4-2-2018

Synthesis, Processing, and Fundamental Phase Formation Study of CZTS Films for Solar Cell Applications

Osama Awadallah
Florida International University, oawad001@fiu.edu

DOI: 10.25148/etd.FIDC006910
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Ceramic Materials Commons, Electronic Devices and Semiconductor Manufacturing Commons, and the Semiconductor and Optical Materials Commons

Recommended Citation
https://digitalcommons.fiu.edu/etd/3725

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
SYNTHESIS, PROCESSING, AND FUNDAMENTAL PHASE FORMATION STUDY
OF CZTS THIN FILMS FOR SOLAR CELL APPLICATIONS

A dissertation submitted in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY
in
MATERIALS SCIENCE AND ENGINEERING
by
Osama Awadallah
2018
To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Osama Awadallah, and entitled Synthesis, Processing, and Fundamental Phase Formation Study of CZTS Films for Solar Cell Applications, having been approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Surendra Saxena

Chunlei Wang

Nezih Pala

Hebin Li

Zhe Cheng, Major Professor

Date of Defense: April 02, 2018

The dissertation of Osama Awadallah is approved.

Dean John L. Volakis
College of Engineering and Computing

Andres G. Gil
Vice President for Research and Economic Development and
Dean of the University Graduate School

Florida International University, 2018
DEDICATION

I dedicate this dissertation to my parents. Without their love, support, and patience, it would have been impossible to complete this research.
ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Professor Zhe Cheng for the tremendous support, motivation, immense knowledge and insightful discussions throughout my PhD study and research.

Besides my advisor, I would like to sincerely thank Professor Saxena, Professor Wang, Professor Pala, and Professor Li, for serving as my committee members and for their advice and support in the past years.

My sincere thanks also to Dr. Andriy Durygin for the great help and guidance with the in situ Raman system design and implementation of my experiments over the years of my PhD study.

I would also like to gratefully thank my research group members, Paniz Foroughi and Shichen Sun, for the great help and support during the past years of my PhD study.

I greatly appreciate and acknowledge the University Graduate School at FIU for supporting me through Doctoral Evidence Acquisition (DEA) and Dissertation Year Fellowship (DYF) awards.

Finally, I sincerely thank my lovely wife, Mariam, for her unflagging support, understanding, and for taking care of our daughter during the time I spent working on my research.
ABSTRACT OF THE THESIS

SYNTHESIS, PROCESSING, AND FUNDAMENTAL PHASE FORMATION STUDY
OF CZTS FILMS FOR SOLAR CELL APPLICATIONS

by

Osama Awadallah

Florida International University, 2018

Miami, Florida

Professor Zhe Cheng, Major Professor

Copper zinc tin sulfide (Cu$_2$ZnSnS$_4$ or CZTS) kesterite compound has attracted much attention in the last years as a new abundant, low cost, and environmentally benign material with desirable optoelectronic properties for Photovoltaic (PV) thin film solar cell applications. Among various synthesis routes for CZTS thin films, sol-gel processing is one of the most attractive routes to obtain CZTS films with superior quality and low cost. In this study, sol-gel sulfurization process parameters for CZTS thin films were systematically investigated to identify the proper process window. In addition, temperature dependent Raman spectroscopy was employed to monitor the CZTS sulfurization process in real time and gain fundamental information about the phase formation and degradation mechanisms of CZTS under the relevant processing conditions. It was found that CZTS thin films with different Cu stoichiometry can be prepared using parts-per-million (ppm) level of hydrogen sulfide (H$_2$S) gas as opposed to high percentage level of H$_2$S (e.g., \geq 5%) in all previous studies. Samples sulfurized at lower temperatures of \sim350°C and 125°C revealed the formation of CZTS phase as confirmed by XRD, Raman micro-spectroscopy, and sheet resistance measurement.
Local EDS analysis indicates that CZTS films prepared at those low temperatures have a near-stoichiometric composition and are sometimes accompanied by the formation of Cu$_{2-x}$S phase(s). Also, stoichiometric and Cu-rich precursor solutions tend to yield CZTS samples with better crystallinity and superior optical properties compared with the Cu-deficient solution.

Moreover, in situ Raman monitoring of phase formation of CZTS material was carried out from room temperature up to 350°C in a 100 ppm H$_2$S+4%H$_2$+N$_2$ gas mixture. The results showed that CZTS phase formed in about 30 min via a direct reaction between the metal oxide precursor film and the H$_2$S-H$_2$ gas mixture at an intermediate temperature of 350°C and remained stable upon extended exposure. In comparison, at a lower temperature (170°C), the oxide precursor film had to be reduced first (e.g., in 4% H$_2$/N$_2$ forming gas) and then the CZTS phase emerged. However, continued sulfurization at a lower temperature (e.g., 170°C) led to the disintegration of CZTS and the formation of CuS impurity, which remains stable upon cooling the sample down to room temperature. Furthermore, results of in situ Raman monitoring of CZTS films in an oxygen rich atmosphere at elevated temperatures up to 600°C suggested that CZTS oxidizes first at ~400°C to form tin oxide (SnO$_2$) and binary sulfides of mainly copper sulfide (Cu$_{2-x}$S) and zinc sulfide (ZnS). Then, at temperatures higher than 400°C, the remaining sulfides oxidize to form zinc oxide (ZnO).

The outcomes of the current study set the directions for optimizing the CZTS film structure and stoichiometry toward developing low cost and high-performance CZTS solar cells in future.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Motivation of the Research</td>
<td>2</td>
</tr>
<tr>
<td>1.3. Research Objectives and Technical Approaches</td>
<td>4</td>
</tr>
<tr>
<td>1.4. Organization of the Thesis</td>
<td>5</td>
</tr>
<tr>
<td>2. BACKGROUND AND LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>2.1. Principles of PV Solar Cells</td>
<td>7</td>
</tr>
<tr>
<td>2.2. Classification of PV Solar Cells</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1. Crystalline Silicon Solar Cells: The First Generation of PV Solar Cells</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2. Thin Film Solar Cells (TFSCs): The Second Generation of PV Solar Cells</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3. Why Pure Sulfide (CZTS)?</td>
<td>14</td>
</tr>
<tr>
<td>2.3. Properties of CZTS</td>
<td>15</td>
</tr>
<tr>
<td>2.4. Synthesis of CZTS Thin Films</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1. Vacuum Based Techniques</td>
<td>17</td>
</tr>
<tr>
<td>2.4.2. Solution Based Techniques</td>
<td>18</td>
</tr>
<tr>
<td>2.5. Previous Studies on Processing of Sol-Gel Sulfurized CZTS thin films</td>
<td>21</td>
</tr>
<tr>
<td>2.6. Identification of secondary phases and their influence in CZTS system</td>
<td>28</td>
</tr>
<tr>
<td>2.7. Understanding Phase Formation Mechanism of CZTS</td>
<td>30</td>
</tr>
<tr>
<td>2.8. Previous studies on temperature dependent Raman monitoring of CZTS</td>
<td>32</td>
</tr>
<tr>
<td>3. FORMATION OF SOL-GEL BASED CZTS THIN FILMS USING PPM-LEVEL HYDROGEN SULFIDE</td>
<td>37</td>
</tr>
<tr>
<td>3.1. Introduction</td>
<td>37</td>
</tr>
<tr>
<td>3.2. Experimental Procedure</td>
<td>40</td>
</tr>
<tr>
<td>3.3. Results and Discussion</td>
<td>44</td>
</tr>
<tr>
<td>3.3.1. Single-step sulfurization process</td>
<td>44</td>
</tr>
<tr>
<td>3.3.2. Thermodynamic analysis</td>
<td>57</td>
</tr>
<tr>
<td>3.3.3. Two-step low temperature sulfurization process</td>
<td>60</td>
</tr>
<tr>
<td>3.4. Conclusion</td>
<td>63</td>
</tr>
</tbody>
</table>
Table 2.1. Summary of the main previous studies on sol-gel sulfurization processing of CZTS films. ... 27

Table 2.2. Raman modes for CZTS and other common secondary phases. 29

Table 3.1. Sample designation and corresponding detailed sulfurization conditions for the two designed experiment sets... 43

Table 3.2. EDS data showing atomic percentage of the Cu-Zn-Sn oxide precursor thin film after 300°C air baking for recipe R7... 45

Table 3.3. EDS for single-step sulfurized samples in 100 ppm H₂S+H₂ and a reference CZTS sample. (The reference CZTS sample was prepared by sol-gel sulfurization at 550°C for 60 minutes in 5%H₂S+N₂.) ... 53

Table 3.4. Summary of electrical resistivity measurement for single-step sulfurized Cu-Zn-Sn thin film samples.. 56

Table 3.5. EDS data for two-step sulfurized sample R7-400H-125S.......................... 62

Table 4.1. List of designated sulfurization and in situ Raman monitoring experiments with detailed sulfurization conditions... 69

Table 4.2. EDS data for in situ Raman examined samples sulfurized at different conditions using 100 ppm H₂S+4%H₂+N₂ mixture.. 85

Table 5.1. Average chemical composition of the prepared CZTS films. 103

Table 5.2. Chemical composition of the in situ examined CZTS thin films (for the second and third experiments). .. 111
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1. (a) Absorption of a photon in a semiconductor with bandgap E_g. The photon with energy $E_{ph}=h\nu$ excites an electron from E_i to E_f. (b) Part of the energy is thermalized if $E_{ph} > E_g$. (c) A simple solar cell model. (Jager et al., 2014)</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.2. (a) Actual photo of monocrystalline (left) and polycrystalline (right) silicon solar cells. (a) Schematic of the basic structure of a single p-n junction silicon solar cell (from http://www.arkimedesrl.it/Contents/SanyoHIT.htm).</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.3. Basic structures of a-Si solar cell (a) (from http://www.solarschina.com/solar08.html), CdTe solar cell (b) (from https://nice.asu.edu/nano/cadmium-telluride-cdte-thin-film-solar-cells), and CIGS solar cell (from https://www.energy.gov)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4. (a) Derivation of kesterite compounds by gradual substitution of elements from different groups in the periodic table. (b) Structure of kesterite compounds. From (Zhou et al., 2013)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.5. (a) Schematic diagram of co-evaporation of CZTS films (Shimamune et al., 2017). (b) Schematic diagram of reactive sputtering of CZTS films (Khalkar et al., 2014).</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.6. (a) Schematic diagram of spray pyrolysis system for CZTS film deposition (Shinde, Deokate, & Lokhande, 2013). (b) Schematic diagram of electrodeposition process of CZTS precursor films (Tsai et al. 2016).</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.7. (a) Surface SEM images of CZTS films sulfurized using different H$_2$S concentrations. (b) Optical absorption dependence on H$_2$S concentration (c) Chemical composition dependence on H$_2$S concentration. (Maeda, Tanaka, Fukui, et al., 2011)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.8. Surface and cross section SEM images of CZTS films sulfurized at 500°C for 1 hour using different H$_2$S concentrations of (a, and d) 0.5%, (b, and e) 1.0%, and (c, and f) 3.0%. (Maeda, Tanaka, Nakano, & Uchiki, 2011)</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.9. (a) XRD patterns of the 5 and 9 layers CZTS films. (b) Raman spectrum of 9 layers CZTS thin film. (Yu et al., 2014)</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.10. Surface and cross-section SEM images of as 9 layers as deposited CZTS films (a and c) and annealed CZTS films (b and d). (Yu et al., 2014)</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.11. SEM cross-section and surface images for pristine CZTS samples (a, and d), CZTS samples sulfurized in 6% H$_2$S+N$_2$ (b, and e), CZTS samples sulfurized in 6% H$_2$S+N$_2$ and elemental Sn and S. (Tunuguntla et al., 2015)</td>
<td>26</td>
</tr>
</tbody>
</table>
Figure 2.12. (a) Calculated chemical potential stability diagram for Cu rich CZTS in 2D plane. (Nagoya et al., 2010) (b) Simulated XRD patterns for CZTS, CTS, and ZnS phases showing the overlap of the main peaks. (Walsh, Chen, Wei, & Gong, 2012) ... 28

Figure 2.13. Schematic diagram of the formation of the CZTS thin films via thermal decomposition and reaction by the sol-gel route. (Su et al., 2014) 31

Figure 2.14. (a) Raman spectra of the Mo/CTS/ZnS precursor stack during annealing from 50 to 550°C. (b) Evolution of peak positions of CTS, CZTS references and CZTS from CTS/ZnS precursor stack. (Stephan Van Duren et al., 2017) 33

Figure 2.15. (a) Raman spectra with peak fitting for CZTS reference samples VS (slowly cooled) and VF (rapidly cooled) examined with 532 and 785 nm lasers. (b) Raman spectra using 785 nm, for an as-prepared CZTS film at different temperatures. (Scragg et al., 2014) ... 34

Figure 2.16. (a) Raman spectra for CZTS thin film recorded at various temperatures. The shift in peak frequency versus temperature. (b) The shift in peak frequency versus temperature. (c) The shift in linewidth versus temperature. (Sarswat et al., 2011) ... 35

Figure 3.1. XRD pattern of a Cu-Zn-Sn oxide precursor thin film for recipe R7 after spin coating and air baking (300°C/5 min). ... 44

Figure 3.2. Pictures of the amorphous oxide precursor thin film prepared based on recipe R7 after 300°C/5 min air baking (a) and the single-step sulfurized samples of R8-350S (b), R7-350S (c), R7-450S (d), R7-550S (e). ... 46

Figure 3.3. XRD patterns of samples of R7-350S, R7-450S, and R7-550S, which were prepared from copper-rich recipe R7 and sulfurized in a single-step at 350°C, 450°C, and 550°C for 60 minutes in 100 ppm H₂S+H₂ ... 47

Figure 3.4. XRD patterns of samples of R2-350S, R2-450S, and R2-550S, which were prepared from stoichiometric recipe R2 and sulfurized in a single-step at 350°C, 450°C, and 550°C for 60 minutes in 100 ppm H₂S+H₂ ... 48

Figure 3.5. XRD patterns of sulfurized samples of R2-350S, R8-350S, and R7-350S which were prepared from stoichiometric, Cu-poor, and Cu-rich recipes respectively and sulfurized in a single-step at 350°C for 60 minutes in 100 ppm H₂S+H₂ ... 49

Figure 3.6. Room temperature Raman spectra for single-step sulfurized samples of R2-350S, R8-350S, and R7-350S which were prepared from stoichiometric, Cu-poor, and Cu-rich recipes respectively and sulfurized in a single-step at 350°C for 60 minutes in 100 ppm H₂S+H₂ ... 50
Figure 3.7. Surface SEM images for single-step sulfurized samples of R7-450S (a), R7-350S (b), R8-350S (c), and the reference CZTS sample (d). The yellow arrow in the insert points toward the particle identified by EDS as Cu3Sn for R7-450S sample. ... 52

Figure 3.8. Cross section SEM images for single-step sulfurized samples of R7-350S (a), R8-350S (b), and the reference CZTS sample (c) ... 55

Figure 3.9. Plot showing calculated band gap from Tauc plot of $(\alpha h\nu)^2$ vs. photon energy ($h\nu$) based on measured optical properties of absorbance and transmittance for single-step sulfurized samples of R7-350S, R8-350S, and the reference CZTS sample. .. 57

Figure 3.10. Stability-limit temperature T_s as a function of equilibrium H_2S concentration in H_2 (pH_2S/pH_2, in ppm) for binary sulfides of ZnS, Cu$_2$S, Sn(II)S, and Sn(IV)S$_2$. ... 60

Figure 3.11. XRD pattern and picture (insert) of the two-step sulfurized sample R7-400H-125S that was prepared by annealing sol-gel obtained Cu-Zn-Sn oxide precursor at 400°C in 4%H$_2$+N$_2$ followed by sulfurization at 125°C in 100 ppm H$_2$S+H$_2$.. 61

Figure 3.12. SEM images at different magnification for the two-step sulfurized sample R7-400H-125S. .. 62

Figure 3.13. Room temperature Raman spectrum for the two-step sulfurized sample R7-400H-125S. .. 63

Figure 4.1. (a) Top view of the in situ Raman cell with the top lid open showing the sample and other gas and electrical connections (b) Cross sectional model view of the in situ Raman cell and stage. (c) Schematic of the in-house built Raman system 71

Figure 4.2. (a) In situ Raman spectra collected at different sulfurization times for Cu-350 sample sulfurized at 350°C. .. 72

Figure 4.3. (a) In situ Raman spectra collected at different sulfurization times for Cu-170 sample sulfurized at 170°C. (b) XRD patterns for Cu-O precursor, Cu-350, and Cu-170 samples .. 73

Figure 4.4. In situ Raman spectra for SnO$_2$ sulfurized samples at 350°C (a) and 170°C (b) collected at different sulfurization times. RT Raman spectra for samples before and after sulfurization are provided for comparison .. 75

Figure 4.5. XRD patterns for Sn-oxide precursor and samples Sn-350 and Sn-170. 77
Figure 4.6. In situ Raman spectra for Cu-Sn-O samples sulfurized at 350°C (a) and 170°C (b) collected at different sulfurization times. RT Raman spectra for samples before and after sulfurization are provided for comparison. .. 78

Figure 4.7. Raman spectra collected at different sulfurization times during the in situ Raman monitoring experiment at 350°C for the stoichiometric sample sulfurized for 180 min (a) and the Cu-rich sample sulfurized for 60 min (b). .. 80

Figure 4.8. Room temperature XRD patterns of in situ Raman examined stoichiometric sample sulfurized for 180 min and Cu-rich sample sulfurized for 60 min at 350°C in 100 ppm H₂S+4%H₂+N₂. The amorphous oxide precursor XRD pattern is included for reference. ... 83

Figure 4.9. SEM images for the surface of the in situ Raman examined (a) stoichiometric sample sulfurized for 180 min and (b) Cu-rich sample sulfurized for 60 min. The large surface particles in (b) have been identified by EDS to have composition very close to Cu₂S. ... 84

Figure 4.10. Raman spectra collected at different sulfurization times for the stoichiometric sample during the in situ Raman monitoring experiment at 170°C in 100 ppm H₂S+4% H₂+N₂ gas mixture for up to 180 min. .. 88

Figure 4.11. Room temperature XRD patterns for in situ Raman samples examined at 170°C for 60 and 180 min. ... 90

Figure 4.12. SEM surface (a, c) and cross section (b, d) images of the in situ Raman samples (stoichiometric composition) examined at 170°C for 60 min (a, b) and 180 min (c, d), respectively. The yellow arrows point toward particles identified by EDS as CuS. ... 91

Figure 5.1. (a) Schematic representation of the heating cell and sample used for in situ Raman micro-spectroscopy experiments. (b) Photo of the “sealed” CZTS thin film sample used for the first in situ Raman experiment. .. 99

Figure 5.2. Temperature profiles for both second (solid red line) and third (blue dash line) in situ Raman experiments. ... 101

Figure 5.3. XRD pattern for prepared CZTS thin film. ... 102

Figure 5.4. SEM images for the prepared CZTS thin film surface (a) and cross-section (b). Particles indicated by yellow arrows are Zn-rich phase as confirmed by EDS point analysis (see Table 5.1). ... 103

Figure 5.5. Raman spectra for prepared CZTS thin film samples. .. 104
Figure 5.6. In situ Raman spectra for the sealed thin film sample, collected at room temperature and under in situ condition at temperatures of 300 °C and 400 °C (first in situ Raman experiment) .. 105

Figure 5.7. In situ Raman spectra for a thin film sample, collected at room temperature and under in situ condition at 400 °C for up to three hours in open air (second in situ Raman experiment) .. 106

Figure 5.8. In situ Raman spectra for thin film sample collected at room temperature and under in situ condition at temperatures from 300 °C to 650 °C in open air (third in situ Raman experiment). .. 107

Figure 5.9. XRD pattern of in situ examined CZTS thin film sample in air at temperature 400 °C for three hours (second in situ Raman experiment) .. 108

Figure 5.10. XRD pattern of in situ examined CZTS thin film sample in air at temperature up to 650 °C (third in situ Raman experiment) .. 109
1. INTRODUCTION

1.1. Overview

Solar radiation is the most abundant, clean, and free source of energy on earth. Approximately, the sun emits 120,000 Terawatts (TW) of power on the earth’s surface. Photovoltaic (PV) technology uses semiconductor materials for making solar panels to convert solar radiation directly into electricity. Currently, PV is the fastest growing renewable energy technology compared to other renewable energy sources. Additionally, compared to other sources of energy (e.g., hydrothermal and wind), PV technology does not require sophisticated changes of the landscape beside it is emission and noise free, which makes it the safest and cheapest sustainable alternative to fossil fuels and other energy sources.

The most fundamental component of a PV product is an “optoelectronic semiconductor” device that is called solar cell. The two major categories of PV solar cells are the inorganic and organic solar cells. The first category includes crystalline silicon as well as inorganic thin film solar cells (TFSCs), while the second category represents a class of solar cells with the organic component acting as the active absorber layer such as dye-sensitized solar cells (DSSCs).

Crystalline silicon solar cells are fabricated from Si wafers and assembled in modules. They have been the dominant technology in the PV industry for decades, with a market share close to 90%. However, they are limited by the rigidity of cells and modules, the extensive material and energy consumption involved in silicon wafer processing and the
need for flexible modules with much lighter weight and flexiblity. Due to the drawbacks of crystalline silicon solar cells, another category of inorganic solar cells, named inorganic thin film solar cells, was introduced to the PV technology in which the light absorber is a layer of “inorganic semiconductor compound”, and comes as thin as 1μm. The most important compounds that are currently used for TFSCs technology include cadmium telluride (CdTe) and copper indium gallium selenide (CuIn_xGa_{1-x}Se_2, CIGS) and both materials are used to make flexible PV modules.

Nevertheless, both CdTe and CIGS suffer from significant drawbacks such as Cd toxicity, the scarce resources of In, Ga, and Te elements, and resulting price fluctuation, which might affect their market adoption in the future. Recently, copper zinc tin sulfide (Cu_2ZnSnS_4, CZTS) has been investigated as a promising candidate that offer great advantages over CdTe and CIGS. CZTS material has all earth abundant and non-toxic constituents along with excellent optoelectronic properties, which make it an environmentally friendly and more economical and sustainable alternative to both CdTe and CIGS. Furthermore, the same underlying device architecture for CdTe and CIGS could be implemented for CZTS, which would help accelerate the development of CZTS solar cells with superior power conversion efficiency.

1.2. Motivation of the Research

Typically, fabrication of CZTS thin films involves high temperature (≥ 500°C) annealing of the film precursors in high concentrations (from 5% up to 60% vol.) of the toxic and corrosive hydrogen sulfide (H_2S) gas. At such high processing temperatures, stoichiometry control of CZTS phase becomes a challenge due to the high possibility for
the loss of low melting point elements such as zinc and tin or volatile metal chalcogenides such as tin sulfides (SnSx). Also, the use of high concentration of H2S causes severe safety and environmental concerns and requires the implementation of stringent safety measures and precautions. Furthermore, most of the vacuum-based techniques developed for CZTS film deposition such as thermal evaporation and sputtering have restricted stoichiometry control beside their complexity and high operating cost, while some existing solution based routes are either toxic and dangerous (such as the hydrazine-based solution route) or imply multiple-step deposition (such as the nanoparticle approach).

Therefore, it is necessary to develop a processing route that provides better stoichiometry control, helps mitigate the potential loss of volatile components in the system during sulfurization process, and adopts a more environmentally friendly and cost-effective procedure compared to the currently implemented methods in previous studies. In that sense, sol-gel sulfurization of oxide precursor in H2S atmosphere is an attractive approach since it provides precise stoichiometry control on the molecular level and may be carried out lower sulfurization temperature with reduced H2S concentration.

On the other hand, another major limitation of previous studies is the lack of understanding of the fundamental mechanism of CZTS phase formation during the actual sulfurization process of precursors under the relevant conditions and related transformation and decomposition that may be encountered. Such understanding is essential to CZTS sulfurization process optimization and eventually improving device performance.
1.3. Research Objectives and Technical Approaches

Based on the main challenges discussed previously, the following are the two primary objectives of the current study. The first is to produce high-quality CZTS films based on a environmentally friendly and cost-effective technique that utilizes the minimal concentration of H\textsubscript{2}S gas (100 ppm by volume) as opposed to the highly toxic concentrations of (50,000 up to 600,000 ppm) typically used for processing this material. The second is to provide a better understanding of the phase formation mechanism during the evolution of CZTS material under the relevant processing conditions as well as phase transformation/decomposition mechanism under the conditions that lead to oxidation and degradation of CZTS films.

To achieve the above mentioned objectives, sol-gel sulfurization process of CZTS and other related binary and ternary sulfide films was carried out in 100 ppm H\textsubscript{2}S+H\textsubscript{2} atmosphere at different temperatures. After that, films were characterized using various ex-situ techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), light absorption spectroscopy to understand the influences of processing parameters on film chemical and physical properties.

On the other hand, characterization techniques such as in situ Raman microspectroscopy were used to study fundamental mechanisms for CZTS phase formation and decomposition in real time with support from other techniques.

In addition, thermodynamic analysis was also carried out to help understand the observed phenomena during sulfurization process under different conditions.
1.4. Organization of the Thesis

In the following, chapter II will provide background information about the basic concepts of solid-state PV solar cell devices, their basic classification, current status and prospects of PV technology. It will also provide a detailed literature review of CZTS kesterite material, focusing on its properties, synthesis routes including existing sol-gel sulfurization route and their limitations. Finally, it will address the previous work done on understanding the fundamental mechanism of phase formation and transformations in CZTS material as well as temperature dependent Raman spectroscopy studies on CZTS material. Chapter III will present the results of the study on CZTS preparation via the sol-gel sulfurization method using ppm level H$_2$S including the effect of different stoichiometric compositions of the precursor material. Results of characterization of the obtained CZTS films will also be presented in this chapter based on XRD, ex situ Raman spectroscopy, SEM/EDS, electrical conductivity, and optical absorption spectroscopy. Chapter IV will present the results of the in situ Raman monitoring of the sulfurization process for stoichiometric and Cu-rich sol-gel CZTS films and discuss the possible mechanisms for CZTS formation as well as related important transformations observed during the in situ Raman monitoring experiments. Also, a thermodynamic analysis of the sulfurization process under relevant in situ sulfurization conditions will be introduced in this chapter to help understand the observed phenomena. In Chapter V, the results of the in situ Raman monitoring of CZTS annealing process at elevated temperatures in oxygen rich atmosphere will be presented and the mechanism of CZTS film oxidation and related degradation under the relevant annealing conditions will be discussed.
Finally, chapter VI will summarize the main findings from this work and provide the directions and recommendations for future work.
2. BACKGROUND AND LITERATURE REVIEW

2.1. Principles of PV Solar Cells

The basic principle of PV solar cells is based on the photovoltaic effect that involves the generation of a potential difference at the interface of two semiconducting materials in response to electromagnetic radiation.

The energy of the light photons can be expressed as follows:

\[E = h\nu \] (2.1)

where \(h \) is Planck’s constant and \(\nu \) is the frequency of the light.

Based on the PV effect, the working principle of a solar cell can be divided into three fundamental processes:

1. **Generation of electron-hole pair due to photons absorption**: when the material absorbs a photon, the photon energy excites an electron from its initial energy level \(E_i \) to a higher energy level \(E_f \), as in Figure 2.1 (a). Photons can only be absorbed if the difference in electron energy levels equals or smaller than the photon energy, \(h\nu = E_f - E_i \). Once an electron is excited from \(E_i \) to \(E_f \), a void is created at \(E_i \). This void behaves like a particle with a positive elementary charge that is called a hole. Therefore, the absorption of a photon leads to the creation of an electron-hole pair, as illustrated in Figure 2.1(c)-step 1.

2. **Separation of the photo-generated charge carriers in the junction**: the electron-hole pair tends to recombine which means the electron will fall back to the initial energy level \(E_i \), as illustrated in Figure 2.1(c)-step 2.
Figure 2.1. (a) Absorption of a photon in a semiconductor with bandgap E_g. The photon with energy $E_{ph} = h\nu$ excites an electron from E_i to E_f. (b) Part of the energy is thermalized if $E_{ph} > E_g$. (c) A simple solar cell model. (Jager et al., 2014)

After that, the energy will be released as a photon or transferred to other electrons or holes. When two different semiconductor materials (p-type and n-type) are combined, electrons can flow out through the p-type material and holes can flow out through the n-type material, as in Figure 2.1(c)-step 3.

3. Charge collection: the charge carriers eventually is extracted from the solar cells using electrical contacts to an external circuit as shown in Figure 2.1(c)-step 4. Finally, after the electrons passed through the circuit, they will recombine with holes at the contact-absorber interface, as depicted in Figure 2.1(c)-step 5.

2.2. Classification of PV Solar Cells

This section briefly describes the different classes of PV solar cells and reviews the major achievements and the current status of each class of solar cell.
2.2.1. Crystalline Silicon Solar Cells: The First Generation of PV Solar Cells

Crystalline Silicon solar cells are currently dominating the PV industry with a market share of approximately 90%. Crystalline silicon solar cells, as appears in Figure 2.2(a) utilize a relatively thick layer (typically 100 μm) of high purity doped silicon to harvest solar radiation and convert it into electricity. Solar-grade purity silicon is produced from chemical treatment of metallurgical grade silicon processed at a temperature as high as 2000°C (Xakalashe and Tangstad, 2011). After that, silicon is further purified and solidified into large ingots, either in multi-crystalline or mono-crystalline form in a process named Czochralski process for single crystal ingots, and the Bridgman process for multi-crystalline silicon ingots (Markvart and Castañer, 2003). Following that, purified silicon ingots are subjected to subsequent mechanical processes such as surface grinding, wire sawing, and chemical etching to produce silicon wafers. After that, a chemical treatment process of the wafers called doping is implemented, which involves incorporation of an impurity such as phosphorus and boron to precisely alter their electronic properties near the surface and physically obtain the p-n junction structure as illustrated in Figure 2.2(b). Currently, power conversion efficiency, as measured in the laboratory, for single p-n junction polycrystalline solar cells reached 22.3% while that for single p-n junction monocrystalline is around 25.8%, both without the use of concentrators (from National Renewable Energy Laboratory (NREL) chart for Research Cell Record).

Owing to the thick wafer utilized in silicon solar cells to harness as much sunlight as possible, silicon solar cells and modules are usually rigid and heavy which requires
mechanical supporting. In addition, in order to achieve high power conversion efficiency, silicon must be purified to the high purity of \(\geq 99.9999\% \) (6 nines, equivalent to 1 part impurity per million) which involves the use of toxic compounds such as chlorosilane and hydrochloric acid (Braga et al., 2008) in addition to the intensive energy consumption during processing.

![Figure 2.2](http://www.arkimedesrl.it/Contents/SanyoHIT.htm)

Figure 2.2. (a) Actual photo of monocrystalline (left) and polycrystalline (right) silicon solar cells. (a) Schematic of the basic structure of a single p-n junction silicon solar cell (from http://www.arkimedesrl.it/Contents/SanyoHIT.htm).

Furthermore, processing of silicon solar cells involves high manufacturing cost. Owing to all those drawbacks of silicon solar cells, the second generation in PV technology was developed with the capability to harness sunlight with much thinner (1 \(\mu \)m) inorganic semiconductor light absorber layers that would enable flexible module production. In the next section, the most significant light absorber material that are used for thin film solar cells technology are discussed with emphasis on CZTS material and related compounds.
2.2.2. Thin Film Solar Cells (TFSCs): The Second Generation of PV Solar Cells

The primary challenge for silicon-based PV technology is to reduce further the material processing cost which accounts for approximately 50% of the total module cost (Louwen et al., 2016). Besides providing flexible and much lighter solar panels to serve for different applications, another key motivation for the rise of the so-called TFSCs technology is the urgent need for solar panels that can be produced with a high throughput manufacturing technique (such as roll to roll production) with the minimum use of raw materials. In that sense, thin film solar cells provide a great alternative to silicon solar cells since they utilize much thinner light absorber layer (due to their direct bandgap and high absorption coefficient which is 100 time higher than silicon) to harness sunlight and also enable flexible modules which open the doors for entirely novel and more diverse applications.

Also, a significant advantage of thin film solar cell materials is that they are more tolerant to deviations in stoichiometry and phase purity and less stringent in material quality regarding crystallinity and grain structure compared to silicon, which requires highly crystalline and pure grade for solar cell application.

Amorphous silicon (a-Si), cadmium telluride (CdTe), copper indium gallium selenide (CIGS), copper zin tin sulfide (CZTS) are the most important inorganic semiconductor compounds that are used as light absorber materials for thin film PV technology. Among those materials, only a-Si, CdTe and CIGS based solar cells are commercially available and share the other 10% of the market with crystalline silicon solar cells.
2.2.2.1. Amorphous Silicon (a-Si)

Amorphous Si is a light absorber material used in TFSCs due to its high absorption rate. Unlike crystalline Si, amorphous Si does not have a uniform crystal structure. Instead, it consists mainly of agglomerates of amorphous Si that are deposited onto a substrate. Amorphous Si absorbs 2.5 times more energy from the sun compared to crystalline silicon for the same thickness. However, a-Si solar cells suffer from instability after several hundred hours of operation due to intrinsic defects. The record efficiency for a sable a-Si solar cell is only 13% while initial efficiency was measured as 15.2% (Schiff, Hegedus and Deng, 2011). Figure 2.3(a) shows the basic structure of a-Si solar cell.

2.2.2.2. Cadmium Telluride (CdTe)

Over the past two decades, CdTe solar cells (shown in Figure 2.3(b)) have proved to be a key player in TFSCs and showed a significant market growth. CdTe is a II-VI semiconductor with a direct band gap of 1.5 eV and high light absorption coefficient of $>10^5 \text{ cm}^{-1}$.

CdTe module fabrication cost is among the cheapest of all types of commercially available PV technologies. Currently, CdTe thin film single junction solar cell has a record efficiency of 22.1% as reported by the National Renewable Energy Laboratory. In spite of that, the prospect of CdTe solar cell technology is a matter of debate due to the scarce resource of Te element and the toxicity of cadmium and its environmental impacts.
2.2.2.3. Copper Indium Gallium Selenide (CIGS)

Similar to CdTe, CIGS solar cells (shown in Figure 2.3(c)) is also highly attractive in TFSCs industry due to their near optimal band gap and less stringent requirements of crystal quality beside the wide variety of choice for the heterojunction buffer layer. According to the most recent NREL reports, the record efficiency for a single p-n junction CIGS solar cell is 22.6%. Nevertheless, the long term future of CIGS in TFSCs industry is also not very clear due to the scarce resource and significant fluctuations in market price of both In and Ga elements.

![Basic structures of solar cells](http://www.solars-china.com/solar08.html), CdTe solar cell (b) (from https://nice.asu.edu/nano/cadmium-telluride-cdte-thin-film-solar-cells), and CIGS solar cell (from https://www.energy.gov)

2.2.2.4. Copper Zinc Tin Sulfide/Selenide (CZTS(Se))

During the last decade, considerable efforts have been made to resolve the challenging issues facing both CdTe and CIGS. Specifically for the case of the CIGS, the primary target is to substitute the two scarce elements In and Ga with another two abundant elements from another group in the periodic table while maintaining the same valance.
electrons and number of atoms. Based on that concept, another class of materials, which is derived from chalcopyrite compounds, called kesterite compounds was established and can be expressed by the chemical formula \(\text{Cu}_2\text{-II}\text{-IV}\text{-VI}_4 \). In that formula, the VI element is one of the chalcogens (S or Se) while II and IV represent the divalent (Zn or Fe) and tetravalent (Sn, Ge, Si) elements respectively.

Among those kesterite compounds, \(\text{Cu}_2\text{ZnSn(S,Se)}_4 \) (CZTS(Se)) are of the most significance due to the unique optoelectronic properties that made them very promising candidates for TFSCs. CZTS(Se) materials are intrinsic p-type semiconductors, with a direct band gap energy of 1.0 eV for selenide based kesterite, (CZTSe) and 1.5 eV for sulfide-based kesterite (CZTS) which is close to the optimal bandgap for maximum solar radiation absorption. In addition, the direct bandgap gives a high absorption coefficient, which allows the utilization of one-micron thick layer to absorb most of the incoming sunlight.

2.2.3. Why Pure Sulfide (CZTS)?

In this thesis, the focus of the study is on the pure sulfide compound CZTS rather than the selenide-based compound CZTSe. The reason why pure sulfide compound was chosen lies in several key factors. First, selenium is a relatively scarce element compared to sulfur which is much more abundant. Second, elemental sulfur is non-toxic compared to selenium, which is considered toxic to humans upon intense or continued exposure. In addition, recently a noticeable improvement in CZTS device performance was reported when replacing the CdS buffer layer, which includes the toxic Cd element, by either ZnS or (Zn, Sn)O (Platzer-Björkman et al., 2015). Third, CZTS is more suitable for both
single p-n junction as well as tandem structures (Green, 2016). The reason for such match is that CZTS has a perfect lattice match with Si and an optimal band gap in the range of 1.4 to 1.6 eV which makes it ideal as the top absorber layer with Si at the bottom in a tandem cell structure (Song et al., 2015). All those factors make CZTS compound an attractive alternative to all other thin film light absorber materials for a green and sustainable thin film solar cells technology.

2.3. Properties of CZTS

CZTS has a tetragonal structure that is similar to the zinc blende structure of ZnS and is related to the (II-VI) compounds as shown in Figure 2.4 (a) by substituting the group II cation with Zn, Cu, and Sn cations in the appropriate proportion that maintain the charge neutrality of the crystal while keeping the group VI anion. Specifically, such substitution is done by substituting the Zn$^{2+}$ cation with two atoms of the Cu$^{1+}$ cation (group I), one Zn$^{2+}$ cation (group II), and one Sn$^{4+}$ cation (group IV) to balance the four S$^{2-}$ anion (group VI) and eventually obtain the (I$_2$-II-IV-VI$_4$) CZTS compound.

Figure 2.4(b) shows the lattice structure of the kesterite CZTS material. CZTS was found to have two different phases, known as kesterite (space group I$\bar{4}$) and stannite (space group I$\bar{4}2m$). However, kesterite was found to be thermodynamically favored at room temperature as evidenced by experimental observations and theoretical calculations (Schorr, Hoebler and Tovar, 2007) (Persson, 2010). From the optoelectronic properties point of view, CZTS is an intrinsic p-type semiconductor. The bandgap of CZTS reported in the literature for the synthesized material is between 1.4 and 1.6 eV (Bär et al., 2011). However, Density Functional Theory (DFT) theoretical calculations for the ideal CZTS
structure shows value in the range between 1.5 to 1.65 eV (Persson, 2010) (Chen et al., 2010).

Figure 2.4. (a) Derivation of kesterite compounds by gradual substitution of elements from different groups in the periodic table. (b) Structure of kesterite compounds. From (Zhou et al., 2013)

2.4. Synthesis of CZTS Thin Films

Several techniques have been investigated during the past two decades for the synthesis of CZTS thin films. CZTS synthesis routes can be classified into two major categories. The first one are vacuum-based techniques, which involve deposition of metal stacks followed by high-temperature annealing in a sulfur-rich atmosphere in a process known as sulfurization. Alternatively, co-deposition of binary sulfides mainly via thermal evaporation or magnetron sputtering might be carried out followed by annealing in an inert atmosphere such as Argon or nitrogen. The second category is solution based (sometimes-called non-vacuum) techniques, which involve solution deposition of a precursor layer followed by high-temperature sulfurization in either inert or sulfur-rich
atmosphere. The following sections briefly review the main methods for each category along with the notable progress achieved so far.

2.4.1. Vacuum Based Techniques

Physical vapor deposition (PVD) is a well-established method of depositing polycrystalline compound semiconductor materials. PVD includes several techniques such as thermal evaporation, sputtering, and pulsed laser deposition. PVD processes are typically carried out under high vacuum to minimize the residual gas in the system and maximize the yield of the deposited material on the substrate, which is vital for the purity of the deposited films. PVD techniques involve the evaporation of a source material, transport of the atoms in gas state to the substrate, and the condensation of the vapor atoms on the substrate. Thermal evaporation of CZTS typically involves the simultaneous deposition of different pure elements (Cu, Zn, and Sn) onto a heated substrate, and is usually called co-evaporation. In that case, sulfur may be incorporated during deposition process through a valved cracker source (Shimamune et al., 2017) or in a separate step after the deposition which involves annealing in a sulfur rich atmosphere using either elemental sulfur or hydrogen sulfide gas (A Weber et al., 2009). Thermal evaporation might also be carried out in alternative routes through co-evaporation of a combination of binary sulfide sources such as ZnS, Cu2S, and SnS (Das and Mandal, 2012) or even a quaternary CZTS powder source (Shi et al., 2012). An 8.4% record efficiency for a CZTS solar cell device made by thermal evaporation and has been achieved by (Shin et al., 2013).
In sputtering deposition, Ar ions bombard a source material, which causes the metal atoms to sputter and deposit onto the substrate. Similar to evaporation, CZTS films can be obtained by sputtering of different sources such as Cu, Zn, and Sn metals to form the metal stack, which is subsequently sulfurized at high temperature to form CZTS. In addition, co-sputtering of Cu, ZnS, and SnS, as schematically illustrated in Figure 2.5(b) (Khalkar et al., 2014), as well as the one step sputtering from quaternary CZTS source were also reported (Jheng, Liu and Wu, 2014). A power conversion efficiency of 6.8% is still the record for a sputtered CZTS solar cell (Katagiri et al., 2008).

![Figure 2.5. (a) Schematic diagram of co-evaporation of CZTS films (Shimamune et al., 2017). (b) Schematic diagram of reactive sputtering of CZTS films (Khalkar et al., 2014).](image)

2.4.2. Solution Based Techniques

Basically, solution-based techniques comprise three major steps: first, preparation of precursor solution with specified cation (Cu, Zn, and Sn) and/or anion (S) concentration; second, deposition of the precursor solution onto a substrate; third, subsequent annealing in an inert (Ar or N₂) or sulfur-rich (elemental sulfur or H₂S) atmosphere to grow CZTS
and improve film crystallinity. The cation source is usually Cu, Zn, and Sn salts such as acetates or chlorides while sulfur anions can be obtained from sulfur-based organic or inorganic compounds such as thiourea and sodium sulfate.

2.4.2.1. Spray Pyrolysis Method

In spray pyrolysis route, a substrate is heated to a temperature ranges between 300 and 650°C (Song et al., 2014) and then the precursor solution is sprayed onto the heated substrate. The high temperature will cause pyrolysis of the sprayed solution and will form a coat on the substrate surface. There have been only a few studies focused on spray pyrolysis of CZTS films (Kamoun, Bouzouita and Rezig, 2007) (Bhosale et al., 2014). Nguyen et al. obtained CZTS solar cells with power conversion efficiency of 5.8% from spray-pyrolyzed CZTS films annealed at 580°C in sulfur vapor (Nguyen et al., 2015). Recently, the same group reported an 8% efficiency achieved for a CZTS solar cell prepared through enhanced spray pyrolysis route (Nguyen et al., 2016).

![Figure 2.6.](image)

Figure 2.6. (a) Schematic diagram of spray pyrolysis system for CZTS film deposition (Shinde, Deokate, & Lokhande, 2013). (b) Schematic diagram of electrodeposition process of CZTS precursor films (Tsai et al 2016).
2.4.2.2. Electrodeposition Method

Electrodeposition has also been extensively investigated for the fabrication of CZTS films for solar cells. It involves the deposition of pure metallic layers or alloys of reduced cations in aqueous solutions through the application of an electrical potential from an external power circuit. Several approaches of electrodeposition have been implemented by either sequential deposition of Cu, Zn, and Sn metal layers to form a metal stack that is eventually annealed in sulfur vapor or co-deposition of Cu, ZnS, and SnS layers simultaneously in one solution mixture. Regardless of the exact electrodeposition route, annealing of the precursor film is necessary in order to obtain a complete transformation to CZTS and improve crystallinity. Tao et al. sequentially deposited Cu/Zn/Sn stack and implemented a two-step annealing with the first step for 30 minutes in N$_2$ at 350°C to form a metallic mixture followed by an additional 12 minutes annealing at 585°C in N$_2$ containing sulfur to form CZTS. Based on that route, they were able to achieve CZTS device efficiency of 7.3% (Tao et al., 2016).

2.4.2.3. Sol-gel Method

Another interesting solution-processing route is the sol-gel method, which involves the preparation of sol precursor by dissolving metal salts (e.g., acetates and chlorides) in organic solvents followed by hydrolysis and polycondensation reactions. After that step, thin film is obtained by spin or dip coating, subsequent drying, and eventual annealing at high temperature to form the phases. Sol-gel processing is a simple and inexpensive route that could be implemented on large scale and over different substrates. In addition, sol-
gel technique also allows precise stoichiometry control and quantitative doping on the molecular level, which provide better structure and composition control compared with other techniques. Since sol-gel is the main processing route for CZTS films in this thesis, the previous studies mainly focusing on that particular route will be discussed in detail in section 2.5.

2.5. Previous Studies on Processing of Sol-Gel Sulfurized CZTS thin films

In this section, the most significant studies focusing on sol-gel processing of CZTS films are presented. In addition, previous results on the influence of sulfurization process parameters on the structural and optical properties of sol-gel sulfurized CZTS films are discussed.

Maeda et al. (Maeda, Tanaka, Fukui, et al., 2011) investigated the influence of H$_2$S gas concentration on the structure, microstructure, and electronic properties of CZTS films. Sulfurization process was carried out at 250°C and 400°C for 1 minute and 500°C for 1 hour in H$_2$S+N$_2$ mixtures with 3%, 5%, 10%, and 20% vol. H$_2$S concentrations. The results showed that samples prepared using 3% H$_2$S concentration have the largest grain size of ~1 μm and relatively denser compared to other samples as shown in Figure 2.7(a). Moreover, as the H$_2$S gas concentration decreases from 20% to 5%, sulfur content in the films was found to increase. However, decreasing H$_2$S concentration to 3% was found to increase sulfur content. As shown in figure 2.7(b), the band gap of CZTS films does not show a strong dependence on the H$_2$S concentration during sulfurization. In another study by Maeda et al. (Maeda, Tanaka, Nakano and Uchiki, 2011), lower concentrations of
0.5% and 1% of H\textsubscript{2}S gas were employed, and their influence of the quality of the produced CZTS films was investigated. All samples were sulfurized at 500°C for 1 hour except for the 0.5% H\textsubscript{2}S samples which were sulfurized for a prolonged time of 4 hours. The results showed that samples sulfurized using 0.5% H\textsubscript{2}S are slightly sulfur deficient and contains Cu\textsubscript{x}S phase. However, investigation of the film structure and grain size based on SEM surface and cross section imaging as shown in Figure 2.8 revealed that CZTS films prepared using 0.5% H\textsubscript{2}S have the largest grain size of ~ 2 μm and are densely packed compared to other samples sulfurized using both 1.0% and 3.0% H\textsubscript{2}S gas concentrations.

![Figure 2.7](image)

Figure 2.7. (a) Surface SEM images of CZTS films sulfurized using different H\textsubscript{2}S concentrations. (b) Optical absorption dependence on H\textsubscript{2}S concentration (c) Chemical composition dependence on H\textsubscript{2}S concentration. (Maeda, Tanaka, Fukui, et al., 2011)
Figure 2.8. Surface and cross section SEM images of CZTS films sulfurized at 500°C for 1 hour using different H$_2$S concentrations of (a, and d) 0.5%, (b, and e) 1.0%, and (c, and f) 3.0%. (Maeda, Tanaka, Nakano, & Uchiki, 2011)

Xiaoqi Yu et al. (Yu et al., 2014) investigated the annealing of sol-gel based CZTS films prepared from sulfur-containing solutions in an inert atmosphere without sulfurization. CZTS samples with a different thickness of deposited layers with the 3 layers samples annealed at 250°C for 10 min and another 5 and 9 layers samples annealed at 500°C for 60 minutes under nitrogen atmosphere. XRD patterns (see Figure 2.9) shows that CZTS phase successfully formed in both the 5 and 9 layers samples and the 9 layer sample has better crystallinity.
In addition, Raman spectroscopy results (Figure 2.9(b)) for the 9 layers sample confirmed the formation of CZTS phase as observed by the two main characteristic peaks at 338 cm$^{-1}$ and 287 cm$^{-1}$. Moreover, the SEM surface and cross-section images of the 9 layer annealed sample as in Figure 2.10 showed a nano-sized grain structure and relatively porous surface with the multi-layered structure as compared to the as-deposited sample. The reason for such structure was attributed to the different concentrations of the solution used for film deposition. The band gap for the 3 layers sample as extracted from the Tauc plot was 2.05 eV while for both the 5 and 9 layers samples was 1.46 eV which is close the typical values reported for CZTS.
In another study by Tunuguntla et al., 2015, 1,3-dimethyl-2-Imadazolidinone (DMI) was used as a solvent for the preparation of highly viscous, homogeneous, as well as nontoxic CZTS sol. Following the spin coating and air baking steps, CZTS films were sulfurized in 6% H$_2$S+N$_2$ gas mixture and elemental Sn and S are also added. They obtained CZTS films with grain size greater than 0.7μm and a minimal amount of carbon detected. Moreover, they found that external supply of Sn and S significantly suppress the loss of S$_2$ and SnS and thus lead to CZTS thin films with stoichiometric and homogeneous composition. Finally, an improved efficiency of 5.67% for the fabricated CZTS devices was achieved from samples prepared in 6% H$_2$S-Sn-S atmosphere compared to the 2.89% efficiency obtained from CZTS samples sulfurized in 6% H$_2$S+N$_2$.

Figure 2.10. Surface and cross-section SEM images of as 9 layers as deposited CZTS films (a and c) and annealed CZTS films (b and d). (Yu et al., 2014)
Recently, T. Ozdal et al. (Özdal and Kavak, 2017) carried out a comprehensive study to investigate the influence of sol-gel processing and subsequent annealing/sulfurization parameters, such as spin coating speed, solution concentration, amount of stabilizer. Also, subsequent annealing conditions on the characteristics of the prepared CZTS films including composition, grain size, surface morphology, crystallinity and film thickness. Based on their analysis, there was no significant influence of spin coating speed on the quality of the prepared films while the amount of stabilizer used in the solution was found to control the film properties. Moreover, low solution concentration (molarity) led to both S and Sn loss and hence negatively affected the film stoichiometry. Air Baking the spin-coated films at 300°C was found to reduce the surface cracks, increase the grain size, and improve the film crystallinity. Furthermore, loss of volatile chalcogens (such as S_2 and SnS) was found to directly proportional to the sulfurization temperature. However,
N₂ gas flow was observed to significantly help reduce the loss of chalcogen components from the system and improve film crystallinity as well. Table 2.1 summarizes the main previous studies focused on the sol-gel sulfurization processing of CZTS films. It shows the basic sulfurization process parameters that have been previously investigated such as temperature and sulfur source. It is noted that in most of the previous studies, sulfurization process was investigated at high temperature and use high concentration (≥5% vol.) of H₂S gas.

Table 2.1. Summary of the main previous studies on sol-gel sulfurization processing of CZTS films.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Deposition technique</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
<th>Annealing/sulfurization atmosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tanaka, Moritake and Uchiki, 2007)</td>
<td>Sol-gel, spin coating</td>
<td>500</td>
<td>60</td>
<td>5% H₂S+N₂</td>
</tr>
<tr>
<td>(Maeda, Tanaka, Fukui, et al., 2011)</td>
<td>Sol-gel, spin coating</td>
<td>500</td>
<td>60</td>
<td>3%, 5%, 10%, 20% H₂S+N₂</td>
</tr>
<tr>
<td>(Maeda, Tanaka, Nakano and Uchiki, 2011)</td>
<td>Sol-gel, spin coating</td>
<td>350, 400, 450,</td>
<td>60</td>
<td>5% H₂S+N₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500, 550, and 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Tunuguntla et al., 2015)</td>
<td>Sol-gel, spin coating</td>
<td>610</td>
<td>8</td>
<td>6% H₂S+N₂</td>
</tr>
<tr>
<td>(Su et al., 2014)</td>
<td>Sol-gel, spin coating</td>
<td>560</td>
<td>60</td>
<td>N₂ (thiourea was used as sulfur source in Sol preparation step)</td>
</tr>
<tr>
<td>(Yu et al., 2014)</td>
<td>Sol-gel, spin coating</td>
<td>500</td>
<td>60</td>
<td>N₂ (thiourea was used as sulfur source in Sol preparation step)</td>
</tr>
<tr>
<td>(Özdal and Kavak, 2017)</td>
<td>Sol-gel, spin coating</td>
<td>300, 350, 400,</td>
<td>30</td>
<td>Air, N₂, and N₂ + elemental S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450, 500 and 550</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.6. Identification of secondary phases and their influence in CZTS system

Due to the single phase narrow region for CZTS (see Figure 2.12(a)), it is highly likely that other binary sulfide phases form during the annealing/sulfurization process and remain stable upon cooling down to room temperature (Nagoya et al., 2010) (Kumar et al., 2015). The most common sulfide phases reported to form in association with CZTS phase are ZnS, Cu$_{2-x}$S (0<x<1), SnS, SnS$_2$, and Cu$_2$SnS$_3$ (CTS). ZnS is less harmful to device performance, since it has higher bandgap (band gap for cubic ZnS = 3.54 eV), compared to CZTS band gap of 1.5 eV.

![Chemical potential stability diagram and XRD patterns](image)

Figure 2.12. (a) Calculated chemical potential stability diagram for Cu rich CZTS in 2D plane. (Nagoya et al., 2010) (b) Simulated XRD patterns for CZTS, CTS, and ZnS phases showing the overlap of the main peaks. (Walsh, Chen, Wei, & Gong, 2012)

On the other hand, both SnS and CTS phases are very detrimental to device performance due to their lower bandgap compared to CZTS. In particular, the presence of CTS phase in CZTS films is more challenging since it is difficult to distinguish from CZTS due to
the similarity in the crystal structure which results in overlapping of the main XRD peaks for both phases (see Figure 2.12(b)).

To resolve that issue, Raman spectroscopy is employed to complement XRD and help detect other secondary phases associated with CZTS. Green laser excitation with a wavelength of 514.5 nm can be used to identify the main Raman modes of CZTS phase and all other secondary phases reported (see Table 2.2) except for ZnS which is not sensitive to that particular wavelength excitation.

Table 2.2. Raman modes for CZTS and other common secondary phases.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Raman Shift (cm⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZTS</td>
<td>288, 338, 351, 368</td>
<td>(Fontané et al., 2011)</td>
</tr>
<tr>
<td>Monoclinic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu₂SnS₃</td>
<td>290, 352</td>
<td>(Berg et al., 2012)</td>
</tr>
<tr>
<td>Cu₃SnS₄</td>
<td>318</td>
<td>(Berg et al., 2012)</td>
</tr>
<tr>
<td>Cu₂₋ₓS</td>
<td>264, 475</td>
<td>(Dimitrievska et al., 2014)</td>
</tr>
<tr>
<td>ZnS</td>
<td>275, 352</td>
<td>(Nilsen, 1969)</td>
</tr>
<tr>
<td>SnS</td>
<td>163, 189, 223</td>
<td>(Berg et al., 2014)</td>
</tr>
<tr>
<td>SnS₂</td>
<td>215, 315</td>
<td>(Fontané et al., 2011)</td>
</tr>
<tr>
<td>Sn₂S₃</td>
<td>52, 60, 307</td>
<td>(Altamura and Vidal, 2016)</td>
</tr>
</tbody>
</table>

It is reported in previous studies that ZnS can be detected efficiently using ultraviolet (UV) laser excitation with a wavelength of 325 nm (Berg et al., 2014). However, in the absence of UV laser, energy dispersive X-ray spectroscopy (EDX) can be used in combination with XRD and 514.5 nm laser Raman to detect the localized composition of ZnS.
2.7. Understanding Phase Formation Mechanism of CZTS

Understanding the fundamental phase formation mechanism and the related phase transformations of CZTS system is crucial to the optimization of the sulfurization process. In addition, a better understanding of how material processing influence the characteristics allows tuning its properties to obtain superior opt-electronic properties that are beneficial to CZTS based device performance. Many previous studies investigated the phase formation of CZTS films based on different synthesis technique using various ex-situ as well as in situ characterization tools. In this section, some of the previous studies aiming to understand the fundamental phase formation mechanism for sol-gel derived CZTS thin films.

Conceptually, the formation of CZTS phase are briefly reviewed via sol-gel processing comprises three main steps regardless of the synthesis technique. The first one is the formation of precursor material, which is typically a mixture of amorphous metal oxides. Secondly, sulfur incorporation through inter-diffusion which yields binary or ternary sulfides. Lastly, the reaction between those sulfides leads to the evolution and crystallization of CZTS phase.

Su et al. (Su et al., 2014) investigated the formation mechanism of sol-gel deposited CZTS films. CZTS films were prepared by spin coating of non-aqueous precursor solution containing Cu, Zn, Sn ions and thiourea was used as a sulfur source. Films were dried at 200°C in air before the high-temperature annealing at 560°C for 1 hour in nitrogen as illustrated in Figure 2.13.
The suggested mechanism for CZTS phase formation includes a set of reactions from (1) to (6). First, metal salts react with alcohols to form metal alkoxides. Then, nanoparticles are formed with an average size of several nm after alcoholsysis and polycondensation between the metal salt and metal alkoxides. The excess thiourea used in this study reacts with the metal ions to form thiourea-metal complexes, and these complexes are subsequently subjected to alcoholsysis and condensation reactions with 2-methoxyethanol to form CZTS nanoparticles.

\[
M-X + Tu \rightarrow [M(Tu)_{m}]^{-X} \quad (1) \\
[M(Tu)_{m}]^{-X} + ROH \rightarrow [M(Tu)_{m}]-OR + H-X \quad (2) \\
[M(Tu)_{m}]^{-X} + [M(Tu)_{m}]-OR \rightarrow [M(Tu)_{m}]-O-[M(Tu)_{m}] + R\cdot X \quad (3) \\
[M(Tu)_{m}]-O-[M(Tu)_{m}] + R\cdot X \rightarrow Cu_{x}S + ZnS + Sn_{y}S + SnO_{2} + \text{volatile matter} \quad (4) \\
Cu_{x}S + ZnS + Sn_{y}S \rightarrow Cu_{2}ZnSnS_{4} \quad (5) \\
Cu_{x}S + ZnS + SnO_{2} + S \rightarrow Cu_{2}ZnSnS_{4} \quad (6)
\]
In the those equations, the symbols (M, X, Tu, and R) represent metal ions (Cu$^{2+}$, Zn$^{2+}$, Sn$^{2+}$), anions (CH$_3$COO or Cl), thiourea and organic molecular chains of 2-methoxyethanol, respectively. The volatile matter is the gases generated during the annealing process, such as CS$_2$, CO$_2$, NO$_2$, SO$_2$, H$_2$O, and NH$_4$Cl. Equation (1) displays the complexing process between thiourea and the metal ions.

2.8. Previous studies on temperature dependent Raman monitoring of CZTS

In this section, previous studies focusing on the investigation of CZTS Raman spectral behavior and the influence of temperature on both structure and phase stability of CZTS will be presented. Van Duren et al. (Van Duren et al., 2017) investigated the feasibility of using in situ Raman spectroscopy to monitor the evolution of CZTS films in real time. The films were prepared via co-evaporation of Cu, Sn and ZnS layers in a sulfur atmosphere. Following that, in situ Raman monitoring was carried out at elevated temperatures (from room temperature up to 550°C) using a Linkam heating stage (THMS600) under a nitrogen atmosphere. Above 350°C, the temperature step was decreased to 25°C to better observe the ongoing transformations in the film.

Figure 2.14(a) illustrates the evolution from the Cu, Sn and ZnS precursor stack to kesterite. The process starts with the observation of Raman modes for monoclinic CTS phase characterized by the two main Raman modes at 292 and 352 cm$^{-1}$ at 50°C. After that, continued heating up to a temperature of 400°C was observed to broaden and attenuate CTS peaks. The main A-mode of CZTS was first observed at 400°C and
gradually becomes more dominant as indicated by the arrows in Figure 2.14(a). At 550°C, the main mode for CZTS can be seen to dominate the spectrum.

Figure 2.14. (a) Raman spectra of the Mo/CTS/ZnS precursor stack during annealing from 50 to 550°C. (b) Evolution of peak positions of CTS, CZTS references and CZTS from CTS/ZnS precursor stack. (Stephan Van Duren et al., 2017)

The evolution of the peak positions with temperature is shown in Figure 2.14(b). For comparison, evolution of peak position from previous studies is included. It can be concluded that data from Duren’s study is identical to Sarswat’s study also at lower temperature regime up to 180°C. While, data from Singh showed slight deviation in the peak position although it has the similar trend.

In addition, it can be observed from Figure 2.14(b) that CZTS formed from the stack slightly deviates from the CZTS reference sample, which might be attributed to the influence of CTS phase that initially existed in the stack. However, at 475 °C and higher, the stack data overlaps with the CZTS reference, confirming the presence of the kesterite phase.
In another study, Scragg et al. (Scragg et al., 2014) studied the influence of temperature on the structural ordering of CZTS phase using near-resonant Raman scattering. The two CZTS reference samples were cooled down at different rates, sample (VS) was slowly cooled at a rate of 10K/hour while sample (VF) was quenched in ice water. Raman spectra of both samples were collected in a Renishaw system using 532 nm and 785 nm laser excitations.

![Raman spectra with peak fitting for CZTS reference samples VS (slowly cooled) and VF (rapidly cooled) examined with 532 and 785 nm lasers.](image)

![Raman spectra using 785 nm, for an as-prepared CZTS film at different temperatures. (Scragg et al., 2014)](image)

Figure 2.15. (a) Raman spectra with peak fitting for CZTS reference samples VS (slowly cooled) and VF (rapidly cooled) examined with 532 and 785 nm lasers. (b) Raman spectra using 785 nm, for an as-prepared CZTS film at different temperatures. (Scragg et al., 2014)

Figure 2.15(a) shows spectra of VS and VF for 532 nm and 785 nm excitation wavelengths. For both excitation wavelengths, sample VF gives a general broadening that is attributed to Cu/Zn disorder. In the 785 nm spectra, the differences between VS and VF are more dramatic. For the slowly cooled sample, the second A mode at 288 cm\(^{-1}\) (labelled \(m_{2A}\)) has roughly double the intensity of the E and B modes at 368 and 376 cm\(^{-1}\) (labelled \(m_{4E}\) and \(m_{5B}\)). In the fast cooled sample, both of the main A modes \(m_{1A}\) and \(m_{2A}\)
drop significantly relative to the rest of the spectrum, so that m_{2A} becomes similar in intensity to the previously minor A mode at 304 cm$^{-1}$ (m_{3A}), while m_{4E} and m_{5B} have much higher relative intensity. A possible explanation for these variations is that the near-resonant conditions with the 785 nm excitation wavelength make the spectrum sensitive to small changes in band gap that is occurring because of structure disorder.

In another study by Sarswat et al. (Sarswat, Free and Tiwari, 2011), the temperature influence on the CZTS Raman peaks was investigated at the range of 98 – 378 K. The Raman spectra of CZTS thin film were collected over the range of 315–365 cm$^{-1}$ are shown in Figure 2.16(a). The highest intensity Raman peak was observed at room temperature at 338 cm$^{-1}$, which matches well with previously published results for kesterite phase of CZTS. A decrease in the frequency and intensity of A-mode is observed with an increase in temperatures shown in Figure 2.16(a).

![Figure 2.16](image_url)

Figure 2.16. (a) Raman spectra for CZTS thin film recorded at various temperatures. The shift in peak frequency versus temperature. (b) The shift in peak frequency versus temperature. (c) The shift in linewidth versus temperature. (Sarswat et al., 2011)
The variation of peak frequency of the A-mode with temperature is shown in Figure 2.16(b).

Figure 2.16(c) shows the variation of the linewidth between 98 and 378 K. Fitting of experimentally observed linewidth data is also shown. Based on least square fit analysis, a theoretical fit using the 3-phonon process demonstrated which is valid only for a short (100–250 K) temperature range while the agreement between experimental data points and theoretical fitting is best found for the 4-phonon process for the entire temperature range (100–350 K).
3. FORMATION OF SOL-GEL BASED CZTS THIN FILMS USING PPM-LEVEL HYDROGEN SULFIDE

3.1. Introduction

Recently, extensive research has been carried out on copper zinc tin sulfide (Cu$_2$ZnSnS$_4$ or CZTS) material as an absorber layer for thin film solar cell applications (Katagiri et al., 2009; Ramasamy, Malik, and O’Brien, 2012). CZTS material is considered as a nontoxic, abundant, and inexpensive alternative to conventional chalcogenide solar absorber materials such as copper indium gallium selenide (CuIn$_x$Ga$_{1-x}$Se$_2$, CIGS) or cadmium telluride (CdTe) that suffer from resource limitation (e.g., for In and Ga) and/or toxicity (e.g., for Cd) (Taylor and Scott M. McLennan, 1985). Beside the excellent physical properties of CZTS such as a tunable band gap between 1.04 to 1.48 eV with Se incorporation (Woo et al., 2013) and a high absorption coefficient greater than 10^4 cm$^{-1}$ (Ito and Nakazawa, 1988), researchers expect the well-established device technology for CIGS solar cells could also be implemented for CZTS to achieve high performance yet low cost CZTS solar cells in the near future.

Different techniques have been adopted for CZTS thin films preparation such as vacuum based techniques of thermal evaporation (Shi et al., 2012), magnetron sputtering (Tanaka et al., 2005; Dhakal et al., 2014), and pulsed laser deposition (Moholkar et al., 2011) and non-vacuum based techniques such as electrodeposition (Ge et al., 2014), nanoparticles (Guo et al., 2014), spray pyrolysis deposition (Nakayama and Ito, 1996; Swami et al., 2015), and sol-gel sulfurization (Tanaka, Moritake and Uchiki, 2007; Maeda, Tanaka, Nakano and Uchiki, 2011; Kahraman et al., 2013). Vacuum based techniques such as
thermal evaporation or magnetron sputtering produce densely packed thin films with large grains of CZTS but are expensive due to the need for high vacuum and the complexity added to the system. In comparison, almost all non-vacuum based techniques adopt some form of solution processing, which offers simplified processing and reduced device fabrication cost. In particular, sol-gel sulfurization is one of the simplest and cheapest options for CZTS thin film preparation among all solution processing techniques. Typically, sol-gel sulfurized CZTS thin films are prepared by spin coating and baking of solutions containing Cu, Zn, and Sn metal ions to form metal oxide precursors that are eventually sulfurized in a sulfur-rich atmosphere at elevated temperature (e.g., ~550°C) to obtain densely packed large grain CZTS films. It has advantages in terms of simplicity and, potentially, cost over other non-vacuum processes: for example, the nanoparticles approach starts from solutions but has the added steps of nanoparticles synthesis, while the electrodeposition process usually consists of multiple deposition steps due to different metal layers involved. Tanaka et al. (Tanaka, Moritake and Uchiki, 2007) were the first group to prepare CZTS films based on the sol-gel sulfurization processing. The maximum efficiency achieved was 2.03% (Maeda, Tanaka, Nakano, Fukui, et al., 2011). Recently, champion power conversion efficiency of ~5% and higher for sol-gel based CZTS devices had been reported (Su et al., 2014; Tunuguntla et al., 2015).

Compared to elemental sulfur, hydrogen sulfide (H₂S) gas balanced by nitrogen (e.g., 5% H₂S by volume balanced by N₂ (Tanaka, Moritake and Uchiki, 2007), or, in short, abbreviated as 5%H₂S+N₂. Note all concentrations for gas mixtures mentioned in this thesis are by volume.) is often preferred for the sulfurization process in order to obtain
chemically homogenous CZTS films, partly due to the complexity associated with elemental sulfur evaporation resulting in multiple gas allotropes such as S₂ as well as S₄, S₆, S₈ (Jackson, Tiana and Walsh, 2016). In addition, some other studies reported better CZTS crystallinity when using H₂S gas as the sulfurizing agent compared to elemental sulfur (Scragg, Dale and Peter, 2009). However, hydrogen sulfide is well known to be an extremely toxic, highly corrosive gas with stinky, “rotten egg” like odor, especially with the high concentration levels (5 up to 60% H₂S) utilized for CZTS preparation as reported in almost all CZTS studies including non-sol-gel processes (Ramasamy, Malik and O’Brien, 2012; Xie et al., 2013). This would result in complicated safety considerations and corresponding stringent measures in process engineering in order to eliminate any potential risk of human toxicity and environmental damage. Therefore, the great appeal of sol-gel sulfurization approach and the serious safety/environmental concerns with using high concentration H₂S for preparing CZTS motivate the study aimed at searching for better and safer ways to prepare CZTS thin films using significantly lower concentration of H₂S gas as the sulfurizing agent. On the other hand, it is conceived not impossible to form CZTS phase with significantly reduced H₂S concentration. The rationale is that the equilibrium H₂S concentration to form many metal sulfides tends to decrease dramatically (by several orders of magnitude) with decreasing sulfurization temperature. For example, for the sulfide of Ni₃S₂, the equilibrium pH₂S/pH₂ for Ni₃S₂ to form by reaction between Ni and H₂S decreases from ~1% at 1050°C to only 100 ppm at ~400°C, while for NiS, the equilibrium pH₂S/pH₂ decreases from ~4% at 727°C to only 38 ppm at ~227°C (Cheng and Liu, 2007).
Previously, only Maeda et al. used lower percentage level of 0.5% H₂S+N₂ to prepare CZTS thin films, but impurity phases of CuₓS was clearly observed by XRD (Maeda, Tanaka, Fukui, et al., 2011). The work reported here investigates the feasibility of preparing CZTS with low parts per million (ppm)-level H₂S and understand the influence of the relevant processing conditions on the quality of the sulfurized Cu-Zn-Sn-S films. Moreover, the current study also provides insights about the complexity associated with CZTS preparation and highlights the practical limits for the sulfurization process from thermodynamic point of view.

3.2. Experimental Procedure

The Cu-Zn-Sn precursor solutions were prepared from metal precursors reported in Tanaka’s study (Tanaka, Moritake and Uchiki, 2007). Three solution batches were prepared with different metal ions ratio as explained below. The first solution batch named as recipe R2 has a stoichiometric composition with Cu:Zn:Sn metal ions ratio of exactly 2.0 : 1.0 : 1.0.

The second solution batch named recipe R7 was designed to be copper-rich (or tin-and-zinc-poor) with Cu:Zn:Sn metals ions ratio of 2.2 : 1.0 : 1.0, while the third solution batch named R8 has a copper-poor composition with Cu:Zn:Sn metal ions ratio of 1.90 : 1.0 : 1.0. The reason for using both Cu-poor and Cu-rich compositions is to investigate the influence of different precursor solution compositions on the structure, phase purity, and homogeneity of the prepared CZTS films. In addition, although traditionally Cu-poor compositions were often used to prepare CZTS, some recent studies including authors’ own work suggest Cu-rich CZTS(Se) thin films seem to offer benefits of larger grains
and denser layers, which is important to device performance (Guo et al., 2014). For recipe R2, the precursor solution was prepared by dissolving 8.73 g of copper acetate monohydrate (>98% - Sigma Aldrich), 4.80 g of zinc acetate dihydrate (>99% - Sigma Aldrich), 4.93 g of tin(II) chloride dihydrate (98% - Sigma Aldrich) into 50 mL of 2-methoxyethanol (99% - Alfa Aesar). After that, 5 mL of monoethanolamine (99+% - Alfa Aesar) was added to the solution to prevent precipitation during stirring at 55°C for 60 minutes. Precursor solutions for recipes R7 and R8 were prepared based on the same procedure with varying amount of copper acetate monohydrate as designed. In all three cases after stirring, a clear dark blue solution formed. The solutions were then filtered using 0.2 µm PTFE syringe filter before spin coating. Seven layers of Cu-Zn-Sn oxide precursor films were prepared by spin coating using the precursor solutions on 1 mm thick soda lime glass (SLG) substrates at 3000 rpm for 30 seconds followed by air baking at 300°C for 5 minutes for each layer, and the total film thickness is ~1.2 µm. Following the sol-gel preparation of the oxide precursors, sulfurization process was performed under various conditions to convert the oxide precursors to sulfide(s). Table 1 specifies the sample designation and corresponding detailed sulfurization conditions. The sulfurization process was performed in a tube furnace in which samples were purged with ultrahigh purity N₂ (UHP grade, Airgas) before heating up in N₂. The sulfurization atmosphere is provided by a gas mixture of 100 ppm H₂S+H₂ (Airgas) at the target annealing temperature. The choice of 100 ppm H₂S is rational because above that concentration, H₂S exposure will cause loss of smell and pose serious danger to production personnel (OSHA, no date). The samples listed in Table 3.1 contain two sub-sets: set 1 involved
only a *single* annealing step for sulfurization while set 2 involved two annealing steps for sulfurization, as explained below in detail. For samples designated as R2-350S, R8-350S, R7-350S, R2-450S, R7-450S, R2-550S, and R7-550S belonging to set 1 single-step sulfurization, the samples were heated up in N₂ to the target temperature (350°C, 450°C, or 550°C) and the gas was then switched to 100 ppm H₂S+H₂ and sulfurized for 60 minutes at those respective temperatures followed by cooling to room temperature (RT) in N₂. For the two-step sulfurization, a sample designated as R7-400H-125S was prepared based on recipe R7: the sample was heated up to 400°C in N₂ and reduced in 4% H₂+N₂ for 60 minutes. After that, the sample was cooled in N₂ to 125°C and then sulfurized for 180 minutes in 100 ppm H₂S+H₂ followed by cooling to RT in N₂. In all processing, the typical heating rate was ~22°C/min and the cooling rate is limited by heat dissipation and was measured to be ~2°C/min.

Upon sulfurization, all samples were examined by X-ray diffraction (XRD) (diffractometer: Siemens 500D) for phase identification using Cu Kα radiation with wavelength λ=1.5406 Å in the range of 2θ = 20° to 80°. Raman spectroscopy was used to complement XRD analysis for selected samples and carried out using air cooled Argon ion laser system (Spectra Physics, model 177G02) with excitation wavelength of 514.5 nm and spectrograph (HoloSpec f/1.8i, Kaiser Optical Systems) in the range of 200 to 2000 cm⁻¹ Raman shift.
Table 3.1. Sample designation and corresponding detailed sulfurization conditions for the two designed experiment sets.

<table>
<thead>
<tr>
<th>Exp. set</th>
<th>Sample designation</th>
<th>First annealing</th>
<th>Second annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temperature (°C) /time (min)</td>
<td>Atmosphere</td>
</tr>
<tr>
<td>Set 1</td>
<td>R2-350S</td>
<td>350/60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R8-350S</td>
<td>350/60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7-350S</td>
<td>350/60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2-450S</td>
<td>450/60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7-450S</td>
<td>450/60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2-550S</td>
<td>550/60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7-550S</td>
<td>550/60</td>
<td></td>
</tr>
<tr>
<td>Set 2</td>
<td>R7-400H-125S</td>
<td>400/60</td>
<td>4% H₂+N₂</td>
</tr>
</tbody>
</table>

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were carried out using JOEL 6330 system for thin films morphology study and local chemical composition analysis. In addition, electrical resistivity measurements were carried out for the prepared Cu-Zn-Sn-S thin films using an Ecopia HMS 3000 Hall Measurement System. The system was initially calibrated using a standard indium tin oxide (ITO) sample. Optical property including light absorbance/transmittance and resulting band gap information was measured using a custom configured system with spectrometer (Ocean Optics USB 2000+ VIS and NIR spectrometer). The light source used is Deuterium-Halogen Light Source (DH 2000) for the UV-Vis-NIR spectroscopy.
3.3. Results and Discussion

3.3.1. Single-step sulfurization process

After sol-gel processing and 300°C air baking, the obtained Cu-Zn-Sn oxide precursor films before sulfurization are typically amorphous. As an example, Figure 3.1 gives the XRD pattern for the Cu-Zn-Sn oxide precursor film prepared based on recipe R7 showing no crystalline peaks.

![XRD pattern](image)

Figure 3.1. XRD pattern of a Cu-Zn-Sn oxide precursor thin film for recipe R7 after spin coating and air baking (300°C/5 min).

Table 3.2 shows the EDS data for the air baked Cu-Zn-Sn oxide precursor film from the same recipe. The measured initial Cu:Zn:Sn metal ratio of ~25 : 12 : 11 matches closely the expected ratio of 2.2 : 1.0 : 1.0 for R7 that is designed to be slightly copper-rich. On the other hand, oxygen content for the air-baked oxide precursor film was found to be lower than stoichiometry for the expected oxides, while carbon content is very significant, suggesting incomplete organics burnout even after repeated hard baking at 300°C in open air.
Table 3.2. EDS data showing atomic percentage of the Cu-Zn-Sn oxide precursor thin film after 300°C air baking for recipe R7.

<table>
<thead>
<tr>
<th>Element</th>
<th>Cu</th>
<th>Zn</th>
<th>Sn</th>
<th>O</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>at. %</td>
<td>25</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>43</td>
</tr>
</tbody>
</table>

A photo of the oxide precursor film for recipe R7 is shown in Figure 3.2 (a). The thin film appears transparent with slight brownish color, suggesting metal oxides such as Cu$_2$O and/or residue carbon as coke. Other oxide precursor films for recipes R2 and R8 are similar to recipe R7. For sulfurization of the Cu-Zn-Sn oxide precursor, the simplest process would follow the typical single-step sulfurization procedure as adopted by many other researchers with the exception of replacing the >5% H$_2$S+N$_2$ by low ppm level H$_2$S-containing gas mixture, which is 100 ppm H$_2$S+H$_2$ here. (It is noted that the balance gas for ppm-level H$_2$S here is H$_2$ instead of N$_2$. The reason for this change was to help improve the metal oxide reduction since the ppm-level H$_2$S concentration used in this study is much lower than the normally used 5%, which can produce significant H$_2$ at elevated temperature due to the reaction of 2H$_2$S = S$_2$ + 2H$_2$.

Figure 3.2 (b to e) show pictures of the sulfurized samples of R8-350S, R7-350S, R7-450S, and R7-550S, respectively, according to the processing conditions stated in Table 1. Samples of R8-350S and R7-350S are dark black, while R7-450S and R7-550S show brownish color with distinct metallic reflection especially in certain angles as seen clearly for R7-450S.
Figure 3.2. Pictures of the amorphous oxide precursor thin film prepared based on recipe R7 after 300°C/5 min air baking (a) and the single-step sulfurized samples of R8-350S (b), R7-350S (c), R7-450S (d), R7-550S (e).

Figure 3.3 and Figure 3.4 show the XRD patterns for samples of set 1 prepared from recipe R7 (10 mol.% Cu-rich) and R2 (stoichiometric) respectively and sulfurized in a single step for 60 minutes in 100 ppm H2S+H2 at different temperatures. For the R7-550S and R2-550S and R7-450S samples, XRD patterns clearly show the formation of metallic alloy phase of Cu3Sn, as evidenced by the major XRD peaks observed at 2θ of 37.6°, 41.7°, 43.2°, and 68.1° (JCPDS card no. 01-077-8587). The identification of alloy phase of Cu3Sn also explains the metallic reflection observed for those samples such as R7-450S as shown before in Figure 3.2(d). In addition, for these samples, XRD peaks were also observed at 2θ of 28.5°, 47.4°, and 56.4°. It is well known that these peaks might belong to either CZTS or ZnS or Cu2SnS3 (JCPDS cards no. 00-026-0575, 01-071-5976, and 01-089-4714, respectively). However, based on the appearance of strong peaks of Cu3Sn in these sample (R2-550S, R7-450S, and R7-550S), it is rational to assign the peaks at 28.5°, 47.4°, 56.4° primarily to ZnS instead of CZTS or Cu2SnS3 for those samples. In comparison, the XRD patterns for samples of R7-350S and R2-350S only show peaks at 28.5°, 47.4°, 56.4° for ZnS or CZTS but without any other major
crystalline phases. As both samples sulfurized at 350°C appeared dark black without metallic reflection, XRD alone could not determine if ZnS or CZTS actually formed. (It is noted that XRD for sample R2-450S also only shows peaks at 28.5°, 32.9°, 47.4°, 56.4°.

Figure 3.3. XRD patterns of samples of R7-350S, R7-450S, and R7-550S, which were prepared from copper-rich recipe R7 and sulfurized in a single-step at 350°C, 450°C, and 550°C for 60 minutes in 100 ppm H₂S+H₂.

However, that EDS (shown later) suggests R2-450S sample is severely sulfur deficient and rules out the possibility of CZTS formation for that sample.)]. Figure 3.5 shows the XRD patterns for samples of set 1 prepared at 350°C for the three recipes R2, R8, and R7. The poor crystallinity of sample R8-350S from copper-deficient solution R8 is noted as only two diffraction peaks for that sample are clearly visible with lower intensity and higher background noise compared to the other two samples of R2-350S and R7-350S.
In order to help determine the exact sulfide phases formed after sulfurization at 350°C, Raman was carried out for samples of R2-350S, R8-350S, and R7-350S, and the obtained Raman spectra are shown in Figure 3.6. For R7-350S, the pattern revealed three distinct major peaks at 338, 288, and 352 cm\(^{-1}\) and one minor, wide peak at 368 cm\(^{-1}\) that match well with those typically assigned to CZTS phase (Zhang et al., 2014). Raman spectrum for the sample of R2-350S showed a major peak at 331 cm\(^{-1}\) with minor peaks at 288 cm\(^{-1}\) and a wide shoulder around 368 cm\(^{-1}\).

The reason for the major peak shift from 338 to 331 cm\(^{-1}\) is not clear at the moment. Nevertheless, the strongest peak corresponding to ZnS at ~351 cm\(^{-1}\) is not obvious in both patterns, suggesting ZnS is not the major crystalline phase in the prepared thin films. The obtained Raman spectra for the 350°C sulfurized samples also contain a peak at 476 cm\(^{-1}\).
cm$^{-1}$, and it is attributed to Cu$_{2-x}$S phase, which is common during CZTS preparation (Schubert et al., 2011). However, Raman analysis for copper deficient R8-350S sample shows only high background with poor signal to noise ratio, which might be attributed to the partial formation of CZTS phase and association of secondary phases with high degree of surface inhomogeneity of that sample. Further analysis will be needed to understand the exact reason for this.

Figure 3.5. XRD patterns of sulfurized samples of R2-350S, R8-350S, and R7-350S which were prepared from stoichiometric, Cu-poor, and Cu-rich recipes respectively and sulfurized in a single-step at 350°C for 60 minutes in 100 ppm H$_2$S+H$_2$.

To further substantiate the study from XRD and Raman, SEM-EDS analysis was also carried out to help characterize thin film structure and local composition. The surface SEM images for single-step sulfurized samples of R7-450S, R7-350S, and R8-350S are shown in Figure 3.7 along with a reference CZTS sample prepared at 550°C using 5% H$_2$S+N$_2$. Figure 3.7(a) is for sample R7-450S, and it shows the surface is relatively dense and uniform. However, as stated before, XRD suggests the film for R7-450S is a mixture
of ZnS and Cu$_3$Sn metallic phase. Figure 3.7(b) and (c) are for the surface of sample R7-350S and R8-350S, respectively, which appear to be relatively dense with reasonably large grains. On the other hand, it is noted that the surface for these two samples appears to have some inhomogeneity: micron-sized particles were observed on the surface and were distributed across all examined areas of the thin film. The origin for such surface inhomogeneity is not yet clear at this moment, and local EDS analysis and Raman microspectroscopy study has not been conclusive and this will be investigated further in future.

![Raman Spectra](image)

Figure 3.6. Room temperature Raman spectra for single-step sulfurized samples of R2-350S, R8-350S, and R7-350S which were prepared from stoichiometric, Cu-poor, and Cu-rich recipes respectively and sulfurized in a single-step at 350°C for 60 minutes in 100 ppm H$_2$S+H$_2$.

Nevertheless, the overall surface quality in terms of film density and grain size of both R8-350S and R7-350S samples prepared at reduced temperature of 350°C using low concentration 100 ppm H$_2$S+H$_2$ is comparable to the reference CZTS sample (Figure 3.7(d)) prepared at 550°C using 5% H$_2$S+N$_2$.

50
Table 3.3 gives the chemical composition obtained by EDS over surface for selected single-step sulfurized Cu-Zn-Sn-S thin film samples prepared with 100 ppm H₂S+H₂ mixture compared to the reference CZTS, which is prepared by sol-gel sulfurization at 550°C for 60 minutes using 5% H₂S+N₂ mixture following literature procedure (Tanaka, Moritake and Uchiki, 2007). The reference CZTS sample is very close to stoichiometry in terms of total metal to sulfur atomic ratio with slight Cu-poor and Zn-rich composition. It is noted from Table 3.3 that as the single-step sulfurization temperature decreases, the sulfur content in the film obtained by sulfurization in 100 ppm H₂S+H₂ increases significantly.

Samples sulfurized at higher temperatures such as R7-450S, R2-450S, R7-550S all show severe sulfur deficiency with sulfur to total metal molar ratio much lower than the expected 1 : 1 value for stoichiometric CZTS. This is consistent with the XRD patterns showing metallic Cu₃Sn phases as well as ZnS phase for those samples (see Figure 3.3 and Figure 3.4). In addition, EDS also indicates for those samples such as R7-450S, there are local surface particles (e.g., see SEM image in insert for Figure 3.7(a)) with Cu:Sn atomic ratio close to 3:1 and very poor in sulfur and zinc content. Those small particles are presumably Cu₃Sn metallic phase, which is consistent with XRD patterns for those samples. In comparison, EDS in Table 3 indicates that the three samples of R2-350S, R8-350S, and R7-350S have compositions very close to CZTS, with total sulfur to metal ratios of nearly 1:1 and slight Cu-poor/Zn-rich stoichiometry. It is noted that the S to total metal ratio for these three samples still appears to be slightly lower than 1. Such minor deviation might be related to experimental error for EDS analysis considering the
standard deviation given in Table 3.3 and/or the possibility that the sulfurization temperature of 350°C is still slightly higher than ideal and further optimization will be needed.

Figure 3.7. Surface SEM images for single-step sulfurized samples of R7-450S (a), R7-350S (b), R8-350S (c), and the reference CZTS sample (d). The yellow arrow in the insert points toward the particle identified by EDS as Cu3Sn for R7-450S sample.

Nevertheless, these results, together with XRD (Figure 3.3 to 3.5) and Raman (Figure 3.6) lead to the conclusion that CZTS are formed in the samples of R2-350S and R7-350S through the sulfurization process in 100 ppm H₂S+H₂ at 350°C. However, for sample R8-350S, it is difficult to confirm whether CZTS formed or not since Raman data for that particular sample is not conclusive and further analysis will be needed to understand such observations.
In addition, it is noted that some local regions on the surface for those three samples appear to be rich in Cu and S with very low Zn and Sn content, which is consistent with the appearance of the Raman peak at 476 cm\(^{-1}\) characteristic of Cu\(_{2-x}\)S (Figure 3.6).

Table 3.3. EDS for single-step sulfurized samples in 100 ppm H\(_2\)S+H\(_2\) and a reference CZTS sample. (The reference CZTS sample was prepared by sol-gel sulfurization at 550°C for 60 minutes in 5%H\(_2\)S+N\(_2\).)

<table>
<thead>
<tr>
<th>Sample designation</th>
<th>Cu (at. %)</th>
<th>Zn (at. %)</th>
<th>Sn (at. %)</th>
<th>S (at. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2-350S</td>
<td>22±1.1</td>
<td>23±1.1</td>
<td>9±0.5</td>
<td>46±1.5</td>
</tr>
<tr>
<td>R8-350S</td>
<td>22±1.1</td>
<td>13±0.97</td>
<td>18±1.8</td>
<td>46±2.0</td>
</tr>
<tr>
<td>R7-350S</td>
<td>22±2.3</td>
<td>18±1.7</td>
<td>12±1.1</td>
<td>48±2.5</td>
</tr>
<tr>
<td>R2-450S</td>
<td>35±4.9</td>
<td>20±0.2</td>
<td>16±0.6</td>
<td>35±0.7</td>
</tr>
<tr>
<td>R7-450S</td>
<td>40</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>R7-550S</td>
<td>51</td>
<td>25</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>Reference CZTS</td>
<td>21±0.9</td>
<td>18±4.0</td>
<td>12±0.3</td>
<td>49±3.4</td>
</tr>
</tbody>
</table>

Because XRD pattern for those samples do not reveal additional crystalline phase other than CZTS, it is hypothesized that the amount of Cu\(_{2-x}\)S phase formed in the thin films is either amorphous or very little (e.g., <~2%).

SEM cross section images for samples R7-350S, R8-350S, and reference CZTS are shown in Figure 3.8(a), (b), and (c), respectively. It appears that all three samples show bilayer structures across the ~1 micron thick films with larger grains on top and smaller one underneath the surface and close to the substrate. Consistent with surface SEM images, sample R7-350S prepared at 350°C from Cu-rich recipe in 100 ppm H\(_2\)S+H\(_2\) give similar or even larger grain size comparing to that obtained at high temperature (550°C) using high H\(_2\)S concentration (≥ 5.0 vol.%), as shown for the reference CZTS sample (Figure 3.8(c)). In order to further complement previous analyses concerning phase
formation, electrical resistivity measurements were carried out for selected thin film samples. Table 4 lists measured sheet resistance and calculated electrical resistivity values at room temperature for some single-step sulfurized samples using 100 ppm H₂S+H₂. It is clearly seen that electrical resistivity values of samples of R7-450S and R7-550S sulfurized at 450 to 550°C using 100 ppm H₂S+H₂ are significantly lower than the values typically reported in literature for CZTS by several orders of magnitude (Xinkun et al., 2012). Such results are consistent with the XRD patterns and EDS analysis suggesting the presence of Cu₃Sn metallic phase and much lower sulfur to metal ratio for those samples.
Figure 3.8. Cross section SEM images for single-step sulfurized samples of R7-350S (a), R8-350S (b), and the reference CZTS sample (c).

In comparison, for the R7-350S sample with near-stoichiometric sulfur to metal ratio and no crystalline phase other than CZTS, the measured resistivity value of 0.11 Ω•cm falls in the lower range reported in literature, probably due to excess carbon in the film (Yu et al., 2014).
Table 3.4. Summary of electrical resistivity measurement for single-step sulfurized Cu-Zn-Sn thin film samples.

<table>
<thead>
<tr>
<th>Sample designation</th>
<th>Avg. Sheet resistance (Ω/□)</th>
<th>Resistivity (Ω•cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7-350S</td>
<td>923</td>
<td>0.11</td>
</tr>
<tr>
<td>R7-450S</td>
<td>2.0</td>
<td>2.4x10⁻⁴</td>
</tr>
<tr>
<td>R7-550S</td>
<td>39.1</td>
<td>4.7x10⁻³</td>
</tr>
</tbody>
</table>

Finally, optical properties of transmittance and absorbance were measured. Both reference CZTS and R7-350S samples have almost zero transmittance and closely matching absorbance. In comparison, sample R8-350S shows lower absorption and higher transmission compared to the other two samples. The extrapolation of Tauc plot between \((\alpha h\nu)^2\) versus photon energy \((h\nu)\) to zero absorption coefficient gives the optical band gap of each sample, and the results are shown in Figure 3.9. The band gap for the reference CZTS sample is 1.48 eV (Tanaka et al., 2011), while sample R7-350S gives a band gap of 1.41 eV, both of which are within the range (i.e., between 1.40 and 1.50 eV) normally reported for CZTS.
Figure 3.9. Plot showing calculated band gap from Tauc plot of \((\alpha h\nu)^2\) vs. photon energy \((h\nu)\) based on measured optical properties of absorbance and transmittance for single-step sulfurized samples of R7-350S, R8-350S, and the reference CZTS sample.

On the other hand, the band gap for sample R8-350S is significantly higher at 1.79 eV, which might be due to the presence of impurity phases such as ZnS. Further investigation using Raman spectroscopy based on multiple wavelength excitations (e.g., 325 nm) will be needed to understand the exact reason behind the reported high band gap for this sample.

3.3.2. Thermodynamic analysis

Thermodynamic analysis was carried out using available data in the literature to further help understand the processing window to obtain CZTS, including at temperatures even lower than 350°C using the ppm-level H₂S. The following set of reactions (equations (1) to (3)) that describe the reactions for binary sulfides formation from metals (obtained from reduction of corresponding metal oxides in a hydrogen-containing atmosphere):
\[
\begin{align*}
\text{Zn} + \text{H}_2\text{S} & \rightarrow \text{ZnS} + \text{H}_2 \quad (1) \\
2\text{Cu} + \text{H}_2\text{S} & \rightarrow \text{Cu}_2\text{S} + \text{H}_2 \quad (2) \\
\text{Sn} + 2\text{H}_2\text{S} & \rightarrow \text{SnS}_2 + 2\text{H}_2 \quad (3)
\end{align*}
\]

(It is recognized that upon reduction, the metal elements could form Cu-Sn and Cu-Zn alloys that would then react with H\(_2\)S. However, for simplicity, direct reaction between individual metal element and H\(_2\)S is analyzed.) Upon binary sulfides formation, a final reaction between those binary sulfides would lead to CZTS formation as follows:

\[
\text{ZnS} + \text{Cu}_2\text{S} + \text{SnS}_2 \rightleftharpoons \text{Cu}_2\text{ZnSnS}_4 \quad (4)
\]

Alternatively, CZTS might also form from metals and H\(_2\)S in a single step:

\[
2\text{Cu} + \text{Zn} + \text{Sn} + 4\text{H}_2\text{S} = \text{Cu}_2\text{ZnSnS}_4 + 4\text{H}_2 \quad (5)
\]

However, due to the limited thermochemical data for CZTS, as a first approximation, only formation of binary sulfides was considered from thermodynamics point of view. For each binary sulfide, values of standard Gibbs free energy of formation (\(\Delta G_f^\circ\)) at a given temperature can be found in databases (Richard Hemingway, 1995). Based on those standard Gibbs formation energy values, the equilibrium ratio of partial pressure of H\(_2\)S to H\(_2\) or pH\(_2\)S/pH\(_2\) can be predicted according to equation (6):

\[
\frac{\text{pH}_2\text{S}}{\text{pH}_2} = \exp\left(\frac{\Delta G_f^\circ}{RT}\right) \quad (6)
\]

in which \(\Delta G_f^\circ\) is the standard free energy change for the reaction at temperature T as calculated from the Gibbs formation energy. This way, for a given pH\(_2\)S/pH\(_2\) ratio (for example by using the gas mixture of 100 ppm H\(_2\)S+H\(_2\), i.e., pH\(_2\)S/pH\(_2\) = 10\(^{-4}\) = 100 ppm),
the stability-limit temperature T_s for each sulfide can be calculated based on equation (6): below T_s, the binary sulfide phase will be thermodynamically stable while above that the metal element is stable.

Figure 3.10 depicts the calculated stability-limit temperature T_s for sulfurization reaction corresponding to different pH_2S/pH_2 for Cu$_2$S, ZnS, Sn(II)S, and Sn(IV)S$_2$ phases. Generally, as pH_2S/pH_2 decreases, the stability limit temperature T_s becomes lower. It is seen that Zn can be sulfurized easily with pH_2S/pH_2 as low as 0.01 ppm at temperatures of 550°C, which is expected given the high stability for ZnS. In comparison, Cu and Sn need much higher H_2S concentration or, at a fixed pH_2S/pH_2 ratio, much lower temperature in order for the corresponding sulfide phases to be thermodynamically stable. Specifically, with $pH_2S/pH_2 = 100$ ppm as used in this study, for Cu to form Cu$_2$S, the sulfurization temperature has to be lower than \sim450°C; for Sn to form Sn(II)S, reaction temperature below \sim400°C is necessary; on the other hand, for Sn to form Sn(IV)S$_2$, the temperature has to be below \sim150°C.
In summary, from the thermodynamic analysis, using 100 ppm H$_2$S+H$_2$, it seems possible to form CZTS in which Sn exist in Sn(II) state at temperature below ~350°C; while to make sure Sn to be at Sn(IV) state, sulfurization at even lower temperature such as ~150°C might be needed.

3.3.3. Two-step low temperature sulfurization process

Based on the results of single-step sulfurization giving CZTS associated with minor or amorphous Cu$_{2-x}$S phase after sulfurization in 100 ppm H$_2$S+H$_2$ at temperature of 350°C and the thermodynamic analysis, additional experiment was carried out with two-step sulfurization at even lower temperature of 125°C.

As described before, the sample was first heated up to 400°C in 4%H$_2$+N$_2$ and held for 60 minutes to reduce the metal oxide precursor to metallic alloys and then cooled down
to 125°C and hold for 180 minutes in 100 ppm H₂S+H₂. Figure 3.11 shows XRD pattern for the R7-400H-125S sample with diffraction peaks that could belong to either ZnS or CZTS. The pattern has high background that might be due to the low temperature used for sulfurization. The SEM images in Figure 3.12 show a uniform and reasonably dense thin film. Also, EDS analysis as shown in Table 3.5 confirmed that sample R7-400H-125S has stoichiometry that matches closely with the expected CZTS phase. In addition, EDS for some surface particles showed high content of Cu and S and almost zero Zn and Sn content, suggesting surface Cu₂₋ₓS phase(s). Further investigation based on Raman spectroscopy as in Fig. 13 revealed four distinct peaks at 338, 288, 352, and 368 cm⁻¹ all belong to CZTS.

Moreover, one additional peak at 476 cm⁻¹ with relatively high intensity belongs to Cu₂₋ₓS was identified, which is consistent with the identification of Cu₂₋ₓS peaks in XRD and

Figure 3.11. XRD pattern and picture (insert) of the two-step sulfurized sample R7-400H-125S that was prepared by annealing sol-gel obtained Cu-Zn-Sn oxide precursor at 400°C in 4%H₂+Ν₂ followed by sulfurization at 125°C in 100 ppm H₂S+H₂.
SEM-EDS analysis on the thin film surface. The combined results from XRD, SEM-EDS, and Raman proved that the thin film formed after sulfurization of the film at 125°C in 100 ppm H₂S+H₂ is primarily Cu₂ZnSnS₄ with minor amount of Cu₂-S. It should be mentioned that single-step sulfurization of the Cu-Zn-Sn oxide precursor films using 100 ppm H₂S + H₂ at temperature ~300°C and below had been carried out but it only yielded amorphous film. This suggests inactivity of the oxide precursor film after air baking, which might be due to the slow reaction kinetics for oxides at lower temperature.

Figure 3.12. SEM images at different magnification for the two-step sulfurized sample R7-400H-125S.

Table 3.5. EDS data for two-step sulfurized sample R7-400H-125S.

<table>
<thead>
<tr>
<th></th>
<th>Cu (at. %)</th>
<th>Zn (at. %)</th>
<th>Sn (at. %)</th>
<th>S (at. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7-400H-125S</td>
<td>24±2.0</td>
<td>12±1.5</td>
<td>12±0.7</td>
<td>52±1.5</td>
</tr>
</tbody>
</table>

This is the rationale for using the two-step sulfurization with the first step reducing the oxide precursor to metals in forming gas at 400°C, which is then followed by the second step sulfurization at lower temperature of 125°C.
Figure 3.13. Room temperature Raman spectrum for the two-step sulfurized sample R7-400H-125S.

3.4. Conclusion

Sulfurization of Cu-Zn-Sn oxide precursor thin films prepared by sol-gel method from different stoichiometric solutions was carried out using 100 ppm H₂S+H₂ gas mixture for CZTS thin films preparation. At high sulfurization temperatures (e.g. 450 and 550°C), ZnS was the main sulfide phase observed, while Cu and Sn were primarily found to exist as Cu₃Sn metallic alloy phase, which lead to low sulfur to metal ratio (as determined by EDS analysis) and metallic like-low electrical resistivity values for those films. On the other hand, at low sulfurization temperatures (e.g. 350°C in single step sulfurization or even as low as 125°C in the reduction-then-sulfurization two-step process), near stoichiometric CZTS phase was obtained, which is often accompanied by minor Cu$_{2-x}$S phase(s) as confirmed by XRD, EDS, Raman spectroscopy, and measurements of
electrical resistivity and optical properties of the obtained thin films. This study demonstrates the complexity of CZTS sulfurization process, while the discovery of the CZTS formation using sol-gel sulfurization with significantly lower H₂S concentration at the ppm-level paves the way for developing safe, environmentally friendly, and inexpensive processing route for CZTS based solar cells. Further study is needed to optimize the sulfurization process to eliminate the formation of Cu₂ₓS phase(s), improve the surface homogeneity, and evaluate the performance and limitations for CZTS solar cells prepared using this approach as compared with those from standard preparation techniques that rely on the use of high concentration (e.g., 5% and higher) H₂S gas.
4. STUDY OF THE FUNDAMENTAL PHASE FORMATION MECHANISM OF
SOL-GEL SULFURIZED CZTS FILMS IN PPM LEVEL H₂S

4.1. Introduction

Preparation of high-quality CZTS thin films for solar cell applications remained a challenge due to the intrinsic complexity of the quaternary CZTS system (Wang et al., 2014). Regardless of the adopted processing route, there is a lack of understanding about CZTS formation and other side-reactions that might lead to various harmful secondary phases (e.g., ZnS, Cu₂₋ₓS, and Cu-Sn-S) during processing, which contribute to the limited device efficiency. Such knowledge regarding the fundamental mechanism of CZTS formation and associated transformation is crucial to process optimization to obtain CZTS thin films with better quality and hence higher device performance.

To address this issue, several attempts have been made using different ex situ characterization techniques such as multiwavelength Raman scattering (Dimitrievska et al., 2014), Room Temperature Photoluminescence (RT-PL) (Grossberg et al., 2014), Secondary Ion Mass Spectroscopy (SIMS), and X-ray Spectroscopy (XPS) combined with SEM and EDS (Salomé et al., 2011)(Vora et al., 2012)(Djemour et al., 2013). However, these techniques usually do not provide information regarding the real-time emergence and transformation of CZTS phase and other by-products.

On the other hand, in situ XRD technique has been adopted to complement those ex situ techniques and provide useful information regarding the evolution of CZTS and other phases in real time (Brandl et al., 2015)(Schorr and Gonzalez-Aviles, 2009). However, XRD alone is not adequate in differentiating between CZTS and some closely-related
phases such as ZnS and Cu$_2$SnS$_3$ (CTS) and it also suffers from poor spatial resolution (Alfons Weber et al., 2009).

In contrast, *in situ* Raman microspectroscopy, as a multiphase sensitive, non-destructive, and high spatial resolution (down to ~1 μm) tool, offers great potential to investigate the phase formation mechanism of CZTS material under real processing conditions and provide useful information regarding the process kinetics. Previous studies on CZTS using Raman spectroscopy were focused on structure transitions (Scragg et al., 2014) and temperature influence up to only ~100°C on Raman peaks of CZTS thin films (Sarswat, Free and Tiwari, 2011). Recently, the authors of this work demonstrated that CZTS material is Raman active at elevated temperatures up to ~600°C and it would undergo significant oxidation in air starting from ~400°C (Awadallah and Cheng, 2016). Wang et al. used *in situ* Raman to investigate the evolution of CZTS nanocrystals via the reaction between SnS$_x$, ZnS, and Cu$_x$S binary sulfide nanoparticles on a TiO$_2$ mesoscopic scaffold in nitrogen atmosphere (Wang, Elouatik and Demopoulos, 2016), and found that kesterite starts to form at 170°C under continuous heating condition.

However, to the best of our knowledge, there is no reported *in situ* Raman study for monitoring the phase formation of CZTS directly from sol-gel derived Cu-Zn-Sn oxide precursor in a sulfur rich atmosphere. Therefore, one of the main objectives of this work is to reveal the fundamentals about the phase formation process of CZTS thin films via sulfurization of Cu-Zn-Sn oxide precursor obtained by sol-gel processing in a hydrogen sulfide (H$_2$S)-containing atmosphere using the unique capability of the *in situ* Raman microspectroscopy technique.
Moreover, information related to formation of impurities for CZTS (Chakrabarti and Laughlin, 1983) (Kawai, 1973), are not available, especially under real time condition when quaternary CZTS system are processed. Of particular concern, how do impurity such as Cu$_{2-x}$S, SnS and Cu$_2$SnS$_3$ phases form during processing which have band gaps lower than CZTS and could be detrimental to the device performance (Siebentritt, 2013).

Therefore, studying each binary and ternary sulfide system individually will also provide fundamental information regarding the stability limit of those systems and their formation mechanism, which eventually help understand complex quaternary compound CZTS system.

The insights from this study would also help optimize the formation of CZTS via sulfurization of sol-gel derived oxide precursor in ppm-level H$_2$S at relatively low temperatures (~350°C and below) as demonstrated earlier in chapter 3 (Awadallah and Cheng, 2017) aiming to produce CZTS thin films with superior quality via safe and low cost processing. It will also be beneficial to general CZTS-related study by providing insights about how to reduce formation of unwanted impurities.

4.2. Materials and Methods

The Cu-Zn-Sn metal oxide precursor thin films were prepared based on two different solutions: stoichiometric and Cu-rich. The reason for using the Cu-rich solution in the current study is that some reports recently suggest that Cu-rich CZTSSe films might offer
denser layers and larger grains which is beneficial to the device performance (Awadallah and Cheng, 2017) (Guo et al., 2014).

The stoichiometric solution has Cu : Zn : Sn atomic ratio of 2 : 1 : 1 while the Cu-rich solution has Cu : Zn : Sn atomic ratio of 2.2 : 1 : 1 (i.e., 10 at.% Cu-rich). For stoichiometric solution, 4.37 g of copper acetate monohydrate (+99%, Sigma Aldrich), 2.40 g of zinc acetate dihydrate (+99%, Sigma Aldrich), and 2.47 g of tin chloride (+99%, Sigma Aldrich) were dissolved into 50 mL of 2-methoxyethanol (Afa Aesar) and the solution was stirred on a hot plate at 60°C for 1 hour. 2 mL of Monoethanolamine (MEA, Alfa Aesar) was also added to the solution to help dissolve the metal salts through the formation of complex intermediates. It also helps film adhesion and prevents defects (e.g., voids and cracking) formation (Ito, 2015)(Kahraman et al., 2014). Then, the dark blue solution that formed was left to cool down to room temperature and filtered with 0.2 μm PTFE filter. After that, samples were prepared by spin coating on bare soda lime glass substrates at 3000 rpm for 30 seconds and air baked on a plate at 300°C for 5 min. The coating and air-baking steps were repeated 5 times to obtain the desired film thickness of ~ 800 nm. The same procedure was adopted for the preparation of Cu-rich samples except for the starting amount of copper acetate monohydrate used was 4.78 g. Eventually, the oxide precursor samples were annealed in an H₂S-containing atmosphere in the in situ Raman monitoring cell that is specially designed for that purpose as described in detail below.

Similar to Cu-Zn-Sn metal oxide precursor, precursor films of Cu, Sn, and stoichiometric Cu-Sn (molar ratio of Cu:Sn is 2:1) were prepared. The reason for not considering sulfurization of Zn-O precursor in the current study is that ZnO is well known as one of
the effective sorbents that is commonly used for H$_2$S wash (Rosso et al., 2003). Besides, ZnS is the least harmful phase to the device performance compared with other binary and ternary sulfides associated with CZTS (Siebentritt, 2013).

Table 4.1 shows the Table 2 includes the sample designation and the corresponding sulfurization conditions for each sample. The in situ Raman experiments are classified based on the processing temperature into two categories; intermediate and low temperature. The first category of experiments is a single step sulfurization process carried out at intermediate temperature of 350°C while the second category involves a two-step process in which a high temperature Forming Gas Annealing (FGA) is carried out at 400°C using 5% H$_2$+Ar (Airgas, UHP) gas mixture, followed by low temperature sulfurization at 170°C.

Table 4.1. List of designated sulfurization and in situ Raman monitoring experiments with detailed sulfurization conditions.

<table>
<thead>
<tr>
<th>Sample designation</th>
<th>Oxide precursor</th>
<th>Sulfurization temperature (°C)</th>
<th>Sulfurization time (min)</th>
<th>FGA temperature (°C)</th>
<th>FGA time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn-350</td>
<td>SnO$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu-350</td>
<td>CuO/Cu$_2$O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu-Sn-350</td>
<td>Cu-Sn-O</td>
<td>350</td>
<td>≥60</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>CZT-350</td>
<td>Cu-Zn-Sn-O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn-170</td>
<td>SnO$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu-170</td>
<td>CuO/Cu$_2$O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu-Sn-170</td>
<td>Cu-Sn-O</td>
<td>170</td>
<td>≥60</td>
<td>400</td>
<td>60</td>
</tr>
<tr>
<td>CZT-170</td>
<td>Cu-Zn-Sn-O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.1(a) is a top view photo without the viewport lid to show the configuration inside the Raman cell. The thin film sample on glass substrate would lay down horizontally on the top of the heating wire that is connected to the power supply. To provide accurate temperature measurement inside the cell, a type-K thermocouple connected to the temperature controller is inserted into the cell and touches the back surface of the glass substrate. A cross section model view of the cell assembled with other Raman system components is shown in Figure 4.1(b). The laser beam is focused onto the sample vertically using a reflecting mirror and the objective lens and passes through a glass window with thickness of 200 μm that allows signal transmission with minimum intensity attenuation. The whole Raman cell is fixed on a 3-axis stage to allow precise laser focus and examine different areas of the sample. Figure 4.1(c) shows a schematic drawing of the in-house built Raman micro-spectroscopy system with the heating cell installed. All experiments were carried out using an in-house Raman system equipped with an air-cooled Ar ion laser (Spectra Physics Model 177, 514 nm, 400mW, spot size 20 μm) and the Raman spectra were collected using a spectrograph (HoloSpec f/l.8i, Kaiser Optical System) with a total accumulation time of 5 min. After the in situ Raman monitoring experiments, samples were also examined with different ex situ characterization tools: X-ray diffraction was carried out using Siemens 500D diffractometer with Cu Kα (λ = 1.5406 °A) radiation and 2θ in the range of 20 - 80° for phase identification. SEM combined with EDS was performed on a JEOL 6330F microscope at 15.0 kV accelerating voltage to investigate the surface morphology and assess the local chemical composition of the sample surface and cross section.
Figure 4.1. (a) Top view of the in situ Raman cell with the top lid open showing the sample and other gas and electrical connections (b) Cross sectional model view of the in situ Raman cell and stage. (c) Schematic of the in-house built Raman system.

4.3. Results and Discussion

4.3.1. In situ Raman Monitoring of Cu-O Films Sulfurization

As shown in Figure 4.2(a), sulfurization of Cu-O film in 100 ppm H₂S+4%H₂+N₂ at 350°C for 120 min showed no evidence for the formation of any copper sulfide phase as no peaks correspond to any Cu₂-S phase(s) were detected. No change on the Raman spectra was observed upon cooling the sample down to room temperature in Argon.
On the other hand, in situ Raman monitoring for the two step sulfurization of Cu-O sample at 170°C, as shown in Figure 4.3(a), revealed the emergence of one peaks at 471 cm\(^{-1}\) after 45 min of sulfurization. Further sulfurization till 60 min led to significant increase in the peak intensity accompanied by slight shift to higher wavenumber of 472 cm\(^{-1}\). No further change was noticed on the peak intensity or position when sulfurization continued till 80 min. After that, sample was cooled down to room temperature and Raman signal was collected with no noticeable changes observed on its intensity or position. The observed peak during the in situ Raman monitoring most likely belongs to Cu\(_{2-x}\)S phase (Fernandes, Salomé and da Cunha, 2011).

![Figure 4.2. (a) In situ Raman spectra collected at different sulfurization times for Cu-350 sample sulfurized at 350°C.](image-url)
Further investigation of the sample’s composition after in situ Raman monitoring was carried out using XRD and EDS. Figure 4.3(b), shows XRD pattern for Cu-O precursor sample which primarily consists of CuO and the main peaks were identified at 2θ of 35.5 and 38.7°, which matches the database for CuO (JCPDS #041-0254). The XRD pattern of sample Cu-350 shown in Fig. 3(b) clearly matches the one for the oxide precursor sample. Moreover, the EDS data (Table 4.2) for sample Cu-350 confirmed the sample content is primarily Cu and O with atomic ratio close to Cu:O ~1:1, which is consistent with both in situ Raman observations and XRD results.

On the other hand, XRD pattern for sample Cu-170 showed two distinctive peaks belong to Cu metal at 2θ of 43.2 and 50.4° (JCPDS#-004-0836). Another two low intensity peaks at 2θ of 31.7 and 36.9 were identified which might belong to CuS (JCPDS#-006-0464) and hexagonal Cu$_2$S (JCPDS#-012-0176) phases respectively. The high intensity of the Cu metal XRD peaks relative to other phases suggests that CuO undergoes
complete reduction to Cu metal during the initial FGA step at 400°C and then the Cu metal reacts with H₂S gas at 170°C to form Cu₂₋ₓS phase(s) as identified by Raman spectroscopy. The EDS data (Table 4.2) for sample Cu-170 showed sulfur atomic content of 25% while Cu content was found to be 62%. The reason for the high Cu content is that most of the Cu in the sample exists in the metal form while the Cu₂₋ₓS amount is very little, as consistent with the XRD result. Those results from in situ Raman as well as XRD and EDS are not conclusive about which Cu₂₋ₓS (CuS or Cu₂S) phase exist in the sample since the two phase (CuS and Cu₂S) have a matching Raman shift and only one peak is identified in XRD for each phase. Continued sulfurization for longer time under these conditions is expected to completely transform the Cu metal to Cu₂₋ₓS phase.

4.3.2. In situ Raman Monitoring of Sn-O Films Sulfurization

Sulfurization of Sn-O thin film at 350°C for 80 min using 100 ppm H₂S+4%H₂+N₂ mixture showed no evidence for the formation of any tin sulfide phase(s) (e.g., SnS, SnS₂, or Sn₂S₃) as in Figure 4.4(a). The in situ Raman data for sample Sn-350 is presented in the range of Raman shift between 100 and 400 cm⁻¹.

On the other hand, the two-step sulfurization process led to sulfurization of Sn-O precursor to form tin sulfide. Figure 4.4(b) shows the in situ Raman data for Sn-170 sample sulfurized at 170°C for 80 min. The first peak emerged after 30 min of sulfurization and was observed at 310 cm⁻¹. After 80 min of sulfurization, the peaks at 310 cm⁻¹ was observed to shift to 312 cm⁻¹ and its intensity slightly increased. It was also
noticed that one peak that might belong to SnS phase (Altamura and Vidal, 2016) appeared at 162 cm\(^{-1}\), however, it disappeared with continued sulfurization and after cooling the sample down to room temperature. Upon cooling the sample down to room temperature, only one peak was observed at 315 cm\(^{-1}\) which most likely belongs to SnS\(_2\) phase as identified in previous reports (Altamura and Vidal, 2016) (Lund \textit{et al.}, 2014).

![Figure 4.4](image)

Figure 4.4. In situ Raman spectra for SnO\(_2\) sulfurized samples at 350°C (a) and 170°C (b) collected at different sulfurization times. RT Raman spectra for samples before and after sulfurization are provided for comparison.

Further investigation of the Sn-O precursor sample as well as sulfurized samples using both XRD and EDS was also carried out. The XRD analysis of Sn-O precursor sample (Fig. 5) shows the three peaks identified at 2θ of 26.6, 33.8, and 51.7 which belong to SnO\(_2\) and matches database for SnO\(_2\) phase(JCPDS#-041-1445). In addition, EDS analysis of the Sn-O precursor sample showed that it has a Sn atomic content of 30% while O atomic content was 70%, this ratio of Sn:O \~1:2 matches the XRD results. Sulfurization of sample Sn-350 revealed no change from the oxide form as confirmed by
XRD analysis (Fig. 5(a)) of the sample, which showed a pattern identical to that of the precursor oxide. Furthermore, the EDS analysis of sample Sn-350 (Table 4.1) matches both in situ Raman and XRD observation as it showed the sample has only 1% content of sulfur and is significantly Sn-deficient with Sn atomic content of 20% and the remaining is oxygen.

XRD analysis of sample Sn-170 (Figure 5(b)) matches in situ Raman observation. The XRD pattern for sample Sn-170 shows the two characteristic peaks correspond to SnS$_2$ phase at 2θ of 15.0, 41.8° and no peaks belong SnO$_2$ were observed. This result matches database for SnS$_2$ phase (JCPDS#-023-0677). However, EDS data for sample Sn-170 shows a Sn:S content of ~ 1 : 1.35 which slightly deviates from the SnS$_2$ composition. The reason for such sulfur deficiency is not clear.
4.3.3. In situ Raman Monitoring of Cu-Sn-O Films Sulfurization

The next step toward understanding the formation pathway for CZTS phase is to study the ternary sulfide systems, in particular Cu-Sn-system. Figure 4.6(a) shows the in situ Raman spectra for Cu-Sn-350 sample sulfurized at 350°C for 60 min at different sulfurization time. No Raman peaks were observed during the 60 min of sulfurization and all collected Raman spectra were featureless. The sample was then cooled down to room temperature and no change was observed on the Raman spectrum at room temperature.

Figure 4.5. XRD patterns for Sn-oxide precursor and samples Sn-350 and Sn-170.
For the two-step sulfurization of the Cu-Sn-O precursor film at 170°C, the in situ Raman data in Fig. 6(b) show no evidence for the formation of any copper tin sulfide phase. However, upon cooling the sample down to room temperature, Raman spectrum of the sample clearly showed one peak identified at 474 cm\(^{-1}\) which more likely belongs to Cu\(_{2-x}\)S phase (Fernandes, Salomé and da Cunha, 2011). The spike at 364 cm\(^{-1}\) is originated from the cosmic ray in the background and does not belong to any Cu-Sn sulfide phase.

Figure 4.6. In situ Raman spectra for Cu-Sn-O samples sulfurized at 350°C (a) and 170°C (b) collected at different sulfurization times. RT Raman spectra for samples before and after sulfurization are provided for comparison.

4.3.4. In situ Raman monitoring of CZTS phase formation at 350°C

The first *in situ* Raman monitoring experiment for the Cu-Zn-Sn-O precursor was carried out using a gas mixture of 100 ppm H\(_2\)S+4%H\(_2\) balanced by N\(_2\) (all gas composition
specified by volume in this thesis) at 350°C with sulfurization time up to 180 min. The Cu-Zn-Sn oxide precursor sample as described before was placed in the Raman cell and heated up in Ar (Ultra-high purity (UHP) grade, Airgas) atmosphere at 25°C/min rate. Then, the gas was switched from Ar to the gas mixture of 100 ppm H$_2$S+4%H$_2$+N$_2$. During the sulfurization process, Raman signals were collected at different time intervals. After that, the sample was cooled down in Ar atmosphere to room temperature and Raman spectrum was collected again. It is noted that no sulfur deposits was observed on the glass window during or after the in situ Raman monitoring experiments when using 100 ppm H$_2$S for sulfurization. In comparison, a separate in situ sulfurization experiment was also carried out using elemental sulfur and it completely covered the internal surface of the glass window as expected due to sulfur evaporation and deposition on the relatively colder surfaces of the Raman cell including the glass window. Those observations indicate the effectiveness of using low ppm-H$_2$S as opposed to elemental sulfur for in situ Raman monitoring of the sulfurization process.

Figure 4.7(a) shows the Raman spectra collected between Raman shift of 200 to 600 cm$^{-1}$ at different time intervals up to a total sulfurization time of 180 min during the in situ Raman monitoring of the sulfurization process for the sample from the stoichiometric solution. The Raman spectrum collected at room temperature (RT) for the oxide precursor showed no peaks indicating the amorphous nature of the oxide precursor sample. After heating the sample up to 350°C and switching the gas from Ar to 100 ppm H$_2$S+4%H$_2$+N$_2$, no peaks were observed during the first 15 min of sulfurization.
However, after ~30 min of sulfurization, a peak centered at Raman shift of ~330 cm\(^{-1}\) emerged, which most likely corresponds to CZTS phase at elevated temperature (Awadallah and Cheng, 2016), while no peaks belonging to other sulfides (e.g., Cu\(_x\)S, ZnS, or SnS\(_2\)) were observed. Subsequent annealing for longer time of 60 min and eventually 180 min did not seem to cause any additional changes in the Raman spectra except that Raman peaks became slightly higher in intensity. After that, the experiment
was ceased and the sample was cooled down naturally in Ar atmosphere to room temperature when a Raman spectrum of the sample was collected again. As shown in Figure 4.7(a) for the Raman spectrum collected at room temperature for the stoichiometric sample after the in situ monitoring experiment, the major Raman peak shifted to 338 cm$^{-1}$, which is characteristic to CZTS and matches well with the literature data (Dimitrievska et al., 2014), and the shift to higher frequency with decreasing temperature is consistent with expectation. On the other hand, no peaks belonging to other sulfides (e.g., Cu$_x$S, ZnS, or SnS$_2$) were observed, suggesting relatively high purity of the CZTS thin film formed. (It is noted that a “peak” at ~212 cm$^{-1}$ seem to appear in all Raman spectra collected at elevated temperatures during sulfurization and at room temperature after cooling the sample down. It even appears for the oxide precursor sample! The authors believe it is not related to the sample and most likely originated from the cosmic rays in the background collected during the in situ Raman monitoring experiments given the relatively long signal acquisition time of 300 seconds or longer.)

In comparison, Figure 4.7(b) summarizes the result of the in situ Raman monitoring experiment at 350°C for the Cu-rich sample. Similar to the stoichiometric sample, sulfurization for ~30 min led to the appearance of a distinctive peak at Raman shift of ~331 cm$^{-1}$ that most likely belongs to the CZTS phase. Further sulfurization for 60 min seems to lead to a slight shift in the observed peak from 331 cm$^{-1}$ to 334 cm$^{-1}$. At the same time, another peak emerged at 467 cm$^{-1}$, which is attributed to Cu$_{2-x}$S at elevated temperature (Dimitrievska et al., 2014). The exact reason for the observed peak shift for the Cu-rich CZTS is not clear and it might be related to the composition change.
associated with the emergence of Cu$_{2-x}$S phase. After that, the sample was cooled down in Ar atmosphere and Raman data was collected again at room temperature, which showed two distinctive peaks characteristic to CZTS phase at 338 cm$^{-1}$ and 287 cm$^{-1}$, and the other peak at 471 cm$^{-1}$ is identified as Cu$_{2-x}$S.

Further investigation of both the stoichiometric and the Cu-rich samples was carried after the in situ Raman monitoring experiments. The room temperature XRD patterns of the 350$^\circ$C in situ examined stoichiometric sample after sulfurization for 180 min and the Cu-rich sample after sulfurization for 60 min as well as the oxide precursor are shown in Figure 4.8. The oxide precursor sample showed a completely amorphous pattern while the in situ Raman examined samples were crystalline and showed the same main peaks identified for both samples at 2θ of 28.4, 47.3, and 56.0$^\circ$, which can be attributed to CZTS (JCPDS # 026-0575).

One possible reason why Cu$_{2-x}$S phase in the Cu-rich sample, as detected by Raman from the sample surface (see Figure 4.8(b)), is not observed in the XRD pattern might be that the amount of Cu$_{2-x}$S formed during sulfurization is relatively small (i.e., less than ~5 wt.%) and below the detection limit for the XRD system used. Another possibility is that Cu$_{2-x}$S phase formed has poor crystallinity, which is common for the Cu-S system. It is also noted that the XRD patterns contain a bump in the 2θ range of ~20-35$^\circ$.
Figure 4.8. Room temperature XRD patterns of in situ Raman examined stoichiometric sample sulfurized for 180 min and Cu-rich sample sulfurized for 60 min at 350°C in 100 ppm H₂S+4%H₂+N₂. The amorphous oxide precursor XRD pattern is included for reference.

This might be attributed to the glass substrate beneath the thin film sample, as its thickness is only ~0.5 μm, as seen later for the SEM images of the samples cross-section. (The possibility of the bump belong to untransformed oxide is low due to the low oxygen content in those films, as confirmed by EDS.)

Figure 4.9(a) is an SEM image for the surface of a stoichiometric sample sulfurized at 350°C for 180 min. It showed the sample was relatively dense with small submicron grains, which is expected given the sulfurization temperature was only 350°C. In comparison, the Cu-rich sample showed a different morphology with a relatively flat layer decorated with large number of micron size particles on top as in Figure 4.9(b). The EDS analysis of the flat surface of stoichiometric sample (Table 4.1: sample 350-60-S1) showed that it has near stoichiometric composition. It is noted that Figure 4.9(a) on the stoichiometric sample surface also shows a few large bright particles. However, when
they were probed by EDS, they do not give a consistent composition such as Cu$_{2-x}$S. Since those particles are not in large number as opposed to the Cu-rich sample, they will be studied in future as needed to reveal their exact origin.

![Figure 4.9](image)

Figure 4.9. SEM images for the surface of the in situ Raman examined (a) stoichiometric sample sulfurized for 180 min and (b) Cu-rich sample sulfurized for 60 min. The large surface particles in (b) have been identified by EDS to have composition very close to Cu$_{2}$S.

For the Cu-rich sample, the flat surface regions (Table 4.1: sample 350-60-S2) give similar composition. In addition, analysis of the surface particles of the Cu-rich sample (Table 4.1: sample 350-60-S2-SP) showed they have low content of Zn and Sn and high content of Cu with Cu : S atomic ratio close to ~2 : 1, which most likely corresponds to the Cu$_{2}$S phase. Based on the *in situ* Raman monitoring data collected at 350°C for the stoichiometric sample, it is concluded that other than CZTS, none of the main peaks for other sulfides (i.e., monoclinic-Cu$_{2}$SnS$_{3}$ sulfide at 290 cm$^{-1}$ and 352 cm$^{-1}$ (Berg *et al.*, 2012)(Suryawanshi *et al.*, 2016), ZnS at 352 cm$^{-1}$, 700 cm$^{-1}$ and 275 cm$^{-1}$ (Duren *et al.*, 2015)(Nilsen, 1969), SnS$_{2}$ at 314 cm$^{-1}$ (Berg *et al.*, 2012)) were observed during the *in situ* Raman monitoring experiments at 350°C.
Table 4.2. EDS data for in situ Raman examined samples sulfurized at different conditions using 100 ppm H₂S+4%H₂+N₂ mixture.

<table>
<thead>
<tr>
<th>Sample designation</th>
<th>Cu (at. %)</th>
<th>Zn (at. %)</th>
<th>Sn (at. %)</th>
<th>S (at. %)</th>
<th>O (at. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-350</td>
<td>55</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>Cu-170</td>
<td>62</td>
<td>NA</td>
<td>NA</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Sn-350</td>
<td>NA</td>
<td>NA</td>
<td>20</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>Sn-170</td>
<td>NA</td>
<td>NA</td>
<td>41</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>350-60-S1(stoich.)</td>
<td>27±3.1</td>
<td>14±2.7</td>
<td>11±1.1</td>
<td>48±3.2</td>
<td>0</td>
</tr>
<tr>
<td>350-60-S2(Cu-rich)</td>
<td>25±8.7</td>
<td>15±5.0</td>
<td>10±1.0</td>
<td>48±1.8</td>
<td>0</td>
</tr>
<tr>
<td>350-60-S2-SP(Cu-rich)</td>
<td>64±9.2</td>
<td>3±6.4</td>
<td>7±1.0</td>
<td>26±3.8</td>
<td>0</td>
</tr>
<tr>
<td>170-60-S</td>
<td>26±4.2</td>
<td>14±3.8</td>
<td>14±1.5</td>
<td>46±2.5</td>
<td>0</td>
</tr>
<tr>
<td>170-180-SP</td>
<td>49±1.8</td>
<td>4±1.4</td>
<td>4±0.7</td>
<td>43±1.4</td>
<td>0</td>
</tr>
</tbody>
</table>

Therefore, it is most likely that CZTS phase forms through a direct reaction between the metal oxides and the gas mixture of 100 ppm H₂S+4%H₂ at 350°C, and the CZTS remains stable since it is the only thermodynamically stable phase for the stoichiometric sample under that condition. On the other hand, when using the Cu-rich solution, apart from forming CZTS, small amount of Cu₂-xS phase also form on the film surface upon continued sulfurization conditions and CZTS and Cu₂-xS would co-exist in equilibrium due to the Cu-rich composition of that sample.
4.3.5. In situ Raman monitoring of CZTS phase formation at 170°C

Previously, it has been reported CZTS could also form from sol-gel oxide precursor via a two-step sulfurization with the first step of forming gas (e.g., 4%H₂+N₂) annealing at 400°C and the second step of sulfurization in 100 ppm H₂S+H₂ gas mixture at further reduced temperature as low as 125°C (Awadallah and Cheng, 2017). (It is noted that the first step of forming gas annealing converts some of the metal oxides (Sn and Cu) to metallic phases. Without this forming gas annealing (FGA) step, direct sulfurization of the sol-gel oxide precursor at low temperature such as 125°C did not yield the desired CZTS phase (Awadallah and Cheng, 2017). On the other hand, Cu₂₋ₓS phase was often observed for those samples sulfurized in 100 ppm H₂S+H₂ at lower temperature (i.e., <~200°C). This section discusses in detail the results of in situ Raman experiment simulating the two-step sulfurization to understand the CZTS and related impurity phase formation under this condition.

Due to the tendency of Cu₂₋ₓS impurity formation in the Cu-rich sample as shown before for the 350°C sulfurized sample, only stoichiometric samples were employed for the low temperature (i.e., <~200°C) in situ Raman monitoring experiments. Similar to the previous procedure, the oxide precursor sample from sol-gel processing after spin coating and air-baking was heated up to 400°C at 25°C/min rate in the Raman cell with flowing Ar atmosphere. At 400°C, the gas was switched to forming gas of 5%H₂+Ar mixture and the sample was annealed for 60 min. (This forming gas annealing step basically converts Sn and Cu oxide into their alloys while ZnO largely remains as oxide.) The XRD analysis of the annealed sample (Figure 4.6) showed two peaks belong to Sn at 2θ of 31.7 and
66.0° (JCPDS #04-0673) and another 2 peaks belong to Cu at 2θ of 43.0 and 51° (JCPDS #04-0836). In addition, there is a low intensity peak at 2θ of 42.8 that belongs to Cu₆Sn₅ phase (JCPDS #081-8261). There was no peak identified for Zn metal, which indicates it remains in the amorphous oxide form after the FGA step. The Cross section SEM images showed the annealed precursor film thickness is 400 nm as they experienced shrinkage during transformation from metal oxides to pure metals or alloy mixture. After that, the Raman cell with the sample was cooled down naturally to 170°C for subsequent sulfurization. In particular, at 170°C, the gas flow was changed from the 5%H₂+Ar forming gas to the 100 ppm H₂S+4%H₂+N₂ gas mixture and the sulfurization was carried out for up to 180 min, and the Raman spectra were recorded from the sample at 170°C at different time intervals. Finally, the sample was cooled down naturally in Ar atmosphere. The in situ Raman data collected at 170°C during the sulfurization are shown in Figure 4.10. The first hint of a weak Raman peak emerged after ~30 min of sulfurization at ~335 cm⁻¹, which is attributed to CZTS. This appears to be longer than the what it took (~5 min) for the similar bump to appear after exposure to the same gas mixture of 100 ppm H₂S+4% H₂+N₂ at 350°C, and the delay might be due to the slower reaction kinetics for CZTS formation at reduced temperature of 170°C. As the sulfurization process continued for 60 min, roughly the same Raman pattern for CZTS phase was observed without obvious shift of the peaks, while the peak intensity increased. Also, no peaks for other sulfides were detected. It is noted that if the in situ Raman experiment was ceased at this moment (i.e, 60 min of sulfurization at 170°C), and the sample was cooled down to room temperature in Ar, the Raman collected showed the distinctive peak corresponding to
CZTS phase at 338 cm\(^{-1}\), while no Raman peaks corresponding to other sulfide phases were observed.

However, it was observed that significant amount of Cu\(_{2-x}\)S was often detected by Raman for the low temperature sulfurized sample. In order to verify when Cu\(_{2-x}\)S impurity would appear and whether the CZTS phase formed is stable under continuous sulfurization conditions beyond 60 min, the two-step in situ Raman experiment was repeated under the same conditions and the sulfurization time was extended to 180 min at 170°C. The first 60 min of sulfurization gave similar result as before. Then, after ~80 min of sulfurization, apart from the CZTS peak at 335 cm\(^{-1}\), another peak at 467 cm\(^{-1}\) that corresponds to CuS phase started to emerge.

![Figure 4.10](image)

Figure 4.10. Raman spectra collected at different sulfurization times for the stoichiometric sample during the in situ Raman monitoring experiment at 170°C in 100 ppm H\(_2\)S+4% H\(_2\)+N\(_2\) gas mixture for up to 180 min.
(It is noted that Cu$_{2-x}$S with x in the range of 0 to 1 have the same Raman peak at ~470 cm$^{-1}$ (Hurma and Kose, 2016). CuS can be viewed as Cu$_{2-x}$S with x ≈ 1. The rationale to specify the copper sulfide as CuS instead of Cu$_2$S is due to EDS analysis, as explained later.). Continued sulfurization up to 180 min led to further increase in intensity of the CuS Raman peak at 467 cm$^{-1}$ accompanied with lowering of the CZTS peak. Finally, upon cooling the 180 min sulfurized sample down to room temperature, the CZTS peak intensity become much weaker, while the CuS peak shifted from 471 cm$^{-1}$ at 170°C to 475 cm$^{-1}$ with further increased intensity. This observation, together with the absence of the CuS peak during the first 60 min of sulfurization, strongly suggests that under sulfurization condition explored (170°C in 100 ppm H$_2$S+4% H$_2$), CZTS forms first from the post FGA precursor film and then, upon extended sulfurization, CuS gradually forms from CZTS accompanied with (partial) decomposition of CZTS. The observation of the sulfur-rich CuS formation at low sulfurization temperature (i.e., ≤250°C) has been reported in several studies (Maeda, Tanaka, Fukui, et al., 2011)(Wibowo et al., 2007). Although the conditions are all somewhat different, it seems that, similar to the observation here, CuS occurrence is generally exaggerated under prolonged sulfurization and it is particularly significant at lower temperature. For example, in the study by Wang et al., Cu$_x$S Raman peak always seems to increase during cooling as the temperature decreases and it was particularly obvious when temperature decreases to below ~200°C (Wang, Elouatik and Demopoulous, 2016). To further understand the observed phenomena during the low temperature in situ Raman experiment, other ex situ characterization techniques were performed. The XRD patterns for the in situ Raman examined samples after sulfurization at 170°C for 60 min as well as 180 min are given in Figure 4.11.)
For the 60 min sulfurized sample, the XRD patterns shows three peaks that belong to CZTS phase at 2θ of 28.4, 47.3, and 56.0°. However, XRD pattern indicates there is another peak at 2θ of 31.7°, which might correspond to unreacted metallic Sn (JCPDS #04-0673). Continuous sulfurization for 180 min leads to the disappearance of the peaks corresponding to CZTS, suggesting its subsequent disintegration. Based on Raman spectra showing strong peak for CuS, the formation of CuS phase is suspected.

However, as shown Figure 4.11 for the 180 min sulfurized sample, the high background and very weak XRD peaks suggest the CuS phases and other related phases (upon CZTS decomposition) are all not well crystallized.

![XRD Patterns](image)

Figure 4.11. Room temperature XRD patterns for in situ Raman samples examined at 170°C for 60 and 180 min.

Further investigation of the morphology of the sample sulfurization at 170°C for 60 min based on SEM as in Figure 4.12(a, b) revealed that the sample seems to have a bilayered structure with a flat and dense layer at the bottom and flower-like structures on the top,
which have larger grain size. The EDS analysis of the dense layer near the substrate surface (Table 4.1, sample: 170-60-S) showed a slightly sulfur deficient sample with atomic content of 46% while Cu/Zn+Sn ratio appeared to be almost stoichiometric (Cu/Zn+Sn=0.93).

![Figure 4.12. SEM surface (a, c) and cross section (b, d) images of the in situ Raman samples (stoichiometric composition) examined at 170°C for 60 min (a, b) and 180 min (c, d), respectively. The yellow arrows point toward particles identified by EDS as CuS.](image)

The SEM surface and cross section images (Figure 4.12(c, d)) of the sample sulfurization at 170°C for 180 min showed a bilayer structure similar to that obtained for 60 min. However, the top surface particles in this case were observed to have grown into faceted structure with larger grain size. Further investigation of the large faceted particles on the surface (as indicated by yellow arrows in Figure 4.12(c)) by EDS (Table 4.1, sample: 170-180-SP) showed those particles are rich in Cu and S with ratio of Cu:S of ~1 with
almost no Zn and Sn, suggesting the surface particles are CuS. Such an explanation would seem to match both in situ Raman and XRD data.

4.3.3. Discussion on formation process of CZTS from sulfurization from sol-gel oxide precursor

It should be mentioned that all experiments were repeated several times on different samples and the same results were obtained, confirming the reproducibility of the observations made. From the results of all the in situ Raman monitoring experiments at different sulfurization conditions and the structural and compositional analyses of the in situ examined samples, the formation mechanism for CZTS derived from sol-gel oxide precursors is discussed in the following.

Regarding the CZTS formation from oxide precursor during sulfurization in 100 ppm H\textsubscript{2}S at intermediate temperature such as 350°C, several scenarios might be possible. The first one is that metal oxides initially react with hydrogen in the 100 ppm H\textsubscript{2}S+4%H\textsubscript{2}+N\textsubscript{2} gas mixture to form a mixture of metals (or their alloy) and remaining unreacted oxides (primarily ZnO). After that, this mixture could then undergo sulfurization by reacting with H\textsubscript{2}S to form binary sulfides (ZnS, Cu\textsubscript{2}S and Sn(II)S) or ternary sulfide Cu\textsubscript{2}SnS\textsubscript{3} (CTS). Eventually, those binary/ternary sulfides react to form CZTS phase according to reaction (R1)

\[
\text{Cu}_2\text{S} + \text{ZnS} + \text{SnS} + 1/2\text{S}_2 \rightarrow \text{Cu}_2\text{ZnSnS}_4
\]

(R1)

It is also possible that Cu and Sn form an alloy mixture, which is then sulfurized to form CTS phase. After that, ZnS react with CTS phase to form CZTS according to reaction (R2)
\[\text{Cu}_2\text{SnS}_3 + \text{ZnS} \rightarrow \text{Cu}_2\text{ZnSnS}_4 \] \hspace{1cm} \text{(R2)}

Another possibility is that after the (partial) reduction, the mixture of metals with unreacted oxides react directly with H\textsubscript{2}S and forms CZTS as in reaction (R3)

\[2\text{Cu} + \text{ZnO} + \text{Sn} + \text{H}_2\text{S} \rightarrow \text{Cu}_2\text{ZnSnS}_4 + \text{H}_2\text{O} \] \hspace{1cm} \text{(R3)}

Nevertheless, given the relatively short reaction time (only \(~15-30\) min) and the absence of Raman peaks for other sulfides such as Cu\textsubscript{2}S, SnS, SnS\textsubscript{2}, ZnS, or CTS in the period before CZTS Raman peak appearance, the most likely scenario is that the CZTS formation from the mixed amorphous oxide precursor finishes in one step as below:

\[\text{Cu}_2\text{O} + \text{ZnO} + \text{SnO}_2 + 4\text{H}_2\text{S} \rightarrow \text{Cu}_2\text{ZnSnS}_4 + 4\text{H}_2\text{O} \] \hspace{1cm} \text{(R4)}

The CZTS formed is thermodynamically stable, as evidenced in continued exposure to the same atmosphere for extended time showing persistence of the CZTS Raman and XRD fingerprints. That Cu-rich sample started to yield Cu\textsubscript{2}S after 60 min of exposure, which is expected due to the Cu excess in the sample.

In comparison, for the two-step \textit{in situ} Raman monitoring experiment carried out at 170°C, the first-step of forming gas annealing (FGA) at 400°C using the 5.0%H\textsubscript{2}+Ar reduced Sn and Cu metal oxides to Cu-Sn metal alloy (mixture), while ZnO remains as oxide (Theses and Weirich, 1926). Then in the second step of exposing the post FGA sample containing Sn-Cu alloy and ZnO to 100 ppm H\textsubscript{2}S+4%H\textsubscript{2}+N\textsubscript{2} at 170°C due to the absence of Raman peaks for other sulfides in the first 60 min, it is believed that CZTS phase form from the Cu-Sn alloy and ZnO precursor in a single step through the reaction of R5:
Continued sulfurization for more than 60 min under this condition (170°C using 100 ppm H$_2$S+4%H$_2$+N$_2$) for the sample seems to lead to “over-sulfurization” - the formation of sulfur-rich phase of CuS with Cu at 2+ valence versus 1+ in CZTS (Thota et al., 2017).

The *in situ* Raman data collected over time along with the XRD pattern indicate that under the specific sulfurization condition investigated (170°C using 100 ppm H$_2$S+4%H$_2$+N$_2$), CZTS phase is not the thermodynamically most stable phase. Instead, CZTS may be the phase that is kinetically faster to form, while the sulfur-rich phase of CuS is thermodynamically stable. As a result, CZTS forms first. But overtime, as local sulfur concentration builds up (probably due to gradual building up of elemental sulfur from H$_2$S decomposition), Cu in CZTS migrates out and react to form CuS, which leads to decomposition of CZTS, as in reaction R6

\[
\text{Cu}_2\text{ZnSnS}_4 + S_2 \rightarrow 2\text{CuS} + \text{amorphous (ZnS-SnS$_2$) mixture} \quad (\text{R6})
\]

Such an explanation is further supported by the EDS data for the samples: As mentioned before in Table 4.1, the 170°C-60min sulfurized sample has surface composition of near stoichiometry CZTS while the 170°C-180min sulfurized sample show faceted particles on surface with very low Zn and Sn content and Cu:S ratio ~1:1, suggesting they are sulfur-rich phase of CuS. The reaction products are not well crystalline after cooling the sample down to room temperature, which is common for the many metal sulfide such as the Cu-S and Sn-S systems (Quintana-Ramirez et al., 2014).

Finally, in terms of the implications to future CZTS fabrication optimization, the results of the current study suggest that in order to avoid the copper-rich Cu$_2$S impurity
formation in CZTS, it is critical to control the stoichiometry of the starting solution. In addition, the process of intermediate temperature sulfurization of oxide precursor in low concentration H\textsubscript{2}S-containing atmosphere (e.g., the 100 ppm H\textsubscript{2}S+4% H\textsubscript{2} as used here) seems attractive because it may help avoid Sn and Zn loss due to absence of higher temperature processing, which can be tricky to control. As long as the solution is stoichiometric, the CZTS would be the only thermodynamically stable phase. On the other hand, to avoid the sulfur-rich CuS impurity formation, low temperature (e.g., <200°C) holding of CZTS in any sulfur-rich atmosphere (either in the form of H\textsubscript{2}S or elemental sulfur) should be avoided as Cu will be thermodynamically more stable to exist in the 2+ state as in CuS as opposed to in 1+ state as in CZTS. However, it is recognized that the study has been limited to chemical and structural analysis of the CZTS absorber material and it has not be done on the typical Cu-poor Zn-rich composition. Therefore, further study on other compositions and also on actual device fabrication and characterization will be needed to confirm the real efficacy of the current processing procedure.

4.4. Conclusion

In conclusion, the current study investigated the fundamental formation process of CZTS thin films from sol-gel based oxide precursor at different sulfurization conditions using ppm-level H\textsubscript{2}S-containing gas mixture. From the \textit{in situ} Raman monitoring experiments and subsequent \textit{ex situ} materials characterizations, CZTS phase was observed to emerge within ~30 min of sulfurization at an intermediate temperature of 350°C using 100 ppm
H$_2$S+4%H$_2$+N$_2$ gas mixture and seems to form directly from the oxide precursor in a single-step reaction bypassing the individual sulfide phases (e.g., Cu$_2$SnS$_3$ and ZnS). On the other hand, for the two-step sulfurization process, the first step of forming gas annealing at 400°C reduces some of the oxides (i.e., Cu and Sn oxides) into metal alloys. Then, for the second step at an even lower temperature of 170°C, CZTS phase start to form in a single-step after ~30 min in the 100 ppm H$_2$S containing gas mixture. Moreover, continued sulfurization at low temperature (<200°C) for extended time (e.g., >1 h) may lead to the formation of the sulfur-rich CuS phase accompanied with disintegration of the CZTS phase. Overall, the study suggests that sol-gel stoichiometry and sulfurization condition including both temperature and time needs to be carefully controlled to stabilize CZTS phase and avoid the formation of other impurity phases, such as Cu$_x$S (1≤x≤2) phase, which would deteriorate the quality of CZTS films. On the other hand, the study shows that *in situ* Raman microspectroscopy technique is a valuable tool that would help understand the fundamental phase formation mechanism of sol-gel based CZTS thin films in real time under relevant processing conditions. It could be used to guide further optimization of CZTS processing to obtain high quality films and better solar cell device performance. This technique is also expected to be helpful for investigating other multi-component systems such as CIGS.
5. IN-SITU RAMAN MONITORING OF CZTS OXIDATION AND RELATED DECOMPOSITION AT ELEVATED TEMPERATURES

5.1. Introduction

So far, the fundamental mechanisms for the formation of CZTS phase and other relevant sulfide phases using the sol-gel sulfurization in ppm level H$_2$S were proposed in chapter 4 based on the observations from in-situ Raman spectroscopy as well as other ex-situ characterization tools. However, the annealing of CZTS films in different environments opposed to the sulfurization conditions as might be encountered in subsequent device processing has not been addressed in any previous study. Such investigation is important to gain knowledge about the stability limits of sol-gel sulfurized CZTS films and understand their oxidation and degradation mechanisms in oxygen rich atmosphere at elevated temperatures. The objective of this chapter is to present the results for the use of in-situ Raman micro-spectroscopy combined with other techniques to study CZTS phase stability at elevated temperatures including its thermal oxidation and decomposition.

5.2. Experimental

5.2.1. CZTS Thin Film samples Preparation

The copper zinc tin based precursor solution is prepared by dissolving 2.0 grams of copper acetate monohydrate (>98%, Sigma Aldrich 217557), 1.0 gram of zinc acetate dihydrate (>99%, Sigma Aldrich 96459) and 1.0 gram of Tin (II) 2-ethylhexanoate (Alfa Aesar 18590) into 25.0 mL of anhydrous 2-methoxyethanol (99%, Alfa Aesar A1749) and the mixture was stirred for several minutes. A few drops of ethanolamine (99%, Alfa
Aesar 36260) are added during stirring to prevent precipitation (Tanaka, Moritake and Uchiki, 2007). The prepared solution is filtered using 0.2 µm syringe filter and spin coated on SLG substrates at 3000 rpm for 30 seconds. (Note that bare SLG was used in this study instead of the typical Mo-metal coated SLG to simplify the system for this study.) The films are then baked at 300 °C for 10 minutes in open air. Seven layers are deposited and baked to obtain a film thickness of ~1 µm. Finally, the deposited thin films are sulfurized at 550 °C for 1 hour using 5.0 vol% H₂S balanced by N₂ gas mixture in a 2-inch diameter tube furnace with total gas flow rate of 200 cc/min to obtain the CZTS thin film.

5.2.2. Characterization Techniques

All the produced thin films were examined by X – ray diffraction (Diffractometer Siemens 500D) for phase identification. The X- ray diffraction patterns were obtained by Cu Kα1 (λ = 1.5406 °A) radiation with 2θ in the range of 20 - 80°. SEM combined with EDS was performed on JEOL 6330F microscope at 15.0 kV accelerating voltage to investigate the surface morphology and assess the chemical composition of the produced CZTS thin films. Air cooled Ar ion Laser system with excitation wavelength of 514.5 nm placed horizontally was used for Raman micro-spectroscopy. The spectral collection range was 200 – 2000 cm⁻¹. A special heating cell was developed by the Center for the study of Matter at Extreme Conditions (CeSMEC) at Florida International University and used for the in situ Raman experiments. The cell consists of a chamber heated by nichrome coil which is connected to a power supply and its temperature is controlled by a
 thermo controller. Figure 5.1 shows schematic for the in situ Raman system with the thin film sample loaded into the heating cell. Raman spectra were collected both at room temperature and at elevated temperatures under different in situ conditions.

Figure 5.1. (a) Schematic representation of the heating cell and sample used for in situ Raman micro-spectroscopy experiments. (b) Photo of the “sealed” CZTS thin film sample used for the first in situ Raman experiment.

The samples were inserted into the heating cell and set to be vertical and perpendicular to the laser beam. The sample temperature was measured from thermocouple directly touching the back of the glass substrate for CZTS thin film. The attached optical microscope system was used for adjusting the focus of the sample.

Three in situ Raman experiments were performed. The first in situ Raman experiment was performed on a sealed CZTS thin film sample (see Figure 5.1(b)) at room temperature and under in situ conditions at 300 °C and 400 °C. The purpose of this experiment is to investigate if the CZTS phase is Raman active at elevated temperatures. In order to seal the sample, ceramic bonding material (Ceramabond® 552) was applied to
“glue” a thin piece of cover glass directly touching the front of the CZTS thin film sample before loading it into the heating cell. The second in situ Raman experiment involved exposure of the CZTS thin film sample to open air at 400 °C and soaked for 3 hours. The importance of this experiment is to investigate the onset of CZTS phase oxidation/decomposition in air and to identify how fast this process is. The third in situ Raman experiment was also performed in open air at temperature ranging from room temperature up to 650 °C. The purpose of this experiment is to investigate the oxidation and related decomposition process as well as the stability limit of CZTS phase at relatively high temperatures of up to ~650 °C.

For in situ Raman experiments, samples are heated up following the temperature profiles shown in Figure 5.2. Before collecting signal for each step, the temperature was usually held constant for 8 to 15 minutes to allow homogenous heat distribution inside the chamber. The signal was collected based on accumulation acquisition mode with 1.0 second shutter close and collection time of 5 to 8 minutes. As complementary techniques to the in situ Raman experiments, XRD, as well as EDS analysis, are carried out for all in situ examined samples afterward to identify the formed phases and the chemical composition.
Figure 5.2. Temperature profiles for both second (solid red line) and third (blue dash line) in situ Raman experiments.

5.3. Results and Discussion

5.3.1. Prepared CZTS Thin Film Samples

For XRD pattern, the main characteristic peaks of CZTS phase are observed (JCPDS card no.00-26-0575) for the prepared CZTS thin films as shown in Figure 5.3. SEM images for the surface and cross-section of the prepared CZTS thin film sample are shown in Figure 5.4.

It can be seen that the prepared films are relatively dense, forming grains as large as 1 μm at the surface upon sulfurization. In contrast to those large surface grains, cross-section images indicate the presence of small grains inside the film near the SLG substrate surface. The origin for such structure for sol-gel sulfurization processed CZTS is not exactly clear, but is hypothesized to be due to the higher sulfur concentration (or activity)
over the surface and lower values inside the film, which cause superficial grains to grow larger while the grains near the substrate surface tend to remain small.

The EDS analysis (Table 5.1) of the thin film indicates an average surface composition that is Zn rich and Cu poor. (Three different readings are gathered from separate areas across the film surface and averaged as indicated in Table 5.1). In addition, SEM images of the thin film seem to show some particles on the surface that are “brighter” than surrounding as indicated by yellow arrows in Figure 5.4(a). However, EDS point analysis of those particles shows similar Zn rich and copper poor composition, as given in Table 5.1. The observed Zn rich and Cu poor composition for the prepared CZTS film may be off-stoichiometric CZTS or may be related to the preferred formation of ZnS near the surface under the sulfurization condition, but the exact origin is still under investigation.
Figure 5.4. SEM images for the prepared CZTS thin film surface (a) and cross-section (b). Particles indicated by yellow arrows are Zn-rich phase as confirmed by EDS point analysis (see Table 5.1).

Table 5.1. Average chemical composition of the prepared CZTS films.

<table>
<thead>
<tr>
<th>Element</th>
<th>Cu</th>
<th>Zn</th>
<th>Sn</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZTS thin film</td>
<td>18.0±0.9</td>
<td>26.0±4.0</td>
<td>10.2±0.3</td>
<td>45.7±3.4</td>
</tr>
<tr>
<td>bright surface particles</td>
<td>16.4±3.7</td>
<td>23.8±3.7</td>
<td>10.9±2.1</td>
<td>48.8±3.8</td>
</tr>
</tbody>
</table>

5.3.2. Ex situ Raman Micro-spectroscopy Analysis

In order to distinguish between CZTS phase and other secondary phases, Raman spectra were collected and further confirmed the formation of the desired CZTS phase as shown in Figure 5.5. The collected data at room temperature for thin film sample show the main CZTS characteristic peaks at 338, 287, and minor peaks at 367 and 374. The broad peak at 252 cm\(^{-1}\) can be also observed (Dimitrievska et al., 2014) (Fernandes, Salomé and da Cunha, 2009).
5.3.3. In situ Raman Micro-spectroscopy Analysis of the CZTS Thin Film Samples

As explained, the first *in situ* Raman experiment involves monitoring change of Raman spectra for a sealed CZTS thin film sample. The result, as shown in Figure 5.6, revealed a slight peak shift to the lower frequency values as temperature increases from 338 cm\(^{-1}\) at room temperature to 330 cm\(^{-1}\) at 400°C upon heating the sample. The peak shift to lower frequency values is expected and is attributed to the reduced stiffness of the atomic bonds at elevated temperatures. No major morphological changes are observed on the sample after cooling down to room temperature. These results suggest the CZTS phase is Raman active with no phase change under inert atmosphere at temperature at least of up to 400°C. It is noted that at temperature higher than 400°C, the sealed sample started to experience degradation, probably due to interactions with sealant materials used and the CZTS thin film.

Figure 5.5. Raman spectra for prepared CZTS thin film samples.
Figure 5.6. In situ Raman spectra for the sealed thin film sample, collected at room temperature and under in situ condition at temperatures of 300 °C and 400 °C (first in situ Raman experiment).

The second *in situ* Raman experiment was carried out in open air at 300 – 400 °C over time on the CZTS thin film samples to study the on-set of oxidation of CZTS phase. At 300 °C, Raman spectra showed the same peak shift toward lower frequency values as observed in the first experiment. However, as the temperature is further increased to 400 °C in air, the spectrum shows dramatically decreased peak intensity. For example, after one hour of *in situ* testing in air at 400°C, as shown in Figure 5.7, the signal to noise ratio decreased dramatically which is attributed to the degradation of the thin film and most likely the start of its oxidation. By the end of the second hour, the sample slightly changed color from originally dark brown to light brown and maintained that color till the end of the experiment, which is about 3 hour of air exposure at 400°C. The second *in
An in situ experiment suggests that CZTS phase will go through significant oxidation in air at temperatures as low as 400°C in less than one hour.

![Raman spectra](image)

Figure 5.7. In situ Raman spectra for a thin film sample, collected at room temperature and under in situ condition at 400 °C for up to three hours in open air (second in situ Raman experiment).

For the third in situ Raman experiment, which is also carried out in open air for thin film CZTS samples, the temperature was raised at a faster rate. Consistent with the second in situ Raman experiment, the main characteristic Raman peak of CZTS at 338 cm\(^{-1}\) shifted toward lower wavenumbers (Figure 5.8) as temperature increased. Due to the relatively fast heating and short holding times, the CZTS characteristic Raman peak was obtained at temperatures as high as ~600°C, as in Figure 5.8. However, the sample gradually changed color and started to show non-uniformity due to oxidation at that high temperature of ~600 °C. At 650 °C, the sample became colorless and transparent and the
Raman spectrum became almost featureless, probably because the oxidation products formed do not crystallize well under such condition.

![Raman spectra](image)

Figure 5.8. In situ Raman spectra for thin film sample collected at room temperature and under in situ condition at temperatures from 300 °C to 650 °C in open air (third in situ Raman experiment).

This experiment suggests that CZTS is Raman active at temperatures up to ~600 °C, and in situ Raman could be used to help study the phase transformation of CZTS under different real time processing conditions and differentiate between other phases. XRD and EDS analyses of the samples from the second and third in situ Raman experiments were carried out to help identify the formed phases.

5.3.4. XRD and EDS Analysis of the in situ Raman Examined Thin Films

XRD pattern of the second in situ examined CZTS thin film sample after 400°C - 3 hour exposure to open air is given in Figure 5.9. The four main peaks of CZTS and/or ZnS phase are observed at 28.4°, 47.2°, 56.0°, and 33.0° according to the decreasing intensity
order, which matches the standard JCPDS cards no.01-071-5976 for ZnS and no.00-26-0575 for CZTS respectively. Copper sulfide (Cu$_2$S) peaks are observed at 46.1°, 32.1°, and 54.6°, which matches the JCPDS card no. 00-053-0522 for cubic Cu$_2$S, while SnO$_2$ peaks are observed at 26.6°, 33.8°, 37.9°, and 51.8° according to the decreasing intensity order, which matches the JCPDS card no.00-041-1445 for SnO$_2$. This result means that tin is the element first to experience phase change from sulfide to oxide while copper and zinc remain in sulfide phases under such in situ condition (400°C in air). XRD analysis of the in situ examined thin film sample for the third experiment after exposure to air up to ~650°C is given in Figure 5.10. CZTS/ZnS peaks disappear completely, while SnO$_2$ peaks show up strongly.

In addition, ZnO peaks are observed at 36.2°, 31.7°, 34.4°, and 56.6°, which matches the standard JCPDS card no. 00-036-1451 for ZnO, while CuSO$_4$ peaks are observed at 34.2° and 25.0°, which matches the standard JCPDS card no.04-007-5185 for CuSO$_4$.

Figure 5.9. XRD pattern of in situ examined CZTS thin film sample in air at temperature 400 °C for three hours (second in situ Raman experiment).
There are also some unidentified impurity phases in the thin film sample after 650 °C oxidation in air and further analysis is needed to clarify them. Based on the XRD analysis of the samples from both the second and third in situ Raman experiments, it can be concluded that tin (Sn) is the first element to experience a sulfide to oxide oxidation/transformation at an intermediate temperature of ~400°C (equation 1) followed by zinc and copper at temperatures higher than 400 °C (equation 2).

![SnO₂, ZnO, CuSO₄, Impurity]

2θ (degree)

Figure 5.10. XRD pattern of in situ examined CZTS thin film sample in air at temperature up to 650 °C (third in situ Raman experiment)

The overall oxidation and related decomposition of CZTS phase can be expressed by a two-step reaction as follows:

\[
\text{T} \leq 400 \text{ °C} \\
\text{Cu}_2\text{ZnSnS}_4 + 3\text{O}_2 \rightarrow \text{Cu}_2\text{S} + \text{ZnS} + \text{SnO}_2 + 2\text{SO}_2(\text{g}) \quad (1)
\]

\[
\text{T} \geq 400 \text{ °C} \\
\text{Cu}_2\text{S} + \text{ZnS} + 4.5\text{O}_2 \rightarrow \text{ZnO} + 2\text{CuSO}_4 \quad (2)
\]
Table 5.2 illustrates the results of EDS analysis of the *in situ* examined samples, which show high oxygen content for both samples in addition to the four elements of CZTS. (Only one data point was collected.)

Relative to other metal elements, the copper percentage was found to be lower than expected. This might be attributed to the re-distribution of the copper elements in the oxidation process, which prefers to oxidize tin and then zinc species first, causing them to diffuse upward towards thin film surface and reduce relative copper concentration. Further studies including EDS along the cross-section of the oxidized sample and statistical analysis are needed to understand such observations fully. Based on the current study, it is not clear if CZTS directly oxidize and decompose into the Cu$_2$S, ZnS, and SnO$_2$ at 400°C air exposure or first oxidize partially to form oxygen-containing CZTS (Washio *et al.*, 2012).

Finally, it is worth mentioning that the 514.5 nm excitation wavelength used for collecting the Raman spectra typically has an effective analysis depth of 150 nm (Fernandes, Salomé and da Cunha, 2011). Consequently, the current *in situ* Raman analysis is limited to the very narrow superficial layer of the thin film. Characterizing deeper layers of the prepared CZTS film require the utilization of higher excitation wavelength such as 785.0 nm. This would be also helpful in fluorescence suppression and detection of various secondary phases and oxides. Further *in situ* Raman experiments will be carried out in the future on thin film samples using different excitation wavelengths to provide more details about the formation of CZTS in real time under
conditions relevant to real processing and identification of secondary phases and their
distribution during CZTS processing.

Table 5.2. Chemical composition of the in situ examined CZTS thin films (for the second and third experiments).

<table>
<thead>
<tr>
<th>Element</th>
<th>Cu</th>
<th>Zn</th>
<th>Sn</th>
<th>S</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second in situ Raman exp. (400 °C – 3hrs)</td>
<td>7.2</td>
<td>21.5</td>
<td>6.5</td>
<td>10.5</td>
<td>39.3</td>
</tr>
<tr>
<td>Third in situ Raman exp. (650 °C)</td>
<td>12.3</td>
<td>28.3</td>
<td>10.1</td>
<td>24.9</td>
<td>24.2</td>
</tr>
</tbody>
</table>

5.4. Conclusion

In the present work, CZTS thin films are successfully prepared using a simple sol-gel sulfurization procedure as confirmed by XRD and Raman spectroscopy. The SEM and EDS results showed the thin film CZTS material appears to be zinc rich and copper poor. In addition, use of in situ Raman micro-spectroscopy for characterizing CZTS materials at elevated temperature was demonstrated for the first time using 514.5 nm wavelength excitation laser. Preliminary results show CZTS phase remains Raman active up to ~600 °C. Moreover, the in situ Raman micro-spectroscopy for the CZTS thin films at high temperature revealed useful information regarding the CZTS phase oxidation and related decomposition in real time. The results suggest a two-step oxidation reaction in which CZTS oxidizes first at temperatures of ~400 °C to form SnO₂, Cu₂S, and ZnS. Then at temperatures higher than ~400 °C, ZnS and Cu₂S continue to oxidize to form ZnO and CuSO₄.
6. SUMMARY AND RECOMMENDATIONS

6.1. Summary

The main conclusions from the current study are as follows:

1- Sol-gel sulfurization of Cu-Zn-Sn-O precursor films in 100 ppm H₂S+H₂, as opposed to traditional high H₂S concentration, successfully led to the formation of near stoichiometric CZTS films at temperature as low as 125°C and up to 350°C. At 450°C and above, sulfurized samples primarily consisted of ZnS and Cu₃Sn metallic alloy phase.

2- CZTS phase derived from sol-gel sulfurization of precursor oxides was observed to emerge relatively fast (within ~30 min of sulfurization) at an intermediate temperature of 350°C in 100 ppm H₂S+4%H₂+N₂ gas mixture. CZTS phase was observed to form directly from the oxide precursor in a single-step reaction bypassing the formation of binary and ternary sulfide phases (e.g., Cu₂SnS₃ and ZnS) reaction step.

3- CZTS phase can also be formed from oxide precursor in a two-step sulfurization process at lower sulfurization temperature (125-170°C) in 100 ppm H₂S+ H₂. The first step is a Forming Gas Annealing (FGA) at 400°C. In the second step, CZTS was observed to form directly after ~30 min in 100 ppm H₂S+4%H₂+N₂ gas mixture from Cu-Sn alloy and ZnO. However, continued sulfurization at low temperature (<200°C) for extended time (e.g., >1 h) led to the formation of the sulfur-rich CuS phase accompanied with disintegration of the CZTS phase.

4- Investigation of CZTS phase stability in an oxygen-rich atmosphere at elevated temperatures suggest a two-step oxidation reaction in which CZTS oxidizes first at
temperatures of ~400 °C to form SnO$_2$, Cu$_2$S, and ZnS. Then at temperatures higher than ~400 °C, ZnS and Cu$_2$S continue to oxidize to form ZnO and CuSO$_4$ respectively.

6.2. Recommendations for Future Work

For future investigations of sol-gel based CZTS films for solar cell applications, addressing the following areas is recommended:

1- Multiwavelength as well as surface enhanced Raman spectroscopy can be used to provide a more effective identification of CZTS phase and distinguish from other secondary phases (mainly ZnS, which is sensitive to UV laser excitation). They will help further understand CZTS impurity formation and how to void them.

3- Flexible CZTS solar cells can be fabricated and performance can be systematically characterized to establish the relationship between the sol-gel processing condition and CZTS material property and solar cell performance.

OSHA (no date) https://www.osha.gov/SLTC/hydrogensulfide/standards.html.

Woo, K. et al. (2013) ‘Band-gap-graded Cu2ZnSn(S1-x,Se(x))4 solar cells fabricated by an ethanol-based, particulate precursor ink route’, *Scientific reports*. Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea., 3, p. 3069. doi: 10.1038/srep03069 [doi].

APPENDICES

APPENDIX A: CZTS SOLAR CELL DEVICE FABRICATION AND CHARACTERIZATION

1- CZTS Solar Cell Device architecture

(a) Conventional

(b) Suggested for this work (simplified)

- Sulfurization: ≥ 5%H₂S
- Sulfurization: 100 ppm H₂S
- Cd is replaced by Zn for the buffer layer and ZnO(S) is used instead of CdS

Figure A-1. (a) Conventional CZTS solar cell device configuration. (b) CZTS solar cell device configuration used in this study.

2- CZTS Solar Cell Device Fabrication Condition

1- Back Contact Molybdenum Sputtering

- DC – 200 W – 1.0x10⁻⁶ Torr – 12 mTorr for 10 minutes then 3 mTorr for 40 minutes
 - Ar, 10 sccm – full rotation.
- Thickness from profilometer ~775 nm
- Thickness from SEM cross section image ~800 nm

Figure A-2. (a) XRD pattern of the as sputtered Molybdenum film. (b) Actual image of the as sputtered Molybdenum film.
2- **Cu-Zn-Sn Oxide Precursor Film Deposition**
- Recipe 2 (Stoichiometric solution with Cu:Zn:Sn ratio is 2:1:1) – 6 layers – 2000 rpm/25 seconds – 300°C/5 minutes.

3- **CZTS (Solar Absorber Layer) Sulfurization Process**
- 350°C/1 hour – 100 ppm H₂S+4%H₂+96N₂ – heating 25 °C/min – cooling: 2 °C/min – heating and cooling in UHP Ar.

Table A-1. EDS data of the sulfurized CZTS film.

<table>
<thead>
<tr>
<th>Element</th>
<th>Cu (at%)</th>
<th>Zn (at%)</th>
<th>Sn (at%)</th>
<th>S (at%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic content</td>
<td>11</td>
<td>25</td>
<td>17</td>
<td>47</td>
</tr>
</tbody>
</table>
Figure A-5. Absorption (a) and transmittance (b) spectra for CZTS samples of different stoichiometry (Cu-rich and Cu-poor) in comparison to a reference sample. (c) Tauc plot showing the band gap information for the Cu-rich, Cu-poor, and reference CZTS samples.

4. **CdS (Buffer Layer) Chemical Bath Deposition**

- Chemical Bath: 50 mL of 0.015M CdSO₄ solution, 25 mL of 1.5M of thiourea solution, 65.2 mL of 28%-30% NH₄OH solution and 366 mL of DI water
- Deposition Time: 30 min
- Deposition Temperature: 85°C.
Figure A-6. XRD pattern of the deposited CdS film on bare soda lime glass substrate. The insert is an actual image of the deposited CdS film.

5- **i-ZnO (Passivation Layer) Sputtering**
- RF – 100 W – 5.0x10⁻⁶ Torr – 20 mTorr for 30 minutes – Ar, 10 sccm – full rotation.
- Thickness from profilometer ~ 100 nm.

Figure A-7. XRD pattern (a) and (b) SEM surface image of the sputtered ZnO on bare SLG substrate. The insert is an actual image of the sputtered ZnO film.

6- **Gold (Front Contact) Sputtering**
- The front contact pattern is deposited using a shadow mask made of Polyimide sheet and cut using laser engraving.
- DC – 100 W – 1.0x10⁻⁶ Torr – 3 mTorr for 30 minutes – Ar, 10 sccm – no rotation.
Figure A-8. (a) Actual photos of the shadow mask (left) used for the front contact deposition and a sample of four complete CZTS solar cell devices (right). (b) The four CZTS solar cell devices shown after scribing.

3- CZTS Solar Cell Device Characterization

Solar Cell Performance parameters:

Open circuit voltage (V_{oc}): voltage with zero external current

$$V_{oc} = \frac{kT}{q} \ln \left(\frac{I_{sc}}{I_0} + 1 \right)$$

Short circuit current (I_{sc}): current at zero voltage

Maximum Power (P_m):

$$P_m = I_{mp} \times V_{mp}$$

Fill Factor (FF):

$$FF = \frac{I_{mp} \times V_{mp}}{I_{sc} \times V_{oc}}$$

Power Conversion Efficiency (PCE):

$$\eta (%) = \frac{J_{sc} \times V_{oc} \times FF}{P_0}$$
Figure A-9. (a) SEM cross section images of the conventional (b) and suggested CZTS solar cell devices.

Figure A-10. Comparison of I-V curves for the CZTS solar cells fabricated according to the two different device architectures indicated in figure A-1.
Figure B-1. (a), (b) Three dimensional model. (c), (d) realistic rendered model of the in-situ Raman reactor. (e), (f) Actual photo of the in-situ Raman reactor and the in-house built Raman system used for the in-situ Raman experiments.
Bottom Lid

Material: Aluminium

Dimensions:
- 50 mm x 50 mm square
- 37 mm x 37 mm circular opening
- 24.50 mm long bar
- 4 holes: Ø 2.44 mm
- Ø 5 x 82°

Section A-A

Scale: 1:1

Sheet 1 of 1
VITA

OSAMA AWADALLAH

2003-2008 B.Sc., Mechanical Design and Production Engineering
 Cairo University
 Cairo, Egypt

2009-2013 M.Sc., Mechanical Design and Production Engineering
 Cairo University
 Cairo, Egypt

2013-2018 Doctoral Candidate (PhD)
 Florida International University
 Miami, FL, USA

SELECTED JOURNAL PUBLICATIONS AND CONFERENCE PRESENTATIONS

[3] Phani Kiran Vabbina; Raju Sinha; Arash Ahmadivand; Mustafa Karabiyyik; Burak Gerislioglu; Osama Awadallah; and Nezih Pala. “Sonochemical Synthesis of a Zinc Oxide Core–Shell Nanorod Radial p–n Homojunction Ultraviolet Photodetector,” ACS Applied Materials and Interfaces (2017), 9 (23), 19791–19799.
Atmosphere”, Materials Science & Technology (MST) Fall Meeting 2017, Pittsburgh, PA, USA.

