% 2% 7% 1% 
P7 0% 0% 0% 0% 0% 0% 0% 0% 
P8 0% 0% 0% 0% 0% 0% 0% 0% 
P9 0% 2% 7% 1% 0% 0% 0% 0% 

P10 0% 0% 0% 0% 0% 0% 0% 0% 
P11 0% 0% 0% 0% 0% 0% 0% 0% 
P12 0% 0% 0% 11% 7% 9% 0% 0% 
P13 0% 0% 0% 2% 0% 16% 0% 0% 
P14 0% 0% 0% 10% 12% 4% 0% 0% 
P15 0% 0% 0% 14% 11% 2% 6% 2% 
P16 0% 0% 0% 12% 8% 7% 0% 0% 
P17 0% 0% 0% 0% 0% 0% 0% 0% 
P18 0% 0% 0% 0% 0% 0% 0% 0% 
P19 0% 0% 0% 0% 0% 0% 0% 0% 
P20 0% 0% 0% 0% 0% 0% 0% 0% 
P21 0% 0% 0% 0% 0% 0% 0% 0% 
P22 0% 0% 0% 0% 0% 0% 0% 0% 
P23 0% 0% 0% 0% 0% 0% 0% 0% 
P24 0% 0% 0% 0% 0% 0% 0% 0% 
F1 42% 48% 45% 11% 0% 0% 0% 8% 
F2 21% 7% 0% 0% 0% 9% 42% 28% 
F3 0% 9% 42% 28% 21% 7% 0% 0% 
F4 0% 0% 0% 8% 42% 43% 45% 11% 
F5 0% 0% 0% 0% 0% 0% 0% 0% 
F6 0% 0% 0% 0% 0% 0% 0% 0% 
C1 37% 35% 2% 1% 7% 7% 45% 36% 
C2 36% 36% 50% 7% 8% 1% 2% 35% 
C3 8% 1% 2% 35% 36% 36% 50% 7% 
C4 7% 7% 45% 36% 37% 35% 2% 1% 
C5 2% 1% 1% 19% 9% 19% 0% 1% 
C6 9% 19% 0% 1% 2% 1% 1% 19% 
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Table 13. Water Propagation Matrix for Gable roof at DS2 
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P1 9% 6% 0% 0% 0% 0% 0% 8% 
P2 3% 14% 0% 0% 0% 0% 0% 1% 
P3 6% 4% 0% 0% 0% 0% 0% 7% 
P4 8% 2% 6% 1% 0% 0% 0% 9% 
P5 6% 8% 0% 0% 0% 0% 0% 6% 
P6 4% 9% 0% 0% 0% 1% 6% 2% 
P7 9% 7% 0% 0% 0% 0% 0% 4% 
P8 4% 1% 0% 0% 0% 0% 0% 14% 
P9 0% 1% 7% 2% 8% 9% 0% 0% 

P10 0% 0% 0% 4% 6% 7% 0% 0% 
P11 0% 0% 0% 14% 3% 1% 0% 0% 
P12 0% 0% 0% 6% 9% 8% 0% 0% 
P13 0% 0% 0% 1% 4% 14% 0% 0% 
P14 0% 0% 0% 7% 9% 4% 0% 0% 
P15 0% 0% 0% 9% 4% 2% 7% 1% 
P16 0% 0% 0% 8% 6% 6% 0% 0% 
P17 0% 0% 0% 0% 0% 0% 0% 0% 
P18 0% 0% 0% 0% 0% 0% 0% 0% 
P19 0% 0% 0% 0% 0% 0% 0% 0% 
P20 0% 0% 0% 0% 0% 0% 0% 0% 
P21 0% 0% 0% 0% 0% 0% 0% 0% 
P22 0% 0% 0% 0% 0% 0% 0% 0% 
P23 0% 0% 0% 0% 0% 0% 0% 0% 
P24 0% 0% 0% 0% 0% 0% 0% 0% 
F1 25% 36% 45% 7% 0% 0% 0% 6% 
F2 26% 6% 0% 0% 0% 7% 45% 36% 
F3 0% 7% 42% 36% 25% 6% 0% 0% 
F4 0% 0% 0% 6% 26% 36% 42% 7% 
F5 0% 0% 0% 0% 0% 0% 0% 0% 
F6 0% 0% 0% 0% 0% 0% 0% 0% 
C1 38% 22% 39% 9% 13% 22% 0% 39% 
C2 38% 39% 0% 22% 12% 9% 39% 22% 
C3 13% 9% 45% 22% 38% 39% 16% 22% 
C4 12% 22% 16% 39% 38% 22% 45% 9% 
C5 0% 9% 0% 0% 0% 0% 0% 9% 
C6 0% 0% 0% 9% 0% 9% 0% 0% 

 

To implement these matrices into the FPHLM requires a more detailed 

explanation of how the FPHLM model works. The following paragraphs describe the 
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methodology applied in the FPHLM model to evaluate the amount of water intrusion into 

the building interior.  

In the applied methodology, it is assumed that for a given hurricane simulation, 

the building is subjected to a specific amount of vertical rain. The model calculates the 

amount of rain based on the synthetic hurricane data, which relate the total horizontal rain 

and the peak wind gust speed. More information on the procedure can be found in 

Johnson et al., 2018. A portion of this vertical rain that reaches the building before the 

occurrence of Vmax is named WDR1, while the rest of it, which reaches the building after 

the Vmax happens, is referred to as WDR2.  

The total amount of WDR1 can be distributed among four time intervals covering 

the hurricane duration form the start to the time when Vmax happens (Johnson, 2015). The 

amount of vertical rain during each time interval is a portion of WDR1, and the 

summation of vertical rain for all four time intervals equals 𝑊𝑊𝐷𝐷𝑊𝑊1. Therefore, the 

amount of vertical rain for the mth time interval (𝑊𝑊𝐷𝐷𝑊𝑊𝑚𝑚) can be calculated by: 

𝑊𝑊𝐷𝐷𝑊𝑊𝑚𝑚 = 𝛼𝛼𝑚𝑚.𝑊𝑊𝐷𝐷𝑊𝑊1 EQ. 3 

where 𝛼𝛼𝑚𝑚 is the fraction of WDR1 that happens at the mth time interval. On the 

other hand, it is assumed that the wind flow rotates over four wind directions from the 

start of the hurricane to the time when Vmax happens. Each of these wind directions 

corresponds to a specific time interval (𝜃𝜃𝑚𝑚). Because of the agreement between the time 

interval and wind direction, 𝑊𝑊𝐷𝐷𝑊𝑊𝑚𝑚 is referred to by 𝑊𝑊𝐷𝐷𝑊𝑊𝜃𝜃𝑚𝑚.  
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Similarly, the amount of WDR2 is distributed among five time intervals, starting 

from the time when Vmax happens to the end of the hurricane. The amount of vertical rain 

for the nth time interval (𝑊𝑊𝐷𝐷𝑊𝑊𝑛𝑛) can be calculated by: 

𝑊𝑊𝐷𝐷𝑊𝑊𝑛𝑛 = 𝛽𝛽𝑛𝑛.𝑊𝑊𝐷𝐷𝑊𝑊2 EQ. 4 

In this equation, 𝛽𝛽𝑛𝑛 is the fraction of WDR2 that happens at nth time interval. 

Likewise, the wind direction for the nth time interval is named 𝜃𝜃𝑛𝑛, and 𝑊𝑊𝐷𝐷𝑊𝑊𝑛𝑛  is referred 

to as 𝑊𝑊𝐷𝐷𝑊𝑊𝜃𝜃𝑛𝑛. 

Once the amount of vertical rain is determined, the next step is to estimate how 

much of the rain can get inside the building. The vertical rain can get into the building 

interior through either surface runoff or direct impinging. The direct impinging water is 

the amount of rain that directly impinges on the building envelope openings. The surface 

runoff water is the amount of water that runs over the building envelope and gets into the 

building interior by penetrating through the exterior openings. To calculate the amount of 

water intrusion through the surface runoff and direct impinging, EQ. 5 and EQ. 6 are 

derived from the relationships suggested by Baheru, 2014. For a given wind direction, 

knowing the amount of vertical rain (𝑊𝑊𝐷𝐷𝑊𝑊𝜃𝜃), the amount of surface runoff water 

intrusion (𝑉𝑉𝑆𝑆𝑆𝑆_ 𝜃𝜃) through an envelope opening with the exposed surface area of 𝐴𝐴𝑆𝑆𝑆𝑆_𝜃𝜃 to 

that wind direction, can be calculated by:  

𝑉𝑉𝑆𝑆𝑆𝑆_ 𝜃𝜃 = 𝑆𝑆𝑊𝑊𝑆𝑆𝜃𝜃.𝑊𝑊𝐷𝐷𝑊𝑊𝜃𝜃 .𝐴𝐴𝑆𝑆𝑆𝑆_𝜃𝜃 EQ. 5 

To calculate the amount of water intrusion through the direct impinging at an 

opening with the exposed area of 𝐴𝐴𝑜𝑜_𝜃𝜃 to the wind direction (𝜃𝜃), EQ. 6 can be derived 

from (Baheru, 2014) as follows:  
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𝑉𝑉𝐷𝐷𝐷𝐷_𝜃𝜃 = 𝑊𝑊𝐴𝐴𝑅𝑅𝜃𝜃.𝑊𝑊𝐷𝐷𝑊𝑊𝜃𝜃.𝐴𝐴𝑜𝑜_𝜃𝜃 EQ. 6 

In the above equations, 𝑆𝑆𝑊𝑊𝑆𝑆𝜃𝜃 and 𝑊𝑊𝐴𝐴𝑅𝑅𝜃𝜃 are the Surface Runoff Coefficient and 

Rain Admittance Factor for the wind angle direction of θ, respectively, suggested by 

Baheru (Baheru, 2014). Also, more information on the calculation of 𝐴𝐴𝑆𝑆𝑆𝑆_𝜃𝜃 and 𝐴𝐴𝑜𝑜_𝜃𝜃 can 

be found in this reference.  

To calculate the total amount of water intrusion, the water intrusion at different 

wind angles should be calculated and added as the hurricane rotates around the building. 

Considering the fact that the amount of vertical rain affecting the building and the area of 

envelope opening depends on the occurrence of Vmax, two different sets of formulas have 

been developed for the calculation of water intrusion before and after the occurrence of 

Vmax. On the other hand, since the total amount of water intrusion at each wind direction 

is composed of direct impinging rain and surface runoff water intrusion, each set of 

formula consists of two relations: one for calculating the amount of surface runoff water 

and another one for direct impinging water.  

To calculate the amount of water intrusion before the occurrence of Vmax, through 

surface runoff and direct impinging, EQ. 7 and EQ. 8 can be used, respectively.  

𝑉𝑉𝑆𝑆𝑆𝑆_𝜃𝜃𝑚𝑚 = 𝑆𝑆𝑊𝑊𝑆𝑆𝜃𝜃𝑚𝑚.𝛼𝛼𝑚𝑚.𝑊𝑊𝐷𝐷𝑊𝑊1.𝐴𝐴𝑆𝑆𝑆𝑆_𝑑𝑑_𝜃𝜃𝑚𝑚 EQ. 7 

𝑉𝑉𝐷𝐷𝐷𝐷_ 𝜃𝜃𝑚𝑚 = 𝑊𝑊𝐴𝐴𝑅𝑅𝜃𝜃𝑚𝑚.𝛼𝛼𝑚𝑚.𝑊𝑊𝐷𝐷𝑊𝑊1.𝐴𝐴𝑜𝑜_𝑑𝑑_𝜃𝜃𝑚𝑚 EQ. 8 

These relations were derived from EQ. 5 and EQ. 6 by substituting 𝜃𝜃 for 𝜃𝜃𝑚𝑚, 

which represents the wind angle before the occurrence of Vmax, so 𝑊𝑊𝐷𝐷𝑊𝑊𝜃𝜃 has been 

replaced by 𝑊𝑊𝐷𝐷𝑊𝑊𝜃𝜃𝑚𝑚, which equals 𝛼𝛼𝑚𝑚.𝑊𝑊𝐷𝐷𝑊𝑊1 based on EQ. 3. Additionally, 𝐴𝐴𝑆𝑆𝑆𝑆_𝜃𝜃 and  

𝐴𝐴𝑜𝑜_𝜃𝜃 were replaced by  𝐴𝐴𝑆𝑆𝑆𝑆_𝑑𝑑_𝜃𝜃𝑚𝑚 and 𝐴𝐴𝑜𝑜_𝑑𝑑_𝜃𝜃𝑚𝑚, which represent the exposed area of 
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defects to surface runoff and direct impinging water intrusion, respectively. Because 

before the occurrence of Vmax, water can intrude only through the pre-existing defects, the 

area of defects was used in the above equations.  

Similarly, the amount of water intrusion for the wind directions that occur after 

Vmax can be calculated by EQ. 9 and EQ. 10 for the surface runoff and direct impinging, 

respectively.  

𝑉𝑉𝑆𝑆𝑆𝑆_ 𝜃𝜃𝑛𝑛 = 𝑆𝑆𝑊𝑊𝑆𝑆𝜃𝜃𝑛𝑛.𝛽𝛽𝑛𝑛.𝑊𝑊𝐷𝐷𝑊𝑊2.𝐴𝐴𝑆𝑆𝑆𝑆_𝑏𝑏_𝜃𝜃𝑛𝑛 EQ. 9 

𝑉𝑉𝐷𝐷𝐷𝐷_𝜃𝜃𝑛𝑛 = 𝑊𝑊𝐴𝐴𝑅𝑅𝜃𝜃𝑛𝑛.𝛽𝛽𝑛𝑛.𝑊𝑊𝐷𝐷𝑊𝑊2.𝐴𝐴𝑜𝑜_𝑏𝑏_𝜃𝜃𝑛𝑛 EQ. 10 

The above equations were derived by replacing 𝜃𝜃 with 𝜃𝜃𝑛𝑛 in EQ. 5 and EQ. 6. 

Similarly, 𝑊𝑊𝐷𝐷𝑊𝑊𝜃𝜃 has been replaced by 𝑊𝑊𝐷𝐷𝑊𝑊𝜃𝜃𝑛𝑛, which equals 𝛼𝛼𝑛𝑛.𝑊𝑊𝐷𝐷𝑊𝑊2 based on EQ. 4. 

In this case, because the occurrence of Vmax results in wind-induced openings on the 

building exterior, 𝐴𝐴𝑆𝑆𝑆𝑆_𝜃𝜃 and 𝐴𝐴𝑜𝑜_𝜃𝜃 were replaced by  𝐴𝐴𝑆𝑆𝑆𝑆_𝑏𝑏_𝜃𝜃𝑛𝑛 and 𝐴𝐴𝑜𝑜_𝑏𝑏_𝜃𝜃𝑛𝑛, which 

represent the exposed area of wind-induced breaches to surface runoff and direct 

impinging water intrusion, respectively. 

The next step would be to calculate the amount of water that reaches each interior 

component once the water intrudes through either direct impinging or surface runoff. 

This can be accomplished by using the WPM matrices. As explained previously, the 

WPM matrices were developed for different exterior damage states depending on the 

severity of the wind-induced damages. Therefore, to distribute the water among the 

interior components using the WPMs, the damage state of the building at the time of 

water intrusion should be decided on. It was explained that the water intrusion is 



79 
 

calculated at two phases, including before the occurrence of Vmax and after Vmax happens. 

At each of these two phases, the damage state of the building should be determined.  

Since the DS0 model was initially designed to simulate the light damage and it 

only includes the pre-existing defects and damages caused by low wind speeds, the 

WPMs obtained for the DS0 can be used for calculating the water propagation among the 

interior components before the Vmax phase, regardless of the value of maximum wind 

speed. However, after the occurrence of Vmax, the exterior damage of the building 

depends on the value of the maximum wind speed, as well as the building construction 

type. Table 14 shows the wind speed associated with the different damage states for 

different construction types. Having the data presented in this table, the procedure 

displayed in Figure 42 can be used to decide on the damage state of the building after the 

occurrence of Vmax, based on the value of Vmax and the building construction type. From 

now on, the applied WPM before and after the occurrence of Vmax are referred to as 

WPM_DS0 and WPM_DS, respectively. It should be noted that WPM_DS can be the 

WPM for either DS0, DS1 or DS2, depending on the maximum wind speed and 

construction type.  

Table 14. Wind speed associated with different damage state for different 
construction types 

Damage State DAMAGE 
Construction Type 

W00 
(weak) 

M00 
(Moderate) 

S00 
(strung) 

Light (DS0) up to 6% up to 85 up to 100 up to 125 
Minor (DS1) 10% 100 115 145 
Moderate (DS2) 20% 120 130 165 
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If Vmax<125 If Vmax<145

DS=0 DS=1 DS=2

Switch

Strong 
Construction Yes No

Yes

No

Yes

If Vmax<100 If Vmax<115

DS=0 DS=1 DS=2

Medium 
Construction Yes No

Yes

No

Yes

No

If Vmax<85 If Vmax<100

DS=0 DS=1 DS=2

Weak 
Construction Yes No

Yes

No

Yes

No

 

Figure 42. Procedure for determining the damage state of the building when Vmax 
is exceeded  

As mentioned earlier in this chapter, the WPM matrices were normalized so that 

for each wind direction the amount of water reaching the room compartments, including 

P1 to P24 and F1 to F6, can be calculated by multiplying the associated cell of the matrix 

for the desired component (row) and wind direction (column) to the volume of water that 

enters through the wall openings. Thus, EQ. 7 and EQ. 8 can be modified to EQ. 11 and 

EQ. 12, respectively, to calculate the amount of water that reaches each interior room 

component before the occurrence of Vmax. 
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𝑆𝑆𝑖𝑖,𝑆𝑆𝑆𝑆_𝜃𝜃𝑚𝑚 = 𝑆𝑆𝑊𝑊𝑆𝑆𝜃𝜃𝑚𝑚.𝛼𝛼𝑚𝑚.𝑊𝑊𝐷𝐷𝑊𝑊1.𝐴𝐴𝑆𝑆𝑆𝑆_𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑_𝜃𝜃𝑚𝑚.𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆0(𝑖𝑖,𝜃𝜃𝑚𝑚) , 1 ≤ 𝑖𝑖 ≤ 30 EQ. 11 

𝑆𝑆𝑖𝑖,𝐷𝐷𝐷𝐷_𝜃𝜃𝑚𝑚 = 𝑊𝑊𝐴𝐴𝑅𝑅𝜃𝜃𝑚𝑚.𝛼𝛼𝑚𝑚.𝑊𝑊𝐷𝐷𝑊𝑊1.𝐴𝐴𝑜𝑜_𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑_𝜃𝜃𝑚𝑚.𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆0(𝑖𝑖,𝜃𝜃𝑚𝑚) , 1 ≤ 𝑖𝑖 ≤ 30 EQ. 12 

The amount of water that reaches component 𝑆𝑆𝑖𝑖 at the wind angle of 𝜃𝜃𝑚𝑚 from 

surface runoff and direct impinging through wall openings is displayed by 𝑆𝑆𝑖𝑖,𝑆𝑆𝑆𝑆_𝜃𝜃𝑚𝑚 and 

𝑆𝑆𝑖𝑖,𝐷𝐷𝐷𝐷_𝜃𝜃𝑚𝑚, respectively. Since the above equations have been developed for the room 

components, the value of 𝑖𝑖 can change from 1 to 30 (1 to 24 for partitions and 25 to 30 

for flooring components).  In the above equations  𝐴𝐴𝑆𝑆𝑆𝑆_𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑_𝜃𝜃𝑚𝑚  and  𝐴𝐴𝑜𝑜_𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑_𝜃𝜃𝑚𝑚 that 

represent the exposed area of wall defects to surface runoff and direct impinging, 

respectively, replaced 𝐴𝐴𝑆𝑆𝑆𝑆_𝑏𝑏_𝜃𝜃𝑛𝑛 and 𝐴𝐴𝑜𝑜_𝑑𝑑_𝜃𝜃𝑚𝑚 in EQ. 7 and EQ. 8, because for the room 

components, only the water that comes from the wall openings is of interest. As discussed 

previously, 𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆0 is the WPM obtained for the DS0 model.  

Also, EQ. 9 and EQ. 10 can be modified to EQ. 13 and EQ. 14, respectively, to 

calculate the amount of water that reaches each interior room component after the 

occurrence of Vmax. 

𝑆𝑆𝑖𝑖,𝑆𝑆𝑆𝑆_𝜃𝜃𝑛𝑛 = 𝑆𝑆𝑊𝑊𝑆𝑆𝜃𝜃𝑛𝑛.𝛽𝛽𝑛𝑛.𝑊𝑊𝐷𝐷𝑊𝑊2.𝐴𝐴𝑆𝑆𝑆𝑆_𝑏𝑏𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑_𝜃𝜃𝑛𝑛.𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆(𝑖𝑖,𝜃𝜃𝑛𝑛) , 1 ≤ 𝑖𝑖 ≤ 30 EQ. 13 

𝑆𝑆𝑖𝑖,𝐷𝐷𝐷𝐷_𝜃𝜃𝑛𝑛 = 𝑊𝑊𝐴𝐴𝑅𝑅𝜃𝜃𝑛𝑛.𝛽𝛽𝑛𝑛.𝑊𝑊𝐷𝐷𝑊𝑊2.𝐴𝐴𝑜𝑜_𝑏𝑏𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑_𝜃𝜃𝑛𝑛.𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆(𝑖𝑖,𝜃𝜃𝑛𝑛) , 1 ≤ 𝑖𝑖 ≤ 30 EQ. 14 

𝑆𝑆𝑖𝑖,𝑆𝑆𝑆𝑆_𝜃𝜃𝑛𝑛 and 𝑆𝑆𝑖𝑖,𝐷𝐷𝐷𝐷_𝜃𝜃𝑛𝑛 represent the amount of water that reaches room component 

𝑆𝑆𝑖𝑖 at the wind angle of 𝜃𝜃𝑛𝑛 from surface runoff and direct impinging, respectively. The 

index 𝑖𝑖 can change in the range of 1 to 30 for the room components. In these equations, 

 𝐴𝐴𝑆𝑆𝑆𝑆_𝑏𝑏𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑_𝜃𝜃𝑚𝑚  and  𝐴𝐴𝑜𝑜_𝑏𝑏𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑_𝜃𝜃𝑚𝑚 represent the exposed area of wall breaches to surface 
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runoff and direct impinging, respectively, and substitute 𝐴𝐴𝑆𝑆𝑆𝑆_𝑏𝑏_𝜃𝜃𝑛𝑛 and 𝐴𝐴𝑜𝑜_𝑑𝑑_𝜃𝜃𝑚𝑚 in EQ. 9 

and EQ. 10. This substitution was done since only the water that comes from the wall 

openings is of interest for the room compartments. 𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆 is the WPM after the 

occurrence of Vmax, which can be obtained from the procedure of Figure 42.  

Similarly, the amount of water that reaches the ceiling components, including C1 

to C6, can be calculated by multiplying the pertinent cell of the WPM matrix for the 

desired ceiling component (row) and wind direction (column) to the amount of water that 

enters through the roof openings. Using the same approach for the ceiling components, 

equations EQ. 15 and EQ. 16 were developed for the distribution of the intruded water 

through surface runoff and direct impinging before the occurrence of Vmax. 

𝑆𝑆𝑖𝑖,𝑆𝑆𝑆𝑆_𝜃𝜃𝑚𝑚 = 𝑆𝑆𝑊𝑊𝑆𝑆𝜃𝜃𝑚𝑚.𝛼𝛼𝑚𝑚.𝑊𝑊𝐷𝐷𝑊𝑊1.𝐴𝐴𝑆𝑆𝑆𝑆_𝑑𝑑𝑆𝑆𝑜𝑜𝑜𝑜𝑓𝑓_𝜃𝜃𝑚𝑚.𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆0(𝑖𝑖,𝜃𝜃𝑚𝑚), 31 ≤ 𝑖𝑖 ≤ 36 EQ. 15 

𝑆𝑆𝑖𝑖,𝐷𝐷𝐷𝐷_𝜃𝜃𝑚𝑚 = 𝑊𝑊𝐴𝐴𝑅𝑅𝜃𝜃𝑚𝑚.𝛼𝛼𝑚𝑚.𝑊𝑊𝐷𝐷𝑊𝑊1.𝐴𝐴𝑜𝑜_𝑑𝑑𝑆𝑆𝑜𝑜𝑜𝑜𝑓𝑓_𝜃𝜃𝑚𝑚.𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆0(𝑖𝑖,𝜃𝜃𝑚𝑚), 31 ≤ 𝑖𝑖 ≤ 36 EQ. 16 

In these equations, 𝑆𝑆𝑖𝑖,𝑆𝑆𝑆𝑆_𝜃𝜃𝑚𝑚 and 𝑆𝑆𝑖𝑖,𝐷𝐷𝐷𝐷_𝜃𝜃𝑚𝑚 are the shares of ceiling component 𝑆𝑆𝑖𝑖 

from surface runoff and direct impinging, respectively. The index 𝑖𝑖 is changing from 31 

to 36 to represent the ceiling components. Since only the water intrusion through the roof 

opening can affect these components, the roof defects area exposed to surface runoff 

(𝐴𝐴𝑆𝑆𝑆𝑆_𝑑𝑑𝑆𝑆𝑜𝑜𝑜𝑜𝑓𝑓_𝜃𝜃𝑚𝑚) and direct impinging (𝐴𝐴𝑜𝑜_𝑑𝑑𝑆𝑆𝑜𝑜𝑜𝑜𝑓𝑓_𝜃𝜃𝑚𝑚) were used in equations EQ. 15 and 

EQ. 16, respectively. In the above equations, 𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆0 is the WPM before the 

occurrence of Vmax, which was obtained from the large-scale experimental tests of the 

building model at DS0.   

Similarly, EQ. 17 and EQ. 18 were developed for the water distribution among 

the ceiling components after Vmax occurs.  
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𝑆𝑆𝑖𝑖,𝑆𝑆𝑆𝑆_𝜃𝜃𝑛𝑛 = 𝑆𝑆𝑊𝑊𝑆𝑆𝜃𝜃𝑛𝑛.𝛽𝛽𝑛𝑛.𝑊𝑊𝐷𝐷𝑊𝑊2.𝐴𝐴𝑆𝑆𝑆𝑆_𝑏𝑏𝑆𝑆𝑜𝑜𝑜𝑜𝑓𝑓_𝜃𝜃𝑛𝑛.𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆(𝑖𝑖,𝜃𝜃𝑛𝑛) , 31 ≤ 𝑖𝑖 ≤ 36 EQ. 17 

𝑆𝑆𝑖𝑖,𝐷𝐷𝐷𝐷_𝜃𝜃𝑛𝑛 = 𝑊𝑊𝐴𝐴𝑅𝑅𝜃𝜃𝑛𝑛.𝛽𝛽𝑛𝑛.𝑊𝑊𝐷𝐷𝑊𝑊2.𝐴𝐴𝑜𝑜_𝑏𝑏𝑆𝑆𝑜𝑜𝑜𝑜𝑓𝑓_𝜃𝜃𝑛𝑛.𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆(𝑖𝑖,𝜃𝜃𝑛𝑛) , 31 ≤ 𝑖𝑖 ≤ 36 EQ. 18 

In these equations, 𝑆𝑆𝑖𝑖,𝑆𝑆𝑆𝑆_𝜃𝜃𝑛𝑛 and 𝑆𝑆𝑖𝑖,𝐷𝐷𝐷𝐷_𝜃𝜃𝑛𝑛 are the shares of ceiling component 𝑆𝑆𝑖𝑖 

from surface runoff and direct impinging, when 𝑖𝑖 is in the rage of 31 to 36. Also, 

𝐴𝐴𝑆𝑆𝑆𝑆_𝑏𝑏𝑆𝑆𝑜𝑜𝑜𝑜𝑓𝑓_𝜃𝜃𝑛𝑛 and 𝐴𝐴𝑜𝑜_𝑏𝑏𝑆𝑆𝑜𝑜𝑜𝑜𝑓𝑓_𝜃𝜃𝑛𝑛 represent the exposed area of roof breaches to surface 

runoff and direct impinging, respectively. 𝑊𝑊𝑊𝑊𝑊𝑊_𝐷𝐷𝑆𝑆 is the WPM after the occurrence of 

Vmax, obtained from the procedure of Figure 42. 

Finally, equations EQ. 15 to EQ. 18 can be directly implemented in the FPHLM 

program for the calculation of water distribution among the interior components.  

To summarize, the water propagation matrices were developed, and modifications 

were proposed to the FPHLM program to use the experimental results. These 

modifications allow the FPHLM to calculate the percentage of water that reaches each 

group of interior components (e.g. flooring, the partition, and ceiling). Using this 

information, the program can calculate the sustained physical damage based on the 

volume of water that reaches each group of interior components.  
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CHAPTER 4 

FULL-SCALE EXPERIMENTS ON MOISTURE-INDUCED DAMAGES 
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CHAPTER 4.  INVESTIGATION OF MOISTURE-INDUCED DAMAGES 

 Introduction 

The second phase of the experimental study focused on the evaluation of the 

interior damage caused by water intrusion into the building. The results of these 

experimental tests provided a means to understand the damage of interior components 

when subjected to a progressive volume of water intrusion.  

 Test setup 

The tests were performed at the WOW EF. Figure 43 shows the wind speed 

profile at the center of the test section. The rain rate at the mean roof height of the full-

scale building is presented in Figure 44. 

 

Figure 43. Wind speed profile 
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Figure 44. Vertical Rain Rate (RRv) at mean roof height 

 Model Preparation 

Since the sustained damage by the interior components is directly affected by the 

material properties of the components, it was decided to use the same materials as 

commonly used in residential building construction. On the other hand, since the scaling 

effects on the material properties can bias the damage estimation in scaled-down models, 

it was decided to test a full-scale model. Figure 45 shows the full-scale gable roof 

building model used for the experimental tests. The wood-frame building model allowed 

for the installation of drywalls directly on the studs (Figure 46).  
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Figure 45. Full-scale model 

 

 
Figure 46. Wall with wood studs 

The building interior was prepared by installing 1/2” drywall and applying one 

layer of primer and paint on the surface (Figure 47). The ceiling was covered with 

horizontally installed plywood to resemble the internal volume of typical residential 

buildings.  
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Figure 47. Interior of the building model 

The sustained damage by the interior side of the walls depends on the increase in 

moisture content of the drywall, so the experimental tests were designed to measure the 

increase in moisture content of the drywall due to consecutive water intrusion tests. 

Several locations on each of the interior wall surfaces were marked for moisture 

measurement, as displayed in Figure 48. At the end of each test, the Delmhorst DB-2100 

moisture meter was used to measure the moisture content of the drywall at the marked 

locations.  
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East Wall West wall 

North Wall 
 

South Wall 

Figure 48. Marked locations for moisture measurements  

To obtain the volume of water reaching the interior side of the walls and leading 

to moisture increase in the drywall, the sloped gutters were installed below the drywall. 

Each gutter was connected to a bucket and conveyed the runoff water from the wall 

where it was installed to that bucket. At the end of each test, the buckets were weighed to 

obtain the amount of water reaching each wall and resulting from the moisture increase in 

the drywall. The results of these tests indicated a relationship between the volume of 

water reaching the interior wall surface and moisture increase on the drywall installed in 

the wall.  
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 Test plan 

The tests were designed to evaluate the extent of damage at interior sides of the 

wall due to water intrusion through the window opening. The model was prepared to be 

tested at the minor damage state (i.e. DS1 corresponds to only one open window at the 

east wall) and the moderate damage state (i.e. DS2 corresponds to two open windows, 

one at the east wall and another at the south wall). The DS1 case was tested at two wind 

angles of 0º and 45º, while DS2 was tested only at the 0º wind direction (Figure 49).  

 
Figure 49. Wind direction notation 

 Test results and discussion 

This section presents the results of moisture measurement at the full-scale 

experimental model. During the tests, the model was subjected to consecutive periods of 

water intrusion. After each period of water exposure, the moisture content at the drywall 

was measured using a handheld moisture meter, and the results were recorded. 

Additionally, the runoff water on the surface of each interior wall during the period of 
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water exposure was conveyed and accumulated in a separate bucket. The total volume of 

water that reaches a wall could be calculated by adding the volume of water that runs off 

its surface and the volume of water that is absorbed by its drywall. Finally, at the end of 

each run of the tests, the moisture measurement at each wall could be related to the 

volume of water reaching the surface of that wall.   

4.5.1. Moisture content of the drywall for DS1 model at 0˚ wind direction 

For the DS1 model, at the 0˚ wind direction, the tests were performed during two 

consecutive days. During the first day, the tests were performed at four time intervals, 

including two consecutive 5-minute tests followed by two consecutive 10-minute 

exposures to rain. Among these seven test periods, only the first set of tests started with 

the dry interior condition. For the rest of the tests, there was not enough time to allow the 

building interior to dry. At the end of each duration of water exposure, the total volume 

of water reaching the interior wall surface was calculated as the sum of the accumulated 

water on the bucket since the start of the first set of the tests and the volume of water that 

was absorbed by the drywall at the end of that exposure period. To calculate the amount 

of absorbed water by the drywall, the difference between the moisture content after the 

test and the moisture content before the start of the first set of tests (dry condition) was 

calculated at different measurement locations and multiplied by the tributary weight 

associated with any location. Then, the total absorbed water was calculated as the sum of 

the absorbed water at all the measurement locations.  

The second-day tests were performed for three consecutive time intervals, 

including 10-min, 15-min, and 30-min of rain exposure. Unlike the first-day tests, the, 
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second-day tests started with the wet drywall condition, since there was not enough time 

to allow for complete drying of the building interior. On the other hand, the moisture 

content of the drywall at the beginning of the second day was less than the moisture 

content at the end of the first day, meaning that some of the absorbed water since the last 

test of the first day had left the drywall. Therefore, modifications were applied to 

calculate the required amount of water resulting in the moisture content at the beginning 

of the second day.   

In order to calculate the total volume of water that has reached each interior wall 

surface before the start of the second-day tests, a linear relation was developed between 

the volume of water reaching the wall surface and the amount of absorbed water by the 

drywall. Using this relation, the volume of water that has reached the wall surface at the 

beginning of the second day could be calculated given the amount of absorbed water just 

before the second-day testing occurred.  

Figure 50 shows the experimental results for the different interior walls obtained 

from the first day of testing on the DS0 model subjected to the 0˚ wind direction, along 

with the obtained linear relations between the volume of water reaching the wall surface 

and the absorbed water by the drywall. Using these relations, the volume of water at the 

beginning of the second day was calculated based on the volume of the absorbed water at 

the start of the second day.  
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Figure 50. The experimental relation between the volume of water reaching the 
wall and absorbed water by the drywall for the first day of testing DS0 at the 0° wind 

direction    

 

For the tests performed on the second day, the total volume of water reaching the 

wall surface was calculated as the sum of the accumulated water on the bucket since the 

start of the second day, and the amount of absorbed water by the drywall at the end of the 

test plus the volume of water calculated at the beginning of the second day obtained from 

the linear regression. Figure 51 shows the final results of all test durations performed on 

the DS0 model at the 0˚ wind angle.  
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Figure 51. The experimental relation between the volume of water reaching the 
wall and absorbed water by the drywall for DS0 at the 0° wind direction 
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Figure 52 shows the moisture content of the East Wall affected by different 

volumes of water reaching its surface. As shown in Figure 49, the East Wall is the wall 

with the windward open window. It can be observed that the moisture content of the 

drywall increases by increasing the volume of water reaching the wall. Figure 52-a shows 

the dry condition before the start of the tests. It can be noted that the moisture at the 
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(Figure 52-b). Thus, it can be claimed that even a relatively small (i.e. 0.75 liters) amount 

of water would be enough to damage this area. Then, continuing the tests results in the 

expansion of the wet area below the window toward the bottom of the wall (Figure 52-c). 

After that, the moisture trace moves from the center toward the sides of the wall (Figure 

52-d, e and f). Another notable observation is that once the volume of water reaches a 

certain value (in this case 2.38 liters), the moisture content of the top portion of the wall 

begins to increase. This increase of moisture results from the increase in relative humidity 

of the indoor environment and not because of direct absorption of the rain by the drywall.  
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(a) volume of water = 0.00 liter (d) volume of water = 2.38 liter 

  

(b) volume of water = 0.75 liter (e) volume of water = 3.43 liter 

  

(c) volume of water = 1.36 liter (f) volume of water = 7.09 liter 

Figure 52. Volume of water reaching the wall surface and the moisture content (%) of 
drywall 
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4.5.1.2 West wall DS1 at the 0˚ wind direction 

Figure 53 shows the moisture content of the West Wall affected by different 

volumes of water reaching its surface. Figure 53-a shows the moisture content of the 

drywall before the start of the tests and represents the dry condition, and Figure 53-f 

shows the moisture level at the end of the tests. As can be observed from these figures, 

the moisture content of the drywall increases by increasing the volume of water reaching 

the wall surface. The West Wall (as was shown in Figure 49) is directly opposite of the 

open window at the 0˚ wind direction. Therefore, the moisture content is symmetrically 

increasing on each side of this wall. It is noteworthy that moisture increase starts at the 

bottom of the wall then progresses upward toward the top. Also, it can be noted that even 

after the end of the test, the amount of water that has reached the wall is relatively low 

(i.e. less than 1 liter). This observation can be justified by the fact that in the case of DS1, 

there is only one opening on the building envelope (windward open window), and once 

the internal pressure reaches its maximum value, there is minimum air flow exchange 

between the exterior and interior building volume. This results in a weaker internal wind 

flow for DS1 compared to DS2 at the same wind direction of 0˚.  
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(a) volume of water = 0.00 liter (d) volume of water = 0.24 liter 

  

(b) volume of water = 0.04 liter (e) volume of water = 0.42 liter 

  

(c) volume of water = 0.08 liter (f) volume of water = 0.84 liter 

Figure 53. Volume of water reaching the wall surface and the moisture content (%) of 
drywall 

 
 

0.5 0.5

0.5 0.5

0.5 0.5

0.5

0.5

0.5

0.5

0.50.5

0.5

0.5

0.5

0.5

0.6 0.6

0.6 0.6

0.7 0.7

0.6 0.6

0.6 0.6

0.7 0.7

0.7 0.6

0.9 0.9

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.7 0.7

0.6 0.6

0.6 0.6

0.8 0.7

0.6

0.6 0.6

0.7 0.7

0.7 0.7

1.7 1.6

0.6

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.7 0.7

0.7 0.7

0.8 0.8

0.9 0.9

0.7 0.7

0.7 0.7

0.8 0.8

0.9 0.9

3.0 2.7



99 
 

4.5.1.3 North wall DS1 at the 0˚ wind direction  

Figure 54 presents the moisture content of the North Wall at different levels of 

water exposures. Generally, it can be observed that this wall is minimally affected by the 

water intrusion. Even at the end of the tests, only 0.53 liters of water has reached the wall 

surface, and the highest moisture content is less than 1%. During the first three periods of 

water exposure (Figure 54-a, b, and c) there is not any notable increase in the moisture 

content. As soon as the volume of water reaches the 0.12-liter value, the moisture 

increase is initiated (Figure 54-d, e and f). After that point, although the whole surface is 

experiencing a moisture increase, only the lower half of the wall is affected by the direct 

impinging rain droplets, and the moisture increase on the upper half of the wall is caused 

by the high relative humidity inside the building.  
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(a) volume of water = 0.00 liter (d) volume of water = 0.12 liter 

  

(b) volume of water = 0.01 liter (e) volume of water = 0.18 liter 

  

(c) volume of water = 0.03 liter (f) volume of water = 0.53 liter 

Figure 54. Volume of water reaching the wall surface and the moisture content (%) of 
drywall  
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4.5.1.4 South wall DS1 at 0˚ wind direction 

The moisture content of the South Wall is presented in Figure 55. The general 

trend of moisture increase in this wall is very similar to the North Wall, which is 

expected based on the symmetric exposure condition of these two walls. This wall also 

experiences very limited exposure to the rain, even at the end of the tests (Figure 55-f), 

with only 0.53 liters of water reaching the wall surface, and the highest recorded moisture 

content at 1.4%. Similarly, no moisture increase is observed for the first three exposure 

periods (Figure 55-a, b, and c), and the moisture increase due to direct impinging occurs 

only at the lower part of the wall. The rest of the wall experiences moisture increase due 

to the increased level of the interior air humidity.  
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(a) volume of water = 0.00 liter (d) volume of water = 0.12 liter 

  

(b) volume of water = 0.01 liter (e) volume of water = 0.18 liter 

  

(c) volume of water = 0.03 liter (f) volume of water = 0.53 liter 

Figure 55. Volume of water reaching the wall surface and the moisture content (%) of 
drywall 
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4.5.2. Moisture content of the drywall for the DS1 model at the 45˚ wind direction 

This section presents the results of full-scale experimental tests performed on the 

model with one open window at the East Wall and subjected to the 45˚ wind direction. In 

this case, the model was tested for two consecutive days. The first day tests started with 

the dry model. During the first day of tests, the model was subjected to rain exposure for 

three successive periods, including two 5-minute tests, followed by a 10-minute test. At 

the end of each test, the volume of runoff water on each wall surface was obtained from 

the accumulated water in the measuring bucket. Also, the amount of water that was 

absorbed by the drywall was calculated by multiplying the difference in moisture content 

after the test and dry condition to the tributary weight of drywall associated with the 

moisture measurement location on the wall. Summing up the values for all locations 

resulted in the amount of absorbed water by the wall. Finally, for each set of tests, the 

total amount of water reaching the wall and resulting in moisture increase at the end of 

that test was calculated as the summation of the accumulated water on the bucket since 

the start of the first set of tests plus the amount of absorbed water by the drywall at the 

end of the test.  

The second-day tests started with the wet interior, with drywall holding some of 

the moisture load from the previous day. During the second day, the model was subjected 

to three periods of rain exposure, including 10-minute, 20-minute and 30-minute 

runtimes. Since it was required to calculate the amount of water reaching the interior 

walls at the start of the second-day tests based on the moisture level of the walls at the 

beginning of the second day, linear regression was applied to the data obtained from the 
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first-day tests. This resulted in a linear relationship between the volume of water reaching 

a wall surface and the amount of water absorbed by the wall (Figure 56). Then, the 

amount of water that reached the surface of a wall at the beginning of the second-day test 

was estimated using this relation and given the volume of absorbed water by the wall just 

before the start of the second-day tests.  

  

  

Figure 56. The experimental relation between the volume of water reaching the 
wall and absorbed water by the drywall for the first day of testing DS0 at the 45° wind 

direction    
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could be calculated by adding that initial value to the accumulative amount of water on 

the bucket since the start of second day plus the absorbed water by the drywall at the end 

of that test. The results for all the tests performed on the DS1 model subjected to the 45° 

wind angle are shown in Figure 57.  

  

 
 

Figure 57. The experimental relation between the volume of water reaching the 
wall and absorbed water by the drywall for DS0 at the 45° wind direction 

4.5.2.1 East wall DS1 at the 45˚ wind direction 
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the dry condition of the wall before starting the tests. This wall is the one with the open 

windward window. At the 45°, wind direction, the wind blows at an inclined angle 

through this window. Immediately after the start of the first test, the humidity of the 

indoor environment increases and, as a result, there is a minor increase (from 0.5% to 

0.6%) in the moisture content all across the wall surface (Figure 58-b). It can be observed 

that the bottom left corner of the window is the first location where a notable moisture 

increase is recorded, and this this can be justified by the oblique wind angle of attack 

(Figure 58-c). Also, as the tests continued (Figure 58-d, e and f), the left side of the wall 

experienced a relatively higher amount of moisture compared to the right side, which can 

be justified from the oblique angle of the wind toward the left side of the window. In fact, 

the right side of the window is not really affected by the rain droplets, because of the 

oblique angle of the wind, and it can be claimed that the increased moisture content 

(0.7%) at the right side is caused by the humid indoor environment.   
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(a) volume of water = 0.00 liter (d) volume of water = 0.38 liter 

  

(b) volume of water = 0.08 liter (e) volume of water = 1.07 liter 

  

(c) volume of water = 0.23 liter (f) volume of water = 1.57 liter 

Figure 58. Volume of water reaching the wall surface and the moisture content (%) of 
drywall 
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4.5.2.2 West Wall DS1 at the 45˚ wind direction 

Figure 59 shows the moisture content of the West Wall subjected to different 

volumes of water reaching its surface. This is the wall directly opposite of the open 

window. The tests start with the dry condition and with the moisture content of 0.5% 

across the whole wall surface (Figure 59-a).  It can be noted that the moisture increase 

starts at the right half of the wall (Figure 59-b). All along the experiment, the right half of 

the wall keeps absorbing more moisture compared to the left half, and the bottom right 

corner of the wall tends to be the most affected part (Figure 59-c, d, e, and f). In fact, the 

left side of the door is barely affected by the rain droplets, and the moisture increase that 

it experiences is only because of the increase in the indoor humidity. This observation 

can be justified by the oblique angle of internal wind at the 45° wind direction. Unlike the 

0° wind direction, at 45° wind angle, the internal wind flow is directed toward the North 

Wall rather than directly aiming at the West Wall and, as a result, only the right side of 

the West Wall (the side close to the North Wall) gets direct impinging rain on its surface.  
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(a) volume of water = 0.00 liter (d) volume of water = 0.16 liter 

  

(b) volume of water = 0.04 liter (e) volume of water = 0.46 liter 

  

(c) volume of water = 0.08 liter (f) volume of water = 0.73 liter 

Figure 59. Volume of water reaching the wall surface and the moisture content (%) of 
drywall  
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4.5.2.3 North Wall DS1 at the 45˚ wind direction  

The moisture content measurement of the North Wall and the corresponding 

volume of water reaching its surface are presented in Figure 60. The tests started with the 

dry condition and with the moisture content of 0.5% at the drywall (Figure 60-a). 

Immediately after the start of the first test, the moisture content at the drywalls 

experiences a considerable increase (Figure 60-b). This wall is the direct target of the 

wind flow at the 45° wind direction, so this notable increase after the first period of water 

exposure was expected. The rapid increase in the moisture continues toward the end of 

the tests (Figure 60-c, d, e, and f). All along the tests, the bottom portion of the wall, 

which is exposed to both direct impinging and the runoff water from above, absorbs the 

highest amount of moisture, while the top of the wall, which is barely subjected to rain 

impinging on its surface, absorbs the least amount of moisture.   
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(a) volume of water = 0.00 liter (d) volume of water = 2.89 liter 

  

(b) volume of water = 0.73 liter (e) volume of water = 4.13 liter 

  

(c) volume of water = 1.42 liter (f) volume of water = 6.39 liter 

Figure 60. Volume of water reaching the wall surface and the moisture content (%) of 
drywall  
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4.5.2.4 South wall DS1 at the 45˚ wind direction 

Figure 61 shows the moisture content of the South Wall affected by different 

volumes of water reaching its surface. The dry condition of the wall before the start of the 

tests is presented in Figure 61-a. For the DS1 model subjected to the 45˚ wind direction, 

this wall is hardly exposed to the raindrops carried by the internal wind flow. As can be 

observed, the notable moisture increase starts below and close to the bottom corners of 

the window (Figure 61-e) once 0.25 liters of water reaches the wall. Based on these 

observations, it can be safely assumed that the moisture increase of the wall is caused by 

the water penetration through the defects of the closed window. The closed window on 

the South Wall is directly subjected to the 45˚ wind flow and, as a result, the water can 

intrude through the existing defects and cracks in the window seal and make the drywall 

wet as it moves toward the bottom of the wall.   
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(a) volume of water = 0.00 liter (d) volume of water = 0.08 liter 

  

(b) volume of water = 0.03 liter (e) volume of water = 0.25 liter 

  

(c) volume of water = 0.06 liter (f) volume of water = 0.29 liter 

Figure 61. Volume of water reaching the wall surface and the moisture content (%) of 
drywall  
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4.5.3. Moisture content of the drywall for the DS2 model at the 0˚ wind direction  

The results of full-scale experimental tests performed on the model with two open 

windows and at the 0˚ wind direction are presented in this section. For this case, the 

experimental tests were performed on two successive days. On the first day, the 

experiment included two 5-minute rain exposures followed by a 10-minute test. During 

the second day, the model was subjected to consecutive 10-minute, 15-minute and 30-

minute rain intrusion tests. Only the first test period started with a dry model condition. 

As explained in the previous sections, before the start of the second day of testing, the 

model had partially lost the moisture absorbed during the previous day. Thus, it was 

required to estimate the expected amount of water that could result in the remaining 

moisture on the walls at the beginning of the second day of testing. Linear regression was 

applied to the data obtained from the consecutive tests performed during the first day of 

testing. Figure 62 shows the obtained relation between the volume of water reaching each 

interior wall surface and the amount of absorbed water by that wall for the tests 

performed during the first day of the experiment. The amount of expected water reaching 

the wall before the start of the second day was estimated using these relations and given 

the amount of residual absorbed water on the wall. Figure 63 shows the results of all 

tests, and the relation between the amount of water reaching different interior walls and 

the amount of water absorbed by the walls. 



115 
 

  

  

Figure 62. The experimental relation between the volume of water reaching the 
wall and absorbed water by the drywall for the first day of testing DS2 at the 0° wind 

direction    
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Figure 63. The experimental relation between the volume of water reaching the 
wall and absorbed water by the drywall for DS2 at the 0° wind direction 
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DS1 and DS2 models at the 0˚ wind direction. At this wind angle, the water can intrude 

only through the windward window, which is identical between these models. The only 

difference is the second open window at the South Wall of the DS2 model. While for the 

DS1 model at the 0˚ wind angle, at the end of the experiment, minimal moisture increase 

was observed at the top portion of the wall (Figure 52-f); at the end of DS2 model tests, a 

notable moisture increase could be observed all across the wall (Figure 64-f). This 

observation can be caused by the open window at the South Wall that works like an outlet 

for the internal wind flow and facilitates the entrance of wind flow through the windward 

open window on the East Wall. This results in a more powerful internal wind flow in the 

DS2 model compared to the DS1 model and, as a result, the rain droplets can better 

spread in the building interior and affect the whole interior wall surfaces.  
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(a) volume of water = 0.00 liter (d) volume of water = 0.44 liter 

  

(b) volume of water = 0.08 liter (e) volume of water = 1.03 liter 

  

(c) volume of water = 0.15 liter (f) volume of water = 1.91 liter 

Figure 64. Volume of water reaching the wall surface and the moisture content (%) of 
drywall 
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4.5.3.2 West Wall DS2 at the 0˚ wind direction 

Figure 65 shows the moisture content of the West Wall affected by different 

volumes of water reaching its surface. The initial dry condition is displayed in Figure 65-

a. It can be observed that a considerable amount of water (2.2 liters) reaches this wall 

immediately after the first run of the tests and results in a notable increase of moisture 

content at the bottom of the wall (Figure 65-b). This wall is directly opposite the open 

window at the 0˚ wind angle of attack similar to the case of DS1 at the 0 ˚ wind direction. 

However, the amount of water that reaches this wall is considerably higher compared to 

the DS1 model. At the end of the DS2 experiment (Figure 65-f), 30.18 liters of water 

reach this wall, while at the end of DS1 experiment, the wall gets only 0.84 liters of water 

(Figure 52-f). This considerable difference is caused by the internal wind flow generated 

by the open window on the South Wall of the DS2 model. This powerful internal wind 

flow spreads the rain droplets all across the surface of the wall, so unlike the DS1 model, 

where only the bottom of the wall is affected, the whole surface of the wall becomes wet 

at the end of the DS2 model test.  
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(a) volume of water = 0.00 liter (d) volume of water = 9.41 liter 

  

(b) volume of water = 2.20 liter (e) volume of water = 16.35 liter 

  

(c) volume of water = 4.57 liter (f) volume of water = 30.18 liter 

Figure 65. Volume of water reaching the wall surface and the moisture content (%) of 
drywall 
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4.5.3.3 North Wall DS2 at the 0˚ wind direction 

The trend of increase in moisture content by increasing the volume of water is 

displayed in Figure 66 for the North Wall.  At the start of the tests, the drywall is dry and 

the moisture content is equal to 0.4% across the wall (Figure 66-a). The bottom left 

corner of the wall is the first location where the moisture content begins to increase as the 

volume of water that reaches the wall increases (Figure 66-b). This corner is adjacent to 

the West Wall (the wall opposite the open windward window). As the tests continue, the 

wetness expands from this location toward the diameter of the wall (Figure 66-c, d and 

e). At the end of the test, a total of 2.75 liters of water reach the wall and only the left 

edge of the wall remains unaffected (Figure 66-f). Compared to the case of DS1 at the 0˚ 

wind direction (Figure 60-f), the effect of moisture is considerably higher for the North 

Wall at DS2. In this case, also, the effect of the open window on the South Wall and the 

more powerful internal wind flow causes the better spread of the raindrops on the North 

wall and results in the higher moisture absorption at DS2 compared to DS1.  
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(a) volume of water = 0.00 liter (d) volume of water = 1.01 liter 

  

(b) volume of water = 0.12 liter (e) volume of water = 1.65 liter 

  

(c) volume of water = 0.35 liter (f) volume of water = 2.75 liter 

Figure 66. Volume of water reaching the wall surface and the moisture content (%) of 
drywall 
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4.5.3.4 South Wall DS2 at the 0˚ wind direction 

Figure 67 shows the moisture content of the South Wall affected by different 

volumes of water reaching its surface. As can be observed, this wall has a very similar 

wetness pattern to the North Wall (Figure 52). In this case, the bottom right corner of the 

wall is the first location where the moisture increase is obvious. This corner is on the side 

adjacent to the West Wall (the wall opposite the open windward window). By increasing 

the volume of water, the moisture expands toward the diameter of the wall. At the end of 

the test, a total of 2.32 liters of water reach this wall, which is relatively higher compared 

to the case where the model was subjected to the 0˚ wind angle. In that case, there was 

only one open window on the East Wall (DS1 tests at the 0˚ wind direction, in Figure 55). 

As previously explained, the second window on South Wall takes out the wind coming 

through the windward window on East Wall, and results in a more powerful internal wind 

flow. As a result, the impact of moisture propagation becomes more extended in the 

model with two open windows (the DS2 model) subjected to the same wind direction of 

0˚.  
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(a) volume of water = 0.00 liter (d) volume of water = 0.71 liter 

  

(b) volume of water = 0.13 liter (e) volume of water = 1.54 liter 

  

(c) volume of water = 0.26 liter (f) volume of water = 2.32 liter 

Figure 67. Volume of water reaching the wall surface and the moisture content (%) of 
drywall 
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 Water Volume-Damage Relations  

In this section, an effort to evaluate the sustained damage by the internal walls 

based on the absorbed moisture content by the gypsum board covering the wall surface is 

taken.  Although there are several standard procedures for evaluating the physical and 

mechanical properties of gypsum boards (ASTM C472, 2012 and ASTM C1396, 2014), 

there is very little information in the literature regarding the moisture content threshold of 

Gypsum Wallboard that results in its failure. According to the technical document by 

Gypsum Association, 2010, the gypsum sheathing board has a maximum water 

absorption of 10%, while the water-resistant gypsum board has the maximum water 

absorption capacity of 5%. However, neither of these two types is used for the interior 

drywall. Gypsum sheathing board is mainly used for the building exterior, and water-

resistant gypsum board is typically used in the bathrooms, where there is a high potential 

for moisture exposure and the fungal growth. According to an article by Harriman, 2006, 

for most of the gypsum boards, 2% of the weight is the highest moisture content that they 

can hold before crumbling apart. The lack of information on the moisture failure of 

gypsum wallboard is mainly because of the fact that this product is not supposed to be 

exposed to water and gotten wet in the first place.  

On the other hand, the functionality of drywall is not only restricted by its 

physical properties. Gypsum is a permeable material highly prone to fungal growth 

(Nielsen, Holm, P., & Nielsen, 2004, Pasanen, Juutinen, Jantunen, & Kalliokoski, 1992 

and Johansson, Ekstrand-Tobin, Svensson, & Bok, 2012). Based on the technical report 

by the Gypsum Association, 2015, the mold growth can start in the gypsum board if it is 
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not completely dried in 24 to 48 hours. According to ANSI/IICRC S500, 2015 standard 

for water damage restoration, although the falling rainwater is defined as category 1 

water (“water that originates from a sanitary water source and does not pose substantial 

risk from dermal, ingestion or inhalation exposure”), but it can deteriorate to category 3 

water (“water that is grossly contaminated and can contain pathogenic, toxigenic or other 

harmful agents to humans”) once the microorganisms become wet, depending upon the 

length of time and temperature. The experience from the previous hurricanes has shown 

that in many cases the water damage restoration is not possible until weeks after the 

event. Therefore, it is not unrealistic to assume that the absorbed water by the drywall 

changes to category 3 water and the fungal growth occurs on any drywall that gets wet by 

intruded water during the hurricane.  

Based on ANSI/IICRC S500, 2015 standard, the drywalls affected by category 3 

water are “Unrestorable,” and should be removed and replaced. Based on the information 

obtained from the literature, it was decided that any drywall that gets wet by direct 

impinging of water on its surface during the experimental tests needs to be removed and 

replaced. Additionally, it was decided that the sustained damage by the interior wall will 

be presented as the percentage of the drywall that needs to be replaced.  

It was decided that drywall needs to be replaced at any location where the direct 

impinging water results in a moisture content of 0.7% or higher. However, as explained 

earlier in this chapter, the decision on whether the moisture increase is caused by the 

increased indoor humidity or direct impinging of rain on the surface requires engineering 

judgment. Therefore, for each of the interior walls (e.g. East, West, North and South 
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walls), at the end of each experimental water exposure period, the percentage of the 

drywall area that experienced a moisture content of 0.7% or higher due to impinging 

water on its surface was reported as the percentage of the damage sustained by that 

interior wall. Since the volume of water that reached the interior wall surface at the end 

of each water exposure period was also determined (as explained in section 4.5), it was 

possible to define a relationship between the percentage of sustained damage by the 

interior wall and the volume of water that reaches that wall surface. In this study, the 

percentage of damage was defined as the percentage of the wall area that needs to be 

removed and replaced to the total area of the wall. This criterion can be easily used in the 

loss estimation models to calculate the loss as the repair/replacement cost to the initial 

cost of the component.  

Table 15 to Table 18 present the relationship between the volume of water that 

reaches each of the interior walls and the sustained damage by the wall. It is noteworthy 

that a higher volume of water does not always lead to a higher percentage of the damage. 

This is caused by the different wetness patterns associated with different test 

configurations. For example, the 1.36 liters of water that reach the East Wall of the DS1 

model at the 0˚ wind direction (Figure 52-c) can only affect the drywall below the height 

of the window and result in 40% damage, while the 1.03 liters of water that reach the 

same wall of the DS2 model at the 0˚ wind direction (Figure 58-e) can lead to a more 

uniform wetness trace all across the wall, and result in 70% damage.   
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Table 15. Relation between the volume of water reaching the East Wall and the sustained 
damage  

Test Case Water Volume (liter) Percentage of damage 
DS1-0wind 0.00 0% 
DS2-0wind 0.08 0% 
DS1-45wind 0.08 10% 
DS2-0wind 0.15 15% 
DS1-45wind 0.23 25% 
DS1-45wind 0.38 50% 
DS2-0wind 0.44 50% 
DS1-0wind 0.75 40% 
DS2-0wind 1.03 70% 
DS1-45wind 1.07 70% 
DS1-0wind 1.36 40% 
DS1-45wind 1.57 100% 
DS2-0wind 1.94 100% 
DS1-0wind 2.38 80% 
DS1-0wind 3.43 80% 
DS1-0wind 7.09 100% 

 

Table 16. Relation between the volume of water reaching the West Wall and the sustained 
damage  

Test Case Water Volume (liter) Percentage of damage 
DS1-0wind 0.00 0% 
DS1-45wind 0.04 5% 
DS1-0wind 0.04 15% 
DS1-45wind 0.08 40% 
DS1-0wind 0.08 15% 
DS1-45wind 0.17 45% 
DS1-0wind 0.24 35% 
DS1-0wind 0.42 50% 
DS1-45wind 0.46 50% 
DS1-45wind 0.73 60% 
DS1-0wind 0.84 80% 
DS2-0wind 2.20 60% 
DS2-0wind 4.57 70% 
DS2-0wind 9.41 80% 
DS2-0wind 16.35 100% 
DS2-0wind 30.18 100% 
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Table 17. Relation between the volume of water reaching the North Wall and the 
sustained damage  

Test Case Water Volume (liter) Percentage of damage 
DS1-0wind 0.00 0% 
DS1-0wind 0.01 0% 
DS1-0wind 0.03 5% 
DS2-0wind 0.12 15% 
DS1-0wind 0.12 40% 
DS1-0wind 0.18 50% 
DS2-0wind 0.35 35% 
DS1-0wind 0.53 60% 
DS1-45wind 0.73 70% 
DS2-0wind 1.01 50% 
DS1-45wind 1.43 80% 
DS2-0wind 1.65 70% 
DS2-0wind 2.75 80% 
DS1-45wind 2.88 90% 
DS1-45wind 4.13 100% 
DS1-45wind 6.39 100% 

 

Table 18. Relation between the volume of water reaching the South Wall and the 
sustained damage  

Test Case Water Volume (liter) Percentage of damage 
DS1-0wind 0.00 0% 
DS1-0wind 0.01 0% 
DS1-45wind 0.03 5% 
DS1-0wind 0.03 0% 
DS1-45wind 0.06 10% 
DS1-45wind 0.08 15% 
DS1-0wind 0.12 15% 
DS2-0wind 0.13 20% 
DS1-0wind 0.18 20% 
DS1-45wind 0.25 30% 
DS2-0wind 0.26 40% 
DS1-45wind 0.29 45% 
DS1-0wind 0.61 50% 
DS2-0wind 0.71 50% 
DS2-0wind 1.54 60% 
DS2-0wind 2.33 70% 
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Finally, for each interior wall, the above results were grouped into discrete levels 

of water volume that can result in different ranges of physical damage, as displayed in 

Figure 68 to Figure 71. The horizontal axis of these graphs shows the volume of water, 

and the vertical axis shows the probable damage by the partition. For example, if the East 

Wall (Figure 68) is subjected to less than 0.5 liters of water during the hurricane-induced 

water intrusion, the median of the sustained damage by the wall would be 20%.   

 
Figure 68. Physical Damage-Volume of water relation for East Wall 

 

 
Figure 69. Physical Damage-Volume of water relation for the West Wall 
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Figure 70. Physical Damage-Volume of water relation for the North Wall 

 

 
Figure 71. Physical Damage-Volume of water relation for the South Wall 
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The application of these experimental data in probabilistic loss estimation models 

like FPHLM can significantly improve their loss prediction accuracy. The current loss 

estimation models predict the interior losses using approximate relations obtained from 

post-hurricane surveys. Those approximate relations are based on individual opinion 

rather than experimental test results.  

The accurate loss estimation is very important for hurricane rehabilitation 

decision making, as well as hurricane risk management, especially for hurricane-prone 

states like Florida. The results of this study can improve the hurricane loss estimation and 

help the decision makers and stakeholders to improve their policies and ensure the 

economic sustainability and safety of citizens.  
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CHAPTER 5.  SUMMARY AND CONCLUSIONS 

 Summary  

This study aimed to experimentally investigate the effect of rain intrusion during 

hurricane events on the building interior. The research was performed in three main 

phases, including simulation of Wind-Driven Rain at the WOW EF, interior water 

propagation tests on large-scale wood building models, and damage evaluation of interior 

walls of a full-scale model.  

During the first phase, the proper nozzle type and arrangement were selected to 

generate the rain field with matching characteristics to the wind-driven rain field 

associated with hurricane events. Two drop-size measurement devices (i.e. Parsivel2 and 

the PIP) were used to record the rain size distribution of the simulated rain field. It was 

concluded that for the small droplets (generated with the scale of 1:4) of this study, 

Parsivel2 was not accurate enough and the PIP provided more precise measurements. 

Different nozzle types were tested at stagnant air to compare the rain size distribution 

generated by different nozzle types. Additionally, one of the nozzle types was tested at 

different water pressures, and it was shown that the size distribution is not significantly 

affected by the pressure fluctuations. Finally, the nozzles were installed on the spires in 

front of the fans, and the generated rain size distribution was compared to the target rain 

size distribution. It was shown that the simulated rain field could adequately represent the 

rain characteristics of a hurricane. The tests were repeated, and measurements were 

performed at different locations of the WOW EF test section. It was shown that the 

generated rain field was uniform across the test section. Similarly, the rain rate was 
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measured using a tipping bucket rain gauge at different locations on the test section, and 

uniformity of the rain rate was also confirmed. 

The second phase of the study concentrated on the experimental evaluation of the 

water propagation pattern in the building interior once it was subjected to simultaneous 

wind and rain effects. The 1:4 large-scale building model was built out of wood. The 

interior of the model was divided into six identical room compartments and six attic 

compartments. Each of these compartments was connected to a separate water bucket to 

collect the accumulated water. The interior walls and partitions were covered with super-

absorbent pads to measure the amount of water that reached their surface. Since the water 

intrusion into the building is directly affected by the exterior openings, it was decided to 

test the building model at different exterior conditions, including light, minor and 

moderate damage states to observe water propagation associated with each of these cases. 

Also, to consider the effect of various roof types, the model was tested with a gable and a 

hip roof attached to it. Each model configuration was tested at 0˚, 45˚ and 90˚ wind 

directions. At the end of each test, the amount of water that reached different interior 

components (i.e. partitions, flooring, and ceiling) was obtained and reported as the weight 

of water in grams. The results showed that: 

• In general, the internal water propagation followed a similar pattern for room 

compartments of the gable and hip roof models.  

• For the light damage state configuration, only the attic compartment directly 

below the defect was affected by water intrusion. The small area of the opening 

and lack of internal wind flow can justify this observation.  
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• In the light damage state, only the wall defected by the opening and the adjacent 

flooring component was affected by the water intrusion. In this case, also the 

internal wind flow was negligible and could not propagate the water inside the 

building.  

• For the minor and moderate damage state model configurations, it was shown that 

the large exterior envelope openings can result in a powerful internal wind flow, 

which significantly affects the water propagation path in the building interior.  

• By predicting the direction of the internal wind flow through the probable large 

envelope opening, such as windows, we can estimate the least affected interior 

locations and minimize the expected damage by placing the expensive water-

sensitive instruments, such as appliances, there.   

The last phase of the research was dedicated to the experimental evaluation of the 

moisture-induced damage at the interior walls subjected to water intrusion. For these 

experimental tests, the full-scale model of a single-story building with a gable roof was 

subjected to water intrusion at the WOW EF test section. The interior walls of the model 

were built by installing commercial gypsum board panels on stud walls. Then, the surface 

of the drywall was painted by one layer of primer and paint, which is the typical practice 

in residential building construction. Once the model was prepared, the moisture 

measurement spots were marked on each wall. Additionally, a gutter was installed below 

each interior wall to collect the surface runoff water on the surface of that wall. Each 

gutter was connected to a separate bucket, where the collocated surface runoff water 

accumulated. The model was tested at three configurations, including one open windward 
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window subjected to the 0˚ and 45˚ wind directions, and two open windows, with one 

subjected to the 0˚ wind angle of attack. Each model configuration was tested at 

consecutive periods of water exposure. After each exposure period, the moisture content 

of the drywall was measured at the marked locations on the interior walls. Additionally, 

the buckets were weighted to obtain the amount of the surface runoff water on the surface 

of the walls during the exposure period. The moisture expansion pattern across the wall 

surface associated with different levels of water exposure was observed, and the results 

were presented graphically. It was shown that the second open window can significantly 

increase the internal wind flow and result in a much more extended water propagation 

inside the building. The sustained damage of the interior walls was estimated based on 

the increase in moisture content across the wall surface. Finally, for each of the interior 

walls, the percentage of damage was related to the amount of water that reaches the wall 

surface.  

 Conclusions and future work  

To conclude, this research provided experimental data to evaluate the interior 

damage of the residential buildings caused by rain intrusion during the hurricane events. 

The results of the second phase of the study can be used to estimate the water distribution 

among different interior components, including flooring, partitions and ceiling, while the 

water-damage relations obtained from the last phase of the study can be used to evaluate 

the sustained damage by the interior components given the volume of water that reaches 

the component. These results can be implemented in loss estimation models, such as 

FPHLM, to calculate the monetary damage sustained by the building interior at any given 
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wind speed and rain intensity. The application of the resulted experimental data can 

significantly improve the interior loss estimation module of the probabilistic loss 

estimation models and lead to a more realistic prediction of the hurricane-induced loss of 

residential buildings.  

While this study was a great step forward to experimentally evaluate the rain-

induced damages of the building interior, there is still more research to be done. In this 

study, one model configuration was tested for the wall openings at any damage state and 

roof type. For future research, the water propagation tests can be performed to investigate 

the water distribution at other possible configurations of wall openings for any given 

damage state. Also, in the last phase of the study, the water-damage relations were 

obtained only for partitions. In the future, an experimental study can be performed to 

develop similar water-damage relations for the other groups of interior components, 

including ceiling, flooring, and cabinet.   
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