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ABSTRACT OF THE THESIS 
 

DEVELOPING OCEAN COLOR ALGORITHM USING MODERATE RESOLUTION 

IMAGING SPECTRORADIOMETER (MODIS) SENSOR FOR SHALLOW 

COASTAL WATER BODIES 

by 

Mohd Manzar Abbas 

Florida International University, 2018 

Miami, Florida 

Professor Assefa M. Melesse, Major Professor 

This study analyses the spatial and temporal variability of chlorophyll-a in Chesapeake 

Bay; assesses the performance of Ocean Color 3M (OC3M) algorithm; and develops a 

novel algorithm to estimate chlorophyll-a for coastal shallow water. The OC3M algorithm 

yields an accurate estimate of chlorophyll-a concentration for deep ocean water 

(RMSE=0.016), but it failed to perform well in the coastal water system (RMSE=23.17) of 

Chesapeake Bay.  A novel algorithm was developed which utilizes green and red bands of 

the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The novel 

algorithm derived the chlorophyll-a concentration more accurately in Chesapeake Bay 

(RMSE=4.20) than the OC3M algorithm. The study indicated that the algorithm that uses 

red bands could improve the satellite estimation of chlorophyll-a in the coastal water 

system by reducing the noise associated with bottom reflectance and colored dissolved 

organic matter (CDOM) 
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Chapter 1 

1 Introduction 

1.1 Background 

 

Phytoplankton are micro autotrophs that play a major role in food production and oxygen 

generation for aquatic organisms. However, a disproportional increase in phytoplankton 

biomass may result in algal blooms. There are certain species of phytoplankton that 

produce bio-toxins (Van Dolah, 2000). Proliferation of these species, also called  harmful 

algal bloom (HAB), causes serious impact on marine and human health (Van Dolah, 2000). 

Understanding the phytoplankton population and its distribution enables researchers to 

draw conclusions about the health, composition, and ecological status of a body of water.  

Since chlorophyll-a exists in every species of phytoplankton (Mélin and Hoepffner, 2011), 

its concentration is estimated as a proxy for distribution of phytoplankton biomass (Cullen, 

1982, Dore et al., 2008). The conventional method of chlorophyll-a estimation requires 

water sample collection and laboratory analysis (Joint and Groom, 2000b). This method, 

tedious and time consuming, is unsuitable for large spatial and temporal scales. Satellite-

based sensors are used for the synoptic assessment of chlorophyll-a at large temporal and 

spatial scales. 

 

After the launch of the first satellite borne ocean color sensor, the Coastal Zone Color 

Scanner (CZCS), improved sensors with higher precision, and an increased number of 
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bands have been launched (O'Reilly et al., 1998).  Currently, one operational ocean color 

sensor, Moderate Resolution Imaging Spectroradiometer (MODIS) aqua, collects data in 

36 spectral bands with 1-2 days of temporal resolution. The default chlorophyll-a retrieving 

algorithm for MODIS aqua, the Ocean Color 3M  (OC3M) algorithm, is a blue-green band 

ratio algorithm (Blondeau-Patissier et al., 2014). 

 

1.2 Statement of the problem 

 

In spite of the development of advanced and precise sensors, the error in the satellite 

estimation of chlorophyll-a concentration in coastal waters is sufficiently high (Darecki 

and Stramski, 2004).  Researchers have classified the ocean water area as case 1 and case 

2 water. The optical property of the surface of deep ocean water is dominated by 

phytoplankton and is termed as case 1 water (Morel and Prieur, 1977). In coastal regions, 

the optical property of water is influenced by colored dissolved organic matter (CDOM), 

bottom reflectance, and total suspended matter (TSM), and is referred as case 2 water. The 

blue-green band ratio strongly correlates to chlorophyll-a concentration in case 1 water, 

however, in case 2 waters,  the correlation becomes weak (Schalles, 2006). Furthermore, 

owing to its low attenuating tendency, the green band is heavily influenced by bottom 

reflectance in shallow coastal water (Carder et al., 2005a). The OC3M algorithm that uses 

the blue-green band ratio has been shown to yield accurate results in case 1 waters (Moses 

et al., 2009). However, the band ratio overestimates the chlorophyll-a in case 2 waters 

(Darecki and Stramski, 2004).  



3 
 

1.3 Justification of the study 

 

Over 50% of the world population lives in coastal zones (Richardson and LeDrew, 2006), 

and coastal water is important for human interest such as fisheries and recreation. Primary 

production in coastal areas influences fisheries, eutrophication, and algal blooms that affect 

human population. Ocean color data from a satellite-based sensor are the only practical 

tools for the global assessment of spatio-temporal variation in phytoplankton population. 

The long record of MODIS ocean color data of coastal regions could not be utilized due to 

lack of a precise algorithm for the chlorophyll-a estimation. A robust algorithm would 

make use of all available data and will have a significant effect on the understanding of 

various factors that regulate primary productions in the ocean water. Furthermore, precise 

assessment of phytoplankton biomass would help researchers to understand models of flux 

of atmospheric carbon dioxide to the ocean, and the influence of anthropogenic 

contaminants on the marine ecosystem (Joint and Groom, 2000a). 

 

In the past, several algorithms have been developed for case 2 waters using the optical 

property of chlorophyll-a in red and near infra-red (NIR) bands. Gons et al. (2002) used an 

algorithm based on backscattering coefficients at NIR bands to retrieve the chlorophyll-a 

concentration. Gilerson et al. (2010) used an algorithm based on the ratio of a red to NIR 

band. Blakey et al. (2016) developed the Benthic Class Specific algorithm to reduce the 

noise due to bottom reflectance. However, these algorithms have a limited application. 

Applicability of the Benthic class specific algorithm is contingent on the availability of Sea 
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Grass Density data at the location. To utilize the treasure of MODIS ocean color data of 

coastal regions, a precise algorithm is required that will use the wave bands for which 

MODIS reflectance data are available. 

 

1.4  Research questions 

 

Considering the available problem in the satellite estimation of chlorophyll-a in the coastal 

water, this study addressed the following research questions. 

1 How does the chlorophyll-a concentration changes spatially and temporally in 

Chesapeake Bay? 

2 How does the ocean color 3M (OC3M) algorithm perform in shallow coastal water 

and deep ocean water? and, 

3 What other band combinations estimate chlorophyll-a concentration more precisely 

than the existing algorithm? 

 

1.5 Objectives 

 

To develop a robust ocean color algorithm for shallow coastal water, and to address the 

above research questions, the following specific objectives were proposed:   

1 To analyze the spatial and temporal variation in the chlorophyll-a concentration of 

Chesapeake Bay, 
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2 To assess the performance of the MODIS Aqua OC3M algorithm in estimating 

chlorophyll-a concentration in the coastal water system of Chesapeake Bay, and 

3 To develop an improved chlorophyll-a retrieving algorithm for the coastal water 

system of Chesapeake Bay. 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Chapter 2 

2 Literature Review 

2.1 Principle of chlorophyll-a estimation using remote sensing 

 

It has been established that chlorophyll-a absorbs more radiations in blue and red bands 

than in green bands. As a result, the color of ocean water shifts from blue to green while 

the concentration of chlorophyll-a increases (Yentsch, 1960). Similarly, other constituents 

in ocean water have different absorbance tendencies to the light of different wavelengths. 

Satellite-based sensors measure upwelling radiance in different wavebands that are 

selected to discriminate chlorophyll-a from other compounds. On the basis of field 

observation of chlorophyll-a and observed radiance at different wavebands, empirical 

ocean color algorithms are developed that can derive chlorophyll-a concentration of the 

ocean at a global scale (Dierssen, 2010). 

 

2.2 Ocean color sensors and their features 

 

The first ocean color sensor, the Coastal Zone Color Scanner (CZCS),  launched by NASA 

on October 23, 1978 (Mitchell, 1994), was designed to capture data in 6 spectral bands: 

433-453, 510-530, 540-560, 660-680, 700-800 and 10500-12500nm (Hovis et al., 1980). 

Considering the strong absorbing property of chlorophyll-a at 443nm and very weak 

absorptions at 520nm and 550nm (Gordon et al., 1980), the four bands centered at 443, 
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520, 550 and 670nm were mainly selected with the purpose to study ocean color. The 

feasibility of satellite based monitoring concept was verified with the launch of CZCS. 

Additionally, spatially and temporally cohesive data of chlorophyll-a were obtained around 

the globe from October 1978 to June 1986 (O'Reilly et al., 1998).  

 

Gordon et al. (1980) noted that phaeopigment could not be distinguished from chlorophyll-

a with the bands available on the CZCS, as both of them possess the same backscattering 

property at available bands (Gordon et al., 1980).  Because CZCS did not have a  dedicated 

recorder, it was not able to collect global data continuously (Council, 2011). Another 

shortcoming of CZCS was the lack of a near-infrared (NIR) band that could be utilized for 

atmospheric correction (Evans and Gordon, 1994). All these shortcomings were considered 

while deciding on wave bands for future sensors. After the CZCS, sensors with advanced 

precision and increased wavebands were designed and launched with the aim of reducing 

errors in satellite estimation of chlorophyll-a. Table 2.1. presents a summary of various 

sensors.  
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Table 2.1 Specification of satellite borne ocean color sensors 

 

SeaWiFS was the follow up sensor to CZCS. It was equipped with two bands in near-

infrared region with the purpose of atmospheric correction. The signal to noise ratio (SNR) 

was high for visible bands which were able to detect small changes in ocean color due to 

chlorophyll (Council, 2011). Features that made SeaWiFS a robust piece of equipment 

includes real-time sensor performance evaluation, the sensor tilt capability, and lunar 

calibration capabilities (Eplee Jr et al., 2007). It was designed to gather data for five years 

but it continued to operate for 13 years (Hooker and McClain, 2000). The SeaWiFS sensor 

Sensor Satellite No. of 

bands 

Launch 

Date 

Spatial 

Resolution 

(m) 

Temporal 

Resolution 

(Day) 

References 

CZCS Nimbus 7 6 10/24/1978 825 6 (Gholizadeh et 

al., 2016) 

OCTS ADIOS1 12 08/17/1996 700 3 (Kawamura et 

al., 1998) 

SeaWiFS OrbView-2 8 08/01/1997 1100 1 (Babin et al., 

2008) 

OCM 1 OCEANSAT-1 8 05/26/1999 350 2 (Dash et al., 

2012) 

MODIS Terra 36 12/18/1999 250-1000 1-2 (Streets et al., 

2013) 

MERIS Envisat-1 15 03/01/2002 1200 1 (Gholizadeh et 

al., 2016) 

MODIS Aqua 36 05/04/2002 250-1000 1-2 (Streets et al., 

2013) 

OCM-2 OCEANSAT-2 8 09/23/2009 1000-4000 1-2 (Chauhan et al., 

2009) 

VIIRS NPP-Suomi 22 10/28/2011 375-750 0.5-1 (Gholizadeh et 

al., 2016) 
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was able to estimate global ‘water leaving reflectance’ and chlorophyll-a concentration 

with about 5 and 35 percent uncertainty, respectively in case 1 water (Chen et al., 2013). 

The overall system calibration uncertainty for SeaWiFS was as low as 0.3 percent (Council, 

2011).  

 

After the success of SeaWiFS, the MODIS sensors were launched onboard spacecraft Terra 

in 1999 and spacecraft Aqua in 2002. Owing to inefficient radiometric stability, MODIS 

Terra has limited utilization for the ocean color purpose (Gordon and Franz, 2008). MODIS 

Aqua has similar ocean color capabilities as SeaWiFS (Esaias et al., 1998). In addition, few 

wavebands are included in MODIS that could measure chlorophyll fluorescence 

(Behrenfeld et al., 2009). With improvement in solar diffuser and spectro-radiometric 

calibration assembly, instrument calibration for MODIS is far better than SeaWiFS. Unlike 

SeaWiFS, MODIS does not have the ability to evade sun glint by tilting. The problem of 

sun glint was supposed to be solved by two MODIS sensors orbiting complementary to 

each other, one in the morning and another in the evening. However, with problems in the 

performance of MODIS Terra, the plan was unsuccessful (Council, 2011). According to 

Esaias et al. (1998), notable improvement was made in radiometric capabilities. Overall, 

sensitivity of MODIS sensor is 2 to 3-fold more than that of SeaWiFS, making it possible 

to estimate chlorophyll-a concentration with uncertainty of approximately 20 percent in 

case 1 water. 
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In March 2002, the European Space Agency launched Medium Resolution Imaging 

Spectrometer (MERIS), with the primary goal of ocean color mapping. The MERIS has a 

unique feature: the width and position of wavebands at which it acquires data could be 

adjusted and controlled from the ground while the sensor is in orbit (Bezy et al., 2000). 

The MERIS uses dual solar diffusers to keep track of sensors stability. Between 2002 and 

2010, a degradation of 1.5 percent has been reported in the 443nm band. The success of 

the MERIS mission is mainly attributed to effective pre-launch characterization and 

calibration (Council, 2011). 

 

2.3 Ocean color algorithms 

 

Ocean Color algorithms derive chlorophyll-a concentration of near surface ocean water 

from remotely sensed ocean color data. Several algorithms have been developed for the 

satellite estimation of chlorophyll-a. Most algorithms use the absorbance of sunlight by 

chlorophyll and other constituents present in the water (Schalles, 2006).  

 

2.3.1 Classification of ocean color algorithms 

 

 

Ocean color algorithms could be broadly classified as semi-analytical algorithms and 

empirical algorithms. 
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2.3.1.1  Semi-analytical algorithms 

 

In the semi-analytical model, the combination of analytical and reflectance models is used 

to estimate the concentration of chlorophyll-a in the water (O'Reilly et al., 1998). The semi-

analytical models are potentially more useful because they allow for the derivation of other 

optically active substances that are present in the water, including CDOM and total 

suspended materials (O'Reilly et al., 1998). Major disadvantages of these models include: 

they are complex in their design, employ four or more radiance bands, and require accurate 

information about inherent optical properties (which require high spectral fidelity) in order 

to accomplish a target of accurate estimation of chlorophyll-a (O'Reilly et al., 1998, Chen 

et al., 2013). 

 

2.3.1.2 Empirical algorithms 

 

For the development of empirical algorithms, a statistical regression analysis of in-situ 

chlorophyll-a concentration data is performed with observed radiance data of that location  

(O'Reilly et al., 1998). The model is simple and its implementation is comparatively easy 

(Chen et al., 2013). However, if the relationship between optical property and chlorophyll-

a concentration is geographically specific, and empirical algorithm developed using optical 

data of one location could not be used for another location (Chen et al., 2013). Empirical 

algorithms have been shown to estimate chlorophyll-a concentration more precisely than 

the semi-analytical algorithms (O'Reilly et al., 1998). Depending on the sensor and 
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available bands, empirical algorithm use two, three or four bands to retrieve chlorophyll-a 

concentration from the reflectance data (Dierssen, 2010). 

 

2.3.2 Default algorithm used with major ocean color sensors 

 

The ocean color 4 (OC4) algorithm was developed by O’Reilly for the SeaWiFS sensor, 

using the blue-green band ratio (O'Reilly et al., 1998). Radiance-chlorophyll data from 919 

stations were collected with chlorophyll concentration ranging from 0.019 mg m-3 to 32.79  

mg m-3 (O'Reilly et al., 1998). The algorithm is a maximum band ratio formulation. The 

maximum band ratio approach has the advantage of maintaining the highest signal to noise 

ratio (SNR) for a wide range of chlorophyll concentration (O'Reilly et al., 1998). 

 

The ocean color algorithms that are currently operational for MODIS (i.e. OC3M) and 

CZCS (i.e. OC3C) are the extension of the OC4 algorithm that has been modified according 

to bands available for these sensors (Blondeau-Patissier et al., 2014). The same form of 

equation is used in the OC4, OC3C and OC3M algorithms. The difference lies in 

coefficients of equations and bands being used as the blue and green band (Table 2.2). 

Chlorophyll-a=10𝑎0+𝑎1∗𝑋+𝑎2∗𝑋2+𝑎3∗𝑋3+𝑎4∗𝑋4
  (2.1)     

Where,    X=𝑙𝑜𝑔10
𝜆𝑏

𝜆𝑔
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Table 2.2 Coefficients and bands used with ocean color algorithms 

Algorithm Blue Green a0 a1 a2 a3 a4 

OC4 443>490>510 555 0.3272 -2.9940 2.7218 -1.2259 -0.5683 

OC3M 443>488 547 0.2424 -2.7423 1.8017 0.0015 -1.2280 

OC3C 443>520 550 0.3330 -4.3770 7.6267 -7.1457 1.6673 

 

2.4 Major challenges in satellite estimation of chlorophyll-a in coastal water 

 

Much research is ongoing to improve the satellite estimation of chlorophyll-a in coastal 

water. Three major factors that are affecting the remote estimation of chlorophyll-a include 

atmospheric correction, chlorophyll-a modelling, and scale effects. 

 

2.4.1 Atmospheric correction  

 

 

Ninety percent of the signals received by a satellite borne ocean color sensors are from 

atmospheric sources (Siegel et al., 2000). Atmospheric signals come from the atmospheric 

scattering of light, diffused and direct transmittance of the atmospheric column, and the 

contribution of ocean white cap. The atmospheric correction procedure is applied to 

eliminate signals from atmospheric sources and obtain water-leaving radiance data that are 

used for chlorophyll-a estimation (Siegel et al., 2000). Precise estimation of chlorophyll-a 

is highly dependent on the accuracy of the atmospheric correction procedure used to 
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acquire water leaving radiance. An error of 0.5 percent in the atmospheric correction 

magnifies to about 5 percent error in the processing of the water leaving radiance, and 5 

percent error in water leaving radiance would lead to 35 percent error in chlorophyll-a 

estimation (Zeng et al., 2016).  

  

The ‘clear water’ method used for the atmospheric correction utilizes the fact that no light 

will exit the water in NIR bands. Therefore, radiance obtained in NIR bands is assumed to 

be from atmospheric sources. The calculated signal in the NIR band is extrapolated to 

estimate the atmospheric signal in other bands. However, in coastal turbid water, the ‘clear 

water’ assumption is not valid (Zeng et al., 2016). The scattering of radiation from the total 

suspended materials present in coastal water overcomes the absorption of light in the NIR 

signals. Therefore, the ‘clearwater’ atmospheric correction method is not applicable for 

coastal turbid water, and its use is a major source of error in the calculation of water leaving 

radiance (Zeng et al., 2016) and therefore the chlorophyll-a estimation. 

 

2.4.2 Chlorophyll-a concentration modelling 

 

 

Chlorophyll-a concentration modelling is the basic problem in the satellite estimation of 

chlorophyll-a that needs to be addressed. The chlorophyll-a concentration around the globe 

varies from 0.01 to 1000 mg m-3 which makes the optical property of water globally 

variable, thereby resulting in inefficiency of a single algorithm (Schalles, 2006). Currently, 
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operational algorithms use the ratio of reflectance in the blue to green bands to derive 

chlorophyll-a concentration. However, the algorithm that uses the blue-green band ratio 

fails to accurately estimate chlorophyll-a in the turbid coastal water. Chlorophyll-a 

estimation using a waveband from red and NIR bands will be less biased than using a wave 

band from blue and green bands. This happens because light from a higher wave band is 

attenuated early, reducing noise due to bottom reflectance (Schalles, 2006). On the other 

hand, when chlorophyll-a concentration is less than 1 mg m-3, it is difficult to discriminate 

water from chlorophyll-a using spectral reflectance of wavelength above 500nm. 

Therefore, algorithms that use absorption peak in red band is not suitable for low 

concentrations of chlorophyll-a (Schalles, 2006). These factors limit the development of a 

unified model for deep ocean and coastal water system. 

 

2.4.3 Scale effect 

 

Most of the algorithm are developed using a small study area. The chlorophyll-a 

concentration is homogeneous at the experimental scale; however, at the remote sensing 

scale the chlorophyll-a distribution becomes non-homogeneous. Li et al (1999) suggested 

that principles that are valid in small homogeneous system might not be valid at large non-

homogeneous scale. It implies that chlorophyll-a concentration estimated using MODIS 

ocean color imagery at 1km pixel size may not be equal to the actual average concentration 

of chlorophyll-a in that location. Chen et al. (2013) noted that the scale effect leads to 1.29 

percent under estimation of chlorophyll-a concentration using the OC3M algorithm. 
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Chapter 3 

3 Materials and Methods 

3.1  Description of the Study Area 

 

The shallow water system of Chesapeake Bay (Figure 3.1) was chosen as the study area. 

The accuracy of satellite estimation of chlorophyll-a in the coastal region is associated with 

depth of the water (Ha et al., 2013), correlated with the distance from the shore. Therefore, 

the availability of long term in-situ chlorophyll-a concentration data at spatially varied 

distances from the coast with diverse bathymetry makes Chesapeake Bay a special study 

area for the development of an ocean color algorithm. The bay is a vast, shallow water 

system, up to 20 to 30 m deep at its central channel (Kemp et al., 2005). The complex bio-

optical property of Chesapeake Bay’s water is dominated by colored dissolved organic 

matter (CDOM), total suspended sediments and phytoplankton (Son and Wang, 2012). 

 

The Chesapeake Bay is the largest estuary in North America and is located along the United 

States east coast, lying inland from the Atlantic Ocean. The Chesapeake Bay Watershed 

extends to an area of more than 64,000 miles that covers parts of Delaware, Maryland, New 

York, Pennsylvania, Virginia and West Virginia. The bay is classified as a highly 

productive water system (Boesch et al., 2001). The high productivity is associated with the 

excessive nutrient carried into the bay water by the rivers emptying into it (Ryberg et al., 

2018).  
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Figure 3.1 Map showing the location of Chesapeake Bay (Generated on ArcGIS 10.4 

using Chesapeake Bay shape file) 
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The Chesapeake Bay Watershed is in the temperate geographical belt. The climatic 

conditions in the area vary from season to season. Mean monthly air temperature within 

the watershed varies from 00C in January to 240C in July (Mikhailov et al., 2009). 

Chesapeake Bay watershed receives a high volume of precipitation (1250mm annually) 

that generates an annual run-off equivalent to 400 mm. Most  precipitation occurs from 

January to March consequently, 60% of the annual runoff is generated in March, April, and 

May (Mikhailov et al., 2009). 

 

More than 150 streams and rivers flow into the Chesapeake Bay watershed. Major rivers 

that drains into the bay include the Susquehanna, James, York, Rappahannock, Potomac 

from the west, and the Wicomico, Nanticoke and Choptank from the east. The main source 

of fresh water inflow in Chesapeake Bay is the Susquehanna River, responsible for about 

50% of the total inflow. The Susquehanna and Potomac Rivers carry 62 percent of the 

nitrogen and 44 percent of the phosphorus flux to the bay water (Ator et al., 2011).  

 

Agricultural activities are quite common in the Chesapeake Bay watershed. More than 25 

percent of watershed area is utilized for agricultural activities. Run-off from agricultural 

lands is the major source of nitrogen (54%) and phosphorus (43%) loading in the Bay (Ator 

et al., 2011). The eastern shore of the bay inputs disproportionally a high amount of 

nutrients from agricultural fertilizers. In 2001, 49% of land area in this region was used for 

agriculture (Ator and Denver, 2015). Soils and sediments in the region are sandy and 
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permeable which promotes the movement of nutrients from source to streams and tidal 

waters (Ator and Denver, 2015). 

 

The Chesapeake Bay witnesses frequent algal blooms and hypoxic conditions (Ryberg et 

al., 2018). The bay is a major economic resource for the neighboring states, and associated 

economic activities (fishing, tourism etc.) are highly dependent on the water quality. 

Considering the economic importance of the bay and its deteriorating condition, a major 

restoration project is underway (Powledge, 2005). 

 

3.2  Data 

3.2.1 In-situ chlorophyll-a data 

 

The Chesapeake Bay Program (CBP) provides a long record of chlorophyll-a concentration 

data of the bay water at spatially diverse locations. The field-measured chlorophyll-a data, 

along with sampling dates and co-ordinates of the sampling locations, were downloaded 

from the CBP website (http://data.chesapeakebay.net/WaterQuality). Data from 285 

monitoring stations (Figure 3.2a) were used for this study. In-situ observations from 52 

sampling stations (Figure 3.2b) were used to obtain field-observed and remote sensing 

matchup pairs.    
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Figure 3.2 Map showing the locations of monitoring stations (a) Black and red dots denote 

stations used for the spatial and temporal analysis of chlorophyll-a. Red dots represent the 

locations of Central Bay (CB) Monitoring Stations as per the definition of the Chesapeake 

Bay Program. Red lines divide the main stream into three sections namely Upper Bay, Mid 

Bay and Lower Bay, according to the sectioning of Magnuson et al. (2004) (b) Monitoring 

stations used for the validation of the OC3M algorithm and development of a novel 

algorithm. 

 

(a) (b) 

Upper Bay 

Mid Bay 

Lower Bay 
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In-situ chlorophyll-a data for Sargasso Sea was obtained from the National Centre for 

Environmental Information (NCEI) database (https://www.nodc.noaa.gov). Chlorophyll-a 

samples were collected by the National Science Foundation (NSF) owned research vessel, 

Oceanus, in 2004 and 2005. The link to the data archive is: 

(https://www.nodc.noaa.gov/archive/arc0030/0067471/1.1/data/)  

 

Figure 3.3 Map showing in-situ sampling locations (black dots) in the Sargasso Sea, 

Atlantic Ocean 

https://www.nodc.noaa.gov/archive/arc0030/0067471/1.1/data/


22 
 

Table 3.1. Summary of field observed chlorophyll-a data used in the study 

Purpose Total Stations Total samples Period Chlorophyll-a (mg m-3) 

Max Min Mean 

Annual trend 40 9601 2003-17 160.73 0.29 10.49 

Seasonal variability 40 1383 2012-16 151.30 0.85 11.42 

Spatial Analysis 285 10227 2012-16 1100.04 0.01 16.96 

Algorithm validation 

(Coastal Water) 

52 74 2012-16 63.36 1.78 9.26 

Algorithm 

Validation 

(Deep Water) 

25 25 2004-05 0.061 0.03 0.05 

Algorithm 

Development 

52 74 2012-16 63.36 1.78 9.26 

 

3.2.2 Satellite Data 

 

Remote sensing reflectance data from the MODIS sensor has been used for the study. 

MODIS acquires remote sensing data in 36 spectral bands. The swath width of viewing is 

2330 Km. MODIS covers the entire earth in 1-2 days. The spatial resolutions of MODIS 

bands are 250, 500 or 1000m. Out of 36 bands, 10 bands are useful for ocean color studies 

(Table 3.2). The spatial resolution in these bands are 1000m. 

 

 

 

 



23 
 

Table 3.2. MODIS bands useful for ocean color studies 

Serial No Wave Length (nm) Band 

1 412 Blue 

2 443 Blue 

3 469 Blue 

4 488 Blue 

5 531 Green 

6 547 Green 

7 555 Green 

8 645 Red 

9 667 Red 

10 678 Red 

 

The Ocean Biology Processing Group (OBPG) located at NASA’s Goddard Space Flight 

Centre, manages Ocean Color Web (OCW), and collects, validates, archives and distributes 

ocean-related remote sensing data. The MODIS ocean color level-2 data were downloaded 

for Chesapeake Bay (2012-2016) and Sargasso Sea (2004-2005) from OCW 

(https://oceancolor.gsfc.nasa.gov/) using the level-2 data browser. The level-2 data come 

in netCDF format; this format contains atmospherically corrected raster images of 

reflectance values at available bands. Swaths that contain the study area (Chesapeake Bay 

or Sargasso Sea) and dates for which in-situ data is available were the criteria to download 

the data. 
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Figure 3.4 MODIS Imageries of the study area dated (a) 03.14.2014 (b) 05.10.2014, 

generated using SeaDAS. The red rectangle demarcates Chesapeake Bay 

 

(a) 

(b) 
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3.2.3 Ocean Color algorithm 

 

Ocean color algorithm derives chlorophyll-a measure of water surface using remote 

sensing data. O’Reilly et al. (1998) developed an ocean color algorithm (i.e. OC4) for 

SeaWiFS that uses the ratio of reflectance in blue to green bands (O'Reilly et al., 1998). 

OC4 uses the maximum of reflectance in 443, 490 and 510 nm as blue band, and reflectance 

in 555nm band as the green band. The Ocean Color 3M (OC3M) algorithm currently 

operational for MODIS is an extension of the OC4 algorithm, that has been modified 

according to MODIS bands. 

 

The OC3M algorithm is a polynomial relationship of the fourth-order between chlorophyll-

a concentration and the ratio of reflectance at 443, 488 and 547 nm as input and gives 

chlorophyll-a concentration in mg m-3 as output.  

Chlorophyll-a =10𝑎0+𝑎1∗𝑋+𝑎2∗𝑋2+𝑎3∗𝑋3+𝑎4∗𝑋4
            (3.1)          

X=𝑙𝑜𝑔10
𝜆𝑏

𝜆𝑔
                                                                            (3.2) 

Where 𝜆𝑏 is greater of 𝑅𝑟𝑠 at 443 and 488, and 𝜆𝑔 is 𝑅𝑟𝑠 at 547. The a0, a1, a2, a3 and a4 

are constants whose values are 0.2424, -2.7423, 1.8017, 0.0015 and -1.2280, respectively. 
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3.3 Analyzing the temporal and spatial variability of chlorophyll-a 

3.3.1 Annual variability of chlorophyll-a 

 

The study area was divided into three sections; namely Upper Bay, Mid Bay and Lower 

Bay (Figure 3.2a). All CB monitoring stations from each section of the bay were selected 

as the representatives of that section. Mean annual chlorophyll-a concentrations at these 

monitoring stations were estimated from 2003 to 2017 to understand the inter-annual 

variability in chlorophyll-a in the three sections of Chesapeake Bay. 

 

3.3.2 Seasonal and spatial variability in chlorophyll-a 

 

The spatial and seasonal variability in chlorophyll-a was analyzed by: (1) Evaluating five-

year mean concentrations (2012-2016) for spring (March, April and May) and summer 

(July, August and September) at CB monitoring stations and (2) Obtaining a chlorophyll-

a map of Chesapeake Bay for spring and summer. Month of June was excluded from this 

study because it is a transition period from spring to summer and high variability in 

chlorophyll-a pattern is observed during this month (Buchanan et al., 2005). Observations 

from 285 monitoring stations were used for the development of chlorophyll-a map. Five-

year mean chlorophyll-a concentration at each monitoring station were evaluated for spring 

and summer season. For each season, a single surface estimate of chlorophyll-a was 

assessed for each monitoring station. If chlorophyll-a data were collected at multiple 

depths, an average of all observations up to 1 meter of depth was estimated.  Then, Kriging 
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interpolation was executed using ArcGIS 10.4 software to generate chlorophyll-a map for 

spring and summer. Additionally, standard deviations of observations at all monitoring 

stations in each season was estimated and interpolated to further understand the variance 

of concentrations during spring and summer in different part of Chesapeake Bay. 

 

3.4  Validation of the OC3M algorithm 

 

The present study analyzed the performance of currently operational OC3M algorithm in 

coastal water (Chesapeake Bay) and the mid ocean (Sargasso Sea). The MODIS level-2 

data were matched with in-situ chlorophyll-a measurements using the sampling date and 

location. An in-situ observation and a single pixel of remote sensing data, covering the in-

situ sampling location on the same day as the satellite flyover, were considered as a match-

up pair. The OC3M algorithm was applied to the remote sensing pixels and algorithm-

derived concentrations were compared with the corresponding in-situ measurements. The 

SeaDAS software, a software package for analysis of remote sensing ocean color data, was 

used for this purpose. Finally, the overall performances of the algorithm in Chesapeake 

Bay and Sargasso Sea were compared. 

 

To further understand the seasonal performance of the OC3M algorithm in coastal water, 

Chesapeake Bay’s matchup pairs were categorized according to seasons: spring, summer, 

autumn and winter (Table 3.3). Statistical parameters including Root Mean Square Error 
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(RMSE), Mean Absolute Percent Error (MAPE) and Mean absolute error (MAE) were 

derived to examine the accuracy of the OC3M algorithm in each season.  

Table 3.3. Summary of the matchup data used for the performance evaluation of the OC3M 

algorithm in Chesapeake Bay, and development of the novel algorithm 

 

Seasons 2012 2013 2014 2015 2016 Total 

Spring 3 0 6 10 7 26 

Summer 7 2 0 13 0 22 

Autumn 7 1 0 9 0 17 

Winter 0 0 1 8 3 12 

 

 Equations used to calculate statistical parameters 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋−𝑌)2𝑛

𝑖=1

𝑛
                                                       (3.3) 

 

𝑀𝐴𝐸 =
∑ |𝑋−𝑌|𝑛

𝑖=1

𝑛
                                                              (3.4) 

 

    𝑀𝐴𝑃𝐸 =  
100

𝑛
∑ |

𝑋−𝑌

𝑋

𝑛
𝑖=1 |                                                 (3.5) 

 

where X = In-situ measurements, Y = Algorithm derived values and  

 n = Number of samples. 
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3.5 Development of a novel algorithm 

 

Match-up pixels obtained in the previous study (Table 3.3) were used for this study. A 

novel algorithm was developed for coastal water (case 2) through regression analysis of 

the MODIS reflectance data against matching field-measured chlorophyll-a observations. 

In the coastal water, bottom reflectance and the presence of color dissolved organic matter 

(CDOM) yields an error in satellite estimation of chlorophyll-a using OC3M algorithm 

(Blakey et al., 2015). The OC3M algorithm uses blue-green band ratio that is susceptible 

to noise due to bottom reflectance and CDOM (Blondeau-Patissier et al., 2014). The red 

band has a tendency of attenuating early in water, and therefore it is less affected by bottom 

reflectance (Carder et al., 2005b). Furthermore, it is less sensitive to CDOM (Gilerson et 

al., 2010).  An algorithm that uses the red band has been shown to yield a better estimate 

of chlorophyll-a concentration (Gilerson et al., 2010). Therefore, in this study the red band 

was included for the development of the algorithm. 

 

The rationale behind selection of bands for the algorithm was based on the mesocosm tank 

experiment performed by Schalles et al. (1997). In that experiment, reflectance spectra was 

analyzed at different chlorophyll-a concentrations ranging from 0.4 to 62.2 mg m-3 (Figure 

3.5). It could be observed from the plot that as the concentration increases, the peak at the 

green band becomes higher and depression at the red band becomes sharper. Therefore, the 

ratio of reflectance in green to red bands should correlate with chlorophyll-a concentration. 
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Figure 3.5 Reflectance spectra at different concentrations of chlorophyll-a obtained from 

mesocosm tank experiment (Schalles et al., 1997) 

 

The peak in the green band shifts from 510nm to 560nm as the chlorophyll-a concentration 

increases (Figure 3.5). Similarly, trough in the red band moves between 660 to 680nm as 

the concentration changes. Therefore, band ratio formulation that uses maximum of 

reflectance at 531 and 551nm as numerator, and minimum of 667 and 678nm band as 

denominator, was adapted for this study. Regression analysis was performed using 

matchup pixels between logs of reflectance in the green/red band and In-situ chlorophyll-

a concentrations to generate coefficients for a polynomial of order four used in the 

algorithm.  
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3.6 Test of the novel algorithm 

 

The novel algorithm developed in this study was validated by using an independent test 

sample consisting of 42 pairs of match-up data. These match-up pairs were not used in the 

development of the algorithm. The algorithm-derived concentrations were compared with 

the corresponding in-situ measurements. Performances of the novel algorithm and OC3M 

algorithm were also compared using this data set. 
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Chapter 4 

4 Result and Discussion 

 

This section covers discussion on the results obtained by the study in three fragments. The 

first part discusses the temporal and spatial variability of chlorophyll-a concentration in the 

Chesapeake Bay. In the second part, the performances of OC3M algorithm in deriving 

chlorophyll-a concentration using MODIS data of deep ocean water and shallow water has 

been evaluated. The final part discusses the novel algorithm that has been developed in this 

study.  

 

4.1 Temporal and spatial variability of chlorophyll-a in Chesapeake Bay 

4.1.1 Annual variability of chlorophyll-a  

 

The annual variation in chlorophyll-a from 2003 to 2017 was analyzed in the three sections 

(Upper Bay, Mid Bay and Lower Bay) of Chesapeake Bay. The time series of chlorophyll-

a (Figure 4.1) exhibits that the annual concentration is variable in all three sections of 

Chesapeake Bay. For most of the years, concentration in the Upper Bay was highest, 

followed by Mid Bay and Lower Bay (except for 2003 when the highest concentration was 

observed in the Mid Bay). The highest mean chlorophyll-a (18.06 mg m-3) was observed 

in the Upper Bay in 2014 whereas the lowest (4.31 mg m-3) was observed in Lower Bay 

during 2017. The mean annual concentration in the Upper Bay varied between 12.23 to 
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18.06 mg m-3; whereas, the range of concentration in Mid Bay and Lower Bay were 8.02-

16.80 mg m-3 and 4.31-12.41 mg m-3, respectively, during the study period.  

 

  

Figure 4.1 Time series of annual chlorophyll-a variability in the three sections of 

Chesapeake Bay. Error bars represent the standard error of mean. 

 

The availability of nutrient is the main driving factor of phytoplankton growth in 

Chesapeake Bay. Nutrient loading in Chesapeake Bay is co-related with the fresh water 

inflow from the Susquehanna River (Harding Jr et al., 2016). The high variability in annual 

freshwater inflow from the Susquehanna River during the study period (Harding Jr et al., 

2016) could explain the  high annual variability in chlorophyll-a concentration of the 

Chesapeake Bay, as visible in the time-series graph (Figure 4.1).  
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4.1.2 Seasonal and spatial variability in chlorophyll-a 

 

All CB monitoring stations located in each section of Chesapeake Bay were selected as the 

representatives of that section and mean chlorophyll-a concentrations at CB stations in 

spring and summer were estimated for the study period (2012-2016). The five-year average 

shows that the mean concentration of chlorophyll-a in Upper Bay and Mid Bay was higher 

during spring; whereas, the concentration in the Lower Bay was higher during summer 

(Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Graph showing the chlorophyll-a variability in the three sections of Chesapeake 

Bay during spring and summer. Error bars represent the standard error of mean. 
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The inter-seasonal difference was largest in the Mid Bay where concentrations during 

spring and summer were 12.42 mg m-3 and 9.21 mg m-3, respectively.  The difference was 

smallest in the Lower Bay where chlorophyll-a concentration varied from 5.58 mg m-3 

during spring to 6.78 mg m-3 during summer.  

 

The higher concentration of chlorophyll-a in the Upper Bay and Mid Bay during spring is 

because of a recurring phenomenon in Chesapeake Bay known as the spring phytoplankton 

bloom (Cerco, 2000). The spring bloom is triggered by the abundant availability of 

nutrients that drains into the bay with freshwater inflow from the Susquehanna River. 

However, the nutrient concentration in the Lower Bay might not be influenced by nutrient 

loading from the Susquehanna River due to long travel distance and the tidal mixing of 

water. The spring bloom is characterized by the growth of diatoms comprising 

Skeletonema, Leptocylindrus, and Cyclotella that begin in February and stays until May, 

resulting in the higher concentration of chlorophyll-a during spring (Cerco, 2000). The 

algal biomass produced during spring consumes the nutrient available in water. After their 

subsequent decay, the nutrients are released into the water that is source of nutrient 

availability during summer (Cerco, 2000). The reduced availability of nutrients during 

summer (Cerco, 2000) might explain the lower algal biomass and chlorophyll-a 

concentration during summer in the Upper Bay and Mid Bay. 
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Chlorophyll-a map of Chesapeake Bay was produced for spring and summer seasons by 

interpolating five-year (2012-16) mean chlorophyll-a concentrations at 285 monitoring 

stations in the respective seasons (Figure 4.3). 

 

 

 

 

 

 

 

Figure 4.3 Interpolated map showing the chlorophyll-a variation in Chesapeake Bay during 

spring and summer. Observations from 2012 to 2016 were used for the analysis. 

 

During spring and summer seasons, the chlorophyll-a concentration in the Upper Bay was 

highest followed by Mid Bay and Lower Bay. Concentrations in the Upper Bay and Mid 

Bay were generally higher in spring than that of summer; whereas, in Lower Bay the 

concentration during summer was higher than spring (Figure 4.3).  At the head of 

Chesapeake Bay, where Patapsco River meets the Bay, the concentration was very high 

(>30 mg m-3), during both spring and summer. The chlorophyll-a level in all tributaries 

was higher than that of the main channel. 
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The elevated growth of phytoplankton leads to hypoxia condition that has detrimental 

effect on the marine ecosystem. The chlorophyll-a concentration is an indicator of the 

phytoplankton biomass (Graff et al., 2012). Based on salt regime and season, studies have 

defined the threshold chlorophyll-a concentrations (Table 4.1) for different parts of 

Chesapeake Bay (Buchanan et al., 2005, Lacouture et al., 2006, Williams et al., 2008). The 

water quality of a region is considered poor if the chlorophyll-a level in that region crosses 

the threshold concentration. 

Table 4.1 Threshold chlorophyll-a concentration of Chesapeake Bay (Williams et al., 2008) 

Salinity Regime Season Threshold concentration (mg m-3) 

Oligohaline Spring ≤ 20.9 

Mesohaline Spring ≤ 6.2 

Polyhaline Spring ≤ 2.8 

Oligohaline Summer ≤ 9.5 

Mesohaline Summer ≤ 7.7 

Polyhaline Summer ≤ 4.5 

 

The result reflects that during spring, the chlorophyll-a concentration in most of the regions 

of Chesapeake Bay was above the threshold concentrations. The chlorophyll-a 

concentration in part of the Upper Bay (oligohaline) was in the range of 15.0-20.0 mg m-3. 

However, the concentration in the rest of the Upper Bay was way above the threshold 

concentration of 20.9 mg m-3 for spring season. The concentration in the Mid Bay 

(Mesohaline) was between 10-20 mg m-3, about one-fold above the threshold concentration 
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of 6.2 mg m-3. In most of the Lower Bay, chlorophyll-a concentration was above the 

threshold level of 2.8 mg m-3. The concentration in a portion of Lower Bay was in the range 

of 0-6 mg m-3, so it could not be determined whether the chlorophyll-a level was less than 

the threshold concentration of 2.8 mg m-3 or not. 

 

The chlorophyll-a map of summer season (Figure 4.3) shows that the concentration in the 

entire Upper Bay was more than the threshold concentration. The chlorophyll-a 

concentration in the major part of the Mid Bay was in the range of 10-15 mg m-3 whereas 

the threshold level in Mid Bay (Mesohaline) for summer season is 7.7 mg m-3. The 

concentration in some parts of the Mid Bay was between 6-10 mg m-3 class, so it could not 

be determined whether the chlorophyll-a level in this region was below the threshold 

concentration or not. Almost the entire region of the Lower Bay was above the threshold 

concentration of 4.5 mg m-3, except for a tiny portion where the chlorophyll-a concentration 

could not be compared with the threshold level. 

 

The higher concentration of chlorophyll-a in Upper Bay and Mid Bay during spring could 

be explained by the spring bloom that is a recurring phenomenon in Chesapeake Bay 

(Cerco, 2000). Very high chlorophyll-a in the region where Patapsco River meets the Bay 

water could be because of the excess nutrient loading from the river (Ator et al., 2011). 

Standard deviations (SD) of chlorophyll-a observations during spring and summer were 

interpolated to obtain the concentration variance map for the two seasons. The result of the 
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analysis shows that the variance in chlorophyll-a concentration across different locations 

of Chesapeake Bay is higher during spring as compared to that during summer (figure 4.4). 

As observed from the variance map of summer, the SD of chlorophyll-a concentration 

differed at most places by a magnitude of <5 to <15 mg m-3. However, the variance map 

of spring clearly demonstrates higher deviation in the concentration in some parts of the 

Upper Bay and tributaries as depicted by a SD value of >20 mg m-3. The phytoplankton 

growth is very dynamic during spring due to the spring bloom. That might be the reason 

for higher variance during the spring season.  

 

 

Figure 4.4 Map showing the variance of chlorophyll-a concentration during spring and 

summer in Chesapeake Bay.  
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4.2  Assessment of the satellite derived chlorophyll-a using OC3M algorithm 

 

Field-measured chlorophyll-a data from Sargasso Sea (case 1) and Chesapeake Bay (case 

2) were compared with the OC3M-derived chlorophyll-a concentrations for those regions, 

to evaluate the performance of OC3M algorithm in deep ocean water and shallow coastal 

water. 

 

4.2.1 Deep ocean water (case 1) 

 

 

In this analysis, 25 pairs of in-situ chlorophyll-a observations and co-incident MODIS 

reflectance data of Sargasso Sea were used. Chlorophyll-a concentrations were derived by 

applying OC3M algorithm on remote sensing data. The algorithm-derived concentrations 

were compared with matching ground truth observations. The scattered plot and clustered 

column shown in Figure 4.5 and 4.6, respectively, compare the algorithm derived and in-

situ concentrations. 
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Figure 4.5 Plot compares the OC3M derived chlorophyll-a concentrations with ground 

truth concentrations in Sargasso Sea. The dotted line represents 1:1 line 

 

 

 

 

 

 

 

 

Figure 4.6 Clustered column compares the algorithm derived and in-situ chlorophyll-a 

concentrations in the Sargasso Sea. 
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The coefficient of determination obtained through this analysis is r2 = 0.494 (p < 0.001). 

Bubbles in the scatter plot of the OC3M derived chlorophyll-a against in-situ observations 

is mostly located along 1:1 line.  The cluster column shows the satellite estimated and 

ground truth concentrations are similar in most cases. Based on the obtained result, it could 

be said that the OC3M algorithm is performing well in the deep ocean water (case 1). The 

result supports the finding of previous studies that point towards good performance of the 

OC3M algorithm in deep ocean water (Moses et al., 2009).  

 

4.2.2 Coastal Water (Case 2) 

 

 

Seventy-four pairs of matchup pixels comprising of field observed chlorophyll-a data and 

co-incident remotely sensed reflectance data from MODIS were used to evaluate the 

performance of OC3M algorithm in the coastal water system of Chesapeake Bay. 

Algorithm derived chlorophyll-a concentrations were compared with the corresponding in-

situ observations using a scatter plot (Figure 4.7) and a cluster column (Figure 4.8). 

 

Points in the scatter plot are widespread. It is clearly visible in the cluster column that in 

most cases, the difference between the algorithm derived and in-situ concentrations are 

high (Figure 4.8). Most of the points in scatter plot are above 1:1 line which shows that the 
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Figure 4.7 The scatter plot of OC3M derived and in-situ chlorophyll-a concentration in 

Chesapeake Bay. The dotted line represents 1:1 line 

 

 

Figure 4.8 Cluster column compares the OC3M derived chlorophyll-a concentrations with 

corresponding ground truth concentrations 
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algorithm is over estimating the chlorophyll-a concentration in Chesapeake Bay. The result 

is in accordance with the finding of previous studies that the OC3M algorithm 

overestimates the chlorophyll-a concentration in Case 2 water (Gilerson et al., 2010). 

   

Table 4.2 Statistics of the accuracy of OC3M derived chlorophyll-a in case 1 and case 2 

water 

Water type Algorithm R2 P-value RMSE MAE MAPE 

Case 1 OC3M 0.492 < 0.001 0.016 0.012 23.5 

Case 2 OC3M 0.023 0.195 23.174 15.6 246.7 

 

The accuracy of OC3M algorithm in case1 and case2 water using MODIS reflectance data 

has been compared through different statistical methods (Table 4.2). The R2, p-value, 

RMSE, MAE and MAPE calculated for two cases clearly show that the accuracy of OC3M 

algorithm in case1 water is satisfactory but the performance of the algorithm is not reliable 

in case 2 water. 

 

To further determine the seasonal performance of the OC3M algorithm, the match-up pairs 

were divided into four groups according to seasons: spring (March, April, May), summer 

(July, August, September), autumn (October, November), and winter (December, January, 

February). Figure 4.9 shows the seasonal performance of OC3M algorithm in Chesapeake 

Bay. 
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Figure 4.9 Seasonal comparison of in-situ and OC3M derived chlorophyll-a in Chesapeake 

Bay for (a) spring (b) summer (c) Autumn and (d) winter. Dotted lines represent 1:1 

relationship.  

 

Data displayed in Figure 4.9 shows a large biasness in satellite estimation of chlorophyll-

a using OC3M algorithm in all seasons. Generally, the algorithm overestimated the 

chlorophyll-a concentration in all seasons, as most of the points are above 1:1 line for all 

cases. The statistical result of the seasonal evaluation is presented in table 4.3. It can be 

observed that the performance of the algorithm was especially poor in winter (RMSE = 

33.03, p-value = 0.780) and comparatively superior in spring (RMSE = 13.62, p-value = 

0.353). The error in satellite estimation of chlorophyll-a in coastal water is mainly due to 

noise from the bottom reflectance and presence of CDOM (Gilerson et al., 2010).  
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Table 4.3 Statistics of the seasonal evaluation of OC3M algorithm in Chesapeake Bay 

 

Season R2 P-value RMSE MAE MAPE 

All 0.023 0.195 23.174 15.6 246.7 

Spring 0.045 0.353 13.62 11.71 256.7 

Summer 0.088 0.204 21.24 16.88 196.0 

Autumn 0.068 0.312 21.52 12.92 165.0 

Winter 0.039 0.780 33.03 20.49 373.4 

 

4.3 Novel Algorithm 

4.3.1 Development of the novel algorithm 

 

Regression analysis was performed to best fit a fourth order polynomial (Figure 4.10) 

between the log of field observed chlorophyll-a and log of reflectance ratio that includes 

red bands. The band ratio formulation which is used in OC3M algorithm was retained in 

this study. The best fit was obtained by using the reflectance ratio that employs the 

maximum of reflectance in 531 and 551 nm band as numerator and minimum of reflectance 

in 667 and 678 nm bands as the reference band. The coefficients of the OC3M algorithm 

and the novel algorithm developed in this analysis has been shown in table 4.4 
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Figure 4.10 Best-fit polynomial between the green-red reflectance ratio and in-situ 

chlorophyll-a concentration, obtained through regression analysis  

 

Table 4.4 Coefficients of the OC3M algorithm and the novel algorithm 

Algorithm Band Ratio a0 a1 a2 a3 a4 

OC3M Xbg 0.2424 -2.7423 1.8017 0.0015 -1.2280 

Novel Xgr 0.314 10.472 -46.923 77.994 -45.63 
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4.3.2 The performance of the novel algorithm 

 

The performance of the novel algorithm was analyzed using the same data set that was 

used for the development of the algorithm. Bubbles in the scatter plot of in-situ against 

novel algorithm derived chlorophyll-a was condensed and most of the points fell along the 

1:1 line (Figure 4.11). Novel algorithm derived chlorophyll-a are significantly correlated 

(r2=0.323, p<0.001) with the in-situ observations, specially bellow the concentration of 15 

mg m-3. The RMSE obtained for this analysis is 4.20 mg m3. The cluster column shows the 

algorithm-derived concentrations are comparable to in-situ concentrations for most of the 

match-up pairs (Figure 4.12). 

 

 

Figure 4.11 Scatter-plot of in-situ and satellite derived chlorophyll-a using the novel 

algorithm for Chesapeake Bay. The dotted line represents 1:1 line. 
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Figure 4.12 Clustered column compares the in-situ chlorophyll-a concentrations with 

concentrations derived using the novel algorithm developed in this study 

 

The matchup data set was divided into four groups according to season. The algorithm 

derived and in-situ concentrations for each season were analyzed to understand the 

seasonal performance of the novel algorithm (Figure 4.13). Most accurate result was 

obtained for the spring season (r2=0.608, p<0.001). The accuracy in summer (r2=0.206, 

p=0.044) was also acceptable.  The results obtained for autumn (r2=0.077, p=0.282) and 

winter (r2=0.250, p=0.170) were not good enough but still better than the performance of 

the OC3M algorithm in these seasons. Table 4.5 shows the result of different statistical 

analysis that has been performed to compare the accuracy of the novel algorithm in 

different seasons 
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Figure 4.13 Seasonal comparison of In-situ and the novel algorithm derived chlorophyll-a 

in Chesapeake Bay for: (a) spring (b) summer (c) Autumn and (d) winter. Dotted lines 

represent 1:1 relationship  
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Table 4.5 Statistics showing the seasonal performance of the novel algorithm in 

Chesapeake Bay. 

 

Season R2 P-value RMSE MAE MAPE 

All 0.323 < 0.001 4.20 2.89 37.0 

Spring 0.608 < 0.001 4.61 2.86 37.4 

Summer 0.206 0.044 4.77 2.79 20.9 

Autumn 0.077 0.282 3.83 3.32 49.0 

Winter 0.250 0.170 2.80 2.53 40.9 

 

 

 

4.3.3 Test of the novel algorithm  

 

 

The accuracy of the novel algorithm was evaluated and compared with the performance of 

OC3M algorithm using an independent test sample of match-up pairs. The novel algorithm 

developed using green-red band ratio performed better than the existing OC3M algorithm 

for the coastal water system of Chesapeake Bay. The correlation between the novel 

algorithm derived and in-situ chlorophyll-a, obtained for the test sample, is significantly 

(p<0.001) higher as depicted by a R2 of 0.435 as compared to the OC3M algorithm (R2 

0.013, p=0.462) (Table 4.6). Furthermore, other statistical analysis (RMSE, MAE and 

MAPE) performed to compare the accuracy of OC3M algorithm and the novel algorithm 

demonstrated the error in satellite estimation of chlorophyll-a using MODIS data is reduced 

by several folds if the novel algorithm is used (Table 4.6). 
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Figure 4.14 Scatter plots show the comparison between in-situ and algorithm derived 

chlorophyll-a for test samples. Solid lines represent linear regression fit. Dashed lines are 

1:1 lines. 

 

Table 4.6 Statistics comparing the performance of the novel and OC3M algorithms 

Algorithm R2 P-value RMSE MAE MAPE 

Novel 0.435 <0.001 4.228 3.267 42.66 

OC3M 0.013 0.462 32.125 24.630 458.03 

 

The OC3M algorithm is blue-green band ratio algorithm, which is prone to the presence of 

color dissolved organic matter (CDOM) and bottom reflectance, common in coastal water 

(Blondeau-Patissier et al., 2014). Red bands are less sensitive to the presence of CDOM 

(Gilerson et al., 2010). Furthermore, due to its early attenuating tendency, red band is less 
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affected by bottom reflectance (Carder et al., 2005b). Therefore, the use of red-band in the 

current algorithm might have reduced the error in chlorophyll-a estimation by reducing the 

noise due to CDOM and bottom reflectance. 
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Chapter 5 

5 Conclusions and Recommendations 

 

In this study, the spatial and temporal variability of chlorophyll-a in Chesapeake Bay is 

analyzed. Mean annual chlorophyll-a concentration at CB monitoring stations located in 

Upper Bay, Mid Bay and Lower Bay were estimated for the years from 2003 to 2017 to 

understand the annual variation in chlorophyll-a. The chlorophyll-a concentration at 285 

monitoring stations were interpolated to produce chlorophyll-a map of the Chesapeake Bay 

for spring and summer seasons. The performance of OC3M algorithm was assessed in deep 

ocean water and coastal water and finally a novel algorithm was developed based on 

reflectance in green and red bands, and its performance in the coastal water system of 

Chesapeake Bay was tested using an independent data set. 

 

In-situ chlorophyll-a data from Chesapeake Bay and Sargasso Sea were used for the study. 

MODIS reflectance data were downloaded from the Ocean Color Web and satellite derived 

concentrations were obtained by applying OC3M algorithm using SeaDAS software. The 

results obtained in the study suggest that water quality of Chesapeake Bay is degraded; the 

OC3M algorithm is performing poor in coastal water while its performance in deep ocean 

water is satisfactory; novel algorithm based on green-red band ratio performs better in the 

coastal water.  

 



55 
 

5.1 Conclusions 

 

The annual variability in chlorophyll-a concentration in Chesapeake Bay is high. Mean 

annual chlorophyll-a concentrations at the CB stations employed for this study ranged 

between 4.31-18.06 mg m-3 from 2003 to 2017. The production of algal biomass is driven 

by the availability of nutrient, intensity of light and temperature condition (Cerco, 2000). 

Nutrients are present in the watershed from agricultural activities, urban activities and 

atmospheric deposition (Ator et al., 2011). However, the transport of nutrient to the bay is 

dependent on run-off from the watershed, which depend on the precipitation in the 

watershed. So, it could be said the chlorophyll-a dynamics in Chesapeake Bay is governed 

by natural factors, but it is aided by anthropogenic activities. Therefore, any management 

action plan to control the algal blooms in Chesapeake Bay should focus on reducing 

nutrient accumulation in the watershed and prevention of run-off to the bay. 

 

The seasonal comparison in chlorophyll-a concentration demonstrates that algal growth is 

higher in spring than that of summer in all three sections of Chesapeake Bay. The spring 

phytoplankton bloom is a regular phenomenon in Chesapeake Bay that results in elevated 

chlorophyll-a throughout the bay water. The over abundant algal bio-mass die and decay 

at the end of their life cycle resulting in a hypoxia condition during summer, which is a 

recurrent phenomenon in the bay. The hypoxia condition becomes stable since the density 

stratification inhibits the downward mixing of oxygenated water at the surface (Ator et al., 
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2011). To check the hypoxia condition during summer, it is important to focus on strategies 

that would control the algal production during spring.  

 

The spatial analysis of chlorophyll-a in the bay water during spring and summer 

demonstrated that in both seasons, concentrations in the Upper Bay was highest, followed 

by the Mid Bay and it was lowest in the Lower section of  Chesapeake Bay. During spring, 

the concentration in the Upper Bay was more than 15 mg m-3; in the Mid Bay, it varied 

from 10 to 20 mg m-3, and in the Lower Bay the concentration was less than 10 mg m-3. 

The summer concentration in the Lower Bay was generally higher than that of the spring. 

The chlorophyll-a in the Upper, Mid and Lower Bay during summer ranged between >15, 

6-10, and <6 mg m-3, respectively. Standard deviations of chlorophyll-a during spring and 

summer across different locations of Chesapeake Bay demonstrated higher variance during 

spring as compared to summer, which can be justified by the dynamicity in algal growth 

during spring. 

 

The uncertainties in satellite estimation of chlorophyll-a using OC3M algorithm in 

Sargasso Sea (Case1 water) and Chesapeake Bay (Case 2 water) has been evaluated. The 

algorithm worked well for case 1 water (RMSE= 0.016). However, the error of estimation 

was very high in case 2 waters (RMSE=23.14). The algorithm was found to be 

overestimating the chlorophyll-a concentrations in Chesapeake Bay. The blue-green band 

ratio based algorithms are susceptible to noise due to bottom reflectance and CDOM. Both 

factors are present in the coastal water that leads to the overestimation. The result of the 
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analysis demonstrates that OC3M algorithm is useful for synoptic mapping of chlorophyll-

a in the deep ocean region. However, the high error of estimation in Chesapeake Bay shows 

that the algorithm is unsuitable for satellite estimation of chlorophyll-a in the coastal water. 

 

 The novel algorithm developed in this study is a green-red band ratio algorithm. The red 

band has been used in the algorithm because it is less sensitive to bottom reflectance and 

CDOM that are sourcesmai of error in satellite estimation of chlorophyll-a in coastal water. 

The novel algorithm performed significantly better than the OC3M algorithm in the coastal 

water of Chesapeake Bay. The RMSE reduced from of 32.12 mg m-3 to 4.22 mg m-3 when 

novel algorithm was used instead of the OC3M algorithm for the same validation data set. 

The evaluation of seasonal performance of the algorithm demonstrated that the algorithm 

performed best for the winter season (RMSE=2.80). 

 

5.2 Recommendations 

 

It has been more than 40 years since the ocean color research began in 1970. Sufficient 

accuracy has been achieved in satellite estimation of chlorophyll-a in mid ocean water but 

the error in satellite estimation of chlorophyll-a in coastal region is still substantial. The 

coastal water is of great importance to human civilization and therefore a robust ocean 

color algorithm for coastal water is desired. The present study demonstrates the importance 

of red-band in development of ocean color algorithm for complex coastal water. Although, 
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the novel algorithm reduced the error in deriving chlorophyll-a by a significant margin but 

still the following limitations exist. The matchup data set used for the development of the 

algorithm is small (74 pairs). Most of the pixels in the MODIS imagery of the study area 

are Nan Pixels where reflectance data is not available and frequency of in-situ observations 

are low. It would be better to utilize a larger set of matchup pixels in order to develop an 

algorithm with a greater accuracy. Furthermore, the satellite estimation of chlorophyll-a in 

coastal water is severely affected by the operational atmospheric correction procedures that 

are known to be inefficient. Therefore, the most encouraging prospect for enhancement in 

satellite estimation of chlorophyll-a in coastal water is improvement in atmospheric 

correction procedure and development of red band based algorithm with a larger set of 

matchup pixels. 
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