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Professor Zhe Cheng, Major Professor

 Proton conducting intermediate temperature (600oC-400oC) solid oxide fuel cells (IT- 

SOFC) have many potential advantages for clean and efficient power generation from 

readily available hydrocarbon fuels. However, it still has many unsolved problems, 

especially on the anode where the fuel got oxidized and the cathode where oxygen got 

reduced.

 In this study, for the anode, the effects of hydrogen sulfite (H2S) and carbon dioxide 

(CO2) as fuel contaminants were studied on the nickel (Ni) based cermet anode of proton 

conducting IT-SOFC using proton conducting electrolyte of BaZr0.1Ce0.7Y0.1Yb0.1O3 

(BZCYYb). Both low-ppm level H2S and low-percentage level CO2 caused similar 

poisoning effects on the anode reaction. The H2S poisoning effect was also found to be 

much less than on oxide-ion conducting SOFC, which is attributed to the absence of water
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evolution for the anode reaction in proton conducting SOFC. In addition, the H2S/CO2 

poisoning mechanisms were investigated using X-ray diffraction, energy dispersive 

spectroscopy (EDS), Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). 

For H2S, other than possible sulfur dissolution into BZCYYb, no bulk reaction was found, 

suggesting sulfur adsorption contributes to the reduced performance. For CO2, reaction 

with BZCYYb to form BaCO3 and CeO2 is identified and is believed to be the reason for 

the sudden worsening in CO2 poisoning as temperature drops below ~550oC.  

For the cathode, several representative SOFC cathodes including silver (Ag), 

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF), LSCF-BZCYYb composite, and Ba0.5Sr0.5Co0.8Fe0.2O3-δ 

(BSCF) were evaluated based on BZCYYb electrolyte. LSCF give similar high interfacial 

resistance as Ag, while LSCF-BZCYYb composite cathode shows lower interfacial 

resistance, suggesting LSCF behaves like pure electronic conductor cathode in this case. 

For BSCF, it shows smallest interfacial resistance and the charge transfer process appears 

to accelerate with the introduction of H2O, while oxygen adsorption/transport seem to slow 

down due to adsorbed H2O. Furthermore, CO2 was shown to cause poisoning on the BSCF 

cathode, yet the poisoning was significantly reduced with the co-presence of water. The 

results suggest that although BSCF seem to display mixed proton-electronic conduction, 

its strong affinity to H2O may inhibit the oxygen reduction reaction on the cathode and new 

cathode materials still need to be designed.  
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1 Chapter I: Introduction 

1.1 Motivation of the Research 

Solid oxide fuel cells (SOFC) are a type of electrochemical energy conversion devices that 

offer various advantages such as high overall combined heat and electrical efficiency (80-

90%), wide range of scales (100W-100MW) and high stack volumetric power density (10 

W/cm3) as well as high specific energy (~1 kWh/kg) over conventional power generation 

systems. [1-10] However, several problems have been discovered for conventional SOFC 

based on oxide-ion conducting electrolyte, such as high degradation rate during long-term 

operation, and high cost for the sealing and interconnect materials. [3, 11, 12] These 

problems are mainly due to the high operating temperature (at or above 750oC) for 

conventional oxide-ion conducting SOFC and have so far interfered with wide adoption of 

SOFC.  

As a result, increasing interest has been drawn to intermediate temperature SOFC (IT-

SOFC), the type of SOFC that can operate at intermediate temperature range of 400oC to 

600oC which is much lower than the operating temperature of conventional oxide-ion 

conducing SOFC. To achieve reduced operating temperature, proton conducting ceramics 

(PCC) are found to be promising electrolyte materials due to their high ionic conductivity 

at intermediate temperature compared to conventional oxide-ion conducting electrolyte 

materials. [11-15] For example, BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) which is one of the 

leading PCC, shows conductivity of ~10-2Ω-1·cm-1 at 450oC which is much higher than the 

conductivity of Yttria-stabilized zirconia (YSZ) (~2*10-4 Ω-1·cm-1), which is the most 
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widely used oxide-ion conducting electrolyte material for conventional SOFC. [15] 

However, the electrodes (anode and cathode) reaction mechanism have significantly 

changed as the electrolyte material changes from oxide-ion conductor (e.g. YSZ) to proton 

conductor, leading to many unsolved questions in the system of proton conducting IT-

SOFC.  

For conventional SOFC based on oxide-ion conducting electrolyte, the structure 

typically consists of porous anode (typically a mixture of oxide-ion conducting oxides (e.g. 

YSZ) and metal catalyst (e.g. nickel (Ni)), dense solid oxide electrolyte (e.g. YSZ) and 

porous cathode (typically mixed oxide-ion and electron conducting oxides (e.g. 

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF))). [4, 7, 11]  

On the anode side of conventional oxide-ion conducting SOFC, the reaction can be 

written as follows:  

H2 + OO
× = H2O + VO

∙∙ + 2𝑒−                                                                            Equation 1.1 

As shown in Figure 1. 1 (a), the overall anode reaction pathway involves water evolution 

and is composed of several other elementary steps including (i) hydrogen (H2) adsorption 

on the metal catalyst (e.g. Ni) surface, (ii) dissociation of hydrogen on the metal catalyst 

surface and diffusion of adsorbed dissociated hydrogen atoms over metal catalyst surface 

onto the triple-phase boundary (TPB), which is the region between the ion-conducting 

electrolyte phase (e.g. YSZ), the electron conducting metal phase (e.g. Ni), and the gas 

phase reaction sites, and (iii) charge transfer on the TPB, including creation of oxide ions 

(i.e. oxygen vacancies VO
∙∙ or the O2-), generation of water molecule and electrons, and (iv) 

desorption of water molecules from the TPB.  
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Figure 1. 1 Schematics showing (a) electrodes reaction route for a conventional oxide-ion 

conducting SOFC, and (b) electrodes reaction route for a proton conducting SOFC.   

 

On the cathode side of conventional oxide-ion conducting SOFC, the overall reaction 

can be written as following:  

2VO
∙∙ + 4𝑒− + O2 = 2OO

×                                                                                    Equation 1.2 

As shown in Figure 1. 1 (a), the overall reaction pathway in the cathode also consists of 

multiple elementary steps including (i) oxygen (O2) adsorption on the cathode (e.g. LSCF) 

surface, (ii) dissociation of oxygen on the cathode surface and diffusion to the TPB of 

cathode; (iii) charge transfer including incorporation of dissociated oxygen and electrons 

and generation of lattice oxygen.  
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In comparison, for the ideal reaction process in proton conducting IT-SOFC, the 

reaction route is different from that for conventional oxide-ion conducting SOFC as shown 

in Figure 1. 1 (b).  

First and most importantly, the conducting species for proton conducting SOFC are 

protons ( OH O
∙ ) instead of oxide ions (O2-) as in oxide-ion conducting SOFC. In this case, 

the overall anode reaction can be written as:  

 H2 + 2OO
× = 2 OH O

∙ + 2𝑒−                                                                            Equation 1.3                                                  

Such an anode reaction pathway consists of multiple elementary steps including (i) 

hydrogen adsorption, (ii) dissociation of adsorbed hydrogen and diffusion of dissociated 

hydrogen atoms to TPB, and (iii) charge transfer step involving the proton incorporation 

and generation of electrons in TPB region, without generation of water.  

For the cathode reaction in proton conducting SOFC, it can be written as following:  

 4 OH O
∙ + 4𝑒− + O2 = 2H2O + 4OO

×                                                             Equation 1. 4 

Similarly, the overall cathode reaction pathway consists of several elementary steps as the 

following: (i) oxygen (O2) adsorption on the cathode surface, (ii) dissociation of oxygen 

on the cathode surface and diffusion to the TPB of cathode, and (iii’) charge transfer 

including the generation of water molecule near TPB and lattice oxygen remains and (iv’) 

desorption of generated water on the TPB of cathode.  

Even though there have been some studies on the reaction mechanisms for proton 

conducting IT-SOFC, various issues remain unsolved.  
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For conventional oxide-ion conducting SOFC, the Ni metal catalyst is the only 

electrocatalytic active part for hydrogen oxidation in the anode reaction, i.e. step (i) H2 

adsorption, (ii) H2 dissociation and surface diffusion and are believed to only happen on 

the metal catalyst surface (e.g. nickel Ni) while oxide-ion conductor (e.g. YSZ) participate 

only in step (iii) and (iv). On the other hand, previous studies seem to show certain 

electrocatalytic activity for PCC in hydrogen oxidation [16-19] as in proton conducting IT-

SOFC.  

Besides that, considering the change in anode reaction process that no longer involve 

water evolution on the anode, how the anode for proton conducting IT-SOFC respond to 

different fuel contaminants such as H2S and CO2 is still unknown.  

On the other hand, for the cathode of proton conducting IT-SOFC, factors that limit the 

cathode reaction rate, such as material choice and cathode microstructure including grain 

size, are not well studied yet. Additionally, since H2O evolution is involved in the cathode 

reaction for proton conducting IT-SOFC, [20] understanding concerning the H2O effect on 

the cathode is required for further improving the cathode materials for proton conducting 

IT-SOFC. Besides that, CO2, which is generally not a concern for the cathode of 

conventional oxide-ion conducting SOFC, should be taken into consideration since PCC, 

which have high affinity to CO2 are involved in the cathode reaction for proton conducting 

IT-SOFC. [21-23] 

Studying the issues outlined above is expected to generate new understandings and help 

optimize the anode and cathode for proton conducting IT-SOFC that operate at temperature 

down to ~400oC would be designed. 
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1.2 Research Objectives and Methods 

The objectives of this research are to (i) characterize the electrochemical behaviors of the 

anode for proton conducting intermediate temperature (~400-750oC) solid oxide fuel cells 

(IT-SOFC) against low-ppm level H2S and low-percentage level CO2, and develop new  

understanding about the underlying reaction mechanism including what role proton 

conducting ceramics (PCC) play in the anode reaction for proton conducting IT-SOFC (ii) 

characterize the electrochemical behaviors of several different types of cathode materials 

for proton conducting IT-SOFC including BSCF, Ag, LSCF and LSCF-BZCYYb facing 

different atmospheres (e.g. various pH2O, pO2 and CO2) and design better cathode for 

proton conducting IT-SOFC based on the insight gained above. 

In order to achieve the first objective, electrochemical experiments were carried out 

using low concertation fuel contaminants of H2S and CO2 for proton conducting IT-SOFC. 

In detail, H2S, which will cause severe poisoning on the anode for conventional oxide-

ion conducting (e.g. Ni/YSZ mixture as anode) due to its strong adsorption on Ni surface 

with low concentration down to ppm(v)-level, [24-38] and CO2, which is believed to have 

strong adsorption on PCC surface while no affinity and reactivity to the Ni surface, [39-

42] were used to determine the electrocatalytic role of PCC in the anode reaction for proton 

conducting IT-SOFC.  

The controlled poisoning experiments were carried out on anode-supported and 

electrolyte-supported full cells with the configuration of Ni-BZCYYb/BZCYYb/LSCF. 

Electrochemical behaviors of the anode for proton conducting IT-SOFC under typical 
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operation conditions (e.g. temperature of 750-450oC, atmosphere of 3% H2O+H2, etc.) 

were recorded using electrochemical impedance spectroscopy (EIS) and voltage 

monitoring under constant current. Furthermore, in order to study the reaction mechanism 

for the anode reaction without the complexity originated from the cathode and enlarge the 

poisoning effect on the anode, anode symmetrical cells with the configuration of Ni-

BZCYYb/BZCYYb/Ni-BZCYYb were used in this study. Besides that, conventional 

oxide-ion conducting anode symmetrical cell with the configuration of Ni-YSZ/YSZ/Ni-

YSZ will be subjected to similar poisoning conditions for comparison purpose.  

Characterization techniques such as X-Ray diffraction (XRD), energy dispersive X-Ray 

spectroscopy (EDS) and secondary-ion mass spectroscopy (SIMS) are applied following 

the electrochemical response tests on the post-exposure anode or samples under similar 

reaction circumstances for achieving better understanding the fundamental interaction 

mechanism between fuel poisons (H2S and CO2) and the cermet anode for proton 

conducting IT-SOFC. 

For the second task, cathode materials such as BSCF, Ag, LSCF, and LSCF-BZCYYb 

composite were studied using proton conducting cathode symmetrical cells based on 

BZCYYb electrolyte to eliminate possible influence from the anode. Such symmetrical 

cells were subjected to atmosphere with different pH2O, pO2 and pCO2 in the of 750-450oC. 

Electrochemical behaviors of various cathode symmetrical cells were recorded under these 

conditions and the results offer useful insights about the fundamental cathode reaction 

mechanism for the proton conducting IT-SOFC that are not available before. New cathode 
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materials and microstructures for proton conducting IT-SOFC are also explored based on 

the insights gained above.  

 

1.3 Thesis Outline 

This dissertation is organized into 7 chapters. Chapter I provides a general introduction to 

proton conducting intermediate temperature solid oxide fuel cells (IT-SOFC) and some of 

the remaining challenges and the corresponding motivations for this sudy. Chapter II 

details the reason for adopting proton conducting IT-SOFC, followed by a review on the 

unsolved problems for the anode and cathode of proton conducting IT-SOFC and the need 

for our research. Chapter III and Chapter IV discusses the H2S and CO2 poisoning effect 

on the anode of proton conducting IT-SOFC and their implications on the electrochemical 

catalytic role of proton conducting ceramics played in the anode reaction. Chapter V 

discusses the electrochemical responses of several different types of cathode materials to 

H2O vapor effect and their implications on understanding cathode reaction mechanism for 

proton conducting IT-SOFC. Chapter VI discusses the H2O and CO2 effect on the 

Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) cathode for proton conducting IT-SOFC and the 

corresponding explanations. Summary of the major findings in this work and 

recommendations for future work are provided in Chapter VII. 
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2 Chapter II: Literature Review 

2.1 Proton Conducting Intermediate Temperature Solid Oxide Fuel Cells 

(IT-SOFC) 

2.1.1 Components and Structure of SOFC 

Solid oxide fuel cells are a type of energy conversion devices that produce electricity by 

combining the fuel (e.g. H2) and the oxidant (typically O2 in air) through electrochemical 

reactions. They have a solid electrolyte, which conducts oxide-ion or proton.  [1, 2, 4, 7, 8] 

As shown in Figure 2. 1, the dense electrolyte is located between the porous anode and the 

cathode, and the anode/electrolyte/cathode trilayer is typically referred to as a single cell 

or full cell. [3, 4, 9, 10, 43, 44] Fuel gas, typically H2, is fed to the anode, undergoes 

oxidation, and releases electrons to the external circuit. On the other hand, oxidant is fed 

to the cathode, undergoes reduction and accept the electrons from the external circuit. The 

electricity is produced by the electron flow from the anode to the cathode in the external 

circuit. 
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Figure 2. 1 Materials and related issues for SOFC. From Mahato et al. [9] 

 

In an SOFC stack, single cells are connected in electrical series via a component called 

interconnect as shown in Figure 2. 1, which is typically doped lanthanum chromite or high-

temperature metal alloys.  [8, 45, 46] 
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2.1.2 From High Temperature SOFC (HT-SOFC) to Intermediate 

Temperature SOFC (IT-SOFC) 

So far, typical operating temperature for conventional SOFC is relatively high in the range 

from 1000oC to 700oC, and they are called high-temperature SOFC (HT-SOFC).[11] These 

HT-SOFC are based on oxide-ion conducting electrolyte, for which the most commonly 

used is yttria-stabilized zirconia (YSZ) because of its adequate oxide-ion conductivity, and 

excellent stability in both oxidizing and reducing atmosphere.  [1, 2, 11, 43, 47-50] The 

oxide-ion conductivity for YSZ comes from its high concentration of oxygen vacancies, 

which are introduced when the Zr4+ cations in ZrO2 is replaced by Y3+ cations due to Y2O3 

doping in ZrO2, as shown in equation 2.1. [47, 51-54] 

Y2O3

ZrO2
→  2YZr

′ + Vo
.. + 3Oo

X                                                                              Equation 2. 1 

For conventional oxide-ion conducting SOFC, Ni-YSZ cermet is widely used as the 

anode. Ni, which serves as the electronic conductor and fuel (e.g. H2) oxidation electro-

catalyst, is suitable for HT-SOFC operation due to its low cost (comparing with Co and 

noble metals), reasonable stability against oxidation in fuel mixture even with high H2O 

and CO2 concentration at high temperature of ~1000oC, [47, 55] as well as sufficient 

electronic conductivity and high electroactivity for fuel (e.g. H2) oxidation. The YSZ in the 

cermet anode provides mechanical support for the Ni particles, assures that the anode has 

similar thermal expansion coefficient (TEC) to other cell components, and inhibits Ni 

coarsening. [56, 57] In addition, the YSZ also serves as the oxide-ion conductor, which 

transports oxide-ion to the triple phase boundary of anode and expand the anode reaction 



12 

 

zone. [58] YSZ has been considered to be not electrocatalytic active in fuel oxidation 

reaction. [47] 

For the cathode of HT-SOFC, perovskite (ABO3) structured oxides are commonly used. 

Many of them offer low cost, great oxide-ion conductivity, reasonable stability and 

compatibility, as well as similar thermal expansion coefficient as the electrolyte material 

(e.g. YSZ). [56, 59, 60] Among those doped perovskite oxides cathodes, Strontium doped 

Lanthanum Manganite (La1-xSrx)1-yMnO3-δ (LSM), [48, 61-66] Strontium and Iron co-

doped Lanthanum Cobaltite La1-xSrxCo1-yFeyO3-δ (LSCF) [67-69] and Strontium and Iron 

co-doped Barium Cobaltite Ba1-xSrxCo1-yFeyO3-δ, [70-74] show high electrocatalytic 

activity for oxygen reduction, and high mixed ionic (oxide-ion) and electronic conductivity 

(MIEC).  

The advantages of HT-SOFC comes from its high combined heat and power (CHP) 

efficiency (~>85%), good modularity, fuel flexibility (meaning both pure H2 and many 

hydro-carbon fuels can be used), very low levels of SOx and NOx emissions as well as low 

noise during operation. [3, 5-7, 11] 

However, there are still several major issues with the HT-SOFC that have limited the 

development and deployment of this technology associated with its high operating 

temperature. Among those issues, the most important ones are the high cost originated from 

the expensive sealing and interconnect materials that need to tolerate high temperature, 

high performance degradation rates due to unwanted reactions/diffusions at high 

temperature, as well as potential mechanical failure due to repeated thermal cycling.  
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Thus, lowering the operating temperature of SOFC seems attractive, and possibly, 

necessary for their wider applications. This is because the lowered temperature is expected 

to slower the degradation due to slower diffusion and interactions between the components. 

The lower operating temperature may also enable the use of cheaper sealing and 

interconnect materials that are stable at ~400-600oC (e.g. stainless steel or even graphite). 

Besides that, the reduced operating temperature could also enhance the durability during 

long-term thermal cycling due to less thermal stress and lower thermal mismatch. [12, 13, 

75] 

However, for SOFC to operate at lower temperature in the range of ~400 - 600oC, the 

main challenges are related to high electrolyte resistivity and electrode polarization 

loss.[13] For common oxide-ion based electrolyte material in HT-SOFC, dramatic decrease 

in ionic conductivity was observed at intermediate temperature: For the example of YSZ 

elecrolyte, its ionic conductivity is only ~10-4 ohm-1cm-1 at 450oC comparing with ~10-2 

ohm-1cm-1 at 750oC. [15] Therefore, in order to still use YSZ as the electrolyte at 

intermediate temperature, tremendously reduced YSZ thickness (by ~10-100 times) is 

required to compensate for its low ionic conductivity. However, this may lead to significant 

decrease in durability and high cost (associated with <1um thin-film deposition).  

Alternatively, electrolyte material with higher ionic conductivity at intermediate 

temperature range could be adopted. For example, other oxide-ion conducting electrolytes 

such as gadolinium-doped ceria (GDC) shows higher ionic conductivity at reduced 

temperature. However, the ionic conductivities of those electrolyte materials are still not 

high enough, and for GDC the open circuit voltage (OCV) is low due to electronic leakage. 
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Thus, electrolyte materials that have even higher ionic conductivity with lower electronic 

leakage are required.  

 

2.1.3 From Proton Conducting Ceramics to Proton Conducting IT-SOFC 

2.1.3.1 Proton Conducting Ceramics: Conductivity and Stability 

Recently, proton conducting ceramics (PCC), mainly acceptor doped barium or strontium 

cerates or zirconates, [76-86] are found to be promising electrolyte materials for IT-SOFC 

due to their high ionic conductivities and low electronic leakage at intermediate 

temperature. For example, the ionic conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) 

is ~10-2ohm-1cm-1 at 450oC as shown in Figure 2. 2, [15] which matches the conductivity 

of YSZ at 750oC. The high ionic conductivity of PCC in principle allows much lower 

operation temperature of SOFC towards 450oC.  [15, 79, 82, 83, 85, 87-89] 
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Figure 2. 2 Ionic conductivities of BZCYYb, BaZr0.1Ce0.7Y0.2O3-δ (BZCY), Gadolinium 

doped ceria (GDC), and YSZ as measured at 400° to 750°C in wet oxygen (with ~3 vol 

% H2O). From Yang et al. [15] 

 

The high ionic conductivity for such PCC is mainly due to the conduction of proton (Hi
∙ 

or OHO
∙ ) instead of the oxide-ion (Vo

.. or O2-), especially in atmospheres with high partial 

pressure of water and at temperature lower than 700oC. [15, 88, 90] Such proton conduction 

is based on the creation of proton defects from oxygen vacancies and water adsorbed from 

surrounding atmosphere, and the defect reaction can be written as following: [77] 

Oo
X + Vo

.. + H2O ↔ 2OHO
∙  or Vo

.. + H2O ↔ OHO
∙ + Hi

∙                                      Equation 2. 1            

The proton can migrate or transfer from one lattice oxygen atom to a neighboring lattice 

oxygen, as illustrated in Figure 2. 3 below. [81, 91, 92] 

 

Figure 2. 3 Proton incorporation and conduction mechanisms in conventional perovskite 

proton conductors (for example, Y-doped BaZrO3). From Zhou et al. [92] 
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It’s worth mentioning that PCC may display both proton conductivity and oxide-ion 

conductivity, especially when the surrounding water partial pressure is low (e.g. pH2O < 

10-4) or operation temperature is too high (T > 700oC). [76, 77, 90] However, proton 

conductivity is reported to dominate for PCC in humidified atmosphere with water 

concentration at or above 3% and at temperature significantly below 700oC. The 

implication is that oxide-ion conductivity can be neglected, and PCC would demonstrate 

pure proton conduction under most IT-SOFC operation conditions (T ≤ 600oC with 

humidified fuel fed to the anode and ambient air containing ~2-3% H2O fed to the cathode). 

[76, 77, 80, 88] 

The stability of PCC has been reported to depend on various factors. For example, PCC 

with high concentration of Ce are found to be reactive to high concentration of CO2.[41, 

79, 89]. Those with high Zr content show better stability against CO2 as well as H2S. [41] 

On the other hand, when CO2 concentration is low, the materials can be stable.  

The compatibility between PCC and other cell components, mainly the electrodes also 

depends on specific materials and conditions. For the cathode, reaction involving the 

diffusion of Ba2+ from BaCe0.9Y0.1O2.95 to Ba0.5Sr0.5Co0.8Fe0.2O3-δ was observed for co-

firing temperature above 950oC. [72] 

 

2.1.3.2 Proton Conducting IT-SOFC 

When using proton conducing ceramics (PCC) as the electrolyte materials for IT-

SOFC, they are called proton conducting IT-SOFC. Typical proton conducting IT-SOFC 
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also consists of three parts (anode/electrolyte/cathode) similar as oxide-ion conducting 

SOFC as mentioned in section 1.1. 

Apart from the general advantages for conventional oxide-ion SOFC such as high 

efficiency, high power density and modularity as well as low emission, proton conducting 

IT-SOFC also possess a few unique benefits. For example, there is in principle no anode-

side fuel dilution in proton conducting IT-SOFC because the water is generated on the 

cathode or air side during operation, which could increase fuel utilization. In addition, 

when hydrocarbon fuels (e.g. methane) are used, the co-production of electricity and high-

value hydro-carbons such as ethylene might be achieved. [93] Furthermore, CO2 capture 

and sequestration will also be much easier in proton conducting IT-SOFC because, as 

stated, H2O is generated in the cathode side and naturally separated from CO2. Additionally, 

recently studies suggest that proton conducting IT-SOFC may display enhanced resistance 

to fuel contaminants such as H2S. [12, 13, 75, 94]  

Despite the advantages that proton conducting IT-SOFC offers, as stated in section 1.1 

there are still many challenges and unknowns, especially about the anode and cathode 

reaction processes. The following sections will present some of the previous studies on the 

anode and cathode reaction processes for proton conducting IT-SOFC related to this study 

and when applicable, how they compare with conventional oxide-ion conducting SOFC.  
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2.2 Anode for Proton Conducting IT-SOFC 

2.2.1 Anode Reaction Process for Oxide Ion Conducting SOFC and Proton 

Conducting IT-SOFC 

The anode materials for proton conducting IT-SOFC are similar to oxide-ion conducting 

SOFC: both are cermets consisting of metal catalyst (typically Ni) and ceramic electrolyte 

as the ion conductor (e.g., BZCYYb as PCC electrolyte versus YSZ as the oxide-ion 

conducting electrolyte). However, due to the change in the ionic species in the electrolyte 

there are significant differences in anode reaction processes between these two types of 

SOFC, which will be briefly reviewed below.  

For the oxide-ion conducting SOFC, the overall anode reaction as described in section 

1.1 (Oo
x + H2 g ↔ Vo

.. + H2O + 2e−) can be separated into several elementary steps as 

shown in Figure 2. 4. [95, 96] 

 

Figure 2. 4 Schematic diagram of the anodic reaction process for H2 electrochemical 

oxidation around the anode (Ni)/electrolyte (YSZ) interfaces for a conventional oxide-ion 

conducting SOFC. 
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Specifically, step (1) represents the gas phase diffusion and adsorption of H2 that occur 

near the surface of the metal (e.g. Ni) catalyst, which can be written as Equation 2.4. 

H2 g ↔ H2 ads                                                                                               Equation 2. 

4 

Steps (2) is the dissociation of adsorbed H2 and the diffusion of dissociated hydrogen 

atoms onto triple phase boundary (TPB), which is believed to happen on the surface of the 

metal catalyst and can be written as:  

 H2 ads ↔ 2H ads                                                                                          Equation 2. 

5 

Steps (3) is the charge transfer step, which includes combining the adsorbed hydrogen 

atoms with the lattice oxygen in the oxide-ion conducting electrolyte (e.g. YSZ) to form 

H2O while generating oxygen vacancy and releasing electrons. [97, 98] This step can be 

written as: 

2H ads +OO
x ↔ VO

∙∙ + H2O ads + 2e−                                                         Equation 2. 6 

The last step (4) is the desorption of the water generated on the TPB of anode to the 

atmosphere, which can be written as:  

H2O ads ↔ H2O g                                                                                         Equation 2. 7 

In comparison, for proton conducting SOFC, especially when it is operated at 

intermediate temperature (≤~600oC), the major carrier will be protons. [99] The overall 

anode reaction changes to H2 + 2OO
x ↔ 2 OH O

∙ + 2e−. Similar to oxide-ion conducting 

SOFC, this reaction can still be separated into several elementary steps as shown in Figure 

2. 5.  
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Figure 2. 5 Schematics showing anode reaction steps for ideal pure PC-SOFC at 

intermediate temperature. Note that the anode reaction mechanism for PC-SOFC is 

greatly simplified and the exact process including the dominating pathway still needs to 

be studied. In addition, BZCYYb stands for the BaZr0.1Ce0.7Y0.1Yb0.1O3-δ PCC 

electrolyte. 

 

Similar to oxide-ion conducting SOFC, step (1) and (2) are still hydrogen gas phase 

diffusion then adsorption and dissociation of adsorbed hydrogen then diffusion to TPB, 

respectively. However, in proton conducting SOFC, apart from Ni surface, these two steps 

might also occur over PCC surface as suggested from earlier studies. For example, power 

density of ~100mW/cm2 was achieved by Hirabayashi et al. using BaCe0.76Y0.2Pr0.04O3−δ 

based proton conducting electrolyte-supported full cell without conventional anode. [16] 

In another study by Tomita et al., power density of ~60mW/cm2 was achieved using anode-

less BaCe0.8Y0.2O3−δ (BCY20) based electrolyte-supported cell. [17] 

Step (3’) is the anode charge transfer step for proton conducting IT-SOFC, which 

involves the incorporation of adsorbed hydrogen atoms into lattice oxygen to form proton 

defects (labeled as  OH O
∙  or Hi

∙ ) and the release of electrons. This step can be written as:  
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H ads + OO
x ↔  OH O

∙ + e−                                                                            Equation 2. 

9 

Step (3’) is different from the anode charge transfer step in oxide-ion conducting SOFC 

in the sense that no water generation is involved, and the defects created are protons instead 

of oxygen vacancies.  

Lastly, unlike the anode reaction in oxide-ion conducting SOFC, there will be no 

subsequent water desorption because no water is generated in the anode reaction for proton 

conducting IT-SOFC.  

However, despite the knowledge gained on general anode reaction process for proton 

conducting IT-SOFC, very little is known about the effects of major fuel contaminants in 

hydro-carbon fuel (e.g. H2S and CO2) on the anode reaction of proton conducting IT-SOFC. 

Because of the change in overall anode reaction process for proton conducting IT-SOFC 

compared to oxide-ion conducting SOFC, different responses to these fuel contaminants 

can be expected and are worth investigating. Such studies are important since in the near 

term, the primary fuel for proton conducting IT-SOFC will still be readily available hydro-

carbon fuels instead of pure hydrogen.  

2.2.2 Anode H2S Poisoning Effect on Oxide-ion Conducting SOFC and 

Proton Conducting IT-SOFC  

Among all fuel contaminants, H2S is always encountered because it is either contained 

directly in the hydro-carbon fuels such as bio gas and natural gas or formed through the 

fuel reforming process during the operation. Since Ni is the metal catalyst in the cermet 

anode of proton conducting IT-SOFC (as well as oxide-ion conducting SOFC) and it is 



22 

 

known to be very sensitive to H2S poisoning, [24-38] studies focusing on the H2S poisoning 

effect on the anode of proton conducting IT-SOFC will be needed.  

For proton conducting IT-SOFC, as stated, very few studies have been carried out on 

the H2S poisoning effect. On the other hand, hydrogen permeation membrane based on Ni-

PCC cermet material shows great similarity to the anode of proton conducting IT-SOFC in 

terms of material (Ni-PCC), conducting species (proton) and operating atmosphere 

(reducing atmosphere containing H2). Thus, studies about the H2S effect on hydrogen 

permeation membrane is expected to offer some insights for the H2S effect on Ni-PCC 

cermet anode in proton conducting IT-SOFC and will be described as below. Thus, the 

following summarizes the existing studies on H2S poisoning effect on both proton 

conducting IT-SOFC and hydrogen permeation membranes. 

• Tomita et al. (2006) [17] 

Tomita et al. were the first to report the H2S effect on proton conducting SOFC. The 

authors studied the H2S effect on the proton conducting cell with painted Pt cathode and 

BCY electrolyte with the thickness of 1mm, as well as Au current collector on the anode 

side (no other metal).  

For such a cell, no change in impedance spectra was observed with the introduction of 

up to 10ppm H2S at 800oC as shown in Figure 2. 6. The authors attributed the high tolerance 

to H2S to the Ce-rich phase on the surface of the heat-treated BCY, which has low reactivity 

to H2S. 
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Figure 2. 6 Impedance spectra of the cell using heat-treated BCY20 with 0–10 ppm H2S 

and 80% H2 at 800 °C. The frequency range was 0.1–105 Hz. From Tomita et al. [17] 

 

However, there were many questions remain unsolved in this study. For example, such 

a cell lacks typical anode structure consisting of Ni and PCC for proton conducting IT-

SOFC and thus the knowledge gained in this study cannot be directly applied to proton 

conducting IT-SOFC. Secondly, the exact composition/structure for the BCY electrolyte 

was not clear. This is because the authors mentioned the BCY electrolyte was heat-treated 

in air at 1700oC for 10 hours before the cell fabrication presumably following the reaction 

2.10 as described below:  

BaCe0.2Y0.2O3−δ → BaO g + Ce0.8Y0.2O1.9                                                   Equation 2.10 

However, since no phase characterization results for different parts of the cell was 

provided, the actual cell structure was doubtable given the complexity of the reactivity for 

the BCY system. [89] In addition, how the system will perform at 600-400oC, which is the 
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targeted operating temperature for proton conducting IT-SOFC, is not clear. Moreover, 

electrochemical measurements other than impedance spectroscopy such as discharge under 

constant current are also required for achieving solid understanding of the H2S effect on 

the anode reaction for proton conducting IT-SOFC.  

 

• Fang et al. (2008,2009) [100, 101] 

Fang et al. studied the H2S poisoning effect on the Ni-BaZr0.1Ce0.7Y0.2O3-δ (BZCY) 

hydrogen permeation membrane with the thickness of ~0.5 mm. As shown in Figure 2. 7, 

at 700oC, the hydrogen permeation flux quick decreased by about 20% when 30ppm of 

H2S was first introduced to the feed gas consisting of ~1.5% H2O+ 58%N2+40% H2 and 

then slowly degraded until steady state. Further decrease of the hydrogen flux by about 

10% was also observed with the increase of H2S concentration to 60ppm. In comparison, 

at higher temperature of 900oC, almost no degradation in hydrogen flux with the 

introduction of 30-60ppm of H2S in the feed gas was observed as shown in Figure 2. 8. On 

the other hand, when the H2S concentration was further increased to 80-300 ppm, the 

decreases in hydrogen flux were much larger as shown in Figure 2. 7 (b).  
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Figure 2. 7 Change in hydrogen permeation flux through Ni–BZCY hydrogen permeation 

membrane with the introduction of 30-60ppm H2S in gas mixture of ~1.5% H2O+ 

58%N2+40% H2 at 700oC. Adapted from Fang et al. [100] 

 

The authors also studied the regeneration behavior of the Ni-BZCY membrane after 

H2S poisoning. As shown in Figure 2. 8 (b), the hydrogen permeation flux largely 

recovered after the removal of 60ppm H2S from feed gas at 700oC. At 900oC, complete 

recovery was observed for the hydrogen flux after the removal of 120 ppm H2S.  

 

Figure 2. 8 Sulfur poisoning and regeneration behavior of Ni–BZCY in the feed gas 

(~1.5% H2O+ 58%N2+40% H2) containing 60ppm H2S at 700oC and 120ppm H2S at 

900oC. Adapted from Fang et al. [101] 

 

(a) (b)

(a) (b)
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Besides the hydrogen permeation measurements, XRD was used on the Ni-BZCY 

membrane before and after exposing to H2S in the feed gas (~1.5% H2O+ 58%N2+40% 

H2) as shown in Figure 2. 9. At 700oC, very little amount of Ni3S2, doped CeO2 and BaS 

were found in the post-exposure sample by XRD, suggesting very limited reaction 

between the Ni-BZCY and H2S. [100, 102] EDX results indicated that around 5% atomic 

ratio of sulfur species on the surface of BZCY. Because if all of the BZCY on the surface 

was transformed into BaS and doped CeO2, the sulfur content would be ~20%, this 

indicates the reaction between BZCY and H2S was incomplete.  

  

Figure 2. 9 XRD patterns of Ni-BZCY obtained from (A) a polished surface after 

sintering, (B) feed side surface after testing in 60ppm H2S at 700oC. Secondary pahses 

are: (◊) BZCY, (●) Ni, (*) Ni3S2, (O) doped CeO2, (∆) BaS. Adapted with change from 

Fang et al.  [100] 

 

The authors attributed the H2S poisoning effect on the Ni-BZCY membrane to the 

bulk phase reaction between H2S and BZCY at high temperature of ~900oC. In fact, 

thermodynamic calculation was carried out in the study, and the results suggested the 

driving force for the reaction becomes larger as the change in Gibbs free energy gets 

(A) (B)
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more negative at lower temperature as shown in Figure 2. 10 (A). In addition, the 

dependence of the critical H2S concentration for the reaction 2.11 also decreases as the 

temperature falls as shown in Figure 2. 10 (b). This indicates that the reaction is 

thermodynamically more favored at higher H2S concentrations or lower temperatures.  

H2S g + BaCeO3 s = H2O g + BaS s + CeO2 s                                     Reaction 2.11 

 

 
 

Figure 2. 10 Dependence of Gibbs free energy change for reaction (1) on H2S 

concentrations with 0.015 atm H2O at 900 °C. Temperature dependence of critical H2S 

concentration for reaction (1) with 0.015 atm H2O. Adapted from Fang et al. [101] 

 

On the other hand, when the temperature was low of ~700oC, very little reaction was 

observed between the BZCY and H2S. Since the bulk reaction was thermodynamically 

more favorable at lower temperature, the limited reaction observed at 700oC was 

attributed to the slow kinetics such as slow diffusion. Thus, the poisoning effect of H2S 

on Ni-BZCY at 700oC was attributed by the authors to the adsorption of H2S over Ni and 

BZCY surfaces.  

(a) (b)
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However, this study was carried out on Ni-BZCY hydrogen permeation membrane 

which has certain difference compared to the anode of proton conducting IT-SOFC. In 

addition, studies at even lower temperature of 600-400oC is still needed. Moreover, more 

sensitive surface characterization of Ni-PCC sample after exposing to H2S is also required 

to achieve better understanding about the origin of the H2S poisoning effect and the nature 

of interactions between sulfur and PCC such as BZCY.  

• Yang et al. (2009) [15] 

Yang et al. (2009) studied the influence of low-ppm level H2S on the Ni-

BZCYYb/BZCYYb/BZCY-LSCF anode-supported full cells. The observations are that at 

750oC with a current density of 700mA/cm2, there are no change in cell voltages with the 

introduction of up to 30ppm H2S in 3%humidified (labeled as wet) H2 fuel for both cells at 

as shown in Figure 2. 11 (A).  

Moreover, similar sulfur tolerance was observed for Ni-BZCYYb/SDC/LSCF anode-

supported full cell and the impedance data showed no increase in interfacial resistance in 

3%humidified H2 containing 20ppm H2S as shown in Figure 2. 11 (B). However, when the 

water was absent in the fuel stream, significant increase of ~80% in interfacial resistance 

was observed for that cell with the introduction of 20ppm H2S into dry H2 as shown in 

Figure 2. 11 (C). 

The authors hypothesized water may adsorb on the BZCYYb surface to facilitate the 

oxidation of H2S or elemental sulfur to SO2 at or near active sites, which can easily desorb. 

[103] 
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Figure 2. 11 (A) The change in cell voltage at 750°C for two cells with the configuration 

of Ni-BZCYYb/ BZCYYb/ BZCY-LSCF and Ni-BZCYYb/ SDC/ LSCF operated at 

750oC under the constant current density of 700 mA/cm2 as 10-50ppm of H2S was 

introduced to the 3%humidified H2 fuel stream, (B and C) Impedance spectra measured 

under OCV conditions at 750°C for the Ni-BZCYYb/ SDC/ LSCF anode-supported full 

cell in both (B) dry H2 and dry H2 containing 20 ppm H2S and (C) wet H2 and wet H2 

containing 20ppm H2S. from Yang et al. (2009) [15] 

 

However, no information about the impedance of the Ni-BZCYYb/BZCYYb/LSCF 

anode-supported full cell was showed. The response to low-ppm level H2S for such cell at 

intermediate temperature of 400-600oC is still not clear. Moreover, two of the cells used in 

the study was based on thin electrolyte (~20um) of SDC and YSZ, which may react with 

the BZCYYb in the anode and form proton conducting phases. [89] 

For better understanding of the H2S effect on the anode reaction of proton conducting 

IT-SOFC, it will be helpful to refer to the similar studies on H2S effect of the conventional 

oxide-ion conducting SOFC, especially those operated at relatively low temperature 

(~750oC). This is because as stated before, despite the change in the anode reaction process, 

both the anode in proton conducting IT-SOFC and oxide-ion conducting SOFC contain Ni 

as metal catalyst and is sensitive to H2S. The similarity and also the difference between 
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these two types of cells are expected to provide some insight for the H2S poisoning effect 

on proton conducting IT-SOFC. Because the problem of H2S poisoning for conventional 

oxide-ion conducting SOFC has been extensively studied and well documented, there are 

many available reviews, and will not be repeated here. Only one representative study at 

relevant temperature of 750oC by Yang et al. is given below as an example. 

 

•  Yang et al. (2010) [35] 

Yang et al. studied the H2S poisoning effect on the Ni-YSZ/YSZ/LSCF oxide-ion 

conducting anode-supported full cell. At 750oC, increases in interfacial resistance of ~40%-

80% were observed with the introduction of 1ppm H2S into H2 fuel at different current 

density in the range of 800-200mA/cm2, as shown in Figure 2. 12.  
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Figure 2. 12 Impedance spectra of Ni-YSZ/YSZ/LSCF anode-supported full cells 

operated at a constant current density of 200, 500, and 800 mA/cm2 before and after 1 

ppm H2S was introduced into the fuel at 750oC. From Yang et al. [35] 

 

In addition, instant drops in the cell power output of ~10-15% upon the exposure to 

0.8-1.1 ppm H2S in H2 at the current density of 200 and 400mA/cm2 was observed as shown 

in Figure 2. 13 (a). On the other hand, when 10 ppm H2S was introduced to the H2 fuel at 

the current density of 200 and 400 mA/cm2, slightly larger decreases were observed for the 

cell voltage as shown in Figure 2. 13 (b).  

 

Figure 2. 13 Performances of the Ni-YSZ/YSZ/LSCF anode supported full cells operated 

at 750C at a constant current density of 200 and 400 mA/cm2 in hydrogen for the first 
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~600 h and then in hydrogen with (a) 0.8-1.1 ppm H2S, and (b) 10ppm H2S. From Yang 

et al. [35] 

 

In summary, even though there have been several studies reflecting the H2S poisoning 

effect on the proton conducting electrode as mentioned above, most of these researches 

were carried out at relatively high temperature (≥700oC). In addition, from the comparison, 

the H2S poisoning on proton conducting IT-SOFC appears very different from 

conventional oxide-ion conducting SOFC, suggesting significant change in the poisoning 

process and the underlying mechanism. Thus, systematic studies focusing on H2S 

poisoning of proton conducting IT-SOFC, especially at intermediate temperature of 400-

600oC is required. Detailed investigation on the interaction between the H2S and proton 

conducting cermet anode is also expected to help understand the fundamental poisoning 

mechanism.  

 

2.2.3 Anode CO2 Poisoning Effect on Proton Conducting IT-SOFC 

Unlike the widely-studied poisoning effect of H2S on the anode reaction for SOFC, the 

CO2 effect has rarely been studied as CO2 typically is believed to be harmless for the anode 

reaction of conventional oxide-ion conducting SOFC. The chemisorption between the Ni 

catalyst and CO2 is thought to be insignificant in fuel atmosphere and there is no reaction 

between the conventional oxide-ion conductor of YSZ and CO2. [104]  

On the other hand, certain extent of CO2 poisoning could be expected for the cermet 

anode of proton conducting IT-SOFC, which contains PCC that are known to be vulnerable 
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to CO2. So far, there are numerous studies on the reactivity of proton conducting ceramics 

(PCC) electrolyte with CO2 as stated in section 2.1.3.1. [39-42] However, electrochemical 

behaviors of proton conducting IT-SOFC upon exposure to CO2 as an anode fuel 

contaminant are not clear.   

Similar to H2S poisoning effect, existing studies about the CO2 effect on Ni-PCC is 

mainly in the field of hydrogen permeation membrane and no study is available on proton 

conducting IT-SOFC. Nevertheless, due to the similarity between the hydrogen reaction 

for those two types of devices, these studies are expected to offer useful background 

information about the CO2 poisoning effect on the cermet anode for proton conducting IT-

SOFC and are described below.   

 

• Zuo et al. (2005, 2006) [105, 106] 

Zuo et al. studied the percentage-level CO2 poisoning effect on Ni-BaZr0.8-xCexY0.2O3 

(0.4≤ x ≤0.8) membranes with the thickness of ~0.5-0.75 mm at 900oC. As shown in Figure 

2. 14 (a), instant drops in hydrogen flux were observed for the Ni-BZCY6 (x=0.6) 

membrane with the introduction of 10-30% CO2 into the wet feed gas of 40%H2 balanced 

by He. The decrease in hydrogen flux is proportional to the concentration of CO2 in feed 

gas. The initial quick drops were followed by saturation after exposure to CO2 for ~20 

hours under all concentrations. Similar poisoning effect was observed for Ni-BZCY8 

(x=0.8) membrane with the introduction of 10% CO2 in feed gas as shown in Figure 2. 14 

(b). However, as CO2 concentration further increased to 20%-30%, much more severe 

poisoning effect was observed for Ni-BCY20 membrane with decrease of ~80%-100% 
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after more than 20 hours of exposure. This dramatic CO2 poisoning for Ni-BCY20 

membrane was attributed to the bulk phase reaction between BCY20 and CO2 with 

concentration ≥20% to form BaCO3.  

 

Figure 2. 14 Hydrogen flux through (a) Ni-BZCY6 and (b) Ni-BZCY8 membranes in wet 

feed gas (40% H2/He) containing different concentrations of 10-30%CO2 at 900°C. From 

Zuo et al. [105] 

 

Zuo et al. also studied the influence of Zr doping concentration on the CO2 poisoning 

effect for hydrogen permeation through Ni-BZCY membranes as shown in Figure 2. 15. 

The relative drop in hydrogen permeation flux decreased with increasing Zr concentration, 

meaning the substitutional doping of Zr in Yttrium-doped barium cerate can significantly 

increase the stability against CO2 poisoning.  

 

(a) (b)
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Figure 2. 15 Time dependence of hydrogen flux through Ni-BaZr0.8-x CexY0.2O3 (0.4≤ x 

≤0.8) membranes in a feed gas of wet 20% CO2 (balance 40% H2/He) at 900 °C. From 

Zuo et al. [106] 

 

However, the origin of the observed CO2 poisoning had not been well illustrated using 

convincing experiments in this study. Moreover, no information was provided at testing 

temperature lower than 900oC.  

 

• Fang et al. (2013, 2014) [107, 108] 

Fang et al. studied the CO2 poisoning effect on Ni-BZCYYb as hydrogen permeation 

membrane with the thickness of 0.4mm at 900oC. When the feed gas contains no water, 

significant increases in hydrogen flux were observed with the introduction of 5-60% CO2 

into feed gas consisting of 20%H2+75-15% He as shown in Figure 2. 16. The authors 

attributed such enhanced hydrogen permeation to the co-presence of CO2 and H2 and the 

occurrence of reverse water-gas shift (RWGS) reaction as below:   



36 

 

H2 g + CO2 g =  H2O g + CO g                                                               Reaction 2. 12  

This was supported by the large increase in the moisture content with the introduction 

of CO2 into feed gas as also shown in Figure 2. 16.   

The water generated from RWGS reaction was believed to increase the proton 

conductivity of the BZCYYb membrane and thus promoted the hydrogen permeation under 

these conditions.  

 

Figure 2. 16 Hydrogen permeation fluxes of the Ni-BZCYYb membrane (lower line) and 

absolute humidity in feed gas passing through the reactor (upper line). The feed gas 

consisted of 20% H2, 5-60% CO2, and 75-20% He. From Fang et al. [107] 

 

However, when the feed gas already contains 3% H2O, then the response of Ni-

BZCYYb composite membrane to the introduction of CO2 was complex as shown in 

Figure 2. 17. When 30% CO2 was introduced, initial increases in the hydrogen 

permeation fluxes were observed in all conditions. However, after the initial increases, 

subsequent behaviors depend on H2 concentration: when H2 was high at 60%, similar 

enhancement in hydrogen flux was observed as the steady-state flow was higher than that 

prior to CO2 introduction; when H2 was low at 40% and 20%, the steady-state fluxes 
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were lower than those prior to CO2 introduction, indicating CO2 poisoning, which is 

consistent with earlier study by Zuo et al. [105, 106] 

 

Figure 2. 17 Time dependence of hydrogen flux of the Ni-BZCYYb membrane in 20-

60% H2 balanced with 3% H2O, 30% CO2, and 47-7% He, respectively. From Fang et al. 

[108] 

 

The degradation was attributed to the formation of secondary phases such as BaCO3, 

doped-CeO2, and carbon on the Ni-BZCYYb surface that inhibited the hydrogen flux 

which was confirmed by the XRD and Raman spectroscopy on the Ni-BZCYYb 

membrane after exposing to up to 60% CO2 and recovering in wet 40% H2+N2+He at 

900oC for 912 h followed by fast cooling in the same atmosphere. As shown in Figure 2. 

18, secondary phases such as BaCO3, doped-CeO2, and carbon were detected by XRD for 

the sample. In addition, Raman spectroscopy also identified the existence of BaCO3, 

CeO2 or BaCeO3 and carbon, which correspond to the Raman peaks labeled as CO3
2- 
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(140, 220, 700 and 1065 cm-1), Ce-O (478cm-1) or Ce-O (353cm-1), and C (1353 and 

1582 cm-1), respectively in Figure 2. 20.   

The authors attributed the formation of these secondary phases to the reaction 

between the CO2 with BZCYYb. The reason why CO2 showed poisoning effect in 

humidified feed gas is because the RWGS reaction was limited by the existing high H2O 

content, and the CO2 concentration would be higher than that in dry feed gas.  

 

Figure 2. 18 XRD patterns obtained from the fresh (a) and tested (b) Ni–BZCYYb 

membrane. p: BZCYYb, h: hexagonal BaCO3, o- orthorhombic BaCO3, c: carbon, e: 

doped-CeO2, ?: unknown phase. From Fang et al. [108] 
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Figure 2. 19 Raman spectrum obtained from feed side surface of Ni–BZCYYb membrane 

after exposure to wet CO2 and recovery without CO2. From Fang et al. [108] 

However, at intermediate temperature of 400-600oC, since the RWGS reaction is 

thermodynamically unfavorable, how would the system will respond to CO2 effect is not 

clear. In addition, as stated, since the Ni-BZCYYb hydrogen permeation membrane is not 

an SOFC, how the knowledge gained in this study can be leveraged to proton conducting 

IT-SOFC is of interest.  

 

2.3 Cathode for Proton Conducting IT-SOFC 

2.3.1 Cathode Reaction Process for Oxide-ion Conducting SOFC versus 

Proton Conducting IT-SOFC 

Similar to the anode reaction process, the cathode reaction process will also change 

according to the electrolyte material. For the conventional oxide-ion conducting SOFC, the 

overall reaction of O2 + 2e− + 2VO
∙∙ ↔ 2OO

x  , as mentioned in section 1.1, can also be 

separated into several elementary steps as shown in Figure 2. 20 below. [109-119] 
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Figure 2. 20 Schematics showing the reaction species involved and the elementary steps 

for the cathode reactions for oxide-ion conducting SOFC when mixed ionic and 

electronic conducting material is used as cathode. 

 

Step (1) is the oxygen adsorption reaction occurring on the surface of the cathode, 

which can be written as: 

O2 g ↔ O2 ads                                                                                              Equation 2. 

13 

Step (2) is the dissociation of oxygen molecules into adsorbed oxygen atoms occurring 

on the surface of cathode, which can be written as:  

O2 ads ↔ 2O ads                                                                                         Equation 2. 

14 

Step (3) represents the charge transfer step occurring over the cathode surface when 

mixed ionic-electronic conducting (MIEC) materials, such as LSCF and BSCF, are used as 

the cathode. [120] The dissociated oxygen atoms will accept electrons and incorporate into 
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oxygen vacancies in the MIEC cathode and become lattice oxygen during this step, which 

can be written as:  

O ads + 2e− + VO
∙∙ cathode ↔ OO

x  cathode                                              Equation 2. 

15 

Step (4) represents the mass transfer step between the MIEC cathode and the 

electrolyte, which can be written as: 

VO
∙∙ cathode ↔ VO

∙∙ electrolyte                                                                      Equation 2. 

16 

For the cathode reaction in the proton conducting IT-SOFC, due to the change of ionic 

species from oxide-ion to proton, the cathode reaction is through a different process of 

O2 + 4e− + 4 OH O
∙ ↔ 2OO

x + 2H2O  as mentioned in section 1.1 [20, 118, 121, 122]                            

 

Figure 2. 21 Schematics showing the reaction species involved and the elementary steps 

for the cathode reactions for proton conducting IT-SOFC. 
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Similarly, this reaction process can also be divided into several elementary steps as 

shown in Figure 2. 21, including step (1) adsorption of oxygen molecules and (2) 

dissociation of adsorbed oxygen molecules into adsorbed oxygen atoms. Both steps are 

identical to the step (1) and (2) in the cathode reaction process for oxide-ion conducting 

SOFC.  

On the other hand, the charge transfer step (3’) would be different: It involves the 

combination of proton (or hydroxide group), electrons and adsorbed oxygen atoms to 

generate water on the TPB between cathode, electrolyte and atmosphere. This step can be 

written as:  

O ads + 2e− + 2 OH O
∙  TPB ↔ 2OO

x  TPB + H2O ads                           Equation 2. 

17 

Step (4’) is the mass transfer of proton from TPB of cathode through electrolyte, which can 

be written as:  

 OH O
∙  electrolyte ↔  OH O

∙  TPB                                                               Equation 2. 

18 

Step (5) is the desorption of generated water from TPB of cathode, which can be written 

as:   

H2O ads ↔ H2O g                                                                                       Equation 2. 19 

The obvious difference between the cathode reaction process for the proton conducting 

IT-SOFC versus oxide-ion conducting SOFC suggests major change in the cathode 

material choice. However, no agreement has been reached on the most suitable cathode for 

proton conducting IT-SOFC, and the cathode reaction mechanism has not well studied yet. 
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In the following section, some of the representative studies on the cathode materials 

adopted for proton conducting IT-SOFC were described.   

 

2.3.2 Different Cathodes on Proton Conducting IT-SOFC  

It has been well accepted that in intermediate-temperature SOFC, oxygen reduction at the 

cathode is the main rate limiting factor to the performance of the whole system. [61, 114, 

123-125] Part of the reason is that the cathode materials are not optimized specifically for 

proton conducting IT-SOFC and thus high cathodic overpotential was observed. [119, 121, 

125-127] Thus, previous studies are presented below in groups of pure electronic 

conductor, MIEC, and mixed electronic and protonic conductor.   

 

2.3.2.1 Electronic Conducting Cathode for Proton Conducting IT-SOFC 

Electronic conducting cathode, which typically is metal with great stability in oxidating 

atmosphere, has high electronic conductivity but negligible ionic conductivity. The most 

commonly used electronic conducting cathodes are silver (Ag) and platinum (Pt) metal.   

There were many studies about adopting the metal as the cathode for proton conducting 

IT-SOFC and some of the representatives were described below. 

• Taherparvar et al. (2003) [128] 

Taherparvar et al. studied the performance of the Pt/ SrCe0.95Yb0.05O3 (SCYb)/ Pt 

proton conducting electrolyte-supported full cell at the temperature range of 800-600oC 
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including the response to H2O on the Pt cathode. Power densities of only ~8-2 mW/cm2 

were observed from 800-600oC for the cell as shown in Figure 2. 22, suggesting Pt is not 

an efficient electrode for proton conducting IT-SOFC.  

 

Figure 2. 22 Voltage-current and power density-current curves of Pt/ SrCe0.95Yb0.05O3 

(SCYb)/ Pt full cell at temperature of 800-600oC in 3% humidified fuel (10% H2 

balanced by Ar) at anode and dry air at cathode. From Taherparvar et al. [128] 

 

On the other hand, when 3-12% moisture was introduced to the Pt cathode side of the 

cell, drops in both cell voltage and power density for the cell were observed at 800-600oC 

as shown in Figure 2. 23.  
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Figure 2. 23 (a) Fuel cell performance for Pt/ SCYb/ Pt full cell with varying pH2O at the 

cathode at (a) 600 oC (b) 700oC and (c) 800oC with 3% humidified fuel consisted of 10% 

H2+Ar. From Taherparvar et al. [128] 

 

The authors hypothesized the H2O effect was due to the suppressed oxygen reduction 

reaction on the TPB of cathode by the hydration reaction between water and the SCYb 

electrolyte.  
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However, the performance of Pt/ SCYb/ Pt is very low that the information gained in 

this study is hard to be leveraged for typical proton conducting IT-SOFC. In addition, more 

electrochemical measurements such as impedance spectroscopy would be needed for 

examining the humidification effect on metal cathode for proton conducting IT-SOFC.  

 

• Potter et al. (2006) [129] 

Potter et al. studied the microstructure and impedance spectra of Pt/ SCYb/ Pt proton 

conducting cathode symmetrical cell at 350oC. The authors found that the porosity of the 

Pt electrode in the cell was low and the grain size was small of ~50-100nm as shown in 

Figure 2. 24.  

 

Figure 2. 24 SEM images of the morphology of the Pt electrode in Pt/ SCYb/ Pt cell. 

From Potter et al. [129] 

 

The H2O effect on the Pt cathode was tested using impedance spectroscopy at 350oC. 

Significant decrease in interfacial resistance was observed with the introduction of ~3% 

H2O as show in Figure 2. 25. On the other hand, huge interfacial resistance larger than 

10kohm was observed for the cell, suggesting Pt behaved as a very poor cathode on 
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proton conducting SOFC based on SCYb electrolyte at 350oC.  The decrease in 

interfacial resistance with the introduction of moisture was not consistent with the 

observed decrease in power output by Taherparvar et al. [128] 

 

Figure 2. 25 Impedance spectra of Pt/ SCYb/ Pt cell at 350oC in (a) humidified air and (b) 

dry air Numerical labels indicate log10 of applied frequency. Adapted from Potter et al. 

[129] 

 

However, no explanation was given on the origin of such H2O effect on the Pt/ SCYb/ 

Pt cell. Moreover, the impedance loops provided were only at the temperature of 350oC. 

Thus, testing at intermediate temperature of 600-400oC will be needed to achieve 

systematic understanding about the H2O effect on the proton conducting IT-SOFC with 

electronic conducting cathode.   

 

(a)

(b)
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• Akimune et al. (2007) [130] 

Akimune et al. studied the influence of cathode grain size on the cell performance using 

proton conducting electrolyte-supported full cell with the configuration of Ag cathode/ 

BCY/ Pt anode at the temperature range 500-300oC. The grain size of the Ag cathode was 

modified by using several different types of Ag paste with various particle size (5 nm, 0.1 

μm and 6 to 13 μm) as well as two different firing temperatures of 700oC and 500oC. It was 

found that the final grain size of Ag cathode increases with initial particle size and firing 

temperature as shown in Figure 2. 26. For example, the smallest grain size of ~0.85 um 

was observed in the Ag cathode with the smallest initial particle size of 5nm and lowest 

firing temperature of 500oC.  

 

Figure 2. 26 Ag cathode surface with the initial particle of (A) 5nm, (B) 0.1um, and (C) 

6-13 um after firing at 500oC. From Akimune et al.  [130] 

 

It was found that the cell with smallest grain size of Ag cathode (smallest initial particle 

size, fired at 500oC) delivered the best power density in the temperature range of 500-

300oC (773K-573K) as shown in Figure 2. 27. The enhanced performance of the cell was 
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attributed to the relatively small gain size of Ag cathode that extends the number of TPB 

on the cathode.  

 

Figure 2. 27 Power density of cell using (●) Pt cathode, and Ag cathode fired at 500oC 

with initial particle size of (∆)5nm, (◊) 0.1um, and (□) 6-13um, and Ag cathode fired at 

700oC with initial particle size of (▲) 5nm, (♦) 0.1um and (■) 6-13um. From Akimune et 

al. [130] 

 

However, the performance of Ag/BCY/Pt cell showed in this study was still too low 

to be leveraged.   

 

2.3.2.2 Mixed Ionic and Electronic Conducting (MIEC) and Mixed Electronic and 

Protonic Conducting Cathodes for Proton Conducting IT-SOFC 

Mixed ionic and electronic conducting (MIEC) cathode, which typically is doped 

perovskite materials, has high oxide-ionic and electronic conductivity. In the following, 

several representative studies using different cathode materials are described. Among those 

materials, the focus is on strontium and iron co-doped lanthanum cobaltite (La1-xSrxCo1-
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yFeyO3-δ (LSCF)) and barium cobaltite (Ba1-xSrxCo1-yFeyO3-δ (BSCF)), because both are 

regarded as the state-of-art MIEC cathodes for conventional oxide-ion conducting SOFC 

and have a good balance between chemical stability, thermal expansion and 

electrochemical activity.  

• LSCF and LSCF related cathodes 

Fabbri et al. (2009) studied LSCF and related composite cathodes for BaCe0.9Yb0.1O3–

δ (10YbBC) based proton conducting electrolyte-supported full cells (thickness of 1mm) 

with the configuration of LSCF/10YbBC/Pt and LSCF-10YbBC/10YbBC/Pt. [93] The 

author found that the LSCF-10YbBC (1:1 weight ratio) composite cathode showed ~30% 

smaller interfacial resistance compared to the pure LSCF cathode on proton conducting IT-

SOFC at 600oC as shown in Figure 2. 28. The authors attributed the decrease in total 

interfacial resistance to the extended reaction zone, i.e. TPB area with the introduction of 

YbBC in the cathode. 

 

Figure 2. 28 Impedance spectra acquired in wet air at 600 °C for the (b) LSCF composite 

cathode with 10YbBC (weight ratio 1:1), and (d) and pure phase LSCF as cathode on 

YbBC electrolyte-supported cell. Adapted from Fabbri et al. [93] 

(a) (b)
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The authors also compared the I-V, I-P and impedance spectra for proton conducting cells 

with LSCF-10YbBC cathode versus Pt cathode (anode stays the same as Pt) at 700oC as 

shown in Figure 2. 29. The cell with LSCF-10YbBC cathode showed higher power density 

and lower interfacial resistance compared to that with Pt cathode at 700oC.  

 

 

Figure 2. 29 (a) I–V and I-P curves, and (b) impedance spectra for the Pt/BCY/Pt and 

Pt/BCY/LSCF-10YbBC cell tested at 700 °C. Adapt from Fabbri et al. [93] 

 

Similarly, Yang et al. (2010) also compared the cell performance and impedance of 

BaZr0.1Ce0.7Y0.2O3-δ (BZCY) based anode-supported proton conducting SOFC (electrolyte 

thickness of ~20 um) with pure LSCF cathode versus LSCF-BZCY composite cathode at 

the temperature range of 750-550oC. [121] As shown in Figure 2. 30, with the introduction 

of BZCY in LSCF cathode, increase in cell power density and decrease in interfacial 

resistance was observed at various temperatures. High maximum power density of 

~900mW/cm2 was achieved at 750oC in BZCY based proton conducting anode-supported 

(a)

(b)
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cell with LSCF-BZCY composite cathode, suggesting LSCF-BZCY composite cathode is 

a good cathode for proton conducting IT-SOFC.  

 

Figure 2. 30 (a) I-V curves, (b) interfaical resistances, for BZCY-based anode-supported 

cells with BZCY–LSCF and LSCF cathodes and (c) impedance spectra of the cell with 

LSCF-BZCY composite cathode at various temperatures. From Yang et al. [121] 
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• BSCF cathode 

Lin et al. (2008) studied the microstructure and performance of BSCF cathode for anode-

supported proton conducting IT-SOFC with the configuration of BSCF/ BaCe0.9Y0.1O2.95 

(BCY)/ Ni-BCY. [72] The influence of firing temperature on the BSCF cathode were 

examined using two different temperatures of 950oC and 1100oC.  It was found that the 

BSCF with lower firing temperature of 950oC showed slightly smaller grain size and higher 

porosity as shown in Figure 2. 31.  

 

Figure 2. 31 SEM morphologies of the cathodes surface fired at: (A) 950oC and (B) 

1100oC. From Lin et al. [72] 

 

In addition, the cell fired at 950oC showed better maximum power density (e.g 

~550mW/cm2 at 700oC and ~130mW/cm2 at 400oC), higher open circuit voltage and 

lower interfacial resistance (e.g. ~0.15ohm cm2 at 700oC) in the temperature range of 

700-400oC than the cell fired at 1100oC as shown in Figure 2. 32. The high power output 
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suggests the BSCF is a good cathode for proton conducting IT-SOFC based on BCY 

electrolyte. 

 

Figure 2. 32 I-V and I-P curves for the cell with BSCF cathode fired at (A) 950oC, and 

(B) 1100 oC at various temperatures of 700-400oC. From Lin et al. [72] 
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Fig. 8. EIS of the anode-supported fuel cell with 950oC fired BSCF cathode at various 

temperatures under OCV conditions. From Lin et al. [72] 

 

Grimaud et al. (2012) studied the water uptake for BSCF and compared with LSCF 

using thermal gravimetric analysis (TGA). [20] The BSCF and LSCF powders were pre-

hydrated in air containing 10% H2O at 500oC for 12 hours followed by slow cooling in the 

same atmosphere before TGA measurement starting at room temperature towards 1000oC 

and then cool down to room temperature in dry air. (During the heating, weight loss come 

from both the oxygen loss and water loss, if any, while during the cooling, the weight gain 

is due to oxygen incorporation. The difference between heating and cooling gives the 

information about water content.)  As shown in Figure 2. 33, the relative molar ratio of 

incorporated water to BSCF is ~1:10, while it was negligible for LSCF, indicating that 

strong hydration reaction occurred in BSCF with possible proton conduction similar to 

typical PCC.  
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Figure 2. 33 Thermal variation in dry air of a) the relative weight loss of hydrated 

La0.6Sr0.4Fe0.8Co0.2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ samples, b) the calculated amount of 

inserted water (in mol. per mol. of oxide). Adapted with modification from Grimaud et al. 

[20] 

 

Moreover, the microstructure of BSCF cathode was compared with LSCF. As shown 

in Figure 2. 34, the BSCF cathode fired at 1000oC showed much larger grain size of ~2-

10um compared to LSCF cathode of ≤~1um fired at same temperature. When BSCF 

cathode firing temperature was increased to 1100oC, it got coarsen.  
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Figure 2. 34 SEM micrographs of (a) LSFC sintered at 1000oC, (b) BSCF sintered at 

1000oC (c) BSCF sintered at 1100oC. Adapted from Grimaud et al.  [20] 

 

Furthermore, the electrochemical response of BSCF cathode to H2O was studied and 

compared with LSCF cathode using proton conducting cathode symmetrical cells based on 

BaCe0.9Y0.1O3−δ (BCY10) electrolyte with pH2O of 0.03-0.30 bar at 600oC. As shown in 

Fig 2.X, decrease in interfacial resistance for 1000oC fired BSCF cathode symmetrical cell 

with increasing pH2O from 0.03 bar to 0.30 bar was observed, while the opposite trend 

(increasing interfacial resistance with increasing pH2O) was observed for LSCF cathode 
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symmetrical cell. In addition, much smaller interfacial resistance of BSCF cathode 

symmetrical cells was observed compared to that for LSCF cell.  

 

Figure 2. 35 Impedance spectra of the cathode symmetrical cell with (a)LSCF and (b) 

1000oC fired BSCF and (c) 1100oC fired BSCF in air containing 0.03 to 0.30 bar of H2O 

at 600◦C. (Note for BSCF, the water response is different when it was fired at higher 

temperature probably due to the reaction/ mutual diffusion between BSCF and BCY 

electrolyte). Adapted from Grimaud et al.  [20] 

 

The decrease in cathode interfacial resistance for 1000oC fired BSCF cathode 

symmetrical cell with increasing pH2O was attributed by the authors to the acceleration of 

cathode reaction by the water insertion to the BSCF cathode. Such water insertion for 

BSCF was hypothesized to be similar to the hydration process in typical proton conducting 



59 

 

ceramics and thus suggested that BSCF is a possible proton conductor. In comparison, 

LSCF, which showed negligible water uptake, was believed to be only an oxide-ion 

conductor. The cathode reaction was observed to slow down upon increasing water 

concentration, this was attributed to the water adsorption near TPB of cathode that blocked 

oxygen adsorption and transport.  

On the other hand, it was noticed that when BSCF was fired at higher temperature of 

1100oC, the electrochemical response to water concentration seems to change: almost no 

decrease in interfacial resistance was observed with increasing pH2O. Such behavior was 

attributed to the limited diffusion of water molecules inside the coarser cathode by the 

authors. However, another possibility is that there might be reaction or mutual diffusion 

between BSCF and BZCYYb at higher temperature of 1100oC.  [72] 

 

Lim et al. (2016) studied the influence of pO2 and pH2O on BSCF cathode using proton 

conducting anode-supported full cell with the configuration of BSCF/ BaZr0.4Ce0.45Y0.15O3-

δ (BZCY40)/ Ni-BZCY40 at 700oC. [131] The BSCF cathode was fired at 1100oC in this 

study. As shown in Figure 2. 36, the power output of the cell increased with increasing 

pO2, and both the bulk and interfacial resistance decreased with the increasing pO2 at 

cathode side. This was attributed to the accelerated oxygen reduction reaction in cathode.  
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Figure 2. 36 (a) I–V and I–P curves and (b) impedance spectra of the BSCF/ 

BaZr0.4Ce0.45Y0.15O3-δ (BZCY40)/ Ni- BZCY40 cell with various pO2 at BSCF cathode 

side at 700oC. [131] 

 

In addition, decreases in power density was observed for the cell with the introduction 

of 2.3% H2O on cathode at 700oC as shown in Figure 2. 37 (a), which was consistent with 

the increase in interfacial resistance as shown in Figure 2. 37 (b). The decrease in open 

circuit voltage with the introduction of H2O was also observed.  On the other hand, almost 

no further change in cell voltage, power density and interfacial resistance was observed 

when pH2O was increased from 0.023 atm to 0.054 atm, which was consistent with the 

observation in previous study by Grimaud et al. at 600oC using same 1100oC fired BSCF 

cathode. The decrease in cell performance with the introduction of water was attributed by 

the authors to the suppressed water release reaction (step (5’)) and reduced cathode reaction 

sites with adsorbed water on TPB of cathode. It’s noteworthy that high power density of 
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~800mW/cm2 was achieved for the cell in dry atmosphere at 700oC, which suggests that 

BSCF is a good cathode on proton conducting IT-SOFC, especially in dry condition.  

 

Figure 2. 37 (a) I–V and I–P curves and (b) impedance spectra of the BSCF/ 

BaZr0.4Ce0.45Y0.15O3-δ (BZCY40)/ Ni- BZCY40 cell with various pH2O at BSCF cathode 

side at 700oC. From Lim et al. [131] 

 

These studies suggest BSCF appears to be a good cathode on proton conducting IT-

SOFC and the H2O effect on the proton conducting cell with BSCF cathode is complicated 

and thus worth investigating, especially at temperature below 600oC. In addition, BSCF is 

known to have affinity to CO2 and how it will be impacted by air containing CO2 in proton 

conducting IT-SOFC is worth studying.  
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• Recent alternative cathodes 

Additionally, some recent alternative cathodes, including transition-metal–doped 

derivative of the PCC (e.g. BaZrxY1-xO3-δ (BZY)), are believed to be mixed electronic and 

protonic conductive due to the existence of transition-metal cations (Co and Fe) dopants 

and protonic conductivity due to the original PCC material. Several representative studies 

are described below.   

Shang et al. (2013) studied BaCo0.4Fe0.4Zr0.2O3-δ (BCFZ) as a possible mixed electronic 

and protonic conducting cathode using both proton conducting cathode symmetrical cell 

and anode-supported full cell based on BZCYYb electrolyte. [132] In addition, cells with 

LSCF cathode were adopted as the comparison. As shown in Figure 2. 38, the BCFZ 

cathode symmetrical cell showed the lowest interfacial resistances in air containing 3%H2O 

at 650-400oC compared to the same cell in dry air and the LSCF cathode symmetrical cell. 

The reduced interfacial resistance of BCFZ cathode with the introduction of water was 

attributed to the enhancement in cathode conductivity with the introduced protonic 

conductivity from hydration reaction.  
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Figure 2. 38 ASR temperature dependence for BCFZ (with water and without water) vs. 

LSCF. From Shang et al. [132] 

 

In addition, the power output of both BCFZ/ BZCYYb/ Ni-BZCYYb and 

LSCF/BZCYYb/Ni-BZCYYb proton conducting anode-supported cells were tested. The 

cell with BCFZ cathode showed much higher maximum power density compared to the 

cell with LSCF cathode as shown in Figure 2. 39. However, it’s noteworthy that the power 

density of the cell with LSCF cathode in studies is much lower than the similar anode-

supported full cell (with the configuration of LSCF/BZCY/Ni-BZCY) as mentioned above 

by Yang et al.   
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Figure 2. 39 Performance of the as-prepared single cells under hydrogen/air at different 

temperatures. (a) Cell with BCFZ cathode; (b) cell with LSCF cathode. From Duan et al. 

[132] 

 

 

Duan et al. (2015) studied another cathode BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) for 

proton conducting IT-SOFC based on BZCYYb electrolyte. [133] As shown in Figure 2. 

40, high power density of ~650mW/cm2 was achieved at 600oC, suggesting BCFZY is a 

good cathode on BZCYYb proton conducting IT-SOFC. In addition, very fine grain size 

of ~100nm was observed for the 900oC fire BCFZY cathode even after 1100 hours of 

operation. The great performance of the cell can be partially attributed to the fine microstate 

of the BCFZY cathode, which significantly increase the reaction sites on the cathode.  
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Figure 2. 40 (A) I-V and power density of the BCFZY/BZCYYb/Ni-BZCYYb anode- 

supported cell at 600-350oC (B) a cross-sectional view of the cell after operation for over 

1100 hours (inset figure is the high-magnification view of BCFZY0.1 cathode after 1100 

hours operation). Adapted from Duan et al. [133] 
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3 Chapter III: H2S Poisoning Behavior for the Anode of Proton Conducting 

IT-SOFC 

This chapter details the study on the H2S poisoning behavior for the anode of proton 

conducting IT-SOFC. This chapter is based on published paper by Shichen Sun, Osama 

Awadallah, and Zhe Cheng. Title of "Poisoning of Ni-based anode for proton conducting 

SOFC by H2S, CO2, and H2O as fuel contaminants." in Journal of Power Sources 378 

(2018): 255-263 and published paper by Shichen Sun, and Zhe Cheng. Title of "H2S 

Poisoning of Proton Conducting Solid Oxide Fuel Cell and Comparison with Conventional 

Oxide-Ion Conducting Solid Oxide Fuel Cell." in Journal of The Electrochemical Society 

165.10 (2018): F836-F844. 

 

3.1 Introduction 

Solid oxide fuel cell (SOFC) has shown great potential as an alternative power source due 

to its high energy conversion efficiency, high power density, and the ability to utilize 

readily available hydrocarbon fuels such as natural gas and coal gas, which are easier than 

pure hydrogen to transport and store in most areas. Recently intermediate temperature 

SOFC (IT-SOFC) has drawn growing attention due to higher overall thermodynamic 

efficiency and the possibility for lower cost and slower degradation from expanded choices 

of low-cost interconnect and sealing materials and reduced rate of corrosion and other 

unwanted reactions when the operating temperature is reduced from ~750-1000oC for 

conventional SOFC to the range of ~400-600oC. [12, 13, 134-136] 



67 

 

Among various types of possible electrolyte materials for IT-SOFC, proton conducting 

ceramics (PCC), for example, BaZr0.1Ce0.7Y0.2–xYbxO3–δ (BZCYYb), [15, 82, 84, 87-89] 

have become popular due to their high ionic conductivity at intermediate temperatures 

compared to conventional oxide-ion conducting electrolytes and the absence of anode-side 

fuel dilution. However, the change in anode reaction mechanism from oxide-ion 

conducting SOFC to proton conducting IT-SOFC has not been well studied yet. For 

example, previous studies have revealed that the anode for proton conducting IT-SOFC, 

which are based on cermet anodes consisting of Ni and PCC electrolyte material, seem to 

show better tolerance against poisoning by low parts-per-million (ppm)-level H2S than 

conventional oxide-ion conducting SOFC. [15, 38, 100, 137] In particularly, for the cermet 

anode of conventional oxide-ion SOFC based on Ni and oxide-ion conducting electrolyte 

material (e.g. YSZ), the H2S poisoning effect was severe: as little as 0.05 ppm-level of H2S 

in H2 could cause significant poisoning at 750oC. [138] While for the cermet anode of 

proton conducting IT-SOFC, no significant poisoning behavior was observed with the 

introduction of 5ppm of H2S into humidified H2 fuel. [15] The reason for such change in 

poisoning behavior has not been systematically studied, especially at intermediate 

temperatures of ~400-600oC.   

Therefore, in this study, the electrochemical behaviors of the anode for proton 

conducting IT-SOFC upon exposure to ppm-level H2S as contaminants in hydrogen fuel 

are investigated based on both anode-supported and electrolyte-supported proton 

conducting SOFC (PC-SOFC) full cell, and Ni-based anode symmetrical cells using both 

proton conducting electrolyte (BZCYYb) and oxide-ion conducting electrolyte (YSZ).  
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The aim is to gain a better understanding of the electrochemical responses of proton 

conducting IT-SOFC to H2S poison and the differences in H2S poisoning behaviors 

between PC-SOFC versus conventional oxide-ion conducting SOFC (OC-SOFC).  

Besides that, series of chemical exposure tests on both loose Ni-BZCYYb powder and 

dense Ni-BZCYYb composite pellets were carried out to simulate the interaction between 

H2S and the cermet anode for proton conducting IT-SOFC under various conditions 

followed by characterization techniques such as X-Ray Diffraction (XRD), scanning 

electron microscopy (SEM), energy dispersive spectroscopy (EDS) and secondary ion 

mass spectroscopy (SIMS).  

The results from these experiments will be presented and their implications on the 

anode reaction mechanism and kinetics, as well as the possible electrocatalytic role PCC 

play in the anode reaction for proton conducting IT-SOFC will be discussed.  

 

3.2 Experimental 

3.2.1 Powder Synthesis and Cell Fabrication 

In this study, BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) was chosen as the proton conducting 

ceramic (PCC) electrolyte, which was synthesized by glycine nitrate process (GNP) 

process. [89] Briefly, salts of Ba(NO3)2 (#A11305, Alfa Aesar, 99%), ZrO(NO3)2•xH2O 

(#43224, Alfa Aesar, 99.9%), Ce(NO3)3•6H2O (#11329, Alfa Aesar, 99.5%), 

Y(NO3)3•6H2O (#12898, Alfa Aesar, 99.9%), and Yb(NO3)3•xH2O (#12901, Alfa Aesar, 

99.9%) were dissolved in hot DI water (set at ~100oC) together with glycine (#G8898, 
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Sigma Aldrich, 99+ %).  The molar ratio was 1: 1 between glycine and total metal ions.  

The solution was then heated up on a hotplate set at ~540oC.  After the self-combustion 

process, the fine powder produced was collected and then calcined in ambient air at 1100oC 

for 5 hours to form the pure perovskite phase.  The cathode material used in this study is 

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and the synthesis steps are similar to that for BZCYYb 

except the starting materials were changed to La(NO3)3 (#A11305, Alfa Aesar, 99%), 

Sr(NO3)2 (#31633, Alfa Aesar, 99%), Fe(NO3)3·9H2O (#216828, Alfa Aesar, 99%), 

Co(NO3)2·6H2O (#239267, Alfa Aesar, 99%). After self-combustion, the powder was 

calcined at 1000oC for 2 hours in ambient air to form the pure perovskite phase. [139] 

Anode-supported PC-SOFC full cells with the configuration of Ni-

BZCYYb/BZCYYb/LSCF-BZCYYb were fabricated.  First, anode precursor/electrolyte 

bilayer was prepared via dry-pressing using 0.2 g NiO-BZCYYb-starch powder mixture 

with weight ratio of 5.5: 3.5: 1 and 10 mg BZCYYb electrolyte powder in a 10 mm 

diameter die at a pressure of 250 MPa.  The pellets of anode precursor/electrolyte bilayer 

were then sintered at 1400oC for 5 hours with heating and cooling rate of 5oC/min (anode 

side facing down touching alumina crucible support while electrolyte side facing up). [89] 

The cathode slurry was prepared by mixing powders of LSCF and BZCYYb and polymer 

binder solution (containing 8wt% polymer) with LSCF: BZCYYb: polymer binder solution 

weight ratio of 7: 3: 15, followed by ball-milling for 24 hours.  The cathode was brush-

painted onto the electrolyte side of the sintered anode/electrolyte bilayer pellets using the 

LSCF-BZCYYb slurry.  The painted cathode area was ~0.16 cm2, and it was dried in an 

air oven at 150oC and then calcined at 1100oC for 2 hours in ambient air with heating and 
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cooling rate of 5oC/min.  Finally, silver mesh and wires were attached to the electrodes 

using pure silver paste for current collection.  

For the electrolyte-supported PC-SOFC full cells with the configuration of Ni-

BZCYYb/BZCYYb/LSCF-BZCYYb, the fabrication process is described as following: 

First, an electrolyte pellet was prepared via dry-pressing 0.2 g BZCYYb powder in a 10 

mm diameter die at a pressure of 250 MPa followed by sintering at 1550oC for 5 hours in 

air with heating and cooling rate of 5oC/min in a so called “protected sintering” 

configuration. [89] Second, the anode slurry was brushed-painted onto one side of the 

sintered electrolyte pellet. The anode slurry was made by mixing NiO, BZCYYb and 

organic binder solution (with polymer concentration of 8 wt.%, same for below) at a weight 

ratio of 3: 2: 5 followed by heat treatment in air at 1400oC for 2 hours at a heating and 

cooling rate of 5oC/min. Finally, LSCF-BZCYYb cathode slurry, with a LSCF: BZCYYb 

: organic binder solution weight ratio of 6.5 : 3.5 : 10 was brush-painted onto the other side 

of the pellet and then calcined at 1100oC for 2 hours in ambient air with a heating and 

cooling rate of 5oC/min. [138] Both the cathode and anode area were ~0.16 cm2. For 

subsequent electrochemical test, silver mesh and wires were attached to the electrodes 

using pure silver paste for current collection.  

In addition, both anode symmetrical PC-SOFC with the configuration of Ni-

BZCYYb/BZCYYb/Ni-BZCYYb and anode symmetrical OC-SOFC with the 

configuration of Ni-YSZ/YSZ/Ni-YSZ were fabricated as described below. The anode 

symmetrical PC-SOFC were fabricated by first dry pressing 0.1 g of BZCYYb powder into 

10 mm diameter pellets at a pressure of 250 MPa.  The electrolyte pellets were then sintered 
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at 1550oC for 5 hours under “protected condition” with heating and cooling rate of 5oC/min. 

[38] Then, the anode slurry was made by mixing NiO, BZCYYb, and polymer binder 

solution (polymer content of 8%) at weight ratio of 5.5 : 3.5 : 9. After that, symmetrical 

anodes were painted onto both sides of the sintered electrolyte pellet followed by drying in 

an air oven at 100oC and then calcination at 1400oC for 2 hours in ambient air with heating 

and cooling rate of 5oC/min.  For the anode symmetrical OC-SOFC, first, 0.1 g of YSZ 

powder (#312022, FuelCellMaterials, 8 mol.%Y2O3 doping, USA) was dry pressed into a 

10 mm diameter pellet at a pressure of 120 MPa. Then, the YSZ electrolyte pellet was 

sintered in air at 1550oC for 5 hours with a heating and cooling rate of 5oC/min. Anode 

slurry was made by mixing NiO, YSZ, and polymer binder solution at a weight ratio of 3 : 

2 : 5. After that, symmetrical anodes were painted onto both sides of the sintered YSZ 

electrolyte pellet followed by drying in an air oven at 100 oC and then calcination at 1400oC 

for 2 hours in ambient air with a heating and cooling rate of 5 oC/min. For both anode 

symmetrical cells, silver meshes were attached onto both electrodes using pure silver paste 

for current collection.  

 

3.2.2 Testing of the Effects of H2S on Electrochemical Cells 

For electrochemical testing of PC-SOFC full cells (anode-supported and electrolyte-

supported), the cells were first sealed onto one end of an alumina support tube using 

ceramic sealant (Aremco 552, USA) and placed in the hot zone of a tube furnace. [140] 

Then the cell was heated up to 750oC, during which the anode-side was purged with pure 

nitrogen (N2) (UHP grade, Airgas, USA) while the cathode side was exposed to ambient 
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air. At 750oC, clean dry hydrogen (H2) (UHP grade, Airgas, USA) was introduced into the 

anode side at a flow rate of 40 mL/min, and NiO in the anode was reduced to Ni. After the 

anode reduction, electrochemical measurements including electrochemical impedance 

spectroscopy (EIS) measurements and cell voltage measurement under constant current 

were carried out using a potentiostat (Interface 1000, Gamry, USA). For EIS 

measurements, the frequency range was set from 10-2 Hz to 106 Hz with AC amplitude of 

0.1mA.  

To characterize the effects of H2S on the electrochemical responses of the anode-

supported PC-SOFC, low ppm-level H2S was introduced into the H2 fuel while keeping the 

total fuel flow rate the same.  (In particular, 38.7-36 mL/min of H2 gas was passed through 

a water bubbler at room temperature and then 1.3-4 mL/min of 100 ppm H2S balanced by 

H2 gas mixture (Airgas, USA) was combined with the humidified H2 stream before being 

introduced into the anode chamber to get the corresponding concentration of H2S, All fuel 

gas concentrations mentioned in this study for various gas mixtures are by volume at room 

temperature before entering the anode chamber.)  For anode-supported SOFC full cells, the 

change in cell voltage was monitored continuously at a constant current density of 125 

mA/cm2, and EIS was recorded before, after 2 hours of exposure to ppm-level H2S, and 

after removal of H2S for 24 hours under both open circuit condition and biased condition 

of 0.7V.  In addition, in order to reveal the impact of H2O including how H2O influences 

the H2S poisoning behavior, in some cases, H2 gas was passed through a water bubbler at 

room temperature before being introduced into the anode chamber.   
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To characterize the effects of H2S on the electrochemical responses of the electrolyte-

supported PC-SOFC, at each temperature (750, 650, 550 and 450oC), 3-10 ppm H2S was 

introduced into the humidified H2 fuel while keeping the total fuel flow rate the same. The 

changes in cell voltage under constant currents densities (35, 35, 6 and 2 mA/cm2 at testing 

temperatures of 750, 650, 550 and 450oC, respectively) were recorded. In addition, EIS 

spectra were recorded before and after 2 hours of exposure to low ppm-level H2S.  

For testing of both anode-symmetrical PC-SOFC and OC-SOFC, they were placed in 

the hot zone inside a one-end closed ceramic tube with gas fed directly to the cell. The 

symmetrical cells were also heated up in N2 to 750oC and then reduced in pure H2 at 750oC. 

EIS under open circuit condition were recorded in humidified H2 (~3% moisture, labelled 

as wet H2 in this study) and in wet H2 containing 10 ppm of H2S at temperatures of 750, 

650, and 550oC. The detailed testing sequence was as following: EIS was first recorded in 

clean wet H2 from 750oC all the way to 550oC, and the cell was then heated up to 750oC in 

wet H2. After that, 10 ppm H2S was introduced into the wet H2 and EIS was recorded again 

after 2 hours of holding at each temperature (750, 650, and 550oC).  

 

3.2.3 Stability Tests of Ni-BZCYYb Mixed Powders 

To study the chemical stability of Ni-BZCYYb cermet anode under relevant testing 

conditions and understand the observed electrochemical responses to H2S, a series of 

experiments were carried out by exposing NiO-BZCYYb loose powder mixtures (5.5: 3.5 

weight ratio) after hydrogen reduction to ppm-level H2S as fuel contaminants in both ~3% 
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humidified and dry H2. In each set of tests, 10 mg of NiO-BZCYYb powder mixture was 

placed in an alumina boat in a one-end closed tube with fuel gas mixture directly fed to the 

sample surface.  As in electrochemical testing, the samples were first heated up in N2 to 

750oC. Then NiO in the mixture was reduced to Ni in dry H2 for 30 minutes. After that, the 

samples were cooled down to 550oC, and 10 ppm H2S was introduced into the hydrogen 

fuel (3% humidified or nominal dry with ~10 ppm H2O) stream for 24 hours. For 

comparison purpose, one sample was treated in the same way without the introduction of 

H2S. All post-exposure samples were cooled rapidly (by quickly removing the sample tube 

from the furnace) in clean N2 to avoid any additional reaction. X-Ray diffraction 

(SIEMENS diffractometer D5000) was taken for all samples after the exposure tests for 

phase identification. Besides that, some samples were analyzed using energy dispersive 

spectroscopy (EDS) equipped on a field emission scanning electron microscope (FE-SEM, 

JEOL JSM 6330F) for determining the distribution of elements of interest such as Ba, Ni 

and S.  

 

3.2.4 SIMS Analysis on Ni-BZCYYb Pellet after H2S Exposure 

Since the poisoning process and related mechanism for conventional oxide-ion conducting 

SOFC with Ni-YSZ cermet anode and YSZ electrolyte are well studied and documented in 

the literature, [26, 28, 29, 31, 33, 137, 138]the focus here in this study is on the sulfur-

anode interaction for PC-SOFC.  
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Considering the fact that sulfur is well known to adsorb strongly over Ni surface 

without formation of bulk nickel sulfides under these conditions with different extent of 

coverage depending on the exact temperature and H2S concentration, [25, 28] the issue of 

particular interest here is the interaction between the BZCYYb PCC electrolyte and H2S 

under the testing condition. SIMS is very sensitive and will be complementary to XRD and 

EDS for the analysis on the surface of Ni-BZCYYb.  

To simulate the H2S poisoning effect on Ni-PCC cermet anode, dense Ni-BZCYYb 

pellets were prepared by mixing Ni (99.8%, -300 mesh, Alfa Aesar, USA) and BZCYYb 

powder with the weight ratio of 6: 4 and pressing into a 10 mm diameter pellet at the 

pressure of 100 MPa. The pressed pellet was then sintered at 1350oC in 4% H2 balanced 

by argon (Ar) (UHP grade, Airgas, USA) for 5 hours to avoid possible oxidation. For 

further characterizations, the sintered pellets were ground and polished to achieve a smooth 

surface. After that, the polished pellet was exposed to 10 ppm(v) H2S balanced by ~3% 

humidified H2 at 550oC for 24 hours with subsequent rapid cooling in clean wet H2. 

Secondary-ion Mass Spectroscopy (SIMS) was then conducted on the post H2S-exposure 

sample surface using an ion time of flight (Ion TOF) - SIMS instrument utilizing Bismuth 

(III) cation (Bi3+) for measurement on fields of view (FOV) between 20-100μm. Barium, 

sulfur, nickel and their corresponding oxides and hydroxides ion species were detected 

under both positive and negative ion modes for elemental distribution identification and 

depth profiling. 
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3.3 Results 

3.3.1 H2S Effect on Ni-BZCYYb/BZCYYb/LSCF Anode-supported PC-

SFOC Full Cell 

The impedance spectra at 750oC for the Ni-BZCYYb/BZCYYb/LSCF anode-supported 

PC-SOFC full cell under open circuit condition before and after the introduction of 5 ppm 

H2S into the H2 fuel is shown in Figure 3. 1.  There is very little change in either ohmic 

resistance (RO) or apparent interfacial resistance (Rai, which is the difference between the 

high frequency and low frequency intercepts in the impedance curve) with the introduction 

of 5 ppm H2S to the dry H2 fuel (the so-called “dry” H2 in this study was directly from 

UHP grade H2 cylinder with pH2O of ~10 ppm).  The addition of 3% moisture to the H2 

fuel does not seem to change the overall electrochemical response with respect to 

introduction of 5 ppm H2S poison, as shown also in Figure 3. 1.    

 

 

Figure 3. 1 Impedance spectra for a Ni-BZCYYb/BZCYYb/LSCF-BZCYYb anode 

supported proton-conducting SOFC full cell at 750oC showing the effect of introducing 5 

ppm H2S as fuel contaminant to the dry H2 (UHP grade H2 with pH2O ≈ 10 ppm; same 

for all subsequent figures) and 3% humidified H2 (i.e. ~3% H2O + 97% H2, labelled as 

wet H2 or simply wet in subsequent figures). 
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Figure 3. 2 (a) and (b) show the change of cell voltage of the anode-supported full cell 

under constant current at 750°C as a function of time when 5 ppm H2S was introduced into 

and then later removed from the fuels of dry H2 and 3% humidified H2, respectively. The 

PC-SOFC with Ni-BZCYYb anode and BZCYYb electrolyte, despite the gradual 

degradation (probably due to non-ideal cell fabrication), appears to show no obvious 

poisoning by the low ppm H2S introduced.  Such tolerance to low ppm H2S for proton 

conducting SOFC is consistent with earlier observations such as that by Yang et al. who 

reported Ni-BZCYYb/BZCYYb/LSCF anode-supported cells show sulfur tolerance up to 

~20 ppm H2S at 750oC (see Figure 2. 11).[15] 
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Figure 3. 2 Plots of cell voltage versus time for the Ni-BZCYYb/BZCYYb/LSCF-

BZCYYb anode-supported PC-SOFC full cell at 750oC when 5 ppm of H2S is introduced 

into and later removed from the fuel of (a) dry H2 (pH2O ≈ 10 ppm) and (b) 3% 

humidified H2. 
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3.3.2 H2S Effect on Ni-BZCYYb/BZCYYb/LSCF Electrolyte-supported PC-

SOFC Full Cell 

The impedance spectra for the Ni-BZCYYb/BZCYYb/LSCF-BZCYYb electrolyte-

supported PC-SOFC full cell under open circuit condition with 10 mV AC bias before and 

after the introduction of 3-10 ppm H2S into the 3% wet H2 fuel from 750oC to 450oC are 

shown in Figure 3. 3. At 750oC (Figure 3. 3 (a)), with the introduction of 3 ppm H2S, a 

small increase (from 1.18 Ω∙cm2 to 1.25 Ω∙cm2 or 6% relative) in the total electrode 

apparent interfacial resistance (Rai) was observed but no change in cell ohmic resistance 

(RO), which are similar to the observations for anode-supported PC-SOFC. As H2S 

concentration increased from 3 ppm to 10 ppm, the poisoning effect got slightly more 

severe. Furthermore, it’s noteworthy that the increase in Rai is mainly due to the increase 

in the middle and low frequency (MF and LF, 104 to 10-2 Hz) semicircles, while almost no 

change was observed for the high frequency (HF, 106 to 104 Hz) semicircles.  
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Figure 3. 3 Impedance spectra measured under open circuit condition for a Ni-

BZCYYb/BZCYYb/LSCF-BZCYYb electrolyte-supported PC-SOFC full cell at (a) 

750oC, (b) 650oC, (c) 550oC, and (d) 450oC showing the effect of introducing 3-10 ppm 

(by volume) H2S as fuel contaminant to the ~3% wet H2.  
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As temperature decreased to 650, 550 and 450oC, the observed poisoning behaviors by 

3-10 ppm H2S of the electrolyte-supported PC-SOFC full cell largely remain unchanged 

with a small (~10 to 20%) yet observable increase in electrode apparent interfacial 

resistance Rai but no change in ohmic resistance RO, and the increase in Rai is limited to the 

MF-LF semicircles (see Figure 3. 3(b to d)).  

Additionally, as shown in Figure 3. 4, the impedance spectra measured under constant 

current (e.g., 35 mA/cm2) mode do not show obvious difference comparing with those 

measured under open circuit conditions.  

 

Figure 3. 4 Impedance spectra for a Ni-BZCYYb/BZCYYb/LSCF-BZCYYb electrolyte-

supported PC-SOFC full cell operated with constant current of 5.5 mA/cm2 at (a) 750oC 

and (b) 650oC showing the effect of introducing 3-10 ppm H2S as fuel contaminant to the 

wet H2.  
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Figure 3. 5 shows the cell voltage for an electrolyte-supported PC-SOFC full cell under 

constant current before, after the introduction of 3-10 ppm H2S, and after the removal of 

H2S in the wet hydrogen fuel. At 750oC, the decrease in cell voltage due to the introduction 

of ppm-level H2S was almost negligible (Figure 3. 5(a)), which is in line with the 

observations (no change in cell voltage upon H2S introduction to H2) for anode supported 

PC-SOFC full cell at this temperature as shown in Figure 3. 1. As temperature dropped to 

650-450oC range, the decrease in cell voltage with the introduction of H2S becomes more 

obvious. Upon the removal of H2S, cell voltage recovered slowly and also only partially at 

650oC, while at lower temperature of 550 and 450oC, the recovery was not significant. 

 

Figure 3. 5 Plots of cell voltage versus time under constant current for the Ni-

BZCYYb/BZCYYb/LSCF-BZCYYb electrolyte-supported PC-SOFC full cell at (a) 
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750oC, (b) 650oC, (c) 550oC, and (d) 450oC when 3-10 ppm of H2S is introduced into and 

later removed from the fuel of 3% humidified H2. 

 

3.3.3 H2S Effect on Ni-BZCYYb/BZCYYb/Ni-BZCYYb Anode Symmetrical 

PC-SOFC  

The impedance spectra of the Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical 

PC-SOFC were measured at 750oC under open circuit condition with 10 mV AC bias in 

dry H2 and H2 containing 3, 5, and 10 ppm of H2S are shown in Figure 3. 6 (a).  Different 

from the anode-supported and electrolyte-supported PC-SOFC full cell, for the anode 

symmetrical PC-SOFC, low ppm H2S leads to clear increase in the total electrode apparent 

interfacial resistance Rai but no change in cell ohmic resistance RO.  With increasing 

concentration of H2S from 3 ppm to 5 ppm, the poisoning effect seems to get more severe.  

However, when H2S concentration was further increased to 10 ppm, no further change in 

Rai was observed, suggesting possible saturation of the H2S poisoning effect.  Examination 

of the impedance spectra suggests that the increase in Rai is mainly due to the increase in 

the middle and low frequency (MF and LF) semicircles, while the high frequency (HF) 

semicircle remains largely unchanged after the introduction of 3-10 ppm of H2S.  

The influence of water vapor on the H2S poisoning effect for the anode symmetrical 

cell is shown in Figure 3. 6 (b).  It shows similar poisoning behavior by 3-10 ppm H2S in 

~3% humidified H2 as that in dry H2.  This suggests that presence of significantly increased 

concentration of water vapor from ~10 ppm in the so-called dry H2 to ~3% in the H2 fuel 
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does not seem to dramatically change the electrochemical response of Ni-cermet anode to 

low-ppm level H2S poison for PC-SOFC.  

The results of low-ppm level H2S poisoning effect on the Ni-BZCYYb/BZCYYb/Ni-

BZCYYb symmetrical cell at reduced temperature of 650oC and 550oC were shown in 

Figure 3. 6 (c), (d), (e) and (f). It’s obvious that, similar to 750oC, no change in the HF 

semicircle or RO was observed under both dry and wet H2 conditions.  On the other hand, 

at 650oC and 550oC, the increase in LF loops caused by H2S becomes more obvious than 

at 750oC, while no saturation of H2S poisoning effect was observed up to 10 ppm of H2S 

at those temperatures.  
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Figure 3. 6 Plots showing change of cell impedance spectra for the Ni-

BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical PC-SOFC in fuels of dry H2 (a, c, 

e) and ~3% humidified H2 (b, d, f) before and after the introduction of 3, 5, and 10 ppm 

of H2S at 750oC (a and b), 650oC (c and d), and 550oC (e and f), respectively.   

 

3.3.4 H2S Effect on Ni-YSZ/YSZ/Ni-YSZ Anode Symmetrical OC-SOFC  

Additionally, the H2S poisoning effect on anode symmetrical OC-SOFC is also studied for 

comparison purposes.  As shown in Figure 3. 7 (a), upon the introduction of 10 ppm H2S 

into wet H2 at 750oC, Rai increases by ~400% for the Ni-YSZ/YSZ/Ni-YSZ anode 

symmetrical OC-SOFC, which is much larger than the increase in Rai (only ~10%) for the 

Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical PC-SOFC as shown in Figure 3. 

8 (a). Similar trend, i.e., the significantly smaller relative increase in Rai due to low ppm-

level H2S poisoning for PC-SOFC than for conventional OC-SOFC, was also observed at 

lower temperatures of 650, and 550oC, as shown in Figure 3. 8(b to c) versus Figure 3. 7(b 

to c).  



87 

 

 

Figure 3. 7 Impedance spectra for a Ni-YSZ/YSZ/Ni-YSZ anode symmetrical OC-SOFC 

at (a) 750oC, (b) 650oC, (c) 550oC showing the effect of introducing 10 ppm H2S as fuel 

contaminant to the wet H2 (ohmic resistance subtracted)  
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Figure 3. 8 Impedance spectra for an Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode 

symmetrical PC-SOFC at (a) 750oC, (b) 650oC, and (c) 550oC showing the effect of 

introducing 10 ppm H2S as fuel contaminant to the wet H2 (ohimc resistance subtracted).  
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The XRD patterns for the Ni-BZCYYb loose powder mixture after exposure test to 10ppm 
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of sulfur accumulation in the samples.  These results prove that there is no observable bulk 

phase reaction between Ni and BZCYYb and 10 ppm H2S at 550oC.   

 

Figure 3. 9 XRD patterns for NiO-BZCYYb mixed powders after reduction in H2 at 

750oC and then exposure tests at 550oC for 24 hours in pure H2 (as control sample) or 

fuel gas mixtures of dry H2+10ppm H2S/H2 or wet H2 + 10 ppm H2S. These results prove 

that there is no observable bulk phase reaction between Ni and BZCYYb and 10 ppm 

H2S at 550oC.   
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3.3.6 SIMS Analysis on Ni-BZCYYb Composite Pellet after Exposure to 

Low-ppm Level H2S 

Figure 3. 10 shows a representative optical microscope image of the Ni-BZCYYb 

composite pellet sample after sintering in 4%H2/Argon (Ar) forming gas and subsequent 

grinding and polishing. The sample surface is reasonably smooth with easily identifiable 

bright and dark parts, which correspond to the Ni and the BZCYYb phase, respectively. 

The Ni regions have dimension of ~10-20 μm, while the BZCYYb regions are ~30-60 μm 

in size. 

 

Figure 3. 10 Metallographic microscope image of the sintered and polished Ni-BZCYYb 

composite sample surface. The bright and dark regions correspond to the Ni and the 

BZCYYb phase, respectively 

 

 Figure 3. 11 shows a representative SIMS elemental mapping image of Ni and Ba 

species and S species from the surface of the Ni-BZCYYb dense composite pellet after it 

had been exposed to 10 ppm H2S balanced by ~3% humidified H2 at 550oC for 24 hours 
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followed by rapid cooling in clean wet H2. It’s observed that Ba and S species show strong 

association with each other, as evidence by their overlapping distribution, while the 

distribution of Ni species is complementary to Ba and S species.  

 

Figure 3. 11 Representative SIMS mapping results showing the distributions of Ni, S, and 

Ba species (including their associated oxides) as the sample was sputtered down during 

the analysis 

2  

3.4 Discussion  

3.4.1 Electrochemical Behaviors of PC-SOFC against H2S Poisoning 

For electrolyte-supported PC-SOFC full cell and anode symmetrical cell, depending on 

temperature and H2S concentration, there is an observable increase by ~10-30% in the 

electrode apparent interfacial resistance Rai, which is largely confined to the ML to LF 

semicircles, while there is no obvious change in ohmic resistance RO. (see Figure 3. 3, 

Figure 3. 4 and Figure 3. 6) These observations indicate that typical PC-SOFC with Ni-

PCC based cermet anodes are still subjected to poisoning by low ppm-level sulfur 

contaminant in the hydrogen fuel at ~750 to 550oC. Such a conclusion is not surprising 

consider that the typical cermet anode for a common PC-SOFC still consists of Ni metal 

Ni S Ba
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and highly basic PCC electrolyte such as BZCYYb, both of which have high affinity for 

sulfur adsorption and may even form bulk sulfide phases (when H2S concentration is high 

in the range of hundreds of ppm or higher). [137] In addition, the results also show that as 

temperature drops (from ~750 to ~550oC), the observed poisoning by low ppm-level H2S 

becomes only slightly more obvious (see Figure 3. 4, Figure 3. 5, Figure 3. 6) and less 

reversible (Figure 3. 5), but there seems to be no fundamental change in the poisoning 

behavior, suggesting the underlying poisoning mechanism in that temperature range is 

likely to remain the same.  

Comparing with earlier studies and our own study, it seems that, at elevated 

temperature such as 750-600oC, the electrolyte-supported PC-SOFC as well as proton 

conducting anode symmetrical cell are more sensitive to H2S poisoning than anode-

supported PC-SOFC. [15, 38, 141, 142]Since all three types of electrochemical cells have 

the similar Ni-PCC cermet anode with doped Ba(Ce,Zr)O3 (e.g., BZCYYb) based PCC 

electrolyte, the difference in H2S sensitivity (i.e., the relative increase in Rai due to exposure 

to similar low-ppm H2S) is attributed to the large difference in the cermet anode thickness. 

The anode supported PC-SOFC full cell have thick anodes on the order of ~600 μm, while 

both electrolyte-supported PC-SOFC full cell and anode symmetrical PC-SOFC have 

relatively thin anode of ~30 μm, which makes the electrochemical response for those later 

two faster and more obvious. 
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3.4.2 Comparison of Electrochemical Behaviors of Anode Symmetrical PC-

SOFC versus OC-SOFC 

In this study, the electrochemical behavior against low-ppm level H2S for the anode 

symmetrical PC-SOFC is also compared with anode symmetrical OC-SOFC with YSZ 

electrolyte and Ni-YSZ cermet anode at ~750oC and lower temperatures. As summarized 

in However, there is also one major difference in the observed electrochemical behaviors 

against H2S poisoning between the two types of SOFCs. For comparable H2S concentration 

and temperature, the relative degradation in anode electrochemical reaction rate appears to 

be much smaller for a PC-SOFC comparing with a typical oxide-ion conducting SOFC. 

For example, for both electrolyte-supported (see Figure 3. 5) and anode-supported PC-

SOFC (Figure 3. 2), when temperature was 750oC, low ppm-level H2S causes a very small 

drop (~0-2%) in cell power output under constant current operation. (Note such an 

observation was made for low fuel utilization condition, which might change when current 

density or fuel utilization is high.) In comparison, numerous earlier studies clearly show a 

significant drop (~10-15%) in power output for conventional oxide-ion conducting SOFC. 

[29, 137] The results of impedance measurement under open circuit condition are also 

consistent with the power output measurement. For electrolyte-supported PC-SOFC full 

cell, as shown in Figure 3. 4, the electrode apparent interfacial resistance Rai increases due 

to 10 ppm H2S is only ~20% at 750oC, while it was ~80% for 8 ppm(v) H2S for 

conventional electrolyte-supported SOFC at 800oC. [29] Such a difference is even more 

obvious when comparison was made on the electrode interfacial resistance change for 

anode symmetrical cells. The possible explanations are discussed later.  
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Table 3. 1, there are several similarities. First, when low ppm level H2S is used (i.e., 

without the concern of causing bulk phase reactions), [137] both OC-SOFC and PC-

SOFC show performance degradation as evidenced by either a drop in cell power output 

(e.g., cell voltage drop under constant current condition) or an increase in electrode 

apparent interfacial resistance Rai with little or no change in cell ohmic resistance RO. 

Second, the extent of sulfur poisoning for both types of SOFC appears to get more 

significant when H2S concentration increases or when the temperature drops. [15, 29, 33, 

35, 38, 138] 

However, there is also one major difference in the observed electrochemical behaviors 

against H2S poisoning between the two types of SOFCs. For comparable H2S concentration 

and temperature, the relative degradation in anode electrochemical reaction rate appears to 

be much smaller for a PC-SOFC comparing with a typical oxide-ion conducting SOFC. 

For example, for both electrolyte-supported (see Figure 3. 5) and anode-supported PC-

SOFC (Figure 3. 2), when temperature was 750oC, low ppm-level H2S causes a very small 

drop (~0-2%) in cell power output under constant current operation. (Note such an 

observation was made for low fuel utilization condition, which might change when current 

density or fuel utilization is high.) In comparison, numerous earlier studies clearly show a 

significant drop (~10-15%) in power output for conventional oxide-ion conducting SOFC. 

[29, 137] The results of impedance measurement under open circuit condition are also 

consistent with the power output measurement. For electrolyte-supported PC-SOFC full 

cell, as shown in Figure 3. 4, the electrode apparent interfacial resistance Rai increases due 

to 10 ppm H2S is only ~20% at 750oC, while it was ~80% for 8 ppm(v) H2S for 

conventional electrolyte-supported SOFC at 800oC. [29] Such a difference is even more 

obvious when comparison was made on the electrode interfacial resistance change for 

anode symmetrical cells. The possible explanations are discussed later.  
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Table 3. 1 Summary of poisoning effect by low-ppm level H2S on oxide-ion conducting 

SOFC and PC-SOFC in hydrogen-based fuel at ~750 oC. For electrolyte, YSZ stands for 

8 mol% yttria stabilized zirconia while BZCYYb stands for BaZr0.1Ce0.7Y0.1Yb0.1O3-δ 

proton conducting ceramic (PCC) electrolyte. ∆RO and ∆Rai are the observed relative 

increase in cell ohmic resistance and total electrode apparent interfacial resistance, 

respectively, measured under open circuit condition.  

Cell 

Structure 
Electrolyte Reference T (oC) 

pH2S/pH2 

(ppm(v)) 

Poisoning behavior 

∆RO ∆Rai 
Drop in cell 

power 

Anode- 

supported 

cell 

YSZ 

 

Rasmussen3 

 

850 

 

 

7 

 

0 

 

~30% 

 

 

~10% (at 1 

A/cm2) 

 

Yang17 

 

750 

 

10 

 

~10% 

 

~80% 

(at 200 mA/cm2) 

 

 

~11% (at 241 

mA/cm2) 

PCC 

 

Yang12 

 

750 

 

 

20 

 

 

0 

 

 

0 (wet) 

 

~0 (at 700 

mA/cm2) 

 

 

Sun11 

 

750 

 

 

5 

 

0 

 

~2% 

 

~0 (at 125 

mA/cm2) 

Electrolyte 

-supported 

cell 

YSZ 

 

Zha6 

 

800 

 

 

8 

 

0 

 

~80% 

 

~15% (at 0.7 V) 

PCC 

 

This study 

 

750 10 

 

0 

 

~20% 

 

~2% (at 35 

mA/cm2) 

Anode 

symmetrical 

cell 

YSZ 

 

Matsuzaki4 

 

 

750 

 

 

0.7 

 

 

0 

 

 

~110% 

 

 

 

N/A 

 

 

 

Zha6 

 

 

800 

 

8 

 

0 

 

~200% 

 

This study 

 

 

750 

 

10 

 

0 

 

~400% 

PCC Sun11 750 10 0 ~10% 

 

In addition, for the anode symmetrical PC-SOFC with the configuration of Ni-

BZCYYb/BZCYYb/Ni-BZCYYb, the change of activation energy for ohmic resistance RO 



96 

 

and apparent interfacial resistance Rai in dry H2 (pH2O ≈ 10 ppm as mentioned) and upon 

introduction of various concentrations of H2S into dry H2 is shown in Figure 3. 12 (a). The 

activation energy for RO was about 0.45 eV, which matches that for typical proton 

conducting electrolytes. [85] The activation energy for the overall anode apparent 

interfacial resistance Rai was about 0.92 eV, which is comparable to that for Ni-YSZ cermet 

H2 electrode for oxide ion SOFC. [83, 87, 143, 144] As the impedance spectra (see Figure 

3. 6) could be clearly separated into at least three semi-circles, the activation energy for 

each of the high, middle and low frequency part of polarization resistance (RHF, RMF, RLF) 

was also analyzed.  As mentioned before, with the introduction of 10 ppm H2S, there is no 

obvious change in the HF semicircle. Consistently, there also appears to be no change for 

the activation energy for RHF.  This suggests that the HF process, which is most likely 

attributed to the charge transfer step, is not influenced by the introduction of low ppm-level 

H2S for the anode symmetrical cell based on BZCYYb proton conducting electrolyte and 

Ni-BZCYYb cermet anode.  In comparison, for the low frequency LF semicircle, the 

activation energy seems to increase with increasing H2S concentration up to ~5 ppm.  This 

means the introduction of low ppm-level H2S makes it more difficult for the LF process 

and greater activation would be required.  A natural hypothesis would be that the LF 

process might be associated with the surface diffusion process for the hydrogen electrode 

reaction of PC-SOFC, and the strong adsorption of sulfur interferes with the surface 

diffusion of adsorbed hydrogen (atoms).  The sensitivity of adsorption to different low 

ppm-level H2S suggests that the surface diffusion in this anode reaction is actually more 

likely to be over the BZCYYb surface as nickel surface should have already been saturated 

by parts-per-billion (ppb) level H2S at intermediate temperature of 550oC and no longer 
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sensitive to variation in low ppm-level H2S. [25, 28] As to the mid frequency MF process, 

interestingly, although it seems to slow down, the activation energy actually does not 

change upon H2S introduction.  One possibility is that the poisoning at MF is related to 

physical blockage, i.e., reduced possibility of occupation but without change in the reaction 

mechanism.  Therefore, the MF process may correspond to hydrogen adsorption onto the 

BZCYYb surface since at intermediate temperature such as 550oC, Ni surface would 

already be completely covered by ppb-level sulfur and would not show sensitivity in low 

ppm-level H2S concentration. [25, 28, 137]The H2S poisoning behavior for proton 

conducting SOFC in 3% humidified hydrogen (see Figure 3. 8 and Figure 3. 12 (b)) is 

similar to that in dry H2, suggesting that introduction of significantly more moisture to H2 

(i.e., 3% versus ~10 ppm in the so-called dry H2) does not fundamentally change the sulfur 

poisoning behavior for Ni-proton conducting electrolyte cermet anode of PC-SOFC.   
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Figure 3. 12 Comparison of activation energy (calculated from 550-750oC) for ohmic 

resistance RO, total apparent interfacial resistance Rai, and the different electrode 

processes at high frequency RHF, mid-frequency RMF, and low frequency RLF in (a) dry 

H2 (pH2O ≈ 10 ppm) and (b) 3% humidified H2 without and with 3, 5, and 10 ppm H2S 

poison for the Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical PC-SOFC.   
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3.4.3 Analysis of the H2S Effect on Ni-BZCYYb Mixture  

It should be mentioned that, unlike the conventional oxide ion conducting YSZ electrolyte, 

the highly basic proton conducting oxides such as BZCYYb are known to have strong 

tendency to interact with H2S to either form bulk metal sulfides (e.g., BaS) or strongly 

adsorbed surface sulfur species.  In fact, it had been reported that at 750oC, the BZCYYb 

proton conducting electrolyte would not react with 50 ppm H2S in hydrogen, [15]but it 

does react and form bulk BaS when H2S concentration was increased to 100 ppm or when 

the balance gas was changed to argon. [89] In this study, as mentioned before, the bulk 

phase stability of the Ni-BZCYYb mixed powders against 10 ppm H2S balanced by dry or 

wet H2 at temperature such as 550oC was confirmed in the exposure tests (see Figure 3. 9 

(a)) showing no indication of observable bulk reaction between H2S and Ni or BZCYYb.  

In addition, analysis using EDS did not identify the presence of bulk sulfide in the post H2S 

exposure samples. On the other hand, The observed strong association between the Ba 

species (e.g., Ba+, BaO+, BaOH+) and S species (e.g., S-, SO-, SO2
-, SO3

-) indicates that 

besides the well-known sulfur adsorption on Ni metal phase, [25, 28, 29, 137, 138] H2S 

also interacts with the PCC electrolyte phase (in this study, BZCYYb) to form certain 

sulfur-containing species on and near the surface of the cermet including near the triple 

phase boundary (TPB).  

However, two experimental observations also need to be taken into account here. First, 

in our SIMS analysis, the observed association between Ba species and S species persists 

even after the sample was sputtered down using ions (in this case, Bi3+ ions) for tens of 

microns and even deeper. Second, as mentioned before, no bulk BaS or other sulfur-
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containing bulk phases were formed in Ni-BZCYYb powder, despite extended exposure to 

the low-ppm level H2S at the testing temperature including 550oC. 

Considering all the experimental observations discussed above especially XRD, EDS 

and SIMS analysis of the H2S exposed samples, the implication is that the interaction 

between H2S and BZCYYb PCC electrolyte under the condition studied (low ppm H2S at 

450-750oC) appears to be bulk in nature but not to the extent of forming a new crystalline 

phase. One possibility for such a scenario is that, with the presence of low ppm-level H2S 

in the gas atmosphere, some sulfur atoms may get incorporated or dissolved into the 

BZCYYb bulk at low concentration via displacing lattice oxygen transforming the 

BZCYYb material into an oxysulfide, i.e. Ba(Zr0.1Ce0.7Y0.1Y0.1)O3-δ-ySy with y<<1. This 

seems reasonable given that oxides such as cerium oxide (CeO2) was observed to transform 

gradually to oxysulfide and eventually to sulfide depending on H2S concentration. [141, 

145-147] In comparison, no clear association between Ni and H2S was detected by SIMS 

throughout the analysis including when the sample was sputtered down. This is consistent 

with the nature of sulfur adsorption over Ni surface and the limited sulfur solubility (on the 

order of 10 ppm) in solid nickel at those temperatures. [24-26, 29, 31] As the surface-

adsorbed sulfur is sputtered away during SIMS analysis, very little sulfur exists within the 

bulk of Ni (<~10 ppm(v)), and, therefore, no clear association of sulfur and Ni was 

identified. 
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3.4.4 Proposed H2S Poisoning Mechanism for the Anode Reaction Process of 

PC-SOFC 

In summary, this study shows that typical PC-SOFC with Ni-PCC electrolyte cermet anode 

is still poisoned by low ppm-level H2S at temperature in the range of 450-750oC. Consistent 

with conventional OC- SOFC, anode sulfur poisoning of PC-SOFC is characterized by an 

increase in anode interfacial resistance with no change in ohmic resistance. As H2S 

concentration increases or temperature decreases, the extent of sulfur poisoning (in terms 

of relative increase in interfacial resistance increase or drop in power output) increases, 

while it also becomes less reversible.  

However, as stated, there is also one major difference in terms of sulfur poisoning 

behavior between the two types of SOFCs with different ion conducting species. The 

observed extent of performance degradation due to sulfur poisoning by low-ppm level H2S 

for PC-SOFC is typically much less than that for conventional OC-SOFC under 

comparable conditions (e.g., temperature and bias condition). Such a difference is 

attributed primarily to the different anode reaction routes for these two types of SOFCs as 

shown in Figure 3. 13.  In particular, as state before in section 2.2.1. , the anode reaction in 

conventional oxide-ion conducting SOFC with YSZ electrolyte and Ni-YSZ cermet anode 

involves multiple steps including (1) hydrogen adsorption, (2) hydrogen dissociation and 

surface diffusion, (3) charge transfer and associated water (H2O) evolution, and finally (4) 

water desorption as shown in Figure 3. 13 (a). (It is recognized that hydrogen adsorption 

and dissociation over Ni surface is typically extremely fast at elevated temperature. [28, 

138]) When sulfur (e.g., as H2S) is present in the system, it will selectively adsorb over Ni 
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surface (and not much over YSZ surface), which inhibits the steps of (1) hydrogen gas 

adsorption, and (2) dissociation and surface diffusion as shown in Figure 3. 13 (b). In 

addition, due to the relatively large size of water molecules, it is also reasonable to expect 

that the adsorbed sulfur over Ni near TPB would also dramatically slow down step (3) of 

charge transfer as it requires unoccupied sites for water generation.  
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Figure 3. 13 Schematics showing anode reaction steps for both conventional oxide-ion 

conducting SOFC (a and b) and ideal pure PC-SOFC (c and d) before (a, c) and after (b, 

d) sulfur poisoning by low-ppm level H2S at intermediate temperature. Note that the 

anode reaction mechanism for PC-SOFC is greatly simplified and the exact process 

including the dominating pathway still needs to be studied. In addition, BCZYYb stands 

for the BaZr0.1Ce0.7Y0.1Yb0.1O3-δ PCC electrolyte used in this study, while BZCYYbS 

stands for BZCYYb with sulfur incorporation into the oxygen sublattice to form 

Ba(Zr0.1Ce0.7Y0.1Y0.1)O3-δ-ySy oxysulfide with y<<1. 

 

In comparison, for a PC-SOFC especially at relatively low temperatures such as 550 or 

450oC, the system would approach ideal pure proton conduction condition. The anode 

hydrogen electrochemical oxidation reaction in such an ideal PC-SOFC would only involve 

(3’) hydrogen incorporation into the proton conducting electrolyte and no water evolution 

as shown in Figure 3. 13 (c).  [15, 38, 81, 88] (It is noted that unlike conventional OC-

SOFC, the exact anode reaction process for PC-SOFC, including whether it is limited to 

TPB or occurring over Ni or PCC surface, is not yet clear at the moment, and the schematic 

in Figure 3. 13 (c) is only an over-simplification of the actual processes.) Under such 

circumstance, if sulfur is present in the system, adsorbed sulfur would still cover both Ni 

metal as well the PCC electrolyte surface and interfere with (1) hydrogen adsorption and 

(2) dissociation and surface diffusion over Ni surface as shown in Figure 3. 13 (d). This 

naturally would slow down the overall anode reaction somewhat. However, it is 

hypothesized that, due to absence of water involvement in the anode reaction process for 

PC-SOFC and the relatively small size of hydrogen molecule/atom, the anode reaction 

could still proceed with less disruption than the circumstance when water is involved, as in 

conventional oxide-ion conducting SOFC.  
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On the other hand, one additional hypothesis from the observed much less degradation 

for sulfur poisoning of PC-SOFC comparing with conventional OC-SOFC is that the 

proton conducting ceramic (PCC) electrolyte (in this case, BZCYYb) might also play some 

(electro-)catalytic role in the anode hydrogen electrochemical oxidation reaction for PC-

SOFC. In other words, the PCC electrolyte surface might also be active for the adsorption 

and dissociation of hydrogen molecules in the hydrogen anode reaction for PC-SOFC, 

especially at temperature of ~450-550oC. The support for this hypothesis is that previous 

studies have shown that adsorbed sulfur would almost completely cover the Ni metal 

surface and dramatically slow down the adsorption and dissociation of hydrogen over the 

Ni surface under the relevant sulfur poisoning condition studied (e.g., 550 oC with ~10 

ppm(v) H2S). [25, 28, 137] For a PC-SOFC with Ni-PCC cermet anode, if all catalytically 

active sites are limited to the Ni surface, the near complete coverage of Ni surface by 

adsorbed sulfur would lead to very large increase in anode interfacial resistance Rai, which 

might be the case for the >400% increase in Rai for an anode symmetrical cell based on 

conventional oxide conducting electrolyte (see, for example, Figure 3. 7). In contrast, for 

a PC-SOFC, the actual observed relative increase in Rai was very moderate at ~10-20% 

(see, for example, Figure 3. 7Figure 3. 1, Figure 3. 3, Figure 3. 4 and However, there is 

also one major difference in the observed electrochemical behaviors against H2S poisoning 

between the two types of SOFCs. For comparable H2S concentration and temperature, the 

relative degradation in anode electrochemical reaction rate appears to be much smaller for 

a PC-SOFC comparing with a typical oxide-ion conducting SOFC. For example, for both 

electrolyte-supported (see Figure 3. 5) and anode-supported PC-SOFC (Figure 3. 2), when 

temperature was 750oC, low ppm-level H2S causes a very small drop (~0-2%) in cell power 
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output under constant current operation. (Note such an observation was made for low fuel 

utilization condition, which might change when current density or fuel utilization is high.) 

In comparison, numerous earlier studies clearly show a significant drop (~10-15%) in 

power output for conventional oxide-ion conducting SOFC. [29, 137] The results of 

impedance measurement under open circuit condition are also consistent with the power 

output measurement. For electrolyte-supported PC-SOFC full cell, as shown in Figure 3. 

4, the electrode apparent interfacial resistance Rai increases due to 10 ppm H2S is only 

~20% at 750oC, while it was ~80% for 8 ppm(v) H2S for conventional electrolyte-

supported SOFC at 800oC. [29] Such a difference is even more obvious when comparison 

was made on the electrode interfacial resistance change for anode symmetrical cells. The 

possible explanations are discussed later.  

Table 3. 1) even though Ni metal is still the only metal phase in the cermet anode.  

Therefore, it seems likely that the surface of PCC electrolyte such as BZCYYb could 

also be active for hydrogen adsorption and dissociation under the condition studied, which 

is possible given that PCC electrolytes are known to interact with hydrogen. With the 

presence of low-ppm level H2S, SIMS analysis of the Ni-BZCYYb composite suggests that 

sulfur atoms have got incorporated into the bulk of BZCYYb electrolyte (possibly by 

displacing lattice oxygen), while analysis using XRD and EDS have ruled out the formation 

of other crystalline bulk sulfides. We hypothesize that the similar nature of sulfur and 

oxygen in terms of their valence states may not lead to significant change in the defect 

structure of the PCC electrolyte, and hydrogen surface adsorption/dissociation might still 

remain active despite the PCC electrolyte surface oxygen covered-over or even (partially) 
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replaced by sulfur. Further detailed mechanism studies including i) analysis with more 

sensitive and quantitative surface analysis techniques, ii) use of patterned electrode cells 

with different metal electrodes that enable comparison between Ni metal and inert metal 

catalysts (e.g., gold or copper metal) and use of cells with different controlled 

microstrctures, and iii) theoretical modeling including fitting of the impedance data with 

better separation to equivalent circuits are all needed to test the hypotheses raised here and 

provide more insights about the fundamental anode reaction mechanism and sulfur 

poisoning processes for PC-SOFC. 

 

3.5 Conclusions 

The effect of H2S as a fuel contaminant on PC-SOFC was studied. The results from proton 

conducting SOFC full cells and proton conducting anode symmetrical cells clearly show 

that PC-SOFC, similar to conventional OC-SOFC, is still poisoned by low-ppm level H2S 

at temperatures in the range of 750 to 450oC with increase in anode interfacial resistance 

Rai and no change in ohmic resistance Ro. The sulfur poisoning for PC-SOFC gets more 

obvious and less reversible as H2S concentration increases. On the other hand, the relative 

degradation in anode reaction rate due to sulfur poisoning (e.g., as measured by relative 

increase in anode interfacial resistance) is much smaller for PC-SOFC than for 

conventional OC-SOFC under comparable conditions. This is attributed to the fact that the 

anode reaction route for an ideal PC-SOFC only involves proton incorporation and no 

water evolution, which is different from conventional OC-SOFC. The displayed 

significantly less anode sulfur poisoning for a PC-SOFC also implies that proton 
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conducting ceramic (PCC) electrolyte might play an important (electro-)catalytic role (i.e., 

promoting hydrogen adsorption/dissociation) in the anode hydrogen oxidation reaction for 

PC-SOFC, which helps maintain the reaction rate upon exposure to low-ppm level H2S. As 

no formation of bulk sulfide phases was revealed by bulk characterization techniques such 

as EDS and XRD for the post H2S exposure sample, surface sensitive technique of SIMS 

mapping with depth profiling was carried out.  The results suggest a strong association 

between Ba species and S species that persists into the bulk of the Ni-PCC composite, 

indicating the possible incorporation of sulfur into the barium containing PCC electrolyte. 

Further study using more quantitative surface analysis techniques, electrochemical testing 

involving patterned metal electrode cells with controlled geometry and/or electrode 

materials and cells with controlled microstructure, and theoretical modeling (including 

fitting to equivalent circuits) may help clarify the fundamental mechanism for the anode 

hydrogen reaction of PC-SOFC including the detailed sulfur poisoning mechanism. 
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3.6 Supplementary Materials 

EDS results are shown as following:  

 

Figure S3.1 EDS map scanning of the Ni-BZCYYb mixed loose powder after exposed to 10ppm 

H2S at 550oC in wet H2 for 24 hours test showing no evidence of sulfur existence.  

 

 

Figure S3.2 SEM image of the Points 1-10 indicating the locations for detection by EDS point 

scanning on the Ni-BZCYYb mixed loose powder 
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Table S3.1 Elements’ distribution on the surface of Ni-BZCYYb mixed loose powder after H2S 

exposure test by atom quantity percentage 

   S-K  Ni-K   Y-L  Zr-L  Ba-L  Ce-L  Yb-L 

pt1    0.00   25.37    0.00    0.00   40.82   32.18    1.64 

pt2    0.00    0.00    0.00    0.00   91.74    8.26    0.00 

pt3    0.00   11.41    0.00    0.00   47.67   32.32    8.60 

pt4    0.00    1.25    0.00    0.00   54.82   35.11    8.82 

pt5    0.00   22.62    0.00    1.82   47.12   28.17    0.27 

pt6    0.00    0.91    0.00    0.00   53.79   40.11    5.18 

pt7    0.00    0.00    0.00    2.33   55.15   37.21    5.31 

pt8    0.00   23.90    0.00    1.96   41.71   25.30    7.14 

pt9    0.00    7.56    0.00    0.00   52.93   33.76    5.75 

pt10    0.00   11.67    0.00    0.00   53.12   35.22  

 

 

 

Figure S3.3 SEM image of the Points 1-10 indicating the locations for detection by EDS point 

scanning (2nd) 
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Table S3.2 Elements’ distribution on the surface of Ni-BZCYYb mixed loose powder after H2S 

exposure test by atom quantity percentage (2nd) 

   S-K  Ni-K   Y-L  Zr-L  Ba-L  Ce-L  Yb-L 

pt1    0.00   85.43    0.00    0.00    8.64    5.93  

pt2    0.00    2.83    3.40    2.07   54.24   29.06    8.40 

pt3    4.37    2.04    0.00    1.98   46.50   40.35    4.76 

pt4    0.45    0.00    0.00    0.00   55.29   39.38    4.88 

pt5    0.00    0.00    0.00    0.00   56.66   38.27    5.07 

pt6    0.00    5.72    0.00    0.00   60.62   33.66  

pt7    0.00   17.50    0.00    0.00   44.00   31.06    7.43 

pt8    0.00   39.65    0.00    0.00   33.36   23.15    3.84 

pt9    3.06   26.77    0.00    0.00   41.63   27.07    1.47 

pt10    0.00    0.56    0.00    0.00   58.56   34.67    6.21 

 

 

Figure S3.4 SEM image of the Points 1-10 indicating the locations for detection by EDS point 

scanning (3rd) 
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Table S3.3 Elements’ distribution on the surface of Ni-BZCYYb mixed loose powder after H2S 

exposure test by atom quantity percentage (3rd) 

   S-K  Ni-K   Y-L  Zr-L  Ba-L  Ce-L  Yb-L 

pt1    0.00   33.41    0.00    0.00   33.80   25.00    7.79 

pt2    0.00    5.48    0.00    0.00   58.86   32.77    2.89 

pt3    0.00   13.32    0.00    0.00   51.14   31.15    4.39 

pt4    0.00   68.32    0.00    0.00   18.41   13.27  

pt5    0.00   18.02    0.00    0.00   59.03   22.96  

pt6    0.00   98.26    0.00    0.00    0.84    0.91  

pt7    0.00   13.25    0.00    5.61   48.31   27.45    5.37 

pt8    0.00   18.60    0.00    0.00   50.83   28.82    1.75 

pt9    0.00   72.42    0.00    0.00   14.84   12.74  

pt10    0.00   93.60    0.00    0.00    6.40   

 

 

Figure S3.4 SEM image of the Points 1-10 indicating the locations for detection by EDS point 

scanning (4th) 
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Table S3.4 Elements’ distribution on the surface of Ni-BZCYYb mixed loose powder after H2S 

exposure test by atom quantity percentage (4th)  

   S-K  Ni-K   Y-L  Zr-L  Ba-L  Ce-L  Yb-L 

pt1    0.00    0.00    0.00    0.00   54.64   36.53    8.83 

pt2    0.00    0.00    0.00    0.00   56.06   38.85    5.09 

pt3    0.00   12.67    0.00   11.52   50.29   25.52  

pt4    0.00    0.00    0.00    0.00   56.99   35.68    7.33 

pt5    0.00   97.61    0.00    0.00    1.44    0.95    0.00 

pt6    0.00   64.09    0.00    0.00   21.12   14.80    0.00 

pt7    0.00   98.66    0.00    0.00    0.90    0.45    0.00 

pt8    0.00    5.74    0.00    0.00   94.26    0.00    0.00 

pt9    0.00   77.55    0.00    0.00   12.29    7.13    3.03 

pt10    0.00    2.23    0.00    0.00   64.42   30.04    3.31 
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4 Chapter IV: CO2 Poisoning Behavior for the Anode of Proton Conducting 

IT-SOFC 

This chapter details the study on the CO2 poisoning behavior for the anode of proton 

conducting IT-SOFC. This chapter is based on published paper by Shichen Sun, Osama 

Awadallah, and Zhe Cheng. Title of "Poisoning of Ni-based anode for proton conducting 

SOFC by H 2 S, CO 2, and H 2 O as fuel contaminants." in Journal of Power Sources 378 

(2018): 255-263.  

 

4.1 Introduction  

Carbon dioxide (CO2) is deemed harmless for the anode reaction of conventional oxide-

ion conducting solid oxide fuel cells (SOFC). [39] However, it is known to negatively 

impact proton conducting ceramics (PCC), often leading to formation of carbonates or 

hydroxides. [89, 121, 148-150] For proton conducting intermediate temperature SOFC (IT-

SOFC) based on PCC as electrolyte and part of the cermet anode, it is necessary to 

investigate how carbon dioxide (CO2) would impact the anode reaction. Therefore, the 

electrochemical behaviors of the anode for proton conducting IT-SOFC upon exposure to 

low percentage-level CO2 in hydrogen fuel were investigated. Studies based on both anode-

supported and electrolyte-supported proton conducting IT-SOFC full cell and Ni-based 

anode symmetrical proton conducting SOFC were carried out, using one leading proton 

conducting ceramics of BZCYYb.  The focus was on characterizing the severity and 

reversibility of poisoning, if any, as caused by CO2 as fuel contaminants including the 

responses in cell bulk and interfacial resistances and linking the observed electrochemical 
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behaviors to the electro-catalytic activity of PCC in the anode reaction using different 

routes. In addition, chemical stability tests regarding the exposure to CO2 was also carried 

out on Ni-BZCYYb powder, followed by characterization methods such as X-Ray 

diffraction (XRD) and Raman spectroscopy. The implications of the observed poisoning 

behavior against CO2 exposure will be discussed and analyzed to establish better 

understanding of the anode reaction mechanism for proton conducting IT-SOFC. Beyond 

that, the directions for future study will be pointed out. 

 

4.2 Experimental 

4.2.1 Powder Synthesis and Cell Fabrication 

In this study, BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) was chosen as the proton conducting 

ceramic (PCC) electrolyte, and it was synthesized by glycine nitrate process (GNP) 

followed by heat treatment to form the perovskite phase as described in 3.2.1. The cathode 

material used in this study is La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and the synthesis steps are 

also similar to that for BZCYYb as described in 3.2.1.  

Anode-supported full cells with the configuration of Ni-BZCYYb/BZCYYb/LSCF-

BZCYYb were fabricated as described in 3.2.1.  Briefly, anode precursor/electrolyte 

bilayer was first prepared via dry-pressing using 0.2 g NiO-BZCYYb-starch powder 

mixture with weight ratio of 5.5: 3.5: 1 and 10 mg BZCYYb electrolyte powder at a 

pressure of 250 MPa.  Then the pellets of anode precursor/electrolyte bilayer were sintered 

at 1400oC for 5 hours. After that, cathode slurry of LSCF and BZCYYb and polymer binder 
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solution with weight ratio of 7: 3: 15 were brush painted onto the electrolyte side of the 

sintered anode/electrolyte bilayer pellets with area of ~0.16 cm2. The dried 

cathode/electrolyte/anode pellets were then calcined at 1100oC for 2 hours in ambient air.  

Finally, silver mesh and wires were attached to the electrodes using pure silver paste for 

current collection.  

Electrolyte-supported PC-SOFC full cell with the configuration of Ni-

BZCYYb/BZCYYb/LSCF-BZCYYb were also fabricated by the steps as described in 

3.2.1. Briefly, an electrolyte pellet was first prepared via dry-pressing 0.2 g BZCYYb 

powder followed by sintering at 1550oC for 5 in a so called “protected sintering” 

configuration. [89] Second, the anode slurry made by mixture of NiO, BZCYYb and 

organic binder solution at a weight ratio of 3: 2: 5 was brushed-painted onto one side of 

the sintered electrolyte pellet followed by heat treatment in air at 1400 oC for 2 hours. 

Finally, LSCF-BZCYYb cathode slurry, with a LSCF: BZCYYb: organic binder solution 

weight ratio of 6.5: 3.5: 10 was brush-painted onto the other side of the pellet and then 

calcined at 1100 oC for 2 hours in ambient air. Both the cathode and anode area were ~0.16 

cm2. For subsequent electrochemical test, silver mesh and wires were attached to the 

electrodes using pure silver paste for current collection.  

In addition, anode symmetrical cells with the configuration of Ni-

BZCYYb/BZCYYb/Ni-BZCYYb were fabricated as described in 3.2.1 by first dry 

pressing 0.1 g of BZCYYb powder into 10 mm diameter pellets at a pressure of 250 MPa.  

The electrolyte pellets were then sintered at 1550oC for 5 hours under “protected 

condition”.  NiO-BZCYYb slurry was made by mixing NiO, BZCYYb, and polymer binder 
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solution (polymer content of 8%) at weight ratio of 5.5: 3.5: 9. After that, symmetrical 

anodes were painted onto both sides of the sintered electrolyte pellet followed by drying in 

an air oven at 100oC and then calcination at 1400oC for 2 hours in ambient air with heating 

and cooling rate of 5oC/min.  Silver meshes were attached onto both electrodes using pure 

silver paste for current collection purpose. 

  

4.2.2 Electrochemical Testing of the Effects of CO2 as Fuel Contaminants 

For electrochemical testing of anode-supported and electrolyte-supported PC-SOFC full 

cells, the steps are also same as described in 3.2.2. First, they were sealed onto one end of 

an alumina support tube using ceramic sealant (Aremco 552) and placed in the hot zone of 

a tube furnace. [140] The cell was then heated up to 750oC during which the anode-side 

was purged with pure N2 (UHP300 grade, Airgas) while the cathode side was exposed to 

ambient air.  Then at 750oC, dry hydrogen (UHP300 grade with pH2O of ~10 ppm, Airgas) 

was introduced into the anode side at a flow rate of 40 mL/min and NiO in the anode was 

reduced to Ni.   

For anode-symmetrical cells, the steps are also similar to that described in 3.2.2. First, 

the cells were placed in the hot zone inside a one-end closed ceramic tube with gas fed 

directly to the cell to obtain a rapid response. The symmetrical cells were then heated up 

in N2 to 750oC and reduced in pure H2.  

After anode reduction, electrochemical measurements for those cells, especially 

electrochemical impedance spectroscopy (EIS) measurements were carried out using a 
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potentiostat (Interface 1000, Gamry).  To characterize the effects of CO2 on the 

electrochemical responses of the full cells and anode symmetrical cells, 5% CO2 was 

introduced into the H2 fuel while keeping the total fuel flow rate the same. For anode-

supported SOFC full cells, the change in cell voltage was monitored continuously at a 

constant current density of 125 mA/cm2, and EIS was recorded before, after 2 hours of 

exposure to 5% CO2, and after removal of CO2 for 24 hours under both open circuit 

condition and biased condition of 0.7V at 750oC. For electrolyte-supported and anode-

symmetrical cells, EIS under open circuit condition was recorded in clean dry H2 (UHP 

grade with pH2O of ~10 ppm, labelled as dry in this study) and compared to those in H2 

containing 5% CO2 after 2 hours of exposure at temperatures of 750, 650, and 550oC.  

 

4.2.3 Stability Tests of Ni-BZCYYb Mixed Powders 

To study the chemical stability of Ni-BZCYYb cermet anode under relevant testing 

conditions and understand the observed electrochemical responses to CO2 poisoning, a 

series of experiments were carried out by exposing NiO-BZCYYb powder mixtures (5.5: 

3.5 weight ratio) after hydrogen reduction to low percentage-level CO2 as fuel 

contaminants in both ~3% humidified and dry H2. Similarly, as described in 3.2.3, in each 

set of tests, 10 mg of NiO-BZCYYb powder mixture was placed in an alumina boat in a 

one-end closed tube with fuel gas mixture directly fed to the sample surface.  As in 

electrochemical testing, the samples were first heated up in N2 to 750oC. Then NiO in the 

mixture was reduced to Ni in dry H2 for 30 minutes. After that, the samples were cooled 

down to 550oC, and 5% CO2 was introduced into the hydrogen fuel (3% humidified or 
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nominal dry with ~10 ppm H2O) stream for 24 hours. For comparison purpose, one sample 

was treated in the same way without the introduction of CO2. All post-exposure samples 

were cooled rapidly (by quickly removing the sample tube from the furnace) in clean N2 to 

avoid any additional reaction. X-Ray diffraction (SIEMENS diffractometer D5000) was 

taken for all samples after the exposure tests for phase identification. Besides that, Raman 

spectra were also collected for selected samples using a spectrometer (HoloSpec f/l.8i, 

Kaiser Optical System) equipped with an air-cooled Ar ion laser system (Spectra Physics 

Model 177, 514 nm, 35mW, spot size 10 μm) in the range of 200 to 2000 cm−1 Raman shift 

for additional identification of the reaction products from the stability tests.  

 

4.3 Results 

4.3.1 CO2 Poisoning of Ni-BZCYYb/BZCYYb /LSCF Anode-supported PC-

SOFC Full Cell 

Figure 4. 1 (a) shows the effect of 5% CO2 on the anode-supported full cell operated at 

750oC under constant current condition: Upon introduction of 5% CO2, the cell voltage 

dropped immediately and then seemed to reach steady state. Later, when the 5% CO2 was 

removed from the fuel stream, the cell voltage increased back first quickly and then slowly 

and eventually fully recovered to the performance before poisoning.   
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Figure 4. 1 (a) Plot of cell voltage versus time for the Ni-BZCYYb/BZCYYb/LSCF-

BZCYYb anode-supported proton-conducting SOFC full cell operated under constant 

current density of 125 mA/cm2 showing the poisoning and recovery as caused by 

introducing 5% CO2 to the 3% humidified H2 fuel and later remove it at 750oC. (b) 

Impedance spectra for the Ni-BZCYYb/BZCYYb/LSCF anode-supported proton-

conducting SOFC full cell operated with 3% humidified H2 (labelled as “Wet H2”) at 

750oC under open circuit (OC) condition and constant cell voltage of 0.7 V showing the 

poisoning effect of 5% CO2. 
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Figure 4. 1 (b) shows the impedance for the anode-supported full cell at 750oC under 

both OCV and constant cell voltage of 0.7 V before and after the introduction of 5% CO2 

into the 3% humidified H2.  Under both open circuit and biased conditions, cell interfacial 

resistance Rai increased with the introduction of CO2, especially in the MF-LF loops, while 

no change was observed in cell ohmic resistance RO.  

 

4.3.2 CO2 Poisoning of Ni-BZCYYb/BZCYYb/LSCF Electrolyte-supported 

PC-SOFC Full Cell 

Figure 4. 2 shows the change in impedance spectra for the Ni-BZCYYb/BZCYYb/LSCF 

electrolyte-supported PC-SOFC full cell upon the introduction of 5% CO2 into dry H2 fuel 

at 750oC, 650oC and 550oC.  At 750oC, the poisoning behavior is similar to that for anode-

supported cell: No change in cell ohmic resistance RO was observed, while the MF-LF 

semicircles show slight increase with the introduction of 5%CO2 (see Figure 4. 2 (a)). 

Similar trend was observed at 650oC, with insignificant increase in Rai which is limited in 

MF-LF semicircles (see Figure 4. 2 (b)). As temperature goes 550oC, the increase in MF-

LF semicircles get slightly larger than that at 750oC and 650oC (see Figure 4. 2 (c)). 
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Figure 4. 2 Impedance spectra measured under open circuit condition for a Ni-

BZCYYb/BZCYYb/LSCF-BZCYYb electrolyte-supported proton-conducting SOFC 

(PC-SOFC) at (a) 750oC, (b) 650oC, (c) 550oC, and showing the effect of introducing 

5vol% CO2 as fuel contaminant to the dry H2. 
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4.3.3 CO2 Poisoning of Ni-BZCYYb/BZCYYb/Ni-BZCYYb Anode 

Symmetrical Cell 

Figure 4. 3 shows the change in impedance spectra for the Ni-BZCYYb/BZCYYb/Ni-

BZCYYb anode symmetrical cell upon introduction of 5% CO2 into dry H2 fuel at 750oC, 

650oC and 550oC.  At 750oC and 650oC, the poisoning behavior is similar to that for anode-

supported full cell and electrolyte-supported full cell (compare Figure 4. 3 (a) and (b) 

versus Figure 4. 1 (b) and Figure 4. 2 (a) and (b)): No change in the HF semicircle or ohmic 

resistance RO was observed, while the MF-LF semicircles show obvious increase. As 

temperature goes down to 550oC, very dramatic increase in MF-LF semicircles was 

observed with total anode apparent interfacial resistance Rai more than doubled.  
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Figure 4. 3 Impedance spectra showing the effect of introducing 5% CO2 to dry H2 fuel 

on the Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cell at (a) 750oC, (b) 

650oC and (c) 550oC, respectively.    

 

4.3.4 CO2 Exposure Tests on Ni-BZCYYb Mixed Powders 

The XRD patterns for the Ni-BZCYYb mixed powders after various exposure tests are 

shown in Figure 4. 4 (a).  It can be found that after exposing the Ni-BZCYYb mixed 

powders to 5% CO2 at 550oC in both dry and wet H2, the diffraction peaks for BZCYYb 

(e.g., at 2θ of 28.7o, 41.3o, and 51.2o) largely disappeared while significant amounts of new 

phases of barium carbonate (BaCO3) and doped ceria (CeO2) emerged.  On the other hand, 

it is noted that when the CO2 exposure test was carried out at 750oC, the extent of reaction 

between 5% CO2 balanced by H2 and BZCYYb was much less obvious with no detectable 

doped ceria formation, which is also consistent with earlier observation. [35] These 

observations were further confirmed by the corresponding Raman spectra for the post CO2-

exposure samples as shown in Figure 4. 4 (b). The major peaks for BZCYYb (doublets at 

~350 cm-1, a small hump at ~430 cm-1, and a broad peak at ~640cm-1) were identified in 

the control sample treated in dry H2, [35] while those peaks disappeared in the samples 

exposed to 5% CO2 balanced by either dry or wet H2 at 550oC for 24 hours. On the other 

hand, three new major Raman peaks were identified in the CO2-exposed samples, including 

two peaks at 690 and 1059 cm-1, which are attributed to BaCO3 [41]and one peak at ~480 

cm-1, which is attributed to (doped) CeO2. [151] (It should be noted that the BaCO3 Raman 

peaks at ~690 and 1059 cm-1 were also observed in the control sample that was exposed to 

dry H2 only but with much lower intensities. One possible explanation is that, the 
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synthesized BZCYYb powder via the GNP process might contain small amount of excess 

Barium, which converts to BaCO3 upon air exposure at room temperature.[89]) Besides 

that, no observable peaks for either amorphous carbon (at ~1350 cm-1) or graphitic carbon 

(at ~1580 cm-1) were detected in all the samples. [40] 
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Figure 4. 4 (a) XRD patterns for NiO-BZCYYb mixed powders after reduction in H2 at 

750oC, and exposure tests at 550oC for 24 hours to pure H2 (as control sample) and fuel 

gas mixtures of dry H2 + 5%CO2, wet H2 + 5% CO2, (b) Raman spectra for samples after 

exposure to fuel gas mixtures of dry H2 + 5% CO2, wet H2 + 5%CO2, and pure H2 (as 

control sample), respectively.  
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4.4 Discussions 

The results in Figure 4. 1, Figure 4. 2 and Figure 4. 3 for all three types of PC-SOFC clearly 

suggest that CO2 behaves like a poison for the anode reaction process for PC-SOFC.  This 

is different from conventional oxide ion conducting SOFC for which CO2 is usually not 

regarded as harmful: CO2 is often present in the anode chamber as the reforming/water-gas 

shift reaction (WGSR) product that would not harm the cell performance unless at 

extremely high concentration.  The implication of the insensitivity of conventional oxide 

ion conducting SOFC with Ni-cermet anode to CO2 fuel contaminant is that, unlike sulfur, 

in hydrogen atmosphere, CO2 would not adsorb strongly on Ni catalyst surface to block 

the conventional anode hydrogen electrochemical oxidation reaction under typical SOFC 

operating conditions.   

On the other hand, it is well known that CO2 has very strong affinity to the highly basic 

proton conducting electrolyte such as BZCYYb and may even lead to bulk phase reaction. 

[89]In fact, it has been reported that CO2 would react with the current BZCYYb electrolyte 

to form BaCO3 under certain condition such as in 50% CO2/50% Ar at 750oC. [42, 89] In 

this study, as shown before in Figure 4. 3 (c), at intermediate temperature of 550oC, the 

anode apparent interfacial resistance Rai increases by more than 100% upon exposure to 

5% CO2 in proton conducting anode symmetrical cell. This is attributed to the bulk phase 

reaction between 5% CO2 and BZCYYb proton conducting electrolyte, and it is supported 

by the result of stability tests at 550oC that show disintegration of BZCYYb proton 

conducting electrolyte and accompanied formation of BaCO3 and doped CeO2 (see Figure 

4. 4 (a)) upon exposure to 5% CO2 in hydrogen (dry or 3% humidified). On the other hand, 
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the much smaller increase in Rai for proton conducting electrolyte-supported cell could be 

possibly due to the contribution from cathode, which dominated the interfacial resistance 

at reduced temperature of 550oC and had no response to CO2 introduction in the anode 

side.  

On the other hand, when the temperature is raised to 650 or even 750oC, the relative 

increase in Rai due to the introduction of 5% CO2 into the H2 fuel stream was still 

observable (see Figure 4. 2 and Figure 4. 3 (b) and (a)) but much less than that at 550oC.  

The explanation for this dramatic reduction in poisoning by 5% CO2 at higher temperature 

such as 650 and 750oC is that the same fuel mixture of 5% CO2 in H2 at those elevated 

temperatures does not lead to complete bulk phase reaction and disintegration of BZCYYb 

proton conducting electrolyte.  Instead, the exposure to the nominal 5% CO2 balanced by 

H2 mixture at those temperatures might only lead to surface CO2 adsorption.  Such an 

explanation was consistent with XRD for the 750oC 5% CO2 exposed samples showing no 

obvious decrease in the diffraction peaks’ intensity for the BZCYYb proton conducting 

electrolyte phase and no doped ceria formation, as typically observed when BaCeO3-based 

proton conducting electrolyte experiences bulk phase reaction. [42, 89] 

One underlying reason for the mitigation of CO2 poisoning effect with increasing 

temperature to ~650 or 750oC is attributed to the fact that CO2 and H2 could go through 

reverse water gas shift (RWGS) reaction CO2 + H2 = CO + H2O as mentioned in section 

2.2.3. 

The RWGS reaction shifts towards the right (i.e., forming more CO with less remaining 

CO2) at higher temperature. [152] Therefore, it is likely that at higher temperatures such as 
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750oC, the actual CO2 concentration in the fuel stream could be much lower than the 

nominal value of 5% as introduced due to RWGS reaction. (In fact, based on equilibrium 

constant data for the RWGS, the equilibrium CO2 concentration for a 5% CO2/95% H2 feed 

gas mixture will be around 0.3% at 750oC.)  As a result, CO2 poisoning was observed to 

be not very severe.  In comparison, at a lower temperature such as 550oC, due to both 

thermodynamics (i.e., equilibrium CO2 concentration will be higher of ~0.7% at 550oC) 

and slower kinetics for the RWGS, less amount of CO2 is converted to CO, and severe 

poisoning would be observed due to bulk reaction between CO2 and the BZCYYb proton 

conducting electrolytes.  

Finally, it is recognized that such an explanation might still be a simplification of the 

actual situation.  For example, as CO is also produced from RWGS, it might lead to carbon 

deposition or coking on the Ni-based anode for proton conducting SOFC through the 

disproportionation reaction, especially at lower temperature: 

2CO = C + CO2                                                                                                                                                  Equation 4.1 

In fact, Ishiyama had observed carbon deposition over BZCYYb in a fuel mixture of 

20%CO2 and 80% H2 at 500oC. [103] However, no observable peaks for amorphous carbon 

or graphite were detected for the Ni-BZCYYb mixed powders after exposing to 5% CO2 

balanced by either wet or dry H2 at 550oC and 450oC by Raman, as shown in Figure 4. 4 

(b), suggesting formation of CO and related carbon deposition are probably not critical in 

explaining the observed CO2 poisoning behavior in this study.  
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4.5 Conclusions 

Electrochemical study on both anode-supported and electrolyte-supported PC-SOFC full 

cells and anode symmetrical PC-SOFC show that the anode reaction for PC-SOFC based 

on BZCYYb electrolyte and Ni-BZCYYb cermet anode is poisoned by low ppm-level H2S 

and low percentage level of CO2.  At temperature in the range of 550 to 750oC, CO2 does 

not cause change in cell ohmic resistance RO, but lead to observable increase in electrode 

interfacial resistance Rai, especially in the mid-to-low frequency (MF-LF) semicircles but 

not in the high frequency (HF) semicircle.  The observed poisoning behaviors of proton 

conducting SOFC by low-percentage level of CO2 is similar to that caused by low ppm-

level H2S and can be attributed to the strong adsorption of CO2 species on the highly basic 

BZCYYb electrolyte surface, which interferes with the sub-steps of hydrogen adsorption 

and surface diffusion in the anode reaction for PC-SOFC.  The great similarity of the 

poisoning behaviors between CO2 and H2S despite their different affinity for the Ni-based 

metal catalyst suggests that the surface of proton conducting electrolyte such as BZCYYb 

might play a significant electrocatalytic role in the overall anode reaction for PC-SOFC 

and further experiments will be needed to test such a hypothesis and help reveal the 

fundamental anode reaction mechanism of hydrogen electrochemical reaction for proton 

conducting SOFCs.  Finally, it should be mentioned that for CO2, when their concentration 

increase (e.g. 5vol% to 50vol%) or when the temperature drops (750oC-450oC), the 

interactions between those contaminants and the proton conducting electrolyte (BZCYYb 

in this case) may change from surface adsorption to bulk phase reaction, leading to 

disintegration of the proton conducting electrolyte and accompanied formation of bulk 
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phases (e.g., BaCO3 and doped CeO2), and greater extent of poisoning would be observed 

accordingly. 
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5 Chapter V: Electrochemical Behaviors of Ag, LSCF and BSCF as Cathode for 

Proton Conducting IT-SOFC 

This chapter details the study on the electrochemical behaviors of Ag, LSCF and BSCF as 

cathode for proton conducting IT-SOFC. This chapter is based on published paper by 

Shichen Sun, and Zhe Cheng. "Electrochemical Behaviors for Ag, LSCF and BSCF as 

Oxygen Electrodes for Proton Conducting IT-SOFC." in Journal of The Electrochemical 

Society 164.10 (2017): F3104-F3113. 

 

5.1 Introduction 

The cathode in solid oxide fuel cells (SOFC) is often considered to be the rate-limiting 

factor, especially for SOFCs that operated at intermediate temperature (400-700oC). [44, 

70] Many efforts have been put into developing cathode materials that are suitable for 

intermediate temperature solid oxide fuel cells (IT-SOFC). [13, 70, 153, 154] However, 

there has been no consensus about the ideal cathode material or architecture that enables 

facile oxygen electrode reaction for proton conducting IT-SOFC.  In this work, the 

electrochemical behaviors of several model cathode materials were compared at 

intermediate temperature of 450-650oC.  Among various cathode materials available, silver 

(Ag), as an electronic conductor, was chosen because it could be used to represent cells 

with oxygen electrode reactions confined to the triple phase boundary (TPB).  

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) was chosen because it is a mixed ionic and electronic 

conductor (MIEC) and also the state-of-the-art cathode for conventional oxide-ion 

conducting SOFC. [93, 155] Additionally, composite cathode made of LSCF and proton 
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conducting oxide is also interesting due to the concern with LSCF’s limited proton 

conductivity and the possibility of expanded TPB for the LSCF-based composite cathode. 

[121]Finally, Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), which is regarded as one of the most active 

cathode materials at intermediate temperature, was also chosen because previous studies 

have shown BSCF displays significant weight gain and monotonic conductivity relaxation 

behavior in humidified atmosphere, [20, 156] suggesting possible mixed protonic and 

electronic conductivity.  On the other hand, recent studies also show decreased electrode 

interfacial resistance with the introduction of moisture, especially in the high frequency 

range of 106 to 104 HZ, when used as the oxygen electrode on proton conducting 

electrolytes such as BaCe0.9Y0.1O3-δ (BCY) [20]and BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb). 

[157] These observations suggest BSCF might enable the expansion of reaction sites to the 

entire BSCF surface thus providing high activity for cathode reaction. [20, 157] The 

electrochemical impedance for symmetrical cells with Ag, LSCF, LSCF-BZCYYb 

composite, and BSCF cathodes and a leading proton conducting electrolyte of BZCYYb 

were characterized.  The focus was on revealing the responses to changing oxygen partial 

pressure (pO2) and moisture (H2O) content.  The implications of the experimental 

observations to the understanding of the cathode reaction processes will be discussed, 

including the roles of various electrode materials (e.g. BSCF) play and the importance of 

being proton conducting to the oxygen electrode reaction over a proton conducting 

electrolyte.  Finally, the directions for future development of better cathodes for proton 

conducting IT-SOFC are pointed out considering all things mentioned above. 
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5.2 Experimental 

5.2.1 Powder Synthesis and Compatibility Test 

All of the BZCYYb powder (nominal composition of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ), BSCF 

powder (nominal composition of Ba0.5Sr0.5Co0.8Fe0.2O3-δ) and LSCF powder (nominal 

composition of La0.6Sr0.4Co0.2Fe0.8O3-δ) were synthesized by the glycine nitrate process 

(GNP). [89] The metal precursors used include Ba(NO3)2 (#10180117, Alfa Aesar, 99%), 

La(NO3)2 (#A11305, Alfa Aesar, 99%), Sr(NO3)2 (#SZBB0470V, Sigma-Aldrich, 99%), 

Co(NO3)2·6H2O (#239267, Alfa Aesar, 99%), Fe(NO3)3·9H2O (#216828, Alfa Aesar, 

99%), ZrO(NO3)2xH2O source (#43224, Alfa Aesar, 99.9%), Ce(NO3)3xH2O (#11329, 

Alfa Aesar, 99.5%), Y(NO3)36H2O (#12898, Alfa Aesar, 99.9%), and Yb(NO3)3xH2O 

(#12901, Alfa Aesar, 99.9%).  The molar ratio between glycine and total metal ions was 

1:1 for BZCYYb and 7:6 for BSCF and LSCF. The mixed solutions in 1 L glass beaker 

were place directly on a hotplate set at 540oC and the solutions boiled and eventually self-

combust. After self-combustion, the powders were calcined at 1100oC for 2 hours for the 

BZCYYb and at 1000oC for 2 hours for the BSCF and LSCF powders in ambient air to 

form the pure phases. [68, 89, 157, 158]The stability and compatibility between BZCYYb 

and BSCF at intermediate temperature have been studied before. [157] In order to verify 

the chemical compatibility between LSCF and BZCYYb under fabrication condition, 

powders of the two materials with weight ratio of 7:3 were intimately mixed and exposed 

to ambient air at typical LSCF-BZCYYb cathode firing temperature of 1000oC for 2 hours. 

To test the stability and compatibility of the LSCF and BZCYYb mixture under subsequent 
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testing conditions, the powder mixtures were exposed at 750oC in dry simulated air, 3% 

humidified simulated air, and pure O2 for 24 hours with the flow rate of 50 cc/min. The as-

synthesized samples and samples after compatibility/stability tests were all analyzed by X-

Ray diffraction (SIEMENS diffractometer D5000) for phase identification. 

 

5.2.2 Cell Fabrication 

Cathode symmetrical cells with the configuration of Ag/BZCYYb/Ag, 

LSCF/BZCYYb/LSCF, LSCF-BZCYYb/BZCYYb/LSCF-BZCYYb, and 

BSCF/BZCYYb/BSCF were fabricated. First, all electrolyte pellets with diameter of 10 

mm were dry-pressed at 200 MPa using 0.2 g BZCYYb powder, followed by protected 

sintering at 1550oC for 5 hours. [89] Then, 4mm*4mm cathodes were brush painted onto 

both sides of the sintered BZCYYb pellets with pure silver paste, LSCF paste, mixed 

LSCF-BZCYYb paste (LSCF : BZCYYb weight ratio of 7:3), and BSCF paste, [157] 

respectively. All painted samples were fully dried in an air oven at 100oC and then calcined 

at 1000oC for 2 hours, except for the silver symmetrical cell, which was calcined at 700oC 

for 2 hours.  The heating and cooling rates were 5oC/min.  

Besides that, anode-supported full cell with the configuration of BSCF/BZCYYb/NiO-

BZCYYb was fabricated. First, NiO-BZCYYb anode precursor/BZCYYb electrolyte 

bilayer was prepared via dry-pressing: 0.2g NiO-BZCYYb-starch powder mixture with 

weight ratio of 5.5: 3.5: 1 was pressed first gently in the 10 mm diameter die; then 10 mg 

BZCYYb electrolyte was added onto the anode substrate and the bilayer was pressed 
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together at a pressure of 200 MPa.  The pellets of the anode precursor/electrolyte bilayer 

were then sintered at 1400oC for 5 hours in air with heating and cooling rate of 5oC/min. 

4mm*4mm BSCF cathode was brush-painted onto the electrolyte side of the sintered 

anode/electrolyte bilayer pellets using the same BSCF slurry as described above, dried at 

150oC, and then calcination at 1100oC for 2 hours in air with heating and cooling rate of 

5oC/min. Finally, silver mesh and wires were attached to the electrodes using pure silver 

paste for current collection.  The microstructure of both the surface and the cross-section 

of the fabricated cathode symmetrical cells were observed using a field emission scanning 

electron microscope (FE-SEM, JEOL JSM 6330F).  

 

5.2.3 Electrochemical Impedance Spectroscopy (EIS) Measurement 

Electrochemical Impedance Spectroscopy (EIS) measurements were carried out using a 

potentiostat (Gamry Interface 1000) under open circuit condition and in the frequency 

range of 106 to 10-2 HZ for the symmetrical cells and the anode-supported full cells. The 

symmetrical cells were connected with silver paste and silver mesh current collector and 

were placed in the hot zone inside a one-end closed alumina tube with gas fed directly to 

the cells to obtain a rapid response. Each sample was first tested in dry simulated air (Airgas 

AI UZ300, with nominal composition of 20% O2/80% N2 with <~5 parts per million or ~5 

ppm of H2O and CO2) at a flow rate of 50 ml min-1 from temperature of 650oC to 450oC. 

To test the effect of pO2 on the oxygen electrode behavior, oxygen (Airgas OX UHP300) 

and nitrogen (Airgas NI UHP300) were introduced to the sample testing chamber with 

different ratios adjusted by digital mass flow controllers. After finishing the tests in various 
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pO2, water vapor with controlled concentrations (e.g., 0.6%, 3%, 10%, and 20%) was 

introduced into the testing chamber by passing the simulated air through a water bubbler 

set at different temperatures to test the effect of water vapor on the oxygen electrode 

behavior. For testing involving 10% and 20% water vapor, the connection tubes were 

heated to ~100oC with heating tapes to prevent water condensation. In addition, for better 

control of the moisture content inside the chamber, the samples were heated to 750oC 

before adjusting the moisture content. For the anode-supported full cell, it was sealed onto 

ceramic tube fixture and heated up with the anode-side exposed to nitrogen.  Then, at 

750oC, anode gas flow was switched from nitrogen to pure hydrogen to reduce the NiO to 

Ni.  The impedance spectra for the various symmetrical and full cells were collected at 

various intermediate temperatures between 450 and 650oC.  

 

5.3 Results 

5.3.1 Stability, Compatibility, and Microstructure of the Electrodes 

The XRD patterns for the as-synthesized LSCF and BZCYYb powders and their mixtures 

after compatibility/stability tests are shown in Figure 5. 1.  There is no obvious secondary 

phase formed after the compatibility test of firing at 1000oC for 2 hours in air and the three 

stability tests of exposing the fired LSCF-BZCYYb composite at 750oC for 24 hours in 

ambient air, pure O2, and 3% humidified air, suggesting no reaction occurred between 

LSCF and BZCYYb and their gas environment under the intended conditions. For BSCF, 
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previous studies have shown that BSCF is compatible with BZCYYb electrolyte for 

cathode firing [157] and it is also stable under typical testing condition in air. [70, 157] 

Besides that, the microstructure of fabricated Ag, LSCF, LSCF-BZCYYb, and BSCF 

cathode symmetrical cells, all with BZCYYb electrolytes, are shown in Figure 5. 2. The 

thickness of the all the electrodes was around 30 µm, but the microstructure is somewhat 

different:  The Ag electrode gives relatively dense structure with grain size significantly 

larger than 1 μm; both the LSCF and the LSCF-BZCYYb composite electrodes are porous 

with fine grain size much smaller than 1 μm; the BSCF cathode is also porous but with 

grain size of ~1 μm, which is between the grains size for the Ag and LSCF-based 

electrodes. 
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Figure 5. 1 XRD patterns of as-synthesized LSCF and BZCYYb powders and their 

mixtures after compatibility test of firing at 1000oC for 2 hours in air and the three 

different stability tests of exposing the fired LSCF-BZCYYb composite at 750oC for 24 

hours in ambient air, pure O2, and 3% humidified air.  

  

Figure 5. 2 SEM images of the cross-section and the electrode surface of the fabricated 

Ag/BZCYYb/Ag (a and b), LSCF/BZCYYb/LSCF (c and d), LSCF-

BZCYYb/BZCYYb/LSCF- BZCYYb (e and f), and BSCF/BZCYYb/BSCF (g and h) 

cathode symmetrical cell, respectively.  

 

5.3.2 Electrochemical Behavior of Different Dlectrodes under Various pO2 

and Moisture Content 

5.3.2.1 Ag electrode 

Figure 5. 3 shows the impedance spectra for an Ag/BZCYYb/Ag symmetrical cell in dry 

simulated air, pure oxygen, and simulated air containing 3% moisture at 650, 550, and 

450 oC. Under all testing conditions, incomplete high frequency (HF) loops were 

observed in the impedance spectra, leading to indeterminable ohmic resistance (RO). 

Additionally, there are multiple, partially overlapping loops in the mid to low frequency 

(MF-LF) range. The estimated total apparent electrode interfacial resistance (Rai), which 

is the direct difference between the low frequency intercept and the high frequency 
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intercept on the real axis, [159] is quite high-on the order of ~50, 100, and 500 Ω•cm2 at 

650, 550, and 450oC, respectively.  It should be noted here that, strictly speaking, the Rai 

defined here is not the electrode interfacial polarization resistance Rp due to the nature of 

mixed ionic and electronic conduction for the BZCYYb electrolyte. [159] However, due 

to the absence of precise ionic transference number, accurate Rp number cannot be 

obtained readily. As a result, only the apparent interfacial resistance Rai, defined as the 

direct difference between the low frequency intercept and the high frequency intercept on 

the real axis in an impedance spectrum, is used for the analysis and discussions in this 

study following the practice in many previous reports.  [20, 157, 159] These values are 

much larger than the typical values for a good cathode symmetrical cell. [20, 70, 121, 

153, 157, 160, 161]In addition, for both the high frequency electrode resistance RHF and 

the mid-to-low frequency electrode resistance RMF-LF, they generally increased with 

decreasing pO2 or the introduction of 3% moisture. The exception is at the relatively low 

temperature of 450oC when no obvious change in RHF with decreasing pO2 was observed.  
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Figure 5. 3 Impedance spectra for a Ag/BZCYYb/Ag symmetrical cell in dry simulated 

air (20%O2/80%N2 with <~5ppm H2O and CO2), pure oxygen, and simulated air 

humidified with 3% H2O at (a) 650oC, (b) 550oC, and (c) 450oC, respectively.  
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5.3.2.2 LSCF Electrode 

Figure 5. 4 shows the impedance spectra for the LSCF/BZCYYb/LSCF symmetrical cell 

under the same conditions. The electrochemical behaviors were similar to the Ag 

symmetrical cell in several ways: Incomplete HF loops are still observed in the impedance 

spectra at various temperatures, leading to indeterminable RO. The MF-LF range also 

contains multiple overlapping loops at all temperatures.  The estimated total electrode 

interfacial resistance Rai appears high as well-on the order of ~30, 80, and 600 Ω•cm2 at 

650, 550, and 450oC, respectively.  These values are one to two orders of magnitude higher 

than those obtained on a LSCF symmetrical cell over Ce0.9Gd0.1O2 (GDC) electrolyte at 

temperatures of 650 and 550oC. [160] The Rai also generally increased with decreasing pO2 

or introduction of 3% moisture.   
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Figure 5. 4 Impedance spectra for a LSCF/BZCYYb/LSCF symmetrical cell in dry 

simulated air (20%O2/80%N2 with <~5ppm H2O and CO2), pure oxygen, and simulated 

air humidified with 3% H2O at (a) 650oC, (b) 550oC, and (c) 450oC, respectively.  
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responses of the symmetrical cell to gas atmosphere dramatically.  For example, for LSCF, 

at a higher temperature of 650oC, both the high frequency electrode resistance RHF and the 

mid-to-low frequency electrode resistance RMF-LF increased with decreasing pO2 and the 

introduction of 3% moisture, which is like the Ag electrode.  However, at a lower 

temperature of 450oC, the electrochemical behavior becomes more complex: For RHF, it 

decreased with decreasing pO2, and did not seem to respond to the introduction of moisture; 

For RMF-LF, it separated into multiple loops with the part at 104-101 Hz increased upon the 

introduction of 3% moisture while the part at 101-10-2 Hz decreased.  

 

5.3.2.3 LSCF-BZCYYb Composite Electrode 

Figure 5. 5 shows the impedance spectra for an LSCF-BZCYYb composite electrode 

symmetrical cell in dry simulated air and pure oxygen at 650, 550, and 450 oC.  Unlike the 

Ag and the pure LSCF symmetrical cells, the HF loops now intercept with the real axis, 

enabling determination of the cell ohmic resistance RO.  It was observed that RO increased 

with decreasing pO2 at 650oC and 550oC, but didn’t change significantly at 450oC.  The 

overall apparent electrode interfacial resistance Rai also becomes much smaller-on the 

order of ~0.7, 4, and 30 Ω•cm2 in air, and it increased with decreasing pO2 at all 

temperatures.  Both the high frequency contribution RHF and mid-to-low frequency 

contribution RMF-LF generally followed the same trend. 
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Figure 5. 5 Impedance spectra for a LSCF-BZCYYb/BZCYYb/LSCF-BZCYYb 

symmetrical cell in dry simulated air (20%O2/80%N2 with <~5ppm H2O and CO2) and 

pure oxygen at (a) 650oC, (b) 550oC, and (c) 450oC, respectively.  

 

Figure 5. 6 shows the impedance spectra for the same LSCF-BZCYYb composite 
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Surprisingly, with the introduction and continued increase of moisture content, increase in 

RO was observed, which was very dramatic at 650oC (i.e., from 3.3 Ω•cm2 to ~12.8, ~18.0, 

~23.0 and ~23.1 Ω•cm2 with 0.6%, 3%, 10%, and 20% H2O, respectively), still significant 

at 550oC (i.e., from 5.5 Ω•cm2 to 6.7, 15.7, ~21, and ~29 Ω•cm2 with 0.6%, 3%, 10%, and 

20% H2O, respectively), and then almost negligible at 450oC.  At the same time, the total 

apparent interfacial resistance Rai also increases accordingly, and the relative increase was 

very dramatic at higher temperature of 650oC and become almost negligible at lower 

temperature of 450oC. 
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Figure 5. 6 Impedance spectra for a LSCF-BZCYYb/BZCYYb/LSCF-BZCYYb 

symmetrical cell in dry simulated air (20%O2/80%N2 with <~5ppm H2O and CO2) versus 

simulated air humidified with various concentrations of moisture at (a) 650oC, (b) 550oC, 

and (c) 450oC, respectively.  
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5.3.2.4 BSCF Electrode 

Figure 5. 7 shows the impedance spectra for the BSCF/BZCYYb/BSCF symmetrical cell 

in dry simulated air and dry oxygen at 650, 550, and 450 oC. Similar to the LSCF-BZCYYb 

composite electrode symmetrical cell, for the BSCF symmetrical cell, the HF loops still 

generally intercept with the real axis. Ohmic resistance RO increased with decreasing pO2 

as well at 650 and 550oC.  (At lower temperature of 450oC, RO in pure O2 did appear to be 

higher than that in dry simulated air.)  For the total apparent electrode interfacial resistance 

Rai of BSCF symmetrical cell, it increased with decreasing pO2 at all temperatures under 

dry conditions, which is also consistent with other types of cathode symmetrical cells 

studied. Both the high frequency electrode resistance RHF and the mid-to-low frequency 

electrode resistance RMF-LF also generally follow the same trend except for RHF at lower 

temperature of 450oC: it did not seem to change much with pO2: Such a behavior of roughly 

constant RHF at 450oC is similar to the Ag symmetrical cell but different from the 

symmetrical cells with the LSCF or the LSCF-BZCYYb composite electrodes. 
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Figure 5. 7 Impedance spectra for a BSCF/BZCYYb/BSCF symmetrical cell in dry 

simulated air (20%O2/80%N2 with <~5ppm H2O and CO2) versus pure oxygen at (a) 

650oC, (b) 550oC, (c) 450oC, and (d) zoom-in of the impedance spectra at 450oC showing 

the high frequency (HF) part.   
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Additionally, Figure 5. 8 shows the impedance spectra for the BSCF symmetrical in 

simulated air with different moisture content.  The observations for the BSCF symmetrical 

cell after the introduction of moisture are as follows: RO decreased with the introduction of 

moisture and further increase in moisture content. Rai generally first increased with the 

introduction of moisture and then decreased back with further increase in moisture content.  

Figure 5. 9 shows the same impedance curves but with ohmic resistance subtracted, and it 

is consistent with the authors’ previous studies: [20, 157] The mid-to-low frequency part 

RMF-LF seems to follow the same trend as Rai, while the high frequency part RHF seemed to 

always decrease with the introduction of moisture, especially at lower temperature of 

450oC when the HF loop becomes clearly separated.  
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Figure 5. 8 Impedance spectra for a BSCF/BZCYYb/BSCF symmetrical cell in dry 

simulated air (20%O2/80%N2 with <~5ppm H2O) versus simulated air with varying 

concentrations of moisture at (a) 650oC, (b) 550oC, (c)450oC, and (d) zoom-in of the 

impedance spectra at 450oC showing the high frequency (HF) part.   
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Figure 5. 9 Ohmic resistance subtracted impedance spectra for a BSCF/BZCYYb/BSCF 

symmetrical cell in dry simulated air (20%O2/80%N2 with <~5ppm H2O) versus 

simulated air with various concentrations of moisture at (a) 650oC, (b) 550oC, and (c) 

450oC, respectively.  

 

0

0.1

0.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-I
m

 Z
 (
Ω

· 
cm

2
)

Re Z-Ro (Ω· cm2)

Dry

0.6%H2O

3%H2O

10%H2O

20%H2O

(a)

0.0

0.5

0.0 0.5 1.0 1.5 2.0 2.5-I
m

 Z
 (
Ω

· 
cm

2
)

Re Z-Ro (Ω· cm2)

Dry

0.6%H2O

3%H2O

10%H2O

20%H2O

(b)

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12

-I
m

 Z
 (
Ω

· 
cm

2
)

Re Z-RO (Ω· cm2)

Dry

0.6%H2O

3%H2O

10%H2O

20%H2O

(c)



152 

 

5.4 Discussions 

As discussed in section 1.1 and published paper, [157]  the overall cathode or oxygen 

electrode reaction process based on a conventional oxide ion conducting electrolyte 

proceeds via  

O2 + 2VO
•• + 4e-  2OO

 ,                                                                                 Equation 5.1 

while the cathode reaction based on an ideal, “pure” proton conducting electrolyte proceeds 

via 

O2 + 4(OH)O
• + 4e-  4OO

  + 2H2O.                                                                 Equation 5.2 

The elementary steps for both reaction pathway (1) and (2) are summarized in Table 5. 1 

and also illustrated in Figure 5. 10 and Figure 5. 11 for the different electrodes used.   

 

Figure 5. 10 Schematics showing the reaction species involved and the elementary steps 

(also refer to Table 5. 1) for the reversible oxygen electrode reactions for an ideal oxide-

ion based SOFC with (a) Ag, (b) pure LSCF, (c) LSCF-BZCYYb composite, and (d) 

BSCF as the cathode (oxygen electrode) on BZCYYb electrolyte in a dry simulated air 

atmosphere. 

2

BZCYYb

Ag

e-

V••
O

O2(g)
1

3

4

(a)

2

O
(a

d
s
)

BZCYYb
V••

O

LSCF

e-

O2(g)

3

(b)

4

O
(a

d
s
) 2

1

V••
O

LSCF

e-

O2(g)

3

(c)

4

2

O
(a

d
s
)

O(ads)

BZCYYb

3

4

V••
O

e-

2

over surface

at TPB

1

O2 + 4e− + 2VO
•• ↔ 2OO

x

BZCYYb
V••

O

BSCF

e-O2(g)

(d)

4

1

V••
O

O(ads)

2

4

3 over surface



153 

 

 

Figure 5. 11 Schematics showing the reaction species involved and the elementary steps 

(also refer to Table 5. 1) for the reversible oxygen electrode reactions for an ideal proton-

conducting electrolyte based SOFC with (a) Ag, (b) pure LSCF, and (c) LSCF-BZCYYb 

composite, and (d) BSCF as the cathode (oxygen electrode) on proton conducting 

BZCYYb electrolyte in simulated air in a humidified atmosphere assuming full hydration 

for the electrolyte.  
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Table 5. 1 Elementary steps (and their reverse steps) of the oxygen electrode reaction for 

the reversible oxygen electrode reactions for ideal oxide-ion based SOFC (step 1,2,3,4) 

and ideal proton conducting SOFC (step 1,2,3’,4’,5). [157] 

Elementary Steps   Frequency 

range 

1 Mass transfer of 

O2 molecule in gas 

phase and 

adsorption on 

electrode surface 

𝑂2 𝑔 ↔ 𝑂2  𝑎𝑑𝑠  LF 

2 Adsorbed O2 

molecule 

dissociation  

𝑂2  𝑎𝑑𝑠 ↔ 2𝑂  𝑎𝑑𝑠  MF 

3 Charge transfer 

for ideal oxide ion 

electrolyte 

𝑂 𝑎𝑑𝑠 + 𝑉𝑂
∙∙ + 2𝑒− ↔ 𝑂𝑂

𝑋 HF 

3’ Charge transfer 

for ideal pure 

proton electrolyte 

𝑂  𝑎𝑑𝑠 + 2𝑒− + 2𝑂𝐻𝑂
∙ ↔ 𝐻2𝑂 𝑎𝑑𝑠 + 2𝑂𝑂

𝑋 HF 

4 Mass transfer of 

oxide ion in the 

bulk of electrode 

and/or electrolyte 

𝑉𝑂 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 
∙∙ ↔ 𝑉𝑂 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 

∙∙  Very HF  

(>> 106 Hz) 

4’ Mass transfer of 

proton in the bulk 

of electrode and/or 

electrolyte 

𝑂𝐻𝑂 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 
∙ ↔ 𝑂𝐻𝑂 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 

∙  Very HF 

(>> 106 Hz) 

5 (or 5’) H2O 

transport and 

desorption 

𝐻2𝑂 𝑎𝑑𝑠 ↔ 2𝐻2𝑂 𝑔  LF 

 

Among those processes, the steps of oxygen adsorption (step 1) and dissociation (step 

2) always exist no matter whether the atmosphere contains water or not.  For the charge 

transfer step, for a proton conducting electrolyte such as BZCYYb used in this study, if the 

atmosphere is dry and the temperature is high (>~700oC), it is expected to proceed 

primarily via the oxide ion (or VO
••) route as shown in step 3; (19) On the other hand, if the 

atmosphere is humidified and the temperature is relatively low (~450oC), most if not all 
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oxygen vacancy can be assumed to be protonated, and the charge transfer step is expected 

to proceed primarily via the proton ((OH)O
•) route as shown in step 3’.  Consequently, 

depending on the atmosphere as well as temperature, the bulk phase ion transport step, in 

the electrode and/or the electrolyte, would proceed either via oxide ion (step 4) or proton 

(step 4’).  Finally, if the charge transfer step is based on proton, there must also be the 

additional step of water desorption (or adsorption for the reverse reaction) (step 5’).  With 

this in mind, the electrochemical behaviors of different oxygen electrodes over the 

BZCYYb proton conducting electrolyte are discussed here below. 

 

5.4.1 Ag Electrode 

Based on the observations above, Ag, as an electron conducting cathode, behaves rather 

poorly on the proton conducting BZCYYb electrolyte, giving very large apparent 

interfacial resistance Rai at intermediate temperature of 450 to 650oC. This is 

understandable from two aspects:  First, Ag is not expected to be an effective oxide-ion or 

proton conductor, which would limit the cathode oxygen electrochemical reaction to the 

triple-phase boundary (TPB) region, and the electrode process on the Ag electrode over an 

ideal oxide ion conducting electrolyte in air is represented in the schematic in Figure 5. 10 

(a).  Second, the fired Ag electrode has relatively coarse microstructure, as shown in the 

SEM images of Figure 5. 2 (a) and (b), which would severely limit the total length of triple-

phase boundary (TPB).  In fact, it is probably for these two reasons that the oxygen 

electrode process becomes so sluggish that high frequency loop does not even intercept 

with the real axis.  
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Nevertheless, for the Ag electrode, the displayed increase of Rai with respect to 

reducing pO2 under dry atmosphere appears reasonable: With reduction of pO2 from 100% 

to 20%, the oxygen gas phase transport [48] as well as surface adsorption and dissociation 

processes are expected to slow down significantly.  Due to the complexity of the cathode 

process, the exact interpretation of the various overlapping semi-circles observed (e.g., as 

many of 4 semi-circles from high frequency to low frequency were observed at 550oC) is 

not straightforward except at the lower temperature of 450oC when the reduction of pO2 

does not seem to impact the HF semi-circle (see Figure 5. 3 (c)), suggesting that, at 450oC, 

the HF semi-circle most likely represents the charge transfer step, while the MF-to-LF 

semicircles should represent the various processes including gas phase transport, oxygen 

molecule adsorption and dissociation, and surface diffusion. 

With respect to the moisture effect on the Ag electrode, the process is conceptually 

illustrated in Figure 5. 11 (a). Due to very sluggish electrode process, the ohmic resistance 

RO cannot be accurately determined in this study in the temperature range of 450 to 650oC.  

Nevertheless, an earlier study on a Pt/BaCe0.8Gd0.2O3(BCG)/Pt symmetrical cell at 722oC 

clearly showed decrease in RO upon introduction of 3% moisture. [159] In addition, as 

mentioned before and will be discussed later, similar reduction in RO upon the introduction 

of moisture for BZCYYb proton conducting electrolyte was clearly observed for the BSCF 

cathode symmetrical cell (see Figure 5. 8), indicating the change of ion conducting species 

from oxide ion to proton and the acceleration of the bulk transport process.  As to the 

oxygen electrode reaction process, Figure 5. 3 suggests that all HF and MF-LF loops seem 

to increase upon the introduction of 3% moisture into dry air at temperatures from 650 to 
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450oC.  Such an observation is consistent with the previous study on the Pt/BCG/Pt 

symmetrical cell. [162] Part of the increase could be attributed to the strong adsorption of 

water molecules over the BZCYYb electrolyte surface including near the TPB, which 

would interfere with the processes of oxygen adsorption (step 1) and dissociation and 

surface diffusion (step 2).  These steps, as stated before for 450oC, are represented by the 

mid-to-low frequency loops. As to the charge transfer step at the TPB, with the introduction 

of moisture to the testing chamber, the ion conducting species is expected to change from 

oxygen vacancy to proton, and the charge transfer step would change from the oxide ion 

route (step 3) to the proton route (step 3’).  The observed increase in RHF upon moisture 

introduction to dry air for the Ag electrode seems to suggest that, for the Ag electrode (and 

the Pt electrode as in the earlier study), the charge transfer step via the proton route appears 

to be slower than via the oxide ion route.  One possible explanation for this is that the very 

strongly adsorbed water molecules at the TPB reduces the concentration of adsorbed 

oxygen, which slows down the overall charge transfer step despite the acceleration of ion 

transport in the bulk phase(s).  Another possibity is that the proton conducting electrolytes 

(e.g. BZCYYb in this study and BCG [121] in the earilier study) have certain electronic 

conductivity in dry atmospheres, which means the measured impedance would be 

subjected to shortage effect, leading to underestimation of the apparent electrode 

interfacial resistance Rai under dry condition. [163] With the introdution of moisture, the 

electronic conduction would get suppressed for the proton conducting electrolyte.  As a 

result, the measured Rai would suffer less from the shortage effect and appear to be larger 

comparing with the dry condition.  Further study is needed to clarify the exact origin for 
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this phenomenon (i.e., the reduction of RHF for Ag or Pt electrode over proton conducting 

electrolyte when moisture is introduced into dry air). 

5.4.2 Pure LSCF Electrode 

For the pure LSCF cathode, the observation of very large total apparent electrode 

interfacial resistance Rai on the order of ~30 Ω•cm2 at 650oC and ~80 Ω•cm2 at 550oC in 

dry simulated air or dry oxygen was rather surprising.  Given that LSCF is known to be a 

very good mixed oxide ion and electron conductor (MIEC), [68, 74] and the BZCYYb 

electrolyte should also conduct primarily oxide ion with high conductivity in dry 

atmosphere, the expectation was that such an LSCF/BZCYYb/LSCF symmetrical cell 

should give much better interfacial resistance in dry atmosphere.  In fact, as mentioned 

before, for pure LSCF cathode symmetrical cells over oxide ion conducting electrolyte 

(e.g., yttria stabilized zirconia YSZ or GDC), the interfacial resistance reported was 

measured to be only ~0.4-1 Ω•cm2 at 650oC and ~3-10 Ω•cm2 at 550oC in air. [69, 160, 

164] Nevertheless, the experimental observation of LSCF electrode over proton conducting 

electrolyte (e.g., BZCYYb) giving much larger interfacial resistance in dry atmosphere 

similar to the Ag electrode suggests that there is certain complexity involved when 

matching the pure LSCF cathode with the BZCYYb electrolyte: The LSCF behaves as if 

oxide ion could not effectively transport between the BZCYYb electrolyte and the LSCF 

cathode and, as a result, LSCF behaves more like an electronic conductor as Ag or La1-

xSrxMnO3 (LSM).  Thus, as illustrated in Figure 5. 10 (b), the active reaction sites become 

limited to the LSCF-BZCYYb-air TPB and its very vicinity region, while most of the 

surface of the LSCF electrode is not active unlike in typical oxide ion SOFCs with LSCF 
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cathode.  Related to this, at a lower temperature of 450oC, despite that the high frequency 

semi-circle seems to intercept with the real axis at ~50 Ω•cm2, this value is unlikely to 

represent the actual electrolyte ohmic resistance but is attributed to the very sluggish 

electrode process due to limited TPB and active LSCF surface.  

As to the pO2 and moisture effects on the LSCF cathode, despite the complex shapes 

of the impedance spectra, the responses are also similar to the Ag electrode: With the 

introduction of moisture, Rai generally increases.  This is understandable because strong 

adsorption of water molecules on the BZCYYb surface is expected to slow down the 

oxygen adsorption and dissociation and, maybe, the charge transfer step, as illustrated in 

Figure 5. 11 (b).  The situation is expected to be somewhat similar with decreasing pO2.  It 

is worth noting that, as mentioned before, for the LSCF cathode at 450oC (see Figure 5. 4 

(c)), the high frequency loop seems to decrease with both decreasing pO2 and increasing 

pH2O.  Although the exact reason for such behaviors is not clear, one possible explanation 

is that this HF loop may not represent the charge transfer step as for the Ag electrode.  

Instead, it may represent O2 and H2O gas diffusion through the highly porous electrode 

with pore size <~1 μm at that temperature to access the TPB sites right at the interface of 

the LSCF electrode and BZCYYb electrolyte.  This seems possible given that the LSCF 

over BZCYYb electrolyte here behaves more like the Ag electrode with electrode reaction 

confined at the electrode/electrolyte interface, which is buried deeply beneath a cathode 

with very fine pores.  As a result, the gas phase transport limitation may show up.  Further 

study is needed to verify such a hypothesis. 
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5.4.3 LSCF-BZCYYb Composite Electrode 

When mixing LSCF with BZCYYb to make a composite electrode, as shown before in 

Figure 5. 5 and Figure 5. 6, such an electrode is much more active comparing with the pure 

LSCF electrode: The high frequency semicircle now intercepts with the real axis, giving 

good estimate of the ohmic resistance RO that would reflect the conductivity of the 

BZCYYb electrolyte materials: For example, considering electrolyte thickness of ~600 μm, 

the estimated conductivity in dry simulated air is ~0.03 S/cm at 650oC, ~0.016 S/cm at 

550oC and ~0.01 S/cm at 450oC, which matches well with previous results. [88] 

In addition, the overall apparent electrode interfacial resistance Rai in dry air as well as 

pure oxygen decreases by ten times or even more comparing with the pure LSCF cathode.  

This dramatic improvement of electrode activity provides additional support to the earlier 

hypothesis that LSCF behaves more like an electronic conductor with very limited oxide 

ion conductivity when it is matched with a proton conducting electrolyte such as BZCYYb 

in the dry atmosphere. As depicted in Figure 5. 10 (c), when making a LSCF-BZCYYb 

composite electrode, the TPB in the LSCF-BZCYYb composite is expanded comparing 

with the pure LSCF cathode due to fine mixing of submicron-scale (see Figure 5. 11Figure 

5. 10 (e) and (f)) ion conducting BZCYYb electrolyte phase and the LSCF phase, which 

only conducts electrons here.  On the other hand, by providing a porous BZCYYb network 

in close contact with LSCF, the oxide-ions from the BZCYYb electrolyte could transport 

through the BZCYYb network over much of the composite cathode to larger regions with 

LSCF surface close to the LSCF/BZCYYb two phase boundary.  The result is that more 

surface area of the LSCF now also becomes active for oxygen electrode reaction.  The 
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added TPB and expanded surface area of LSCF that become active together help accelerate 

the oxygen electrode processes, which are illustrated in Figure 5. 10 (c).  As a result of the 

greatly accelerated electrode reaction, the obtained RO from impedance spectra reduce 

dramatically reflecting the actual conductivity of the BZCYYb electrolyte used. 

On the other hand, as stated, Figure 5. 9 shows that when such an LSCF-BZCYYb 

composite electrode symmetrical cell over BZCYYb electrolyte is subject to humidified 

air, dramatic increase in RO (by almost 6 times in 3% moisture!) with the introduction of 

moisture was observed at 650oC and, to a less extent, 550oC.  Such a behavior is attributed 

to the reduction of reaction sites upon humidification for the composite cathode.  As stated 

before and shown in Figure 5. 10 (c), electrode reaction in the LSCF-BZCYYb composite 

cathode symmetrical cell under dry condition can occur at the TPB sites as well as over 

LSCF surface where BZCYYb network is close enough to deliver oxide-ions (see the 

schematic in Figure 5. 10 (c)).  However, after the introduction of moisture, the electrode 

reaction for the composite cathode again becomes limited only to the TPB sites presumably 

due to the inability of LSCF to conduct protons when the major ionic species changes from 

oxide-ion to proton: This effectively blocks the reactions going through the LSCF surface 

near the BZCYYb network, making processes 3’, 4’ and 5’ almost impossible to happen. 

In addition, this explanation could be supported by the observation that the RO for the 

LSCF-BZCYYb composite symmetrical cell seems to increase to values comparable to 

those for the pure LSCF cathode symmetrical cell after the introduction of moisture at 

650oC and 550oC (see Figure 5. 4), suggesting dramatically slowed down oxygen electrode 

reaction with moisture introduction.   
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In comparison, at lower temperature such 450oC, such “blocking effect” or the 

increases in Rai as well as RO due to moisture introduction to air for the LSCF-BZCYYb 

composite cathode symmetrical cell is much smaller.  This might be because that although 

moisture still covers the BZCYYb surface and TPB at lower temperature, due to faster bulk 

ionic transport for proton (step 4’) compared to the ionic transport via oxygen vacancy 

route (step 4) and the fact that moisture is now part of the charge transfer step (step 3’): 

despite certain parts of the oxygen electrode reaction (e.g., O2 adsorption (step 1) and 

dissociation (step 2)) got hindered, other part may actually accelerate (e.g., H2O splitting 

over the electrode surface (step 3’)), and the net effect is no longer obvious. Another factor, 

which might be more important, is that for the BZCYYb electrolyte, both the reaction route 

via oxide-ion (reaction (1)) and via proton (reaction (2)) would co-exist and compete with 

each other.  At a higher temperature such as 650oC, the difference in the actual extent of 

BZCYYb hydration is large between “dry simulated air” and the 3% humidified air.  This 

means in “dry” air, most of the reaction would go through the oxide ion route.  Then, after 

3% moisture is introduced, a significant portion of the oxide ion route is blocked due to 

hydration of the BZCYYb electrolyte and shut off the route over LSCF surface near 

BZCYYb and confinement of the active region to strictly TPB.  In comparison, at a lower 

temperature of 450oC, due to strong bonding of the BZCYYb electrolyte with moisture at 

that temperature, even for the so-called “dry” condition, very significant portion of the 

electrode reaction already goes through the proton route.  As a result, when 3% moisture 

is introduced, the actual difference in impedance spectra between “dry simulated air” and 

3% humidified air appear to be much less dramatic. [88] Further study is needed to verify 

this.   
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Figure 5. 12 Total apparent electrode interfacial resistance Rai in dry simulated air, pure 

oxygen and simulated air containing up to 20% moisture for LSCF-BZCYYb composite 

electrode symmetrical cells at temperatures from 650 to 450oC.  

 

 

Figure 5. 13 High frequency resistance RHF in dry simulated air, pure oxygen and 

simulated air containing up to 20% moisture for LSCF-BZCYYb composite electrode 

symmetrical cells at temperatures from 650 to 450oC. 
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Finally, for the LSCF-BZCYYb symmetrical cell, equivalent circuit fitting was carried 

out to roughly evaluate the total apparent electrode interfacial resistance Rai and the high 

frequency resistance RHF, and the values are plotted against inverse temperature (1/T), as 

in Figure 5. 12 and Figure 5. 13. Besides, the ASR vs. pH2O dependence of the LSCF-

BZCYYb symmetric cell cathode response was also examined (not shown here). It is 

observed that, between 650oC and 550oC, both Rai and RHF decrease with decreasing 

temperature under humidified condition; in comparison, under dry condition, both Rai and 

RHF increase with decreasing temperature.  This may also be related to the explanation 

before about the large difference in moisture response with respect to temperature for the 

LSCF-BZCYYb composite electrode. However, no more definitive insight into the cathode 

reaction process could be extracted so far as no consistent trend in behavior based on the 

ASR vs. pH2O dependence was observed at various temperatures.   

 

5.4.4 BSCF Electrode 

Comparing with the Ag, pure LSCF, and also LSCF-BZCYYb composite electrodes, the 

impedance data in Figure 5. 7 shows that BSCF behaves like a good MIEC electrode in a 

symmetrical cell with BZCYYb electrolyte: The overall Rai was the lowest among all those 

electrodes tested under both dry and humidified conditions.  The decrease in RO with 

increasing pO2 is attributed to the increased electronic conduction, especially at higher 

temperature of 650oC, which matches that reported in literature. [165] The decrease in RO 

with the introduction of moisture is expected and can be attributed to faster mass transfer 

process via proton (step 4’) than via oxide ion (step 4) at all temperatures, which is 
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consistent with previous studies. [12, 72, 157, 166] In addition, as discussed elsewhere, the 

high frequency semicircle in the impedance spectra for the BSCF symmetrical cell has been 

attributed to the charge transfer process. [157] Such an assignment is rational as RHF does 

not seem to change with changing pO2, yet it decreases continuously with introduction and 

increasing moisture content, and it was particularly obvious at lower temperature.  This has 

been attributed to faster charge transfer step via the proton route (step 3’) than via the oxide 

ion route (step 3), especially at lower temperature of 450oC, because BSCF seems to 

behave like a MIEC with the entire BSCF surface as well as TPB active for oxygen 

electrode reactions, which is not expected to be severely limited by available sites for 

oxygen adsorption/dissociation and charge transfer.  

Besides that, the observation of the increase in RMF-LF with decreasing pO2 (see Figure 

5. 14) or the introduction of H2O (see Figure 5. 8 and Figure 5. 9), which is more obvious 

at higher temperature of 650oC and 550oC, but less so at low temperature of 450oC, 

suggests that these parts of resistance can be attributed to the adsorption/desorption (step 

1) and dissociation/association (step 2), both which are limited by reduced surface area due 

to adsorption of water molecules. Moreover, the increase in RMF-LF with the introduction 

and increase of moisture content is generally consistent with most other types of 

symmetrical cells, suggesting such an increase does not seem to depend on the specific 

oxygen electrode material but more reflects the intrinsic strong water adsorption property 

of the BZCYYb electrolyte.  
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5.4.5 Electrochemical Behavior of BSCF Anode-supported Full Cell at 450oC 

The comparison of these different electrodes suggests that, despite the higher ionic 

conductivity of the proton conducting electrolyte like BZCYYb, simply borrowing a good 

MIEC material (e.g., LSCF) for an oxide ion conducting SOFC does not guarantee 

excellent performance when it is used as the cathode for a proton conducting IT-SOFC.  In 

fact, this has been confirmed by previous studies.  For example, Yang et al. compared the 

performance for the pure LSCF cathode versus the LSCF-BZCYYb composite cathode at 

750oC and arrived at the same conclusion that the composite cathode delivers significantly 

higher activity than the pure LSCF cathode. [121] 

On the other hand, cathode material of BSCF does behave like a good MIEC both in 

dry atmosphere and in humidified atmosphere.  Given that BSCF is a good oxide ion 

conductor and has been shown to be able to take up significant amount of moisture, [20] 

the result here strongly suggests the possibility that BSCF is a mixed proton-oxide ion-

electron triple conducting oxide in humidified atmosphere at lower temperature and would 

serve as a good cathode for proton conducting IT-SOFC. This can also be supported by 

comparison of Rai between the BSCF symmetrical cell versus the LSCF-BZCYYb 

composite symmetrical cell, showing significantly lower values for the BSCF electrode, 

especially under humidified condition.  Another piece of evidence comes from the 

comparison with data for an LSCF-Ba(Zr0.1Ce0.7Y0.2)O3−δ
 (BZCY) composite 

cathode/BZCY electrolyte/NiO-BZCY anode-supported full cell reported in a previous 

study: [121] At 450oC, that cell was expected to yield total electrode interfacial resistance 

as high as ~10 Ω•cm2, while a BSCF/BZCYYb/NiO-BZCYYb anode supported cell in this 
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study gave a much lower value of ~2.7 Ω•cm2, as shown in Figure 5. 15.  Additionally, the 

RO and Rai values obtained in this study for the anode-supported cell is ~1.5 Ω•cm2 and 

~2.7 Ω•cm2 at 450oC, respectively.  These values are consistent with those obtained for a 

BSCF cathode/BaCe0.9Y0.1O2.95 (BCY) electrolyte anode-supported full cell giving RO and 

Rai values of ~0.75 Ω•cm2 and ~0.4 Ω•cm2 at 500oC. [72] 

 

Figure 5. 15 Impedance spectra for a BSCF/BZCYYb/BSCF symmetrical cell in dry 

simulated air (20%O2/80%N2 with <~5ppm H2O) and simulated air with 3%H2O versus 

BSCF/BZCYYb/Ni-BZCYYb full cell at 450oC 

 

Considering that the BSCF cathode microstructure prepared in this study was by 

convention printing and firing approach, leading to rather coarse microstructures (Figure 

5.2 (g) and (h)) comparing with the LSCF-based electrodes (see Figure 5. 2 (c to f)), it 

seems there is still significant room for improvement in terms of optimizing the 

microstructure of the BSCF electrode.  For example, the BSCF cathode microstructure 

might be optimized with better tuning of the firing process and/or introduction of 

nanostructured catalysts into the BSCF cathode via methods such as infiltration. [160] 

These would help further increase electrode active surface area and may significantly 

improve the cathode performance for proton conducting IT-SOFC, and will be studied in 
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future. In addition, it is noted that BSCF was still developed as a "traditional" SOFC 

cathode materials for conventional oxide-ion conducting SOFC, while some proton-oxide 

ion-electron “triple conducting” cathode materials have been specifically developed 

recently for proton-conducting SOFCs and seem to show dramatically improved proton 

conductivity and electrochemical activity over BSCF. For example, Ba0.5Sr0.5Fe0.8Zn0.2O3−δ 

(BCFZ) showed proton conductivity of 0.9 to 3104 S cm-1 at 600 to 350oC; [122] 

NdBa0.5Sr0.5Co1.5Fe0.5O5+δ (NBSCF) achieved outstanding maximum power densities of 

1.71, 1.37, 1.05, and 0.69 W cm2 over BZCYYb electrolyte at 750, 700, 650, and 600oC; 

[127] BaCo0.4Fe0.4Zr0.2-xYxO3-δ (BCFZY) exhibited significantly reduced cathode 

interfacial resistance of only 0.12 Ω·cm2 at 500°C over BZCYYb electrolyte. [167] These 

studies suggest that partial doping or substituting for the A or B site elements in BSCF 

could be another way to further tailor the properties for improved cathode performance for 

proton conducting IT-SOFC.  

Finally, it should be noted that for the BSCF electrode, there appears to be a very large 

difference between the impedance measured in anode-supported full cell configuration 

versus in a cathode symmetrical cell configuration.  To illustrate this, the impedance for 

the impedance spectra for the BSCF/BZCYYb/BSCF symmetrical cell in both dry air and 

3% humidified air are also plotted together with that of the BSCF/BZCYYb/Ni-BZCYYb 

anode-supported full cell, as in Figure 5. 15.  It can be observed that the Rai for the anode-

supported full cell, which include contributions from both the Ni-BZCYYb cermet anode 

and the BSCF cathode, is only about one tenth (1/10) of the value from the cathode 

symmetrical cell!  Such a large difference was not observed when BSCF was matched with 

the samaria-doped ceria (SDC) electrolyte with the oxygen electrode interfacial resistance 
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giving the same value in full cell and in cathode symmetrical cell. [70] The underlying 

reason for this large discrepancy is not clear at this moment. According to the previous 

study by Merkle et al, [163] for the apparent cathode interfacial resistance from a cathode 

symmetrical cell with proton conducting electrolyte should be smaller than that when 

measured from a full cell due to the electronic shortage in relatively thick electrolyte for 

the symmetric cell.  However, this prediction seems to be opposite to the current 

observation that the apparent cathode interfacial resistance as determined from the 

symmetrical cell with proton conducting electrolyte is much larger than from an anode-

supported full cell.  The underlying reason for this observation and the discrepancy from 

prediction is not clear.  One hypothesis is related to the possible difference in the actual 

extent of hydration within the BZCYYb electrolyte: In the anode-supported cell 

configuration, due to the thin electrolyte (~20 μm) and anode side hydrogen supply, the 

BZCYYb electrolyte is presumably better hydrolyzed, which might ensure full proton 

conduction at intermediate temperature.  In comparison, for the cathode symmetrical cell 

in humidified air, due to the thick electrolyte (~600 μm) used, the electrolyte may not stay 

fully hydrated in impedance measurement, especially for the cathodic part (water evolution 

size) due to slow diffusion of proton.  Further studies will be needed to test such a 

hypothesis and understand the origin for the discrepancy when BSCF cathode is used over 

a proton conducting electrolyte.  
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5.5 Conclusions 

In summary, different oxygen electrodes of Ag, LSCF, LSCF-BZCYYb composite, and 

BSCF have been evaluated using cathode symmetrical cells based on BZCYYb proton 

conducting electrolyte.  Generally, most cells show increased electrode interfacial 

resistance with decreasing pO2 or introduction of moisture.  Pure LSCF does not behave 

like a good MIEC but more like Ag over the BZCYYb electrolyte, giving very high 

interfacial resistance and high ohmic resistance, suggesting very sluggish electrode 

reaction in both dry and humidified conditions.  This indicates that the oxide-ion transfer 

between LSCF and BZCYYb electrolyte is not very ineffective even in dry atmosphere, 

but the underlying reason is not clear at the moment.  Nevertheless, when LSCF was mixed 

with BZCYYb electrolyte to make a composite electrode, its activity becomes much better 

under dry conditions, which might be attributed to the extended TPB area and BZCYYb 

networks in the electrode that transfer oxide-ion to places near the LSCF surface. In 

comparison, BSCF electrode behaves like a MIEC giving low interfacial resistance and 

ohmic resistance than the other electrode materials studied under both dry and humidified 

conditions.  The high frequency resistance RHF of BSCF does not change with pO2 but 

decreases with increasing pH2O, which is attributed to intrinsically faster charge transfer 

step for the oxygen electrode reaction via the proton route than the oxide ion route.  Full 

cell impedance data confirms that BSCF appears to be a better cathode for IT-proton 

conducting SOFC than the LSCF-BZCYYb composite cathode. Further study aimed at 

refining the cathode microstructure via techniques such as firing optimization and 

infiltration [168] into the BSCF cathode as well as proper doping to enhance the proton-
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oxide ion-electron triple conduction appears attractive to obtain high performance cathode 

for proton conducting IT-SOFCs.  Finally, study also needs to be carried out to understand 

the large difference in BSCF cathode interfacial resistance measured in full cell versus 

cathode symmetrical cell configuration when using a proton conducting electrolyte and 

also reconcile the difference with theoretical predictions in the literature. 
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6 Chapter VI: Effects of H2O and CO2 on Electrochemical Behaviors of BSCF 

Cathode for Proton Conducting IT-SOFC 

This chapter details the study on the electrochemical behaviors of Ag, LSCF and BSCF as 

cathode for proton conducting IT-SOFC. This chapter is based on published paper by 

Shichen Sun, and Zhe Cheng. Title of "Effects of H2O and CO2 on electrochemical 

behaviors of BSCF cathode for proton conducting IT-SOFC." in Journal of The 

Electrochemical Society 164.2 (2017): F81-F88. 

 

6.1 Introduction  

In recent years, intermediate temperature (400-700oC) solid oxide fuel cells (IT-SOFC) 

have drawn increasing interest due to the possibility of achieving slower degradation 

during long-term operation, cheaper sealing and interconnect material choices, as well as 

higher overall thermodynamic efficiency compared to conventional high temperature (≥ 

~750oC) solid oxide fuel cells (HT-SOFC). [12, 94] For IT-SOFC, conventional oxide ion 

electrolyte of yttria-stabilized zirconia (YSZ) suffers from low ionic conductivity,[78, 81] 

which dictates unreasonably thin electrolyte and high cost,[169, 170] while alternative 

oxide ion electrolytes, such as gadolinium doped ceria (GDC) or samarium doped ceria 

(SDC), suffer from high electronic transport number, which lowers open circuit voltage 

(OCV) and system efficiency despites their significantly improved ionic conductivity at 

intermediate temperature.[21, 171, 172] In comparison, proton conducting oxides, many 

of which are perovskite-structured, offer higher ionic conductivity with low electronic 

transport number as well as lower activation energy at intermediate temperature.[15, 79, 
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82, 86, 89, 173, 174] As a result, they are regarded as the preferred electrolyte for IT-

SOFC.[175]  

For IT-SOFC, cathode process is generally regarded as the rate-limiting step due to its 

high activation energy compared to the electrolyte. In particular, for proton conducting IT-

SOFC, there have been a number of perovskite oxides employed as potential cathodes such 

as La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF), Sm0.5Sr0.5CoO3-δ (SSC), and BaCo0.4Fe0.4Zr0.1Y0.1O3-δ 

(BCFZY).[121, 167, 176-178] Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), which is considered to be 

one of the most active cathode materials for oxide ion conducting IT-SOFC, [70] could 

also be a promising cathode material for proton conducting IT-SOFC because of its 

capability of undertaking significant amount of water and becoming proton conductive at 

intermediate temperature of ~600oC and below.[20, 72, 156, 179] In fact, various 

researchers have already explored BSCF as the cathode for proton conducting IT-SOFC 

and obtained varying degrees of success. [163, 166, 176, 177, 180]However, there are still 

many unknown aspects left. For example, the exact influence of water vapor on the 

cathodic process for such proton conducting SOFC, especially at even lower temperatures 

of ~400-500oC is still not clear.  On the other hand, the influence of carbon dioxide (CO2), 

which is always present in air, on the cathode electrochemical behavior for such proton 

conducting IT-SOFC is also uncertain despite evidence showing questionable stability of 

BSCF against CO2 in SOFC operation at intermediate temperature.[21] In addition, how 

would the co-presence of H2O and CO2, which is a more realistic situation for practical 

SOFC operation, influence the electrochemical behavior for proton conducting SOFC with 

BSCF cathode has never been studied to the best of the authors’ knowledge.[22, 23]  



174 

 

In this work, the chemical stability and compatibility of the BSCF cathode with one of 

the leading proton conducting electrolytes BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) [79, 82, 

86, 89] under various conditions were studied. More importantly, BSCF/BZCYYb/BSCF 

cathode symmetrical cells were used to investigate the influence of water vapor and CO2 

on the electrochemical behaviors for the proton conducting IT-SOFC at various 

temperatures ranging from 650oC to 400oC. The implication of the experimental 

observations on the underlying oxygen electrode reaction mechanism for proton 

conducting IT-SOFC versus conventional oxide ion conducting SOFC is discussed, and 

the direction for future research on designing better cathode for proton conducting IT-

SOFC is pointed out. 

  

6.2 Experimental 

6.2.1 Powder Synthesis 

Both BZCYYb powder with nominal composition of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ and BSCF 

powder with nominal composition of Ba0.5Sr0.5Co0.8Fe0.2O3-δ were synthesized by glycine 

nitrate process (GNP).(33) For BZCYYb, stoichiometry amounts of Ba(NO3)2 (#A11305, 

Alfa Aesar, 99%), ZrO(NO3)2•xH2O (#43224, Alfa Aesar, 99.9%), Ce(NO3)3•6H2O 

(#11329, Alfa Aesar, 99.5%), Y(NO3)3•6H2O (#12898, Alfa Aesar, 99.9%), and 

Yb(NO3)3•xH2O (#12901, Alfa Aesar, 99.9%) powders were dissolved in DI water. Then 

glycine (#G8898, Sigma Aldrich, 99+ %) was added to the solution with molar ratio 

between glycine and total metal ions of 1:1. The solution was stirred for about 30 minutes 
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in a 2-liter beaker on a hot plate at ~100oC in order to dissolve the various salts completely. 

The obtained transparent solution was then heated up on the hot plate set at ~540oC. Rapid 

self-combustion process occurred after water was evaporated, and the very fine white 

powder generated after combustion was collected and calcined in ambient air at 1100oC 

for 5 hours to form pure BZCYYb perovskite phase. (It is noted that right after combustion, 

the powder obtained was not BZCYYb, but doped CeO2 and amorphous phases, as reported 

elsewhere. [89]) In the case of BSCF powder, the major steps for powder synthesis are 

similar to that for BZCYYb, except the starting materials now also include 

Fe(NO3)3·9H2O(#216828, Alfa Aesar, 99%) and Co(NO3)2·6H2O (#239267, Alfa Aesar, 

99%), while the molar ratio between glycine and total metal ions was changed to 7:6 for 

complete combustion. After self-combustion, the powder was calcined at 1000oC for 2 

hours in ambient air to form the pure phase. [180]  

 

6.2.2 Chemical Compatibility and Stability Test 

For chemical compatibility test between BSCF and BZCYYb in typical cell fabrication 

process, intimately mixed powders of the two materials with weight ratio of 1:1 were 

exposed to ambient air at typical BSCF cathode firing temperature of 1000oC for 5 hours. 

To test the stability and compatibility of the BSCF and BZCYYb mixture under typical IT-

SOFC operation conditions, the powder mixtures were exposed at 450oC in ambient air, 

humidified nitrogen with nominal composition of 3% H2O/97% N2 (gas compositions are 

all by volume in this study), and gas mixture of ~1% CO2/99% N2 for various time from 

24 to 72 hours. Furthermore, the chemical stability of the BZCYYb electrolyte against 
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1%CO2/99% N2 was also investigated at 750oC by exposing BZCYYb powder to that gas 

mixture for 24 hours. The samples after various chemical stability/compatibility tests were 

analyzed by X-Ray diffraction (SIEMENS diffractometer D5000) for phase identification.  

 

6.2.3 BSCF/BZCYYb/BSCF Symmetrical Cells Fabrication 

Cathode symmetrical cells with the configuration of BSCF/BZCYYb/BSCF were 

fabricated. First, electrolyte pellets with diameter of 10 mm were dry-pressed at 200 MPa 

using 0.2 g BZCYYb powder followed by protected sintering at 1550oC for 5 hours. [89] 

Then, the BSCF slurry was prepared by mixing BSCF powder with alpha-terpineol 

(#16285, Alfa Aesar, 96%) solvent and organic binder at weight ratio of ~65: 34: 1, and 

ball-milled for 24 hours. 44 mm2 BSCF electrodes were brush painted onto both sides of 

the sintered electrolyte pellets using the prepared slurry, fully dried in an air oven at 100oC, 

and calcined at 1000oC for 2 hours in ambient air with heating and cooling rate of 5oC/min.  

(It is noticed that the BSCF cathode fired at 900oC showed weak bonding to the electrolyte, 

while the cathode fired at 1000oC showed better bonding to the electrolyte. Thus, only 

symmetrical cells with cathode firing temperature of 1000oC were used for electrochemical 

testing in this study.) The microstructure of the cross-section in the fabricated symmetrical 

cell was observed using a field emission scanning electron microscope (FE-SEM, JEOL 

JSM 6330F).  
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6.2.4 Electrochemical Impedance Spectroscopy (EIS) Measurements 

Electrochemical Impedance Spectroscopy (EIS) measurements were carried out using a 

potentiostat (Gamry Interface 1000) under open circuit condition for the symmetrical cells. 

The symmetrical cell with silver paste and silver mesh current collector was placed in the 

hot zone of a sealed quartz tube furnace. Dry simulated air (with the composition of 20% 

O2/80% N2 with <~5 parts per million or ~5 ppm of CO2 or H2O) at a flow rate of 200 ml 

min-1 was used as the baseline. To test the effect of water vapor on the oxygen electrode 

behavior, 3%, 10%, and 20% water vapor was introduced into the test chamber by passing 

the dry simulated air through a water bubbler set at different temperatures. And the 

connection tubes were heated to ~100oC to prevent condensation.  Before the tests, the 

symmetrical cell was heated to 750oC in dry simulated air and held for 24 hours to stabilize 

it. The sequence of the electrochemical experiments for evaluating the moisture effect is 

described as following: i) The cell was cooled from 750oC to the testing temperature (e.g., 

650oC) in dry simulated air, held for 12 hours and then the impedance spectrum was 

collected.  ii) After that, moisture was introduced into the simulated air first at 3% then 

increased to 10% and finally to 20%, and the impedance spectrum for each level of 

humidity was collected 2 hours after the adjustment of the moisture content.  iii) The cell 

was then heated back up to 750oC in dry simulated air and held for 12 hours or longer to 

fully dehydrate the system (including both the cell and testing chamber).  This sequence of 

step i) to ii) and then iii) was repeated for each testing temperature such as 650oC, 550oC, 

and 450oC to obtain electrochemical responses of the cell to different atmospheres.  

Similarly, to test the influence of CO2 on the oxygen electrode behavior, 1% CO2 was 
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introduced into the simulated air through a mass flow controller and the impedance spectra 

for the cell were collected at a given temperature before and after 2 hours of the 

introduction of 1% CO2, as well as after the removal of CO2 for 24 hours.  Before changing 

to a different testing temperature for CO2 response, the sample was always recovered in 

the dry simulated air (with < 5 ppm CO2 as mentioned before) at 750 oC for 24 hours to 

ensure a complete recovery and a clean surface of both the electrode and the electrolyte.  

To test the behaviors when the electrode is exposed to both H2O and CO2, which is a more 

realistic situation for fuel cell operation, the simulated air was passed through the water 

bubbler at room temperature and then mixed with CO2 to give a gas mixture with nominal 

composition of ~1% CO2/3% H2O/20% O2/76% N2, and the sequence of these tests was 

similar to that for tests in 1% CO2 alone. All impedance data were collected with zero DC 

bias and AC amplitude of 0.1 mA. 

 

6.3 Results  

6.3.1 Compatibility and Stability of BSCF and BZCYYb in Various 

Atmospheres 

The XRD patterns for the as synthesized BSCF and BZCYYb powders and their mixtures 

after various compatibility/stability tests are summarized in Figure 6. 1. (It’s noted that the 

synthesized BSCF contains some minor unidentified secondary phase as evidenced by the 

extra peak at~31o.) The chemical compatibility between BSCF and BZCYYb was verified 

with XRD, showing no change for both BSCF and BZCYYb materials after heat treatment 
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at 1000 oC for 5 hours. (Similar result was also obtained for compatibility test at 900oC.) 

In addition, as shown in Figure 6. 1, the chemical stability of the BSCF-BZCYYb powder 

mixture in both ambient air (i.e., containing ~1-3% H2O and ~400 ppm CO2) and in N2 

containing up to 3% H2O and 1% CO2 at targeted IT-SOFC operating temperature of 450oC 

was also demonstrated, which is supported by the absence of impurity peaks in the XRD 

patterns after long time exposure to the various gas mixtures for 24-72 hours. It is worth 

mentioning that when the BZCYYb electrolyte with Zr doping at 0.1 level was exposed to 

the gas mixture of 1% CO2/99% N2 at 750 oC for 24 hours, some BaCO3 did form, as shown 

in Figure 6. 1. 

 

Figure 6. 1 XRD patterns of as synthesized BSCF and BZCYYb powders and their 

mixtures after different compatibility/stability tests.  
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Apart from testing for the compatibility and stability of the materials, the 

microstructure of a fabricated BSCF/BZCYYb/BSCF cathode symmetrical cell is shown 

in Figure 6. 2. The thickness of the BSCF electrode layer was around 30 µm. Relatively 

large particle size of ~1-3 μm for the BSCF electrode was observed, which may be 

attributed to the high surface energy of BSCF and the strong tendency to coarsen.[70, 162, 

181] The porosity of the BSCF electrode was estimated to be ~22% based on the analysis 

of SEM image using the software of ImageJ (version 1.50i).  

 

Figure 6. 2 SEM image of cross-section of fabricated BSCF/BZCYYb/BSCF 

symmetrical cell.  

 

6.3.2 Effect of Moisture on BSCF Cathode Electrochemical Behavior 

Figure 6. 3 (a), (b), and (c) show the impedance spectra for the BSCF/BZCYYb/BSCF 

cathode symmetrical cell in the dry simulated air (as explained, it is a gas mixture of 20% 

O2 and 80% N2 with <~5ppm H2O and CO2 as supplied from Airgas) and simulated air 
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humidified with ~3%, ~10%, and ~20% of moisture at 650oC, 550oC, and 450oC, 

respectively. At 650oC, as shown in Figure 6. 3 (a), with the introduction of 3% H2O, the 

ohmic resistance RO decreases from 2.11 Ohm•cm2 to 2.04 Ohm•cm2. As the moisture 

content increases further to 10% and 20%, a continued decreasing of RO was observed. On 

the other hand, for the electrode interfacical polarization resistance Rp, due to the nature of 

mixed ionic and electronic conduction for the BZCYYb electrolyte and the absence of 

precise ionic transference number, [88] accurate Rp number cannot be obtained readily. As 

a result, only the apparent interfacial resistance Rai, which is the direct difference between 

the low frequency intercept and the high frequency intercept on the real axis in an 

impedance spectrum, is used for the analysis and discussions in this study as in many 

previous reports. [20, 159] It can be seen from Figure 6. 3 (a) that comparing with dry 

simulated air, Rai increases from ~0.6 Ohm•cm2 to ~0.7 Ohm•cm2 with the introduction of 

3% moisture. However, with further increase of H2O concentration to 10% and beyond, Rai 

starts to decrease back to ~0.64 Ohm•cm2 and stabilizes. It is noted that the observation of 

the decrease of Rai with increasing moisture content beyond 3% H2O for BSCF cathode 

over BaCe0.9Y0.1O3-𝛿 (BCY10) proton conducting electrolyte had been reported before. [20] 

Nevertheless, to the best of the authors’ knowledge, the initial increase in Rai from dry 

simulated air to 3% humidified air for proton conducting IT-SOFC with BSCF cathode has 

not been reported before, and such an observation implies that the introduction of moisture 

seems to slow down at least certain part(s) of the oxygen electrode reaction for the 

BSCF/BZCYYb/BSCF cathode symmetrical cell. 
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At reduced temperature of 550oC, which is shown in Figure 6. 3 (b), when 3% moisture 

was introduced, RO still decreases; however, no continued decreasing of RO was observed 

with the further increase in moisture content beyond 3%, suggesting saturation of the 

hydration effect by 3% of moisture at that temperature. On the other hand, an increase in 

Rai was observed with the introduction of 3% moisture compared with dry simulated air, 

and, in contrast to the observations at 650oC, total Rai does not show a decrease when 

moisture concentration was further increased to 10% and beyond.  

When the temperature was further reduced to 450oC, the overall impedance spectra 

(shown in Figure 6. 3 (c)) clearly separate into one semicircle at the high frequency (HF, 

106~104 Hz) range and one large depressed semicircle, which most likely represents two 

overlapped arcs-one at the middle frequency (MF, ~104 to ~100 Hz) range and the other at 

the low frequency (LF, ~100 to 10-2 Hz) range. At this temperature, when 3% moisture was 

introduced, the change in RO becomes negligible. On the other hand, for Rp, the HF part 

decreases significantly, while the MF and LF parts show an obvious increase with the 

introduction of moisture. In addition, the effect of moisture seems to reach saturation at 

3%, as further increase in moisture content does not produce significant differences at 

450oC.  
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Figure 6. 3 Impedance spectra for a BSCF/BZCYYb/BSCF symmetrical cell in simulated 

air (20%O2/80%N2 without H2O or CO2) versus simulated air humidified with various 

pH2O at (a) 650oC, (b) 550oC, and (c) 450oC, respectively. 

 

Additional EIS measurements were conducted at 500-400oC because of the clear 

separation of impedance spectra into two semicircles (HF and MF-LF) in that temperature 

range. Gradual decrease in the HF semicircle was observed with increasing concentration 
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of moisture as shown, for example, in Figure 6. 4 for 475oC. For comparison, impedance 

spectra for another symmetrical cell in both pure O2 and dry simulated air at 450oC are 

given in Figure 6. 5 (a), which shows almost no difference in the size of the HF semicircle, 

while a significant increase was observed in the MF-LF semicircle in dry simulated air 

versus in pure O2. On the other hand, as in Figure 6. 5 (b), when moisture content was 

increased in O2, the HF semicircle shows the similar gradual decrease. 

  

Figure 6. 4 Impedance spectra for BSCF/BZCYYb/BSCF symmetrical cell at 475oC in 

dry and wet (with various pH2O) “simulated air” (a) the full impedance spectra, (b) zoom 

in to show the changes at the high frequency (HF) portion. 
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Figure 6. 5 Comparison of the impedance spectra for BSCF/BZCYYb/BSCF symmetrical 

cell at 450oC (a) entire impedance spectra comparing dry “simulated air” and dry pure O2 

and zoom-in of the high frequency (HF) part, (b) zoom-in of pure O2 with different 

concentration of moisture at the high frequency (HF) part.  

 

6.3.3 Effect of CO2 on BSCF Cathode Electrochemical Behavior 

The effect of CO2 alone (i.e., without the presence of moisture) on the 
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ohm·cm2 and in Rai from 0.49 ohm·cm2 to 0.72 ohm·cm2, respectively, were observed after 

the introduction of 1% CO2 into the dry simulated air for 2 hours. After the removal of CO2 

for 24 hours, almost complete recovery in both RO and Rai was observed. At 550oC, as 

shown in Figure 6. 6 (b), both RO and Rai increased after the introduction of 1% CO2, and 

the relative increase in Rai due to CO2 poisoning becomes larger comparing with 650oC. 

Also, only incomplete recovery was observed with the removal of CO2 even after 24 hours. 

At further reduced temperature of 450oC, little change in RO was observed with the 

introduction of 1% CO2, while large increase in Rai was still observed. In addition, because 

of the clear separation of the impedance spectra into one semicircle at the HF range and 

another at the MF-LF range, the increase in Rai due to CO2 at 450oC occurs almost 

exclusively to the MF-LF part. At this temperature, very little recovery was observed after 

the removal of CO2 for 24 hours.   
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Figure 6. 6 Plots showing the change in impedance spectra for BSCF/BZCYYb/BSCF 

symmetrical cell in dry “simulated air” (20% O2/80% N2) before exposure to CO2, after 

exposure to 1% CO2 for 2 h, and after recovery (i.e., removal of 1% CO2) for 24 hours at 

(a) 650oC, (b) 550oC and (c) 450oC, respectively. 
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In comparison, the effect of 1% CO2 for 3% humidified simulated air on the 

BSCF/BZCYYb/BSCF symmetrical cell at 650, 550, and 450oC is shown in Figure 6. 7. 

At 650oC, almost the same behavior was observed as both RO and Rai increase with the 

introduction of 1% CO2, and they are largely recoverable with the removal of CO2. 

However, at lower temperatures of 550 and 450oC, it is seen that the presence of moisture 

significantly improves the reversibility for CO2 poisoning. In fact, at 450oC, the presence 

of 3% moisture makes the cathode much less sensitive to 1% CO2.  To illustrate the results 

better, based on the collected impedance spectra (as shown in Figure 6. 6 and Figure 6. ), 

the estimated value of RO and Rai are summarized in Table 6. 1, as well as their relative 

changes after being poisoned for 2hours and after the recovery by removing 1% CO2 for 

24 hours in both dry and 3% humidified simulated air. 
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Figure 6. 7 Impedance curve for BSCF/BZCYYb/BSCF symmetrical cell in humidified 

simulated air (3% H2O/20% O2/77% N2) before exposure, after exposure to 1% CO2 for 2 

hours, and after recovery (i.e., removal of 1% CO2) for 24 hours at (a) 650oC, (b) 550oC 

and (c) 450oC, respectively.  
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Table 6. 1 Elementary steps of the oxygen electrode reaction for BSCF electrode over 

BZCYYb electrolyte without the presence of H2O under ideal oxide ion conduction 

condition and under ideal, fully hydrated condition which only conduct proton and not 

oxide ion. 

Elementary Steps  Elemental step Frequenc

y 

range 

1 Mass transfer of O2 

molecule in gas phase and 

adsorption and desorption 

on electrode surface 

O2 g ↔ O2  ads  LF 

2 Adsorbed O2 molecule 

dissociation/association  
O2  ads ↔ 2O  ads  MF 

3 Charge transfer for pure 

oxide ion electrolyte 
O ads + VO

∙∙ + 2𝑒− ↔ OO
X  HF 

3’ Charge transfer for pure 

proton electrolyte 
O  ads + 2𝑒− + 2OHO

∙

↔ H2O ads + 2OO
X  

HF 

4 Mass transfer of oxide ion 

in bulk of electrode and 

electrolyte 

VO electrode 
∙∙ ↔ VO electrolyte 

∙∙  Very HF  

(>> 106 

Hz) 

4’ Mass transfer of proton 

in bulk of electrode and 

electrolyte 

OHO electrode 
∙ ↔ OHO electrolyte 

∙  Very HF 

(>> 106 

Hz) 

5 H2O transport and 

adsorption/desorption 
H2O ads ↔ 2H2O g  LF 

 

6.4 Discussions 

The results from compatibility and chemical exposure tests show that at the targeted proton 

conducting IT-SOFC operating temperature of ~450 oC, the combination of BSCF cathode 

and BZCYYb electrolyte has demonstrated the desired compatibility in processing and 

stability to practical air.  However, the observation of reactivity of BZCYYb electrolyte to 

1% CO2/99% N2 to form BaCO3 seems to contradict the earlier study showing stability of 

BZCYYb against a gas mixture of 50% CO2/50% H2 at 750 oC. [121] Whether such a 

discrepancy is due to the different balance gas (N2 versus H2) used, or the variation in 
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sample stoichiometry (e.g., Ba to (Ce+Zr+Y+Yb) molar ratio), or other factors is not clear 

at the moment.   

Besides that, in order to understand the various observed phenomena concerning the 

effects of moisture and CO2 on the electrochemical behaviors for the 

BSCF/BZCYYb/BSCF symmetrical cell, fundamental oxygen electrode reaction processes 

are first summarized. Shown in Figure 6.  (a) is the conventional cathode reaction pathway 

for an ideal oxide ion based SOFC with a mixed ionic and electronic conductor (MIEC) 

electrode. In comparison, shown in Figure 6.  (b) is the ideal cathode reaction pathway for 

a “pure” proton conducting SOFC with MIEC electrode, which means electrolyte is fully 

hydrated and conducts only proton while the electrode conducts electron (hole) and proton 

upon hydration. The elementary steps corresponding to the illustrated pathways are 

summarized in Table 6. 2.  

 

Figure 6. 8 Schematics showing the reaction species involved and the elementary steps 

(also refer to Table 5.1) for the reversible oxygen electrode reaction for (a) ideal pure 

oxide-ion based SOFC and (b) ideal pure proton conducting SOFC. 
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Table 6. 2 Relative change of Ohmic resistance RO and interface polarization resistance 

Rp for the BSCF/BZCYYb/BSCF cathode symmetrical cell after being poisoned by 1% 

CO2 for 2 hours and the recovery by then removing 1% CO2 for 24 hours in both dry and 

3% H2O humidified simulated air 

 Temperature 650oC 550oC 450oC 

 Condition Dry 3% H2O Dry 3% H2O Dry 3% H2O 

∆RO/RO After CO2 poisoning  7.3% 3.2% 8.4% 10.3% 1.7% -0.3% 

After recovery  1.9% 0.6% 13.5% 5.4% 2.7% -0.2% 

∆Rp/Rp After CO2 poisoning 69.1% 48.3% 61.8% 102% 68.4% 15.9% 

After recovery 5.0% -7.6% 83.8% 5.6% 46.1% 8.3% 

 

For the conventional ideal oxide ion based SOFC, the overall oxygen electrode reaction 

follows:  

O2 + 4e− + 2VO
•• ↔ 2OO

x                                                                                                                            Equation 6.1 

When the electrode is MIEC, the overall oxygen electrode reaction consists of 

elementary steps (and their reverse steps) of 1) mass transport of O2 molecule in the gas 

phase and adsorption on the electrode surface; 2) dissociation of adsorbed O2 molecule into 

adsorbed oxygen atoms; 3) charge transfer and combining of lattice oxygen vacancy with 

surface adsorbed oxygen atom and electrons to form lattice oxygen; and 4) mass transport 

of oxide ion (oxygen vacancy) in the bulk of electrode and electrolyte.  

In comparison, for the ideal pure proton conducting SOFC, in principle, the oxygen 

electrode reaction would follow a different pathway: 

O2 + 4e− + 4(OH)O
• ↔ 4OO

x + 2H2O                                                                Equation 6.2 
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When the electrode is MIEC with proton as the sole ionic charge carrier, apart from the 

common elementary steps of O2 molecules gas phase transport and adsorption (step 1) and 

adsorbed O2 molecule dissociation (step 2), alternative elementary steps of 3’) charge 

transfer and combining of proton with adsorbed oxygen atom and electrons to form water, 

and 4’) mass transport of proton in the bulk of electrode and electrolyte, as well as 5) water 

molecule transport in the gas phase and adsorption/desorption on the electrode surface also 

need to be taken into consideration.  

The actual system considered here would approach the ideal oxide-ion based system 

(Figure 6.  (a)) in dry condition. On the other hand, when significant concentration of 

moisture is present, proton is generated in the BZCYYb electrolyte as following:  

H2O + VO
•• + OO

x ↔ 2(OH)O
•                                                                           Equation 6.3 

The system would then approach the ideal “pure” proton-based system (Figure 6.  (b)) 

in humidified condition especially when the moisture content is high (≥3%) and at lower 

temperature (e.g., ~450oC and below) when the BZCYYb electrolyte and the BSCF 

electrode become fully hydrated with oxygen vacancy VO
∙∙ replaced by proton OHO

∙ .  

As shown in Figure 6. 3 (a) and (b), the decrease in RO at 650 and 550oC with the 

introduction of moisture into the simulated air could be attributed to the hydration of the 

BZCYYb electrolyte and the change of conducting species from oxide ion to proton 

yielding higher ionic conductivity.[88, 121] However, at temperature below ~500oC, 

almost negligible reduction in RO was observed (see Figure 6. 3 (c) and Figure 6. 4). Such 

a phenomenon could be attributed to the enhanced affinity of proton conducting oxide 
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electrolyte (BZCYYb here) for water below the temperature of ~450oC, [84, 182] which is 

supported by the TGA from previous reports suggesting that the dehydration of proton 

conducting oxides and associated weight loss only occur significantly at temperature above 

~450oC. [20] The implication is that despite the dry simulated air used, which is supposed 

to give moisture content of only ~5 ppm, the actual moisture content in the system due to 

various leakage might be sufficient to hydrate the electrolyte and make it proton conductive 

at temperature of ~450oC and below. Therefore, strictly speaking, the so-called “dry 

simulated air” is only a loosely used term to indicate that the moisture content is, 

qualitatively, much lower than the 3% used for comparison. Though the difference in actual 

moisture content between the so-called “dry simulated air” and 3% humidified air may not 

be large enough to influence the Ohmic resistance at ~450oC and below, it is, however, 

adequate to significantly impact the oxygen electrode processes, as discussed below. 

For the apparent interfacial resistance Rai, in the temperature range of 650oC to 450oC, 

as shown in Figure 6. 3 and Figure 6. 4, the overall Rai seems to increase with the 

introduction of moisture, especially for the middle to low frequency (MF-LF) semicircle. 

Generally, the MF-LF semicircle is believed to be associated with the mass transport 

process of oxygen molecules and the oxygen adsorption/dissociation process on the BSCF 

electrode. [183]  The observed increase in that part upon moisture introduction could be 

attributed to the strong adsorption of H2O on the surface of BSCF electrode and the 

BZCYYb electrolyte, both of which have high affinity for water. This would result in the 

reduced number of active sites for the adsorption/dissociation of oxygen molecules. In 

addition, strongly adsorbed water molecules on the BSCF surface could also greatly 
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impede the transport (or diffusion) of oxygen species on the electrode surface. Both effects 

would slow down the overall cathode reaction process, leading to the increased Rai, 

especially in the MF-LF range.  

On the other hand, as shown in Figure 6. 3 (c) and Figure 6. 4, an opposite trend with 

respect to the moisture effect was observed in the high frequency (HF) part of the 

impedance spectra. Figure 6.  summarizes the HF resistances obtained from 500oC to 400oC 

for a symmetrical cell in both dry simulated air and humidified air with different moisture 

content. It is observed that the decrease in HF resistance due to the introduction of moisture 

is more significant at higher temperature (e.g., 500 and 475oC) than at lower temperature 

(e.g., 450oC or below). Such results suggest that the activation energy for the HF resistance 

is significantly different in dry simulated air from those in humidified air. (It is noted that 

there appears to be a deviation at 475oC in Figure 6. .  Whether it is due to experimental 

error or other factors is not clear at this moment and will be investigated in the future.) 

Therefore the HF semicircle is attributed to the resistance from the charge transfer step and 

not the grain boundary (GB), because previous study suggests that the activation energy 

for the GB resistance remains almost the same in humidified versus dry atmosphere.[184] 

Such assignment of the HF semicircle at temperature below ~500oC to the charge transfer 

step is also consistent with literature.[20, 183]  

It should be noted that similar behavior of decrease in HF semicircle with increase of 

moisture content from 3, 10, and 20% in simulated air had been reported before for the 

system of Sm0.5Sr0.5CoO3-δ (SSC)-BaCe0.8Sm0.2O3-δ (BCS) composite cathode over BCS 

proton conducting electrolyte at 500oC, [185] while in another study on the system of BSCF 
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over BaCe0.9Y0.1O3-δ (BCY10) electrolyte at 600oC, [20] the total apparent interfacial 

resistance decreases with increasing moisture content from 3% to 30%.  Nevertheless, to 

the best of the authors’ knowledge, no previous study has systematically compared the 

cathode behavior over proton conducting electrolyte between dry and humified conditions, 

as reported here. The significant decrease in the HF semicircle for the oxygen electrode 

upon the introduction of moisture in the current study is hypothesized to be due to i) the 

intrinsically faster kinetics for the charge transfer step 3’) via proton (Figure 6.  (b)) 

comparing with the conventional charge transfer step 3) via oxide ion (Figure 6.  (a)) and/or 

ii) the greater concentration of H2O(ads) reactant for the reverse reaction of step 3’). Both 

explanations are consistent with the observation of a continued decrease of high frequency 

resistance RHF with increasing concentration of H2O, especially at temperatures of 475oC 

and 500 oC (see Figure 6. 4 (b) and Figure 6. ): As moisture content increases, the BSCF 

electrode and the BZCYYb electrolyte can become more and more hydrated, leading to the 

continued increase in proton conduction and decrease in oxide ion conduction.  On the 

other hand, the concentration of surface H2O(ads) would increase as well.  Either way, the 

overall charge transfer process 3’) would become faster with greater moisture content.  

Further study will be needed to clarify the exact origin for such a phenomenon. 

Furthermore, such explanations could also be supported by the comparison of the 

impedance spectra obtained in simulated air versus in pure O2 at 450oC, as shown in Figure 

6. 5 (a). The HF semicircles in simulated air and in pure O2 are essentially the same, which 

suggests that they are not sensitive to the amount of O2 available and should represent the 

charge transfer step of the electrode reaction. On the other hand, the MF-LF semicircle is 
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significantly smaller in pure O2 comparing with that in dry simulated air, which is 

consistent with the attribution of the MF-LF semicircle to the oxygen adsorption/mass 

transport of oxygen molecules in the gas phase. With the introduction of moisture to O2, 

RHF becomes smaller and smaller with increasing moisture content, as shown in Figure 6. 

5 (b), while the MF-LF semicircle becomes significantly larger, which is similar to the 

behavior in simulated air. In addition, as shown in Figure 6. 5 (c), the impedance spectra 

in 3% humidified air and in humidified O2 are very similar including the MF-LF part, and 

this can be understood as significant surface sites over BSCF electrode are now occupied 

by adsorbed water, which leads to limited reaction sites for O2 adsorption, making the 

overall electrode reaction less sensitive to the oxygen gas concentration.  

For the effect of CO2 on the cathode electrochemical behavior, adding CO2 to the dry 

simulated air obviously poison the BSCF electrode as evidenced by the increase in Rai 

(shown in Figure 6. 6 and Table 6. 1).  In addition, 1% CO2 also seems to cause increase 

in RO for the BZCYYb electrolyte at higher temperature such as 650oC and 550oC (as 

shown in Table 6. 1).  This is most likely due to the bulk reaction between CO2 and the 

BZCYYb electrolyte, as evidenced by the XRD pattern in Figure 6. 1 showing the existence 

of BaCO3 impurity after the exposure of the BZCYYb powder to 1%CO2/99%N2 at 750oC 

for 24 hours. In comparison, at lower temperature of 450oC, no obvious change in RO was 

observed, which is consistent with the XRD pattern for the BSCF+BZCYYb powder 

mixture after 24 hours of exposure to 1%CO2/99%N2 in Figure 6. 1, suggesting sufficient 

chemical stability against 1%CO2 for the BSCF electrode and BZCYYb electrolyte at that 

temperature.  
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Figure 6. 9 High frequency resistance RHF in dry simulated air versus that contains up to 

20% moisture at temperatures from 500 to 400oC. 

 

In addition, the increase of Rai upon the introduction of 1% CO2 into the dry simulated 

air, especially for the MF-LF semicircle (shown in Figure 6. 6 (b) and (c)) could be 

attributed to the adsorption of CO2 on the BSCF and BZCYYb surfaces, which would 

substantially occupy the active surface sites for oxygen adsorption and slow down the 

overall reaction. On the other hand, when the oxygen electrode process shows clear 

separation into HF and MF-LF semicircles at lower temperature such as 450oC, the HF 

semicircle does not appear to be influenced much by the adsorption of CO2 (Figure 6. 6 

(c)). This is also consistent with the attribution that the HF semicircle represents the charge 
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transfer process. Furthermore, as summarized in Table 6.2, the CO2 poisoning is largely 

recoverable upon the removal of 1% CO2 in the dry simulated air at 650oC, but it gets less 

reversible at lower temperature of 550oC and 450oC. This is likely due to the relative strong 

adsorption and high desorption temperature (>600oC) for CO2 on BSCF surface as reported 

before.[21-23]  

With the presence of 3% moisture, the extent of poisoning caused by 1% CO2 reduces 

and the recovery becomes much more complete, especially at lower temperature of 550oC 

and 450oC, as shown in Figure 6.  and in Table 6. 1. The less extent of CO2 poisoning, 

faster and more complete recovery in the presence of moisture comparing with dry 

condition could be attributed to the strong adsorption of moisture on the BSCF and 

BZCYYb surfaces, especially at lower temperature of 550oC and 450oC, which leads to the 

formation of adsorbed surface bicarbonate species (i.e., adsorbed -HCO3) apart from 

typical surface carbonate (adsorbed -CO2) on the electrode and electrolyte. According to 

Yan et al., the surface bicarbonate species have weaker bonding and much lower desorption 

temperature of ~400oC comparing with the desorption temperature of ~600oC for surface 

carbonate species. [22]  

Finally, considering that the CO2 concentration in ambient air is much lower than the 

1% used in this study and there will always be some moisture in air, the results observed 

suggest that proton conducting IT-SOFC with BSCF cathode might be insensitive to typical 

CO2 poisoning for operation at reduced temperature of ~450oC. On the other hand, the 

observed apparent interfacial resistance on the order of 10-15 Ω•cm2 at this temperature is 

still much higher than ideal. Therefore, alternative SOFC cathodes that have relatively 
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lower affinity for water adsorption, high activity for oxygen dissociative adsorption, as 

well as high proton conductivity would be promising candidates for proton conducting IT-

SOFC. 

 

6.5 Conclusions 

BSCF cathode demonstrates chemical compatibility with BZCYYb proton conducting 

electrolyte up to 1000oC and stability at 450oC in air containing 3% H2O and 1% CO2. For 

a BSCF/BZCYYb/BSCF symmetrical cell, ohmic resistance RO decreases with the 

introduction of moisture, which is consistent with typical hydration behavior of the 

BZCYYb proton conducting electrolyte. For the apparent interfacial resistance Rai, the 

middle and low frequency (MF-LF) semicircle increases with the introduction of moisture. 

[20, 118, 185] Such an increase is attributed to the occupation of the BSCF electrode 

surface active sites by water molecules that inhibit oxygen adsorption/dissociation and 

surface diffusion. On the other hand, the high frequency (HF) semicircle, which 

corresponds to the charge transfer process in the oxygen electrode reaction, could be clearly 

separated at ≤~500oC and it shows significant reduction with the introduction of moisture. 

Such a phenomenon is hypothesized to be related to the intrinsically faster charge transfer 

process involving proton vs the conventional pathway involving only oxide ion and/or the 

greater availability of reactant, in particular adsorbed water H2O(ads), for the reverse 

reaction of the charge transfer step in the oxygen electrode reaction over the proton 

conducting electrolyte. On the other hand, introducing 1% CO2 to simulated air causes 

obvious poisoning for the BSCF/BZCYYb/BSCF symmetrical cell. While CO2 poisoning 
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becomes less reversible at lower temperature, the presence of moisture helps reduce the 

extent of CO2 poisoning and improves the reversibility especially at reduced temperatures 

of 450oC. This is attributed to the co-adsorption of H2O and CO2 on BSCF and BZCYYb 

surfaces, as well as the formation of bicarbonates on surfaces, which tend to bond weaker 

and desorb at lower temperature comparing with surface carbonate species. Considering 

water molecules adsorb strongly on BSCF at ~450oC and below, which tends to interfere 

with the oxygen adsorption as shown in this study, designing alternative cathodes with 

reduced tendency for water adsorption while maintaining fast oxygen adsorption and high 

proton conductivity appears to be a promising direction in the future development of 

cathodes for proton conducting IT-SOFC. 
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7 Chapter VII: Summary  

7.1 Anode for Proton Conducing IT-SOFC 

The present study investigated the H2S and CO2 poisoning effects on the Ni-BZCYYb 

cermet anode of proton conducting IT-SOFC, and the major conclusions are listed below: 

▪ PC-SOFC, especially the electrolyte-supported full cell and anode 

symmetrical cell with thin anode, show small but observable poisoning effect with 

increase in interfacial resistance Rai and no change in ohmic resistance RO upon the 

introduction of low-ppm level H2S to H2 in the range of 750 to 450oC  

▪ The extent of anode H2S poisoning is much smaller for PC-SOFC compared 

to conventional OC-SOFC, and this is attributed to the fact that the anode reaction 

route for PC-SOFC involves only proton incorporation and no water evolution, 

which is very different from conventional OC-SOFC 

▪ The displayed significantly less anode sulfur poisoning for PC-SOFC also 

implies that proton conducting ceramic (PCC) electrolyte might play an important 

(electro-) catalytic role in the anode reaction for PC-SOFC, and helps maintain the 

reaction rate upon exposure to low-ppm level H2S 

▪ No bulk sulfide phases was revealed by characterization techniques such as 

XRD and EDS for the post low ppm-level H2S exposure sample, while surface 

sensitive technique of SIMS suggests a strong association between Ba species and 

S species that persists into the bulk of the Ni-BZCYYb mixture, indicating the 

possible incorporation or dissolution of sulfur into the BZCYYb 
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▪ Low-percentage level CO2 shows similar poisoning effect as low-ppm level 

H2S on all three types of PC-SOFC at temperature in the range of 550 to 750oC, 

with no change in electrolyte ohmic resistance RO while observable increase in 

electrode interfacial resistance Rai was limited to the mid-to-low frequency (MF-

LF) semicircles.   

▪ The observed poisoning behaviors of proton conducting SOFC by low-

percentage level of CO2 at higher temperature can be attributed to the strong 

adsorption of CO2 species on the highly basic BZCYYb electrolyte surface, which 

interferes with the sub-steps of hydrogen adsorption and surface diffusion in the 

anode reaction for PC-SOFC.  On the other hand, with decrease in temperature, the 

same low percentage-level CO2 would cause bulk phase reaction with the BZCYYb 

electrolyte and greater poisoning effect. 

▪ The great similarity of the electrochemical behaviors of proton conducting 

SOFC upon exposure to H2S and CO2 fuel contaminants, despite their different 

affinity to Ni catalyst, suggest PCC (BZCYYb in this study) might play an 

electrocatalytic role ed in the anode reaction for PC-SOFC 

▪ Future studies using different tools such as anode patterned electrode cells 

and more in-depth materials characterizations will be needed to fully reveal the H2S 

and CO2 poisoning mechanism and the exact roles of PCC for proton conducting 

SOFC. 
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7.2 Cathode for Proton Conducting IT-SOFC 

Ag, LSCF, LSCF-BZCYYb composite, and BSCF were evaluated as cathodes for PC-

SOFC using cathode symmetrical cells under various pO2 and pH2O at 650-450oC. In 

addition, the H2O and CO2 effect on the BSCF cathode was also studied based on PC-

SOFC cathode symmetrical cells. The major conclusions are listed below: 

▪ For Ag, LSCF, LSCF-BZCYYb, and BSCF cathode symmetrical cells based on 

BZCYYb proton conducting ceramic electrolyte, electrode interfacial resistance Rai 

increased with decreasing pO2 or introduction of moisture. 

▪ Pure LSCF does not behave like a good MIEC but more like an electronic conductor 

as Ag over the BZCYYb electrolyte, giving very high Rai and Ro, suggesting sluggish 

cathode reaction in both dry and humidified conditions. This indicates that the oxide-ion 

transfer between LSCF and BZCYYb electrolyte is not very effective even in dry 

atmosphere.  

▪ LSCF-BZCYYb composite cathode shows much lower interfacial resistance under 

dry conditions, which is attributed to the extended TPB area and BZCYYb networks in the 

electrode that transfer oxide-ion to places near the LSCF surface. However, the interfacial 

resistance of LSCF-BZCYYb composite cathode increased dramatically with the 

introduction of moisture 

▪ BSCF electrode behaves like a good cathode in proton conducting IT-SOFC 

showing low Rai and Ro under both dry and humidified conditions. The high frequency 

resistance RHF of BSCF does not change with pO2 but decreases with increasing pH2O, 

which is attributed to the intrinsically faster charge transfer step for the oxygen electrode 
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reaction via the proton route than the oxide ion route.  On the other hand, the overall Rai, 

especially the MF-LF semicircles increase with the introduction of moisture. Such increase 

was attributed to the occupation of the BSCF electrode surface active sites by water 

molecules that inhibit oxygen adsorption/dissociation and surface diffusion steps in 

cathode reaction 

▪ BSCF cathode shows obvious poisoning effect upon the introduction of 1% CO2 

and the poisoning effect becomes less reversible at lower temperature.  On the other hand, 

the presence of moisture helps reduce the extent of CO2 poisoning and improves the 

reversibility, which is attributed to the co-adsorption of H2O and CO2 on BSCF and 

BZCYYb surfaces, as well as the formation of bicarbonates on surfaces that tends to bond 

weaker and desorb at lower temperature  

▪ Future work focusing on improving cathode microstructure for the proton 

conducting cathode is needed.  On the other hand, research aimed at designing of cathodes 

with reduced tendency for water adsorption while maintaining fast oxygen adsorption and 

high proton conductivity should be carried out. 
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