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ABSTRACT OF DISSERTATION 

MAPPING OF THE CHROMIUM AND IRON PYRAZOLATE LANDSCAPE 

by 

Jessica María López Plá 

Florida International University, 2018 

Miami, Florida 

Professor Raphael G. Raptis, Major Professor 

 The main objective of this project is to synthesize the first family of polynuclear 

chromium pyrazolate complexes. Complexity in analysis of the experimental magnetic 

data of multinuclear complexes arises from their (2S +1)
N 

microstates, where S is the spin 

of each metal center and N is the number of metal centers. For example, high-spin (HS)-

Fe
III

3 has 216 microstates and HS-Fe
III

8 ≈ 1.7x10
6
 microstates (S= 5/2). However, 

complexes with chromium(III) S = 3/2 will have a noticeable reduction of microstates. 

Mononuclear complexes with formula [mer-CrCl3(pzH*)3] (pz*H = pyrazole, 3-Me-pzH, 

4-Me-pzH, 4-Cl-pzH, 4-I-pzH, 4-Br-pzH) and [trans-CrCl2(pzH*)4]Cl (pzH* = pyrazole 

and 3-Me-pzH) were synthesized and thoroughly characterized. Polynuclear iron 

pyrazolate complexes are prepared by the addition of base to [mer-FeCl3(pzH*)3] and 

[trans-FeCl2(pzH*)4]Cl complexes; the path is not paralleled by mononuclear 

chromium(III) pyrazole complexes. There is a challenging situation with these reactions, 

caused by the attainment of equilibrium, where the stable mononuclear complexes and 

traces of dinuclear species coexist in solution. Microwave assisted reaction of 

Cr(NO3)3·9H2O and pyrazole ligand in dimethylformamide (DMF) solution afforded 

redox inactive trinuclear formate-pyrazolate mixed-ligand complexes with formula 
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[Cr3(μ3-O)(μ-O2CH)3(μ-4-R-pz)3(DMF)3]
+
 (pz = pyrazolate anion; R= H, Me, Cl). 

Thermally assisted synthesis with non-hydrolysable solvent yielded an electrochemically 

active all-pyrazolate complex. Complex with formula (Ph4P)2[Cr3(μ3-O)(μ-4-Cl-pz)6Cl3] 

and (Ph4P)2[Cr3(μ3-O)(μ-4-Cl-pz)6Br3] have an oxidation process at 0.502 V at 0.332 V, 

respectively. The latter has a second accessed oxidation process at 0.584 V. These 

systems are the first example of electrochemically amendable trinuclear pyrazolate 

complex with {Cr3O} core. 

 The all-ferric complexes [Fe3(μ3-O)(μ-4-NO2-pz)6(L)3]
2-

 (L = NCO
-
, N3) were 

synthesized from reaction of [Fe3(μ3-O)(μ-4-NO2-pz)6Cl3]
2-

 with NaNCO and NaN3. 

Expected reversible reduction processes were observed for both complexes at more 

negative potential, -0.70 V, compared to the thiocyanate complex (-0.36 V). The 
57

Fe 

Mössbauer of the reduced [Fe3(μ3-O)(μ-4-NO2-pz)6(N3)3]
3-

 is suggestive of a HS-to-LS 

electronic reorganization, as seen for the [Fe3(μ3-O)(μ-4-NO2-pz)6(SCN)3]
3-

 complex. 

Furthermore, compound [Fe3(μ3-O)(μ-4-NO2-pz)6(N3)3]
2-

, shows a unique reversible 

oxidation process at 0.82 V (vs. Fc
+
/Fc) to a mixed-valent, formally Fe

3+
2/

 
Fe

4+
 species.  
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Chapter 1: Introduction 

 

1. Metal oxides 

 The study of complex mechanisms pertinent to metal oxide structures, have 

become a wide and interesting subject, because of their diverse applications. Metal oxides 

have become commercially important because their applications range from their use in 

surgical implants in a medicinal context (e.g., tungsten and zinc oxides),
1
 antimicrobial 

agents in an ecological context (e.g., iron and titanium oxides),
2,3

 information storage in 

electromagnetic devices (e.g., ferromagnetic iron oxides),
4
 and catalysis.

5
  

1.1. Metal oxides in biological systems  

 Metal oxides participate in biochemical reactions as electron transfer agents. For 

example, anaerobic bacteria, such as G. sulfurreducens, use Fe
III

 oxides as electron 

acceptors in their metabolism.
6 

The mechanism of electron transfer (ET) classifies these 

processes into two categories: inner sphere (IS) and outer sphere (OS) transfer. In the 

ISET there is a covalent linkage between the reductant and oxidant. Therefore, ISET is 

rarely observed in biological systems, where the long-range ET between redox active 

sites is often shielded by bulky proteins.
7
 The OSET occurs between species that remain 

spatially separated before, during and after the electron transfer. The OSET is at the basis 

of biological function of iron-sulfur proteins, such as ferrodoxins.
8
  

 

 

 



2 

 

 

Figure 1. Reduction and oxidation mechanism in the Fe4S4-unit of ferredoxins.
8
 

 

1.2. Classification of mixed-valence cases 

 The events of electron donation or acceptance often lead to mixed-valence 

compounds, in which the oxidation state varies among the metal atoms. The classification 

of mixed-valent compounds is time-dependent -it depends on how the electron-transfer 

rate compares to the corresponding timescale of the spectroscopic technique used to 

monitor the process- in the case of the Robin-Day classification, UV-VIS-NIR 

spectroscopy.
9,10

 For example, a system that appears to be delocalized by a slow 

technique may appear as localized by a faster one. Mixed-valent compounds are 

subdivided into three groups, according to the Robin-Day scheme, as Class I, Class II and 

Class III, in which the valences are localized, partially delocalized or completely 

delocalized, respectively (Figure 2).
11 

In Class II and Class III compounds, different 

magnetic properties are observed, depending on the extent of charge delocalization. The 

factors that determine whether a mixed-valence complex will belong to Class I, II, or III 

are not well understood in polynuclear complexes. The charge introduced in an metal 

oxide lattice (such as an iron oxide lattice) polarizes neighbor atoms and causes 
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distortions in the local structure.
12

 The charge and its accompanying distortion are called 

a polaron (Scheme 1). A polaron can be localized or delocalized over several metal 

centers, stationary or mobile, the latter being the case of electrically conducting oxides.
13

 

 

Figure 2. Potential energy diagram for Class I, Class II and Class III species according to 

the Robin-Day Scheme. Modified from reference 
11

 .  

 

 

Scheme 1. Small polaron in iron oxide showing the local structural distortion created by 

the reduction of an Fe
III 

(orange) site to Fe
II
 (red).

13
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1.3. Metal oxide models 

 The understanding of metal oxide properties in nature has been possible from 

modeling such systems by polynuclear clusters. Synthetic metal clusters have been 

reliable models for metalloenzyme active sites.
14,15

 Metal cluster model studies provide 

fundamental insight to the enzyme active site geometries, electronic structures and 

reaction mechanisms.
16,17

 Synthesis of polynuclear clusters that mimic metalloenzyme 

active site structures have been reported with multiple bridging ligands, such as Schiff 

base, oximes, imidazole, carboxylate and pyrazolates.
18–21

  

1.4. Iron complexes as active site models 

 Carboxylate-bridged diiron active sites are found in many metalloproteins listed 

in Table 1.
17,22

 Numerous studies have utilized basic carboxylate, formate and acetate 

ligands to mimic the amino acid side chains found at the metalloprotein active sites. The 

first synthetic model of the reduced state of hemerythrin is [Fe2(μ-OH)(μ-OAc)2(Me3-

TACN)2]
+
, depicted in

 
  Figure 3.

23
 

 

 

 Figure 3. Active site of hemerythrin (left) and its synthetic model (right).
17
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Table 1. Identified and characterized diiron metalloproteins. Modified from Tshuva et 

al.
17

 

Enzyme Function 

alkene monooxygenase alkene epoxidation 

butane monooxygenase butane oxidation to alcohol 

DMQ monooxygenase quinone generation 

ferritins iron storage 

hemerythrin dioxygen carrier 

methane monooxygenase methane to methanol oxidation 

phenol hydroxylase  phenol to catechol oxidation 

purple acid phosphotase phosphate ester hydrolysis 

ribonucleotide reductase tyrosyl radical generator 

rubrerythrin putative peroxidase 

toluene nonooxygenases toluene to cresol oxidation 

Δ
9
 desaturases alkane conversion to alkene 

ω-alkane hydroxylase alkane oxidation to alcohol 

 

1.5. Polynuclear complexes of interest 

 Remarkable studies on pyrazole coordination chemistry have been developed 

since the late 1970's,
18,21,24

 and pyrazolate complexes have been proven to be good models 

of metalloprotein active sites.
25

 Furthermore, biological activity and therapeutic 

properties have been reported for pyrazole containing compounds.
26,27

   

 Pyrazoles are heterocyclic aromatic rings consisting of three carbon atoms and 

two vicinal nitrogen atoms (in positions 1 and 2, Scheme 2). After deprotonation of N1, 

pyrazoles act as monodentate or bidentate ligands. The electronic properties of the 

pyrazole are mainly influenced by the substituent at the 3-, 4-, and 5-position, whereas, 

steric properties are influenced only by the 3- and 5-position substituents. The 

coordination versatility of pyrazoles is depicted in Scheme 3. The coordination ability of 

the pyrazole ligand depends on the nature of the metal and of the substituents of the 

carbon atoms on the aromatic ring.
28
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Scheme 2. Substituent positions on pyrazole ligand (pzH). 

 

 
 

Scheme 3. Coordination modes of pyrazoles (pzH) and pyrazolates (pz).
28
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1.5.1. Trinuclear carboxylate and pyrazolate complexes 

 Carboxylate ligands have been broadly compared with the pyrazolate ligands, as 

there are some structural analogies between complexes of these ligands, even though they 

differ in their rigidity (Scheme 4) and reactivity.
29

 Different nuclearity pyrazolate and 

carboxylate complexes have similar M···M distances, summarized in Table 2.  

 

 

Scheme 4. Structural comparison between pyrazolate and carboxylate bridging modes. 

 

 Palladium trimers, with formula [Pd
II
(µ-OCOR)2]3 and [Pd

II
(µ-pz*)2]3 (pz* = pz 

and 3-Ph-pz) and square planar metal centers, share similar metal-metal distances and 

luminescent properties.
29,30

 In trinuclear complexes, octahedral metal centers are bridged 

by an axial μ3-O atom, six bidentate ligands occupying the equatorial sites of the metals, 

the three terminal ligands. Within the isolateral triangle of the  [Co
III

3(μ3-O)(μ-4-NO2-

pz)6(NO2)3]
2-

 complex, the Co···Co distances (Table 2) are significantly shorter than 

those of the analogous carboxylate [Co
III

3(μ3-O)(μ-RCOO)6L3]
+1

, (L= neutral ligand like 

H2O, MeOH or py).
31 

In complexes containing iron, the [Fe
III

3(μ3-O)(μ-4-NO2-pz)6X3]
2- 

(X = Cl, Br and NCS) the Fe
III

3(μ3-O)-core is structurally indistinguishable from the 
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analogous carboxylate [Fe
III

3(μ3-O)(μ-O2CR)6L3]
+
 (L = neutral ligand, such as H2O, 

MeOH and py)
32

; they only differ in their magnetic properties, as a result of structural 

differences from the bridging ligands.
32–35  

 

Figure 4. Trinuclear Pd
II
 complexes with μ-pz (left) and μ-O2CR (right) ligands.

29,36
   

 

Table 2. M···M distances (Å) for pyrazolate and the analogous carboxylate complexes. 

Compound Distance Compound Distance 

[Fe
3
(μ

3
-O)(μ-4-NO

2
-pz)

6
Cl

3
]

2- 
3.267(1), 3.280(1)

33
 [Fe

3
(μ

3
-O)(μ-O

2
CPh)

6
(py)

3
]

+ 
3.306(1)

32 

[Pd3(μ-pz)6] 3.0471 (126)
29

 [Pd3(μ-O2R)6] 3.131(1)-3.191(1)
36 

[Co
3
(μ

3
-O)(μ-4-NO

2
-pz)

6
(NO

2
)

3
]

2+

 
3.0878(9), 3.0985(9), 

3.1073(9)
31

 
[Co

3
(μ

3
-O)(μ-O

2
Ac)

6
py

3
] 3.194(1)

37 

 

 With regard to their substitution kinetics, carboxylate complexes of platinum, 

rhodium and ruthenium, range from moderately to highly labile, showing potential as 

homogeneous catalysts.
38

 On the other hand, the lability of carboxylate complexes is a 

problem for the study of their redox activity, as they readily decompose. The relative 

inertness of the pyrazolates gives these complexes a significant advantage for 

electrochemical studies. 
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 Redox properties of trinuclear complexes with formula [Fe3(μ3-O)(μ-4-NO2-

pz)6X3]
2-

 (X = Cl, Br, NCS) show one electron reversible reduction and a second 

irreversible reduction, where the potential is strongly dependent on the electron donating 

and/or withdrawing properties of the terminal ligand.
33–35

  

 

 

Figure 5. Ball-and-stick representation of  [Fe3(μ3-O)(μ-4-NO2-pz)6Cl3]
2-

.
33

 

 

 

Figure 6. Cyclic voltammogram of  (TBA)2[Fe3(μ3-O)(μ-4-NO2-pz)6Cl3] vs. Fc
+
/Fc.

33
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1.5.2. Octanuclear carboxylate and pyrazolate complexes 

 

 The synthesis of an octanuclear chromium(III) carboxylate complex with formula 

[Cr8(4-O)4(-O2CPh)12(O2CPh)4] has been achieved via a thermal treatment route. All 

Cr centers are in an octahedral environment.
39

 A magnetic susceptibility study concluded 

that an antiferromagnetic exchange operates among the Cr centers, with exchange 

parameters J1= -2.1.0 cm
-1

 and J2 = -3.4 cm
-1

 representing the exchange between the Cr 

atoms within the central heterocubane and the exchange between central and outer Cr 

centers, respectively.
39 

However, redox modification of this Cr8 complex to achieve 

mixed-valence Cr
III/IV 

or Cr
II/III

 species has not been reported to date, possibly because of 

the well-known lability of carboxylate complexes, which may only cause irreversible 

redox processes.  

 

Figure 7. Structure of [Cr8(μ4-O)4(μ-O2CPh)12(O2CPh)4]. H-atoms are omitted for clarity. 

(Cr, pink; O, red; C, black)
39
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 An analogous structure to the Cr8 carboxylate complex has been synthesized, with  

the general formula [Fe8(μ4-O)4(4-R-pz)12X4] (pz = pyrazolate anion, C3H3N2).
40

  These 

complexes have an Fe8O4 motif in the core surrounded by twelve bridging pyrazolate and 

four terminal ligands. They are structurally analogous to the Fe8O4 motif that constitutes 

minerals, such as magnetite (Fe3O4), maghemite (ɣ-Fe2O3), and ferrihydrite, when 

repeated in three dimensions. The magnetic and electrical properties of these minerals 

have led to several applications.
41

 The variation of the 4-position substituent (R) in the 

pyrazole with R = Me, Et, Ph, CH2CH2Cl, CH2CH2OH, Cl, Br and I, and the terminal 

ligand X = NCS, OAr, N3, NCO, Cl, and Br, give rise to similar behavior with regard to 

their redox and magnetic properties. 

 

 

Figure 8. Ball-and-stick representation of [Fe
III

8(μ4-O)4(μ-pz)12Cl4] (Fe, brown; Cl, green; 

O, red; N, blue; C, black).
40

 



12 

 

 

Figure 9. Structure of Fe8O4 core of the [Fe
III

8(μ4-O)4(μ-pz*)12X4]. 

 

 The electrochemical study of [Fe8(µ4-O)4(µ-pz)12Cl4]
 
showed four reversible 

reduction processes at -0.43 V, -0.78 V, -1.07 V and -1.38 V (vs. Fc
+
/Fc). These redox 

potentials change with the variation of the terminal ligands and the substitution of the 

pyrazolate ligands. The narrower potential window of the above processes compared to 

the corresponding analogous sulfur structures, for example, Fe4S4 cubanes found in 

ferrodoxins, suggests that these oxo-centered iron cores are more efficient electron 

transfer agents. The superior electron transfer properties of the Fe4O4 core provides 

evidence of the existence of four reduced states beyond the neutral all-ferric complex and 

also suggests the possible existence of these cores in nature.
40
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Figure 10. Cyclic voltamogram of [Fe
III

8(μ4-O)4(μ-pz)12Br4] in 0.5 M TBAPF6/DCM,  Pt-

disk working electrode, vs. Fc
+
/Fc. Reproduced from Baran et al.

40
 

,  

  

 Also, previous computational analysis of the magnetic susceptibility of these 

Fe4O4-core complexes has revealed antiferromagnetic coupling between the iron centers 

within the cubane core, which are mediated by the oxo-bridges, and a stronger coupling 

between the inner (octahedral) and outer iron (trigonal bipyramidal) centers, with 

coupling parameters J1/hc = -2.1 cm
-1

 and J2/hc = -50.6 cm
-1

,
 
respectively, similar to the 

proposed scheme for [Cr8].
40
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1.5.3. Dinuclear carboxylate and pyrazolate complexes  

 Dinuclear chromium carboxylates were first introduced as "CrC4H4O5" by Peligot 

more than a century ago.
42

 The complex is identified now as [Cr2(O2CCH3)4(H2O)2] with 

2.362(1) Å Cr···Cr distance, indicative of a metal-metal interaction.
43

 Chromium 

complexes with metal-metal bonds are subject of experimental and theoretical 

investigation, because their multiple bonds can give insight in the metal-metal bonding 

theory.
44

 Reported Cr···Cr distances range from 1.74 to 2.69 Å, for quintaply to singly 

bonded species, respectively.
45–48

  

 

Scheme 5. Structure of [Cr2(O2CCH3)4(H2O)2].
43

 

  

 Over the years many carboxylate complexes have been reported with metal-to-

metal distances ranging from ~2.3 to ~2.6 Å.
44

 Theoretical studies have determined that 

both the bridging and axial ligands affect the Cr-Cr bond length.
49

 The effects of axial 

and bridging ligands have been experimentally explored. Elongation of the Cr-Cr 

distance of [Cr2(O2CR)4L2] complexes can be achieved substituting with donor ligands 

(L) in the axial coordination sites.
44,50,51

 Changing the bridging ligand in dinuclear 
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complexes with no axial ligands demonstrated that the change of N,N and N,O type 

ligands with carboxylates have little effect on the Cr-Cr bond length, contrary to 

theoretical expectations.
52

   

 

Scheme 6. Structure of [Cr2(κ
1
:κ

1
-μ-pz

tBu2
 )2(κ

2
-pz

tBu2
 )2].

53
 

 

 More recently, structural analysis of a dinuclear complex of formula [Cr
II

2(κ
1
:κ

1
-

μ-pz
tBu2

 )2(κ
2
 -pz

tBu2
 )2] (Scheme 6), with Cr···Cr distance 2.7156(7) Å, has given insight 

of metal-to-metal bonding at the high limit of the known Cr···Cr distance range and is  

recognized as a weak Cr-Cr bond.
53

 Dimeric pyrazolate complex does not adopt a 

paddlewheel structure commonly observed for Cr4L4 acetate complexes. A similar 

reported structure [Cr
II

2(
t
BuNC(CH3)NEt)4] (Scheme 7) shows a significantly shorter Cr-

Cr bond of 1.960(1) Å compared to the dimeric pyrazolate complex. Here the limiting 

factor is the strain imposed on the Cr-N-N angles by the short Cr-Cr bonds in the 

pyrazolate complex. While the amidinate bridges allow the Cr- atoms to approach its 

other, the sp
2
 donor orbital of the pyrazole ligands, favoring a Cr-N-N angle of ~120º, are 
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distorted by short Cr-Cr bonds.
46

 Inconsistent Cr···Cr distances between dinuclear 

carboxylate, amidinate and pyrazolate complexes contradicts the structural analogy, 

between carboxylates and pyrazolates, that had been determined previously.
30,31,33

 

 

Scheme 7. Structure of [Cr2(
t
BuNC(CH3)NEt)4].

46
  

 

1.6. Hypothesis and rationale 

 There are clear structural analogies between carboxylate and pyrazolate 

complexes of iron, palladium, platinum, copper, and cobalt. In the case of chromium, 

such structural parallel has not been observed between analogous dinuclear carboxylate 

and pyrazolate complexes. However, it holds true for higher nuclearity complexes with 

more than two metal centers. The existence of analogous dimeric structures of chromium 

carboxylate and pyrazolate, compel the current research to synthesize polynuclear 

chromium(III) pyrazolate complexes, which will make their redox modification 

accessible because of the inertness of pyrazolate ligands compared to carboxylates. 

 The complexity of magnetism and spectroscopy of trinuclear and octanuclear iron 

pyrazolate complexes, observed in experimental magnetic susceptibility data, EPR, and 
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NMR spectra, arises from their (2S +1)
N 

microstates, where S is the spin of each metal 

center and N is the number of metal centers. High-spin Fe
III

3 complexes (S = 5/2) have 6
3 

= 216 microstates and high-spin Fe
III

8, 6
8 

≈ 1.7x10
6
 microstates. Complexes containing 

chromium(III) (S = 3/2) of these structural types (M3 and M8) would simplify the 

problem of magnetic exchange in these motifs, yielding species with 4
3
 = 64 and 4

8
 = 

65,536 microstates, respectively.   

 Upon chemical reduction of trinuclear and octanuclear pyrazolate complexes, 

mixed-valent species are accessed. Mixed-valent complexes are characterized as 

localized or delocalized systems.
54

 When electron delocalization among the heterovalent 

metal centers is permitted, the magnetic exchange becomes further complicated by the 

double exchange phenomenon.
55–57

 Similar questions arise for other M3 or M8 complexes 

with the same structural motif.   

 The current research focuses on the synthesis of polynuclear electrochemically 

active chromium pyrazolate complexes. The study of chromium pyrazole/pyrazolate 

chemistry has not been developed, elsewhere. The following strategies have been applied 

towards that overall goal:  

 

1) Synthesis, characterization, and study of mononuclear chromium pyrazole adducts to 

be further used as starting materials for the preparation of polynuclear species. 

 Pyrazole, as a versatile ligand, can be deprotonated to form bridging bidentate 

anions. Synthetic strategies starting from mononuclear pyrazole adducts are a viable 

approach in the preparation of polynuclear homo- and hetero-metallic complexes. 

Mononuclear iron(III) pyrazole complexes have been isolated and characterized as 
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intermediate species in the one-pot synthesis of tri- and octa-nuclear iron pyrazolate 

complexes (Scheme 8).
58

 The synthesis of mononuclear chromium(III) complexes is a 

practical approach for the main goal of obtaining polynuclear Cr
III

 pyrazolate complexes. 

 

 

 

Scheme 8. Mononuclear ferrous and ferric pyrazole adducts as intermediate in the 

polynuclear Fe
III

 pyrazolate synthesis.
58
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2) Synthesis of chromium pyrazolate complexes using thermally assisted methods, 

analogous to the experimental method used to synthesize chromium carboxylate 

complexes.  

 Most transition metal coordination reactions, to afford large polymetalic clusters 

of transition metals, are performed at standard conditions (temperature and pressure). 

When using inert ions, such as Cr
3+

, alternative methods have been pursued.
59

 

Solvothermal syntheses have become widely used for metal complexes of Cr, Fe, Mn and 

Ni.
60–63

 Temperature, pressure, and more recently microwave heating are experimental 

synthesis conditions explored by many inorganic chemists. Microwave assisted synthesis 

has improved the reaction time and yield of many synthetic procedures. Additionally, it 

has lead to novel product formation from the alternative kinetic pathways accessed by the 

addition of microwave energy. The use of thermally and microwave assisted syntheses 

will be explored in this research.  
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Chapter 2: Chromium pyrazole/pyrazolate complexes 

2. Synthesis of mononuclear chromium pyrazole complexes 

2.1. Introduction   

There is vast literature on synthetic approaches to obtain polynuclear complexes, 

one of which is the oligomerization of simple mononuclear starting materials. Several 

transition metals have been reported to form polynuclear pyrazolate complexes; however, 

the chromium members of the group have not been fully explored.
21

  

  The use of mononuclear chromium(III) complexes with pyrazole can serve as an 

efficient strategy to obtain higher nuclearity complexes upon deprotonation by a base, as 

has been demonstrated with mononuclear iron pyrazole complexes.
58

 Despite 

considerable study on mononuclear imidazole and pyrazole chromium(II) complexes, 

chromium(III) ion has been overlooked.
64

 Currently, few chromium (III) complexes with 

imidazole derivatives have been reported and characterized by infrared, Raman, and EPR 

spectroscopy.
65

 Here we present the first series of chromium(III) pyrazole complexes and  

additional products from their synthesis. 

2.2. Results and discussion 

2.2.1. Synthesis of Cr
III

 monomers 

 The complex [mer-Cr
III

Cl3(pzH)3] (1) was obtained by reacting CrCl3·6H2O  and 

pzH  in THF, while [trans-Cr
III

Cl2(pzH)4]Cl (7) was obtained from the reaction of 

anhydrous CrCl2 with pzH in methanol. Scapacci has reported the analogous Cr
II
 

complex as [trans-Cr
II
(pzH)4X2] (X = Cl, Br and I).

64
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 The reaction of CrCl2 and 3-Me-pzH in methanol results in mononuclear 

complexes of two structural types: [mer-Cr
III

Cl3(3-Me-pzH)3] (2) and [trans-Cr
III

Cl2(3-

Me-pzH)4]Cl (8). 

 Using similar conditions as for pzH, complex [mer-Cr
III

Cl3(4-Me-pzH)3] (4) was 

obtained from the reaction of CrCl3·6H2O and 4-Me-pzH  in THF, while the complex 

trans-[Cr
III

Cl2(4-Me-pzH)4]Cl was not isolated. A purple/pink solution, characteristic of 

the trans-complex, was obtained from the reaction workup, which will be discussed 

further in section 2.2.6. This same observation was obtained for synthesis of mer-Cr
III

 

complexes with 4-Cl-pzH, 4-Br-pzH and 4-I-pzH.  

   

2.2.2. Crystallographic description of Cr
III

 monomers 

 Crystallographic data collection and refinement parameters for 1-6 and 7-8 are 

summarized in Table 14 and Table 15, respectively. Complexes 1 and 8 crystallized in 

monoclinic C2/c space group with half molecule per asymmetric unit. Complex 1 

crystallized with the Cl-Cr-N(pzH) atoms on a 2-fold rotation axis. Complexes 2 and 3 

crystallized in orthorhombic space group, Pna21 and P212121, respectively. Both, 

complexes 4 and 6 crystallized in triclinic P-1 space group. Complexes 5 and 8 

crystallized in monoclinic C2/c and P21/c space group respectively. Lastly, complex 7 

crystallized in triclinic P-1 space group with two half-molecules related by an inversion 

center on the metal atom.  
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 All complexes contain a 6-coordinate pseudooctahedral Cr
III

 center with [mer-

CrCl3(pz*H)3] or [trans-CrCl2(pz*H)4]Cl coordination sphere. The oxidation state of the 

metal center was determined from charge balancing the chemical composition from the 

crystal structure and using data from elemental analysis. Complexes 7 and 8 have the 

pyrazoles trans to each other in an anti configuration.  

 

 

 

Figure 11. Ball-and-stick representation of [mer-CrCl3(pzH)3] (1). 
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Figure 12. Ball-and-stick representation of [mer-CrCl3(3-Me-pzH)3] (2). 

 

Figure 13. Ball-and-stick representation of [mer-CrCl3(4-Me-pzH)3] (3). 
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Figure 14. Ball-and-stick representation of [mer-CrCl3(4-Cl-pzH)3] (4). 

 

Figure 15. Ball-and-stick representation of [mer-CrCl3(4-Br-pzH)3] (5). 
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Figure 16. Ball-and-stick representation of [mer-CrCl3(4-I-pzH)3] (6). 

 

Figure 17. Ball-and-stick representation of [trans-CrCl2(pzH)4]
+
 (7) cation. Chloride 

counter ion is omitted. 
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Figure 18. Ball-and-stick representation of [trans-CrCl2(3-Me-pzH)4]
+
 (8) cation. 

Chloride counter ion is omitted. 

 

 Bond lengths and angles are within the expected range for Cr
III 

complexes (Table 

3, Table 4, Table 5).
66,67

 For all the mer-Cr
III

 complexes, the Cr–N bonds trans to a 

halogen atom are longer than those trans to a pyrazole, similar to the analogous mer-

[FeCl3(pz*H)3].
58

 A short H-bond distance is observed between N—H···O in complex 4 

with a THF interstitial solvent molecule in the crystal lattice. 

 

Table 3. Selected bond lengths (Å) for 1-6. 

 Compound 

Bond 1 2 3 4 5 6 

Cr-Cl 2.3231(4)
a
 

2.3242(7)
b
 

 

2.371(2)
a
 

2.312(2)
a
 

2.329(2)
b
 

2.325(2)
 a
 

2.321(2)
 a
 

2.327(2)
 b

 

2.3472(9)
a
 

2.3051(9)
a
 

2.3228(9)
b
 

2.310(2)
 a
 

2.319(2)
 a 

2.330(2)
 b

 

2.310(1) 
a
 

2.314(1)
a
 

2.307(1)
b
 

Cr-N 2.072(2)
a
 

2.092(2)
b
 

2.076(3) 
a
 

2.078(3)
a
 

2.092(3)
b
 

2.064(4)
 a
 

2.053(4)
 a
 

2.070(4)
 b

 

2.078(2)
a
 

2.077(2)
a
 

2.108(2)
b
 

2.069(3)
a
 

2.062(3)
a 

2.091(3)
b 

2.061(4) 
a
 

2.063(4)
a
 

2.091(4)
b
 

a
 trans-Cl–Cr–Cl, or trans-N–Cr–N bonds   

 b
 trans-N–Cr–Cl bonds 
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Table 4. Selected bond angles (°) for 1-6. 

 Compound 

Bond 

Angle  
1 2 3 4 5 6 

N-Cr-N 87.93(4)
 

175.85(8)
 

87.3 - 90.5
 

176.8(1) 

88.2 - 89.4 

177.5(2) 

90.1 - 90.9
 

178.48(7) 

88.9 - 90.1 

178.6(1) 

89.9 - 91.5
 

178.2 (2) 

Cl-Cr-N 89.40(4)
 

180.0 

88.4 - 91.7
 

177.8(1) 

89.4 - 91.7 

178.5(1) 

87.7 - 91.1
 

178.57(5) 

87.9-91.4 

179.1(1) 

87.9 - 91.5
 

179.0(1) 

Cl-Cr-Cl 90.65(1)
 

178.69(3) 

89.9 - 91.4 

178.66(4) 

89.1 - 91.8 

179.13(6) 

91.0 - 93.2
 

175.71(2) 

90.5 - 92.1 

177.24(5) 

91.3 - 91.4
 

177.30(5) 

 

 

Table 5. Selected bond lengths (Å) and angles (º) for 7-8. 

 Compound 

Bond Lengths 7 8 

Cr-Cl 2.3102(7) 

2.3013(7) 

2.2939(6) 

Cr-N 2.066(2) 

2.065(2) 

2.068(2) 

2.072(2) 

2.066(2) 

2.079(2) 

 

Bond Angle    

N-Cr-N 180.0
 

88.2 - 91.8 

180.0
 

89.9 - 90.1 

Cl-Cr-N 89.2 - 90.9 89.2 - 90.7 

Cl-Cr-Cl 180.0 180.0 

 

  

 Intermolecular distance less than the sum of the van der Waals radii for adjacent 

atoms are defined as bonding interactions. The sum of average van der Waals radii for 

selected atoms is listed in Table 6. Intermolecular hydrogen bonding interactions are 

observed for 1-6 that play major role on the crystal packing of the complexes. 
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Table 6. Summarized observed van der Waals radii (Å).
68

 

Bond Sum of van der Waals Radii (Å) 

H—N 2.52 

H—Cl 2.81 

H—Br 2.92 

H—I 3.10 

Cl—Cl 3.50 

Cl—Br 3.62 

Br—Br 3.74 

I—Cl 3.79 

I—I 4.08 

   

 Halogen-halogen interactions give rise to close packing in complexes 4-6, 

exhibiting a bent, type II
†
, R-Xa···Xb-R contact interaction (X = halogen atom).

69
 The 

intermolecular distance between the halogen substituent of the pyrazole and a 

coordinated chlorine from an adjacent complex are less than the sum of their van der 

Waals radii, Cl5···Cl6 distance and C5—Cl5···Cl6 angle in 4 are 3.299(1) Å and 

173.8(2)°, respectively.  

 

 

Figure 19. Illustration of halogen bonding between Cl atoms on complex 4. 

                                                           
†
Contact interactions are classified as: type I (θ1= θ2) and type II θ1 ≈ 180° and θ2   ≈ 90°. [θ1 (R—Xa···Xb); 

θ2 (Xa···Xb—R)] 
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Halogen bonging in 5 links two adjacent monomers, resulting in the 3D network 

manifested in the crystal packing diagram. Halogen bonding distances and angles are 

listed in Table 7. Halogen bonding between Cl···Br results in a 1D chain formation 

depicted in Figure 20. The Br···Br halogen bonding links two of the 1D chains resulting 

in a 3D network (Figure 21).  

 

Table 7. Halogen-bond geometry for 5. (Å , °). 

 

 

 

 

 

Figure 20. Illustration of crystal packing of 5, showing 1D chains linked by halogen 

bonding. 

 

D—X···Y d(X—Y)/ Å D—X—Y/ ° 

C2—Br1···Cl2
a
 3.492(3) 140.7(1) 

C5—Br2···Br2
b
 3.658(3) 138.0(1) 

Symmetry codes: (a) x,1+y,z; (b) -x,2-y,1-z 
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Figure 21. Illustration of crystal packing of 5, showing two 1D chains linked by halogen 

bonding. 

  

 Distances and angles for halogen bonding in 6 are shown in Table 8. Bifurcated 

halogen bonds are noted between Cl1 and I1/I3. Halogen bonding provides a linkage 

between adjacent monomer molecules generating a 2D network. 

 

Table 8. Halogen-bond geometry for 6. (Å , °). 

D—X···Y d(X—Y)/ Å D—X—Y/ ° 

C2—I1···Cl1
a,b

 3.523 145.9(2) 

C5—I2···Cl3
b,c

 3.487 168.5(1) 

C8—I3···Cl1
b,c

 3.526 167.9(2) 

Symmetry codes: (a) 2-x,1-y,1-z  ; (b) x, y, x; (c) x,-1+y,z 
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Figure 22. Illustration of crystal packing of 6, showing halogen bonding. THF solvent 

molecule and hydrogen atoms were omitted for clarity. 

 

2.2.3. Electrochemistry and electronic absorption spectra of Cr
III

 monomers 

 Chromium monomers with formula [mer-CrCl3L3] (L=pzH, 4-Me-pzH, 3-Me-

pzH, 4-Cl-pzH, 4-I-pzH and, 4-Br-pzH) were studied electrochemically, showing no 

reversible redox processes within the -500 mV to 1500 mV redox potential window. The 

UV-Vis spectra of the complexes show no significant differences in the absorption peaks 

with variation of the pyrazole substituent. For all compounds, a broad charge transfer 

band is observed between 200 - 280 nm. Charge transfer bands are spin-allowed and 

Laporte-allowed, in contrast to the Laporte-forbidden d-d transitions bands, which causes 

marked intensity differences between them. Two d-d transition bands were observed from 

380 - 800 nm, listed in Table 9.  
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Figure 23. UV-Vis of [mer-CrCl3(pzH)3] (1) (6.4x10
-4 

M) in MeOH. 
 

 

Table 9. Wavelength for d-d transitions for complexes 1-6.  

Complex λmax1 (nm) / υ2 (cm
-1

) λmax2 (nm) / υ1, 10 Dq (cm
-1

) 

1 448 / 22321 614 / 16287 

2 446 / 22421 608 / 16447 

3 439 / 22779 599 / 16695 

4 464 / 21552 638 / 15674 

5 451 / 22173 626 / 15974 

6 452 / 22173 618 / 16181 

7 410 / 24390 546 / 18315 

8 409 / 24450 555 / 18018 

 

 Crystal field theory predicts that the Russell-Saunders ground state for free ion 

Cr
III

, 
4
F, splits into: 

4
T1g, 

4
T2g, and 

4
A2g substates for octahedral environment.

70
 Ligand 

coordination lowers the symmetry of the metal center, causing loss of degeneracy as 

depicted in Scheme 9. Two spin-allowed bands corresponding to 
4
A2g  - 

4
T2g(F) (υ1) and 

4
A2g - 

4
T1g(F) (υ2) transitions are observed. The lowest energy transition (υ1) corresponds 

to 10Dq, the ligand field splitting energy.
71
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Scheme 9. Splitting of the ground state term 
5
F (d

3
 free ion) (arrows show spin allowed 

transitions in an octahedral (Oh) environment).   

  

 Additional pyrazole ligand in 7 causes shifting to higher energy, compared to 1, 

which is consistent with the stronger ligand field of an additional nitrogen atom. Similar 

energy shifts have been observed for Cr
II
L2Cl2 and Cr

II
L4Cl2 (L= pyrazole, 

dimethylpyrazole and imidazole).
64

 Solvent effect on charge transfer bands have been 

experimentally and theoretically studied.
72,73

 Absorption spectra in various solvents were 

recorded for complex 1, where an inverse linear dependence of charge transfer (CT) 

energy and solvent dielectric constant is obtained, same as other chromium(III) 

complexes (Figure 24).
72
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Figure 24. Dielectric constant (Fm
-1

) of solvent as a function of charge transfer (CT) band 

energy (cm
-1

) for complex 1. 

 

  

2.2.4. Nuclear magnetic resonance and electron paramagnetic resonance  

 Paramagnetic complexes have small electron spin relaxation times that causes a 

resonance broadening-flattening in the NMR and sometimes the spectrum disappears.
74

 

The effect of the paramagnetic environment to the spin relaxation is timescale dependent, 

which is reduced when the lifetime of the electron spin relaxation is short, allowing to 

record a NMR spectrum.
54

 Electron paramagnetic resonance (EPR) is a technique that 

probes transitions between electron-spin quantum states (mS), rather than nuclear-spin 

quantum states (mI) observed by NMR.
75

 Electron paramagnetic resonance is used to 

study the spin-state in paramagnetic complexes.
76 

The technique is used to characterize 

spin-state, to confirm the spin-state determined by magnetic susceptibility, or to 
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determine the localization or delocalization of spin in a metal complex. For some 

compounds with intermediate electron-spin relaxation rate, both the NMR and the EPR 

are possible to record, because the relaxation is slow enough for an EPR and fast enough 

for NMR spectrum to be recorded.
77

 

 

2.2.4.1. Nuclear magnetic resonance of Cr
III

 monomers 

 Chromium(III), d
3
 ions have an electronic spin of S = 3/2 and typically a very 

small zero-field splitting parameter (D); the electronic configuration determines their 

relaxation properties. The most efficient relaxation mechanism for high-spin Cr
3+

 

complexes is often the modulation of transient zero-field splitting (ZFS).
78

 The ZFS has 

strong influence on the resonance of nuclear spins in solution, this effect has been 

theoretically studied for transition metal complexes.
79,80

   

 Some mononuclear chromium(III) complexes with pincer-type ligands containing 

a central pyridine moiety have no detectable signals in the in the range from −300 to 

+300 ppm, due to their fast relaxation rate.
81

 In the case of complex [mer-CrCl3(pzH)3] 

(1),  NMR signals were observed. Spectra of 1 should contain two distinct pyrazole 

environments, one resonance for the protons of the pyrazoles trans to each other and the 

other for the pyrazole in the cis position. Unbound pyrazole (pzH) shows singlet 

resonance 12.82 ppm for H
1
-N, doublet at 7.59 ppm for H

3/5
, and a triplet at 6.25 ppm for 

H
4
. Unlike free pyrazole, H

3
 and H

5
 on the mer-Cr

III
 complex are not equivalent due to 

the metal coordination; a total of eight resonances should appear on the NMR for 

complex 1.  
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 Contrary to the expected, 1 showed fewer resonances in acetone-d6 and 

acetonitrile-d3. Spectra of 1 showed peaks at 7.60 ppm and 6.30 ppm with integration 

1:0.5, respectively. Line broadening and signal/noise ratio of the observed peak at -9.00 

ppm causes integration problems. The broad peak of 1 at -9.00 ppm is absent in the 

spectrum  3, suggesting assignment to the H
4
 proton (Figure 25). In complex 3, a new 

resonance at 2.97 ppm, corresponds to the 4-Me group. The NMR spectra of complexes 

4, 5 and 6 are depicted on Figure 26. Complex 4 and 5 have two resonances, whereas 6 

showed one distinct peak.‡   

 

 

Figure 25. 
1
H NMR of complex 1 (red) and 3 (green) in Acetonitrile-d3 at 400 MHz. 

Spectra was referenced to the residual solvent proton resonance. 

                                                           
‡
 Complex [mer-CrCl3(3-Me-pzH)3] (2) had poor solubility in acetone and acetonitrile, peak 

assignment was not successful.   
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Figure 26.
 1

H NMR of complex 1 (purple), 3 (blue), 4 (green), 5 (orange) and 6 (red) in 

Acetonitrile-d3 (red) at 400 MHz. 

  

 Paramagnetic upfield shift and line broadening in observed for complex 1. A 

similar case has been reported for the mononuclear chromium(III) tris-(8-

hydroxyquinolinate) complex that shows signals with large paramagnetic shifts to high 

frequencies and spectral broadening.
82

 Chemical shifts are determined by the nature of 

metal-ligand interaction.
83

 Shifts might come from either through-space dipolar 

interaction (pseudo-contact) or direct delocalization of electron density from the metal 

(contact shift).
84

 Contact and pseudo contact interactions cause a paramagnetic chemical 

shift effect on complex 1.   

 To further comprehend the NMR spectra of mononuclear chromium complexes, 

variable temperature NMR was recorded. Variable temperature NMR of paramagnetic 
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complexes should show temperature dependence on chemical shift, while the line width 

should remain constant.
85

 Variable temperature NMR spectra of complex 1 were recorded 

in acetone-d6 solution over the -60 °C to +23 °C range (Figure 28). All resonances 

showed temperature dependent downfield shift upon cooling except for broad peak at -

9.00 ppm (F), which was shifted upfield upon cooling. The intensity of peak at 7.60 ppm 

(AB) decreases and two new peaks at 7.40 (A) and 7.80 ppm (B) appeared. While the 

intensity of peak at 6.30 ppm (D) decreases, the intensity of the 6.20 ppm peak (C) 

increases upon cooling. The set of peaks around 7.30 ppm (A and B) showed coalescence 

at room temperature. However, peaks at 6.20 ppm (C) and 6.30 ppm (D) remain at room 

temperature. Signals E and F are attributed to H
4
 of the pyrazole, peak assignments 

remains unclear because of line broadening, signals are absent for 4. Curie temperature 

dependence is observed for proton signals for complex 1. Curie temperature dependence 

can be determined from the linear plot of chemical shift as a function of inverse 

temperature in K that should have positive slope for downfield shift and negative slope 

for upfield shift upon cooling (Figure 29).
86,87

  

 
Figure 27. 

1
H NMR peak assignment for 1.   
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Figure 28. Variable temperature 400 MHz

 1
H NMR of complex 1 in acetone-d6. 

 

 
Figure 29. Temperature dependence of H chemical shifts of complex 1. 
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 Variable temperature spectra of complex 4 were recorded in acetone-d6 solution 

over the -50 °C to +23 °C  range (Figure 31), showing similar behavior compared to 1. 

Disappearance of peaks E and F (of 1) is consistent with their assignment to the H
4
 of the 

pyrazole. Resonances showed temperature dependence, increasing the downfield 

chemical shift and Δν (difference in chemical shift) upon cooling. The intensity of peak at 

7.71 ppm (AB) decreases while intensities of peaks at 7.45 (A) and 7.94 ppm (B) 

increases. Intensity of peak at 5.61 ppm (D) decreases and intensity of peak at 5.94 ppm 

(C) increases. The set of peaks around 7.3 ppm (A and B) did not show coalescence at 

room temperature. Coalescence temperature (Tc) of peaks A and B is approximately 30 

°C. In contrast, the set of peaks at around 6 ppm (C and D) showed Tc at room 

temperature (23 °C).  

 

 

Figure 30. 
1
H NMR peak assignment for 4.   
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Figure 31. Variable temperature (-50 to +23 °C) 400 MHz
 1

H NMR of complex 4 in 

acetone-d6. 

 

 

Figure 32. Temperature dependence of H chemical shifts of complex 4. 
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 Raising the temperature, for complexes 1 and 4, caused proton shifts to become 

coalesced into a single line. At low temperatures the rate of pyrazole tautomerization is 

low
†
, causing separate signals for protons at position H

3
 and H

5
 of the pyrazole to be 

observed separetely.
88

 The presence of four resonances, instead of eight resonances, in 

the spectra is consistent of corresponding pyrazole sites: pyrazole trans to a pyrazole and 

pyrazole trans to a chloride. At room temperature, for both 1 and 4, peaks around 7.5 

ppm and peaks around 6 ppm have 1:2 integration, consistent with the previous 

assignment. Similar temperature behaviors should be expected for complexes 3, 5 - 6. 

 

2.2.4.2. Electronic paramagnetic resonance of Cr
III

 monomers 

 The X-band electron paramagnetic resonance (EPR) of chromium(III) monomers 

with formula [mer-CrCl3(4-H-pzH)3] (1) and [mer-CrCl3(4-Cl-pzH)3] (4) were run by 

collaboration with Joshua Telser (Roosevelt University, Chicago) (Figure 33). The X-

band EPR shows broad hyperfine lines typical for a high-spin center from a ground state 

S = 3/2 with a small zero-field splitting (ZFS). Simulation of the experimental data will 

help elucidate EPR parameters like the axial zero-field splitting (D) and the gyromagnetic 

ratio (g), a distribution in the parameters is expected due to slight structural differences 

between complexes.
89

  

 

                                                           
†
 Energy barrier is calculated from                      

 

 
        , where T is temperature (in 

K), k is the rate constant (in s
-1

). Rate constant is defined by          , where υAB is the chemical shift 

(in Hz) between peaks X and Y. ( 1; ΔG
≠

AB =13.9 kcal/mol,  ΔG
≠

CD =14.5 kcal/mol; 4, ΔG
≠

AB =14.0 

kcal/mol,  ΔG
≠

CD =13.4 kcal/mol) 
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Figure 33. X-Band EPR of 1 (red) and 4 (green) (9.376 GHz), 10 K. 

 

 The Q-band EPR spectra of acetonitrile (MeCN) solutions of 1, 3, and 4 were 

recorded in collaboration with Dr. Athanassios K. Boudalis (University of Strasbourg, 

France). The spectra revealed a derivative main feature around 1220 mT (g ~ 1.99) 

accompanied by broader and weaker satellite features. These features were attributed to 

weak zero-field splittings of the single ions, but their broad features could not be 

reproduced by such a simple model. It was then considered that the system undergoes 

strain effects, which induce distributions of the effective spin Hamiltonian parameters (g- 

and/or D-strains). Due to the relevance of ZFS in the appearance of the satellite features, 

only a D-strain model was assumed to account for parameter distributions, considering 

the g-tensor components as monodisperse. The D parameter was considered as following 

a normal distribution. 
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Figure 34. Q-band EPR experimental (black lines) and calculated (red lines) spectra of 

frozen MeCN solutions. The insets show the distribution of the D parameter.  

 

Table 10. Best-fit parameters for the Q-band EPR spectra of complexes. 

Compound g|| g σ (Gpp) |D| (cm
-1

) σD (cm
-1

) 

1 1.99 1.99 18.1 0.16 0.18 

3 1.99 1.99 15.8 0.15 0.17 

4 1.99 1.99 27.9 0.073 0.25 

[Note: σ is the intrinsic linewidth]. 
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For this case, the expression for the g factor is defined by: 

     
  

 
                (1) 

where Δ is 10Dq (from Table 9), the energy difference from 
4
A2g and 

4
T2g levels.

90
 Spin-

orbit coupling constants (λ) are calculated for compound 1, 3, and 4 taking into account 

that for the Cr
+3

 free ion λ0 = +91 cm
-1

. The π-acceptor character of the pyrazole ligands 

is reflected on the reduction of the spin-orbit constants, where the spin orbit reduction 

factor (k) is defined by λ = k
2
λ0. Similar effect had been observed for complexes with 

imidazole and pyridine ligands.
65,91

  

 

Table 11. Spin-orbit coupling constants (cm
-1

) for 1, 3, ad 4.  

Compound Δ (cm
-1

) λ (cm
-1

) λ/ λ0 k 

1 16287 25.1 0.276 0.525 

3 16695 25.7 0.283 0.532 

4 15674 24.1 0.265 0.515 
 

  

 The ZFS parameter |D| for mononuclear chromium(III) complexes with 

monodentate ligands typically falls in the range of 0.06 - 0.1 cm
-1

 and the corresponding 

g values at approximately 1.98 - 1.99, which is comparable with the obtained  |D| and g 

values for 4.
92,93

 Increase in |D| values can be attributed to a larger spin-orbit constant 

from the ligand in 1 and 3.   
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2.2.5. Base addition to mononuclear Cr
III

 pyrazole complexes  

 Higher nuclearity complexes are expected to form from the deprotonation of 

coordinated pyrazole ligands. Mononuclear complexes with formula [mer-CrCl3(pz*H)3] 

were reacted with a variety of bases in organic and inorganic solvents to deprotonate the 

coordinated pyrazoles and possibly accomplish higher nuclearity complexes. Change in 

color is observed from green to pink in the reaction of [mer-CrCl3(pzH)3] (1) with 

triethylamine in acetonitrile. A time-dependant UV-Vis experiment shows two isosbestic 

points at 427 nm and 496 nm. A third “isosbestic point” at 583 nm is blurred, implying 

the presence of a minor impurity that absorbs close to that wavelength.
94

 Failure to isolate 

pure product has hampered all attempts of base addition reactions in various solvents and 

isolation methods. 

 

Figure 35. Time-dependant UV-Vis spectra for the reaction of [mer-CrCl3(pzH)3] (1) with 

triethylamine in acetonitrile.  
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2.2.6. Other products from mononuclear Cr
III

 pyrazole syntheses 

 Further study of mononuclear chromium complexes syntheses has provided 

insight on the difficulty of product isolation from base addition reactions. From the 

reaction mixture of CrCl3·6H2O and 3-Me-pzH in dichloromethane (DCM), where green 

crystals of [mer-CrCl3(3-Me-pzH)3] (2) and [trans-CrCl3(3-Me-pzH)3]Cl (8) were 

isolated, trace amount of [Cr
III

3(μ3-O)(μ-OH)3(3-Me-pzH)9]Cl4 (9) was also obtained as 

pink crystals. Bulk synthesis of (9) was not successful from the stoichiometrically 

optimized reaction. Isolation of analogous material using similar reaction conditions with 

other pyrazole ligands was then attempted.    

 

  

Figure 36. Ball and stick representation of [Cr
III

3(μ3-O)(μ-OH)3(3-Me-pzH)9]Cl4 (9). 

Some hydrogen atoms are omitted for clarity. 
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 The use of 4-Me-pyrazole ligand was explored using similar reaction conditions, 

as complex (9), from which the analogous trinuclear complex with [Cr3(μ3-O)(μ-OH)3] 

core was not isolated. Instead, green crystals of [mer-Cr3Cl3(4-Me-pzH)3] (3) were 

obtained. Additionally,  purple crystals of dinuclear complex with formula [Cr
III

2(μ-

OH)(μ-4-Me-pz)(4-Me-pzH)4Cl4] (10) and pink crystals of [Cr
III

2(μ-OH)(μ-4-Me-pz)2(4-

Me-pzH)4Cl2]Cl (11) were obtained in a very low yield.  

 

Figure 37. Ball and stick representation of [Cr
III

2(μ-OH)(μ-4-Me-pz)(4-Me-pzH)4Cl4] 

(10)  Dashed red lines represent H-bonds. 
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Figure 38. Ball and stick representation of [Cr
III

2(μ-OH)(μ-4-Me-pz)2(4-Me-pzH)4Cl2]Cl 

(11). Dashed red lines represent H-bonds. 

 

 To address the problem of low yields for the aforementioned dinuclear complexes 

syntheses, anhydrous CrCl2 and 4-R-pyrazole (R = Me, H, Cl) were reacted in DCM. 

Reactions yielded mononuclear complex of form [mer-Cr3Cl3(4-R-pzH)3] as the major 

product and traces of dinuclear complex with general formula [Cr
III

2(μ-OH)(μ-4-R-

pz)2(4-R-pzH)4Cl2]Cl, R= Me (11), H (12) and Cl (13).  
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Figure 39. Ball and stick representation of [Cr
III

2(μ-OH)(μ-pz)2(pzH)4Cl2]Cl (12). Dashed 

red lines represent H-bonds. 
 

 

 

Figure 40. Ball and stick representation of [Cr
III

2(μ-OH)(μ-4-Cl-pz)2(4-Cl-pzH)4Cl2]Cl 

(13). Dashed red lines represent H-bonds. 
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 The described trinuclear and dinuclear pyrazolate complexes can be synthesized 

from the same reaction mixture from which the mononuclear complexes with mer- and 

trans- configuration were obtained. Metal coordination shows an increase in pyrazole 

acidity, since no base addition yielded dinuclear pyrazolate complexes. In all cases, 

efforts to improve the yield of dinuclear and trinuclear species were unsuccessful, due to 

the formation of stable mer- complexes. Equilibrium between mononuclear, dinuclear, 

and trinuclear complexes in solution is the source of complexity in isolating polynuclear 

products after the addition of base to complexes of mer- configuration.  

 Analogous dinuclear chromium acetate complexes with [Cr2(μ-OH)(μ-

O2CR)2(L)6]
3+

 motif have been shown to be intermediates of formation of oxo-centered 

trinuclear complexes with form [Cr3(μ3-O)(μ-O2CR)6(L)3]
+
.
95–97

 Following that most 

trinuclear chromium acetate complexes are achieved by thermal treatment routes; the 

trinuclear motif with formula [Cr
III

3(μ3-O)(μ-pz*)6L3] should be achievable with the use 

of high temperatures following the addition of base. To prevent the formation of mer- 

complexes, chromium source without chloride was considered. 

2.2.6.1. Crystallographic description of trinuclear and dinuclear complexes 

Crystallographic data collection and refinement parameters for 9-13 are 

summarized in Table 16. Complex 9 crystallized in cubic Pa-3 space group with one 

third of the molecule per asymmetric unit and 4/3 Cl
- 

counter ions. Complex 10 

crystallized in trigonal P-3c1 space group with one half molecule per asymmetric unit. 

Complexes 11, 12, and 13 are isostructural and crystallized in the P21/c space group with 

a whole molecule per asymmetric unit. 
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 Complex 9 has three 6-coordinate octahedral Cr
III

 centers contained on a plane 

with Cr···Cr distance 2.952(2) Å and also coordinated to three 4-Me-pzH ligands. 

Bridging μ3-O and one Cl
- 
counter ion are located on a 3-fold rotation axis, Cr-Oμ bond 

length 1.965(4) Å. Adjacent chromium centers are bridged by μ-OH, with Cr-Oμ bond 

length of 1.945(4) Å. Complex 9 crystallized with four chloride counter ions showing 

hydrogen bonding with pyrazole ligands. 

 Complex 10 contains two 6-coordinate octahedral Cr
III

 centers bridged by a μ-OH 

and a μ-4-Me-pz. Each chromium center is also coordinated to two 4-Me-pzH ligands 

and two chloride atoms. In contrast, complexes 11, 12, and 13 contain two bridging 

pyrazolate ligands and one terminally coordinated chloride per Cr center. Complex 10 is 

neutral, while 11, 12, and 13 co-crystallized with a chloride counter anion. Selected bond 

distances are listed in Table 12. There is a considerable metal-to-metal distance reduction 

upon the increase number of bridging pyrazolate ligand. No obvious difference in Cr···Cr 

distance is observed within dinuclear complexes with 4-Me-pzH and 4-H-pzH, in contrast 

to the elongated Cr···Cr distance of the 4-Cl-pzH complex. Analogous dinuclear 

complexes are known with carboxylate ligands, bond lengths and angles are summarized 

in Table 13. Pyrazolate complexes have a reduced Cr···Cr distances and Cr—OH—Cr 

angles, associated with their higher rigidity and reduced bite angle of the pyrazolate 

compared to the carboxylate ligand. However, the Cr···Cr distances of 11, 12 and 13 are 

still too long for metal-metal bonding. 
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Table 12. Selected bond lengths (Å) and angles (°) for dinuclear chromium pyrazolate 

complexes.  

 Compound 

Bond 10 11 12 13 

Cr···Cr 3.4685(4) 3.2482(2) 3.2402(2) 3.2649(5) 

Cr—Cl 2.2993(2) 2.3216(1) 

2.3079(2) 

2.3113(1)  

2.3159(1) 

2.3026(4) 

2.3250(3) 

Cr—N(μ) 2.0123(1) 2.0208(1)-2.0261(1) 2.0190(1)-2.0831(1) 2.0250(3)- 2.386(2) 

Cr—N 2.0759(2) 

2.0573(2) 

2.0671(2)-2.0869(1) 2.0735(1)-2.0881(2) 2.0754(3)-2.1053(2) 

Cr—O 1.9554(2) 1.9406(1)-1.9495(1) 1.9462(1) 

1.9417(1) 

1.9472(2) 

1.9532(3) 

Cr—OH—Cr 124.977(5) 113.228(4) 112.902(2) 113.66(1) 

 

Table 13. Bond lengths (Å) and angles (°) for selected Cr
III

 carboxylate complexes 

 Bond length (Å) Angle (°) 

Complex Cr···Cr Cr—μO Cr—OH—Cr 

[Cr2(tren)2(μ-OH)(μ-O3C)](ClO4)3
98 

3.560 1.944(2) 131.5(3) 

[Cr2(OH2)8(μ-OH)(μ-O2CCH3)]((CH3)3C6H2SO3)4
97

 3.55(1) 1.92(1) 133.1(7) 

[Cr2(OH2)6(μ-OH)(μ-O2CH)2](p-CH3)3C6H2SO3)4
96

 3.381(1) 1.920(4) 123.4(2) 

 

2.3. Conclusions  

 Complexes with formula [mer-CrCl3(pz*H)3] (pzH = pyrazole ligand; pz*H = 3-

Me-pzH, 4-Me-pzH, 4-Cl-pzH, 4-Br-pzH, 4-I-pzH) and [trans-CrCl2(pz*H)4]Cl (pz*H = 

pzH, 3-Me-pzH) were synthesized and characterized. Complexes are both NMR and EPR 

active. Variable temperature NMR elucidated that fewer number of resonance peaks is 

caused by tautomerism in solution. The EPR data show broad hyperfine lines typical for a 

high-spin chromium center. The ZFS parameter |D| for mononuclear chromium(III) 

complexes 1, 3 and 4 was determined and falls within range compared to other  

chromium(III) complexes with monodentate ligands Increase in |D| values are attributed 

to a larger spin-orbit constant from the ligand in 1 and 3. Polynuclear complexes were not 
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isolated from base addition to mononuclear chromium complexes. Trinuclear complex 

with formula [Cr
III

3(μ3-O)(μ-OH)3(3-Me-pzH)9]Cl4,  dinuclear complexes with formula 

[Cr
III

2(μ-OH)(μ-4-Me-pz)(4-Me-pz)4Cl4] and [Cr
III

2(μ-OH)(μ-4-R-pz)2(4-R-pz)4Cl2]Cl (R 

= Me, H and, Cl) were isolated as side products of mononuclear complex syntheses. 

Equilibrium of mentioned complexes in solution with the mononuclear complexes might 

have prevented the isolation of pure polynuclear complexes from their reaction with base. 

The use of chromium sources without chloride and thermally assisted synthesis may 

improve the yields of the aforementioned trinuclear and dinuclear complexes. Analysis of 

magnetic data from complexes with formula [Cr
III

3(μ3-O)(μ-OH)3(pzH)9]
+4 

could 

elucidate the existence of a metal-to-metal bond. As previously mentioned, Cr-Cr bonds 

range between 1.74 - 2.69 Å, which make this complex the top limit of its kind, given 

that the observed Cr···Cr distance was 2.952(2) Å. 

2.4. Experimental section 

2.4.1. Materials 

 Reagent grade chemicals were purchased from Fisher scientific, Aldrich Chemical 

Co, Alfa Aesar or ACROS Organics. Reactions were performed at room temperature. 

Elemental analyses of crystalline material were performed by Galbraith Laboratories, 

Knoxville, TN. 

2.4.2. Instrumentation 

 Electrochemical experiments were performed with a BAS CV 50 W voltammetric 

analyzer in 0.1 M Bu4NPF6/CH2Cl2 using a non-aqueous Ag/AgNO3 reference electrode 

for which the ferricenium/ferrocene couple occurs at 0.200 V, glassy carbon auxiliary 
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electrode, and glassy carbon working electrode. 
1
H NMR spectra were recorded on a 400 

Bruker NMR spectrometer and were referenced, using the residual solvent resonances. 

FT-IR and UV-Vis spectra were recorded at room temperature with a Perkin Elmer 

Spectrum 100 FT-IR S and a Varian Cary 3000 spectrometer, respectively.  

2.4.3. Synthesis and characterization 

2.4.3.1. Synthesis of [mer-CrCl3(pzH)3] (1). 

Method A: A 25 mL flask was charged with 124.4 mg (0.466 mmol) of CrCl3·6H2O and 

dissolved with 15 mL of THF followed by addition of 159.9 mg (2.35 mmol) 

of  pyrazole (pzH). The solution was left stirring for 24 hours. Dark green 

crystals of (1) were obtained from slow evaporation of solvent; crystal yield, 

107 mg (66 %). Elemental analysis calculated for C9H12Cl3CrN6: C, 29.81; 

H, 3.34; N, 23.18. Found: C, 29.46; H, 3.35; N, 22.98. FTIR (cm
-1

,solid): 669 

m, 712 s, 765 s, 868 w, 908 w, 944 w, 1046 s, 1118 s, 1160 w, 1261 w, 1345 

m, 1401 w, 1470 m, 1514 w, 3143 w, 3307 m, 3354 w. UV-Vis (MeOH) λmax 

(ε); nm (M
-1 

cm
-1

): 448 (62.0), 614 (37.0). 
1
H NMR (400 MHz, CD3CN) δ 

7.70 (1), 6.30 (0.5), -9.00 (11). 

Method B: 153 mg (1.25 mmol) of CrCl2 were suspended in 10 mL of DCM, followed by 

the addition of 345.5 mg (5.07 mmol) of pyrazole. Green crystals of (1) are 

isolated from diethyl ether vapor diffusion into a DCM solution. Pink crystals 

of [Cr
III

2(μ-OH)(μ-pz)2(pzH)4Cl2]Cl (12) were isolated from evaporation of 

diethyl ether/DCM solution.   
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2.4.3.2. Synthesis of [mer-CrCl3(3-Me-pzH)3] (2).  

Method A: A 25 mL flask was charged with 106.0 mg (0.86 mmol) of CrCl2 and 

dissolved with 10 mL of methanol at room temperature. Translucent green 

solution was obtained to which 220.0 μL (2.60 mmol) of 3-Methyl-pyrazole 

(3-Me-pzH) were added drop-wise and left stirring for 24 hours. Product was 

isolated from reduced pressure vaporization of solvent. Dark green single 

crystals of (2) were obtained from hexane solvent layering in a DCM 

solution. Elemental analysis calculated for C12H18Cl3CrN6: C, 35.62; H, 4.48; 

N, 20.77. Found: C, 35.31; H, 4.88; N, 20.08. FTIR (cm
-1

, solid): 675 vs, 791 

vs, 808 s, 956 s, 1016 w, 1105 vs, 1283 w, 1411 w, 1444 w, 1487 w, 1559 m, 

3135 vw, 3312 m. UV-Vis (MeOH) λmax (ε); nm (M
-1 

cm
-1

): 446 (41.4), 608 

(38.6).  

After removal of green crystals from the reaction mixture of (2), trace mount 

of pink single crystals of [trans-CrCl2(3-Me-pzH)4]Cl (8) were obtained from 

evaporation of a 1:1 dichloromethane/hexane mixture. 

Method B: A 25 mL flask was charged with 299.7 mg (1.12 mmol) of CrCl3·6H2O, 

followed by addition of 10 mL of DCM. To the resulting suspension, 360 

μL (4.42 mmol) of 3-Me-pzH was added. Green crystals of (2) were 

obtained from slow evaporation of solvent after filtration. Trace amounts of 

[Cr
III

3(μ3-O)(μ-OH)3(3-Me-pzH)9]Cl4 (9), were also collected as blue 

crystals.  
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2.4.3.3. Synthesis of [mer-CrCl3(4-Me-pzH)3] (3). 

Method A: A translucent green solution was obtained from dissolving 118.7 mg (0.445 

mmol) of CrCl3·6H2O in 15 mL of THF. A 2 mL solution of 189 μg (2.233 

mmol) of 4-Methyl-pyrazole (4-Me-pzH) in THF was then added drop wise. 

Green single crystals of (3) were obtained from slow evaporation of solvent; 

crystal yield 54 mg (30 %). Elemental analysis calculated for C12H18Cl3CrN6: 

C, 35.62; H, 4.48; N, 20.77. Found: C, 35.68; H, 4.43; N, 20.53. FTIR (cm
-1

, 

solid): 658 w, 693 m, 744 w, 966 m, 1001 s, 1071 s, 1118 s, 1237 w, 1292 w, 

1334 w, 1390 w, 1477 m, 1692 w, 2931 w, 3120 w, 3280 s, 3305 w. UV-Vis 

(MeOH) λmax (ε); nm (M
-1 

cm
-1

): 439 (55.0), 599 (43.0). 
1
H NMR (400 MHz, 

CD3CN) δ 7.41 (0.5), 5.44 (1), 2.97 (17). 

Method B: A round bottom flask was charged with 109.7 mg (0.411 mmol) of 

CrCl3·6H2O followed by 5 mL of DCM. To the suspension, 104.8 μL (1.287 

mmol) of 4-Me-pzH was added, followed by reflux for 4 hours. After 

evaporation of solvent, green crystals of (3) were obtained from DCM/ ether 

vapor diffusion. Green crystals and pink solution were observed from the 

crystallization set up. Traces of purple crystals of [Cr
III

2(μ-OH)(μ-4-Me-

pz)(4-Me-pzH)4Cl4] (10) and pink crystals of [Cr
III

2(μ-OH)(μ-4-Me-pz)2(4-

Me-pzH)4Cl2]Cl (11) were collected from slow evaporation of pink solution.   
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2.4.3.4. Synthesis if [mer-CrCl3(4-Cl-pzH)3] (4). 

Method A: A 25 mL flask was charged with 50.6 mg (0.190 mmol) of CrCl3·6H2O and  

dissolved with 15 mL of THF. To the obtained green solution, 99.7 mg (0.97 

mmol) of  4-Chloro-pyrazole (4-Cl-pzH) was added and left to stir for 24 

hours. Solvent was removed under reduced pressure and dark green single 

crystals of (4) were obtained from diethyl ether vapor diffusion in DCM 

solution; crystal yield 162 mg (69%). Elemental analysis calculated for 

C9H9Cl6CrN6: C, 23.20; H, 1.95; N, 18.04. Found: C, 23.18; H, 2.12; N, 

17.15. FTIR (cm
-1

, solid):679 vs, 847 s, 964 vs, 1050 vs, 1113 vs, 1203 m, 

1259 m, 1339 m, 1391 m, 1463 m, 1530 m, 1691 w, 3124 w, 3263 m, 3331 

w. UV-Vis (MeOH) λmax (ε); nm (M
-1

cm
-1

): 448 (65.0), 618 (30.0). 
1
H NMR 

(400 MHz, CD3CN) δ 7.58 (1), 5.43 (0.4). 

Method B: A 25 mL flask was charged with 122 mg (1.00 mmol) of CrCl2 followed by 

10 mL of DCM. To the resulting suspension, 254.8 mg (2.50 mmol) of 4-Cl-

pzH was added. Green crystals and pink solution were obtained after 

diffusing diethyl ether to the DCM solution. Slow evaporation of pink 

solution yielded trace amounts of pink crystals of [Cr
III

2(μ-OH)(μ-4-Cl-

pz)2(4-Cl-pzH)4Cl2]Cl (13). 

 

 



59 

 

2.4.3.5. Synthesis of [mer-CrCl3(4-Br-pzH)3] (5) 

 A 25 mL flask was charged with 119.8 mg (0.500 mmol) of CrCl3·6H2O and  

dissolved with 15 mL of THF. To the obtained green solution, 264.5 mg (1.806 mmol) of  

4-Bromo-pyrazole (4-Br-pzH) was added and left to stir for 24 hours. Green single 

crystals of (5) were obtained from slow evaporation of solvent; crystal yield 75 mg 

(28%). Elemental analysis calculated for C9H9Br3Cl3CrN6·0.3C4H8O: C, 19.73; H, 1.85; 

N, 13.54. Found: C, 19.10; H, 1.71; N, 12.68. FTIR (cm
-1

, solid): 671 s, 877 s, 821 m, 

856 s, 877 m, 945 s, 1046 s, 1118 s, 1188 w, 1210 w, 1260 w, 1343 w, 1388 s, 1460 w, 

3133 w, 3252 m, 3306 w, 3360 w. UV-Vis (MeOH) λmax (ε); nm (M
-1 

cm
-1

): 451 (43.0), 

626 (27.0). 
1
H NMR (400 MHz, CD3CN) δ 7.60 (1), 5.44 (0.5). 

2.4.3.6. Synthesis of [mer-CrCl3(4-I-pzH)3] (6). 

 A translucent green solution was obtained after dissolving 111.3 mg (0.418 

mmol) of CrCl3·6H2O with 15 mL of THF in a 25 mL flask. Then 404.3 mg (2.08 mmol) 

of 4-Iodo-pyrazole (4-I-pzH) was added to the stirring solution and left to react for 24 

hours. Solvent was removed by reduced pressure. Dark green single crystals of (6) were 

obtained from diethyl ether vapor diffusion to a DCM solution; crystal yield 31.6 mg 

(10%). Anal Elemental analysis calculated for C9H9Cl3I3CrN6·1.15 

C4H8O (C13.6H18.2Cl3CrI3N6O1.15): C, 19.84; H, 2.23; N, 10.21. Found: C, 19.74; H, 2.29; 

N, 10.07. FTIR (cm
-1

, solid): 703 s, 839 m, 858 w, 939 vs, 963 w, 1052 vs, 1118 s, 1190 

w, 1247 w, 1330 w, 1379 w, 1458 w, 1510 vw, 1772 vw, 2969 vw, 3132 w, 3233 m. UV-

Vis (MeOH) λmax (ε); nm  (M
-1 

cm
-1

): 452 (56.95), 618 (31.32). 
1
H NMR (400 MHz, 

CD3CN) δ 7.63. 
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2.4.3.7. Synthesis of [trans-CrCl2(pzH)4]Cl (7).  

 A 25 mL flask was charged with 489.0 mg (4.00 mmol) of CrCl2 and dissolved in 

10 mL of MeOH. To the translucent green solution, 1.0927 g (16.0 mmol) pyrazole (pzH) 

was added. Reaction mixture was left to stir and react for 24 hours. After filtration, the 

solvent was removed under reduced pressure. Purple/pink single crystals of (7) were 

obtained from solvent laver diffusion of hexane to a DCM solution. Anal. Calcd for 

[CrCl2pzH4]Cl (C12H16Cl3CrN8) : C, 33.47; H, 3.74; N, 26.02. Found: C, 34.10; H, 3.65; 

N, 25.87. FTIR (cm
-1

, solid): 761 s, 878 w, 909 w, 949 w, 1046 vs, 1115 m, 1255 w, 1277 

w, 1349 m, 1379 m, 1405 w, 1605 m, 1525 wm 1626 w, 2934 w, 2977 w, 3133 b. UV-

Vis (MeOH) λmax (ε); nm (M
-1 

cm
-1

): 410 (47), 546 (30). 

2.4.4. Crystal structure and structure refinement data 

 Single crystals X-ray diffraction data were measured on a Bruker D8 QUEST 

CMOS system equipped with a TRIUMPH curved-crystal monochromator and a Mo Kα 

fine-focus tube or a Bruker APEX II area detector with graphite monochromated Mo Kα 

radiation (λ = 0.71073 Å). Frames were integrated with the Bruker SAINT software 

package using a narrow-frame algorithm. Absorption effects were corrected using the 

multi-scan method (SADABS). Using Olex2
99

, structures were solved by intrinsic or 

direct methods with ShelXT
100

 and refined with ShelXL
101

 using full-matrix least-squares 

minimization. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms 

positions were calculated using the riding model. Complex 4 showed a positional 

disorder in one Cl atom and complex 6 showed a crystallographic positional disorder in 
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all I atoms, resolved with the PART instruction. Disordered interstitial THF solvent 

molecule in 6 was resolved with SQUEEZE.  

2.4.5. EPR measurements 

 Q-band EPR was recorded on an EMX plus spectrometer fitted with an EMX 

premium Q microwave bridge and an ER5106QTW microwave resonator operating in the 

TE012 mode and controlled by the Bruker Xenon software. For low-temperetaure 

experiments, the resonator was fitted in an Oxford CF935 dynamic continuous flow 

cryostat. The spectra were fitted with Easyspin V 5.2 using home-made routines. 

Experimental conditions: fEPR = 34.00 GHz, mod. ampl. = 5 Gpp, PEPR = 1.15 mW. R = H: 

T = 80 K. R = Me: T = 79 K. R = Cl: T = 82 K. 
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Table 14. Structure refinement parameters for complexes 1 - 6.  

Compound (1) (2) (3) (4) (5) (6) 

Empirical formula C9H12Cl3CrN6  C12H18Cl3CrN6  C12H18Cl3CrN6   C9H9Cl6CrN6  C9H9Br3Cl3CrN6 C13H17Cl3CrI3N6O 

Formula weight 362.60  404.67  404.67  465.92  599.30 810.47  

Temperature/K 297.03  296.15  273.15  273.15  273.15 295  

Crystal system monoclinic  orthorhombic  orthorhombic  triclinic  monoclinic triclinic  

Space group C2/c  Pna21  P212121 P-1  P21/c P-1  

a/Å 9.0315(6)  17.46(1)  11.356(2) 6.792(3)  8.868(6) 9.5178(8)  

b/Å 14.2944(9)  6.801(5)  11.590(2) 10.395(3)  9.913(6) 10.6190(9)  

c/Å 11.318(1)  14.86(1)  13.632(3) 12.218(4)  20.66(1) 12.613(1)  

α/° 90  90  90  78.81(2)  90 78.787(2)  

β/° 97.307(1)  90  90  89.62(2)  100.47(2) 82.592(2)  

γ/° 90  90  90  88.19(2)  90 86.424(2)  

Volume/Å
3
 1449.2(2)  1764(2)  1794.2(6) 845.7(5)  1786(2) 1239.1(2)  

Z 4  4  4  2  4 2  

ρcalcg/cm
3
 1.662  1.524  1.498  1.830  2.229 2.172  

μ/mm
-1

 1.337  1.107  1.088  1.626  7.803 4.519  

Crystal size/mm
3
 0.304×0.193× 

0.147  

0.1×0.07×0.06  0.206×0.098× 

0.093  

0.199×0.122× 

0.081  

0.239×0.172× 

0.027 

0.259×0.094×  

0.073  

Reflections 

collected/2Θmax(°) 

9746 /56.662 18160 /53.254 30063/52.902 16370 /52.608 28963 /52.952 17118 /56.78 

Data/restraints/ 

parameters 

1805/1/115  3704/1/203  3684/0/203 3424/0/244  3678/0/199 6164/0/288  

Goodness-of-fit on F
2
 1.132  1.025  1.028  1.045  1.028 1.055  

R1,  wR2 [I>=2σ (I)] 0.0282/ 0.0728  0.0272/ 0.0595  0.0428/ 0.0815  0.0270/ 0.0629  0.0366/ 0.0836 0.0363/ 0.0883  

R1,  wR2 [all data] 0.0324/ 0.0763  0.0359/ 0.0636  0.0678/ 0.0894  0.0358/ 0.0669  0.0515/ 0.0913 0.0555/ 0.0951  
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Table 15. Structure refinement parameters for complexes 7 - 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound (7) (8) 

Empirical formula C12H16Cl3CrN8 C16H24Cl3CrN8  

Formula weight 430.68 486.78  

Temperature/K 302.21 149.63  

Crystal system triclinic monoclinic  

Space group P-1 C2/c  

a/Å 8.0428(3) 12.8962(9)  

b/Å 8.4370(4) 13.132(1)  

c/Å 14.9426(6) 14.185(1)  

α/° 76.697(1) 90  

β/° 89.927(1) 109.644(2)  

γ/° 68.369(1) 90  

Volume/Å
3
 913.34(7) 2262.4(3)  

Z 2 4  

ρcalcg/cm
3
 1.566 1.429  

μ/mm
-1

 1.077 0.879  

Crystal size/mm
3
 0.141×0.101×0.096 0.36×0.148×0.135  

Reflections 

collected/2Θmax(°) 

19464 /52.84 14958 /56.848 

Data/restraints/parameters 3729/0/220 2839/0/139  

Goodness-of-fit on F
2
 1.099 1.043  

R1,  wR2 [I>=2σ (I)] 0.0432/ 0.0898 0.0480/ 0.1335  

R1,  wR2 [all data] 0.0591/ 0.0965 0.0575/ 0.1433  
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Table 16. Structure refinement parameters for complexes 9 - 13.  

Compound (9) (10) (11) (12) (13) 

Empirical formula  C36H63Cl4Cr3N18O7  C120H180.01Cl24Cr12N60O6  C100H140Cl20Cr8N48O4  C9H11.5Cl1.5CrN6O0.5  C72H68Cl36Cr8N48O4  

Formula weight  1157.85  4034.19  3203.59  316.92  3361.94  

Temperature/K  295  273.15  273.15  273.15  273.15  

Crystal system  cubic  trigonal  monoclinic  monoclinic  monoclinic  

Space group  Pa-3  P-3c1  P21/c  P21/c  P21/c  

a/Å  22.6174(3)  21.349(3)  14.379(1)  11.4398(9)  14.350(2)  

b/Å  22.6174(3)  21.349  16.118(1)  15.327(1)  15.959(3)  

c/Å  22.6174(3)  13.788(2)  17.104(1)  15.813(1)  17.356(3)  

α/°  90  90  90  90  90  

β/°  90  90  95.513(2)  93.818(2)  96.769(5)  

γ/°  90  120  90  90  90  

Volume/Å
3
  11569.9(5)  5442(2)  3945.8(5)  2766.4(4)  3947(1)  

Z  8  1  1  8  1  

ρcalcg/cm
3
  1.329  1.231  1.348  1.522  1.414  

μ/mm
-1

  0.794  0.921  0.925  1.111  1.190  

F(000)  4808.0  2064.0  1640.0  1288.0  1672.0  

Crystal size/mm
3
  0.126 × 0.083 × 0.06 0.151 × 0.131 × 0.053  0.126 × 0.083 × 0.059  0.133 × 0.104 × 0.077  0.156 × 0.144 × 0.056  

2Θ range for data 

collection/°  
5.974 to 52.702  5.83 to 49.446  5.798 to 49.574  5.808 to 52.902  5.718 to 52.702  

Reflections collected  187939  80864  60939  53854  82500  

Data/restraints/para

meters  
3940/0/211  3101/1/173  6759/0/416  5672/10/366  8001/0/383  

Goodness-of-fit on 

F
2
  

1.147  1.075  1.021  1.030  1.040  

R1,  wR2 [I>=2σ (I)]   0.0919/ 0.2367  0.0662/ 0.1970  0.0597/ 0.1172  0.0563/ 0.1190  0.0494/ 0.1317  

R1,  wR2 [all data]  0.1525/ 0.2668  0.0954/ 0.2145  0.1134/ 0.1354  0.0978/ 0.1347  0.0713/ 0.1432  
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Chapter 3: Chromium mixed-ligand complexes with Cr3(μ3-O) cores 

3. Synthesis of trinuclear chromium mixed-ligand formate-pyrazolate 

complexes  

 

3.1. Introduction 

 Mixed pyrazolate-carboxylate complex with formula [Co3O(μ-OAc)3(μ-

pz)3(pzH)3](PF6) has been previously synthesized and characterized.
102

 Paramagnetic 

shifts in the NMR spectra were not observed as consequence of the diamagnetic nature of 

the all LS-Co(III) trinuclear centers. Mixed ligand complexes of cobalt show a reversible 

reduction and an irreversible oxidation. Increasing the amount of bridging pyrazolate 

ligands in these complexes alters their redox potential.  

 

Scheme 10. Structure of [Co3(μ3-O)(μ-OAc)3(μ-pz)3(pzH)3]
-
.
102

 

  

 Here we present the synthesis of new chromium mixed-ligand formate-pyrazolate 

complexes, their crystal structure, electronic absorption spectra, and NMR studies.  
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3.2.  Results and discussion 

3.2.1. Synthesis  

 The use of high boiling point solvent and the use of Cr(NO3)3·9H2O yielded 

higher nuclearity complexes. Hydrolysis of DMF and deprotonation of the pyrazole 

produced trinuclear formate-pyrazolate mixed-ligand complexes with molecular formula   

[Cr
III

3(μ3-O)(μ-4-Me-pz)3(μ-O2CH)3(DMF)3](PF6) (14), [Cr
III

3(μ3-O)(μ-pz)3(μ- 

O2CH)3(DMF)3](PF6) (15), and [Cr
III

3(μ3-O)(μ-4-Cl-pz)3(μ-O2CH)3(DMF)3](NO3) (16). 

Synthetic method was designed from reported chromium carboxylate complex 

synthesis.
103

 Both, the microwave and thermally assisted syntheses produced the 

complexes; the latter required longer reaction time. Low yields are characteristic of these 

syntheses. The use of Cr(NO3)3·9H2O prevented the formation of mononuclear 

complexes with form [mer-CrCl3(pzH*)3].  

3.2.2. Crystallographic data 

 Structures of complexes 14, 15, and 16 were determined by single-crystal XRD; 

refinement parameters are summarized in Table 22. Complexes 14 and 15 crystallized 

with one third of a molecule in the asymmetric unit, whereas complex 16 crystallized 

with a whole molecule in the asymmetric unit. Complexes 13 and 15 crystallized in 

trigonal R-3 and P-31c space groups, respectively. Complex 16 crystallized in monoclinic 

P21/c space group. The presence of monoanionic counter ion and the Cr···μ3-O bonds 

distances are consistent with all Cr
III

 complexes. Complexes 14 and 15 crystallized with 

PF6
- 

and complex 16 with NO3
-
 counter ion. Complexes also crystallized with 

dimethylamine, product of the hydrolysis of DMF. 



67 

 

 Three six-coordinate chromium centers are bridged by an oxygen atom forming a 

Cr3(μ3-O) core. Complexes 14 and 15 have a 3-fold axis though the μ3-O atom. The 

Cr3(μ3-O) core is supported by six bridging ligands and three terminally coordinated 

DMF molecules. Formate and pyrazolate ligands face opposite directions, causing 

structural differences to the all-carboxylate complexes. For all complexes, the average 

Cr-N bond lengths in the μ-pyrazolate are shorter than the Cr-O in the μ-formate (Table 

17). The addition of pyrazolate bridging ligands shortens the Cr···Cr distance compared 

the carboxylate analogs because of the ligand's rigidity differences (Table 18). The central 

μ3-O atom slightly protrudes from the Cr3 plane towards the formate ligands in the 

mixed-ligand complexes because of their electron deficient properties compared to the 

pyrazolate groups. In contrast, in the all-carboxylate trimers, the central μ3-O atom is 

located on the Cr3 plane. The distances between μ3-O atom and the Cr3 plane are 

0.23460(1), 0.23395(2), and 0.22426(2) Å in 14, 15, and 16, respectively. 

 

Table 17. Selected interatomic distances (Å) for complexes 14 - 16.  

 Compound 

Bond 14 15 16 

Cr—μ3-O 1.873(1) 1.874(2) 1.871(8) - 1.883(8) 

Cr ···Cr
 

3.2190(2) 3.2198(3) 3.2235(3) - 3.2372(3) 

Cr —N 2.011(5) - 2.031(6) 2.00(1) - 2.03(1) 2.00(1) -2.04 (1) 

μ3-O ··· Crplane 0.23460(1) 0.23395(2) 0.22426(2) 
  

Table 18. Cr ···Cr distances (Å) and angles (°) for selected trinuclear chromium 

carboxylate complexes. 

 Distance (Å) Angle (°)  

Complex Cr ···Cr  Cr—μ3-O Ref 

[Cr3O(O2CPh)5(H2N-sao)(EtOH)2]
 
 3.359(1), 3.312(1), 3.210(1) 1.905(3) 104 

[Cr3O(μ-O2CCH2CH3)6(Hpz)3]
+ 

 3.284(1) - 3.305(1) 1.900(6) 105 

[Cr3O(μ-O2CPh(OH))7(H2O)2]
 
 3.310(2), 3.301(2), 3.294(1) 1.906(4) 106 

[Cr3O(μ-C3H5O2)6(H2O)3]
+ 

 3.256(1)-3.288(1) 1.891(3) 107 
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Figure 41. Ball and stick representation structure of [Cr
III

3(μ3-O)(μ-4-Me-pz)3(μ-

O2CH)3(DMF)3]
+
 (14).  
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Figure 42. Ball and stick representation structure of [Cr
III

3(μ3-O)(μ-pz)3(μ- 

O2CH)3(DMF)3]
+ 

(15).  
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Figure 43. Ball and stick representation structure of [Cr
III

3(μ3-O)(μ-4-Cl-pz)3(μ- 

O2CH)3(DMF)3]
+
 (16).  
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3.2.3. Electrochemistry and absorption spectra 

 The presence of pyrazolate ligands and the various accessible oxidation states of 

chromium lead us to assume that these complexes would have reversible electrochemical 

properties, similar to the cobalt(II) analog. Contrary to expectations, trinuclear mixed-

ligand chromium(III) complexes with formula [Cr
III

3(μ3-O)(μ-4-R-pz)3(μ-

O2CH)3(DMF)3]
+
 (R = Me, H, Cl) showed no reversible processes in the -1 V to 1 V 

window in DCM.   

The electronic spectra of trinuclear oxo-bridged chromium(III) complexes have 

been studied extensively with different acetate ligands. Usually, these exhibit two spin-

allowed bands corresponding to 
4
A2g - 

4
T2g(F) and 

4
A2g - 

4
T1g(F) transition, where small 

energy shifts are observed from the variation of bridging ligands.
108,109

 UV-Vis of 14 - 16 

shows two allowed transitions with similar energy listed in Table 20. Small energy shifts 

are observed from the variation of the pyrazole substitution.  

 

Table 19. Electronic absorption spectral (cm
–1

) data for trinuclear mixed-ligand acetate 

complexes.
108

  

Complex 

Observed transition from 
4
A2g (F) to 

4
T2g (F) 

(ν1, 10Dq) 

4
T1g (F) 

(ν2) 

[Cr3O(OAc)3(OOCC13H27)3](OAc)·3MeOH 17155 22620 

[Cr3O(OAc)3(OOCC15H31)3](OAc)·3MeOH 16775 22545 

[Cr3O(OAc)3(OOCC17H35)3](OAc)·3MeOH 16795 23055 

[Cr3O(SOCPh)3(OOCC13H27)3](OAc)·3MeOH 17800 22850 

[Cr3O(SOCPh)3(OOCC15H31)3](OAc)·3MeOH 16730 23220 

[Cr3O(SOCPh)3(OOCC17H35)3](OAc)·3MeOH 16830 22860 
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Table 20. Electronic absorption data (cm
-1

) for 14 - 16.  

Complex 
Observed transition  

 (ν1, 10Dq)  (ν2) 

[Cr
III

3(μ3-O)(μ-pz)3(μ-O2CH)3(DMF)3](PF6) 18587 24096 

[Cr
III

3(μ3-O)(μ-4-Me-pz)3(μ-O2CH)3(DMF)3](PF6) 18248 24154 

[Cr
III

3(μ3-O)(μ-4-Cl-pz)3(μ-O2CH)3(DMF)3](NO3)  18518 23980 

 

3.2.4. Nuclear magnetic resonance 

 There are many examples of trinuclear Cr
III

 carboxylate complexes that are NMR 

active due to the intermediate spin relaxation rate that makes their NMR spectra possible 

to record. Nuclear magnetic resonance (NMR) has been used to study the chemical 

structure and formation mechanisms of assemblies with general formula [Cr
III

3(μ3-O)(μ-

O2CR)6(L)3]. The octahedrally-coordinated Cr(III) centers in trinuclear complexes, are 

paramagnetic with a magnetic moment of 3.14 μB,  compared to the calculated 3.87 μB for 

mononuclear species.
110

 Reduction of magnetic moment as a result of antiferromagnetic 

coupling between metal centers allows NMR spectra to be observed. Results show that 

coordinated bridging acetate ligands have paramagnetically shifted signals compared to 

free acetate.
95

   

 Spectra for complexes 14 - 16 showed two broad peaks shifted downfield and a 

broad peak shifted upfield. Peak integration ratio of 3:1 confirms signals shifted furthest 

downfield corresponding to the coordinated DMF methyl groups and the broad peak at 

around 1.7 ppm to the H
3
/H

5 
proton of the bridging pyrazolate. The disappearance of 

peak at 27.7 ppm for complex 14 and appearance of -43.09 ppm for complex 15 confirms 

the assignment of the 4-Me and H
4
 protons, respectively (Figure 45). Spectra of 14 and 

15 showed additional peaks attributed to impurities and other synthesis solvents, peak 

assignments was supported with spectra of 16 and are listed in Table 21.  



73 

 

 

Figure 44. 
1
H NMR of complex 16 in CDCl3 at 400 MHz. Spectrum referenced to the 

residual solvent proton resonance. 

 

Table 21. 
1
H NMR chemical shifts for complexes 14, 15, and 16 in ppm.  

Compound Me-DMF H
3
/H

5
-pzH H

4
-pzH

 
4-Me-pzH 

14 23.01 26.18 1.60 - 27.70 

15 23.01 26.01 1.78 -43.09 - 

16 22.95 26.13 1.76 - - 
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Figure 45.
 1

H NMR of complex 14 (top) and 15 (bottom) in CDCl3 at 400 MHz. Spectra 

referenced to the residual solvent proton resonance. 

  

 The extent of paramagnetic shifts in inorganic compounds is determined by the 

nature of metal-ligand interaction.
83

 Shifts might come from either pseudo-contact or 

contact shift interactions.
84

 Similar to the analogous all-carboxylate complexes, the 

mixed-ligand pyrazolate-formate Cr
III

 complexes show that contact interactions are the 

predominant pathway, which are dominated by electron spin delocalization from the 

metal atom to the ligands.
110

 Spin delocalization can follow the σ (through σ bonds) or π 

(through π bonds) mechanisms. Spin delocalization in analogous bridging carboxylate 

complexes is known to follows both the σ or π mechanism; with the π mechanism being 

the more predominant.
111
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Substitution of the methyl group (14) by a proton (15) results in the methyl proton 

signal being shifted in the opposite direction of the proton, consistent with a π-spin 

delocalization. Similar effect has been observed for the
 1

H and 
2
H NMR of 

[Cr3O(O2CR)6L3] ( R = Me, Ethyl, Ph, 4-Me-Ph and L = H2O, py, 2-Mepy, 3-Mepy, 4-

Mepy).
110

 Methyl groups from the coordinated DMF have the longest bond distance to 

the metal center and are shifted farthest downfield. Similar behavior is observed for 

trinuclear Cr
III

 complexes with picoline ligands, where the magnitude of paramagnetic 

shifts show no direct dependence on the bond distance between the metal and ligand.
112

 

Satellite peak at 20.0 ppm should correspond to the remaining proton of the terminally 

coordinated DMF molecules, following the σ spin delocalization, while remaining 

satellite peak at -22.5 ppm corresponds to proton of bridging formate ligands.  

3.3. Conclusions 

 The reaction of Cr(NO3)3·9H2O and 4-R-pyrazole (R = H, Me, Cl)  in DMF 

yielded new trinuclear mixed-ligand pyrazolate-formate Cr
III

 complexes. Solvent served 

as a base for pyrazole deprotonation. Solvent are also part of the final product where 

DMF molecules are terminally coordinated to the chromium metal centers. Hydrolysis 

provided formate bridging ligands and dimethylamine that co-crystallized with the final 

product. Paramagnetic complexes were characterized using NMR, where the alternating 

chemical shifts on the pyrazole ligand was indicative of delocalization of unpaired 

electron density from the metal to the ligands. Mixed-ligand complexes do not show 

electrochemical properties due to lability of formate ligands. All-pyrazolate chromium 

complexes should be attainable with the use of a non hydrolyzing solvent.   
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3.4. Experimental section   

3.4.1. Materials 

 Chromium nitrate nonahydrate, pyrazole ligands 4-R-pz (R = H, Me, Cl) and 

DMF solvent were purchased from Fisher Scientific. All syntheses were carried out using 

a CEM Discover SP-Microwave synthesizer, at 130 °C with 100 watts of microwave 

power for 10 minutes.  

3.4.2. Instrumentation 

 Refer to section 2.4.2 for details of instrumentation. 

3.4.3. Synthesis and characterization 

3.4.3.1. Synthesis of [Cr3(μ3-O)(μ-O2CH)3(μ-4-Me-pz)3(DMF)3]PF6  (14) 

 A microwave-fitted test tube was charged with 209.1 mg (0.522 mmol) of 

Cr(NO3)3·9H2O and 129.2 μL (1.569 mmol) of 4-Me-pzH. Purple solution was obtained 

after dissolution of reagents with approximately 1 mL of DMF. Dark pink solution was 

obtained after microwave; 202 mg of TBAPF6 were added, followed by addition of water 

and extraction with DCM. X-Ray suitable crystals were obtained from hexane layer 

diffusion into a DCM solution. 
1
H NMR (400 MHz, CDCl3)/ppm: δ 1.60 (s, 6H, H

3
/H

5
), 

23.30 (s, 9H, DMF-Me), 26.18 (s, 9H, DMF-Me), 27.72 (s, 9H, 4-Me). 
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3.4.3.2. Synthesis of [Cr3(μ3-O)(μ-O2CH)3(μ-pz)3(DMF)3]PF6  (15) 

 A microwave-fitted test tube was charged with 282.2 mg (0.705 mmol) of 

Cr(NO3)3·9H2O and 144.2 mg (2.118 mmol) of pyrazole. Purple solution was obtained 

after dissolution of reagents with approximately 1 mL of DMF. Reaction was set at 130 

°C with 100 watts of microwave power for 10 minutes. Dark pink solution was obtained 

after microwave; 136 mg of TBAPF6 were added, followed by addition of water and 

extraction with DCM. X-Ray suitable crystals were obtained from diethyl ether diffusion 

into a DCM solution. 
1
H NMR (400 MHz, CDCl3)/ppm: δ -41.22 (s, 3H, H

4
), 1.78 (s, 6H, 

H
3
/H

5
), 23.03 (s, 9H, DMF-Me), 26.17 (s, 9H, DMF-Me). 

3.4.3.3. Synthesis of [Cr3(μ3-O)(μ-O2CH)3(μ-4-Cl-pz)3(DMF)3]PF6 (16) 

 A microwave-fitted test tube was charged with 225.5 mg (0.563 mmol) of 

Cr(NO3)3·9H2O and 172.6 mg (1.692 mmol) of 4-Cl-pzH. Purple solution was obtained 

after dissolution of reagents with approximately 1 mL of DMF. Pink solution after 

microwave was precipitated with diethyl ether and dried in vacuum. X-Ray suitable 

crystals were obtained from diethyl ether diffusion into a DCM solution. 
1
H NMR (400 

MHz, CDCl3)/ppm: δ 1.78 (s, 6H, H
3
/H

5
), 22.85 (s, 9H, DMF-Me), 26.24 (s, 9H, DMF-

Me).  

3.4.4. Crystal structure 

 Refer to section 2.4.4 for details on data refinement.  
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Table 22. Structure refinement parameters for complexes 14 - 16. 

Compound (14) (15) (16) 

Empirical formula  C30H60Cr3F6N10O10P  C27H49Cr3F6N10O10P  C21H30Cl3Cr3N10O13  

Formula weight  1021.86  974.74  892.90  

Temperature/K  293(2)  150.9  200.0  

Crystal system  trigonal  trigonal  monoclinic  

Space group  R-3  P-31c  P21/c  

a/Å  12.7744(7)  12.5372(9)  16.720(1)  

b/Å  12.7744(7)  12.5372(9)  20.108(2)  

c/Å  47.259(3)  28.642(2)  12.920(1)  

α/°  90  90  90  

β/°  90  90  107.880(2)  

γ/°  120  120  90  

Volume/Å
3
  6678.8(8)  3898.9(6)  4134.2(6)  

Z  5.99994  3.99996  4  

ρcalcg/cm
3
  1.524  1.661  1.435  

μ/mm
-1

  0.841  0.956  1.031  

F(000)  3186.0  2008.0  1812.0  

Crystal size/mm
3
  0.219 × 0.13 × 0.09  0.22 × 0.152 × 0.134  0.323 × 0.245 × 0.213  

2Θ range for data collection/°  5.668 to 52.762  6.5 to 49.446  6.258 to 50.054  

Reflections collected  27971  54327  48299  

Data/restraints/parameters  3048/6/186  2231/0/179  7256/0/457  

Goodness-of-fit on F
2
  1.124  1.077  1.022  

R1,  wR2 [I>=2σ (I)]  0.0831/0.2030 0.0970/0.2354 0.0862/0.2175 

R1,  wR2 [all data]  0.1131/0.2162 0.1383/0.2649 0.1488/0.2643 
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Chapter 4: Chromium pyrazolate complexes with Cr3(μ3-O) cores 

4. Pyrazolate-supported Cr3(µ3-O) cores 

4.1. Introduction 

 The structural parallel between transition-metal carboxylate and pyrazolate 

complexes with the same nuclearity have been explored with Pd,
29,30

 Pt,
29

 Fe,
33

 and Cu.
113

 

The metal-core motif of complex remains almost unchanged when one or more bridging 

carboxylate ligands are replaced by pyrazolates.
102

 The electronic structure of a metal 

complex along with the metal-to-metal electronic and magnetic communication are 

affected by the donor capacity and orbital symmetry of bridging ligands.
114

 

 To date, reported chromium(III) carboxylate complexes are not electrochemically 

active. Chromium heterocyclic thionates share a similar core structure as the trinuclear 

complexes of form [Cr
III

3(μ3-O)(μ-O2CR)6(L)3], with a μ3-O central core, which show 

electrochemical properties.
115

 Mixed-valent complexes of various transition metals have 

been used to determine the vibronic interactions and its effect in double exchange in 

complexes of iron, manganese, cobalt and chromium.
55

 In the case of chromium, mixed-

valent carboxylate complex with cyanopyridine affords a d
3
-d

3
-d

4
 configuration, which is 

the simplest electronic configuration accessible so far with the Cr3(µ3-O) motif.
116

 

Pyrazolate complexes of chromium with Cr3(µ3-O) cores should have structural 

similarities to that of all-carboxylate and electrochemical properties similar to that of 

trinuclear thionates.  
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Scheme 11. [Cp3Cr3(μ-OH)(μ3-O)(μ-η
2
-S2CN(C6H4))2]BF4.

115
 

  

  Here we present the synthesis and characterization of the first all-pyrazolate 

chromium(III) complexes. This new family of complexes shows reversible oxidation 

processes, being the first electrochemically active trinuclear chromium complexes that 

access a d
3
-d

3
-d

2
 configuration.   

4.2. Results and discussion 

4.2.1. Synthesis and crystal structure 

Reaction of Cr(NO3)3·9H2O, 4-Cl-pzH, Et3N, and Ph4PCl in butyronitrile at 

100°C results in a pink solution. Pink single crystals of product (Ph4P)2[Cr3(μ3-O)(μ-4-

Cl-pz)6Cl3] (17) were recrystallized from MeOH slow evaporation or DCM/Et2O vapor 

diffusion. One pot synthesis yielded copious amount of green precipitate, which can be 

CrCl3 or [mer-CrCl3(4-Cl-pzH)3]. Reaction was optimized by heating the 

Cr(NO3)3·9H2O, 4-Cl-pzH, and base until color change, forming an intermediate 

trinuclear complex of form [Cr
III

3(μ3-O)(μ-4-Cl-pz)6X3]. Final compound is produced 

after addition of Cl
-
 or Br

- 
terminal ligand, for 17 and 18, respectively.   
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Crystallographic structure refinement data for 17 and 18 are listed in Table 25. 

Crystal structures of 17 and 18 contain three octahedral Cr
III 

centers bridged by a μ3-

oxygen atom, forming a Cr3(μ3-O) core, isostructural to the analogous Fe3(μ3-O) core. Six 

bridging pyrazolate ligands and three terminal ligands support the Cr3(μ3-O) core. 

Complexes 17 and 18 crystallized in a orthorhombic Pbcn space group with half 

molecule and a single Ph4P
+
 counterion in the asymmetric unit. At room temperature 

complexes have a 2-fold axis running along the O—Cr—Cl bonds, with two long and one 

short Cr···Cr distances and Cr-O bonds listed in Table 23. Both Cr···Cr distance and   

Cr—O bond lengths are shorter compared to [Fe3(µ3-O)(μ-4-NO2-pz)6Cl3]
2- 

[3.267(1) and 

3.280(1) Å]
33

 and the reported carboxylate analogs (Table 24). At low temperature, the 

symmetry is reduced to Pna21 for 17 and 18. Low temperatures limit the thermal motion 

within the structure causing the 2-fold symmetry axis running through the O—Cr—X    

[X = Cl (17), Br (18)] to disappear.   

Table 23. Selected bond distances (Å) and angles (°) for 17 and 18. 

 Compound 

 17 18 

Bond 293 K 100 K 296 K 150 K 

Cr···Cr 3.198(2) 

3.204(1) 

3.2052(6) 

3.2172(6) 

3.2014(7) 

3.1896(1) 

3.2042(1) 

 

3.203(1) 

3.201(1) 

3.213(1) 

Cr—X 2.323(2) 

2.325(2) 

2.326(4) 

2.322(4) 

2.318(4) 

2.47753(8) 

2.4757(1) 

2.470(1) 

2.473(1) 

2.475(1) 

Cr—N 2.034(4)-2.065(4) 2.04(1) -2.08(1) 2.0395(1)-2.0781(1) 2.041(6)- 2.072(6) 

Cr—O 1.843(4) 

1.852(2) 

1.864(9) 

1.847(7) 

1.846(10) 

1.84878(7) 

1.84643(6) 

1.853(4) 

1.843(4) 

1.858(4) 

Cr—O—Cr 120.3(1) 

119.5(3) 

119.21(2) 

120.35(1) 

120.37(1) 

120.264(1) 

119.471(3) 

120.5(2) 

120.2(2) 

119.3(2) 
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Table 24. Cr···Cr (Å) distance for selected all-carboxylate chromium complexes.  

 Distance (Å)  

Complex Cr···Cr  Cr-O(μ3) Ref 

[Cr3O(μ-O2CCH2CH3)6(Hpz)3]
+

  3.284(1) - 3.305(1) 1.895(2) - 1.907(2) 105 

[Cr3O(μ-O2CCH2CH3)6(H2O)3]
+

  3.2863 - 3.289 1.891(3) 107 

[Cr3O(μ-O2CCH3)6(H2O)3]
+

  3.278(1) - 3.288(1) 1.885(3)- 1.902(4) 117 

[Cr3O(μ-O2CH)6(H2O)3]
+

  3.257(8) 1.881(5) 118 

 

 

 

Figure 46. Ball-and-stick representation [Cr3(μ3-O)(μ-4-Cl-pz)6Cl3]
-2

(17). Counter ions 

are omitted for clarity. 
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Figure 47. Ball-and-stick representation [Cr3(μ3-O)(μ-4-Cl-pz)6Br3]

-2 
(18). Counter ions 

are omitted for clarity. 
 

4.2.2. Electrochemistry 

 Cyclic voltammogram (CV) and differential pulse voltammogram (PDV) were 

collected for complex 17. Since analogous iron pyrazolate complexes have redox 

properties and chromium exists in various oxidation states, we expect complex 17 to 

show reversible electrochemical processes. The CV of (Ph4P)2[Cr3(μ3-O)(μ-4-Cl-pz)6Cl3] 

(17) shows a reversible oxidation process for a Cr
III

3/Cr
IV

Cr
III

2
 
species at 0.502 V (Figure 

48). The peak-to-peak separation (ΔEp) for this reversible process was 62 mV, which 

corresponds to a one-electron
†
 transfer process.

119,120
 Oxidation potential is similar to that 

of [Cp3Cr3(μ2-OH)(μ3-O)(μ2-η
2
-S2CN(C6H4))2]BF4 (E1/2 = +0.59 V vs Fc

+
/Fc).

115
 

                                                           
†
 For a reversible process, n (number of electrons) can be calculated from: ΔEp = Epa - Epc ≈ 0.059 / n 
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Figure 48. Differential Pulse Voltammogram (DPV) (blue) and Cyclic Voltammogram 

(CV) (green) of 17 vs. Fc
+
/Fc. [Cr3]

1-/2-
 (E1/2 = 0.502 V). 150 mV/s sweep.    

  

 Cyclic voltammogram (CV) and differential pulse voltammogram (PDV) of 

(Ph4P)2[Cr3(μ3-O)(μ-4-Cl-pz)6Br3] (18) are illustrated in Figure 49. An additional 

oxidation processes is observed for complex 18. Irregular DPV peaks are suggestive of 

irreversible or quasi reversible processes. Two reversible oxidation processes will access 

Cr
III

3/Cr
IV

Cr
III

2
 

(E1/2 = 0.332 V) and Cr
III

3/Cr
IV

2Cr
III 

(E1/2 = 0.584 V) species. The 

reduction of potential is indicative that the substitution of Cl
-
 with Br

-
 causes the 

oxidation to become easier and a second oxidation process to be accessible.  
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Figure 49. Differential Pulse Voltammogram (DPV) (blue) and Cyclic Voltammogram 

(CV) (red) of 18 vs. Fc
+
/Fc. [Cr3]

1-/2-
 (E1/2 = 0.332 V), [Cr3]

1-/0
(E1/2 = 0.584 V)  

 

  

 Different heights of cathodic and anodic peaks from the CV suggest these 

processes are not fully reversible. Differential pulse voltammetry in forward and reverse 

(Figure 50), showed both oxidation processes in both directions, indicating that the 

processes are not fully reversible in the CV timescale. In the forward DPV, the anodic 

sweep confirms both oxidation peaks, with the same height. In the reverse DPV, a 

cathodic sweep is applied, and the two peaks are observed with different peak heights, 

suggesting that the second oxidation process is not fully reversible.  
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Figure 50. CV (red) and DPV (forward, blue; reverse, green) of 18. 

 

4.2.3. Absorption Spectra 

 Absorption spectra of 17 and 18 shows two broad bands around 18700 cm
-1

 (υ1) 

and 24800 cm
-1

 (υ2), similar to previously studied trinuclear Cr
III

 pyrazolate-formate 

mixed-ligand complexes. These correspond to 
4
A2g - 

4
T2g(F) and 

4
A2g - 

4
T1g(F) 

transitions, respectively. Shifts to higher energy on both bands are observed in the all-

pyrazolate complexes compared to the mixed-ligand complexes. An intense broad band 

corresponding to Ph4P
+
 overlaps with υ2. For pyrazolate complexes, 

4
A2g - 

4
T2g(F) 

transition is observed at 18690 cm
-1

 (17) and 18870 cm
-1

 (18). Energy shifts can be 

attributed to the terminal ligand substitution.  
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Figure 51. UV-VIS spectra for 17 and 18 in DCM.  

 

4.3. Conclusions 

 The use of non-hydrolysable and high boiling point solvent yielded an all-

pyrazolate complex with formula (Ph4P)2[Cr3(μ3-O)(μ-4-Cl-pz)6Cl3] (17) and 

(Ph4P)2[Cr3(μ3-O)(μ-4-Cl-pz)6Br3] (18). Reversible oxidation processes were observed 

for both complexes, where the potential depends on the identity of the terminal ligand. 

Oxidation potential is reduced from the Cl (17) substituted complex to the Br (18) 

substituted complex. Second quasi-reversible oxidation process is observed for 18. These 

systems are the first example of electrochemically amendable trinuclear pyrazolate 

complex with a {Cr3O} core. 
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4.4. Experimental section    

4.4.1. Materials 

 Chromium nitrate nonahydrate, 4-Cl-pyrazole, Ph4PCl and butyronitrile solvent 

were purchased from Fisher Scientific.  

4.4.2. Instrumentation 

 Refer to section 2.4.2 for instrumentation details.  

4.4.3. Synthesis  

4.4.3.1. Synthesis of (Ph4P)2[Cr3(μ3-O)(μ-4-Cl-pz)6Cl3]  (17) 

 A 10 mL round bottom flask was charged with 235.8 mg (0.590 mmol) of 

Cr(NO3)3·9H2O, 181.6 mg (1.780 mmol) of 4-Cl-pzH and 205.5 μL (1.474 mmol) of 

Et3N. Reaction mixture was heated to 100°C for 1 hour, until color changed to pink was 

observed. To the resulting solution, 443.6 mg (1.164 mmol) of Ph4PCl was added and 

heated for 30 minutes. Pink solution was recovered after filtration and solvent was 

removed under reduced pressure. Reaction mixture was washed with ethanol followed by 

Et2O. X-Ray suitable crystals were obtained from MeOH slow evaporation or DCM/Et2O 

vapor diffusion.   
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4.4.3.2. Synthesis of (Ph4P)2[Cr3(μ3-O)(μ-4-Cl-pz)6Br3]  (18) 

 A 10 mL round bottom flask was charged with 201.2 mg (0.503 mmol) of 

Cr(NO3)3·9H2O, 154.3 mg (1.513 mmol) of 4-Cl-pzH and 175.5 μL (1.257 mmol) of 

Et3N. Reaction mixture was heated to 100°C for 1 hour, until color changed to pink was 

observed. To the resulting solution, 420.9 mg (1.003 mmol) of Ph4PBr was added and 

heated for 30 minutes. Pink solution was recovered after filtration and solvent was 

removed under reduced pressure. Reaction mixture was washed with ethanol followed by 

Et2O. X-Ray suitable crystals were obtained DCM/Et2O vapor diffusion.   

 

4.4.4. Crystallographic data  

 Refer to section 2.4.2 for structure refinement details.  
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Table 25. Structure refinement parameters of 17 and 18.  

Compound (17) (18) 

Temperature/K 293 100.15 296.41 150.15 

Empirical formula  C66H52Cl9Cr3N12OP2  C67H54Cl11Cr3N12OP2  C67H54Br3Cl8Cr3N12OP2  C67H54Br3Cl8Cr3N11O2P2  

Formula weight  1566.18  1651.11  1784.49  1786.48  

Crystal system  orthorhombic  orthorhombic  orthorhombic  orthorhombic  

Space group  Pbcn  Pna21  Pbcn  Pna21  

a/Å  16.926(2)  23.746(5)  17.1340(7)  24.040(1)  

b/Å  17.664(2)  23.746(5) 17.9303(7)  17.8794(8)  

c/Å  24.054(3)  16.981(4)  24.288(1)  16.9017(7)  

α/°  90  90  90  90  

β/°  90  90  90  90  

γ/°  90  90  90  90  

Volume/Å
3
  7191(1)  7073(3)  7461.6(5)  7264.7(5)  

Z  4  4  4  4  

ρcalcg/cm
3
  1.447  1.551  1.589  1.633  

μ/mm
-1

  0.874  0.967  2.415  2.482  

F(000)  3180.0  3348.0  3564.0  3568.0  

Crystal size/mm
3
  0.198 × 0.078 × 0.052  0.282 × 0.077 × 0.075  0.24 × 0.113 × 0.112  0.25 × 0.072 × 0.063  

2Θ range for data collection/°  5.724 to 49.626  5.776 to 49.606  5.82 to 52.964 5.894 to 52.938 

Reflections collected  136294  96314  162357   160232 

Data/restraints/parameters  6198/21/486  12054/1/866  7708/0/445  14916/1/866  

Goodness-of-fit on F
2
  1.083  1.058  1.200  1.046  

R1,  wR2 [I>=2σ (I)]  0.0678, 0.1422  0.0713, 0.1491  0.0804, 0.1573  0.0472, 0.0947  

R1,  wR2 [all data]  0.1173, 0.1626  0.1207, 0.1685  0.1185, 0.1699  0.0707,  0.1035  

Flack parameter 
 

0.51(6)  0.403(9) 
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Chapter 5: Iron pyrazolate complexes with Fe3(μ3-O) cores 

5. Pyrazolate-supported Fe3(µ3-O) cores 

5.1. Introduction  

 Spin-crossover (SCO) materials are good candidates for sensing and memory 

storage devices.
121 

External stimulus can cause a SCO transition, where the material 

undergoes a change in physical and chemical properties. The reorganization of electron 

causes a change in net magnetization, color, and, bond distances. Ligand orientation and 

orbital effects on transition metal complexes had been described by Crystal Field 

Theory.
122

 The SCO properties depend greatly on the ligand field surrounding the metal 

center. Studies of high nuclearity Fe(II) complexes show a thermally induced 

paramagnetic-diamagnetic transition from S=2 to S=0.
123,124

 In addition, multiple 

examples of Fe(II) complexes show reversible SCO processes upon photo-excitation 

using UV-Vis or X-Ray radiation.
125,126

 Spin transition from high-spin (HS) to low-spin 

(LS) have been observed at the molecular lever for [Mn
III

(taa)] [H3taa = tris(1-(2-azolyl)-

2-azabuten-4-yl)amine] after applying a magnetic field.
127 

Several other examples 

involving mononuclear complexes have been reported.
128    

 The first example of a redox induced spin transition cascade was reported using 

trinuclear complex with formula [Fe3(µ3-O)(4-NO2-pz)6(NCS)3]
2-

. The cascade of HS to 

LS electron reorganization arises from the one-electron reduction of the all-ferric 

thiocyanate complex to its mixed-valent [Fe3]
3-

 trianionic analogue. This was supported 

57
Fe- Mössbauer, 

1
H-NMR, and UV-Vis-NIR spectroscopy. 
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Figure 52. Ball-and-stick representation of [Fe3(μ3-O)(4-NO2-pz)6(SCN)3]
2-

. 

 

Figure 53. 
57

Fe- Mössbauer spectra of the all ferric of  [Fe3(μ3-O)(4-NO2-pz)6(SCN)3]
2-

 

(top) and the one electron reduced of  [Fe3(μ3-O)(4-NO2-pz)6(SCN)3]
3-

. 

 

 Here we present the synthesis of complexes with formula [Fe3(μ3-O)(4-NO2-

pz)6L3]
2- 

(L = NCO
-
, N3

-
). Iron timers with such ligands are expected to have similar 

properties as the reported [Fe3(µ3-O)(μ-4-NO2-pz)6(NCS)3]
2-

 since NCO
-
 and N3

- 
ligands 

have similar electron withdrawing properties as SCN
-
.  
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5.2. Results and discussion 

5.2.1. Synthesis and crystal structure description 

Reaction of [Fe3(μ3-O)(4-NO2-pz)6Cl3]
2-

 with excess of NaNCO and NaN3  

yielded two new complexes with formula [Fe3(μ3-O)(4-NO2-pz)6(NCO)3] (19) and 

[Fe3(μ3-O)(4-NO2-pz)6(N3)3]
 
 (20). Structures of 19 and 20 contain three octahedral Fe

III 

centers bridged by a μ3-oxygen; six pyrazolate ligands bridge the iron centers; and each 

iron center is bonded to a terminal ligand. The Fe—O bonds and Fe···Fe distances are in 

agreement with an all-ferric trinuclear Fe
III

3 complex. Linear geometry of the terminal 

NCO
-
 ligand is consistent with N-bonded NCO.  

Complex 19 and 20 crystallized with a whole molecule in the asymmetric unit. 

Complex 19 and 20 crystallized in a monoclinic P21/n and P21/C space group, 

respectively. Selected bond lengths and crystallographic refinement details are 

summarized in Table 26 and Table 28, respectively.  

 

Table 26. Selected bond length for 19 and 20 in Å. 

 Compound 

Bond 19 20 

Fe···Fe 3.266 – 3.271 3.239 – 3.288 

Fe-O 1.874(3) –1.896(3) 1.858(3) – 1.868(3) 

Fe-Nterminal 1.947 – 1.966 1.913 – 2.081 
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Figure 54. Ball and stick representation of [Fe3(µ3-O)(4-NO2-pz)6(NCO)3]
2-

 (19). TBA
+
 

counter ion and hydrogen atoms are omitted for clarity. 

 

Figure 55. Ball and stick representation of [Fe3(µ3-O)(4-NO2-pz)6(N3)3]
2-

 (20). Ph4P
+
 

counter ions and hydrogen atoms are omitted for clarity. 
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5.2.2. Electrochemistry 

Cyclic voltammogram (CV) and differential pulse voltammogram (PDV) were 

collected for complexes 19 and 20. Owing to the similarities on electron withdrawing 

capacity of NCO and N3, compared to NCS, we expect these complexes to show similar 

electrochemical behavior. 

 

Figure 56. CV of 19 vs. Fc
+
/Fc. of  [Fe3(μ3-O)(4-NO2-pz)6(NCO)3]

2-/3-
 (E1/2= -0.70 V) 

 

The CV of (TBA)2[Fe3(µ3-O)(4-NO2-pz)6(NCO)3] (19) and (Ph4P)2[Fe3(μ3-O)(4-

NO2-pz)6(N3)3] (20) are illustrated in Figure 56 and Figure 57, respectively. Complex 19 

shows a one-electron reversible reduction process for a [Fe3(NCO)3]
2-/3- 

species at            

-0.70 V. Complex 20  shows a one-electron reversible reduction process at -0.70 V 
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corresponding to the reduction pair [Fe3(N3)3]
2-/3-

. Expected reversible reduction 

processes were observed for both complexes at more cathodic potential, -0.70 V, than the 

thiocyanate complex (-0.36 V). 

 

Figure 57. DPV (red) and CV (green) of 20 vs. Fc
+
/Fc. of  [Fe3(μ3-O)(4-NO2-pz)6(N3)3]

1-

/2-
 (E1/2= 0.87 V) and of  [Fe3(μ3-O)(4-NO2-pz)6(N3)3]

2-/3-
 (E1/2= -0.70 V). 

 

 Moreover, an unprecedented reversible oxidation process is observed for 20 at 

0.87 V for the oxidation pair [Fe3(N3)3]
1-/2-

. Simultaneous oxidation and reduction 

processes have not been previously observed and it is uncommon for trinuclear 

pyrazolate complexes. Compound 20 oxidizes to [Fe3(μ3-O)(4-NO2-pz)6(N3)3]
-
, a mixed-

valent, formally Fe
3+

2/
 
Fe

4+
 species.  
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5.2.3. UV-Vis-NIR 

 All ferric [Fe3(µ3-O)(4-NO2-pz)6(NCO)3]
-2 

(19)
 
was chemically reduced using 

tetrabutylammonium tetrahydroborate (TBABH4). Solution color change was indicative 

of reaction. After reaction was filtered, a black solid and orange solution as obtained. The 

UV-Vis-NIR of product did not show IVCT band in the NIR region of spectra or any 

difference to the UV-Vis of the all-ferric starting material, indicative of a failed reaction.  

 All ferric [Fe3(µ3-O)(4-NO2-pz)6(N3)3]
-2

 (20)
 

was chemically reduced using 

TBABH4. The UV-Vis-NIR of 20 (Figure 58) shows a blue shift on CT bands after 

reduction, consistent with Metal-to-Ligand CT bands. An IVCT band at 9081 cm
-1 

in the 

NIR region of the spectrum (inset) is characteristic of a partially delocalized mixed-valent 

species in solution. Band broadness suggests charge delocalization upon reduction, 

having all iron centers with the same oxidation state (Fe
2.66+

). The empirical parameter, Γ, 

0.30 was calculated for the IVCT band, typical of a weakly coupled Class II mixed-valent 

species.
†
  

 

                                                           
†
 Parameter is calculated following Hush theory from:     

  

     
  

Class I, no interaction, Γ = 0; Class II, weakly coupled, 0 < Γ < 0.5; Class III, strongly delocalized, Γ > 0.5  
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Figure 58. UV-Vis- NIR of [Fe3(µ3-O)(4-NO2-pz)6(N3)3]
-2

 (red) and product of reduction 

with TBABH4 (blue). 

 

Chemical oxidization using ammonium cerium(V) nitrate was performed and the 

UV-Vis-NIR spectra was recorded (Figure 59). The all ferric (TBA)2[Fe3(µ3-O) (4-NO2-

pz)6(N3)3] shows two charge transfer band peaks at 22815 cm
-1

 and 34325 cm
-1

. After 

chemical oxidation, the band at 22815 cm
-1

 was shifted under the broad band at   36990 

cm
-1

. Expected IVCT band in the NIR was not observed, probably due to the presence or 

a charge localized system or incomplete oxidation.  
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Figure 59. UV-Vis- NIR of (TBA)2[Fe3(µ3-O)(4-NO2-pz)6(N3)3] (blue), product from 

oxidation with ammonium cerium(V) nitrate (green) and bulk electrolysis (orange). 

 

 Bulk electrolysis was performed to complex 20 to electrochemically oxidize the 

material and study the spectroscopic properties of the product. Electrochemical 

measurements are coupled to an in situ spectroscopic measurements in order to probe 

intermediates of reaction  and/or products.
129

 Spectra was obtained from a 0.1 M TBAPF6 

solution of 20 in DCM, where a 1.25 V potential was applied for 4 hours achieving the 

bulk electrolysis of the sample (glassy carbon working electrode, Ag/AgCl reference 

electrode, graphite auxiliary electrode). Spectra after bulk electrolysis is consistent with 

the spectra obtained after chemical oxidation (Figure 59).   
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5.2.4. Infrared spectrum 

 Characteristic stretch for N3
-
 ligand is obtained from infrared spectroscopy. The 

mixed-valent complex obtained from chemical reduction or oxidation can be 

characterized as localized, partially localized or delocalized within the three metal 

centers. Double stretch in the IR spectrum after chemical oxidation (Figure 60) might be 

indicative of charge localization in the IR timescale. Coinciding peak with starting 

material at 2059 cm
-1

 might be indicative of incomplete oxidation. Decrease in stretch 

intensity can also suggest terminal ligand substitution with nitrate. Chemical reduction of 

20 causes N3
-
 stretch to shift to lower energy, pointing to a bond weakening caused by 

additional π back-bonding from the metal to the terminal ligand.   

Table 27. IR stretch frequency (cm 
-1

) of coordinated azide ligands. 

Species υ (cm
-1

) 

Fe
III

2Fe
IV

 2059 and 2134  

Fe
III

3 2059  

Fe
III

2Fe
II
 2042  

 
Figure 60. IR spectra of 20 (blue) and chemical oxidation of 20(green). 
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5.2.5. Nuclear magnetic resonance 

 Previous magnetic studies of trinuclear pyrazolate complexes have determined a 

paramagnetic ground state with S=1/2.
33

 Chemical reduction or oxidation of the trinuclear 

complex results in a new diamagnetic ground state S=0. Complex 20 (Figure 61), 

reduced, and oxidized product of 20 were characterized using 
1
H NMR. Broad resonance 

at 32.09 ppm corresponds to the paramagnetically shifted proton signal for the H
3
/H

5
 

position of the pyrazole in 20. After chemical reduction, broad peak at 2.01 ppm is 

observed while peak at 32.09 ppm disappears, consistent with a diamagnetic product. 

After chemical oxidation, shifted broad band at 30.7 ppm and new signal at 8.62 ppm are 

observed, two proton environments after oxidation suggest charge localization on the 

mixed-valent Fe
III

2Fe
IV

 system.   

 

 

Figure 61. 
1
H NMR of 20 (400 MHz, CDCl3). 
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5.2.6. 57
Fe- Mössbauer  

 Mössbauer spectra were collected from powdered samples of 20 and reduced 

product at 80 K. Representative spectra are shown in Figure 62. Spectrum is similar to 

other [Fe3(μ3-O)(4-NO2-pz)6L3]
2- 

(L = Cl
-
, Br

-
, SCN

-
, py, 4-Me-py) complexes, 

characterized by quadrupole doublets.
33–35

  The spectra for 20 is highly characteristic of 

high-spin ferric ions, with an isomer shift, δ = 0.45 mms
-1 

and quadrupole splitting ΔEQ  = 

1.05 mms
-1

. After chemical reduction a doublet is also observed, suggesting 

delocalization of additional electron over the three iron centers. Both, the isomer shift (δ 

= 0.40 mms
-1

)
 
and quadrupole splitting (ΔEQ  = 0.83 mms

-1
) are reduced after chemical 

reduction of 20, indicative of an electronic structural change after reduction. The -0.05 

mms
-1 

decrease in isomer shift can suggest a high-to-low spin electronic reorganization as 

observed with the [Fe3(SCN)3] complex.
34

   
 
 

 
Figure 62. 

57
Fe Mössbauer spectra of a powdered sample of 20 (A) and reduced product 

(B) at 80 K. 
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5.3. Conclusions 

The all-ferric complexes [Fe3(μ3-O)(μ-4-NO2-pz)6L3]
2-

 (L = NCO
-
, N3) were synthesized 

by substitution of terminal Cl
-
 ligands of the parent compound [Fe3(μ3-O)(μ-4-NO2-

pz)6Cl3]
2-

 using NaNCO and NaN3. Expected reversible reduction processes were 

observed for both complexes at more cathodic potential, -0.70 V, than the thiocyanate 

complex (-0.36 V). Compound 20 shows a unique reversible oxidation process at 0.82 V 

(vs. Fc
+
/Fc) to [Fe3(μ3-O)(μ-4-NO2-pz)6(N3)3]

-
, a mixed-valent, formally Fe

3+
2/

 
Fe

4+
 

species. Chemical reduction of 19 was unsuccessful, whereas reduction of 20 shows 

distinct IVCT band in NIR region of spectra, indicative of mixed-valent specie. 

Mössbauer of the reduced product of 20 suggests a high-to-low spin electronic 

reorganization similar to the [Fe3(μ3-O)(μ-4-NO2-pz)6(SCN)3] complex.
34

 Two distinct 

signals in 
1
H NMR and IR spectra after chemical oxidation of 20 suggest incomplete 

oxidation or charge localization in a mixed-valent Fe
III

2Fe
IV

 system. Attempts with excess 

oxidant have not shown differing results.      

5.4. Experimental section 

5.4.1. Materials 

 Reagent grade chemicals were purchased from Fisher scientific, Aldrich Chemical 

Co, Alfa Aesar or ACROS Organics. Pyrazole ligand
130

 and [Fe3(µ3-O)(4-NO2-pz)6Cl3]
2- 

complex
33

 were synthesized from previously reported methods. Reactions were 

performed at room temperature. 

5.4.2. Instrumentation  

 Refer to section 2.4.2 for instrumentation details.  
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5.4.3. Synthesis and characterization   

5.4.3.1. Synthesis of (TBA)2[Fe3(µ3-O)(4-NO2-pz)6(NCO)3](19)  

 A 30 mL vial was charged with 74 mg (0.051 mmol) (TBA)2[Fe3(µ3-O)(4-NO2-

pz)6Cl3], dissolved with 10 mL of DCM, followed by addition of 15.30 mg (2.35 mmol) 

of NaNCO. The reaction mixture was stirred for 48 hours. Unreacted NaNCO and NaCl 

were filtered as white solid. Single crystals were obtained from hexane layer diffusion 

into a DCM solution of product. FTIR (cm
-1

, solid): 2183. 

5.4.3.2. Synthesis of (TBA)2[Fe3(µ3-O)(4-NO2-pz)6(N3)3 ](20)  

 A 30 mL vial was charged with 73 mg (0.051 mmol) (TBA)2[Fe3(µ3-O)(4-NO2-

pz)6Cl3], dissolved with 10 mL of DCM, followed by addition of 151.3 mg (2.33 mmol) 

of NaN3. Reaction mixture was stirred for 24 hours and then filtered. Red plate single 

crystals were obtained from hexane layer diffusion into a DCM solution of product. FTIR 

(cm
-1

, solid): 2059. 
1
H NMR (400 MHz, CD2Cl2) δ 32.09 (s, H

3
 and H

5
). 

 Complex was also obtained with Ph4P
+ 

counterion using similar condition but 

starting with the parent compound (Ph4P)2[Fe3(µ3-O)(4-NO2-pz)6Cl3].Complex was used 

for crystal structure determination since TBA
+
 ions were disordered.    

5.4.3.3. Reduction of (20)  

 Synthesis was done under inert atmosphere. A 30 mL flash was charged with 81 

mg (0.055 mmol) of (TBA)2[Fe3(µ3-O)(4-NO2-pz)6(N3)3] and dissolved in 10 mL of 

DCM. To the red solution, 18 mg (0.07 mmol) of TBABH4 was added followed by an 

immediate color change to brown. After 40 minutes of stirring, the reaction was filtered. 

FTIR (cm
-1

, solid): 2042. 
1
H NMR (400 MHz, CDCl3) δ 2.01 (s, H

3
 and H

5
). 
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5.4.3.4. Oxidation of (20) 

 A 25 mL flask was charged with 14.6 mg (0.01 mmol) (TBA)2[Fe3(µ3-O)(4-NO2-

pz)6(N3)3] and dissolved with 10 mL of DCM. To the orange solution, 5.7 mg (0.01 

mmol) of [(NH4)2Ce(NO3)6] were added and left to stir for 4 days. FTIR (cm
-1

, solid): 

2134. 
1
H NMR (400 MHz, CD2Cl2) δ 32.09 and 8.60 (s, H

3
 and H

5
). 

5.4.4. Crystal structure 

 Refer to section 2.4.2 for structure refinement details. Disordered DCM solvent 

molecule in 20 was resolved by the SQUEEZE instruction.  

 

Table 28. Structure refinement for complexes 18 and 19. 

Compound (19) (20) 

Empirical formula  C53H84Fe3N23O16  C66H51Fe3N27O13P2  

Formula weight  1466.98  1659.82  

Temperature/K  273.15  293 

Crystal system  monoclinic  monoclinic  

Space group  P21/n  P21/c  

a/Å  16.174(2)  17.080(3)  

b/Å  27.200(3)  16.665(3)  

c/Å  17.853(2)  30.856(6)  

α/°  90  90  

β/°  90.897(3)  97.43(3)  

γ/°  90  90  

Volume/Å
3
  7853(2)  8709(3)  

Z  4  4  

ρcalcg/cm
3
  1.241  1.266  

μ/mm
-1

  0.616  0.599  

F(000)  3076.0  3392.0  

Crystal size/mm
3
  0.317 × 0.176 × 0.114  0.426 × 0.324 × 0.142  

2Θ range for data collection/°  5.618 to 52.958  5.706 to 53.188  

Reflections collected  160914  104661  

Data/restraints/parameters  16121/0/864  17927/0/1000  

Goodness-of-fit on F
2
  0.996  0.993  

R1,  wR2 [I>=2σ (I)]  0.0946, 0.1677  0.0746, 0.2022  

R1,  wR2 [all data]  0.2437, 0.2171  0.1320, 0.2439  
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6. Conclusions and future work 

Chromium pyrazole/pyrazolate:  

  In order to be able to access materials that would simplify the analysis of 

magnetic data of mixed-valent trinuclear and octanuclear iron pyrazolate complexes, the 

synthesis of redox active chromium polynuclear complexes was in order. Results are 

summarized in Scheme 12. Stable mononuclear complexes of form [mer-Cr3Cl3(pzH*)3] 

(pzH*= pzH, 3-Me-pzH, 4-Me-pzH, 4-Cl-pzH, 4-I-pzH, 4-Br-pzH) and [trans-

Cr3Cl2(pzH*)4]Cl (pzH* = pzH, 3-Me-pzH) formed from the use of hydrated or 

anhydrous chromium chloride salts. Due to intermediate spin relaxation of the 

aforementioned mononuclear complexes, they were NMR and EPR active. Variable 

temperature NMR was able to elucidate that peaks arise from two pyrazole environments, 

pyrazole trans to a pyrazole and pyrazole trans to a chloride. Pyrazole tautomerization 

becomes slow at low temperatures, where individual signals are observed for the H
3
/H

5
 

positions of the pyrazole.  

 Analogous to iron pyrazolate chemistry, where the reaction of mononuclear 

complexes with base yields octanuclear complexes, monomers of chromium were reacted 

with base and proven unsuccessful. Trace amounts of trinuclear complex [Cr
III

3(μ3-O)(μ-

OH)3(3-Me-pzH)9]Cl4 and dinuclear chromium species of formula Cr
III

2(μ-OH)(μ-4-Me-

pz)(4-Me-pzH)4Cl2]Cl4] and [Cr
III

2(μ-OH)(μ-4-R-pz)2(4-R-pzH)4Cl2]Cl] (R = pzH, 4-Me-

pzH, 4-Cl-pzH) are isolated from the mononuclear chromium pyrazole synthesis, 

providing the source of complexity in product isolation.  

 The use of chromium nitrate nonahydrate proved to be efficient in avoiding the 

formation of stable complexes of form [mer-Cr3Cl3(pzH*)3] and to obtain higher 
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nuclearity complexes. The hydrolysis of DMF accessed new redox inactive trinuclear 

mixed-ligand formate-pyrazolate chromium complexes with form [Cr
III

3(μ3-O)(μ-4-R-

pz)3(μ-O2CH)3(DMF)3]
- 

(R = H, Me, Cl). From the obtained complexes, a non-

hydrolyzing solvent use was in order to obtain all-pyrazolate complexes.  

 Thermally assisted synthesis using butyronitrile afforded (Ph4P)2[Cr3(µ3-O)(µ-4-

Cl-pz)6]
2-

 (X = Cl
-
, Br

-
). The two step synthesis produces an intermediate with form 

{Cr3(µ3-O)(µ-4-Cl-pz)6X3}
2-

, where the terminal ligand can be solvent molecules or NO3
-
 

anions, addition of terminal ligand source affords the final product. Electrochemical 

studies of [Cr3(µ3-O)(µ-4-Cl-pz)6Cl3]
2-

 showed a one electron oxidation process at E1/2= 

0.502 V, producing a mixed-valent, formally Cr
III

3/Cr
IV

Cr
III

2
 
species. Electrochemical 

studies of [Cr3(µ3-O)(µ-4-Cl-pz)6Br3]
2-

  showed two oxidation processes, where the first 

process (E1/2 = 0.332 V)  became an easier oxidation and a second process (E1/2 = 0.584 

V) became accessible, generating Cr
III

3/Cr
IV

Cr
III

2
 

and Cr
III

3/Cr
IV

2Cr
III 

species, 

respectively.  

Iron pyrazolate: 

 Upon the one electron reduction of [Fe3(µ3-O)(4-NO2-pz)6(SCN)3]
2- 

complex, a 

spin cascade is produced, resulting in a HS to LS electronic reorganization of the 

complex. To obtain complexes that share similar properties, [Fe3(µ3-O)(4-NO2-pz)6L3]
2- 

(L =  N3
-
, CNO

-
) were synthesized. Electrochemical  properties of both complexes were 

studies, both showed a reversible one electron reduction at -0.70 V, harder reduction 

compared to the SCN
-
 complex (-0.36 V). Most interestingly, [Fe3(µ3-O)(μ-4-NO2-

pz)6(N3)3]
2- 

showed a unique oxidation process (0.82 V) that can access [Fe3(µ3-O)(μ-4-

NO2-pz)6(N3)3]
-
, a mixed-valent, formally Fe

3+
2/

 
Fe

4+
 species. 
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 Mössbauer data of [Fe3(µ3-O)(μ-4-NO2-pz)6(N3)3]
3-

 is consistent with a all-ferric 

complex. After chemical reduction with TBABH4, the single doublet with a reduced 

isomer shift (δ = 0.40 mms
-1

)
 
and quadrupole splitting (ΔEQ = 0.83 mms

-1
) indicates a 

charge delocalization within the complex and a LS species. This experiment is suggestive 

of a spin crossover from HS to LS, similar to the previously reported [Fe3(µ3-O)(4-NO2-

pz)6(SCN)3]
2- 

complex.  

 

Future work 

 Further study of terminal ligand effect on electrochemical properties is to follow. Same 

reaction conditions and the addition of desired terminal ligand should result in new 

complexes (e.g. SCN
-
, N3

-
, CN

-
, py) 

 Following up on the redox activity of chromium pyrazolate complexes, chemical 

oxidation should afford mixed-valent species. Changes in the UV-Vis-NIR spectra 

should be expected, where shifts in CT bands or IVCT would be affected by terminal 

ligand identity, as seen for trinuclear pyrazolate complexes.  

 Since mixed-ligand formate-pyrazolate complexes were synthesized with the 4-R-pzH 

(R = H, Me, Cl), the all-pyrazolate complex with pyrazole and 4-Me-pyrazole should 

be obtained with the synthesis method presented here. Studying such complexes would 

give insight of the effects of pyrazole substitution on the electrochemical properties. 

Such studies are not accessible for trinuclear iron, since complexes are only obtained 

with the 4-NO4-pzH ligand.   

 Mössbauer spectroscopy of mixed-valent species from chemical oxidation of [Fe3(µ3-

O)(μ-4-NO2-pz)6(N3)3]
1- 

is in order
 

to elucidate charge localization.
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Scheme 12. Summary of chromium(III) pyrazole/pyrazolate chemistry. 
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Appendix 

 

 

 

 

 

 

Figure A.1 
1
H NMR of complex 14 in CDCl3 at 400 MHz. Spectra referenced to the 

residual solvent proton resonance.(* = solvent residue) 
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Figure A.2 
1
H NMR of complex 15 in CD2Cl2 at 400 MHz. Spectra referenced to the 

residual solvent proton resonance.(* = solvent residue or impurity) 
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Figure A.3  
1
H NMR of complex 16 in CDCl3 at 400 MHz. Spectra referenced to the 

residual solvent proton resonance.(* = solvent residue or impurity) 

 

 

 

 

 



124 

 

 

 

 

 

 

 

 

Figure A.4 H
1
 NMR of reduction of 20. (400 MHz, CDCl3) 
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Figure A.5 H
1
 NMR of oxidation of 20. (400 MHz, CD2Cl2) 
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