Florida International University FIU Digital Commons

FIU Electronic Theses and Dissertations

University Graduate School

5-11-2018

Exposure to Estrogenic Endocrine Disrupting Chemicals and Brain Health

Mark Preciados Department of Environmental & Occupational Health, Florida International University, mprec001@fiu.edu

DOI: 10.25148/etd.FIDC006573
Follow this and additional works at: https://digitalcommons.fiu.edu/etd
Part of the <u>Bioinformatics Commons, Biostatistics Commons, Environmental Public Health</u> Commons, Epidemiology Commons, Genetics Commons, and the <u>Molecular Genetics Commons</u>

Recommended Citation

Preciados, Mark, "Exposure to Estrogenic Endocrine Disrupting Chemicals and Brain Health" (2018). *FIU Electronic Theses and Dissertations*. 3741. https://digitalcommons.fiu.edu/etd/3741

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

EXPOSURE TO ESTROGENIC ENDOCRINE DISRUPTING CHEMICALS AND BRAIN HEALTH

A dissertation submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

PUBLIC HEALTH

by

Mark Vicera Preciados

To: Dean Tomas R. Guilarte R.Stempel College of Public Health and Social Work

This dissertation, written by Mark Vicera Preciados, and entitled Exposure to Estrogenic Endocrine Disrupting Chemicals and Brain Health, having been approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Alok Deoraj

Vijaya Narayanan

Quentin Felty

Changwon Yoo

Deodutta Roy, Major Professor

Date of Defense: May 11, 2018

The dissertation of Mark Vicera Preciados is approved.

Dean Tomas R. Guilarte R.Stempel College of Public Health and Social Work

Andrés G. Gil Vice President for Research and Economic Development and Dean of the University Graduate School

Florida International University, 2018

© Copyright 2018 by Mark Vicera Preciados

All rights reserved.

DEDICATION

To my Mom and Dad, for always sacrificing and providing me with all the resources needed to succeed. As I have become older and wiser, I have learned to value your example and advice.

To my wife, Jaemy, your confidence, never give up attitude, and support is all I could ask for in a spouse. You are one of the great foundations in my life.

ACKNOWLEDGMENTS

I would like to acknowledge my committee members, Dr. Alok Deoraj, Dr. Vijaya Narayanan, Dr. Quentin Felty, and Dr. Changwon Yoo, thank you for your expertise, advice, and time in my PhD journey.

I would also like to acknowledge my major professor, Dr. Deodutta Roy, you are truly a great professor, who always looks out for the well-being of your students. Thank you for helping me gain the confidence I needed to finish my dissertation and to see the magic in the process.

ABSTRACT OF THE DISSERTATION

EXPOSURE TO ESTROGENIC ENDOCRINE DISRUPTING CHEMICALS AND BRAIN HEALTH

by

Mark Vicera Preciados

Florida International University, 2018

Miami, Florida

Professor Deodutta Roy, Major Professor

The overall objective of this dissertation was to examine exposures to the estrogenic endocrine disrupting chemicals (EEDCs), phthalates, bisphenol-A (BPA), and the metalloestrogens cadmium (Cd), arsenic (As), and manganese (Mn) in an older geriatric aged-population and examine associations with brain health. Given the evidence that EEDCs affect brain health and play a role in the development of cognitive dysfunction and neurodegenerative disease, and the constant environmental exposure through foods and everyday products has led this to becoming a great public health concern. Using a bioinformatic approach to find nuclear respiratory factor 1 (NRF1) gene targets involved in mitochondrial dysfunction, that are both estrogen and EEDC-sensitive, we found several genes involved in the gene pathways of Alzheimer's disease (AD): APBB2, EIF2S1, ENO1, MAPT, and PAXIP1. Using the Center for Disease Control and Prevention (CDC), National Health and Nutrition Examination Survey (NHANES) 2011-2014 datasets to assess EEDC bioburden and associations with surrogate indicators of brain health, which include cognitive scores, memory questions, and taste and smell data, we found phthalate bioburden to be significantly higher in those with adverse brain health

vi

and significantly higher in females. In our logistic regression model when controlling for all known and suspected covariates in AD, in females, the phthalates in females ECP, MBP, MOH, MZP, and MIB in males and the phthalates COP, ECP, MBP, MC1, MEP, MHH, MOH, and MIB were significantly associated with poor cognitive test scores, poor memory, and taste and smell dysfunction. Among the metalloestrogens, Cd bioburden was higher in those with poor cognitive performance, poor memory, and taste and smell dysfunction, with the trend more significant in males. Among oral contraceptive (OC) and HRT (hormone replacement therapy) use, in our logistic regression model when controlling for all known and suspected covariates in AD, past OC and HRT use was associated with better cognitive test scores. The study provides further evidence of the complex role EEDCs play in overall brain health through other biological mechanisms and fills a gap in knowledge that demonstrates EEDCs effects on brain health in a geriatric age population.

TABLE OF CONTENTS

CHAPTER

I.	INTRODUCTION REFERENCES	
II.	MANUSCRIPT 1	12
11.	EXPOSURE TO ESTROGENIC ENDOCRINE DISRUPTING	12
	CHEMICALS AND THEIR ROLE BRAIN HEALTH	
	LITERATURE REVIEW	12
	INTRODUCTION	12
	Estrogens and Brain Health	13
	Oral Contraceptives (OC) and Brain Health	
	Hormonal Replacement Therapy (HRT) and Brain Health	
	Bisphenol – A (BPA) and Brain Health	
	Phthalates and Brain Health	
	Polychlorinated Biphenyls (PCBs) and Brain Health	
	Cadmium (Cd) and Brain Health	
	Arsenic (As) and Brain Health	
	Manganese (Mn) and Brain Health	
	Mechanisms of Action of EEDCs in Brain Health	
	Nuclear Respiratory Factor 1 (NRF1) Genes, EEDCs, and Brain Health	
	Bioinformatic Method: Estrogen and NRF1 responsive Genes and EEDCs	
	Results NRF1, Mitochondrial Dysfunction, and Neurodegenerative Disease	
	NRF1, Mitochondrial Dystunction, and Neurodegenerative Disease	
	Gender Bias and NRF1 Regulated Genes-EEDC Interactions in AD	
	NRF1 and Estrogen Responsive Genes in the AD Pathway	
	Conclusions	
	Conclusions	
III.	HYPOTHESIS AND SPECIFIC AIMS	78
IV.	METHODS	79

V.	METHODS	79
	Inclusion/Exclusion Criteria	80
	Inclusion Criteria	80
	Exclusion Criteria	80
	Phthalate Exposure Assessment and Measurements	80
	BPA Exposure Assessment and Measurements	81
	Cadmium Exposure Assessment and Measurements	
	-	

Manganese Exposure Assessment and Measurements	82
Arsenic Exposure Assessment and Measurements	
Oral Contraceptive Use Assessment and Measurements	
Hormonal Replacement Therapy Use Assessment and Measurements	
Assessment of Surrogate Brain Health Indicators – Cognitive Scores	
CERAD Word Learning Subtest - Immediate Recall and Delayed Recall	84
Immediate Recall	85
Delayed Recall	86
Animal Fluency	87
Digit Symbol Substitution Test	88
Assessment of Surrogate Brain Health Indicators - Memory Function	90
During the past 12 months, have you experienced confusion or memory	
loss that is happening more often or getting worse?	90
During the past 7 days, how often have you had trouble remembering	
where you put things?	90
Are you limited in any way because of difficulty remembering or because	
you experience periods of confusion?	92
Assessment of Surrogate Brain Health Indicators – Taste and Smell	
Function	92
Do you sometimes smell and unpleasant, bad, or burning odor when	
nothing is there?	
During the past 12 months have you had a taste or other sensation in your	
mouth that does not go away?	
Covariates and Confounding Variables	
Statistical Analysis	
References	98
MANUSCRIPT II	106
EXPOSURE TO PHTHALATES AND BISPHENOL-A AND	.100
ASSOCIATIONS WITH BRAIN HEALTH: NHANES 2011-2014	106
ABSTRACT	
INTRODUCTION	
OBJECTIVE	
METHODS	

	ABSTRACT	106
	INTRODUCTION	109
	OBJECTIVE	
	METHODS	
	RESULTS	
	DISCUSSION	
	CONCLUSION	
VI	MANUSCRIPT III	200
v 1.		
	EXPOSIBE TO METALLOESTPOCENS AND ASSOCIAT	LIUNK

V.

VI.	MANUSCRIPT III	200
	EXPOSURE TO METALLOESTROGENS AND ASSOCIATIONS	
	WITH BRAIN HEALTH: NHANES 2011-2014	200
	ABSTRACT	200
	INTRODUCTION	202

OBJECTIVE	
METHODS	
RESULTS	
DISCUSSION	
CONCLUSION	

VII.	MANUSCRIPT IV	273
	EXPOSURE TO ORAL CONTRACEPTIVES AND HORMONE	
	REPLACEMENT THERAPY ASSOCIATIONS WITH BRAIN	
	HEALTH: NHANES 2011-2014	
	ABSTRACT	273
	INTRODUCTION	
	OBJECTIVE	
	METHODS	
	RESULTS	291
	DISCUSSION	
	CONCLUSION	

VIII.	OVERALL CONCLUSIONS	.317
	VITA	.322

LIST OF TABLES

TABLE PAGE
Manuscript I
Table 1: Top 10 enriched pathways for E2 and NRF1-Target Genes Associated with Estrogenic Endocrine Disruptors – BPA, PCB, Phthalates, As, Cd, and Mn
Table 2: Interaction of Estrogenic Endocrine Disrupting Chemicals Modified Genes with Estrogen Signaling and NRF1 network genes in the Individual Neurodegenerative Disease
Manuscript II
Table 1.1 - Descriptive Statistics Surrogate brain health indicators and covariates for Phthalates and BPA .127
Table 1.2 Geometric Mean Urinary Phthalate and BPA Levels by Immediate Recall Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD130
Table 1.3 Age-Specific Geometric Mean Urinary Phthalate and BPA Levels byImmediate Recall Cut-Off Scores for Subjects >= 60 years of age, NHANES2011-2014, over the LOD
Table 1.4 Gender-specific Geometric Mean Urinary Phthalate and BPA Levels by Immediate Recall Cut-Off Scores for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.5 Race-specific Geometric Mean Urinary Phthalate and BPA Levels by Immediate Recall Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.6 Estimated ORs (95% CI) of Urinary Phthalate and BPA Levels byImmediate Recall Cut-Off Score for Subjects >= 60 years of age,NHANES 2011-2014

Table 1.7 Geometric Mean Urinary Phthalate and BPA Levels by Delayed Recall Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD...135

Table 1.8 Age-Specific Geometric Mean Urinary Phthalate and BPA Levelsby Delayed Recall Cut-Off Score for Subjects >= 60 years of age, NHANES2011-2014, over the LOD135
Table 1.9 Gender-specific Geometric Mean Urinary Phthalate and BPA Levels by Delayed Recall Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.10 Race-specific Geometric Mean Urinary Phthalate and BPA Levels by Delayed Recall Cut-Off Scores for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.11 Estimated ORs (95% CI) of Urinary Phthalate and BPA Levels byDelayed Recall Cut-Off Score for Subjects >= 60 years of age,NHANES 2011-2014137
Table 1.12 Geometric Mean Urinary Phthalate and BPA Levels by Animal Fluency Cut-Off Scores for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD .140
Table 1.13 Age-Specific Geometric Mean Urinary Phthalate and BPA Levels by Animal Fluency Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.14 Gender-specific Geometric Mean Urinary Phthalate and BPA Levels by Animal Fluency Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.15 Race-specific Geometric Mean Urinary Phthalate and BPA Levels byAnimal Fluency Cut-Off Score for Subjects >= 60 years of age, NHANES2011-2014, over the LOD141

Table 1.16 Estimated ORs (95% CI) of Urinary Phthalate and BPA Levels by Verbal Fluency Score for Subjects >= 60 years of age, NHANES 2011-2014142
Table 1.17 Geometric Mean Urinary Phthalate and BPA Levels by Digit SymbolSubstitution Test (DSST) Cut-Off Score for Subjects >= 60 years of age, NHANES2011-2014, over the LOD
Table 1.18 Age-Specific Geometric Mean Urinary Phthalate and BPA Levels by Digit Symbol Substitution (DSST) Cut-Off Scores for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.19 Geometric Mean Urinary Phthalate and BPA Levels by Digit Symbol Substitution (DSST) Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.20 Race-specific Geometric Mean Urinary Phthalate and BPA Levels by Digit Symbol Substitution (DSST) Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.21 Estimated ORs (95% CI) of Urinary Phthalate and BPA Levels byDigit Symbol Substitution Test (DSST) Score for Subjects >= 60 years of age,NHANES 2011-2014
Table 1.22 Geometric Mean Urinary Phthalate and BPA Levels by responses, "During the past 12 months, experienced confusion or memory loss that is happening more often or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.23 Age-Specific Geometric Mean Urinary Phthalate and BPA Levels by responses, "During the past 12 months, experienced confusion or memory loss that is happening more often or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.24 Geometric Mean Urinary Phthalate and BPA Levels by responses, "During the past 12 months, experienced confusion or memory loss that is happening more often or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

Table 1.25 Race-specific Geometric Mean Urinary Phthalate and BPA Levels by responses, "During the past 12 months, experienced confusion or memory loss that is happening more often or is getting worse?" for Subjects >= 60 years of age,	
NHANES 2011-2014, over the LOD	.152
Table 1.26 Estimated ORs (95% CI) of Urinary Phthalate and BPA Levels by responses, "During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014	.153
Table 1.27 Geometric Mean Urinary Phthalate and BPA Levels by Responses, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD	.156
Table 1.28 Age-Specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD	
Table 1.29 Gender-Specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD	
Table 1.30 Race-specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD.	
Table 1.31 Estimated ORs (95% CI) of Urinary Phthalate and BPA by Responses, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014	.158
Table 1.32 Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD	.162

Table 1.33 Age-Specific Geometric Mean Urinary Phthalate and BPA Levels by Responses "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for subjects >= 60 years of age,
NHANES 2011-2014, over the LOD
Table 1.34 Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.35 Race-specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.36 Estimated ORs (95% CI) of Urinary Phthalate and BPA Levels by Responses, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Subjects >= 60 years of age, NHANES 2011-2014
Table 1.37 Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD167
Table 1.38 Age-specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.39 Gender-specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.40 Race-specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

Table 1.41 Estimated ORs (95% CI) of Urinary Phthalate and BPA Levels by Responses, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014169
Table 1.42 Geometric Mean Urinary Phthalate and BPA Levels by Responses, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.43 Age-Specific Geometric Urinary Mean Phthalate and BPA Levels by Responses, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.44 Geometric Mean Phthalate and BPA Levels by Responses, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD174
Table 1.45 Race-specific Geometric Mean Phthalate and BPA Levels by Responses, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.46 Estimated ORs (95% CI) of Urinary Phthalate and BPA Levels by Responses, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014
Table 1.47 - Summary Table of EEDCs overall significance of GMs by Surrogate of Brain Health Indicators (* p<0.05, ** p<0.01, *** p<0.001)177
Table 1.48 - Summary Table of EEDCs overall significance of GMs by Surrogate of Brain Health Indicators in males (* p<0.05, ** p<0.01, *** p<0.001)
Table 1.49 - Summary Table of EEDCs overall significance of GMs by Surrogate of Brain Health Indicators in females (* p<0.05, ** p<0.01, *** p<0.001)177

MANUSCRIPT III

Table 1.1 - Descriptive Statistics Surrogate brain health indicators and covariates for Cd and Mn
Table 1.1a - Descriptive Statistics Surrogate brain health indicators and covariates for As
Table 1.2 Geometric Mean Urinary Metalloestrogen Levels by Immediate Recall Cut -Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD224
Table 1.3 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Immediate Recall Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.4 Gender-Specific Geometric Mean Urinary Metalloestrogen Levels byImmediate Recall Cut-Off Score for Subjects >= 60 years of age, NHANES2011-2014, over the LOD
Table 1.5 Race-specific Geometric Mean Urinary Metalloestrogen Levels byImmediate Recall Cut-Off Score for Subjects >= 60 years of age,NHANES 2011-2014, over the LOD
Table 1.6 ORs and 95% CI for Urinary Metalloestrogen Levels by Immediate Recall Cut-Off Scores for Subjects >= 60 years of age, NHANES 2011-2014225
Table 1.7 Geometric Mean Urinary Metalloestrogen Levels by Delayed Recall Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD227
Table 1.8 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Delayed Recall Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.9 Gender-specific Geometric Mean Urinary Metalloestrogen Levels byDelayed Recall Cut-Off Score for Subjects >= 60 years of age, NHANES2011-2014, over the LOD

Table 1.10 Race-specific Geometric Mean Urinary Metalloestrogen Levels by Delayed Recall Cut-Off Score for Subjects >= 60 years of age, NHANES
2011-2014, over the LOD
Table 1.11 ORs and 95% CI for Urinary Metalloestrogen Levels by Delayed Recall Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014229
Table 1.12 Geometric Mean Urinary Metalloestrogen Levels by Animal Fluency Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD230
Table 1.13 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Animal Fluency Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.14 Gender-specific Geometric Mean Urinary Metalloestrogen Levels byAnimal Fluency Cut-Off Score for Subjects >= 60 years of age, NHANES2011-2014, over the LOD
Table 1.15 Race-specific Geometric Mean Urinary Metalloestrogen Levels by Animal Fluency Cut-Off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD232
Table 1.16 ORs and 95% CI for Urinary Metalloestrogen Levels by Animal Fluency Scores for Subjects >= 60 years of age, NHANES 2011-2014232
Table 1.17 Geometric Mean Urinary Metalloestrogen Levels by Digit SymbolSubstitution (DSST) Cut-Off Scores for Subjects >= 60 years of age, NHANES2011-2014, over the LOD
Table 1.18 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Digit Symbol Substitution (DSST) Cut-Off Scores for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.19 Gender-Specific Geometric Mean Urinary Metalloestrogen Levels byDigit Symbol Substitution (DSST) Cut-Off Score for Subjects >= 60 years of age,NHANES 2011-2014, over the LOD

Table 1.20 Race-specific Geometric Mean Urinary Metalloestrogen Levels by Digit Symbol Substitution (DSST) Cut-Off Scores for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD	235
Table 1.21 ORs and 95% CI for Urinary Metalloestrogen Levels by Digit Symbol Substitution (DSST) Score for Subjects >= 60 years of age, NHANES 2011-2014	235
Table 1.22 Geometric Mean Urinary Metalloestrogen Levels by Y/N, "During the past 12 months, you experienced confusion or memory loss that is happening more oft or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD.	
Table 1.23 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD.	238
Table 1.24 Gender-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD.	239
Table 1.25 Race-specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD	239
Table 1.26 ORs and 95% CI for Urinary Metalloestrogen Levels by Y/N, "During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014	240
Table 1.27 Geometric Mean Urinary Metalloestrogen Levels by Y/N, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD	241

Table 1.28 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.29 Gender-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.30 Race-specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.31 ORs and 95% CI for Urinary Metalloestrogen by Y/N, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014
Table 1.32 Geometric Mean Urinary Metalloestrogen Levels by Y/N, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.33 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.34 Gender-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.35 Race-specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

Table 1.36 ORs and 95% CI for Urinary Metalloestrogen Levels by Y/N , "Are you limited in any way because of difficulty remembering or because you comparison periods of confusion?" for Subjects > -60 years of equation of the subjects > -60 years of equation of the subjects > -60 years of equation of the subjects > -60 years of equation $= -60$ years
because you experience periods of confusion?" for Subjects >= 60 years of age, NHANES 2011-2014
Table 1.37 Geometric Mean Urinary Metalloestrogen Levels by Y/N, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD248
Table 1.38 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.39 Gender-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.40 Race-specific Geometric Mean Urinary Metalloestrogen Levels by Y/N, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD
Table 1.41 ORs and 95% CI for Urinary Metalloestrogen Levels by Responses, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014250
Table 1.42 Geometric Mean Urinary Metalloestrogen Levels by Y/N, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD252
Table 1.43 Age-Specific Geometric Urinary Mean Metalloestrogen Levels by Y/N, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

Table 1.44 Geometric Mean Metalloestrogen Levels by Y/N, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD253	
Table 1.45 Race-specific Geometric Mean Metalloestrogen Levels by Y/N, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD	
Table 1.46 ORs and 95% CI for Urinary Metalloestrogen Levels by Y/N, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014	
Table 1.47 - Summary Table of EEDCs overall significance of GMs by Surrogate of Brain Health Indicators (* p<0.05, ** p<0.01, *** p<0.001)256	
Table 1.48 - Summary Table of EEDCs overall significance of GMs by Surrogate of Brain Health Indicators in males (* p<0.05, ** p<0.01, *** p<0.001)256	
Table 1.49 - Summary Table of EEDCs overall significance of GMs by Surrogate of Brain Health Indicators in females (* p<0.05, ** p<0.01, *** p<0.001)257	
MANUSCRIPT IV	
Table 1.1 - Descriptive Statistics Surrogate brain health indicators and covariates	

for OC use	.292
Table 1.1a - Descriptive Statistics Surrogate brain health indicators and covariates for HRT use	.293
Table 1.2 Immediate Recall Cut-off Scores Chi-Square Results	.294
Table 1.3 Immediate Recall Cut-off Scores Chi-Square Results	.294
Table 1.4 - ORs and 95% CI for OC and HRT Use Levels by Immediate Recall Cut-off Scores for Female Subjects >= 60 years of age, NHANES 2011-2014	.295

Table 1.5 Delayed Recall Cut-off Scores Chi-Square Results	295
Table 1.6 Delayed Recall Cut-off Scores Chi-Square Results	295
Table 1.7 - ORs and 95% CI for OC and HRT Use Levels by Delayed Recall Cut-off Scores for Female Subjects >= 60 years of age, NHANES 2011-2014	
Table 1.8 Animal Fluency Cut-off Scores Chi-Square Results	296
Table 1.9 Animal Fluency Cut-off Scores Chi-Square Results	296
Table 1.10 - ORs and 95% CI for OC and HRT Use Levels by Animal Fluency Cut-off Scores for Female Subjects >= 60 years of age, NHANES 2011-2014	297
Table 1.11 DSST Cut-off Scores Chi-Square Results	297
Table 1.12 DSST Cut-off Scores Chi-Square Results	297
Table 1.13 - ORs and 95% CI for OC and HRT Use Levels by DSST Cut-off Scores for Female Subjects >= 60 years of age, NHANES 2011-2014	298
Table 1.14 During the past 12 months, have you experienced confusion or memory loss that is happening more often or getting worse? Chi-Square Results	299
Table 1.15 During the past 12 months, have you experienced confusion or memory loss that is happening more often or getting worse? Chi-Square Results	299
Table 1.16 - ORs and 95% CI for OC and HRT Use Levels by Y/N "During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?" for Female Subjects >= 60 years of age, NHANES 2011-2014	299
Table 1.17 During the past 7 days, how often have you had trouble remembering where you put things? Chi-Square Results	300
Table 1.18 During the past 7 days, how often have you had trouble remembering where you put things? Chi-Square Results	300

Table 1.19 - ORs and 95% CI for OC and HRT Use Levels by Y/N "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Female Subjects >= 60 years of age, NHANES 2011-2014300
Table 1.20 Are you limited in any way because of difficulty remembering or because you experience periods of confusion? Chi-Square Results
Table 1.21 Are you limited in any way because of difficulty remembering or because you experience periods of confusion? Chi-Square Results
Table 1.22 - ORs and 95% CI for OC and HRT Use Levels by Y/N "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Female Subjects >= 60 years of age, NHANES 2011-2014
Table 1.23 Do you sometimes smell and unpleasant, bad, or burning odor when nothing is there? Chi-Square Results
Table 1.24 Do you sometimes smell and unpleasant, bad, or burning odor when nothing is there? Chi-Square Results
Table 1.25 - ORs and 95% CI for OC and HRT Use Levels by Y/N "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Female Subjects >= 60 years of age, NHANES 2011-2014
Table 1.26 During the past 12 months have you had a taste or other sensation inyour mouth that does not go away? Chi-Square Results
Table 1.27 During the past 12 months have you had a taste or other sensation in your mouth that does not go away? Chi-Square Results
Table 1.28 - ORs and 95% CI for OC and HRT Use Levels by Y/N "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Female Subjects >= 60 years of age, NHANES 2011-2014

LIST OF FIGURES

FIGURE

Manuscript I

Figure 4. Gene set pathway enrichment analysis of bisphenol-A (BPA) responsive R2 and NRF1common target genes associated with Alzheimer Disease (AD). Bisphenol-A responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node are E2 and NRF1 responsive. The network includes the top 30 related genes. Right panel show GO annotations of E2 and NRF1 enrichment network genes of BPA associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term.

ABBREVIATIONS AND ACRONYMS

AD	Alzheimer's Disease
ADHD	Attention Deficit Hyperactive Disorder
ALS	Amyotrophic Lateral Sclerosis
APOE	Apolipoprotein E
APP	Amyloid Precursor Protein
AS	Arsenic
BPA	Bisphenol-A
CD	Cadmium
CDC	Center for Disease Control and Prevention
CERAD	Consortium to Establish a Registry for Alzheimer's Disease
CI	Cognitive Impairment
CNP	Mono (carboxynonyl) Phthalate
СОР	Mono (carboxyoctyl) Phthalate
DHNES	Division of Health and Nutritional Examination Surveys
DSST	Digit Symbol Substitution Test
ECP	Mono-(2-ethyl-5-carboxypentyl) Phthalate
EDC	Endocrine Disrupting Chemical
EE	Ethinyl Estradiol
EEDC	Estrogenic Endocrine Disrupting Chemical
EPA	Environmental Protection Agency
ER	Estrogen Receptors

HRT	Hormone Replacement Therapy
НТ	Huntington's Disease
LOD	Limit of Detection
MBP	Mono-n-butyl Phthalate
MBzp	Mono-benzyl Phthalate
MC1	Mono-(3-carboxypropyl) Phthalate
MCI	Mild Cognitive Impairment
MEC	Mobile Evaluation Clinic
MEP	Mono-ethyl phthalate
МНН	Mono (2-ethyl-5-hydroxy-hexyl) Phthalate
MIB	Mono-isobutyl Phthalate
MN	Manganese
МОН	Mono-(2-ethyl-5-oxohexyl) Phthalate
MZP	Mono-benzyl Phthalate
NCHS	National Center for Health Statistics
NHANES	National Health and Nutritional Examination Survey
NMDA	N-Methyl-D-aspartate
NRF1	Nuclear Respiratory Factor 1
OC	Oral Contraceptive
PCB	Polychlorinated Biphenyl
PD	Parkinson's Disease
PSU	Primary Sampling Units

RR	Relative Risk
UPDRS	Unified Parkinson's Disease Rating Scale
WHIMS	Women's Health Initiative Memory Study
WHISCA	Women's Health Initiative Study of Cognitive Aging

CHAPTER I

INTRODUCTION

Endocrine disrupting chemicals (EDCs) are of important public health concern and are linked to diseases of all human systems ¹. They affect all the sensitive periods of human life: gestation, childhood, puberty, reproductive life, and old age ¹. EDCs include numerous chemicals found in our environment, both natural and man-made. These include industrial chemicals, plasticizers, pesticides, pharmaceutical drugs, and phytoestrogens ². EDCs affect the human body by imitating, blocking, and/or altering hormonal function ¹. EDCs exert their effects by being able to enter the body by dermal, ingestion, and inhalation routes². There widespread distribution in our environment is due to their use in most manufacturing processes ¹ and their production from e-wastes ³. Estrogenic endocrine disrupting chemicals (EEDCs) are a specific type of EDC, which affect bodily process that are influenced and modulated by estrogen hormones ⁴.

EEDCs as a Brain Health Concern: EEDCs have been implicated as one of the causes of neurodegenerative disease and adverse brain health ¹. Adverse brain health can be defined by neurodegeneration that encompasses any pathological condition affecting neurons ⁵. Neurodegenerative diseases, a product of adverse brain health, have varied symptoms which affect neurons from different parts of the brain, with the most publicized diseases being Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis, (ALS), and Huntington's disease (HD) ⁵. The ability of various EEDCs to mimic estrogen and affect its role in brain health, and their widespread dissemination in the environment makes this an important public health concern.

Estrogen's Role in Brain Health: Estrogen role in the brain is extensive. Estrogen has been shown to influence sexual differentiation ⁶, plays a role as a neuroprotectant and promote anti-inflammatory effects on the brain ^{7–12}, promotes neuroplasticity and synaptogenesis ^{13–17}, and regulates and protects mitochondrial function in the brain ^{18–20}. A majority of studies have focused on EEDCs effects on early human development and the brain, and there are few studies that look at an older geriatric aged population. Due to EEDCs ability to interact with estrogen and disrupt its role in brain development and protection, merits further study on its effects on the aging brain. Of the hundreds of EEDCs that human beings are exposed to, this dissertation focuses on a selection of the most prevalent EEDCs in our environment with proven estrogenic activity: Phthalates, bisphenol-A (BPA), cadmium (Cd), manganese (Mn), and arsenic (As).

Phthalates: Phthalates are class of estrogenic endocrine disrupting chemicals that have a role in the development of neurodegenerative disease. Phthalates, also known as plasticizers, are chemicals used in plastics to make them flexible and strong ^{21–23}. Exposure to phthalates comes through ingestion, inhalation, and to a lesser extent, dermal contact with phthalate-containing products ²⁴. Phthalates are found in most consumer products. These include the following: wall coverings, tablecloths, floor tiles, furniture, upholstery, shower curtains, garden hoses, baby products, toys, shoes, packing materials, medical devices, paints, glue, nail polish, hair spray, insect repellents, food packaging materials, cosmetics, insecticides, and drug products ^{21–23}. Phthalates have short biological half-lives and do not accumulate, with urine as the primary route of excretion ²⁵. Specific phthalates are also found in high levels among the US population. One study, found the body burden of the phthalates mono-ethyl phthalate (MEP), mono-n-butyl

phthalate (MBP) and and mono-benzyl phthalate (MBzp) in 97% of samples tested from the CDC NHANES 1999-2000 datasets ²⁶. As such, most of the US population has some measurable levels of phthalates in their bodies ²⁵.

Phthalates have also been demonstrated to have estrogenic activity and affinity for estrogen receptors (ER) ^{27,28} and have been shown to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ²⁹.

<u>Bisphenol-A (BPA)</u>: BPA is a synthetically created chemical that is used to create polycarbonate plastics and resins ³⁰. BPA is found in many consumer products and plastics. These products include the following: baby bottles, compact discs, impactresistant safety equipment, medical devices, food cans and tops, water supply pipes, ATM receipts and dental sealants and composites ³⁰. Food storage containers that have BPA can cause it to leech into foods by the use of high heat ³⁰. It is of note that during the 2003-2004 NHANES data cycle, BPA was detected in 93% of urine samples collected from subjects 6 years of age and older ³¹.

BPA has been shown to be weakly estrogenic and have a low affinity for binding to ER receptors, but is speculated to exert its effects through other non-classical pathways ³². BPA has also been shown to interact with estrogen-responsive genes that are implicated in neurodegenerative disease pathways ²⁹.

<u>Cadmium (Cd)</u>: Cd is a naturally occurring metal in the earth's crust and a natural part of water in the ocean ³³. People are exposed through eating food, cigarette smoke, drinking water, and air ³³. Cd is introduced into the food chain through soil and food contact surfaces, and through foods such as green vegetables, grains, legumes, and meats ³³. Occupation exposures are highest in occupations involving the manufacture of Cdcontaining products ³³. Inhalation and oral routes of exposure are predominant, followed by dermal exposure ³³. Current evidence supports the toxicity of Cd and its effects on the developing organism, reproductive toxicity, hepatic effects, hematological effects, and immunological effects ³³. Cd has also been demonstrated to have estrogenic properties ³⁴ and has been shown to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ²⁹.

Arsenic (As): As is an element in the environment, found in the earth's crust, and is considered a metalloid ³⁵. Populations are usually exposed through the air, drinking water, and food, with food being the main source of As in a population, with some areas having naturally high levels of As ³⁵. Occupational exposure occurs through individuals working in metal working, wood treatment, and those in working in the production and application of pesticides ³⁵. As is also used in the animal and poultry feed as an antimicrobial compound ³⁵. The main routes of exposure are inhalation and oral, with dermal exposure being considered a minor route ³⁵. As has been associated with various health conditions and affects every organ system ³⁵. Genetic polymorphisms are suspected of causing some individuals to be more sensitive to As³⁵. As has also been demonstrated to have estrogenic properties ³⁴ and has been shown to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ²⁹.

<u>Manganese (Mn)</u>: Mn is a metal that is an essential nutrient required as a cofactor for various enzymatic processes and is found as a naturally occurring element in grains and fruit ³⁶. Mn is used in industrial processes and products and exposure can occur through inhalation, oral, dermal, and occupational routes ³⁶. Mn has the potential to accumulate in organisms at the bottom tier of the food chain and has been linked to various health issues

that include neurological dysfunction ³⁶. Mn has also been demonstrated to have estrogenic properties ³⁴ and has been shown to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ²⁹.

<u>**Oral Contraceptives (OC)</u>**: Oral contraceptives containing specifically containing synthetic estrogens such as ethinyl estradiol are considered EEDCs due to its ability to mimic estrogen and influence the reproductive cycle. OC use has been shown to reduce the amount of available endogenous estrogen in the body ³⁷. OCs has varying effects brain structure, function, and cognition ³⁸. Most recent studies have shown varying effects; however, the studies do not differentiate between the various types of contraceptives, making it difficult to find out if the contraceptives used contained ethinyl estradiol and inconsistencies are found in the reporting of the type of OC used ³⁹.</u>

Hormonal Replacement Therapy (HRT): Hormone replacement therapy, or HRT, has been shown to be associated with the start of neurodegenerative disease, although this has been related to a time dependent response, which depends on when the HRT was initiated. Observation studies and analyses with women indicated the use of HRT's containing estrogen to be associated with a reduced risk of Alzheimer's disease. Studies suggest that the timing of HRT use during parts of the menopausal stage may dictate whether beneficial adverse effects are observed ^{40,41}.

National Health and Nutrition Examination Survey (NHANES): NHANES is a continuous cross-sectional data collection carried out by the Center for Disease Control and Prevention (CDC) utilizing a complex multi-stage sampling design that creates a survey representative of the non-institutionalized population of the United States ^{42,43}. The survey has been conducted since 1999 and consists of an at-home questionnaires

followed by a standardized physical examination and specimen collection conducted in mobile examination centers (MEC) ^{42,43}. Eligibility is determined using preset selection probabilities for the desired demographic subdomains ⁴³. A household screener is performed before to determine if any household members are eligible for the interview and examination ⁴³. The interview collects demographic, health, nutrition, and household information, while the physical examination includes physical measurements, dental examination, and the collection of blood and urine specimens for laboratory testing ⁴³. Prior to any to interviews and examinations, informed consent was obtained and all procedures were approved by the CDC Institutional Review Board ⁴⁴.

The goal of this research was to find out if exposure to EEDCs (phthalates, BPA, Cd, As, and Mn) are associated with adverse brain health. Using the CDC's NHANES 2011 to 2014 datasets, statistical analyses were performed on surrogates of brain health indicators, urinary EEDC levels, and associated variables.

REFERENCES

- 1. Bergman A, Heindel JJ, Jobling S, Kidd KA, Zoeller TR. State of the science of endocrine disrupting chemicals. *World Heal Organ United Nations Environ Program*. 2012:1-38. http://apps.who.int/iris/handle/10665/78102.
- Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. *Endocr Rev.* 2009;30(4):293-342. doi:10.1210/er.2009-0002.
- 3. Chen A, Dietrich KN, Huo X, Ho SM. Developmental neurotoxicants in e-waste: An emerging health concern. *Environ Health Perspect*. 2011. doi:10.1289/ehp.1002452.

- 4. Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. *Environ Int.* 2015. doi:10.1016/j.envint.2015.05.012.
- 5. Przedborski S, Vila M, Jackson-Lewis V. Neurodegeneration: What is it and where are we? *J Clin Invest*. 2003. doi:10.1172/JCI200317522.
- 6. Gillies GE, McArthur S. Estrogen Actions in the Brain and the Basis for Differential Action in Men and Women: A Case for Sex-Specific Medicines. *Pharmacol Rev.* 2010;62(2):155-198. doi:10.1124/pr.109.002071.
- Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. *Brain Res Bull*. 2014;109:22-31. doi:10.1016/j.brainresbull.2014.09.004.
- 8. Hristian C, Ruber JG, Alter W, et al. Production and actions of estrogens. *N Engl J Med.* 2002;346(5). doi:10.1016/S0960-0760(01)00184-4.
- 9. Green PS, Simpkins JW. Neuroprotective effects of estrogens: Potential mechanisms of action. *Int J Dev Neurosci*. 2000;18(4-5):347-358. doi:10.1016/S0736-5748(00)00017-4.
- 10. Wise PM, Dubal DB, Wilson ME, Rau SW, Liu Y. Estrogens: trophic and protective factors in the adult brain. *Front Neuroendocrinol*. 2001;22(1):33-66. doi:10.1006/frne.2000.0207.
- 11. Pozzi S, Benedusi V, Maggi A, Vegeto E. Estrogen action in neuroprotection and brain inflammation. *Ann N Y Acad Sci.* 2006;1089(2006):302-323. doi:10.1196/annals.1386.035.
- 12. Arevalo M-A, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. *Neuroscience*. 2015;16(1):17-29. doi:10.1038/nrn3856.
- Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. *J Neurosci*. 2003;23(5):1588-1592.

- 14. MacLusky NJ, Hajszan T, Prange-Kiel J, Leranth C. Androgen modulation of hippocampal synaptic plasticity. *Neuroscience*. 2006;138(3):957-965. doi:10.1016/j.neuroscience.2005.12.054.
- 15. Parducz a., Hajszan T, MacLusky NJ, et al. Synaptic remodeling induced by gonadal hormones: Neuronal plasticity as a mediator of neuroendocrine and behavioral responses to steroids. *Neuroscience*. 2006;138(3):977-985. doi:10.1016/j.neuroscience.2005.07.008.
- 16. Ogiue-Ikeda M, Tanabe N, Mukai H, et al. Rapid modulation of synaptic plasticity by estrogens as well as endocrine disrupters in hippocampal neurons. *Brain Res Rev.* 2008;57(2):363-375. doi:10.1016/j.brainresrev.2007.06.010.
- 17. Hojo Y, Murakami G, Mukai H, et al. Estrogen synthesis in the brain-Role in synaptic plasticity and memory. *Mol Cell Endocrinol*. 2008;290(1-2):31-43. doi:10.1016/j.mce.2008.04.017.
- Simpkins JW, Yi KD, Yang S, Dykens J a. Mitochondrial mechanisms of estrogen neuroprotection. *Biochim Biophys Acta*. 2011;1800(10):1113-1120. doi:10.1016/j.bbagen.2009.11.013.Mitochondrial.
- 19. Arnold S, Beyer C. Neuroprotection by estrogen in the brain: The mitochondrial compartment as presumed therapeutic target. *J Neurochem*. 2009;110(1):1-11. doi:10.1111/j.1471-4159.2009.06133.x.
- Grimm A, Schmitt K, Lang UE, Mensah-Nyagan AG, Eckert A. Improvement of neuronal bioenergetics by neurosteroids: Implications for age-related neurodegenerative disorders. *Biochim Biophys Acta - Mol Basis Dis*. 2014;1842(12):2427-2438. doi:10.1016/j.bbadis.2014.09.013.
- 21. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Diethyl Phthalate. *Agency Toxic Subst Dis Regist*. 1995;(June):1-158.
- 22. Agency for Toxic Substances and Disease Registry (ATSDR). TOXICOLOGICAL PROFILE FOR DI-n-BUTYL PHTHALATE. Agency Toxic Subst Dis Regist. 2001;(September):225.

- 23. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile: di(2-ethylhexyl)phthalate (DEHP). *Agency Toxic Subst Dis Regist*. 2002;(September). http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=684&tid=65.
- 24. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: Toxicology and exposure. *Int J Hyg Environ Health*. 2007;210(5):623-634. doi:10.1016/j.ijheh.2007.07.011.
- 25. Miodovnik A, Edwards A, Bellinger DC, Hauser R. Developmental neurotoxicity of ortho-phthalate diesters: Review of human and experimental evidence. *Neurotoxicology*. 2014;41:112-122. doi:10.1016/j.neuro.2014.01.007.
- 26. Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. *Environ Health Perspect*. 2004;112(3):331-338. doi:10.1289/ehp.6723.
- 27. Blair RM, Fang H, Branham WS, et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. *Toxicol Sci.* 2000;54(1):138-153. doi:10.1093/toxsci/54.1.138.
- 28. Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. *Environ Health Perspect*. 1995;103(6):582-587. doi:10.1289/ehp.95103582.
- 29. Preciados M, Yoo C, Roy D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. *Int J Mol Sci.* 2016;17(12):2086. doi:10.3390/ijms17122086.
- 30. ATSDR. Toxicological Profile for Phenol. *Agency Toxic Subst Dis Regist*. 2008:1-269. doi:10.3109/15569529909037564.
- 31. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to Bisphenol A and 4-tertiary-octylphenol: 2003-2004. *Environ Health Perspect*. 2008;116(1):39-44. doi:10.1289/ehp.10753.

- 32. Alonso-Magdalena P, Ropero AB, Soriano S, et al. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. *Mol Cell Endocrinol*. 2012;355(2):201-207. doi:10.1016/j.mce.2011.12.012.
- 33. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cadmium. Agency Toxic Subst Dis Regist. 2012;(September). http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf%5Cnhttp://www.ncbi.nlm.nih.gov/bo oks/NBK158845/.
- 34. Choe SY, Kim SJ, Kim HG, et al. Evaluation of estrogenicity of major heavy metals. *Sci Total Environ*. 2003;312(1-3):15-21. doi:10.1016/S0048-9697(03)00190-6.
- Agency for Toxic Substances and Disease Registry (ATSDR). TOXICOLOGICAL PROFILE FOR ARSENIC. Health Effects. Agency Toxic Subst Dis Regist. 2007;(August).
- 36. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Manganese. *ATSDR Toxicol Profiles*. 2000;(September):504.
- 37. Griksiene R, Ruksenas O. Effects of hormonal contraceptives on mental rotation and verbal fluency. *Psychoneuroendocrinology*. 2011;36(8):1239-1248. doi:10.1016/j.psyneuen.2011.03.001.
- Pletzer BA, Kerschbaum HH. 50 years of hormonal contraception time to find out, what it does to our brain. *Front Neurosci*. 2014. doi:10.3389/fnins.2014.00256.
- 39. Beltz AM, Hampson E, Berenbaum SA. Oral Contraceptives and Cognition: A Role for Ethinyl Estradiol. *Horm Behav.* 2015. doi:10.1016/j.yhbeh.2015.06.012.
- 40. Maki PM, Henderson VW. Hormone therapy, dementia, and cognition: the Women's Health Initiative ten years on. *Climacteric*. 2012;15(3):256-262. doi:10.1016/j.biotechadv.2011.08.021.Secreted.
- 41. Xiao M, Cao GL, Marshall C, Hu G. Hypothesis: Multiple factors are associated with the lack of any beneficial effects of oestrogen-replacement therapy in the late postmenopausal stage. *Clin Exp Pharmacol Physiol*. 2010;37(8):873-876. doi:10.1111/j.1440-1681.2010.05400.x.

- 42. Johnson CL, Paulose-Ram R, Ogden CL, et al. National health and nutrition examination survey: analytic guidelines, 1999-2010. *Vital Health Stat 2*. 2013;(161):1-24. http://www.ncbi.nlm.nih.gov/pubmed/25090154.
- 43. Johnson CL, Dohrmann SM, Burt VL, Mohadjer LK. National Health and Nutrition Examination Survey: Sample Design , 2011 – 2014. *Vital Heal Stat*. 2014;2(162):1-33. http://www.cdc.gov/nchs/data/series/sr_02/sr02_162.pdf.
- 44. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey NCHS Research Ethics Review Board (ERB) Approval. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/irba98.htm. Published 2016.

CHAPTER II

MANUSCRIPT I

EXPOSURE TO ESTROGENIC ENDOCRINE DISRUPTING CHEMICALS AND THEIR ROLE IN BRAIN HEALTH

LITERATURE REVIW

INTRODUCTION

Estrogenic endocrine disrupting chemicals (EEDCs) are endocrine disruptors that mimic and affect the function of estrogen ¹. They can affect the human body through every route of exposure and are found in almost all manufactured products ². The global increase in manufacturing and e-waste production have increased exposures ³. The effects of these chemicals are far reaching since they affect every part of the human timeline, from birth to old age, and have even been demonstrated to produce adverse health effects in later generations ⁴.

These chemicals are of great concern to public health since they are linked to almost every disease of every human system including neurodegenerative diseases ^{4,5}. EEDCs have also been associated with other neurological disorders such as attention deficit and hyperactive disorder (ADHD) as well as learning disabilities and aggressiveness ⁶. EEDCs have also been demonstrated to affect the young through maternal exposure, producing neurological issues such as abnormal rearing behavior, locomotion issues, anxiety disorder, learning difficulties, memory issues, and abnormal neuronal development ^{7,8}.

Estrogens and Brain Health

Estrogens have many roles in the human brain. Estrogen plays a role in sexual differentiation in early brain development ⁹. Estrogen has been found to potent neuroprotectant and decreases inflammation in the brain ^{10–15}. Estrogen has been demonstrated to stimulate the grown of neurons and synapses ^{16–20}, and protect the function of mitochondria in the brain ^{21–23}.

Epidemiological studies have shown the effects of estrogen on brain health. In the review of epidemiological studies pertaining to estrogen and brain health, exposure was assessed through serum or blood measures, or through a surrogate of exposure. The surrogate of exposure to estrogen was quantified as the start of menarche to the end of menopause. Studies were also only used if exogenous estrogen exposure was either controlled for, or excluded, as exogenous estrogen can affect the natural levels of estrogen in the body.

Cross-sectional studies have differing results. In a study of 393 postmenopausal geriatric-age women, no significant association was found between sex hormone levels and neuropsychological test performance ²⁴. Another study consisting of 760 post-menopausal women looking at life-long endogenous estrogen exposure and using a surrogate of estrogen exposure did not find any associations with cognitive tests ²⁵. A study of 11094 postmenopausal women found significant associations between surrogates of estrogen exposure and delayed recall scores (p-value=0.001, 95% CI, 0.008-0.02) and mini-mental state exam scores ²⁶. In a study of 181 geriatric-aged men, higher estrogen serum levels were associated with better verbal memory assessment scores (Beta=0.17, p-value<0.02)

²⁷. In a cross-sectional study of 579 females, the age of Parkinson's disease (PD) onset was positively associated with surrogates of estrogen exposure (7.10,[3.31],P-value=0.032) ²⁸.

Several case-control studies were identified that assessed the effects of endogenous estrogen exposure on brain health. In a case-control study of 50 Alzheimer's disease (AD) cases and 93 controls, women with the lowest endogenous estradiol levels were 4 times as likely to have AD compared to women with the highest estradiol levels (OR=4.2, 95% CI 1.1-15.6)²⁹. In a case-control study of 131 amyotrophic lateral sclerosis (ALS) cases and 430 age-matched controls a longer reproductive time-span decrease ALS risk (OR=0.95, 95% CI 0.91-0.98) and longer endogenous estrogen exposure decreases ALS risk (OR=0.95, 95% CI 0.89-1.01)³⁰.

Several cohort studies were identified that assessed the effects of endogenous estrogen exposure on brain health. In a cohort of 3601 postmenopausal women, it was found after adjusting for covariates, women with longer reproductive spans had an increased risk of dementia compared to women with the shortest reproductive spans (RR=1.78, 95% CI 1.12-2.84) and an increased risk of AD (RR=1.51, 95% CI 0.91-2.50) with the risk was more pronounced in carriers of the APOE allele ³¹. In a cohort study of 119 women with Down's syndrome, women with low bioavailable estrogen were more likely to develop AD (HR=4.1, 95% CI 1.2-13.9) ³². A study of 133 postmenopausal females found longer duration of months with endogenous estrogen exposure had a protective effect against AD risk (p-value=0.0235, 96% CI 0.9907-0.9993) with the effect becoming stronger when subjects were over the total median number of months (p-value=0.00754, 96% CI 0.004118-0.005289) ³³.

Oral Contraceptives (OC) and Brain Health

OCs containing synthetic estrogens, such as ethinyl estradiol (EE), are considered EEDCs since they imitate estrogen and cause changes to the human reproductive cycle. OC use has been demonstrated to reduce endogenous estrogen in the body ³⁴. Most studies do not differentiate if contraceptives do, or do not contain ethinyl estradiol and inconsistencies are found in the reporting of the type of OC used ³⁵

A cross-sectional study examined OC effects on spatial and verbal abilities found OC users to perform better on spatial ability and verbal tests ³⁵. Another cross-sectional study found OC users to have better cognitive scores compared to non-users ³⁶. Another study found OC use to negatively affect cognition and verbal fluency ³⁴ A review by Warren et al. suggest an overall positive effect with OC use and verbal memory ³⁷.

Hormonal Replacement Therapy (HRT) and Brain Health

Initial observation studies indicate the use of hormone replacement therapy (HRT) containing synthetic estrogen to be associated with a reduced risk of AD ³⁸. Studies suggest that the timing of HRT use during specific times during menopause may dictate whether beneficial effects are observed ^{38,39}. In the Women's Health Initiative Memory Study (WHIMS), a randomized, double-blind, placebo-controlled clinical trial, HRT treatment of estrogen with progestin increased the risk for dementia in postmenopausal women and did not prevent cognitive impairment ⁴⁰. In the same trial, it was found that estrogen-only HRT increased the risk for both dementia and cognitive impairment ⁴¹. The Women's Health Initiative Study of Cognitive Aging (WHISCA) further supports HRT use and its' association with neurodegenerative disease, with mixed findings. One finding from the WHISCA study found conjugated equine estrogen with

medroxyprogesterone acetate (estrogen + progestin) appeared to negatively impact verbal memory, but positively affect figural memory among postmenopausal women, free of probable dementia compared to controls ⁴² Another study found estrogen alone, as conjugated equine estrogen, did not improve cognitive functioning and lowered certain cognitive functions in women with prior hysterectomy ⁴³. Other studies have indicated that no improvement in using estrogen only treatments for cognitive function ^{44–47}.

Newer studies give mixed findings. One cohort study showed increased AD risk amongst women who used HRT more than five years after menopause but observed a decreased risk of AD if used within five years of menopause ⁴⁸. Another recent metaanalysis showed no association between postmenopausal HRT use and AD and dementia ⁴⁹. While another study found an increase in Parkinson's disease (PD) risk dependent on the type of HRT treatment ⁵⁰.

Bisphenol-A (BPA) and Brain Health

BPA is a synthetically created chemical that is used to create polycarbonate plastics and resins ⁵¹. BPA is found in many consumer products and plastics. These products include the following: baby bottles, compact discs, impact-resistant safety equipment, medical devices, food cans and tops, water supply pipes, ATM receipts and dental sealants and composites ⁵¹. Food storage containers that have BPA can cause BPA to leech into foods by the use of high heat ⁵¹. It is of note that during the 2003-2004 NHANES data cycle, BPA was detected in 93% of urine samples collected from subjects 6 years of age and older ⁵².

BPA has been shown to be weakly estrogenic and have a low affinity for binding to ER receptors, but is speculated to exert its effects through other non-classical pathways

⁵³. BPA has also been shown to interact with estrogen-responsive genes that are implicated in neurodegenerative disease pathways ⁵⁴. BPA has been demonstrated to be able to cross the blood brain barrier ^{55,56}.

Animal studies have demonstrated BPA to have negative effects on memory ^{57–72}, negatively affect neurogenesis ^{62,72}, negatively affect structure of dendritic spines and synaptogenesis ^{57,61,66,69,71,73}, and negatively affect cellular processes, protein expression, and gene expression ^{60,64,66–68,70}. Other studies show BPA produces no negative effects on spatial and working memory ^{74–76}.

BPA was found to cause hyperactivity in rats ⁷⁷. A single dose of BPA administered to neonatal mice was observed to affect cognitive function and alter adult spontaneous behavior, mid and high dosed mice ⁷⁸. In utero exposure to BPA in mice was shown to reduce dendritic spine densities in the hippocampal CA1 region and was not dose dependent ⁷⁹. BPA was shown to effect neural ectoderm specification and neural progenitor cells in mouse embryonic stem cells ⁸⁰. In an animal model using C.elegans, early embryogenesis exposure to BPA and BPS was shown to cause changes in behavior and learning into adulthood ⁸¹. BPA was shown to decrease the proliferation of multipotent neural progenitor cells and produce cytotoxicity in F1 mice, and in low-doses stimulated neuronal differentiation which might disrupt brain development ⁸².

Animal studies have indicated bisphenol-A to affect various aspects of memory at lower than the US Environmental Protection Agency's (EPA) reference safe daily limit of 50 ug/kg/day ⁸³. The types of memory affected include spatial memory, visual memory, object recognition, working memory, reference memory and navigational memory ^{57,58,62,63,66,69,71–73,84}. Animal studies have also indicate affects to locomotor function ^{58,66}.

In humans, prenatal BPA exposure has been demonstrated to cause aggressive and hyperactive behavior in offspring from mothers with higher BPA levels when compared to offspring with mothers that have lower BPA levels ⁸⁵. This human epidemiological study is consistent with animal studies that also show the same effect ^{86–93}.

Prenatal urinary BPA concentrations in the human mother and child were associated with anxiety, depression, and hyperactivity ⁹⁴. In autistic children, plasma levels of BPA and phthalates were significantly higher compared to controls ⁹⁵. One study using cross-sectional data from the Canadian Health Measures Survey found children taking psychotropic medications was associated with urinary BPA (OR 1.59; 95% CI 1.05-2.40)⁹⁶. Another study assessing prenatal exposure to bisphenol A and phthalates and infant neurobehavior at five weeks found no associations with bisphenol A and some associations with phthalate exposure and improved neurobehavior ⁹⁷. In a prospective cohort study following African-American and Dominican-American women from pregnancy to children's age of 7-9, it was found that among boys, high prenatal BPA concentrations was associated with increased internalizing and externalizing behaviors in boys, with a decrease in internalizing behavior in girls, and high postnatal BPA concentrations was associated with increased internalizing and externalizing behaviors in girls more than in boys ⁹⁸. Other studies have found were related to a decrease in hyperactivity symptoms in boys and an increase in anxiety, depression, and externalizing behavior in young girls ^{85,99}. Other studies have found no associations between maternal BPA levels and autism ¹⁰⁰.

Phthalates and Brain Health

Phthalates are class of estrogenic endocrine disrupting chemicals that have a role in the development of neurodegenerative disease. Phthalates, also known as plasticizers, are chemicals used in plastics to make them flexible and strong 101-103. Exposure to phthalates comes through ingestion, inhalation, and to a lesser extent, dermal contact with phthalate-containing products ¹⁰⁴. Phthalates are found in most consumer products. These include the following: wall coverings, tablecloths, floor tiles, furniture, upholstery, shower curtains, garden hoses, baby products, toys, shoes, packing materials, medical devices, paints, glue, nail polish, hair spray, insect repellents, food packaging materials, cosmetics, insecticides, and drug products ¹⁰¹⁻¹⁰³. Phthalates have short biological halflives and do not accumulate, with urine as the primary route of excretion ¹⁰⁵. Specific phthalates are also found in high levels among the US population. One study, found the body burden of the phthalates mono-ethyl phthalate (MEP), mono-n-butyl phthalate (MBP) and mono-benzyl phthalate (MBzp) in 97% of samples tested from the CDC NHANES 1999-2000 datasets ¹⁰⁶. As such, most of the US population has some measurable levels of phthalates in their bodies ¹⁰⁵.

Phthalates have also been demonstrated to have estrogenic activity and affinity for estrogen receptors ^{107,108} and have been shown to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ⁵⁴. Phthalates have also been demonstrated to cross the blood brain barrier ^{109,110}

Animal studies have shown phthalates to have adverse effects on brain health. Negative effects include adversely affecting learning ^{111,112}, adversely affecting memory ^{111,113}, interfering with locomotion ¹¹³; negatively affecting social behavior ¹¹², and

producing cellular effects such as cell death, synaptic loss, and synaptic dysfunction ¹¹⁴. Some animal studies indicate improvement in memory ¹¹⁵ and possible dose-dependent effects, where memory improves with one dose, but degrades with another ¹¹⁶. A recent review of phthalates and neuroplasticity suggests phthalates negatively affect neurogenesis and plasticity in animal models ^{114,117}.

There are a group of studies that have found associations between phthalates and brain behavioral disorders such as autism spectrum disorder (ASD) and attention deficit hyperactive disorder (ADHD). One study examining exposure to EEDCs and autism and ADHD found intracranial exposure to several classes of EEDCs, which include phthalates, caused significant hyperactivity in neonatal rats with observable gene alteration ¹¹⁸. A retrospective study followed children 1-6 years of age with a follow-up at 6-8 years of age and found the children with exposure to phthalates from PVC pipe dust were more likely to develop ASD ¹¹⁹. Phthalates are suspected in the development of neurodegenerative diseases ¹¹⁰. In rat model study, phthalate exposure was shown to impair cognition and increase the levels of phospho-Tau, a precursor of AD development, in exposed rat offspring ¹²⁰. Currently no definitive epidemiological studies have been conducted with phthalates and neurodegenerative diseases.

Polychlorinated Biphenyls (PCBs) and Brain Health

PCBs are synthetic organic chemicals composed in different combinations of 209 different chlorinated compounds, or congeners ¹²¹. PCBs have been used as coolant and lubricants in transformers, and its manufacture was banned in 1977 because of harmful health effects, however, old products may still contain them ¹²¹. PCBs have been found to cause cancer in animals ¹²¹. Routes of exposure included occupational exposure,

breathing air near contaminated areas, using older products manufactured before and around 1977, and eating contaminated food ¹²¹. PCBs bio accumulate in the food chain and remain active in the environment for extended periods of time ¹²¹.

Recent animal and cell studies have shown PCBs to adversely affect brain health. Animal studies have shown exposure to PCBs affect brain health by affecting social behavior¹²², increased hyperactivity ¹²³, reduction in learning ability ¹²⁴, and physiological effects on the brain such as neuronal degradation ^{123,125}, neuronal loss and damage ¹²⁶, and susceptibility to amyloid stress and reduced expression of synaptic proteins ¹²⁵.

Recent cell studies have shown PCBs to cause cellular death ¹²⁷ and interfere with estrogen's neuroprotective effects on neurons and brain cells ¹²⁸.

Cross-sectional studies have shown the effects of PCBs on brain health. In children, PCB exposure is associated with lower IQ ¹²⁹ and lower visual memory function ¹³⁰. In older populations, PCB exposure is associated with lower verbal learning and memory ¹³¹, lower verbal memory and depressive symptoms ¹³², lower score on memory and learning measures ¹³³, and attenuation of emotional wellbeing and attentional functioning ¹³⁴.

In a nested case-control study in Finland, serum PCBs were not associated with PD development ¹³⁵. In a retrospective mortality study examining PCB exposure amongst workers in capacitor plants, sex-specific analyses found higher deaths from PD amongst exposed women ¹³⁶. In a case-control study examining post-mortem brain tissue from PD, AD, and control patients, PCB levels were higher in PD groups, and when stratified by age, were higher amongst women ¹³⁷.

Cadmium (Cd) and Brain Health

Cd is a naturally occurring metal in the earth's crust and a natural part of water in the ocean ¹³⁸. People are exposed through eating food, cigarette smoke, drinking water, and air ¹³⁸. Cd is introduced into the food chain through soil and food contact surfaces, and through foods such as green vegetables, grains, legumes, and meats ¹³⁸. Occupation exposures are highest in occupations involving the manufacture of Cd-containing products ¹³⁸. Inhalation and oral routes of exposure are predominant, followed by dermal exposure ¹³⁸. Current evidence supports the toxicity of Cd and its effects on the developing organism, reproductive toxicity, hepatic effects, hematological effects, and immunological effects ¹³⁸. Cd has also been demonstrated to have estrogenic properties ¹³⁹ and has been shown to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ⁵⁴.

In a study using hippocampal CA1 neurons, cadmium was shown to negatively affect synaptic transmission and neural plasticity ¹⁴⁰. In a study using neural PC12 and SH-SY5Y cells, cadmium induced apoptosis in the neural cells ^{141,142}. In a zebrafish animal model, cadmium has been shown to inhibit neurogenesis in embryonic development ¹⁴³. Cadmium has been shown to cause cell death in rat cerebellum cortical neurons by affecting calcium homeostasis ¹⁴⁴ and also cause cell death by damaging mitochondria in rat oligodendrocytes ¹⁴⁵. Cadmium has been shown to interact with beta amyloid peptides which is involved in the development of AD ¹⁴⁶.

A study that examined the cerebrospinal fluid of ALS patients observed higher levels of various metals, including cadmium ¹⁴⁷. A case-control study examining heavy metal levels in hair samples from a group of Mongolian people found elevated cadmium,

as well as other heavy metals in those with Parkinson-like symptoms ¹⁴⁸. In a study of boiler workers and occupational exposure, exposure to various heavy metals, including cadmium was associated with conditions similar to PD and AD ¹⁴⁹.

Arsenic (As) and Brain Health

As is an element in the environment, found in the earth's crust, and is considered a metalloid ¹⁵⁰. Populations are usually exposed through the air, drinking water, and food, with food being the main source of As in a population, with some areas having naturally high levels of As ¹⁵⁰. Occupational exposure occurs through individuals working in metal working, wood treatment, and those in working in the production and application of pesticides ¹⁵⁰. As is also used in the animal and poultry feed as an antimicrobial compound ¹⁵⁰. The main routes of exposure are inhalation and oral, with dermal exposure being considered a minor route ¹⁵⁰. As has been associated with various health conditions and affects every organ system ¹⁵⁰. Genetic polymorphisms are suspected of causing some individuals to be more sensitive to As¹⁵⁰. As has also been demonstrated to have estrogenic properties ¹³⁹ and has been shown to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ⁵⁴.

In animal studies using rats, arsenic exposure through ingest water has been shown to impair neurogenesis, worsened spatial memory, and promote abnormal neural synapses growth. ¹⁵¹. Animal studies in rats have demonstrated arsenic exposure to affect synaptic plasticity, by affecting the expression of NDMA receptors ^{152,153} and downregulating the PTEN-Akt-Creb signaling pathway and damaging cerebral neurons ¹⁵⁴. Arsenic was demonstrated to cause oxidative stress and cell death in cultured neuronal cells, when administered with dopamine ¹⁵⁵. In a study using a cholinergic

neuronal cell line overexpressing amyloid precursor protein (APP) and exposing it to sodium arsenite and its metabolite, dimethyl arsenic acid, increased APP production was observed ¹⁵⁶.

In a cohort study consisting of 133 men and 201 women, long-term low level exposure to arsenic from groundwater was found to be associated with poorer scores in language, visuospatial skills, and executive functioning, global cognition, processing speed, and immediate memory ¹⁵⁷. In another study, consisting of 526 subjects genotyped according to the AS3MT gene, exposure to higher low level arsenic in groundwater reduced cognitive functioning, but the results differed with amongst the different SNPs ¹⁵⁸. In a case-control study measuring heavy metal serum levels in 89 Ad patients and 188 cognitively normal controls, there was no difference in serum arsenic levels between the AD group and controls ¹⁵⁹. Another study with a cohort consisting of 733 AD patients, 127 individuals with mild cognitive impairment (CI), and 530 individuals of normal cognition, found that exposure to low level arsenic exposure from groundwater was found to be associated with poorer neuropsychological performance ¹⁶⁰.

Manganese (Mn) and Brain Health

Mn is a metal that is an essential nutrient required as a cofactor for various enzymatic processes and is found as a naturally occurring element in grains and fruit ¹⁶¹. Mn is used in industrial processes and products and exposure can occur through inhalation, oral, dermal, and occupational routes ¹⁶¹. Mn has the potential to accumulate in organisms at the bottom tier of the food chain and has been linked to various health issues that include neurological dysfunction ¹⁶¹. Mn has also been demonstrated to have

estrogenic properties ¹³⁹ and has been shown to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ⁵⁴.

Recent epidemiological studies have assessed the effects of manganese on brain health. A cross-sectional study by Hozumi et al. ¹⁶², analyzed the cerebrospinal fluid of various neurodegenerative disease patients and found a higher level of manganese among PD patients (p-value <0.05). In another cross-sectional study assessing children's intellectual functioning and arsenic and manganese exposure, blood manganese levels were negatively associated with full scale IQ test scores (p-value<0.05), working memory (p-value<0.05), and perceptual memory (p-value<0.05)¹⁶³. A cross-sectional study by Kim et al.¹⁶⁴ examining low-level manganese exposure in adults of a Ohio community found subtle subclinical effects in Unified Parkinson's Disease Rating Scale (UPDRS) and postural sway test for PD. A cross-sectional study of school-aged children in Brazil found inverse scores on executive function and attention tests with manganese levels ¹⁶⁵. A study amongst school-children in Canada found low-level manganese exposure in drinking water was associated with poorer neurobehavioral functions ¹⁶⁶. Koc et al. ¹⁶⁷ found higher levels of metal, including manganese, in hair samples of AD patients compared to controls.

A case-control study Miyake et al. ¹⁶⁸, assessing dietary intake of heavy metals amongst PD patients found no association with manganese intake. A case-control study by Roos et al. ¹⁴⁷ found elevated manganese levels in cerebrospinal fluid of ALS patients. A study by Kumudini et al.¹⁶⁹ found not correlation between manganese blood levels in PD patients compared to controls. A case control study by Garzillo et al.¹⁷⁰ found no association between manganese levels in ALS patients vs controls. A study by Kihira et

al. ¹⁷¹ found elevated manganese levels in ALS patients vs controls from hair samples. Another study by Arain et al. ¹⁷² found higher levels of manganese and aluminum in hair samples of patients suffering from neurodegenerative disease.

A small cohort study that followed 26 welders exposed to manganese found after a 3.5-year follow-up found worsened olfactory, extrapyramidal, and mood disturbances ¹⁷³. A cohort study following asymptomatic welder trainees with no previous manganese exposure found low-level exposure to cause sub-clinical brain changes in subjects before any measurable learning deficits may occur ¹⁷⁴.

Evidence suggests manganese having a role in neurotoxicity. Chronic manganese exposure has been shown to promote the build-up of the metal in the basal ganglia, white matter, and cortical structures of the brain ¹⁷⁵. manganese has also been shown to cause an inhibitory effect on NMDA receptors ¹⁷⁶ Although manganese is an essential nutrient and has beneficial uses in the human body, increased levels of manganese in the body can lead to PD-like symptoms and developmental exposure has been shown to negatively affect neurological development ¹⁷⁷. Manganese appears to interfere with dopaminergic synaptic transmission, by possibly impairing presynaptic dopamine release¹⁷⁷. A study using a monkey model showed manganese exposure caused neurotoxicity by inhibiting dopamine neurotransmission ¹⁷⁸.

Mechanisms of Action of EEDCs and Brain Health

From our review, it is demonstrated that physiologic pharmacologic, and chemical forms of estrogen and EEDCs affect brain health. The exact molecular mechanisms are not clear. Estrogens have a clear gender difference as they regulate the both men and women's sexual development. In females, they are produced mainly by the ovaries, in the

testis in males, but are produced in both men and women from the adrenal gland, brain, and fat cells. In the brain, estrogen is produced by both neurons and glial cells through the aromatization of testosterone ^{20,179}. Early animal studies in rhesus monkeys found circulating estrogen in the brains of in the fetal and postnatal stages of development ¹⁸⁰. Circulating estrogen produced in the hypothalamus may also play a role in the release of gonadotropin releasing hormone (GnRH), further adding to the complexity of estrogen's role in the brain. There is evidence to suggest that phthalates, BPA, PCBs, Cd, As, and Mn influence GnRH regulation through the hypothalamic-pituitary-ovarian axis since they also bind to estrogen receptors ^{4,181–183} and have been demonstrated to cross the blood brain barrier ^{110,117,184–186} and have shown estrogenic activity ^{53,107,108,139}. The most widely research idea regarding estrogen and the brain estrogens and EEDCs effects are mediated through estrogen receptors which are all expressed in the brain⁸. There is also evidence that suggests EEDC's adverse effects in the brain area results of reactive oxygen species (ROS) production and oxidative stress in the brain. Studies suggest phthalate metabolites, BPA, and metalloestrogns are associated oxidative stress and ROS production ^{141,148,155,184,187,188}.

Nuclear Respiratory Factor 1 (NRF1) Genes, EEDCs, and Brain Health

Nuclear respiratory factor 1 is a transcription factor that acts on genes encoding for mitochondrial respiratory subunits, heme biosynthetic enzymes, and regulatory factors involved in the creation and transcription of mitochondrial DNA ¹⁸⁹. Other possible extra-mitochondrial processes that are affected by NRF-1 include RNA metabolism, splicing, cell cycle, DNA damage repair, protein translation initiation, and ubiquitin-mediated protein degradation ¹⁹⁰. Since mitochondrial dysfunction has been

implicated as a possible pathway for neurodegenerative diseases ¹⁹¹, gene targets of NRF-1 directly affect brain health and may provide insight into mechanisms of these diseases. NRF-1 mediate oxidative stress responses by regulating the expression of genes involved in cell cycle, DNA repair, cell apoptosis and mitochondrial biogenesis. NRF1 is highly expressed in human fetal brain ¹⁹².

A recent study based on data from SK-N-SH human neuroblastoma cells showed that NRF1 DNA motif(s) are present in the promoters of 2470 genes ¹⁹⁰. The study speculates that NRF1 targets may be involved in the development of adverse brain health and neurodegenerative disease ¹⁹⁰. The study stated that seven out of 2470 NRF1 target genes have significant relationships with several neurodegenerative conditions. The NRF1 target genes- PARK2, PARK6 (PINK1), PARK7, PAELR (GPR37) are associated with Parkinson's disease. NRF1 target genes -PSENEN AND MAPT are involved in Alzheimer's disease. TAF4, a NRF1 target gene, is associated with Huntington's disease ^{190.}

Bioinformatic Method: Estrogen and NRF1 responsive Genes and EEDCs

We used the Comparative Toxicogenomics Database (CTD), which contains gene information based on curated information about chemical–gene/protein interactions, chemical–disease and gene–disease relationships. Using a bioinformatics approach, we examined the gene-EDC interactions associated with both estrogen and NRF1 signaling pathways, and neurodegenerative diseases. Findings of EDCs-modified estrogen signaling and NRF1 signaling genes with exposure to natural estrogen, pharmacological estrogen, PCBs, phthalate, BPA, As, Cd, or Mn are summarized in Tables 1 and 2.

Results

17-Beta Estradiol interacting genes which are also NRF1 target genes: The CTD search results showed that there were 6695 genes related to 17-beta estradiol (E2) (Figure 1). The 724 genes out of the 6695 E2 modified genes are NRF1 target genes (Figure 1). Three of the common E2 and NRF1 target genes, GPR37, MAPT, and PSENEN are associated with neurodegenerative disease ¹⁹⁰. Table 1 showing enriched pathway analysis revealed the top pathways associated with E2 responsive NRF1 target genes, that included:1) Disease (86 genes), 2) Metabolism (86 genes), 3) Gene Expression (77 genes), 4) Signal Transduction (72 genes), 5) Immune System (67 genes), 6) Cell Cycle (62 genes), 7) Metabolic pathways (62 genes), 8) Metabolism of proteins (48 genes), 9) Developmental Biology (43 genes), and 10) Mitotic M-M/G1 phases (35 genes).

Ethinyl Estradiol Interacting genes common to both E2 and NRF1 target genes: The CTD search revealed that there were 6049 genes related to the active

estrogenic chemical in oral contraceptives, ethinyl estradiol (EE) (Figure 1). Out of the 6049 EE modified genes, 800 genes are NRF1 target genes and 331 genes are target genes of both E2 and NRF1 (Figure 1). Two of the genes, MAPT and PSENEN, observed interacting with all three EE, E2 and NRF1 are associated with neurodegenerative disease ¹⁹⁰. Table 1 showing enriched pathway analysis revealed the top pathways associated with the number of common E2, E2 and NRF1 target genes, that included: 1) Metabolism (49 genes), 2) Disease (48 genes), 3) Gene Expression (43 genes), 4) Immune System (36 genes), 5) Cell Cycle (35 genes), 6) Metabolic pathways (33 genes), 7) Signal

Transduction (33 genes), 8) Metabolism of Proteins (28 genes), 9) Developmental Biology (25 genes), and 10) Cancer Pathways (22 genes).

Bisphenol A and Interactions with NRF1 Target Genes: The CTD search revealed there are 19113 genes related to BPA. Out of the 19113 interacting genes, 2113 are NRF1 target genes, and 673 are target genes of both BPA and E2 (Figure 1). Three of the genes, GPR37, MAPT and PSENEN observed interacting with all three BPA, E2, and NRF1 are associated with neurodegenerative disease ¹⁹⁰. Enriched pathway analysis revealed the top pathways associated with number of common BPA/E2/NRF1 target genes, that included: 1) Metabolism (85 genes), 2) Disease (84 genes), 3) Gene Expression (71 genes), 4) Signal Transduction (68 genes), 5) Immune System (66 genes), 6) Cell Cycle (61 genes), 7) Metabolic Pathways (58 genes), 8) Metabolism of Proteins (47 genes), 9) Developmental Biology (41 genes), and Cancer Pathways (34 genes) (Table 1).

Phthalates and Interactions with NRF1 Target Genes: The CTD search revealed there were 4816 genes interacting with dibutyl phthalate (DBP) and 1344 genes with diethylhexyl phthalate (DEHP). The 756 DBP interacting genes are NRF1 target genes, whereas 149 DEHP interacting genes are NRF1 target genes. Among DBP responsive genes, there are 309 genes common E2 and NRF1 target genes and 86 DEHP associated genes are common E2 and NRF1 target genes (Figure 1). MAPT, a common DEHP, E2 and NRF1 target genes are associated with neurodegenerative disease ¹⁹⁰. Enriched pathway analysis revealed the top pathways associated with number of common DBP/E2/NRF1 target genes, that included: 1) Metabolism (56 genes), 2) Disease (45 genes), 3) Gene Expression (39 genes), 4) Metabolic Pathways (38 genes), 5)

Cell Cycle (34 genes), 6) Signal Transduction (32 genes), 7) Immune System (31 genes), 8) Metabolism of Proteins (25 genes), 9) Mitotic M-M/G1 phases (23 genes), and Developmental Biology (21 genes). Enriched pathway analysis of E2/NRF1/DEHPresponsive genes revealed the top pathways for gene involvement that includes: 1) Metabolism (21 genes), 2) Metabolic pathways (15 genes), 3) Disease (15 genes), 4) Immune System (12 genes), 5) Metabolism of proteins (11 genes), 6) Cell Cycle (9 genes), 7) Cellular response to stress (8 genes), 8) Cancer Pathways (8 genes), 9) Developmental Biology (8 genes), and 10) Cell cycle (5 genes) (Table 1).

Polychlorinated Biphenyls (PCBs) and Interactions with NRF1 Target Genes: There were 648 genes interacting with polychlorinated biphenyls (PCBs). The 433 PCBs genes are NRF1 target genes, and the 53 PCBs genes are common E2 and NRF1 target genes (Figure 1). Enriched pathway analysis of common PCBs/E2/NRF1associated genes revealed the top pathways for gene involvement that included: 1) Cell Cycle (13 genes), 2) Mitotic M-M/G1 phases (9 genes), 3) DNA replication (4 genes), 4) Cell Cycle (4 genes), 5) DNA replication and repair (3 genes), and 6) Pancreatic cancer (3 genes) (Table 1).

Cadmium and Interactions with NRF1 Target Genes: Using CTD search we found 2458 genes interacting with cadmium (Cd). The 263 Cd interacting genes are NRF1 target genes and 143 interacting genes are common E2 and NRF1 target genes (Figure 1). GPR37 gene, a common Cd/E2/NRF1 gene, is associated with neurodegenerative disease ¹⁹⁰. Enriched pathway analysis of Cd/E2/NRF1 common genes revealed the top pathways that included: 1) Metabolism (26 genes), 2) Gene Expression (25 genes), 3) Disease (24 genes), 4) Signal Transduction (21 genes), 5) Metabolic

pathways (20 genes), 6) Immune System (18 genes), 7) Cell Cycle (17 genes), 8) Cancer Pathways (15 genes), 9) Developmental Biology (15 genes), 10) Metabolism of proteins (12 genes) (Table 1).

Arsenic and Interactions with NRF1 Target Genes: The CTD search revealed there were 4037 genes related to arsenic (As). The 520 As interacting genes are NRF1 target genes and the 190 As interacting genes are common E2 and NRF1 target genes (Figure 1). Enriched pathway analysis of As/E2/NRF1 common genes revealed the top pathways that included: 1) Metabolism (33 genes), 2) Immune System (30 genes), 3) Disease (27 genes), 4) Signal Transduction (24 genes), 5) Developmental Biology (22 genes), 6) Metabolic pathways (20 genes), 7) Cell Cycle (19 genes), 8) Gene Expression (19 genes), 9) Cancer Pathways (17 genes), and 10) Cellular responses to stress (16 genes) (Table 1).

Manganese and Interactions with NRF1 Target Genes: Using CTD search we found 462 genes interacting with manganese (Mn). The 50 Mn interacting genes are NRF1 target genes and the 30 Mn interacting genes are common E2 and NRF1 target genes (Figure 1). Enriched pathway analysis of common Mn/E2/NRF1 genes revealed the top pathways that included: 1) Cellular responses to stress (6 genes), 2) Developmental Biology (5 genes), 3) Tuberculosis (4 genes), 4) p53 signaling pathway (3 genes), Small cell lung cancer (3 genes), Apoptosis (3 genes), Cell cycle (3 genes) (Table 1).

Association of EDC interacting genes common to both E2- and NRF1 targets with Neurodegenerative Diseases: Table 2 summarizes EEDs modified genes, which are common E2 and NRF1 target genes and their involvement with the specific type of brain disease, such as AD, PD, HD, ALS, Autism Spectrum Disorder, and Brain

Neoplasms. Out of the 6643 E2 interacting genes, there were 1413 genes associated with nervous system disease.

The CTD search of E2 interacting genes in AD revealed 61 genes: ACE, ACHE, AMFR, **APBB2**, APOE, APP, ARC, ATP5A1, BAX, BCHE, BCL2, BDNF, BIN1,CALM1,CASP3,CHRNA7,CHRNB2,CLU,CRH,CYP46A1,DHCR24,**DPYSL2,EI F2S1,ENO1,**EPHA1,ESR1,F2,GAPDHS,GSK3B,HFE,HMOX1,IGF1,IGF1R,IGF2,IGF 2R,IL1B,INS,INSR,LEP,MAOB,**MAPT**,MIR146A,MPO,NOS3,NPY,**PAXIP1,**PICAL M,PLAU,PPARG,PRNP,**PSEN2**,SLC2A4,**SOD2**,SORL1,TF,**TFAM,TNF**,TPI1,TREM2 ,VEGFA,**VSNL**.The bold indicates E2 interacting genes which are NRF1 target genes. With AD, the six E2-responsive genes are NRF1 target genes: *APBB2*, *DPYSL2*, *EIF2S1*, *ENO1*, *MAPT*, *AND PAXIP1*. These genes are also responsive to the following EEDCs: ethinyl estradiol (*APBB2*, *DPYSL2*, *EIF2S1*, *ENO1*, *MAPT*, *and PAXIP1*), bisphenol-A (*APBB2*, *EIF2S1*, *ENO1*, *MAPT*, *and PAXIP1*), dibutyl phthalate (*DPYSL2*, *EIF2S1*, *ENO1*), diethylhexyl phthalate (*DPYSL2 and MAPT*), dibutyl phthalate (*DPYSL2*, *EIF2S1*, *ENO1*), cadmium (*ENO1*), arsenic (*ENO1 and MAPT*), and manganese (*MAPT*) (Table 5).

With PD, the eight E2-responsive NRF1 target genes are: *GAK, HSPA9, MAPT*, *PARK2, PARK7, PINK1, RPL14, AND VPS35*. These genes are also responsive to the following EEDCs: ethinyl estradiol (*HSPA9, MAPT*), bisphenol-A (*HSPA9, MAPT*, *RPL14*), dibutyl phthalate (*HSPA9, RPL14*), diethylhexyl phthalate (*HSPA9, MAPT*), cadmium (*RPL14*), and arsenic (*HSPA9* and *MAPT*) (Table 5). The CTD search revealed that PCBs-interacting nine genes: HMOX1, IL6, NQO1, RPS8, SLC18A2, SNCA,

SOD1, SOD2, TNF are associated with Parkinson Disease. Both SOD and TNF E2 interacting genes are NRF1 target genes.

With HD, the two E2-responsive NRF1 target genes are: *AIFM1* and *IP6K2*. These genes are also responsive to the following EEDCs: ethinyl estradiol (*AIFM1*), bisphenol-A (*AIFM1* and *IP6K2*), dibutyl phthalate (*IP6K2*), cadmium (*AIFM1*), and arsenic (*IP6K2*) (Table 2).

With ALS, the E2-responsive NRF1 target genes are *CHMP2B* and *GSR*. These genes are also responsive to the following EEDCs: ethinyl estradiol (*GSR*), bisphenol-A (*GSR* and *CHMP2B*), dibutyl phthalate (*GSR*), diethylhexyl phthalate (*GSR*), cadmium (*GSR*), and arsenic (*GSR*) (Table 2).

With ASD, the E2-responsive NRF1 target genes are *CIRBP*, *PCDH9*, and *GTF2I*. These genes are also responsive to the following EEDCs: ethinyl estradiol (*CIRBP and GTF2I*), bisphenol-A (*CIRBP*, *GTF2I*, *and PCDH9*), polychlorinated biphenyls (*CIRBP*), cadmium (*CIRBP*), and arsenic (*PCDH9*) (Table 2).

With brain neoplasms, the E2-responsive NRF1 target genes are *PCNA*, *PTCH1*, and *RELA*. These genes are also responsive to the following EEDCs: ethinyl estradiol (*PCNA and PTCH1*), bisphenol-A (*PCNA and RELA*), dibutyl phthalate (*PCNA and PTCH1*), cadmium (*RELA*), arsenic (PCNA and PTCH1), and manganese (*RELA*) (Table 2).

NRF1, Mitochondrial Dysfunction, and Neurodegenerative Disease

Mitochondria are known as the powerhouses of cells. They are important for cell viability and function ¹⁹³. They control cell process such as energy production, calcium signaling, and apoptosis ¹⁹³. Research has suggested that mitochondrial dysfunction is a

cause and not a result of neurodegenerative diseases ¹⁹¹ It is suggested mitochondrial dysfunction plays a major role, in AD, PD, HD, and ALS through the oxidative phosphorylation dysfunction¹⁹¹. Mitochondrial dysfunction may also increase ROS generation, cause abnormal protein-protein interactions, and may lead to loss of cellular integrity and cell death ¹⁹⁴. There is also evidence to suggest mitochondrial dysfunction may play a role in neuronal plasticity and maintenance ¹⁹⁴. Sex steroid have been observed to regulate mitochondrial function ¹⁹⁵, and provide targets for estrogenic endocrine disruptors such as bisphenol-A, phthalates, polychlorinated biphenyls, metals, oral contraceptives, and hormonal replacement therapies ¹. NRF1 regulates the expression of nuclear genes that encode that encode mitochondrial proteins that function in metabolic pathways such as the trichloroacetic acid cycle (TCA), oxidative phosphorylation, heme synthesis, and in mitochondrial DNA replication and transcription (eg, mitochondrial transcription factor A [Tfam]^{189,190}. Since mitochondrial dysfunction has been implicated as a possible pathway for neurodegenerative diseases ¹⁹¹, gene targets of NRF-1 directly affect brain health and may provide insight into mechanisms of these diseases.

NRF1-mediated Regulation of Neurogenesis and Synaptogenesis

Estrogen has been demonstrated to have a significant role in controlling neural progenitors in the developing embryonic brain. Estrogen has been shown to induce proliferation and differentiation of neural progenitor ^{196–198}. Neural progenitors have also been demonstrated to express estrogen receptors ^{197,198}, which provide a site in EEDCs to exert their effects. EEDCs have been shown to cross the placental and blood brain barrier ⁶, but the mechanisms regarding the effects on the early stages of neural development are

largely not known. Studies suggest neural development is affected by exposures to EEDCs. Low-dose exposure to bisphenol-A and S has been shown to induce hypothalamic neurogenesis in an embryonic zebrafish at a point in time analogous to the second trimester of human development ¹⁹⁹. Several classes of phthalates were shown to prevent neural stem cell proliferation in a rat mesencephalic stem cell model ²⁰⁰. Polychlorinated biphenyls have also been demonstrated to interfere with neuronal cell differentiation in a rat embryonic neural stem cell model ²⁰¹. Arsenic was shown to substantially inhibited neuronal differentiation in human embryonic neural stem cells ²⁰². Manganese has also been demonstrated to cause cell death in a rat neural stem cell model through a mitochondrial-mediated pathway²⁰³. The generation of new neurons from neural progenitor stem cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. All these processes seem to be regulated by nuclear respiratory factor 1 (NRF1) target network genes. For example, recently, it has been shown that NRF1 regulates neurite outgrowth - a critical process in neuronal development in neuroblastoma cells and hippocampal neurons by regulating its target gene, Synapsin 1²⁰⁴. Another fifteen genes involved in different biological processes of neurons, cell cycle-related genes- MAPRE3, NPDC1, SUV39H2, SKA3, transport-related genes- RAB3IP, TRAPPC3, signal transduction-related genes- SMAD5, PIP5K1A, USP10, SPRY4, transcription-related genes- GTF2F2, NR1D1, and regulation of GTPase activity-related genes- RHOA, RAPGEF6, SMAP1, have been reported to contain NRF1 binding motif(s) in their promoters and mRNA levels of 12 of these genes are regulated by NRF1 ²⁰⁵. Overexpression or knockdown of MAPRE3, NPDC1, SMAD5, USP10, SPRY4, GTF2F2, SKA3, RAPGEF6 positively regulates, where as

RHOA and SMAP1 negatively regulates neurite outgrowth. Three hypothetical genes -FAM134C, C3orf10, and ENOX1 involved in neurite outgrowth are regulated by NRF1. FAM134C positively regulates and C3orf10 negatively regulates neurite outgrowth ²⁰⁶ In summary, it appears that NRF1 regulates neurite outgrowth through cell cycle-, transport-, signal transduction-, transcription-, regulation of GTPase activity-related genes and hypothetical genes. This suggests that NRF1 regulates neuronal differentiation through a variety of biological processes.

Gender Bias and NRF1 Regulated Genes-EEDC Interactions in AD

Sex differences in nervous system diseases, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease, exist in prevalence, severity, and progression of pathologies and consequently has become a major obstacle for the treatment. Cognitive disturbances are frequent in brain health deficit-related disease. Men show greater cognitive impairment in schizophrenia, whereas women show more severe dementia and cognitive decline with Alzheimer's disease. Alzheimer's disease (AD) disproportionally affects women (F:M \approx 2:1) and the total number of Americans aged 65 years and older with AD is projected to increase from 5.1 million to 13.8 million by 2050 ²⁰⁷Despite tremendous progress in understanding the pathogenesis of AD, the molecular basis underlying the sex-dependent differences in AD remains largely unknown. and consequently, has become a major obstacle for the development of new sex-based molecular targets of AD.

NRF1 and Estrogen Responsive Genes in the AD Pathway

Many genes modified by EEDs are common targets of both (E2) and NRF1 and some of these genes are involved with the specified brain diseases. Therefore, using

NRF1-EDC interacting genes identified from CTD (Table 4), we focused our efforts on AD and conducted enrichment pathway analysis, which revealed that many of the NRF1 target genes interacting with each specific EEDC and they are part of pathway of AD (Figures 2–7). Enrichment pathway analysis was performed using Cytoscape and Genemania. The search of enriched pathways showed that top 10 E2 interacting genes in AD: APOE, APP, ATP5A1, CALM1, CASP3, GSK3B, IL1B, MAPT, PSEN2 and TNF underlie the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) Alzheimer's disease pathway. With AD, the six E2-responsive genes are NRF1 target genes: APBB2, DPYSL2, EIF2S1, ENO1, MAPT, AND PAXIP1. These genes are also responsive to the following EEDs: ethinyl estradiol (APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1) BPA (APBB2, EIF2S1, ENO1, MAPT, and PAXIP1), dibutyl phthalate (DPYSL2, EIF2S1, ENO1), diethylhexyl phthalate (DPYSL2 and MAPT), dibutyl phthalate (DPYSL2, EIF2S1, ENO1) (Figures 2–7, Table 2). GO annotations of E2 and NRF1 enrichment network genes of EEDs revealed multiple common E2 and NRF1 genes associated with carbohydrate metabolic pathways, which was common among all EEDCs (Figures 2–7). Other two biological process pathways showing association with multiple common E2 and NRF1 genes interacting with E2, EE, BPA or phthalates were translation (translation initiation, translation initiation factory activity and translation factory activity, nucleic acid binding) and glial/oligodendrocytes growth and differentiation (Figures 2–7). To validate our CTD findings, we used Bayesian network (BN) analysis ²⁰⁸ of microarray data of 79 subjects from the Gene Expression Omnibus (GEO) database ²⁰⁹, which showed the female NRF1 gene network is different from the male network. It was also observed that both NRF1 expression and gender were

associated with AD (Figure 8). Genes associated with AD – APLP1, APP, GRIN1, GRIN2B, MAPT, PSEN2, PEN2, and IDE are also NRF1-regulated and E2-responsive and may contribute to NRF1 gender differences and may play a role in the prevention of AD by E2.

Conclusions

Estrogenic endocrine disrupting chemicals go further than the known novel mechanisms of endocrine disruption. Gene-gene and gene-environment provide alternative paths for endocrine disruption. Bioinformatics analysis of gene-EEDCs interactions and brain disease associations identified numerous NRF1 regulated genes that were altered by exposure to estrogen, phthalate, BPA, and metalloestrogens. EEDCmodified genes in brain health deficits are part of estrogen and nuclear respiratory factor 1 signaling pathways. Our findings suggest that in addition to estrogen signaling, these chemicals influence NRF1 factor regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health deficits.

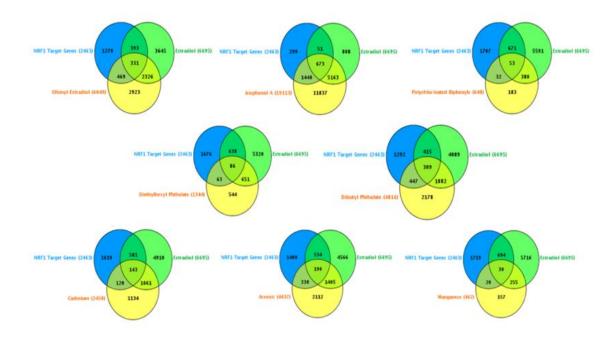
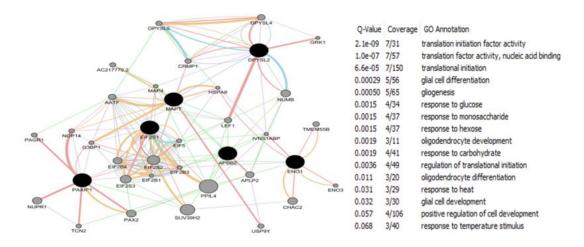



Figure 1: A Venn diagram showing the individual pharmacological estrogen or estrogenic Endocrine Disruptor (EED) modified genes common to both NRF1 and/or estrogen signaling pathways. NRF1 target genes were mapped between 17-beta estradiol (E2) and pharmacological estrogen ethinyl estradiol or PCBs or BPA or phthalates or Cd or As or Mn.

Figure 2. Gene set pathway enrichment analysis of 17-beta estradiol (E2) responsive NRF1 target genes associated with Alzheimer Disease (AD). E2 responsive NRF1 genes are in black. The network includes the top 30 related genes. Right panel show GO annotations of NRF1 enrichment network genes of E2 associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term.

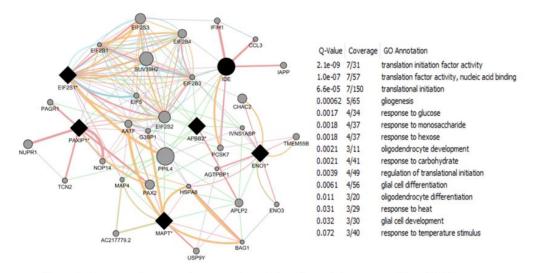


Figure 3. Gene set pathway enrichment analysis of ethinyl estradiol responsive E2 and NRF1 common target genes associated with Alzheimer Disease (AD). Ethinyl estradiol responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node are E2 and NRF1. The network includes the top 30 related genes. Right panel show GO annotations of E2 and NRF1 enrichment network genes of ethinyl estradiol associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term.

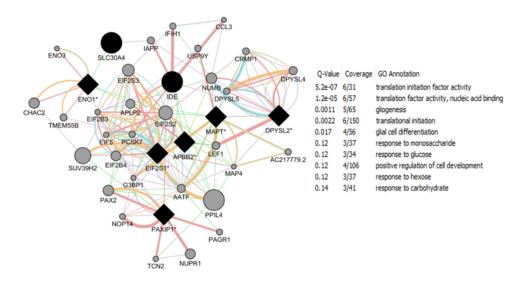


Figure 4. Gene set pathway enrichment analysis of bisphenol-A (BPA) responsive R2 and NRF1common target genes associated with Alzheimer Disease (AD). Bisphenol-A responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node are E2 and NRF1 responsive. The network includes the top 30 related genes. Right panel show GO annotations of E2 and NRF1 enrichment network genes of BPA associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term.

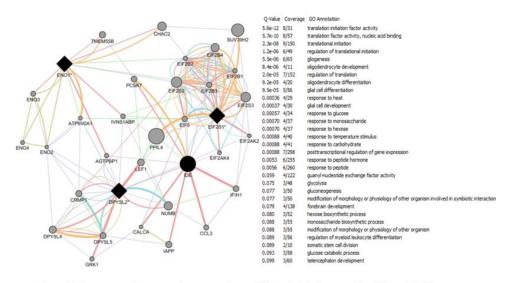
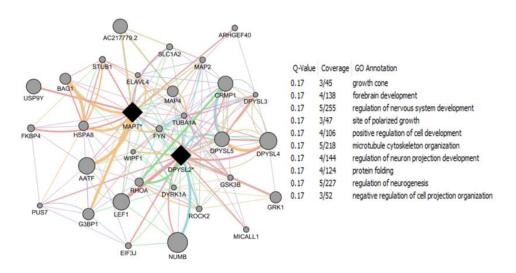



Figure 5. Gene set pathway enrichment analysis of dibutyl phthalate modified E2 and NRF1 common target genes associated with Alzheimer Disease (AD). Dibutyl phthalate responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node are E2 and NRF1 responsive. The network includes the top 30 related genes. Right panel show GO annotations of E2 and NRF1 enrichment network genes of dibutyl phthalate associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term.

Figure 6. Gene set pathway enrichment analysis of diethylhexyl phthalate responsive E2 and NRF1 common target genes associated with Alzheimer Disease (AD). Diethylhexyl phthalate responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node are E2 and NRF1 responsive. The network includes the top 30 related genes. Right panel show GO annotations of E2 and NRF1 enrichment network genes of diethylhexyl phthalate associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term.

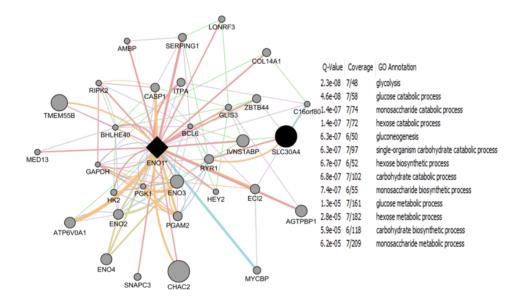


Figure 7. Gene set pathway enrichment analysis of cadmium responsive E2 and NRF1 common target genes associated with Alzheimer Disease (AD). Cadmium responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node are E2-and NRF1 responsive. The network includes the top 30 related genes. Right panel show GO annotations of E2 and NRF1 enrichment network genes of cadmium associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term.

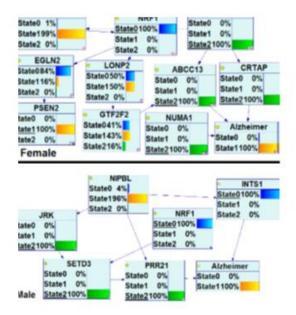


Figure 8. Gender differences in the NRF1 network from brain microarray data of 79 male and female AD subjects and controls from the GEO database.

Table 1: Top 10 enriched pathways for E2 and NRF1-Target Genes Associated with Estrogenic Endocrine Disruptors – BPA, PCB, Phthalates, As, Cd, and Mn		
17 Beta-estradiol (E2) interacting NRF1 target genes		
KEGG Pathway	Number of genes:	Annotated Genes
Disease	86	ADCY9 AKT2 ALDOA AP1S1 CCNT2 CDC42 CDK1 CDKN2B CHMP2A CHMP2B CHMP5 CREB1 CSK CSNK1A1 CTBP1 CYB5A ENO1 EPS15L1 ERCC2 EXT2 FASN FZD4 GLB1 GTF2E2 HDAC2 HDAC3 HDAC4 HMMR HRAS H SP90AA1 IRS1 MAP2K7 MKNK1 MMADHC MTHFD1 NAMPT NPM1 NUP107 NUP50 OS9 P4HB PAPSS1 PFKFB4 PIP5K1B PLCG1 POLR2A POM121 PPIA PRKAR2A PSENEN PYGL RAC1 RAE1 RAF1 RAN RBX1 RHOA RPL10 RPL13A RPL14 RPL36 RPS13 RPS16 RPS21 RPS29 RPS9 SHC1 SLC25A10 SLC37A4 SMARCA4 SNW1 SOS1 SRC S TUB1 STX1A TAF12 TAF5 TCEB2 TGIF1 TNKS2 TPR UBA52 WNT5A XRCC5 XRCC6 YWHAZ
Metabolism	86	ACADM ADCY9 ADI1 AGPAT5 AKR7A2 ALAS1 ALDOA AMACR ATP50 AUH BCAT1 BCAT2 BSG CBR1 COX5 B COX6C CTPS1 CYB5A CYCS DTYMK ELOVL4 ENO1 ERCC2 ETFB ETFDH EXT2 FASN FDPS GCLC GLB1 GN G5 GPD1L GSR GSS GSTM3 HDAC3 HMMR HSD17B4 HSP90AA1 INPP5A INPP5K IP6K2 LDHA LPCAT3 LSS M GST3 MMADHC MPC2 MTHFD1 NAMPT NDUFA3 NDUFB4 NUBP1 NUP107 NUP50 OAZ2 ODC1 P4HB PAICS P APSS1 PDHB PFKFB4 PIP5K1B PLA2G12A PLCG1 PLD1 POM121 PPAT PRKAR2A PSAP PYGL RAE1 RAN SDH A SGMS1 SIN3B SLC16A1 SLC25A10 SLC37A4 SLC44A2 STX1A SUCLA2 TPMT TPR UBA52 VAPB
Gene Expression	77	CCNT2 CDKN2B CNOT1 DHX9 DNMT1 EEF1A1 EEF1D EEF1G EIF2S1 EIF2S2 EIF3K EIF4E EIF4G1 ERCC2 ESR RA EXOSC2 EZH2 FARSB GEMIN4 GTF2E2 HARS HDAC2 HNRNPA1 HNRNPH1 HNRNPU HSPA8 LSM2 MARS 2 MED20 MED4 NR1D1 PCBP2 POLR1A POLR2A POLRMT PPA1 PTBP1 RAN RBBP4 RBBP7 RNPS1 RPL10 RPL1 3A RPL14 RPL36 RPS13 RPS16 RPS21 RPS29 RPS9 RUNX2 SAP18 SARS SEC61G SET SIN3B SNW1 SRRM1 SRSF 1 TAF12 TAF5 TARS TCEB2 TGIF1 THRA TRAM1 U2AF1 UBA52 UPF1 UPF2 VARS2 XPO5 YWHAZ ZNF610 ZNF 658 ZNF711 ZNF750
Signal Transduction	72	ABI1 ADCY9 AKT2 ARHGDIA BRK1 CASP2 CCNT2 CDC42 CDK1 CDKN2B CREB1 CRK CRKL CSK CSNK1A1 CTBP1 DAAM1 DGKH E2F1 EIF4E EIF4G1 EPS15L1 FSTL3 FZD4 GNG5 GPR37 HDAC2 HDAC3 HDAC4 HRAS H SP90AA1 IRS1 JAK2 LFNG MAPK7 MEF2A MKNK1 OS9 P4HB PFN1 PIP5K1B PLCG1 PRDM4 PRKAR2A PSAP P SENEN PTCH1 PTK2 RAC1 RAF1 RBX1 RELA RHOA RIPK2 ROCK1 RPS6KA5 RPS6KB1 SHC1 SMARCA4 SNW1 SOCS1 SOS1 SRC STARD13 STUB1 TGIF1 THBS2 TNKS2 TRIO UBA52 WNT5A YWHAZ
Immune System	67	ABI1 ADCY9 AKT2 ANAPC1 ANAPC11 AP1S1 ARPC2 ARPC5 BRK1 CASP2 CDC34 CDC42 CDK1 CREB1 CRK C RKL CSK CTSD DHX9 DYNLL1 EIF4E EIF4G1 FADD FZR1 HRAS HSP90AA1 IP6K2 IRS1 JAK2 KIF18A KIF4A M AP2K7 MAPK7 MEF2A NUP107 NUP50 PCBP2 PELI1 PLCG1 PLD1 POM121 PRKAR2A PRKDC PTK2 PVR RAC1 RAE1 RAF1 RBX1 RELA RIPK2 RNF19B RPS6KA5 SEC61G SHC1 SOCS1 SOS1 SRC STUB1 TCEB2 TPR TUBB4B UBA52 UBE2D4 XRCC5 XRCC6 YWHAZ
Cell Cycle	62	ANAPC1 ANAPC11 APITD1 ATM AURKA AURKB BUB1 CCNB1 CCNE1 CDC7 CDK1 CDKN2B CDKN2D CDT1 CENPN CKS1B CLASP2 DKC1 DSN1 DYNLL1 E2F1 ERCC6L FBXO5 FZR1 GOLGA2 HSP90AA1 KIF18A LIN37 M AD2L1 MCM2 MCM4 MCM6 MLH3 NEK2 NPM1 NUP107 NUP50 OIP5 ORC6 PCNA PLK4 POLA1 POM121 PPP1R

		12A RAB1B RAD50 RAE1 RBBP4 RBBP7 RBBP8 RBL2 RSF1 SDCCAG8 SET SMC4 SPC24 SPDL1 TPR TUBB TUB B4B UBA52 ZWINT
Metabolic pathways	62	: ACADM ADI1 ALAS1 ALDOA AMACR ATP50 AUH BCAT1 BCAT2 CBR1 COX5B COX6A2 COX6C CTPS1 HAD 1 DGKH DNMT1 DTYMK ENO1 EXT2 FASN FBL FDPS FUT8 GAA GCLC GFPT1 GLB1 GSS HSD17B4 INPP5A IN PP5K LAP3 LDHA LSS MECR MTHFD1 NDUFA3 NDUFB4 ODC1 PAICS PAPSS1 PDHB PGAM5 PGAP1 PIGA PIP 5K1B PLA2G12A PLCG1 PLD1 POLA1 POLE4 POLG2 POLR1A POLR2A PPAT SDHA SGMS1 SHMT2 SUCLA2 S UFU TGDS
Metabolism of proteins	48	B3GNTL1 CCT3 CCT6A CCT8 CTSD HAD1 DDIT3 DNAJB9 DNAJC3 DOHH EEF1A1 EEF1D EEF1G EIF2S1 EIF2S 2 EIF3K EIF4E EIF4G1 EIF5A FBXW5 FUT8 GFPT1 GLB1 GRPEL2 HSPA9 HSPD1 IGFBP3 MANEA PFDN1 PGAP1 PIGA RPL10 RPL13A RPL14 RPL36 RPS13 RPS16 RPS21 RPS29 RPS9 SEC61G SHC1 STX1A THBS2 TRAM1 TSP YL2 TUBB4B UBA52
Developmental Biology	42	ABLIM2 AKT2 ARPC2 ARPC5 CDC42 CDK1 CLASP2 CREB1 CRMP1 CTNNA2 DPYSL2 HDAC3 HRAS HSP90AA 1 HSPA8 ITGA1 KIF4A MED11 MED18 MED20 MED4 MEF2A MYH10 MYH14 NRTN PFN1 PLCG1 PSENEN PTK2 RAC1 RAF1 RHOA ROCK1 RPS6KA5 RPS6KA6 SCN3B SDCBP SIAH2 SOS1 SPTAN1 SRC TRIO TUBB4B
Mitotic M- M/G1 phases	35	ANAPC1 ANAPC11 APITD1 AURKB BUB1 CCNB1 CDC7 CDK1 CDT1 CENPN CLASP2 DSN1 ERCC6L FBXO5 G OLGA2 KIF18A MAD2L1 MCM2 MCM4 MCM6 NUP107 NUP50 ORC6 POLA1 POM121 RAB1B RAE1 SET SMC4 S PC24 SPDL1 TPR TUBB4B UBA52 ZWINT
		Ethinyl estradiol interacting common E2- and NRF1-target genes
KEGG Pathway	Number of Genes:	Ethinyl estradiol interacting common E2- and NRF1-target genes Annotated Genes
KEGG Pathway Metabolism		Ethinyl estradiol interacting common E2- and NRF1-target genes
	Genes:	Ethinyl estradiol interacting common E2- and NRF1-target genes Annotated Genes ACADM ADCY9 AGPAT5 ALAS1 ALDOA ATP50 BCAT1 BSG CBR1 COX5B COX6C CTPS1 CYB5A CYCS ENO1 ERCC2 ETFDH EXT2 FASN FDPS GCLC GLB1 GSR GSS GSTM3 HDAC3 HSD17B4 HSP90AA1 INPP5A LDHA LS S MGST3 MTHFD1 NAMPT NUP50 ODC1 P4HB PAPSS1 PDHB PPAT PSAP PYGL RAE1 RAN SGMS1 SIN3B SLC
Metabolism	Genes: 49	Ethinyl estradiol interacting common E2- and NRF1-target genes Annotated Genes ACADM ADCY9 AGPAT5 ALAS1 ALDOA ATP50 BCAT1 BSG CBR1 COX5B COX6C CTPS1 CYB5A CYCS ENO1 ERCC2 ETFDH EXT2 FASN FDPS GCLC GLB1 GSR GSS GSTM3 HDAC3 HSD17B4 HSP90AA1 INPP5A LDHA LS S MGST3 MTHFD1 NAMPT NUP50 ODC1 P4HB PAPSS1 PDHB PPAT PSAP PYGL RAE1 RAN SGMS1 SIN3B SLC 16A1 SLC25A10 SLC37A4 :ADCY9 AKT2 ALDOA AP1S1 CDC42 CDK1 CHMP2A CREB1 CSK CSNK1A1 CYB5A ENO1 ERCC2 EXT2 FASN GLB1 GTF2E2 HDAC2 HDAC3 HRAS HSP90AA1 MAP2K7 MTHFD1 NAMPT NPM1 NUP50 OS9 P4HB PAPSS1 PS ENEN PYGL RAE1 RAN RBX1 RHOA RPL36 RPS16 RPS9 SLC25A10 SLC37A4 SMARCA4 STUB1 TAF12 TAF5 T
Metabolism Disease Gene	Genes: 49 48	Ethinyl estradiol interacting common E2- and NRF1-target genes Annotated Genes ACADM ADCY9 AGPAT5 ALAS1 ALDOA ATP50 BCAT1 BSG CBR1 COX5B COX6C CTPS1 CYB5A CYCS ENO1 ERCC2 ETFDH EXT2 FASN FDPS GCLC GLB1 GSR GSS GSTM3 HDAC3 HSD17B4 HSP90AA1 INPP5A LDHA LS S MGST3 MTHFD1 NAMPT NUP50 ODC1 P4HB PAPSS1 PDHB PPAT PSAP PYGL RAE1 RAN SGMS1 SIN3B SLC 16A1 SLC25A10 SLC37A4 :ADCY9 AKT2 ALDOA AP1S1 CDC42 CDK1 CHMP2A CREB1 CSK CSNK1A1 CYB5A ENO1 ERCC2 EXT2 FASN GLB1 GTF2E2 HDAC2 HDAC3 HRAS HSP90AA1 MAP2K7 MTHFD1 NAMPT NPM1 NUP50 OS9 P4HB PAPSS1 PS ENEN PYGL RAE1 RAN RBX1 RHOA RPL36 RPS16 RPS9 SLC25A10 SLC37A4 SMARCA4 STUB1 TAF12 TAF5 T CEB2 WNT5A XRCC5 YWHAZ DNMT1 EEF1A1 EEF1G EIF2S1 EIF2S2 EIF3K EIF4E ERCC2 EZH2 FARSB GTF2E2 HARS HDAC2 HNRNPA1 HN RNPH1 HNRNPU HSPA8 MED4 NR1D1 PCBP2 POLR1A POLRMT RAN RBBP4 RBBP7 RNPS1 RPL36 RPS16 RPS9

		ANAPC1 ANAPC11 AURKB BUB1 CCNB1 CCNE1 CDC7 CDK1 CDT1 CKS1B DYNLL1 E2F1 FZR1 GOLGA2 HSP 90AA1 LIN37 MAD2L1 MCM2 MCM4 MCM6 NPM1 NUP50 ORC6 PCNA PLK4 PPP1R12A RAE1 RBBP4 RBBP7 R BBP8 RSF1 SET SPC24 SPDL1 TUBB4B
Metabolic pathways	33	ACADM ALAS1 ALDOA ATP50 BCAT1 CBR1 COX5B COX6C CTPS1 DNMT1 ENO1 EXT2 FASN FDPS GCLC G LB1 GSS HSD17B4 INPP5A LDHA LSS MECR MTHFD1 ODC1 PAPSS1 PDHB PGAM5 PIGA POLE4 POLG2 POLR 1A PPAT SGMS1
Signal Transduction	33	ABI1 ADCY9 AKT2 CASP2 CDC42 CDK1 CREB1 CRK CSK CSNK1A1 E2F1 EIF4E HDAC2 HDAC3 HRAS HSP90 AA1 MAPK7 OS9 P4HB PFN1 PRDM4 PSAP PSENEN PTCH1 PTK2 RBX1 RHOA SMARCA4 SOCS1 STUB1 TRIO WNT5A YWHAZ
Metabolism of proteins	28	B3GNTL1 CCT3 CCT6A CCT8 CTSD DDIT3 DNAJC3 EEF1A1 EEF1G EIF2S1 EIF2S2 EIF3K EIF4E EIF5A FBXW5 GLB1 GRPEL2 HSPA9 HSPD1 IGFBP3 PFDN1 PIGA RPL36 RPS16 RPS9 SEC61G TSPYL2 TUBB4B
Developmental Biology	25	AKT2 ARPC2 ARPC5 CDC42 CDK1 CREB1 CTNNA2 HDAC3 HRAS HSP90AA1 HSPA8 ITGA1 MED11 MED4 MY H10 NRTN PFN1 PSENEN PTK2 RHOA RPS6KA6 SDCBP SIAH2 TRI0 TUBB4B
		Bisphenol A interacting common E2- and NRF1-target genes
	Number of	
KEGG Pathway	genes:	Annotated Genes
	8	ACADM ADCY9 ADI1 AGPAT5 AKR7A2 ALAS1 ALDOA AMACR ATP50 BCAT1 BCAT2 BSG CBR1 COX5B CO
Metabolism	85	X6C CTPS1 CYB5A CYCS DTYMK ELOVL4 ENO1 ERCC2 ETFB ETFDH EXT2 FASN FDPS GCLC GLB1 GNG5 G PD1L GSR GSS GSTM3 HDAC3 HMMR HSD17B4 HSP90AA1 INPP5A INPP5K IP6K2 LDHA LPCAT3 LSS MGST3 MMADHC MPC2 MTHFD1 NAMPT NDUFA3 NDUFB4 NUBP1 NUP107 NUP50 OAZ2 ODC1 P4HB PAICS PAPSS1 PDHB PFKFB4 PIP5K1B PLA2G12A PLCG1 PLD1 POM121 PPAT PRKAR2A PSAP PYGL RAE1 RAN SDHA SGMS 1 SIN3B SLC16A1 SLC25A10 SLC37A4 SLC44A2 STX1A SUCLA2 TPMT TPR UBA52 VAPB
Disease	84	ADCY9 AKT2 ALDOA AP1S1 CCNT2 CDC42 CDK1 CDKN2B CHMP2A CHMP2B CHMP5 CREB1 CSK CSNK1A1 CTBP1 CYB5A ENO1 ERCC2 EXT2 FASN FZD4 GLB1 GTF2E2 HDAC2 HDAC3 HDAC4 HMMR HRAS HSP90AA1 IRS1 MAP2K7 MKNK1 MMADHC MTHFD1 NAMPT NPM1 NUP107 NUP50 OS9 P4HB PAPSS1 PFKFB4 PIP5K1B PLCG1 POLR2A POM121 PPIA PRKAR2A PSENEN PYGL RAC1 RAE1 RAF1 RAN RBX1 RHOA RPL13A RPL14 R PL36 RPS13 RPS16 RPS21 RPS29 RPS9 SHC1 SLC25A10 SLC37A4 SMARCA4 SNW1 SOS1 SRC STUB1 STX1A TA F12 TAF5 TCEB2 TGIF1 TNKS2 TPR UBA52 WNT5A XRCC5 XRCC6 YWHAZ
Gene Expression	71	CCNT2 CDKN2B CNOT1 DHX9 DNMT1 EEF1A1 EEF1D EEF1G EIF2S1 EIF2S2 EIF3K EIF4E EIF4G1 ERCC2 ESR RA EXOSC2 EZH2 FARSB GEMIN4 GTF2E2 HARS HDAC2 HNRNPA1 HNRNPH1 HNRNPU HSPA8 LSM2 MARS 2 MED20 MED4 NR1D1 PCBP2 POLR1A POLR2A PPA1 PTBP1 RAN RBBP4 RBBP7 RNPS1 RPL13A RPL14 RPL36 RPS13 RPS16 RPS21 RPS29 RPS9 RUNX2 SAP18 SARS SEC61G SET SIN3B SNW1 SRRM1 SRSF1 TAF12 TAF5 T ARS TCEB2 TGIF1 THRA TRAM1 U2AF1 UBA52 UPF1 UPF2 XPO5 YWHAZ ZNF711
Signal Transduction	68	ABI1 ADCY9 AKT2 ARHGDIA BRK1 CASP2 CCNT2 CDC42 CDK1 CDKN2B CREB1 CRK CRKL CSK CSNK1A1 CTBP1 DAAM1 DGKH E2F1 EIF4E EIF4G1 FSTL3 FZD4 GNG5 GPR37 HDAC2 HDAC3 HDAC4 HRAS HSP90AA1 IRS1 JAK2 LFNG MAPK7 MKNK1 OS9 P4HB PFN1 PIP5K1B PLCG1 PRKAR2A PSAP PSENEN PTCH1 PTK2 RAC 1 RAF1 RBX1 RELA RHOA RIPK2 ROCK1 RP56KA5 RP56KB1 SHC1 SMARCA4 SNW1 SOCS1 SOS1 SRC STARD 13 STUB1 TGIF1 THBS2 TNKS2 UBA52 WNT5A YWHAZ

Immune System	66	ABI1 ADCY9 AKT2 ANAPC1 ANAPC11 AP1S1 ARPC2 ARPC5 BRK1 CASP2 CDC34 CDC42 CDK1 CREB1 CRK C RKL CSK CTSD DHX9 DYNLL1 EIF4E EIF4G1 FADD FZR1 HRAS HSP90AA1 IP6K2 IRS1 JAK2 KIF18A KIF4A M AP2K7 MAPK7 NUP107 NUP50 PCBP2 PEL11 PLCG1 PLD1 POM121 PRKAR2A PRKDC PTK2 PVR RAC1 RAE1 R AF1 RBX1 RELA RIPK2 RNF19B RPS6KA5 SEC61G SHC1 SOCS1 SOS1 SRC STUB1 TCEB2 TPR TUBB4B UBA52 UBE2D4 XRCC5 XRCC6 YWHAZ	
Cell Cycle	61	ANAPC1 ANAPC11 ATM AURKA AURKB BUB1 CCNB1 CCNE1 CDC7 CDK1 CDKN2B CDKN2D CDT1 CENPN CKS1B CLASP2 DKC1 DSN1 DYNLL1 E2F1 ERCC6L FBXO5 FZR1 GOLGA2 HSP90AA1 KIF18A LIN37 MAD2L1 MCM2 MCM4 MCM6 MLH3 NEK2 NPM1 NUP107 NUP50 OIP5 ORC6 PCNA PLK4 POLA1 POM121 PPP1R12A RA B1B RAD50 RAE1 RBBP4 RBBP7 RBBP8 RBL2 RSF1 SDCCAG8 SET SMC4 SPC24 SPDL1 TPR TUBB TUBB4B U BA52 ZWINT	
Metabolic pathways	58	ACADM ADI1 ALAS1 ALDOA AMACR ATP50 BCAT1 BCAT2 CBR1 COX5B COX6C CTPS1 HAD1 DGKH DNM T1 DTYMK EN01 EXT2 FASN FBL FDPS FUT8 GAA GCLC GFPT1 GLB1 GSS HSD17B4 INPP5A INPP5K LDHA L SS MECR MTHFD1 NDUFA3 NDUFB4 ODC1 PAICS PAPSS1 PDHB PGAM5 PGAP1 PIGA PIP5K1B PLA2G12A PL CG1 PLD1 POLA1 POLG2 POLR1A POLR2A PPAT SDHA SGMS1 SHMT2 SUCLA2 SUFU TGDS	
Metabolism of proteins	47	B3GNTL1 CCT3 CCT6A CCT8 CTSD HAD1 DDIT3 DNAJB9 DNAJC3 DOHH EEF1A1 EEF1D EEF1G EIF2S1 EIF2S 2 EIF3K EIF4E EIF4G1 EIF5A FBXW5 FUT8 GFPT1 GLB1 GRPEL2 HSPA9 HSPD1 IGFBP3 MANEA PFDN1 PGAP1 PIGA RPL13A RPL14 RPL36 RPS13 RPS16 RPS21 RPS29 RPS9 SEC61G SHC1 STX1A THBS2 TRAM1 TSPYL2 TU BB4B UBA52	
Developmental Biology	41	ABLIM2 AKT2 ARPC2 ARPC5 CDC42 CDK1 CLASP2 CREB1 CRMP1 CTNNA2 DPYSL2 HDAC3 HRAS HSP90AA 1 HSPA8 ITGA1 KIF4A MED11 MED18 MED20 MED4 MYH10 MYH14 NRTN PFN1 PLCG1 PSENEN PTK2 RAC1 RAF1 RH0A ROCK1 RPS6KA5 RPS6KA6 SCN3B SDCBP SIAH2 SOS1 SPTAN1 SRC TUBB4B	
Pathways in cancer	34	AKT2 ARAF CCNE1 CDC42 CDKN2B CKS1B CKS2 CRK CRKL CTBP1 CTNNA2 CYCS E2F1 FADD FZD4 HDAC2 HRAS HSP90AA1 MSH2 PLCG1 PLD1 PTCH1 PTK2 RAC1 RAF1 RASSF1 RBX1 RELA RHOA SOS1 SUFU TCEB2 TPR WNT5A	
	Dibutyl Phthalate interacting common E2- and NRF1-target genes		
KEGG Pathway	Number of genes:	Annotated Genes	
Metabolism	56	ACADM ADCY9 ADI1 AKR7A2 ALAS1 ALDOA AMACR ATP50 BCAT1 BCAT2 BSG CBR1 CYB5A CYCS DTY MK ENO1 ETFB ETFDH EXT2 FASN FDPS GCLC GLB1 GNG5 GSR GSS HDAC3 HMMR HSD17B4 HSP90AA1 IN PP5A IP6K2 LDHA LPCAT3 LSS MGST3 MTHFD1 NAMPT NDUFA3 NDUFB4 NUBP1 NUP50 OAZ2 ODC1 PAPSS 1 PLA2G12A PLD1 POM121 PRKAR2A PYGL RAE1 RAN SDHA SGMS1 SLC25A10 UBA52	
Disease	45	ADCY9 ALDOA CCNT2 CDK1 CREB1 CSNK1A1 CTBP1 CYB5A ENO1 EXT2 FASN GLB1 HDAC3 HMMR HSP90 AA1 MTHFD1 NAMPT NPM1 NUP50 PAPSS1 POLR2A POM121 PRKAR2A PYGL RAE1 RAF1 RAN RHOA RPL13 A RPL14 RPL36 RPS13 RPS21 RPS29 SLC25A10 SMARCA4 SNW1 SRC STUB1 TCEB2 TGIF1 TNKS2 UBA52 WN T5A XRCC5	

Gene Expression	39	CCNT2 DNMT1 EEF1A1 EEF1D EIF2S1 EIF2S2 EIF4E EIF4G1 ESRRA EXOSC2 EZH2 GEMIN4 HNRNPA1 HNRNP U HSPA8 LSM2 MED20 POLR1A POLR2A PTBP1 RAN RBBP4 RNPS1 RPL13A RPL14 RPL36 RPS13 RPS21 RPS29 SET SNW1 SRSF1 TARS TCEB2 TGIF1 THRA U2AF1 UBA52 XPO5
Metabolic pathways	38	ACADM ADI1 ALAS1 ALDOA AMACR ATP50 BCAT1 BCAT2 CBR1 COX6A2 DNMT1 DTYMK ENO1 EXT2 FAS N FBL FDPS GCLC GFPT1 GLB1 GSS HSD17B4 INPP5A LDHA LSS MTHFD1 NDUFA3 NDUFB4 ODC1 PAPSS1 P GAM5 PLA2G12A PLD1 POLE4 POLR1A POLR2A SDHA SGMS1
Cell Cycle	34	ANAPC1 ANAPC11 APITD1 ATM AURKB CCNB1 CCNE1 CDC7 CDK1 CDKN2D CDT1 CENPN CKS1B CLASP2 F BXO5 FZR1 HSP90AA1 MCM2 MCM4 MCM6 NPM1 NUP50 OIP5 ORC6 PCNA POM121 PPP1R12A RAE1 RBBP4 S ET SPC24 SPDL1 UBA52 ZWINT
Signal Transduction	32	ADCY9 ARHGDIA CCNT2 CDK1 CREB1 CSNK1A1 CTBP1 DAAM1 EIF4E EIF4G1 GNG5 HDAC3 HSP90AA1 JAK 2 LFNG MEF2A PRDM4 PRKAR2A PTCH1 RAF1 RHOA SMARCA4 SNW1 SOCS1 SRC STUB1 TGIF1 THBS2 TNK S2 TRI0 UBA52 WNT5A
Immune System	31	ADCY9 ANAPC1 ANAPC11 ARPC2 ARPC5 CDK1 CREB1 CTSD EIF4E EIF4G1 FADD FZR1 HSP90AA1 IP6K2 JA K2 MEF2A NUP50 PLD1 POM121 PRKAR2A PRKDC PVR RAE1 RAF1 RNF19B SOCS1 SRC STUB1 TCEB2 UBA5 2 XRCC5
Metabolism of proteins	25	CCT3 CTSD DDIT3 DNAJB9 DNAJC3 EEF1A1 EEF1D EIF2S1 EIF2S2 EIF4E EIF4G1 FBXW5 GFPT1 GLB1 HSPA9 HSPD1 PFDN1 RPL13A RPL14 RPL36 RPS13 RPS21 RPS29 THBS2 UBA52
Mitotic M- M/G1 phases	23	ANAPC1 ANAPC11 APITD1 AURKB CCNB1 CDC7 CDK1 CDT1 CENPN CLASP2 FBXO5 MCM2 MCM4 MCM6 N UP50 ORC6 POM121 RAE1 SET SPC24 SPDL1 UBA52 ZWINT
Developmental Biology	21	ARPC2 ARPC5 CDK1 CLASP2 CREB1 CTNNA2 DPYSL2 HDAC3 HSP90AA1 HSPA8 ITGA1 MED20 MEF2A MYH 10 NRTN RAF1 RHOA SCN3B SDCBP SRC TRIO
		Diethylhexyl Phthalate interacting common E2- and NRF1-target genes
KEGG Pathway	Number of Genes:	Annotated Genes
Metabolism	21	ACADM ALAS1 ALDOA BCAT2 BSG CYCS FASN FDPS GSR GSTM3 HSD17B4 HSP90AA1 LDHA LSS MMADH C NDUFA3 ODC1 PAPSS1 PLD1 PYGL SLC37A4
Metabolic pathways	15	ACADM ALAS1 ALDOA BCAT2 DNMT1 FASN FDPS HSD17B4 LDHA LSS NDUFA3 ODC1 PAPSS1 PLD1 POLE4 DAB ALAS1 ALDOA BCAT2 DNMT1 FASN FDPS HSD17B4 LDHA LSS NDUFA3 ODC1 PAPSS1 PLD1 POLE4 DAB ALAS1 ALDOA BCAT2 DNMT1 FASN FDPS HSD17B4 LDHA LSS NDUFA3 ODC1 PAPSS1 PLD1 POLE4 DAB ALAS1 ALDOA BCAT2 DNMT1 FASN FDPS HSD17B4 LDHA LSS NDUFA3 ODC1 PAPSS1 PLD1 POLE4 DAB ALAS1 ALDOA BCAT2 DNMT1 FASN FDPS HSD17B4 LDHA LSS NDUFA3 ODC1 PAPSS1 PLD1 POLE4 DAB ALAS1 ALDOA BCAT2 DNMT1 FASN FDPS HSD17B4 LDHA LSS NDUFA3 ODC1 PAPSS1 PLD1 POLE4 DAB ADA ADA ADA ADA ADA ADA ADA ADA ADA
Disease	15	AKT2 ALDOA FASN HDAC2 HDAC4 HSP90AA1 IRS1 MMADHC NPM1 PAPSS1 PYGL RBX1 RPL36 RPS13 SLC3 7A4
Immune System	12	AKT2 ANAPC11 CDC34 DYNLL1 EIF4G1 HSP90AA1 IRS1 KIF18A PLD1 RBX1 SEC61G TUBB4B
Metabolism of proteins	11	CCT3 CCT6A DNAJB9 EIF4G1 GRPEL2 HSPA9 HSPD1 RPL36 RPS13 SEC61G TUBB4B
Cell Cycle	9	ANAPC11 CCNB1 CCNE1 DYNLL1 HSP90AA1 KIF18A NPM1 TUBB4B ZWINT
Cellular responses to stress	8	ANAPC11 CBX2 CCNE1 CYCS GSR HSP90AA1 HSPA8 RBX1

8	AKT2 CCNE1 CYCS HDAC2 HSP90AA1 MSH2 PLD1 RBX1	
8	AKT2 DPYSL2 HSP90AA1 HSPA8 ITGA1 SCN3B SIAH2 TUBB4B	
5	ANAPC11 CCNB1 CCNE1 HDAC2 RBX1	
	Polychlorinated Biphenyls interacting common E2- and NRF1-target genes	
Number of Genes:	Annotated Genes	
13	AURKA AURKB CDK1 CDT1 CENPN CKS1B FBXO5 MCM2 MCM6 PCNA PLK4 SMC4 ZWINT	
9	AURKB CDK1 CDT1 CENPN FBXO5 MCM2 MCM6 SMC4 ZWINT	
4	CDT1 MCM2 MCM6 PCNA	
4	CDK1 MCM2 MCM6 PCNA	
3	MCM2 MCM6 PCNA	
3	CDK1 PCNA UNG	
3	ARAF CDC42 RAF1	
Cadmium interacting common E2- and NRF1-target genes		
Number of Genes:	Annotated Genes	
26	ACADM ALDOA AUH BCAT1 COX5B COX6C CYCS DTYMK ENO1 FASN GCLC GSR GSS GSTM3 HSD17B4 HS P90AA1 INPP5K LDHA MGST3 OAZ2 PAICS RAN SDHA SGMS1 SLC16A1 SLC37A4	
25	CCNT2 CDKN2B DNMT1 EEF1A1 EEF1D EEF1G EXOSC2 HARS HNRNPA1 HNRNPH1 HSPA8 LSM2 MARS2 ME D20 RAN RPL10 RPL13A RPL14 RUNX2 SRRM1 TAF12 TCEB2 THRA XPO5 YWHAZ	
24	ALDOA CCNT2 CDC42 CDK1 CDKN2B CREB1 CTBP1 ENO1 FASN HSP90AA1 IRS1 OS9 PPIA RAC1 RAF1 RAN RPL10 RPL13A RPL14 SHC1 SLC37A4 TAF12 TCEB2 YWHAZ	
21	ARHGDIA CCNT2 CDC42 CDK1 CDKN2B CREB1 CTBP1 E2F1 FSTL3 GPR37 HSP90AA1 IRS1 OS9 PTK2 RAC1 R AF1 RELA ROCK1 RPS6KB1 SHC1 YWHAZ	
20	ACADM ALDOA AUH BCAT1 COX5B COX6C DNMT1 DTYMK ENO1 FASN GAA GCLC GSS HSD17B4 INPP5K LDHA PAICS SDHA SGMS1 SHMT2	
	8 5 Number of Genes: 13 9 4 4 3 3 3 3 3 3 3 3 3 3 2 5 26 25 24 21	

Immune System	18	CDC42 CDK1 CREB1 CTSD HSP90AA1 IRS1 KIF4A PELI1 PTK2 PVR RAC1 RAF1 RELA RNF19B SHC1 TCEB2 U BE2D4 YWHAZ
Cell Cycle	17	AURKA BUB1 CCNB1 CCNE1 CDK1 CDKN2B CKS1B E2F1 FBXO5 HSP90AA1 MAD2L1 MCM2 MCM4 MCM6 N EK2 OIP5 SMC4
Pathways in cancer	15	CCNE1 CDC42 CDKN2B CKS1B CTBP1 CYCS E2F1 HSP90AA1 MSH2 PTK2 RAC1 RAF1 RASSF1 RELA TCEB2 CRAC1 RAF1 RASSF1 RASSF1 RELA TCEB2 CRAC1 RAF1 RASSF1 RELA TCEB2 CRAC1 RAF1 RASSF1 RASSF1 RELA TCEB2 CRAC1 RAF1 RASSF1 RASSF1 RELA TCEB2 CRAC1 RAF1 RASSF1 RASSF1 RASSF1 RELA TCEB2 CRAC1 RAF1 RASSF1 RASSF1 RASSF1 RELA TCEB2 CRAC1 RAF1 RASSF1 RAS
Developmental Biology	15	CDC42 CDK1 CREB1 HSP90AA1 HSPA8 KIF4A MED20 MYH10 MYH14 NRTN PTK2 RAC1 RAF1 ROCK1 SPTAN 1
Metabolism of proteins	12	CTSD DDIT3 DNAJB9 EEF1A1 EEF1D EEF1G EIF5A HSPD1 RPL10 RPL13A RPL14 SHC1
		Arsenic interacting common E2- and NRF1-target genes
KEGG Pathway	Number of Genes:	Annotated Genes
Metabolism	33	ADCY9 ALDOA CYCS ENO1 ERCC2 ETFB ETFDH FASN GCLC GSR GSS GSTM3 HSD17B4 HSP90AA1 INPP5A I P6K2 LDHA MMADHC NUBP1 P4HB PAICS PLCG1 PLD1 POM121 PPAT PRKAR2A SDHA SGMS1 SLC44A2 STX 1A SUCLA2 TPMT UBA52
Immune System	30	ADCY9 ARPC2 CASP2 CDC42 CDK1 CREB1 CTSD FZR1 HRAS HSP90AA1 IP6K2 JAK2 KIF4A MAPK7 PCBP2 PE LI1 PLCG1 PLD1 POM121 PRKAR2A PRKDC PTK2 PVR RAF1 SOS1 SRC TUBB4B UBA52 UBE2D4 XRCC5
Disease	27	ADCY9 ALDOA CDC42 CDK1 CDKN2B CREB1 CTBP1 ENO1 ERCC2 FASN HDAC4 HRAS HSP90AA1 MMADHC NPM1 P4HB PLCG1 POM121 PRKAR2A RAF1 RPL36 SMARCA4 SOS1 SRC STX1A UBA52 XRCC5
Signal Transduction	24	ADCY9 CASP2 CDC42 CDK1 CDKN2B CREB1 CTBP1 E2F1 HDAC4 HRAS HSP90AA1 JAK2 MAPK7 P4HB PLCG 1 PRKAR2A PTCH1 PTK2 RAF1 ROCK1 SMARCA4 SOS1 SRC UBA52
Developmental Biology	22	ABLIM2 ARPC2 CDC42 CDK1 CREB1 HRAS HSP90AA1 HSPA8 KIF4A MED18 MYH10 MYH14 NRTN PLCG1 PT K2 RAF1 ROCK1 SCN3B SIAH2 SOS1 SRC TUBB4B
Metabolic pathways	20	ALDOA COX6A2 DNMT1 ENO1 FASN FUT8 GCLC GSS HSD17B4 INPP5A LAP3 LDHA PAICS PLCG1 PLD1 PPA T SDHA SGMS1 SUCLA2 SUFU
Cell Cycle	19	ATM AURKA CCNB1 CCNE1 CDK1 CDKN2B CDKN2D E2F1 FZR1 HSP90AA1 MAD2L1 NPM1 PCNA POM121 S ET SPDL1 TUBB TUBB4B UBA52
Gene Expression	19	CDKN2B CNOT1 DNMT1 EEF1G ERCC2 EZH2 HNRNPA1 HSPA8 LSM2 PCBP2 PTBP1 RNPS1 RPL36 RUNX2 SE T UBA52 UPF1 VARS2 ZNF610
Pathways in cancer	17	CCNE1 CDC42 CDKN2B CTBP1 CYCS E2F1 HRAS HSP90AA1 MSH2 PLCG1 PLD1 PTCH1 PTK2 RAF1 RASSF1 S OS1 SUFU
Cellular responses to stress	16	ATM CCNE1 CDKN2B CDKN2D CYCS E2F1 EHMT1 EZH2 FZR1 GSR HSP90AA1 HSPA8 MAPK7 P4HB PRDX5 U BA52

Manganese interacting common E2- and NRF1-target genes		
KEGG Pathway	Number of Genes:	Annotated Genes
Cellular responses to stress	6	ATM CYCS GSR HSPA8 P4HB RELA
Developmental Biology	5	CREB1 HSPA8 SCN3B SPTAN1 SRC
Tuberculosis	4	CREB1 CYCS RELA SRC
p53 signaling pathway	3	ATM CYCS PPM1D
Small cell lung cancer	3	CKS2 CYCS RELA
Apoptosis	3	ATM CYCS RELA
Cell cycle	3	ATM BUB1 MCM4

Endocrine Disrupting Chemical (EDC)	Individual EDC responsive modified genes common to both NRF1 and E2 target. * Indicates E2 responsive.		
Alzheimer's Disease (AD)			
17 beta-estradiol	6 genes: APBB2 / DPYSL2 / EIF2S1 / ENO1 / MAPT / PAXIP1		
Ethinyl Estradiol	6 genes: APBB2* / EIF2S1* / ENO1* / IDE / MAPT* / PAXIP1*		
Bisphenol A	8 genes: APBB2* DPYSL2* EIF2S1* ENO1* IDE MAPT* PAXIP1* SLC30A4		
Dibutyl Phthalate	4 genes: DPYSL2* / EIF2S1* / ENO1* / IDE		
Diethylhexyl Phthalate	2 genes: DPYSL2* / MAPT*		
Cadmium	2 genes: ENO1* / SLC30A4		
Arsenic	2 genes: ENO1 */ MAPT		
Manganese	1 gene: ENO1*		
Parkinson's Disease (PD)			
17 beta-estradiol	8 genes: HSPA9 / MAPT / RPL14		
Ethinyl Estradiol	3 genes: HSPA9* / MAPT* / PINK1		
Bisphenol A	8 genes: GAK HSPA9* MAPT* PARK2 PARK7 PINK1 RPL14* VPS35		
Dibutyl Phthalate	4 genes: HSPA9* / PARK2 / PARK7 / RPL14*		
Diethylhexyl Phthalate	3 genes: HSPA9* /MAPT* / PARK2		
Cadmium	3 genes: PARK2 / PINK1 / RPL14*		
Arsenic	4 genes: GAK / HSPA9* / MAPT* / PARK2		
Manganese	2 genes: PARK2 / PARK7		

 Table 2: Interaction of Estrogenic Endocrine Disrupting Chemicals Modified Genes with

 Estrogen Signaling and NRF1 network genes in the Individual Neurodegenerative Disease

Huntington's Disease (HD)			
17 beta-estradiol	2 genes: AIFM1 / IP6K2		
Ethinyl Estradiol	1 gene: AIFM1*		
Bisphenol A	2 genes: <i>AIFM1* / IP6K2*</i>		
Dibutyl Phthalate	1 gene: <i>IP6K2</i> *		
Cadmium	1 gene: AIFM1*		
Arsenic	1 gene: <i>IP6K2</i> *		
	Amyotrophic Lateral Sclerosis (ALS)		
17 beta-estradiol	1 gene: GSR / CHMP2B		
Ethinyl Estradiol	1 gene: GSR*		
Bisphenol A	2 genes: GSR* / CHMP2B* / UNC13A		
Dibutyl Phthalate	1 gene: GSR*		
Diethylhexyl Phthalate	1 gene: GSR*		
Cadmium	1 gene: GSR*		
Arsenic	1 gene: GSR*		
Manganese	1 gene: GSR		
	Autism Spectrum Disorder (ASD)		
17 beta-estradiol	3 genes: CIRBP / PCDH9 / GTF2I		
Ethinyl Estradiol	2 genes: CIRBP* / GTF2I*		
Bisphenol A	3 genes: CIRBP* / GTF2I* / PCDH9*		
Polychlorinated Biphenyls	1 gene: CIRBP*		

Cadmium	1 gene: CIRBP*
Arsenic	1 gene: PCDH9*
	Brain Neoplasms
17 beta-estradiol	3 genes: PCNA / PTCH1 / RELA
Ethinyl Estradiol	2 genes: PCNA* / PTCH1*
Bisphenol A	4 genes: EML4 / PCNA* / PTCH1* / RELA*
Dibutyl Phthalate	2 genes: <i>PCNA* / PTCH1*</i>
Polychlorinated Biphenyls	1 gene: PCNA
Cadmium	1 gene: <i>RELA</i> *
Arsenic	2 genes: PCNA* / PTCH1*
Manganese	1 gene: <i>RELA</i> *

References

- 1. Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. *Environ Int.* 2015. doi:10.1016/j.envint.2015.05.012.
- 2. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. *Endocr Rev.* 2009;30(4):293-342. doi:10.1210/er.2009-0002.
- 3. Chen A, Dietrich KN, Huo X, Ho SM. Developmental neurotoxicants in e-waste: An emerging health concern. *Environ Health Perspect*. 2011. doi:10.1289/ehp.1002452.

- 4. Bergman A, Heindel JJ, Jobling S, Kidd KA, Zoeller TR. State of the science of endocrine disrupting chemicals. *World Heal Organ United Nations Environ Program.* 2012:1-38. http://apps.who.int/iris/handle/10665/78102.
- 5. Weiss B. Endocrine disruptors as a threat to neurological function. *J Neurol Sci.* 2011;305(1-2):11-21. doi:10.1016/j.jns.2011.03.014.
- 6. Kajta M, Wojtowicz AK. Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. *Pharmacol Reports*. 2013;65(6):1632-1639. doi:10.1016/S1734-1140(13)71524-X.
- 7. León-Olea M, Martyniuk CJ, Orlando EF, et al. Current concepts in neuroendocrine disruption. *Gen Comp Endocrinol*. 2014;203:158-173. doi:10.1016/j.ygcen.2014.02.005.
- 8. Masuo Y, Ishido M. Neurotoxicity of endocrine disruptors: possible involvement in brain development and neurodegeneration. *J Toxicol Environ Health B Crit Rev.* 2011. doi:10.1080/10937404.2011.578557.
- 9. Gillies GE, McArthur S. Estrogen Actions in the Brain and the Basis for Differential Action in Men and Women: A Case for Sex-Specific Medicines. *Pharmacol Rev.* 2010;62(2):155-198. doi:10.1124/pr.109.002071.
- Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. *Brain Res Bull.* 2014;109:22-31. doi:10.1016/j.brainresbull.2014.09.004.
- 11. Hristian C, Ruber JG, Alter W, et al. Production and actions of estrogens. *N Engl J Med.* 2002;346(5). doi:10.1016/S0960-0760(01)00184-4.
- 12. Green PS, Simpkins JW. Neuroprotective effects of estrogens: Potential mechanisms of action. *Int J Dev Neurosci*. 2000;18(4-5):347-358. doi:10.1016/S0736-5748(00)00017-4.
- 13. Wise PM, Dubal DB, Wilson ME, Rau SW, Liu Y. Estrogens: trophic and protective factors in the adult brain. *Front Neuroendocrinol*. 2001;22(1):33-66. doi:10.1006/frne.2000.0207.

- 14. Pozzi S, Benedusi V, Maggi A, Vegeto E. Estrogen action in neuroprotection and brain inflammation. *Ann N Y Acad Sci.* 2006;1089(2006):302-323. doi:10.1196/annals.1386.035.
- 15. Arevalo M-A, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. *Neuroscience*. 2015;16(1):17-29. doi:10.1038/nrn3856.
- Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. *J Neurosci*. 2003;23(5):1588-1592.
- 17. MacLusky NJ, Hajszan T, Prange-Kiel J, Leranth C. Androgen modulation of hippocampal synaptic plasticity. *Neuroscience*. 2006;138(3):957-965. doi:10.1016/j.neuroscience.2005.12.054.
- 18. Parducz a., Hajszan T, MacLusky NJ, et al. Synaptic remodeling induced by gonadal hormones: Neuronal plasticity as a mediator of neuroendocrine and behavioral responses to steroids. *Neuroscience*. 2006;138(3):977-985. doi:10.1016/j.neuroscience.2005.07.008.
- 19. Ogiue-Ikeda M, Tanabe N, Mukai H, et al. Rapid modulation of synaptic plasticity by estrogens as well as endocrine disrupters in hippocampal neurons. *Brain Res Rev.* 2008;57(2):363-375. doi:10.1016/j.brainresrev.2007.06.010.
- 20. Hojo Y, Murakami G, Mukai H, et al. Estrogen synthesis in the brain-Role in synaptic plasticity and memory. *Mol Cell Endocrinol*. 2008;290(1-2):31-43. doi:10.1016/j.mce.2008.04.017.
- Simpkins JW, Yi KD, Yang S, Dykens J a. Mitochondrial mechanisms of estrogen neuroprotection. *Biochim Biophys Acta*. 2011;1800(10):1113-1120. doi:10.1016/j.bbagen.2009.11.013.Mitochondrial.
- 22. Arnold S, Beyer C. Neuroprotection by estrogen in the brain: The mitochondrial compartment as presumed therapeutic target. *J Neurochem*. 2009;110(1):1-11. doi:10.1111/j.1471-4159.2009.06133.x.

- Grimm A, Schmitt K, Lang UE, Mensah-Nyagan AG, Eckert A. Improvement of neuronal bioenergetics by neurosteroids: Implications for age-related neurodegenerative disorders. *Biochim Biophys Acta - Mol Basis Dis*. 2014;1842(12):2427-2438. doi:10.1016/j.bbadis.2014.09.013.
- 24. Barrett-Connor E, Goodman-Gruen D. Cognitive function and endogenous sex hormones in older women. *J Am Geriatr Soc.* 1999;47(11):1289-1293.
- 25. Low LF. Reproductive period and cognitive function in a representative sample of naturally postmenopausal women aged 60-64 years. *Climacteric*. 2005;8(4):380-389. doi:10.1080/13697130500345240.
- 26. Heys M, Jiang C, Cheng KK, et al. Life long endogenous estrogen exposure and later adulthood cognitive function in a population of naturally postmenopausal women from Southern China: The Guangzhou Biobank Cohort Study. *Psychoneuroendocrinology*. 2011;36(6):864-873. doi:10.1016/j.psyneuen.2010.11.009.
- 27. Zimmerman ME, Lipton RB, Santoro N, et al. Endogenous estradiol is associated with verbal memory in nondemented older men. *Brain Cogn.* 2011;76(1):158-165. doi:10.1016/j.bandc.2011.01.011.
- 28. Cereda E, Barichella M, Cassani E, Caccialanza R, Pezzoli G. Reproductive factors and clinical features of Parkinson's disease. *Parkinsonism Relat Disord*. 2013;19(12):1094-1099. doi:10.1016/j.parkreldis.2013.07.020.
- Manly JJ, Merchant CA, Jacobs DM, et al. Endogenous estrogen levels and Alzheimer's disease among postmenopausal women. *Neurology*. 2000;54(4):833-837.
- 30. De Jong S, Huisman M, Sutedja N, et al. Endogenous female reproductive hormones and the risk of amyotrophic lateral sclerosis. *J Neurol*. 2013;260(2):507-512. doi:10.1007/s00415-012-6665-5.
- 31. Geerlings MI, Ruitenberg A, Witteman JC, et al. Reproductive period and risk of dementia in postmenopausal women. *JAMA*. 2001;285(11):1475-1481. doi:10.1001/jama.285.11.1475.

- 32. Schupf N, Winsten S, Patel B, et al. Bioavailable estradiol and age at onset of Alzheimer's disease in postmenopausal women with Down syndrome. *Neurosci Lett.* 2006;406(3):298-302. doi:10.1016/j.neulet.2006.07.062.
- Fox M, Berzuini C, Knapp L a. Cumulative estrogen exposure, number of menstrual cycles, and Alzheimer's risk in a cohort of British women. *Psychoneuroendocrinology*. 2013;38(12):2973-2982. doi:10.1016/j.psyneuen.2013.08.005.
- 34. Griksiene R, Ruksenas O. Effects of hormonal contraceptives on mental rotation and verbal fluency. *Psychoneuroendocrinology*. 2011;36(8):1239-1248. doi:10.1016/j.psyneuen.2011.03.001.
- 35. Beltz AM, Hampson E, Berenbaum SA. Oral Contraceptives and Cognition: A Role for Ethinyl Estradiol. *Horm Behav.* 2015. doi:10.1016/j.yhbeh.2015.06.012.
- 36. Egan KR, Gleason CE. Longer Duration of Hormonal Contraceptive Use Predicts Better Cognitive Outcomes Later in Life. *J Women's Heal*. 2012;21(12):1259-1266. doi:10.1089/jwh.2012.3522.
- 37. Warren AM, Gurvich C, Worsley R, Kulkarni J. A systematic review of the impact of oral contraceptives on cognition. *Contraception*. 2014;90(2):111-116. doi:10.1016/j.contraception.2014.03.015.
- 38. Maki PM, Henderson VW. Hormone therapy, dementia, and cognition: the Women's Health Initiative ten years on. *Climacteric*. 2012;15(3):256-262. doi:10.1016/j.biotechadv.2011.08.021.Secreted.
- 39. Xiao M, Cao GL, Marshall C, Hu G. Hypothesis: Multiple factors are associated with the lack of any beneficial effects of oestrogen-replacement therapy in the late postmenopausal stage. *Clin Exp Pharmacol Physiol*. 2010;37(8):873-876. doi:10.1111/j.1440-1681.2010.05400.x.
- 40. Shumaker S a, Legault C, Rapp SR, et al. Estrogen Plus Progestin and the Incidence of Dementia and Mild Cognitive Impairment in Postmenopausal Women. *JAMA*. 2003;289(20):2651-2662.

- 41. Shumaker S a, Legault C, Kuller L, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women's Health Initiative Memory Study. *JAMA*. 2004;291(24):2947-2958. doi:10.1097/01.ogx.0000140470.91959.32.
- 42. Resnick SM, Maki PM, Rapp SR, et al. Effects of combination estrogen plus progestin hormone treatment on cognition and affect. *J Clin Endocrinol Metab*. 2006;91(5):1802-1810. doi:10.1210/jc.2005-2097.
- 43. Resnick SM, Espeland M a., An Y, et al. Effects of conjugated equine estrogens on cognition and affect in postmenopausal women with prior hysterectomy. *J Clin Endocrinol Metab.* 2009;94(11):4152-4161. doi:10.1210/jc.2009-1340.
- 44. Almeida OP, Lautenschlager NT, Vasikaran S, Leedman P, Gelavis A, Flicker L. A 20-week randomized controlled trial of estradiol replacement therapy for women aged 70 years and older: Effect on mood, cognition and quality of life. *Neurobiology*. 2006;27:141-149. doi:10.1016/j.neurobiolaging.2004.12.012.
- 45. Pefanco MA, Kenny AM, Kaplan RF, et al. The effect of 3-year treatment with 0.25 mg/day of micronized 17??-estradiol on cognitive function in older postmenopausal women. *J Am Geriatr Soc.* 2007;55(3):426-431. doi:10.1111/j.1532-5415.2007.01085.x.
- 46. Viscoli CM, Brass LM, Kernan WN, Sarrel PM, Suissa S, Horwitz RI. Estrogen therapy and risk of cognitive decline: Results from the Women's Estrogen for Stroke Trial (WEST). Am J Obstet Gynecol. 2005;192(2):387-393. doi:10.1016/j.ajog.2004.08.017.
- 47. Yaffe K, Vittinghoff E, Ensrud KE, et al. Effects of ultra-low-dose transdermal estradiol on cognition and health-related quality of life. *Arch Neurol*. 2006;63(7):945-950. doi:10.1001/archneur.63.7.945.
- Shao H, Breitner JCS, Whitmer R a., et al. Hormone therapy and Alzheimer disease dementia: New findings from the Cache County Study. *Neurology*. 2012;79(18):1846-1852. doi:10.1212/WNL.0b013e318271f823.
- 49. O'Brien J, Jackson JW, Grodstein F, Blacker D, Weuve J. Postmenopausal hormone therapy is not associated with risk of all-cause dementia and alzheimer's disease. *Epidemiol Rev.* 2014. doi:10.1093/epirev/mxt008.

- 50. Lundin JI, Ton TG, LaCroix AZ, et al. Formulations of Hormone Therapy and Risk of Parkinson's Disease. *Mov Disord*. 2014;29(13):1631-. doi:10.1002/mds.26037.
- 51. ATSDR. Toxicological Profile for Phenol. *Agency Toxic Subst Dis Regist*. 2008:1-269. doi:10.3109/15569529909037564.
- 52. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to Bisphenol A and 4-tertiary-octylphenol: 2003-2004. *Environ Health Perspect*. 2008;116(1):39-44. doi:10.1289/ehp.10753.
- 53. Alonso-Magdalena P, Ropero AB, Soriano S, et al. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. *Mol Cell Endocrinol*. 2012;355(2):201-207. doi:10.1016/j.mce.2011.12.012.
- 54. Preciados M, Yoo C, Roy D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. *Int J Mol Sci.* 2016;17(12):2086. doi:10.3390/ijms17122086.
- 55. Sun Y, Nakashima MN, Takahashi M, Kuroda N, Nakashima K. Determination of bisphenol A in rat brain by microdialysis and column switching high-performance liquid chromatography with fluorescence detection. *Biomed Chromatogr*. 2002;16(5):319-326. doi:10.1002/bmc.161.
- 56. Kim CS, Sapienza PP, Ross I a, Johnson W, Luu HMD, Hutter JC. Distribution of bisphenol A in the neuroendocrine organs of female rats. *Toxicol Ind Health*. 2004;20:41-50. doi:10.1191/0748233704th1860a.
- 57. Bowman RE, Luine V, Diaz Weinstein S, Khandaker H, DeWolf S, Frankfurt M. Bisphenol-A exposure during adolescence leads to enduring alterations in cognition and dendritic spine density in adult male and female rats. *Horm Behav*. 2015;69:89-97. doi:10.1016/j.yhbeh.2014.12.007.
- 58. Diaz Weinstein S, Villafane JJ, Juliano N, Bowman RE. Adolescent exposure to Bisphenol-A increases anxiety and sucrose preference but impairs spatial memory in rats independent of sex. *Brain Res.* 2013;1529:56-65. doi:10.1016/j.brainres.2013.07.018.

- Elsworth JD, Jentsch JD, VandeVoort CA, Roth RH, Eugene Redmond D, Leranth C. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. *Neurotoxicology*. 2013;35(1):113-120. doi:10.1016/j.neuro.2013.01.001.
- 60. Fan Y, Ding S, Ye X, et al. Does preconception paternal exposure to a physiologically relevant level of bisphenol A alter spatial memory in an adult rat? *Horm Behav.* 2013;64(4):598-604. doi:10.1016/j.yhbeh.2013.08.014.
- 61. Inagaki T, Frankfurt M, Luine V. Estrogen-induced memory enhancements are blocked by acute bisphenol A in adult female rats: Role of dendritic spines. *Endocrinology*. 2012;153(7):3357-3367. doi:10.1210/en.2012-1121.
- 62. Jang YJ, Park HR, Kim TH, et al. High dose bisphenol A impairs hippocampal neurogenesis in female mice across generations. *Toxicology*. 2012;296(1-3):73-82. doi:10.1016/j.tox.2012.03.007.
- 63. Johnson SA, Javurek AB, Painter MS, et al. Effects of developmental exposure to bisphenol A on spatial navigational learning and memory in rats: A CLARITY-BPA study. *Horm Behav.* 2015. doi:10.1016/j.yhbeh.2015.09.005.
- 64. Kumar D, Kumar Thakur M. Perinatal exposure to bisphenol-A impairs spatial memory through upregulation of neurexin1 and neuroligin3 expression in male mouse brain. *PLoS One*. 2014;9(10):1-9. doi:10.1371/journal.pone.0110482.
- 65. Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sajiki J, Shimizu E. Perinatal exposure to bisphenol A enhances contextual fear memory and affects the serotoninergic system in juvenile female mice. *Horm Behav.* 2013;63(5):709-716. doi:10.1016/j.yhbeh.2013.03.016.
- 66. Wang C, Niu R, Zhu Y, et al. Changes in memory and synaptic plasticity induced in male rats after maternal exposure to bisphenol A. *Toxicology*. 2014;322:51-60. doi:10.1016/j.tox.2014.05.001.
- 67. Wang C, Li Z, Han H, et al. Impairment of object recognition memory by maternal bisphenol A exposure is associated with inhibition of Akt and ERK/CREB/BDNF pathway in the male offspring hippocampus. *Toxicology*. 2016;341-343:56-64. doi:10.1016/j.tox.2016.01.010.

- 68. Xu X Bin, He Y, Song C, et al. Bisphenol a regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor. *Hippocampus*. 2014;24(12):1570-1580. doi:10.1002/hipo.22336.
- 69. Xu X, Liu X, Zhang Q, et al. Sex-specific effects of bisphenol-A on memory and synaptic structural modification in hippocampus of adult mice. *Horm Behav*. 2013;63(5):766-775. doi:10.1016/j.yhbeh.2013.03.004.
- Zhang Q, Xu X, Li T, et al. Exposure to bisphenol-A affects fear memory and histone acetylation of the hippocampus in adult mice. *Horm Behav*. 2014;65(2):106-113. doi:10.1016/j.yhbeh.2013.12.004.
- Eilam-Stock T, Serrano P, Frankfurt M, Luine V. Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. *Behav Neurosci*. 2012;126(1):175-185. doi:10.1037/a0025959.
- 72. Kim ME, Park HR, Gong EJ, Choi SY, Kim HS, Lee J. Exposure to bisphenol A appears to impair hippocampal neurogenesis and spatial learning and memory. *Food Chem Toxicol*. 2011;49(12):3383-3389. doi:10.1016/j.fct.2011.09.017.
- 73. Elsworth JD, Jentsch JD, Groman SM, Roth RH, Redmond ED, Leranth C. Low circulating levels of bisphenol-A induce cognitive deficits and loss of asymmetric spine synapses in dorsolateral prefrontal cortex and hippocampus of adult male monkeys. *J Comp Neurol*. 2015;523(8):1248-1257. doi:10.1002/cne.23735.
- 74. Neese SL, Bandara SB, Schantz SL. Working memory in bisphenol-A treated middle-aged ovariectomized rats. *Neurotoxicol Teratol.* 2013;35(1):46-53. doi:10.1016/j.ntt.2013.01.002.
- 75. Kuwahara R, Kawaguchi S, Kohara Y, Jojima T, Yamashita K. Bisphenol A does not affect memory performance in adult male rats. *Cell Mol Neurobiol*. 2014;34(3):333-342. doi:10.1007/s10571-013-0017-6.
- 76. Sadowski RN, Park P, Neese SL, Ferguson DC, Schantz SL, Juraska JM. Effects of perinatal bisphenol A exposure during early development on radial arm maze behavior in adult male and female rats. *Neurotoxicol Teratol.* 2014;42:17-24. doi:10.1016/j.ntt.2014.01.002.

- 77. Ishido M, Masuo Y, Terasaki M, Morita M. Rat hyperactivity by bisphenol A, but not by its derivatives, 3-hydroxybisphenol A or bisphenol A 3,4-quinone. *Toxicol Lett.* 2011;206(3):300-305. doi:10.1016/j.toxlet.2011.08.011.
- Viberg H, Fredriksson A, Buratovic S, Eriksson P. Dose-dependent behavioral disturbances after a single neonatal Bisphenol A dose. *Toxicology*. 2011;290(2-3):188-195. doi:10.1016/j.tox.2011.09.006.
- 79. Kimura E, Matsuyoshi C, Miyazaki W, et al. Prenatal exposure to bisphenol A impacts neuronal morphology in the hippocampal CA1 region in developing and aged mice. *Arch Toxicol*. 2015:691-700. doi:10.1007/s00204-015-1485-x.
- Yin N, Yao X, Qin Z, Wang YL, Faiola F. Assessment of Bisphenol A (BPA) neurotoxicity in vitro with mouse embryonic stem cells. *J Environ Sci (China)*. 2015;36:181-187. doi:10.1016/j.jes.2015.06.004.
- 81. Mersha MD, Patel BM, Patel D, Richardson BN, Dhillon HS. Effects of BPA and BPS exposure limited to early embryogenesis persist to impair non-associative learning in adults. *Behav Brain Funct*. 2015;11(1):27. doi:10.1186/s12993-015-0071-y.
- 82. Kim K, Son TG, Park HR, et al. Potencies of bisphenol A on the neuronal differentiation and hippocampal neurogenesis. *J Toxicol Environ Health A*. 2009;72(21-22):1343-1351. doi:10.1080/15287390903212501.

.

- 83. U.S. Environmental Protection Agency. Bisphenol A; CASRN 80-05-7. 1988:1-7. http://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0356_summary.pdf
- 84. Inagaki T, Frankfurt M, Luine V. Estrogen-induced memory enhancements are blocked by acute bisphenol A in adult female rats: Role of dendritic spines. *Endocrinology*. 2012;153(7):3357-3367. doi:10.1210/en.2012-1121.
- 85. Braun JM, Yolton K, Dietrich KN, et al. Prenatal bisphenol A exposure and early childhood behavior. *Environ Health Perspect*. 2009;117(12):1945-1952. doi:10.1289/ehp.0900979.

- Rebuli ME, Camacho L, Adonay ME, Reif DM, Aylor DL, Patisaul HB. Impact of low-dose oral exposure to bisphenol A (BPA) on Juvenile and adult rat exploratory and anxiety behavior: A CLARITY-BPA Consortium Study. *Toxicol Sci.* 2015;148(2):341-354. doi:10.1093/toxsci/kfv163.
- Luo G, Wang S, Li Z, et al. Maternal bisphenol a diet induces anxiety-like behavior in female juvenile with neuroimmune activation. *Toxicol Sci.* 2014;140(2):364-373. doi:10.1093/toxsci/kfu085.
- Carr R, Bertasi F, Betancourt A, et al. Effect of neonatal rat bisphenol a exposure on performance in the Morris water maze. *J Toxicol Environ Health A*. 2003;66(21):2077-2088. http://www.ncbi.nlm.nih.gov/pubmed/14555403. Accessed September 18, 2016.
- 89. Miyagawa K, Narita M, Narita M, Akama H, Suzuki T. Memory impairment associated with a dysfunction of the hippocampal cholinergic system induced by prenatal and neonatal exposures to bisphenol-A. *Neurosci Lett.* 2007;418(3):236-241. doi:10.1016/j.neulet.2007.01.088.
- 90. Kawai K, Nozaki T, Nishikata H, Aou S, Takii M, Kubo C. Aggressive behavior and serum testosterone concentration during the maturation process of male mice: The effects of fetal exposure to bisphenol A. *Environ Health Perspect*. 2003;111(2):175-178. doi:10.1289/ehp.5440.
- 91. Nagao T, Saito Y, Usumi K, Kuwagata M, Imai K. Reproductive function in rats exposed neonatally to bisphenol A and estradiol benzoate. *Reprod Toxicol*. 1999;13(4):303-311. doi:10.1016/S0890-6238(99)00017-9.
- 92. Narita M, Miyagawa K, Mizuo K, Yoshida T, Suzuki T. Prenatal and neonatal exposure to low-dose of bisphenol-A enhance the morphine-induced hyperlocomotion and rewarding effect. *Neurosci Lett.* 2006;402(3):249-252. doi:10.1016/j.neulet.2006.04.014.
- 93. Narita M, Miyagawa K, Mizuo K, Yoshida T, Suzuki T. Changes in central dopaminergic systems and morphine reward by prenatal and neonatal exposure to bisphenol-A in mice: Evidence for the importance of exposure period. *Addict Biol.* 2007;12(2):167-172. doi:10.1111/j.1369-1600.2007.00048.x.

- 94. Harley KG, Gunier RB, Kogut K, et al. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. *Environ Res.* 2013;126:43-50. doi:10.1016/j.envres.2013.06.004.
- 95. Kondolot M, Ozmert EN, Ascı A, et al. Plasma phthalate and bisphenol a levels and oxidant-antioxidant status in autistic children. *Environ Toxicol Pharmacol*. 2016;43:149-158. doi:10.1016/j.etap.2016.03.006.
- 96. Arbuckle TE, Davis K, Boylan K, Fisher M, Fu J. Bisphenol A, phthalates and lead and learning and behavioral problems in Canadian children 6-11 years of age: CHMS 2007-2009. *Neurotoxicology*. 2016;54:89-98. doi:10.1016/j.neuro.2016.03.014.
- Yolton K, Xu Y, Strauss D, Altaye M, Calafat AM, Khoury J. Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. *Neurotoxicol Teratol.* 2011;33(5):558-566. doi:10.1016/j.ntt.2011.08.003.
- 98. Roen EL, Wang Y, Calafat AM, et al. Bisphenol A exposure and behavioral problems among inner city children at 7-9 years of age. *Environ Res.* 2015;142:739-745. doi:10.1016/j.envres.2015.01.014.
- Braun JM, Kalkbrenner AE, Calafat AM, et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. *Pediatrics*. 2011;128(5):873-882. doi:10.1542/peds.2011-1335.
- Miodovnik A, Engel SM, Zhu C, et al. Endocrine disruptors and childhood social impairment. *Neurotoxicology*. 2011;32(2):261-267. doi:10.1016/j.neuro.2010.12.009.
- 101. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Diethyl Phthalate. *Agency Toxic Subst Dis Regist*. 1995;(June):1-158.
- 102. Agency for Toxic Substances and Disease Registry (ATSDR). TOXICOLOGICAL PROFILE FOR DI-n-BUTYL PHTHALATE. Agency Toxic Subst Dis Regist. 2001;(September):225.
- 103. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile: di(2-ethylhexyl)phthalate (DEHP). Agency Toxic Subst Dis Regist. 2002;(September). http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=684&tid=65.

- 104. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: Toxicology and exposure. *Int J Hyg Environ Health*. 2007;210(5):623-634. doi:10.1016/j.ijheh.2007.07.011.
- 105. Miodovnik A, Edwards A, Bellinger DC, Hauser R. Developmental neurotoxicity of ortho-phthalate diesters: Review of human and experimental evidence. *Neurotoxicology*. 2014;41:112-122. doi:10.1016/j.neuro.2014.01.007.
- 106. Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. *Environ Health Perspect*. 2004;112(3):331-338. doi:10.1289/ehp.6723.
- 107. Blair RM, Fang H, Branham WS, et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. *Toxicol Sci.* 2000;54(1):138-153. doi:10.1093/toxsci/54.1.138.
- 108. Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. *Environ Health Perspect*. 1995;103(6):582-587. doi:10.1289/ehp.95103582.
- 109. Ma N, Liu S, Gao P, Cao P, Xu H. [Effect of diisobutyl phthalate on learning and memory behavior and apoptosis of hippocampus cells in mice]. Wei Sheng Yan Jiu. 2013;42(1):57-60. http://www.ncbi.nlm.nih.gov/pubmed/23596708. Accessed May 15, 2016.
- 110. Zeliger HI. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases. *Interdiscip Toxicol.* 2013;6(3):103-110. doi:10.2478/intox-2013-0018.
- 111. Lin H, Yuan K, Li L, et al. In utero exposure to diethylhexyl phthalate affects rat brain development: A behavioral and genomic approach. *Int J Environ Res Public Health*. 2015;12(11):13696-13710. doi:10.3390/ijerph121113696.
- Betz AJ, Jayatilaka S, Joshi J, et al. Chronic exposure to benzyl butyl phthalate (BBP) alters social interaction and fear conditioning in male adult rats: Alterations in amygdalar MeCP2, ERK1/2 and ER?? *Neuroendocrinol Lett.* 2013;34(5):347-358.

- 113. Dai Y, Yang Y, Xu X, Hu Y. Effects of uterine and lactational exposure to di-(2ethylhexyl) phthalate on spatial memory and NMDA receptor of hippocampus in mice. *Horm Behav.* 2015;71:41-48. doi:10.1016/j.yhbeh.2015.03.008.
- 114. Li XJ, Jiang L, Chen L, Chen HS, Li X. Neurotoxicity of dibutyl phthalate in brain development following perinatal exposure: A study in rats. *Environ Toxicol Pharmacol.* 2013;36(2):392-402. doi:10.1016/j.etap.2013.05.001.
- 115. Li Y, Li T, Zhuang M, Wang K, Zhang J, Shi N. High-dose dibutyl phthalate improves performance of F1 generation male rats in spatial learning and increases hippocampal BDNF expression independent on p-CREB immunocontent. *Environ Toxicol Pharmacol.* 2010;29(1):32-38. doi:10.1016/j.etap.2009.09.003.
- 116. Li Y, Zhuang M, Li T, Shi N. Neurobehavioral toxicity study of dibutyl phthalate on rats following in utero and lactational exposure. *J Appl Toxicol*. 2009;29(7):603-611. doi:10.1002/jat.1447.
- 117. Holahan MR, Smith CA. Phthalates and neurotoxic effects on hippocampal network plasticity. *Neurotoxicology*. 2015;48:21-34. doi:10.1016/j.neuro.2015.02.008.
- 118. Masuo Y, Morita M, Oka S, Ishido M. Motor hyperactivity caused by a deficit in dopaminergic neurons and the effects of endocrine disruptors: A study inspired by the physiological roles of PACAP in the brain. *Regul Pept.* 2004;123(1-3 SPEC. ISS.):225-234. doi:10.1016/j.regpep.2004.05.010.
- 119. Larsson M, Weiss B, Janson S, Sundell J, Bornehag CG. Associations between indoor environmental factors and parental-reported autistic spectrum disorders in children 6-8 years of age. *Neurotoxicology*. 2009;30(5):822-831. doi:10.1016/j.neuro.2009.01.011.
- 120. Sun W, Ban J-B, Zhang N, Zu Y-K, Sun W-X. Perinatal exposure to Di-(2ethylhexyl)-Phthalate leads to cognitive dysfunction and phospho-tau level increase in aged rats. *Environ Toxicol*. 2014;29(5):596-603. doi:10.1002/tox.21785.
- 121. Agency for Toxic Substances and Disease Registry (ATSDR). TOXICOLOGICAL PROFILE FOR POLYCHLORINATED BIPHENYLS (PCBs). Agency Toxic Subst Dis Regist. 2000;(November):1-948.

- 122. Reilly MP, Weeks CD, Topper VY, Thompson LM, Crews D, Gore AC. The effects of prenatal PCBs on adult female paced mating reproductive behaviors in rats. *Horm Behav*. 2007;51(3):364-372. doi:10.1016/j.yhbeh.2006.12.004.
- 123. Lee DW, Notter SA, Thiruchelvam M, et al. Subchronic polychlorinated biphenyl (aroclor 1254) exposure produces oxidative damage and neuronal death of ventral midbrain dopaminergic systems. *Toxicol Sci.* 2012. doi:10.1093/toxsci/kfr313.
- 124. Zahara ARD, Michel NL, Flahr LM, Ejack LE, Morrissey C a. Latent cognitive effects from low-level polychlorinated biphenyl exposure in juvenile European starlings (Sturnus vulgaris). *Environ Toxicol Chem*. 2015;34(11):2513-252. doi:10.1002/etc.3084.
- 125. Elnar AA, Allouche A, Desor F, Yen FT, Soulimani R, Oster T. Lactational exposure of mice to low levels of non-dioxin-like polychlorinated biphenyls increases susceptibility to neuronal stress at a mature age. *Neurotoxicology*. 2015. doi:10.1016/j.neuro.2015.10.003.
- 126. Hilgier W, Łazarewicz JW, Strużynska L, Frontczak-Baniewicz M, Albrecht J. Repeated exposure of adult rats to Aroclor 1254 induces neuronal injury and impairs the neurochemical manifestations of the NMDA receptor-mediated intracellular signaling in the hippocampus. *Neurotoxicology*. 2012;33(1):16-22. doi:10.1016/j.neuro.2011.10.005.
- 127. Formisano L, Guida N, Laudati G, Mascolo L, Di Renzo G, Canzoniero LMT. MS-275 inhibits aroclor 1254-induced SH-SY5Y neuronal cell toxicity by preventing the formation of the HDAC3/REST complex on the synapsin-1 promoter. *J Pharmacol Exp Ther*. 2015;352(2):236-243. doi:10.1124/jpet.114.219345.
- 128. Bang Y, Lim J, Kim SS, et al. Aroclor1254 interferes with estrogen receptormediated neuroprotection against beta-amyloid toxicity in cholinergic SN56 cells. *Neurochem Int*. 2011;59(5):582-590. doi:10.1016/j.neuint.2011.04.006.
- 129. Orenstein STC, Thurston SW, Bellinger DC, et al. Prenatal organochlorine and methylmercury exposure and memory and learning in school-age children in communities near the new bedford harbor superfund site, Massachusetts. *Environ Health Perspect*. 2014;122(11):1253-1259. doi:10.1289/ehp.1307804.

- 130. Boucher O, Muckle G, Jacobson JL, et al. Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: Results from the environmental contaminants and child development study in nunavik. *Environ Health Perspect*. 2014;122(3):310-316. doi:10.1289/ehp.1206323.
- 131. Fitzgerald EF, Shrestha S, Gomez MI, et al. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and neuropsychological status among older adults in New York. *Neurotoxicology*. 2012;33(1):8-15. doi:10.1016/j.neuro.2011.10.011.
- 132. Fitzgerald EF, Belanger EE, Gomez MI, et al. Polychlorinated biphenyl exposure and neuropsychological status among older residents of upper Hudson River communities. *Environ Health Perspect*. 2008;116(2):209-215. doi:10.1289/ehp.10432.
- 133. Schantz SL, Gasior DM, Polverejan E, et al. Impairments of memory and learning in older adults exposed to polychlorinated biphenyls via consumption of Great Lakes Fish. *Environ Health Perspect*. 2001;109(6):605-611. doi:10.1289/ehp.01109605.
- 134. Peper M, Klett M, Morgenstern R. Neuropsychological effects of chronic low-dose exposure to polychlorinated biphenyls (PCBs): a cross-sectional study. *Environ Health*. 2005;4:22. doi:10.1186/1476-069X-4-22.
- Weisskopf M, Knekt P, O'Reilly E, et al. Polychlorinated biphenyls in prospectively collected serum and parkinson's disease risk. *Mov Disord*. 2012;27(13):1659-1665. doi:10.1016/j.surg.2006.10.010.Use.
- 136. Steenland K, Hein MJ, Cassinelli RT, et al. Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort. *Epidemiology*. 2006;17(1):8-13. doi:10.1097/01.ede.0000190707.51536.2b.
- 137. Hatcher-Martin JM, Gearing M, Steenland K, Levey AI, Miller GW, Pennell KD. Association between polychlorinated biphenyls and Parkinson's disease neuropathology. *Neurotoxicology*. 2012;33(5):1298-1304. doi:10.1016/j.neuro.2012.08.002.

- 138. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cadmium. *Agency Toxic Subst Dis Regist*. 2012;(September). http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf%5Cnhttp://www.ncbi.nlm.nih.gov/bo oks/NBK158845/.
- 139. Choe SY, Kim SJ, Kim HG, et al. Evaluation of estrogenicity of major heavy metals. *Sci Total Environ*. 2003;312(1-3):15-21. doi:10.1016/S0048-9697(03)00190-6.
- 140. Wang S, Hu P, Wang H-L, et al. Effects of Cd(2+) on AMPA receptor-mediated synaptic transmission in rat hippocampal CA1 area. *Toxicol Lett.* 2008;176(3):215-222. doi:10.1016/j.toxlet.2007.11.008.
- 141. Chen L, Liu L, Luo Y, Huang S. MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis. *J Neurochem*. 2008;105(1):251-261. doi:10.1111/j.1471-4159.2007.05133.x.
- 142. Jiang JH, Ge G, Gao K, et al. Calcium Signaling Involvement in Cadmium-Induced Astrocyte Cytotoxicity and Cell Death Through Activation of MAPK and PI3K/Akt Signaling Pathways. *Neurochem Res.* 2015;40(9):1929-1944. doi:10.1007/s11064-015-1686-y.
- 143. Chow ESH, Hui MNY, Lin CC, Cheng SH. Cadmium inhibits neurogenesis in zebrafish embryonic brain development. *Aquat Toxicol*. 2008;87(3):157-169. doi:10.1016/j.aquatox.2008.01.019.
- 144. Yuan Y, Jiang C, Xu H, et al. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. *PLoS One*. 2013;8(5):e64330. doi:10.1371/journal.pone.0064330.
- 145. Hossain S, Liu H-N, Nguyen M, Shore G, Almazan G. Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes. *Neurotoxicology*. 2009;30(4):544-554. doi:10.1016/j.neuro.2009.06.001.
- 146. Notarachille G, Arnesano F, Calò V, Meleleo D. Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer's disease. *Biometals*. 2014;27(2):371-388. doi:10.1007/s10534-014-9719-6.

- 147. Roos PM, Vesterberg O, Syversen T, Flaten TP, Nordberg M. Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. *Biol Trace Elem Res.* 2013. doi:10.1007/s12011-012-9547-x.
- 148. Komatsu F, Kagawa Y, Kawabata T, et al. A high accumulation of hair minerals in Mongolian people: 2(nd) report; influence of manganese, iron, lead, cadmium and aluminum to oxidative stress, Parkinsonism and arthritis. *Curr Aging Sci.* 2011;4(1):42-56. http://www.ncbi.nlm.nih.gov/pubmed/21204778. Accessed September 19, 2016.
- 149. Jumpponen M, Rönkkömäki H, Pasanen P, Laitinen J. Occupational exposure to solid chemical agents in biomass-fired power plants and associated health effects. *Chemosphere*. 2014. doi:10.1016/j.chemosphere.2013.10.025.
- 150. Agency for Toxic Substances and Disease Registry (ATSDR). TOXICOLOGICAL PROFILE FOR ARSENIC. Health Effects. Agency Toxic Subst Dis Regist. 2007;(August).
- 151. Jing J, Zheng G, Liu M, et al. Changes in the synaptic structure of hippocampal neurons and impairment of spatial memory in a rat model caused by chronic arsenite exposure. *Neurotoxicology*. 2012;33(5):1230-1238. doi:10.1016/j.neuro.2012.07.003.
- 152. Luo J, Qiu Z, Zhang L, Shu W. Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. *Toxicol Lett.* 2012;211(1):39-44. doi:10.1016/j.toxlet.2012.02.021.
- 153. Luo J, Qiu Z, Shu W, Zhang Y, Zhang L, Chen J. Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. *Toxicol Lett*. 2009;184(2):121-125. doi:10.1016/j.toxlet.2008.10.029.
- 154. Qu L, Gao Y, Sun H, Wang H, Liu X, Sun D. Role of PTEN-Akt-CREB Signaling Pathway in Nervous System impairment of Rats with Chronic Arsenite Exposure. *Biol Trace Elem Res.* 2015;(23618504). doi:10.1007/s12011-015-0478-1.

- 155. Shavali S, Sens DA. Synergistic Neurotoxic Effects of Arsenic and Dopamine in Human Dopaminergic Neuroblastoma SH-SY5Y Cells. *Toxicol Sci.* 2007;102(2):254-261. doi:10.1093/toxsci/kfm302.
- 156. Zarazúa S, Bürger S, Delgado JM, Jiménez-Capdeville ME, Schliebs R. Arsenic affects expression and processing of amyloid precursor protein (APP) in primary neuronal cells overexpressing the Swedish mutation of human APP. *Int J Dev Neurosci.* 2011;29(4):389-396. doi:10.1016/j.ijdevneu.2011.03.004.
- 157. O'Bryant SE, Edwards M, Menon C, Gong G, Barber R. Long-Term Low-Level Arsenic Exposure Is Associated with Poorer Neuropsychological Functioning: A Project FRONTIER Study. *Int J Environ Res Public Health*. 2011;8(12):861-874. doi:10.3390/jjerph8030861.
- 158. Edwards M, Hall J, Gong G, O'Bryant SE. Arsenic exposure, AS3MT polymorphism, and neuropsychological functioning among rural dwelling adults and elders: a cross-sectional study. *Environ Health*. 2014;13(1):15. doi:10.1186/1476-069X-13-15.
- 159. Park J-H, Lee D-W, Park KS, Joung H. Serum trace metal levels in Alzheimer's disease and normal control groups. *Am J Alzheimers Dis Other Demen*. 2014;29(1):76-83. doi:10.1177/1533317513506778.
- 160. Edwards M, Johnson L, Mauer C, Barber R, Hall J, O'Bryant S. Regional specific groundwater arsenic levels and neuropsychological functioning: a cross-sectional study. *Int J Environ Health Res.* 2014;24(6):546-557. doi:10.1080/09603123.2014.883591.
- 161. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Manganese. *ATSDR Toxicol Profiles*. 2000;(September):504.
- 162. Hozumi I, Hasegawa T, Honda A, et al. Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. *J Neurol Sci.* 2011;303(1-2):95-99. doi:10.1016/j.jns.2011.01.003.
- Wasserman GA, Liu X, Parvez F, et al. Arsenic and manganese exposure and children's intellectual function. *Neurotoxicology*. 2011;32(4):450-457. doi:10.1016/j.neuro.2011.03.009.

- 164. Kim Y, Bowler RM, Abdelouahab N, Harris M, Gocheva V, Roels HA. Motor function in adults of an Ohio community with environmental manganese exposure. *Neurotoxicology*. 2011;32(5):606-614. doi:10.1016/j.neuro.2011.07.011.
- Carvalho CF, Menezes-Filho JA, Matos VP de, et al. Elevated airborne manganese and low executive function in school-aged children in Brazil. *Neurotoxicology*. 2014;45:301-308. doi:10.1016/j.neuro.2013.11.006.
- Oulhote Y, Mergler D, Barbeau B, et al. Neurobehavioral function in school-age children exposed to manganese in drinking water. *Environ Health Perspect*. 2014;122(12):1343-1350. doi:10.1289/ehp.1307918.
- 167. Koc ER, Ilhan A, Ayturk Z, et al. A comparison of hair and serum trace elements in patients with Alzheimer disease and healthy participants. *Turkish J Med Sci Turk J Med Sci*, *Turk J Med*, *Turk J Med Sci*. 2015;45(5):1034-1039. doi:10.3906/sag-1407-67.
- 168. Miyake Y, Tanaka K, Fukushima W, et al. Dietary intake of metals and risk of Parkinson's disease: A case-control study in Japan. *J Neurol Sci.* 2011;306(1-2):98-102. doi:10.1016/j.jns.2011.03.035.
- 169. Kumudini N, Uma A, Prameela Devi Y, et al. Association of Parkinson's disease with altered serum levels of lead and transition metals among South Indian subjects. *Indian J Biochem Biophys.* 2014;51(2):121-126.
- 170. Garzillo EM, Lamberti M, Genovese G, et al. Blood lead, manganese, and aluminum levels in a regional Italian cohort of ALS patients: does aluminum have an influence? *J Occup Environ Med*. 2014;56(10):1062-1066. doi:10.1097/JOM.0000000000266.
- 171. Kihira T, Sakurai I, Yoshida S, et al. Neutron {Activation} {Analysis} of {Scalp} {Hair} from {ALS} {Patients} and {Residents} in the {Kii} {Peninsula}, {Japan}. Biol Trace Elem Res. 2015;164(1):36-42. doi:10.1007/s12011-014-0202-6.
- 172. Arain MS, Afridi HI, Kazi TG, et al. Correlation of aluminum and manganese concentration in scalp hair samples of patients having neurological disorders. *Environ Monit Assess*. 2015;187(2). doi:10.1007/s10661-014-4172-0.

- Bowler RM, Gocheva V, Harris M, et al. Prospective study on neurotoxic effects in manganese-exposed bridge construction welders. *Neurotoxicology*. 2011;32(5):596-605. doi:10.1016/j.neuro.2011.06.004.
- 174. Baker MG, Criswell SR, Racette BA, et al. Neurological outcomes associated with low-level manganese exposure in an inception cohort of asymptomatic welding trainees. *Scand J Work Environ Heal*. 2015;41(1):94-101. doi:10.5271/sjweh.3466.
- 175. Guilarte TR, McGlothan JL, Degaonkar M, et al. Evidence for cortical dysfunction and widespread manganese accumulation in the nonhuman primate brain following chronic manganese exposure: a 1H-MRS and MRI study. *Toxicol Sci.* 2006;94(2):351-358. doi:10.1093/toxsci/kf1106.
- Guilarte TR, Chen M-K. Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects. *Neurotoxicology*. 2007;28(6):1147-1152. doi:10.1016/j.neuro.2007.06.005.
- 177. Neal AP, Guilarte TR. Mechanisms of lead and manganese neurotoxicity. *Toxicol Res (Camb)*. 2013;2(2):99-114. doi:10.1039/C2TX20064C.
- 178. Guilarte TR, Burton NC, McGlothan JL, et al. Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by pre-synaptic mechanism(s): implications to manganese-induced parkinsonism. *J Neurochem*. 2008;107(5):1236-1247. doi:10.1111/j.1471-4159.2008.05695.x.
- 179. Hojo Y, Hattori T-A, Enami T, et al. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. *Proc Natl Acad Sci U S A*. 2004;101(3):865-870. doi:10.1073/pnas.2630225100.
- MacLusky NJ, Naftolin F, Goldman-Rakic PS. Estrogen formation and binding in the cerebral cortex of the developing rhesus monkey. *Proc Natl Acad Sci*. 1986;83(2):513-516. doi:10.1073/pnas.83.2.513.
- 181. Roy D, Palangat M, Chen CW, et al. Biochemical and molecular changes at the cellular level in response to exposure to environmental estrogen-like chemicals. *J Toxicol Environ Health*. 1997;50(1):1-29. http://www.ncbi.nlm.nih.gov/pubmed/9015129. Accessed March 21, 2018.

- 182. Ronchetti SA, Novack G V, Bianchi MS, Crocco MC, Duvilanski BH, Cabilla JP. In vivo xenoestrogenic actions of cadmium and arsenic in anterior pituitary and uterus. *Reproduction*. 2016;152(1):1-10. doi:10.1530/REP-16-0115.
- 183. Dearth RK, Hiney JK, Srivastava VK, Hamilton AM, Dees WL. Prepubertal exposure to elevated manganese results in estradiol regulated mammary gland ductal differentiation and hyperplasia in female rats. *Exp Biol Med (Maywood)*. 2014;239(7):871-882. doi:10.1177/1535370214531865.
- 184. Wu Y, Li K, Zuo H, Yuan Y, Sun Y, Yang X. Primary neuronal-astrocytic coculture platform for neurotoxicity assessment of di-(2-ethylhexyl) phthalate. J Environ Sci (China). 2014;26(5):1145-1153. doi:10.1016/S1001-0742(13)60504-5.
- 185. Bake S, Sohrabji F. 17B-Estradiol Differentially Regulates Blood-Brain Barrier Permeability in Young and Aging Female Rats. *Endocrinology*. 2004;145(12):5471-5475. doi:10.1210/en.2004-0984.
- 186. Van Der Meer TP, Artacho-Cordón F, Swaab DF, et al. Distribution of nonpersistent endocrine disruptors in two different regions of the human brain. *Int J Environ Res Public Health*. 2017;14(9):1-11. doi:10.3390/ijerph14091059.
- 187. Lee S, Suk K, Kim IK, et al. Signaling pathways of bisphenol A-induced apoptosis in hippocampal neuronal cells: Role of calcium-induced reactive oxygen species, mitogen-activated protein kinases, and nuclear factor-??B. *J Neurosci Res*. 2008;86(13):2932-2942. doi:10.1002/jnr.21739.
- Lee S, Kim YK, Shin TY, Kim SH. Neurotoxic effects of bisphenol AF on calcium-induced ROS and MAPKs. *Neurotox Res.* 2013;23(3):249-259. doi:10.1007/s12640-012-9353-4.
- 189. Scarpulla R. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. *Physiol Rev.* 2008;88:611-638. doi:10.1152/physrev.00025.2007.
- 190. Satoh JI, Kawana N, Yamamoto Y. Pathway Analysis of ChIP-Seq-Based NRF1 Target Genes Suggests a Logical Hypothesis of their Involvement in the pathogenesis of Neurodegenerative Diseases. *Gene Regul Syst Bio*. 2013;2013(7):139-152. doi:10.4137/GRSB.S13204.

- 191. Johri A, Beal F. Mitochondrial dysfunction in neurodegenerative diseases. *J Pharmacol Exp Ther.* 2012;342(3):619-630.
- 192. Pennacchio LA, Loots GG, Nobrega MA, Ovcharenko I. Predicting tissue-specific enhancers in the human genome. *Genome Res*. 2007;17(2):201-211. doi:10.1101/gr.5972507.
- Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. *Best Pract Res Clin Endocrinol Metab.* 2012;26(6):711-723. doi:10.1016/j.beem.2012.05.003.
- 194. Corona JC, Duchen MR. Impaired mitochondrial homeostasis and neurodegeneration: towards new therapeutic targets? *J Bioenerg Biomembr*. 2014;47(1-2):89-99. doi:10.1007/s10863-014-9576-6.
- 195. Velarde MC. Mitochondrial and sex steroid hormone crosstalk during aging. *Longev Heal*. 2014;3(1):2. doi:10.1186/2046-2395-3-2.
- 196. Brannval K, Korhonen L, Lindholm D. Estrogen-Receptor-Dependent Regulation of Neural Stem Cell Proliferation and Differentiation. *Mol Cell Neurosci*. 2002;21(3):512-520. doi:10.1006/mcne.2002.1194.
- 197. Okada M, Murase K, Makino A, et al. Effects of estrogens on proliferation and differentiation of neural stem/progenitor cells. *Biomed Res.* 2008;29(3):163-170. doi:10.2220/biomedres.29.163.
- 198. Okada M, Makino A, Nakajima M, Okuyama S, Furukawa S, Furukawa Y. Estrogen stimulates proliferation and differentiation of neural stem/progenitor cells through different signal transduction pathways. *Int J Mol Sci.* 2010;11(10):4114-4123. doi:10.3390/ijms11104114.
- 199. Kinch CD, Ibhazehiebo K, Jeong J-H, Habibi HR, Kurrasch DM. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. *Proc Natl Acad Sci U S A*. 2015;112(5):1475-1480. doi:10.1073/pnas.1417731112.
- 200. Ishido M, Suzuki J. Classification of phthalates based on an in vitro neurosphere assay using rat mesencephalic neural stem cells. *J Toxicol Sci*. 2014;39(1):25-32. doi:10.2131/jts.39.25.

- 201. Tofighi R, Wan Ibrahim WN, Rebellato P, Andersson PL, Uhlén P, Ceccatelli S. Non-dioxin-like polychlorinated biphenyls interfere with neuronal differentiation of embryonic neural stem cells. *Toxicol Sci.* 2011;124(1):192-201. doi:10.1093/toxsci/kfr221.
- 202. Ivanov VN, Hei TK. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment. *Exp Cell Res.* 2013;319(6):875-887. doi:10.1016/j.yexcr.2012.11.019.
- Tamm C, Sabri F, Ceccatelli S. Mitochondrial-mediated apoptosis in neural stem cells exposed to manganese. *Toxicol Sci.* 2008;101(2):310-320. doi:10.1093/toxsci/kfm267.
- 204. Wang J-L, Chang W-T, Tong C-W, Kohno K, Huang A-M. Human synapsin I mediates the function of nuclear respiratory factor 1 in neurite outgrowth in neuroblastoma IMR-32 cells. *J Neurosci Res.* 2009;87(10):2255-2263. doi:10.1002/jnr.22059.
- 205. Tong C-W, Wang J-L, Jiang M-S, Hsu C-H, Chang W-T, Huang A-M. Novel genes that mediate nuclear respiratory factor 1-regualted neurite outgrowth in neuroblastoma IMR-32 cells. *Gene*. 2013;515(1):62-70. doi:10.1016/j.gene.2012.11.026.
- 206. Wang JL, Tong CW, Chang WT, Huang AM. Novel genes FAM134C, C3orf10 and ENOX1 are regulated by NRF-1 and differentially regulate neurite outgrowth in neuroblastoma cells and hippocampal neurons. *Gene*. 2013;529(1):7-15. doi:10.1016/j.gene.2013.08.006.
- 207. Alzheimer's Association. 2017 Alzheimer's Disease Facts and Figures. *Alzheimers Dement*. 2017;13:325-373. doi:10.1016/j.jalz.2017.02.001.
- 208. Sladeczek J, Hartemink AJ, Robinson J. Banjo Users Guide. Gov Publ Rev.
 2006;6(2).
 http://www.cs.duke.edu/~amink/software/banjo/documentation/banjo.user.pdf.
- 209. Hokama M, Oka S, Leon J, et al. Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study. *Cereb Cortex*. 2014;24(9):2476-2488. doi:10.1093/cercor/bht101.

CHAPTER III

HYPOTHESIS AND SPECIFIC AIMS

Hypothesis

Exposure to estrogenic endocrine disrupting chemicals (EEDCs) result in adverse brain health outcomes.

Specific Aims

Specific Aim 1: Assess exposure to phthalates and bisphenol-A (BPA) using urinary biomarkers from the CDC NHANES 2011-2014 datasets to find associations between phthalate and BPA bioburden and adverse brain health using surrogate indicators of brain health.

Specific Aim 2: Assess exposure to the metalloestrogens, cadmium (Cd), arsenic (As), and manganese (Mn) using urinary biomarkers from the CDC NHANES 2011-2014 datasets to find associations between phthalate and BPA bioburden and adverse brain health using surrogate indicators of brain health.

Specific Aim 3: Assess exposure to oral contraceptives (OC) and hormonal replacement therapy (HRT) using urinary biomarkers from the CDC NHANES 2011-2014 datasets to find associations between phthalate and BPA bioburden and adverse brain health using surrogate indicators of brain health.

Specific aim 4: Assess estrogen-responsive genes networks common to the EEDCs, phthalates, BPA, Cd, As, and Mn, NRF1, and neurodegenerative disease using bioinformatics methods.

CHAPTER IV

METHODS

Study Design and Population: NHANES is a continuous cross-sectional data collection utilizing a complex multi-stage sampling design that creates a survey representative of the non-institutionalized population of the United States ^{1,2}. The survey has been conducted since 1999 and consists of an at-home questionnaires followed by a standardized physical examination and specimen collection conducted in mobile examination centers (MEC)^{1,2}. Eligibility is determined using preset selection probabilities for the desired demographic subdomains². A household screener is performed before to determine if any household members are eligible for the interview and examination². The interview collects demographic, health, nutrition, and household information, while the physical examination includes physical measurements, dental examination, and the collection of blood and urine specimens for laboratory testing 2 . Prior to any to interviews and examinations, informed consent was obtained and all procedures were approved by the CDC Institutional Review Board³. In our study, we merged the NHANES 2011-2012 and 2013-2014 data cycles. All our analyses were limited to individuals 60 years of age and older who have recorded responses to cognitive test scores and/or memory and taste/smell questions and have EEDC urine measurements.

Inclusion/Exclusion Criteria

Inclusion criteria:

- 1. Males and females, 60 years of age and older
- Available EEDC urine measurements (Phthalates, BPA, Mn, As, Cd, OC use, HRT use)
- 3. Urine creatinine measurements >30 mg/dl and <300 mg/dl.
- 4. Complete responses to identified outcome variables.

Exclusion criteria:

- 1. Males and females, 59 years of age and younger
- Unavailable EEDC urine measurements (Phthalates, BPA, Mn, As, Cd, OC use, HRT use)
- 3. Urine creatinine measurements <30mg/dl and >300mg/dl
- 4. Incomplete responses to identified outcome variables.

Phthalate Exposure Assessment and Measurements

Phthalates were measured from urine samples taken from a representative and random one-third subsample of individuals 6 years of age and older in the 2011-2012 and 2013-2014 survey cycles ^{4,5} . The laboratory utilized high performance liquid chromatography-electrospray ionization-tandem mass spectrometry to analyze urine phthalate levels and was consistently used in both survey cycles ^{4,5}. Phthalate levels were provided in ng/ml and was used in our analyses. The following phthalates were used in our analyses: Mono (carboxynonyl) Phthalate (CNP); Mono (carboxyoctyl) Phthalate (COP); Mono-(2-ethyl-5-carboxypentyl) Phthalate (ECP); Mono-n-butyl Phthalate (MBP); Mono-(3-carboxypropyl) Phthalate (MC1); Mono-ethyl Phthalate (MEP); Mono

(2-ethyl-5-hydroxy hexyl) Phthalate (MHH); Mono-(2-ethyl-5-oxohexyl) Phthalate (MOH); Mono-benzyl Phthalate (MZP); Mono-isobutyl Phthalate (MIB).

The limit of detection variables indicates if subjects have urine phthalate levels above the limit of detection. A value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy phthalate level of the LOD divided by the square root of two ⁶. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle ⁷. The specific phthalate metabolites were selected as >60% of study subjects had urine phthalate levels above the LOD. A total of 5,175 subjects had available urinary phthalate measurements in the 2011-2012 and 2013-2014 datasets.

BPA Exposure Assessment and Measurements

BPA was measured from urine samples taken from a representative and random one-third subsample of individuals 6 years of age and older in the 2011-2012 and 2013-2014 survey cycles ^{8,9}. The laboratory on-line solid phase extraction coupled to high performance liquid chromatography and tandem mass spectrometry to analyze urine BPA levels and was consistently used in both survey cycles ^{8,9}. BPA levels were provided in ng/ml.

The limit of detection variables indicates if subjects have urine phthalate levels above the limit of detection. A value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy BPA level of the LOD divided by the square root of two ⁶. Some LODs differ between survey cycles and a conservative approach was used to

account for differing LODs per survey cycle ⁷. A total of 5,175 subjects had available urinary BPA measurements in the 2011-2012 and 2013-2014 datasets.

Cadmium Exposure Assessment and Measurements

Cadmium were measured from urine samples taken from a representative and random one-third subsample of individuals 6 years of age and older in the 2011-2012 and 2013-2014 survey cycles ^{10–12}. The laboratory inductively coupled-plasma dynamic reaction cell-mass spectrometry to analyze urine Cadmium levels and was consistently used in both survey cycles ^{10–12}. Cadmium levels were provided in ug/L and was used in our analyses. Urinary cadmium was used in our analyses and coded as URXUCD, with a limit of detection variable coded as URDUCDLC. The limits of detection were 0.056 ug/L for 2011-2012 and 0.036 ug/L for 2013-2014.

The limit of detection variables indicates if subjects have urine Cadmium levels above the limit of detection. A value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy Cadmium level of the LOD divided by the square root of two ⁶. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle ⁷.

Manganese Exposure Assessment and Measurements

Manganese were measured from urine samples taken from a representative and random one-third subsample of individuals 6 years of age and older in the 2011-2012 and 2013-2014 survey cycles $^{10-12}$. The laboratory inductively coupled-plasma dynamic reaction cell-mass spectrometry to analyze urine Manganese levels and was consistently used in both survey cycles $^{10-12}$. Manganese levels were provided in ug/L and was used in

our analyses. The following Manganese metabolites were used in our analyses. Urinary manganese was used in our analyses and coded as URXUMN, with a limit of detection variable coded as URDUMNLC. The limits of detection were 0.08 ug/L for 2011-2012 and 0.013 ug/L for 2013-2014.

The limit of detection variables indicates if subjects have urine Manganese levels above the limit of detection. A value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy Manganese level of the LOD divided by the square root of two ⁶. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle ⁷.

Arsenic Exposure Assessment and Measurements

Arsenic were measured from urine samples taken from a representative and random onethird subsample of individuals 6 years of age and older in the 2011-2012 and 2013-2014 survey cycles ^{10–12}. The laboratory inductively coupled-plasma dynamic reaction cellmass spectrometry to analyze urine arsenic levels and was consistently used in both survey cycles ^{10–12}. Arsenic levels were provided in ug/L and was used in our analyses. Total urinary arsenic was used in our analyses and coded as URXUAS, with a limit of detection variable coded as URDUASLC. The limits of detection were 1.25 ug/L for 2011-2012 and 0.26 ug/L for 2013-2014.

Only total arsenic was analyzed in the study. The limit of detection variables indicates if subjects have urine arsenic levels above the limit of detection. A value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy arsenic

level of the LOD divided by the square root of two ⁶. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle ⁷. The specific arsenic metabolites were selected as >60% of study subjects had urine arsenic levels above the LOD.

Oral Contraceptive Use Assessment and Measurements

Oral contraceptive use was recorded by the question yes/no question, "Have you ever taken birth control pills for any reason?". Female participants aged 12 years and older were eligible ^{13,14}. These questions were administered in the mobile examination center (MEC) by trainer interviewers ^{13,14}. A total of 1670 female subjects over the age of 60, provided a response, with 952 participants responding "yes" and 718 participants responding "no".

Hormonal Replacement Therapy Use Assessment and Measurements

Oral contraceptive use was recorded by the question yes/no question, "Have you ever used female hormones such as estrogen and progesterone?". Female participants aged 12 years and older were eligible ^{13,14}. These questions were administered in the mobile examination center (MEC) by trainer interviewers ^{13,14}. A total of 1662 female subjects over the age of 60, provided a response, with 628 participants responding "yes" and "1034" participants responding "no".

Assessment of Surrogate Brain Health Indicators – Cognitive Scores <u>CERAD Word Learning Subtest – Immediate Recall and Delayed Recall</u>: The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning Subtest assesses both immediate and delayed learning ^{15,16}. The delayed and immediate recall tests available in NHANES assess the ability to process new verbal information ^{15,16}. The tests are part of the neuropsychological assessment for the entire CERAD testing protocol, which was initially created to standardize Alzheimer's disease (AD) assessment and diagnosis ¹⁷. The tests in the neuropsychological assessment itself were chosen because of their ability to assess cognitive functions inherent in AD ¹⁷. The assessments have the ability to differentiate those of adequate cognitive status versus those who have mild cognitive impairment or dementia ^{17–20}. Although developed for use in the assessment of AD, the CERAD assessments have shown utility in use for Parkinson's disease ²⁰ and frontotemporal lobar degeneration ²¹.

Immediate Recall: For immediate recall, the subjects are asked to read aloud a sequence of 10 unrelated words as they are presented to them and immediately after, they are asked to recall as many words as possible ^{15,16}. This is done in three trials with the order of the words differing in each trial. ^{15,16}. Each trial has a maximum score of 10, with a maximum overall score of 30 ^{15,16,18}.

In our study, we included subjects 60 years of age and older who completed all immediate recall word list trials identified as: CFDCST1, CFDCST2, and CFDCST3 in the 2011-2012 and 2013-2014 NHANES data cycles. Those who did not have three trials completed were not included in the immediate recall analysis. We summed the total of the three trials and created a new variable with cut-off scores named IMMEDIATERECALL. A cut-off score of ≤ 13 and ≥ 14 was used as it is the standard in other assessments ^{18,22}. A total of 3,149 subjects from the 2011-2012 and 2013-2014

responded with complete immediate recall trials.

We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as

these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 940 subjects, 146 subjects with cut-off scores \leq 13 and 794 subjects with cut-off scores \geq 14. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our immediate recall study population consisted of 940 subjects, 146 subjects \leq 13 and 794 subjects \geq 14. We then accounted for those who provided responses to OC and HRT use. After, our OC/immediate recall study population consisted of 1576 subjects, 193 subjects \leq 13 and 1383 subjects \geq 14. Our HRT/immediate recall study population consisted 1567 subjects, with 189 subjects \leq 13 and 1378 subjects \geq 14. **Delayed Recall**: For delayed recall, the subject is asked to repeat the sequence of 10 unrelated words after the other cognitive tests are completed, which is typical 8 to 10 minutes after the start of the word learning trials ^{15,16}. The maximum score is 10 for delayed recall ^{15,16}.

In our study, we included subjects 60 years of age and older who completed the delayed recall trial, identified as CFDCSR, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with the cut-off scores named DELAYEDRECALL. A cut-off score of ≤ 3 and ≥ 4 was used as it is the standard in other assessments ^{18,22,24}.

A total of 3,126 subjects from the 2011-2012 and 2013-2014 responded with a complete delayed recall trial. We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or

concentrated ²³. After, our study population consisted of 930 subjects,157 subjects ≤ 3 and 776 subjects ≥ 4 . We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our delayed recall study population consisted of 930 subjects,157 subjects ≤ 3 and 776 subjects ≥ 4 . We then accounted for those who provided responses to OC and HRT use. After, our OC/delayed recall study population consisted of 1568 subjects, 218 subjects ≤ 3 and 1350 subjects ≥ 4 . Our HRT/delayed recall study population consisted of 1560 subjects with 213 subjects ≤ 3 and 1347 subjects ≥ 4 .

Animal Fluency: The animal fluency test is used to determine categorical verbal fluency, which is part of executive function and can differentiate between with normal cognition versus those with MCI and more severe cognitive impairment, such as AD ^{15,16}. Since the test uses animal names, it does not require cultural consideration or formal education experience ^{15,16}. In the test, subjects are asked to name as many animals in a one minute span, with a maximum range of 40 words in the NHANES 2011-2014 data set. ^{15,16}. A sample test is given to each subject before the actual test ^{15,16}.

In our study, we included subjects 60 years of age and older who completed the animal fluency trial, identified as CFDAST, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with cut-off scores named VERBALFLUENCY. cut-off score of ≤ 11 and ≥ 12 was used as it is the standard in other assessments ^{18,22,24,25}.

A total of 3,110 subjects from the 2011-2012 and 2013-2014 responded with complete animal fluency scores. We then accounted for subjects who had urinary

phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 931 subjects,187 subjects ≤ 11 and 744 subjects ≥ 12 . We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 931 subjects,187 subjects ≤ 11 and 744 subjects ≥ 12 . We then accounted for those who provided responses to OC and HRT use. After, our OC/Animal Fluency study population consisted of 1565 subjects, 321 subjects ≤ 321 and 1244 subjects ≥ 12 . Our HRT/Animal Fluency study population consisted of 1557 subjects with 318 subjects ≤ 11 and 1239 subjects ≥ 12 .

Digit Symbol Substitution Test: The Digit Symbol Substitution Test (DSST) is part of the Wechsler Adult Intelligence Scale (WAIS III) ^{15,16,26}. The test measures processing speed, sustained attention, and working memory ^{15,16,26}. The subtests have shown utility in the identification of dementia and other neurodegenerative disorders such as AD ^{27–29}. The test is given in paper form, with a key that has 9 numbers paired to different symbols. The subject has 2 minutes to match each symbol to 133 boxes with a number associated to it, with the score as the total correct matches with a maximum score of 105 in the 2011-2014 NHANES dataset. ^{15,16}. A sample test is given to each subject before the actual test ^{15,16}.

In our study, we included subjects 60 years of age and older who completed the animal fluency trial, identified as CFDDS, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with cut-off scores named DSST, cut-off

score of ≤ 27 and ≥ 28 was used as it is the standard in other assessments $^{30-32}$. A total of 3,014 subjects from the 2011-2012 and 2013-2014 responded with complete DSST. We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 891 subjects, 129 subjects ≤ 27 and 762 subjects ≥ 28 . We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 891 subjects, 129 subjects ≤ 27 and 744 subjects ≥ 28 . We then accounted for those who provided responses to OC and HRT use. After, our OC/DSST study population consisted of 1511 subjects, 227 subjects \leq 27 and 1284 subjects \geq 28. Our HRT/DSST study population consisted of 1505 subjects with 226 subjects \leq 27 and 1279 subjects \geq 28. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 1,074 subjects,188 subjects answered "1" and 783 subjects answered "2". We then accounted for those who provided responses to OC and HRT use. After, our OC/MCQ084 study population consisted of 1669 subjects, 274 subjects responded "yes" and 1395 subjects responded "no". Our HRT/MCQ084 study population consisted of 1661 subjects with 272 subjects responded "yes" and 1389 subjects responded "no".

Assessment of Surrogate Brain Health Indicators – Memory Function

During the past 12 months, have you experienced confusion or memory loss that is

happening more often or getting worse?: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the yes/no question, "During the past 12 months, have you experienced confusion or memory loss that is happening more often or is getting worse?"³³. As memory loss and confusion are early indicators of cognitive decline, dementia, and AD³⁴. 3,628 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle. We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 1,025 subjects,181 subjects answered "yes" and 844 subjects answered "no". We then accounted for those who provided responses to OC and HRT use. After, our OC/MCQ084 study population consisted of 1669 subjects, 274 subjects responded "yes" and 1395 subjects responded "no". Our HRT/MCQ084 study population consisted of 1661 subjects with 272 subjects responded "yes" and 1389 subjects responded "no". During the past 7 days, how often have you had trouble remembering where you put things?: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the question," During the past 7 days, how often have you had trouble remembering where you put things, like you keys or your wallet?" ³³. 3,448 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

The question is multi-leveled, where 3,448 subjects answered "Never" equaling the value "0", 809 subjects answered "About once" equaling the value "1", 544 subjects answered "Two or three times" equaling the value "2", 175 subjects answered "Nearly every day" equaling the value "3", and 102 subjects answered "Several times a day" equaling the value "4". We created a new variable named MCQ380_WK, which combines responses coded as "Never" equaling "0" and "About once" equaling "1" into a variable, "No" equaling "1", and "Two or Three Times" equaling "2", "Nearly Every day" equaling "3", and "Several times a day" equaling "4", into a new variable, "Yes" equaling "1".

We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 971 subjects,188 subjects answered "1" and 783 subjects answered "2". We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 1,074 subjects,188 subjects answered "1" and 783 subjects answered "2".

We then accounted for those who provided responses to OC and HRT use. After, our OC/MCQ380_WK study population consisted of 1576 subjects, 335 subjects responded "yes" and 1241 subjects responded "no". Our HRT/MCQ380_WK study population consisted of 1568 subjects with 332 subjects responded "yes" and 1236 subjects responded "no".

<u>Are you limited in any way because of difficulty remembering or because you</u> <u>experience periods of confusion</u>?: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the question, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" ³³. Limitations in physical movement due to difficulty remembering and confusion can indicate the development of cognition issues ³⁵. 11, 323 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 1,024 subjects, 165 subjects answered "yes" and 859 subjects answered "no". We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 1,133 subjects,181 subjects answered yes and 952 subjects answered no. We then accounted for those who provided responses to OC and HRT use. After, our OC/PFQ057 study population consisted of 1670 subjects, 259 subjects responded "yes" and 1411 subjects responded "no". Our HRT/PFQ057 study population consisted of 1662 subjects with 254 subjects responded "yes" and 1408 subjects responded "no".

Assessment of Surrogate Brain Health Indicators – Taste and Smell Function

It has been observed that neurodegenerative disease has been shown to be preceded by smell and taste disorders ^{36–39}. The causes of these disorders have been

linked to genetic alterations ³⁶, overexpression of key proteins³⁷, and direct effect of some environmental chemicals on the olfactory mucosa ⁴⁰, which can have associations with exposure to EEDCs ^{36,37,39,40}. However, issues with olfaction can also be caused by upper respiratory tract infections, sino-nasal disease, head trauma, idiopathic causes, surgery of the nasal area, and congenital loss of smell ⁴¹.

The two most common and prevalent neurodegenerative diseases, AD and PD have been shown to be preceded by smell disorders ^{42–47}. These disorders manifest themselves when evidence of pathological changes in the olfactory system are evident ⁴⁷. These are characterized by the build-up of pathological proteins, which cause the death of olfactory cells ⁴⁷. Several human epidemiological studies have also alluded to the utility of using sensory biomarkers as an early detection for neurodegenerative diseases ^{48–51}.

Do you sometimes smell and unpleasant, bad, or burning odor when nothing is

there?: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the question, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" ³³. 7,399 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 1,024 subjects, 74 subjects answered "yes" and "950" subjects answered no. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³.

²³. After, our study population consisted of 1,050 subjects, 74 subjects answered yes and 950 subjects answered no. We then accounted for those who provided responses to OC and HRT use. After, our OC/CSQ040 study population consisted of 1664 subjects, 123 subjects responded "yes" and 1541 subjects responded "no". Our HRT/CSQ040 study population consisted of 1655 subjects with 123 subjects responded "yes" and 1532 subjects responded "no".

During the past 12 months have you had a taste or other sensation in your mouth

that does not go away?: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the question," During the past 12 months have you had a taste or other sensation in your mouth that does not go away?"³³. 7,407 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 1,024 subjects, 66 subjects answered yes and 958 subjects answered no. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 1,024 subjects, 66 subjects answered no. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ²³. After, our study population consisted of 1,024 subjects, 66 subjects answered yes and 958 subjects answered no. We then accounted for those who provided responses to OC and HRT use. After, our OC/CSQ110 study population consisted of 1667 subjects, 134 subjects responded "yes" and 1533 subjects responded "no". Our HRT/CSQ110 study population

consisted of 1658 subjects with 134 subjects responded "yes" and 1524 subjects responded "no".

Covariates and Confounding Variables

In our study we included a number of covariates, based off a review of literature and well-known risk factors for neurodegenerative diseases, if they were available in the NHANES datasets. Confounding variables were controlled for in our logistic regression models.

The demographic variables are as follows: gender (male, female), age (60-69, 7-79, 80+), Race/Ethnicity (Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian/Other), Family Income (Under 24k, 25k to 54,999k, 55k to 74,999k, over 75k), Education (<12th grade, completed high school, >12th grade) ³³.

Modifiable health variables and risk factors are as follows: ever smoked (yes, no), blood pressure (normal/high), diabetes (yes, no, borderline), coronary heart disease (yes, no), stroke (yes, no), heart attack (yes, no), head trauma (yes, no), alcohol use (yes, no), ever use birth control (yes, no), every use hormonal replacement therapy (yes, no) ³³.

Statistical Analysis

Statistical analysis was performed using SAS software ⁵². The 2011-2012 and 2013-2014 survey cycles were merged and a four-year sampling weight was calculated to account for the complex sampling design in order to calculate correct statistical estimates and standard errors when calculating means, geometric means, and other statistics ⁵³.

For phthalate and BPA variables, a value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a

below the limit of detection were given a dummy phthalate level of the LOD divided by the square root of two ⁶. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle, where the LOD for that year was used to make a determination if the EEDC was above or below the LOD. ⁷. We log-transformed and then adjusted for creatinine all phthalate and BPA variables ^{54–56} since environmental chemical data is not normally distributed and urine dilution varies from person to person. We used the SAS Survey procedures to account for the complex sampling design of the NHANES data sets ⁵⁷.

We used PROC SURVEYFREQ was used to obtain descriptive statistics for the different populations we were examining in our study which accounts for the complex survey design of the NHANES data sets ⁵⁷. Descriptive statistics were organized based on the following categories per variable: gender (male, female), age (60-69, 7-79, 80+), Race/Ethnicity (Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian/Other), Family Income (Under 24k, 25k to 54,999k, 55k to 74,999k, over 75k), Education (<12th grade, completed high school, >12th grade), ever smoked (yes, no), blood pressure (normal/high), diabetes (yes, no, borderline), coronary heart disease (yes, no), stroke (yes, no), heart attack (yes, no), head trauma (yes, no), alcohol use (yes, no), ever use birth control (yes, no), every use hormonal replacement therapy (yes, no) ³³.

We used PROC SURVEYREG and guidance provided by the SAS institute to directly to determine the geometric mean of the EEDC to test if they were significant between the responses of our outcome variables ^{57,58}. The standard errors were calculated using the Taylor Series linearization method, which is the default method in the survey procedures to calculate standard error ⁵⁷. Geometric means (GM), geometric standard

errors (GSE), and number of subjects were reported for the results of the outcome variables for all subjects that had EEDCs over the LOD. We looked at geometric means between the surrogate of brain health (yes vs. no, low test score vs. high test score), and also performed age-specific, gender-specific, and race/ethnicity-specific geometric means between the responses to the outcome variable. Due to the smaller range of ages in our dataset, 60 years and older, we calculated age-specific rates in lieu of age-standardized rates.

For OC and HRT use, which are both dichotomous variables, we performed a chi-square test of independence using PROC SURVEYREG with the CHISQ command to look for any relationships between OC and HRT use and our surrogate brain health indicators. We used PROC SURVEYLOGISTIC to find the unadjusted and adjusted odds ratios (ORs) and the 95% confidence intervals (CI) to examine the association between the surrogates of brain health and exposures to phthalates and BPA ⁵⁷. Analysis was done per EEDC per outcome variable. We presented three logistic regression models which were stratified by gender and examined phthalate and BPA exposures in the following groups, variable < LOD to 50th percentile (reference) and \geq 50th percentile. The three logistic regression models are as follows: unadjusted, adjusted for known risk factors, age, education, race/ethnicity, adjusted for known and suspected risk factors, age, education, race/ethnicity, smoking, blood pressure history, history of coronary heart disease, stroke, heart attack, diabetes status, head trauma, and alcohol use. We did not include income, OC and HRT use in our models as they significantly reduced the size of the population.

References

- 1. Johnson CL, Paulose-Ram R, Ogden CL, et al. National health and nutrition examination survey: analytic guidelines, 1999-2010. *Vital Health Stat 2*. 2013;(161):1-24. http://www.ncbi.nlm.nih.gov/pubmed/25090154.
- 2. Johnson CL, Dohrmann SM, Burt VL, Mohadjer LK. National Health and Nutrition Examination Survey: Sample Design , 2011 – 2014. *Vital Heal Stat*. 2014;2(162):1-33. http://www.cdc.gov/nchs/data/series/sr_02/sr02_162.pdf.
- 3. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey NCHS Research Ethics Review Board (ERB) Approval. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/irba98.htm. Published 2016.
- 4. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - 2011-2012 Data Documentation, Codebook, and Frequencies Phthalates & Plasticizers Metabolites - Urine (PHTHTE_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/PHTHTE_G.htm. Published 2016.
- Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Phthalates and Plasticizers Metabolites - Urine (PHTHTE_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/PHTHTE_H.htm. Published 2016.
- 6. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data, Questionnaires, and Related Documentation and Information. National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/index.htm. Published 2016.

- 7. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Task 2: How to Address Different Fill Values and the Limit of Detection (LOD) in NHANES Environmental Chemical Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/limitations/Task 2.htm. Published 2016.
- Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - 2013-2014 Data Documentation, Codebook, and Frequencies Personal Care and Consumer Product Chemicals and Metabolites (EPHPP_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/EPHPP_H.htm. Published 2016.
- 9. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies Environmental Phenols & Parabens (EPH_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/EPH_G.htm. Published 2016.
- Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Urinary Total Arsenic (UTAS_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UTAS_H.htm. Published 2016.
- 11. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies Arsenics - Total & Speciated -Urine (UAS_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/UAS_G.htm. Published 2016.

- 12. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Urinary Speciated Arsenics (UAS_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UAS_H.htm. Published 2016.
- 13. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). No TitleNational Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies Reproductive Health (RHQ_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/nchs/nhanes/2011-2012/RHQ_G.htm#RHQ420. Published 2017.
- 14. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Reproductive Health (RHQ_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/RHQ_H.htm. Published 2017.
- 15. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Cognitive Functioning (CFQ_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/CFQ_H.htm. Published 2017.
- 16. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies Cognitive Functioning (CFQ_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/CFQ_G.htm#CFDCST3. Published 2017.
- Fillenbaum GG, van Belle G, Morris JC, et al. Consortium to Establish a Registry for Alzheimer's Disease (CERAD): The first twenty years. *Alzheimer's Dement*. 2008;4(2):96-109. doi:10.1016/j.jalz.2007.08.005.

- Bertolucci PHF, Okamoto IH, Brucki SMD, Siviero MO, Neto JT, Ramos LR. Applicability of the CERAD neuropsychological battery to Brazilian elderly. *Arq Neuropsiquiatr*. 2001;59(3 A):532-536. doi:10.1590/S0004-282X2001000400009.
- Karrasch M, Sinervä E, Grönholm P, Rinne J, Laine M. CERAD test performances in amnestic mild cognitive impairment and Alzheimer's disease. *Acta Neurol Scand*. 2005;111(3):172-179. doi:10.1111/j.1600-0404.2005.00380.x.
- 20. Karrasch M, Laatu S, Martikainen K, Marttila R. CERAD test performance and cognitive impairment in Parkinson's disease. *Acta Neurol Scand*. 2013;128(6):409-413. doi:10.1111/ane.12138.
- 21. R.M. H, N.-M. S, P. H, et al. The CERAD neuropsychological battery in patients with frontotemporal lobar degeneration. *Dement Geriatr Cogn Dis Extra*. 2015;5(1):147-154. doi:10.1159/000380815.
- Berres M, Monsch AU, Bernasconi F, Thalmann B, Stähelin HB. Normal ranges of neuropsychological tests for the diagnosis of Alzheimer's disease. *Stud Health Technol Inform*. 2000;77:195-199. http://www.ncbi.nlm.nih.gov/pubmed/11187541. Accessed January 21, 2018.
- Sata F, Araki S, Yokoyama K, Murata K. Adjustment of creatinine-adjusted values in urine to urinary flow rate: a study of eleven heavy metals and organic substances. *Int Arch Occup Environ Health*. 1995;68(1):64-68. http://www.ncbi.nlm.nih.gov/pubmed/8847115. Accessed November 15, 2017.
- Alegret M, Espinosa A, Valero S, et al. Cut-off Scores of a Brief Neuropsychological Battery (NBACE) for Spanish Individual Adults Older than 44 Years Old. Brucki S, ed. *PLoS One*. 2013;8(10):e76436. doi:10.1371/journal.pone.0076436.
- 25. American Academy of Family Physicians. BB, Hartmann B, DeJoseph D. *American Family Physician*. Vol 84. American Academy of Family Physicians; 1970. https://www.aafp.org/afp/2011/1015/p895.html. Accessed January 21, 2018.

- 26. Axelrod BN. Administration duration for the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III. *Arch Clin Neuropsychol*. 2001;16(3):293-301. doi:10.1016/S0887-6177(00)00048-2.
- Matsuda O, Saito M, Kato M, Azami H, Shido E. Wechsler Adult Intelligence Scale-III profile in the early stages of Alzheimer's disease: Performance in subtests sensitive to and resistant to normal decline with ageing. *Psychogeriatrics*. 2015;15(1):1-6. doi:10.1111/psyg.12066.
- 28. Donnell AJ, Pliskin N, Holdnack J, Axelrod B, Randolph C. Rapidlyadministered short forms of the Wechsler Adult Intelligence Scale-3rd edition. *Arch Clin Neuropsychol.* 2007;22(8):917-924. doi:10.1016/j.acn.2007.06.007.
- 29. Nielsen NP, Ringström R, Wiig EH, Minthon L. Associations between AQT processing speed and neuropsychological tests in neuropsychiatric patients. *Am J Alzheimers Dis Other Demen*. 2011;22(3):202-210. doi:10.1177/1089253206300417.
- 30. Proust-Lima C, Amieva H, Dartigues JF, Jacqmin-Gadda H. Sensitivity of four psychometric tests to measure cognitive changes in brain aging-population-based studies. *Am J Epidemiol*. 2007;165(3):344-350. doi:10.1093/aje/kwk017.
- 31. Rosano C, Perera S, Inzitari M, Newman AB, Longstreth WT, Studenski S. Digit symbol substitution test and future clinical and subclinical disorders of cognition, mobility and mood in older adults. *Age Ageing*. 2016;45(5):687-694. doi:10.1093/ageing/afw116.
- 32. Saxton J, Lopez OL, Ratcliff G, et al. Preclinical Alzheimer disease: neuropsychological test performance 1.5 to 8 years prior to onset. *Neurology*. 2004;63(Mh 46643):2341-2347. doi:10.1212/01.WNL.0000147470.58328.50.
- 33. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey -Questionnaires, Datasets, and Related Documentation. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm. Published 2015.

- 34. Alzheimer's Association. 2017 Alzheimer's Disease Facts and Figures. *Alzheimers Dement*. 2017;13:325-373. doi:10.1016/j.jalz.2017.02.001.
- 35. Tolea MI, Morris JC, Galvin JE. Longitudinal associations between physical and cognitive performance among community-dwelling older adults. *PLoS One*. 2015;10(4):1-12. doi:10.1371/journal.pone.0122878.
- Ansoleaga B, Garcia-Esparcia P, Llorens F, Moreno J, Aso E, Ferrer I. Dysregulation of brain olfactory and taste receptors in AD, PSP and CJD, and AD-related model. *Neuroscience*. 2013;248:369-382. doi:10.1016/j.neuroscience.2013.06.034.
- Macknin JB, Higuchi M, Lee VM-Y, Trojanowski JQ, Doty RL. Olfactory dysfunction occurs in transgenic mice overexpressing human τ protein. *Brain Res.* 2004;1000(1-2):174-178. doi:10.1016/j.brainres.2004.01.047.
- 38. Lee S, Manly J, Andrews H, et al. Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community. 2014.
- 39. Hummel T, Landis B, Huttenbrink K. Smell and taste disorders. *GMS Curr Tpoics Otorhinolaryngol Head Neck Surg*. 2011;10:1-15. doi:10.3205/cto000077.
- 40. Doty RL. The olfactory vector hypothesis of neurodegenerative disease: Is it viable? *Ann Neurol*. 2008;63(1):7-15. doi:10.1002/ana.21327.
- 41. Liu J. Clinical features of olfactory disorders in patients seeking medical consultation. *Med Sci Monit*. 2013;19:444-450. doi:10.12659/MSM.883938.
- 42. Hüttenbrink K-B, Hummel T, Berg D, Gasser T, Hähner A. Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. *Dtsch Arztebl Int.* 2013;110(1-2):1-7, e1. doi:10.3238/arztebl.2013.0001.
- 43. Barresi M, Ciurleo R, Giacoppo S, et al. Evaluation of olfactory dysfunction in neurodegenerative diseases. *J Neurol Sci.* 2012;323(1-2):16-24. doi:10.1016/j.jns.2012.08.028.

- 44. Ruan Y, Zheng XY, Zhang HL, Zhu W, Zhu J. Olfactory dysfunctions in neurodegenerative disorders. *J Neurosci Res.* 2012;90(9):1693-1700. doi:10.1002/jnr.23054.
- 45. Albers MW, Tabert MH, Devanand DP. Olfactory dysfunction as a predictor of neurodegenerative disease. *Curr Neurol Neurosci Rep.* 2006;6(5):379-386. doi:10.1007/s11910-996-0018-7.
- 46. Winner B, Kohl Z, Gage FH. Neurodegenerative disease and adult neurogenesis. *Eur J Neurosci.* 2011;33(6):1139-1151. doi:10.1111/j.1460-9568.2011.07613.x.
- 47. Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. *Acta Neuropathol*. 2014;127(4):459-475. doi:10.1007/s00401-014-1261-7.
- 48. Makowska I, Kloszewska I, Grabowska A, Szatkowska I, Rymarczyk K. Olfactory deficits in normal aging and Alzheimer's disease in the polish elderly population. *Arch Clin Neuropsychol*. 2011;26(3):270-279. doi:10.1093/arclin/acr011.
- 49. Sohrabi HR, Bates K a, Weinborn MG, et al. Olfactory discrimination predicts cognitive decline among community-dwelling older adults. *Transl Psychiatry*. 2012;2(5):e118. doi:10.1038/tp.2012.43.
- 50. Driver-Dunckley E, Adler CH, Hentz JG, et al. Olfactory dysfunction in incidental Lewy body disease and Parkinson's disease. *Parkinsonism Relat Disord*. 2014;20(11):1260-1262. doi:10.1016/j.parkreldis.2014.08.006.
- 51. Ward AM, Calamia M, Thiemann E, Dunlap J, Tranel D. Association between olfaction and higher cortical functions in Alzheimer's disease, mild cognitive impairment, and healthy older adults. *J Clin Exp Neuropsychol*. November 2016:1-15. doi:10.1080/13803395.2016.1253667.
- 52. SAS 9.4. 2017.

- 53. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Overview of NHANES Survey Design and Weights. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/orientation/sample_design/. Published 2013.
- 54. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Using Blood Lipid or Urine Creatinine Adjustments of Environmental Chemical Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/adjustments/Info 1.htm. Published 2017.
- 55. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Using Blood Lipid or Urine Creatinine Adjustments in the Analysis of Environmental Chemical Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/adjustments/ind ex.htm. Published 2013.
- 56. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Data Normality and Transformations. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/normality/index. htm. Published 2010.
- 57. SAS Institute Inc. Sas/Stat® 9.3. 2011:User's Guide: The GLIMMIX Procedure (Chapter).
- 58. SAS Institute Inc. Estimating Geometric Means Using Data from a Complex Survey Sampling Design. http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.1 92.593. Published 2017.

CHAPTER V

MANUSCRIPT II

EXPOSURE TO PHTHALATES AND BISPHENOL-A AND ASSOCIATIONS WITH BRAIN HEALTH: NHANES 2011-2014

ABSTRACT

BACKGROUND: The role of estrogenic endocrine disrupting chemicals (EEDCs) and their role in the development of neurodegenerative disease is of great public health concern, due to increasing exposures to these chemicals and increasingly aging population. Evidence suggests EEDCs exposure plays a role in the development of neurodegenerative disease, although epidemiological evidence is lacking in this area. Phthalates and Bisphenol-A are two of the most widespread EEDCs with demonstrated estrogenic activity, which affects brain health.

OBJECTIVE: The objective of this study is to investigate the relationship between surrogate brain health indicators and exposure to phthalates and BPA among the older individuals of the United States (US) population.

METHODS: In this study, we analyzed participants from the Center for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey (NHANES) in the survey cycles 2011-2012 and 2013-2014. The participants were 60 years of age and older who had phthalates and BPA urine samples taken during the examination portion of the survey. Other data pertaining to covariates and demographics were also obtained. In total, ten phthalate metabolites and Bisphenol-A were selected since >60% of participants had levels over the established limit of detection (LOD). The ten analyzed EEDCs were the following: Mono (carboxynonyl) Phthalate (CNP); Mono (carboxyoctyl) Phthalate

(COP); Mono-(2-ethyl-5-carboxypentyl) Phthalate (ECP); Mono-n-butyl Phthalate (MBP); Mono-(3-carboxypropyl) Phthalate (MC1); Mono-ethyl Phthalate (MEP); Mono (2-ethyl-5-hydroxy hexyl) Phthalate (MHH); Mono-(2-ethyl-5-oxohexyl) Phthalate (MOH); Mono-benzyl Phthalate (MZP); Mono-isobutyl Phthalate (MIB); Bisphenol-A (BPA). These EEDCs were analyzed versus surrogate brain health indicators available in the form of administered cognitive tests and self-reported questions, available in the NHANES datasets. The surrogate brain health indicators were as follows: immediate recall test; delayed recall test; animal fluency test; digit symbol substitution test. The surrogate brain health indicator self-reported questions were as follows: worsening memory over the past 12 months; trouble remembering over the past week; difficulty remembering or because you experience periods of confusion. The following smell and taste questions were also included as surrogate brain health indicators due to their potential as pre-clinical indicators of cognitive impairment: phantom odor (phantosmia) and problems with ability to taste sweet, sour, salty, or bitter foods over the past 12 months. Geometric means were calculated to compare the surrogate brain health indicators versus the EEDC concentrations. Logistic regression was then used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) to examine the associations between the surrogate brain health indicators and EEDC concentration. Three logistic regression models were presented in our study, stratified by gender: unadjusted; age, race, education; age, race, education, body mass index (BMI), smoking status, blood pressure, diabetes status, alcohol use, coronary heart disease status, heart attack status, stroke status, head injury status, and physical activity status.

RESULTS: Increased levels of phthalate metabolites were observed in those who had lower cognitive test scores, reported having memory issues, and reported taste and smell deficits compared to those who did not have any observed brain health issues. Females have a greater bioburden of phthalates compared to males. In females, the phthalates ECP, MBP, MOH, MZP, and MIB were observed to have significantly higher bioburdens among two or more of the surrogate brain health indicators. In males, the phthalates ECP, MHH, MOH, and MIB were observed to have significantly higher bioburdens among two or more of the surrogate brain health indicators. BPA did not have any significant results in any of our tests. When controlling for known and suspected covariates of AD in males in our final logistic regression model, COP, ECP, MBP, MC1, MEP, MHH, MOH, and MIB were associated with one or more of the surrogate brain health indicators. When controlling for known and suspected covariates of AD in females in our final logistic regression model, ECP, MBP, MHH, MOH, MZP, and MIB were associated with one or more of the surrogate brain health indicators. BPA did not have any significant results in any of our tests.

CONCLUSION: Our study takes a novel approach to assessing cognitive dysfunction neurodegenerative disease and exposures to phthalate and BPA. It appears there is a link between exposure to phthalates and adverse brain health. Further research is needed with the use of clinical endpoints to further establish the relationship between neurodegenerative disease and phthalate/BPA exposure.

MANUSCRIPT II

EXPOSURE TO PHTHALATES AND BISPHENOL-A AND ASSOCIATIONS WITH BRAIN HEALTH: NHANES 2011-2014 INTRODUCTION

The role of exposure to EEDCs and neurodegenerative disease development is of great public health concern as stated by the World Health Organization (WHO)¹, due to an increasingly aging population². Exposures to EEDCs have been linked to neurodegenerative diseases and other adverse brain health conditions, such as Alzheimer's disease (AD). In this study, we examine the associations of two of the mostly widely present phthalate and phenol compounds, phthalates and BPA, and their associations with brain health in an older US population.

Phthalates are class of estrogenic endocrine disrupting chemicals that have a role in the development of neurodegenerative disease. Phthalates, also known as plasticizers, are chemicals used in plastics to make them flexible and resilient ^{3–5}. Exposure to phthalates comes through ingestion, inhalation, and to a lesser extent, dermal contact with phthalate-containing products ⁶. Phthalates are found in most consumer products. These include the following: wall coverings, tablecloths, floor tiles, furniture upholstery, shower curtains, garden hoses, baby products, toys, shoes, packing materials, medical devices, paints, glue, nail polish, hair spray, insect repellents, food packaging materials, cosmetics, insecticides, and drug products ^{3–5}. Phthalates have short biological half-lives and do not accumulate, with urine as the primary route of excretion ⁷. Specific phthalates are also found in high levels among the US population. One study, found the body burden of the phthalates mono-ethyl phthalate (MEP), mono-n-butyl phthalate (MBP) and and

mono-benzyl phthalate (MBzp) in 97% of samples tested from the CDC NHANES 1999-2000 datasets ⁸. As such, most of the US population has some measurable levels of phthalates in their bodies ⁷.

Phthalates have also been demonstrated to have estrogenic activity and affinity for estrogen receptors ^{9,10} and have been shown to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ¹¹.

There is limited information regarding human epidemiological studies with neurodegenerative disease and phthalate bioburden. Animal studies are numerous and have shown phthalates to adversely affect brain function. These adverse effects include negatively affecting learning ^{12,13}, negatively affecting memory ^{13,14}, interfering with locomotion ¹⁴, negative affecting social behavior ¹², and producing cellular effects such as cell death, synaptic loss, and synaptic dysfunction ¹⁵. Some animal studies have reported an improvement in memory ¹⁶, and possible dose-dependent effects, where memory improves one dose, but degrades it in another dose ¹⁷.

Human epidemiological studies have focused on pre-natal and early life exposure with regards to behavior, IQ, reproductive, and cognitive development with few focusing on older populations. Studies have indicated phthalate exposure to be associated with social deficits ¹⁸, decreased visual recognition memory ¹⁹ and decreased IQ ²⁰. However, there is evidence to suggest inconsistent cognitive and behavioral effects in children with regards to phthalate type and gender ^{21,22}. Only one study, using the NHANES 2011-2012 datasets found higher bioburdens of phthalates in individuals with memory issues ²³.

BPA is a synthetic chemical that is widely used to make polycarbonate plastics and resins ²⁴. BPA is found in many consumer products and plastics. These products

include the following: baby bottles, compact discs, impact-resistant safety equipment, medical devices, food cans and tops, water supply pipes, ATM receipts and dental sealants and composites ²⁴. Food containers made with BPA can cause BPA to leech into foods by the use of high heat ²⁴. It is of note that during the 2003-2004 NHANES data cycle, BPA was detected in 93% of urine samples collected from subjects 6 years of age and older ²⁵.

BPA has been shown to be weakly estrogenic and have a low affinity for binding to ER receptors, but is speculated to exert its effects through other non-classical pathways ²⁶. BPA has also been shown to interact with estrogen-responsive genes that are implicated in neurodegenerative disease pathways ¹¹.

Animal studies are numerous and have demonstrated BPA's negative effects on brain health and function. In animal studies BPA has been shown to negatively affect memory ^{27–41}, negatively affect neurogenesis ^{33,42}, negatively affect the structure of dendritic spines and synaptogenesis ^{27,29,32,38,40,43}, and negatively affect cellular processes, protein expression and expression ^{31,36,39,41}. There are also animal studies that shows BPA exerts no negative effects on spatial and working memory ^{44–46}.

The few human epidemiological studies have concentrated on pre-natal BPA exposure and exposure in children which have been associated with significant behavioral issues in children ^{35,47–50}.

OBJECTIVE

There is limited information regarding exposures to phthalates and BPA the development of cognitive dysfunction and neurodegenerative disease in older populations. In this study we examine the relationship between 10 different phthalate metabolites and BPA with surrogate brain health indicators, from the CDC's NHANES 2011-2012 and 2013-2014 data cycles. The objectives of the study are as follows: 1) to assess the mean phthalate and BPA levels in older adults in the US, 60 years of age and above with the surrogates of brain health indicators in the US population, 2) assess the association between phthalate and BPA levels and surrogate brain health indicators in older adults in the US, to find the risk of poor cognitive function and development of mild cognitive impairment, dementia, and AD.

METHODS

Study Design and Population: NHANES is a continuous cross-sectional data collection utilizing a complex multi-stage sampling design that creates a survey representative of the non-institutionalized population of the United States ^{51,52}. The survey has been conducted since 1999 and consists of an at-home questionnaires followed by a standardized physical examination and specimen collection conducted in mobile examination centers (MEC) ^{51,52}. Eligibility is determined using preset selection probabilities for the desired demographic subdomains ⁵². A household screener is performed before to determine if any household members are eligible for the interview and examination ⁵². The interview collects demographic, health, nutrition, and household information, while the physical examination includes physical measurements, dental examination, and the collection of blood and urine specimens for laboratory testing ⁵².

Prior to any to interviews and examinations, informed consent was obtained and all procedures were approved by the CDC Institutional Review Board ⁵³.

In our study, we merged the NHANES 2011-2012 and 2013-2014 data cycles. All our analyses were limited to individuals 60 years of age and older who have recorded responses to cognitive test scores and/or memory and taste/smell questions and have EEDC urine measurements.

Inclusion/Exclusion Criteria

Inclusion criteria:

- 5. Males and females, 60 years of age and older
- 6. Available EEDC urine measurements (Phthalates, BPA)
- 7. Urine creatinine measurements >30 mg/dl and <300 mg/dl.
- 8. Complete responses to identified outcome variables.

Exclusion criteria:

- 5. Males and females, 59 years of age and younger
- 6. Unavailable EEDC urine measurements (Phthalates, BPA)
- 7. Urine creatinine measurements <30mg/dl and >300mg/dl
- 8. Incomplete responses to identified outcome variables.

Phthalate Exposure Assessment and Measurements

Phthalates were measured from urine samples taken from a representative and random one-third subsample of individuals 6 years of age and older in the 2011-2012 and 2013-2014 survey cycles ^{54,55}. The laboratory utilized high performance liquid chromatography-electrospray ionization-tandem mass spectrometry to analyze urine phthalate levels and was consistently used in both survey cycles ^{54,55}. Phthalate levels

were provided in ng/ml and was used in our analyses. The following phthalates were used in our analyses: Mono (carboxynonyl) Phthalate (CNP); Mono (carboxyoctyl) Phthalate (COP); Mono-(2-ethyl-5-carboxypentyl) Phthalate (ECP); Mono-n-butyl Phthalate (MBP); Mono-(3-carboxypropyl) Phthalate (MC1); Mono-ethyl Phthalate (MEP); Mono (2-ethyl-5-hydroxy hexyl) Phthalate (MHH); Mono-(2-ethyl-5-oxohexyl) Phthalate (MOH); Mono-benzyl Phthalate (MZP); Mono-isobutyl Phthalate (MIB).

The limit of detection variables indicates if subjects have urine phthalate levels above the limit of detection. A value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy phthalate level of the LOD divided by the square root of two ⁵⁶. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle ⁵⁷. The specific phthalate metabolites were selected as >60% of study subjects had urine phthalate levels above the LOD. A total of 5,175 subjects had available urinary phthalate measurements in the 2011-2012 and 2013-2014 datasets.

BPA Exposure Assessment and Measurements

BPA was measured from urine samples taken from a representative and random one-third subsample of individuals 6 years of age and older in the 2011-2012 and 2013-2014 survey cycles ^{58,59}. The laboratory on-line solid phase extraction coupled to high performance liquid chromatography and tandem mass spectrometry to analyze urine BPA levels and was consistently used in both survey cycles ^{58,59}. BPA levels were provided in ng/ml.

The limit of detection variables indicates if subjects have urine phthalate levels above the limit of detection. A value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy BPA level of the LOD divided by the square root of two ⁵⁶. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle ⁵⁷. A total of 5,175 subjects had available urinary BPA measurements in the 2011-2012 and 2013-2014 datasets.

Assessment of Surrogate Brain Health Indicators – Cognitive Scores <u>CERAD Word Learning Subtest – Immediate Recall and Delayed Recall</u>: The

Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning Subtest assesses both immediate and delayed learning ^{60,61}. The delayed and immediate recall tests available in NHANES assess the ability to process new verbal information ^{60,61}. The tests are part of the neuropsychological assessment for the entire CERAD testing protocol, which was initially created to standardize Alzheimer's disease (AD) assessment and diagnosis ⁶². The tests in the neuropsychological assessment itself were chosen because of their ability to assess cognitive functions inherent in AD ⁶². The assessments have the ability to differentiate those of adequate cognitive status versus those who have mild cognitive impairment or dementia ^{62–65}. Although developed for use in the assessment of AD, the CERAD assessments have shown utility in use for Parkinson's disease ⁶⁵ and frontotemporal lobar degeneration ⁶⁶.

Immediate Recall: For immediate recall, the subjects are asked to read aloud a sequence of 10 unrelated words as they are presented to them and immediately after, they are asked to recall as many words as possible 60,61 . This is done in three trials with the order of the

words differing in each trial. 60,61 . Each trial has a maximum score of 10, with a maximum overall score of 30 60,61,63 .

In our study, we included individuals 60 years of age and older who completed all immediate recall word list trials identified as: CFDCST1, CFDCST2, and CFDCST3 in the 2011-2012 and 2013-2014 NHANES data cycles. Those who did not have three trials completed were not included in the immediate recall analysis. We summed the total of the three trials and created a new variable with cut-off scores named IMMEDIATERECALL. A cut-off score of ≤ 13 and ≥ 14 was used as it is the standard in other assessments ^{63,67}. A total of 3,149 subjects from the 2011-2012 and 2013-2014 responded with complete immediate recall trials. We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁶⁸. After, our study population consisted of 940 subjects, 146 subjects with cut-off scores ≤ 13 and 794 subjects with cut-off scores ≥ 14 .

Delayed Recall: For delayed recall, the subject is asked to repeat the sequence of 10 unrelated words after the other cognitive tests are completed, which is typical 8 to 10 minutes after the start of the word learning trials 60,61 . The maximum score is 10 for delayed recall 60,61 .

In our study, we included subjects 60 years of age and older who completed the delayed recall trial, identified as CFDCSR, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with the cut-off scores named DELAYEDRECALL. A cut-off score of ≤ 3 and ≥ 4 was used as it is the standard in other assessments ^{63,67,69}. A total of 3,126 subjects from the 2011-2012 and 2013-2014

responded with a complete delayed recall trial. We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁶⁸. After, our study population consisted of 930 subjects,157 subjects \leq 3 and 776 subjects \geq 4.

Animal Fluency: The animal fluency test is used to determine categorical verbal fluency, which is part of executive function and can differentiate between with normal cognition versus those with MCI and more severe cognitive impairment, such as AD ^{60,61}. Since the test uses animal names, it does not require cultural consideration or formal education experience ^{60,61}. In the test, subjects are asked to name as many animals in a one minute span, with a maximum range of 40 words in the NHANES 2011-2014 data set. ^{60,61}. A sample test is given to each subject before the actual test ^{60,61}.

In our study, we included subjects 60 years of age and older who completed the animal fluency trial, identified as CFDAST, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with cut-off scores named VERBALFLUENCY. cut-off score of ≤ 11 and ≥ 12 was used as it is the standard in other assessments ^{63,67,69,70}. A total of 3,110 subjects from the 2011-2012 and 2013-2014 responded with complete animal fluency scores. We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁶⁸. After, our study population consisted of 931 subjects, 187 subjects ≤ 11 and 744 subjects ≥ 12 .

Digit Symbol Substitution Test: The Digit Symbol Substitution Test (DSST) is part of the Wechsler Adult Intelligence Scale (WAIS III) ^{60,61,71}. The test measures processing speed, sustained attention, and working memory ^{60,61,71}. The subtests have shown utility in the identification of dementia and other neurodegenerative disorders such as AD ^{72–74}. The test is given in paper form, with a key that has 9 numbers paired to different symbols. The subject has 2 minutes to match each symbol to 133 boxes with a number associated to it, with the score as the total correct matches with a maximum score of 105 in the 2011-2014 NHANES dataset. ^{60,61}. A sample test is given to each subject before the actual test ^{60,61}.

In our study, we included subjects 60 years of age and older who completed the animal fluency trial, identified as CFDDS, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with cut-off scores named DSST, cut-off score of ≤ 27 and ≥ 28 was used as it is the standard in other assessments ^{75–77}. A total of 3,014 subjects from the 2011-2012 and 2013-2014 responded with complete DSST. We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁶⁸. After, our study population consisted of 891 subjects, 129 subjects ≤ 27 and 762 subjects ≥ 28 .

Assessment of Surrogate Brain Health Indicators – Memory Function <u>During the past 12 months, have you experienced confusion or memory loss that is</u> <u>happening more often or getting worse?</u>: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the yes/no question, "During the past 12 months, have you experienced confusion or memory loss that is happening more often or is getting worse?" ⁷⁸. As memory loss and confusion are early indicators of cognitive decline, dementia, and AD ². 3,628 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle. We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁶⁸. After, our study population consisted of 1,025 subjects,181 subjects answered "yes" and 844 subjects answered "no".

During the past 7 days, how often have you had trouble remembering where you put

things?: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the question," During the past 7 days, how often have you had trouble remembering where you put things, like you keys or your wallet?"⁷⁸. 3,448 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

The question is multi-leveled, where 3,448 subjects answered "Never" equaling the value "0", 809 subjects answered "About once" equaling the value "1", 544 subjects answered "Two or three times" equaling the value "2", 175 subjects answered "Nearly every day" equaling the value "3", and 102 subjects answered "Several times a day" equaling the value "4". We created a new variable named MCQ380_WK, which combines responses coded as "Never" equaling "0" and "About once" equaling "1" into a variable, "No" equaling "1", and "Two or Three Times" equaling "2", "Nearly Every day" equaling "3", and "Several times a day" equaling "4", into a new variable, "Yes" equaling "1".

We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁶⁸. After, our study population consisted of 971 subjects,188 subjects answered "1" and 783 subjects answered "2".

Are you limited in any way because of difficulty remembering or because you

experience periods of confusion?: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the question, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" ⁷⁸. Limitations in physical movement due to difficulty remembering and confusion can indicate the development of cognition issues ⁷⁹. 11, 323 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁶⁸. After, our study population consisted of 1,024 subjects, 165 subjects answered "yes" and 859 subjects answered "no".

Assessment of Surrogate Brain Health Indicators – Taste and Smell Function

It has been observed that neurodegenerative disease has been shown to be preceded by smell and taste disorders ^{80–83}. The causes of these disorders have been linked to genetic alterations ⁸⁰, overexpression of key proteins⁸¹, and direct effect of some environmental chemicals on the olfactory mucosa ⁸⁴, which can have associations with exposure to EEDCs ^{80,81,83,84}. However, issues with olfaction can also be caused by upper

respiratory tract infections, sino-nasal disease, head trauma, idiopathic causes, surgery of the nasal area, and congenital loss of smell ⁸⁵.

The two most common and prevalent neurodegenerative diseases, AD and PD have been shown to be preceded by smell disorders ^{86–91}. These disorders manifest themselves when evidence of pathological changes in the olfactory system are evident ⁹¹. These are characterized by the build-up of pathological proteins, which cause the death of olfactory cells ⁹¹. Several human epidemiological studies have also alluded to the utility of using sensory biomarkers as an early detection for neurodegenerative diseases ^{92–95}.

Do you sometimes smell and unpleasant, bad, or burning odor when nothing is

there?: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the question, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" ⁷⁸. 7,399 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁶⁸. After, our delayed recall study population consisted of 1,024 subjects, 74 subjects answered "yes" and "950" subjects answered no.

During the past 12 months have you had a taste or other sensation in your mouth that does not go away?: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the question," During the past 12 months have you had a taste or other sensation in your mouth that does not go away?"⁷⁸. 7,407 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

We then accounted for subjects who had urinary phthalates and BPA samples taken and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁶⁸. After, our delayed recall study population consisted of 1,024 subjects, 66 subjects answered yes and 958 subjects answered no.

Covariates

In our study we included a number of covariates, based off a review of literature and well-known risk factors for neurodegenerative diseases, if they were available in the NHANES datasets.

The demographic variables are as follows: gender (male, female), age (60-69, 7-79, 80+), Race/Ethnicity (Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian/Other), Family Income (Under 24k, 25k to 54,999k, 55k to 74,999k, over 75k), Education (<12th grade, completed high school, >12th grade) ⁷⁸.

Modifiable health variables and risk factors are as follows: ever smoked (yes, no), blood pressure (normal/high), diabetes (yes, no, borderline), coronary heart disease (yes, no), stroke (yes, no), heart attack (yes, no), head trauma (yes, no), alcohol use (yes, no), ever use birth control (yes, no), every use hormonal replacement therapy (yes, no) ⁷⁸.

Statistical Analysis

Statistical analysis was performed using SAS software ⁹⁶. The 2011-2012 and 2013-2014 survey cycles were merged and a four-year sampling weight was calculated to account for the complex sampling design in order to calculate correct statistical estimates and standard errors when calculating means, geometric means, and other statistics ⁹⁷.

For phthalate and BPA variables, a value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy phthalate level of the LOD divided by the square root of two ⁵⁶. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle, where the LOD for that year was used to make a determination if the EEDC was above or below the LOD. ⁵⁷. We log-transformed and then adjusted for creatinine all phthalate and BPA variables ^{98–100} since environmental chemical data is not normally distributed and urine dilution varies from person to person.

We used the SAS Survey procedures to account for the complex sampling design of the NHANES data sets ¹⁰¹.

We used PROC SURVEYFREQ was used to obtain descriptive statistics for the different populations we were examining in our study which accounts for the complex survey design of the NHANES data sets ¹⁰¹. Descriptive statistics were organized based on the following categories per variable: gender (male, female), age (60-69, 7-79, 80+), Race/Ethnicity (Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian/Other), Family Income (Under 24k, 25k to 54,999k, 55k to 74,999k, over 75k), Education (<12th grade, completed high school, >12th grade), ever smoked (yes, no), blood pressure (normal/high), diabetes (yes, no, borderline), coronary heart disease (yes, no), stroke (yes, no), heart attack (yes, no), head trauma (yes, no), alcohol use (yes, no), ever use birth control (yes, no), every use hormonal replacement therapy (yes, no) ⁷⁸.

We used PROC SURVEYREG and guidance provided by the SAS institute to directly to determine the geometric mean of the EEDC to test if they were significant

between the responses of our outcome variables ^{101,102}. The standard errors were calculated using the Taylor Series linearization method, which is the default method in the survey procedures to calculate standard error ¹⁰¹. Geometric means (GM), geometric standard errors (GSE), and number of subjects were reported for the results of the outcome variables for all subjects that had EEDCs over the LOD. We looked at geometric means between the surrogate of brain health (yes vs. no, low test score vs. high test score), and also performed age-specific, gender-specific, and race/ethnicity-specific geometric means between the responses to the outcome variable. Due to the smaller range of ages in our dataset, 60 years and older, we calculated age-specific rates in lieu of age-standardized rates.

We used PROC SURVEYLOGISTIC to find the unadjusted and adjusted odds ratios (ORs) and the 95% confidence intervals (CI) to examine the association between the surrogates of brain health and exposures to phthalates and BPA ¹⁰¹. Analysis was done per EEDC per outcome variable. We presented three logistic regression models which were stratified by gender and examined phthalate and BPA exposures in the following groups, variable < LOD to 50th percentile (reference) and \geq 50th percentile. The three logistic regression models are as follows: unadjusted, adjusted for known risk factors, age, education, race/ethnicity, adjusted for known and suspected risk factors, age, education, race/ethnicity, smoking, blood pressure history, history of coronary heart disease, stroke, heart attack, diabetes status, head trauma, and alcohol use. We did not include income, OC and HRT use in our models as they significantly reduced the size of the population.

RESULTS

Descriptive statistics of Surrogates of Brain Health Indicators and Covariates:

Descriptive statistics of the study populations are described in table 1.1 for each of our 9 outcomes with their respective covariates. Urinary phthalate and BPA levels were available for 5,175 subjects in the 2011-2012 and 2013-2014 NHANES data cycles. Immediate Recall test scores were available for 940 subjects with 146 (12.43%) having lower immediate recall test scores. Delayed recall scores were available for 930 subjects with 157 (13.14%) having lower delayed recall scores. Animal Fluency scores were available for 931 subjects with 187 (12.85%) having lower animal fluency scores. DSST scores were available for 891 subjects with 129 (7.10%) having lower DSST scores. 1,025 subjects had yes/no responses to "Past 12 months, memory getting worse" with 181 (15.50%) responding "yes" to having worsening memory over the past 12 months. 971 subjects had yes/no responses to "Past 7 days, trouble remembering?" with 188 (18.16%) responding "yes" to having memory issues in the past 7 days. 1,024 subjects had yes/no responses to, "Limited due to difficulty remembering or confusion", with 165 (3.14%) responding "yes". 1,024 subjects had yes/no responses to experiencing phantom odor, with 74 (2.42%) responding "yes". 1,024 subjects had yes/no responses to experiencing sensation in their mouths that does not go away, with 66 (2.11%) answering "yes".

Among all the outcome variables and covariates, gender was fairly distributed between males and females. (Table 1.1). A majority of subjects fell with the 60-69-year age group (>50%), were predominantly non-Hispanic White (>70%), have completed >12th grade education (>55%), fall mostly in the overweight or obese range of BMI (>70%), have reported using alcohol (>70%), are fairly distributed by smoking status,

and are more physically inactive (>55%) (Table 1.1). Most subjects reported not having diabetes (>70%), having normal blood pressure (>65%), have not had a stroke (>90%), have not been diagnosed with coronary heart disease (>80%), and have not experienced significant head trauma (>85%). Among females, a majority reported using female hormones (>65%) and were fairly distributed in regards to birth control use.

Table 1.1 - Descriptive Statistics Surrogate brain health indicators and	Imme	ediate l (n=	Recall 940)	Score	Dela	yed R (n=9		core	Anin	nal Flu (n=9	ency S 931)	core		Digit S itution (n=8	Test			ast 12 r ry gett (1,0	ing wo				s, trouble g? (n=971)	r	ememb	to diffic ering or ? (n=1,0	r Š	Pl	hantor (n=1		?			mouth that go away? 024)
covariates for Pthalates and BPA	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n %	n	%	n	%	n	%	n	%	n	%	n %
Total Population		13 12.43		14 87.57	≤ 157	3 13.14	≥. 776		≤ 1 187	11 12.85	≥1 744			27 7.10		28 92.90	Ye 181	es 15.50	No 844		Ye 188		No 783 81.84		es 3.14	No 859 2		Ye 74	es 2.42	N 950		Ye 66	es 2.11	No 958 39.35
Gender (n, %)																																		
Male	80	7.01	394	41.97	89	7.60	381	41.48	85	5.49	382	43.23	69	3.11	387	46.16	80	5.68	438	43.08	71	5.81	426 42.96	72	4.85	445 4	13.87	31	2.61	486	46.13	25	1.91	493 46.87
Female	66	5.42	400	45.61	68	5.54	395	45.38	102	7.35	362	43.92	60	3.99	375	46.75	101	9.82	406	41.42	117	12.35	357 38.88	93	7.12	414 4	4.16	43	3.23	464	48.03	41	3.18	465 48.05
Age (years) (n, %)																																		
60-69		3.46		48.68		4.10	430		-	4.06	408		53	2.16		51.13		5.11	464			7.85	419 44.66		4.69	458 4			4.06	482			3.06	492 48.73
70-79	37	4.39		27.57		4.57	235			5.04	218		40	2.08		30.08	52	5.37	250			6.26	229 24.85	36	2.98	266 2			1.25	285			1.01	289 30.52
80 +	53	4.58	113	11.33	53	4.47	111	11.23	47	3.75	118	12.22	36	2.85	103	11.69	60	5.02	130	11.66	40	4.06	135 12.33	54	4.30	135 1	2.31	7	0.53	183	16.16	13	1.01	177 15.67
Race/Ethnicity (n, %)																																		
Hispanic		1.69	158	6.27		1.93		6.04		1.83		6.15	49	2.20			38	1.51		6.79		1.71	150 5.96	50	1.99		6.32		0.89		7.42		0.93	189 7.38
Non-Hispanic White		8.45		69.72		8.86		69.32		6.79	364			2.49		76.45		11.58	356			13.65	333 63.64		7.44		59.48		3.88	417			3.57	417 73.39
Non-Hispanic Black		1.31	209	7.88		1.71		7.49	75 22	2.96		6.41	48 9	1.90		7.04	31	1.12	231			1.52	216 8.11	35 22	1.39		7.99		0.75		8.63		0.26	254 9.11
Non-Hispanic Asian/Other	18	0.98	67	3.69	14	0.63	83	4.65	22	1.27	60	3.35	9	0.50	/4	4.18	26	1.27	80	4.11	18	1.29	84 4.13	22	1.14	84	4.25	/	0.33	98	5.02	7	0.31	98 5.04
Education (n, %)	80	4.71	210	16.99	79	4.71	216	16.00	102	6.08	192	15 44	93	4.52	171	16.17	74	5.63	271	19.05	71	4.91	252 18.27	77	5.34	268 1	8.37	35	2.04	210	21.66	35	2.19	309 21.47
<12th Grade Completed High School		4.71		16.99		4.71	216 173			6.08 3.32	192 161			4.52		20.27		2.73	182			4.91	252 18.27 164 16.20		5.34 2.82	268 I 181 I			2.04 1.42	201			0.72	309 21.47 209 20.07
>12 Grade		3.28 4.45		52.48		5.14	385		43		390			1.10		56.49	68	7.02	389			4.22 8.92	365 47.47		3.69	408 5			2.40	436			2.18	437 53.37
BMI (kg/m2) (n, %)	57	4.45	391	52.40	47	5.14	565	51.64	41	5.45	390	55.59	20	1.40	400	50.49	00	7.02	369	40.51	/1	0.92	505 47.47	49	3.09	400 .	1.88	20	2.40	450	55.12	20	2.10	457 55.57
Underweight (<18.5)	9	1.25	25	2.88	8	0.93	26	3.21	13	1.11	21	3.04	9	0.74	19	3.06	8	0.55	33	3.59	7	0.74	28 2.93	10	0.71	31	3.43	2	0.12	39	4.01	3	0.26	38 3.88
Normal Weight (18.5 to 24.9)		3.73		20.90		3.43		20.95	-	4.12		20.53	31	1.94		22.73	53	4.95	210			5.07	204 19.40	47	4.13		20.72		0.82		24.06		1.20	244 23.69
Overweight (25.0 to 29.9)		4.45		32.16		5.09	274		-	3.87	272			2.06		34.56	57	4.46	308			6.26	281 30.56		3.12	316 3			2.38	344			1.04	346 35.34
Obese (30.0+)		3.00		31.64		3.68	284		60		269			2.36		32.55	63	5.53	293			6.10	270 28.95			297 3			2.52	322			2.58	330 32.01
Alcohol Use (n, %)						0.00													-/1							-,								
Yes	79	7.28	535	65.32	89	7.81	523	64.93	109	8.04	502	64.85	71	3.85	528	69.82	105	9.97	527	61.64	114	11.74	489 59.74	89	7.07	542 6	64.51	43	4.30	588	67.30	40	3.89	591 67.71
No	61	5.13	241	22.27	62	5.21	235	22.05	70	4.57	226	22.55	52	3.04	221	23.29	56	4.59	273	23.80	62	6.25	247 22.27	61	4.29	268 2	24.12	23	1.44	306	26.96	21	1.11	308 27.29
Ever Smoked (n, %)																																		
Yes		6.06	-	46.55		7.29	417			6.67	401			3.10		49.45		8.13	441		83		422 43.76		6.55	446 4		45			48.82		3.13	502 49.04
No	79	6.38	360	41.00	78	5.83	358	41.43	96	6.19	341	41.42	66	4.00	348	43.45	86	7.38	401	40.47	105	10.29	359 38.06	75	5.44	411 4	2.37	29	2.54	458	45.33	32	1.96	454 45.88
Physically Active? (n, %)																																		
Yes		4.22		37.22		5.10	305			3.50	302		36	1.69		40.29	48	4.06	332			6.05	302 33.66		3.00	335 3			2.17	355		17		362 39.04
No	97	8.20	484	50.35	105	8.04	471	50.36	132	9.35	442	49.12	93	5.41	453	52.61	133	11.43	512	48.37	129	12.11	481 48.17	121	8.97	524 5	50.88	49	3.67	595	56.11	49	3.95	596 55.88
Diabetes (n, %)	42	264	200	18.09	42	2.37	200	10.47	0	2 72	170	17.16	49	2.67	177	18.00	50	2 77	212	16.70	40	2.04	200 16.05	51	2.07	212 1	7.41	28	2.36	235	18.11	21	1.25	241 19.09
Yes No	42 93	2.64 9.07		68.73		2.57 9.93	200 540		63 114	3.72	179 528			4.13		18.00 70.90		3.77 11.24	213 592		48 131	3.84	200 16.95 543 61.08		3.07 8.31	212 1 606 6	6.87		2.30 3.29		71.90		1.35 3.58	670 71.65
Borderline		0.72	36	3.75		0.83		3.63		0.58	37		5	4.15 0.29		4.01		0.49	392			0.72	40 3.81	9	0.59		3.75		0.19		4.15		0.15	47 4.18
Blood Pressure (n, %)	11	0.72	50	5.75	10	0.05	50	5.05	10	0.58	57	3.92	5	0.29	39	4.01	11	0.49	39	5.65	,	0.72	40 5.81	,	0.59	41	5.75	5	0.19	47	4.15	5	0.15	4/ 4.10
Normal	91	7.47	548	62.58	92	7.60	542	62.54	107	7.83	525	62.22	65	3.22	544	66.83	118	10.43	574	59.23	130	12.56	528 57.12	97	7.17	595 (2.55	49	4.42	643	65.27	38	3.56	654 66.13
High		4.96		25.00		5.54	234			5.02	219			3.88		26.08		5.06	270		58		255 24.72			264 2			1.42	307			1.52	304 28.79
Myocardial Infarction (n, %)																																		
Yes	18	2.15	68	8.42	15	2.14	70	8.46	21	1.99	63	8.57	14	1.02	65	9.43	23	1.98	70	8.29	15	1.62	68 7.70	22	1.93	71	8.35	12	1.41	81	8.87	5	0.51	88 9.76
No	128	10.28	725	79.15	142	11.01	705	78.40	166	10.87	680	78.58	115	6.08	696	83.47	158	13.53	773	76.20	173	16.55	714 74.12	143	10.05	787 7	9.67	62	0.87	868	85.28	61	4.57	869 85.15
Stroke (n, %)																																		
Yes		0.82		4.77		0.93		4.69		1.59		4.01		0.87		4.11		1.45	63		20		60 4.61		1.68		4.68		0.49		5.83		0.15	84 6.21
No	130	11.65	738	82.77	141	12.15	720	82.13	156	11.08	704	83.32	113	6.25	718	88.77	157	14.06	779	79.59	168	16.49	720 77.17	139	10.32	796 8	33.31	66	5.37	870	88.31	64	4.95	871 88.69
Coronary Heart Disease (n, %)	10	1.75		0.04	16	2.04	(2)	0.70	17	1.00	(1	0.21	10	0.00	60	0.65	- 24	2.22		0.47	20	0.17	(2. 0.02	- 22	1.50	(0)	0.00	12	1.55		0.15		0.51	04 10 10
Yes		1.75	64 724	8.94		2.04		8.70		1.38		9.31	10	0.69		9.66	24	2.22		8.47		2.17	62 8.03		1.50		9.20	13			9.15		0.51	84 10.19
No	151	10.73	124	78.59	141	11.15	707	/8.11	170	11.52	677	11.18	11/	6.23	699	83.42	15/	13.34	771	15.97	167	13.98	715 73.83	142	10.49	785 7	8.80	61	4.32	866	64.98	60	4.60	867 84.71
Head Trauma (n, %) Yes	20	2.14	98	11.74	15	1.70	102	12.14	17	1.42	97	12.25	8	0.56	102	13.17	35	2.65	85	10.52	31	2.81	78 10.25	22	2.12	87 1	0.98	13	0.95	107	12.33	9	0.92	111 12.26
No	-	10.33		75.78		11.48	673			1.42	97 646			6.56		79.71		12.05	757		156		704 71.54		2.12 9.89	770 7			5.02		81.81		4.18	845 82.64
Used Female Hormones (n, %)	120	10.55	0,5	75.10	142	.1.40	515	, 4.00	170	.1.40	540	, 4.70	121	5.50	0.00	19.11	140	.2.70	.51	, 5.75	150	10.40	, , , , , , , , , , , , , , , , , , , ,	155	7.07	710 1	7.01	01	5.02	541	01.01	51	2.10	0.0 02.04
Yes	21	4.01	239	62.69	24	3.80	235	62.97	44	6.71	217	60.40	17	1.89	238	66.50	39	10.11	227	55.31	60	15.63	192 51.18	36	6.24	230 5	59.18	21	4.29	245	61.13	27	4.64	238 60.76
No		6.48		26.81		6.96	146			7.58	132			5.65		25.96		7.90	156		46		142 25.07		6.97	156 2			1.97		32.61		1.44	193 33.16
Used Birth Control (n, %)																																		
Yes	11	2.47	159	46.00	8	1.46	161	46.81	22	4.03	148	44.43	6	0.68	159	48.32	30	7.41	141	36.69	36	10.44	127 36.99	14	2.54	157 4	4.57	10	2.04	161	45.07	14	2.17	157 44.97
No	48	7.77	226	43.76	54	9.07	219	42.66	75	10.13	198	41.41	49	6.77	206	44.22	57	10.60	237	42.30	68	13.04	204 39.53	67	10.29	227 4	2.61	29	4.28	265	48.62	24	3.96	269 48.91

Associations Between Exposures to Phthalate and BPA and Cognitive Test Scores

Exposures to the 12 phthalate metabolites and BPA and four cognitive scores (immediate and delayed recall, animal fluency, and DSST score) are summarized in tables 1.2 to 1.21. The cognitive test scores have been used as a surrogate indicator of brain health to assess cognitive decline and the possible development of mild cognitive impairment, dementia, and/or AD elderly patients as part of neuropsychological testing. Immediate Recall Scores and Exposure to BPA and Phthalates: Tables 1.2 to 1.5 present the GMs and GSEs of urinary phthalates and BPA levels among subjects with immediate recall scores. Table 1.2 presents GMs and GSEs of subjects who have measurable phthalate and BPA levels over the LOD by immediate recall cut-off scores. The phthalate metabolite, ECP, was significantly higher in subjects with immediate recall scores ≤ 13 compared to subjects who scored ≥ 14 (p < 0.05). Table 1.3 presents the age-specific GMs and GSEs for subjects who have measurable phthalate and BPA levels over the LOD by immediate recall cut-off score. In the 60-69 age group, the phthalate metabolite MEP was significantly higher in subjects who scored ≥ 14 than subjects who scored ≤ 13 (p<0.05). In the 70-79 age group, the GM mean of the phthalate metabolite MBP to be higher in subjects who scored ≤ 13 than in subjects who scored ≥ 14 . (p<0.05). Table 1.4 presents the gender-specific GMs and GSEs for subjects who have measurable phthalate and BPA levels over the LOD by immediate recall cut-off score. Several phthalates were significantly higher in females with immediate recall scores ≤ 13 than in females who scored \geq 14. ECP and MOH were found to be significantly higher in females with immediate recall scores ≤ 13 than in the ≥ 14 group (p<0.05), while MBP was found to be very significant in females who scored ≤ 13 than those who scored ≥ 14 group

(p<0.001). Table 1.5 presents race-specific geometric GMs and GSEs for subjects who have measurable phthalate and BPA levels over the LOD by immediate recall cut-off score. Only one significant result was found with phthalate metabolite MIB being significantly higher in subjects who scored \geq 14 score compared to subjects who scored \leq 13 (p<0.05), among Asian/Others racial group. Table 1.6 presents the estimated ORs of phthalate and BPA levels by immediate recall scores. For ECP in the \geq 50th percentile among females compared to the reference group, ECP was significantly associated with lower immediate recall scores in the unadjusted model (OR=2.591, 95% CI: 1.240-5.412), in adjusted model #1 (OR=2.361, 95% CI=1.0998-5.078), and adjusted model #2 (OR=2.402, 95% CI: 1.036-5.566). In the \geq 50th percentile among females compared to the reference group, MBP was found to be significantly associated with lower immediate test scores in the unadjusted (OR=2.669, 95% CI: 1.394-5.111) and adjusted model #1 (OR=2.157, 95% CI: 1.086-4.283).

60 years of age, NH	ANES 201	1-2014, ove	r the LOD)		Ŭ
		Geom	etric Mean	(ng/ml) (GS	SE, N)	
EEDC	Immedia	te Recall S	core≤13	Immedia	te Recall S	core ≥14
	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.57	0.2472,	141	2.65	0.25	792
Mono (carboxyoctyl) Phthalate - COP	17.25	2.14	143	19.03	1.58	793
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	14.65	1.21	142 *	11.72	0.61	793
Mono-n-butyl Phthalate - MBP	11.27	1.10	140	9.71	0.53	783
Mono-(3-carboxypropyl) Phthalate - MC1	2.91	0.37	138	2.68	0.18	755
Mono-ethyl Phthalate -MEP	45.78	7.12	143	57.46	5.22	794
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.44	0.77	143	7.12	0.35	793
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.75	0.53	142	4.80	0.25	793
Mono-benzyl Phthalate - MZP	4.80	0.54	140	4.10	0.21	784
Mono-isobutyl Phthalate - MIB	5.84	0.67	142	6.28	0.28	785
Bisphenol A - BPA	1.41	0.15	130	1.55	0.08	755

Table 1.2 Geometric Mean Urinary Phthalate and BPA Levels by Immediate Recall Cut-Off Score for Subjects >=

NHANES sampling weight applied before calculating the geometric mean.

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDCs levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

		Geometric	Mean (ng/m	l) (GSE, N)	, Age 60-6	9		Geometric	Mean (ng/m	l) (GSE, N),	, Age 70-7)		Geometr	ic Mean (ng/i	nl) (GSE	, N), Age 8()+
EEDC	Immedia	te Recall S	core≤13	Immedia	te Recall S	core≥14	Immedia	ate Recall	Score≤13	Immedia	te Recall	Score≥14	Immedi	ate Recall	Score≤13	Imme	diate Reca	ll Score≥14
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	2.38	0.27	53	2.54	0.18	439	3.34	0.74	36	2.85	0.25	240	2.12	0.21	52	2.66	0.24	113
Mono (carboxyoctyl) Phthalate - COP	17.15	3.06	55	18.12	2.07	438	20.93	5.40	36	21.85	2.02	242	14.33	2.12	52	16.81	2.04	113
Mono-(2-ethyl-5-carboxypentyl) Phthalate - ECP	12.99	1.92	54	10.70	0.79	438	15.40	2.41	36	13.30	0.76	242	15.31	1.99	52	12.68	0.76	113
Mono-n-butyl Phthalate - MBP	8.23	1.49	54	9.31	0.65	432	12.66	1.25	36 *	9.81	0.83	239	12.93	1.92	50	11.30	1.27	112
Mono-(3-carboxypropyl) Phthalate - MC1	2.55	0.25	50	2.50	0.22	418	4.04	1.30	36	2.91	0.29	229	2.32	0.26	52	2.93	0.31	108
Mono-ethyl Phthalate -MEP	41.12	6.06	55	60.05	7.05	439 *	64.48	14.11	36	58.66	7.45	242	35.60	8.22	52	45.23	5.30	113
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.03	1.08	55	6.59	0.48	438	9.51	1.81	36	8.04	0.44	242	7.81	0.96	52	7.35	0.61	113
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	4.80	0.81	54	4.33	0.31	439	6.53	1.08	36	5.48	0.28	242	5.84	0.72	52	5.43	0.44	112
Mono-benzyl Phthalate - MZP	3.84	1.06	54	4.05	0.32	434	4.12	0.83	36	3.82	0.30	239	5.02	0.89	50	5.13	0.54	111
Mono-isobutyl Phthalate - MIB	5.31	1.10	54	6.53	0.37	436	7.37	0.93	36	6.05	0.36	238	5.01	0.61	52	5.83	0.54	111
Bisphenol A - BPA	1.52	0.20	50	1.50	0.10	421	1.68	0.38	31	1.66	0.11	227	1.14	0.18	49	1.51	0.15	107
The EEDCs were creatinine-adjusted then log transf	formed prio	r to analyse:	s. Extreme c) and EEDC	ig the geome levels below		vere taken i	nto account u	using the ap	ppropriate d	omain staten	ient in SA	S. *p<0.05	,**p<0.01

EEDC	Geometric Mean (ng/1	ml) (GSE, N), Hispanic	Geometric Mean (ng/ml) (G	SE, N), Non-Hispanic White
EEDC	Immediate Recall Score ≤ 13	Immediate Recall Score≥14	Immediate Recall Score ≤ 13	Immediate Recall Score≥1
Mono (carboxynonyl) Phthalate - CNP	2.2965 (0.1286, 37)	2.2965 (0.1286, 158)	2.4676 (0.2737, 54)	2.8334 (0.1894, 360)
Mono (carboxyoctyl) Phthalate - COP	23.8754 (3.4422, 37)	19.3870 (1.7161, 158)	17.3626 (3.1119, 54)	19.9950 (2.0021, 360)
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	21.0143 (2.3875, 37)	17.0325 (1.2343, 158)	13.9929 (1.6572, 54)	11.4191 (0.6811, 359)
Mono-n-butyl Phthalate - MBP	15.0088 (1.3451, 37)	13.4964 (1.0022, 156)	10.2638 (1.2350, 53)	9.1497 (0.6380, 354)
Mono-(3-carboxypropyl) Phthalate - MC1	2.9123 (0.5823, 36)	2.7870 (0.2652, 149)	2.8808 (0.5064, 53)	2.7439 (0.2397, 344)
Mono-ethyl Phthalate -MEP	96.4011 (37.1953, 37)	103.54 (10.1955, 158)	37.1518 (7.5889, 54)	52.6929 (5.5850, 360)
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	12.1871 (1.5294, 37)	9.8256 (0.8115, 158)	7.9610 (1.0074, 54)	6.9275 (0.3958, 359)
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	7.8263 (0.8892, 37)	6.3021 (0.5447, 158)	5.6054 (0.7171, 53)	4.6890 (0.2825, 359)
Mono-benzyl Phthalate - MZP	4.5260 (1.0839, 37)	3.7164 (0.2857, 158)	4.4628 (0.7253, 53)	4.0416 (0.2188, 354)
Mono-isobutyl Phthalate - MIB	8.9347 (0.6799, 37)	9.2662 (0.5774, 158)	5.0993 (0.7162, 54)	5.7985 (0.2729, 356)
Bisphenol A - BPA	1.7034 (0.3919, 32)	1.5965 (0.1383, 153)	1.2953 (0.1527, 52)	1.5743 (0.1014, 343)
EEDC	Geometric Mean (ng/ml) (C	SE, N), Non-Hispanic Black	Geometric Mean (ng/ml) (GSE, N), Asian/Other
EEDC	Immediate Recall Score ≤ 13	Immediate Recall Score ≥ 14	Immediate Recall Score ≤ 13	Immediate Recall Score ≥
Mono (carboxynonyl) Phthalate - CNP	2.2298 (0.1864, 35)	1.9424 (0.1190, 209)	4.9033 (2.8533, 15)	1.8193 (0.1971, 65)
Mono (carboxyoctyl) Phthalate - COP	16.7325 (2.3525, 35)	14.3818 (1.2288, 208)	9.5483 (2.7300, 17)	13.2066 (2.7433, 67)
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	12.4860 (2.8316, 34)	10.7172 (0.7589, 209)	14.0561 (1.7512, 17)	12.1370 (0.8803, 67)
Mono-n-butyl Phthalate - MBP	10.3880(1.6886, 35)	10.7279 (0.5481, 206)	17.1321 (1.9694, 15)	13.5408 (2.8390, 67)
Mono-(3-carboxypropyl) Phthalate - MC2	2.7616 (0.3375, 32)	2.1801 (0.1632, 204)	3.3319 (0.7287, 17)	2.4152 (0.4367, 58)
Mono-ethyl Phthalate -MEP	59.8544 (12.6913, 35)	83.9700 (8.4832, 209)	49.8820 (13.4898, 17)	48.2367 (15.6196, 67)
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.9757 (1.6401, 35)	7.1347 (0.4916, 209)	6.6561 (0.8808, 17)	6.8298 (0.8575, 67)
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.4584 (1.1728, 35)	4.8532 (0.3093, 209)	4.4377 (0.4585, 17)	4.5599 (0.5473, 67)
Mono-benzyl Phthalate - MZP	4.2698 (1.3594, 34)	4.6965 (0.3901, 207)	3.1107 (0.9491, 16)	4.7131 (1.8994, 65)
Mono-isobutyl Phthalate - MIB	7.6339 (0.6272, 34)	7.5526 (0.4351, 205)	6.1213 (1.2606, 17)	9.8494 (1.8704, 66) *
	1.4074 (0.2446, 35)	1.4106 (0.06072, 201)	2.3009 (0.8958, 11)	1.2806 (0.1923, 58)
Bisphenol A - BPA				

 		(8)	
using the appropriate	domain statement in SAS	*p<0.05, **	*p<0.01 ***	p<0.001	

		Geon	netric Mean	(ng/ml) (GS	SE, N)			Geo	metric Mean	(ng/ml) (GS	E, N)	
EEDC			М	ale					Fen	ale		
EEDC	Immediat	te Recall S	core≤13	Immedia	te Recall S	core≥14	Immedia	ate Recall	Score ≤13	Immedia	te Recall S	Score≥14
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	2.50	0.35	78	2.34	0.15	392	2.69	0.37	63	2.97	0.25	400
Mono (carboxyoctyl) Phthalate - COP	14.97	1.82	79	16.83	1.27	393	20.97	4.18	64	21.32	2.72	400
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	12.68	1.27	79	10.56	0.60	394	17.87	2.05	63 *	12.90	0.84	399
Mono-n-butyl Phthalate - MBP	9.11	1.20	77	9.33	0.74	387	15.01	1.25	63 ***	10.07	0.54	396
Mono-(3-carboxypropyl) Phthalate - MC1	2.72	0.47	77	2.49	0.20	376	3.19	0.53	61	2.87	0.26	379
Mono-ethyl Phthalate -MEP	41.95	8.92	79	54.22	6.17	394	51.64	9.54	64	60.62	6.80	400
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	7.64	0.84	79	6.69	0.41	394	9.69	1.20	64	7.53	0.43	399
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.12	0.60	78	4.52	0.29	393	6.73	0.82	64 *	5.07	0.30	400
Mono-benzyl Phthalate - MZP	3.46	0.43	77	3.63	0.28	389	5.83	1.11	63	4.58	0.25	395
Mono-isobutyl Phthalate - MIB	4.99	0.64	79	5.87	0.32	390	7.27	0.87	63	6.69	0.34	395
Bisphenol A - BPA	1.34	0.20	69	1.39	0.08	379	1.50	0.21	61	1.71	0.11	376
•	NHAN	ES samplin	ig weight an	plied before	calculating	the geome	ric mean.			•		

			-	r			,	1	2014
EEDC	≤13/≥14	Unadjusted Odds Ratio ¹	95% CI	≤13 / ≥14	Adjusted Odds Ratio #1 ²	95% CI	≤13 / ≥14	Adjusted Odds Ratio #2 ³	95% CI
CNP - Above/Below 50th Percentile - Males	00/100	4.00		20/100	4.00		20/100	4.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	38/199 41/195	1.00 1.403	0.665-2.962	38/198 41/195	1.00 1.401	0 (42 2 052	38/190 40/189	1.00 1.261	0 475 2 245
CNP - Above/Below 50th Percentile - Females	41/193	1.403	0.005-2.902	41/193	1.401	0.643-3.053	40/189	1.201	0.475-3.345
< LOD to 50th percentile (reference)	30/202	1.00		30/201	1.0		27/195	1.00	
\geq 50th percentile	34/198	0.816	0.461-1.442	34/198	1.045	0.585-1.864	32/190	1.235	0.704-2.167
COP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	39/197	1.00		39/197	1.00		38/190	1.00	
\geq 50th percentile	40/197	0.959	0.485-1.898	40/196	1.188	0.604-2.335	40/189	1.079	0.499-2.331
COP - Above/Below 50th Percentile - Females	22/100	1.00		22/109	1.00		29/193	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	33/199 31/201	0.770	0.388-1.526	33/198 31/201	1.00 0.795	0.422-1.498	29/193 30/192	1.00 1.044	0.531-2.051
ECP - Above/Below 50th Percentile - Males	51/201	0.770	0.500-1.520	51/201	0.775	0.422-1.470	50/172	1.044	0.551-2.051
< LOD to 50th percentile (reference)	30/206	1.00		30/206	1.00		30/198	1.00	
\geq 50th percentile	49/188	1.772	0.764-4.110	49/187	1.421	0.612-3.298	48/181	1.195	0.614-2.328
ECP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	24/208	1.00		24/207	1.00		22/200	1.00	
\geq 50th percentile	40/192	2.591 *	1.240-5.412	40/192	2.361 *	1.098-5.078	37/185	2.402 *	1.036-5.566
MBP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	39/197	1.00		40/196	1.00		38/190	1.00	
\geq 50th percentile	40/197	1.012	0.459-2.232	39/197	0.638	0.320-1.272	40/189	0.748	0.375-1.494
MBP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference)	23/209	1.00		23/208	1.00		21/201	1.00	
\geq 50th percentile	41/191	2.669 **	1.394-5.111	41/191	2.157 *	1.086-4.283	38/184	2.141	0.904-5.072
MC1 - Above/Below 50th Percentile - Males	41/171	2.009	1.374-3.111	41/171	2.137	1.000-4.203	30/104	2.141	0.904-5.072
< LOD to 50th percentile (reference)	34/202	1.00		34/202	1.00		33/195	1.00	
\geq 50th percentile	45/192	1.223	0.563-2.654	45/191	1.227	0.550-2.739	45/184	1.063	0.424-2.666
MC1 - Above/Below 50th Percentile - Females			0.000 2.001			0.000 21107			01121 21000
< LOD to 50th percentile (reference)	33/199	1.00		33/198	1.00		29/193	1.00	
\geq 50th percentile	31/201	0.772	0.419-1.424	31/201	0.793	0.422-1.490	30/192	0.791	0.429-1.456
MEP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	45/191	1.00		45/191	1.00		44/184	1.00	
\geq 50th percentile	34/203	1.102	0.445-2.726	34/202	1.265	0.529-3.021	34/195	1.235	0.608-2.506
MEP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	33/199	1.00		33/198	1.00		29/193	1.00	
\geq 50th percentile	31/201	0.806	0.414-1.570	31/201	0.708	0.358-1.401	30/192	1.026	0.479-2.196
MHH - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference)	33/203	1.00		33/203	1.00		33/195	1.00	
\geq 50th percentile	46/191	1.485	0.681-3.239	46/190	1.369	0 621 2 072	45/193	1.370	0 7 2 2 5 7 9
MHH - Above/Below 50th Percentile - Females	40/191	1.465	0.081-3.239	40/190	1.509	0.631-2.972	43/164	1.570	0.728-2.578
< LOD to 50th percentile (reference)	28/204	1.00		28/203	1.00		27/195	1.00	
\geq 50th percentile	36/196	1.829	0.899-3.722	36/196	1.549	0.747-3.212	32/190	1.347	0.574-3.158
MOH - Above/Below 50th Percentile - Males		- 10 - 27		0.0.070					
< LOD to 50th percentile (reference)	30/206	1.00		30/206	1.00		30/198	1.00	
\geq 50th percentile	49/188	1.756	0.792-3.896	49/187	1.439	0.663-3.124	48/181	1.416	0.652-3.072
MOH - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	29/203	1.00		29/202	1.00		26/196	1.00	
\geq 50th percentile	35/197	1.677	0.797-3.528	35/197	1.338	0.631-2.835	33/189	1.175	0.508-2.719
MZP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	40/196	1.00		40/196	1.00		39/189	1.00	
\geq 50th percentile	39/198	0.959	0.560-1.644	39/197	1.011	0.600-1.704	39/190	1.168	0.652-2.090
MZP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	31/201	1.00		31/200	1.00		29/193	1.00	
\geq 50th percentile	33/199	1.349	0.776-2.344	33/199	1.023	0.554-1.888	30/192	0.709	0.416-1.208
MIB - Above/Below 50th Percentile - Males	40/107	1.00		40/107	1.00		40/199	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	40/196 39/198	1.00 0.953	0.403-2.252	40/196 39/197	1.00 0.846	0 222 2 221	40/188 38/191	1.00 0.720	0.205 1.022
≥ 50th percentile MIB - Above/Below 50th Percentile - Females	37/198	0.933	0.405-2.252	37/197	0.840	0.322-2.221	30/191	0.720	0.285-1.823
KIB - Above/Berow Solil Percentile - Penales < LOD to 50th percentile (reference)	28/204	1.00		28/203	1.00		26/196	1.00	
\geq 50th percentile	36/196	1.504	0.723-3.130	36/196	1.190	0.523-2.709	33/189	1.224	0.484-3.099
BPA - Above/Below 50th Percentile - Males	55,170	1.507	5.125 5.150	56,170			55,107	1.227	5.107 5.077
< LOD to 50th percentile (reference)	43/193	1.00		43/193	1.00		42/186	1.00	
\geq 50th percentile	36/201	0.736	0.367-1.474	36/200	0.718	0.378-1.366	36/193	0.663	0.350-1.257
BPA - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	37/196	1.00		37/195	1.00		36/185	1.00	
\geq 50th percentile	27/204	0.659	0.379-1.147	27/204	0.702	0.408-1.208	23/200	0.495	0.244-1.004

NHANES sampling weight applied before calculating the geometric mean.

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDC levels were into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01

¹ Unadjusted model. ²Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

Delayed Recall Scores and Exposure to BPA and Phthalates: Tables 1.7 to 1.11 present the GMs and GSEs of urinary phthalates and BPA levels among subjects with delayed recall scores. Table 1.7 presents GMs and GSEs of subjects who have measurable phthalate and BPA levels over the LOD by delayed recall cut-off scores. The crude GM levels of 6 of the 10 phthalate metabolites, ECP, MBP, MEP, MHH, MOH, and MZP, are higher in subjects that scored ≤ 3 . No significant differences were found. Table 1.8 presents the age-specific GMs and GSEs for subjects who have measurable phthalate and BPA levels over the LOD by delayed recall cut-off score. No significant differences were found in any of the age groups. Table 1.9 presents the gender-specific GMs and GSEs for subjects who have measurable phthalate and BPA levels over the LOD by delayed recall cut-off score. There were several significant findings amongst females, with GM mean levels of ECP (p<0.05), MBP (p<0.001), MOH (p<0.05), and MZP (p<0.05) being higher in the subjects with a delayed recall score ≤ 3 compared to subjects with a delayed recall score \geq 4. Table 1.10 presents race-specific geometric GMs and GSEs for subjects who have measurable phthalate and BPA levels over the LOD by delayed recall cut-off score. Significant findings were found, with the GM for MIB among Asian/other being significantly higher in subjects who scored ≥ 14 compared to those who scored ≤ 13 (p<0.05). The GMs for MHH, MOH, and MZP among Hispanics were significantly higher (p<0.05) in those who scored ≤ 3 compared to those who scored ≥ 4 .

Table 1.11 presents estimated ORs of phthalate and BPA levels by delayed recall cut-off scores. For the phthalate ECP in the \geq 50th percentile among females compared to the reference group, ECP was significantly associated with lower delayed recall scores in the unadjusted model (OR=2.218, 95% CI: 1.084-4.538), but not in the adjusted

models. For the phthalate MBP in the \geq 50th percentile among females compared to the reference group, MBP was significantly associated with lower delayed recall scores (OR=2.174, 95% CI: 1.026-4.6605) in the unadjusted model. MBP was not found to be significantly associated with lower test scores in the adjusted models. For the phthalate MEP among females in the \geq 50th percentile compared to the reference group, MEP concentrations were found to be significantly associated with lower delayed recall scores in the unadjusted model (OR=2.019, 95% CI: 1.027-3.969), adjusted model #1 (OR=2.409, 95% CI: 1.214-4.778), and adjusted model #2 (OR=2.443, 95% CI: 1.358-4.393). For the phthalate MOH among females in the \geq 50th percentile compared to the reference group, MOH concentrations were found to be significantly associated with lower delayed recall scores in the unadjusted model (OR=2.386, 95% CI: 1.134-5.021). No significant associations were found in the adjusted models. For the phthalate MZP in females in the \geq 50th percentile compared to the reference group, MZP concentrations were found to be significantly associated with lower delayed recall scores in the unadjusted model (OR=1.798, 95% CI: 1.068-3.026). No significant associations were found in the adjusted models. For the phthalate MIB among females in the \geq 50th percentile, MIB concentrations were found to be significantly associated with lower delayed recall scores (OR=1.844, 95% CI: 1.045-3.252) when compared to the reference group in the unadjusted model. No significant associations were found in the adjusted models.

	Geometric Mean	(ng/ml) (GSE, N)
EEDC	Delayed Recall Score ≤3	Delayed Recall Score ≥ 4
Mono (carboxynonyl) Phthalate - CNP	2.3874 (0.2028, 156)	2.6792 (0.1433, 773)
Mono (carboxyoctyl) Phthalate - COP	16.3583 (2.4210, 157)	19.1739 (1.5721, 775)
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	13.9383 (1.1101, 156)	11.7602 (0.5800, 775)
Mono-n-butyl Phthalate - MBP	11.7959 (1.1573, 154)	9.6276 (0.5050, 765)
Mono-(3-carboxypropyl) Phthalate - MC1	2.6840 (0.2796, 152)	2.7018 (0.1851, 737)
Mono-ethyl Phthalate -MEP	61.6129 (8.4627, 157)	55.1030 (4.6833, 776)
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.2016 (0.7581, 157)	7.1290 (0.3341, 775)
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.7034 (0.4356, 157)	4.7910 (0.2419, 774)
Mono-benzyl Phthalate - MZP	4.7526 (0.6688, 153)	4.0388 (0.1976, 767)
Mono-isobutyl Phthalate - MIB	5.8055 (0.6299, 156)	6.2925 (0.2863, 767)
Bisphenol A - BPH	1.4799 (0.1033, 150)	1.5383 (0.07611, 732)
NHANES sampling weight applie	ed before calculating the geom	etric mean.
The EEDCs were creatinine-adjusted then log trar mg/dL and >300 mg/dL) and EEDC levels below domain statement in SAS	· ·	ount using the appropriate

Table 1.7 Geometric Mean Urinary Phthalate and BPA Levels by Delayed Recall Cut-Off Score for
Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

	Ge	ometric M	ean (ng/m	l) (GSE, N	I), Age 60	-69	Ge	ometric M	ean (ng/m	l) (GSE, N	I), Age 70-	-79	Ge	eometric N	/lean (ng/r	nl) (GSE, 1	N), Age 8() +
EEDC	Delayed	Recall S	core≤3	Delayed	l Recall S	core≥4	Delayee	l Recall So	core≤3	Delayed	l Recall S	core≥4	Delayed	l Recall S	core≤3	Delayed	l Recall S	core≥4
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	2.24	0.39	60	2.55	0.16	429	2.40	0.45	43	3.01	0.28	233	2.52	0.29	53	2.50	0.22	111
Mono (carboxyoctyl) Phthalate - COP	16.69	4.73	61	18.12	2.04	429	15.60	4.41	43	22.95	2.25	235	16.86	2.28	53	15.73	2.12	111
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	12.81	1.83	60	10.68	0.75	429	13.88	2.04	43	13.51	0.73	235	15.12	1.66	53	12.65	0.72	111
Mono-n-butyl Phthalate - MBP	12.42	3.42	60	9.01	0.59	423	11.18	1.00	43	9.99	0.87	232	11.90	1.47	51	11.66	1.34	110
Mono-(3-carboxypropyl) Phthalate - MC1	2.53	0.21	58	2.50	0.21	407	2.85	0.81	43	3.09	0.30	222	2.66	0.36	51	2.75	0.28	108
Mono-ethyl Phthalate -MEP	100.17	31.88	61	56.05	5.83	430	64.46	11.90	43	58.60	8.01	235	37.64	9.16	53	44.05	5.32	111
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.09	1.02	61	6.57	0.46	429	8.69	1.60	43	8.15	0.42	235	7.83	0.97	53	7.30	0.54	111
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.12	0.63	61	4.30	0.30	429	6.03	0.91	43	5.54	0.26	235	5.95	0.64	53	5.36	0.44	110
Mono-benzyl Phthalate - MZP	4.83	1.49	60	3.98	0.31	425	4.09	0.90	42	3.83	0.31	233	5.50	0.88	51	4.93	0.53	109
Mono-isobutyl Phthalate - MIB	5.14	1.30	60	6.56	0.35	427	7.17	0.80	43	6.06	0.37	231	5.22	0.73	53	5.73	0.65	109
Bisphenol A - BPA	1.57	0.22	61	1.49	0.09	408	1.54	0.23	39	1.68	0.12	219	1.35	0.18	50	1.41	0.18	105
			N	HANES sa	ampling w	eight appli	ed before	calculating	the geom	etric mean	1.							

		Geome	tric Mean	(ng/ml) (0	GSE, N)			Geome	etric Mean	(ng/ml) (C	GSE, N)	
EEDC			М	ale					Fen	nale		
EEDC	Delayed	l Recall So	core≤3	Delayed	Recall S	core≥4	Delayed	l Recall S	Score≤3	Delayed	l Recall Se	core≥4
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.06	0.17	89	2.43	0.16	378	2.94	0.40	67	2.93	0.27	395
Mono (carboxyoctyl) Phthalate - COP	13.30	2.07	89	17.19	1.37	380	21.74	4.04	68	21.18	2.71	395
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	11.68	1.18	89	10.67	0.61	381	17.79	2.05	67 *	12.86	0.83	394
Mono-n-butyl Phthalate - MBP	10.33	1.54	87	9.12	0.69	374	14.09	1.51	67 ***	10.11	0.53	391
Mono-(3-carboxypropyl) Phthalate - MC1	2.49	0.25	88	2.52	0.22	362	2.99	0.57	64	2.88	0.25	375
Mono-ethyl Phthalate -MEP	64.55	13.13	89	50.28	4.94	381	57.80	11.19	68	59.91	6.77	395
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	7.22	0.81	88	6.74	0.40	381	9.77	1.28	68	7.51	0.42	394
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	4.87	0.49	89	4.55	0.29	379	7.08	0.79	68 *	5.02	0.30	395
Mono-benzyl Phthalate - MZP	3.72	0.54	86	3.58	0.28	377	6.59	1.23	67 *	4.51	0.23	390
Mono-isobutyl Phthalate - MIB	4.88	0.64	89	5.91	0.34	377	7.40	0.75	67	6.67	0.32	390
Bisphenol A - BPA	1.36	0.12	85	1.39	0.08	361	1.65	0.21	65	1.69	0.11	371

NHANES sampling weight applied before calculating the geometric mean.

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDC levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

	G	eometric M	Mean (ng/r	nl) (GSE,	N), Hispar	iic	Geomet	ric Mean (ng/ml) (G	SE, N), No	on-Hispani	c White
EEDC	Delayed	l Recall S	core≤3	Delayed	Recall S	core≥4	Delayed	Recall Sc	ore≤3	Delayed	Recall S	core≥4
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	2.49	0.31	42	2.29	0.11	152	2.47	0.28	53	2.84	0.18	360
Mono (carboxyoctyl) Phthalate - COP	20.00	2.90	42	20.20	1.66	152	16.36	3.32	53	20.17	2.02	360
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	21.78	2.08	42	16.78	1.22	152	12.95	1.29	53	11.50	0.65	359
Mono-n-butyl Phthalate - MBP	14.98	1.23	42	13.51	1.07	150	11.53	1.60	52	9.00	0.60	354
Mono-(3-carboxypropyl) Phthalate - MC1	2.69	0.52	40	2.85	0.24	144	2.73	0.36	52	2.76	0.24	344
Mono-ethyl Phthalate -MEP	132.82	49.20	42	94.33	10.34	152	54.81	10.04	53	50.27	4.92	360
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	13.09	1.18	42 *	9.55	0.76	152	7.53	0.90	53	6.96	0.37	359
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	8.30	0.76	42 *	6.15	0.53	152	5.41	0.53	53	4.70	0.27	358
Mono-benzyl Phthalate - MZP	5.38	1.13	42 *	3.51	0.30	152	5.10	0.97	52	3.97	0.20	354
Mono-isobutyl Phthalate - MIB	8.95	0.72	42	9.32	0.56	152	5.16	0.76	53	5.80	0.27	356
Bisphenol A - BPA	1.75	0.27	39	1.58	0.15	145	1.44	0.14	52	1.56	0.10	342
	Geomet	tric Mean ((ng/ml) (G	SE, N), N	on-Hispani	ic Black	Geo	ometric Me	an (ng/m	l) (GSE, N), Asian/O	her
EEDC	Delayed	l Recall S	core≤3	Delayed	l Recall S	core≥4	Delayed	Recall Sc	core≤3	Delayed	l Recall S	core≥4
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	1.87	0.18	48	1.98	0.11	195	2.50	0.89	13	2.19	0.39	66
Mono (carboxyoctyl) Phthalate - COP	15.71	2.54	48	14.25	1.10	194	9.92	3.30	14	12.83	2.65	69
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	12.48	2.26	47	10.58	0.78	195	13.48	1.61	14	12.35	0.77	69
Mono-n-butyl Phthalate - MBP	9.15	1.61	48	11.08	0.64	192	16.09	3.54	12	13.99	2.70	69
Mono-(3-carboxypropyl) Phthalate - MC2	2.37	0.28	46	2.20	0.15	189	2.90	0.97	14	2.56	0.43	60
Mono-ethyl Phthalate -MEP	59.65	10.61	48	85.98	8.94	195	33.44	11.36	14	52.11	15.46	69
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.05	1.40	48	7.23	0.55	195	6.90	1.09	14	6.75	0.76	69
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.21	0.95	48	4.88	0.33	195	4.82	0.78	14	4.48	0.50	69
Mono-benzyl Phthalate - MZP	3.48	0.89	46	4.94	0.44	194	2.66	0.41	13	4.74	1.73	67
Mono-isobutyl Phthalate - MIB	7.03	0.88	47	7.70	0.51	191	4.94	1.67	14	9.85	1.69	68 *
Bisphenol A - BPA	1.36	0.14	47	1.42	0.07	188	1.69	0.53	12	1.40	0.23	57
	LIANES		ight oppli	ad bafara	aalaulating	the george	netric mear					

	rinary Phth	alate and BPA	Levels by Delay		ut-on score to	or Subjects >= 0	o years or	age, NHANES	2011-2014
EEDC	≤3 /≥4	Unadjusted Odds Ratio ¹	95% CI	≤3 / ≥4	Adjusted Odds Ratio #1 ²	95% CI	≤3 / ≥4	Adjusted Odds Ratio #2 ³	95% CI
CNP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	46/189	1.00		46/188	1.00		43/183	1.00	
≥ 50th percentile	43/192	0.783	0.407 -1.505	43/192	0.738	0.358-1.522	41/187	0.662	0.307-1.42
CNP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	38/193	1.00		38/193	1.00		35/186	1.00	
≥ 50th percentile	30/202	0.744	0.408356	30/201	0.951	0.511-1.769	31/191	1.059	0.579-1.93
COP - Above/Below 50th Percentile - Males							/		
< LOD to 50th percentile (reference)	41/194	1.00		41/193	1.00		38/189	1.00	
≥ 50th percentile COP - Above/Below 50th Percentile - Females	48/187	0.694	0.297-1.619	48/187	0.747	0.315-1.774	46/181	0.754	0.389-1.46
	25/100	1.00		25/106	1.00		22/190	1.00	
< LOD to 50th percentile (reference)	35/196 33/199	1.00	0 492 1 699	35/196	1.00 0.950	0 404 1 927	33/189 33/188	1.00	0 500 2 22
≥ 50th percentile ECP - Above/Below 50th Percentile - Males	33/199	0.903	0.483-1.688	33/198	0.950	0.494-1.827	33/188	1.090	0.509-2.33
< LOD to 50th percentile (reference)	35/200	1.00		35/199	1.00		32/195	1.00	
\geq 50th percentile	54/181	1.443	0.639-3.258	54/181	1.227	0.495-3.045	52/155	1.136	0.503-2.56
ECP - Above/Below 50th Percentile - Females	54/101	1.445	0.035-3.258	54/101	1.227	0.455-5.045	52/1/5	1.150	0.505-2.50
< LOD to 50th percentile (reference)	26/205	1.00		26/205	1.00		25/196	1.00	
\geq 50th percentile	42/190	2.218 *	1.084-4.538	42/189	1.950	0.941-4.043	41/181	1.983	0.858-4.58
MBP - Above/Below 50th Percentile - Males	,			,			,		
< LOD to 50th percentile (reference)	40/195	1.00		40/194	1.00		37/190	1.00	
≥ 50th percentile	49/186	1.336	0.651-2.740	49/186	1.143	0.531-2.460	47/180	1.112	0.524-2.36
MBP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	29/202	1.00		29/202	1.00		28/193	1.00	
≥ 50th percentile	39/193	2.174 *	1.026-4.605	39/192	1.698	0.749-3.852	38/184	1.742	0.698-4.34
MC1 - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	37/198	1.00		37/197	1.00		34/193	1.00	
≥ 50th percentile	52/183	0.979	0.459-2.087	52/183	0.952	0.418-2.172	50/177	0.971	0.412-2.2
MC1 - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	38/193	1.00		38/193	1.00		36/185	1.00	
≥ 50th percentile	30/202	0.584	0.314-1.084	30/201	0.570	0.298-1.092	30/192	0.539	0.275-1.05
MEP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	40/195	1.00		40/194	1.00		37/190	1.00	
≥ 50th percentile	49/186	2.019 *	1.027-3.969	49/186	2.409 *	1.214- 4.778	47/180	2.443 **	1.358-4.39
MEP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference)	31/200	1.00		32/199	1.00		29/192	1.00	
\geq 50th percentile	37/195	0.952	0.528-1.716	36/195	0.836	0.443-1.579	37/185	1.215	0.596-2.47
MHH - Above/Below 50th Percentile - Males	577155	0.552	0.020 20/20	50,155	0.050	01110 21070	57/105	11215	0.000 2.11
< LOD to 50th percentile (reference)	39/196	1.00		39/195	1.00		36/191	1.00	
≥ 50th percentile	50/185	1.141	0.412-3.156	50/185	1.067	0.351-3.243	48/179	1.232	0.463-3.2
MHH - Above/Below 50th Percentile - Females							•		
< LOD to 50th percentile (reference)	26/205	1.00		26/205	1.00		25/196	1.00	
≥ 50th percentile	42/190	2.411 *	1.146 5.072	42/189	2.120 **	1.013-4.436	41/181	2.245	0.944-5.34
MOH - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	36/199	1.00		36/198	1.00		33/194	1.00	
≥ 50th percentile	53/182	1.315	0.538-3.215	53/182	1.131	0.438-2.920	51/176	1.194	0.498-2.8
MOH - Above/Below 50th Percentile - Females		4.00					24/207	4.00	
	25/200			25/205			24/197	1.00	0.000 4.4
< LOD to 50th percentile (reference)	25/206	1.00	1 124 5 024	25/205	1.00	0.074 4.000	-	1 000	
< LOD to 50th percentile (reference) ≥ 50th percentile	25/206 43/189	2.386 *	1.134-5.021	25/205 43/189	1.00 1.979	0.974-4.023	42/180	1.996	0.888-4.4
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Males	43/189	2.386 *	1.134-5.021	43/189	1.979	0.974-4.023	42/180		0.888-4.4
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference)	43/189 44/191	2.386 *		43/189 44/190	1.979 1.00		42/180 41/186	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile	43/189	2.386 *	1.134-5.021 0.613-2.405	43/189	1.979	0.974-4.023	42/180		
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Females	43/189 44/191 45/190	2.386 * 1.00 1.214		43/189 44/190 45/190	1.979 1.00 1.213		42/180 41/186 43/184	1.00 1.307	
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile	43/189 44/191 45/190 29/202	2.386 * 1.00 1.214 1.00	0.613-2.405	43/189 44/190 45/190 29/202	1.979 1.00 1.213 1.00	0.628-2.343	42/180 41/186 43/184 29/192	1.00 1.307 1.00	0.698-2.4
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below S0th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference)	43/189 44/191 45/190	2.386 * 1.00 1.214		43/189 44/190 45/190	1.979 1.00 1.213		42/180 41/186 43/184	1.00 1.307	0.698-2.4
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference) ≥ 50th percentile	43/189 44/191 45/190 29/202	2.386 * 1.00 1.214 1.00	0.613-2.405	43/189 44/190 45/190 29/202	1.979 1.00 1.213 1.00	0.628-2.343	42/180 41/186 43/184 29/192	1.00 1.307 1.00	0.698-2.4
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>43/189 44/191 45/190 29/202 39/193</td><td>2.386 * 1.00 1.214 1.00 1.798 *</td><td>0.613-2.405</td><td>43/189 44/190 45/190 29/202 39/192</td><td>1.979 1.00 1.213 1.00 1.447</td><td>0.628-2.343</td><td>42/180 41/186 43/184 29/192 37/185</td><td>1.00 1.307 1.00 1.291</td><td>0.698-2.4</td></lod>	43/189 44/191 45/190 29/202 39/193	2.386 * 1.00 1.214 1.00 1.798 *	0.613-2.405	43/189 44/190 45/190 29/202 39/192	1.979 1.00 1.213 1.00 1.447	0.628-2.343	42/180 41/186 43/184 29/192 37/185	1.00 1.307 1.00 1.291	0.698-2.4
<lod (reference)<br="" 50th="" percentile="" to="">> 50th percentile MZP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) > 50th percentile MZP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference) > 50th percentile - Males < LOD to 50th percentile (reference) > 50th percentile (reference) > 50th percentile (reference) > 50th percentile (reference)</lod>	43/189 44/191 45/190 29/202 39/193 45/190	2.386 * 1.00 1.214 1.00 1.798 * 1.00	0.613-2.405 1.068 3.026	43/189 44/190 45/190 29/202 39/192 45/189	1.979 1.00 1.213 1.00 1.447 1.00	0.628-2.343	42/180 41/186 43/184 29/192 37/185 42/185	1.00 1.307 1.00 1.291 1.00	0.698-2.4
<lod (reference)<br="" 50th="" percentile="" to="">> 50th percentile MZP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) > 50th percentile MZP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference) > 50th percentile - Males < LOD to 50th percentile (reference) > 50th percentile (reference) > 50th percentile (reference) > 50th percentile (reference)</lod>	43/189 44/191 45/190 29/202 39/193 45/190	2.386 * 1.00 1.214 1.00 1.798 * 1.00	0.613-2.405 1.068 3.026	43/189 44/190 45/190 29/202 39/192 45/189	1.979 1.00 1.213 1.00 1.447 1.00	0.628-2.343	42/180 41/186 43/184 29/192 37/185 42/185	1.00 1.307 1.00 1.291 1.00	0.698-2.4
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Females < LOD to 50th percentile MIB - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MIB - Above/Below 50th Percentile - Females	43/189 44/191 45/190 29/202 39/193 45/190 44/191	2.386 * 1.00 1.214 1.00 1.798 * 1.00 0.671	0.613-2.405 1.068 3.026	43/189 44/190 45/190 29/202 39/192 45/189 44/191	1.979 1.00 1.213 1.00 1.447 1.00 0.620	0.628-2.343	42/180 41/186 43/184 29/192 37/185 42/185 42/185	1.00 1.307 1.00 1.291 1.00 0.539	0.698-2.4 0.607-2.7 0.217-1.3
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below S0th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MIZP - Above/Below S0th Percentile - Females < LOD to 50th percentile (reference) ≥ 50th percentile MIB - Above/Below S0th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MIB - Above/Below S0th Percentile - Females < LOD to 50th Percentile (reference) ≥ 50th percentile - Females < LOD to 50th Percentile - Females	43/189 44/191 45/190 29/202 39/193 45/190 44/191 29/202	2.386 * 1.00 1.214 1.00 1.798 * 1.00 0.671 1.00	0.613-2.405 1.068 3.026 0.278-1.620	43/189 44/190 45/190 29/202 39/192 45/189 44/191 29/202	1.979 1.00 1.213 1.00 1.447 1.00 0.620 1.00	0.628-2.343 0.773-2.709 0.250-1.534	42/180 41/186 43/184 29/192 37/185 42/185 42/185 28/193	1.00 1.307 1.00 1.291 1.00 0.539 1.00	0.698-2.4 0.607-2.7 0.217-1.3
< LOD to 50th percentile (reference)	43/189 44/191 45/190 29/202 39/193 45/190 44/191 29/202 39/193 47/188	2.386 * 1.00 1.214 1.00 1.798 * 1.00 0.671 1.00 1.844 * 1.00	0.613-2.405 1.068 3.026 0.278-1.620 1.045 3.252	43/189 44/190 45/190 29/202 39/192 45/189 44/191 29/202 39/192 47/188	1.979 1.00 1.213 1.00 1.447 1.00 0.620 1.00 1.451 1.00	0.628-2.343 0.773-2.709 0.250-1.534 0.738-2.853	42/180 41/186 43/184 29/192 37/185 42/185 42/185 28/193 38/184 44/183	1.00 1.307 1.00 1.291 1.00 0.539 1.00 1.660	0.698-2.4 0.607-2.7 0.217-1.3 0.734-3.7
 < LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below S0th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference) ≥ 50th percentile MIB - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MIB - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference) ≥ 50th percentile MIB - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference) ≥ 50th percentile BPA - Above/Below 50th Percentile (reference) ≥ 50th percentile Above/Below 50th percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile 	43/189 44/191 45/190 29/202 39/193 45/190 44/191 29/202 39/193	2.386 * 1.00 1.214 1.00 1.798 * 1.00 0.671 1.00 1.844 *	0.613-2.405 1.068 3.026 0.278-1.620	43/189 44/190 45/190 29/202 39/192 45/189 44/191 29/202 39/192	1.979 1.00 1.213 1.00 1.447 1.00 0.620 1.00 1.451	0.628-2.343 0.773-2.709 0.250-1.534	42/180 41/186 43/184 29/192 37/185 42/185 42/185 28/193 38/184	1.00 1.307 1.00 1.291 1.00 0.539 1.00 1.660	0.698-2.4 0.607-2.7 0.217-1.3 0.734-3.7
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile - Females < LOD to 50th percentile - Females < LOD to 50th percentile (reference) ≥ 50th percentile MIB - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile BPA - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile BPA - Above/Below 50th Percentile - Males	43/189 44/191 45/190 29/202 39/193 45/190 45/190 44/191 29/202 39/193 47/188 47/188 42/193	2.386 * 1.00 1.214 1.00 1.798 * 1.00 0.671 1.00 1.844 * 1.00 0.705	0.613-2.405 1.068 3.026 0.278-1.620 1.045 3.252	43/189 44/190 45/190 29/202 39/192 45/189 44/191 29/202 39/192 47/188 42/192	1.979 1.00 1.213 1.00 1.447 1.00 0.620 1.00 1.451 1.00 0.691	0.628-2.343 0.773-2.709 0.250-1.534 0.738-2.853	42/180 41/186 43/184 29/192 37/185 42/185 42/185 28/193 38/184 44/183 40/187	1.00 1.307 1.00 1.291 1.00 0.539 1.00 1.660 1.00 0.612	0.608-2.4 0.607-2.7 0.217-1.3 0.734-3.7 0.328-1.1
< LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MZP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference) ≥ 50th percentile MIB - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile MIB - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference) ≥ 50th percentile BPA - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference) ≥ 50th percentile (reference)	43/189 44/191 45/190 29/202 39/193 45/190 44/191 29/202 39/193 47/188	2.386 * 1.00 1.214 1.00 1.798 * 1.00 0.671 1.00 1.844 * 1.00	0.613-2.405 1.068 3.026 0.278-1.620 1.045 3.252	43/189 44/190 45/190 29/202 39/192 45/189 44/191 29/202 39/192 47/188	1.979 1.00 1.213 1.00 1.447 1.00 0.620 1.00 1.451 1.00	0.628-2.343 0.773-2.709 0.250-1.534 0.738-2.853	42/180 41/186 43/184 29/192 37/185 42/185 42/185 28/193 38/184 44/183	1.00 1.307 1.00 1.291 1.00 0.539 1.00 1.660	0.698-2.4 0.607-2.7 0.217-1.3 0.734-3.7

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDC levels were into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

¹ Unadjusted model. ²Adjusted for age, education, race/ethnicity, ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

Animal Fluency Scores and Exposure to BPA and Phthalates: Tables 1.12 to 1.16 present the GMs and GSEs of urinary phthalates and BPA levels among subjects with animal fluency scores. Table 1.12 presents GMs and GSEs of subjects who have measurable phthalate and BPA levels over the LOD by animal fluency cut-off scores. The crude GM mean of 7 of the 10 phthalates (ECP, MBP, MC1, MHH, MOH, MZP, MIB) and BPA are higher in subjects with a score of ≤ 11 compared to those with a score ≥ 12 . 4 of the 10 phthalates GM means were found to be significant higher in subjects with an animal fluency score ≤ 11 : ECP (p<0.05), MBP (p<0.05), MZP (p<0.05), and MIB (p<0.05). Table 1.13 presents the age-specific GMs and GSEs for subjects who have measurable phthalate and BPA levels over the LOD by animal fluency cut-off score. In the 60-69-year age group, 3 phthalates had significantly higher GMs in subjects with a animal fluency score ≤ 11 compared to subjects with a score of ≥ 12 : ECP (p<0.05), MBP (p<0.01), and MIB (p<0.05). The phthalate COP has a significantly higher GM in the in subjects with an animal fluency score ≥ 12 (p<0.05). In the 70-79-year age group, MIB had a significantly higher GM in subjects with a score of ≤ 11 (p<0.05). In the 80+ years age group, 5 phthalates were found to have significantly higher GM mean levels in the Animal fluency Score ≤ 11 group: COP (p<0.05), ECP (p<0.01), MBP (p<0.05), MHH (p<0.01), MOH (p<0.05). Table 1.14 presents gender-specific geometric GMs and GSEs for subjects who have measurable phthalate and BPA levels over the LOD by animal fluency cut-off score. In females, 5 of the phthalates had significantly higher GM means in subjects with an animal fluency score ≤ 11 : ECP (p<0.01), MBP (p<0.001), MOH (p<0.05), MZP (p<0.01), and MIB (p<0.05). Table 1.15 presents race-specific geometric GMs and GSEs for subjects who have measurable phthalate and BPA levels over the

LOD by animal fluency cut-off score. In Hispanics, the GM level of MZP was significantly higher in the Animal fluency Score ≤ 11 group (p<0.001).

Table 1.16 presents the estimated ORs and 95% CIs of phthalate and BPA levels by animal fluency scores. For the phthalate MBP, with females in the \geq 50th percentile group compared to the reference group, MBP concentration is associated with lower animal fluency scores in the unadjusted model (OR=2.369, 95% CI: 1.392-4.031), adjusted model #1 (OR=2.080, 95% CI: 1.151-3.757), and adjusted model #2 (OR=2.437, 95% CI: 1.190-4.989). For the phthalate MHH with females in the \geq 50th percentile group, the MHH concentration is associated with lower animal fluency scores compared to the reference group in the unadjusted model (1.861, 95% CI: 1.078-3.212). The adjusted models were not significant (Table 1.16). For the phthalate MZP, with females in the \geq 50th percentile, MZP concentration is significantly associated with lower animal fluency scores in the unadjusted model (OR=2.610, 95% CI: 1.573-4.332) and adjusted model #1 (OR=2.175, 95% CI: 1.281-3.692) compared to the reference group (Table 1.16). For the phthalate MIB, for females in the \geq 50th percentile, MIB concentration is associated with lower animal fluency scores in the adjusted model (OR=2.205, 95% CI: 1.323-3.675) and adjusted model #1 (2.051, 95% CI: 1.111-3.786), compared to the reference group (Table 1.16).

Table 1.12 Geometric Mean Urinary Phthalat Subjects >= 60 years of age			•	•	Cut-Off So	core for
		Geom	etric Mean	(ng/ml) (0	GSE, N)	
EEDC	Animal l	Fluency S	core≤11	Animal	Fluency So	$core \ge 12$
	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.51	0.18	185	2.68	0.16	742
Mono (carboxyoctyl) Phthalate - COP	17.14	2.05	186	19.24	1.71	744
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	14.26	0.97	187 *	11.73	0.61	742
Mono-n-butyl Phthalate - MBP	11.58	0.80	186 *	9.67	0.54	730
Mono-(3-carboxypropyl) Phthalate - MC1	2.75	0.43	177	2.71	0.21	711
Mono-ethyl Phthalate -MEP	54.00	6.58	187	56.91	28.20	744
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.15	0.50	187	7.14	0.35	743
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.67	0.36	187	4.79	0.25	742
Mono-benzyl Phthalate - MZP	5.51	0.66	185 *	3.94	0.21	733
Mono-isobutyl Phthalate - MIB	7.45	0.37	184 *	6.08	0.30	737
Bisphenol A - BPA	1.55	0.12	174	1.53	0.08	705
NHANES sampling weight appli	ed before	calculatin	g the geom	netric mea	n.	
The EEDCs were creatinine-adjusted then log tran	nsformed	prior to an	alyses. Ex	treme crea	atinine valu	es (<30
mg/dL and >300 mg/dL) and EEDC levels belo	w the LOI	O were tak	en into acc	count using	g the appro	priate
domain statement in SAS	. *p<0.05	5, **p<0.0) <u>1 ***p<0</u>	.001		

	Geo	ometric N	lean (ng/m	l) (GSE, N	I), Age 60	-69	Ge	ometric M	lean (ng/m	l) (GSE, N	I), Age 70	-79	G	eometric	Mean (ng/1	nl) (GSE, I	N), Age 80)+
EEDC	Animal F	luency S	core≤11	Animal H	luency S	core≥12	Animal l	luency S	core≤11	Animal F	luency S	core≥12	Animal	Fluency S	core≤11	Animal l	Fluency S	core≥1
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	2.26	0.20	82	2.55	0.18	408	2.39	0.53	56	3.07	0.31	216	2.99	0.58	47	2.42	0.17	118
Mono (carboxyoctyl) Phthalate - COP	12.59	1.73	83	18.60	2.20	408 *	17.55	4.16	56	22.95	2.61	218	23.14	3.57	47 *	15.01	1.87	118
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	14.39	1.57	84 *	10.57	0.78	406	12.55	1.51	56	13.70	0.81	218	16.75	1.35	47 **	12.59	0.85	118
Mono-n-butyl Phthalate - MBP	12.31	1.02	83 **	9.01	0.61	400	8.88	0.96	56	10.40	0.95	215	15.52	2.33	47 *	10.87	1.11	115
Mono-(3-carboxypropyl) Phthalate - MC1	2.24	0.34	79	2.52	0.23	387	2.70	0.88	52	3.13	0.36	210	3.54	0.49	46	2.62	0.29	114
Mono-ethyl Phthalate -MEP	46.72	9.39	84	59.47	6.99	408	54.94	9.76	56	61.26	8.77	218	61.72	13.91	47	37.56	4.22	118
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.11	0.89	84	6.56	0.48	407	7.42	0.79	56	8.36	0.54	218	9.31	0.75	47 **	7.08	0.52	118
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.55	0.64	84	4.26	0.30	407	5.04	0.59	56	5.69	0.35	218	6.81	0.37	47 *	5.25	0.43	117
Mono-benzyl Phthalate - MZP	5.56	1.09	83	3.93	0.31	403	5.06	0.80	55	3.65	0.32	216	6.11	0.97	47	4.77	0.44	114
Mono-isobutyl Phthalate - MIB	8.11	0.78	83 *	6.30	0.37	405	7.38	0.55	54 *	6.03	0.37	216	6.87	0.83	47	5.34	0.54	116
Bisphenol A - BPA	1.69	0.14	79	1.48	0.10	390	1.55	0.26	49	1.69	0.12	205	1.40	0.19	46	1.41	0.16	110
			N	HANES sa	ampling w	eight appli	ed before	calculating	g the geom	etric mear	1.							

Mono (carboxynonyl) Phthalate - CNP 2.69 0.35 84 2.34 0.15 380 2.38 0.31 101 3.06 0.28 360 Mono (carboxynonyl) Phthalate - COP 15.03 2.28 84 16.85 1.34 382 18.90 3.20 102 21.93 2.87 360 Mono-(2-ethyl-5-carboxypentyl) Phthalate - ECP 11.92 1.26 85 10.66 0.56 382 16.30 1.10 102 21.93 2.87 360 Mono-(2-ethyl-5-carboxypentyl) Phthalate - ECP 11.92 1.26 85 10.66 0.56 382 16.30 1.10 102 *** 12.90 0.87 360 Mono-(3-carboxypentyl) Phthalate - MBP 8.73 0.86 85 9.35 0.73 372 14.33 1.08 101 *** 9.98 0.56 352 Mono-(3-carboxypropyl) Phthalate - MC1 2.68 0.75 83 2.51 0.21 364 2.82 0.35 94 2.92 0.28 34			Geome	etric Mean	(ng/ml) (GSE, N)			Geom	etric Mean	(ng/ml) ((GSE, N)	
Animal Fluency Score ≤ 11 Animal Fluency Score ≥ 12 Animal Fluency Score ≥ 11 A	FEDC			М	ale					Fer	nale		
Mono (carboxynonyl) Phthalate - CNP 2.69 0.35 84 2.34 0.15 380 2.38 0.31 101 3.06 0.28 360 Mono (carboxynonyl) Phthalate - COP 15.03 2.28 84 16.85 1.34 382 18.90 3.20 102 21.93 2.87 360 Mono-(2-ethyl-5-carboxypentyl) Phthalate - ECP 11.92 1.26 85 10.66 0.56 382 16.30 1.10 102 21.93 2.87 360 Mono-(2-ethyl-5-carboxypentyl) Phthalate - ECP 11.92 1.26 85 10.66 0.56 382 16.30 1.10 102 2** 12.90 0.87 360 Mono-(3-carboxypentyl) Phthalate - MBP 8.73 0.86 85 9.35 0.73 372 14.33 1.08 101 *** 9.98 0.56 355 Mono-(3-carboxypropyl) Phthalate - MC1 2.68 0.75 83 2.51 0.21 364 2.82 0.35 94 2.92 0.28 34	EEDC	Animal	Fluency S	core≤11	Animal	Fluency S	core≥12	Animal	Fluency S	Score≤11	Animal	Fluency S	core≥12
Mono (carboxyoctyl) Phthalate - COP 15.03 2.28 84 16.85 1.34 382 18.90 3.20 102 21.93 2.87 36 Mono-(2-ethyl-5-carboxypentyl) Phthalate - ECP 11.92 1.26 85 10.66 0.56 382 16.30 1.10 102 21.93 2.87 36 Mono-(2-ethyl-5-carboxypentyl) Phthalate - MBP 8.73 0.86 85 9.35 0.73 372 14.33 1.08 101 *** 9.98 0.56 35 Mono-(3-carboxypropyl) Phthalate - MC1 2.68 0.75 83 2.51 0.21 364 2.82 0.35 94 2.92 0.28 34 Mono (2-ethyl Phthalate - MEP 44.21 6.89 85 53.83 5.62 382 62.70 9.49 102 58.77 6.80 36 Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH 7.24 0.67 85 6.74 0.38 382 8.92 0.79 102 7.56 0.43 36 Mono-(2-ethyl-5-oxohexyl) Phthalate - MOH 4.89 0.49 85 4.54 0.26		GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Mono-(2-ethyl-5-carboxypentyl) Phthalate - ECP 11.92 1.26 85 10.66 0.56 382 16.30 1.10 102 ** 12.90 0.87 36 Mono-n-butyl Phthalate - MBP 8.73 0.86 85 9.35 0.73 372 14.33 1.08 101 *** 9.98 0.56 35 Mono-(3-carboxypropyl) Phthalate - MC1 2.68 0.75 83 2.51 0.21 364 2.82 0.35 94 2.92 0.28 34 Mono-ethyl Phthalate - MEP 44.21 6.89 85 53.83 5.62 382 62.70 9.49 102 58.77 6.80 36 Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH 7.24 0.67 85 6.74 0.38 382 8.92 0.79 102 7.56 0.43 36 Mono-(2-ethyl-5-oxohexyl) Phthalate - MOH 4.89 0.49 85 4.54 0.26 380 6.34 0.49 102 * 5.06 0.30 36	Mono (carboxynonyl) Phthalate - CNP	2.69	0.35	84	2.34	0.15	380	2.38	0.31	101	3.06	0.28	362
Mono-n-butyl Phthalate - MBP 8.73 0.86 85 9.35 0.73 372 14.33 1.08 101 *** 9.98 0.56 35 Mono-(3-carboxypropyl) Phthalate - MC1 2.68 0.75 83 2.51 0.21 364 2.82 0.35 94 2.92 0.28 34 Mono-ethyl Phthalate - MEP 44.21 6.89 85 53.83 5.62 382 62.70 9.49 102 58.77 6.80 36 Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH 7.24 0.67 85 6.74 0.38 382 8.92 0.79 102 7.56 0.43 36 Mono-(2-ethyl-5-oxohexyl) Phthalate - MOH 4.89 0.49 85 4.54 0.26 380 6.34 0.49 102 5.06 0.30 36	Mono (carboxyoctyl) Phthalate - COP	15.03	2.28	84	16.85	1.34	382	18.90	3.20	102	21.93	2.87	362
Mono-(3-carboxypropyl) Phthalate - MC1 2.68 0.75 83 2.51 0.21 364 2.82 0.35 94 2.92 0.28 34 Mono-ethyl Phthalate - MEP 44.21 6.89 85 53.83 5.62 382 62.70 9.49 102 58.77 6.80 36 Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH 7.24 0.67 85 6.74 0.38 382 8.92 0.79 102 7.56 0.43 36 Mono-(2-ethyl-5-oxohexyl) Phthalate - MOH 4.89 0.49 85 4.54 0.26 380 6.34 0.49 102 5.06 0.30 36	Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	11.92	1.26	85	10.66	0.56	382	16.30	1.10	102 **	12.90	0.87	360
Mono-ethyl Phthalate -MEP 44.21 6.89 85 53.83 5.62 382 62.70 9.49 102 58.77 6.80 36 Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH 7.24 0.67 85 6.74 0.38 382 8.92 0.79 102 7.56 0.43 36 Mono-(2-ethyl-5-oxohexyl) Phthalate - MOH 4.89 0.49 85 4.54 0.26 380 6.34 0.49 102 * 5.06 0.30 36	Mono-n-butyl Phthalate - MBP	8.73	0.86	85	9.35	0.73	372	14.33	1.08	101 ***	9.98	0.56	358
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH 7.24 0.67 85 6.74 0.38 382 8.92 0.79 102 7.56 0.43 36 Mono-(2-ethyl-5-oxohexyl) Phthalate - MOH 4.89 0.49 85 4.54 0.26 380 6.34 0.49 102 * 5.06 0.30 36	Mono-(3-carboxypropyl) Phthalate - MC1	2.68	0.75	83	2.51	0.21	364	2.82	0.35	94	2.92	0.28	347
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH 4.89 0.49 85 4.54 0.26 380 6.34 0.49 102* 5.06 0.30 36	Mono-ethyl Phthalate -MEP	44.21	6.89	85	53.83	5.62	382	62.70	9.49	102	58.77	6.80	362
	Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	7.24	0.67	85	6.74	0.38	382	8.92	0.79	102	7.56	0.43	361
Mono-benzyl Phthalate - MZP 4.02 0.62 84 3.54 0.29 376 6.97 0.86 101 ** 4.38 0.25 35	Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	4.89	0.49	85	4.54	0.26	380	6.34	0.49	102 *	5.06	0.30	362
	Mono-benzyl Phthalate - MZP	4.02	0.62	84	3.54	0.29	376	6.97	0.86	101 **	4.38	0.25	357
Mono-isobutyl Phthalate - MIB 6.75 0.57 84 5.60 0.32 379 7.99 0.58 100 * 6.59 0.35 35	Mono-isobutyl Phthalate - MIB	6.75	0.57	84	5.60	0.32	379	7.99	0.58	100 *	6.59	0.35	358
Bisphenol A - BPA 1.54 0.23 76 1.37 0.07 366 1.55 0.10 98 1.71 0.11 33	Bisphenol A - BPA	1.54	0.23	76	1.37	0.07	366	1.55	0.10	98	1.71	0.11	339

	Ge	eometric l	Mean (ng/r	nl) (GSE, l	N), Hispan	ic	Geomet	ric Mean (ng/ml) (G	SE, N), No	on-Hispani	c White
EEDC	Animal H	luency S	core≤11	Animal F	luency So	core ≥ 12	Animal I	Fluency Sc	ore≤11	Animal F	Fluency Sc	$ore \ge 1$
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	2.42	0.31	43	2.31	0.17	151	2.72	0.36	47	2.83	0.20	364
Mono (carboxyoctyl) Phthalate - COP	25.51	5.19	43	19.01	1.45	151	18.33	3.09	47	20.09	2.12	364
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	20.88	2.23	43	16.97	1.03	151	13.97	1.62	47	11.47	0.66	363
Mono-n-butyl Phthalate - MBP	15.33	2.05	43	13.36	0.89	149	10.65	1.19	47	9.17	0.64	357
Mono-(3-carboxypropyl) Phthalate - MC1	3.21	0.61	41	2.72	0.28	143	2.91	0.82	45	2.77	0.26	350
Mono-ethyl Phthalate -MEP	102.55	38.82	43	101.55	13.06	151	42.85	7.74	47	51.94	5.22	364
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	10.63	1.56	43	10.14	0.67	151	8.17	0.86	47	6.93	0.37	363
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	7.07	0.91	43	6.45	0.45	151	5.69	0.64	47	4.69	0.27	362
Mono-benzyl Phthalate - MZP	6.02	0.94	43 ***	3.41	0.29	151	6.25	1.32	47	3.92	0.23	357
Mono-isobutyl Phthalate - MIB	10.39	1.04	43	8.85	0.46	151	6.83	0.69	46	5.64	0.28	361
Bisphenol A - BPA	1.60	0.22	40	1.62	0.17	144	1.59	0.20	43	1.54	0.10	349
	Geomet	ric Mean	(ng/ml) (G	SE, N), No	on-Hispani	c Black	Geo	ometric Me	an (ng/ml) (GSE, N), Asian/Ot	her
EEDC	Animal F	luency S	core ≤11	Animal F	luency So	$core \ge 12$	Animal I	Tuency Sc	ore≤11	Animal F	luency Sc	ore ≥ 1
	GM	GSE	N	GM	GSE	N	GM	GSE	Ν	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	1.79	0.15	75	2.03	0.13	169	3.85	1.80	20	1.86	0.20	58
Mono (carboxyoctyl) Phthalate - COP	14.28	1.90	74	14.47	1.38	169	10.28	3.12	22	13.62	2.80	60
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	12.65	1.20	75	10.12	0.84	168	12.10	1.26	22	12.80	0.90	60
Mono-n-butyl Phthalate - MBP	10.99	0.92	75	10.43	0.67	165	13.81	2.37	21	14.13	3.07	59
Mono-(3-carboxypropyl) Phthalate - MC2	2.16	0.26	73	2.24	0.19	163	2.96	0.71	18	2.52	0.46	55
Mono-ethyl Phthalate -MEP	67.52	10.35	75	81.93	9.22	169	43.72	11.08	22	50.84	15.95	60
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.08	0.75	75	7.02	0.64	169	5.62	0.83	22	7.39	0.84	60
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.67	0.52	75	4.59	0.37	169	4.06	0.55	22	4.79	0.59	60
Mono-benzyl Phthalate - MZP	5.29	0.95	73	4.30	0.37	168	2.71	0.45	22	5.03	2.21	57
Mono-isobutyl Phthalate - MIB	7.64	0.70	74	7.46	0.61	165	6.74	1.27	21	9.90	2.14	60
Bisphenol A - BPA	1.37	0.11	73	1.42	0.06	163	1.70	0.66	18	1.37	0.23	49
	TANDO		eight appli		1 1 4	4h		-				

EEDC	≤13 /≥14	Unadjusted	95% CI	≤13 / ≥14	Adjusted Odds	95% CI	≤13 / ≥14	Adjusted Odds	95% C
	≤137≥14	Odds Ratio ¹	93% CI	≤137≥14	Ratio #1 ²	93% CI	≤137≥14	Ratio #2 3	9370 C
CNP - Above/Below 50th Percentile - Males	42/192	1.00		41/192	1.00		20/107	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	42/192 43/190	0.925	0.535-1.597	41/192 43/190	0.950	0.512-1.762	38/187 42/184	1.00 1.044	0.498-2.
CNP - Above/Below 50th Percentile - Females	45/190	0.925	0.333-1.397	45/190	0.930	0.512-1.762	42/164	1.044	0.498-2.
< LOD to 50th percentile (reference)	65/166	1.00		65/167	1.00		62/160	1.00	
\geq 50th percentile	37/196	0.471	0.268-0.827	37/194	0.664	0.386-1.142	35/187	0.577	0.315-1.0
COP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	38/195	1.00		38/195	1.00		36/189	1.00	
\geq 50th percentile	47/187	0.675	0.290-1.570	46/187	0.782	0.305-2.008	44/182	0.753	0.265-2.
COP - Above/Below 50th Percentile - Females	50/172	1.00		50/172	1.00		ECHICC	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	59/173 43/189	1.00 0.751	0.413-1.367	59/172 43/189	1.00 0.873	0.494-1.540	56/166 41/181	1.00 0.884	0.450-1.7
ECP - Above/Below 50th Percentile - Males	43/107	0.751	0.415-1.507	43/109	0.873	0.494-1.540	41/101	0.884	0.430-1.
< LOD to 50th percentile (reference)	40/193	1.00		40/193	1.00		36/189	1.00	
\geq 50th percentile	45/189	0.998	0.451-2.210	44/189	0.672	0.303-1.491	44/182	0.570	0.195-1.
ECP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	45/187	1.00		45/186	1.00		43/179	1.00	
\geq 50th percentile	57/175	1.598	0.936-2.728	57/175	1.610	0.896-2.895	54/168	1.174	0.520-2.
MBP - Above/Below 50th Percentile - Males	27/10/	1.00		27/10/	1.00		22/102	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	37/196 48/186	1.00 1.509	0.698-3.260	37/196 47/186	1.00 0.919	0.389-2.171	33/192 47/179	1.00 1.136	0.432-2.
MBP - Above/Below 50th Percentile - Females	40/100	1.309	0.076-3.200	4//180	0.919	0.307-2.1/1	4//1/9	1.130	0.432-2.
< LOD to 50th percentile (reference)	41/191	1.00		41/190	1.00		38/184	1.00	
\geq 50th percentile	61/171	2.369 **	1.392-4.031	61/171	2.080 *	1.151-3.757	59/163	2.437 *	1.190-4.
MC1 - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	40/193	1.00		40/193	1.00		38/187	1.00	
\geq 50th percentile	45/189	0.909	0.378-2.185	44/189	0.936	0.346-2.528	42/184	0.766	0.252-2.
MC1 - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	60/172	1.00		60/171	1.00		57/165	1.00	
\geq 50th percentile	42/190	0.581	0.317-1.066	42/190	0.584	0.321-1.065	40/182	0.489	0.278-0.
MEP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	43/190	1.00		43/190	1.00		40/185	1.00	
\geq 50th percentile	42/192	0.711	0.379-1.337	41/192	0.626	0.316-1.240	40/186	0.589	0.281-1.
MEP - Above/Below 50th Percentile - Females	47/105	1.00		47/104	1.00		42/170	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	47/185 55/177	1.00 1.280	0.831-1.972	47/184 55/177	1.00 1.060	0.641-1.753	43/179 54/168	1.00 1.364	0.809-2.
*	33/177	1.280	0.831-1.972	33/177	1.060	0.041-1.755	34/108	1.304	0.809-2.
MHH - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	42/191	1.00		41/192	1.00		38/187	1.00	
\geq 50th percentile	43/191	1.668	0.975-2.852	43/190	1.423	0.777-2.607	42/184	1.432	0.642-3.
MHH - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	46/186	1.00		46/185	1.00		45/177	1.00	
\geq 50th percentile	56/176	1.861 *	1.078-3.212	56/176	1.790	1.019-3.144	52/170	1.332	0.633-2.
MOH - Above/Below 50th Percentile - Males	10/100	1.00		10/100				1.00	
< LOD to 50th percentile (reference)	40/193	1.00		40/193	1.00		37/188	1.00	
\geq 50th percentile	45/189	1.638	0.678-3.955	44/189	1.197	0.430-3.332	43/183	1.207	0.372-3.
AOH - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	46/185	1.00		46/186	1.00		44/177	1.00	
\geq 50th percentile	56/177	1.692	0.957-2.990	56/175	1.540	0.806-2.944	53/170	1.262	0.595-2
MZP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	41/192	1.00		41/192	1.00		39/186	1.00	
\geq 50th percentile	44/190	0.905	0.435-1.886	43/190	0.965	0.463-2.012	41/185	0.896	0.404-1.
MZP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference)	35/197	1.00		35/196	1.00		34/188	1.00	
< LOD to 50th percentile (reference) \geq 50th percentile	67/165		1.573-4.332			1.281-3.692			0.933-3.
MIB - Above/Below 50th Percentile - Males	07/103	2.610 ***	1.373-4.332	67/165	2.175 **	1.201-3.092	63/159	1.787	0.933-3.
< LOD to 50th percentile (reference)	35/198	1.00		34/199	1.00		33/192	1.00	
\geq 50th percentile	50/184	1.665	0.699-3.969	50/183	1.377	0.563-3.366	47/179	1.263	0.532-2.
MIB - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	43/189	1.00		42/189	1.00		41/181	1.00	
\geq 50th percentile	59/173	2.205 **	1.323-3.675	60/172	2.051 *	1.111-3.786	56/166	1.947	0.957-3.
BPA - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	44/189	1.00		44/189	1.00		43/182	1.00	
\geq 50th percentile	41/193	0.957	0.516-1.773	40/193	0.953	0.537-1.691	37/189	0.861	0.437-1.
3PA - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	52/180	1.00		52/179	1.00		51/172	1.00	
\geq 50th percentile	50/182	1.011	0.613-1.669	50/182	1.139	0.659-1.969	46/175	1.068	0.597-1.

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDC levels were into account using the appropriate domain statement in SAS. *p<0.01 ***p<0.001

¹ Unadjusted model. ²Adjusted for age, education, reac/ethnicity. ³ Adjusted for age, education, reac/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

Digit Symbol Substitution Test (DSST) Scores and Exposure to BPA and Phthalates:

Tables 1.17 to 1.21 present the GMs and GSEs of urinary phthalates and BPA levels among subjects with DSST scores. Table 1.17 presents GMs and GSEs for subjects who have measurable phthalate and BPA levels over the LOD, by DSST cut-off scores. Of the ten phthalates, seven of the phthalates have GMs that were higher in subjects with a DSST score ≤ 27 than with a DSST score ≥ 28 . These phthalates are ECP, MBP, MEP, MHH, MOH, MZP, and MIB. Furthermore, GMs were significant for ECP (p<0.01), MBP (p<0.05), MHH (p<0.05), and MOH (p<0.05), in subjects with a DSST score ≤ 27 compared to those with a DSST score ≥ 28 . Table 1.18 gives age-specific GMs and GSEs for phthalate and BPA levels by DSST cut-off scores. In the 60-69-year group, the GM for phthalate MBP is significantly higher in subjects with scores ≤ 27 compared to subjects who scored ≥ 28 group (p<0.05). For the phthalates CNP and COP, they are significantly higher in subjects with scores ≥ 28 compared to those with scores ≤ 27 (p<0.001 and p<0.01). No significant findings were found in the 70-79 age group. In the 80+ age group, the concentrations for the phthalate MEP were significantly higher subjects with scores ≤ 27 compared to those with scores ≥ 28 (p<0.05) (Table 1.18). Table 1.19 gives gender-specific GM and GSE for phthalate and BPA concentrations by DSST cut-off score. In males, ECP (p<0.01), MHH (p<0.05), and MOH (p<0.05) concentrations are significantly higher in the DSST Score ≤ 27 group compared to the DSST Score ≥ 28 group. In females, MBP (p<0.05) concentrations were significantly higher in the DSST Score ≤ 27 group compared to the DSST Score ≥ 28 group. Table 1.20 presents race-specific GMs and GSEs for phthalates and BPA concentrations by DSST cut-off scores. In Hispanics, MEP is significantly higher (p<0.05) in subjects with

a score of ≤ 27 compared to those with a score of ≥ 28 . CNP and COP are significantly higher in subjects with a score of ≥ 28 compared to those with a score of ≤ 27 (CNP, p<0.05; COP, p<0.05). In Non-Hispanic Whites, ECP, MOH, and MZP are significantly higher in subjects with a score of ≤ 27 compared to those with a score of ≥ 28 (ECP, p<0.05; MOH, p<0.05; MZP, p<0.05). In the Asian/others, MEP and MZP are significantly higher in subjects with a score of ≥ 28 compared to those with a score of \leq 27 (MEP, p<0.01; MZP, p<0.05). Table 1.21 presents estimated ORs and 95% CI of phthalate and BPA concentrations by DSST cut-off scores. For the phthalate ECP, males in the \geq 50th percentile compared to the reference group, ECP concentration was significantly associated with lower DSST scores adjusted model #2 (OR=2.302, 95% CI: 1.031-5.141). For MBP, females in the \geq 50th percentile compared to the reference group were found to have MBP levels significantly associated with lower DSST scores (OR=2.650, 95% CI: 1.342-5.236). MBP in females was not significant in the adjusted models. For MOH, males in the \geq 50th percentile compared to the reference group were found to have MOH concentrations significantly associated with lower DSST scores in adjusted model #2 (OR=2.132, 95% CI: 1.019-4.462). For MZP, females in the \geq 50th percentile compared to the reference group were found to have MZP concentrations that were associated with lower DSST scores in the unadjusted model (OR=1.763, 95% CI: 1.003-3.099). Subsequent adjusted models were not significant.

		Geome	etric Mean	(ng/ml) (C	GSE, N)	
EEDC	DSS	ST Score	≤27	DSS	ST Score 2	<u>28</u>
	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.14	0.22	128	2.67	0.14	759
Mono (carboxyoctyl) Phthalate - COP	15.48	1.67	129	19.00	1.58	761
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	15.86	1.65	129 **	11.59	0.56	760
Mono-n-butyl Phthalate - MBP	12.55	1.09	127 *	9.63	0.54	749
Mono-(3-carboxypropyl) Phthalate - MC1	2.69	0.36	120	2.70	0.19	727
Mono-ethyl Phthalate -MEP	71.91	13.31	129	53.51	4.57	762
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	9.11	0.91	129 *	7.05	0.32	761
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	6.31	0.39	129 *	4.74	0.22	760
Mono-benzyl Phthalate - MZP	4.74	0.60	129	4.03	0.21	750
Mono-isobutyl Phthalate - MIB	6.89	0.61	127	6.14	0.27	755
Bisphenol A - BPA	1.62	0.17	121	1.52	0.08	720
NHANES sampling weight applied	before calc	culating th	e geometri	ic mean.		

Table 1.17 Geometric Mean Urinary Phthalate and BPA Levels by Digit Symbol Substitution Test (DSST) Cut-Off Scores for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

and >300 mg/dL) and EEDC levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01

	Ge	ometric N	lean (ng/n	ıl) (GSE, N	I), Age 60)-69	Ge	ometric M	lean (ng/n	l) (GSE, N	I), Age 70-	-79	Gt	eometric N	/lean (ng/r	nl) (GSE, 1	N), Age 80)+
EEDC	DS	ST Score :	≤27	DS	ST Score	≥28	DS	ST Score <	<u>≤</u> 27	DSS	ST Score	<u>≥</u> 28	DS	ST Score <u>s</u>	≤27	DSS	ST Score	≥28
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	1.62	0.13	52	2.56	0.18	428 ***	2.41	0.31	40	2.95	0.28	228	2.42	0.44	36	2.45	0.19	103
Mono (carboxyoctyl) Phthalate - COP	11.80	1.66	53	18.27	2.07	428 **	20.21	3.56	40	22.08	2.27	230	15.66	2.59	36	15.32	1.79	10.
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	14.90	2.45	53	10.59	0.75	427	16.35	3.00	40	13.35	0.72	230	16.26	2.37	36	11.90	0.71	103
Mono-n-butyl Phthalate - MBP	12.83	1.58	51 *	9.10	0.61	422	11.94	2.02	40	10.02	0.85	227	12.81	1.97	36	11.22	1.32	100
Mono-(3-carboxypropyl) Phthalate - MC1	2.06	0.36	47	2.50	0.21	409	3.12	0.91	37	3.09	0.32	220	2.89	0.38	36	2.68	0.33	98
Mono-ethyl Phthalate -MEP	91.95	19.23	53	58.27	6.55	429	77.66	24.26	40	56.85	6.79	230	56.43	12.84	36 *	31.55	2.83	103
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.77	1.44	53	6.56	0.46	428	10.20	2.39	40	8.11	0.45	230	8.63	0.89	36	6.69	0.53	10.
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.65	0.97	53	4.27	0.29	428	6.99	1.57	40	5.53	0.27	230	6.36	0.64	36	5.04	0.42	102
Mono-benzyl Phthalate - MZP	5.18	1.37	53	3.98	0.31	424	4.78	0.91	40	3.80	0.29	227	4.42	0.75	36	4.97	0.49	99
Mono-isobutyl Phthalate - MIB	8.21	1.07	52	6.37	0.37	427	7.42	0.96	40	6.14	0.36	226	5.70	0.91	35	5.25	0.49	10
Bisphenol A - BPA	1.71	0.21	51	1.48	0.10	408	1.71	0.36	36	1.66	0.11	215	1.50	0.29	34	1.39	0.16	97
			NHA	ANES samp	oling weig	ght applied l	before cal	culating the	e geometr	ic mean.								

		Geome	tric Mean	(ng/ml) (0	GSE, N)			Geome	tric Mean	(ng/ml) (C	JSE, N)	
EEDC			М	ale					Fer	nale		
EEDC	DSS	ST Score :	≤27	DS	ST Score ≥	28	DSS	ST Score 🖻	≤27	DSS	ST Score ≥	≥28
	GM	GSE	N	GM	GSE	N	GM	GSE	Ν	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	1.95	0.23	69	2.38	0.13	384	2.31	0.30	59	2.98	0.27	375
Mono (carboxyoctyl) Phthalate - COP	13.79	2.22	69	16.71	1.23 3	86	16.94	2.38	60	21.56	2.83	375
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	15.28	1.95	69 **	10.50	0.50	387	16.32	2.40	60	12.78	0.83	373
Mono-n-butyl Phthalate - MBP	10.29	1.41	68	9.23	0.71	378	14.67	1.57	59 *	10.05	0.59	37
Mono-(3-carboxypropyl) Phthalate - MC1	2.67	0.52	64	2.50	0.20	372	2.70	0.35	56	2.92	0.29	35
Mono-ethyl Phthalate -MEP	63.90	14.22	69	51.25	5.44	387	78.84	19.27	60	55.84	6.21	37:
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.69	1.10	69 *	6.66	0.36	387	9.45	1.24	60	7.44	0.42	37-
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	6.01	0.75	69 *	4.48	0.23	385	6.54	0.89	60	5.02	0.30	37:
Mono-benzyl Phthalate - MZP	3.88	0.51	69	3.58	0.29	380	5.55	1.01	60	4.53	0.25	37
Mono-isobutyl Phthalate - MIB	6.01	0.75	68	4.48	0.23	384	6.54	0.89	59	5.02	0.30	37
Bisphenol A - BPA	1.66	0.17	65	1.36	0.07	366	1.59	0.23	56	1.71	0.11	35

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDC levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.01

	G	eometric l	Mean (ng/1	nl) (GSE,	N), Hispa	nic	Geomet	ric Mean ((ng/ml) (G	SE, N), No	on-Hispan	ic White
EEDC	Animal H	Tuency S	core ≤11	Animal I	Fluency S	Score≥12	Animal I	Fluency S	core ≤11	Animal H	Fluency S	core≥1
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	1.89	0.16	49	2.49	0.18	129 *	2.77	0.48	23	2.77	0.17	377
Mono (carboxyoctyl) Phthalate - COP	17.64	2.56	49	20.22	2.08	129 *	17.77	3.28	23	19.67	1.91	377
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	20.06	2.68	49	16.34	1.01	129	19.10	3.50	23 *	11.33	0.61	376
Mono-n-butyl Phthalate - MBP	13.68	1.29	49	13.80	1.18	127	12.98	2.48	23	9.10	0.60	370
Mono-(3-carboxypropyl) Phthalate - MC1	2.53	0.38	44	2.85	0.33	124	3.82	0.78	23	2.72	0.23	360
Mono-ethyl Phthalate -MEP	169.71	38.53	49 **	83.07	9.44	129	48.78	11.50	23	49.43	4.83	377
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	11.70	2.01	49	9.66	0.69	129	10.02	1.80	23	6.86	0.35	376
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	7.22	1.20	49	6.18	0.44	129	7.65	1.33	23 *	4.65	0.24	375
Mono-benzyl Phthalate - MZP	3.94	0.68	49	3.69	0.26	129	6.71	1.71	23 *	3.97	0.22	270
Mono-isobutyl Phthalate - MIB	10.00	0.80	49	8.84	0.57	129	4.58	0.80	23	5.73	0.25	373
Bisphenol A - BPA	1.75	0.18	43	1.53	0.15	127	1.66	0.42	22	1.54	0.09	359
	Geomet	ric Mean	(ng/ml) (G	SE, N), N	on-Hispa	nic Black	Geo	ometric M	ean (ng/m	l) (GSE, N), Asian/O	ther
EEDC	Animal H	Fluency S	core≤11	Animal I	Fluency S	Score≥12	Animal I	Fluency S	core≤11	Animal H	Fluency S	core≥
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	1.81	0.14	48	1.96	0.12	182	1.92	0.59	8	2.35	0.38	71
Mono (carboxyoctyl) Phthalate - COP	12.98	2.20	48	14.70	1.16	181	8.60	3.00	9	14.35	2.98	74
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	9.96	1.09	48	10.62	0.81	181	13.12	4.13	9	13.14	0.76	74
Mono-n-butyl Phthalate - MBP	9.91	1.34	47	11.12	0.69	179	18.37	4.63	8	13.69	2.69	73
Mono-(3-carboxypropyl) Phthalate - MC2	1.94	0.21	45	2.25	0.18	177	1.80	0.58	8	2.92	0.43	66
Mono-ethyl Phthalate -MEP	64.41	17.59	48	84.59	8.39	182	17.26	6.05	9	60.95	16.85	74 *
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	6.32	0.82	48	7.30	0.58	182	7.54	2.88	9	7.19	0.74	74
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	4.45	0.61	48	4.82	0.33	182	5.00	1.81	9	4.73	0.47	74
Mono-benzyl Phthalate - MZP	4.78	0.96	48	4.57	0.42	180	1.89	0.49	9	4.92	1.81	71 *
Mono-isobutyl Phthalate - MIB	7.93	0.84	46	7.49	0.47	180	6.09	1.61	9	9.86	1.79	73
Bisphenol A - BPA	1.53	0.17	47	1.39	0.06	175	1.38	0.46	9	1.43	0.23	59

adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEI into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

EEDC	≤27/≥28	Unadjusted Odds Ratio ¹	95% CI	≤27 / ≥28	Adjusted Odds Ratio #1 ²	95% CI	≤27 / ≥28	Adjusted Odds Ratio #2 ³	95% CI
CNP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference)	38/190	1.00		37/190	1.00		36/186	1.00	
\geq 50th percentile	31/190	0.764	0.436-1.337	31/190	0.928	0.487-1.767	30/180	1.326	0.639-2.7
CNP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	37/180	1.00		38/179	1.00		33/177	1.00	
\geq 50th percentile	23/195	0.406	0.209-0.789	22/195	0.477	0.214-1.061	22/187	0.568	0.248-1.3
COP - Above/Below 50th Percentile - Males	39/189	1.00		20/199	1.00		37/184	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	39/189	0.704	0.342-1.452	39/188 29/199	1.00 0.687	0.318-1.484	29/193	1.00 0.889	0.386-2.0
COP - Above/Below 50th Percentile - Females	50/190	0.701	0.542-1.452	27/1777	0.007	0.510 1.404	27/17/5	0.005	0.500 2.0
< LOD to 50th percentile (reference)	29/188	1.00		29/188	1.00		25/184	1.00	
\geq 50th percentile	31/187	0.827	0.440-1.555	31/186	1.029	0.543-1.953	30/180	1.087	0.495-2.3
ECP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	26/202	1.00	0.065 4.547	26/201	1.00	0 621 4 088	24/197	1.00	1 0 2 1 5 1
≥ 50th percentile ECP - Above/Below 50th Percentile - Females	43/185	2.095	0.965-4.547	42/186	1.593	0.621-4.088	42/180	2.302 *	1.031-5.1
< LOD to 50th percentile (reference)	27/190	1.00		27/190	1.00		24/185	1.00	
\geq 50th percentile	33/185	1.539	0.662-3.579	33/184	1.295	0.469-3.578	31/179	1.118	0.359-3.4
MBP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	31/197	1.00		30/197	1.00		29/192	1.00	
\geq 50th percentile	38/190	1.608	0.732-3.532	38/190	0.902	0.388-2.098	37/185	0.839	0.366-1.9
MBP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference)	25/192	1.00		25/192	1.00		23/186	1.00	
\geq 50th percentile (reference) \geq 50th percentile	35/192	2.650 **	1.342-5.236	35/192	2.106	0.973-4.555	32/178	2.366	0.824-6.7
MC1 - Above/Below 50th Percentile - Males	55/105	2.050	1.542-5.250	33/102	2.100	0.975-4.555	52/170	2.500	0.024 0.7
< LOD to 50th percentile (reference)	37/191	1.00		37/190	1.00		36/185	1.00	
\geq 50th percentile	32/196	0.949	0.382-2.359	31/197	1.252	0.571-2.744	30/192	1.197	0.518-2.7
MC1 - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	33/184	1.00		33/184	1.00		29/180	1.00	0 0 0 0 1 0
\geq 50th percentile	27/191	0.706	0.327-1.523	27/190	0.723	0.269-1.941	26/184	0.608	0.270-1.3
MEP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	27/201	1.00		27/200	1.00		26/195	1.00	
\geq 50th percentile	42/186	1.329	0.622-2.842	41/187	1.071	0.458-2.508	40/182	0.956	0.416-2.1
MEP - Above/Below 50th Percentile - Females	27/100	1.00		25/100	1.00		24/105	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	27/190	1.00 1.246	0.599-2.591	27/190 33/184	1.00 1.121	0 466 2 608	24/185	1.00	0.725-8.6
MHH - Above/Below 50th Percentile - Males	33/185	1.240	0.399-2.391	33/184	1.121	0.466-2.698	31/179	2.504	0.725-8.0
< LOD to 50th percentile (reference)	30/198	1.00		29/198	1.00		27/194	1.00	
\geq 50th percentile	39/189	1.353	0.727-2.517	39/189	1.012	0.500-2.048	39/183	1.538	0.658-3.5
AHH - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	30/187	1.00		30/187	1.00		27/182	1.00	
\geq 50th percentile	30/188	1.559	0.778-3.125	30/187	1.266	0.646-2.481	28/182	1.150	0.479-2.7
MOH - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	28/200	1.00	0.022.2.625	27/200	1.00	0.720.2.056	26/195	1.00	1 0 1 0 4 4
≥ 50th percentile MOH - Above/Below 50th Percentile - Females	41/187	1.840	0.932-3.635	41/187	1.444	0.730-2.856	40/182	2.132 *	1.019-4.4
< LOD to 50th percentile (reference)	27/190	1.00		27/190	1.00		24/185	1.00	
\geq 50th percentile	33/185	1.880	0.901-3.923	33/184	1.533	0.739-3.182	31/179	1.359	0.526-3.5
MZP - Above/Below 50th Percentile - Males							0.0.17		010 20 010
< LOD to 50th percentile (reference)	30/198	1.00		30/197	1.00		29/192	1.00	
≥ 50th percentile MZP - Above/Below 50th Percentile - Females	39/189	1.230	0.628-2.409	38/190	0.955	0.471-1.934	37/185	0.960	0.519-1.7
VIZP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference)	25/192	1.00		25/192	1.00		23/186	1.00	
\geq 50th percentile	35/183	1.763 *	1.003-3.099	35/192	1.356	0 722 2 544	32/178	1.148	0.441-2.9
MIB - Above/Below 50th Percentile - Males	33/103	1./03	1.003-3.099	33/162	1.550	0.722-2.544	32/1/8	1.140	0.441-2.9
MIB - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference)	29/199	1.00		28/199	1.00		26/195	1.00	
\geq 50th percentile (reference) \geq 50th percentile	40/188	1.281	0.733-2.239	40/188	0.789	0.474-1.315	40/193	1.073	0.554-2.0
MIB - Above/Below 50th Percentile - Females	10/100	1.201	5.155-2.239	10,100	0.707	5.7771.515	10,102	1.575	0.554-2.0
< LOD to 50th percentile (reference)	25/192	1.00		25/192	1.00		23/186	1.00	
\geq 50th percentile	35/183	1.421	0.825-2.446	35/182	0.882	0.469-1.658	32/178	1.234	0.501-3.0
BPA - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	30/198	1.00		30/198	1.00		30/191	1.00	0.515-1.8
\geq 50th percentile	39/189	1.069	0.573-1.996	38/189	1.111	0.523-2.362	36/186	0.885	0.444-1.7
BPA - Above/Below 50th Percentile - Females				20/107			20/121		
< LOD to 50th percentile (reference)	30/187	1.00	1	30/187	1.00	I	28/181	1.00	1

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDC levels were into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

¹ Unadjusted model. ²Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

Associations between Exposures to Phthalate and BPA and Memory Function

Exposures to the 12 phthalate metabolites and BPA and three memory function indicators: 1) During the past 12 months, have you experienced confusion or memory loss that is happening more often or getting worse?; 2) During the past 7 days, how often have you had trouble remembering where you put things?; 3) Are you limited in any way because of difficulty remembering or because you experience periods of confusion?) summarized in tables 1.22 to 1.36. Memory function have been included as a surrogate indicator of brain health as declining memory function can indicate the development of mild cognitive impairment, dementia, AD, or other memory-related neurodegenerative disease.

Worsening memory past 12 months and Exposure to BPA and Phthalates: Table

1.22 presents crude GMs and GSEs for subjects with phthalates and BPA concentrations over the LOD, by responses to the question, "During the past 12 months, have you experience confusion or memory loss that is happening more often or getting worse?". The GMs of three of the phthalate metabolites, MBP, MZP, and MIB, were found to be significantly higher in those who responded "yes" to experiencing confusion or memory loss in the past year than those who responded "no" (MBP, MZP, MIB, p<0.05).

Table 1.23 presents age-specific GMs and GSEs for subjects with phthalates and BPA concentrations over the LOD who responded to having memory loss or confusion over the past year. In the 60-69-year age group, three phthalate metabolites, MHH, MOH, MIB, were found to have GMs significantly higher (p<0.05) in subjects who answered "yes" versus those who answered "no". In the 70-79-year age group, the phthalate metabolite, COP, was found to have a significantly higher GM in the "no" group

compared to the "yes" group (p<0.05). In the 80+ age group, the phthalate metabolite, MIB, was found to have a significantly higher GM in the "yes" group compared to the "no" group (p<0.05).

Table 1.24 presents gender-specific GMs and GSEs for subjects with phthalate and BPA concentrations over the LOD who responded having memory loss or confusion over the past year. Among females, the phthalate metabolites MZP and MIB had significantly higher GMs in those who experienced memory issues in the past year, than those who did not (p<0.05).

Table 1.25 presents race-specific GMS and GSEs for subjects with phthalates and BPA concentrations over the LOD who to having memory loss or confusion over the past year. In the Non-Hispanic White group, the phthalate metabolite MIB was found to have a higher GM among the "yes" group compared to the "no" group (p<0.05). No other significant observations were observed.

Table 1.26 presents estimated ORs and 95% CIs for phthalate metabolites and BPA concentrations by responses to experiencing memory and confusion problems the last 12 months. For the phthalate metabolite MBP, concentrations among males in the \geq 50th percentile compared to the reference group, were found to be significantly associated with experiencing memory loss or confusion over the past year in the unadjusted model (OR=2.844, 95% CI: 1.170-6.912) and the 1st adjusted model (OR=3.184, 95% CI: 1.081-9.381). For the phthalate metabolite MZP, among females in the \geq 50th percentile group compared to the reference group, MZP concentrations were found to be significantly associated with experiencing memory loss or confusion over the past year in the unadjusted model (OR=2.277, 95% CI 1.183-4.383) and the 1st adjusted

model (OR=2.214, 95% CI: 1.055-4.647). For the phthalate metabolite MIB among females in the \geq 50th percentile group compared to the reference group, concentrations were found to be significantly associated with experiencing memory loss or confusion over the past year in the 2nd adjusted model (OR=2.180, 95% CI: 1.137-1.332).

		Geome	etric Mean	(ng/ml) (C	GSE, N)	
EEDC		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.82	0.43	178	2.63	0.13	843
Mono (carboxyoctyl) Phthalate - COP	18.63	2.34	181	19.14	1.55	843
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	13.51	1.12	180	12.02	0.63	843
Mono-n-butyl Phthalate - MBP	11.80	0.81	179 *	9.80	0.55	831
Mono-(3-carboxypropyl) Phthalate - MC1	2.79	0.28	173	2.74	0.18	805
Mono-ethyl Phthalate -MEP	54.91	6.40	181	56.30	4.95	844
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.27	0.64	181	7.25	0.35	843
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.63	0.39	181	4.88	0.24	842
Mono-benzyl Phthalate - MZP	5.24	0.65	179 *	4.06	0.22	831
Mono-isobutyl Phthalate - MIB	7.29	0.38	180 *	6.19	0.30	83
Bisphenol A - BPA	1.46	0.11	166	1.54	0.08	800

Table 1.22 Geometric Mean Urinary Phthalate and BPA Levels by responses, "During the past 12 months, experienced confusion or memory loss that is happening more often or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDC levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

	Ge	ometric M	lean (ng/m	ıl) (GSE, N	I), Age 60	-69	Ge	ometric M	ean (ng/m	ıl) (GSE, N), Age 70	-79	Gé	eometric N	Mean (ng/1	nl) (GSE, 1	N), Age 80)+
EEDC		Yes			No			Yes			No			Yes			No	
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	4.15	1.79	67	2.42	0.14	464	2.13	0.29	51	3.09	0.30	249	2.58	0.33	60	2.56	0.20	130
Mono (carboxyoctyl) Phthalate - COP	23.65	6.18	69	18.08	2.09	463	15.10	2.46	52	22.84	2.27	250 *	18.31	4.15	60	16.19	2.02	130
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	15.20	2.97	68	10.63	0.73	463	11.72	1.47	52	14.10	0.78	250	13.96	1.57	60	13.72	0.74	130
Mono-n-butyl Phthalate - MBP	11.11	1.73	68	9.24	0.64	456	11.47	1.34	52	10.01	0.86	247	12.94	1.44	59	11.78	1.12	128
Mono-(3-carboxypropyl) Phthalate - MC1	2.96	0.84	66	2.51	0.22	440	2.27	0.39	49	3.19	0.32	238	3.24	0.67	58	2.77	0.30	127
Mono-ethyl Phthalate -MEP	58.11	10.79	69	58.27	6.45	464	66.14	12.94	52	59.22	7.33	250	42.46	12.03	60	43.84	3.23	130
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	9.18	1.25	69 *	6.56	0.46	463	7.88	1.12	52	8.47	0.46	250	7.82	1.07	60	7.60	0.47	130
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.67	0.74	69 *	4.30	0.29	463	5.31	0.66	52	5.75	0.28	250	5.94	0.69	60	5.59	0.36	129
Mono-benzyl Phthalate - MZP	5.59	1.48	69	4.01	0.30	456	4.19	0.76	52	3.83	0.27	247	6.28	0.82	58	4.87	0.43	128
Mono-isobutyl Phthalate - MIB	8.12	0.69	69 *	6.39	0.37	460	6.55	0.49	52	6.25	0.38	246	7.32	0.84	59 *	5.33	0.51	129
Bisphenol A - BPA	1.52	0.13	65	1.51	0.09	442	1.36	0.20	45	1.69	0.13	234	1.50	0.21	56	1.39	0.12	124
			N	IANES sar	npling wei	ght applie	d before ca	lculating t	ne geome	tric mean.								

		Geome	tric Mean	(ng/ml) (C	SE, N)			Geome	etric Mean	(ng/ml) (C	JSE, N)	
EEDC			М	ale					Fen	nale		
EEDC		Yes			No			Yes			No	
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	2.05	0.29	78	2.40	0.14	437	3.40	0.85	100	2.89	0.21	406
Mono (carboxyoctyl) Phthalate - COP	11.94	2.06	80	17.41	1.31	437	24.11	4.08	101	21.13	2.65	406
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	11.80	1.46	80	10.86	0.57	438	14.62	1.94	100	13.38	0.91	405
Mono-n-butyl Phthalate - MBP	10.25	1.03	79	9.25	0.67	429	12.81	1.22	100	10.38	0.60	402
Mono-(3-carboxypropyl) Phthalate - MC1	2.32	0.42	77	2.56	0.19	420	3.12	0.51	96	2.96	0.26	385
Mono-ethyl Phthalate -MEP	49.63	8.64	80	53.52	5.07	438	58.21	8.77	101	59.36	7.04	406
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	7.24	0.86	80	6.80	0.38	438	8.93	0.86	101	7.74	0.46	405
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	4.92	0.58	80	4.59	0.25	436	6.08	0.53	101	5.19	0.33	406
Mono-benzyl Phthalate - MZP	3.40	0.67	78	3.74	0.31	432	6.70	1.13	101 *	4.42	0.24	399
Mono-isobutyl Phthalate - MIB	6.18	0.58	79	5.80	0.32	435	8.00	0.60	101 *	6.62	0.37	400
Bisphenol A - BPA	1.33	0.19	70	1.40	0.08	419	1.53	0.13	96	1.72	0.11	38

Table 1.24 Geometric Mean Urinary Phthalate and BPA Levels by responses, "During the past 12 months, experienced confusion or memory loss that is

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDC levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

	G	eometric N	lean (ng/	ml) (GSE,	N), Hispan	ic	Geomet	ric Mean (ng/ml) (G	SE, N), No	on-Hispani	c Whit
EEDC		Yes			No			Yes	-		No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.62	0.34	38	2.31	0.15	177	2.98	0.57	86	2.79	0.18	356
Mono (carboxyoctyl) Phthalate - COP	19.08	3.69	38	19.89	2.27	177	19.05	2.72	86	20.33	2.06	356
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	19.61	2.27	38	17.72	1.01	177	12.69	1.29	86	11.66	0.70	355
Mono-n-butyl Phthalate - MBP	13.60	1.89	38	13.73	0.89	175	11.03	0.92	86	9.11	0.65	349
Mono-(3-carboxypropyl) Phthalate - MC1	2.69	0.34	36	2.85	0.30	167	2.81	0.35	82	2.82	0.24	342
Mono-ethyl Phthalate -MEP	80.38	11.12	38	99.65	14.07	17	52.33	7.80	86	50.66	5.16	356
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	11.31	1.56	38	10.22	0.69	177	7.88	0.70	86	6.99	0.39	355
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	7.66	0.90	38	6.53	0.45	177	5.37	0.43	86	4.74	0.28	354
Mono-benzyl Phthalate - MZP	4.42	0.98	38	3.90	0.30	177	5.41	0.85	85	4.00	0.23	350
Mono-isobutyl Phthalate - MIB	8.66	0.92	38	9.31	0.58	177	6.78	0.40	85 *	5.65	0.28	353
Bisphenol A - BPA	1.80	0.35	35	1.57	0.14	170	1.44	0.13	79	1.57	0.10	340
	Geomet	tric Mean (ng/ml) (C	GSE, N), N	on-Hispani	Geometric Mean (ng/ml) (GSE, N), Asian/Other						
EEDC		Yes			No			Yes			No	
EEDC	GM	GSE	N	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	1.88	0.21	31	1.98	0.10	231	2.65	0.73	23	2.25	0.36	79
Mono (carboxyoctyl) Phthalate - COP	15.13	2.09	31	15.13	2.09	230	17.86	7.65	26	12.78	1.76	80
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	12.22	2.32	30	10.85	0.63	231	16.71	2.96	26	12.62	0.92	80
Mono-n-butyl Phthalate - MBP	12.34	1.85	31	10.84	0.57	227	18.31	4.03	24	14.37	2.68	80
Mono-(3-carboxypropyl) Phthalate - MC2	2.28	0.31	29	2.19	0.15	225	3.19	0.90	26	2.65	0.41	71
Mono-ethyl Phthalate -MEP	59.29	14.35	31	83.59	7.95	231	50.46	17.02	26	53.22	14.57	80
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.87	1.61	31	7.28	0.45	231	8.28	1.87	26	7.15	0.78	80
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	6.13	1.27	31	4.87	0.26	231	5.50	1.06	26	4.74	0.56	80
Mono-benzyl Phthalate - MZP	5.56	1.29	31	4.60	0.44	228	4.59	1.11	25	4.31	1.49	76
Mono-isobutyl Phthalate - MIB	8.99	1.74	31	7.46	0.38	226	9.51	2.05	26	9.12	1.70	79
Bisphenol A - BPA	1.34	0.13	30	1.42	0.06	224	1.40	0.26	22	1.31	0.23	66

	-	Unadjusted		-) years of age, NH Adjusted Odds			Adjusted Odds	
EEDC	Yes/No	Odds Ratio ¹	95% CI	Yes/No	Ratio #1 ²	95% CI	Yes/No	Ratio #2 ³	95% CI
CNP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference)	52/206	1.00		52/207	1.00		45/195	1.00	
\geq 50th percentile	28/232	0.649	0.283-1.491	28/230	0.586	0.248-1.386	72/214	0.712	0.295-1.722
CNP - Above/Below 50th Percentile - Females		01019	0.205 11171			0.210 1.500			0.290 1.722
< LOD to 50th percentile (reference)	52/202	1.00		52/201	1.00		44/190	1.00	
\geq 50th percentile	49/204	0.921	0.451-1.882	48/204	0.984	0.466-2.080	43/190	1.102	0.497-2.448
COP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference)	48/211	1.00		48/210	1.00		46/194	1.00	
\geq 50th percentile	32/227	0.570	0.284-1.146	32/227	0.575	0.300 1.104	26/215	0.421	0.199-0.887
COP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	46/207	1.00		45/207	1.00		38/195	1.00	
≥ 50th percentile ECP - Above/Below 50th Percentile - Males	55/199	1.457	0.813-2.610	55/198	1.690	0.944-3.026	49/185	1.889	0.942-3.790
ECF - Addve/Below John Percentile - Males < LOD to 50th percentile (reference)	42/217	1.00		42/216	1.00		36/204	1.00	
\geq 50th percentile	38/221	1.073	0.422-2.733	38/221	0.661	0.245-1.788	36/205	0.705	0.240-2.074
ECP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	51/202	1.00		50/202	1.00		40/193	1.00	
\geq 50th percentile	50/204	0.962	0.565-1.638	50/203	0.966	0.550-1.697	47/187	1.089	0.576-2.059
MBP - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference)	33/226	1.00		33/225	1.00		27/213	1.00	
\geq 50th percentile	47/212	2.844 *	1.170-6.912	47/212	2.465	0.913-6.656	45/196	3.184 *	1.081-9.381
MBP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	44/209	1.00		44/208	1.00		39/194	1.00	
≥ 50th percentile	57/197	1.260	0.697-2.277	56/197	1.175	0.651-2.118	48/186	1.109	0.569-2.161
MC1 - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference)	48/210	1.00		48/210	1.00		43/197	1.00	
\geq 50th percentile	50/203	0.704	0.378-1.309	32/227	0.606	0.317-1.158	29/212	0.581	0.305-1.108
MC1 - Above/Below 50th Percentile - Females	50/205	01/01	0.570 1.507	52/221	0.000	0.517 1.150	27/212	0.501	0.505 1.100
< LOD to 50th percentile (reference)	50/203	1.00		49/203	1.00		42/192	1.00	
\geq 50th percentile	51/203	1.001	0.626-1.602	51/202	1.080	0.673-1.733	45/188	1.008	0.556-1.825
MEP - Above/Below 50th Percentile - Males	41/210	1.00		41/017	1.00		20/202	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	41/218 39/220	1.00 0.901	0.487-1.667	41/217 39/220	1.00 1.006	0.538-1.883	38/202 34/207	1.00 0.971	0.473-1.993
MEP - Above/Below 50th Percentile - Females	57/220	0.901	0.487-1.007	57/220	1.000	0.558-1.885	54/207	0.771	0.475-1.995
< LOD to 50th percentile (reference)	53/200	1.00		53/199	1.00		43/190	1.00	
\geq 50th percentile	48/206	1.236	0.658-2.322	47/206	1.320	0.678-2.570	44/190	1.589	0.701-3.603
MHH - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference) ≥ 50th percentile	38/221 42/217	1.00 1.383	0 707 2 400	38/220 42/217	1.00 1.080	0 (08 1 020	32/208 40/201	1.00 1.152	0 (2(2 000
MHH - Above/Below 50th Percentile - Females	42/217	1.365	0.797-2.400	42/217	1.080	0.608-1.920	40/201	1.132	0.636-2.089
< LOD to 50th percentile (reference)	46/207	1.00		46/206	1.00		39/194	1.00	
\geq 50th percentile	55/199	1.343	0.806-2.239	54/199	1.258	0.757-2.091	48/186	1.302	0.724-2.342
MOH - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	41/218	1.00		41/217	1.00		34/206	1.00	
\geq 50th percentile	39/220	0.940	0.421-2.099	39/220	0.630	0.264-1.503	38/203	0.681	0.293-1.585
MOH - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference)	49/205	1.00		48/204	1.00		40/193	1.00	
\geq 50th percentile	52/201	1.109	0.643-1.912	52/201	1.088	0.596-1.988	40/193	1.066	0.541-2.101
MZP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	48/211	1.00		48/210	1.00		42/198	1.00	
\geq 50th percentile	32/227	0.649	0.276-1.527	32/227	0.618	0.265-1.441	30/211	0.690	0.296-1.610
MZP - Above/Below 50th Percentile - Females	07/01/	1.00		05/015	1.00		22/200	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	37/216 64/190	1.00 2.277 *	1.183-4.383	37/215 63/190	1.00 2.214 *	1.055-4.647	33/200 54/180	1.00 2.173	0.925-5.108
≥ 50th percentile MIB - Above/Below 50th Percentile - Males	04/190	4.4/1*	1.103-4.383	05/190	2.214	1.033-4.047	54/180	2.1/3	0.925-5.108
< LOD to 50th percentile (reference)	36/223	1.00		36/222	1.00		32/208	1.00	
\geq 50th percentile	44/215	1.270	0.652-2.473	44/215	1.297	0.629-2.672	40/201	1.159	0.497-2.704
MIB - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	47/206	1.00		47/205	1.00		39/194	1.00	
\geq 50th percentile	54/200	1.765	0.984-3.165	53/200	1.826	0.978-3.409	48/186	2.180 *	1.137-4.177
BPA - Above/Below 50th Percentile - Males < LOD to 50th percentile (reference)	44/215	1.00		44/215	1.00		40/200	1.00	
< LOD to 50th percentile (reference) \geq 50th percentile	44/215 36/223	0.847	0.433-1.659	44/215 36/222	1.00 0.829	0.469-1.464	40/200 32/209	1.00 0.749	0.400-1.401
BPA - Above/Below 50th Percentile - Females	30/223	0.047	0.455-1.059	50/222	0.027	0.407-1.404	52,207	0.747	0.400-1.401
< LOD to 50th percentile (reference)	51/202	1.00		50/201	1.00		42/191	1.00	
\geq 50th percentile	50/204	0.960	0.562-1.640	50/204	0.982	0.563-1.715	45/189	1.262	0.650-2.448

NHANES sampling weight applied before calculating the geometric mean.

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDC levels were into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01

¹ Unadjusted model. ²Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

Trouble remembering past 7 days and Exposure to BPA and Phthalates:

Table 1.27 presents crude GMs and GSEs for phthalate and BPA concentrations over the LOD for subjects who provided a response to the question "During the past 7 days, how often have you had trouble remembering where you put things?" The phthalate metabolite, MIB, was found to be significantly higher in those who experienced memory issues in the past week (p<0.05). Table 1.28 presents age-specific GMs and GSEs. No significant findings were observed. Table 1.29 presents gender-specific GMs and GSEs. Among males, GMs the for-phthalate metabolites ECP, MHH, and MOH were found to be significantly higher in those that experienced memory issues in the past week (ECP, p<0.05; MOH, p<0.05). Table 1.30 presents race-specific GMs and GSEs. Among Hispanics, the phthalate metabolite MBP was found to be significantly higher (p<0.05) in subjects that experienced memory issues in the past week.

Table 1.31 presents the estimated ORs and 95% CIs. For the phthalate metabolite ECP, among females in the \geq 50th percentile group compared to the reference group, ECP concentrations were found to be significantly associated with the having trouble remembering in the past week in adjusted model #1 (OR=1.673, 95% CI: 1.007-2.780) and adjusted model #2 (OR=1.927, 95% CI: 1.131-3.283). For the phthalate metabolite MBP, among females in the \geq 50th percentile group compared to the reference group, MBP concentrations were found to be significantly associated with having trouble remembering in the past week (OR=1.955, 95% CI: 1.030-3.711) in the 2nd adjusted model.

For the phthalate metabolite MHH, among females in the \geq 50th percentile group, MHH concentrations were found to be significantly associated with having trouble remembering in the past week (OR=1.821, 95% CI: 1.104-3.005) in the 2nd adjusted model.

Subjects >= 60 years of age,	, NHANES	5 2011-20	14, over ti	ie LOD		
		Geome	etric Mean	(ng/ml) (C	GSE, N)	
EEDC		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.64	0.18	187	2.67	0.15	780
Mono (carboxyoctyl) Phthalate - COP	17.79	1.83	188	19.45	1.66	782
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	12.55	0.58	188	11.94	0.64	781
Mono-n-butyl Phthalate - MBP	10.41	0.78	186	9.95	0.57	770
Mono-(3-carboxypropyl) Phthalate - MC1	2.36	0.24	178	2.84	0.19	748
Mono-ethyl Phthalate -MEP	63.99	8.74	188	53.71	4.47	783
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	7.60	0.41	188	7.19	0.38	782
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.07	0.30	187	4.86	0.26	782
Mono-benzyl Phthalate - MZP	4.38	0.38	186	4.12	0.24	771
Mono-isobutyl Phthalate - MIB	7.04	0.47	187 *	6.15	0.30	775
Bisphenol A - BPA	1.42	0.12	180	1.53	0.07	736
NHANES sampling weight appli	ed before (alculating	the geom	stric mean		

Table 1.27 Geometric Mean Urinary Phthalate and BPA Levels by Responses, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

NHANES sampling weight applied before calculating the geometric mean.

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDCs levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

	G	eometric M	Mean (ng/i	nl) (GSE, l	N), Hispan	ic	Geomet	ric Mean (ng/ml) (C	SE, N), No	n-Hispani	c White
EEDC		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.56	0.30	42	2.37	0.18	150	2.70	0.20	89	2.85	0.20	333
Mono (carboxyoctyl) Phthalate - COP	21.13	2.39	42	20.10	2.41	150	18.83	2.65	89	20.58	2.15	333
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	20.53	1.85	42	17.62	1.11	150	11.71	0.66	89	11.60	0.71	332
Mono-n-butyl Phthalate - MBP	17.40	1.96	41 *	13.72	0.90	149	9.22	0.76	89	9.32	0.70	326
Mono-(3-carboxypropyl) Phthalate - MC1	3.06	0.48	39	2.96	0.35	143	2.24	0.29	85	2.94	0.26	319
Mono-ethyl Phthalate -MEP	104.73	24.56	42	93.49	13.03	150	53.54	6.98	89	49.61	4.96	333
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	12.24	1.33	42	10.12	0.78	150	7.11	0.47	89	6.95	0.43	332
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	7.80	0.81	42	6.52	0.48	150	4.82	0.36	88	4.72	0.30	332
Mono-benzyl Phthalate - MZP	4.31	0.68	42	3.87	0.35	150	4.30	0.47	88	4.09	0.26	327
Mono-isobutyl Phthalate - MIB	10.41	0.87	42	9.20	0.67	150	6.22	0.44	89	5.67	0.29	329
Bisphenol A - BPA	1.69	0.33	39	1.56	0.12	144	1.36	0.14	85	1.57	0.10	316
	Geomet	ric Mean	(ng/ml) (C	SE, N), No	on-Hispani	c Black	Geo	ometric Me	ean (ng/m	l) (GSE, N), Asian/O	ther
EEDC		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.02	0.23	39	1.93	0.09	216	3.09	1.76	17	2.15	0.24	81
Mono (carboxyoctyl) Phthalate - COP	14.77	1.89	39	13.82	1.05	215	9.67	2.84	18	15.14	2.25	84
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	12.30	1.61	39	10.58	0.72	215	13.88	2.39	18	13.39	1.06	84
Mono-n-butyl Phthalate - MBP	12.07	1.58	39	10.72	0.52	212	16.55	2.98	17	14.82	3.01	83
Mono-(3-carboxypropyl) Phthalate - MC2	2.11	0.24	38	2.18	0.15	209	3.29	1.04	16	2.63	0.37	77
Mono-ethyl Phthalate -MEP	106.02	19.93	39	77.01	8.27	216	121.49	80.49	18	40.44	8.13	84
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.59	1.14	39	7.16	0.50	216	7.11	1.44	18	7.42	0.83	84
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.43	0.81	39	4.87	0.31	216	4.47	0.94	18	4.99	0.56	84
Mono-benzyl Phthalate - MZP	5.77	0.96	39	4.48	0.44	214	3.81	0.91	17	4.29	1.55	80
Mono-isobutyl Phthalate - MIB	8.32	0.91	39	7.38	0.44	212	12.99	4.20	17	8.55	1.56	84
Bisphenol A - BPA	1.39	0.16	39	1.43	0.06	209	1.97	0.46	17	1.14	0.17	67

taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.01

	Geor	metric Me	ean (ng/r	ml) (GSE,	N), Age 6	60-69	Geor	metric Me	ean (ng/	ml) (GSE,	N), Age 7	0-79	Geo	ometric M	lean (ng,	/ml) (GSE,	N), Age	80 +
EEDC		Yes			No			Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.08	0.22	88	2.66	0.20	418	3.29	0.41	59	2.81	0.26	227	2.99	0.37	40	2.42	0.23	135
Mono (carboxyoctyl) Phthalate - COP	13.62	3.26	89	19.52	2.29	418	22.11	4.08	59	21.49	2.29	229	21.35	5.33	40	15.67	2.08	135
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	11.59	1.25	89	10.81	0.84	417	13.68	1.09	59	13.36	0.88	229	12.81	1.55	40	13.58	0.79	135
Mono-n-butyl Phthalate - MBP	9.91	1.07	87	9.33	0.67	412	9.92	1.07	59	10.20	0.94	226	12.33	1.92	40	11.98	1.13	132
Mono-(3-carboxypropyl) Phthalate - MC1	2.02	0.38	83	2.66	0.24	400	2.54	0.41	56	3.14	0.36	217	2.80	0.67	39	2.94	0.39	131
Mono-ethyl Phthalate -MEP	67.84	17.75	89	55.88	5.88	419	70.60	17.55	59	58.83	8.50	229	49.12	11.23	40	38.75	2.85	135
/lono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	6.95	0.77	89	6.68	0.51	418	8.88	0.67	59	8.01	0.55	229	7.13	0.94	40	7.55	0.56	135
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	4.33	0.47	89	4.39	0.32	418	5.90	0.48	59	5.47	0.34	229	5.46	0.76	39	5.53	0.36	135
Mono-benzyl Phthalate - MZP	4.87	0.83	88	3.99	0.32	413	3.51	0.42	59	3.91	0.35	226	5.03	0.92	39	5.17	0.47	132
Mono-isobutyl Phthalate - MIB	7.70	0.82	89	6.29	0.36	416	6.98	0.59	58	6.09	0.39	226	5.98	0.95	40	5.81	0.47	133
Bisphenol A - BPA	1.44	0.16	87	1.50	0.10	396	1.55	0.17	54	1.63	0.12	212	1.21	0.27	39	1.48	0.11	128
			NHAN	ES sampl	ing weig	ht applie	d before	calculatin	ig the ge	ometricr	nean.		-					

Table 1.28 Age-Specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or

		Geomet	ric Mean	n (ng/ml)	(GSE, N)			Geomet	ric Mean	(ng/ml)	(GSE, N)	
EEDC			M	ale					Fen	nale		
EEDC		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GΜ	GSE	Ν	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	2.65	0.40	71	2.35	0.14	423	2.64	0.26	116	3.06	0.30	357
Mono (carboxyoctyl) Phthalate - COP	15.02	2.58	71	16.96	1.25	425	19.27	3.21	117	22.61	3.13	357
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	13.27	1.21	71 *	10.47	0.55	426	12.22	0.86	117	13.82	1.06	355
Mono-n-butyl Phthalate - MBP	9.71	1.28	71	9.36	0.69	416	10.76	0.88	115	10.64	0.72	354
Mono-(3-carboxypropyl) Phthalate - MC1	2.28	0.42	68	2.57	0.22	408	2.39	0.37	110	3.18	0.30	340
Mono-ethyl Phthalate -MEP	56.35	11.19	71	52.19	4.99	426	67.94	11.77	117	55.44	5.65	357
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.06	0.75	71 *	6.53	0.37	426	7.40	0.53	117	7.99	0.52	356
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.66	0.51	70 *	4.40	0.25	425	4.82	0.39	117	5.42	0.36	357
Mono-benzyl Phthalate - MZP	3.41	0.43	70	3.74	0.33	419	4.91	0.58	116	4.58	0.31	352
Mono-isobutyl Phthalate - MIB	6.31	0.82	71	5.73	0.31	422	7.41	0.59	116	6.66	0.38	353
Bisphenol A - BPA	1.38	0.24	65	1.37	0.08	404	1.44	0.12	115	1.75	0.12	332

Table 1.29 Gender-Specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "During the past 7 days, how often have you had

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDCs levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

EEDC	Yes/No	Unadjusted	95% CI	Yes/No	Adjusted Odds	95% CI	Yes/No	Adjusted Odds	95% CI
CNP - Above/Below 50th Percentile - Males		Odds Ratio ¹			Ratio #1 ²			Ratio #2 ³	
< LOD to 50th percentile (reference)	36/212	1.00		36/212	1.00		34/197	1.00	
\geq 50th percentile	35/212	0.873	0.412-1.853	35/212	0.871	0.444-1.708	34/198	1.009	0.453-2.2
CNP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	59/178	1.00		59/177	1.00		52/166	1.00	
\geq 50th percentile	58/179	1.024	0.518-2.023	57/179	1.012	0.472-2.166	54/164	1.036	0.487-2.2
COP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	39/209	1.00		39/209	1.00		39/192	1.00	
≥ 50th percentile COP - Above/Below 50th Percentile - Females	32/217	1.326	0.653-2.694	32/216	1.256	0.606-2.603	29/203	1.328	0.689-2.5
< LOD to 50th percentile (reference)	60/177	1.00		59/177	1.00		53/165	1.00	
\geq 50th percentile	57/180	1.059	0.567-1.978	57/179	1.007	0.531-1.910	53/165	0.955	0.475-1.9
ECP - Above/Below 50th Percentile - Males									
\geq 50th percentile	40/209	0.637	0.323-1.257	40/208	0.899	0.439-1.838	38/194	1.014	0.425-2.4
ECP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	62/175	1.00		62/174	1.00		54/164	1.00	
\geq 50th percentile	55/182	1.543	0.979-2.429	54/182	1.673 *	1.007-2.780	52/166	1.927 *	1.131-3.2
MBP - Above/Below 50th Percentile - Males	34/214	1.00		34/214	1.00		32/199	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	34/214 37/212	0.744	0.350-1.582	34/214 37/211	0.865	0.391-1.912	32/199	0.910	0.380-2.1
MBP - Above/Below 50th Percentile - Females	51/212	0./44	0.330-1.362	517211	0.005	0.371-1.912	50/170	0.710	0.300-2.1
< LOD to 50th percentile (reference)	59/178	1.00		59/177	1.00		54/164	1.00	
\geq 50th percentile	58/179	1.417	0.841-2.389	57/179	1.551	0.904-2.660	52/166	1.955 *	1.030-3.7
MC1 - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	37/211	1.00		37/211	1.00		35/196	1.00	
\geq 50th percentile	34/215	1.036	0.429-2.501	34/214	1.039	0.426-2.537	33/199	1.033	0.421-2.5
MC1 - Above/Below 50th Percentile - Females					1.0.0			1.00	
< LOD to 50th percentile (reference)	62/175	1.00	0 700 0 555	61/175	1.00	0 (01 0 450	56/162	1.00	0.000.00
≥ 50th percentile MEP - Above/Below 50th Percentile - Males	55/182	1.345	0.708-2.556	55/185	1.292	0.681-2.452	50/168	1.399	0.696-2.8
VIET - Above/Below Sour Percentile - Males < LOD to 50th percentile (reference)	31/217	1.00		31/217	1.00		29/202	1.00	
\geq 50th percentile	40/209	0.824	0.384-1.771	40/208	0.804	0.365-1.768	39/193	0.744	0.351-1.5
MEP - Above/Below 50th Percentile - Females			0.001 1.171			0.000 11/00			01001 1100
< LOD to 50th percentile (reference)	51/186	1.00		50/186	1.00		46/172	1.00	
\geq 50th percentile	66/171	0.784	0.470-1.308	66/170	0.726	0.425-1.242	60/158	0.761	0.396-1.4
MHH - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	27/221	1.00		27/221	1.00		26/205	1.00	
\geq 50th percentile	44/205	0.536	0.268-1.070	44/204	0.622	0.305-1.271	42/190	0.643	0.296-1.3
MHH - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference)	59/178	1.00		59/177	1.00		54/164	1.00	
\geq 50th percentile	58/178	1.294	0.812-2.060	57/179	1.367	0.867-2.155	52/166	1.821 *	1.104-3.0
MOH - Above/Below 50th Percentile - Males	50/110	1.274	0.012 2.000	51117	1.507	0.007 2.155	52/100	1.021	1.104 5.00
< LOD to 50th percentile (reference)	30/218	1.00		30/218	1.00		29/202	1.00	
\geq 50th percentile	41/208	0.555	0.257-1.199	41/207	0.691	0.291-1.637	39/193	0.788	0.315-1.97
MOH - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	59/178	1.00		58/178	1.00		53/165	1.00	
\geq 50th percentile	58/179	1.333	0.824-2.157	58/178	1.323	0.804-2.177	53/165	1.720	0.983-3.0
MZP - Above/Below 50th Percentile - Males	20/210	1.00		20/210	1.00		36/105	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	38/210 33/216	1.00 1.508	0.837-2.719	38/210 33/215	1.00 1.479	0.818-2.674	36/195 32/200	1.00 1.625	0.881-2.99
MZP - Above/Below 50th Percentile - Females	55/210	1.500	0.057-2.719	55/215	1.4/7	0.010-2.074	52/200	1.023	0.001-2.99
< LOD to 50th percentile (reference)	54/183	1.00		54/182	1.00		50/168	1.00	
\geq 50th percentile	63/174	0.757	0.413-1.388	62/174	0.780	0.427-1.426	56/162	0.795	0.394 -1.6
MIB - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	26/222	1.00		26/222	1.00		25/206	1.00	
\geq 50th percentile	45/204	0.568	0.251-1.282	45/203	0.567	0.239-1.341	43/189	0.623	0.248-1.5
MIB - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	59/178	1.00		59/177	1.00		53/165	1.00	
≥ 50th percentile	58/179	1.009	0.501-2.031	57/179	1.084	0.533-2.207	53/165	1.303	0.604-2.8
BPA - Above/Below 50th Percentile - Males	20/211	1.00		20/200	1.00		26/105	1.00	
< LOD to 50th percentile (reference) \geq 50th percentile	38/211 33/215	1.00 1.073	0 552 2 007	38/209 33/216	1.00	0 577 2 227	36/195 32/200	1.00 1.283	0 605 0 4
BPA - Above/Below 50th Percentile - Females	33/213	1.075	0.552-2.087	33/210	1.136	0.577-2.237	32/200	1.283	0.685-2.4
< LOD to 50th percentile (reference)	61/177	1.00		60/176	1.00		56/162	1.00	
\geq 50th percentile	56/180	1.392	0.810-2.390	56/180	1.347	0.787-2.304	50/162	1.460	0.738-2.8
_ com perconnic	20/200				g the geometric m				

e EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDCs levels were into account using the appropria domain statement in SAS. *p<0.01 ***p<0.001

¹ Unadjusted model. ²Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

Limitations Due to Difficulty Remembering or Confusion and Exposure to BPA and

Phthalates: Table 1.32 presents crude GMs and GSEs for subjects with phthalate and BPA levels above the LOD who responded to the question, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?". The phthalate metabolites ECP, MBP, MHH, MOH, MZP, and MIB were found to be significantly higher among individuals who are limited because of difficulty remembering or confusion (ECP, p<0.05; MBP, p<0.01; MHH, p<0.01; MOH, p<0.05; MZP, p<0.01; MIB, p<0.001) (

Table 1.33 presents age-specific GMs and GSEs. For the age group 60-69, the phthalate metabolites ECP, MBP, MHH, MOH, MZP, and MIB were found to be significantly higher in those who are limited due to difficulty remembering or confusion (ECP, p<0.01; MBP, p<0.05; MHH, p<0.01; MOH, p<0.05; MZP, p<0.05; MIB, p<0.01). In the age group 70-79, the phthalate metabolite MIB was found to be significantly higher in those who are limited due to difficulty remembering or confusion (p < 0.05). In the age group 80+, the phthalate metabolite MIB was found to be significantly higher in those who experienced memory issues or confusion (p < 0.05). Table 1.34 presents genderspecific GMs and GSEs. For males, the phthalate metabolites ECP, MHH, MOH, and MIB were found to be significantly higher in those who are limited due to memory issues or confusion (ECP, p<0.05; MHH, p<0.05; MOH, p<0.05; MIB, p<0.001). For females, the phthalate metabolites MBP, MZP, and MIB were found to be significantly higher in those in those who are limited due to memory issues or confusion (MBP, p<0.05; MZP, p<0.001; MIB, p<0.05). In females, BPA was found to be significantly higher in those that significantly higher in those in those who are not limited due to memory issues or

confusion (p<0.05). Table 1.35 presents race-specific GMs and GSEs. Among non-Hispanic whites, the phthalate metabolites MZP and MIB were found to be significantly higher among those that are limited due to memory issues or confusion (MZP, p<0.01; MIB, p<0.05). Table 1.36 presents estimated ORs and 95% CI for phthalate metabolites and BPA among subjects who responded to "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?". For the phthalate metabolite MBP among females in the \geq 50th percentile group compared to the reference group, MBP concentrations were found to be significantly associated with having limitations due to memory issues or confusion (OR=1.721, 95% CI: 1.083-2.735) in the unadjusted model. The adjusted models were not significant. For the phthalate metabolite MHH, among males in the \geq 50th percentile group compared to the reference group, MHH concentrations were found to be significantly associate with limitations due to memory issues or confusion in the unadjusted model, adjusted model #1, and adjusted model #2 (OR=2.460, 95% CI: 1.392-4.350, OR=2.444, 95% CI: 1.278-4.675, OR=3.029, 95% CI: 1.441=6.366). For the phthalate metabolite MOH, among males in the \geq 50th percentile group compared to the reference group, MOH concentrations were significantly associated with limitations due to memory issues or confusion the unadjusted model (OR=2.050, 95% CI: 1.016-4.136).

For the phthalate metabolite MZP, among females in the \geq 50th percentile group compared to the reference group, MZP concentrations were significantly associated with limitations due to memory issues or confusion in the unadjusted and both adjusted models (OR=3.135, 95% CI: 1.965-5.001, OR=2.863, 95% CI: 1.719-4.768, OR=2.124, 95% CI: 1.151-3.922). For the phthalate metabolite MIB, among males in the \geq 50th

percentile group compared to the reference group, MIB concentrations were significantly associated with limitations due to memory issues or confusion in the unadjusted and both adjusted models (OR=3.779, 95% CI: 1.756-8.131; OR=3.818, 95% CI: 1.742-8.369; OR=3.953, 95% CI: 1.691-9.242). Among females in the \geq 50th percentile compared to the reference group, MIB concentrations were significantly associated with limitations due to memory issues or confusion in only the unadjusted model (OR=1.786, 95% CI: 1.046-3.049).

	OCOII.		(GSE, N)		
	Yes		(11g/111) (C	No	
GM	GSE	Ν	GM	GSE	N
2.44	0.20	164	2.69	0.15	856
17.74	2.76	165	19.29	1.56	858
14.51	0.94	164 *	11.98	0.59	858
12.25	0.81	164 **	9.83	0.51	845
2.63	0.37	160	2.77	0.19	818
55.64	7.67	165	56.20	4.65	859
8.62	0.53	165 **	7.26	0.33	858
5.86	0.36	165 *	4.89	0.23	857
5.73	0.59	165 **	4.05	0.21	845
8.42	0.65	165 ***	6.11	0.27	850
1.42	0.13	154	1.55	0.07	811
ed before c	alculating	g the geome	tric mean.		
e LOD were	taken in	to account			
	2.44 17.74 14.51 12.25 2.63 55.64 8.62 5.86 5.73 8.42 1.42 ed before consformed p e LOD were	2.44 0.20 17.74 2.76 14.51 0.94 12.25 0.81 2.63 0.37 55.64 7.67 8.62 0.53 5.86 0.36 5.73 0.59 8.42 0.65 1.42 0.13 ed before calculating ansformed prior to an elocol were taken in	2.44 0.20 164 17.74 2.76 165 14.51 0.94 164 * 12.25 0.81 164 ** 2.63 0.37 160 55.64 7.67 165 8.62 0.53 165 ** 5.86 0.36 165 * 5.73 0.59 165 *** 1.42 0.13 154	2.44 0.20 164 2.69 17.74 2.76 165 19.29 14.51 0.94 164 * 11.98 12.25 0.81 164 ** 9.83 2.63 0.37 160 2.77 55.64 7.67 165 56.20 8.62 0.53 165 ** 7.26 5.86 0.36 165 * 4.89 5.73 0.59 165 *** 6.11 1.42 0.13 154 1.55 ed before calculating the geometric mean. $nsformed prior to analyses. Extreme creating the geometric mean.LOD were taken into account using the second secon$	2.44 0.20 164 2.69 0.15 17.74 2.76 165 19.29 1.56 14.51 0.94 164 ** 11.98 0.59 12.25 0.81 164 ** 9.83 0.51 2.63 0.37 160 2.77 0.19 55.64 7.67 165 56.20 4.65 8.62 0.53 165 *** 7.26 0.33 5.86 0.36 165 ** 4.05 0.21 8.42 0.65 165 *** 6.11 0.27 1.42 0.13 154 1.55 0.07 ed before calculating the geometric mean.asformed prior to analyses. Extreme creatinine value $2.0D$ were taken into account using the appropriate

 Table 1.32 Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

	G	eometric N	/lean (ng/	ml) (GSE, N), Hispani	с	Geome	tric Mean	(ng/ml)(G	SE, N), Nor	n-Hispanio	White
EEDC		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.54	0.22	50	2.32	0.14	165	2.62	0.26	58	2.84	0.20	383
Mono (carboxyoctyl) Phthalate - COP	20.87	3.32	50	19.39	2.13	165	18.46	3.70	58	20.37	2.02	38
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	19.36	1.52	50	17.66	1.10	165	13.47	1.32	58	11.66	0.66	38
Mono-n-butyl Phthalate - MBP	13.36	1.85	50	13.82	0.91	163	10.99	1.06	58	9.23	0.61	370
Mono-(3-carboxypropyl) Phthalate - MC1	2.72	0.42	46	2.85	0.32	157	2.61	0.52	57	2.84	0.24	36
Mono-ethyl Phthalate -MEP	97.76	15.35	50	95.22	14.73	165	44.74	7.32	58	51.67	5.12	383
lono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	11.61	1.46	50	10.06	0.75	165	7.74	0.66	58	7.08	0.37	38
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	7.58	0.80	50	6.47	0.48	165	5.41	0.42	58	4.79	0.26	38
Mono-benzyl Phthalate - MZP	4.50	0.92	50	3.84	0.30	165	6.12	0.97	58 **	4.01	0.22	37
Mono-isobutyl Phthalate - MIB	8.86	0.64	50	9.30	0.63	165	7.71	0.84	58 *	5.64	0.26	38
Bisphenol A - BPA	1.67	0.25	48	1.59	0.15	157	1.38	0.20	52	1.57	0.09	360
	Geome	tric Mean	(ng/ml) (G	SE, N), No	n-Hispani	c Black	Ge	ometric M	ean (ng/m) (GSE, N),	Asian/Ot	her
EEDC	Yes				No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	1.77	0.26	35	2.01	0.10	227	2.08	0.58	21	2.40	0.38	81
Mono (carboxyoctyl) Phthalate - COP	16.00	3.51	35	13.90	0.89	226	11.67	3.88	22	14.48	2.23	84
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	13.47	2.27	34	10.63	0.58	227	15.54	2.61	22	12.98	0.96	84
Mono-n-butyl Phthalate - MBP	11.89	1.51	35	10.86	0.65	223	22.74	4.89	21	13.66	2.47	83
Mono-(3-carboxypropyl) Phthalate - MC2	2.58	0.43	35	2.14	0.14	219	2.64	0.52	22	2.82	0.45	75
Mono-ethyl Phthalate -MEP	49.05	13.22	35	87.39	7.79	227	100.51	62.86	22	44.15	8.71	84
lono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	9.08	1.69	35	7.20	0.42	227	9.70	2.15	22	6.88	0.72	84
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	6.42	0.14	35	4.79	0.25	227	5.59	1.42	22	4.74	0.50	84
Mono-benzyl Phthalate - MZP	6.17	0.98	35	4.49	0.44	224	521	1.31	22	4.16	1.41	79
Mono-isobutyl Phthalate - MIB	8.88	1.06	35	7.43	0.42	222	12.81	4.31	22	8.42	1.41	83
Bisphenol A - BPA	1.17	0.13	34	1.46	0.07	220	1.66	0.26	20	125	0.20	68

EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDCs levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

	G	eometric N	/lean (ng/n	nl) (GSE, N), Age 60-6	59	G	eometric N	lean (ng/r	nl) (GSE, N), Age 70-7	79	C	eometric l	Mean (ng/1	nl) (GSE, 1	N), Age 80 +	+
EEDC		Yes			No			Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	2.26	0.19	74	2.58	0.19	457	2.34	0.31	36	2.97	0.27	264	2.72	0.41	54	2.54	0.17	135
Mono (carboxyoctyl) Phthalate - COP	17.00	2.86	75	18.73	2.12	457	15.80	3.19	36	21.95	2.09	266	20.14	5.55	54	15.98	1.80	135
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	15.04	1.28	74 **	10.67	0.78	457	13.81	1.71	36	13.65	0.73	266	14.43	1.51	54	13.72	0.7918.	135
Mono-n-butyl Phthalate - MBP	12.01	1.24	74 *	9.19	0.62	450	10.96	1.18	36	10.17	0.81	263	13.50	1.62	54	11.75	1.09	132
Mono-(3-carboxypropyl) Phthalate - MC1	2.39	0.32	73	2.57	0.24	433	2.49	0.73	34	3.08	0.30	253	3.03	0.74	53	2.86	0.32	132
Mono-ethyl Phthalate -MEP	60.87	18.15	75	58.00	6.47	458	78.19	16.52	36	58.73	6.76	266	39.85	9.80	54	44.95	3.76	135
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	9.27	0.93	75 **	6.57	0.46	457	9.27	1.26	36	8.28	0.45	266	7.57	0.89	54	7.84	0.48	135
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.81	0.61	75 *	4.30	0.30	457	6.08	0.76	36	5.63	0.27	266	5.76	0.55	54	5.76	0.38	134
Mono-benzyl Phthalate - MZP	6.16	1.00	75 *	3.98	0.30	450	5.01	0.78	36	3.79	0.30	263	5.81	0.77	54	5.07	0.45	132
Mono-isobutyl Phthalate - MIB	8.96	1.09	75 **	6.34	0.34	454	8.73	1.26	36 *	6.09	0.34	262	7.66	0.83	54 **	5.34	0.46	134
Bisphenol A - BPA	1.62	0.20	73	1.50	0.10	434	1.28	0.28	30	1.66	0.10	249	1.30	0.19	51	1.48	0.14	12
			NI	HANES sa	mpling wei	ight applie	ed before c	alculating	the geome	etric mean.								

Table 1.33 Age-Specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Subjects >=	0 years
of age, NHANES 2011-2014, over the LOD	

SAS. *p<0.05, **p<0.01 ***p<0.001

		Geon	etric Mean	(ng/ml) (G	SE, N)			Geom	etric Mean	(ng/ml) (G	SE, N)	
EEDC			Ma	ıle					Fen	nale		
EEDC		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.22	0.25	72	2.38	0.14	442	2.60	0.34	92	3.05	0.27	414
Mono (carboxyoctyl) Phthalate - COP	15.30	3.29	72	16.88	1.30	444	19.62	3.96	93	22.02	2.68	414
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	14.22	1.45	72 *	10.68	0.55	445	14.70	1.19	92	13.44	0.90	413
Mono-n-butyl Phthalate - MBP	9.91	0.84	72	9.32	0.68	435	14.16	1.28	92 *	10.35	0.55	410
Mono-(3-carboxypropyl) Phthalate - MC1	2.49	0.69	71	2.53	0.19	426	2.73	0.37	89	3.03	0.29	392
Mono-ethyl Phthalate -MEP	61.56	7.92	72	52.27	5.08	445	51.93	10.58	93	60.39	6.37	414
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.70	0.77	72 *	6.70	0.36	445	8.56	0.84	93	7.86	0.45	413
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.87	0.53	72 *	4.53	0.24	443	5.85	0.53	93	5.28	0.33	414
Mono-benzyl Phthalate - MZP	4.31	0.87	72	3.64	0.30	438	6.96	0.73	93 ***	4.51	0.25	407
Mono-isobutyl Phthalate - MIB	8.47	0.82	72 ***	5.61	0.29	442	8.38	0.88	93 *	6.65	0.33	408
Bisphenol A - BPA	1.61	0.28	64	1.38	0.07	424	1.32	0.12	90	1.75	0.11	387

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDCs levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

EEDC	Yes/No	Unadjusted Odds Ratio ¹	95% CI	Yes/No	Adjusted Odds Ratio #1 ²	95% CI	Yes/No	Adjusted Odds Ratio #2 ³	95% C
CNP - Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>42/217</td><td>1.00</td><td></td><td>42/216</td><td>1.00</td><td></td><td>37/202</td><td>1.00</td><td></td></lod>	42/217	1.00		42/216	1.00		37/202	1.00	
≥ 50th percentile	30/228	0.645	0.348-1.194	30/228	0.614	0.352-1.069	27/214	0.642	0.337-1.2
CNP - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>48/206</td><td>1.00</td><td></td><td>48/205</td><td>1.00</td><td></td><td>42/192</td><td>1.00</td><td></td></lod>	48/206	1.00		48/205	1.00		42/192	1.00	
≥50th percentile	45/208	1.018	0.555-1.870	44/208	1.389	0.747-2.584	42/191	1.649	0.833-3.2
COP - Above/Below 50th Percentile - Males <lod (reference)<="" 50th="" percentile="" td="" to=""><td>41/217</td><td>1.00</td><td></td><td>41/217</td><td>1.00</td><td></td><td>38/202</td><td>1.00</td><td></td></lod>	41/217	1.00		41/217	1.00		38/202	1.00	
<100 to 50il percentile (reference) ≥ 50th percentile	31/228	1.00	0.445-2.393	31/227	1.129	0.525-2.431	26/214	1.074	0.504-2.2
COP - Above/Below 50th Percentile - Females	51/220	1,051	0.443-2.393	51/227	1.125	0.525-2.451	20 214	1.0/4	0.004-2.2
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>46/207</td><td>1.00</td><td></td><td>45/207</td><td>1.00</td><td></td><td>40/193</td><td>1.00</td><td></td></lod>	46/207	1.00		45/207	1.00		40/193	1.00	
≥ 50 th percentile	47/207	0.923	0.467-1.823	47/206	1.177	0.568-2.437	44/190	1.288	0.553-3.0
ECP - Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>35/223</td><td>1.00</td><td></td><td>35/223</td><td>1.00</td><td></td><td>30/210</td><td>1.00</td><td></td></lod>	35/223	1.00		35/223	1.00		30/210	1.00	
≥ 50th percentile	37/222	1.537	0.770-3.068	37/221	1.275	0.564-2.887	34/206	1.405	0.504-3.9
ECP - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>43/210</td><td>1.00</td><td></td><td>42/210</td><td>1.00</td><td></td><td>35/198</td><td>1.00</td><td></td></lod>	43/210	1.00		42/210	1.00		35/198	1.00	
≥ 50th percentile	50/204	1.128	0.666-1.909	50/203	1.027	0.554-1.903	49/185	1.097	0.599-2.0
MBP - Above/Below 50th Percentile - Males	21/227	1.00		21/227	1.00		25/215	1.00	
<lod (reference)<br="" 50th="" percentile="" to="">≥ 50th percentile</lod>	31/227 41/218	1.00	0.803-4.033	31/227 41/217	1.00 1.562	0.679-3.591	25/215 39/201	1.00 2.272	0.853-6.0
/BP - Above/Below 50th Percentile - Females	41/210	1.800	0.803-4.033	41/21/	1.502	0.079-5.391	39/201	2.212	0.835-0.0
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>36/217</td><td>1.00</td><td></td><td>36/216</td><td>1.00</td><td></td><td>33/200</td><td>1.00</td><td></td></lod>	36/217	1.00		36/216	1.00		33/200	1.00	
≥ 50th percentile	57/197	1.721 *	1.083-2.735	56/197	1.350	0.820-2.221	51/183	1.183	0.728-1.9
MC1 - Above/Below 50th Percentile - Males						0.020 2.021			
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>43/216</td><td>1.00</td><td></td><td>43/214</td><td>1.00</td><td></td><td>39/201</td><td>1.00</td><td></td></lod>	43/216	1.00		43/214	1.00		39/201	1.00	
≥ 50th percentile	29/229	0.943	0.323-2.750	29/230	0.907	0.331-2.487	25/215	0.917	0.290-2.9
MC1 - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>46/207</td><td>1.00</td><td></td><td>45/207</td><td>1.00</td><td></td><td>41/193</td><td>1.00</td><td></td></lod>	46/207	1.00		45/207	1.00		41/193	1.00	
≥ 50th percentile	47/207	0.877	0.466-1.650	47/206	0.994	0.516-1.915	43/190	0.808	0.408-1.0
MEP - Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>28/230</td><td>1.00</td><td></td><td>28/230</td><td>1.00</td><td></td><td>27/213</td><td>1.00</td><td></td></lod>	28/230	1.00		28/230	1.00		27/213	1.00	
≥ 50th percentile MEP - Above/Below 50th Percentile - Females	44/215	1.605	0.955-2.698	44/214	1.765	0.948-3.287	37/203	1.866	0.927-3.
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>48/205</td><td>1.00</td><td></td><td>47/205</td><td>1.00</td><td></td><td>41/192</td><td>1.00</td><td></td></lod>	48/205	1.00		47/205	1.00		41/192	1.00	
≥ 50th percentile	45/209	0.915	0.511-1.640	45/208	0.900	0.467-1.733	43/191	1.215	0.557-2.6
MHH- Above/Below 50th Percentile - Males	43/207	0.515	0.511-1.040	43/200	0.500	0.407-1.755	43 171	1.215	0.337-2.0
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>27/231</td><td>1.00</td><td></td><td>27/231</td><td>1.00</td><td></td><td>23/217</td><td>1.00</td><td></td></lod>	27/231	1.00		27/231	1.00		23/217	1.00	
≥ 50 th percentile	45/214	2.460 **	1.392-4.350	45/213	2.444 **	1.278-4.675	41/199	3.029 **	1.441-6.3
/HH - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>38/215</td><td>1.00</td><td></td><td>38/214</td><td>1.00</td><td></td><td>34/199</td><td>1.00</td><td></td></lod>	38/215	1.00		38/214	1.00		34/199	1.00	
≥ 50th percentile	55/199	1.560	0.845-2.879	54/199	1.297	0.667-2.523	50/184	1.173	0.593-2.3
MOH- Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>28/230</td><td>1.00</td><td></td><td>28/230</td><td>1.00</td><td></td><td>25/215</td><td>1.00</td><td></td></lod>	28/230	1.00		28/230	1.00		25/215	1.00	
≥ 50th percentile	44/215	2.050 *	1.016-4.136	44/214	1.744	0.868-3.504	39/201	1.767	0.756-4.1
/IOH - A bove/Below 50th Percentile - Females <lod (reference)<="" 50th="" percentile="" td="" to=""><td>42/212</td><td>1.00</td><td></td><td>41/211</td><td>1.00</td><td></td><td>36/197</td><td>1.00</td><td></td></lod>	42/212	1.00		41/211	1.00		36/197	1.00	
\geq 50th percentile	42/212 51/202	1.172	0.677-2.029	51/202	1.00	0.557-1.827	48/186	0.922	0.511-1.0
MZP - Above/Below 50th Percentile - Males	51/202	1.172	0.011-2.029	51/202	1.008	0.007-1.827	40/180	0.922	0.511-1.0
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>38/220</td><td>1.00</td><td></td><td>38/220</td><td>1.00</td><td></td><td>34/206</td><td>1.00</td><td></td></lod>	38/220	1.00		38/220	1.00		34/206	1.00	
\geq 50th percentile	34/225	1.179	0.489-2.844	34/224	1.084	0.491-2.395	30/210	1.117	0.465-2.0
MZP - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>29/224</td><td>1.00</td><td></td><td>29/223</td><td>1.00</td><td></td><td>27/206</td><td>1.00</td><td></td></lod>	29/224	1.00		29/223	1.00		27/206	1.00	
≥ 50 th percentile	64/190	3.135 ***	1.965-5.001	63/190	2.863 ***	1.719-4.768	57/177	2.124 ***	1.151-3.9
MIB - Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>24/234</td><td>1.00</td><td></td><td>24/234</td><td>1.00</td><td></td><td>21/219</td><td>1.00</td><td></td></lod>	24/234	1.00		24/234	1.00		21/219	1.00	
≥ 50th percentile	48/211	3.779 **	1.756-8.131	48/210	3.818 **	1.742-8.369	43/197	3.953 **	1.691-9.
VIB - Above/Below 50th Percentile - Females	20/214	1.00		20/212	1.00		25/100	1.00	
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>39/214</td><td>1.00</td><td>1046 2040</td><td>39/213</td><td>1.00</td><td>0.750.0.010</td><td>35/198</td><td>1.00</td><td>0.760.0</td></lod>	39/214	1.00	1046 2040	39/213	1.00	0.750.0.010	35/198	1.00	0.760.0
≥ 50th percentile BPA - Above/Below 50th Percentile - Males	54/200	1.786 *	1.046-3.049	53/200	1.487	0.759-2.913	49/185	1.541	0.768-3.
SPA - Above/Below 50th Percentile - Males <lod (reference)<="" 50th="" p="" percentile="" to=""></lod>	37/221	1.00		27/201	1.00		20/000	1.00	
<lod (reference)<br="" 50th="" percentile="" to="">≥ 50th percentile</lod>	3//221 35/224	1.00	0.496-2.200	37/221 35/223	0.959	0.512-1.797	32/208 32/208	0.945	0.443-2.
PA - Above/Below 50th Percentile - Females	33/224	1.044	0.490-2.200	33/243	0.939	0.012-1.797	52 200	0.945	0.443-2.
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>53/200</td><td>1.00</td><td></td><td>52/199</td><td>1.00</td><td></td><td>46/187</td><td>1.00</td><td></td></lod>	53/200	1.00		52/199	1.00		46/187	1.00	
		1.00							

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDCs levels were into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

¹Unadjusted model. ²Adjusted for age, education, race/ethnicity. ³Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

Associations Between Exposures to Phthalate and BPA and Taste/Smell Function

Exposures to the 12 phthalate metabolites and BPA and two indicators of taste/smell function: 1) Do you sometimes smell an unpleasant, bad, or burning odor when nothing is there (phantosmia), and 2) During the past 12 months have you had a taste or other sensation in your mouth that does not go away? Taste and smell indicators have been included as a surrogate indicator of brain health as taste and smell dysfunction is a possible pre-clinical indicator in the development of AD and other memory-related neurodegenerative diseases.

Smell Dysfunction and Exposure to BPA and Phthalates: Table 1.37 presents crude GMs and GSEs for subjects with phthalate metabolite and BPA measurements over the LOD who provided a response to the question, "Do you sometimes smell an unpleasant, bad, or burning odor when nothing is there?". The GM for the phthalate metabolite MIB was found to be significantly higher in those that experienced phantosmia (p<0.05). Table 1.38 presents age-specific GMs and GSEs. In the 60-69 age group, the GM for the phthalate MIB was found to be significantly higher in those that experienced phantom odors (p < 0.05). In the 70-79 age group, the GM for the phthalate MEP was found to be significantly higher in those that experienced phantom odors (p < 0.01). Table 1.39 presents gender-specific GMs and GSEs. In females, the GMs for the phthalate metabolites MBP and MOH were significantly higher in those that experienced phantom odors (MBP, p<0.01; MOH, p<0.05). Table 1.40 presents race-specific GMs and GSEs. Among non-Hispanic blacks, the GM for phthalate metabolite MC1 was significantly higher in those that experienced phantom odors (p<0.01). The GM for BPA among Asian/other was significantly higher in those that experienced phantom odors (p<0.05).

Table 1.41 presents estimated ORs and 95% CI for subjects with measurable phthalate metabolite and BPA levels who responded to the question "Do you sometimes smell and unpleasant, bad, or burning odor when nothing is there?". For the phthalate metabolite MEP, among females in the \geq 50th percentile compared to the reference group, MEP concentrations are significantly associated with phantom odor (OR=2.036, 95% CI: 1.047-3.958) in the unadjusted model (Table 1.41).

2014	, over the	LOD	ĩ	8	/	
		Geome	etric Mean	(ng/ml) (G	SE, N)	
EEDC		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.51	0.27	73	2.67	0.14	947
Mono (carboxyoctyl) Phthalate - COP	21.90	3.90	74	18.91	1.48	949
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	13.63	1.69	74	12.16	0.56	948
Mono-n-butyl Phthalate - MBP	11.55	1.32	74	10.00	0.52	935
Mono-(3-carboxypropyl) Phthalate - MC1	2.50	0.37	70	2.77	0.18	907
Mono-ethyl Phthalate -MEP	75.21	16.90	74	55.11	4.33	950
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.36	1.16	73	7.34	0.31	950
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.51	0.74	74	4.96	0.23	948
Mono-benzyl Phthalate - MZP	4.84	0.73	73	4.19	0.23	936
Mono-isobutyl Phthalate - MIB	7.57	0.66	74 *	6.28	0.28	940
Bisphenol A - BPA	1.51	0.18	70	1.53	0.07	895
NHANES sampling weight applie	ed before	calculating	the geom	etric mean		
The EEDCs were creatinine-adjusted then log training/dL and >300 mg/dL) and EEDCs levels below						

Table 1.37 Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014. over the LOD

domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

	e	leometric l	Mean (ng/	ml) (GSE, N), Hispani	с	Geome	ric Mean (ng/ml) (G	SE, N), Noi	n-Hispanic	White
FEDC		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	1.93	0.30	21	2.43	0.13	194	2.68	0.34	25	2.82	0.18	417
Mono (carboxyoctyl) Phthalate - COP	15.73	3.97	21	20.28	1.65	194	24.01	5.79	25	19.94	1.90	417
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	16.79	1.91	21	18.21	1.05	194	13.28	2.47	25	11.74	0.60	416
Mono-n-butyl Phthalate - MBP	12.02	2.26	21	13.93	0.99	192	11.13	1.85	25	9.29	0.60	410
Mono-(3-carboxypropyl) Phthalate - MCl	2.49	0.37	18	2.86	0.27	185	2.45	0.52	24	2.84	0.23	400
Mono-ethyl Phthalate -MEP	141.12	46.34	21	91.49	11.53	194	68.51	22.09	25	50.11	4.51	417
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	9.96	1.25	21	10.47	0.73	194	8.19	1.63	24	7.07	0.34	417
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	6.42	0.82	21	6.76	0.48	194	5.38	1.04	25	4.81	0.25	415
Mono-benzyl Phthalate - MZP	4.09	0.87	21	3.98	0.36	194	5.24	1.18	24	4.13	0.26	411
Mono-isobutyl Phthalate - MIB	9.59	1.13	21	9.14	0.48	194	7.31	0.92	25	5.74	0.27	413
Bisphenol A - BPA	1.57	0.33	21	1.62	0.17	184	1.61	0.26	23	1.55	0.09	396
	Geome	tric Mean	(ng/ml) (G	8E, N), No	n-Hispanic	e Black	Ge	ometric Me	an (ng/m	l) (GSE, N),	Asian/Ot	her
FFDC		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.06	0.46	21	1.96	0.10	241	3.91	1.70	6	2.23	0.34	95
Mono (carboxyoctyl) Phthalate - COP	22.09	6.62	21	13.66	0.79	240	17.73	5.57	7	13.74	2.11	98
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	12.44	2.33	21	10.89	0.63	240	12.93	2.83	7	13.53	0.96	98
Mono-n-butyl Phthalate - MBP	10.82	1.83	21	11.03	0.58	237	18.60	5.19	7	15.02	2.59	96
Mono-(3-carboxypropyl) Phthalate - MC1	3.30	0.56	21 **	2.12	0.12	233	1.70	0.62	7	2.90	0.40	89
	64.66	17.91	21	81.72	8.27	241	58.36	35.50	7	52.76	11.50	98
Mono-ethyl Phthalate -MEP		1.81	21	7.40	0.46	241	7.27	2.00	7	7.41	0.77	98
Mono-ethyl Phthalate -MEP Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.05	1.01			0.27	241	5.00	1.26	7	4.90	0.54	98
	8.05 5.44	1.08	21	4.97	0.27	2.11						
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH			21 21	4.97 4.69	0.27	238	2.94	0.89	7	4.55	1.36	93
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.44	1.08					2.94 7.87	0.89 0.78	7 7	4.55 9.46	1.36 1.56	93 97

	G	eometric N	lean (ng/n	nl) (GSE, N), Age 60-0	59	G	eometric N	/lean (ng/n	nl) (GSE, N), Age 70-	79	C	eometric N	lean (ng/	ml) (GSE, N	N), Age 80	+
EEDC		Yes			No			Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.74	0.30	50	2.53	0.18	480	2.19	0.46	16	2.93	0.25	284	1.78	0.56	7	2.60	0.15	183
Mono (carboxyoctyl) Phthalate - COP	22.71	5.04	50	18.27	2.08	481	24.11	10.69	17	21.17	2.09	285	13.28	5.05	7	16.93	1.81	183
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	12.64	2.18	50	10.88	0.77	480	17.20	2.61	17	13.53	0.68	285	14.03	2.02	7	13.79	0.75	183
Mono-n-butyl Phthalate - MBP	11.16	1.66	50	9.28	0.62	473	12.02	3.07	17	10.18	0.78	282	13.64	1.27	7	12.08	1.11	180
Mono-(3-carboxypropyl) Phthalate - MC1	2.31	0.46	47	2.58	0.22	458	3.07	1.28	16	3.02	0.30	271	2.81	0.77	7	2.91	0.28	178
Mono-ethyl Phthalate -MEP	63.02	19.27	50	57.93	6.37	482	155.45	43.22	17 **	58.02	6.61	285	52.46	15.91	7	43.15	3.89	183
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	7.61	1.43	49	6.72	0.47	482	9.87	1.70	17	8.31	0.44	285	11.39	2.22	7	7.57	0.47	183
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.00	0.90	50	4.37	0.30	481	6.73	1.11	17	5.63	0.27	285	7.23	1.01	7	5.65	0.33	182
Mono-benzyl Phthalate - MZP	4.86	0.97	50	4.86	0.97	474	4.49	1.00	16	3.87	0.29	283	5.52	2.23	7	5.25	0.45	179
Mono-isobutyl Phthalate - MIB	8.12	0.76	50 *	6.43	0.38	478	7.23	1.42	17	6.27	0.32	281	4.96	1.10	7	5.89	0.46	181
Bisphenol A - BPA	1.36	0.19	50	1.52	0.10	456	1.88	0.41	15	1.62	0.10	264	2.42	0.84	5	1.41	0.13	175
	NHANES sampling weight applied before calculating the geometric mean.																	

 Table 1.39 Gender-specific Geometric Mean Urinary Phthalate and BPA Levels by Responses, "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

		Geome	etric Mean	(ng/ml) (C	8E, N)			Geom	etric Mean	(ng/ml) (G	SE, N)	
EEDC			Μ	ale					Fen	nale		
EEDC		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	2.62	0.36	30	2.34	0.12	484	2.42	0.35	43	3.02	0.25	463
Mono (carboxyoctyl) Phthalate - COP	21.12	7.05	31	16.45	1.15	485	22.56	4.12	43	21.61	2.53	464
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	11.11	2.70	31	10.95	0.50	486	16.07	2.01	43	13.45	0.86	462
Mono-n-butyl Phthalate - MBP	8.03	8.03 1.66		9.45	0.66	476	15.49	1.62	43 **	10.55	0.57	459
Mono-(3-carboxypropyl) Phthalate - MC1	2.48	0.68	30	2.53	0.18	466	2.52	0.35	40	3.02	0.26	441
Mono-ethyl Phthalate -MEP	84.50	39.48	31	51.73	4.49	486	68.45	9.74	43	58.56	5.94	464
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	7.08	1.88	31	6.84	0.33	486	9.62	1.34	42	7.86	0.43	464
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	4.57	1.27	31	4.63	0.23	484	6.42	0.64	43 *	5.29	0.31	464
Mono-benzyl Phthalate - MZP	4.22	1.24	31	3.68	0.31	478	5.43	0.53	42	4.75	0.27	458
Mono-isobutyl Phthalate - MIB	7.26	1.13	31	5.78	0.31	482	7.83	0.64	43	6.81	0.35	458
Bisphenol A - BPA	1.33	0.26	29	1.40	0.07	459	1.68	0.22	41	1.68	0.10	436
N	HANES s	ampling w	eight appl	ied before	calculating	g the geon	netric mean	•				

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDCs levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

	Yes/No	Unadjusted Odds Ratio ¹	95% CI	Yes/No	Adjusted Odds Ratio #1 ²	95% CI	Yes/No	Adjusted Odds Ratio #2 ³	95
CNP - Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>15/243</td><td>1.00</td><td></td><td>15/242</td><td>1.00</td><td></td><td>13/227</td><td>1.00</td><td></td></lod>	15/243	1.00		15/242	1.00		13/227	1.00	
\geq 50th percentile	16/243	1.254	0.483-3.256	16/243	1.532	0.510-4.600	13/227	1.601	0.6
CNP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	26/228	1.00	0.054.4.505	26/227	1.00		23/211	1.00	
≥ 50th percentile COP - Above/Below 50th Percentile - Males	17/236	0.649	0.274-1.537	17/235	0.694	0.312-1.540	17/216	0.906	0.3
	12/246	1.00		12/246	1.00		10/230	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	12/240	1.403	0.292-6.732	19/239	1.258	0.253-6.258	16/224	0.839	0.1
COP - Above/Below 50th Percentile - Females	19/240	1.405	0.292-0.732	19/239	1.256	0.233-0.238	10/224	0.839	0.1
< LOD to 50th percentile (reference)	17/236	1.00		17/235	1.00		16/217	1.00	
\geq 50th percentile	26/228	1.880	0.814-4.339	26/227	1.981	0.892-4.401	24/210	2.317	0.8
ECP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	13/245	1.00		13/245	1.00		12/228	1.00	
\geq 50th percentile	18/241	1.741	0.449-6.744	18/240	2.210	0.582-8.389	14/226	1.264	0.3
ECP - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	18/235	1.00		18/234	1.00		15/218	1.00	L
≥ 50th percentile	25/229	1.724	0.701-4.240	25/228	1.708	0.672-4.341	25/209	1.755	0.7
MBP - Above/Below 50th Percentile - Males	17/211	1.00		17/2 **	1.00		14/22 5	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	17/241 14/245	1.00 0.980	0.252.2.017	17/241 14/244	1.00 1.056	0.222-5.026	14/226 12/228	1.00 1.577	0.3
MBP - Above/Below 50th Percentile - Females	14/245	0.980	0.252-3.817	14/244	1.050	0.222-5.026	12/228	1.577	0.3
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>18/235</td><td>1.00</td><td></td><td>18/234</td><td>1.00</td><td></td><td>18/215</td><td>1.00</td><td></td></lod>	18/235	1.00		18/234	1.00		18/215	1.00	
\geq 50th percentile	25/229	1.945	0.907-4.168	25/228	1.843	0.912-3.724	22/215	1.539	0.7
MC1 - Above/Below 50th Percentile - Males	20/22/	1.915	0.907 1.100	20/220	1015	0.912 5.121	10 110	1007	0.7
< LOD to 50th percentile (reference)	17/242	1.00		17/240	1.00		15/225	1.00	
\geq 50th percentile	14/244	1.016	0.265-3.899	14/245	1.095	0.251-4.771	11/229	0.887	0.1
MC1 - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	21/232	1.00		21/231	1.00		18/216	1.00	
\geq 50th percentile	23/232	0.806	0.436-1.492	22/231	0.807	0.424-1.537	22/211	0.939	0.4
MEP - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	10/248	1.00		10/248	1.00		8/232	1.00	
≥ 50th percentile	21/238	1.749	0.431-7.096	21/237	1.457	0.387-5.484	18/222	1.318	0.2
MEP - Above/Below 50th Percentile - Females	16/227	1.00		17/225	1.00		16/017	1.00	
< LOD to 50th percentile (reference) ≥ 50th percentile	16/237 27/227	1.00 2.036 *	1.047-3.958	17/235 26/227	1.00 1.693	0.811-3.535	16/217 24/210	1.00 1.819	0.7
MHH - Above/Below 50th Percentile - Males	211221	2.050	1.047-5.556	20/227	1.075	0.011-5.555	24/210	1.017	0.7
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>14/244</td><td>1.00</td><td></td><td>14/244</td><td>1.00</td><td></td><td>12/228</td><td>1.00</td><td></td></lod>	14/244	1.00		14/244	1.00		12/228	1.00	
\geq 50th percentile	17/242	1.390	0.392-4.936	17/241	1.596	0.416-6.118	14/226	1.420	0.3
MHH - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>19/234</td><td>1.00</td><td></td><td>19/233</td><td>1.00</td><td></td><td>17/216</td><td>1.00</td><td></td></lod>	19/234	1.00		19/233	1.00		17/216	1.00	
\geq 50th percentile	24/230	1.143	0.449-2.905	24/229	1.080	0.422-2.764	23/211	1.060	0.3
MOH - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	15/243	1.00		15/243	1.00		13/227	1.00	
\geq 50th percentile	16/243	1.014	0.270-3.813	16/242	1.155	0.287-4.645	13/227	0.962	0.1
MOH - Above/Below 50th Percentile - Females	10/02/	1.00		10/224	1.00		15/010	1.00	
< LOD to 50th percentile (reference)	18/236	1.00	0.793.3.741	18/234	1.00	0.000.2.000	15/218	1.00	0.0
≥ 50th percentile MZP - Above/Below 50th Percentile - Males	25/228	1.715	0.782-3.761	25/228	1.630	0.690-3.855	25/209	1.871	0.8
MZP - Above/Below Join Percentile - Males < LOD to 50th percentile (reference)	16/242	1.00		16/242	1.00		15/225	1.00	
\geq 50th percentile (reference) \geq 50th percentile	16/242	0.633	0.159-2.519	15/242	0.504	0.144-1.757	13/223	0.303	0.0
MZP - Above/Below 50th Percentile - Females	10/ 244	0.000	3.137-2.319	10, 240	0.004	5.1++-1.757		0.505	0.0
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>18/235</td><td>1.00</td><td></td><td>18/234</td><td>1.00</td><td></td><td>16/217</td><td>1.00</td><td></td></lod>	18/235	1.00		18/234	1.00		16/217	1.00	
\geq 50th percentile	25/229	1.539	0.652-3.636	25/228	1.474	0.577-3.766	24/210	1.493	0.4
MIB - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	11/247	1.00		11/247	1.00		11/229	1.00	
\geq 50th percentile	20/239	1.664	0.402-6.880	20/238	1.330	0.363-4.877	15/225	1.032	0.2
MIB - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	21/232	1.00		20/232	1.00		18/215	1.00	
\geq 50th percentile	22/232	1.452	0.710-2.969	23/230	1.331	0.620-2.859	22/212	1.449	0.7
BPA - Above/Below 50th Percentile - Males	41/2/-	1.00		11/2/2	1.00		0.000	1.00	
< LOD to 50th percentile (reference)	11/248	1.00	0.511.0.51	11/246	1.00	0.496.10.11	9/231	1.00	
≥ 50th percentile BPA - Above/Below 50th Percentile - Females	20/238	2.216	0.511-9.613	20/239	2.079	0.426-10.141	17/223	1.352	0.2
SPA - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference)	24/229	1.00		24/227	1.00		22/211	1.00	

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDCs levels were into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.01

¹ Unadjusted model. ²Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, , high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

Taste Dysfunction and Exposure to BPA and Phthalates: Table 1.42 presents crude GMs and GSEs for subjects who have phthalate metabolite and BPA levels over the LOD who responded to the question, "During the past 12 months, you had a problem with your ability to taste sweet, sour, salty or bitter foods and drinks?". The GMs phthalate metabolites COP, ECP, MBP, MHH, MOH, and MIB were found to be significantly higher in those that had persistent sensation in their mouth the past 12 months compared to those that did not have it (COP, MIB, p<0.05; MBP, MHH, MOH, p<0.01; ECP, p<0.001) (Table 1.42). Table 1.43 presents age-specific GMs and GSEs. Among the 60-69 age group, GMs for the phthalate metabolites ECP, MBP, MHH, MOH, and MIB were significantly higher in those with persistent sensation in their mouths compared to those who did not have persistent sensation (ECP, MHH, MOH, p < 0.01; MBP, MIB, p < 0.05). Among the 80+ age group, GMs for the phthalate metabolites CNP, ECP, MHH, and MOH were significantly higher in those with persistent sensation in their mouths compared to those who did not have persistent sensation (CNP, ECP, MHH, p<0.05; MOH, p<0.01) (Table 1.43). Table 1.44 presents gender-specific GMs and GSEs. Among males, the phthalate metabolites MBP and MIB were significantly higher in those that experienced persistent sensations in their mouths compared to those who did not have those sensations (MBP, MIB, p<0.05). In females, ECP, MBP, MHH, and MOH were observed to be significantly higher in those that experience persistent sensation in their mouths (ECP, MBP, MHH, MOH, p<0.01) (Table 1.44). Table 1.45 presents race-specific GMs and GSEs. Among non-Hispanic Whites, the phthalate metabolites COP, ECP, MBP, MHH, MOH, and MIB were found to be significantly higher in

those with persistent sensation in their mouths (ECP, MBP, p<0.001; MHH, p<0.01; COP, MOH, MIB, p<0.05). Among Asians/Others, the phthalate metabolite MHH was found to be significantly higher in those with persistent taste or sensation in their mouths (MHH, p<0.05).

Table 1.46 presents ORs and 95% CI for those with Yes/No responses to the question "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" and phthalates and BPA stratified by gender with two groups: \leq LOD to 50th percentile (reference) and \geq 50th percentile. For the phthalate COP, males in the \geq 50th percentile compared to the reference group were found to have COP concentrations significantly associated gustatory sensations that would not go away in the unadjusted model and both adjusted models (OR=3.649, 95% CI: 1.054-12.639; OR=4.1.280, 95% CI: 1.386-12.603; OR=4.608, 95% CI: 1.130-18.787). For the phthalate ECP, males in the \geq 50th percentile compared to the reference group were found to have ECP concentrations significantly associated with gustatory sensations that would not go away in the unadjusted model and both adjusted models (OR=8.673, 95% CI: 2.471-30.448; OR=4.180, 95% CI: 1.386-12.603; OR=4.608, 95% CI: 1.130-18.787) and in females ECP concentrations were significant in the second adjusted model (OR=3.411; 95% CI: 1.013-11.483). For the phthalate MBP, males in the \geq 50th percentile compared to the reference group were found to have MBP concentrations significantly associated with gustatory sensations that would not go away in the unadjusted model and second adjusted model (OR=4.548, 95% CI: 1.339-15.445; OR=5.547, 95% CI: 1.137-27.073), and in females MBP concentrations were significant in the unadjusted and first adjusted

model (OR=2.153, 95% CI: 1.063-4.358; OR=2.229, 95% CI: 1.055-4.706). For the phthalate MC1, males in the \geq 50th percentile compared to the reference group were found to have MC1 concentrations significantly associated with gustatory sensations that would not go away in the second adjusted model (OR=4.545, 95% CI: 1.488-13.877). For the phthalate MHH, males in the \geq 50th percentile compared to the reference group were found to have MHH concentrations significantly associated with gustatory sensations that would not go away in the unadjusted model, first adjusted model, and second adjusted model (OR=4.611, 95% CI: 1.360-15.633; OR=4.628, 95% CI: 1.068-20.065; OR=5.525, 95% CI: 1.487-20.519) with the same observation in females (OR=3.255, 95% CI: 1.261-8.401; OR=3.386, 95% CI: 1.313-8.734; OR=3.025, 95% CI: 1.223-7.480). For the phthalate MOH, females in the \geq 50th percentile compared to the reference group were found to have MOH concentrations significantly associated with gustatory sensations that would not go away in the unadjusted model, first adjusted model, and second adjusted model (OR=3.576, 95% CI: 1.345-9.506; OR=3.671, 95% CI: 1.341-10.047; OR=3.571, 95% CI: 1.343-9.494). For the phthalate MOH, females in the \geq 50th percentile compared to the reference group were found to have MZP concentrations significantly associated with gustatory sensations that would not go away in the unadjusted model, first adjusted model, and second adjusted model (OR=2.743, 95% CI: 1.003-7.498; OR=3.055, 95% CI: 1.088-8.581; OR=4.161, 95% CI: 1.299-13.324).

NHANES 201	11-2014, o	ver the LO	DD			
		Geom	etric Mean	(ng/ml) (C	SE, N)	
EEDC		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Mono (carboxynonyl) Phthalate - CNP	3.30	0.45	66	2.63	0.13	954
Mono (carboxyoctyl) Phthalate - COP	25.12	3.25	66 *	18.77	1.46	957
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	17.83	1.63	66 ***	11.99	0.56	956
Mono-n-butyl Phthalate - MBP	14.00	1.19	65 **	9.91	0.51	944
Mono-(3-carboxypropyl) Phthalate - MC1	3.22	0.59	63	2.72	0.17	914
Mono-ethyl Phthalate -MEP	68.42	18.48	66	55.46	4.35	958
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	10.19	1.04	66 **	7.27	0.31	957
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	7.01	0.72	66 **	4.89	0.22	956
Mono-benzyl Phthalate - MZP	5.05	0.68	66	4.18	0.22	943
Mono-isobutyl Phthalate - MIB	8.30	0.89	66 *	6.25	0.28	948
Bisphenol A - BPA	1.72	0.19	64	1.52	0.07	901
NHANES sampling weight appli	ed before o	calculating	g the geom	etric mean.		

Table 1.42 Geometric Mean Urinary Phthalate and BPA Levels by Responses, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

The EEDCs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and EEDCs levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

	G	eometric M	lean (ng/	ml) (GSE, N	l), Hispanic	;	Geome	tric Mean	(ng/ml) (G	SE, N), No	n-Hispanic	White		
FFDC		Yes			No			Yes			No			
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N	GM	GSE	N		
Mono (carboxynonyl) Phthalate - CNP	2.2342	0.2408	26	2.3859	0.1460	189	3.9106	0.6435	25	2.7724	0.1817	417		
Mono (carboxyoctyl) Phthalate - COP	17.9850	2.9303	26	19.9700	1.6055	189	30.6082	4.9858	25 *	19.7210	1.9011	417		
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	17.1142	2.3004	26	18.1769	1.0721	189	18.7852	2.1194	25 ***	11.5447	0.6015	416		
Mono-n-butyl Phthalate - MBP	11.4422	1.7341	25	14.0124	1.0539	188	14.9867	1.7298	25 ***	9.1628	0.5846	410		
Mono-(3-carboxypropyl) Phthalate - MC1	2.2833	0.4231	23	2.8941	0.2699	180	3.7968	0.8898	25	2.7757	0.2247	399		
Mono-ethyl Phthalate -MEP	109.36	29.9294	26	94.2364	12.4476	189	63.4905	23.6845	25	50.3623	4.6046	417		
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	8.8961	1.3089	26	10.6238	0.7541	189	10.6166	1.362	25 **	6.9825	0.3365	416		
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	6.184	0.8758	26	6.791	0.4969	189	7.3103	0.9166	25 *	4.7364	0.2406	415		
Mono-benzyl Phthalate - MZP	3.2295	0.4627	26	4.0989	0.4304	189	5.6186	0.9783	25	4.1235	0.2376	410		
Mono-isobutyl Phthalate - MIB	8.9868	0.9808	26	9.214	0.5559	189	7.9277	1.0725	25 *	5.7226	0.2659	413		
Bisphenol A - BPA	1.7619	0.3249	26	1.5904	0.1517	179	1.834	0.2932	24	1.5382	0.08534	395		
	Geome	tric Mean (ng/ml) (C	8E, N), No	n-Hispanic	Black	Geo	ometric M	ean (ng/m	l) (GSE, N)) (GSE, N), Asian/Other			
FFDC	Yes No Yes						No							
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N		
Mono (carboxynonyl) Phthalate - CNP	2.4360	0.8530	8	1.9588	0.0971	254	1.9807	0.7439	7	2.3450	0.3556	94		
Mono (carboxyoctyl) Phthalate - COP	14.5821	4.3951	8	14.1855	0.9590	253	11.3284	5.0000	7	13.8170	2.1139	98		
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	11.9787	2.2455	8	10.9773	0.697	253	15.592	2.713	7	13.245	0.9117	98		
Mono-n-butyl Phthalate - MBP	10.838	1.5849	8	11.0157	0.5595	250	14.1343	4.2605	7	15.1841	2.4725	96		
Mono-(3-carboxypropyl) Phthalate - MC1	1.9788	0.4841	8	2.2092	0.1326	246	1.8634	0.7431	7	2.7594	0.369	89		
Mono-ethyl Phthalate -MEP	74.1442	33.8916	8	80.3933	7.68	254	37.2185	10.0307	7	53.0442	11.4011	98		
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	7.2754	2.0263	8	7.458	0.4859	254	12.7003	3.0819	8 *	7.0862	0.7082	98		
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.2183	1.4067	8	4.9967	0.2934	254	8.0265	2.3301	8	4.7063	0.5009	96		
Mono-benzyl Phthalate - MZP	6.338	0.8961	8	4.669	0.4342	251	4.6039	1.1814	7	4.3551	1.2852	93		
Mono-isobutyl Phthalate - MIB	7.0111	1.7604	8	7.6527	0.4326	249	12.6603	4.9063	7	8.975	1.4887	97		
	1.1639	0.2892	8	1.4181	0.05666	246	1.024	0.2724	6	1.3599	0.1736	81		

	G	nometria N	/lean (ng/n	a) (CSE N				wer the LO eometric M		nl) (CSE N) A co 70 '	70	0	'ao matria	Mean (ng/	ml) (CSE N	D. A co 80	
EED Metabolite	0	Yes	ican (iig/ii	III) (OSE, N), Age 00- No	09	0	Yes	icali (lig/1	III) (CBL, N	No	17		Yes	wiean (ng/	111) (COL, I	No No	F
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Mono (carboxynonyl) Phthalate - CNP	3.35	0.68	40	2.51	0.18	490	2.26	0.48	13	2.92	0.23	287	4.62	1.26	13 *	2.47	0.14	177
Mono (carboxyoctyl) Phthalate - COP	27.27	5.54	40	18.10	2.15	491	21.59	6.09	13	21.27	1.93	289	22.80	7.30	13	16.47	1.81	177
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	17.18	2.06	40 **	10.69	0.77	490	15.91	1.72	13	13.59	0.70	289	22.35	4.65	13 *	13.37	0.65	177
Mono-n-butyl Phthalate - MBP	12.49	1.18	39 *	9.24	0.61	484	16.00	3.58	13	10.10	0.77	286	17.20	4.02	13	11.85	1.08	174
Mono-(3-carboxypropyl) Phthalate - MC1	3.14	0.82	38	2.51	0.23	467	3.50	1.83	12	3.00	0.27	275	3.20	0.67	13	2.88	0.29	172
Mono-ethyl Phthalate -MEP	46.34	12.77	40	59.02	6.59	492	115.71	48.63	13	59.06	7.01	289	131.42	86.95	13	40.42	3.06	177
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	10.31	1.53	40 **	6.60	0.45	491	9.06	1.35	13	8.34	0.45	289	11.07	2.00	13 *	7.49	0.44	177
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	6.75	1.01	40 **	4.30	0.29	491	6.29	0.81	13	5.65	0.27	289	8.72	1.36	13 **	5.54	0.31	176
Mono-benzyl Phthalate - MZP	4.79	0.92	40	4.10	0.30	484	4.70	1.12	13	3.87	0.30	286	3.69	0.49	13	4.28	0.15	173
Mono-isobutyl Phthalate - MIB	8.83	1.23	40 *	6.41	0.36	488	8.33	1.45	13	6.24	0.35	285	6.84	2.00	13	5.80	0.45	175
Bisphenol A - BPA	1.78	0.29	39	1.49	0.09	467	1.44	0.33	13	1.64	0.10	266	1.85	0.54	12	1.40	0.12	168
			N	HANES sa	mpling we	eight appli	ed before o	calculating	the geom	etric mean.								
The EEDCs were creatinine-adjusted then log trans	formed pr	ior to anal	yses. Extre	me creatin	ine values	(<30 mg/d	dL and >30	0 mg/dL) a	nd EEDCs	s levels bel	low the LC	D were ta	ken into ac	count usi	ng the app	ropriate do	omain state	ement in
					SA	S. *p<0.05	5, **p<0.01	l ***p<0.0	01									

Table 1.43 Age-Specific Geometric Urinary Mean Phthalate and BPA Levels by Responses, "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

EEDC		Geome	tric Mean	(ng/ml) (C	SE, N)	Geometric Mean (ng/ml) (GSE, N)								
			Μ	ale		Female								
		Yes			No			Yes		No				
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν		
Mono (carboxynonyl) Phthalate - CNP	2.5467	0.5328	25	2.3497	0.1165	490	3.8577	0.5860	41	2.9296	0.2575	464		
Mono (carboxyoctyl) Phthalate - COP	21.1371	3.8864	25	16.4962	1.0825	492	27.8631	5.0511	41	21.2872	2.6031	465		
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	15.4782	1.8068	25	10.8085	0.5128	493	19.4138	2.4171	41 **	13.2772	0.8424	463		
Mono-n-butyl Phthalate - MBP	13.3296	1.8758	25 *	9.2284	0.6392	483	14.4154	1.5417	40 **	10.6012	0.5494	461		
Mono-(3-carboxypropyl) Phthalate - MC1	2.8000	0.8309	24	2.5171	0.1717	473	3.5122	0.6441	39	2.9426	0.2706	441		
Mono-ethyl Phthalate -MEP	60.8717	21.0466	25	52.7528	5.0023	493	73.3896	24.0038	41	60.4769	12.894	465		
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	7.9262	0.7366	25	6.8088	0.3495	493	11.8474	1.8728	41 **	7.7421	0.4146	464		
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	5.7843	0.7892	25	4.5876	0.2355	491	7.8603	1.1761	41 **	5.2125	0.2944	465		
Mono-benzyl Phthalate - MZP	4.1234	1.1159	25	3.6835	0.2944	485	5.6951	1.0655	41	4.7335	0.2481	458		
Mono-isobutyl Phthalate - MIB	8.1351	1.0605	25 *	5.7655	0.2965	489	8.3956	1.2826	41	6.7734	0.335	459		
Bisphenol A - BPH	1.6569	0.3623	24	1.3829	0.06966	465	1.756	0.2112	40	1.6725	0.09923	436		

taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

	go a	alate and BPA Levels by Responses, "During the past 12 months have you had a taste or other sensation go away?" for Subjects >= 60 years of age, NHANES 2011-2014								
EEDC	Yes / No	Unadjusted Odds Ratio	95% CI	Yes / No	Adjusted Odds Ratio	95% CI	Yes / No	Adjusted Odds Ratio	95% CI	
CNP - Above/Below 50th Percentile - Males										
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>15/243</td><td>1.00</td><td></td><td>15/244</td><td>1.00</td><td></td><td>11/162</td><td>1.00</td><td></td></lod>	15/243	1.00		15/244	1.00		11/162	1.00		
\geq 50th percentile	10/250	0.679	0.185-2.493	10/248	0.751	0.211-2.678	4/169	0.511	0.101-2.5	
CNP - Above/Below 50th Percentile - Females	10/222	1.00		10/222	1.00		12/1/5	1.00		
<lod (reference)<br="" 50th="" percentile="" to="">≥ 50th percentile</lod>	19/233 22/232	1.00 1.703	0.699-4.147	19/232 22/231	1.00 1.685	0.719-3.950	13/165 13/165	1.00 2.005	0.757-5.30	
COP - Above/Below 50th Percentile - Males	24/232	1.705	0.099-4.147	22/231	1.065	0.719-5.950	15/105	2.003	0.737-3.30	
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>11/248</td><td>1.00</td><td></td><td>11/247</td><td>1.00</td><td></td><td>8/165</td><td>1.00</td><td></td></lod>	11/248	1.00		11/247	1.00		8/165	1.00		
\geq 50th percentile	14/245	3.649 *	1.054 -12.639	14/245	4.180 *	1.386-12.603	7/166	4.608 *	1.130-18.7	
COP - Above/Below 50th Percentile - Females										
< LOD to 50th percentile (reference)	19/234	1.00		19/233	1.00		10/168	1.00		
\geq 50th percentile	22/231	1.696	0.732-3.928	22/230	1.620	0.735-3.571	16/162	2.850	0.937-8.6	
ECP - Above/Below 50th Percentile - Males										
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>7/252</td><td>1.00</td><td></td><td>7/251</td><td>1.00</td><td></td><td>5/168</td><td>1.00</td><td></td></lod>	7/252	1.00		7/251	1.00		5/168	1.00		
\geq 50th percentile	18/241	8.673 **	2.471-30.448	18/241	9.359 *	1.753-49.967	10/163	13.311 **	2.090-84.7	
ECP - Above/Below 50th Percentile - Females										
< LOD to 50th percentile (reference)	15/238	1.00		15/237	1.00		6/172	1.00		
\geq 50th percentile	26/227	2.195	0.927-5.199	26/226	2.128	0.831-5.448	20/158	3.411 *	1.013-11.4	
MBP - Above/Below 50th Percentile - Males	10/2/2	1.00		10/211	1.00		10/220	1.00		
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>12/247</td><td>1.00</td><td>1 220</td><td>12/246</td><td>1.00</td><td>0.070.01.015</td><td>10/230</td><td>1.00</td><td>1 1 2 2 2 2</td></lod>	12/247	1.00	1 220	12/246	1.00	0.070.01.015	10/230	1.00	1 1 2 2 2 2	
≥ 50th percentile MBP - Above/Below 50th Percentile - Females	13/246	4.548 *	1.339-15.445	13/246	4.517	0.970-21.040	12/229	5.547 *	1.137-27.0	
MBP - Above/Below 50th Percentile - Females < LOD to 50th percentile (reference)	16/237	1.00		16/236	1.00		15/228	1.00		
\geq 50th percentile	25/228	2.153 *	1.063-4.358	25/227	2.229 *	1.055-4.706	24/209	2.257	0.919-5.54	
MC1 - Above/Below 50th Percentile - Males	25/220	2.135	1.005-4.550	20/ 221	2.22/	1.022-4.700	24 207	2.201	0.717 5.5	
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>11/247</td><td>1.00</td><td></td><td>11/247</td><td>1.00</td><td></td><td>9/231</td><td>1.00</td><td></td></lod>	11/247	1.00		11/247	1.00		9/231	1.00		
\geq 50th percentile	14/246	2.848	0.941-8.623	14/245	3.084	0.987-9.635	13/228	4.545 **	1.488-13.8	
MC1 - Above/Below 50th Percentile - Females										
< LOD to 50th percentile (reference)	21/232	1.00		21/231	1.00		20/212	1.00		
\geq 50th percentile	20/233	1.554	0.660-3.657	20/232	1.513	0.641-3.570	19/215	1.602	0.652-3.93	
MEP - Above/Below 50th Percentile - Males										
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>11/248</td><td>1.00</td><td></td><td>11/247</td><td>1.00</td><td></td><td>9/231</td><td>1.00</td><td></td></lod>	11/248	1.00		11/247	1.00		9/231	1.00		
\geq 50th percentile	14/245	1.915	0.474-7.743	14/245	1.831	0.403-8.330	13/228	1.738	0.396-7.62	
MEP - Above/Below 50th Percentile - Females										
< LOD to 50th percentile (reference)	19/234	1.00		19/233	1.00		18/215	1.00		
\geq 50th percentile	22/231	1.517	0.633-3.638	22/230	1.317	0.492-3.526	21/212	1.599	0.519-4.92	
MHH - Above/Below 50th Percentile - Males	10/240	1.00		10/240	1.00		0/222	1.00		
<lod (reference)<br="" 50th="" percentile="" to="">≥ 50th percentile</lod>	10/249 15/244	1.00 4.611 *	1 2(0 15 (22	10/248 15/244	1.00 4.628 *	1 0 (8 20 0 (5	8/232 14/227	1.00 5.525 *	1 497 20 5	
MHH - Above/Below 50th Percentile - Females	13/244	4.011 *	1.360-15.633	13/244	4.020 *	1.068-20.065	14/227	5.525 *	1.487-20.5	
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>13/240</td><td>1.00</td><td></td><td>13/239</td><td>1.00</td><td></td><td>13/220</td><td>1.00</td><td></td></lod>	13/240	1.00		13/239	1.00		13/220	1.00		
\geq 50th percentile	28/225	3.255 *	1.261-8.401	28/224	3.386 *	1.313-8.734	26/207	3.025 *	1.223-7.48	
MOH - Above/Below 50th Percentile - Males										
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>10/249</td><td>1.00</td><td></td><td>10/248</td><td>1.00</td><td></td><td>8/232</td><td>1.00</td><td></td></lod>	10/249	1.00		10/248	1.00		8/232	1.00		
\geq 50th percentile	15/244	2.375	0.571-9.871	15/244	2.193	0.490-9.814	14/227	2.159	0.533-8.74	
MOH - Above/Below 50th Percentile - Females										
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>12/240</td><td>1.00</td><td></td><td>12/240</td><td>1.00</td><td></td><td>12/221</td><td>1.00</td><td></td></lod>	12/240	1.00		12/240	1.00		12/221	1.00		
\geq 50th percentile	29/225	3.576 *	1.345-9.506	29/223	3.671 *	1.341-10.047	27/206	3.571 *	1.343-9.4	
MZP - Above/Below 50th Percentile - Males										
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>14/245</td><td>1.00</td><td></td><td>14/244</td><td>1.00</td><td></td><td>12/228</td><td>1.00</td><td></td></lod>	14/245	1.00		14/244	1.00		12/228	1.00		
\geq 50th percentile	11/248	2.145	0.746-6.168	11/248	1.990	0.747-5.303	10/231	2.089	0.777-5.6	
MZP - Above/Below 50th Percentile - Females										
< LOD to 50th percentile (reference)	15/238	1.00	1 002 - 100	15/237	1.00	1 000 0 501	13/220	1.00	1 000 10	
≥ 50th percentile MIB - Above/Below 50th Percentile - Males	26/227	2.743 *	1.003-7.498	26/226	3.055 *	1.088-8.581	26/207	4.161 *	1.299-13.3	
	10/047	1.00		12/24/	1.00		10/220	1.00		
<LOD to 50th percentile (reference) \geq 50th percentile	12/247 13/246	1.00 2.789	0.022.9.427	12/246 13/246	1.00 2.165	0.016 5 742	10/230 12/229	1.00 2.442	0 707 7 7	
MIB - Above/Below 50th Percentile - Females	1.5/ 240	2.709	0.923-8.426	13/240	2.103	0.816-5.742	12/229	2.442	0.787-7.5	
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>14/239</td><td>1.00</td><td></td><td>14/238</td><td>1.00</td><td></td><td>13/220</td><td>1.00</td><td></td></lod>	14/239	1.00		14/238	1.00		13/220	1.00		
\geq 50th percentile	27/226	2.048	0.880-4.766	27/225	2.049	0.768-5.466	26/207	1.995	0.656-6.0	
BPA - Above/Below 50th Percentile - Males	211220	2.040	0.000	211223	2.047	0.700-3.400	20/201	1.775	0.000-0.0	
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>12/247</td><td>1.00</td><td></td><td>12/247</td><td>1.00</td><td></td><td>10/230</td><td>1.00</td><td></td></lod>	12/247	1.00		12/247	1.00		10/230	1.00		
			0.017.4.700	13/245	1.172	0.290-4.740	12/229	1.199	0.233-6.1	
1 · · · ·	13/246	1.232	0.31/-4/97						 0.1000 0.11 	
\geq 50th percentile	13/246	1.232	0.317-4.792	15/245		0.270 11710	12 22)			
1 · · · ·	13/246	1.232	0.317-4.792	18/235	1.00	01290 11710	16/217	1.00		

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and metalloestrogen levels were into account using the appropriate domain statement in SAS. *p<0.05 **p<0.001

¹Unadjusted model. ²Adjusted for age, education, race/ethnicity. ³Adjusted for age, education, race/ethnicity, alcohol use, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

DISCUSSION

This study takes a novel approach in the assessment of exposure to phthalates and BPA in the development of cognitive dysfunction and neurodegenerative disease using surrogates of brain health. The study examined an older geriatric-aged population of US adults 60 years of age and older. We first assessed the bioburden of urinary phthalates and BPA by calculating and comparing the GMs of each EEDCs versus each surrogate of brain health, looking at age, gender, and race and subsequently used ORs and 95% CI to determine the risk of developing cognitive dysfunction.

Major Findings: Overall, we observed a higher bioburden of phthalates in the GMs of subjects who scores lower on the four cognitive tests, had memory function deficits from our three memory questions, and had taste/smell deficits on our two taste and smell questions (Tables 1.2, 1.7, 1.12, 1.17, 1.22, 1.27, 1.32, 1.37, and 1.47). In our analyses of GMs by age, gender, and race, we accounted for subjects that have extreme creatinine measurements and examined subjects who had phthalate and BPA levels over the LOD. A higher bioburden of phthalates was observed according to gender (Tables 1.3, 1.9, 1.14, 1.19, 1.24, 1.29, 1.34, 1.39, 1.33, 1.48 and 1.49). This trend was more prominent in females (Table 1.48 and 1.49). We did not observe any meaningful trends when examining GMs by age, as the age grouping was skewed towards the 60-69-year-old age group, with the number of subjects decreasing in the 70-79-year-old and 80+ year old age group. We also did not observe any meaningful observations in our analyses of race, where large majority of participants were in the Non-Hispanic White age group. BPA was not observed to be significantly higher in

those who experienced adverse brain health versus those who did not in any of

analyses.

Table 1.47 - Summary Table of EEDCs overall significance of GMs by Surrogate of Brain Health Indicators (* p<0.05, ** p<0.01, *** p<0.01)	Immediate Recall Score (n=940)		Delayed Recall Score (n=930)		Animal Fluency Score (n=931)		Digit Symbol Substitution Test Score (n=891)		Past 12 months, memory getting worse? (n=1,025)		Past 7 days, trouble remembering? (n=971)		Limited due to difficulty remembering or confusion? (n=1,024)		Phantom Odor? (n=1,024)		Sensation in mouth that does not go away? (n=1024)	
	<13	> 14	< 3	>4	<11	> 12	< 27	> 28	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Mono (carboxynonyl) Phthalate - CNP	≥ 15	≥ 14	20	≥4	211	212	221	≥ 20	ies	INO	105	NO	Ies	INO	ICS	INO	168	INU
Mono (carboxyoctyl) Phthalate - COP																	*	
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	*				*		**						*				***	<u> </u>
Mono-n-butyl Phthalate - MBP					*		*		*				**				**	
Mono-(3-carboxypropyl) Phthalate - MC1		-																-
Mono-ethyl Phthalate - MEP		-											-				**	
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH	-	+					*						**				**	
Mono (2-ethyl-5-nydroxy nexyl) Phthalate - MHH Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH		+					*						*			-		
	-	+			*				*				**				*	
Mono-benzyl Phthalate - MZP					*				*		*		***		*		*	
Mono-isobutyl Phthalate - MIB					*				*		*		***		*		*	<u> </u>
Bisphenol A - BPA																		L
Table 1.48 - Summary Table of HEDCs overall signficance of GMs by Surrogate of Brain Health Indicators in males (* p<0.05, ** p<0.01, *** p<0.001)	Immediate Recall Score (n=940) Score (n=930)			Animal Fluency Score (n=931) Digit Symbol Substitution Test Score (n=891)		Past 12 months, memory getting worse2 (n=1 025)		st 7 days, trouble membering? (n=971) Limited due to difficulty remembering or confusion? (n=1,024)		culty bering or usion?	Phantom Odor? (n=1,024)		Sensation in mouth that does not go away? (n=1024)					
	≤13	≥14	≤3	≥4	≤11	≥ 12	≤27	≥28	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Mono (carboxynonyl) Phthalate - CNP																		
Mono (carboxyoctyl) Phthalate - COP																		
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP							**				*		*					
Mono-n-butyl Phthalate - MBP																	*	
Mono-(3-carboxypropyl) Phthalate - MCl																		
Mono-ethyl Phthalate -MEP																		
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH							*				*		*					
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH							*				*		*					
Mono-benzyl Phthalate - MZP																		
Mono-isobutyl Phthalate - MIB													***				*	
Bisphenol A - BPA																		
		Immediate Recall Score (n=940)		Score (n=930) S		Animal Fluency Score (n=931)		Digit Symbol Substitution Test Score (n=891)		Past 12 months, memory getting worse? (n=1,025)		Past 7 days, trouble remembering? (n=971)		Limited due to difficulty remembering or confusion? (n=1,024)		Phantom Odor? (n=1,024)		ation in hat does away? 1024)
	≤13	≥14	≤3	≥4	≤11	≥ 12	≤27	≥ 28	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Mono (carboxynonyl) Phthalate - CNP	L	—				L			L		L	L		L	<u> </u>	<u> </u>		<u> </u>
Mono (carboxyoctyl) Phthalate - COP		<u> </u>		<u> </u>														
Mono-(2-ethyl-5-carboxypentyl) Phthalate -ECP	*	<u> </u>	*		**			<u> </u>									**	
Mono-n-butyl Phthalate - MBP	***	4	***		***		**						**		**		**	<u> </u>
Mono-(3-carboxypropyl) Phthalate - MC1																		
Mono-ethyl Phthalate -MEP																		
Mono (2-ethyl-5-hydroxy hexyl) Phthalate - MHH																	**	
Mono-(2-ethyl-5-oxohexyl) Phthalate -MOH	*		*		*										*		**	
Mono-benzyl Phthalate - MZP		Γ	*		**				*		Γ	1	***		1		Γ	Γ
Mono-isobutyl Phthalate - MIB					*				*				*					

The analysis of odds of having a cognitive dysfunction among our nine surrogates of brain health varied by the surrogate and type of model. Although a number of the phthalates examined were significant in our unadjusted models and first adjusted model (controlling for age, education, and gender) a number of them were still significant after adjusting for all the known and suspected risk factors of cognitive dysfunction and AD. The final adjusted model accounts for the following covariates: age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, and head trauma status.

For immediate recall, ECP in females was the only phthalate metabolite to be found significantly associated with lower immediate recall scores after controlling for the known and suspected risk factors. For delayed recall, MEP in males was the only phthalate to be found significantly associated with lower delayed recall scores after controlling for the known and suspected risk factors. For animal fluency, the phthalate MBP in females was the only phthalate to be found significantly associated with lower animal fluency scores. For DSST, the phthalate metabolites ECP and MOH in males were found to be significantly associated with lower DSST scores after controlling for the known and suspected risk factors.

Among those who had reported issues with memory in the past year, the phthalate metabolites MBP in males and MIB in females were found to be significantly associated with having memory issues in the past year after controlling for the known and suspected risk factors. Those who had reported memory issues in the past week, the phthalate metabolites ECP, MBP, and MHH in females were found to be significantly associated with having memory issues in the past year after controlling for the known and suspected risk factors.

Among those who had reported experiencing phantom odors, no phthalate or BPA was found to be significant in the second adjusted models. Those who had reported experiencing gustatory sensations that do not go away, the phthalate metabolites COP, ECP, MBP, MC1, and MHH in males were significantly associated

with experiencing gustatory sensations that did not go away. In females, this was observed with the phthalate metabolites ECP, MHH, MOH, and MZP. It should be noted that due to a smaller number of cases with taste and smell variables, diabetes status was left out of the final model since it contributed to a quasi-separation of data, making the model validity questionable, due to having zero cases among those who had diabetes. The large standard errors among the taste and smell variables indicate that the results should be interpreted with caution.

The higher bioburden of phthalates among females are in line with an earlier study that examined the urinary levels of phthalate metabolites in the US population using the NHANES 1999-2000 data sets ⁸, which found females to have a higher bioburden of phthalates overall. Another study using the NHANES 2003-2004 data sets found BPA to be higher in females than in males ²⁵. It is speculated that this increase is due to the use of phthalate containing products marketed to a female population in addition to everyday exposures to phthalates ⁸. A recent study of NHANES 2009 to 2012 cycle years found gender-specific increases in product use and phthalate bioburden in males and females ¹⁰³.

There are few epidemiological studies that specifically look at an older population with respect to phthalate bioburden and brain health. Shiue (2015) found a higher bioburden of phthalates, but not BPA in those having difficulties thinking or remembering and those with memory issues in the past week ²³ from the 2011-2012 NHANES data sets. These findings are consistent with our study. Human epidemiological studies regarding phthalates and BPA have focused on the pre-natal, post-natal, and childhood exposures. These studies have found phthalate exposure to

be associated with social deficits ¹⁸, decreased visual recognition memory ¹⁹ and decreased IQ ²⁰. However there is evidence to suggests inconsistent cognitive and behavioral effects in children with regards to phthalate type and gender ^{21,22}. The few human epidemiological studies have concentrated on pre-natal BPA exposure and exposure in children which have been associated with significant behavioral issues in children ^{35,47–50}. These studies support the hypothesis of phthalates and BPA having an effect on the brain.

We also observed an increase in EEDC bioburden in females vs. males. Among females, geometric means of the EEDCs were generally higher in females than males, both significant and insignificant. Gender plays large role in the development of neurodegenerative diseases ¹⁰⁴ and estrogen has been suspected to play a large role in the development of neurodegenerative disease ¹⁰⁵, possibly due to its many neuroprotective effects it has on the brain ¹⁰⁶. The increase in bioburden is females versus males was observed in all surrogates of brain health that were examined. Studies have greater bioburden of phthalates in the mother can is associated with developmental dysfunction in children ¹¹, which give credence to a higher bioburden of EEDCs in women. An increase in the bioburden of EEDCs in females, can affect estrogen balance in the female body, which can contribute to a higher incidence of neurodegenerative disease in females. Geometric means of EEDCs were also observed to generally increase as age increases.

Our study also observed specific phthalates reoccurring with significant associations in our surrogates of brain health. The phthalates ECP (Mono-(2-ethyl-5carboxypentyl) Phthalate), MOH (Mono-(2-ethyl-5-oxohexyl) Phthalate), MBP

(Mono-n-butyl Phthalate), MHH, and MIB were found to be have more significant results among our surrogates of brain health compared to the other phthalates and BPA. Literature is limited regarding the specific phthalates and their effects on gender and neurodegenerative disease.

Biological Mechanisms and Brain Health: With respect to biological mechanisms, phthalate and BPA's effects have focused on mechanisms affecting the pre, peri, and postnatal stages of development and much of what is known in older human populations is based off of animal and neuronal cell line studies ^{11,107}. Both phthalates and BPA have been demonstrated to have affinity for estrogen receptors ^{9,10,26}. BPA, although having a low affinity for ER receptor binding, is also thought to exert effects through other non-classical pathways ²⁶, which allows for phthalates and BPA to mimic and interfere with estrogen. Estrogen itself has been demonstrated to have roles in neuroprotection as well as exert anti-inflammatory effects on the brain ^{106,108–} ¹¹². Animal studies have also demonstrated estrogens significant role in the modulation and promotion of neuroplasticity and synaptogenesis ^{113–117}. Estrogen has also been demonstrated to protect and regulate mitochondrial function in the brain, where mitochondrial dysfunction is implicated as one of the causes of neurodegenerative disease ^{118–120}. This leads to the possibility of phthalates and BPA interfering with the function of estrogen and its protective and restorative effects on the brain.

Animal studies are numerous and have shown phthalates to adversely affect brain function and gives an idea of the possible mechanisms involved. These adverse effects include negatively affecting learning ^{12,13}, negatively affecting

memory ^{13,14}, interfering with locomotion ¹⁴, negative affecting social behavior ¹², and producing cellular effects such as cell death, synaptic loss, and synaptic dysfunction ¹⁵. Some animal studies have reported an improvement in memory ¹⁶, and possible dose-dependent effects, where memory improves one dose, but degrades it in another dose ¹⁷. A recent studies, examining phthalates effects on neuronal cells found an increase in ROS concentrations after exposure ¹²¹, increase neuronal cell death ¹²², and disturbances to dendritic outgrowth.

Animal studies have shown BPA to also adversely brain function. Animal studies are numerous and have demonstrated BPA's negative effects on brain health and function. In animal studies BPA has been shown to negatively affect memory ^{27–41}, negatively affect neurogenesis ^{33,42}, negatively affect the structure of dendritic spines and synaptogenesis ^{27,29,32,38,40,43}, and negatively affect cellular processes, protein expression and expression ^{31,36,39,41}. There are also animal studies that shows BPA exerts no negative effects on spatial and working memory ^{44–46}.

BPA has been found is post-mortem brain tissue ¹²³ and phthalates have shown to adversely affect brain neuroplasticity and affect neurodevelopment ¹⁰⁷. Although the mechanisms are not completely understood, both EEDCs appear to have the ability to cross the blood brain barrier.

Furthermore, genes that have been implicated in the development of neurodegenerative disease such as AD which are also estrogen-responsive are also pathway for BPA and phthalates to exert their effects on the aging brain. Genes that are estrogen-responsive, BPA-responsive, interfere with mitochondrial energetics, and implicated in AD include APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and

PAXIP1¹¹. Genes that are estrogen-responsive, phthalate-responsive, interfere with mitochondrial energetics, and implicated in AD include DPYSL2, EIFS1, ENO1, and MAPT¹¹. Additionally, a recent search of the Comparative Toxicogenomic Database (CTD) reveals that from 88 genes implicated in AD, 61 of those genes are estrogen and BPA responsive¹²⁴. A search of the phthalates most associated with adverse brain health in men and women from our analyses, ECP, MBP, MHH, MOH, and MIB, for any estrogen-responsive AD genes found none for ECP, MOH, MHH, and MIB and two for MBP (EPHA1 and PPARG), which may indicate previously unknown gene/chemical interactions that affect brain health¹²⁴. The results from our study can result from any of the possible biological mechanisms observations that have been referenced.

<u>Strengths and Limitations</u>: Our study has several limitations. The cross-sectional design of our study with self-reported data lends itself to misclassification bias. We cannot account for day to day variability with those who responded to our different brain health indicators. Neurodegeneration and neurodegenerative disease have a number of other risk factors. Genetic susceptibility as well as other direct measures of risk factors such as blood lipid profiles, were either not included, lacked the sufficient number of subjects, or did not use the appropriate sampling weights. We could also not account for estrogen levels as there were not measurements and we lacked the subjects required for oral contraceptive and hormone replacement therapy in our analyses. We used surrogates of brain health to link neurodegenerative disease development to EEDC exposure. The surrogates, as valid as they can be, are not clinical endpoints which cannot be used solely to diagnose neurodegenerative

conditions. Taste and smell variables have a large number of confounders associated with them and including all of them in the regression model testing would have affected the overall validity of the model.

Our study had a number of strengths. The ability to combine data cycles greatly increased our sample size and the availability of EEDC measurements allowed us a way to compare large groups together. The availability of surrogate brain health indicators made it possible to assess bioburdens and odds of adverse brain health and generalize it to the US population. The study is novel in approach and is one of the first studies to examine the role of EEDCs in an older US population.

CONCLUSION

Based on our findings for our study, increased levels of specific phthalates play a role in the development of neurodegenerative disease. Surprisingly, BPA did not appear to be significant in any of our brain health surrogates. The examination of this older population can give us a sense of a possible lifetime of exposure and how it can lead to the pre-conditions of Alzheimer's disease, Parkinson's disease, and others. Further research is needed with biologically plausible clinical endpoints and robust epidemiological studies in order to fully assess the effects of phthalate exposure on brain health and the development of neurodegenerative disease.

REFERENCES

1. Bergman A, Heindel JJ, Jobling S, Kidd KA, Zoeller TR. State of the science of endocrine disrupting chemicals. *World Heal Organ United Nations Environ Program*. 2012:1-38. http://apps.who.int/iris/handle/10665/78102.

- 2. Alzheimer's Association. 2017 Alzheimer's Disease Facts and Figures. *Alzheimers Dement*. 2017;13:325-373. doi:10.1016/j.jalz.2017.02.001.
- 3. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Diethyl Phthalate. *Agency Toxic Subst Dis Regist*. 1995;(June):1-158.
- 4. Agency for Toxic Substances and Disease Registry (ATSDR). TOXICOLOGICAL PROFILE FOR DI-n-BUTYL PHTHALATE. Agency Toxic Subst Dis Regist. 2001;(September):225.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile: di(2-ethylhexyl)phthalate (DEHP). *Agency Toxic Subst Dis Regist*. 2002;(September). http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=684&tid=65.
- 6. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: Toxicology and exposure. *Int J Hyg Environ Health*. 2007;210(5):623-634. doi:10.1016/j.ijheh.2007.07.011.
- 7. Miodovnik A, Edwards A, Bellinger DC, Hauser R. Developmental neurotoxicity of ortho-phthalate diesters: Review of human and experimental evidence. *Neurotoxicology*. 2014;41:112-122. doi:10.1016/j.neuro.2014.01.007.
- Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. *Environ Health Perspect*. 2004;112(3):331-338. doi:10.1289/ehp.6723.
- 9. Blair RM, Fang H, Branham WS, et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. *Toxicol Sci.* 2000;54(1):138-153. doi:10.1093/toxsci/54.1.138.
- 10. Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. *Environ Health Perspect*. 1995;103(6):582-587. doi:10.1289/ehp.95103582.

- Preciados M, Yoo C, Roy D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. *Int J Mol Sci.* 2016;17(12):2086. doi:10.3390/ijms17122086.
- Betz AJ, Jayatilaka S, Joshi J, et al. Chronic exposure to benzyl butyl phthalate (BBP) alters social interaction and fear conditioning in male adult rats: Alterations in amygdalar MeCP2, ERK1/2 and ER?? *Neuroendocrinol Lett*. 2013;34(5):347-358.
- 13. Lin H, Yuan K, Li L, et al. In utero exposure to diethylhexyl phthalate affects rat brain development: A behavioral and genomic approach. *Int J Environ Res Public Health*. 2015;12(11):13696-13710. doi:10.3390/ijerph121113696.
- Dai Y, Yang Y, Xu X, Hu Y. Effects of uterine and lactational exposure to di-(2-ethylhexyl) phthalate on spatial memory and NMDA receptor of hippocampus in mice. *Horm Behav.* 2015;71:41-48. doi:10.1016/j.yhbeh.2015.03.008.
- 15. Li XJ, Jiang L, Chen L, Chen HS, Li X. Neurotoxicity of dibutyl phthalate in brain development following perinatal exposure: A study in rats. *Environ Toxicol Pharmacol.* 2013;36(2):392-402. doi:10.1016/j.etap.2013.05.001.
- Li Y, Li T, Zhuang M, Wang K, Zhang J, Shi N. High-dose dibutyl phthalate improves performance of F1 generation male rats in spatial learning and increases hippocampal BDNF expression independent on p-CREB immunocontent. *Environ Toxicol Pharmacol.* 2010;29(1):32-38. doi:10.1016/j.etap.2009.09.003.
- 17. Li Y, Zhuang M, Li T, Shi N. Neurobehavioral toxicity study of dibutyl phthalate on rats following in utero and lactational exposure. *J Appl Toxicol*. 2009;29(7):603-611. doi:10.1002/jat.1447.
- Miodovnik A, Engel SM, Zhu C, et al. Endocrine disruptors and childhood social impairment. *Neurotoxicology*. 2011;32(2):261-267. doi:10.1016/j.neuro.2010.12.009.

- 19. Ipapo KN, Factor-Litvak P, Whyatt RM, et al. Maternal prenatal urinary phthalate metabolite concentrations and visual recognition memory among infants at 27 weeks. *Environ Res.* 2017;155(September 2016):7-14. doi:10.1016/j.envres.2017.01.019.
- 20. Factor-Litvak P, Insel B, Calafat AM, et al. Persistent associations between maternal prenatal exposure to phthalates on child IQ at age 7 years. *PLoS One*. 2014;9(12):1-15. doi:10.1371/journal.pone.0114003.
- 21. Yolton K, Xu Y, Strauss D, Altaye M, Calafat AM, Khoury J. Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. *Neurotoxicol Teratol.* 2011;33(5):558-566. doi:10.1016/j.ntt.2011.08.003.
- Doherty BT, Engel SM, Buckley JP, Silva MJ, Calafat AM, Wolff MS. Prenatal phthalate biomarker concentrations and performance on the Bayley Scales of Infant Development-II in a population of young urban children. *Environ Res.* 2017;152(September 2016):51-58. doi:10.1016/j.envres.2016.09.021.
- 23. Shiue I. Arsenic, heavy metals, phthalates, pesticides, hydrocarbons and polyfluorinated compounds but not parabens or phenols are associated with adult remembering condition: US NHANES, 2011-2012. *Environ Sci Pollut Res Int.* 2015;22(8):6381-6386. doi:10.1007/s11356-015-4261-9.
- 24. ATSDR. Toxicological Profile for Phenol. *Agency Toxic Subst Dis Regist*. 2008:1-269. doi:10.3109/15569529909037564.
- 25. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to Bisphenol A and 4-tertiary-octylphenol: 2003-2004. *Environ Health Perspect*. 2008;116(1):39-44. doi:10.1289/ehp.10753.
- 26. Alonso-Magdalena P, Ropero AB, Soriano S, et al. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. *Mol Cell Endocrinol.* 2012;355(2):201-207. doi:10.1016/j.mce.2011.12.012.
- Bowman RE, Luine V, Diaz Weinstein S, Khandaker H, DeWolf S, Frankfurt M. Bisphenol-A exposure during adolescence leads to enduring alterations in cognition and dendritic spine density in adult male and female rats. *Horm Behav.* 2015;69:89-97. doi:10.1016/j.yhbeh.2014.12.007.

- 28. Diaz Weinstein S, Villafane JJ, Juliano N, Bowman RE. Adolescent exposure to Bisphenol-A increases anxiety and sucrose preference but impairs spatial memory in rats independent of sex. *Brain Res.* 2013;1529:56-65. doi:10.1016/j.brainres.2013.07.018.
- 29. Eilam-Stock T, Serrano P, Frankfurt M, Luine V. Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. *Behav Neurosci*. 2012;126(1):175-185. doi:10.1037/a0025959.
- Elsworth JD, Jentsch JD, VandeVoort CA, Roth RH, Eugene Redmond D, Leranth C. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. *Neurotoxicology*. 2013;35(1):113-120. doi:10.1016/j.neuro.2013.01.001.
- 31. Fan Y, Ding S, Ye X, et al. Does preconception paternal exposure to a physiologically relevant level of bisphenol A alter spatial memory in an adult rat? *Horm Behav.* 2013;64(4):598-604. doi:10.1016/j.yhbeh.2013.08.014.
- 32. Inagaki T, Frankfurt M, Luine V. Estrogen-induced memory enhancements are blocked by acute bisphenol A in adult female rats: Role of dendritic spines. *Endocrinology*. 2012;153(7):3357-3367. doi:10.1210/en.2012-1121.
- Jang YJ, Park HR, Kim TH, et al. High dose bisphenol A impairs hippocampal neurogenesis in female mice across generations. *Toxicology*. 2012;296(1-3):73-82. doi:10.1016/j.tox.2012.03.007.
- 34. Johnson SA, Javurek AB, Painter MS, et al. Effects of developmental exposure to bisphenol A on spatial navigational learning and memory in rats: A CLARITY-BPA study. *Horm Behav.* 2015. doi:10.1016/j.yhbeh.2015.09.005.
- Braun JM, Kalkbrenner AE, Calafat AM, et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. *Pediatrics*. 2011;128(5):873-882. doi:10.1542/peds.2011-1335.
- 36. Kumar D, Kumar Thakur M. Perinatal exposure to bisphenol-A impairs spatial memory through upregulation of neurexin1 and neuroligin3 expression in male mouse brain. *PLoS One*. 2014;9(10):1-9. doi:10.1371/journal.pone.0110482.

- Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sajiki J, Shimizu E. Perinatal exposure to bisphenol A enhances contextual fear memory and affects the serotoninergic system in juvenile female mice. *Horm Behav.* 2013;63(5):709-716. doi:10.1016/j.yhbeh.2013.03.016.
- Wang C, Niu R, Zhu Y, et al. Changes in memory and synaptic plasticity induced in male rats after maternal exposure to bisphenol A. *Toxicology*. 2014;322:51-60. doi:10.1016/j.tox.2014.05.001.
- 39. Xu X Bin, He Y, Song C, et al. Bisphenol a regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor. *Hippocampus*. 2014;24(12):1570-1580. doi:10.1002/hipo.22336.
- 40. Xu X, Liu X, Zhang Q, et al. Sex-specific effects of bisphenol-A on memory and synaptic structural modification in hippocampus of adult mice. *Horm Behav.* 2013;63(5):766-775. doi:10.1016/j.yhbeh.2013.03.004.
- 41. Zhang Q, Xu X, Li T, et al. Exposure to bisphenol-A affects fear memory and histone acetylation of the hippocampus in adult mice. *Horm Behav*. 2014;65(2):106-113. doi:10.1016/j.yhbeh.2013.12.004.
- 42. Kim ME, Park HR, Gong EJ, Choi SY, Kim HS, Lee J. Exposure to bisphenol A appears to impair hippocampal neurogenesis and spatial learning and memory. *Food Chem Toxicol*. 2011;49(12):3383-3389. doi:10.1016/j.fct.2011.09.017.
- 43. Elsworth JD, Jentsch JD, Groman SM, Roth RH, Redmond ED, Leranth C. Low circulating levels of bisphenol-A induce cognitive deficits and loss of asymmetric spine synapses in dorsolateral prefrontal cortex and hippocampus of adult male monkeys. *J Comp Neurol*. 2015;523(8):1248-1257. doi:10.1002/cne.23735.
- 44. Kuwahara R, Kawaguchi S, Kohara Y, Jojima T, Yamashita K. Bisphenol A does not affect memory performance in adult male rats. *Cell Mol Neurobiol*. 2014;34(3):333-342. doi:10.1007/s10571-013-0017-6.
- 45. Neese SL, Bandara SB, Schantz SL. Working memory in bisphenol-A treated middle-aged ovariectomized rats. *Neurotoxicol Teratol.* 2013;35(1):46-53. doi:10.1016/j.ntt.2013.01.002.

- 46. Sadowski RN, Park P, Neese SL, Ferguson DC, Schantz SL, Juraska JM. Effects of perinatal bisphenol A exposure during early development on radial arm maze behavior in adult male and female rats. *Neurotoxicol Teratol.* 2014;42:17-24. doi:10.1016/j.ntt.2014.01.002.
- 47. Roen EL, Wang Y, Calafat AM, et al. Bisphenol A exposure and behavioral problems among inner city children at 7-9 years of age. *Environ Res.* 2015;142:739-745. doi:10.1016/j.envres.2015.01.014.
- 48. Harley KG, Gunier RB, Kogut K, et al. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. *Environ Res.* 2013;126:43-50. doi:10.1016/j.envres.2013.06.004.
- 49. Braun JM, Yolton K, Dietrich KN, et al. Prenatal bisphenol A exposure and early childhood behavior. *Environ Health Perspect*. 2009;117(12):1945-1952. doi:10.1289/ehp.0900979.
- 50. Braun JM, Muckle G, Arbuckle T, et al. Associations of prenatal urinary bisphenol a concentrations with child behaviors and cognitive abilities. *Environ Health Perspect*. 2017;125(6):1-9. doi:10.1289/EHP984.
- 51. Johnson CL, Paulose-Ram R, Ogden CL, et al. National health and nutrition examination survey: analytic guidelines, 1999-2010. *Vital Health Stat 2*. 2013;(161):1-24. http://www.ncbi.nlm.nih.gov/pubmed/25090154.
- 52. Johnson CL, Dohrmann SM, Burt VL, Mohadjer LK. National Health and Nutrition Examination Survey: Sample Design, 2011 – 2014. *Vital Heal Stat.* 2014;2(162):1-33. http://www.cdc.gov/nchs/data/series/sr_02/sr02_162.pdf.
- 53. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey NCHS Research Ethics Review Board (ERB) Approval. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/irba98.htm. Published 2016.

- 54. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - 2011-2012 Data Documentation, Codebook, and Frequencies Phthalates & Plasticizers Metabolites - Urine (PHTHTE_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/PHTHTE_G.htm. Published 2016.
- 55. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey -National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Phthalates and Plasticizers Metabolites - Urine (PHTHTE_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/PHTHTE_H.htm. Published 2016.
- 56. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data, Questionnaires, and Related Documentation and Information. National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/index.htm. Published 2016.
- 57. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Task 2: How to Address Different Fill Values and the Limit of Detection (LOD) in NHANES Environmental Chemical Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/limitations/T ask2.htm. Published 2016.
- 58. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - 2013-2014 Data Documentation, Codebook, and Frequencies Personal Care and Consumer Product Chemicals and Metabolites (EPHPP_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/EPHPP_H.htm. Published 2016.

- 59. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies Environmental Phenols & Parabens (EPH_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/EPH_G.htm. Published 2016.
- 60. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Cognitive Functioning (CFQ_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/CFQ_H.htm. Published 2017.
- 61. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies Cognitive Functioning (CFQ_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/CFQ_G.htm#CFDCST3. Published 2017.
- 62. Fillenbaum GG, van Belle G, Morris JC, et al. Consortium to Establish a Registry for Alzheimer's Disease (CERAD): The first twenty years. *Alzheimer's Dement*. 2008;4(2):96-109. doi:10.1016/j.jalz.2007.08.005.
- 63. Bertolucci PHF, Okamoto IH, Brucki SMD, Siviero MO, Neto JT, Ramos LR. Applicability of the CERAD neuropsychological battery to Brazilian elderly. *Arq Neuropsiquiatr*. 2001;59(3 A):532-536. doi:10.1590/S0004-282X2001000400009.
- 64. Karrasch M, Sinervä E, Grönholm P, Rinne J, Laine M. CERAD test performances in amnestic mild cognitive impairment and Alzheimer's disease. *Acta Neurol Scand*. 2005;111(3):172-179. doi:10.1111/j.1600-0404.2005.00380.x.
- 65. Karrasch M, Laatu S, Martikainen K, Marttila R. CERAD test performance and cognitive impairment in Parkinson's disease. *Acta Neurol Scand*. 2013;128(6):409-413. doi:10.1111/ane.12138.

- 66. R.M. H, N.-M. S, P. H, et al. The CERAD neuropsychological battery in patients with frontotemporal lobar degeneration. *Dement Geriatr Cogn Dis Extra*. 2015;5(1):147-154. doi:10.1159/000380815.
- 67. Berres M, Monsch AU, Bernasconi F, Thalmann B, Stähelin HB. Normal ranges of neuropsychological tests for the diagnosis of Alzheimer's disease. *Stud Health Technol Inform*. 2000;77:195-199. http://www.ncbi.nlm.nih.gov/pubmed/11187541. Accessed January 21, 2018.
- 68. Sata F, Araki S, Yokoyama K, Murata K. Adjustment of creatinine-adjusted values in urine to urinary flow rate: a study of eleven heavy metals and organic substances. *Int Arch Occup Environ Health*. 1995;68(1):64-68. http://www.ncbi.nlm.nih.gov/pubmed/8847115. Accessed November 15, 2017.
- 69. Alegret M, Espinosa A, Valero S, et al. Cut-off Scores of a Brief Neuropsychological Battery (NBACE) for Spanish Individual Adults Older than 44 Years Old. Brucki S, ed. *PLoS One*. 2013;8(10):e76436. doi:10.1371/journal.pone.0076436.
- American Academy of Family Physicians. BB, Hartmann B, DeJoseph D. *American Family Physician*. Vol 84. American Academy of Family Physicians; 1970. https://www.aafp.org/afp/2011/1015/p895.html. Accessed January 21, 2018.
- 71. Axelrod BN. Administration duration for the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III. *Arch Clin Neuropsychol*. 2001;16(3):293-301. doi:10.1016/S0887-6177(00)00048-2.
- 72. Matsuda O, Saito M, Kato M, Azami H, Shido E. Wechsler Adult Intelligence Scale-III profile in the early stages of Alzheimer's disease: Performance in subtests sensitive to and resistant to normal decline with ageing. *Psychogeriatrics*. 2015;15(1):1-6. doi:10.1111/psyg.12066.
- 73. Donnell AJ, Pliskin N, Holdnack J, Axelrod B, Randolph C. Rapidlyadministered short forms of the Wechsler Adult Intelligence Scale-3rd edition. *Arch Clin Neuropsychol*. 2007;22(8):917-924. doi:10.1016/j.acn.2007.06.007.

- 74. Nielsen NP, Ringström R, Wiig EH, Minthon L. Associations between AQT processing speed and neuropsychological tests in neuropsychiatric patients. *Am J Alzheimers Dis Other Demen*. 2011;22(3):202-210. doi:10.1177/1089253206300417.
- 75. Proust-Lima C, Amieva H, Dartigues JF, Jacqmin-Gadda H. Sensitivity of four psychometric tests to measure cognitive changes in brain aging-population-based studies. *Am J Epidemiol*. 2007;165(3):344-350. doi:10.1093/aje/kwk017.
- 76. Rosano C, Perera S, Inzitari M, Newman AB, Longstreth WT, Studenski S. Digit symbol substitution test and future clinical and subclinical disorders of cognition, mobility and mood in older adults. *Age Ageing*. 2016;45(5):687-694. doi:10.1093/ageing/afw116.
- 77. Saxton J, Lopez OL, Ratcliff G, et al. Preclinical Alzheimer disease: neuropsychological test performance 1.5 to 8 years prior to onset. *Neurology*. 2004;63(Mh 46643):2341-2347. doi:10.1212/01.WNL.0000147470.58328.50.
- 78. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey -Questionnaires, Datasets, and Related Documentation. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm. Published 2015.
- 79. Tolea MI, Morris JC, Galvin JE. Longitudinal associations between physical and cognitive performance among community-dwelling older adults. *PLoS One*. 2015;10(4):1-12. doi:10.1371/journal.pone.0122878.
- Ansoleaga B, Garcia-Esparcia P, Llorens F, Moreno J, Aso E, Ferrer I. Dysregulation of brain olfactory and taste receptors in AD, PSP and CJD, and AD-related model. *Neuroscience*. 2013;248:369-382. doi:10.1016/j.neuroscience.2013.06.034.
- Macknin JB, Higuchi M, Lee VM-Y, Trojanowski JQ, Doty RL. Olfactory dysfunction occurs in transgenic mice overexpressing human τ protein. *Brain Res.* 2004;1000(1-2):174-178. doi:10.1016/j.brainres.2004.01.047.

- 82. Lee S, Manly J, Andrews H, et al. Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community. 2014.
- 83. Hummel T, Landis B, Huttenbrink K. Smell and taste disorders. *GMS Curr Tpoics Otorhinolaryngol Head Neck Surg*. 2011;10:1-15. doi:10.3205/cto000077.
- 84. Doty RL. The olfactory vector hypothesis of neurodegenerative disease: Is it viable? *Ann Neurol*. 2008;63(1):7-15. doi:10.1002/ana.21327.
- 85. Liu J. Clinical features of olfactory disorders in patients seeking medical consultation. *Med Sci Monit*. 2013;19:444-450. doi:10.12659/MSM.883938.
- Hüttenbrink K-B, Hummel T, Berg D, Gasser T, Hähner A. Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. *Dtsch Arztebl Int*. 2013;110(1-2):1-7, e1. doi:10.3238/arztebl.2013.0001.
- 87. Barresi M, Ciurleo R, Giacoppo S, et al. Evaluation of olfactory dysfunction in neurodegenerative diseases. *J Neurol Sci.* 2012;323(1-2):16-24. doi:10.1016/j.jns.2012.08.028.
- Ruan Y, Zheng XY, Zhang HL, Zhu W, Zhu J. Olfactory dysfunctions in neurodegenerative disorders. *J Neurosci Res.* 2012;90(9):1693-1700. doi:10.1002/jnr.23054.
- 89. Albers MW, Tabert MH, Devanand DP. Olfactory dysfunction as a predictor of neurodegenerative disease. *Curr Neurol Neurosci Rep.* 2006;6(5):379-386. doi:10.1007/s11910-996-0018-7.
- Winner B, Kohl Z, Gage FH. Neurodegenerative disease and adult neurogenesis. *Eur J Neurosci*. 2011;33(6):1139-1151. doi:10.1111/j.1460-9568.2011.07613.x.
- 91. Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. *Acta Neuropathol*. 2014;127(4):459-475. doi:10.1007/s00401-014-1261-7.

- 92. Makowska I, Kloszewska I, Grabowska A, Szatkowska I, Rymarczyk K. Olfactory deficits in normal aging and Alzheimer's disease in the polish elderly population. *Arch Clin Neuropsychol*. 2011;26(3):270-279. doi:10.1093/arclin/acr011.
- 93. Sohrabi HR, Bates K a, Weinborn MG, et al. Olfactory discrimination predicts cognitive decline among community-dwelling older adults. *Transl Psychiatry*. 2012;2(5):e118. doi:10.1038/tp.2012.43.
- 94. Driver-Dunckley E, Adler CH, Hentz JG, et al. Olfactory dysfunction in incidental Lewy body disease and Parkinson's disease. *Parkinsonism Relat Disord*. 2014;20(11):1260-1262. doi:10.1016/j.parkreldis.2014.08.006.
- 95. Ward AM, Calamia M, Thiemann E, Dunlap J, Tranel D. Association between olfaction and higher cortical functions in Alzheimer's disease, mild cognitive impairment, and healthy older adults. *J Clin Exp Neuropsychol*. November 2016:1-15. doi:10.1080/13803395.2016.1253667.
- 96. SAS 9.4. 2017.
- 97. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey -Overview of NHANES Survey Design and Weights. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/orientation/sample_design/. Published 2013.
- 98. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Using Blood Lipid or Urine Creatinine Adjustments of Environmental Chemical Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/adjustments/I nfo1.htm. Published 2017.

- 99. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Using Blood Lipid or Urine Creatinine Adjustments in the Analysis of Environmental Chemical Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/adjustments/i ndex.htm. Published 2013.
- 100. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Data Normality and Transformations. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/normality/ind ex.htm. Published 2010.
- 101. SAS Institute Inc. Sas/Stat® 9.3. 2011:User's Guide: The GLIMMIX Procedure (Chapter).
- SAS Institute Inc. Estimating Geometric Means Using Data from a Complex Survey Sampling Design. http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.
 1.192.593. Published 2017.
- 103. Ferguson KK, Colacino JA, Lewis RC, John D, Arbor A. and use of mouthwash and sunscreen Study population. *J Expo Sci Environ Epidemiol*. 2017;27(3):326-332. doi:10.1038/jes.2016.27.Personal.
- Zagni E, Simoni L, Colombo D. Sex and Gender Differences in Central Nervous System-Related Disorders. *Neurosci J.* 2016;2016:1-13. doi:10.1155/2016/2827090.
- 105. Czlonkowska A, Ciesielska A, Gromadzka G. Gender Differences in Neurological Disease. 2006;29(2):243-256.
- Arevalo M-A, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. *Neuroscience*. 2015;16(1):17-29. doi:10.1038/nrn3856.

- 107. Holahan MR, Smith CA. Phthalates and neurotoxic effects on hippocampal network plasticity. *Neurotoxicology*. 2015;48:21-34. doi:10.1016/j.neuro.2015.02.008.
- 108. Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. *Brain Res Bull*. 2014;109:22-31. doi:10.1016/j.brainresbull.2014.09.004.
- Green PS, Simpkins JW. Neuroprotective effects of estrogens: Potential mechanisms of action. *Int J Dev Neurosci*. 2000;18(4-5):347-358. doi:10.1016/S0736-5748(00)00017-4.
- 110. Hristian C, Ruber JG, Alter W, et al. Production and actions of estrogens. *N Engl J Med.* 2002;346(5). doi:10.1016/S0960-0760(01)00184-4.
- 111. Pozzi S, Benedusi V, Maggi A, Vegeto E. Estrogen action in neuroprotection and brain inflammation. *Ann N Y Acad Sci.* 2006;1089(2006):302-323. doi:10.1196/annals.1386.035.
- 112. Wise PM, Dubal DB, Wilson ME, Rau SW, Liu Y. Estrogens: trophic and protective factors in the adult brain. *Front Neuroendocrinol*. 2001;22(1):33-66. doi:10.1006/frne.2000.0207.
- 113. Hojo Y, Murakami G, Mukai H, et al. Estrogen synthesis in the brain-Role in synaptic plasticity and memory. *Mol Cell Endocrinol*. 2008;290(1-2):31-43. doi:10.1016/j.mce.2008.04.017.
- 114. Leranth C, Szigeti-Buck K, MacLusky NJ, Hajszan T. Bisphenol A prevents the synaptogenic response to testosterone in the brain of adult male rats. *Endocrinology*. 2008;149(3):988-994. doi:10.1210/en.2007-1053.
- 115. Parducz a., Hajszan T, MacLusky NJ, et al. Synaptic remodeling induced by gonadal hormones: Neuronal plasticity as a mediator of neuroendocrine and behavioral responses to steroids. *Neuroscience*. 2006;138(3):977-985. doi:10.1016/j.neuroscience.2005.07.008.

- 116. Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. *J Neurosci*. 2003;23(5):1588-1592.
- 117. Ogiue-Ikeda M, Tanabe N, Mukai H, et al. Rapid modulation of synaptic plasticity by estrogens as well as endocrine disrupters in hippocampal neurons. *Brain Res Rev.* 2008;57(2):363-375. doi:10.1016/j.brainresrev.2007.06.010.
- 118. Arnold S, Beyer C. Neuroprotection by estrogen in the brain: The mitochondrial compartment as presumed therapeutic target. *J Neurochem*. 2009;110(1):1-11. doi:10.1111/j.1471-4159.2009.06133.x.
- 119. Grimm A, Schmitt K, Lang UE, Mensah-Nyagan AG, Eckert A. Improvement of neuronal bioenergetics by neurosteroids: Implications for age-related neurodegenerative disorders. *Biochim Biophys Acta - Mol Basis Dis*. 2014;1842(12):2427-2438. doi:10.1016/j.bbadis.2014.09.013.
- 120. Simpkins JW, Yi KD, Yang S, Dykens J a. Mitochondrial mechanisms of estrogen neuroprotection. *Biochim Biophys Acta*. 2011;1800(10):1113-1120. doi:10.1016/j.bbagen.2009.11.013.Mitochondrial.
- 121. Wu Y, Li K, Zuo H, Yuan Y, Sun Y, Yang X. Primary neuronal-astrocytic coculture platform for neurotoxicity assessment of di-(2-ethylhexyl) phthalate. J Environ Sci (China). 2014;26(5):1145-1153. doi:10.1016/S1001-0742(13)60504-5.
- 122. Guida N, Laudati G, Galgani M, et al. Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death. *Toxicol Appl Pharmacol.* 2014;280(1):190-198. doi:10.1016/j.taap.2014.07.014.
- 123. Van Der Meer TP, Artacho-Cordón F, Swaab DF, et al. Distribution of nonpersistent endocrine disruptors in two different regions of the human brain. *Int J Environ Res Public Health*. 2017;14(9):1-11. doi:10.3390/ijerph14091059.
- 124. Davis AP, Grondin CJ, Lennon-Hopkins K, et al. The Comparative Toxicogenomics Database's 10th year anniversary: Update 2015. *Nucleic Acids Res.* 2015;43(D1):D914-D920. doi:10.1093/nar/gku935.

CHAPTER VI

MANUSCRIPT III

EXPOSURE TO METALLOESTROGENS AND ASSOCIATIONS WITH BRAIN HEALTH: NHANES 2011-2014

ABSTRACT

BACKGROUND: The role of estrogenic endocrine disrupting chemicals (EEDCs) and their role in the development of neurodegenerative disease is of great public health concern, due to increasing exposures to these chemicals and increasingly aging population. Evidence suggests EEDCs exposure plays a role in the development of neurodegenerative disease. Metalloestrogens are known estrogenic endocrine disrupting chemicals (EEDCs) that are also heavy metals, and have been shown to exert estrogenic activity, which affects estrogen and its protective effects on brain health.

OBJECTIVE: The objective of this study is to investigate the relationship between surrogate brain health indicators and exposure to metalloestrogens among the older individuals of the United States (US) population.

METHODS: In this study, we analyzed participants from the Center for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey (NHANES) in the survey cycles 2011-2012 and 2013-2014. The participants were 60 years of age and older who had urine samples taken during the examination. Other data pertaining to covariates and demographics were also obtained. In total, three metallogestrogens were selected. The three analyzed metalloestrogens were the

following: cadmium (Cd), manganese (Mn), and arsenic (As). These EEDCs were analyzed versus various brain health indicators available in the form of test scores and questionnaires, available in the NHANES datasets. The brain health indicators test scores were the following: immediate recall test scores; delayed recall test scores; animal fluency test scores; digit symbol substitution test scores. The brain health indicator questions were as follows: worsening memory over the past 12 months; trouble remembering over the past week; difficulty remembering or because you experience periods of confusion. The following smell and taste questions were also included as brain health indicators due to their potential as pre-clinical indicators of cognitive impairment: phantom odor (phantosmia) and persistent taste in mouth over the past 12 months. Geometric means were calculated to compare yes/no or low score/high score dichotomous responses to the brain health indicators versus the EEDC concentrations. Logistic regression was then used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Three logistic regression models were presented in our study with all of them stratified by gender: unadjusted; age, race, education; age, race, education, body mass index (BMI), smoking status, blood pressure, diabetes status, alcohol use, coronary heart disease status, heart attack status, stroke status, head injury status, and physical activity status.

RESULTS: Cd and Mn bioburdens were found to be more evident in individuals who have lower cognitive scores and/or have memory cognition issues. In our logistic regression models, Cd stood out as the metalloestrogen that plays a larger role in the development of neurodegenerative disease and adverse brain health in an older population.

CONCLUSION: Cd and to a lesser extent, Mn, may play a role in adverse brain health and the development of some neurodegenerative condition. Further research is necessary due to the cross-sectional nature of our study.

Exposure to Metalloestrogens and Associations with Brain Health: NHANES 2011-2014

INTRODUCTION

The role of exposure to EEDCs and neurodegenerative disease development is of great public health concern as stated by the World Health Organization (WHO)¹, due to cognitive health and neurodegenerative disease emerging as great public health concerns due to an increasingly aging population². Exposures to EEDCs have been linked to neurodegenerative diseases and other adverse brain health conditions, such as Alzheimer's disease (AD). In this study, we examine the associations of three of the mostly widely present Metalloestrogens, Cd, Mn, and As, and their associations with brain health in an older US population.

The role of exposure to EEDCs, brain health, and neurodegenerative disease development is of great public health concern as stated by the World Health Organization (WHO) since exposure to endocrine disrupting chemicals can lead to the development of various human disease, which include neurodegenerative diseases ¹.

Cadmium is a naturally occurring metal in the earth's crust and a natural constituent of ocean water ³. Populations are exposed through food, cigarettes, smoke, drinking water, and air ³. Cadmium is introduced into the food chain through soil and food

contact surfaces, and through foods such as leafy vegetables, grains, legumes, and organ meats ³. Occupation exposures are highest in occupations involving cadmium-containing products, and occupations involved in alloy, battery, plastics, and coloring production ³. Inhalation and oral routes of exposure are predominant, followed by dermal exposure ³. Current evidence supports the toxicity of cadmium and its effects on the developing organism, reproductive toxicity, hepatic effects, hematological effects ³.

Studies on human populations have also shown cadmium's adverse effects on adult brain function. A cross-sectional study using NHANES III data from 1988 to 1994 compared neurocognitive test scores and urinary cadmium concentrations found individuals with no smoking history, or known occupational cadmium exposure were found to have lower attention/perception scores with increasing urinary cadmium levels ⁴. In a cross-sectional study of rural elderly Chinese persons, it was found that increasing serum cadmium and copper levels was significant associated with lower composite cognitive scores ⁵ Another cross-sectional study examined the cerebrospinal fluid of ALS patients found elevated levels of various metals, including cadmium, which her higher than the measured blood levels and indicative of bioaccumulation ⁶. A case-control study examining heavy metal levels in a group of Mongolian people found elevated cadmium, as well as other heavy metals in those with Parkinson-like symptoms in hair samples taken ⁷.

Arsenic is an element in the environment, found in the earth's crust, and is considered a metalloid ⁸. Populations are usually exposed through the air, drinking water, and food, with food being the main source of arsenic in a population, with some areas

having naturally high levels of arsenic ⁸. Occupational exposure occurs through individuals working in metal smelting, wood treatment, and those in working in the production and application of pesticides and herbicides ⁸. Arsenic is also used in the animal and poultry feed as an antimicrobial additive ⁸. The major routes of exposure are inhalation and oral, with dermal exposure being considered a minor route ⁸. Arsenic has been associated with various health conditions, which include respiratory disorders, cardiovascular outcomes, diabetes, ocular effects, immune response disturbances, impaired neurological function, developmental effects, and cancers ⁸ Genetic polymorphisms are suspected of contributing to the sensitivity towards arsenic ⁸.

In cross-sectional study consisting of 133 men and 201 women from the Project FRONTIER, a rural healthcare study, long-term low level exposure to arsenic from groundwater was found to be associated with poorer scores in language, visuospatial skills, and executive functioning, global cognition, processing speed, and immediate memory ⁹. In another cross-sectional study from Project Frontier, consisting of 526 subjects genotyped according to the AS3MT gene, exposure to higher low level arsenic in groundwater reduced cognitive functioning, but the results differed with amongst the different SNPs ¹⁰. In a cross-sectional study measuring heavy metal serum levels in 89 Ad patients and 188 cognitively normal controls, there was no difference in serum arsenic levels between the AD group and controls ¹¹. Another cross-sectional study conducted by Edwards et al. ¹² with a cohort consisting of 733 AD patients, 127 individuals with mild CI, and 530 individuals of normal cognition,

found that exposure to low level arsenic exposure from groundwater was found to be associated with poorer neuropsychological performance.

Manganese is a metal that is an essential nutrient required as a cofactor for various enzymes and is found naturally in grains and fruit ¹³. Manganese is found in various industrial processes and products and exposure can occur through inhalation, oral, dermal, and occupational routes ¹³. Manganese has the potential to accumulate in lower level organisms in the food chain and has been linked to various health issues including inflammation, impaired lung function, and adverse neurological effects ¹³.

Recent epidemiological studies have assessed the effects of manganese on brain health. A cross-sectional study by Hozumi et al. ¹⁴, analyzed the cerebrospinal fluid of various neurodegenerative disease patients and found a higher level of manganese among PD patients. In another cross-sectional study assessing children's intellectual functioning and arsenic and manganese exposure, blood manganese levels were negatively associated with full scale IQ test scores, working memory, and perceptual memory ¹⁵. A cross-sectional study by Kim et al.¹⁶ examining low-level manganese exposure in adults of a Ohio community found subtle subclinical effects in UPDRS and postural sway test for PD. A cross-sectional study of school-aged children in Brazil found inverse scores on executive function and attention tests with manganese levels ¹⁷. A study amongst school-children in Canada found low-level manganese exposure in drinking water was associated with poorer neurobehavioral functions ¹⁸. Koc et al. ¹⁹ found higher levels of metal, including manganese, in hair samples of AD patients compared to controls.

A case-control study Miyake et al. ²⁰, assessing dietary intake of heavy metals amongst PD patients found no association with manganese intake. A casecontrol study by Roos et al. ⁶ found elevated manganese levels in cerebrospinal fluid of ALS patients. A study by Kumudini et al.²¹ found not correlation between manganese blood levels in PD patients compared to controls. A case control study by Garzillo et al.²² found no association between manganese levels in ALS patients vs controls. A study by Kihira et al. ²³ found elevated manganese levels in ALS patients vs controls from hair samples. Another study by Arain et al. ²⁴ found higher levels of manganese and aluminum in hair samples of patients suffering from neurodegenerative disease.

A small cohort study that followed 26 welders exposed to manganese found after a 3.5-year follow-up found worsened olfactory, extrapyramidal, and mood disturbances ²⁵. A cohort study following asymptomatic welder trainees with no previous manganese exposure found low-level exposure to cause sub-clinical brain changes in subjects before any measurable learning deficits may occur ²⁶.

Cadmium, arsenic, and manganese have been found to all have estrogenic activity and affinity for estrogen receptors ²⁷ and have been found to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ²⁸ Heavy metals have also been demonstrated to affect and cross the blood brain barrier ^{29–31}

OBJECTIVE

There is limited information regarding exposures to metalloestrogens the development of cognitive dysfunction and neurodegenerative disease in older

populations. In this study we examine the relationship between three metalloestrogens, Cd, Mn, and As, with surrogate brain health indicators, from the CDC's NHANES 2011-2012 and 2013-2014 data cycles. The objectives of the study are as follows: 1) to assess the mean Cd, Mn, and As levels in older adults in the US, 60 years of age and above with the surrogate brain health indicators in the US population, 2) assess the association between Cd, Mn, and As levels and surrogate brain health indicators in older adults in the US, to find the risk of poor cognitive function and possible development of mild cognitive impairment, dementia, and AD.

METHODS

Study Design and Population: NHANES is a continuous cross-sectional data collection utilizing a complex multi-stage sampling design that creates a survey representative of the non-institutionalized population of the United States ^{32,33}. The survey has been conducted since 1999 and consists of an at-home questionnaires followed by a standardized physical examination and specimen collection conducted in mobile examination centers (MEC) ^{32,33}. Eligibility is determined using preset selection probabilities for the desired demographic subdomains ³³. A household screener is performed before to determine if any household members are eligible for the interview and examination, while the physical examination includes physical measurements, dental examination, and the collection of blood and urine specimens for laboratory testing ³³. Prior to any to interviews and examinations, informed consent was obtained and all procedures were approved by the CDC Institutional Review Board ³⁴

In our study, we merged the NHANES 2011-2012 and 2013-2014 data cycles. All our analyses were limited to individuals 60 years of age and older who have recorded responses to cognitive test scores and/or memory and taste/smell questions and have select metalloestrogen urine measurements.

Inclusion/Exclusion Criteria

Inclusion criteria:

- 9. Males and females, 60 years of age and older
- 10. Available metalloestrogen urine measurements (Cd, Mn, As)
- 11. Urine creatinine measurements >30 mg/dl and >300 mg/dl.
- 12. Complete responses to identified outcome variables.

Exclusion criteria:

- 9. Males and females, 59 years of age and younger
- 10. Unavailable metalloestrogen urine measurements (Cd, Mn, As)
- 11. Urine creatinine measurements <30mg/dl and >300mg/dl
- 12. Complete responses to identified outcome variables.

Cadmium Exposure Assessment Measurements

Cadmium were measured from urine samples taken from a representative and random one-third subsample of individuals 6 years of age and older in the 2011-2012 and 2013-2014 survey cycles ^{35–37}. The laboratory inductively coupled-plasma dynamic reaction cell-mass spectrometry to analyze urine Cadmium levels and was consistently used in both survey cycles ^{35–37}. Cadmium levels were provided in ug/L and was used in our analyses. Urinary cadmium was used in our analyses and coded

as URXUCD, with a limit of detection variable coded as URDUCDLC. The limits of detection were 0.056 ug/L for 2011-2012 and 0.036 ug/L for 2013-2014.

The limit of detection variables indicates if subjects have urine Cadmium levels above the limit of detection. A value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy Cadmium level of the LOD divided by the square root of two ³⁸. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle ³⁹.

Manganese Exposure Assessment and Measurements

Manganese were measured from urine samples taken from a representative and random one-third subsample of individuals 6 years of age and older in the 2011-2012 and 2013-2014 survey cycles ^{35–37}. The laboratory inductively coupled-plasma dynamic reaction cell-mass spectrometry to analyze urine Manganese levels and was consistently used in both survey cycles ^{35–37}. Manganese levels were provided in ug/L and was used in our analyses. The following Manganese metabolites were used in our analyses. Urinary manganese was used in our analyses and coded as URXUMN, with a limit of detection variable coded as URDUMNLC. The limits of detection were 0.08 ug/L for 2011-2012 and 0.013 ug/L for 2013-2014.

The limit of detection variables indicates if subjects have urine Manganese levels above the limit of detection. A value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy Manganese level of the LOD divided by the square root of two ³⁸. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle ³⁹.

Arsenic Exposure Assessment and Measurements

Arsenic were measured from urine samples taken from a representative and random one-third subsample of individuals 6 years of age and older in the 2011-2012 and 2013-2014 survey cycles ^{35–37}. The laboratory inductively coupled-plasma dynamic reaction cell-mass spectrometry to analyze urine arsenic levels and was consistently used in both survey cycles ^{35–37}. Arsenic levels were provided in ug/L and was used in our analyses. Total urinary arsenic was used in our analyses and coded as URXUAS, with a limit of detection variable coded as URDUASLC. The limits of detection were 1.25 ug/L for 2011-2012 and 0.26 ug/L for 2013-2014.

Only total arsenic was analyzed in the study. The limit of detection variables indicates if subjects have urine arsenic levels above the limit of detection. A value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy arsenic level of the LOD divided by the square root of two ³⁸. Some LODs differ between survey cycles and a conservative approach was used to account for differing LODs per survey cycle ³⁹. The specific arsenic metabolites were selected as >60% of study subjects had urine arsenic levels above the LOD.

Assessment of Surrogate Brain Health Indicators – Cognitive Scores <u>CERAD Word Learning Subtest – Immediate Recall and Delayed Recall:</u>

The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word assesses both immediate and delayed learning ^{40,41}. The delayed and immediate recall tests available in NHANES assess the ability to process new verbal information ^{40,41}. The tests are part of the neuropsychological assessment for the entire CERAD testing protocol, which was initially created to standardize AD assessment and diagnosis ⁴². The tests in the neuropsychological assessment itself were chose because of their ability to assess cognitive functions inherent in AD ⁴². The assessments have the ability to differentiate those of adequate cognitive status versus those who have mild cognitive impairment or dementia ^{42–45}. Although developed for use in the assessment of AD, the CERAD assessments have shown utility in use for Parkinson's disease ⁴⁵ and frontotemporal lobar degeneration ⁴⁶.

Immediate Recall: For immediate recall, , the subjects are asked to read aloud a sequence of 10 unrelated words as they are presented to them and immediately after, they are asked to recall as many words as possible 40,41 . This is done in three trials with the order of the words differing in each trial. 40,41 . Each trial has a maximum score of 10, with a maximum overall score of 30 40,41,43 .

In our study, we included individuals 60 years of age and older who completed all immediate recall word list trials identified as: CFDCST1, CFDCST2, and CFDCST3 in the 2011-2012 and 2013-2014 NHANES data cycles. Those who did not have three trials completed were not included in the immediate recall analysis. We summed the total of the three trials and created a new variable with cut-off scores named IMMEDIATERECALL. A cut-off score of ≤ 13 and ≥ 14 was used as it is the standard in other assessments ^{43,47}. A total of 3,149 subjects from the 2011-2012 and 2013-2014 responded with complete immediate recall trials. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme

creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁴⁸. After, our immediate recall study population consisted of 940 subjects, 146 subjects \leq 13 and 794 subjects \geq 14.

Delayed Recall: For delayed recall, the subject is asked to repeat the sequence of 10 unrelated words after the other cognitive tests are completed, which is typical 8 to 10 minutes after the start of the word learning trials 40,41 . The maximum score is 10 for delayed recall 40,41 .

In our study, we included subjects 60 years of age and older who completed the delayed recall trial, identified as CFDCSR, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with the cut-off scores named DELAYEDRECALL. A cut-off score of ≤ 13 and ≥ 14 was used as it is the standard in other assessments ^{43,47,49}. A total of 3,126 subjects from the 2011-2012 and 2013-2014 responded with a complete delayed recall trial. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁴⁸. After, our study population consisted of 930 subjects,157 subjects ≤ 3 and 776 subjects ≥ 4 .

Animal Fluency: The animal fluency test is used to determine categorical verbal fluency, which is part of executive function and can differentiate between with normal cognition versus those with MCI and more severe cognitive impairment ^{40,41}. Since the test uses animal names, it does not require cultural consideration or formal education experience ^{40,41}. In the test, subjects are asked to name as many animals in a

one minute span, with a maximum range of 40 words in the NHANES 2011-2014 data set. ^{40,41}. A sample test is given to each subject before the actual test ^{40,41}.

In our study, we included subjects 60 years of age and older who completed the animal fluency trial, identified as CFDAST, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with cut-off scores named VERBALFLUENCY. cut-off score of ≤ 11 and ≥ 12 was used as it is the standard in other assessments ^{43,47,49,50}. A total of 3,110 subjects from the 2011-2012 and 2013-2014 responded with a complete delayed recall trial. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁴⁸. After, our study population consisted of 931 subjects,187 subjects ≤ 11 and 744 subjects ≥ 12 .

Digit Symbol Substitution Test: The Digit Symbol Substitution Test (DSST) is part of the Wechsler Adult Intelligence Scale (WAIS III) ^{40,41,51}. The test measures processing speed, sustained attention, and working memory ^{40,41,51}. The subtests have shown utility in the identification of dementia and other neurodegenerative disorders ^{52–54}. The test is given in paper form, with a key that has 9 numbers paired to different symbols. The subject has 2 minutes to match each symbol to 133 boxes with a number associated to it, with the score as the total correct matches with a maximum score of 105 in the 2011-2014 NHANES dataset. ^{40,41}. A sample test is given to each subject before the actual test ^{40,41}.

In our study, we included subjects 60 years of age and older who completed the animal fluency trial, identified as CFDDS, for the 2011-2012 and 2013-2014

NHANES data cycles. After we created a new variable with cut-off scores named DSST. cut-off score of ≤ 27 and ≥ 28 was used as it is the standard in other assessments ^{55–57}. A total of 3,104 subjects from the 2011-2012 and 2013-2014 responded with a complete delayed recall trial. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁴⁸. After, our study population consisted of 891 subjects, 129 subjects ≤ 27 and 744 subjects ≥ 28 .

Assessment of Surrogate Brain Health Indicators – Memory Function During the past 12 months, have you experienced confusion or memory loss that is happening more often or getting worse?: In our study we included subjects 60 years of age and older who had metalloestrogens samples taken and responded to the yes=0/no=1 question," During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?" ⁵⁸. Memory issues, such as confusion and memory loss often precede the development of dementia and neurodegeneration^{2,59}, which makes this question a potential surrogate for the development of memory issues. 3,628 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁴⁸. After, our delayed recall study population consisted of 1,025 subjects, 181 subjects answered "yes" and 844 subjects answered "no".

During the past 7 days, how often have you had trouble remembering where you

put things?: In our study we included subjects 60 years of age and older who had metalloestrogens samples taken and responded to the question," During the past 7 days, how often {have you/has SP} had trouble remembering where {you/he/she} put things, like {your/his/her} keys or {your/his/her} wallet?" ⁵⁸. Memory issues, such as confusion and memory loss often precede the development of dementia and neurodegeneration^{2,59}, which makes this question a potential surrogate for the development of memory issues. 3,448 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

The question is multi-leveled, where 1,993 subjects answered "Never" =0, 809 subjects answered "About once" =1, 544 subjects answered "Two or three times" =2, 175 subjects answered "Nearly every day" =3, and 102 subjects answered "Several times a day" =4. We created a new variable named MCQ380_WK, which combines responses coded as 0/Never and 1/About once into a variable =2 and 2/Two or three times, 3/Nearly every day and 4/Several times a day into a variable =1.

We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁴⁸. After, our study population consisted of 1,074 subjects,188 subjects answered "1" and 783 subjects answered "2".

<u>Are you limited in any way because of difficulty remembering or because you</u> <u>experience periods of confusion</u>?: In our study we included subjects 60 years of age and older who had metalloestrogens samples taken and responded to the question,"

{Are you/Is SP} limited in any way because of difficulty remembering or because {you/s/he} experience {s} periods of confusion?" ⁵⁸. Limitations in physical movement due to difficulty remembering and confusion can indicate the development of cognition issues ⁶⁰. 3,629 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁴⁸. After, our study population consisted of 1,133 subjects,181 subjects answered yes and 952 subjects answered no.

Assessment of Surrogate Brain Health Indicators – Taste and Smell Function

It has been observed that neurodegenerative disease has been shown to be preceded by smell and taste disorders ^{61–64}. The causes of these disorders have been linked to genetic alterations ⁶¹, overexpression of key proteins⁶², and direct effect of some environmental chemicals on the olfactory mucosa ⁶⁵, which can have associations with exposure to EEDCs ^{61,62,64,65}. However, issues with olfaction can also be caused by upper respiratory tract infections, sino-nasal disease, head trauma, idiopathic causes, surgery of the nasal area, and congenital loss of smell ⁶⁶.

The two most common and prevalent neurodegenerative diseases, AD and PD have been shown to be preceded by smell disorders ^{67–72}. These disorders manifest themselves when evidence of pathological changes in the olfactory system are evident ⁷². These are characterized by the build-up of pathological proteins, which cause the death of olfactory cells ⁷². Several human epidemiological studies have also alluded

to the utility of using sensory biomarkers as an early detection for neurodegenerative diseases ^{73–76}

Do you sometimes smell and unpleasant, bad, or burning odor when nothing is

there?: In our study we included subjects 60 years of age and older who had metalloestrogens samples taken and responded to the question," {Do you/Does SP} sometimes smell an unpleasant, bad or burning odor when nothing is there?" ⁵⁸. 3,617 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle. We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁴⁸. After, our study population consisted of 1,050 subjects, 74 subjects answered yes and 950 subjects answered no.

During the past 12 months have you had a taste or other sensation in your

mouth that does not go away?: In our study we included subjects 60 years of age and older who had metalloestrogens samples taken and responded to the question," During the past 12 months {have you/has SP} had a taste or other sensation in {your/his/her} mouth that does not go away?"⁵⁸. 3,623 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

We then accounted for those who were measured for metalloestrogens and accounted for those with extreme creatinine scores (<30 and >300 mg/dl), as these extreme values can affect analyses by being too dilute or concentrated ⁴⁸. After, our study population consisted of 1,024 subjects, 66 subjects answered yes and 958 subjects answered no.

Covariates

In our study we included a number of covariates, based off a review of literature and well-known risk factors for neurodegenerative diseases, if they were available in the NHANES datasets.

The demographic variables are as follows: gender (male, female), age (60-69, 7-79, 80+), Race/Ethnicity (Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian/Other), Family Income (Under 24k, 25k to 54,999k, 55k to 74,999k, over 75k), Education ($<12^{th}$ grade, completed high school, $>12^{th}$ grade) ⁵⁸. Modifiable health variables and risk factors are as follows: ever smoked (yes, no), blood pressure (normal/high), diabetes (yes, no, borderline), coronary heart disease (yes, no), stroke (yes, no), heart attack (yes, no), head trauma (yes, no), alcohol use (yes, no), ever use birth control (yes, no), every use hormonal replacement therapy (yes, no) ⁵⁸.

Statistical Analysis

Statistical analysis was performed using SAS software ⁷⁷. The 2011-2012 and 2013-2014 survey cycles were merged and a four-year sampling weight was calculated to account for the complex sampling design in order to calculate correct statistical estimates and standard errors when calculating means, geometric means, and other statistics ⁷⁸.

For metalloestrogens variables, a value of "0" indicates above the limit of detection and a value of "1" indicates below the limit of detection. Individuals with a below the limit of detection were given a dummy phthalate level of the LOD divided by the square root of two ³⁸. Some LODs differ between survey cycles and a conservative

approach was used to account for differing LODs per survey cycle, where the LOD for that year was used to make a determination if the EEDC was above or below the LOD. ³⁹. We log-transformed and then adjusted for creatinine all metalloestrogens variables ^{79–81} since environmental chemical data is not normally distributed and urine dilution varies from person to person.

We used the SAS Survey procedures to account for the complex sampling design of the NHANES data sets ⁸².

We used PROC SURVEYFREQ was used to obtain descriptive statistics for the different populations we were examining in our study which accounts for the complex survey design of the NHANES data sets ⁸². Descriptive statistics were organized based on the following categories per variable: gender (male, female), age (60-69, 7-79, 80+), Race/Ethnicity (Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian/Other), Family Income (Under 24k, 25k to 54,999k, 55k to 74,999k, over 75k), Education (<12th grade, completed high school, >12th grade), ever smoked (yes, no), blood pressure (normal/high), diabetes (yes, no, borderline), coronary heart disease (yes, no), stroke (yes, no), heart attack (yes, no), head trauma (yes, no), alcohol use (yes, no), ever use birth control (yes, no), every use hormonal replacement therapy (yes, no) ⁵⁸.

We used PROC SURVEYREG and guidance provided by the SAS institute to directly to determine the geometric mean of the EEDC to test if they were significant between the responses of our outcome variables ^{82,83}. The standard errors were calculated using the Taylor Series linearization method, which is the default method in the survey procedures to calculate standard error ⁸². Geometric means (GM),

geometric standard errors (GSE), and number of subjects were reported for the results of the outcome variables for all subjects that had EEDCs over the LOD. We looked at geometric means between the outcome variables (yes vs. no, low test score vs. high test score), and also performed age-specific, gender-specific, and race/ethnicityspecific geometric means between the responses to the outcome variable. Due to the smaller range of ages in our dataset, 60 years and older, we calculated age-specific rates in lieu of age-standardized rates.

We used PROC SURVEYLOGISTIC to find the unadjusted and adjusted odds ratios (ORs) and the 95% confidence intervals (CI) to examine the association between our outcome variables and exposures to metalloestrogens ⁸². Analysis was done per EEDC per outcome variable. We presented three logistic regression models which were stratified by gender and presented the EEDC as a continuous variable as well as a ranked variable < LOD to 50th percentile (reference) and \geq 50th percentile: unadjusted for known risk factors, age, education, race/ethnicity, adjusted for known and suspected risk factors, age, education, race/ethnicity, smoking, blood pressure history, history of coronary heart disease, stroke, heart attack, diabetes status, head trauma, and alcohol use. We did not include income, OC and HRT use as variables as they significantly reduced the size of the population.

RESULTS

Descriptive statistics for the Surrogates of Brain Health Indicators and

<u>Covariates</u>: Descriptive statistics of the study populations are described in table 1.1 and 1.1a for each of our 9 outcomes with their respective covariates.

Total Population £13 2.14 ±3 ±4 £11 2.12 £27 2.28 Yes No Yes	41 2.20 712 52 2.89 662 57 3.13 716 24 1.37 435 12 0.60 223 32 0.90 254 32 3.37 647 20 0.61 322 9 0.22 151 34 1.35 403 26 1.67 303	No 74 94.91 12 47.04 52 47.87 16 49.97 15 30.80 13 14.13 14 7.08 14 7.08 17 74.76 12 8.41 51 4.66
1 rolal ropulation 173 8.93 1205 91.07 243 14.14 1124 85.96 212 129 16.39 1207 83.64 238 15.44 1152 84.36 219 11.81 1249 88.19 70 4.19 1395 95.81 Order (n, %) 008 533 592 43.77 143 80.4 553 41.18 139 600 555 42.55 131 491 550 44.46 135 896 616 40.07 111 693 610 42.37 89 52.6 644 43.97 30 180 722 47.45 73 483 553 41.44 127 83 52.0 664 42.37 30 180 722 47.45 73 485 73 485 73 483 73 73 74 74 481 74 <	99 5.09 137. 41 2.20 712 52 2.89 662 57 3.13 716 24 1.37 435 12 0.60 223 32 0.90 254 32 3.37 647 20 0.61 322 9 0.22 151 34 1.35 405 26 1.67 305 33 2.08 660	74 94.91 12 47.04 12 47.87 16 49.97 15 30.80 13 14.13 14 7.08 14 7.08 14 7.08 14 7.08 14 7.08 14 7.08 14 7.08 14 7.08 14 7.06 14 7.0
Order (n, %) Order	41 2.20 712 52 2.89 662 57 3.13 716 24 1.37 435 12 0.60 223 32 0.90 254 32 0.90 254 32 0.90 254 34 1.35 405 26 1.67 305 33 2.08 660	12 47.04 52 47.87 55 30.80 13 14.13 54 7.08 57 74.76 12 8.41 51 4.66
Female 65 3.62 61.3 47.30 100 6.10 57.1 44.68 143 7.62 52.3 42.92 100 43.54 124 7.11 151 152 153 162 164 157 94 153 162 177 164 164 111 647 653 167 164 164 157 94 163 167 94 164 173 164 164 174 164 164 174 164 164 164 174 164 164 164 174 <	52 2.89 662 57 3.13 716 24 1.37 435 12 0.60 223 32 0.90 254 32 0.90 254 32 0.90 254 32 0.90 254 9 0.22 151 34 1.35 405 26 1.67 305 33 2.08 660	52 47.87 16 49.97 15 30.80 13 14.13 14 7.08 17 74.76 12 8.41 11 4.66
Age (years) (n. %) c	57 3.13 716 24 1.37 433 12 0.60 223 32 0.90 254 32 3.37 647 20 0.61 322 9 0.22 151 34 1.35 405 26 1.67 303 33 2.08 660	16 49.97 15 30.80 13 14.13 14 7.08 17 74.76 12 8.41 51 4.66
60-69 69 2.48 633 100 94 4.89 633 646 109 3.37 613 400 111 6.47 611 643 415 72.0 617 400 106 47.0 106 47.0 106 47.0 106 47.0 106 47.0 106 47.0 106 47.0 106 47.0 106 47.0 107 44.5 135 93.2 136 97.0 50.6 389 27.19 73 44.5 136 17.0 106 47.0 106 47.0 107 20.0 12.0 13.0 173 44.1 139 94.4 139 94.4 139 136 130.8 12.0 73.445 130.8 177.0 108 111.0 111	24 1.37 435 12 0.60 223 32 0.90 254 32 3.37 647 20 0.61 322 9 0.22 151 34 1.35 405 26 1.67 305 33 2.08 660	5 30.80 3 14.13 4 7.08 47 74.76 12 8.41 51 4.66
70-79 52 33.4 382 29.01 74 4.58 359 27.2 6.69 50 3.47 75 6.89 27.19 73 4.85 67 77.4 452 3.10 407 29.06 12 0.77 4.45 138 9.79 52 2.97 143 10.3 78 4.84 157 9.94 50 3.39 168 11.11 61 61 107 74 4.45 138 9.79 52 2.97 143 10.3 78 4.84 157 9.94 50 3.39 168 11.11 61 61 107 14 0.42 2.27 6.73 14 0.42 2.27 6.73 14 0.42 2.27 6.73 14 0.42 2.27 6.37 14 0.42 2.27 6.37 14 0.42 2.27 6.37 14 0.42 2.27 6.37 14 0.42 2.27 6.37 14 0.42 2.29 6.44 15 6.6 16 11.11 16 16 16 <td>24 1.37 435 12 0.60 223 32 0.90 254 32 3.37 647 20 0.61 322 9 0.22 151 34 1.35 405 26 1.67 305 33 2.08 660</td> <td>5 30.80 3 14.13 4 7.08 47 74.76 12 8.41 51 4.66</td>	24 1.37 435 12 0.60 223 32 0.90 254 32 3.37 647 20 0.61 322 9 0.22 151 34 1.35 405 26 1.67 305 33 2.08 660	5 30.80 3 14.13 4 7.08 47 74.76 12 8.41 51 4.66
80+ 52 3.11 160 11.00 75 4.67 135 9.32 73 4.45 138 9.79 52 2.97 143 10.34 78 4.84 157 9.94 50 3.39 168 11.11 61 4.01 174 10.72 4 0.21 231 14.53 Recent thinking (n, %) Hispanic Ministry (n, %) 38 1.18 27 6.53 6.5 1.99 20.1 5.80 58 1.69 20.5 6.07 84 2.49 166 4.81 58 1.72 228 6.23 1.11 61 4.01 1.44 0.42 2.72 7.57 Non-Hispanic Minish Non-Hispanic Minish Non 1.11 61 4.01 1.14 0.02 1.55 66 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.	12 0.60 223 32 0.90 254 32 3.37 647 20 0.61 322 9 0.22 151 34 1.35 405 26 1.67 305 33 2.08 660	13 14.13 14 7.08 17 74.76 12 8.41 11 4.66
Hispanic Non-Hispanic Minite Non-Hispanic Asian Other 38 1.18 227 6.33 63 1.93 201 5.80 1.60 285 4.71 207 6.09 9 1.61 227 6.37 1.4 0.42 27.7 7.71 Non-Hispanic Asian Other 71 6.16 584 730 102 10.23 201 5.80 103 9.42 103 69.94 63 4.81 570 7.97 7.05 20 8.33 108 8.12 20 0.83 108 8.12 20 0.83 108 8.12 20 0.83 108 8.14 8.28 20 0.83 108 8.14 8.28 20 0.83 1.18 1.23 3.73 24 0.75 131 4.20 34 1.00 1.27 3.90 3.91 3.91 3.91 3.91 3.49 15.55 68 2.56 3.43 16.62 91 3.85 3.49 15.54 2.0 0	32 3.37 647 20 0.61 322 9 0.22 151 34 1.35 405 26 1.67 305 33 2.08 660	7 74.76 2 8.41 1 4.66
Non-Hispanic White Non-Hispanic Black 71 6.16 584 73 0.0 102 10.2 10.3 9.42 103 69.4 63 4.88 579 74.97 131 12.67 546 65.36 112 11.66 535 66.67 94 8.37 585 69.74 25 2.93 654 75.26 1 Non-Hispanic Black 37 0.89 287 8.06 59 1.49 548 68.97 91 2.5 2.64 66 10.2 235 67.2 32 0.81 310 8.18 26 0.68 314 8.23 52 1.51 1.00 1.23 91 3.91 349 15.35 68 2.56 343 16.62 91 3.83 349 15.54 62 77.74 2.0 0.66 1.15 1.15 0.13 1.16 0.33 2.56 91 3.83 349 15.54 1.0 0.17 4.49 2.66 5.15 0.83 31 1.19 1.0 1.0 0.17 1.0 0.16 1	32 3.37 647 20 0.61 322 9 0.22 151 34 1.35 405 26 1.67 305 33 2.08 660	7 74.76 2 8.41 1 4.66
Non-Hispanic Black Non-Hispanic AsianOther Education (a, %) 37 0.89 287 8.06 59 1.49 548 68.97 91 2.25 2.24 6.08 69 1.92 2.35 6.72 32 0.81 310 8.12 2.033 310 8.18 26 0.68 314 8.28 1.18 3.73 28 1.18 3.73 24 0.75 1.31 4.20 34 1.00 1.27 3.95 50 1.15 4.70 Education (n. %)	20 0.61 322 9 0.22 151 34 1.35 405 26 1.67 305 33 2.08 660	12 8.41 51 4.66
Non-Hispanic Asian Other Education (n, %) 27 0.69 107 3.48 19 0.49 262 7.43 30 0.76 101 3.40 15 0.47 118 3.75 38 1.18 123 3.73 24 0.75 131 4.20 34 100 127 3.90 5 0.18 155 4.70 Completed High School 36 2.37 278 18.69 58 4.37 250 16.57 90 5.03 217 15.59 53 2.59 247 18.13 36 3.90 75 7.75 73 4.17 243 16.69 64 3.47 267 17.44 20 0.96 311 19.98 2.23 100 9.05 51 5.04 97 8.73 562 51.23 62 2.44 631 55.23 2 2.44 655 7.29 131 9.047 33 2.31 20 0.95 31 2.19 2.70	9 0.22 151 34 1.35 405 26 1.67 305 33 2.08 660	4.66
Education (n, %) v	34 1.35 405 26 1.67 305 33 2.08 660	
<12th Grade	26 1.67 305 33 2.08 660	
Completed High School 36 2.37 278 18.69 58 4.37 250 16.57 90 5.03 217 15.59 33 2.59 247 18.13 56 3.39 275 17.59 73 4.17 243 16.69 64 3.44 267 17.44 20 0.96 311 19.98 3 >12 Grade 46 3.28 630 581 50.4 512 54 554 554 554 554 554 553 50 513 50.4 51 50.4 51 50.8 2 2.44 655 51.5 73 2.2 2.1 10 0.69 28 2.39 16 0.93 35 2.23 9 0.47 33 2.31 20 0.95 31 2.19 3 0.17 29 2.43 10 0.69 28 2.39 16 0.93 35 2.23 9 0.47 33 2.31 2.19 3 0.17 48 2.98 2.33 10 0.69 28	26 1.67 305 33 2.08 660	5 18.03
>12 Grade 46 3.28 630 58.12 80 610 594 57.36 62 51.20 62 4.46 631 55.23 2 2.44 665 57.29 2 BMI (kg:m2) (n,%) 6 4.5 15 0.88 27 2.44 10 0.69 28 2.39 16 0.93 35 2.23 9 0.47 33 2.31 20 0.95 31 2.19 3 0.17 48 2.98 16 0.93 35 2.23 9 0.47 33 2.31 20 0.95 31 2.19 3 0.17 48 2.98 16 0.93 35 2.23 9 0.47 33 2.31 20 0.95 35.93 10.24 69 4.03 4.66 30.17 4.8 3.49 3.81	33 2.08 660	
BMI (kg m2) (n, %) v	The second in	
Normal Weight (18,5 to 24.9) 52 2.96 289 20.40 54 3.09 284 20.15 69 3.77 270 19.79 52 1.91 279 21.51 73 4.66 302 19.63 55 3.59 301 20.48 69 4.03 306 20.18 9 0.28 365 23.92 Overweight (25.0 to 29.9) 68 3.10 44 380 32.11 102 4.76 381 33.81 84 3.49 387 84.78 82 5.42 426 32.15 83 33.81 84 3.49 387 84.73 82 5.42 426 32.15 83 5.78 403 32.44 60 2.81 448 34.69 180 93 2.92 70 4.01 464 31.9 90 2.82 365 3.66 401 31.6 80 32.82 301 20.61 11.5 70.6 60.51 146 11.08 729 60.60 105 6.26 80 65.7 50 32.7 874 68	6 0 30 45	
Overweight (25.0 to 29.9) Obese (30.0+) 68 3.10 419 35.19 104 6.11 380 32.31 102 4.76 381 33.81 84 3.49 387 34.73 82 5.42 426 32.15 83 5.78 403 32.44 60 2.81 448 34.63 18 0.98 490 36.49 32.44 403 32.44 60 2.81 448 34.63 18 0.98 490 36.49 32.44 404 32.44 60 2.81 448 34.63 18 0.98 490 36.49 32.44 404 32.44 60 2.81 448 34.63 18 0.98 490 36.49 32.44 444 29.61 91 5.61 415 29.32 70 4.01 464 31.19 40 2.76 492 32.11 31.64 85 3.88 32.12 22.42 83 5.78 403 32.44 60 2.81 448 34.63 18 0.98 490 36.49 32.47 33.83 36		
Obsex (30.0+) 47 2.41 461 32.83 70 4.06 433 31.16 98 5.28 398 29.45 85 3.66 401 31.62 88 5.38 444 29.61 91 5.61 415 29.32 70 4.01 464 31.19 40 2.76 492 32.41 31.60 98 5.28 398 29.45 85 3.66 401 31.62 88 5.38 444 29.61 91 5.61 415 29.32 70 4.01 464 31.19 40 2.76 492 32.41 31.60 663 35 66 65.1 142 5.73 753 67.96 157 11.35 766 60.51 146 110.8 729 60.60 105 6.26 82.00 83.21 22.42 83 83 22.44 73 393 369 24.39 90 4.91 27.70 91 51.8 41.73 106 613 643 66.83 83 22.70 70 50.8 41.73 106 <td></td> <td></td>		
Alcohol Use (n, %a) Yes 93 5.09 816 67.98 143 9.13 764 64.03 148 7.98 756 65.61 142 5.73 753 67.96 157 11.35 766 60.51 146 11.08 729 60.60 105 6.20 820 65.73 753 67.96 157 11.35 766 60.51 146 11.08 729 60.60 105 6.20 820 65.73 733 67.98 143 9.13 764 64.03 148 7.98 756 65.61 142 5.73 753 67.96 157 11.35 766 60.51 146 11.08 729 60.60 105 6.20 82 82.7 83 81.2 22.42 83 4.70 384 23.44 73 3.93 369 24.39 90 4.91 37.7 23.13 16 0.91 449 27.09 38 42.7 3.83 122		
Yes 93 5.09 816 67.98 143 9.13 764 64.03 148 7.98 756 65.61 142 5.73 753 67.96 65.51 146 11.08 729 60.60 105 6.26 820 65.70 50 3.27 874 68.73 3 82 2.06 119 6.16 302 20.25 82 3.88 321 22.42 83 4.70 384 2.34 73 3.69 24.39 90 4.91 377 23.13 16 0.91 449 27.09 2 Ever Smoked (n, %) Yes 88 4.42 618 48.44 112 6.91 590 46.11 140 6.74 558 46.39 129 5.44 549 7.23 146 9.39 601 43.25 122 7.91 588 4.43 106 6.13 643 46.66 38 2.72 710 50.01 23 24	37 2.29 497	1 32.92
No 66 3.45 366 23.47 89 4.78 338 22.06 119 6.16 302 20.25 82 3.88 321 22.42 83 4.70 384 23.44 73 3.93 369 24.39 90 4.91 377 23.13 16 0.91 449 27.09 2 Yes 88 4.42 618 48.44 112 6.91 590 46.11 140 6.74 558 46.39 123 7.00 606 40.36 116 7.53 564 49.81 113 5.68 606 41.53 52 1.48 655 43.02 113 7.00 606 40.36 116 7.53 564 49.81 113 5.68 606 41.53 52 1.48 653 37.2 710 50.10 73 564 39.83 113 5.68 606 41.53 52 1.48 643 37.20 137	58 3.58 866	6 68 17
Ever Smoked (n, %) No S8 4.42 618 48.44 112 6.91 590 46.11 140 6.74 558 46.39 129 5.44 549 47.23 146 9.39 601 43.25 122 7.91 588 44.73 106 6.13 643 46.66 41.53 32 1.46 9.39 601 43.25 122 7.91 588 44.73 106 6.13 643 46.66 41.53 32 1.46 653 664 43.04 113 7.00 606 40.36 116 7.53 564 49.83 113 5.66 643 46.66 41.53 32 1.46 685 45.02 113 7.00 606 40.36 116 7.53 564 49.83 113 5.66 643 46.66 41.53 32 1.46 685 45.02 113 7.00 606 40.36 61 43.33 65 32.9 452		
No 85 4.51 587 42.63 131 7.23 534 39.75 142 7.78 520 39.10 102 4.31 546 43.02 113 7.00 606 40.36 116 7.53 564 39.83 113 5.68 606 41.53 32 1.48 685 45.70 4 Physically Active? (n, %) V	De miler	5 m Tra 200
Physically Active? (n, %) Yes 50 2.63 450 37.21 69 4.51 427 35.39 64 3.10 433 37.05 52 2.18 433 37.82 80 4.88 437 34.06 67 4.49 424 34.33 65 3.29 452 35.53 20 1.35 497 37.51 3 Diabetes (n, %) 123 6.30 755 53.86 174 9.63 697 50.47 218 11.42 645 48.44 179 7.57 662 52.43 179 11.51 70 49.53 171 10.95 728 50.23 154 8.52 797 52.66 50 2.84 898 83.0 65 3.29 452 35.53 20 1.35 497 37.51 70 49.53 171 10.95 728 50.23 154 8.52 797 52.66 50 2.84 898 88.30 65 3.29 <td></td> <td></td>		
Yes 50 2.63 450 37.21 69 4.51 427 35.39 64 3.10 433 37.05 52 2.18 433 37.82 80 4.88 437 34.08 67 4.49 424 34.33 65 3.29 452 35.53 20 1.35 497 37.51 No 123 6.30 755 53.86 174 9.63 697 50.47 218 11.42 645 48.44 179 7.57 662 52.43 179 11.51 770 49.53 171 10.95 728 50.23 154 8.52 797 52.66 50 2.84 898 58.30 (Diabetes (n, %)	42 1.77 676	6 45.42
No 123 6.30 755 53.86 174 9.63 697 50.47 218 11.42 645 48.44 179 7.57 662 52.43 179 11.51 770 49.53 171 10.95 728 50.23 154 8.52 797 52.66 50 2.84 898 58.30 (Diabetes (n, %)	24 1.04 403	
Diabetes (n, %)		
	07 4.05 662	14 J.1.14
Yes 54 2.20 272 16.41 65 3.03 259 15.61 90 4.19 228 14.41 89 3.12 219 15.32 59 3.55 291 15.02 54 2.73 275 15.48 64 3.66 286 14.85 22 1.54 326 16.93	33 1.76 316	6 16.63
	7 0.56 68	8 4.74
Blood Pressure (n, %)	Harrison Contractor	
High 55 3.22 388 23.99 89 4.78 352 22.40 103 5.41 336 22.02 99 4.08 324 22.99 88 4.95 385 22.38 70 3.98 377 23.17 62 3.62 413 23.96 16 0.81 458 26.76 1 Myocardial Infarction (n, %)	37 1.60 437	1 23,93
	13 1.18 108	8 8 34
Stroke (n, %)	The market	
	7 0.99 100	
	86 4.12 127	71 89,41
Coronary Heart Disease (n, %) Yes 27 1.80 93 7.06 42 2.85 78 6.05 31 1.85 89 7.12 25 1.20 89 7.53 42 2.69 88 6.23 25 1.54 97 7.13 24 1.39 106 7.50 4 0.35 126 8.55	10 0.45 120	0 0 44
Head Trauma (n, %)	00 4.01 124	45 00.44
	12 1.21 170	10 15.72
No 147 7.14 1052 75.48 210 11.35 979 71.27 258 12.83 927 69.72 212 8.53 945 74.11 201 11.42 1081 71.59 189 11.85 1035 71.69 173 8.44 1111 74.63 58 2.87 1281 80.18		
Used Birth Control (n, %)		
	36 4.69 358	
No 43 4.63 220 30.63 59 6.67 202 28.57 70 8.57 187 26.90 62 6.28 179 28.09 64 6.87 215 29.48 46 5.39 207 29.83 75 7.49 204 28.86 374 60.46 277 36.26 Used Female Hormones (n, %)	12 1 00 200	0 53.36
	13 1.00 266	
No 46 5.22 330 41.99 68 8.32 307 39.06 10 11.13 267 36.34 70 7.35 281 388 75 8.53 20 39.75 9.98 320 39.75 9.83 289 38.09 78 7.87 317 40.41 259 49.41 368 45.82	In million	2 40 36

Table 1.1a - Descriptive Statistics Surrogate brain health indicators and covariates	12003	ediate l (n=1		Score	Del	ayed F (n=	Recall S 930)	Score	Animal Fluency Score (n=931)				Digit Symbol Substitution Test Score (n=891)				Past 12 months, memory getting worse? (1,025)					st 7 day emberir		Limited due to difficulty remembering or confusion? (n=1,024)			Phantom Odor? (n=1,024)				Sensation in mouth th does not go away? (n=1024)				
for As	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	п %
Total Population		13 10.45		14 89.55		3 14.94		4 85.06	≦ 184			12 85.93		27 9.38		28 90.62		les 16.41		No 83.59		es 15.37		No 84.63		es 12.30		No 87.70		es 4.32		95.68		es 5.23	No 914 94.77
Gender (n, %)			1			1											1		1	1			1	0						1					
Male				42.69		8.71		40.20				42.45				44.49				40.30		6.59		42.66		5.34		43.62		1.77		47.19			475 46.77
Female	50	4.39	397	46.87	70	6.22	372	44.86	95	7.51	345	43.48	66	4.88	358	46.13	86	7.88	390	43.30	86	8.78	357	41.97	89	6.96	387	44.08	31	2.55	444	48.50	36	3.04	439 47.99
Age (years) (n, %)																																			
60-69	49	2.74		49.86				47.81				48.43				50.36				45.98		6.97		45.43		4.91						49.07			475 49.09
70-79	37 39	3.97		29.06		5.11		28.02				27.32				29.75		5.35		27.38		4.98		27.84				29.45				31.81			289 31.28
	39	3.74	101	10.63	21	4.94	8/	9.24	40	4.30	93	10.18	34	3.03	93	10.51	24	4.91	105	10.23	33	3.42	112	11.36	44	4.19	115	10.91	4	0.31	122	14.80	y	0.72	150 14.39
Race/Ethnicity (n, %)	20	1.43	1.15	6.27		2.08	120	6.61	20	1.70	124	6.06	63	3.40	100	4.00	2.0	1.71	163	6.22	24	1.22	124	6.02	20	14	121	6.25	10	0.45	100	144	20	0.84	170 7.17
Hispanic Non-Hispanic White	29 52	1.42		71.77				5.61 68.43			134	70.41				4.80		1.71		6.32 65.34		1.55		6.03		1.66		6.35				7.56			415 74.43
Non-Hispanic Black		0.86		7.98		1.50				2.52						6.96				8.17				7.76											227 8.45
Non-Hispanic Asian Other	20	0.80		3.54		0.58		3.70		0.85						3.86		1.25		3.76		0.74	89	4.28		1.09		3.91				4.78			102 4.72
	20	V.17	11	3.24	12	0.28	. / 4	3.70	-22	0.83	00	3.41	10	V.48	30	3.80	21	1.20	8.2	3.70	10	0.74	07	4.20	24	1.09	00	3.91	-	0.19	105	4.70	<u> </u>	0.23	102 4.72
Education (n, %) <12th Grade	68	4.11	200	14.93	72	4.21	102	14,76	97	5.30	175	13.47	00	4.53	154	13.64	66	4.50	244	16.62	49	2.87	240	17.91	65	4.41	345	16.66	20	1.05	290	19.99	25	1.64	284 19.40
Completed High School		2.73		14.93				15.46				15.17				17.29				16.73		3.52		15.90		3.25		16.53				18.84			193 18.26
>12 Grade		3.60		57.42				54.86				57.33								50.26				50.81											434 57.10
BMI (kg/m2) (n, %)	21	3.00	410	37.942	30	0.30	203	24.00	44	7.67	271	21.22	20	2.40	413	37.71	14	0.17	202	30.20	03	0.77	307	30.01	43	4.02	714	24.24	10	4.74	430	30.05		2.01	434 37.10
Underweight (<18.5)	5	0.63	2.6	2.84	10	0.95	19	2.53	10	0.84	10	2.66	0	0.66	10	2.56	11	0.97	25	2.54	7	0.58	22	2.48	1.4	1.06	22	2.44	3	0.26	22	3.24	5.	0.42	31 3.09
Normal Weight (18.5 to 24.9)		3.63		20.76				20.59				20.53				22.47		5.04		20.17		3.98		20.94		4.33						24.70			243 24.36
Overweight (25.0 to 29.9)	50	3.63		34.80				32.10				34.25				35.05				32.33		5.81		32.47				34.49				36.43			318 35.82
Overweight (25.0 to 25.5) Obese (30.0+)		2.56		31.16				29.84				28.49				30.54				28.55				28.74											322 31.50
Alcohol Use (n, %)		2.30	271	31.10		3.74	210	27.04	04	7.74	4.70	20.47	- 10	2.20	201	39.24		4.12	270	60.00		2.00		20,74		3.99	300	67.75	40	4.77	210	28.28	-	2.30	366 31.30
Yes	68	6.09	532	67.00	00	9.71	400	63.52	99	7.06	108	65.58	02	5.40	502	69 39	107	11.41	506	60.47	00	11.00	491	60.82	73	6.48	541	65.49	37	3.12	576	68.66	30	3.74	574 68.20
No		4.14		22.77				21.72												23.54				24.14											294 26.69
Ever Smoked (n. %)		7.17	230	44.77	02	3.43	444	44.74		2.00	203	20.05		3.70		44.54	14	4.20	4.77	63.74		4.04	247	24.14	01	2.12	272	44.74	12	0.70	477	27.04	-17	1.50	274 20.07
Yes	63	5.26	409	47.88	70	7.82	380	45.50	91	6 70	375	46.62	81	5.12	372	47.86	97	9.10	408	43.95	78	7,48	300	45.48	74	6.29	432	46.88	20	2.63	476	50.55	35	3 30	471 49.80
No		5.19		41.67				39.56								42.76				39.64				39.15		6.01		40.82				45.13			443 44.97
Physically Active? (n, %)																	1000					ani catenda ini									- Children				
Yes	39	3.11	289	37.03	50	5.08	275	35.18	42	3.00	284	37,45	36	2.10	282	38.27	52	4.88	290	34.18	43	4.47	279	34.17	43	3.28	299	35.67	15	1.50	327	37,49	16	1.18	325 37.75
No	86	7.34	495	52.52		9.85														49.41								52.03		2.81		58.20			589 57.01
Diabetes (n. %)			1					-					1		1		1		1	1			1							1					
Yes	37	2.44	179	16.05	42	2.91	173	15.66	60	4.18	152	14.36	58	3.20	146	15.17	40	3.42	194	15.00	37	2.65	181	15.37	46	3.78	188	14.59	19	1.87	214	16,47	22	1.87	211 16.48
No	80	7.46	569	69.16	114	11.06	528	65.48	112			67.56		5.90	544	71.01				64.44			545	64.83	101	8.42	596	68.41	29	1.98	667	74.88	37	2.93	660 73.93
Borderline	8	0.55	36	4.33	11	0.97	32	3.92	12	0.80	31	4.02	5	0.27	36	4,44	10	0.66	37	4.15	7	0.39	39	4.43	3	0.10	44	4.69	5	0.47	42	4.33	4	0.44	43 4.36
Blood Pressure (n, %)			1					1					1				1			1			1												
Normal	83	6.54	537	66.10	105	9.72	508	63.00	112	8.69	498	63.72	53	5.28	517	67.56	113	11.32	550	61.06	110	11.29	518	61.26	102	8.25	561	63.96	39	3.47	623	68.75	38	3.58	625 68:64
High	42	3.91	247	23.44	62	5.22	225	22.06	72	5.38	215	22.20	65	4.09	209	23.07	61	5.08	253	22.53	47	4.08	247	23.37	48	4.05	267	23.74	14	0.85	300	26.93	25	1.65	289 26.12
Myocardial Infarction (n, %)																																			
Yes		2.17		7.96		3.08	55	7.09		2.06		8.13				8.57		2.79		7.19		1.89		6.94		2.44		7.51		1.15		8.82			73 8.81
No	105	8.28	726	\$1.58	145	11.86	678	77.97	164	12.01	657	77.79	131	8.00	671	\$2.06	144	13.62	751	76.40	139	13.48	712	77.69	129	9.86	767	80.19	44	3.17	850	86.86	-54	4.08	841 85.96
Stroke (n, %)			1										1										1							3					
Yes		0.58		4.69		1.68		3.63		1.69		3.57				3.95		1.82		4.31		1.88		3.99		2.02		4.09		1.01		5.08			66 5.23
No	114	9.90	736	\$4.83	150	13.30	691	81.39	161	12.17	679	82.57	132	8.39	691	86.65	154	14.62	750	79.25	143	13.53	713	\$0.60	126	10.27	779	83.61	45	3.32	859	90.59	58	4.36	846 89.53
Coronary Heart Disease (n, %)			10		22			1.2.2	2.5		2.0				10				10	1.11	10		12	2.40		1.00	10			0.55			6	0.55	
Yes		2.19		7.16		3.14		6.27								7.95				6.63		1.74		7.19		1.48		7.83		0.53		8.80		0.58	79 8.74
No	103	8.25	720	82.40	137	11.80	6//	78.78	161	12.14	630	/8.39	131	7.98	665	82.93	144	13.69	739	76.97	137	13.39	698	17.68	129	10.77	/35	79.92	49	3.81	833	\$6.86	ು	4.67	828 86.01
Head Trauma (n, %)	17	2.04	04	11.12	10	2.62	.01	12.04	12	1.50	04	14.04	10	1.01	05	15.23	26	4.47	70	11.63	20	2.20	74	13.00	20	2.32	0.5	13.73		1.05	106	14.00		1.12	106 14 00
Yes		2.04		14.45				13.84								15.32				11.52				12.09				12.72				14.90			106 14.83
Used Birth Control (n. %)	10/	8.39	090	75.13	147	12.28	042	/1.20	170	12.33	019	/1.00	138	8.37	031	75.30	15/	11.91	125	72.10	127	11.99	093	14.34	120	9.04	743	75.01	43	3.20	210	80.78	22	4.11	807 79.94
	13	2.88	242	63.13	37	5.21	220	59.79	45	6.77	300	58.25	22	2.14	220	63.00	25	0.17	226	65.72	16	11.33	202	53.73	21	5.57	320	58.33	16	2.42	245	60.54	35	4.72	235 59.14
Yes No		2.88		62.17		5.31										62.90		7.08		55.73															
Used Female Hormones (n, %)	33	3.80	141	29.15	43	1.33	131	27.55	+5	9.31	1.24	20.0/	42	0.00	115	27.35	43	7.08	143	29.02	54	2.91	130	29.03	32	7.85	130	28.25	13	1.02	1/4	34,41	0	4.01	180 35.11
Used remaie riormones (n, %) Yes	9	2.05	140	51.23	10	3.60	150	10.50	34	4 27	152	10 00	15	3.05	163	52.33	24	5.17	156	47.03	24	6.60	144	46.07	22	3.04	157	49.35	10	3.50	170	40.74	14	2.56	166 49.67
No	36	6.24																		38.54															243 44.56
NO	30	0.24	248	40.39	49	8,10	138	38.11	08	10.05	1/0	30.12	48	1.39	183	38.14	23	9.21	210	38.34	25	9.95	191	31,40	30	5.11	20/	39.04	19	4.27	245	42.18	19	3.21	243 44,36

Associations Between Exposures to Metalloestrogens and Cognitive Test Scores

Exposures to the Cd, Mn, As, and four cognitive scores (immediate and delayed recall, animal fluency, and DSST score) are summarized in tables 1.2 to 1.21. The cognitive test scores have been used as a surrogate indicator of brain health to assess cognitive decline and the possible development of mild cognitive impairment, dementia, and/or AD elderly patients as part of neuropsychological testing.

Immediate Recall Scores and Exposure to Metalloestrogens: Tables 1.2 to 1.5 present the GMs and GSEs of urinary Cd, Mn, and As levels among subjects with immediate recall scores. Table 1.2 presents GMs and GSEs of subjects who have measurable metalloestrogens levels over the LOD by immediate recall score. Cd was significantly higher in subjects with immediate recall scores ≤ 13 compared to subjects who scored \geq 14 (p <0.05). Table 1.3 presents age-specific GMs levels by age groups 60-69, 70-79, and 80+. No significant results were observed. Table 1.4 presents gender-specific GM levels. In females, the As GM levels were significantly higher in the ≤ 13 group compared to the ≥ 14 . Table 1.5 presents race-specific GM levels among Hispanics, Non-Hispanic Whites, Non-Hispanic Blacks, and Asian/Other. Among all racial groups, no significant results were found. Table 1.6 presents estimated ORs and 95% CI for immediate recall scores and metalloestrogens stratified by gender with two groups: < LOD to 50th percentile (reference) and \geq 50th percentile. In the unadjusted model, significant associations between lower immediate recall scores and Cd were observed in both males [OR=2.146, 95% CI: 1.109-4.153] and females [OR=2.142, 95% CI: 1.098-4.180] and between lower immediate recall scores and As in females only [OR=2.507, 95%]

223

CI: 1.170-5.372]. In model adjusted for age, education, and race/ethnicity, significant association between lower immediate recall scores and Cd were observed in females [OR=2.033, 95% CI: 1.002-4.126] and between lower immediate recall scores and As in females [OR=2.569, 95% CI: 1.103-5.987]. No significant associations were observed in our second adjusted model.

Score for Subje	ects >= 60 yea	irs of age, N	HANES 20	011-2014, 0	ver the LOI)					
	Geometric Mean (ug/ml) (GSE, N)										
Metalloestrogen	Immedia	te Recall Sco	Immediate Recall Score ≥ 14								
	GM	GSE	Ν	GM	GSE	N					
Cadmium - Cd	0.3839 *	0.02505	169	0.3298	0.01175	1189					
Manganese - Mn	0.2143	0.02799	82	0.1974	0.0108	524					
Arsenic - As	9,5711	1.5239	124	9,6814	0.7998	778					

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and metalloestrogen levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **p<0.01 ***p<0.001

		Geometric M	fean (ug/n	nl) (GSE, N)	, Age 60-69	
Metalloestrogen	Immedia	ate Recall Sco	ore ≤ 13	Immedia	te Recall Sco	ore≥14
	GM	GSE	N	GM	GSE	Ν
Cadmium - Cd	0.3572	0.04305	68	0.3106	0.01884	653
Manganese - Mn	0.2146	0.08907	29	0.1941	0.01622	278
Arsenic - As	8.5617	1.6511	49	8.759	0.692	429
		Geometric N	ſean (ug∕n	nl) (GSE, N)	, Age 70-79	
Metalloestrogen	Immedia	ate Recall Sco	re≤13	Immedia	te Recall Sco	ore≥14
	GM	GSE	N	GM	GSE	Ν
Cadmium - Cd	0.366	0.04247	50	0.3462	0.02387	378
Manganese - Mn	0.2187	0.04978	22	0.2009	0.02169	172
Arsenic - As	8.0382	1.8811	37	10.7656	1.4646	249
		Geometric 1	Mean (ug/1	ml) (GSE, N), Age 80 +	
Metalloestrogen	Immedia	ate Recall Sco	re≤13	Immedia	te Recall Sco	ore≥14
	GM	GSE	N	GM	GSE	Ν
Cadmium - Cd	0.4259	0.04196	51	0.381	0.03484	158
Manganese - Mn	0.2101	0.01604	31	0.2028	0.02544	74
Arsenic - As	12.5417	2.4947	38	11.5491	1.6923	100
NHANES samp	oling weight	applied before	e calculati	ng the geom	etric mean.	
The EEDs were creatinin	e-adjusted th	ien log transfo	ormed pric	or to analyse	s. Extreme cr	reatinine
values (<30 mg/dL and >3	00 mg/dL) a	ind metalloest	rogen leve	els below the	e LOD were t	aken into

		Geom	etric Mean	(ug/ml) (G	SE, N)			Geome	ric Mean	(ug/ml) (GSI	E, N)		
Metalloestrogen			М	ales			Females						
Metalloestrogen	Immedia					Immediate Recall Score ≥ 14			Immediate Recall Score ≤ 13			ore ≥ 14	
	GM	GSE	Ν	GM	GSE	N	GM	GSE	N	GM	GSE	Ν	
Cadmium - Cd	0.3182	0.03194	105	0.2669	0.0124	584	0.5057	0.05948	64	0.4008	0.01818	605	
Manganese - Mn	0.1727	0.0171	42	0.1409	0.01338	226	0.2651	0.05621	40	0.2547	0.0221	298	
Arsenic - As	6.9297	1.3437	75	9.2689	0.735	382	15.0262 *	2.7989	49	10.0662	1.0643	396	

*p<0.05, **p<0.01 ***p<0.001

Table 1.5 Race-specific Geometric Mean Urinary Metalloestrogen Levels by Immediate Recall Cut-off Score for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

		Geometric	Mean (ng/	ml) (GSE, N	N), Hispanic		Geor	netric Mean (ng/ml) (GS	E, N), Non-	Hispanic Wł	ite
Metalloestrogen	Immedia	ate Recall Sco	ore≤13	Immedi	ate Recall Sc	ore≥14	Immedia	te Recall Scor	re ≤ 13	Immedia	te Recall Sco	ore≥14
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Cadmium - Cd	0.4278	0.04806	37	0.333	0.02753	223	0.3524	0.02767	69	0.3208	0.01402	575
Manganese - Mn	0.1568	0.01751	17	0.1646	0.01525	105	0.2086	0.02603	31	0.2064	0.01373	250
Arsenic - As	9.3056	1.6131	29	9.2517	1.0461	145	8.48	1.8758	52	9.3807	0.9495	363
	Geo	metric Mean	(ng/ml) (O	SE, N), No	n-Hispanic B	lack	(Geometric Me	ean (ng/ml)	(GSE, N), A	Asian/Other	
Metalloestrogen	Immedia	ate Recall Sco	ore≤13	Immedi	ate Recall Sco	ore≥14	Immedia	te Recall Scor	re ≤ 13	Immediate Recall Score ≥ 14		
_	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Cadmium - Cd	0.3789	0.04938	37	0.3359	0.0185	285	0.6829	0.111	26	0.5541	0.05086	105
Manganese - Mn	0.3352	0.2217	18	0.1504	0.008246	117	0.2296	0.03706	16	0.1925	0.02882	52
Arsenic - As	9.2215	1.8467	23	8.0595	0.754	199	33.7027	4.3825	20	29.7997	4.8305	71
		NU	ANES com	nline waich	t applied befo	ro colculat	ing the geomy	atria maan				

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and metalloestrogen levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **p<0.01 ***p<0.001

Table 1.6 - ORs and 95%	CI for Urinary !	Metalloestrogen I	evels by Imme	liate Recall Cut-	off Scores for Su	bjects >= 60 yea	rs of age, NHAN	ES 2011-2014	
Metalloestrogen	≤13 / ≥14	Unadjusted Odds Ratio ¹	95% CI	≤13 / ≥14	Adjusted Odds Ratio #1 ²	95% CI	≤13 / ≥14	Adjusted Odds Ratio #2 3	95% CI
Cd - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	38/312	1.00		38/311	1.00		36/303	1.00	
≥ 50th percentile	70/280	2.146 *	1.109-4.153	68/280	1.524	0.723-3.211	62/279	1.303	0.382-4.444
Cd - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	27/312	1.00		27/312	1.00		25/299	1.00	
≥ 50th percentile	38/301	2.142 *	1.098-4.180	38/300	2.033 *	1.002-4.126	36/289	2.318	0.857-6.271
Mn - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	58/290	1.00		58/289	1.00		52/286	1.00	
≥ 50th percentile	50/302	0.945	0.438-2.041	48/302	0.968	0.408-2.296	46/296	0.961	0.387-2.387
Mn - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	28/310	1.00		28/309	1.00		26/298	1.00	
≥ 50th percentile	37/303	0.825	0.397-1.714	37/303	0.838	0.412-1.704	35/290	0.714	0.318-1.600
As - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	39/192	1.00		38/192	1.00		34/191	1.00	
≥ 50th percentile	36/195	0.628	0.306-1.289	36/194	0.488	0.235-1.014	36/189	0.509	0.248-1.045
As - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	15/208	1.00		15/208	1.00		15/199	1.00	
≥ 50th percentile	35/189	2.507 *	1.170-5.372	35/188	2.569 *	1.103-5.987	33/182	2.499	0.962-6.489

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and metalloestrogen levels were into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

¹Unadjusted model. ²Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

Delaved Recall Scores and Exposure to Metalloestrogens: Tables 1.7 to 1.11 present the GMs and GSEs of urinary metalloestrogen levels among subjects with delayed recall scores. Table 1.7 presents crude GM levels of metalloestrogens for of subjects 60 years of age and older who have delayed recall cognitive test scores and urinary metalloestrogen levels above the LOD. No significant differences were observed. Table 1.8 presents age-specific GMs among the age groups 60-69, 70-79, and 80+. In the 70-79-year age group, the GM level for As was found to be significantly higher in the delayed recall score ≤ 4 compared to the delayed recall ≥ 3 group (p<0.05). Table 1.9 presents gender-specific GMs among males and females. In males, GM levels of Cd were found to be significantly higher in the delayed recall ≥ 4 group (p<0.05).

Table 1.10 presents race-specific GMs. Among Hispanics, GM levels for As were found to be higher in the delayed recall score group ≤ 3 compared to the delayed recall score ≥ 4 group (p<0.05). The GM level for Mn was found to be significantly higher in the delayed recall score ≥ 4 group compared to the delayed recall score group ≤ 3 (p<0.05).

Table 1.11 presents estimated ORs and 95% CI for delayed recall scores and metalloestrogens stratified by gender with two groups: < LOD to 50th percentile (reference) and \geq 50th percentile. In the unadjusted model, among males, a significant association between Cd GM levels and lower delayed recall test scores was found [OR=2.588, 95% CI: 1.343-4.9890].

In the adjusted model #1, among males, a significant association was found between Cd GM levels and lower delayed recall test scores [OR=2.070, 95% CI: 1.055-4060]. No significant associations were found in our final adjusted models.

Table 1.7 Geometric Mean Urinary I 60 years	Metalloestrog of age, NHAI	•	•		core for Su	bjects >=	
		Geome	tric Mean (ug/ml) (GSE,	N)		
Metalloestrogen	Delaye	d Recall Scor	e ≤ 3	Delayed Recall Score ≥ 4			
	GM	GSE	Ν	GM	GSE	Ν	
Cadmium	0.366	0.02894	241	0.3282	0.01265	1106	
Manganese	0.1772	0.01855	117	0.2015	0.01037	483	
Arsenic	9.5258	1.5281	166	9.6271	0.7876	727	
NHANES sampling The EEDs were creatinine-adjusted	l then log tran	sformed prior	to analyse	s. Extreme cre	atinine valu		
mg/dL and >300 mg/dL and phthala		w the LOD we statement in S		to account us	sing the app	ropriate	

able 1.8 Age-Specific Geor Score for Subje						all Cut-o
		Geometric N	∕lean (ug∕ı	nl) (GSE, N),	Age 60-69	
Metalloestrogen	Delay	ed Recall Sco	re≤3	Delay	ed Recall Sco	ore≥4
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3006	0.04553	94	0.3133	0.01918	619
Manganese	0.207	0.03832	49	0.1937	0.01678	255
Arsenic	10.1671	2.7511	65	8.5695	0.6482	407
		Geometric N	√lean (ug/ı	nl) (GSE, N),	Age 70-79	
Metalloestrogen	Delay	ed Recall Sco	re≤3	Delay	ed Recall Sco	ore≥4
	GM	GSE	N	GM	GSE	Ν
Cadmium	0.3588	0.0309	73	0.3459	0.02489	354
Manganese	0.1585	0.03226	30	0.2083	0.02398	163
Arsenic	6.352	1.386	51	11.37 *	1.684	234
		Geometric	Mean (ug/	ml) (GSE, N)	, Age 80 +	
Metalloestrogen	Delay	ed Recall Sco	re≤3	Delay	ed Recall Sco	ore≥4
	GM	GSE	N	GM	GSE	Ν
Cadmium	0.4586	0.06833	74	0.3567	0.03288	133
Manganese	0.1711	0.02048	38	0.2206	0.02557	65
Arsenic	13.627	2.5889	50	10.5588	1.4187	86

~ T 11-1 9 A J.D. ~

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **p<0.01 ***p<0.001

		Geome	tric Mean	(ug/ml) (GSI	E N)			
			Ma					
Metalloestrogen	Delaye	d Recall Score	$e \leq 3$	Delayed Recall Score ≥ 4				
	GM	GSE	Ν	GM	GSE	Ν		
Cadmium	0.3131 *	0.02213	142	0.2638	0.01183	543		
Manganese	0.1415	0.01572	67	0.1446	0.01439	198		
Arsenic	7.3954	1.3287	97	9.2942	0.7997	356		
		Geome	tric Mean	(ug/ml) (GSI	E, N)			
Martalla antique a su		Females						
Metalloestrogen	Delaye	d Recall Score	$e \leq 3$	Delay	ed Recall Sco	$re \ge 4$		
	GM	GSE	Ν	GM	GSE	Ν		
Cadmium	0.4519	0.07882	99	0.4007	0.01993	563		
Manganese	0.2372	0.03562	50	0.2551	0.02281	285		
Arsenic	13.6099	2.7464	69	9.9297	1.0512	371		

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **p<0.01 ***<u>p</u><0.001

Table 1.10 Race-spec	ific Geometric	Mean Urina	ry Metallo	estrogen Lo	evels by Delay over the 1		Cut-off Scor	e for Subjec	ts >= 60 ye	ears of age, l	NHANES 20	11-2014,
		Geometric N	/lean (ng/r	nl) (GSE, N),	Hispanic		Geo	metric Mean	(ng/ml) (G	SE, N), Non-	Hispanic W	hite
Metalloestrogens	Delaye	d Recall Score	e≤3	Delayed Recall Score ≥ 4			Delayed Recall Score ≤ 3			Delayed Recall Score≥4		
	GM	GSE	N	GM	GSE	Ν	GM	GSE	N	GM	GSE	N
Cadmium	0.3603	0.04223	63	0.3403	0.02554	196	0.3658	0.04311	101	0.3161	0.01417	538
Manganese	0.1297	0.01224	36	0.1807 *	0.01909	85	0.1725	0.02077	46	0.2103	0.01312	232
Arsenic	10.8211 *	1.6028	44	8.7522	0.9843	129	9.2727	2.0764	68	9.2182	0.9256	343
	Geo	metric Mean	(ng/ml) (G	SE, N), Non-	Hispanic Blac	k	Geometric Mean (ng/ml) (GSE, N), Asian/Other					
Metalloestrogens	Delaye	d Recall Score	e≤3	Delay	ed Recall Sco	$re \ge 4$	Delay	ed Recall Sco	Delaye	Delayed Recall Score ≥ 4		
	GM	GSE	N	GM	GSE	Ν	GM	GSE	N	GM	GSE	N
Cadmium	0.3223	0.03307	59	0.3439	0.01894	261	0.5919	0.1442	18	0.5685	0.05876	111
Manganese	0.3631	0.2185	22	0.144	0.009342	112	0.2046	0.03657	13	0.2	0.02938	54
Arsenic	6.5296	0.8656	39	8.5349	0.8946	181	25.5786	4.3194	15	31.1416	4.9994	74

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **p<0.01 ***p<0.001

Metalloestrogens	≤3/≥4	Unadjusted Odds Ratio ¹	95% CI	$\leq 3/\geq 4$	Adjusted Odds Ratio #1 ²	95% CI	≤3/≥4	Adjusted Odds Ratio #2 ³	95% CI
Cd - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	63/284	1.00		63/284	1.00		61/276	1.00	
\geq 50th percentile	80/269	2.588 **	1.343-4.989	78/268	2.070 *	1.055-4.060	71/268	2.025	0.852-4.816
Cd - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	50/285	1.00		50/285	1.00		50/272	1.00	
\geq 50th percentile	50/286	1.336	0.505-3.533	50/285	1.294	0.473-3.544	50/274	1.404	0.469-4.205
Mn - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	72/276	1.00		72/275	1.00		65/273	1.00	
\geq 50th percentile	71/277	1.151	0.500-2.649	69/277	1.253	0.584-2.689	67/271	1.227	0.546-2.754
Mn - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	43/292	1.00		43/292	1.00		43/279	1.00	
\geq 50th percentile	57/279	1.109	0.599-2.053	57/278	1.245	0.602-2.572	57/267	1.085	0.539-2.182
As - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	56/173	1.00		55/173	1.00		50/173	1.00	
\geq 50th percentile	44/188	0.575	0.259-1.279	41/187	0.502	0.193-1.301	41/182	0.597	0.227-1.570
As - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	29/192	1.00		29/191	1.00		29/184	1.00	
\geq 50th percentile	41/180	1.474	0.696-3.126	41/180	1.504	0.638-3.545	41/172	1.334	0.478-3.720
	NHA	ANES sampling w	eight applied bef	ore calcula	ting the geometric	mean.			
The EEDs were creatinine-adjusted then log tra					30 mg/dL and >30 05, **p<0.01 ***p		alloestrog	en levels were inte	o account usi

Animal Fluency Scores and Exposure to Metalloestrogens: Tables 1.12 to 1.16

present the GMs and GSEs of urinary metalloestrogen levels among subjects with animal fluency scores. Table 1.12 presents crude GM levels of metalloestrogens for of subjects 60 years of age and older who have animal fluency cognitive test scores and urinary metalloestrogen levels above the LOD. No significant differences were observed. Table 1.13 presents age-specific GMs for the ag groups 60-69, 70-79, and 80+. No significant results were observed. Table 1.14 presents gender-specific GMs. No significant results were observed. Table 1.15 presents race-specific GMs across the following groups: Hispanic, Non-Hispanic White, Non-Hispanic Black, and Asian/Other. For all racial groups, no significant results were observed.

Table 1.16 presents estimated ORs and 95% CI for animal fluency scores and metalloestrogens stratified by gender with two groups: < LOD to 50th percentile (reference) and \geq 50th percentile. In the unadjusted model, among males, a significant association between Cd GM levels and lower delayed recall test scores was found [OR=1.971, 95% CI: 1.063-3.654].

Table 1.12 Geometric Mea Subjects >	e	etalloestrogen f age, NHANE	e		v	Score for					
		Geome	ric Mean ((ug/ml) (GSI	E, N)						
Metalloestrogen	Animal	Fluency Score	≤11	Anima	l Fluency Sco	ore ≥ 12					
	GM GSE N GM GSE N										
Cadmium	0.3741	0.02301	280	0.3289	0.01218	1060					
Manganese	0.2207	0.02332	119	0.1954	0.01067	479					
Arsenic	9.1819	1.0455	183	9.8017	0.8204	707					
NHANES sam	pling weight a	applied before	calculating	g the geome	etric mean.						
NHANES sampling weight applied before calculating the geometric mean. The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.											
	*p<0.05, **p<0.01 ***p<0.001										

		Geometric M	ean (ug/n	l) (GSE, N), 1	Age 60-69						
Metalloestrogen	Animal	Fluency Score	≤11	Anima	l Fluency Sco	$re \ge 12$					
	GM	GSE	Ν	GM	GSE	Ν					
Cadmium	0.3293	0.0604	109	0.3126	0.0188	602					
Manganese	0.2165	0.0593	42	0.1932	0.01682	260					
Arsenic	6.8857	1.5352	73	8.9844	0.6944	399					
		Geometric Mean (ug/ml) (GSE, N), Age 70-79									
Metalloestrogen	Animal	Fluency Score	≤11	Anima	l Fluency Sco	$re \ge 12$					
	GM	GSE	Ν	GM	GSE	Ν					
Cadmium	0.3786	0.03529	99	0.3426	0.02621	322					
Manganese	0.2147	0.02339	45	0.1991	0.02333	147					
Arsenic	10.2052	1.4183	64	10.4908	1.5071	217					
		Geometric M	ean (ug/r	nl) (GSE, N),	Age 80 +						
Metalloestrogen	Animal	Fluency Score	≤11	Anima	l Fluency Sco	$re \ge 12$					
	GM	GSE	Ν	GM	GSE	Ν					
Cadmium	0.4181	0.0498	72	0.3774	0.03672	136					
Manganese	0.2318	0.04016	32	0.1949	0.01966	72					
Arsenic	10.4656	1.6548	46	12.3576	2.2087	91					

Table 1.13 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Animal Fluency Cut-

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

		Geome	tric Mean	(ug/ml) (GSI	E, N)		Geometric Mean (ug/ml) (GSE, N)						
M / 11 /			Ma	les			Females						
Metalloestrogen	Animal	Fluency Score	e≤11	Anima	Animal Fluency Score ≥ 12			Animal Fluency Score ≤ 11			Animal Fluency Score ≥ 12		
	GM	GSE	Ν	GM	GSE	N	GM	GSE	N	GM	GSE	N	
Cadmium	0.3009	0.034	138	0.2675	0.01187	545	0.4573	0.04291	142	0.4029	0.02067	515	
Manganese	0.1647	0.01375	50	0.1426	0.01338	216	0.2661	0.04246	69	0.2528	0.02208	263	
Arsenic	7.6807	1.2851	88	9.1355	0.7256	364	10.7057	1.204	95	10.4888	1.1573	343	
		NHAN	JES sampli	ng weight a	pplied before	calculating	the geomet	ric mean.					

					the LOD							
		Geometric M	lean (ng/n	nl) (GSE, N),	Hispanic		Geometric Mean (ng/ml) (GSE, N), Non-Hispanic White					
Metalloestrogen	Animal	Fluency Score	≤11	Anima	Animal Fluency Score ≥ 12			Fluency Sco	re ≤ 11	Animal	Fluency Sco	$re \ge 12$
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N
Cadmium	0.4236	0.05284	58	0.328	0.02682	200	0.3546	0.02884	102	0.32	0.01472	53
Manganese	0.1734	0.02582	29	0.1602	0.01311	93	0.2278	0.02688	35	0.2028	0.01359	24
Arsenic	8.8717	1.6535	39	9.3797	1.0026	134	8.4117	1.5886	62	9.4515	0.958	35
	Geo	metric Mean (ng/ml) (GS	SE, N), Non-	Hispanic Bla	k		Geometric M	ean (ng/m	l) (GSE, N), A	Asian/Other	
Metalloestrogen	Animal	Fluency Score	≤11	Animal Fluency Score ≥ 12		Animal Fluency Score ≤ 11		re ≤ 11	Animal Fluency Scor		$re \ge 1$	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3712	0.04361	91	0.3315	0.02451	223	0.5692	0.07856	29	0.5697	0.04965	9
Manganese	0.246	0.08075	37	0.1515	0.0135	97	0.2212	0.0408	18	0.1941	0.02797	4
Arsenic	8.5702	1.2119	60	8.1649	0.825	157	30.0025	3.6506	22	30.7608	5.4181	6

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **p<0.01 ***p<0.001

Metalloestrogen	≤11/≥12	Unadjusted Odds Ratio ¹	95% CI	$\leq 11 / \geq 12$	Adjusted Odds Ratio #1 ²	95% CI	≤11/≥12	Adjusted Odds Ratio #2 3	95% CI
Cd - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	50/297	1.00		50/295	1.00		46/291	1.00	
\geq 50th percentile	89/258	1.971 *	1.063-3.654	86/260	1.354	0.713-2.570	81/256	1.505	0.653-3.467
Cd - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	56/277	1.00		56/277	1.00		56/264	1.00	
\geq 50th percentile	87/246	1.416	0.745-2.692	87/245	1.353	0.640-2.860	80/239	1.552	0.801-3.007
Mn - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	68/276	1.00		67/276	1.00		62/272	1.00	
\geq 50th percentile	71/279	1.144	0.635-2.061	69/279	1.305	0.676-2.519	65/275	1.155	0.473-2.822
Mn - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	65/267	1.00		65/266	1.00		65/255	1.00	
\geq 50th percentile	78/256	1.046	0.599-1.826	78/256	1.382	0.797-2.395	71/248	1.173	0.600-2.291
As - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	49/179	1.00		48/179	1.00		44/178	1.00	
\geq 50th percentile	40/189	0.622	0.357-1.084	39/189	0.483	0.255-0.915	38/185	0.473	0.222-1.009
As - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	42/178	1.00		42/177	1.00		40/171	1.00	
\geq 50th percentile	53/167	1.142	0.673-1.938	53/167	1.149	0.659-2.002	51/161	1.064	0.559-2.026
he EEDs were creatinine-adjusted then log trans		nalyses. Extreme c	0 11	<30 mg/dL and >			els were into acco	ount using the app	ropriate dom

Digit Symbol Substitution Test (DSST) Scores and Exposure to Metalloestrogens:

Tables 1.17 to 1.21 present the GMs and GSEs of urinary metalloestrogen levels among subjects with DSST scores. Table 1.17 presents crude GMs levels of metalloestrogens for subjects 60 years of age and older who have digit symbol substitution scores and urinary metalloestrogen levels above the LOD. The crude GM mean levels for Cd was found to be higher in those with a DSST score ≤ 27 compared to those with a DSST score ≥ 28 (p<0.05). Table 1.18 presents age-specific GMs by the age groups 60-69, 70-79, and 80+. For Mn in the 80+ year age group, the GM was significantly higher in those with a DSST score ≥ 28 compared to those with a DSST score ≤ 27 (p<0.05). Table 1.19 presents gender-specific GMs by male and female. No significant results were found. Table 1.20 presents race-specific GMs. No results among race-specific GMs were found to be significant.

Table 1.21 presents estimated ORs and 95% CI for DSST scores and metalloestrogens stratified by gender with two groups: < LOD to 50th percentile (reference) and \geq 50th percentile. In the unadjusted model, among males, a significant association between Cd GM levels and lower DSST test scores was found [OR=2.409, 95% CI: 1.389-4.180].

		Geometric Mean (ug/ml) (GSE, N)										
Metalloestrogen	DS	ST Score ≤ 2	27	D	SST Score ≥ 2	28						
	GM	GSE	Ν	GM	GSE	Ν						
Cadmium	0.3999 *	0.03538	228	0.3266	0.01216	1078						
Manganese	0.2586	0.09081	96	0.1905	0.009645	487						
Arsenic	9.2296	1.0124	146	9.7471	0.8301	721						
NHANES sam	NHANES sampling weight applied before calculating the geometric mean.											

ubstitution (DSST) (Cut-off Score	es for Subjec over the	-	years of age,	NHANES 20)11-201				
		Geometric N	lean (ug/	ml) (GSE, N)	, Age 60-69					
Metalloestrogen	DS	ST Score ≤ 2	27	DS	SST Score ≥ 2	28				
	GM	GSE	Ν	GM	GSE	Ν				
Cadmium	0.2948	0.05346	97	0.3141	0.01876	610				
Manganese	0.3322	0.1704	36	0.1848	0.01342	264				
Arsenic	7.8106	0.9468	62	8.7712	0.6832	407				
	Geometric Mean (ug/ml) (GSE, N), Age 70-79									
Metalloestrogen	DS	ST Score ≤ 2	27	DS	SST Score ≥ 2	28				
	GM	GSE	Ν	GM	GSE	Ν				
Cadmium	0.4675	0.07755	80	0.3323	0.02279	327				
Manganese	0.3648	0.2775	33	0.1853	0.01651	153				
Arsenic	7.4643	1.1419	51	10.8336	1.4845	222				
		Geometric I	Mean (ug	/ml) (GSE, N), Age 80 +					
Metalloestrogen	DS	ST Score ≤ 2	27	DS	SST Score ≥ 2	28				
-	GM	GSE	Ν	GM	GSE	Ν				
Cadmium	0.4676	0.05307	51	0.3759	0.03593	141				
Manganese	0.1376	0.02027	27	0.2341 *	0.02303	70				
Arsenic	13.8106	3.2215	33	11.9443	1.7993	92				

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05,	,**p<0.01	l ***p<0.00
----------	-----------	-------------

Table 1.19 Gender-S	Table 1.19 Gender-Specific Geometric Mean Urinary Metalloestrogen Levels by Digit Symbol Substitution (DSST) Cut-off Scores for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD												
		Geom	etric Mean	n (ug/ml) (G	SE, N)		Geometric Mean (ug/ml) (GSE, N)						
Matallasatusaan		Males					Females						
Metalloestrogen	DS	DSST Score ≤ 27			DSST Score≥28			DSST Score ≤ 27			T Score ≥ 2	8	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N	GM	GSE	N	
Cadmium	0.3335	0.0406	128	0.2646	0.01071	542	0.479	0.06297	100	0.4003	0.02061	536	
Manganese	0.1985	0.09845	50	0.1389	0.009681	214	0.3234	0.1597	46	0.2434	0.01664	273	
Arsenic	7.3128	0.6141	81	9.1743	0.8028	364	11.4456	2.2146	65	10.3237	1.1136	357	

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

able 1.20 Race-specifi	ic Geometri	ic Mean Urin	-	-	Levels by Dig NES 2011-20			n (DSST) C	ut-off S	cores for Su	ıbjects >= 6	0 years
		Geometric 1	Mean (ng	/ml) (GSE, N), Hispanic		Geomet	ric Mean (ng	g/ml) (G	SE, N), Non-	-Hispanic W	hite
Metalloestrogen	DS	DSST Score ≤ 27			DSST Score ≥ 28			T Score≤2	7	DSS	T Score ≥ 2	.8
	GM	GSE	N	GM	GSE	N	GM	GSE	Ν	GM	GSE	N
Cadmium	0.3817	0.05502	82	0.3345	0.02398	160	0.4167	0.07094	63	0.3166	0.01412	568
Manganese	0.1468	0.02376	35	0.1653	0.0167	76	0.4278	0.2363	26	0.1954	0.01166	251
Arsenic	9.5891	1.479	52	8.9243	1.1056	109	9.0462	1.8241	39	9.3658	0.9609	367
	Geo	metric Mean	(ng/ml) (O	SE, N), Non-Hispanic Black			Geo	ometric Mea	n (ng/m	nl) (GSE, N), Asian/Other		
Metalloestrogen	DS	ST Score≤2	27	DSST Score≥28			DSST Score≤27			DSST Score≥28		
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Cadmium	0.3551	0.03703	69	0.3328	0.01853	234	0.5458	0.1045	14	0.5651	0.04797	116
Manganese	0.1323	0.01385	30	0.1517	0.0102	99	0.1467	0.02046	5	0.199	0.02579	61
Arsenic	6.9908	1.0097	45	8.4954	0.8396	165	26.4609	6.4777	10	29.7625	4.3838	80

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **	p<0.01 ***	p<0.001
-------------	------------	---------

Metalloestrogen	≤27/≥28	Unadjusted Odds Ratio ¹	95% CI	≤27/≥28	Adjusted Odds Ratio #1 ²	95% CI	≤27/≥28	Adjusted Odds Ratio #2 ³	95% CI
Cd - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	48/292	1.00		48/292	1.00		48/284	1.00	
\geq 50th percentile	83/258	2.409 **	1.389-4.180	82/258	1.676	0.874-3.217	78/254	1.243	0.397-3.890
Cd - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	52/270	1.00		52/270	1.00		48/263	1.00	
\geq 50th percentile	48/275	1.569	0.655-3.757	48/274	1.674	0.690-4.066	48/267	1.390	0.373-5.18
Mn - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	77/264	1.00		76/264	1.00		70/261	1.00	
\geq 50th percentile	54/286	0.630	0.285-1.392	54/286	0.729	0.366-1.454	56/277	0.721	0.256-2.02
Mn - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>52/270</td><td>1.00</td><td></td><td>52/269</td><td>1.00</td><td></td><td>51/260</td><td>1.00</td><td></td></lod>	52/270	1.00		52/269	1.00		51/260	1.00	
\geq 50th percentile	48/275	0.838	0.412-1.704	48/275	1.022	0.512-2.042	43/270	0.824	0.367-1.851
As - Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>45/180</td><td>1.00</td><td></td><td>45/179</td><td>1.00</td><td></td><td>43/176</td><td>1.00</td><td></td></lod>	45/180	1.00		45/179	1.00		43/176	1.00	
\geq 50th percentile	37/188	0.731	0.372-1.436	36/189	0.456	0.245-0.846	36/184	0.416	0.213-0.810
As - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	32/180	1.00		32/179	1.00		30/175	1.00	
\geq 50th percentile	34/178	1.186	0.559-2.516	34/178	1.237	0.549-2.785	32/173	1.497	0.745-3.011
					the geometric mea			-	
The EEDs were creatinine-adjusted then log trans		inalyses. Extreme c		<30 mg/dL and >	300 mg/dL and met		els were into acc	ount using the app	ropriate

attack status, stroke status, physical activity status, smoking status, head trauma status.

Associations Between Exposures to Metalloestrogens and Memory Function

Exposures to the metalloestrogens Cd, Mn, and As and three memory function indicators: 1) During the past 12 months, have you experienced confusion or memory loss that is happening more often or getting worse? 2) During the past 7 days, how often have you had trouble remembering where you put things? 3) Are you limited in any way because of difficulty remembering or because you experience periods of confusion?) are summarized in tables 1.22 to 1.36. Memory function have been included as a surrogate indicator of brain health as declining memory function can indicate the development of mild cognitive impairment, dementia, AD, or other memory-related neurodegenerative disease.

Worsening memory past 12 months and Exposure to Metalloestrogens: Table

1.22 presents the crude GMs for subjects over the age of 60 years of age who responded Y/N to the question "During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?" and have urinary metalloestrogen levels above the LOD. No significant results were found. Table 1.23 presents age-specific GM levels for the age groups 60-69, 70-79, and 80+. In the 60-69-year age group, Cd GM levels were higher in those who answered "yes" versus those who answered "no". Among the 70 to 79-year age group, As GM mean levels were found to be significantly different in those that answered "no" compared to those that answered "yes" (p<0.05). Table 1.24 shows gender-specific GM among males and females. For males, As GM levels are significantly higher among those who answered "no" versus those who answered "no" (p<0.05). Table 1.25 shows. race-specific GM among Hispanics, Non-Hispanic White, Non-Hispanic Black, and Asian/Other. No significant findings were observed.

Table 1.26 presents estimated ORs and 95% CI for Yes/No responses to the question "During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?" and metalloestrogens stratified by gender with two groups: < LOD to 50th percentile (reference) and \geq 50th percentile. Significant associations were found for Cd among women in the \geq 50th percentile versus < LOD to 50th percentile (reference), where those who had experience confusion or memory loss over the past 12 months was associated with Cadmium levels in the unadjusted model [OR=2.463, 95% CI: 1.572-3.8610, model adjusted for age, education, and race/ethnicity [OR=2.517, 95% CI: 1.483-4.272] and the model adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status [OR=2.175, 95% CI: 1.207-3.921].

months, you experienced co worse?'' for Subje		•		. 0		0 0				
	Geometric Mean (ug/ml) (GSE, N)									
Metalloestrogen		Yes		No						
	GM	GSE	Ν	GM	GSE	Ν				
Cadmium	0.3916	0.0325	257	0.3307	0.01173	1187				
Manganese	0.1758	0.01473	124	0.2037	0.01154	530				
Arsenic	8.2517	1.0081	171	9.9903	0.7947	799				

Table 1.22 Geometric Mean Urinary Metalloestrogen Levels by Y/N "During the past 12

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **p<0.01 ***p<0.001

Table 1.23 Age-Specific Gpast 12 months, you expendentgetting worse?" for S	rienced confu	sion or mem	ory loss t	hat is happen	ning more of	ften or is
		Geometric N	/lean (ug/	ml) (GSE, N),	Age 60-69	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.4161	0.05847	111	0.3083	0.01982	650
Manganese	0.1851	0.03617	55	0.1958	0.01916	270
Arsenic	7.2239	1.0657	72	9.0248	0.6698	437
		Geometric N	/lean (ug/	ml) (GSE, N),	Age 70-79	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3417	0.03614	69	0.3546	0.02321	382
Manganese	0.1516	0.0245	29	0.212	0.02643	176
Arsenic	6.5234	0.871	46	11.3961 *	1.573	258
		Geometric I	Mean (ug	/ml) (GSE, N)	, Age 80 +	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.4168	0.04176	77	0.3767	0.02928	155
Manganese	0.1897	0.03105	40	0.2147	0.02026	84
Arsenic	12.5252	2.5776	53	11.0389	1.4565	104

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

		Geom	etric Mea	n (ug/ml) (GS	SE, N)			Geometr	ic Mean	(ug/ml) (GS	E, N)	
Mada11a and managem			N	lales					Fem	ales		
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Cadmium	0.3121	0.02582	133	0.2711	0.0132	605	0.5151	0.07551	124	0.3965	0.01356	58
Manganese	0.1257	0.01279	57	0.149	0.0137	232	0.236	0.02956	67	0.2562	0.02386	29
Arsenic	7.0807	0.9018	86	9.4469 *	0.781	410	9.702	1.5331	85	10.5178	1.058	3

Table 1.24 Gender-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N " During the past 12 months, you experienced confusion or memory loss that is hannening more often or is getting worse?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

sampling weight applied ting the ge

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

		Geometric I	Mean (ng	/ml) (GSE, N	l), Hispanic		Geome	ric Mean (n	g/ml) (G	SE, N), Non-	Hispanic W	hite
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Cadmium	0.4229	0.05634	58	0.3366	0.02325	223	0.3767	0.03927	131	0.3179	0.01366	535
Manganese	0.1367	0.01069	30	0.1642	0.01565	104	0.1835	0.01888	60	0.2126	0.01551	233
Arsenic	8.7211	1.2465	38	9.4049	1.0928	152	7.3995	1.0411	84	9.6281	0.9728	348
	Geo	metric Mean	(ng/ml) (GSE, N), Noi	n-Hispanic Bl	ack	Ge	ometric Mea	n (ng/m	l) (GSE, N), A	Asian/Other	
Metalloestrogen		Yes No					Yes			No		
	GM	GSE	Ν	GM	GSE	N	GM	GSE	N	GM	GSE	N
Cadmium	0.373	0.07252	32	0.3377	0.01727	309	0.557	0.08301	36	0.6049	0.04703	120
Manganese	0.1387	0.02782	13	0.17	0.01892	131	0.1882	0.02433	21	0.2025	0.02621	62
Arsenic	8.2309	1.6858	22	8.1028	0.7087	216	22.4454	5.2137	27	32.8095	4.8363	83
		NHANES	sampling	g weight app	lied before ca	alculating	the geometri	c mean.		-		
e EEDs were creatinine-	adjusted ther	n log transfor	med prior	to analyses	Extreme crea	atinine valı	- 1es (<30 mg/	dL and >300) mø/dL	and phthala	te levels bel	ow th
		-	-		ing the appro		-			I		

Metalloestrogen	Yes / No	Unadjusted Odds Ratio ¹	95% CI	Yes / No	Adjusted Odds Ratio #1 ²	95% CI	Yes / No	Adjusted Odds Ratio #2 ³	95% CI
Cd - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	58/317	1.00		56/317	1.00		51/302	1.00	
\geq 50th percentile	77/299	1.741	0.883-3.433	77/298	1.901	0.969-3.731	71/282	1.515	0.690-3.3
Cd - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	48/309	1.00		48/309	1.00		45/291	1.00	
\geq 50th percentile	76/282	2.463 ***	1.572-3.861	76/281	2.517 **	1.483-4.272	71/265	2.175 *	1.207-3.9
Mn - Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>57/317</td><td>1.00</td><td></td><td>57/316</td><td>1.00</td><td></td><td>52/302</td><td>1.00</td><td></td></lod>	57/317	1.00		57/316	1.00		52/302	1.00	
\geq 50th percentile	78/299	1.866	0.728-4.784	76/299	1.912	0.817-4.474	70/282	1.973	0.886-4.3
Mn - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	57/300	1.00		57/299	1.00		52/284	1.00	
\geq 50th percentile	67/291	1.374	0.703-2.685	67/291	1.175	0.588-2.348	64/272	1.523	0.713-3.2
As - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	50/200	1.00		49/200	1.00		44/191	1.00	
\geq 50th percentile	38/213	0.539	0.263-1.105	38/212	0.483	0.222-1.050	36/199	0.579	0.278-1.2
As - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	43/195	1.00		43/194	1.00		40/183	1.00	
\geq 50th percentile	43/195	0.793	0.445-1.414	43/195	0.622	0.340-1.140	40/184	0.544	0.232-1.2
The TEDs years amonining adjusted they be taxable		1 0	0 11	Ũ	the geometric mean			unt using the surge	
'he EEDs were creatinine-adjusted then log trans	iormed prior to an		eatimine values (< nt in SAS. *p<0.			lloestrogen level	s were into accou	int using the appro	priate dom

Trouble remembering past 7 days and Exposure to Metalloestrogens: Table 1.27

presents crude GM levels of metalloestrogens for subjects 60 years of age and older who have responded to the yes/no question, "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" and have urinary metalloestrogen levels above the LOD. No significant findings were observed. Table 1.28 presents age-specific GMs by the age groups 60-69, 70-79, and 80+ years of age. No significant findings were observed. Table 1.29 presents genderspecific GM levels. In males and females, no significant findings were observed. Table 1.30 presents race-specific geometric means. Cd GM levels were higher in those that answered "yes" versus "no" among Hispanics, Non-Hispanic Whites, and Asian/Other. Cd and Mn GM levels were significantly higher in those that answered "no" among Non-Hispanic Blacks (p<0.05). Table 1.31 presents ORs and 95% CI for those with Yes/No responses to the question "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" and metalloestrogens stratified by gender with two groups: < LOD to 50th percentile (reference) and \geq 50th percentile. No significant associations were found with our analysis of ORs.

Table 1.27 Geometric Mean Urinary Metalloestrogen Levels Y/N "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

		Geom	etric Mean	u (ug/ml) (Ga	SE, N)	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	N
Cadmium	0.3568	0.03751	236	0.3387	0.01003	1132
Manganese	0.2371	0.04713	112	0.1958	0.01149	496
Arsenic	8.8395	1.0114	156	9.6986	0.7345	759

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

		Geometric N	lean (ug/	ml) (GSE, N)	, Age 60-69	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3905	0.07554	113	0.3112	0.01672	608
Manganese	0.2008	0.04588	50	0.1974	0.01972	250
Arsenic	7.5115	1.1202	75	8.9598	0.6502	407
		Geometric N	lean (ug/	ml) (GSE, N)	, Age 70-79	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3115	0.03834	73	0.3617	0.02363	359
Manganese	0.3175	0.1534	38	0.1854	0.01467	159
Arsenic	8.2705	0.9664	48	10.7178	1.4782	242
		Geometric I	Mean (ug	/ml) (GSE, N), Age 80 +	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3582	0.03303	50	0.4065	0.02983	165
Manganese	0.196	0.01915	24	0.2159	0.0213	87
Arsenic	13.5074	3.164	33	10.401	1.4049	110

Table 1.28 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **p<0.01 ***p<0.001

Table 1.29 Gender-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

		Geom	etric Mear	an (ug/ml) (CSE, N)				Geometr	ic Mean	(ug/ml) (GS	E, N)	
Motallo astro ann			М	ales					Fen	nales		
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Cadmium	0.2872	0.03351	109	0.278	0.01237	599	0.4249	0.05984	127	0.4134	0.01703	533
Manganese	0.1393	0.0193	47	0.1482	0.01391	224	0.3334	0.09685	65	0.2434	0.01785	272
Arsenic	7.6583	1.2608	70	9.0999	0.701	404	9.8272	1.3695	86	10.3382	1.0499	355

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

e 1.30 Race-specific Ge you pu		•		0	s by Y/N ''Du Subjects >= 60	· ·	• ·		•		emembering	g whe
		Geometric 1	Mean (ng	/ml) (GSE, N), Hispanic		Geomet	ric Mean (n	g/ml) (G	SE, N), Non-	Hispanic W	hite
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	N	GM	GSE	N	GM	GSE	Ν	GM	GSE	N
Cadmium	0.4055	0.03021	48	0.3357	0.02963	204	0.3443	0.04775	112	0.3266	0.01149	524
Manganese	0.1395	0.02234	26	0.1647	0.01718	93	0.2728	0.0661	53	0.2006	0.01459	220
Arsenic	10.184	2.3493	34	8.9909	0.933	136	8.1171	1.1886	71	9.2188	0.8607	33
	Geo	metric Mean	(ng/ml) (GSE, N), Non	-Hispanic Bla	ıck	Geo	ometric Mea	n (ng/m	l) (GSE, N), A	Asian/Other	
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Cadmium	0.2827	0.02211	52	0.3517 *	0.0197	278	0.7948	0.1396	24	0.5701	0.05043	12
Manganese	0.1073	0.02575	16	0.1822 *	0.0211	122	0.2053	0.02623	17	0.1981	0.02566	61
Arsenic	7.3151	1.4456	35	8.2592	0.7266	196	35.9647	7.3555	16	31.3738	4.2059	89

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

Metalloestrogen	Yes / No	Unadjusted Odds Ratio ¹	95% CI	Yes / No	Adjusted Odds Ratio #1 ²	95% CI	Yes / No	Adjusted Odds Ratio #2 ³	95% CI
Cd - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	50/311	1.00		50/309	1.00		45/293	1.00	
\geq 50th percentile	61/299	1.316	0.571-3.034	61/298	1.097	0.426-2.824	54/286	1.061	0.420-2.68
Cd - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	66/269	1.00		64/269	1.00		57/256	1.00	
\geq 50th percentile	61/273	1.087	0.617-1.918	63/272	1.104	0.594-2.050	59/255	1.080	0.475-2.45
Mn - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	55/303	1.00		55/302	1.00		51/288	1.00	
\geq 50th percentile	56/307	0.855	0.330-2.215	56/305	0.895	0.340-2.359	48/291	0.620	0.257-1.49
In - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	65/271	1.00		65/270	1.00		60/253	1.00	
\geq 50th percentile	62/271	1.357	0.650-2.834	62/271	1.407	0.668-2.965	56/258	1.282	0.625-2.62
As - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	37/202	1.00		37/201	1.00		33/192	1.00	
\geq 50th percentile	34/206	0.737	0.346-1.569	34/205	0.738	0.366-1.488	32/193	0.815	0.340-1.95
s - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	42/179	1.00		43/178	1.00		38/169	1.00	
\geq 50th percentile	44/178	0.947	0.572-1.568	43/178	0.735	0.395-1.367	41/167	0.804	0.410-1.57
e EEDs were creatinine-adjusted then log trans		alyses. Extreme cr	• •	30 mg/dL and >:			s were into acco	unt using the appro	priate doma

*p<0.05, **p<0.01 ***p<0.001

Limitations Due to Difficulty Remembering or Confusion and Exposure to

<u>Metalloestrogens</u>: Table 1.32 presents crude GM means for subjects who responded to the yes/no question "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" and who have measurable

metalloestrogen urinary levels above the LOD. In the analysis, no significant associations were found. Table 1.33 presents age-specific geometric means divided amongst three age groups. Among all age groups, no significant associations were found. Table 1.34 presents gender-specific GM levels. Amongst males, Cd and Mn GM levels were higher amongst those who answered "yes" compared to those who answered "no". There were no significant findings in our analysis of gender-specific GM levels. Table 1.35 presents race-specific GMs by racial group. Cd GM levels were higher in those who answered "yes" compared to those who answered "no" amongst all racial groups. There were no significant findings among racial groups. Table 1.36 presents ORs and 95% CI for those with Yes/No responses to the question "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" and metalloestrogens stratified by gender with two groups: < LOD to 50th percentile (reference) and \ge 50th percentile. In the unadjusted model, a significant association was found answering "yes" to being limited because difficulty remembering or because of periods of confusion and Cd, among females in the \geq 50th percentile group [OR=1.952, 95% CI: 1.126-3.384]. The adjusted models were found not to be significant. Among males in the \geq 50th percentile and Cd a significant association was observed [OR=2.075, 95% CI=1.029-4.185] in the first adjusted model controlling for age, education, and race/ethnicity. The second adjusted model was found to be not significant.

244

Table 1.32 Geometric Mean Urinary Metalloestrogen Levels by Y/N "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD

		Geom	etric Mean	u (ug/ml) (G	SE, N)	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3993	0.03364	217	0.3325	0.01176	1229
Manganese	0.2234	0.0431	106	0.195	0.007832	548
Arsenic	9.9504	1.3274	148	9.6526	0.7632	823

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **p<0.01 ***p<0.001

Table 1.33 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD Geometric Mean (ug/ml) (GSE, N), Age 60-69 Metalloestrogen Yes No GM GSE N GM GSE N 0.3775 Cadmium 0.06417 0.3145 0.01879 106 657 Manganese 0.3214 0.136 47 0.1844 0.01341 278 9.3726 Arsenic 1.7523 71 8.7476 0.6515 439 Geometric Mean (ug/ml) (GSE, N), Age 70-79 Metalloestrogen Yes No GSE GM N GM GSE N Cadmium 0.3622 0.04967 50 0.3515 0.02173 401 0.1676 0.04507 21 0.2047 0.02122 184 Manganese 8.7666 270 Arsenic 1 9 1 9 8 34 10 6219 1 4041 Geometric Mean (ug/ml) (GSE, N), Age 80 + Metalloestrogen Yes No GSE N $G\!M$ GSE GM N Cadmium 0 4589 0.06375 61 0 366 0.03203 171 0.1891 0.0325 38 0.2145 0.01997 Manganese 86 11.7613 2.6919 Arsenic 43 11.4034 1.4413 114 NHANES sampling weight applied before calculating the geometric mean. The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine

values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS. *p<0.05, **p<0.01 ***p<0.001

		Geom	etric Mea	n (ug/ml) (G	SE, N)			Geometr	ic Mean	(ug/ml) (GS	E, N)	
M + II			Ν	Iales					Fen	nales		
Metalloestrogen		Yes			No			Yes		No		
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3227	0.04037	89	0.2732	0.01181	651	0.4748	0.05024	128	0.4036	0.01925	52
Manganese	0.1886	0.07547	38	0.139	0.009702	251	0.2502	0.03475	68	0.2531	0.02169	29
Arsenic	8.9348	1.3318	60	9.0086	0.7082	437	10.7949	1.7682	88	10.3254	1.0542	38

		Geometric I	Mean (ng	/ml) (GSE, N), Hispanic		Geome	ric Mean (n	g/ml) (G	SE, N), Non	-Hispanic W	hite
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N
Cadmium	0.3839	0.04416	59	0.3466	0.02651	222	0.3775	0.04405	92	0.321	0.01409	57
Manganese	0.1447	0.01979	30	0.1612	0.01221	104	0.2364	0.05618	46	0.2035	0.01078	24
Arsenic	9.4822	1.1434	39	9.1964	1.1371	151	8.6561	1.5424	61	9.312	0.9191	37
	Geo	metric Mean	(ng/ml) (GSE, N), No	n-Hispanic Bl	ack	Ge	ometric Mea	n (ng/m	l) (GSE, N), .	Asian/Other	
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	N
Cadmium	0.3675	0.05186	32	0.3381	0.01684	309	0.726	0.1112	34	0.5625	0.04587	12
Manganese	0.4235	0.3938	13	0.1523	0.007981	131	0.1873	0.02783	17	0.2014	0.02415	6
Arsenic	12.4755	3.8178	24	7.7405	0.5951	214	26.4076	8.6919	24	30.8778	3.8751	8

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and phthalate levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05,	**p<0.01	***p<0.001

Metalloestrogen	Yes / No	Unadjusted Odds Ratio ¹	95% CI	Yes / No	Adjusted Odds Ratio #1 ²	95% CI	Yes / No	Adjusted Odds Ratio #2 ³	95% CI
Cd - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	34/344	1.00		31/344	1.00		26/328	1.00	
\geq 50th percentile	56/320	1.966	0.971-3.980	56/319	2.075 *	1.029-4.185	45/309	1.531	0.500-4.69
Cd - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>49/308</td><td>1.00</td><td></td><td>49/308</td><td>1.00</td><td></td><td>47/289</td><td>1.00</td><td></td></lod>	49/308	1.00		49/308	1.00		47/289	1.00	
\geq 50th percentile	81/277	1.952 *	1.126-3.384	81/276	1.766	0.991-3.150	72/264	1.618	0.773-3.38
Mn - Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>43/333</td><td>1.00</td><td></td><td>43/332</td><td>1.00</td><td></td><td>36/320</td><td>1.00</td><td></td></lod>	43/333	1.00		43/332	1.00		36/320	1.00	
\geq 50th percentile	46/331	1.589	0.532-4.748	44/331	1.651	0.604-4.511	35/317	1.607	0.558-4.63
Mn - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>65/292</td><td>1.00</td><td></td><td>65/291</td><td>1.00</td><td></td><td>61/275</td><td>1.00</td><td></td></lod>	65/292	1.00		65/291	1.00		61/275	1.00	
\geq 50th percentile	65/293	0.836	0.370-1.888	65/293	0.727	0.347-1.521	58/278	0.642	0.275-1.49
As - Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>34/217</td><td>1.00</td><td></td><td>33/217</td><td>1.00</td><td></td><td>25/210</td><td>1.00</td><td></td></lod>	34/217	1.00		33/217	1.00		25/210	1.00	
\geq 50th percentile	27/224	0.814	0.449-1.474	27/223	0.862	0.448-1.656	24/212	0.989	0.488-2.00
As - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>42/196</td><td>1.00</td><td></td><td>42/195</td><td>1.00</td><td></td><td>37/186</td><td>1.00</td><td></td></lod>	42/196	1.00		42/195	1.00		37/186	1.00	
\geq 50th percentile	47/191	0.818	0.479-1.395	47/191	0.646	0.348-1.201	45/179	0.594	0.280-1.25
he EEDs were creatinine-adjusted then log trans		alyses. Extreme ci	reatinine values (-	5			ls were into accou	ant using the appro	opriate doma

Associations Between Exposures to Metalloestrogens and Taste/Smell Function

Exposures to the metalloestrogens Cd, Mn, and As, and two indicators of taste/smell function: 1) Do you sometimes smell an unpleasant, bad, or burning odor when nothing is there (phantosmia), and 2) During the past 12 months have you had a taste or other sensation in your mouth that does not go away? Taste and smell indicators have been included as a surrogate indicator of brain health as taste and

smell dysfunction is a possible pre-clinical indicator in the development of AD and other memory-related neurodegenerative diseases.

Smell Dysfunction and Exposure to Metalloestrogens: Table 1.37 presents crude GM means for subjects who responded to the yes/no "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" and who have measurable metalloestrogen urinary levels above the LOD. Crude As GM levels were found to be significantly higher in those who responded "no", compared to those who responded "yes" (p<0.05). Table 1.38 presents age-specific GMs by the age groups 60-69, 70-79, and 80+. Cd GM levels were significantly higher among those who responded "yes" compared to those who responded "no" in significantly higher in the 80+ age group (p<0.01). Table 1.39 presents gender-specific GMs. Among males, Mn GM levels were significantly higher among those who responded "yes" compared to those who responded "no" (p<0.01). Among females, Mn and As GM levels, were significantly higher for those who responded "no" compared to those who responded "yes" (Mn, p<0.05; As, p<0.01).

Table 1.40 presents race-specific GMs. Among Non-Hispanic Whites, As GM levels were found to be significantly higher in those that responded "no" compared to those who responded "yes" (p<0.01). Among Asian/Others, the Cd GM level was significantly higher among those who responded "yes" compared to those who responded "no" (p<0.001). The As GM level was found to be higher among those who responded "no" compared to those who responded "yes" (p<0.05).

Table 1.41 presents ORs and 95% CI for those with Yes/No responses to the question "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?"

247

and metalloestrogens stratified by gender with two groups: < LOD to 50th percentile (reference) and \geq 50th percentile. In the second adjusted model for males in the \geq 50th percentile group, Cd and experiencing a phantom odor were found to be significantly associated when controlling for age, education, race/ethnicity, alcohol use, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status [OR=10.770, 95% CI: 2.826-41.047). We removed diabetes status from the final model since it contributed to a quasi-separation of data, making the model validity questionable.

Table 1.37 Geometric Mean Urinary Metalloestrogen Levels by Y/N "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Subjects >= 60 years of age, NHANES 2011-2014, over the LOD											
		Geom	etric Mea	n (ug/ml) (GS	SE, N)						
Metalloestrogen		Yes		No							
	GM	GSE	Ν	GM	GSE	Ν					
Cadmium	0.3579	0.04639	67	0.3393	0.0114	1376					
Manganese	0.188	0.0195	38	0.1974	0.00958	613					
Arsenic	6.6513	1.0879	53	9.8535 *	0.7633	916					
NHANES sample	ing weight a	pplied before	e calculati	ng the geom	etric mean.						
The EEDs were creatinine- values (<30 mg/dL and >30	0 mg/dL) an	d metalloesti	ogen leve	els below the	LOD were ta						
account	using the a	ppropriate de	omain sta	tement in SA	S.						

metimes smell an unple ye	asant, bad or b ars of age, NH				e?'' for Subj	ects >= (
		Geometric M	lean (ug/	ml) (GSE, N)	, Age 60-69	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3729	0.0549	52	0.3169	0.01929	708
Manganese	0.1891	0.02418	30	0.1915	0.01659	292
Arsenic	6.2777	1.2596	39	8.9926	0.6798	469
		Geometric M	lean (ug/	ml) (GSE, N)	, Age 70-79	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.2864	0.09536	11	0.3542	0.02177	440
Manganese	0.1775	0.03617	6	0.2018	0.02004	199
Arsenic	8.0468	1.9187	10	10.4974	1.2967	294
		Geometric N	Mean (ug	/ml) (GSE, N), Age 80 +	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.4082 **	0.06266	4	0.3892	0.02754	228
Manganese	0.2049	0.008173	2	0.2061	0.0157	122
Arsenic	6.9858	2.1654	4	11.6256	1.4704	153

Table 1.38 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N "Do you

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and metalloestrogen levels below the LOD were taken into account using the appropriate domain statement in SAS.

*p<0.05, **p<0.01 ***p<0.001

Table 1.39 Gender-Specifi	c Geometric Mean Urinary Metalloestrogen Levels by Y/N "Do you s there?" for Subjects >= 60 years of age, NHANES 2						. , .					
		Geom	etric Mear	n (ug/ml) (G	SE, N)		Geometric Mean (ug/ml) (GSE, N)					
Motellosetrogen			М	ales			Females					
Metalloestrogen		Yes			No		Yes				No	
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Cadmium	0.2924	0.02978	27	0.2776	0.01239	712	0.4132	0.08311	40	0.4129	0.01711	664
Manganese	0.2258 **	0.02295	8	0.1425	0.01176	280	0.1794	0.02282	30	0.2559 *	0.01982	333
Arsenic	6.1009	1.5527	22	9.1335	0.6863	474	7.0641	1.0455	31	10.5977 **	1.0416	442

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and metalloestrogen levels below the LOD were taken into account using the appropriate domain statement in SAS.

		Geometric I	Mean (ng	/ml) (GSE, N)	, Hispanic		Geome	etric Mean (1	ng/ml) ((GSE, N), Non-	Hispanic Wł	nite
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	N	GM	GSE	N	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3974	0.06979	12	0.3521	0.02662	269	0.3489	0.05893	25	0.3258	0.01328	64
Manganese	0.1267	0.01616	9	0.1598	0.01324	125	0.2161	0.02325	16	0.2067	0.01246	27
Arsenic	9.6007	2.3016	10	9.2347	1.1386	180	5.4105	1.1653	18	9.4339 **	0.9076	41
	Geo	metric Mean	(ng/ml) (0	SE, N), Non-	-Hispanic Bla	ıck	Ge	eometric Me	an (ng/r	nl) (GSE, N), A	Asian/Other	
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	Ν
Cadmium	0.3059	0.05116	26	0.3469	0.02099	313	0.9093 ***	0.02821	4	0.5849	0.04487	15
Manganese	0.1358	0.04909	11	0.1538	0.009915	131	0.1461	0.01225	2	0.1994 *	0.02169	8
Arsenic	8.9313	2.5935	21	8.0142	0.711	216	20.9802	9.6899	4	30.4782	3.9991	1(

Metalloestrogen	Yes / No	Unadjusted Odds Ratio ¹	95% CI	Yes / No	Adjusted Odds Ratio #1 ²	95% CI	Yes / No	Adjusted Odds Ratio #2 ³	95% CI
Cd - Above/Below 50th Percentile - Males									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>12/363</td><td>1.00</td><td></td><td>12/363</td><td>1.00</td><td></td><td>11/343</td><td>1.00</td><td></td></lod>	12/363	1.00		12/363	1.00		11/343	1.00	
\geq 50th percentile	18/359	3.219	0.674-15.383	18/356	3.826	0.039-2.086	18/335	10.770 ***	2.826-41.04
Cd - Above/Below 50th Percentile - Females									
<lod (reference)<="" 50th="" percentile="" td="" to=""><td>19/337</td><td>1.00</td><td></td><td>19/337</td><td>1.00</td><td></td><td>18/317</td><td>1.00</td><td></td></lod>	19/337	1.00		19/337	1.00		18/317	1.00	
≥ 50th percentile	21/336	1.036	0.358-2.997	21/235	1.083	0.100-1.709	19/316	1.135	0.415-3.10
Mn - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	13/363	1.00		13/362	1.00		13/343	1.00	
\geq 50th percentile	17/359	1.505	0.236-9.590	17/357	1.540	0.301-7.887	16/335	1.415	0.424-4.72
Mn - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	19/337	1.00		19/337	1.00		17/317	1.00	
\geq 50th percentile	21/336	1.038	0.353-3.052	21/335	1.044	0.317-3.441	20/316	1.869	0.582-6.00
As - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	13/237	1.00		13/236	1.00		12/223	1.00	
\geq 50th percentile	9/242	0.634	0.152-2.644	9/241	0.697	0.162-3.002	9/226	0.703	0.280-1.76
As - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	18/219	1.00		18/219	1.00		16/207	1.00	
≥ 50th percentile	13/225	0.497	0.235-1.051	13/224	0.551	0.230-1.320	13/210	0.742	0.274-2.00

NHANES sampling weight applied before calculating the geometric mean.

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL and metalloestrogen levels were into account using the appropriate domain statement in SAS. *p<0.01 ***p<0.01

¹Unadjusted model. ²Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.

<u>Taste Dysfunction and Exposure to Metalloestrogens:</u> Table 1.42 presents crude GM means for subjects who responded to the yes/no question "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" and who have measurable metalloestrogen urinary levels above the LOD. No significant increases were observed.

Table 1.43 presents age-specific GMs for the age groups 60-69, 70-79, and 80+. In the 79-79-year age group, the GM for As are higher in among subjects who answered "no" compared to those that answered "yes" (p<0.05). Table 1.44 presents genderspecific GMs. Among males, the GM for Cd was significantly higher among those that answered "yes" compared to those that answered "no" (p<0.01). Among females, the GM for Mn were found to be significantly higher among those who answered "no" compared to those that answered "yes" (p<0.01). Table 1.45 presents racespecific GMs. No significant results were observed among racial groups.

Table 1.46 presents ORs and 95% CI for those with Yes/No responses to the question "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" and metalloestrogens stratified by gender with two groups: < LOD to 50th percentile (reference) and \geq 50th percentile. For males in the \geq 50th percentile group, Cd was found to be significantly associated with taste issues in the first adjusted model controlling for age, education, race/ethnicity [OR=4.444, 95% CI: 1.564-12.630], and the second adjusted model controlling for age, education, race/ethnicity, alcohol use, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status [OR=3.751, 95% CI: 1.103-12.763]. We removed diabetes status from the final

251

model since it contributed to a quasi-separation of data, making the model validity

questionable.

Table 1.42 Geometric Mean Urinary Metalloestrogen Levels by Y/N "During the past 12 mor have you had a taste or other sensation in your mouth that does not go away?" for Subjects >= years of age, NHANES 2011-2014, over the LOD									
		Geom	etric Mean	(ug/ml) (G	SE, N)				
Metalloestrogen		Yes			No				
	GM	GSE	Ν	GM	GSE	N			
Cadmium	0.4332	0.0528	91	0.3352	0.01164	1354			
Manganese	0.1722	0.01624	45	0.2002	0.009317	608			
Arsenic	7.6795	1.2809	62	9.8023	0.7702	908			
NHANES sam	oling weight a			0 0					

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and metalloestrogen levels below the LOD were taken into account using the appropriate domain statement in SAS.

		Geometric M	lean (ug/	/ml) (GSE, N),	Age 60-69	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3994	0.05737	55	0.315	0.01875	707
Manganese	0.16	0.01746	32	0.1977	0.01679	292
Arsenic	7.6542	1.8706	38	8.8675	0.6761	471
		Geometric M	lean (ug/	'ml) (GSE, N),	Age 70-79	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	N
Cadmium	0.5432	0.1454	24	0.3457	0.02076	427
Manganese	0.1788	0.04444	6	0.2019	0.02024	199
Arsenic	7.0141	0.7715	15	10.588 *	1.3343	289
		Geometric M	Aean (ug	/ml) (GSE, N)	, Age 80 +	
Metalloestrogen		Yes			No	
	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.3911	0.08895	12	0.3894	0.02822	220
Manganese	0.2505	0.06654	7	0.2044	0.015	117
Arsenic	9.117	3.3521	9	11.637	1.4675	148
NHANES sam	oling weight a	pplied before	calculati	ing the geom	etric mean.	
The EEDs were creatinin	e-adjusted th	en log transfo	ormed prie	or to analyse	s. Extreme cr	eatinine
alues (<30 mg/dL and >3	300 mg/dL) an	d metalloestr	ogen leve	els below the	LOD were ta	iken int

Table 1.43 Age-Specific Geometric Mean Urinary Metalloestrogen Levels by Y/N "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?"

		Geom	etric Mear	n (ug/ml) (G	SE, N)			Geomet	ric Mea	n (ug/ml) (GSI	E, N)	
Matalla activation			М	ales			Females					
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	N	GM	GSE	N	GM	GSE	N	GM	GSE	N
Cadmium	0.4285 **	0.07048	39	0.2727	0.0117	701	0.4367	0.07316	52	0.4103	0.01848	653
Manganese	0.1915	0.06236	10	0.1436	0.01172	279	0.1699	0.01784	35	0.2627 **	0.0199	329
Arsenic	8.2886	2.3636	26	9.0337	0.6802	471	7.2922	1.3284	36	10.6049	1.05	437
		NHANE	S sampling	g weight app	olied before c	alculating	the geometr	ic mean.				

fable 1.45 Race-specific in y		Mean Urina that does no	-	0			•				or other sen	sation
		Geometric	Mean (ng/	ml) (GSE, N	N), Hispanic		Geome	tric Mean (n	g/ml) ((GSE, N), Non	-Hispanic W	hite
Metalloestrogen		Yes			No			Yes			No	
	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.4094	0.08975	30	0.348	0.02671	251	0.4425	0.07468	32	0.3221	0.01426	636
Manganese	0.1252	0.01799	19	0.1625	0.0133	115	0.2037	0.02269	17	0.2073	0.01209	276
Arsenic	10.1299	2.0136	20	9.1571	1.1248	170	6.4749	1.3872	22	9.3922	0.9167	411
	Geor	metric Mean	(ng/ml) (0	GSE, N), No	n-Hispanic I	Black	Ge	ometric Mea	an (ng/n	nl) (GSE, N),	Asian/Other	
Metalloestrogen		Yes			No			Yes			No	
-	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν	GM	GSE	Ν
Cadmium	0.345	0.08018	20	0.3404	0.01799	321	0.7206	0.1684	9	0.5826	0.04734	146
Manganese	0.07289	0.01199	4	0.1739	0.0203	140	0.1949	0.02197	5	0.2009	0.02247	77
Arsenic	7.2645	2.7402	13	8.1729	0.7111	225	35.2148	16.9838	7	29.2516	4.2144	102
		NHANE	S samplin	g weight app	lied before	calculating	the geometr	ic mean.				

The EEDs were creatinine-adjusted then log transformed prior to analyses. Extreme creatinine values (<30 mg/dL and >300 mg/dL) and metalloestrogen levels below the LOD were taken into account using the appropriate domain statement in SAS.

^{*}p<0.05, **p<0.01 ***p<0.001

Metalloestrogen	Yes / No	Unadjusted Odds Ratio ¹	95% CI	Yes / No	Adjusted Odds Ratio #1 ²	95% CI	Yes / No	Adjusted Odds Ratio #2 3	95% CI
Cd - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	15/362	1.00		13/362	1.00		11/343	1.00	
\geq 50th percentile	26/350	1.871	0.547-6.404	28/347	4.444 **	1.564-12.630	27/327	3.751 *	1.103-12.763
Cd - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	23/334	1.00		23/333	1.00		22/314	1.00	
\geq 50th percentile	29/328	1.214	0.483-3.051	29/328	1.257	0.521-3.033	28/307	1.786	0.679-4.696
Mn - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	19/357	1.00		19/356	1.00		19/337	1.00	
\geq 50th percentile	22/355	2.458	0.691-8.735	22/353	2.478	0.800-7.675	19/333	1.532	0.511-4.587
Mn - Above/Below 50th Percentile - Females								1	
< LOD to 50th percentile (reference)	32/324	1.00		32/323	1.00		30/305	1.00	
\geq 50th percentile	20/338	0.657	0.244-1.767	20/338	0.670	0.230-1.954	20/316	0.855	0.356-2.056
As - Above/Below 50th Percentile - Males									
< LOD to 50th percentile (reference)	15/236	1.00		15/235	1.00		15/220	1.00	
≥ 50th percentile	12/239	0.832	0.245-2.828	12/238	0.877	0.236-3.257	9/227	0.790	0.194-3.223
As - Above/Below 50th Percentile - Females									
< LOD to 50th percentile (reference)	24/213	1.00		24/213	1.00		24/199	1.00	
≥ 50th percentile	12/226	0.396	0.137-1.145	12/225	0.410	0.141-1.195	10/213	0.428	0.099-1.851

DISCUSSION

This study takes a novel approach in the assessment of exposure to metalloestrogens in the development of cognitive dysfunction and possible neurodegenerative disease using surrogate indicators of brain health. The study examined an older geriatric-aged population of US adults 60 years of age and older. We first assessed the bioburden of the urinary metalloestrogens, Cd, Mn, and As, by calculating and comparing the GMs of each EEDCs versus each surrogate indicator of brain health, looking at age, gender, and race and subsequently used ORs and 95% CI to determine the risk of developing cognitive dysfunction.

Major Findings: Overall, we observed a higher bioburden of Cd in the GMs of subjects who scored lower on the four cognitive tests, who answered "yes" to having memory function issues on the four memory function surrogates and had taste/smell deficits on our taste/smell function surrogates (Tables 1.2, 1.7, 1.12, 1.17, 1.22, 1.27, 1.32, 1.37, and 1.47). In our analyses of GMs by age, gender, and race, we accounted for subjects that have extreme creatinine measurements and examined subjects who had Cd, Mn, and As levels over the LOD. A higher bioburden of Cd was observed according to gender (Tables 1.3, 1.9, 1.14, 1.19, 1.24, 1.29, 1.34, 1.39, 1.33, 1.48 and 1.49). This trend was higher in females, but the significant differences were observed in males (Tables 1.48 and 1.49). No meaningful trends were observed by age and race, although it was observed metalloestrogen bioburden increased with age. A higher bioburden of Mn was found in those who scored lower on cognitive tests, while bioburden trends for As were inconclusive (Tables, 1.2, 1.7, 1.12, and 1.17).

In our logistic regression models, when controlling for all, known and suspected covariates of AD, Cd levels in females were found to be significantly associated with worsening memory over the past 12 months (Table 1.26). Cd levels in females were also associated with adverse taste and smell functioning when controlling for all known and suspected covariates of AD (Table 1.41 and 1.46). Caution must be taken in interpreting the results of taste and smell dysfunction

255

because of the large confidence interval and smaller number of causes with the covariates of the model.

The findings with cadmium and adverse brain function are consistent with other studies. A recent meta-analysis found higher Cd bioburden in AD patients ⁸⁴. Another study using NHANES survey data from 1988-1994 and 1999-2006, linked AD mortality with elevated Cd levels ⁸⁵. Higher circulating Cd levels were also associated with reduce attention and perception scores in a cross-sectional study of US adults ⁸⁶ and in a cohort of rural elderly Chinese person, increased serum cadmium was associated with lower composite cognitive scores ⁵. Mn, although not significant, was still found in higher levels among those who experience memory issues and/or scored lower on cognitive exams. Since metalloestrogens can affect sensitive populations differently, can bioaccumulate, and may exhibit non-monotonic dose responses ⁸⁷, this may provide some basis for Mn to have higher bioburdens in subjects with memory issues.

Table 1.47 - Summary Table of EEDCs overall signficance of GMs by Surrogate of Brain Health Indicators (* p<0.05, ** p<0.01, *** p<0.01)		te Recall n=940)	Delayed Score (Animal Score (Fluency n=931)	Digit S Substitu Score (ion Test	Past 12 memory worse? (1	y getting	i remem	ible bering?	diffi	ering or usion?		Phantom Odor? (n=1,024)		tion in hat does away? 024)
	≤13	≥14	≤3	≥4	≤11	≥12	≤27	≥28	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Cadmium	*						*											
Manganese																		
Arsenic																*		

Table 1.48 - Summary Table of EEDCs overall significance of GMs by Surrogate of Brain Health Indicators in males (* p<0.05, ** p<0.01, *** p<0.001)	Immediate Recall Score (n=940)		· ·	ayed Recall Animal Fluency re (n=930) Score (n=931) Digit Symbol Score (n=891) Digit Symbol Score (n=891) Past 12 months, memory getting score (n=1,025) Past 7 days, trouble remembering? (n=971) (n=971) (n=971) (n=1,025) (n=1,025) Past 7 days, trouble remembering?		culty ering or usion?	Phantom Odor? (n=1,024)		Sensation in mouth that does not go away? (n=1024)									
	≤13	≥14	≤ 3	≥4	≤11	≥12	≤27	≥28	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Cadmium			*														**	
Manganese															**			
Arsenic										*								

Table 1.49 - Summary Table of EEDCs overall signficance of GMs by Surrogate of Brain Health Indicators in females (* p =0.05, ** p =0.01, *** p <0.001)	Immediate Recall Score (n=940)		l Delayed Recall Score (n=930)		Animal Fluency Score (n=931)		Digit Symbol Substitution Test Score (n=891)		Past 12 months, memory getting worse? (n=1,025)		Past 7 days, trouble remembering? (n=971)		Limited due to difficulty remembering or confusion? (n=1,024)		Phantom Odor? (n=1,024)		Sensation in mouth that doe: not go away? (n=1024)	
	≤13	≥14	≤3	≥4	≤11	≥12	≤27	≥28	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Cadmium																		
Manganese																*		**
Arsenic	*															**		

Biological Mechanisms and Brain Health: Our results show the effects of Cd exposure and its role in cognitive dysfunction. Numerous biological effects and mechanisms can result in cognitive dysfunction. Cadmium, arsenic, and manganese have been found to all have estrogenic activity and affinity for estrogen receptors ²⁷ and have been found to interact with estrogen-responsive genes implicated in various neurodegenerative disorders ²⁸ Heavy metals have also been demonstrated to affect and cross the blood brain barrier ^{29–31}.

Cell models have shown cadmium to have adverse effects on brain health. In a one study hippocampal CA1 neurons, Cd was demonstrated to affect synaptic transmission and short-term neural plasticity ⁸⁸. Another studied that used PC12 and SH-SY5Y neuronal cells, cadmium induced cell death and apoptosis ^{89,90}.

Animal models have shown cadmium to affect brain health. In a zebrafish model, cadmium inhibited neurogenesis in embryonic development ⁹¹. Cadmium has been shown to induce apoptosis rat cerebellum cortical neurons by disrupting calcium homeostasis ⁹² and also has been shown to induce apoptosis in vitro in through damage of mitochondria in rat oligodendrocytes ⁹³. Cadmium has also been shown to interact with beta amyloid peptides which is implicated in the development of AD ⁹⁴.

Animal studies in rats have shown arsenic exposure to affect synaptic plasticity, by affecting the expression of NDMA receptors ^{95,96} and downregulating the PTEN-Akt-Creb signaling pathway and damaging cerebral neurons ⁹⁷. In one cell study, arsenic

was found to cause enhanced oxidative stress and cell death in cultured neuronal cells, when administered with dopamine ⁹⁸. In a study using a cholingeric neuronal cell line overexpressing amyloid precursor protein (APP) and exposing it to sodium arsenite and its' metabolite, dimethylarsenic acid, it was found to affect cleavage of APP and increase its' production ⁹⁹.

Evidence also suggests manganese having a role in neurotoxicity. Chronic manganese exposure has been shown to promote the build-up of the metal in the basal ganglia, white matter, and cortical structures of the brain ¹⁰⁰. Animal studies have shown manganese has also been shown to cause an inhibitory effect on NMDA receptors ¹⁰¹. Manganese appears to interfere with dopaminergic synaptic transmission, by possibly impairing presynaptic dopamine release. A study using a monkey model showed manganese exposure caused neurotoxicity by inhibiting dopamine neurotransmission ¹⁰².

Furthermore, genes that have been implicated in the development of neurodegenerative disease such as AD which are also estrogen-responsive are also pathway for Cd, Mn, and As to exert their effects on the aging brain. Genes that are estrogen-responsive, metalloestrogen-responsive, and interfere with mitochondrial energetics, and implicated in AD include ENO1 ²⁸. Additionally, a recent search of the Comparative Toxicogenomic Database (CTD) reveals that from 88 genes implicated in AD, 39 of those genes are estrogen and Cd-responsive, 30 are estrogen and As-responsive, and 23 are estrogen and Mn-responsive ¹⁰³. These indicate other targets where metalloestrogens can exert their effects in the AD and neurodegenerative disease

258

pathways. The results from our study can originate from any of the biological mechanisms that have been referenced.

Strengths and Limitations: There are strengths and limitations to our study. The largest limitations are the cross-sectional design of our study. The data is selfreported which makes inference difficult and prone to misclassification bias. Our outcome variables are surrogates rather than actual clinical endpoints, which limits our ability to say that our outcome will lead to neurodegenerative disease. The cut-off scores of our cognitive exams were based on previous studies, however, performance on those exams are heavily dependent on education, so there is a possibility that poor performance might be a function of lack of education. For our taste/smell indicators, the senses heavily affected by numerous confounders, some of which were not feasible in study due to making the sample smaller, or the confounder not being available. Strengths of our study include the novelty of such an analysis to be conducted on an older population. We had relatively large sample sizes available for our analyzes. The generalizability of our study to the US population and the large amount of chemical measurements available gives the study the ability to examine different aspects of chemical exposure.

CONCLUSION

Based on our findings, Cd, and possibly Mn play a role in the development of neurodegenerative conditions in an older population. With an ever-increasing aging population, the study provides some insight in how metalloestrogen exposure can affect this sensitive population.

Further research is need, particularly human epidemiological studies examining older populations, to shed more light into the development of neurodegenerative disease and exposures to metalloestrogens.

References

- 1. Bergman A, Heindel JJ, Jobling S, Kidd KA, Zoeller TR. State of the science of endocrine disrupting chemicals. *World Heal Organ United Nations Environ Program.* 2012:1-38. http://apps.who.int/iris/handle/10665/78102.
- 2. Alzheimer's Association. 2017 Alzheimer's Disease Facts and Figures. *Alzheimers Dement*. 2017;13:325-373. doi:10.1016/j.jalz.2017.02.001.
- 3. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cadmium. *Agency Toxic Subst Dis Regist*. 2012;(September). http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf%5Cnhttp://www.ncbi.nlm.nih.go v/books/NBK158845/.
- 4. Ciesielski T, Bellinger DC, Schwartz J, Hauser R, Wright RO. Associations between cadmium exposure and neurocognitive test scores in a cross-sectional study of US adults. *Environ Health*. 2013;12(1):13. doi:10.1186/1476-069X-12-13.
- 5. Gao S, Jin Y, Unverzagt FW, et al. Trace element levels and cognitive function in rural elderly Chinese. *Journals Gerontol Ser A-Biological Sci Med Sci*. 2008;63(6):635-641. http://shibboleth.ovid.com/secure/?T=JS&CSC=Y&NEWS=N&PAGE=fullte xt&D=med5&AN=18559640%5Cnhttp://sfx.kcl.ac.uk/kings?sid=OVID:medli ne&id=pmid:&id=doi:&genre=article&atitle=Trace+element+levels+and+cog nitive+function+in+rural+elderly+Chinese.&title=Journals+o.
- 6. Roos PM, Vesterberg O, Syversen T, Flaten TP, Nordberg M. Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. *Biol Trace Elem Res.* 2013. doi:10.1007/s12011-012-9547-x.

- Komatsu F, Kagawa Y, Kawabata T, et al. A high accumulation of hair minerals in Mongolian people: 2(nd) report; influence of manganese, iron, lead, cadmium and aluminum to oxidative stress, Parkinsonism and arthritis. *Curr Aging Sci.* 2011;4(1):42-56. http://www.ncbi.nlm.nih.gov/pubmed/21204778. Accessed September 19, 2016.
- 8. Agency for Toxic Substances and Disease Registry (ATSDR). TOXICOLOGICAL PROFILE FOR ARSENIC. Health Effects. *Agency Toxic Subst Dis Regist*. 2007;(August).
- 9. O'Bryant SE, Edwards M, Menon C, Gong G, Barber R. Long-Term Low-Level Arsenic Exposure Is Associated with Poorer Neuropsychological Functioning: A Project FRONTIER Study. *Int J Environ Res Public Health*. 2011;8(12):861-874. doi:10.3390/ijerph8030861.
- 10. Edwards M, Hall J, Gong G, O'Bryant SE. Arsenic exposure, AS3MT polymorphism, and neuropsychological functioning among rural dwelling adults and elders: a cross-sectional study. *Environ Health*. 2014;13(1):15. doi:10.1186/1476-069X-13-15.
- 11. Park J-H, Lee D-W, Park KS, Joung H. Serum trace metal levels in Alzheimer's disease and normal control groups. *Am J Alzheimers Dis Other Demen.* 2014;29(1):76-83. doi:10.1177/1533317513506778.
- 12. Edwards M, Johnson L, Mauer C, Barber R, Hall J, O'Bryant S. Regional specific groundwater arsenic levels and neuropsychological functioning: a cross-sectional study. *Int J Environ Health Res.* 2014;24(6):546-557. doi:10.1080/09603123.2014.883591.
- 13. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Manganese. *ATSDR Toxicol Profiles*. 2000;(September):504.
- 14. Hozumi I, Hasegawa T, Honda A, et al. Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. *J Neurol Sci.* 2011;303(1-2):95-99. doi:10.1016/j.jns.2011.01.003.

- 15. Wasserman GA, Liu X, Parvez F, et al. Arsenic and manganese exposure and children's intellectual function. *Neurotoxicology*. 2011;32(4):450-457. doi:10.1016/j.neuro.2011.03.009.
- Kim Y, Bowler RM, Abdelouahab N, Harris M, Gocheva V, Roels HA. Motor function in adults of an Ohio community with environmental manganese exposure. *Neurotoxicology*. 2011;32(5):606-614. doi:10.1016/j.neuro.2011.07.011.
- 17. Carvalho CF, Menezes-Filho JA, Matos VP de, et al. Elevated airborne manganese and low executive function in school-aged children in Brazil. *Neurotoxicology*. 2014;45:301-308. doi:10.1016/j.neuro.2013.11.006.
- 18. Oulhote Y, Mergler D, Barbeau B, et al. Neurobehavioral function in schoolage children exposed to manganese in drinking water. *Environ Health Perspect*. 2014;122(12):1343-1350. doi:10.1289/ehp.1307918.
- 19. Koc ER, Ilhan A, Ayturk Z, et al. A comparison of hair and serum trace elements in patients with Alzheimer disease and healthy participants. *Turkish J Med Sci Turk J Med Sci, Turk J Med, Turk J Med Sci.* 2015;45(5):1034-1039. doi:10.3906/sag-1407-67.
- 20. Miyake Y, Tanaka K, Fukushima W, et al. Dietary intake of metals and risk of Parkinson's disease: A case-control study in Japan. *J Neurol Sci.* 2011;306(1-2):98-102. doi:10.1016/j.jns.2011.03.035.
- 21. Kumudini N, Uma A, Prameela Devi Y, et al. Association of Parkinson's disease with altered serum levels of lead and transition metals among South Indian subjects. *Indian J Biochem Biophys.* 2014;51(2):121-126.
- 22. Garzillo EM, Lamberti M, Genovese G, et al. Blood lead, manganese, and aluminum levels in a regional Italian cohort of ALS patients: does aluminum have an influence? *J Occup Environ Med*. 2014;56(10):1062-1066. doi:10.1097/JOM.0000000000266.
- 23. Kihira T, Sakurai I, Yoshida S, et al. Neutron {Activation} {Analysis} of {Scalp} {Hair} from {ALS} {Patients} and {Residents} in the {Kii} {Peninsula}, {Japan}. *Biol Trace Elem Res.* 2015;164(1):36-42. doi:10.1007/s12011-014-0202-6.

- 24. Arain MS, Afridi HI, Kazi TG, et al. Correlation of aluminum and manganese concentration in scalp hair samples of patients having neurological disorders. *Environ Monit Assess*. 2015;187(2). doi:10.1007/s10661-014-4172-0.
- 25. Bowler RM, Gocheva V, Harris M, et al. Prospective study on neurotoxic effects in manganese-exposed bridge construction welders. *Neurotoxicology*. 2011;32(5):596-605. doi:10.1016/j.neuro.2011.06.004.
- 26. Baker MG, Criswell SR, Racette BA, et al. Neurological outcomes associated with low-level manganese exposure in an inception cohort of asymptomatic welding trainees. *Scand J Work Environ Heal*. 2015;41(1):94-101. doi:10.5271/sjweh.3466.
- 27. Choe SY, Kim SJ, Kim HG, et al. Evaluation of estrogenicity of major heavy metals. *Sci Total Environ*. 2003;312(1-3):15-21. doi:10.1016/S0048-9697(03)00190-6.
- 28. Preciados M, Yoo C, Roy D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. *Int J Mol Sci.* 2016;17(12):2086. doi:10.3390/ijms17122086.
- 29. Kim JH, Byun HM, Chung EC, Chung HY, Bae ON. Loss of integrity: Impairment of the blood-brain barrier in heavy metal-associated ischemic stroke. *Toxicol Res.* 2013;29(3):157-164. doi:10.5487/TR.2013.29.3.157.
- 30. Wang B, Du Y. Cadmium and its neurotoxic effects. *Oxid Med Cell Longev*. 2013;2013. doi:10.1155/2013/898034.
- 31. Zheng W, Aschner M, Ghersi-Egea J-F. Brain barrier systems: a new frontier in metal neurotoxicological research. *Toxicol Appl Pharmacol*. 2003;192(1):1-11. doi:10.1016/S0041-008X(03)00251-5.
- 32. Johnson CL, Paulose-Ram R, Ogden CL, et al. National health and nutrition examination survey: analytic guidelines, 1999-2010. *Vital Health Stat 2*. 2013;(161):1-24. http://www.ncbi.nlm.nih.gov/pubmed/25090154.

- Johnson CL, Dohrmann SM, Burt VL, Mohadjer LK. National Health and Nutrition Examination Survey: Sample Design, 2011 – 2014. *Vital Heal Stat*. 2014;2(162):1-33. http://www.cdc.gov/nchs/data/series/sr_02/sr02_162.pdf.
- 34. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey NCHS Research Ethics Review Board (ERB) Approval. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/irba98.htm. Published 2016.
- 35. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Urinary Total Arsenic (UTAS_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UTAS_H.htm. Published 2016.
- 36. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies Arsenics - Total & Speciated - Urine (UAS_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/UAS_G.htm. Published 2016.
- 37. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Urinary Speciated Arsenics (UAS_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/UAS_H.htm. Published 2016.
- 38. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data, Questionnaires, and Related Documentation and Information. National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/index.htm. Published 2016.

- 39. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Task 2: How to Address Different Fill Values and the Limit of Detection (LOD) in NHANES Environmental Chemical Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/limitations/T ask2.htm. Published 2016.
- 40. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Cognitive Functioning (CFQ_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/CFQ_H.htm. Published 2017.
- 41. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies Cognitive Functioning (CFQ_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/CFQ_G.htm#CFDCST3. Published 2017.
- 42. Fillenbaum GG, van Belle G, Morris JC, et al. Consortium to Establish a Registry for Alzheimer's Disease (CERAD): The first twenty years. *Alzheimer's Dement*. 2008;4(2):96-109. doi:10.1016/j.jalz.2007.08.005.
- 43. Bertolucci PHF, Okamoto IH, Brucki SMD, Siviero MO, Neto JT, Ramos LR. Applicability of the CERAD neuropsychological battery to Brazilian elderly. *Arq Neuropsiquiatr*. 2001;59(3 A):532-536. doi:10.1590/S0004-282X2001000400009.
- 44. Karrasch M, Sinervä E, Grönholm P, Rinne J, Laine M. CERAD test performances in amnestic mild cognitive impairment and Alzheimer's disease. *Acta Neurol Scand*. 2005;111(3):172-179. doi:10.1111/j.1600-0404.2005.00380.x.
- 45. Karrasch M, Laatu S, Martikainen K, Marttila R. CERAD test performance and cognitive impairment in Parkinson's disease. *Acta Neurol Scand*. 2013;128(6):409-413. doi:10.1111/ane.12138.

- 46. R.M. H, N.-M. S, P. H, et al. The CERAD neuropsychological battery in patients with frontotemporal lobar degeneration. *Dement Geriatr Cogn Dis Extra*. 2015;5(1):147-154. doi:10.1159/000380815.
- 47. Berres M, Monsch AU, Bernasconi F, Thalmann B, Stähelin HB. Normal ranges of neuropsychological tests for the diagnosis of Alzheimer's disease. *Stud Health Technol Inform*. 2000;77:195-199. http://www.ncbi.nlm.nih.gov/pubmed/11187541. Accessed January 21, 2018.
- 48. Sata F, Araki S, Yokoyama K, Murata K. Adjustment of creatinine-adjusted values in urine to urinary flow rate: a study of eleven heavy metals and organic substances. *Int Arch Occup Environ Health*. 1995;68(1):64-68. http://www.ncbi.nlm.nih.gov/pubmed/8847115. Accessed November 15, 2017.
- 49. Alegret M, Espinosa A, Valero S, et al. Cut-off Scores of a Brief Neuropsychological Battery (NBACE) for Spanish Individual Adults Older than 44 Years Old. Brucki S, ed. *PLoS One*. 2013;8(10):e76436. doi:10.1371/journal.pone.0076436.
- 50. American Academy of Family Physicians. BB, Hartmann B, DeJoseph D. *American Family Physician.* Vol 84. American Academy of Family Physicians; 1970. https://www.aafp.org/afp/2011/1015/p895.html. Accessed January 21, 2018.
- 51. Axelrod BN. Administration duration for the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III. *Arch Clin Neuropsychol*. 2001;16(3):293-301. doi:10.1016/S0887-6177(00)00048-2.
- 52. Matsuda O, Saito M, Kato M, Azami H, Shido E. Wechsler Adult Intelligence Scale-III profile in the early stages of Alzheimer's disease: Performance in subtests sensitive to and resistant to normal decline with ageing. *Psychogeriatrics*. 2015;15(1):1-6. doi:10.1111/psyg.12066.
- 53. Donnell AJ, Pliskin N, Holdnack J, Axelrod B, Randolph C. Rapidlyadministered short forms of the Wechsler Adult Intelligence Scale-3rd edition. *Arch Clin Neuropsychol.* 2007;22(8):917-924. doi:10.1016/j.acn.2007.06.007.

- 54. Nielsen NP, Ringström R, Wiig EH, Minthon L. Associations between AQT processing speed and neuropsychological tests in neuropsychiatric patients. *Am J Alzheimers Dis Other Demen*. 2011;22(3):202-210. doi:10.1177/1089253206300417.
- 55. Proust-Lima C, Amieva H, Dartigues JF, Jacqmin-Gadda H. Sensitivity of four psychometric tests to measure cognitive changes in brain aging-population-based studies. *Am J Epidemiol*. 2007;165(3):344-350. doi:10.1093/aje/kwk017.
- 56. Rosano C, Perera S, Inzitari M, Newman AB, Longstreth WT, Studenski S. Digit symbol substitution test and future clinical and subclinical disorders of cognition, mobility and mood in older adults. *Age Ageing*. 2016;45(5):687-694. doi:10.1093/ageing/afw116.
- 57. Saxton J, Lopez OL, Ratcliff G, et al. Preclinical Alzheimer disease: neuropsychological test performance 1.5 to 8 years prior to onset. *Neurology*. 2004;63(Mh 46643):2341-2347. doi:10.1212/01.WNL.0000147470.58328.50.
- 58. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Questionnaires, Datasets, and Related Documentation. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm. Published 2015.
- 59. Brooks LG, Loewenstein DA. Assessing the progression of mild cognitive impairment to Alzheimer's disease: current trends and future directions. *Alzheimers Res Ther.* 2010;2(5):28. doi:10.1186/alzrt52.
- 60. Tolea MI, Morris JC, Galvin JE. Longitudinal associations between physical and cognitive performance among community-dwelling older adults. *PLoS One*. 2015;10(4):1-12. doi:10.1371/journal.pone.0122878.
- 61. Ansoleaga B, Garcia-Esparcia P, Llorens F, Moreno J, Aso E, Ferrer I. Dysregulation of brain olfactory and taste receptors in AD, PSP and CJD, and AD-related model. *Neuroscience*. 2013;248:369-382. doi:10.1016/j.neuroscience.2013.06.034.

- Macknin JB, Higuchi M, Lee VM-Y, Trojanowski JQ, Doty RL. Olfactory dysfunction occurs in transgenic mice overexpressing human τ protein. *Brain Res*. 2004;1000(1-2):174-178. doi:10.1016/j.brainres.2004.01.047.
- 63. Lee S, Manly J, Andrews H, et al. Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community. 2014.
- 64. Hummel T, Landis B, Huttenbrink K. Smell and taste disorders. *GMS Curr Tpoics Otorhinolaryngol Head Neck Surg*. 2011;10:1-15. doi:10.3205/cto000077.
- 65. Doty RL. The olfactory vector hypothesis of neurodegenerative disease: Is it viable? *Ann Neurol*. 2008;63(1):7-15. doi:10.1002/ana.21327.
- 66. Liu J. Clinical features of olfactory disorders in patients seeking medical consultation. *Med Sci Monit*. 2013;19:444-450. doi:10.12659/MSM.883938.
- 67. Hüttenbrink K-B, Hummel T, Berg D, Gasser T, Hähner A. Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. *Dtsch Arztebl Int*. 2013;110(1-2):1-7, e1. doi:10.3238/arztebl.2013.0001.
- 68. Barresi M, Ciurleo R, Giacoppo S, et al. Evaluation of olfactory dysfunction in neurodegenerative diseases. *J Neurol Sci.* 2012;323(1-2):16-24. doi:10.1016/j.jns.2012.08.028.
- 69. Ruan Y, Zheng XY, Zhang HL, Zhu W, Zhu J. Olfactory dysfunctions in neurodegenerative disorders. *J Neurosci Res.* 2012;90(9):1693-1700. doi:10.1002/jnr.23054.
- 70. Albers MW, Tabert MH, Devanand DP. Olfactory dysfunction as a predictor of neurodegenerative disease. *Curr Neurol Neurosci Rep.* 2006;6(5):379-386. doi:10.1007/s11910-996-0018-7.
- 71. Winner B, Kohl Z, Gage FH. Neurodegenerative disease and adult neurogenesis. *Eur J Neurosci*. 2011;33(6):1139-1151. doi:10.1111/j.1460-9568.2011.07613.x.

- 72. Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. *Acta Neuropathol*. 2014;127(4):459-475. doi:10.1007/s00401-014-1261-7.
- 73. Makowska I, Kloszewska I, Grabowska A, Szatkowska I, Rymarczyk K. Olfactory deficits in normal aging and Alzheimer's disease in the polish elderly population. *Arch Clin Neuropsychol*. 2011;26(3):270-279. doi:10.1093/arclin/acr011.
- 74. Sohrabi HR, Bates K a, Weinborn MG, et al. Olfactory discrimination predicts cognitive decline among community-dwelling older adults. *Transl Psychiatry*. 2012;2(5):e118. doi:10.1038/tp.2012.43.
- 75. Driver-Dunckley E, Adler CH, Hentz JG, et al. Olfactory dysfunction in incidental Lewy body disease and Parkinson's disease. *Parkinsonism Relat Disord*. 2014;20(11):1260-1262. doi:10.1016/j.parkreldis.2014.08.006.
- 76. Ward AM, Calamia M, Thiemann E, Dunlap J, Tranel D. Association between olfaction and higher cortical functions in Alzheimer's disease, mild cognitive impairment, and healthy older adults. *J Clin Exp Neuropsychol*. November 2016:1-15. doi:10.1080/13803395.2016.1253667.
- 77. SAS 9.4. 2017.
- 78. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey
 - Overview of NHANES Survey Design and Weights. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/orientation/sample_design/. Published 2013.
- 79. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey
 Using Blood Lipid or Urine Creatinine Adjustments of Environmental Chemical Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/adjustments/ Info1.htm. Published 2017.

- 80. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey
 Using Blood Lipid or Urine Creatinine Adjustments in the Analysis of Environmental Chemical Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/adjustments/ index.htm. Published 2013.
- 81. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Data Normality and Transformations. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/critical_issues/normality/in dex.htm. Published 2010.
- 82. SAS Institute Inc. Sas/Stat® 9.3. 2011:User's Guide: The GLIMMIX Procedure (Chapter).
- 83. SAS Institute Inc. Estimating Geometric Means Using Data from a Complex Survey Sampling Design. http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1. 1.192.593. Published 2017.
- 84. Xu L, Zhang W, Liu X, Zhang C, Wang P, Zhao X. Circulatory Levels of Toxic Metals (Aluminum, Cadmium, Mercury, Lead) in Patients with Alzheimer's Disease: A Quantitative Meta-Analysis and Systematic Review. J Alzheimer's Dis. 2018;62(1):361-372. doi:10.3233/JAD-170811.
- 85. Peng Q, Bakulski KM, Nan B, Park SK. Cadmium and Alzheimer's disease mortality in U.S. adults: Updated evidence with a urinary biomarker and extended follow-up time. *Environ Res.* 2017;157(May):44-51. doi:10.1016/j.envres.2017.05.011.
- 86. Ciesielski T, Bellinger DC, Schwartz J, Hauser R, Wright RO. Associations between cadmium exposure and neurocognitive test scores in a cross-sectional study of US adults. *Environ Heal A Glob Access Sci Source*. 2013;12(1):1. doi:10.1186/1476-069X-12-13.

- 87. Bergman Å, Heindel J, Jobling S, Kidd K, Zoeller RT. *State of the Science of Endocrine Disrupting Chemicals, 2012.* Vol 211.; 2012. doi:10.1016/j.toxlet.2012.03.020.
- 88. Wang S, Hu P, Wang H-L, et al. Effects of Cd(2+) on AMPA receptormediated synaptic transmission in rat hippocampal CA1 area. *Toxicol Lett*. 2008;176(3):215-222. doi:10.1016/j.toxlet.2007.11.008.
- 89. Chen L, Liu L, Luo Y, Huang S. MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis. *J Neurochem*. 2008;105(1):251-261. doi:10.1111/j.1471-4159.2007.05133.x.
- 90. Jiang JH, Ge G, Gao K, et al. Calcium Signaling Involvement in Cadmium-Induced Astrocyte Cytotoxicity and Cell Death Through Activation of MAPK and PI3K/Akt Signaling Pathways. *Neurochem Res.* 2015;40(9):1929-1944. doi:10.1007/s11064-015-1686-y.
- 91. Chow ESH, Hui MNY, Lin CC, Cheng SH. Cadmium inhibits neurogenesis in zebrafish embryonic brain development. *Aquat Toxicol*. 2008;87(3):157-169. doi:10.1016/j.aquatox.2008.01.019.
- 92. Yuan Y, Jiang C, Xu H, et al. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. *PLoS One.* 2013;8(5):e64330. doi:10.1371/journal.pone.0064330.
- 93. Hossain S, Liu H-N, Nguyen M, Shore G, Almazan G. Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes. *Neurotoxicology*. 2009;30(4):544-554. doi:10.1016/j.neuro.2009.06.001.
- 94. Notarachille G, Arnesano F, Calò V, Meleleo D. Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer's disease. *Biometals*. 2014;27(2):371-388. doi:10.1007/s10534-014-9719-6.
- 95. Luo J, Qiu Z, Zhang L, Shu W. Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. *Toxicol Lett.* 2012;211(1):39-44. doi:10.1016/j.toxlet.2012.02.021.

- 96. Luo J, Qiu Z, Shu W, Zhang Y, Zhang L, Chen J. Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. *Toxicol Lett.* 2009;184(2):121-125. doi:10.1016/j.toxlet.2008.10.029.
- 97. Qu L, Gao Y, Sun H, Wang H, Liu X, Sun D. Role of PTEN-Akt-CREB Signaling Pathway in Nervous System impairment of Rats with Chronic Arsenite Exposure. *Biol Trace Elem Res.* 2015;(23618504). doi:10.1007/s12011-015-0478-1.
- Shavali S, Sens DA. Synergistic Neurotoxic Effects of Arsenic and Dopamine in Human Dopaminergic Neuroblastoma SH-SY5Y Cells. *Toxicol Sci.* 2007;102(2):254-261. doi:10.1093/toxsci/kfm302.
- 99. Zarazúa S, Bürger S, Delgado JM, Jiménez-Capdeville ME, Schliebs R. Arsenic affects expression and processing of amyloid precursor protein (APP) in primary neuronal cells overexpressing the Swedish mutation of human APP. *Int J Dev Neurosci*. 2011;29(4):389-396. doi:10.1016/j.ijdevneu.2011.03.004.
- 100. Guilarte TR, McGlothan JL, Degaonkar M, et al. Evidence for cortical dysfunction and widespread manganese accumulation in the nonhuman primate brain following chronic manganese exposure: a 1H-MRS and MRI study. *Toxicol Sci.* 2006;94(2):351-358. doi:10.1093/toxsci/kfl106.
- Guilarte TR, Chen M-K. Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects. *Neurotoxicology*. 2007;28(6):1147-1152. doi:10.1016/j.neuro.2007.06.005.
- 102. Guilarte TR, Burton NC, McGlothan JL, et al. Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by pre-synaptic mechanism(s): implications to manganese-induced parkinsonism. J Neurochem. 2008;107(5):1236-1247. doi:10.1111/j.1471-4159.2008.05695.x.
- 103. Davis AP, Grondin CJ, Lennon-Hopkins K, et al. The Comparative Toxicogenomics Database's 10th year anniversary: Update 2015. *Nucleic Acids Res.* 2015;43(D1):D914-D920. doi:10.1093/nar/gku935.

CHAPTER VII

MANUSCRIPT IV

EXPOSURE TO ORAL CONTRACEPTIVES AND HORMONE REPLACEMENT THERAPY AND ASSOCIATIONS WITH BRAIN HEALTH: NHANES 2011-2014

ABSTRACT

BACKGROUND: The role of estrogenic endocrine disrupting chemicals (EEDCs) and their role in the development of neurodegenerative disease is of great public health concern, due to increasing exposures to these chemicals and increasingly aging population. Evidence suggests EEDCs exposure plays a role in the development of neurodegenerative disease, although epidemiological evidence is lacking in this area. Oral contraceptives (OC) and hormonal replacement therapy (HRT) are known estrogenic endocrine disrupting chemicals (EEDCs), have a strong affinity for estrogen receptors with proven estrogenic activity, and are almost functionally similar to estrogen, which affects estrogen and its protective effects on brain health.

OBJECTIVE: The objective of this study is to investigate the relationship between surrogate brain health indicators and to past OC and HRT use among the older individuals of the United States (US) population.

METHODS: In this study, we analyzed participants from the Center for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey (NHANES) in the survey cycles 2011-2012 and 2013-2014. The participants were 60 years of age and older who had answered medical questions concerning oral contraceptive and hormonal replacement therapy use. Other data pertaining to

covariates and demographics were also obtained. The two medical questions analyzed were: 1) "Have you ever taken birth control pills for any reason?" and 2) "Have you ever used female hormones such as estrogen and progesterone?". These responses were analyzed versus various brain health indicators available in the form of test scores and questionnaires, available in the NHANES datasets. The brain health indicators test scores were the following: immediate recall test scores; delayed recall test scores; animal fluency test scores; digit symbol substitution test scores. The brain health indicator questions were as follows: worsening memory over the past 12 months; trouble remembering over the past week; difficulty remembering or because you experience periods of confusion. The following smell and taste questions were also included as brain health indicators due to their potential as pre-clinical indicators of cognitive impairment: phantom odor (phantosmia) and persistent taste in mouth over the past 12 months. Chi-square test of independence was used to test the associations between the medical questions (Y/N) versus the brain health indicators. Logistic regression was then used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Three logistic regression models were presented in our study with all of them stratified by gender: unadjusted; age, race, education; age, race, education, body mass index (BMI), smoking status, blood pressure, diabetes status, alcohol use, coronary heart disease status, heart attack status, stroke status, head injury status, and physical activity status.

RESULTS: We observed a the existence of a relationship between past OC and HRT use and the following surrogates of brain function: immediate recall scores; delayed recall scores; animal flluency scores; DSST scores, and limitations due to difficulty

remembering or confusion. In our logisitic regression models, when controlling for all known and suspected covariates of cognitive dysfunction and AD in our second adjusted model, we found past OC use to lower the risk of developing cognitive dysfunction and the possible development of AD. Specifically, we found past OC use to be associated with better immediate recall, delayed recall, animal fluency and DSST scores. We also found past HRT use to lower the risk fo developing cognitive dysfunction and the possible development of AD. Specifically, we found past HRT use to be associated with better immediate recall, delayed recall, animal fluency and DSST scores. We also found past HRT use to lower the risk fo developing cognitive dysfunction and the possible development of AD. Specifically, we found past HRT use to be associated with better immediate recall, animal fluency, and DSST scores. Past HRT use was also associated with less occurrences of limitations due to periods of difficulty remembering or periods of confusion.

Conclusion: Our study takes a novel approach to assessing cognitive dysfunction neurodegenerative disease and exposures to past OC and HRT use. It appears there is a link between exposure to past OC and HRT use and adverse brain health. Further research is needed with the use of clinical endpoints to further establish the relationship between neurodegenerative disease and phthalate/BPA exposure.

Exposure to Oral Contraceptives and Hormone Replacement Therapy and Associations with Brain Health: NHANES 2011-2012 INTRODUCTION

The role of exposure to EEDCs and neurodegenerative disease development is of great public health concern as stated by the World Health Organization (WHO)¹, due to cognitive health and neurodegenerative disease emerging as great public health concerns due to an increasingly aging population². Exposures to EEDCs have been linked to neurodegenerative diseases and other adverse brain health conditions, such as Alzheimer's disease (AD). In this study, we examine the associations of past OC and HRT use and their associations with brain health in an older US population.

Pharmaceutical drugs are also considered to be estrogenic endocrine disrupting chemicals ³. A particularly powerful example are the health effects brought about by the use of diethylstilbestrol a potent estrogen mimic whose use brought about immediate and long-term health effects to the mothers who took the drug ⁴. Both had indications as a hormone replacement therapy (HRT) and oral contraceptive (OC).

Oral contraceptives containing specifically containing ethinyl estradiol are considered EEDCs due to its ability to mimic estrogen and influence the reproductive cycle. OC use has been shown to reduce the amount of available endogenous estrogen in the body ⁵. OCs has varying effects brain structure, function, and cognition ⁶. Most recent studies have shown varying effects; however, the studies do not differentiate between the various types of contraceptives, making it difficult to find out if the

contraceptives used contained ethinyl estradiol and inconsistencies are found in the reporting of the type of OC used (Beltz et al, 2015).

A cross-sectional study by Beltz et al.⁷ examined OC effects on spatial and verbal abilities found OC users to perform better on spatial ability and verbal tests. Another cross-sectional study by Egan and Gleason ⁸ found OC users to have better performance on cognitive exams compared to non-users. Griksiene and Ruksenas⁵ found OC to negatively affect cognition. A review by Warren et al. ⁹ suggest an overall positive effect with OC use and verbal memory.

Hormone replacement therapy, or HRT, has been shown to be associated with the onset of neurodegenerative disease, although evidence points to a timeframe dependent response, depending on when the therapy is initiated. As summarized in Maki and Henderson¹⁰, initial observation studies and analyses with women indicated the use of HRT's containing estrogen to be associated with a reduced risk of Alzheimer's disease. Studies suggest that the timing of HRT use during parts of the menopausal stage may dictate whether beneficial adverse effects are observed ^{10,11}. Several analytical studies, however, showed associations between the use of HRT and neurodegenerative disease. In the Women's Health Initiative Memory Study (WHIMS), a randomized, double-blind, placebo-controlled clinical trial, it was found that an HRT treatment of estrogen plus progestin increased the risk for dementia in postmenopausal women and did not prevent cognitive impairment ¹². In another study from the same trial, it was found that estrogen only HRT did not reduce the incidence of dementia, or cognitive impairment, and increased the risk for both ¹³.

An ancillary to the WHIMS study, the Women's Health Initiative Study of Cognitive Aging, or WHISCA, further supports HRT's association with neurodegenerative disease, however, results are varied. One finding from Resnick et al ¹⁴ from the WHISCA study found that a combination of conjugated equine estrogen with medroxyprogesterone acetate (estrogen + progestin) appeared to negatively impact verbal memory, but positively affect figural memory among postmenopausal women, free of probable dementia, and compared to controls. Another finding from Resnick et al ¹⁵ showed estrogen alone, as conjugated equine estrogen, did not improve cognitive functioning and lowered certain cognitive functions in women with prior hysterectomy. Other studies have indicated that no visible improvement has been observed in using estrogen only treatments for cognitive function 16-19. New studies and reviews give mixed results. A cohort study conducted by Shao et al, ²⁰ showed increased Alzheimer's disease risk amongst women who used HRT more than five years after menopause, but observed a decreased risk of AD if used within five years of menopause. Another recent meta-analysis showed no observable associated between postmenopausal HRT use and AD and dementia²¹. While another study found that an increased risk in the type of hormonal therapy used and PD risk 22

OBJECTIVE

There is limited information regarding exposures to OC and HRT use the development of cognitive dysfunction and neurodegenerative disease in older populations. In this study we examine the relationship between OC and HRT use with surrogate brain health indicators, from the CDC's NHANES 2011-2012 and 2013-

2014 data cycles. The objectives of the study are as follows: 1) to assess past OC and HRT use and any relationships in older adults in the US, 60 years of age and above with the surrogates of brain health indicators in the US population, 2) assess the association between phthalate and BPA levels and surrogate brain health indicators in older adults in the US, to find the risk of poor cognitive function and development of mild cognitive impairment, dementia, and AD.

METHODS

Study Design and Population: NHANES is a continuous cross-sectional data collection utilizing a complex multi-stage sampling design that creates a survey representative of the non-institutionalized population of the United States ^{23,24}. The survey has been conducted since 1999 and consists of an at-home questionnaires followed by a standardized physical examination and specimen collection conducted in mobile examination centers (MEC) ^{23,24}. Eligibility is determined using preset selection probabilities for the desired demographic subdomains ²⁴. A household screener is performed before to determine if any household members are eligible for the interview and examination, while the physical examination includes physical measurements, dental examination, and the collection of blood and urine specimens for laboratory testing ²⁴. Prior to any to interviews and examinations, informed consent was obtained and all procedures were approved by the CDC Institutional Review Board ²⁵

In our study, we merged the NHANES 2011-2012 and 2013-2014 data cycles. All our analyses were limited to individuals 60 years of age and older who have recorded

responses to cognitive test scores and/or memory and taste/smell questions and have responses to questions concerning oral contraceptive and hormonal therapy use.

Inclusion/Exclusion Criteria

Inclusion criteria:

- 13. Females, 60 years of age and older
- 14. History of OC and/or HRT use.
- 15. Complete responses to identified outcome variables.

Exclusion criteria:

- 13. All males
- 14. Females, 59 years of age and younger
- 16. Unavailable History of OC and/or HRT use.
- 15. Complete responses to identified outcome variables.

Oral Contraceptive Use Assessment and Measurements

Oral contraceptive use was recorded by the question yes/no question, "Have you ever taken birth control pills for any reason?". Female participants aged 12 years and older were eligible ^{26,27}. These questions were administered in the mobile examination center (MEC) by trainer interviewers ^{26,27}. A total of 1670 female subjects over the age of 60, provided a response, with 952 participants responding "yes" and 718 participants responding "no".

Hormonal Replacement Therapy Use Assessment and Measurements

Oral contraceptive use was recorded by the question yes/no question, "Have you ever used female hormones such as estrogen and progesterone?". Female participants aged 12 years and older were eligible ^{26,27}. These questions were

administered in the mobile examination center (MEC) by trainer interviewers ^{26,27}. A total of 1662 female subjects over the age of 60, provided a response, with 628 participants responding "yes" and "1034" participants responding "no".

<u>CERAD Word Learning Subtest – Immediate Recall and Delayed Recall:</u> The

Assessment of Surrogate Brain Health Indicators – Cognitive Scores

Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word assesses both immediate and delayed learning ^{28,29}. The delayed and immediate recall tests available in NHANES assess the ability to process new verbal information ^{28,29}. The tests are part of the neuropsychological assessment for the entire CERAD testing protocol, which was initially created to standardize AD assessment and diagnosis ³⁰. The tests in the neuropsychological assessment itself were chose because of their ability to assess cognitive functions inherent in AD ³⁰. The assessments have the ability to differentiate those of adequate cognitive status versus those who have mild cognitive impairment or dementia ^{30–33}. Although developed for use in the assessment of AD, the CERAD assessments have shown utility in use for Parkinson's disease ³³ and frontotemporal lobar degeneration ³⁴.

Immediate Recall: For immediate recall, , the subjects are asked to read aloud a sequence of 10 unrelated words as they are presented to them and immediately after, they are asked to recall as many words as possible 28,29 . This is done in three trials with the order of the words differing in each trial. 28,29 . Each trial has a maximum score of 10, with a maximum overall score of 30 28,29,31 .

In our study, we included individuals 60 years of age and older who completed all immediate recall word list trials identified as: CFDCST1, CFDCST2,

and CFDCST3 in the 2011-2012 and 2013-2014 NHANES data cycles. Those who did not have three trials completed were not included in the immediate recall analysis. We summed the total of the three trials and created a new variable with cut-off scores named IMMEDIATERECALL. A cut-off score of ≤ 13 and ≥ 14 was used as it is the standard in other assessments ^{31,35}. A total of 3,149 subjects from the 2011-2012 and 2013-2014 responded with complete immediate recall trials. We then accounted for those who provided responses to OC and HRT use. After, our OC/immediate recall study population consisted of 1576 subjects, 193 subjects ≤ 13 and 1383 subjects \geq 14. Our HRT/immediate recall study population consisted 1567 subjects, with 189 subjects ≤ 13 and 1378 subjects ≥ 14 .

Delayed Recall: For delayed recall, the subject is asked to repeat the sequence of 10 unrelated words after the other cognitive tests are completed, which is typical 8 to 10 minutes after the start of the word learning trials 28,29 . The maximum score is 10 for delayed recall 28,29 .

In our study, we included subjects 60 years of age and older who completed the delayed recall trial, identified as CFDCSR, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with the cut-off scores named DELAYEDRECALL. A cut-off score of ≤ 13 and ≥ 14 was used as it is the standard in other assessments ^{31,35,36}. A total of 3,126 subjects from the 2011-2012 and 2013-2014 responded with a complete delayed recall trial. We then accounted for those who provided responses to OC and HRT use. After, our OC/delayed recall study population consisted of 1568 subjects, 218 subjects ≤ 3 and 1350 subjects ≥ 4 . Our

HRT/immediate recall study population consisted of 1560 subjects with 213 subjects \leq 3 and 1347 subjects \geq 4.

Animal Fluency: The animal fluency test is used to determine categorical verbal fluency, which is part of executive function and can differentiate between with normal cognition versus those with MCI and more severe cognitive impairment ^{28,29}. Since the test uses animal names, it does not require cultural consideration or formal education experience ^{28,29}. In the test, subjects are asked to name as many animals in a one minute span, with a maximum range of 40 words in the NHANES 2011-2014 data set. ^{28,29}. A sample test is given to each subject before the actual test ^{28,29}.

In our study, we included subjects 60 years of age and older who completed the animal fluency trial, identified as CFDAST, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with cut-off scores named VERBALFLUENCY. cut-off score of ≤ 11 and ≥ 12 was used as it is the standard in other assessments ^{31,35–37}. A total of 3,110 subjects from the 2011-2012 and 2013-2014 responded with a complete animal fluency trial. We then accounted for those who provided responses to OC and HRT use. After, our OC/Animal Fluency study population consisted of 1565 subjects, 321 subjects \leq 321 and 1244 subjects \geq 12. Our HRT/Animal Fluency study population consisted of 1557 subjects with 318 subjects \leq 11 and 1239 subjects \geq 12.

Digit Symbol Substitution Test: The Digit Symbol Substitution Test (DSST) is part of the Wechsler Adult Intelligence Scale (WAIS III) ^{28,29,38}. The test measures processing speed, sustained attention, and working memory ^{28,29,38}. The subtests have shown utility in the identification of dementia and other neurodegenerative disorders

^{39–41}. The test is given in paper form, with a key that has 9 numbers paired to different symbols. The subject has 2 minutes to match each symbol to 133 boxes with a number associated to it, with the score as the total correct matches with a maximum score of 105 in the 2011-2014 NHANES dataset. ^{28,29}. A sample test is given to each subject before the actual test ^{28,29}.

In our study, we included subjects 60 years of age and older who completed the DSST trial, identified as CFDDS, for the 2011-2012 and 2013-2014 NHANES data cycles. After we created a new variable with cut-off scores named DSST, cut-off score of ≤ 27 and ≥ 28 was used as it is the standard in other assessments ^{42–44}. A total of 3,104 subjects from the 2011-2012 and 2013-2014 responded with a complete delayed recall trial. We then accounted for those who provided responses to OC and HRT use. After, our OC/DSST study population consisted of 1511 subjects, 227 subjects ≤ 27 and 1284 subjects ≥ 28 . Our HRT/DSST study population consisted of 1505 subjects with 226 subjects ≤ 27 and 1279 subjects ≥ 28 .

Assessment of Surrogate Brain Health Indicators – Memory Function <u>During the past 12 months, have you experienced confusion or memory loss that</u> <u>is happening more often or getting worse?</u>: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the yes=0/no=1 question," During the past 12 months, {have you/has she/has he} experienced confusion or memory loss that is happening more often or is getting worse?" ⁴⁵. Memory issues, such as confusion and memory loss often precede the development of dementia and neurodegeneration^{2,46}, which makes this question a potential surrogate for the development of memory issues. 3,628 subjects responded

to this question in the 2011-2012 and 2013-2014 survey cycle. We then accounted for those who provided responses to OC and HRT use. After, our OC/MCQ084 study population consisted of 1669 subjects, 274 subjects responded "yes" and 1395 subjects responded "no". Our HRT/MCQ084 study population consisted of 1661 subjects with 272 subjects responded "yes" and 1389 subjects responded "no".

During the past 7 days, how often have you had trouble remembering where you

put things?: In our study we included subjects 60 years of age and older who had phthalate and BPA samples taken and responded to the question," During the past 7 days, how often {have you/has SP} had trouble remembering where {you/he/she} put things, like {your/his/her} keys or {your/his/her} wallet?" ⁴⁵. Memory issues, such as confusion and memory loss often precede the development of dementia and neurodegeneration^{2,46}, which makes this question a potential surrogate for the development of memory issues. 3,448 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

The question is multi-leveled, where 1,993 subjects answered "Never" =0, 809 subjects answered "About once" =1, 544 subjects answered "Two or three times" =2, 175 subjects answered "Nearly every day" =3, and 102 subjects answered "Several times a day" =4. We created a new variable named MCQ380_WK, which combines responses coded as 0/Never and 1/About once into a variable =2 coded as "no" and 2/Two or three times, 3/Nearly every day and 4/Several times a day into a variable =1 coded as "yes"

We then accounted for those who provided responses to OC and HRT use. After, our OC/MCQ380_WK study population consisted of 1576 subjects, 335 subjects

responded "yes" and 1241 subjects responded "no". Our HRT/MCQ380_WK study population consisted of 1568 subjects with 332 subjects responded "yes" and 1236 subjects responded "no".

Are you limited in any way because of difficulty remembering or because you experience periods of confusion?: In our study we included subjects 60 years of age and older who had responses to OC and/or HRT use and responded to the question," {Are you/Is SP} limited in any way because of difficulty remembering or because {you/s/he} experience{s} periods of confusion?" ⁴⁵. Limitations in physical movement due to difficulty remembering and confusion can indicate the development of cognition issues ⁴⁷. 3,629 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

We then accounted for those who provided responses to OC and HRT use. After, our OC/PFQ057 study population consisted of 1670 subjects, 259 subjects responded "yes" and 1411 subjects responded "no". Our HRT/PFQ057 study population consisted of 1662 subjects with 254 subjects responded "yes" and 1408 subjects responded "no".

Assessment of Surrogate Brain Health Indicators – Taste and Smell Function

It has been observed that neurodegenerative disease has been shown to be preceded by smell and taste disorders ^{48–51}. The causes of these disorders have been linked to genetic alterations ⁴⁸, overexpression of key proteins⁴⁹, and direct effect of some environmental chemicals on the olfactory mucosa ⁵², which can have associations with exposure to EEDCs ^{48,49,51,52}. However, issues with olfaction can

also be caused by upper respiratory tract infections, sino-nasal disease, head trauma, idiopathic causes, surgery of the nasal area, and congenital loss of smell ⁵³.

The two most common and prevalent neurodegenerative diseases, AD and PD have been shown to be preceded by smell disorders ^{54–59}. These disorders manifest themselves when evidence of pathological changes in the olfactory system are evident ⁵⁹. These are characterized by the build-up of pathological proteins, which cause the death of olfactory cells ⁵⁹. Several human epidemiological studies have also alluded to the utility of using sensory biomarkers as an early detection for neurodegenerative diseases ^{60–63}

Do you sometimes smell and unpleasant, bad, or burning odor when nothing is

there?: In our study we included subjects 60 years of age and older who had OC and/or HRT responses and responded to the question," {Do you/Does SP} sometimes smell an unpleasant, bad or burning odor when nothing is there?" ⁴⁵. 3,617 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle. We then accounted for those who provided responses to OC and HRT use. After, our OC/CSQ040 study population consisted of 1664 subjects, 123 subjects responded "yes" and 1541 subjects responded "no". Our HRT/CSQ040 study population consisted of 1655 subjects with 123 subjects responded "yes" and 1532 subjects responded "no".

During the past 12 months have you had a taste or other sensation in your

<u>mouth that does not go away</u>?: In our study we included subjects 60 years of age and older who provided responses to OC/HRT use and responded to the question," During the past 12 months {have you/has SP} had a taste or other sensation in {your/his/her} mouth that does not go away?"⁴⁵. 3,623 subjects responded to this question in the 2011-2012 and 2013-2014 survey cycle.

We then accounted for those who provided responses to OC and HRT use. After, our OC/CSQ110 study population consisted of 1667 subjects, 134 subjects responded "yes" and 1533 subjects responded "no". Our HRT/CSQ110 study population consisted of 1658 subjects with 134 subjects responded "yes" and 1524 subjects responded "no".

Covariates

In our study we included a number of covariates, based off a review of literature and well-known risk factors for neurodegenerative diseases, if they were available in the NHANES datasets.

The demographic variables are as follows: gender (male, female), age (60-69, 7-79, 80+), Race/Ethnicity (Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian/Other), Family Income (Under 24k, 25k to 54,999k, 55k to 74,999k, over 75k), Education (<12th grade, completed high school, >12th grade) ⁴⁵. Modifiable health variables and risk factors are as follows: ever smoked (yes, no), blood pressure (normal/high), diabetes (yes, no, borderline), coronary heart disease (yes, no), stroke (yes, no), heart attack (yes, no), head trauma (yes, no), alcohol use (yes, no), ever use birth control (yes, no), every use hormonal replacement therapy (yes, no) ⁴⁵.

Statistical Analysis

Statistical analysis was performed using SAS software ⁶⁴. The 2011-2012 and 2013-2014 survey cycles were merged and a four-year sampling weight was calculated to account for the complex sampling design in order to calculate correct statistical estimates and standard errors when calculating means, geometric means, and other statistics ⁶⁵.

For OC AND HRT variables, a value of "1" indicates a "yes" response and "2" indicates a "no" response. We used the SAS Survey procedures to account for the complex sampling design of the NHANES data sets ⁶⁶.

We used PROC SURVEYFREQ was used to obtain descriptive statistics for the different populations we were examining in our study which accounts for the complex survey design of the NHANES data sets ⁶⁶. Descriptive statistics were organized based on the following categories per variable: gender (male, female), age (60-69, 7-79, 80+), Race/Ethnicity (Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian/Other), Family Income (Under 24k, 25k to 54,999k, 55k to 74,999k, over 75k), Education (<12th grade, completed high school, >12th grade), ever smoked (yes, no), blood pressure (normal/high), diabetes (yes, no, borderline), coronary heart disease (yes, no), stroke (yes, no), heart attack (yes, no), head trauma (yes, no), alcohol use (yes, no), ever use birth control (yes, no), every use hormonal replacement therapy (yes, no) ⁴⁵.

We also used PROC SURVEYFREQ to perform chi-square test of independence to examine associations between OC/HRT use and our select surrogate of brain health indicators.

We used PROC SURVEYREG and guidance provided by the SAS institute to directly to determine the geometric mean of the EEDC to test if they were significant between the responses of our outcome variables ^{66,67}. The standard errors were

calculated using the Taylor Series linearization method, which is the default method in the survey procedures to calculate standard error ⁶⁶. Geometric means (GM), geometric standard errors (GSE), and number of subjects were reported for the results of the outcome variables for all subjects that had EEDCs over the LOD. We looked at geometric means between the outcome variables (yes vs. no, low test score vs. high test score), and also performed age-specific, gender-specific, and race/ethnicityspecific geometric means between the responses to the outcome variable. Due to the smaller range of ages in our dataset, 60 years and older, we calculated age-specific rates in lieu of age-standardized rates.

We used PROC SURVEYLOGISTIC to find the unadjusted and adjusted odds ratios (ORs) and the 95% confidence intervals (CI) to examine the association between our outcome variables and exposures to phthalates and BPA ⁶⁶. Analysis was done per EEDC per outcome variable. We presented three logistic regression models which were stratified by gender and presented the EEDC as a continuous variable as well as a ranked variable < LOD to 50th percentile (reference) and \geq 50th percentile: unadjusted for known risk factors, age, education, race/ethnicity, adjusted for known and suspected risk factors, age, education, race/ethnicity, smoking, blood pressure history, history of coronary heart disease, stroke, heart attack, diabetes status, head trauma, and alcohol use. We did not include income use as variables as they significantly reduced the size of the population.

RESULTS

Descriptive statistics for the Surrogates of Brain Health Indicators and Covariates: Descriptive statistics of the study populations are described in table 1.1 and 1.1a for each of our 9 outcomes with their respective covariates for OC and HRT use respectively.

Table 1.1 - Descriptive Statistics - Surrogate brain health indicators and covariates for OC use									Animal Fluency (n=1565)				Test (n=1511)					Past 12 months, memory getting worse? (n=1669)			Past 7 days, trouble remembering? (n=1576)			Limited due to difficulty remembering or confusion? (n=1670)			usion?	Do you sometimes smell an unpleasant, bad or burning odor when nothing is there? (n=1664)				away? (n=1667)			ation in s not go 7)	
	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
	≤1			14	≤		2		≤1		≥1			27		28		'es	N		Y		N		Ye			No		'es		No		es		No
Total Population	193	9.83	1383	90.17	218	11.88	1350	88.12	321	13.72	1244	86.28	227	9.00	1284	91.00	274	14.47	1395	85.53	335	20.76	1241	79.24	259	11.88	1411	88.12	123	6.42	1541	93.58	134	6.38	1533	93.62
Age (years)	-0				-			10.10				10.00	-								4.40					4.80						40.05				10.00
60-69	58	2.31	768	50.53	71	3.40		49.62	120	3.81	699	48.88	79	2.31	736	51.74	124	6.55	736	45.37	160	10.33	659	42.25	115	4.70	746	47.25	77	3.91	782	48.07	82	3.66	778	48.30
70-79	60	3.11	411	26.55	66	3.69		25.82	116	5.41		24.37	81	3.17	366	26.37	65	3.29	429	26.14	94	5.56		24.00	52	2.24	442	27.18	30	1.75	462	27.64	26	1.23	468	28.20
80+	75	4.41	204	13.09	81	4.79	197	12.67	85	4.50	193	13.03	67	3.52	182	12.90	85	4.62	230	14.01	81	4.87	206	12.99	92	4.95	223	13.68	16	0.76	297	17.87	26	1.49	287	17.12
Race/Ethnicity Hispanic	53	1.46	254	6.12	54	1.46	251	6.11	77	1.92	229	5.67	86	2.25	195	4.84	68	1.67	252	5.99	64	1.57	223	5.63	74	1.73	246	5.92	33	0.81	285	6.82	53	1.20	266	6.44
Non-Hispanic White	55 79	1.40 6.67	234 682	0.12 71.19	.54 97	1.40 8.46	231 661	69.42	97	7.65		5.07 70.19	80 60	4.40	195 686	4.84 74.38	126	1.07	232 663	5.99 66.29	04 161	1.57	223 591	5.05 61.25	102	7.74	240 688	5.92 69.19	55 47	4.48	285 742	0.82 72.51	35 47	4.23	200 743	72.73
Non-Hispanic Black	79 39	1.06	082 319	8.29	51	8.40 1.41	306	7.97	97 108	3.00	248	6.38	60 64	4.40	279	7.25	45	10.05	336	8.38	73	2.00	292	7.57	49	1.26	332	8.27	34	4.48	742 345	8.66	25	4.25 0.64	355	8.89
Non-Hispanic Asian/Other	39 22	0.65	128	8.29 4.56	16	0.56	300 132	4.62	108 39	5.00 1.15	248 109	0.38 4.04	04 17	0.46	124	4.52	45 35	1.13	550 144	6.36 4.87	37	1.12	135	4.79	49 34	1.20	552 145	6.27 4.74	9	0.85	545 169	8.00 5.59	25	0.64	555 169	8.89 5.55
Education	22	0.05	120	4.30	10	0.00	132	4.02	37	1.15	109	4.04	1/	0.40	124	4.J2	55	1.02	144	4.07	57	1.12	155	4./9	.)4	1.15	145	4./4	7	0.28	109	3.37	,	0.52	109	5.55
<12th Grade	89	3.24	327	13.95	90	3.49	322	13.63	145	5.15	268	12.06	144	4.70	230	11.42	105	3.94	366	14.73	104	4.71	330	13.55	127	4.38	344	14.28	55	2.17	413	16.46	67	2.32	402	16.32
Completed High School	43	2.52	327	21.53	53	2.99		21.15	80	3.56		20.47	44	2.15	317	22.07	54	2.55	335	21.37	80	4.79	290	19.28	49	2.23	340	21.68	25	1.38	363	22.50	24	1.22	365	22.69
>12 Grade	61	4.08	728	54.68	75	5.41		53.34	96	5.02		53.75	39	2.15	736	57.51	113	7.90	693	49.52	149	11.18	620	46.49	81	5.18	726	52.25	43	2.87	762	54.62	43	2.85	763	54.59
BMI (kg/m2)	01	1.00	120	0 1100	10	5.11	,	00101	70	5102	000	00110	57	2.10	150	01101	115	1.50	075	17102	112	11.10	020	10.17	01	5.10	120	02120	15	2.07	702	0 1102	15	2.00	100	01107
Underweight (<18.5)	13	0.80	44	2.76	18	0.99	39	2.58	19	0.94	38	2.64	17	0.82	34	2.55	16	0.73	50	3.03	11	0.77	45	2.55	23	0.95	43	2.82	3	0.14	62	3.62	8	0.38	57	3.37
Normal Weight (18.5 to 24.9)	58	3.09	343	23.57	59	3.61	338	26.55	79	3.69	316	22.89	47	1.91	337	24.45	88	4.73	346	22.25	91	6.24	311	20.46	82	4.05	352	22.92	27	1.31	405	25.66	30	1.13	402	25.82
Overweight (25.0 to 29.9)	60	3.20	400	27.67	68	3.73	388	27.07	96	4.26		26.84	70	3.08	375	28.25	69	3.55	418	27.36	95	5.80	366	25.23	65	3.02	422	27.87	30	1.39	457	29.55	35	1.93	452	28.97
Obese (30.0+)	62	2.75	596	36.16	73	3.56	585	35.53	127	4.83	523	33.91	93	3.19	538	35.75	101	5.46	581	32.89	138	7.94	519	31.00	89	3.87	594	34.51	63	3.59	617	34.75	61	2.94	622	35.46
Alcohol Use																																				
Yes	71	4.07	753	56.85	84	5.52	738	55.41	129	5.91	692	55.20	82	3.48	725	58.42	130	7.85	713	51.81	175	12.96	623	47.21	108	5.58	736	54.10	65	3.80	778	55.94	61	3.43	782	56.26
No	122	5.77	630	33.32	134	6.37	612	32.70	192	7.81	552	31.08	145	5.51	559	32.58	142	6.58	682	33.77	160	7.81	616	32.02	149	6.26	675	34.06	58	2.62	761	37.64	73	2.96	749	37.35
Ever Smoked																																				
Yes	60	3.34	538	37.97	65	4.00	532	37.35	110	5.16	484	36.13	71	3.04	505	38.24	113	6.47	508	34.39	129	8.52	453	32.22	94	4.57	527	36.27	60	3.43	560	37.47	49	2.63	571	38.22
No	133	6.50	843	52.19	153	7.89	816	50.75	211	8.57	758	50.14	156	5.96	778	52.76	161	8.01	885	51.13	206	12.25	786	47.01	165	7.32	882	51.83	63	2.99	979	56.11	85	3.76	960	55.40
Physically Active?																																				
Yes	54	2.98	528	37.38	60	3.68		36.67	69	2.90		37.54	59	1.96	506	38.81	63	3.42	536	36.29	118	7.74	461	32.69	52	2.46	547	37.23	31	2.02	568	37.73	33	1.84	565	37.85
No	139	6.86	855	52.78	158	8.20	831	51.45	252	10.82	735	48.74	168	7.04	778	52.19	211	11.05	859	49.24	217	13.02	780	46.55	207	9.42	864	50.89	92	4.40	973	55.85	101	4.54	968	55.77
Diabetes		• • • •				• • •						11.10	-																10				10			
Yes	46	2.09	297	15.51	55	2.80		14.85	91	3.18	251	14.49	79	3.08	245	14.31	85	3.73	287	14.07	78	3.85	265	13.42	86	3.76	286	14.03	40	2.02	331	15.78	40	1.54	331	16.24
No Borderline	135	7.26	1025	71.05	150	8.49	1005	69.89	215	9.91		68.37	142	5.75	975	72.77	180	10.44	1041	67.67	246	16.46	914	62.23	165 7	7.82	1057	70.30	75 8	3.89	1142	74.22	88	4.43	1132	
Blood Pressure	12	0.49	60	3.61	13	0.60	57	3.37	14	0.62	57	3.45	6	0.17	63	3.92	8	0.27	67	3.81	11	0.45	61	3.59	/	0.28	68	3.81	δ	0.51	67	3.58	6	0.41	69	3.67
Normal	106	4.79	933	63.46	127	6.78	908	61.63	193	7.92	840	60.25	127	4.91	869	63.51	175	9.68	919	58.12	219	13.91	825	54.65	161	6.75	934	61.07	84	4.48	1006	63.30	82	3.57	1012	64.27
High	87	4.79 5.04	955 450	26.71	91	5.11		26.48	195	7.92 5.80		26.03	127	4.91		27.49	99	9.08 4.79	476	27.41	116	6.85		24.60	98	5.13		27.05	84 39	4.48	535	30.28	82 52	2.82	521	29.35
Myocardial Infarction	07	5.04	4.50	20.71	71	5.11	442	20.40	120	5.00	101	20.05	100	4.0)	415	21.47	,,	4.7)	470	27.41	110	0.05	410	24.00	70	5.15	4//	21.00	57	1.74	555	30.20	32	2.02	341	27.33
Yes	17	0.87	83	5.49	12	0.89	88	5.49	23	1.02	74	5.22	20	0.92	72	5.22	24	1.23	82	5.12	23	1.21	74	5.01	27	1.62	79	4.72	17	0.84	89	5.52	9	0.47	97	5.88
No	176	8.97	1298	84.67				82.62	298	12.70		81.06	206	8.06	1211		250	13.24	1311	80.41	312			74.22	232			83.39	106	5.58	1450	88.06	125	5.92	1434	
Stroke																			_																	
Yes	23	1.13	94	5.40	23	1.20	93	5.23	42	2.07	74	4.45	35	1.53	74	4.94	34	1.60	99	5.43	38	2.29	84	4.43	44	1.92	89	5.10	15	0.73	117	6.28	16	0.84	117	6.19
No	170	8.72	1285	84.75	195	10.71	1253	82.86	276	11.51	1169	81.96	192	7.48	1207	86.05	239	12.87	1293	80.11	296	18.47	1154	74.81	214	9.97	1319	83.01	108	5.70	1420	87.29	118	5.56	1412	87.42
Coronary Heart Disease																																				
Yes	17	0.93	89	5.77	20	1.12	86	5.61	29	1.21	75	5.41	23	1.13	76	5.33	33	1.57	84	5.34	29	1.53	78	5.19	37	1.97	80	4.94	14	0.65	103	6.26	13	0.69	104	6.21
No	175	8.91	1286	84.39	196	10.72	1257	82.54	289	12.46	1163	80.92	200	7.64	1203	85.89	241	12.99	1302	80.11	301	19.07	1160	74.21	220	9.73	1324	83.37	107	5.73	1431	87.36	119	5.68	1422	87.41
Head Trauma																																				
Yes	20	1.04	139	10.67	15	0.85	143	10.85	21	0.96	136	10.73	15	0.72	132	10.80	32	1.53	132	9.93	39	2.26	110	8.85	37	1.70	127	9.76	20	1.41	143	10.04	13	0.86	151	10.60
No	173	8.82	1241	79.47	203	11.06	1204	77.24	300	12.80	1105	75.51	212	8.30	1149	80.18	242	12.97	1260	75.56	295	18.46	1129	70.43	222	10.21	1281	78.33	103	5.02	1395	83.52	121	5.54	1379	83.00
Ever Used Female Hormones																																				
Yes	37	2.69	582	46.48	50	3.86	566	45.22	75	3.81		45.35	43	1.86	563	47.49	90	6.20	536	41.38	120	9.81	476	38.13	62	3.42	565	44.19	40	2.66	586	45.00	44	2.85	583	44.77
No	151	6.90	795	43.92	163	7.82	779	43.10	242	9.71	697	41.13	182	7.09	715	43.55	180	7.98	852	44.44	211	10.72	758	41.34	191	8.14	841	44.26	83	3.80	944	48.55	90	3.57	939	48.81

Table 1.1a - Descriptive Statistics Surrogate brain health indicators and covariates for HRT use	stics Surrogate brain indicators and covariates									Animal Fluency (n=1557) n % n %					Digit Symbol Substitution Test (n=1505)					mory 1661)	Past 7 days, trouble remembering? (n=1568) n % n %			568)	Limited due to difficulty remembering or confusion? (n=1662) n % n %			usion?	Do you sometimes smell an unpleasant, bad or burning odor when nothing is there? (n=1665) n % n %				Past 12 months, have you had a taste or sensation in your mouth that does not g away? (n=1658) n % n %			ion in not go
	_				n		n		n		n						n		n	%							_									
Total Deputation	≤ 2 193	9.83	1383	14 90.17	218	3 11.88	1350	4 88.12	≤ 1 321	13.72	≥1 1244	.2 86.28	≤ 227	9.00	1284	28 91.00	274	es 14.47	1395	85.53	335	es 20.76	N 1241	0 79.24	259	25 11.88	1411	No 88.12	123	es 6.42	1541	√o 93.58	134	es 6.38	No. 1533	0 93.62
Total Population	195	9.85	1365	90.17	218	11.00	1550	00.12	521	15.72	1244	00.20	221	9.00	1264	91.00	2/4	14.47	1595	83.33	333	20.70	1241	19.24	239	11.00	1411	00.12	125	0.42	1341	95.38	154	0.58	1355	95.02
Age (years) 60-69	58	2.31	768	50.53	71	3.40	753	49.62	120	3.81	699	48.88	79	2.31	736	51.74	124	6.55	736	45.37	160	10.33	659	42.25	115	4.70	746	47.25	77	3.91	782	48.07	82	3.66	778	48.30
70-79	58 60	3.11	411	26.55	66	3.40 3.69	400	49.62 25.82	120	5.61		40.00 24.37	81	3.17	366	26.37	65	3.29	429	45.57 26.14	94	5.56		42.23	52	2.24	442	27.18	30	1.75	462	48.07 27.64	82 26	1.23		48.30 28.20
80 +	75	4.41	204	20.55 13.09	81	3.09 4.79	400 197	12.67	85	4.50		24.57 13.03	67	3.52	300 182	20.57 12.90	85	4.62	429 230	20.14 14.01	94 81	3.30 4.87		12.99	92	2.24 4.95	223	13.68	50 16	0.76	462 297	17.87	20 26	1.25		17.12
Race/Ethnicity	15	4.41	204	15.09	61	4./9	197	12.07	6.0	4.30	195	15.05	0/	5.52	162	12.90	6.5	4.02	250	14.01	61	4.87	200	12.99	92	4.95	223	15.08	10	0.70	291	17.87	20	1.49	267	17.12
Hispanic	53	1.46	254	6.12	54	1.46	251	6.11	77	1.92	229	5.67	86	2.25	195	4.84	68	1.67	252	5.99	64	1.57	223	5.63	74	1.73	246	5.92	33	0.81	285	6.82	53	1.20	266	6.44
Non-Hispanic White	79	6.67	682	71.19	97	8.46	661	69.42	97	7.65		70.19	60	4.40	686	74.38	126	10.63	663	66.29	161	16.07	591	61.25	102	7.74	688	69.19	47	4.48	742	72.51	47	4.23	743	72.73
Non-Hispanic Black	39	1.06	319	8.29	51	1.41	306	7.97	108	3.00	248	6.38	64	1.88	279	7.25	45	1.15	336	8.38	73	2.00	292	7.57	49	1.26	332	8.27	34	0.85	345	8.66	25	0.64	355	8.89
Non-Hispanic Asian/Other	22	0.65	128	4.56	16	0.56	132	4.62	39	1.15	109	4.04	17	0.46	124	4.52	35	1.02	144	4.87	37	1.12	135	4.79	34	1.15	145	4.74	9	0.28	169	5.59	9	0.32	169	5.55
Education	22	0.00	120	4.50	10	0.00	152	4.02	57	1.15	107	4.04	17	0.40	124	4.52	55	1.02	144	4.07	57	1.12	155	4.77	54	1.15	145	4.74	,	0.20	107	5.57	,	0.52	107	5.55
<12th Grade	89	3.24	327	13.95	90	3.49	322	13.63	145	5.15	268	12.06	144	4.70	230	11.42	105	3.94	366	14.73	104	4.71	330	13.55	127	4.38	344	14.28	55	2.17	413	16.46	67	2.32	402	16.32
Completed High School	43	2.52	327	21.53	53	2.99	316	21.15	80	3.56		20.47	44	2.15	317	22.07	54	2.55	335	21.37	80	4.79	290	19.28	49	2.23	340	21.68	25	1.38	363	22.50	24	1.22	365	22.69
>12 Grade	61	4.08	728	54.68	75	5.41	711	53.34	96	5.02		53.75	39	2.15	736	57.51	113	7.90	693	49.52	149	11.18	620	46.49	81	5.18	726	52.25	43	2.87	762	54.62	43	2.85		54.59
BMI (kg/m2)	01	1100	720	5 1100	10	5.11	/11	00101	,,,	0.02	000	00110	57	2.10	150	57151	115	11.70	075	17102	10	11110	020	10.15	01	5.10	120	02.20	10	2.07	102	0 1102	10	2.00	100	01105
Underweight (<18.5)	13	0.80	44	2.76	18	0.99	39	2.58	19	0.94	38	2.64	17	0.82	34	2.55	16	0.73	50	3.03	11	0.77	45	2.55	23	0.95	43	2.82	3	0.14	62	3.62	8	0.38	57	3.37
Normal Weight (18.5 to 24.9)	58	3.09	343	23.57	59	3.61	338	26.55	79	3.69	316	22.89	47	1.91	337	24.45	88	4.73	346	22.25	91	6.24	311	20.46	82	4.05	352	22.92	27	1.31	405	25.66	30	1.13	402	25.82
Overweight (25.0 to 29.9)	60	3.20	400	27.67	68	3.73	388	27.07	96	4.26	367	26.84	70	3.08	375	28.25	69	3.55	418	27.36	95	5.80		25.23	65	3.02	422	27.87	30	1.39	457	29.55	35	1.93	452	28.97
Obese (30.0+)	62	2.75	596	36.16	73	3.56	585	35.53	127	4.83		33.91	93	3.19	538	35.75	101	5.46	581	32.89	138	7.94		31.00	89	3.87	594	34.51	63	3.59	617	34.75	61	2.94		35.46
Alcohol Use																																				
Yes	71	4.07	753	56.85	84	5.52	738	55.41	129	5.91	692	55.20	82	3.48	725	58.42	130	7.85	713	51.81	175	12.96	623	47.21	108	5.58	736	54.10	65	3.80	778	55.94	61	3.43	782	56.26
No	122	5.77	630	33.32	134	6.37	612	32.70	192	7.81	552	31.08	145	5.51	559	32.58	142	6.58	682	33.77	160	7.81	616	32.02	149	6.26	675	34.06	58	2.62	761	37.64	73	2.96	749	37.35
Ever Smoked																																				
Yes	60	3.34	538	37.97	65	4.00	532	37.35	110	5.16	484	36.13	71	3.04	505	38.24	113	6.47	508	34.39	129	8.52	453	32.22	94	4.57	527	36.27	60	3.43	560	37.47	49	2.63	571	38.22
No	133	6.50	843	52.19	153	7.89	816	50.75	211	8.57	758	50.14	156	5.96	778	52.76	161	8.01	885	51.13	206	12.25	786	47.01	165	7.32	882	51.83	63	2.99	979	56.11	85	3.76	960	55.40
Physically Active?																																				
Yes	54	2.98	528	37.38	60	3.68	519	36.67	69	2.90	509	37.54	59	1.96	506	38.81	63	3.42	536	36.29	118	7.74	461	32.69	52	2.46	547	37.23	31	2.02	568	37.73	33	1.84	565	37.85
No	139	6.86	855	52.78	158	8.20	831	51.45	252	10.82	735	48.74	168	7.04	778	52.19	211	11.05	859	49.24	217	13.02	780	46.55	207	9.42	864	50.89	92	4.40	973	55.85	101	4.54	968	55.77
Diabetes																																				
Yes	46	2.09	297	15.51	55	2.80	287	14.85	91	3.18		14.49	79	3.08	245	14.31	85	3.73	287	14.07	78	3.85	265	13.42	86	3.76	286	14.03	40	2.02	331	15.78	40	1.54	331	16.24
No	135	7.26	1025	71.05	150	8.49	1005	69.89	215	9.91		68.37	142	5.75	975	72.77	180	10.44	1041	67.67	246	16.46	914	62.23	165	7.82	1057	70.30	75	3.89	1142	74.22	88	4.43		73.71
Borderline	12	0.49	60	3.61	13	0.60	57	3.37	14	0.62	57	3.45	6	0.17	63	3.92	8	0.27	67	3.81	11	0.45	61	3.59	7	0.28	68	3.81	8	0.51	67	3.58	6	0.41	69	3.67
Blood Pressure																																				
Normal	106	4.79	933	63.46	127	6.78	908	61.63	193	7.92		60.25	127	4.91	869	63.51	175	9.68	919	58.12	219	13.91		54.65	161	6.75	934	61.07	84	4.48	1006	63.30	82	3.57		64.27
High	87	5.04	450	26.71	91	5.11	442	26.48	128	5.80	404	26.03	100	4.09	415	27.49	99	4.79	476	27.41	116	6.85	416	24.60	98	5.13	477	27.05	39	1.94	535	30.28	52	2.82	521	29.35
Myocardial Infarction		0.08				0.00				4.00																				0.04						
Yes	17	0.87	83	5.49	12	0.89	88	5.49	23	1.02		5.22	20	0.92	72	5.22	24	1.23	82	5.12	23	1.21	74	5.01	27	1.62	79	4.72	17	0.84	89	5.52	9	0.47	97	5.88
No	176	8.97	1298	84.67	206	11.00	1260	82.62	298	12.70	1168	81.06	206	8.06	1211	85.80	250	13.24	1311	80.41	312	19.56	1165	74.22	232	10.27	1330	83.39	106	5.58	1450	88.06	125	5.92	1434	87.73
Stroke	22	1.12	04	5.40	22	1.00	02	5.00	40	0.07	74	1.15	25	1.52		101	24	1.00	00	5.40	20	0.00	04	1.12		1.02	00	5.10	15	0.72	117	6.00	16	0.04	117	6.10
Yes	23 170	1.13	94 1295	5.40	23	1.20	93	5.23	42 276	2.07	74	4.45	35 192	1.53	74	4.94	34	1.60	99 1202	5.43	38	2.29	84	4.43	44 214	1.92 9.97	89 1210	5.10	15 108	0.73	117	6.28	16	0.84	117	6.19
No Coronary Heart Disease	1/0	8.72	1285	84.75	195	10.71	1253	82.86	2/6	11.51	1169	81.90	192	7.48	1207	86.05	239	12.87	1293	80.11	296	18.47	1154	/4.81	214	9.97	1319	83.01	108	5.70	1420	87.29	118	5.56	1412	67.42
Yes	17	0.93	89	5.77	20	1.12	86	5.61	29	1.21	75	5.41	23	1.13	76	5.33	33	1.57	84	5.34	29	1.53	78	5.19	37	1.97	80	4.94	14	0.65	103	6.26	13	0.69	104	6.21
res	17	0.95 8.91	89 1286	5.77 84.39	20 196		80 1257	5.01 82.54				5.41 80.92	23 200	7.64	76 1203		55 241	1.57		5.54 80.11	29 301			5.19 74.21	220			4.94 83.37	14 107	5.73		0.20 87.36	15	0.69 5.68		6.21 87.41
No Head Trauma	1/3	0.71	1200	04.37	190	10.72	1437	04.34	209	12.40	1100	00.92	200	/.04	1205	0.09	241	12.99	1502	00.11	501	17.0/	1100	/4.21	220	7.13	1324	03.37	10/	5.15	1431	07.30	119	5.00	14422	07.41
Yes	20	1.04	139	10.67	15	0.85	143	10.85	21	0.96	136	10.73	15	0.72	132	10.80	32	1.53	132	9.93	39	2.26	110	8.85	37	1.70	127	9.76	20	1.41	143	10.04	13	0.86	151	10.60
No	173	8.82	1241	79.47				77.24			1105		212		11149		242	12.97		75.56		18.46			222	10.21			103	5.02		83.52	121	5.54		83.00
Ever Used Female Hormones	175	0.02	1241	17.47	203	11.00	1204	11.24	500	12.00	1105	15.51	212	0.00	1147	30.10	242	12.77	1200	15.50	2)3	10.40	112)	10.45	444	10.21	1201	10.55	105	5.02	1575	35.52	121	5.54	151)	05.00
Yes	37	2.69	582	46.48	50	3.86	566	45.22	75	3.81	541	45.35	43	1.86	563	47.49	90	6.20	536	41.38	120	9.81	476	38.13	62	3.42	565	44.19	40	2.66	586	45.00	44	2.85	583	44.77
No	151	6.90	795	43.92	163	7.82	779	43.10	242	9.71		41.13	182	7.09	715	43.55	180	7.98	852	44.44	211	10.72		41.34		8.14	841	44.26	83	3.80	944	48.55	90	3.57	939	48.81

Associations Between Exposures to Past OC and HRT use and Cognitive Test Scores

Exposures OC and HRT and four cognitive scores (immediate and delayed recall, animal fluency, and DSST score) are summarized in tables 1.2 to 1.13. The cognitive test scores have been used as a surrogate indicator of brain health to assess cognitive decline and the possible development of mild cognitive impairment, dementia, and/or AD elderly patients as part of neuropsychological testing.

Immediate Recall Scores and Exposure to OC and HRT: Tables 1.2 and 1.3 present chi-square results for immediate recall scores and OC use and HRT use. We observed a significant relationship exists between OC use and HRT use with respect to immediate recall scores.

Chi Square Results										
Table 1.2 Immediate Decall Cut off Sectors	use?									
Table 1.2 Immediate Recall Cut-off Scores	Yes	No								
≤ 13	63 (3.35%)	130 (6.48%)								
≥ 14	865 (60.83%)	518 (29.34%)								
χ2 (df=1, N=1576) F=72.45, p<0.0001)										
The relationship is significant.										

Chi Square Results										
Table 1.3 Immediate Recall Cut-off Scores	HRT use?									
Table 1.5 Ininediate Recail Cut-on Scores	Yes	No								
≤ 13	37 (2.69%)	152 (6.91%)								
≥14	583 (46.60%)	795 (43.81%)								
χ2 (df=1, N=1567) F=35.55, p<0.0001)										
The relationship is significant.										

Table 1.4 presents the ORs and 95% CIs for OC and HRT use and immediate recall scores. In immediate recall scores and OC use, it was observed that OC use was associated with lower odds of a low immediate recall score in the unadjusted model, adjusted model #1, and adjusted model #2.

In immediate recall scores and HRT use it was observed that HRT use was also associated with lower odds of a low immediate recall score in the adjusted model, adjusted model #1, and adjusted model #2.

	Table 1.4 - ORs and 95% CI for OC and HRT Use Levels by Immediate Recall Cut-off Scores for Female Subjects >= 60 years of age, NHANES 2011-2014								
EEDC	≤13/≥14	Unadjusted Odds Ratio ¹	95% CI	≤13/≥14	Adjusted Odds Ratio #1 ²	95% CI	≤13/≥14	Adjusted Odds Ratio #2 ³	95% CI
OC use	193/1383	0.249 ***	0.175-0.356	193/1382	0.487 ***	0.343-0.692	192/1364	0.521 **	0.358-0.760
HRT use	189/1378	0.366 ***	0.252-0.530	189/1377	0.507 **	0.332-0.773	187/1359	0.517 **	0.340-0.785
	*p<0.05, **p<0.01 ***p<0.001								
¹ Unadjusted model. ² Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.									

Delayed Recall Scores and Exposure to OC and HRT: Tables 1.5 and 1.6 present chi-square results for delayed recall scores and OC use and HRT use. We observed a significant relationship exists between OC use and HRT use with respect to delayed recall scores.

Chi Square Results						
Table 15 Deleved Basell Cut off Secret	OC use?					
Table 1.5 Delayed Recall Cut-off Scores	Yes	No				
≤ 3	82 (4.71%)	136 (7.18%)				
≥ 4	842 (59.46%)	506 (28.66%)				
χ2 (df=1, N=1568) F=30.53, p<0.0001)						
The relationship is significant.						

Chi Square Results						
Table 1 6 Delayed Basell Cut off Secres	HRT use?					
Table 1.6 Delayed Recall Cut-off Scores	Yes	No				
≤3	50 (3.85%)	163 (7.80%)				
\geq 4	567 (45.34%)	780 (43.01%)				
χ2 (df=1, N=1560) F=13.56, p<0.0008)						
The relationship is significant.						

Table 1.7 presents the ORs and 95% CIs for OC and HRT use and delayed recall scores. In delayed recall scores and OC use, it was observed that OC use was associated with lower odds of a low delayed recall score in the unadjusted model, adjusted model #1, and adjusted model #2.

In immediate recall scores and HRT use it was observed that HRT use was also associated with lower odds of a low delayed recall score in the adjusted model and adjusted model #1.

	Table 1.7 - ORs and 95% CI for OC and HRT Use Levels by Delayed Recall Cut-off Scores for Female Subjects >= 60 years of age, NHANES 2011-2014								
EEDC	≤3/≥4	Unadjusted Odds Ratio ¹	95% CI	⊴3/≥4	Adjusted Odds Ratio #1 ²	95% CI	≤3/≥4	Adjusted Odds Ratio #2 ³	95% CI
OC use	218/1350	0.316 ***	0.202-0.495	218/1349	0.538 *	0.323-0.895	216/1332	0.560 *	0.323-0.971
HRT use	213/1347	0.468 ***	0.306-0.717	213/1346	0.609 *	0.389-0.954	211/1328	0.621	0.383-1.007
¹ Unadjusted n	*p<0.05, **p<0.01 ***p<0.001 ¹ Unadjusted model. ² Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.								
L		heart attac	ck status, strok	æ status, physical activi	ty status, smoking statu	s, head trauma	status.		

chi-square results for animal fluency scores and OC use and HRT use. We observed a significant relationship exists between OC use and HRT use with respect to animal fluency scores

Animal Fluency Scores and Exposure to OC and HRT: Tables 1.8 and 1.9 present

fluency scores.

Chi Square Results						
Table 1.8 A nimel Elyaney Cut off Sacres	OC use?					
Table 1.8 Animal Fluency Cut-off Scores	Yes	No				
≤11	141 (5.71%)	180 (8.01%)				
≥ 12	780 (58.40%)	464 (27.88%)				
χ2 (df=1, N=1565) F=39.92, p<0.0001)						
The relationship is significant.						

Chi Square Results						
Table 1.0 A nimel Elyanov, Cut off Seems	HRT use?					
Table 1.9 Animal Fluency Cut-off Scores	Yes	No				
≤11	75 (3.80%)	243 (9.71%)				
≥ 12	542 (45.46%)	697 (41.03%)				
χ2 (df=1, N=1557) F=58.18, p<0.0001)						
The relationship is significant.						

Table 1.10 presents the ORs and 95% CIs for OC and HRT use and animal fluency scores. In animal fluency scores and OC use, it was observed that OC use was associated with lower odds of a low animal fluency score in the unadjusted model, adjusted model #1, and adjusted model #2. In animal fluency scores and HRT use it

was observed that HRT use was also associated with lower odds of a low animal fluency score in the adjusted model, adjusted model #1, and adjusted model #2.

	Table 1.10 - ORs and 95% CI for OC and HRT Use Levels by Animal Fluency Cut-off Scores for Female Subjects >= 60 years of age, NHANES 2011-2014								
EEDC	≤11/≥12	Unadjusted Odds Ratio ¹	95% CI	≤11/≥12	Adjusted Odds Ratio #1 ²	95% CI	≤11/≥12	Adjusted Odds Ratio #2 ³	95% CI
OC use	321/1244	0.340 ***	0.238-0.487	321/1243	0.606 *	0.385-0.952	314/1231	0.595 *	0.369-0.958
HRT use	318/1239	0.353 ***	0.266-0.468	318/1238	0.533 ***	0.375-0.758	310/1226	0.523 **	0.362-0.756
	*p<0.05, **p<0.01 ***p<0.001								
¹ Unadjusted r	¹ Unadjusted model. ² Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.								

Digit Symbol Substitution Test (DSST) Scores and Exposure to OC and HRT:

Tables 1.11 and 1.12 present chi-square results for DSST scores and OC use and HRT use. We observed a significant relationship exists between OC use and HRT use with respect to DSST scores.

Chi Square Results						
Table 1.11 DSST Cut-off Scores	OC use?					
Table 1.11 DSS1 Cut-off Scoles	Yes	No				
≤27	83 (2.83%)	144 (6.17%)				
\geq 28	834 (62.57%)	450 (28.44%)				
χ2 (df=1, N=1511) F=103.90, p<0.0001)						
The relationship is significant.						

Chi Square Results							
Table 1.12 DSST Cut-off Scores	HRT use?						
Table 1.12 DSST Cut-off Scoles	Yes	No					
≤27	43 (1.86%)	183 (7.10%)					
\geq 28	564 (47.61%)	715 (43.44%)					
χ2 (df=1, N=1505) F=32.64, p<0.0001)							
The relationship is significant.							

Table 1.13 presents the ORs and 95% CIs for OC and HRT use and DSST scores. In DSST scores and OC use, it was observed that OC use was associated with lower odds of a low DSST scores in the unadjusted model, adjusted model #1, and adjusted model #2. In DSST scores and HRT use it was observed that HRT use was also associated with lower odds of a low DSST score in the adjusted model, adjusted model #1, and adjusted model #1, and adjusted model #2.

Table 1.13 - ORs and 95% CI for OC and HRT Use Levels by DSST Cut-off Scores for Female Subjects >= 60 years of age, NHANES 2011-2014									
EEDC	≤27/≥28	Unadjusted Odds Ratio ¹	95% CI	≤27/≥28	Adjusted Odds Ratio #1 ²	95% CI	≤27/≥28	Adjusted Odds Ratio #2 ³	95% CI
OC use	227/1284	0.208 ***	0.150-0.289	227/1283	0.401 ***	0.262-0.614	222/1271	0.411 ***	0.258-0.656
HRT use	226/1279	0.239 ***	0.143-0.401	226/1278	0.419 **	0.234-0.749	220/1266	0.434 *	0.231-0.813
	*p<0.05, **p<0.001 ***p<0.001								
¹ Unadjusted model. ² Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status,									
¹ Unadjusted n	¹ Unadjusted model. ² Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease statu heart attack status, stroke status, physical activity status, smoking status, head trauma status.								

Associations Between Exposures to OC and HRT and Memory Function

Exposures to OCs and HRTs and three memory function indicators: 1) During the past 12 months, have you experienced confusion or memory loss that is happening more often or getting worse? 2) During the past 7 days, how often have you had trouble remembering where you put things? 3) Are you limited in any way because of difficulty remembering or because you experience periods of confusion?) are summarized in tables 1.14 to 1.22. Memory function have been included as a surrogate indicator of brain health as declining memory function can indicate the development of mild cognitive impairment, dementia, AD, or other memory-related neurodegenerative disease.

Worsening memory past 12 months and Exposure to OC and HRT: Tables 1.14 and 1.15 present chi-square results for the Y/N question "During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?" and OC use and HRT use. We observed a significant relationship does not exists between OC use and HRT use with respect to experiencing confusion or memory loss in the past 12 months, that is happening more often or getting worse.

Chi Square Results						
Table 1.14 During the past 12 months, have	OC use?					
you experienced confusion or memory loss						
that is happening more often or getting	Yes	No				
worse?						
Yes	132 (8.03%)	142 (6.43%)				
No	819 (54.71%)	576 (30.82%)				
χ2 (df=1, N=1669) F=0.06, p=n.s.)						
The relationship is not significant.						

Chi Square Results						
Table 1.15 During the past 12 months, have	HRT use?					
you experienced confusion or memory loss						
that is happening more often or getting	Yes	No				
worse?						
Yes	90 (6.18%)	182 (8.00%)				
No	537 (41.50%)	852 (44.32%)				
χ^2 (df=1, N=1661) F=1.44, p=n.s.)						
The relationship is not significant.						

Table 1.16 presents the ORs and 95% CIs for OC and HRT use and Y/N question "During the past 12 months, you experienced confusion or memory loss that is happening more often or is getting worse?". No significant associations were observed.

Female Subjects >= 60 years of age, NHANES 2011-2014 EEDC Yes/No Unadjusted Odds 95% CI Yes/No Adjusted Odds Ratio 95% CI Yes/No									
EEDC	EEDC Yes/No	Ratio ¹	95% CI	Ies/INO	#1 2	95% CI	Tes/INO	#2 ³	93% U
OC use	274/1395	0.703	0.482-1.026	272/1394	0.983	0.640-1.511	268/1377	0.973	0.634-1.493
HRT use	272/1389	0.825	0.594-1.145	270/1388	1.002	0.715-1.405	265/1371	0.994	0.671-1.472
				*p<0.05, **p<0.	01 ***p<0.001				
¹ Unadjusted model. ² Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status,									

<u>**Trouble remembering past 7 days and Exposure to Metalloestrogens</u></u>: Tables 1.17 and 1.18 present chi-square results for the Y/N question "During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" and OC use and HRT use. We observed a significant relationship does not exists.</u>**

Chi Square Results							
Table 1.17 During the past 7 days, how often	OC use?						
have you dad trouble remembering where you put things?	Yes	No					
Yes	188 (13.02%)	147 (7.73%)					
No	722 (50.66%)	519 (28.58%)					
χ2 (df=1, N=1576) F=0.	.79, p=n.s.)						
The relationship is not	significant.	The relationship is not significant.					

Chi Square Results							
Table 1.18 During the past 7 days, how often	HRT use?						
have you dad trouble remembering where you put things?	Yes	No					
Yes	120 (9.79%)	212 (10.71%)					
No	477 (38.26%)	759 (41.25%)					
χ2 (df=1, N=1568) F=0	χ2 (df=1, N=1568) F=0.02, p=n.s.)						
The relationship is not	significant.						

Table 1.19 presents the ORs and 95% CIs for OC and HRT use and Y/N question

"During the past 7 days, how often have you had trouble remembering where you put things, like your keys or your wallet?" No significant associations were observed.

EEDC	Yes/No	Unadjusted Odds Ratio ¹	95% CI	Yes/No	Adjusted Odds Ratio #1 ²	95% CI	Yes/No	Adjusted Odds Ratio #2 ³	95% CI
OC use	335/1241	0.950	0.651-1.389	333/1240	1.134	0.714-1.803	326/1227	1.151	0.737-1.800
HRT use	332/1236	0.986	0.776-1.252	330/1235	1.091	0.824-1.443	323/1221	1.097	0.830-1.449

Limitations Due to Difficulty Remembering or Confusion and Exposure to OC

and HRT: Tables 1.20 and 1.21 present chi-square results for the Y/N question "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" and OC use and HRT use. We observed a significant relationship exists between OC use and HRT use with respect to being limited in any way because of difficulty remembering or because you experience periods of confusion.

Chi Square Results						
Table 1.20 Are you limited in any way because	OC use?					
of difficulty remembering or because you experience periods of confusion?	Yes	No				
Yes	115 (5.50%)	144 (6.39%)				
No	837 (57.26%)	574 (30.85%)				
χ2 (df=1, N=1670) F=13.	75, p=0.0008)					
The relationship is si	gnificant.					

Chi Square Results						
Table 1.21 Are you limited in any way	HRT use?					
because of difficulty remembering or because you experience periods of confusion?	Yes	No				
Yes	62 (3.41%)	192 (8.13%)				
No	566 (44.29%)	842 (44.16%)				
χ2 (df=1, N=1662) F=32	.06, p=0.0001)					
The relationship is s	ignificant.					

Table 1.22 presents the ORs and 95% CIs for OC and HRT use and responses to the Y/N question "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" With regard to OC use, it was observed that OC use was associated with lower odds in the unadjusted model. With regard to HRT use it was observed that HRT use was also associated with lower odds in the adjusted model, adjusted model #1, and adjusted model #2.

Table 1.22	Table 1.22 - ORs and 95% CI for OC and HRT Use Levels by Y/N "Are you limited in any way because of difficulty remembering or because you experience periods of confusion?" for Female Subjects >= 60 years of age, NHANES 2011-2014								
EEDC	Yes/No	Unadjusted Odds Ratio ¹	95% CI	Yes/No	Adjusted Odds Ratio #1 ²	95% CI	Yes/No	Adjusted Odds Ratio #2 ³	95% CI
OC use	259/1411	0.464 **	0.300-0.716	257/1410	0.788	0.479-1.295	251/1395	0.809	0.462-1.417
HRT use	254/1408	0.418 ***	0.304-0.575	252/1407	0.555 **	0.396-0.778	246/1391	0.574 **	0.400-0.823
				*p<0.05, **p<0.	01 ***p<0.001				
¹ Unadjusted r	¹ Unadjusted model. ² Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.								ease status,

Associations Between Exposures to Phthalate and BPA and Taste/Smell

Function

Exposures to the metalloestrogens Cd, Mn, and As, and two indicators of taste/smell function:

1) Do you sometimes smell an unpleasant, bad, or burning odor when nothing is there (phantosmia), and 2) During the past 12 months have you had a taste or other sensation in your mouth that does not go away? Taste and smell indicators have been included as a surrogate indicator of brain health as taste and smell dysfunction is a possible pre-clinical indicator in the development of AD and other memory-related neurodegenerative diseases.

Smell Dysfunction and Exposure to OC and HRT: Tables 1.23 and 1.24 present

chi-square results for the Y/N question "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" and OC use and HRT use. We observed a significant relationship does not exist.

Chi Square Results							
Table 1.23 Do you sometimes smell and	OC use?						
unpleasant, bad, or burning odor when nothing is there?	Yes	No					
Yes	75 (4.19%)	48 (2.23%)					
No	877 (58.67%)	664 (34.91)					
χ2 (df=1, N=1664) F=0	χ^2 (df=1, N=1664) F=0.23, p=n.s.)						
The relationship is not	significant.						

Chi Square Results							
Table 1.24 Do you sometimes smell and	HRT use?						
unpleasant, bad, or burning odor when nothing is there?	Yes	No					
Yes	40 (2.65%)	83 (3.79%)					
No	587 (45.11%)	945 (48.45%)					
χ^2 (df=1, N=1655) F=1	1.53, p=0.22)						
The relationship is not	significant.	The relationship is not significant.					

Table 1.25 presents the ORs and 95% CIs for OC and HRT use and responses to the Y/N question "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?". With both OC use and HRT use, we did not observe any significant relationships.

Table 1.25 -	Table 1.25 - ORs and 95% CI for OC and HRT Use Levels by Y/N "Do you sometimes smell an unpleasant, bad or burning odor when nothing is there?" for Female Subjects >= 60 years of age, NHANES 2011-2014								
EEDC	Yes/No	Unadjusted Odds Ratio ¹	95% CI	Yes/No	Adjusted Odds Ratio #1 ²	95% CI	Yes/No	Adjusted Odds Ratio #2 ³	95% CI
OC use	123/1541	1.116	0.704-1.770	123/1538	0.902	0.557-1.460	121/1519	0.952	0.556-1.630
HRT use	123/1532	0.751	0.464-1.216	123/1529	0.865	0.514-1.455	121/1509	0.880	0.531-1.457
¹ Unadjusted r	¹ Unadjusted model. ² Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status, heart attack status, stroke status, physical activity status, smoking status, head trauma status.								sease status,

Taste Dysfunction and Exposure to OC and HRT: Tables 1.26 and 1.27 present

chi-square results for the Y/N question "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" and OC use and HRT use. We observed a significant relationship does not exist.

Chi Square Results							
Table 1.27 During the past 12 months have	HRT use?						
you had a taste or other sensation in your mouth that does not go away?	Yes	No					
Yes	44 (2.85%)	90 (3.56%)					
No	584 (44.89%)	940 (48.71%)					
χ2 (df=1, N=1658) F=0	χ2 (df=1, N=1658) F=0.35, p=0.55)						
The relationship is not significant.							

Chi Square Results						
Table 1.26 During the past 12 months have	OC use?					
you had a taste or other sensation in your mouth that does not go away?	Yes	No				
Yes	75 (3.79%)	59 (2.59%)				
No	876 (58.97%)	657 (34.64%)				
χ2(df=1, N=1667) F=0.42, p=n.s.) The relationship is not significant.						

Table 1.28 presents the ORs and 95% CIs for OC and HRT use and responses to the Y/N question "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?". With both OC use and HRT use, we did not observe any significant relationships

Table 1.28 - ORs and 95% CI for OC and HRT Use Levels by Y/N "During the past 12 months have you had a taste or other sensation in your mouth that does not go away?" for Female Subjects >= 60 years of age, NHANES 2011-2014									
EEDC	Yes/No	Unadjusted Odds	95% CI	Yes/No	Adjusted Odds Ratio	95% CI	Yes/No	Adjusted Odds Ratio	95% CI
		Ratio ¹			#1 ²			#2 ³	
OC use	134/1533	0.861	0.538-1.378	134/1530	0.921	0.578-1.468	132/1511	0.947	0.587-1.528
HRT use	134/1524	0.867	0.531-1.417	134/1521	1.081	0.685-1.706	132/1501	1.180	0.748-1.859
*p<0.05, **p<0.01 ***p<0.001									
¹ Unadjusted model. ² Adjusted for age, education, race/ethnicity. ³ Adjusted for age, education, race/ethnicity, alcohol use, diabetes status, high blood pressure status, coronary heart disease status,									
heart attack status, stroke status, physical activity status, smoking status, head trauma status.									

DISCUSSION

This study takes a novel approach in the assessment of exposure to OC and HRT in the development of cognitive dysfunction and possible neurodegenerative disease using surrogate indicators of brain health. The study examined an older geriatric-aged population of US adults 60 years of age and older. We first assessed the existence of a relationship between past OC and HRT use by calculating and chi-square test of independence versus each surrogate indicator of brain health, and subsequently used ORs and 95% CI to determine the risk of developing cognitive dysfunction.

Major Findings: Overall, we observed a the existence of a relationship between past OC and HRT use and the following surrogates of brain function: immediate recall scores; delayed recall scores; animal flluency scores; DSST scores, and limitations due to difficulty remembering or confusion (Tables 1.2 to 1.28). In our logisitic regression models, when controlling for all known and suspected covariates of cognitive dysfunction and AD in our second adjusted model, we found past OC use to lower the risk of developing cognitive dysfunction and the possible development of

AD. Specifically, we found past OC use to be associated with better immediate recall, delayed recall, animal fluency and DSST scores.

We also found past HRT use to lower the risk fo developing cognitive dysfunction and the possible development of AD. Specifically, we found past HRT use to be associated with better immediate recall, animal fluency, and DSST scores. Past HRT use was also associated with less occurrences of limitations due to periods of difficulty remembering or periods of confusion. Tables (1.2 to 1.28).

With regards to past OC use, it was not possible to differentiate between OCs containing estrogen and those not containing it, which is an issue with past studies ⁶⁸. Past OC use with other studies that suggest its' use can improve cognitive function with regards to cognitive tests ⁸ and better performance of spatial ability and cognitive tests ⁶⁸. The majority of evidence with regard to past HRT use suggests that HRT use may be harmful to brain health. Increased risk of dementia ^{12,13,16–19}.

One of the prevailing hypothesis states the timing of estrogen therapies may dictate its' effectiveness in protecting cognition and function. An increase in estrogen in early to mid-adulthood and early on in menopause suggests a possible protective benefit from the use of OC and HRT ⁶⁹, which was shown in one study, which showed increased AD risk if HRTs were used more than five years after menopause and a decreased risk if HRTs were used within five years after menopause ²⁰. From our study, we cannot fully determine the composition of the OC and HRT therapies. It is suggested that the composition, and hence, the estrogen amount and dosage may also dictate the effectiveness, or adversness of the OC and/or HRT therapy.

Biological Mechanisms and Brain Health: OCs and HRTs, although considered to EEDCs because of their ability to mimic estrogen are unique since their main active ingredients may contain derivatives of estrogen, making them highly estrogen-responsive with their high affinity for estrogen receptors ⁷⁰ which is very similar to biologically available estrogen, with its effects mediated through the known estrogen receptor pathways, ERa , ERß, GPER/GPR30, which are widely expressed in the brain ⁷¹. Estrogen itself has been demonstrated to have roles in neuroprotection as well as exert anti-inflammatory effects on the brain ^{72–77} and with its' similar bioactivity to biological estrogen, may provide a protective effect to the aging brain.

Although a number genes that are implicated in AD and other neurodegenerative diseases are estrogen-sensitive ⁷¹, it is possible that a deficit in naturally circulating estrogen may be one of culprits of neurodegeneration which supports the critical window hypothesis when estrogen production is lowest around menopause ⁶⁹.

<u>Strengths and Limitations</u>: There are strengths and limitations to our study. The largest limitations the cross-sectional design of our study. The data is self-reported which makes inference difficult and prone to misclassification bias. Our OC and HRT variable does not give us a dosage, or amount. It also does not indicate the length of time, or when the OC/HRT therapy was stated and finished. Our outcome variables are surrogates rather than actual clinical endpoints, which limits our ability to say that our outcome will lead to neurodegenerative disease. The cut-off scores of our cognitive exams were based on previous studies, however, performance on those exams are heavily dependent on education, so there is a possibility that poor

performance might be a function of lack of education. For our taste/smell indicators, the senses heavily affected by numerous confounders, some of which were not feasible in study due to making the sample smaller, or the confounder not being available. Strengths of our study include the novelty of such an analysis to be conducted on an older population. We had relatively large sample sizes available for our analyzes. The generalizability of our study to the US population and the large amount of chemical measurements available gives the study the ability to examine different aspects of chemical exposure.

Conclusion

Based on our findings, OC and HRT use has a beneficial and possible protective effect on cognitive function and might possibly be protective against neurodegenerative disease. Further study is needed, especially to examine time frames and extent of OC and HRT use to establish the most effective points to take it in a female's life. This may add to the therapeutic benefits of these therapies.

References

- 1. Bergman A, Heindel JJ, Jobling S, Kidd KA, Zoeller TR. State of the science of endocrine disrupting chemicals. *World Heal Organ United Nations Environ Program.* 2012:1-38. http://apps.who.int/iris/handle/10665/78102.
- 2. Alzheimer's Association. 2017 Alzheimer's Disease Facts and Figures. *Alzheimers Dement*. 2017;13:325-373. doi:10.1016/j.jalz.2017.02.001.

- 3. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, et al. Endocrinedisrupting chemicals: an Endocrine Society scientific statement. *Endocr Rev.* 2009;30(4):293-342. doi:10.1210/er.2009-0002.
- 4. Giusti RM, Iwamoto K, Hatch EE. Diethylstilbestrol revisited: a review of the long-term health effects. *Ann Intern Med.* 1995;122(10):778-788. http://www.ncbi.nlm.nih.gov/pubmed/7717601. Accessed February 4, 2018.
- 5. Griksiene R, Ruksenas O. Effects of hormonal contraceptives on mental rotation and verbal fluency. *Psychoneuroendocrinology*. 2011;36(8):1239-1248. doi:10.1016/j.psyneuen.2011.03.001.
- 6. Pletzer BA, Kerschbaum HH. 50 years of hormonal contraception time to find out, what it does to our brain. *Front Neurosci*. 2014. doi:10.3389/fnins.2014.00256.
- Beltz AM, Hampson E, Berenbaum SA. Oral contraceptives and cognition: A role for ethinyl estradiol. *Horm Behav.* 2015;74:209-217. doi:10.1016/j.yhbeh.2015.06.012.
- Egan KR, Gleason CE. Longer Duration of Hormonal Contraceptive Use Predicts Better Cognitive Outcomes Later in Life. *J Women's Heal*. 2012;21(12):120920061605006. doi:10.1089/jwh.2012.3522.
- 9. Warren AM, Gurvich C, Worsley R, Kulkarni J. A systematic review of the impact of oral contraceptives on cognition. *Contraception*. 2014;90(2):111-116. doi:10.1016/j.contraception.2014.03.015.
- 10. Maki PM, Henderson VW. Hormone therapy, dementia, and cognition: the Women's Health Initiative ten years on. *Climacteric*. 2012;15(3):256-262. doi:10.1016/j.biotechadv.2011.08.021.Secreted.
- 11. Xiao M, Cao GL, Marshall C, Hu G. Hypothesis: Multiple factors are associated with the lack of any beneficial effects of oestrogen-replacement therapy in the late postmenopausal stage. *Clin Exp Pharmacol Physiol*. 2010;37(8):873-876. doi:10.1111/j.1440-1681.2010.05400.x.

- 12. Shumaker S a, Legault C, Rapp SR, et al. Estrogen Plus Progestin and the Incidence of Dementia and Mild Cognitive Impairment in Postmenopausal Women. *JAMA*. 2003;289(20):2651-2662.
- 13. Shumaker S a, Legault C, Kuller L, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women's Health Initiative Memory Study. *JAMA*. 2004;291(24):2947-2958. doi:10.1097/01.ogx.0000140470.91959.32.
- 14. Resnick SM, Maki PM, Rapp SR, et al. Effects of combination estrogen plus progestin hormone treatment on cognition and affect. *J Clin Endocrinol Metab*. 2006;91(5):1802-1810. doi:10.1210/jc.2005-2097.
- 15. Resnick SM, Espeland M a., An Y, et al. Effects of conjugated equine estrogens on cognition and affect in postmenopausal women with prior hysterectomy. *J Clin Endocrinol Metab.* 2009;94(11):4152-4161. doi:10.1210/jc.2009-1340.
- Yaffe K, Vittinghoff E, Ensrud KE, et al. Effects of ultra-low-dose transdermal estradiol on cognition and health-related quality of life. *Arch Neurol*. 2006;63(7):945-950. doi:10.1001/archneur.63.7.945.
- 17. Viscoli CM, Brass LM, Kernan WN, Sarrel PM, Suissa S, Horwitz RI. Estrogen therapy and risk of cognitive decline: Results from the Women's Estrogen for Stroke Trial (WEST). *Am J Obstet Gynecol*. 2005;192(2):387-393. doi:10.1016/j.ajog.2004.08.017.
- Almeida OP, Lautenschlager NT, Vasikaran S, Leedman P, Gelavis A, Flicker L. A 20-week randomized controlled trial of estradiol replacement therapy for women aged 70 years and older: Effect on mood, cognition and quality of life. *Neurobiology*. 2006;27:141-149. doi:10.1016/j.neurobiolaging.2004.12.012.
- Pefanco MA, Kenny AM, Kaplan RF, et al. The effect of 3-year treatment with 0.25 mg/day of micronized 17??-estradiol on cognitive function in older postmenopausal women. *J Am Geriatr Soc.* 2007;55(3):426-431. doi:10.1111/j.1532-5415.2007.01085.x.
- 20. Shao H, Breitner JCS, Whitmer R a., et al. Hormone therapy and Alzheimer disease dementia: New findings from the Cache County Study. *Neurology*. 2012;79(18):1846-1852. doi:10.1212/WNL.0b013e318271f823.

- 21. O'Brien J, Jackson JW, Grodstein F, Blacker D, Weuve J. Postmenopausal hormone therapy is not associated with risk of all-cause dementia and alzheimer's disease. *Epidemiol Rev.* 2014. doi:10.1093/epirev/mxt008.
- 22. Lundin JI, Ton TG, LaCroix AZ, et al. Formulations of Hormone Therapy and Risk of Parkinson's Disease. *Mov Disord*. 2014;29(13):1631-. doi:10.1002/mds.26037.
- 23. Johnson CL, Paulose-Ram R, Ogden CL, et al. National health and nutrition examination survey: analytic guidelines, 1999-2010. *Vital Health Stat 2*. 2013;(161):1-24. http://www.ncbi.nlm.nih.gov/pubmed/25090154.
- 24. Johnson CL, Dohrmann SM, Burt VL, Mohadjer LK. National Health and Nutrition Examination Survey: Sample Design , 2011 – 2014. *Vital Heal Stat*. 2014;2(162):1-33. http://www.cdc.gov/nchs/data/series/sr_02/sr02_162.pdf.
- 25. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey NCHS Research Ethics Review Board (ERB) Approval. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/irba98.htm. Published 2016.
- 26. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). No TitleNational Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies Reproductive Health (RHQ_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/nchs/nhanes/2011-2012/RHQ_G.htm#RHQ420. Published 2017.
- 27. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Reproductive Health (RHQ_H). https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/RHQ_H.htm. Published 2017.

- 28. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2013-2014 Data Documentation, Codebook, and Frequencies Cognitive Functioning (CFQ_H). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/CFQ_H.htm. Published 2017.
- 29. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2011-2012 Data Documentation, Codebook, and Frequencies Cognitive Functioning (CFQ_G). Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/CFQ_G.htm#CFDCST3. Published 2017.
- Fillenbaum GG, van Belle G, Morris JC, et al. Consortium to Establish a Registry for Alzheimer's Disease (CERAD): The first twenty years. *Alzheimer's Dement*. 2008;4(2):96-109. doi:10.1016/j.jalz.2007.08.005.
- Bertolucci PHF, Okamoto IH, Brucki SMD, Siviero MO, Neto JT, Ramos LR. Applicability of the CERAD neuropsychological battery to Brazilian elderly. *Arq Neuropsiquiatr*. 2001;59(3 A):532-536. doi:10.1590/S0004-282X2001000400009.
- 32. Karrasch M, Sinervä E, Grönholm P, Rinne J, Laine M. CERAD test performances in amnestic mild cognitive impairment and Alzheimer's disease. *Acta Neurol Scand*. 2005;111(3):172-179. doi:10.1111/j.1600-0404.2005.00380.x.
- Karrasch M, Laatu S, Martikainen K, Marttila R. CERAD test performance and cognitive impairment in Parkinson's disease. *Acta Neurol Scand*. 2013;128(6):409-413. doi:10.1111/ane.12138.
- R.M. H, N.-M. S, P. H, et al. The CERAD neuropsychological battery in patients with frontotemporal lobar degeneration. *Dement Geriatr Cogn Dis Extra*. 2015;5(1):147-154. doi:10.1159/000380815.

- Berres M, Monsch AU, Bernasconi F, Thalmann B, Stähelin HB. Normal ranges of neuropsychological tests for the diagnosis of Alzheimer's disease. *Stud Health Technol Inform*. 2000;77:195-199. http://www.ncbi.nlm.nih.gov/pubmed/11187541. Accessed January 21, 2018.
- Alegret M, Espinosa A, Valero S, et al. Cut-off Scores of a Brief Neuropsychological Battery (NBACE) for Spanish Individual Adults Older than 44 Years Old. Brucki S, ed. *PLoS One*. 2013;8(10):e76436. doi:10.1371/journal.pone.0076436.
- American Academy of Family Physicians. BB, Hartmann B, DeJoseph D. *American Family Physician*. Vol 84. American Academy of Family Physicians; 1970. https://www.aafp.org/afp/2011/1015/p895.html. Accessed January 21, 2018.
- Axelrod BN. Administration duration for the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III. Arch Clin Neuropsychol. 2001;16(3):293-301. doi:10.1016/S0887-6177(00)00048-2.
- Matsuda O, Saito M, Kato M, Azami H, Shido E. Wechsler Adult Intelligence Scale-III profile in the early stages of Alzheimer's disease: Performance in subtests sensitive to and resistant to normal decline with ageing. *Psychogeriatrics*. 2015;15(1):1-6. doi:10.1111/psyg.12066.
- 40. Donnell AJ, Pliskin N, Holdnack J, Axelrod B, Randolph C. Rapidlyadministered short forms of the Wechsler Adult Intelligence Scale-3rd edition. *Arch Clin Neuropsychol.* 2007;22(8):917-924. doi:10.1016/j.acn.2007.06.007.
- 41. Nielsen NP, Ringström R, Wiig EH, Minthon L. Associations between AQT processing speed and neuropsychological tests in neuropsychiatric patients. *Am J Alzheimers Dis Other Demen*. 2011;22(3):202-210. doi:10.1177/1089253206300417.
- 42. Proust-Lima C, Amieva H, Dartigues JF, Jacqmin-Gadda H. Sensitivity of four psychometric tests to measure cognitive changes in brain aging-population-based studies. *Am J Epidemiol*. 2007;165(3):344-350. doi:10.1093/aje/kwk017.

- 43. Rosano C, Perera S, Inzitari M, Newman AB, Longstreth WT, Studenski S. Digit symbol substitution test and future clinical and subclinical disorders of cognition, mobility and mood in older adults. *Age Ageing*. 2016;45(5):687-694. doi:10.1093/ageing/afw116.
- 44. Saxton J, Lopez OL, Ratcliff G, et al. Preclinical Alzheimer disease: neuropsychological test performance 1.5 to 8 years prior to onset. *Neurology*. 2004;63(Mh 46643):2341-2347. doi:10.1212/01.WNL.0000147470.58328.50.
- 45. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey -Questionnaires, Datasets, and Related Documentation. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm. Published 2015.
- 46. Brooks LG, Loewenstein DA. Assessing the progression of mild cognitive impairment to Alzheimer's disease: current trends and future directions. *Alzheimers Res Ther.* 2010;2(5):28. doi:10.1186/alzrt52.
- 47. Tolea MI, Morris JC, Galvin JE. Longitudinal associations between physical and cognitive performance among community-dwelling older adults. *PLoS One*. 2015;10(4):1-12. doi:10.1371/journal.pone.0122878.
- Ansoleaga B, Garcia-Esparcia P, Llorens F, Moreno J, Aso E, Ferrer I. Dysregulation of brain olfactory and taste receptors in AD, PSP and CJD, and AD-related model. *Neuroscience*. 2013;248:369-382. doi:10.1016/j.neuroscience.2013.06.034.
- 49. Macknin JB, Higuchi M, Lee VM-Y, Trojanowski JQ, Doty RL. Olfactory dysfunction occurs in transgenic mice overexpressing human τ protein. *Brain Res*. 2004;1000(1-2):174-178. doi:10.1016/j.brainres.2004.01.047.
- 50. Lee S, Manly J, Andrews H, et al. Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community. 2014.
- 51. Hummel T, Landis B, Huttenbrink K. Smell and taste disorders. *GMS Curr Tpoics Otorhinolaryngol Head Neck Surg.* 2011;10:1-15. doi:10.3205/cto000077.

- 52. Doty RL. The olfactory vector hypothesis of neurodegenerative disease: Is it viable? *Ann Neurol*. 2008;63(1):7-15. doi:10.1002/ana.21327.
- 53. Liu J. Clinical features of olfactory disorders in patients seeking medical consultation. *Med Sci Monit*. 2013;19:444-450. doi:10.12659/MSM.883938.
- 54. Hüttenbrink K-B, Hummel T, Berg D, Gasser T, Hähner A. Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. *Dtsch Arztebl Int.* 2013;110(1-2):1-7, e1. doi:10.3238/arztebl.2013.0001.
- 55. Barresi M, Ciurleo R, Giacoppo S, et al. Evaluation of olfactory dysfunction in neurodegenerative diseases. *J Neurol Sci.* 2012;323(1-2):16-24. doi:10.1016/j.jns.2012.08.028.
- 56. Ruan Y, Zheng XY, Zhang HL, Zhu W, Zhu J. Olfactory dysfunctions in neurodegenerative disorders. *J Neurosci Res.* 2012;90(9):1693-1700. doi:10.1002/jnr.23054.
- 57. Albers MW, Tabert MH, Devanand DP. Olfactory dysfunction as a predictor of neurodegenerative disease. *Curr Neurol Neurosci Rep.* 2006;6(5):379-386. doi:10.1007/s11910-996-0018-7.
- 58. Winner B, Kohl Z, Gage FH. Neurodegenerative disease and adult neurogenesis. *Eur J Neurosci.* 2011;33(6):1139-1151. doi:10.1111/j.1460-9568.2011.07613.x.
- 59. Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. *Acta Neuropathol*. 2014;127(4):459-475. doi:10.1007/s00401-014-1261-7.
- 60. Makowska I, Kloszewska I, Grabowska A, Szatkowska I, Rymarczyk K. Olfactory deficits in normal aging and Alzheimer's disease in the polish elderly population. *Arch Clin Neuropsychol*. 2011;26(3):270-279. doi:10.1093/arclin/acr011.
- 61. Sohrabi HR, Bates K a, Weinborn MG, et al. Olfactory discrimination predicts cognitive decline among community-dwelling older adults. *Transl Psychiatry*. 2012;2(5):e118. doi:10.1038/tp.2012.43.

- 62. Driver-Dunckley E, Adler CH, Hentz JG, et al. Olfactory dysfunction in incidental Lewy body disease and Parkinson's disease. *Parkinsonism Relat Disord*. 2014;20(11):1260-1262. doi:10.1016/j.parkreldis.2014.08.006.
- 63. Ward AM, Calamia M, Thiemann E, Dunlap J, Tranel D. Association between olfaction and higher cortical functions in Alzheimer's disease, mild cognitive impairment, and healthy older adults. *J Clin Exp Neuropsychol*. November 2016:1-15. doi:10.1080/13803395.2016.1253667.
- 64. SAS 9.4. 2017.
- 65. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey - Overview of NHANES Survey Design and Weights. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/tutorials/environmental/orientation/sample_design/. Published 2013.
- 66. SAS Institute Inc. Sas/Stat® 9.3. 2011:User's Guide: The GLIMMIX Procedure (Chapter).
- 67. SAS Institute Inc. Estimating Geometric Means Using Data from a Complex Survey Sampling Design. http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.1 92.593. Published 2017.
- 68. Beltz AM, Hampson E, Berenbaum SA. Oral Contraceptives and Cognition: A Role for Ethinyl Estradiol. *Horm Behav.* 2015. doi:10.1016/j.yhbeh.2015.06.012.
- 69. Maki PM. Critical window hypothesis of hormone therapy and cognition: a scientific update on clinical studies. *Menopause*. 2013;20(6):695-709. doi:10.1097/GME.0b013e3182960cf8.
- 70. Blair RM, Fang H, Branham WS, et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. *Toxicol Sci.* 2000;54(1):138-153. doi:10.1093/toxsci/54.1.138.

- 71. Preciados M, Yoo C, Roy D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. *Int J Mol Sci.* 2016;17(12):2086. doi:10.3390/ijms17122086.
- 72. Arevalo M-A, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. *Neuroscience*. 2015;16(1):17-29. doi:10.1038/nrn3856.
- 73. Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. *Brain Res Bull*. 2014;109:22-31. doi:10.1016/j.brainresbull.2014.09.004.
- 74. Green PS, Simpkins JW. Neuroprotective effects of estrogens: Potential mechanisms of action. *Int J Dev Neurosci*. 2000;18(4-5):347-358. doi:10.1016/S0736-5748(00)00017-4.
- 75. Hristian C, Ruber JG, Alter W, et al. Production and actions of estrogens. *N Engl J Med*. 2002;346(5). doi:10.1016/S0960-0760(01)00184-4.
- 76. Pozzi S, Benedusi V, Maggi A, Vegeto E. Estrogen action in neuroprotection and brain inflammation. *Ann N Y Acad Sci*. 2006;1089(2006):302-323. doi:10.1196/annals.1386.035.
- 77. Wise PM, Dubal DB, Wilson ME, Rau SW, Liu Y. Estrogens: trophic and protective factors in the adult brain. *Front Neuroendocrinol*. 2001;22(1):33-66. doi:10.1006/frne.2000.0207.

CHAPTER VIII

OVERALL CONCLUSIONS

The goal of this research was to find out if exposures to EEDCs had an adverse effect on brain health, using our surrogates of brain health indicators found in the CDC's NHANES datasets. Our surrogate indicators, cognitive scores that include immediate recall, delayed, recall, animal fluency, and digit symbol substitution scores, have been proven to differentiate between normal cognitive function, cognitive decline, and the development of dementia and AD. They are further supported by their use in a clinical setting. The memory questions that indicated if memory issues were present in a year's time and a week's time have utility in the fact that the first symptom of cognitive decline is memory issues. Taste and smell questions have their utility in taste and smell dysfunction can be an early sub-clinical indicator of cognitive dysfunction.

The EEDCs considered in this study, phthalates, BPA, PCBs, Cd, As, and Mn, all have proven estrogenic activity and can interfere with the protective and therapeutic effect that estrogen has on brain health and function. The epidemiologic evidence, however, is lacking, as most exposure studies have been performed at the cellular, animal, or before, during, and after birth in humans. Our study addresses the gaps present in this study area.

Our first specific aim, assessing exposure to phthalates and bisphenol-A (BPA) using urinary biomarkers from the CDC NHANES 2011-2014 datasets to find associations between phthalate and BPA bioburden and adverse brain health using surrogate indicators of brain health was addressed in manuscript II.

Increased levels of phthalate metabolites were observed in those who had lower cognitive test scores, reported having memory issues, and reported taste and smell deficits compared to those who did not have any observed brain health issues. Females have a greater bioburden of phthalates compared to males. In females, the phthalates ECP, MBP, MOH, MZP, and MIB were observed to have significantly higher bioburdens among two or more of the surrogate brain health indicators. In males, the phthalates ECP, MHH, MOH, and MIB were observed to have significantly higher bioburdens among two or more of the surrogate brain health indicators. BPA did not have any significant results in any of our tests. When controlling for known and suspected covariates of AD in males in our final logistic regression model, COP, ECP, MBP, MC1, MEP, MHH, MOH, and MIB were associated with one or more of the surrogate brain health indicators. When controlling for known and suspected covariates of AD in females in our final logistic regression model, ECP, MBP, MHH, MOH, MZP, and MIB were associated with one or more of the surrogate brain health indicators. BPA did not have any significant results in any of our tests.

Our second specific aim, assessing exposure to the metalloestrogens, cadmium (Cd), arsenic (As), and manganese (Mn) using urinary biomarkers from the CDC NHANES 2011-2014 datasets to find associations between phthalate and BPA bioburden and adverse brain health using surrogate indicators of brain health was addressed in manuscript III. Cd and Mn bioburdens were found to be more evident in individuals who have lower cognitive scores and/or have memory cognition issues. In our logistic regression models, Cd stood out as the

metalloestrogen that plays a larger role in the development of neurodegenerative disease and adverse brain health in an older population. No significant results were observed in our full logistic regression models.

Our third specific aim, assessing exposure to oral contraceptives (OC) and hormonal replacement therapy (HRT) using urinary biomarkers from the CDC NHANES 2011-2014 datasets to find associations between phthalate and BPA bioburden and adverse brain health using surrogate indicators of brain health, was addressed in manuscript IV. We observed the existence of a relationship between past OC and HRT use and the following surrogates of brain function: immediate recall scores; delayed recall scores; animal flluency scores; DSST scores, and limitations due to difficulty remembering or confusion. In our logisitic regression models, when controlling for all known and suspected covariates of cognitive dysfunction and AD in our second adjusted model, we found past OC use to lower the risk of developing cognitive dysfunction and the possible development of AD. Specifically, we found past OC use to be associated with better immediate recall, delayed recall, animal fluency and DSST scores. We also found past HRT use to lower the risk fo developing cognitive dysfunction and the possible development of AD. Specifically, we found past HRT use to be associated with better immediate recall, animal fluency, and DSST scores. Past HRT use was also associated with less occurrences of limitations due to periods of difficulty remembering or periods of confusion.

Our fourth specific aim, to Assess estrogen-responsive genes networks common to the EEDCs, phthalates, BPA, Cd, As, and Mn, NRF1, and neurodegenerative disease using bioinformatics methods, was addressed in manuscript I. From our bioinformatics approach, we identified several novel gene NRF1 gene targets that are both estrogen-responsive and responsive to our selection of EEDCs which are also implicated in the gene networks of several major neurodegenerative diseases.

Our study has several strengths. We had sufficient sample sizes to examine our variables, and our covariates had a large response rate. The generalizability of our study to the US population and the large amount of chemical measurements available gives the study the ability to examine different aspects of chemical exposure.

Our overall study has several limitations. Most of the data is self-reported, which lends itself to misclassification bias, with the chance of incorrectly reported endpoints. Also, the lack of true clinical endpoints allows us to make limited inference pertaining to disease diagnosis. Our OC and HRT variables do not give information on the type of treatment given, so we could not assess if synthetic estrogens were part of the drug formulation. Our cut-off scores were based on previous studies, however, performance on these test is also influenced by education. For our taste/smell indicators, the senses heavily affected by numerous confounders, some of which were not feasible in study due to making the sample smaller, or the confounder not being available.

In summary, our findings suggest that EEDCs do play a role in the development of cognitive dysfunction and the development of neurodegenerative disease in older people. These findings are further supported by our finding of gene targets which play a role in the development of various neurodegenerative diseases.

VITA

	MARK VICERA PRECIADOS
2003 - 2007	B.S., Microbiology and Immunology University of Miami Miami, FL
2008 - 2013	M.P.H., Public Health Florida International University Miami, FL
2013 - present	Doctoral Candidate, Public Health Florida International University Miami, FL
2004 - 2007	Pharmacy Technician Miami, FL
2007-2008	Quality Control Analyst Bioheart, Inc Sunrise, FL
2008-2009	Microbiologist Bionucleonics, Inc Doral, FL
2009 - present	Consumer Safety Officer US Food and Drug Administration

PUBLICATIONS AND PRESENTATIONS

Preciados M, Yoo C, Roy D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. *Int J Mol Sci.* 2016;17(12):2086. doi:10.3390/ijms17122086.

Preciados, Mark, (March, 2017). *Role of Estrogenic Endocrine Disruptors* (*EEDs*)-*Genes interactions associated with both estrogen signaling and NRF1* signaling pathways in Alzheimer's Disease (AD). Poster presented at the Society of Toxicology Meeting, Baltimore, MD, March 2017.