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ABSTRACT OF THE DISSERTATION 

IMPACT OF SAB-MEDIATED SIGNALING ON GLIOBLASTOMA AND 

NEUROBLASTOMA METABOLISM   

by 

Monica Rodriguez Silva 

Florida International University, 2018 

Miami, Florida 

Professor Jeremy W. Chambers, Major Professor 

Glioblastoma (GBM) is the most common and aggressive type of brain cancer, 

with an average life expectancy of 15 months.  The standard of care for GBM, 

surgery accompanied by radiation and chemotherapy (temozolomide-TMZ), has 

not changed in over 10 years illustrating the need for new and efficacious 

treatments. Therefore, it is imperative to improve our knowledge of GBM 

physiology to understand the mechanisms driving recurrence and 

chemoresistance so that more effective therapeutic options can be developed. 

Mitochondria-cell communication is key to monitor and maintain both mitochondrial 

and cellular health, and signaling events on the outer mitochondrial membrane 

(OMM) have emerged as a crucial signal integration site for cellular responses. 

Consequently, proteins on the OMM are crucial to determining cellular survival and 

dictating organelle physiology. Thus, the goal of our current study is to evaluate 

OMM proteins to determine how alterations in organelle regulation may impact 

CNS tumor biology. We first measured the concentrations of Bcl-2 family proteins 

on mitochondria from ten continuous GBM cell lines and correlated the protein 



 
 

vii 

levels to IC50 values of genotoxic agents TMZ and irinotecan. We found that Bcl-2 

levels corresponded to chemoresistance, while increased Bim concentrations 

promoted chemosensitivity. In contrast to our studies in gynecological cancers, the 

concentrations of the pro-dysfunction OMM scaffold protein Sab had no impact on 

chemosensitivity of the GBM cell lines, despite diminished Sab expression in GBM 

patients. However, we identified a novel truncated variant of Sab in the GBM cell 

lines. We found that GBM cells expressing only full-length Sab had a slower 

proliferation rate than those with the variant, which could be attributed to increased 

glycolysis in GBM cells expressing the Sab variant. To determine if the lack of Sab-

mediated apoptosis was consistent across CNS tumors, we analyzed publicly-

available patient data and found that Sab expression is down-regulated in 

neuroblastoma patients, a pediatric malignancy responsible for 12% of childhood 

cancer deaths. We found that that inhibiting Sab-mediated signaling in human 

neuroblastoma (SH-SY5Y cells) enhanced oxidative phosphorylation in a pyruvate 

dehydrogenase-dependent manner, increased BCl-2 levels (pro-survival), 

decreased Bim concentrations (pro-apoptotic), and promoted chemoresistance. 

Furthermore, examination of additional neuroblastoma cells derived from CNS 

tumors revealed that Sab levels correspond to proliferation rate, metabolic 

phenotype, and chemosensitivity. Our studies demonstrate the importance of 

OMM signaling in CNS tumor physiology and emphasizes the importance of 

cellular context to the outcomes of OMM signaling events. 
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CHAPTER I 

Literature Review 
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Central Nervous System Malignancies 

Cancers that affect brain and spinal cord tissue are considered central nervous 

system (CNS) tumors. Using an integrated system of both phenotypic and 

genotypic characteristics, CNS tumors can be classified as diffused astrocytic and 

oligodendroglial tumors, neuronal and mixed neuronal glial tumors, tumors of the 

pineal region, embryonal tumors, ependymal tumors, choroid plexus tumors, 

meningiomas, cranial and paraspinal nerves tumors, melanocytic tumors, 

lymphomas, mesenchymal non-meningothelial tumors, histiocytic tumors, germ 

cell tumors, tumors of the sellar region and metastatic tumors. For the purpose of 

our research, the focus will be on glioblastoma (GBM), a type of diffused astrocytic 

and oligodendroglial tumor, and  neuroblastoma a kind of embryonal tumor (Louis 

et al., 2016).  

1. Glioblastoma 

Glioblastoma (GBM) is the most aggressive and common type of primary brain 

tumor in adults, patient survival is generally less than 15 months following 

diagnosis (Ostrom et al., 2016). GBM is notorious for the extensive cellular 

heterogeneity within a tumor, which is even more complex when one considers 

that the etiology of GBM is unknown. GBMs are believed to originated from either 

adult neural stem cells or glial cells, specifically astrocytes (Alcantara Llaguno et 

al., 2016; Phillips et al., 2006). The clinical presentation of GBM varies depending 

on size, location, and regions of the brain affected. The areas of the brain impacted 

by GBM lead to clinical symptoms that often precipitate a diagnosis, but only after 

the tumor has grown significantly. Most patients will present headaches, increased 
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intercranial pressure and focal or progressive neurological deficits (M. E. Davis, 

2016).  

1.1 Statistics 

The National Cancer Institute (NCI) estimates that brain tumors account for 85%-

90% of all primary CNS tumors, anaplastic astrocytomas and glioblastomas are 

the most common and represent 38% of cases of primary brain tumors (Noone et 

al., 2018). GBM commonly affects older adults, with the median age of diagnosis 

being 64 years old, and rarely affects children (Thakkar et al., 2014). The American 

Brain Tumor Association (ABTA) estimates the median survival for patients treated 

concurrently with temozolomide (TMZ) and radiotherapy to be 14.6 months, two-

year survival is around 30%, however less than 10% of patients will survive five 

years or longer (Stupp et al., 2015). Thus, it is imperative to improve the collective 

knowledge regarding GBM pathogenesis from both the basic science and clinical 

perspective to improve diagnostic strategies and develop more efficacious 

treatment options for GBM patients.  

1.2 GBM stages and classification 

The World Health Organization (WHO) classifies CNS tumors according to a 

malignancy scale based on the tumor’s histologic features. CNS tumor grades are 

defined as follows (Kleihues et al., 1993): 

a. Grade I: slow proliferating tumors that have low invasive potential, tumors 

are localized, and surgical resection alone is sufficient treatment. 
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b. Grade II: tumors show slow proliferating rates but have more invasive 

potential than grade I tumors, overtime tumors are more likely to recur and 

become more aggressive.  

c. Grade III: tumors are highly proliferative, have increased invasive potential 

and show histologic evidence of malignancy, such as nuclear atypia.   

d. Grade IV: tumors are highly proliferative, prone to necrosis, and show rapid 

preoperative progression and postoperative reoccurrence. All GBM tumors 

are considered to be grade IV.  

GBMs can be further classified into four subtypes based on gene expression 

patterns and genomic alterations, this classification is clinically relevant and allows 

better patient stratification for targeted therapies. The four molecular subtypes are 

described below (Table 1) (Verhaak et al., 2010).  

1.3 GBM features 

GBMs exhibits common hallmarks of cancer including genomic instability, ability 

to diffusely infiltrate tissue, increased resistance to apoptosis, unrestricted 

proliferation, and dysregulated angiogenesis (Hanahan and R. A. Weinberg, 

2011). These characteristics, combined with significant tumor heterogeneity, and 

the constant presence of cancer stem cells,  make GBMs a particularly complex 

and difficult disease to treat malignancy (Furnari et al., 2007) Specific genetic 

modifications that occur in GBMs sustain tumor biology and alter metabolism, 

collectively, these alterations enhance the survival of GBM tumor cells in the 

stressful tumor microenvironment.  
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Comprehensive genomic analysis of GBM samples for The Cancer Genome Atlas 

(TCGA) project determine alterations in the three main pathways, namely aberrant 

activation of receptor tyrosine kinase (RTK)/ Ras/phosphatidyl inositol 3-kinase  

Table 1. Gene expression based molecular classification of GBM subtypes.  
(Adapted from (Verhaak et al., 2010) 

GBM 
SUBTYPE 

MOLECULAR SIGNATURE 

Classical 
Chromosome 7 amplification paired with chromosome 10 loss 

High level EGFR amplification 

No TP53 mutations 

Focal 9p21.3 homozygous deletion, target CDKN2A 

High expression of stem cell marker Nes, and signaling 
pathways Notch and Sonic hedgehog  

Mesenchymal 
Focal 17q11.2 hemizygous deletion, target NF1 

Expression of mesenchymal marker CHI3L 

Expression of astrocytic markers CD44 and MERTK 

Increased expression of TRADD, RELB, TNFRSF1A (NF-kB 
pathway) 

Proneural 
PDGFRA alterations, focal amplifications at 4q12 and high 
PDGFRA expression 

IDH1 point mutations  

TP53 loss of heterozygosity and mutations 

High expression of oligodendrocytic development genes 
PDGFRA, NKX2-2, OLIG2 

Low expression of CDKN1A 

PIK3CA/PIK3R1 mutations  

Expression of proneural development genes SOX, DCS, DLL3, 
ASCL1, TCF4 

Neural 
Expression of neuron markers NEFL, GABRA1, SYT1 and 
SLC12A5 
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(PI3K)  signaling, and inactivation of tumor suppressor pathways p53 and 

retinoblastoma (Rb) (Cancer Genome Atlas Research Network, 2008). Moreover, 

amplifications on chromosome 7 (epidermal growth factor receptor - EGFR, 

mesenchymal epithelial transition - MET and cyclin dependent kinase 6 - CDK6), 

chromosome 12 (cyclin dependent kinase 4 - CDK4 and E3 ubiquitin-protein ligase 

MDM2) and chromosome 4 (platelet derived growth factor alpha - PDGFRA) are 

the most common, and mutations on the telomerase reverse transcriptase (TERT) 

promoter enhance telomere maintenance, promoting sustained cell survival 

(Brennan et al., 2013).     

Mutations in certain metabolic enzymes, such as isocitrate dehydrogenase (IDH) 

or pyruvate kinase M2 (PKM2), facilitate the use of aerobic glycolysis by GBM 

tumors. Furthermore, the distinctive metabolites produced by the mutated 

enzymes can induce oncogenic changes by affecting epigenetics (Agnihotri and 

Zadeh, 2016; Wolf et al., 2010). 

Isocitrate dehydrogenases (IDH1, IDH2) produce α-ketoglutarate (α-KG) from 

isocitrate and  reduce NADP+ to NADPH (Krell et al., 2011). Mutations on the IDH 

active site results in 80% reduction of enzymatic activity, decreased levels of α-KG 

and a gain of alternative function for the enzyme, which now reduces α-KG in an 

NADP-dependent manner to produce 2-hydroxyglutarate (2-HG) (Dang et al., 

2009; Zhao et al., 2009). 2-HG acts as an oncometabolite by inhibiting α-KG-

dependent histone demethylases resulting in hypermethylation at a large number 

of genetic loci, collectively known as the glioma-CpG island methylator phenotype 

(G-CIMP) (Noushmehr et al., 2010; Xu et al., 2011). Decreased levels of α-KG 
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result in stabilization and increased levels of hypoxia-inducible factor 1-alpha 

(HIF1-α), which orchestrates a concerted response within mammalian cells under 

hypoxic conditions by inducing the expression of genes involved in angiogenesis 

and glucose metabolism (Semenza, 1999; Zhao et al., 2009). Furthermore, 

interaction of HIF1-α with nuclear PKM2 promotes transactivation of HIF1-α target 

genes such as glucose transporter (GLUT1), lactate dehydrogenase A (LDHA), 

and pyruvate dehydrogenase kinase 1 (PDK1). HIF1-α also promotes the 

transcription of PKM2 creating a feedforward loop that amplifies the HIF1-α 

metabolic reprogramming (Luo et al., 2011).   

1.4 Standard of care and current therapies 

Treatment for newly diagnosed GBM patients is surgery follow by a combination 

of radiotherapy and chemotherapy with temozolomide (TMZ), a DNA alkylating 

agent. Promoter methylation status for O-6-methylguanine-DNA-

methyltransferase (MGMT) serves as a predictor for patients that would benefit 

from TMZ treatment (Hegi et al., 2005). The standard of care for GBM patients has 

not changed in more than 10 years, the approach is largely ineffective, and 

responses vary greatly between patients. (Hegi et al., 2005; Stupp et al., 2005).  

Recently, tumor treating fields (TTFields) have undergone clinical trials for 

treatment of newly diagnosed GBM patients (Stupp et al., 2015). These alternating, 

intermediate frequency, low-intensity electric fields, disrupt tumor growth by 

promoting cell cycle arrest and apoptosis. TTFields in combinations with TMZ 

prolong progression-free survival and overall survival (Hottinger et al., 2016).   
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2. Neuroblastoma 

Neuroblastoma arises from precursor cells of the sympathetic nervous system 

derived from the neural crest (Maris et al., 2007). The majority of neuroblastoma 

tumors will develop on the adrenal glands, but it can also develop in the abdomen, 

chest and neck (Maris et al., 2007). Primary CNS neuroblastoma is a rare type of 

intracranial tumor that usually presents during the first five years of life (Bianchi et 

al., 2018). CNS neuroblastomas are mostly located in the supratentorial region of 

the brain and characteristically show poorly differentiated neuroepithelial cells, 

groups of neurocytic cells, variable neuropil-rich stroma. Clinical presentation 

varies widely, with seizures and focal neurological deficits being the most common 

symptoms (Bianchi et al., 2018).   

2.1 Statistics 

According to the American Cancer Society (ACS), neuroblastoma is the most 

common type of cancer in children younger than one year old, approximately 90% 

of the cases are diagnosed before five years of age and it is rarely observed in 

people over ten years old (E. Ward et al., 2014). In the United States, according to 

the National Cancer Institute (NCI) 650 new cases are diagnosed every year, it 

represents 5% of all pediatric cancer diagnoses but it is responsible for up to 12% 

of childhood cancer mortality (Bosse and Maris, 2016). The overall five-year 

survival rate is 80.2% (1975-2015) (Noone et al., 2018). The age of diagnosis plays 

a significant role in survival rates, where the relative survival rate for children 

diagnosed before one year old is 91.1%, decreasing to 54.1% for diagnoses 

between 15-19 years of age (Noone et al., 2018). Primary CNS neuroblastoma are 
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relative rare cases and statistics for this kind of tumor are limited (Bianchi et al., 

2018). Great advances have been made in recent years for treatment of lower risk 

cases, however survival rates for children with high risk neuroblastoma remains 

under 40% (Bosse and Maris, 2016).  These statistics illustrate the need for better 

treatment options for children with high risk neuroblastoma. 

2.2 Neuroblastoma Stages and Classification 

Neuroblastoma is a heterogeneous disease exhibiting considerable variability in 

clinical presentation, prognosis and pathogenesis. In order to facilitate diagnosis 

the International Neuroblastoma Staging System (INSS), was created to classify 

tumors according to disease stage (Brodeur et al., 1993).  The INSS tumor stages 

are defined as follows (Brodeur et al., 1993): 

a. Stage 1: tumor is localized, gross excision is complete, lymph nodes are 

microscopically clear of tumor.  

b. Stage 2A: tumor is localized, gross excision is incomplete, lymph nodes are 

microscopically clear of tumor. 

c. Stage 2B: tumor is localized, gross excision is either complete or 

incomplete, lymph nodes are positive for tumor. 

d. Stage 3: tumor is unilateral, infiltrating the midline (vertebral column) and 

unresectable, with or without positive lymph nodes.    

e. Stage 4: any primary tumor that has dissemination to other organs, 

including but not exclusive to bone, bone marrow, liver and distant lymph 

nodes. 
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f. Stage 4s: localized tumor as previously described for stages 1, 2 and 2A, 

that have disseminated to skin, liver and/or bone marrow, in infants less 

than 1 year old.  

Additional stratification of patients can be achieved using the guidelines provided 

by the International Neuroblastoma Risk Group (INRG) system, which classifies 

patients according to their pretreatment risk based on image-defined risk factors 

(IDRFs) (Table 2). There are four different groups according to the INRG 

classification (Monclair et al., 2009): 

a. L1: tumor is localized and confined to one body compartment, vital 

structures are not involved. 

b. L2: tumors may be present in continuous body compartments and presents 

one or more IDRFs. 

c. M: tumor presents distant metastases (except as defined for MS). 

d. MS: metastatic disease confined to skin, liver, and/or bone marrow. Patient 

is greater than18 months.  

Furthermore, patient’s prognosis of 5 year event-free survival can be classified into 

four different risk groups very low risk (>85%), low (75%-85%), intermediate 

(<75%) and high risk (<50%) by combining the INRG classification system with 

tumor stage, age of diagnosis, tumor differentiation, histologic category, MYCN 

oncogene amplification, chromosome p11 status and DNA ploidy, (Cohn et al., 

2009). The differences in these events culminate in distinct physiological features 

of neuroblastoma that ultimately lead to disease heterogeneity. 
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Table 2. Image-Defined Risk Factors in Neuroblastoma tumors.  
(Adapted from (Monclair et al., 2009) 

IDRFs Tumor Location 

Ipsilateral extension (2 
body compartments) 

Neck-Chest 

Chest-Abdomen 

Abdomen-Pelvis 

Neck 
Encases carotid, vertebral artery and/or jugular vein 

Extends to base of the skull 

Compresses the trachea 

Cervico-Thoracic 
Encases brachial plexus roots 

Encases carotid, vertebral artery and/or subclavian 
vessels 

Compresses the trachea 

Thorax 
Encases aorta and/or major branches 

Compresses the trachea or principal bronchi 

Infiltrates costo-vertebral junction between T9-T12 

Thoraco-abdominal 
Encases aorta and/or vena cava 

Abdomen/pelvis 
Infiltrates of the porta hepatis and/or hepatoduodenal 
ligament 

Encases superior mesenteric artery  

Encases origin of the coeliac axis and/or superior 
mesenteric artery 

Encases aorta and/or vena cava 

Encases iliac vessels 

Crosses the sciatic notch 

Intraspinal extension 
Invades more than one third of the spinal canal, 
perimedullary leptomeningeal spaces are not visible 
and/or spinal cord signal is abnormal 

Adjacent 
organs/structures 

Invades pericardium, diaphragm, kidney, liver, 
duodeno-pancreatic block, mesentery 
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2.3 Neuroblastoma features 

Specific genetic and biological changes in neuroblastoma tumors transforming 

cells to maintain continuous cell proliferation, bypass growth suppressors signals, 

attain replicative immortality, promote angiogenesis, evade cell death, avoid 

immune destruction and alter cellular metabolism (Hanahan and R. A. Weinberg, 

2011).  

The most common genetic alteration observed in neuroblastoma is the 

amplification of the proto-oncogene MYCN, usually observed in high-risk 

neuroblastoma tumors and correlates with advance stages of the disease and less 

favorable prognosis (Olsen et al., 2017). Part of the Myc family of transcription 

factors, N-Myc (MYCN) is involved in several cellular proposes such as 

proliferation, growth, differentiation apoptosis, metabolism, and it plays an 

important role in brain development (Beltran, 2014).  Several studies have shown 

that deregulation of MYCN, either by amplification or overexpression, promotes 

tumorigenesis both in neural crest progenitor cells and in mice (Althoff et al., 2015; 

Montavon et al., 2014; Schulte et al., 2013; Weiss et al., 1997). Other common 

segmental chromosomal aberrations that correlate with prognosis are deletions in 

chromosomes 1p, 1q, 3p, 4p or 11q, and gain of chromosome 17q, however the 

specific candidates responsible for changes in tumor biology are not known (Bosse 

and Maris, 2016).   

Familial cases of neuroblastoma are extremely rare accounting for 1-2% of all 

neuroblastoma cases, 80% of these cases can be attributed to either a gain of 

function mutation on anaplastic lymphoma kinase (ALK) or a loss of function 
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mutation on paired-like homeobox 2B (PHOX2B) (Bosse and Maris, 2016). 

Constitutive activation of ALK disrupts the balance between differentiation and 

proliferation. One of the proposed mechanisms involves the activation of RAS-

mitogen activated protein kinases (MAPK) signaling pathways leading to increased 

proliferation. Also, recent evidence suggests that PHOX2B regulates ALK 

expression (Cheung and Dyer, 2013). Furthermore, mutations that promote 

constitutive activation of the RAS-MAPK signaling pathway are associated with 

neuroblastoma relapse (Eleveld et al., 2015).  

Telomere lengthening has been observed in high risk neuroblastomas, where 

rearrangements in the chromosome region 5p15.33 upregulate transcription of 

TERT, and 10% of neuroblastoma cases show loss of function mutations in alpha 

thalassemia/mental retardation syndrome X-linked (ATRX), these tumors undergo 

alternate lengthening of telomeres which is independent of telomerase activity 

(Bosse and Maris, 2016; Peifer et al., 2015).  

2.4 Standard of care and current therapies 

The standard of care for neuroblastoma patients varies according to the tumors 

risk classification. Treatment for patients with low risk tumors is either observation 

or surgical resection (Strother et al., 2012). Patients with intermediate risk tumors 

receive several chemotherapy cycles with carboplatin, etoposide, doxorubicin and 

cyclophosphamide, followed by surgical removal of the primary tumor (Baker et al., 

2010). High risk neuroblastoma requires aggressive treatment that combines 

chemotherapy with cisplatin, etoposide, vincristine, cyclophosphamide, 

doxorubicin and topotecan, followed by surgery (Kushner et al., 1994; Park et al., 
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2011). A round of myeloablative chemotherapy aims to eliminate any residual 

disease and it is followed by stem cell transplantation (SCT) to replenish the bone 

marrow, common drug combinations used are  carboplatin, etoposide and 

melphalan, or busulfan and melphalan (Matthay et al., 1999) (Elborai et al., 2016). 

Patients in remission after SCT are treated with dinutuximab, granolucyte-

macrophage colony stimulating factor (GM-CSF), interleukin-2 (IL-2) and 

isotretinoin (Cheung et al., 2012; Yu et al., 2010). 

3. Cancer metabolism 

All cancers share a common set of features known as the “hallmarks of cancer”, 

unrestricted proliferation, evasion of growth suppressors signals and cell death, 

induction of angiogenesis, activation of invasion and metastasis, and metabolic 

reprogramming, genomic instability introduces genetic diversity that promotes and 

sustain the changes necessary for cancer cells to survive. (Hanahan and R. A. 

Weinberg, 2011). Mutations in distinct metabolic enzymes change the capacity of 

tumor cells to use alternative substrates in comparison to normal tissue. 

Collectively, these alterations enhance the survival of tumor cells in a stressful, 

oxygen deprived, nutrient restricted environment.  

3.1 General 

The most widely studied metabolic change in cancer cells is aerobic glycolysis, 

also knowns as the “Warburg effect”, where glucose is converted to lactate even 

in the presence of oxygen (Bensinger and Christofk, 2012). Even though aerobic 

glycolysis seems inefficient in terms of ATP production in comparison to oxidative 

phosphorylation, it provides proliferating cancer cells with precursors for 
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biosynthesis of macromolecules such as fatty acids, nucleotides, ribose and non-

essential amino acids (Vander Heiden et al., 2009). Different mechanisms 

orchestrate the transcription upregulation of glycolytic enzymes frequently 

observed in cancer cells. PI3K signaling increases glucose uptake via AKT 

upregulation of glucose transporter expression (GLUT1), stimulation of hexokinase 

(HK) activity and posttranslational stabilization of phosphofructokinase 1 (PFK1) 

(Plas et al., 2001; Rathmell et al., 2003). The transcription factor HIF1-a, also 

regulated by the PI3K/AKT/mTOR pathway, promotes expression of hexokinase II 

(HK-II), pyruvate dehydrogenase kinase (PDK) and lactate dehydrogenase (LDH) 

(Courtnay et al., 2015; Roberts and Miyamoto, 2015). The oncogene MYC can 

also promote upregulation of glycolytic enzymes and PDK1, while loss of the tumor 

suppressor p53 decreases expression of TP53-induced glycolysis and apoptosis 

regulator (TIGAR), which in turn decreases oxidative phosphorylation and 

increases flux through glycolysis (Bensinger and Christofk, 2012). Furthermore, 

some metabolic enzymes switch between isoforms further supporting the cell’s 

preference for aerobic glycolysis, for example the splice variant PKM2, normally 

expressed embryonically, when expressed in tumor tissues is sufficient to promote 

aerobic glycolysis, however knockdown of this isoform and switch to adult PKM1 

results in a decrease in glycolytic rate and cell proliferation (Christofk et al., 2008).    

Development of cancer cells occurs within an environment where resources are 

limited, cancer cells use a wide variety of nutrients in order to fulfill their 

requirements (Vander Heiden and DeBerardinis, 2017). In order to synthesize 

macromolecules, such as lipids, nucleotides and aminoacids, cancer cells rely on 
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intermediates from the tricarboxylic acid (TCA) cycle.  For lipid biosynthesis, citrate 

is shuttled outside the mitochondria to be converted into oxaloacetate (OAA) and 

acetyl-CoA, changes in protein expression and activity of ATP citrate lyase and 

fatty acid synthase are frequently observed in tumors. Furthermore, OAA and a-

KG supply nonessential aminoacids for protein and nucleotide synthesis 

(DeBerardinis et al., 2008). Glutamine oxidation, also known as glutaminolysis, 

provides support for bioenergetics and replenishes TCA intermediates (Daye and 

Wellen, 2012). Glutamine is readily available in circulation, providing cancer cells 

with a source of carbon and nitrogen for bioenergetics, macromolecule synthesis 

and cellular homeostasis. Glutaminase (GLS) mediates the conversion of 

glutamine to glutamate and an ammonium ion, several cancer types show 

preferential expression of the more active splice variant  glutaminase C (GAC); 

glutamate is further process to a-KG by glutamate dehydrogenase (GLUD) that 

also produces NADH and NAPDH supporting the TCA cycle, or alanine 

aminotransferase and aspartate aminotransferase, which provide  other 

aminoacids that can support different biosynthetic processes  (Altman et al., 2016). 

3.2 Glioblastoma 

Specific genetic modifications that occur in GBMs sustain tumor biology and alter 

metabolism, where mutations in distinct metabolic enzymes change the capacity 

of tumor cells to use substrates in comparison to normal tissue. Understanding the 

metabolically-relevant genetic alterations promoting GBM tumor biology will 

provide unique insights that may improve diagnostic and therapeutic approaches.  
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3.2.1 Substrate Utilization 

Tumor cells utilize substrates distinctly from their normal counterparts to maximize 

growth and proliferation. A recent study using carbon-13 NMR spectroscopy in rat 

C6 glioma cells, an in vitro model of GBM, revealed the production of lactate from 

glucose, consistent with aerobic glycolysis, and consumption of glutamine for 

anaplerosis of the tricarboxylic acid (TCA) cycle; in this system both substrates 

complement each other to support the high proliferation rates (Portais et al., 1996). 

An additional study confirmed that GBM cells use aerobic glycolysis and showed 

that exogenous lactate was the main substrate used for oxidative phosphorylation. 

The ability of the cells to utilize two distinct sources of lactate could provide a 

potential growth advantage (Bouzier et al., 1998).   

The human GBM cell line U87 is characterized by low respiration, elevated 

glycolytic rates, and increased stability of hypoxia inducible factors HIF-1α and 

HIF-2α (Zhou et al., 2011). Studies in U87 cells demonstrated that inhibition of 

glycolysis reduced cellular ATP production and resulted in cell death (Blum et al., 

2005; Zhou et al., 2011). Metabolic trace experiments using 13C-NMR 

demonstrated that the GBM cell line SF188 uses glucose for aerobic glycolysis, 

produces abundant levels of labeled lactate and alanine, with glucose carbons 

entering the TCA cycle as pyruvate through pyruvate dehydrogenase (PDH), which 

later contributes to fatty acid synthesis (DeBerardinis et al., 2007). This study also 

revealed that SF188 cells use glutamine as anaplerotic nutrient for the TCA cycle 

and as a source of NADPH (DeBerardinis et al., 2007).  Addiction to glutamine has 

been shown in SF188 cells, where glutaminolysis preserves mitochondrial activity, 
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replenishes the TCA cycle and contributes to bioenergetics (Wise et al., 2008). 

Under hypoxic conditions, the GBM cell line SF188 uses glutamine as a source of 

α-ketoglutarate, which generates citrate by isocitrate dehydrogenase 2 (IDH2), an 

event required for fatty acid and cholesterol synthesis, protein acetylation and 

NADPH production (Wise et al., 2011).  

Orthotopic mouse models for primary GBM and 13C-NMR have demonstrated that 

glucose is used for glycolysis rather than increased flux through the pentose 

phosphate pathway (PPP) as previously suggested by cell-based studies. 

Detection of labeled glutamate and γ-aminobutiric acid (GABA) indicated that 

glucose was converted to acetyl-CoA and then oxidized in the TCA cycle, showing 

that both aerobic glycolysis and oxidative metabolism occur in vivo (Marin-Valencia 

et al., 2012a). Furthermore, the presence of labeled lactate, glutamate and 

glutamine provided evidence that glucose serves as an anaplerotic nutrient 

entering the TCA cycle through pyruvate carboxylase. Labeling of glutamate and 

glutamine has been demonstrated to be due to normal turnover of the TCA cycle 

and PDH activity in the tumor, however, these tumors do not oxidize glutamine or 

require an extracellular supply, since they can synthesize glutamine de novo from 

glucose (Marin-Valencia et al., 2012b).  Metabolic analysis of human brain tumors 

in vivo showed similar results to the orthotopic mouse models, where labeled 

glucose supplied to tumors during surgical resection is engaged in glycolysis as 

well as oxidation in the TCA cycle, and along with glycine and glutamine synthesis. 

In this way, glucose is used for energy supply and for macromolecule precursors 

(Maher et al., 2012). A recent study found that orthotopic mouse brain tumors, as 
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well as patient GBM tumors, highly expressed acetyl-CoA synthetase enzyme 2 

(ACSS2) that catalyzes the conversion of acetate into acetyl-CoA, thus permitting 

oxidation of acetate in the TCA cycle (Mashimo et al., 2014). 

Multiple GBM model systems are available that display distinct preferences for 

metabolic substrates (Table 3). Metabolic differences may be observed in each of 

these systems, however, these should be interpreted with caution since they may 

not apply to all systems and thus may not translate to what happens in GBM 

patients. Thus, it is imperative to develop more precise model systems and 

techniques to better understand metabolic differences in GBM tumors that more 

accurately represent what happens in patients.    

 

Table 3. GBM model systems and substrate utilization.  
MODEL SYSTEM SUBSTRATE END PRODUCT 

C6 RAT GLIOMA Glucose Lactate 
Glutamine TCA cycle anaplerosis 

External Lactate TCA cycle anaplerosis 
U87 CELL LINE Glucose Lactate 

Alanine 
TCA cycle – Fatty acid 
synthesis 

Glutamine TCA cycle anaplerosis 
Fatty acid synthesis 
Cholesterol synthesis  
Protein acetylation 

MOUSE ORTHOTOPIC 
TUMORS 

PATIENT GBM 
TUMORS 

Glucose Lactate 
TCA cycle 
Glutamate, GABA 
Glutamine  

Acetate Acetyl-CoA 
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3.2.2 Isocitrate Dehydrogenase 

Isocitrate dehydrogenases (IDH1, IDH2) produce α-KG from isocitrate and  reduce 

NADP+ to NADPH (Krell et al., 2011). IDH1 and IDH2 are homodimeric, can either 

be mitochondrial or cytosolic and can protect the cell against oxidative stress 

damage (Jo et al., 2001; S. Y. Kim et al., 2007; Krell et al., 2011; X. Xu et al., 

2004). Interestingly, the IDH1 gene is commonly mutated in patients with 

secondary GBMs. Genomic analysis of human GBM tumor samples revealed that 

all patients had the same mutation in the IDH1 active site where arginine 132 was 

often replaced by a histidine (R132H). IDH1R132H tends to occur in younger 

patients, and individuals with this mutation have an improved prognosis, increasing 

their median survival to 3.8 years in comparison to 1.1 years for IDH1 wild-type 

patients (Parsons et al., 2008). Other glioma patients have the IDH1R100 mutation, 

while pediatric glioblastoma patients have the IDH1G97 mutation. Furthermore, 

tumors without any IDH1 mutations frequently displayed mutations in the IDH2 

gene (P. S. Ward et al., 2011; Yan et al., 2009). IDH2 mutations occurred on the 

analogous aminoacid R172 in the active site which was replaced by either a 

glycine (R172G), a lysine (R172K) or a methionine (R172M) (Yan et al., 2009). 

In vitro studies showed that GBM derived mutations in IDH1 and IDH2 have greater 

than 80% reduction of their enzymatic activity when compared to their wild-type 

counterparts due to decreased affinity for isocitrate, which results in very limited 

enzymatic activity under physiological conditions. Expression of mutant IDH1R132H 

in the human GBM cell line U87-MG resulted in decreased levels α-KG in a dose-

dependent manner. This may be attributed to the fact that IDH1 works as a 
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homodimer, expression of IDH1R132H results in dominant inhibition of the wild-type 

enzyme by forming heterodimers IDH1wt:IDH1R132H that are unable to catalyze the 

production of α-KG (Zhao et al., 2009). However, analysis of patient tumor samples 

carrying different IDH1 mutations showed that there were no significant differences 

in α-KG levels between mutant samples and tumor samples carrying wild type 

IDH1 (Dang et al., 2009). This IDH1 mutation also results in a gain of function 

activity for the enzyme, where IDH1 heterodimers reduce α-KG in an NADP-

dependent manner and produce 2-hydroxyglutarate (2-HG), specifically the R-

isomer (R)-2-HG (Figure 1). Elevated levels of 2-HG have also been observed both 

in GBM cell lines expressing the mutant enzyme as well as in GBM patient samples 

harboring the IDH1R132H mutation (Dang et al., 2009). The combination of these 

changes may contribute to malignant progression due to several events since α-

KG is required by prolyl-hydroxylases (PHD) enzymes to promote HIF1-α 

degradation, while decreased levels of α-KG result in stabilization and increased 

levels of HIF1-α (Zhao et al., 2009). U87 cells stably transfected with IDH1R132H, 

result in inhibition of ATP synthase by 2-HG, having decreased ATP levels and 

ATP/ADP ratio and decreased mammalian target of rapamycin (mTOR) signaling 

(Fu et al., 2015). Furthermore, working as an oncometabolite, 2-HG competitively 

inhibits α-KG dependent histone demethylases due to its structural similarity with 

α-KG. Expression of IDH1R132H in U87-MG resulted in a decrease of α-KG levels, 

an increase in 2-HG levels and an increase in histone methylation. Comparable 

results were observed in patients, where tumor samples carrying the IDH1 

mutation had significantly higher levels of histone methylation in comparison to 
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IDH1-wild type tumor samples (W. Xu et al., 2011). Expression of mutant IDH1 

caused hypermethylation of a series of genes in immortalized primary human 

astrocytes, as well as in low-grade gliomas and secondary GBMs carrying the 

endogenous IDH1 mutation (Turcan et al., 2012). Some genes involved in 

glycolysis, including lactate dehydrogenase A (LDHA), are under-expressed in 

gliomas, brain tumor stem cells (BTSC) and orthotopic xenografts derived from 

BTSC carrying the mutant IDH, due to methylation of the promoter (Chesnelong et 

al., 2014). 

 
Figure 1. Metabolic changes resulting from IDH mutations. 

IDH heterodimers reduce α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) 
altering GBM metabolism through a series of reactions. Inhibition prolyl-
hydroxylases (PHD) stabilizes HIF1-α and increases PDK1 expression, inhibition 
of ATP synthase reduces ATP/ADP ratio inhibiting mTOR signaling, decrease 
levels of α-KG results in reduced levels of several aminoacids and TCA cycle 
intermediates and increased expression of PC promotes reprogramming of 
pyruvate metabolism.  
 
 
Metabolomics analysis of human oligodendroglioma (HOG) cells expressing either 

wild-type IDH1, IDH2 or IDH1R132H, IDH2R172K revealed that cells expressing the 

mutant proteins have significant differences in their metabolic profile. Mutations in 

IDH caused changes in aminoacid levels, where a significant decrease was 

observed in levels of aspartate, glutamate, N-acetylated aminoacids, both reduced 

and oxidized glutathione, and TCA cycle intermediates including fumarate, malate, 
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and α-KG. These changes were shown to be due to production of 2-HG since 

treatment of cells with shRNA against IDH1/2 did not reproduce these altered 

metabolic profiles, however, similar changes were observed when cells were 

treated with 2-HG (Reitman et al., 2011). Decreased levels of glutamate were not 

only observed due to mutant IDH mediated increase flux of α-KG to 2-HG but also 

as a result of pyruvate metabolism reprogramming. Accumulation of 2-HG raises 

levels of HIF-1α and causes downregulation of pyruvate dehydrogenase (PDH) 

activity, which results in decreased decarboxylation of pyruvate into acetyl-CoA 

before entering the TCA cycle as well as a generally diminished flux of glucose to 

glutamate, as shown using 13C-MRS in U87 cells carrying mutant IDH (Izquierdo-

Garcia et al., 2015).  To support TCA cycle anaplerosis, IDH mutant cells exhibit 

increased expression of pyruvate carboxylase (PC), which catalyzes the 

conversion of pyruvate into oxaloacetate. Higher expression levels of PC have 

been observed both in immortalized human astrocytes as well as in TCGA patient 

samples carrying the IDH1R132H mutation (Izquierdo-Garcia et al., 2014). 

Understanding the metabolic changes and compensatory mechanisms adopted by 

tumors expressing mutant IDH will potentially identify novel therapeutic targets that 

will help improve treatment of patients that present these mutations.  

3.2.3 HIF1α 

The transcription factor Hypoxia-inducible factor 1 (HIF1) orchestrates the 

response of mammalian cells under hypoxic conditions inducing the expression of 

genes involved in angiogenesis and glucose metabolism (Semenza, 1999). HIF1 

activity is regulated by stabilization of the HIF1-α subunit. Under normal oxygen 
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conditions, hydroxylation of certain prolines in the oxygen-dependent degradation 

(ODD) domain by PHDs results in recruitment of the E3 ubiquitin ligase von Hippel-

Lindau tumor suppressor (pVHL) which promotes HIF1-α degradation via the 

ubiquitin-proteasome pathway (Huang et al., 1998; Jaakkola et al., 2001). 

Activation of HIF1-α leads to increased angiogenesis and promotes invasion and 

migration by controlling the expression of several proteins involved in these 

processes (Kaur et al., 2005).  

During hypoxia, it is well known that PTEN inhibits the accumulation of HIF1-α, as 

U87-MG cells conditionally expressing WT or mutant PTEN showed that loss or 

mutation of PTEN caused accumulation and stabilization of HIF1-α. Furthermore, 

chemical inhibition of phosphatidylinositide-3 kinase (PI3K) or knockdown of AKT 

using small interference RNA (siRNA) blocked both accumulation of HIF1-α and 

reduced gene expression. Also, knockdown of PTEN in the glioblastoma cell line 

LN229 resulted in increased expression of the HIF1-α target genes hexokinase1 

(HK1) and the glucose transporter 1 (GLUT1) Hypoxia also mediates epithelial to 

mesenchymal transition (EMT) in GBM cell lines U87 and SNB75 via HIF1-α, which 

induces the transcription factor zinc finger E-box binding homeobox 1 (ZEB1) that 

promotes EMT, prompts the expression of mesenchymal markers fibronectin and 

COL5A (collagen, type V, alpha 1) and promotes migration and a more invasive 

phenotype. In patient samples, expression of ZEB1 co-localizes with GLUT1, a 

marker for hypoxia, and  chitinase 3 like-1 (CHI3L-1), a mesenchymal marker, in 

the pseudopalisading area surrounding the necrotic foci (Joseph et al., 2015). 
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In U87-MG cells, HIF1-α acts as part of an autocrine loop involving insulin-like 

growth factor receptor 1 (IGFR1), STAT3 (signal transducers and activators of 

transcription) and IGF-II, which together work to induce release of vascular 

endothelial growth factor (VEGF) and thus regulate tumor survival. Activation of 

IGFR1 promotes activation of STAT3 that leads to stabilization of HIF1-α and IGF-

II as well as release of VEGF, thus further activating this circuit. Inhibition of IGFR1 

activation disrupts the autocrine loop and reduces cell growth (Gariboldi et al., 

2010). Moreover, a recent study using T98G cells demonstrated that STAT3 can 

be repressed by GRIM-19 (gene associated with retinoid-interferon-induced 

mortality-19) which reduces the levels of HIF1-α. In these cells knockdown of 

GRIM-19, increases cell proliferation, and facilitates the switch from mitochondrial 

respiration to glycolysis by increasing GLUT-1 levels at the membrane, enzymatic 

activity of hexokinase 2 (HK2), pyruvate kinase M2 (PKM2) and 

phosphofructokinase (PFK), and phosphorylation levels and subsequent 

inactivation of pyruvate dehydrogenase (PDH) (Liu et al., 2013). 

In patient-derived glioma-initiating cells (GICs), HIF1-α induces the microRNA 

miR-215 by incorporating pri-miRNA-215 into the DROSHA complex for 

processing under hypoxic conditions. MiR-215 promotes tumor growth by allowing 

GSCs to adapt to hypoxia by targeting KDM1B, a FAD-dependent histone 

demethylase of H3K4me1/2. Low expression of KDM1B results in increased 

expression of genes involved in hypoxia response, glucose metabolism and 

angiogenesis. It should be noted that in patients, reduced levels of KDM1B 

correlates with a poor clinical prognosis (Hu et al., 2016).  
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U87 spheroids show induction of the fatty acid-binding protein 3 (FABP3) and 

FABP7, which are involved in fatty acid uptake, and accumulation of lipid droplets 

(LD) in the hypoxic core domain in HIF1-α dependent manner. Inhibition of 

FABP3/7 impairs tumor growth in a murine xenograft model, which was associated 

with the decreased levels of LDs. This, in turn, leads to increased reactive oxygen 

species (ROS) toxicity and decreased cell survival by reducing the amount of ATP 

production from fatty acid b-oxidation or glycogen degradation (Bensaad et al., 

2014).  

Since HIF1-α orchestrates the response and adaption to a low O2 environment, 

which is characteristic of solid tumors and provides a survival advantage by 

promoting angiogenesis, migration and invasion, targeting HIF1-α and the 

pathways regulated by it, would provide new therapies that may contribute to 

increased survival of GBM patients.  

3.2.4 EGFR 

The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), is 

responsible for initiating various signal transduction pathways, including 

RAS/mitogen-activated protein kinase and PI3K/AKT, which are particularly 

relevant to GBM biology. Abnormal activation of EGFR is common in numerous 

forms of cancer and usually occurs due to one of the following alterations: 

increased levels of EGFR ligands, amplification of EGFR genes, overexpression 

of EGFR members (wild-type or mutants), or EGFR-independent activation of 

downstream signaling pathways (Nicholas et al., 2006). In GBMs, amplification of 

EGFR genes is common and frequently accompanied by gene rearrangement; the 
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most common being a deletion of exons 2 to 7. This results in a mutant receptor 

with a truncated extracellular domain called EGFRvIII, which is unable to bind to 

its ligands and it is constitutively phosphorylated and thus continuously activates 

downstream signaling pathways (Gan et al., 2009; Nagane et al., 2001).  

The type of activation of EGFR will determine the downstream signaling, where 

ligand-dependent activation engages the canonical networks involving ERK and 

AKT, while overexpression and constitutive activation of the wild-type receptor lead 

to phosphorylation and activation of the transcription factor IRF3 (interferon 

regulatory factor 3), which activates a series of survival signals. Importantly, 

overexpression of EGFRWT in GBM cell lines U251 and U87, reduces sensitivity to 

chemotherapy, however, exposure to EGF sensitizes cells to temozolomide 

(Chakraborty et al., 2014).  

EGF-mediated stimulation of EGFR induces the expression cyclooxygenase-2 

(COX-2) through activation of the p38-MAPK pathway. COX enzymes are crucial 

for prostaglandins biosynthesis. COX-2 is inducible as a rapid response to various 

stimuli and may play an important role in tumor biology, where in malignant gliomas 

increased expression levels correlate with shorter patient survival. In the glioma 

cell line SF767, EGF binding to EGFR promotes activation of p38-MAPK, which 

then phosphorylates protein kinase C-delta (PKC-d) resulting in Sp1 

phosphorylation, nuclear translocation and enhanced binding to the COX-2 

promoter, followed by increased levels of COX-2 (mRNA and protein). Inhibition of 

EGFR kinase activity, p38-MAPK, PKC-d or the transcription factors Sp1/Sp3, 

blocks the EGF-dependent induction of COX-2 (K. Xu et al., 2009; K. Xu and Shu, 
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2007). COX-2 expression may also be mediated by the nuclear translocation of 

EGFR and STAT3, which also controls transcriptional activation of genes like iNOS 

(inducible nitric oxide synthase) and c-MYC. In glioma patients, activation of 

STAT3 correlates with expression of insulin-like growth factor binding protein 2 

(IGFBP2). In GBM cell lines, SNB19 and U87, it was demonstrated that IGFBP2 

activates STAT3 and subsequent transcription of STAT3 target genes by activating 

and promoting the nuclear accumulation of EGFR  (Chua et al., 2016). 

Interestingly, EGF activation of EGFR also leads to increased expression of PKM2 

but not PKM1. U87 cells overexpressing EGFRvIII exhibit higher levels of PKM2 

in comparison to cells U87 overexpressing EGFRWT without EGF stimulation, while 

inhibition of EGFR activation by treating cells with AG1478 blocked PKM2 

upregulation. PKM2 expression by EGFR activation depends on activation of both 

PKCe and nuclear factor kappa enhancer binding protein, correlates with increased 

glycolysis and tumorigenesis, and in patients, with the grade of glioma malignancy 

(W. Yang et al., 2012a). 

In mice with inactive p16Ink4/p19ARF and PTEN, expression of EGFRvIII resulted 

in formation of highly aggressive tumors, while expression of EGFRWT was not as 

efficient for tumor development. After tumor formation, cells isolated and 

stimulated with EGF, resulted in phosphorylation of EGFRWT on residues 920, 992, 

1045, 1068, 1148 and 1173, whereas, EGFRvIII only showed autophosphorylation 

on residue 992. These differences also resulted in differences between signaling 

cascades activated by these two receptors. For example, phosphorylation of 

STAT3 in tyrosine 705, or MEK/ERK activation was only observed in EGFRWT 
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cells. EGFRvIII showed constitutive phosphorylation of AKT on Ser-473 while 

EGFRWT showed phosphorylation on Thr-308 upon EGF-stimulation. Similarly, 

stimulation of EGFRWT cells resulted in activation of mTOR complex 1 (mTORC1) 

which was not observed in EGFRvIII expressing cells (Zhu et al., 2009). EGFRvIII 

cells show elevated levels of mTORC2 signaling, where activation is sensitive to 

changes in metabolite availability, increasing in response to both glucose and 

acetate in a dose- and time-dependent manner. Regulation of mTORC2 signaling 

depends on acetyl-CoA levels, which provides the acetyl group for Rictor 

acetylation and then further increases mTORC2 activity. mTORC2 forms an 

autoactivation loop by promoting the phosphorylation and subsequent inactivation 

of histone deacetylase (HDAC) class IIa by PKCa, which then maintains Rictor in 

its acetylated state. Rictor acetylation in the presence of glucose results in GBM 

cells that are resistant to therapies that involve inhibition of EGFR, PI3K or AKT, 

since it allows tumor cells to maintain mTORC2 signaling active independent of 

upstream stimulation (Masui et al., 2015). Since differential activation of EGFR will 

dictate the downstream signaling events and affect the aggressiveness and 

adaptability of the tumor, it is critical to understand the potential outcomes linked 

to a specific activation event so that we better diagnose patients, since determining 

the kind of EGFR perturbation will allow the design of more efficacious treatment 

plans.  

3.2.5 PKM2 

Pyruvate kinase (PK) catalyzes the last and rate-limiting step in glycolysis, the 

conversion of phosphoenolpyruvate (PEP) to pyruvate while transferring a high-
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energy phosphate to form ATP. There are two genes and four PK isoforms, the 

PKLR gene encodes for the PKL and PKR isoforms and the PKM gene encodes 

for PKM1 and PKM2 (Wong et al., 2013). PKM2, the primary isoform expressed in 

cancer cells, results from the alternative splicing of exons 9 and 10 from the PKM 

gene. Unlike the M1 isoform that forms stable tetramers and is constitutively active, 

PKM2 is found both as a dimer or a tetramer and has a lower enzymatic activity. 

(Christofk et al., 2008; Dombrauckas et al., 2005). PKM2 requires allosteric 

activation, by fructose-1,6-biphosphate (FBP) which promotes the formation of the 

more active tetramer form. Tyrosine kinase signaling inhibits the enzyme by 

facilitating the release of FBP and switching to the less active dimer conformation 

(Wong et al., 2013). Under nutrient-limited conditions, PKM2’s activation depends 

on levels of the de novo purine nucleotide synthesis intermediate succinyl-5-

aminoimidazole-4-carboxamide-1-ribose-5’-phosphate (SAICAR) (K. E. Keller et 

al., 2012). In this manner PKM2 regulates glucose metabolism favoring entrance 

of pyruvate to the TCA cycle when the enzyme is in the active tetramer form or 

aerobic glycolysis when present in the less active dimer form, providing cancer 

cells a metabolic advantage that facilitates cell proliferation (Figure 2) (Christofk et 

al., 2008; Wong et al., 2013). 

PKM1 and PKM2 are differentially expressed, where PKM1 Is expressed in heart, 

skeletal muscle, and brain, while PKM2 is expressed in most cells except in adult 

liver, muscle and brain (Wong et al., 2013). Analysis of TCGA exon array data 

showed that GBM tumors have very low or negative levels of the PKM1-specific 

exon 9 in comparison to normal tissue, indicating that a switch occurs between 
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expression of PKM1 to PKM2. Moreover, the degree of switching varied depending 

on the type of tumor, where the ratio between PKM2/PKM1 is higher in more 

undifferentiated mesenchymal   

 
 

 
Figure 2. PKM2 promotes aerobic glycolysis through two distinct 

mechanisms. 
PKM2 reduced enzymatic activity decreases entrance of pyruvate into the TCA 
cycle and increases aerobic glycolysis, while EGF activation promotes nuclear 
translocation of PKM2 where it can transactivate c-Myc and HIF1-α, therefore 
upregulating the expression of glycolytic genes like GLUT1, LDHA, and PDK1. 
 

GBMs than in more differentiated proneural GBMs (Desai et al., 2014). 

EGF stimulation in U251 and U87/EGFR cells, or in cancer cells carrying the 

EGFRvIII mutant, promotes the ERK activation dependent translocation of PKM2 

to the nucleus. PKM2 interacts directly with ERK2 which phosphorylates S37, 
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promoting the interaction with peptidyl-prolyl Cis/Trans Isomerase, NIMA-

Interacting 1 (PIN1) which facilitates PKM2 binding to importin a5 allowing it to be 

translocated  (W. Yang et al., 2012c). After translocation, PKM2 binds to poly-ADP-

ribose (PAR) and this interaction is required for PKM2 nuclear retention and 

activity. On the other hand, inhibition of the PKM2/PAR interaction by blocking 

poly-ADP-ribose polymerase-1 (PARP1) prevents PKM2 nuclear localization and 

diminishes its nuclear functions (Li et al., 2016). PKM2 interacts with c-Src 

phosphorylated b-catenin (Y333) and phosphorylates histone H3 at T11, which is 

required for disassociation of histone deacetylase 3 (HDAC3) from the cyclin D1 

(CCND1) promoter and  histone H3 acetylation and expression of cyclin D1 and c-

Myc, both of which are important for cell proliferation (W. Yang et al., 2012b; 2011). 

PKM2 EGF-induced transactivation of b-catenin also upregulates the c-Myc-

dependent expression of glycolytic genes GLUT1 and lactate dehydrogenase A 

(LDHA) (Figure 2). Depletion of PKM2 using shRNA showed reduced b-catenin 

transactivation and reduced EGF-induced expression of cyclin D1, c-Myc, its 

downstream genes and the capacity of these cells to perform aerobic glycolysis, 

thus showing a reduction in glucose consumption and lactate production (W. Yang 

et al., 2012c; 2011). Moreover, intracranial injection of either U87 or U87/EGFRvIII 

cells into mice, showed that U87/EGFRvIII produced tumors faster, while depletion 

of b-catenin or PKM2, as well as inhibition of c-Src, significantly decreased tumor 

growth. Furthermore, treatment of tumors with PARP inhibitor olaparib was 

effective at reducing growth in U87/EGFRvIII tumors, but lost efficacy in PKM2-

depleted tumors (Li et al., 2016; W. Yang et al., 2011). Nuclear PKM2 also 
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functions as a coactivator of HIF1-α, this interaction promotes transactivation of 

HIF1-α target genes such as GLUT1, LDHA, and pyruvate dehydrogenase kinase 

1 (PDK1) (Figure 2); interaction with PHD3 enhances HIF1-α binding by prolyl-

hydroxylating PKM2. HIF1-α also promotes the transcription of PKM2 and PHD3, 

creating a feedforward loop that amplifies the HIF1-α metabolic reprogramming 

(Luo et al., 2011).   

PKM2 activity also influences the oxygen consumption rates and carbon flux into 

the TCA cycle in the GBM cell line LN229 when cells are placed in a hypoxic or 

nutrient deficient environment. The mitochondrial serine hydroxymethyltransferase 

(SHMT2), which is highly expressed in GBM pseudopalisading cells, plays a key 

role limiting the activity of PKM2. It is thought to do so by reducing the levels of 

PKM2 activators like serine, FBP, and SAICAR, facilitating survival of cells under 

hypoxic conditions by limiting flux into the TCA cycle and decreasing oxygen 

consumption. In a rapid xenograft model, where tumors from subcutaneously 

injected cells are collected before angiogenesis, high expression levels of SHMT2 

provide LN229 cells a survival advantage where the central area of the tumor 

contains both viable and dying cells, however, suppression of SHMT2 or 

overexpression of PKM2 reduced the survival of these cells (D. Kim et al., 2015).     

3.2.6 PDK1 

Pyruvate dehydrogenase kinase (PDK) is one of the enzymes that regulates the 

activity of the pyruvate dehydrogenase complex (PDC). It functions by 

phosphorylating one of its components (PDH), causing its inactivation and 

preventing the entrance of pyruvate into the TCA cycle to be oxidized as well as 
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promoting its conversion to lactate in the cytosol (Jha and Suk, 2013). As 

mentioned before, transactivation of HIF1-α by PKM2 promotes increased 

expression of PDK1 which supports metabolic reprogramming in GBM (Luo et al., 

2011). 

In mice, with patient-derived GBM tumors, treatment with the VEGF inhibitor 

bevacizumab induces hypoxia, promoting HIF1-α upregulation and increased 

expression of PDK1 and other key glycolytic enzymes. Metabolic flux analysis 

done using 13C6-glucose injections in these animals show an increased glucose 

flux into the tumors, higher levels of lactate and LDHA expression and a significant 

reduction in many TCA metabolites like succinate, fumarate, malate, and α-KG, 

indicating an uncoupling of glycolysis from oxidative phosphorylation (Fack et al., 

2015). Furthermore, transcriptomic analysis of patient-derived GSCs and GBM cell 

lines U87 and U251, under short (12h) and long (7d) term severe hypoxia (0.1% 

O2) showed strong upregulation of the glycolytic genes HK2, PFKP, and PDK1. 

Knockdown of PFKP or PDK1 resulted in increased cell death under hypoxic 

conditions but did not affect cell growth under aerobic conditions. Knockdown of 

PFKP or PDK1 in GBM xenografts showed an increase in mouse survival of 

+21.8% and +20,9% respectively. In vitro, GBM cells are sensitive to inhibition of 

PDK1 with dichloroacetate (DCA) and this sensitivity is increased under hypoxic 

conditions (Sanzey et al., 2015).  

PDK1 expression is increased in GBM patient samples and correlates with EGFR 

expression levels. Crosstalk between PDK1 and EGFR was observed in U251 

cells and the xenograft cell line 5310, where inhibition of PDK1 with DCA reduced 
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expression levels of both PDK1 and EGFR; similarly, treatment with siRNA against 

PDK1 reduced levels of both total and phosphorylated EGFR. Overexpression of 

EGFR in these cells showed increased cell proliferation and lactate release, which 

indicates and induction of aerobic glycolysis. It should be noted, however, that 

while treatment with DCA or si-PDK1 reduced cell proliferation, lactate production 

and EGFR phosphorylation, it also induced apoptosis. Intracerebral injections in 

mice of these cells formed tumors 60% smaller after intravenous treatment with 

DCA, which resulted in reduced tumor growth and extended survival of these mice 

(Velpula et al., 2013).   

3.2.7 Others 

Glucose-6-phosphatase complex (G6PC) 

G6PC is highly expressed in GBM tumors in comparison to normal brain tissue. It 

is a key regulator of the glycogenolytic pathway and glucose homeostasis, where 

it provides brain tumor initiating cells (BITCs) with a growth advantage by 

promoting glycogen mobilization and degradation. This is especially true under 

hypoxic conditions when relying exclusively on glycolysis might not be sufficient 

due to limited nutrient supply. BITCs isolated from GBM intraoperative samples 

that can escape glycolytic inhibition by 2-deoxy-glucose (2DG) become highly 

aggressive and more invasive when compared to control BITCs. They also showed 

increased expression of G6PC, and knockdown of G6PC increased the amount of 

glycogen inside the cells, and reduced these cells invasiveness and migrating 

abilities (Abbadi et al., 2014).    
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Glutamine Synthetase 

The astrocytic enzyme glutamine synthetase (GS) catalyzes the production of 

glutamine from glutamate and ammonia, and together with glutaminase (GLS), it 

controls glutamine homeostasis within the cell (Rosati et al., 2013). GS is essential 

to sustain proliferation of GBM cell lines undergoing glutamine starvation, where 

cells increase GS expression levels upon glutamine deprivation which diminishes 

their sensitivity to glutamine withdrawal. Inhibition of GS using the irreversible 

inhibitor L-methionine sulfoximine (MSO) resensitizes these cells to glutamine 

starvation. Under these conditions, GS maintains levels of precursors for purine 

nucleotide biosynthesis, aminoimidazole-4-carboxamide ribotide (AICAR), and 

inosine monophosphate (IMP). Furthermore, GS is highly expressed in GSCs 

which allows these cells to grow independently of glutamine supplementation. 

Patients’ samples injected with 13C6-glucose prior to surgical resection showed that 

labeled glutamine was enriched in the tumor, indicating de novo synthesis in the 

tumor or the adjacent tissue. These findings were confirmed by co-culturing the 

GBM cell line LN18, which doesn't express GS and glutamine starvation impairs 

its proliferation, and astrocytes, which enabled proliferation of LN18 under 

glutamine deprivation conditions (Tardito et al., 2015). Mice with GBM orthotopic 

tumors expressing GS were infused with U13-C-glutamine, showed that tumors 

uptake glutamine but do not metabolize it significantly. Cells isolated from these 

tumors and grown as neurospheres did not require glutamine for survival and 

analysis of different metabolites after treatment with U13-C-glucose indicated that 
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glutamine was produced from glucose which allows cells to avoid the requirement 

for extracellular glutamine (Marin-Valencia et al., 2012b) 

3.2.8 Integration of GBM metabolism 

Several enzymes and signaling pathways are mutated or dysregulated in GBM, 

causing changes in metabolism by altering glucose flux into the cell, promoting 

aerobic glycolysis and changing pyruvate metabolism (Figure 3). Mutations in 

IDH1/IDH2 have been shown to produce the oncometabolite 2-HG which is linked 

to the hypermethylation phenotype of some tumors, also reduced levels of 2-KG 

decrease PHD activity and HIF1-α degradation which leads to PDH 

downregulation. HIF1-α increases expression of VEGF, GLUT1, LDHA, promotes 

angiogenesis, invasion, and migration and contributes to maintenance and 

proliferation of GSCs. EGFR overexpression or constitutive activation is a common 

GBM feature which causes transcriptional activation of STAT3 and c-MYC, 

increased signaling through mTORC2 and increased expression levels of PKM2, 

which not only works as control point regulating glucose metabolism but also works 

at the nuclear level promoting expression of c-MYC and c-MYC-dependent 

glycolytic genes, and as a HIF1-α coactivator inducing expression of its target 

genes. One of these genes is PDK1, which is highly expressed in GBM patients, 

by inactivating PDH it diverts entrance of pyruvate to the TCA cycle promoting 

glycolysis, this mechanism plays an important role in resistance to the 

chemotherapeutic bevacizumab.  Other enzymes provide advantages to GBM 

tumors when nutrients are scarce, like G6PC allowing movement and degradation 

of glycogen and GS providing precursors for de novo purine biosynthesis by 
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producing glutamine from glucose. Combined, all these changes provide GBM 

tumors with different mechanisms to survive in a stressful environment deprived of 

oxygen and limited nutrient access and therapies targeted to these adaptations 

may improve treatment outcome and patient survival. 

 

 

 
Figure 3. Summary of common metabolic perturbations in GBM. 

Changes in expression, activation or mutations in several enzymes allow GBM 
tumors to adapt and sustain tumor biology. Production of 2-HG by mutant IDH1 
decreases certain TCA cycle intermediates, inhibits ATP synthase and stabilizes 
HIF1-α. PKM2 diverts entrance of pyruvate into the TCA cycle and promotes 
aerobic glycolysis, after EGF stimulation it translocates to the nucleus where it acts 
as a coactivator of HIF1-α, thus transactivating genes that will promote glycolysis 
including GLUT1 and LDHA.   
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4. Mitochondria and cancer 

Mitochondrial dysfunction has been associated with tumor progression of different 

cancers, including brain cancers (Seoane et al., 2011; Zong et al., 2016). Most 

studies focus on the role of mitochondria and the ability of a cancer cell to avoid 

apoptosis, however changes in mitochondrial physiology are essential for 

metabolic reprogramming (Wallace, 2012). Additionally, limited mitochondrial 

dysfunction has been shown to drive cell transformation and tumorigenesis (Ichim 

et al., 2015). Because mitochondria are highly integrated organelles, it is likely that 

perturbations in nominal organelle function resulting from genetic polymorphisms 

and a changing environment will have diverse effects within a cell. 

4.1 Mitochondrial aberrations in cancer 

Many cellular processes are controlled by mitochondria, such as energy 

production, calcium metabolism, ROS generation, regulation of reduction-

oxidation (redox) status, initiation of apoptosis and contribution to different 

biosynthetic pathways, functional mitochondria that display distinct adaptations to 

promote sustained proliferation and survival are essential for cancer development 

(Wallace, 2012).  

Mitochondrial DNA (mtDNA) contains 37 genes, of these 13 encode proteins that 

form part of the oxidative phosphorylation (OXPHOS) complexes, while the rest of 

required proteins are nuclearly encoded (Schon et al., 2012). Functional mtDNA is 

essential for cancer cells, depletion of mtDNA reduces tumor growth rates, 

however, reincorporation of mtDNA is associated with tumor formation and 

recovery of mitochondrial function and respiration, indicating the importance of 
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mtDNA in tumor formation and progression (Tan et al., 2015). However, certain 

germline mutations in the mtDNA have been associated with an increased 

predisposition to certain cancers. Increased risk of invasive breast cancer or 

endometrial cancer is associated with two polymorphisms in the NADH:ubiquinone 

oxidoreductase core subunit 3  (ND3) gene, while mutations of cytochrome C 

oxidase I (COI) gene have been linked with prostate cancer (Brandon et al., 2006). 

Additionally, high levels of mtDNA mutations have been described in tumors in 

comparison with normal tissue from the same patient (Chinnery et al., 2002). 

Furthermore, various cancers have mutations in the nuclear encoded 

mitochondrial enzymes succinate dehydrogenase (SDH), fumarate hydratase (FH) 

and IDH1/IDH2 (Wallace, 2012). Inhibition of SDH leads to stabilization of HIF-1α 

promoting a metabolic shift to glycolysis and increased production of mitochondrial 

ROS (Chandel et al., 2000).  While high levels of ROS can be toxic for the cell, in 

cells where apoptosis is compromised, increased mitochondrial ROS can drive 

oncogenic transformation and promote cell proliferation (F. Weinberg et al., 2010). 

Mitochondria are essential for execution of apoptosis, however evasion of cell 

death is a key feature of many cancers, where various cancers show an 

upregulation of pro-survival B-cell lymphoma-2 (Bcl-2) proteins, which not only 

promotes tumor progression but has been linked to acquired resistance to 

chemotherapeutics (Giampazolias and Tait, 2016).     

4.2 Bcl-2 proteins 

The Bcl-2 family of proteins are master regulators of apoptosis, they are classified 

into two groups pro-survival and pro-apoptotic (Moldoveanu et al., 2014). The pro-
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survival or anti-apoptotic Bcl-2 proteins contain four Bcl-2 Homology (BH) domains 

(Figure 4) and are found both in the cytosol and integrated within the mitochondrial 

outer membrane (MOM), the main members of the Bcl-2 anti-apoptotic group are 

Bcl-2, Bcl-2-related gene, long isoform (Bcl-xL), Bcl-2-related gene A1 (A1) and 

myeloid cell leukemia (Mcl-1), their main function is to prevent apoptosis by 

inhibiting pro-apoptotic proteins and preserving MOM integrity (Chipuk et al., 

2010). The pro-apoptotic Bcl-2 proteins can be subdivided into two subgroups, 

effectors and BH3-only proteins (Chipuk et al., 2010). Effector proteins, Bcl-2 

associated X protein (BAX) and Bcl-2 antagonist killer 1 (BAK), contain BH1-3 

domains (figure 4) and activation of BAK and BAX upon apoptotic stimuli promote 

conformational changes and oligomerization forming the mitochondrial 

permeability transition pore (mtPTP) initiating the mitochondrial outer membrane 

permeabilization (MOMP), which effectively engages the apoptotic program 

(Giampazolias and Tait, 2016; Moldoveanu et al., 2014). BH3-only proteins, 

contain only the third BH domain (Figure 4), and are subdivided based on their 

interactions with other Bcl-2 family proteins  by either directly activating pro-

apoptotic effector proteins or inhibiting Bcl-2 pro-survival proteins (Moldoveanu et 

al., 2014). Direct activators BH3-only proteins Bcl-2 interacting domain agonist 

(BID), Bcl-2 interacting mediator of cell death (BIM) and p53 modulator of 

apoptosis (PUMA), are able to directly activate BAX and BAK, promoting the 

conformational changes and oligomerization that will lead to pore formation and 

subsequent MOMP (Chipuk and Green, 2008). The BH3-only proteins BCL-2 

antagonist of cell death (BAD), BCL-2 interacting killer (BIK), BCL-2 modifying 
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factor (BMF), harakiri (HRK), and Noxa, are known as desensitizers or de-

repressors and act by neutralizing Bcl-2 pro-survival proteins which promotes 

liberation of BAX and BAK, allowing oligomerization and initiation of MOMP 

(Chipuk and Green, 2008).   

 

 
 

Figure 4. Bcl-2 family of proteins. 
Pro-survival proteins have four BH domains (BH1, BH2, BH3 and BH4), pro-
apoptotic BH3-only have only the third BH domain, and effector proteins have three 
domains (BH1, BH2 and BH3). 
 
 
4.3 Apoptotic priming 

For cancer cells to avoid the established pathways for programmed cell death, 

oncogenic programs make precise changes to the levels of Bcl-2-related family 

proteins (Letai, 2008). An increase in Bcl-2 pro-survival proteins (Bcl-2, Mcl-1 and 

Bcl-xL) is commonly associated with apoptotic evasion, while elevated levels of 

pro-apoptotic BH3-only proteins (Bim, Bid, Puma, Noxa, etc.) may indicate pro-

apoptotic mitochondria more susceptible to drug treatment (Letai et al., 2002; 

Letai, 2008; Ryan et al., 2010; Schellenberg et al., 2013). Apoptotic priming has 
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been shown to increase sensitivity of certain cancers to chemotherapy thus 

improving their efficacy (Chonghaile et al., 2011; Montero et al., 2015; Vo et al., 

2012). Priming levels are determined by the replacement or sequestration of pro-

survival Bcl-2 proteins by BH3-only proteins on the MOM (Chonghaile et al., 2011; 

Davids et al., 2012; Reed, 2011; Vo et al., 2012). Apoptotic priming can be used 

to stratify cell lines and tumor samples according to response and resistance to 

chemotherapeutic drugs (Ryan and Letai, 2013).The levels of Bcl-2 proteins and 

chemo-responsiveness have been evaluated in neuroblastoma, and BH3-only 

levels can be used as therapeutic predictor of response and resistance (Goldsmith 

et al., 2012; 2010), however the relationship between Bcl-2 protein levels and 

chemo-resistance in GBM has yet to be evaluated.  

4.4 Mitochondrial outer membrane permeabilization in oncogenesis and 

chemosensitivity 

Mitochondria plays an essential role in regulating the apoptotic pathway, in cancer 

cells, evasion of apoptosis is commonly observed (Hanahan and R. A. Weinberg, 

2011). Two pathways can initiate apoptosis, the extrinsic pathway which involves 

activation of cell surface death receptors, and the intrinsic pathway is mediated by 

mitochondria and involves initiation of  MOMP, most chemotherapeutic agents act 

through the intrinsic pathway (Brahmbhatt et al., 2015). Upon apoptotic stimuli, 

activation of BAX and BAK by BH3-only proteins promotes oligomerization of BAX 

and BAK  and leads to pore formation and MOMP, mitochondrial proteins, such as 

cytochrome c, second mitochondria-derived activator of caspase (SMAC) and HtrA 

serine peptidase 2 (HtrA2), are released from the inter-membrane space (IMS) 
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which results in caspase activation and apoptosis (Chipuk et al., 2006; Renault 

and Chipuk, 2014; Tait and Green, 2013). MOMP is considered the “point of no 

return”, however in some cases cells are able to survive and avoid apoptosis, 

which becomes relevant in cancer and allows for tumor cell survival. In certain 

types of cancer, cells can undergo incomplete MOMP leaving some intact 

mitochondria, which allows them to recover and survive by bypassing caspase 

activation downstream of MOMP, either due to reduced caspase activity or 

expression, and it could be a potential mechanism of acquired chemoresistance 

(Tait et al., 2010). Furthermore, limited MOMP after a sub-lethal stress only 

sufficient to permeabilize a minority of mitochondria, may lead to caspase 

activation and the subsequent cleavage of caspase substrates, promoting DNA 

damage, genomic instability and tumorigenesis (Ichim et al., 2015).    

5. Control of Bcl-2 protein levels 

The Bcl-2 family of proteins are critical regulators of apoptosis by preserving OMM 

integrity and preventing MOMP and the subsequent activation of caspases leading 

to cell death, as such Bcl-2 proteins are tightly controlled both at the transcriptional 

and the post-translational levels.  

5.1 General 

Most Bcl-2 proteins regulate their activity by heterodimerization between pro-

survival and pro-apoptotic (Tsujimoto and Shimizu, 2000). BAX binds to Bcl-2 and 

BAK interacts with Mcl-1 and Bcl-xL, thus preventing the conformational changes 

required for BAX/BAK activation and oligomerization, however, upon apoptotic 

stimuli BAX and BAK are displaced promoting cell death, when BAD 
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heterodimerize with Bcl-2 and Bcl-xL and Noxa interacts with Mcl-1 (Oltvai et al., 

1993; Willis et al., 2005; E. Yang et al., 1995).  

Since apoptotic control depends on the balance between levels of pro-survival and 

pro-apoptotic proteins, transcriptional regulation and degradation become 

instrumental in the process. The different Bcl-2 pro-survival proteins are under 

distinct transcriptional programs according to their tissue specificity and their 

physiological role. Mcl-1 expression is dependent on growth factors and can be 

upregulated by different cytokines such as IL-3, IL-5, IL-6 GM-CSF, as well as EGF 

and VEGF, and transcription is directly repressed by E2F-1 binding to the promoter 

(Thomas et al., 2010). Bcl-xL transcription is also regulated by growth factors and 

transcription is induced through the Janus kinase (JAK)/STAT pathway (Grad et 

al., 2000). Transcription upregulation of BH3-only proteins occurs in response to 

early apoptotic signals, p53 induces transcription of Noxa and Puma, while 

upregulation of BIM expression occurs in response to growth factor deprivation via 

FOXO3A (O forkhead box transcription factor-3A) or endoplasmic reticulum (ER) 

stress by CEBP! (CCAAT-enhancer binding protein-	!) or CHOP (CEBP 

homologous protein) (Youle and Strasser, 2008).  

Control of Bcl-2 proteins is achieved by post-translational modifications and protein 

degradation, for example polyubiquitination of Mcl-1 and Bcl-2 targets them for 

proteosomal degradation, while caspase-dependent cleavage of Mcl-1 occurs 

during apoptosis (Neutzner et al., 2012; Thomas et al., 2010).  Furthermore, 

ubiquitination and subsequent proteosomal degradation has also been observed 

in the BH3-only proteins BID, BAD, BIM and BIK (Neutzner et al., 2012). 
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Additionally, phosphorylation of BAD by cAMP-dependent protein kinase (PKA) or 

by the 70-kDa ribosomal protein S6 kinase (p70S6K) promotes Bad inactivation by 

sequestration of BAD by 14-3-3 and disrupting the binding to Bcl-2 and Bcl-xL, 

which has a prosurvival effect (Harada et al., 2001; 1999; Zha et al., 1996).   

5.2 MAPK 

Post-translational modifications determine the fate of many Bcl-2 family proteins, 

either by promoting protein stability or by working as a target for protein 

degradation.  The MAPK signaling pathway controls a wide range of cellular 

processes such as proliferation, differentiation, migration and death, MAPKs can 

phosphorylate a large number of substrates and the outcome of signaling depends 

on the magnitude, localization and set of substrates phosphorylated (Ramos, 

2008). Similarly, MAPK signaling has been shown to regulate both the induction of 

apoptosis as well as the inhibition, for example MEK/ERK signaling promotes 

apoptosis by upregulating the expression of pro-apoptotic proteins Bak, Bax, Puma 

and down regulating of Bcl-2 and Bcl-xL (Cagnol and Chambard, 2010). However, 

ERK has also been associated with phosphorylation of Mcl-1 at Thr92/Thr163, 

which promotes Mcl-1 stability and improves anti-apoptotic function (Domina et al., 

2004; Thomas et al., 2010), and phosphorylation of Bim which targets it for 

ubiquitination and subsequent proteosomal degradation, it also prevents Bim from 

interacting and activating Bax, which prevents pore formation and has an 

antiapoptotic effect (Ley et al., 2005).  
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5.3 JNK and Sab 

JNK signaling has been linked to induction of apoptosis and chemosensitization in 

neuroblastoma cells (Cheng et al., 2014; Fey et al., 2015; Filomeni et al., 2003; 

Waetzig et al., 2009). Upon different stress stimuli, phosphorylated JNK 

translocates to the mitochondria where it interacts with the c-terminal part of Sab 

through a kinase interaction motif (KIM) (Wiltshire et al., 2004; 2002). At the 

mitochondria, stress-induced JNK signaling promotes mitochondrial dysfunction 

by amplifying reactive oxygen species (ROS) production, inducing mitochondrial 

permeability and impairing bioenergetics (J. W. Chambers and LoGrasso, 2011; 

Hanawa et al., 2008). Mitochondrial JNK signaling also plays a role in cell death, 

where activated JNK phosphorylates members of the Bcl-2 family of proteins thus 

promoting apoptosis (J. W. Chambers et al., 2011; Schroeter et al., 2003). JNK 

phosphorylates Bcl-2 at Ser70 inactivating the protein and facilitating apoptosis, 

also phosphorylation of Mcl-1 is the first step for Mcl-1 stress-induced degradation  

(Morel et al., 2009; Yamamoto et al., 1999). Furthermore, JNK-mediated 

phosphorylation of pro-apoptotic proteins Bim and Bmf, promotes their release 

from motor complexes where they remain sequestered in the cytosol, once 

released they are able to induce apoptosis via Bax (Lei and Davis, 2003).     

6. Sab 

Sab, also known as SH3BP5, is an outer mitochondrial membrane protein that acts 

as a scaffold for the c-Jun N-Terminal Kinase (JNK) (Wiltshire et al., 2002). 

Inhibition of the JNK-Sab interaction prevents oxidative stress, mitochondrial 

dysfunction and cell death. Furthermore amplification of JNK/Sab-mediated 
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signaling has been shown to sensitize cancer cells and improve chemotherapeutic 

efficacy (J. W. Chambers et al., 2011; 2013a; 2013b; T. P. Chambers et al., 2015; 

Wiltshire et al., 2004). However, the impact of Sab-mediated signaling on 

mitochondrial function and apoptosis has yet to be fully delineated in human 

glioblastoma or neuroblastoma. 

6.1 Structure 

Sab was identified using a protein-protein interaction screen by its ability to bind 

Bruton’s tyrosine kinase (BTK) through the SH3 (Src homology 3) domain 

(Wiltshire et al., 2002). Further inspection of the Sab sequence determine the 

presence of two KIM motifs, KIM1 and KIM2, in C-terminal portion of the protein, 

which are required for JNK binding (Wiltshire et al., 2004; 2002).  Additionally, 

bioinformatics studies of the full-length Sab revealed the presence of another two 

prospective protein-protein interaction motifs (Figure 5). The N-terminal portion of 

the protein contains two coiled-coiled (CC) motifs, which are generally associated 

with dimerization and interaction with other proteins (Strauss and S. Keller, 2008), 

the SH3 motif located within CC2.   

 
Figure 5. Schematic representation of Sab  

CC1: coiled-coiled motif 1, CC2: coiled-coiled motif 2, TM transmembrane domain, 
KIM1: kinase interaction motif 1, KIM2: kinase interaction motif 2, S: 
phosphorylation sites. 
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6.2 Functions 

Sab functions as an OMM scaffold for JNK (Wiltshire et al., 2002). Interaction 

between Sab and JNK is required for the mitochondrial effects of JNK signaling 

without impairing JNK nuclear signaling, as demonstrated by inhibition of this 

interaction using Tat-SabKIM1 peptide, which prevented Bcl-2 phosphorylation, loss 

of mitochondrial membrane potential and cell death but had no effect on c-Jun 

phosphorylation or transcription of AP-1 (J. W. Chambers et al., 2011). Inhibition 

of mitochondrial JNK signaling by either silencing Sab or using Tat-SabKIM1 

peptide, has a protective effect in sustained liver injury and hepatotoxicity models 

and  in the 6-hydroxydopamine neurotoxicity model (J. W. Chambers et al., 2013a; 

Win et al., 2011). Moreover, interaction of JNK with Sab has been shown to inhibit 

mitochondrial respiration, increases production of ROS, which leads to cell death  

in a model of hepatocyte lipotoxicity (Win et al., 2015) and ER stress induced by 

tunicamycin or brefeldin A (BFA) (Win et al., 2014). Additionally, Sab mediates 

oxidative stress and decreases mitochondrial respiration, ATP production and 

membrane potential in cardiomyocyte-like cells after treatment with imatinib (T. P. 

Chambers et al., 2017). Sab as also been shown to be expressed throughput the 

brain, and inhibition of Sab using the Tat-SabKIM1 peptide altered activity of cultured 

hippocampal neurons by decreasing the firing frequency and the amplitude of 

spikes, indicating that Sab- mediated signaling plays a role in normal neuronal 

function (Sodero et al., 2017).   
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CHAPTER II 

Hypothesis and Rationale 
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1. Problem Statement 

Malignancies of the central nervous system often have poor prognoses due to the 

rapid recurrence of resistant disease following aggressive treatments. For 

example, glioblastoma (GBM) patients have a mean life expectancy of 15 months. 

An examination of the literature revealed that the mechanisms of cell death 

evasion in CNS tumors has not been rigorously explored. By characterizing the 

apoptosis machinery and related signal transduction pathways, we will be able to 

fill this knowledge gap and use the expected outcomes of our research to develop 

therapeutic approaches to fully enable cell death signaling in CNS tumor cells. 

Because many of the cell death responses converge on mitochondria, it is 

necessary to determine how these crucial organelles are altered from the process 

of oncogenesis. Changes in mitochondrial metabolism and signal transduction in 

cancer have been shown to aid in tumor proliferation, metastasis, and resistance. 

Thus, there is an urgent need to characterize changes in CNS tumor mitochondria 

to develop effective treatments to extend the quality of lives for patients. 

2. Hypothesis and rationale 

Dysregulation of cellular control of mitochondria is an emerging component of 

oncogenesis in brain tumors (Ichim et al., 2015; Seoane et al., 2011). Restoring 

proper regulation of mitochondrial physiology may be a useful therapeutic 

approach to impair tumor progression and sensitize tumor cells to therapies. 

Diminished apoptosis is a hallmark of numerous cancers, including central nervous 

system (CNS) tumors like neuroblastoma and glioblastoma (GBM) (Hanahan and 

Weinberg, 2011). Increased levels of pro-survival Bcl-2 proteins (Bcl-2, Mcl-1, and 
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Bcl-xL) are associated with decreased apoptosis, while elevated levels of BH3-

only proteins (Bim, Bid, Puma, Noxa, etc.) are characteristic of pro-apoptotic 

mitochondria susceptible to chemotherapy (Brunelle and Letai, 2009; Certo et al., 

2006; Chonghaile et al., 2011; Letai et al., 2002). In neuroblastoma, levels of Bcl-

2 and BH3-only can be used to predict chemotherapeutic response (Goldsmith et 

al., 2012). In GBM, the relationship between Bcl-2 protein levels and chemo-

resistance has yet to be rigorously evaluated.  

The molecular mechanisms responsible for controlling Bcl-2 protein abundance on 

mitochondria in both neuroblastoma and GBM has yet to be fully delineated. The 

c-Jun N-terminal kinase (JNK) can induce apoptotic signaling through the 

manipulation of Bcl-2 proteins. Stress-induced activation of JNK induces 

translocation of the kinase to mitochondria initiating a signaling cascade that 

culminates in mitochondrial dysfunction and apoptosis (J. W. Chambers et al., 

2011). At mitochondria, JNK interacts with the scaffold protein Sab, and inhibition 

of the JNK-Sab interaction prevents oxidative stress, mitochondrial dysfunction 

and cell death (J. W. Chambers and LoGrasso, 2011). Furthermore amplification 

of JNK/Sab-mediated signaling has been shown to sensitize cancer cells and 

improve chemotherapeutic efficacy (J. W. Chambers et al., 2011; 2013a; 2013b; 

T. P. Chambers et al., 2015).  

Intriguingly, our preliminary studies investigating the relationship between Sab 

expression and therapeutic efficacy in ten GBM cell lines revealed the presence of 

a novel Sab splice variant that lacks the original mitochondrial localization signal. 

The splice variant of Sab has not been characterized, and thus its impact on GBM 
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physiology is still unknown. Therefore, there is a critical need to understand the 

effects of Sab, the Sab variant and JNK signaling in neuroblastoma and GBM 

physiology. Failure to delineate the impact of Sab-mediated signaling on GBM and 

neuroblastoma physiology and chemo-responsiveness will obstruct the search for 

efficacious therapeutic approaches and prevent the proper treatment of patients.   

The long-term goal of our research is to understand the regulation of mitochondrial 

JNK signaling in CNS tumor resistance. Our research objective is to determine 

how Sab-mediated JNK signaling influences cell death responses GBM and CNS-

based neuroblastoma. Our central hypothesis is that Sab-mediated signaling 

promotes stress-induced mitochondrial dysfunction and apoptosis, whereas the 

diminished Sab levels may lead to reduced apoptotic potential. This hypothesis 

was formulated based on our published (J. W. Chambers et al., 2011; T. P. 

Chambers et al., 2015) and preliminary data demonstrating that Sab levels 

influence chemoresponsiveness in gynecological cancers. The rationale for our 

proposed research is that understanding the role of mitochondrial JNK signaling in 

CNS tumor biology will provide insights into oncogenicity and chemo-

responsiveness.  

3. Project Aims 

To investigate our hypothesis and accomplish our research objective, we propose 

the following specific aims. 

1. Examine mitochondrial physiology characteristics of GBM-derived cell lines and 

determine its impact on apoptosis and chemoresistance.  Increased levels of pro-

survival Bcl-2 proteins (Bcl-2, Mcl-1, and Bcl-xL) are associated with decreased 
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apoptosis, while elevated levels of BH3-only proteins (Bim, Bid, Puma, Noxa, etc.) 

are characteristic of pro-apoptotic mitochondria susceptible to treatment (Brunelle 

and Letai, 2009; Certo et al., 2006; Chonghaile et al., 2011; Letai et al., 2002). 

Apoptotic priming, which determines the ratio between Bcl-2 proteins and BH3-

only proteins, can be used to predict chemotherapeutic response and resistance 

in other cancers, however the capability to use as a biomarker in GBM has not 

been studied. The potential contribution of Sab-mediated signaling in GBM chemo-

response is unknown.  For this aim, our working hypothesis is that Bcl-2/BH3-only 

protein levels correlate with chemoresponsiveness in GBM, which also correlates 

with Sab expression levels.  We will determine the expression levels of Bcl-2 

proteins, BH3-only proteins and Sab, and how they correlate to cell viability and 

apoptosis after treatment with chemotherapeutic reagents.  

2. Define the cellular distribution of the GBM Sab splice variant and determine its 

impact on JNK-induced mitochondrial dysfunction and apoptosis. Mitochondrial 

JNK signaling promotes oxidative stress, mitochondrial dysfunction and initiates 

apoptosis. Peptide mimicry of the Sab-JNK interaction prevents mitochondrial 

dysfunction (J. W. Chambers et al., 2011). Sab is located in the outer mitochondrial 

membrane (Wiltshire et al., 2002); however, the localization of the Sab variant is 

unknown.  For this aim, our working hypothesis is that the Sab variant has a 

different cellular localization than Sab, because preliminary data suggest it has lost 

the original mitochondrial localization signal, and due to its distinct distribution, the 

Sab variant inhibits apoptotic priming and alters the magnitude of stress-induced 

mitochondrial dysfunction. We will determine the cellular location of the Sab 
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variant. Furthermore, we will survey JNK signaling and measure mitochondrial 

health in order to determine the extent of dysfunction in GBM cells expressing the 

Sab variant.   

3. Determine the impact of Sab-mediated signaling on mitochondrial function and 

apoptosis in human Neuroblastoma cell lines. Blocking mitochondrial JNK 

signaling affects Bcl-2 levels and decreases apoptosis in neuroblastoma cells, 

while amplification of Sab-mediated JNK signaling has been shown to sensitize 

cancer cells to chemotherapeutic treatment (J. W. Chambers et al., 2013b; 2013a; 

2011; T. P. Chambers et al., 2015; Matthay et al., 2009). For this aim, our working 

hypothesis is that expression levels of Sab in neuroblastoma cells correlate with 

chemo-sensitivity. Preliminary data suggests that Sab expression is reduced in 

neuroblastoma patients which alters the cells metabolic phenotype and their 

chemoresponsiveness. We will determine the impact of Sab-mediated signaling 

on mitochondrial metabolism, and glycolysis, as well as cell proliferation and 

apoptosis.  

4. Abstract of the project 

As a result of this project, we have prepared three manuscripts for submission, 

which will include chapters 3, 4 and 5 of this dissertation. The abstracts of these 

chapters appear below.   

Chapter 3 - Bcl-2 Profiling Defines the Therapeutic Responsiveness in 

Continuous Glioblastoma Cultures. 

Glioblastoma (GBM), is the most common primary brain tumors and have the 

highest mortality among older adults. The therapeutic standard for managing GBM 
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remains a combination of surgery, chemotherapy (temozolomide – TMZ), and 

radiotherapy; however, there is no cure, nor has there been any significant 

advancement in the clinical approach to GBM since this protocol was established 

in 2005. This study aims to better understand the molecular characteristics of 

GBM-derived cell lines to better define treatment groups and potentially identify 

new avenues for therapy. This study utilized ten continuous GBM cell lines and 

examined the concentrations of Bcl-2 family proteins on mitochondria for each of 

the cell lines. The measures were correlated to IC50 values for TMZ. We assessed 

cellular viability in the presence of increasing doses of TMZ (0-10mM) for each cell 

line. Western blot analysis of pro-survival and pro-apoptotic Bcl-2 proteins 

revealed that Bcl-2 levels corresponded to chemo-sensitivity, while increased 

levels of Bim promoted chemo-sensitivity in GBM cell lines. The ratio of Bcl-2 and 

Bim expression was found to be significantly correlated (p<0.0001) to TMZ 

responsiveness (r = 0.9755). Induction of TMZ resistance in U87 cell by exposure 

to a hypoxic environment increased the Bcl-2/Bim ratio. We found that Bcl-2 

protein profiling, specifically the Bcl-2/Bim ratio, was a useful means to determine 

therapeutic response and resistance to TMZ. 

Chapter 4 - A novel splice variant of Sab alters mitochondrial physiology 

Mitochondria-cell communication is required for optimal cell function and to monitor 

mitochondrial health status. Ultimately, mitochondria-cell circuits produce and 

receive signals that influence biological outcomes. However, the precise molecular 

mechanisms responsible for mitochondria-cell communication are not very well 

understood. Scaffold proteins on the mitochondria outer membrane (MOM) 
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represent crucial hubs for mitochondria-cell communication, where the relative 

abundance of discrete scaffold proteins will influence the magnitude of a distinct 

signal transduction event and determine the local biological outcome. 

Furthermore, variation in scaffold proteins may diversify signaling modules or even 

polarize mitochondria-cell communication towards specific biological outcomes. 

The MOM scaffold protein Sab facilitates mitogen-activated protein kinases 

(MAPKs) signaling on mitochondria which affects organelle function and cell 

viability. Our previous work demonstrates that Sab levels influence cellular 

sensitivity to chemotherapy agents in gynecological cancer cell lines. While 

screening glioma cell lines for Sab protein concentrations, we discovered a unique 

variant of Sab with an N-terminal truncation that deletes the original mitochondrial 

localization sequence and a coiled-coil motif. Thus, the goal of our current project 

is to biochemically characterize the Sab variant, distinguish the function of the 

truncated Sab variant from that of full-length Sab, and determine the impact of 

variant-mediated signal transduction on mitochondrial function. We cloned human 

SF268 cells and found clones that expressed full-length Sab alone and those that 

expressed both the full length and the variant. We then characterized the cellular 

morphology, growth rate, respiration and drug responsiveness. We found that the 

truncated Sab variant localizes to mitochondria, which could be attributed to a new 

N-terminal stretch of cationic amino acids. Cells that express the variant display 

an increased growth rate compared to cells with only full-length Sab. Truncated 

Sab expressing cells have a large, round morphology, while cells that do not 

express the variant have a fibroblast-like morphology. Expression of the variant 
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promotes a metabolic shift from respiration to a more glycolysis-dependent 

phenotype. The truncated Sab variant affects the cellular response to stress, as 

cells that lack the variant are less sensitive to both genotoxic stress and 

mitochondrial stress. Our work illustrates that Sab variants may have distinct 

effects on mitochondrial function. Moreover, altering the structures and 

concentrations of MOM scaffold proteins represents a unique approach to 

manipulate organelle function and disease pathophysiology.  

Chapter 5 - Sab-mediated signaling influences metabolism and 

chemosusceptibility in human neuroblastoma cells 

Late stage neuroblastomas are commonly resistant to conventional treatments, 

including chemotherapy, and most patients experience transient effects of 

chemotherapy followed by a recurrence with a highly malignant treatment-resistant 

form of neuroblastoma. Thus, new therapeutic options are needed to treat late 

stage neuroblastomas. Our recent studies in cancer have demonstrated that 

mitochondrial c-Jun N-terminal kinase (JNK) signaling on the outer mitochondrial 

scaffold protein Sab is an essential component of cell death responses. 

Consequently, we found that Sab expression is down-regulated in neuroblastoma 

patients. In our current study, we examined the impact of Sab-mediated signaling 

on neuroblastoma physiology. Inhibition Sab-mediated signaling altered cellular 

metabolism in SH-SY5Y cells as determined by analyses. Treatment of SH-SY5Y 

cells with the Tat-SabKIM1 peptide, a peptide known to inhibit JNK signaling on Sab, 

increased oxidation of both glucose and glutamine while decreasing the glycolytic 

rate. The change in glycolytic rate was not due to a change in glycolytic gene 
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expression.  Furthermore, the SH-SY5Y mitochondria treated with the Tat-SabKIM1 

peptide had more Bcl-2 (pro-survival) and less Bim (pro-apoptotic) when compared 

to controls. SH-SY5Y cells treated with the inhibitory Sab peptide also had reduced 

proliferation rates and were resistant to chemotherapy agents (carboplatin, 

cyclophosphamide, doxorubicin, etoposide, and vincristine). Over-expression of 

Sab in neuroblastoma cells reversed the effects of Sab inhibition. Finally, 

examination of additional neuroblastoma cell lines revealed that Sab levels 

correspond to proliferation rate, metabolic phenotype, and chemosensitivity. 

Consequently, we propose that Sab levels represent a new prognostic for 

therapeutic efficacy in neuroblastoma patients. 
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CHAPTER III 

Bcl-2 Profiling Defines the Therapeutic Responsiveness in Continuous 

Glioblastoma Cultures. 
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1. Introduction 

Grade IV astrocytoma, also known as glioblastoma multiforme (GBM), are the 

most common and aggressive type of primary brain tumors in adults (Wen and 

Kesari, 2008). GBM accounts for about 17% of brain cancers in adults between 45 

and 70 years of age, affecting more predominantly males than females (Furnari et 

al., 2007). Patients diagnosed with GBM have a poor prognosis, the median 

survival is 14.6 month, two-year survival is less than 30% and five-year survival is 

less than 10% (Furnari et al., 2007; Wen and Kesari, 2008). The standard of care 

for the disease, a combination of surgery, chemotherapy (temozolomide (TMZ)), 

and radiation, is ineffective and the response to TMZ varies greatly between 

patients (Robins et al., 2007; Stupp et al., 2005). New diagnostic strategies are 

required to better stratify patients in order to define an appropriate and effective 

treatment plan.  

Resistance to cell death is a hallmark of cancers, including GBM (Hanahan and 

Weinberg, 2011). Circumventing the established circuitry for programmed cell 

death involves precise manipulation of the Bcl-2 protein family (Letai, 2008). 

Apoptotic evasion is commonly associated with increasing pro-survival Bcl-2 

proteins (Bcl-2, Mcl-1, and Bcl-xL), while elevated pro-apoptotic BH3-only proteins 

(Bim, Bid, Puma, Noxa, etc.) indicate that cancer cells may be susceptible to 

treatments (Letai et al., 2002; Letai, 2008; Ryan et al., 2010; Schellenberg et al., 

2013). Apoptotic priming, which is dependent on the replacement or sequestration 

of pro-survival Bcl-2 proteins by BH3-only proteins on the mitochondrial outer 

membrane, has been shown to increase the sensitivity of certain cancers and solid 
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tumors to chemotherapy improving its efficacy (Chonghaile et al., 2011; Davids et 

al., 2012; Reed, 2011; Vo et al., 2012). Moreover, apoptotic priming has been used 

to stratify cell lines and tumor samples according to chemotherapeutic responses 

and resistance (Ryan and Letai, 2013). While the levels of Bcl-2 proteins and 

chemo-responsiveness in solid tumors has been well evaluated in recent studies, 

the relationship between Bcl-2 protein levels and chemo-resistance in GBM has 

yet to be evaluated. 

In our current study, we examined the mitochondrial characteristics, specifically 

Bcl-2 profiling, of ten (10) established GBM cell lines in order to address how the 

concentrations of these proteins correlate to TMZ sensitivity. Our Bcl-2 profiling of 

10 GBM cells lines reveal a diverse set of expression profiles for the proteins of 

the Bcl-2 family. We found expression trends for two proteins Bcl-2 (pro-survival) 

and Bim (pro-apoptosis). Cells that were resistant to TMZ (U118, SNB19, and 

U251) had the highest levels of BCl-2 expression and the lowest concentrations of 

Bim; meanwhile, cells sensitive to TMZ (H4 and SNB75) had the lowest levels of 

Bcl-2 and the highest levels of Bim. Spearman correlation found that the Bcl-2/Bim 

ratio in the 10 cell lines were highly related (r = 0.9755, p<0.0001). These 

preliminary data suggest that Bcl-2 protein plays a critical role in the effectiveness 

of chemotherapy in individual cell lines and that mitochondria may be a useful 

target for complementary therapies for GBM treatment. 

2. Materials and Methods 

Materials: GBM cell lines, A-172 (CRL-1620), H4 (HTB-148), U-87 MG (HTB-14), 

and U-118 MG (HTB-15), were purchased from American Type Culture Collection 
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(Manassas, VA). The remaining GBM cell lines were obtained through the National 

Institutes of Cancer (NCI) from the NCI-60 cell panel. Cell culture media was 

purchased from Invitrogen (Grand Island, NY), and serum was purchased from 

Denville Scientific (South Plainfield, NJ). General chemicals were purchased from 

Fisher Scientific (Pittsburgh, PA) and Sigma Aldrich (St. Louis, MO) as indicated 

below. Unless indicated below, antibodies were purchased from Cell Signaling 

Technology (Danvers, MA). 

Cell Culture: GBM cell lines were grown under normal cell culture conditions (37oC 

and 5% CO2 with humidity). A-172, H4, U-87 MG, U-118 MG cells and the cells 

from the NCI-60 panel (SF-268, SF-295, SF-539, SNB-19, SNB-75 and U-251) 

were grown in Dulbucco’s Modified Essential Medium (DMEM) supplemented with 

10% fetal bovine serum (FBS), 1,000 U/mL penicillin, 100µg/mL streptomycin, and 

5µg/mL plasmocin. Primary fetal human astrocytes (Sciencell Direct) were 

obtained and grown in astrocyte-specific media (Sciencell Direct) under normal cell 

culture conditions. 

Determining Cell-based IC50s for Temozolomide (TMZ): To determine the relative 

chemo-sensitivity of the GBM cell lines, cells were treated with increasing 

concentrations of TMZ (0-10mM). Briefly, GBM cells were plated at 5x103 cells per 

well in black-walled, clear bottom plates (Perkin Elmer) and grown overnight. The 

cells were then treated with chemotherapeutic agents for 48 hours. The cells were 

washed three times in PBS and fixed in 4% paraformaldehyde/PBS. The cells were 

then stained with 5µM TO-PRO-3 for 45 minutes at RT. The cells were then 

washed three times in Hank’s Buffered Saline Solution (HBSS). The plate was 
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imaged using the Odyssey CLx scanner (Licor Biosciences) and analyzed using 

the Image Studio 2.0 software (Licor Biosciences). The IC50 for each cell line was 

calculated using the GraphPad Prism7© software. 

Cell Lysis and Western Blot Analysis: To isolate proteins from cells for analysis, 

cells were plated at 2.5x105 cells/well in a six well plate unless otherwise indicated. 

Following treatment, cells were lysed, and proteins were harvested as previously 

described. Briefly, cells were washed twice in phosphate buffered saline (PBS; 

137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, and 1.8mM KH2PO4) and lysed in 

radioimmunoprecipitation assay buffer (RIPA; 50mM Tris-HCl, pH 8.0, 150mM 

NaCl, 1% Nonidet P-40, 0.5% deoxycholate, 0.1% SDS) supplemented with 1mM 

phenylmethanesulfonyl fluoride (PMSF) and Halt Protease and Phosphatase 

Inhibitor Cocktails (Thermo Scientific). Cells were incubated while gently rocking 

at 4°C for five minutes, and then transferred to a sterile micro-centrifuge tube. After 

two minutes on ice, cell disruption was completed using sonication. The lysate was 

cleared by centrifugation at 14,000 × g for 15 minutes. Protein concentrations of 

the supernatant were measured using the Pierce BCA Assay kit according to 

manufacturer’s directions. Proteins were then resolved by SDS-PAGE and 

transferred onto low fluorescence PVDF membranes. Membranes were placed in 

blocking buffer comprised of PBS supplemented with either 5% non-fat milk (for 

standard blots) or 5% bovine serum albumin (BSA; for phosphor-specific blots) and 

incubated for at least one hour at room temperature (RT) or overnight at 4°C. The 

membranes were incubated in PBS containing 0.1% Tween 20 (PBST) and either 

5% non-fat milk or BSA in the presence of primary antibodies for at least 2.5 hours 
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(RT) or overnight (4oC) while gently rocking.  Primary antibodies specific for Bcl-2 

(CST, 2870), Bcl-xL (CST, 2764), Mcl-1 (CST, 5453), Bad (CST, 9239), Bik (CST, 

4592), Bim (CST, 2933), Bid (CST, 2002), PUMA (CST, 12450), Bax (CST, 5023), 

Bak (CST, 12105), Actin (CST, 4970),and  α-tubulin (CST, 2144) were used at 

dilutions of 1:1000 for these studies. Membranes were washed three times for five 

minutes in PBST. Membranes were incubated with secondary antibodies in the 

appropriate blocking buffer at a ratio of 1:20,000 for one hour at RT gently rocking. 

The following secondary antibodies were used in the experiments below: IRDye 

680RD Goat anti-Rabbit (926-32211) and IRDye 800CW Goat anti-Mouse (926-

68070) (Licor Biosciences). Membranes were again washed three times for five 

minutes in PBST. Membranes were analyzed using fluorescence detection using 

the Odyssey CLx near infrared scanner (Licor Biosciences). The corresponding 

bands on the western blots were quantified and normalized using the Image Studio 

2.0 software (Licor Biosciences). The fluorescence of specific bands of interest 

were divided by the fluorescence of the loading control band to equilibrate signal 

strength and loading. The resulting signal was then normalized by dividing the 

signals from treated samples by respective untreated or normal tissue control 

signals for each experiment. 

In vitro Hypoxic Cycling of U-87 MG cells: U-87 MG cells were grown as indicated 

above under normal cell culture conditions. The cells were then placed in a 

Heracell 150i incubator (Thermo Scientific) and nitrogen gas was used to create a 

hypoxic environment of 1% O2. The U-87 MG cells were then placed in the hypoxic 

environment for one (1) hour, and then returned to a normoxic environment for 30 
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minutes. This exchange was repeated for two (2) additional cycles. For non-

interrupted hypoxia experiments, U-87 MG cells were place in a 1% O2 

environment for four (4) hours prior to analysis. Hypoxic adaptation was confirmed 

by increased hypoxia-inducible factor 1a (HIF-1a) using western blot analysis. 

Sensitization the BH3-mimetic ABT-737: ABT-737 is a well-established BH3-

mimetic that targets Bcl-2 and Bcl-xL and can induce apoptosis in a Bax/Bak 

dependent manner.  

Inhibition of Mcl-1: S63845 is a Mcl-1 inhibitor known to selectively induce 

apoptosis in Mcl-1-dependent cancers.  

Cytotoxicity Assays: To measure the extent of cell death induced during hypoxic 

cycling, ABT-737, and S63845 sensitization, we employed three distinct assays. 

First, we utilized TO-PRO-3 staining for cell viability as described above. Next, we 

determined caspase activity, cells were grown on 6-well plates. After treatment, 

cells were lysed with 100µL of PBS supplemented with 1% TritonX-100, for 5 

minutes on ice. Cell disruption was completed by sonication, and samples were 

centrifuged at 15,000 x g for 10 minutes at 4oC. Then, 25µL of the lysate was 

transferred to a black 96-well plate and incubated with 200µL of the substrate 

solution comprised of PBS, with or without 25µg/ml of caspase substrate Ac-

DEVD-AMC (37µM) in PBS supplemented with 5mM DTT. The assay was 

incubated at 37oC for 30 minutes, and fluorescence was measured (excitation: 

380nm; emission: 440nm).   
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Biological Replicates and Statistics: A minimum of four biological replicates were 

used for cell-based studies, with a minimum of six experimental replicates. To 

evaluate differences between sample groups, the Mann-Whitney test was used. 

Experiments with more than three comparison groups were subjected analysis of 

variance (ANOVA) followed by the Tukey Honest Difference test to compare 

means. Correlation statistics were performed using the Spearman nonparametric 

test. An asterisk in figures indicated p value is less than 0.05. For correlation 

between GBM cell lines, standard calculations for the correlation coefficient (r) and 

r2 were performed. Data are displayed as means with error bars representing plus 

and minus one standard deviation of the mean. 

3. Results 

3.1 GBM cell lines have distinct sensitivities to TMZ. To determine the chemo-

responsiveness of the GBM cell lines, the acquired cell panel was grown in 96-well 

plates and treated with increasing concentrations of TMZ (0-10mM) for 72 hours; 

afterwards, the cells were fixed and stained with TO-PRO-3 to determine the 

number of cells remaining (Figure 6A). The IC50s for each cell line were determined 

by plotting the fluorescence of the remaining cells against the concentration of TMZ 

(Figure 6B). Using non-parametric analysis of these data, the IC50s were calculated 

from four biological replicates (Table 4). Based on these experiments, we found 

that three cell lines (U118, SNB19, and U251) were unresponsive (i.e. resistant) 

to TMZ at supraphysiological concentrations up to 10mM, while the remaining 

seven cell lines had varying degrees of responsiveness with H4 and SNB75 cells 

being the most sensitive of the cell lines. Since MGMT promoter methylation has 
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been previously used as prognostic marker, we decided to evaluate if MGMT 

protein expression levels were related to TMZ chemo-responsiveness, but we did 

not observe any correlation between the two (Figure S1). We further investigated 

if chemo-responsiveness was related to metabolic differences between the cell 

lines we first examined expression levels of glycolytic proteins, however there was 

no discernable trend in the expression of the metabolic enzymes (HKI, HK2, 

PKM1/2, LDHA, MCT1, MCT4) analyzed (Figure S2).  We also examined if the 

differences observed in response to TMZ was related to a metabolic shift, usually 

observed in cancer, we measured mitochondrial respiration and glycolysis in the 

presence or absence of glucose and glutamine, similarly we couldn't determine a 

consistent trend between metabolic status and chemo-responsiveness (Figure 

S3).  

 

 

Figure 6. Determining IC50 values for TMZ in GBM Cell Lines.  
(A) GBM cell lines were incubated for 72 hours in the presence of 0-10mM TMZ. 
The cells were then fixed and stained with TO-PRO-3 to determine the number of 
cells. Displayed in this figure are the TMZ-sensitive line (H4) and the TMZ-resistant 
line (U118). (B) The fluorescence for each TMZ dose was plotted (n=4) and the 
IC50 value was calculated using GraphPad® Prism and displayed in Table 4. Here 
we display prototypic plots for A172, H4, U118, and U87MG cells.  
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Table 4: TMZ IC50 Values for Established GBM cell Lines 
 

Cell Line TMZ IC50 (mM) 

U118 >10 mM† 

SNB19 >10 mM† 

U251 >10 mM† 

U87 0.75 ± 0.11 

SF295 0.64 ± 0.08 

SF539 0.37 ± 0.03 

SF268 0.21 ± 0.10 

A172 0.18 ± 0.05 

SNB75 0.07 ± 0.02 

H4 0.04 ± 0.01 

 
IC50 values for GBM cell lines were determined in a 96-well format on 5x103 
cells/well using cell-based fluorescence. †The dose curve for this experiment was 
from 0-10mM due to the solubility of TMZ 
 

3.2 Bcl-2 protein levels are distinct among GBM cell lines. To evaluate if the 

chemo-responsiveness of the 10 cell lines was related to the levels of Bcl-2 family 

proteins, we examined the expression pro-survival and pro-apoptotic proteins 

across the panel. Examination of the pro-survival Bcl-2 proteins revealed that Bcl-

2 levels were highest in U-118 MG, SNB-19, and U-251 cell lines, five cell lines (U-

87 MG, SF-295, SF-539, SF-268, and A-172) had some expression of Bcl-2, and 

two cell lines, H4 and SNB-75, had no detectable Bcl-2 expression (Figure 7). 

Conversely, no discernable trend could be found for other pro-survival Bcl-2 

proteins, Bcl-xL or Mcl-1 (Figure 7, Figure S4). Next, we examined the expression 

of pro-apoptotic, BH3-only members of the Bcl-2 family. Bim displayed a 
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complementary expression pattern to Bcl-2 in the cell lines. U-118 MG, SNB-19, 

and U251 had no or very low expression of Bim, while U-87 MG, SF-295, SF-539, 

SF-268, and A-172 had higher levels of Bim (Figure 7). H4 and SNB-75 had the 

highest levels of Bim expression among the cell lines across three biological 

replicates (Figure 7). There was no discernable trend in the expression of other 

BH3-only proteins (Bad, Bid, Bik, PUMA) analyzed (Figure S4). Actin served as a 

loading control for all experiments. 

 
Figure 7. Bcl-2 profiling of GBM Cell Lines.  

GBM cell lines were grown, lysed, and protein levels were assessed by western 
blot analysis for Bcl-2 family proteins. Expression was normalized to the actin 
loading control. (A) Representative western blot (n=3). Quantification of 
normalized protein expression of (B) Bcl-2, (C) Mcl-1 and (D) Bim. One-way 
ANOVA was used to determine differences in protein expression between cell 
lines, p<0.05. Bcl-2 protein level was significantly different in U118 cells, asterisk 
represent different levels of significance ** p<0.002, *** p<0.0005  
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3.3 The Bcl-2/Bim Ratio Correlates to Chemo-responsiveness. To determine 

if the expression of Bcl-2 and Bim levels corresponded to chemo-resistance in 

GBM cell lines, we divided the relative expression of Bcl-2 by that of Bim. This ratio 

provides the amount of pro-survival capacity within mitochondria. A high ratio 

indicates a great survival capacity (i.e. resistance), while a low value would indicate 

sensitivity to stress. The ratio was calculated for each cell line and plotted against 

the previously calculated IC50s for TMZ. We used a non-parametric correlation test 

(Spearman method) to determine the correlation coefficient (r) (Figure 8).  Analysis 

of the Bcl-2/Bim ratio and TMZ IC50s provided an r value of 0.9755 (p<0.0001) 

suggesting a significant relationship could exist between these two measures 

(Figure 8). Further, we used these values to stratify the cells by chemo-

responsiveness. Cells with a high Bcl-2/Bim were chemo-resistant (U-118 MG, 

SNB-19, and U-251), those with a moderate Bcl-2/Bim value were responsive at 

higher concentrations of TMZ (U-87 MG, SF-295, SF539, SF268, and A172), and 

those cells with a very low Bcl-2/Bim (H4 and SNB75) were found to be sensitive 

to TMZ. 
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Figure 8. Correlation of Bcl-2/Bim to TMZ Sensitivity.  
The Bcl-2/Bim ratio was calculated for each of the GBM cell lines and plotted 
against the corresponding IC50 for TMZ (n=4). Spearman correlation test was 
used to determine the correlation coefficient (r).  
 

3.4 Inducing resistance increases the Bcl-2/Bim ratio. It has been previously 

shown that hypoxic cycling can induce chemo-resistance in U-87 MG cells. To 

determine if this had an impact on the Bcl-2/Bim ratio, we incubated U-87 MG cells 

under normoxic and hypoxic conditions for 16 hours. We then tested the cells 

response to TMZ and found that hypoxic cells had a five-fold increase in the IC50 

for TMZ (Figure 9A). Analysis of Bcl-2 and Bim levels indicate that Bcl-2 levels 

increased during the hypoxic treatment of U-87 MG cells, while Bim levels 

decreased (Figure 9B). Mitochondrial concentration in U-87 MG cells remained the 
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same as indicated by western blot detection of cyclo-oxygenase IV (COX-1V) and 

Tubulin was used as a loading control (Figure 9B). This suggests that the Bcl-

2/Bim ratio is a useful assessment of TMZ-responsiveness.  

 
Figure 9: Inducing TMZ Resistance in U87 Cells Increases Bcl-2/Bim Ratio.  

U87MG cells were plated in 35-mm cell culture dishes and exposed to either 
normoxia or hypoxia for 16 hours. After 16 hour, cells were either treated with (A) 
TMZ to determine the IC50 for each condition or (B) lysed in order to measure the 
levels of HIF-1a, Bcl-2 and Bim. COX-IV was used as a mitochondrial loading 
control, while Tubulin was used as a cellular loading control. The Bcl-2/Bim ratio 
was calculated by dividing the normalized expression levels of Bcl-2 and Bim.  
 

3.5 Inhibition of both Bcl-2 and Mcl-1 is necessary to improve chemo-

responsiveness.  Since the Bcl-2/Bim ratio correlates to chemo-responsiveness, 

and inducing resistance increases the ratio, we evaluated if inhibition of Bcl-2 by 

ABT-737, a BH3 mimetic that inhibits Bcl-2 and Bcl-xL enhanced 

chemoresponsiveness, however concurrent treatment of ABT-737 and TMZ only 

modestly improved the efficacy of TMZ (Figure S5). We further investigated if 
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inhibition of Mcl-1 was also required to induce cell death, after 72 hours treatment 

with increasing concentrations of ABT-737, S63845 (Mcl-1 inhibitor) or a 

combination of both, we determined the percentage of cell viability (Table 5) and 

observed that exposure to both ABT-737 and S63A45 resulted in massive cell 

death at concentrations 10-fold lower (1µM) than the individual exposures (10µM) 

that produced minimal if any cell death (Figure 10, S6).   

Table 5: Percentage of Cell Viability for Established GBM cell Lines 
 

GBM Cell Line 10µM ABT-737 10µM S63845 1µM ABT-737 +  

1µM S63845 

H4 49.88 ± 5.25 53.08 ± 3.08 1.62 ± 0.72 

SNB75 83.65 ± 1.20 71.17 ± 2.23 16.89 ± 0.82 

A172 73.43 ± 9.49 93.05 ± 6.72 74.07 ± 21.32 

SF268 80.70 ± 2.88 101.26 ± 4.31 44.38 ± 25.67 

SF539 85.34 ± 5.62 84.08 ± 5.73 1.79 ± 0.41 

SF295 82.63 ± 3.61 74.09 ± 2.25 3.02 ± 1.72 

U87 69.67 ± 0.16 87.95 ± 3.25 22.96 ± 3.78 

U251 85.21 ± 3.71 93.23 ± 4.22  63.80 ± 2.05 

SNB19 87.06 ± 3.98 94.68 ± 3.65 64.75 ± 1.95 

U118 48.97 ± 2.96 107.73 ± 6.54 73.29 ± 2.54 

 
Percentage of cell viability for GBM cell lines was determined in a 96-well format 
on 5x103 cells/well using cell-based fluorescence.  
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Figure 10: Percentage of Cell Viability after treatment with Bcl-2 and Mcl-1 inhibitors in GBM Cell Lines. 
(A) GBM cell lines were incubated for 72 hours in the presence of 0-10µM of ABT-737, 0-10µM S63845, or both. The 

cells were then fixed and stained with CellTag 700 stain to determine the number of cells. Displayed in this figure are 

the TMZ-sensitive lines (H4, SNB75) and the TMZ-resistant line (U251, SNB19). (B) The fluorescence for each TMZ 

dose was plotted and comparisons between treatments was performed using ANOVA followed by Tukey’s honest test. 

***p<0.001, ****p<0.0001  
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4. Discussion 

BH3-only profiling has been proposed as measure to predict the chemosensitivity 

of solid tumors and certain types of leukemia; however, previous studies in GBM 

showed that the individual expression levels of different members of the Bcl-2 

protein superfamily did not correlate with patient overall survival (Potter and Letai, 

2016) (Cartron et al., 2012). Our current study determined that while individual 

expression of Bcl-2 family proteins is not sufficient to predict prognosis, a collective 

assessment of anti-apoptotic and pro-apoptotic Bcl-2 proteins may be useful to 

discern the personalized vulnerability of tumors. In fact, we demonstrate that the 

ratio between the relative abundance of anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-

xL, and Mcl-1) and the BH3-only protein Bim levels correlate with 

chemoresponsiveness to TMZ in established GBM cell lines. This was also the 

case in patient-derived GSCs.  Additionally, inducing chemoresistance in U87 cells 

by hypoxic cycling decreases the anti-apoptotic Bcl-2/Bim ratio. The collective 

contribution of anti-apoptotic Bcl-2 proteins to cell survival and chemoresistance 

was verified using a Bim mimetic, ABT-737 (a Bcl-2 and Bcl-xL inhibitor), and a 

Mcl-1 inhibitor, S63A45 to induce cell death and enhance TMZ potency in 

established GBM cell lines and GSCs.  Based on these findings, we propose that 

an assessment of apoptotic capacity in GBM cells may be useful to determining 

personalized treatment options.  

Prognostic approaches for GBM currently entail sequencing of commonly mutated 

genes and histological analysis of tumors, with the problematic hypermethylation 

of the MGMT promoter losing its previously presumed clinical relevance. The 
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genomic analyses include genes that are involved in growth and metabolism, and 

only p53 has any relevance to apoptosis. The histological classification of the 

tumor is based on the presence of specific cellular markers related to proliferation, 

and none are reflective of cell death capacity. This is problematic, in our opinion, 

when assigning therapies because one cannot be certain if a chemotherapy or 

radiotherapy approach will be effective without insight into the relative potential for 

GBM tumor cells to undergo apoptosis. Our suggested approach of histological or 

biochemical assessment of anti-apoptotic Bcl-2 proteins and Bim in GBM 

specimens would provide an index for the relative chemoresistance based on the 

collective abundance of Bcl-2, Bcl-xL, and Mcl-1, and give insight into the apoptotic 

induction threshold by assaying the relative concentrations of Bim. Of course, 

further studies in healthy patients and GBM patients will be needed to assess what 

concentrations will correlate to clinical outcomes. This will be a topic of research 

between the lab and Baptist Health South Florida as part of a collaborative project 

to improve GBM prognosis and treatment selection. 

In our study, we found that only one BH3-only protein concentration, Bim, reflected 

cell death capacity in GBM cell lines and GSCs. Bim is able to promote apoptosis 

by either direct activation through Bak and Bax, or by sequestering Bcl-2 anti-

apoptotic proteins (Chipuk and Green, 2008). The relative abundance of Bim on 

mitochondria is controlled in part by increased gene expression and by post-

translational modification by stress-induced kinases. In fact, the c-Jun N-terminal 

kinase (JNK) can phosphorylate Bim in response to chemo- and radiotherapy. JNK 

phosphorylation of Bim induces mitochondrial translocation where it can impair 
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anti-apoptotic Bcl-2 proteins and trigger mitochondrial outer membrane 

permeabilization (MOMP) leading to apoptosis (Lei and Davis, 2003). Based on 

Bim’s actions, we assert that Bim levels are a critical marker for a cell’s ability to 

readily induce apoptosis under basal conditions. In fact, Bim mimetics, such as 

ABT-737, and related compounds are being explored as chemo-sensitizing agents 

because of their ability to increase apoptotic thresholds. However, based on the 

results of our current study, we propose that Bim concentrations should be 

examined with respect to the abundance of Bim targets such as the anti-apoptotic 

Bcl-2 proteins. We find that the ratio between anti-apoptotic Bcl-2 proteins and Bim 

is a more accurate predictor of chemoresponse and could be used to stratify 

patients (Figure 3) because the ratio reflects the relative capacity of Bim to inhibit 

anti-apoptotic proteins. For example, in a Bcl-2/Bim ratio greater than 1 in a tumor 

sample, one may need to employ a sensitizing agent before a treatment approach 

to lower the apoptotic threshold; where, a ratio below 1 may indicate that a tumor 

may require less aggressive treatment approaches because of a lower cell death 

threshold. Additionally, changes in the Bcl-2/Bim ratio can be monitored as 

mechanism to track acquired resistance in GBM patient samples (Figure 9). It 

should be noted that the inclusion of Mcl-1 could affect the accuracy of the ratio 

because Mcl-1 translocation to mitochondria and sequestration to cytosol is related 

in part to the scaffold 14-3-3 and the actions of another BH3-only protein, Noxa, in 

other solid tumors (Nakajima et al., 2014). Therefore, the Bcl-2/Bim ratio may need 

to be supplemented with pharmacological profiling with ABT-737 and S63845 to 

determine the relative survival capacity of GBM tumor cells.  
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Our current study as indicated above suggests that chemoresponsiveness and cell 

survival is influenced by the concerted activities of anti-apoptotic proteins Bcl-2, 

Bcl-xL, and Mcl-1 on the mitochondrial surface. This was somewhat expected 

given the common functions of these three proteins. The fact that the 

concentrations of these proteins alone can be used in conjunction with Bim levels 

is indeed surprising because of the levels of control in place to coordinate the 

activities of Bcl-2 proteins to sustain cell viability or to induce apoptosis. For 

example, the presence of Bcl-2 alone does not always dictate functions. 

Phosphorylation of Bcl-2 has been shown to affect the balance between survival 

and cell death. Phosphorylation of residues threonine 56 (Thr56) and serine 87 

(Ser87) are necessary for the anti-apoptotic functions of Bcl-2, as mutation of these 

residues (Thr56Ala and Ser87Ala) failed to prevent glucocorticoid-induced cell 

death in T-cells (Huang and Cidlowski, 2002). Alternatively, JNK-mediated 

phosphorylation of Bcl-2 has been shown to induce Bcl-2 migration from the outer 

mitochondrial membrane and prevent its anti-apoptotic actions. Similar phospho-

regulatory mechanisms have been proposed to influence the activities of Bcl-xL, 

Mcl-1, and BH3-only proteins, such as Bim. Accordingly, if the concentrations of 

anti-apoptotic Bcl-2 proteins and Bim lose correlation power in patient samples, it 

may be prudent to consider the phosphorylation state of the proteins when 

assessing apoptotic capacity and predicting potential therapeutic outcomes.   

Finally, treatment of GBM cell lines and GSCs with the BH3 mimetic ABT-737 or 

the Mcl-1 inhibitor S63845 only modestly affected cell viability. However, exposure 

to both ABT-737 and S63845 resulted in massive cell death at concentrations 10-
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fold lower (1µM) than the individual exposures (10µM) that produced minimal if 

any cell death. This observation emphasizes the importance of all three anti-

apoptotic Bcl-2 proteins to the establishment of the apoptosis threshold. The data 

also demonstrate the importance of  Mcl-1 levels to the anti-apoptotic capacity 

because ABT-737  has binding affinity for Bcl-2, Bcl-xL and Bcl-w and not Mcl-1 

(Oltersdorf et al., 2005). The synergism between ABT-737 and S63845 was 

apparent when these compounds increased the efficacy of TMZ in the nanomolar 

range. This benefits patients as the use of ABT-737 and S63845 could lower the 

dose of the highly toxic TMZ and reduce the risk of potentially debilitating off-target 

effects in the brain. Unfortunately, Bcl-2 proteins are ubiquitously expressed in the 

brain, and toxicity studies would need to be performed to assure that the doses 

used would not adversely affect non-tumor cells in the brain. Without selective 

targeting to tumor cells, we could render neurons and glial cells vulnerable to the 

treatments that follow ABT-737 and S63845 by increasing the apoptotic potential 

in these cells, which may result in permanent neurological damage. Fortunately, 

similar compounds are in clinical trials or in use and few side effects have been 

reported. Suggesting that low dose chemosensitization with BH3-mimetics may be 

a useful approach to improve GBM outcomes.  

In our current study, we explore mitochondrial factors that contribute to 

chemotherapeutic resistance in GBM cell lines and GSCs. We found that the 

relative abundance of anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) and the 

BH3-only protein Bim could be used to predict chemotherapeutic outcomes; 

furthermore, inhibition of anti-apoptotic Bcl-2 proteins was found to increase 
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chemotherapeutic efficacy. Moreover, the inhibition of Bcl-2, Bcl-xL, and Mcl-1 

synergistically enhanced the potency of TMZ. Based on our results, we contend 

that rigorous assessment of Bcl-2 proteins may be a useful approach to determine 

if specific treatments will be effective in GBM patients. Future studies will focus on 

determining the relevant concentrations required to predict outcomes in patient 

tumors and previously-acquired histological samples.  
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CHAPTER IV 

A novel splice variant of Sab alters mitochondrial physiology 
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1. Introduction  

The Bcl-2 superfamily of proteins are critical modulators of cell death responses in 

human cells, and dysregulation of Bcl-2 proteins can result in human disease. 

Specifically, the accumulation of anti-apoptotic Bcl-2 proteins, such as Bcl-2, Bcl-

xL, and Mcl-1, may enhance the survival of cancer cells by increasing the cells’ 

tolerance to toxic challenges (Brunelle and Letai, 2009). Alternatively, an 

overabundance of pro-apoptotic Bcl-2 proteins (BH3-only proteins) may lower the 

apoptotic threshold of cells by inhibiting the actions of anti-apoptotic proteins and 

promoting mitochondrial outer membrane permeabilization (MOMP) by facilitating 

the oligomerization of Bax and Bak (Chipuk et al., 2008). Proteins in the Bcl-2 

superfamily are tightly regulated by gene expression and by post-translational 

modification. Phosphorylation of Bcl-2 proteins can differentially influence the anti- 

and pro-apoptotic functions of these proteins. This phospho-regulation connects 

apoptotic machinery to cellular growth and stress response pathways. 

One of the most prominent stress-responsive regulators of Bcl-2 function is the c-

Jun N-terminal kinase (JNK), a serine/threonine protein kinase, that can influence 

activities of both anti-apoptotic and pro-apoptotic Bcl-2 proteins by 

phosphorylation. JNK can affect the anti-apoptotic functions of Bcl-2 differently 

depending on the phosphorylation site. For example, JNK phosphorylation on 

threonine-56 (Thr56) and serine-87 (Ser87) are required for the anti-apoptotic 

functions of Bcl-2, and mutation of Thr56 and Ser87 prevents the survival functions 

of Bcl-2 (Huang and Cidlowski, 2002). Alternatively, JNK phosphorylation of Bcl-2 

on Ser70 leads to emigration of Bcl-2 from the outer mitochondrial membrane 
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(OMM) and promotes apoptosis (Yamamoto et al., 1999). JNK also alters the 

functions of Bcl-xL and Mcl-1 by phosphorylation. With respect to Bcl-xL, JNK 

phosphorylation on residues Thr47 and Thr115 prevents apoptosis, while JNK 

phosphorylation of residue Ser62 on Bcl-xL promotes chemotherapy-induced cell 

death (Kharbanda et al., 2000). Similarly, JNK phospho-regulation of Mcl-1 

influences cell death responses; whereby, JNK phosphorylation of Mcl-1 on 

Thr163 results in the proteosomal degradation of Mcl-1 in a glycogen synthase 

kinase-3 (GSK3)-dependent manner (Morel et al., 2009). Also, JNK 

phosphorylation of Mcl-1 on Ser121 and Thr163 have been linked to a decrease 

in the pro-apoptotic and anti-apoptotic capacities, respectively (Thomas et al., 

2010). Depending on the kinase isoform, stimuli, and cellular context JNK signaling 

can impact anti-apoptotic Bcl-2 proteins differently and influence cell fate.  

However, JNK signaling seems to be more straightforward when it comes to the 

regulation of pro-apoptotic BH3-only proteins. JNK primarily activates and 

enhances the apoptotic activities of BH3-only proteins by phosphorylation. JNK 

phosphorylation of Bim species are perhaps the most well characterized of the 

JNK-Bcl-2 phospho-regulations. JNK phosphorylation on Ser44, Thr56, and Ser58 

are all linked to enhanced apoptotic activities, including Bax-Bak oligomerization, 

of Bim (Lei and Davis, 2003). Inhibition of JNK in many cell lines has been shown 

not only to reduce Bim activity, but also resulted in decreased Bim levels. Bad is 

also another BH3-only protein that can be induced by JNK phosphorylation as well. 

JNK modification of Bad on Ser128 causes its release from the inhibitory scaffold 

14-3-3; meanwhile, JNK phosphorylation on Thr201 of Bad enhances the 
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interaction of Bad with Bcl-xL, which effectively sequesters and inhibits the anti-

apoptotic activities of Bcl-xL. JNK can also promote the gene expression of BH3-

only proteins (Wang et al., 2007; Yu et al., 2004). One example is JNK 

phosphorylation of c-Jun (a component of the transcription factor activator protein-

1 (AP-1)) leads to the transcription of death protein-5/harakari (DP5/Hrk) (Ma et 

al., 2007). Collectively, these results strongly support JNK’s role in apoptosis.  

Stress-induced activation of JNK causes the translocation of the kinase to the 

OMM, an event that culminates in mitochondrial dysfunction and apoptosis (J. W. 

Chambers et al., 2011). The localization of JNK to the OMM places it close to not 

only the bioenergetic machinery, but also Bcl-2 proteins. At mitochondria, JNK 

interacts with the OMM scaffold protein Sab through a kinase interaction motif 

(KIM) located in the C-terminus of Sab (Wiltshire et al., 2004; 2002; Win et al., 

2011). Mitochondrial JNK signaling promotes mitochondrial dysfunction by 

amplifying reactive oxygen species (ROS) production, impairing bioenergetics, 

and altering mitochondrial membrane potential (J. W. Chambers and LoGrasso, 

2011; Hanawa et al., 2008). In addition, mitochondrial JNK signaling also plays a 

role in cell death as mentioned above (J. W. Chambers et al., 2011; Schroeter et 

al., 2003). Consequently, inhibition of the JNK-Sab interaction prevents oxidative 

stress, mitochondrial dysfunction and cell death. Furthermore amplification of 

JNK/Sab-mediated signaling has been shown to sensitize cancer cells and 

improve chemotherapeutic efficacy (J. W. Chambers et al., 2011; 2013a; 2013b; 

T. P. Chambers et al., 2015; Wiltshire et al., 2004). In fact, our recent studies in 

gynecological cancers, reveal that Sab levels correlated with chemosensitivity; 
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wherein, low Sab levels are indicative of chemo-resistant cells. Artificial elevation 

of Sab was shown to increase the levels of BH3-only proteins on mitochondria, 

while anti-apoptotic Bcl-2 protein concentrations were reduced in cells with 

elevated Sab levels. However, toxin-induced increases in Sab also sensitized 

normal cells to apoptosis. Cardiomyocytes exposed to prolonged low doses of 

imatinib had increased Sab levels and were vulnerable to chemotherapeutic 

agents and mitochondrial stress. These data suggest that JNK signaling on Sab is 

a critical event in cell death signaling. 

Because of the relevance of JNK-Sab signaling to cell death and the correlation of 

Sab levels to chemo-responsiveness in gynecological malignancies, we 

hypothesized that Sab levels would reflect the chemo-vulnerability of GBM cells. 

We found that the Sab levels did not correlate to the responsiveness of cells to 

TMZ. Sab levels did not correspond to Bcl-2 or BH3-only profiles as well. However, 

we observed that a truncated version of Sab was expressed in some of the GBM 

cell lines. Sequence analysis of the Sab transcripts revealed that the smaller form 

of Sab was isoform 2, which lacks the first 157 amino acids of the protein. Cellular 

characterization of the Sab variant reveals that it is localized to mitochondria using 

a cryptic mitochondrial localization signal. The presence of the truncated Sab does 

not alter apoptotic signaling or sensitivity to chemotherapeutic challenge. The 

presence of the Sab variant does enhance glycolysis by way of impaired 

respiration. Cells with the splice variant have diminished basal respiration and 

spare respiratory capacity that can be attributed to diminished complex I activity. 

These data suggest that Sab-mediated signaling may also be important to the 
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regulation of bioenergetics in brain malignancies with minimal contributions to 

apoptotic capacity. 

2. Materials and Methods 

Materials: GBM cell lines, A-172 (CRL-1620), H4 (HTB-148), U-87 MG (HTB-14), 

and U-118 MG (HTB-15), were purchased from American Type Culture Collection 

(Manassas, VA). The remaining GBM cell lines were obtained through the National 

Institutes of Cancer (NCI) from the NCI-60 cell panel. Cell culture media was 

purchased from Invitrogen (Grand Island, NY), and serum was purchased from 

Denville Scientific (South Plainfield, NJ). General chemicals were purchased from 

Fisher Scientific (Pittsburgh, PA) and Sigma Aldrich (St. Louis, MO) as indicated 

below. Unless indicated below, antibodies were purchased from Cell Signaling 

Technology (Danvers, MA). 

Cell Culture: GBM cell lines were grown under normal cell culture conditions (37oC 

and 5% CO2 with humidity). A-172, H4, U-87 MG, U-118 MG cells and the cells 

from the NCI-60 panel (SF-268, SF-295, SF-539, SNB-19, SNB-75 and U-251) 

were grown in Dulbecco’s Modified Essential Medium (DMEM) supplemented with 

10% fetal bovine serum (FBS), 1,000 U/mL penicillin, 100µg/mL streptomycin, and 

5µg/mL plasmocin.  

SF268 clonal selection: To isolate cells with specific Sab expression patterns, full 

length versus splice variant, SF268 cells were plated as single cells in a 96-well 

plate and expanded to obtain a clonal population of cells.  

Cell Lysis and Western Blot Analysis: To isolate proteins from cells for analysis, 

cells were plated at 2.5x105 cells/well in a six well plate unless otherwise indicated. 
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Following treatment, cells were lysed, and proteins were harvested as previously 

described. Briefly, cells were washed twice in phosphate buffered saline (PBS; 

137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, and 1.8mM KH2PO4) and lysed in 

radioimmunoprecipitation assay buffer (RIPA; 50mM Tris-HCl, pH 8.0, 150mM 

NaCl, 1% Nonidet P-40, 0.5% deoxycholate, 0.1% SDS) supplemented with 1mM 

phenylmethanesulfonyl fluoride (PMSF) and Halt Protease and Phosphatase 

Inhibitor Cocktails (Thermo Scientific). Cells were incubated while gently rocking 

at 4°C for five minutes, and then transferred to a sterile micro-centrifuge tube. After 

two minutes on ice, cell disruption was completed using sonication. The lysate was 

cleared by centrifugation at 15,000 × g for 15 minutes. Protein concentrations of 

the supernatant were measured using the Pierce BCA Assay kit according to 

manufacturer’s directions. Proteins were then resolved by SDS-PAGE and 

transferred onto low fluorescence PVDF membranes. Membranes were placed in 

blocking buffer comprised of TBS supplemented with 5% bovine serum albumin 

(BSA) and incubated for at least one hour at room temperature (RT) or overnight 

at 4°C. The membranes were incubated in TBS containing 0.1% Tween 20 (TBSt) 

and 5% BSA in the presence of primary antibodies for at least 2.5 hours (RT) or 

overnight (4oC) while gently rocking.  Primary antibodies specific for Sab (Novus, 

H00009467-M01), Calnexin (CST, 2679), CoxIV (CST, 4850) Actin (CST, 4970), 

and α-tubulin (CST, 2144) were used at dilutions of 1:1000 for these studies. 

Membranes were washed three times for five minutes in TBSt. Membranes were 

incubated with secondary antibodies in the appropriate blocking buffer at a ratio of 

1:20,000 for one hour at RT gently rocking. The following secondary antibodies 
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were used in the experiments below: IRDye 680RD Goat anti-Rabbit (926-32211) 

and IRDye 800CW Goat anti-Mouse (926-68070) (Licor Biosciences). Membranes 

were again washed three times for five minutes in TBST. Membranes were 

analyzed using fluorescence detection using the Odyssey CLx near infrared 

scanner (Licor Biosciences). The corresponding bands on the western blots were 

quantified and normalized using the Image Studio 2.0 software (Licor Biosciences). 

The fluorescence of specific bands of interest were divided by the fluorescence of 

the loading control band to equilibrate signal strength and loading. The resulting 

signal was then normalized by dividing the signals from treated samples by 

respective untreated or normal tissue control signals for each experiment. 

Defining the cellular distribution of the Sab splice variant using confocal 

microscopy: GBM cell lines, SF268 and SF268 clone #6 were plated in 12-well 

plates containing 18mm glass coverslips in each well bottom at a density of 7x104 

cells per well. The cells were incubated with 50nM Mitotracker Deep Red FM 

(M22426) (ThermoFisher Scientific) for 15 minutes at 37 oC protected from light, 

and then fixed by incubation with 4% paraformaldehyde/PBS. 

Immunofluorescence was performed to detect Sab (as described in (J. W. 

Chambers et al., 2013b). Briefly, cells were placed in permeabilization/blocking 

buffer comprised of PBS with 5%BSA, 0.2% tween and 0.1% triton X-100 for 30 

minutes at RT. The coverslips were incubated with PBS containing 0.1% Tween 

20 (PBSt) and 5% BSA in the presence of primary antibodies against Sab 

(H00009467-M01) (Novus Biologicals) overnight at 4oC.  Cells were washed three 

times for five minutes in PBSt. Coverslips were incubated with secondary antibody 
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AlexaFluor-488 anti-Mouse (CST-4408) in the appropriate blocking buffer at a ratio 

of 1:250 for one hour at RT gently rocking. Coverslips were again washed three 

times for five minutes in PBSt. Coverslips were mounted on microscopy slides 

using DAPI Fluoromount-G (0100-20) (SouthernBiotech). Cells were imaged using 

a confocal microscope Fluoview FV1000 (Olympus).  

Mitochondrial Isolation: A modified protocol as described in (Magalhães et al., 

1998; Yang et al., 1997) was used to obtain mitochondria as described in our 

previous studies (J. W. Chambers et al., 2013b; 2013a; 2011). Mitochondrial 

samples with greater than 80% purity were used for experiments. 

Metabolic Analysis: Cellular metabolism was assessed by measuring the 

extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR) of 

the GBM cell line SF268 and SF268 Clone #6 using the Seahorse Biosciences XF-

96 extracellular flux analyzer (Wu et al., 2007). Cells were assayed (1.0x104 

cells/well) using the glycolytic and mitochondrial stress kits. For our studies, 3.0µM 

oligomycin, 1µM FCCP, 3µM rotenone and 3µM antimycin were used. From these 

measurements, we derived glycolytic and respiratory parameters, including spare 

respiratory capacity as previously described (Wu et al., 2007). Data were 

normalized to cell number.  

Cell proliferation by BrDU incorporation: We measured cellular abundance by 

incorporation of 5-bromo-2'-deoxyuridine (BrdU) cell proliferation assay. We used 

the BrdU Cell Proliferation assay kit (Cat# 11669915001) (Roche). GBM cells 

SF268 and SF268 clone #6 were plated at a density of 0.5 x104 cells per well and 

grown overnight. The cells were then serum starved for 24 hours. After serum 
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starvation, cells were treated with increasing concentrations of FBS for 24 hours 

and then monitored BrdU incorporation using the manufacturer’s protocol for 24 

hours. Light emission was measure using the Synergy H1 Hybrid Reader (BioTek). 

Determining Cell-based IC50s for Irinotecan and Rotenone: To determine the 

relative chemo-sensitivity of the GBM cell line SF268 and SF268 Clone #6, cells 

were treated with increasing concentrations of either Irinotecan (0-15µM) or 

Rotenone (0-10µM). Briefly, GBM cells were plated at 5x103 cells per well in black-

walled, clear bottom plates (Perkin Elmer) and grown overnight. The cells were 

then treated with chemotherapeutic agents for 72 hours. The cells were washed 

three times in PBS and fixed in 4% paraformaldehyde/PBS. The cells were then 

stained with 0.2µM CellTag 700 Stain (926-41090) (Licor Biosciences) for 1 hour 

at RT. The cells were then washed three times in Hank’s Buffered Saline Solution 

(HBSS). The plate was imaged using the Odyssey CLx scanner (Licor 

Biosciences) and analyzed using the Image Studio 2.0 software (Licor 

Biosciences). The IC50 for each cell line was calculated using the GraphPad 

Prism7© software. 

Caspase Activity: To assess caspase 3/7 activity in SF268 and SF268 clone #6 

cell lines after treatment with either irinotecan or rotenone, cells were grown on 6-

well plates. After treatment, cells were lysed with 100µL of PBS supplemented with 

1% TritonX-100, for 5 minutes on ice. Cell disruption was completed by sonication, 

and samples were centrifuged at 15,000 x g for 10 minutes at 4oC. Then, 25µL of 

the lysate was transferred to a black 96-well plate and incubated with 200µL of the 
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substrate solution comprised of PBS, with or without 25µg/ml of caspase substrate 

Ac-DEVD-AMC (37µM) in PBS supplemented with 5mM DTT. The assay 

incubated at 37oC for 30 minutes, and fluorescence was measured (excitation: 

380nm; emission: 440nm).  

Biological Replicates and Statistics: A minimum of four biological replicates were 

used for cell-based studies, with a minimum of six experimental replicates. To 

evaluate differences between sample groups, the Mann-Whitney test was used. 

Experiments with more than three comparison groups were subjected analysis of 

variance (ANOVA) followed by the Tukey Honest Difference test to compare 

means. An asterisk in figures indicated p value is less than 0.05. Data are 

displayed as means with error bars representing plus and minus one standard 

deviation of the mean. 

3. Results 

3.1 Sab protein levels are distinct among GBM cell lines. Sab levels have been 

shown to correlate to chemo-responsiveness in gynecological cancers, we 

examined if Sab levels would reflect the chemo-responsiveness of GBM cells. We 

observed no discernable pattern between Sab expression levels and chemo-

responsiveness, Sab levels were comparable in the sensitive line H4 and the 

resistant line U118 (Figure 11). Intriguingly, we observed a second molecular 

weight species of Sab, suggesting the presence of a novel Sab splice variant in 

certain GBM cell lines. The  transcript for a splice variant of Sab has been identified 

(Ota et al., 2004), it has a shorter N-terminus (Figure 12), and its predicted 

molecular weight corresponds to the species observed in SF268 cells.   
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Figure 11. Expression of Sab in different GBM cell lines.  

GBM cell lines were grown to 85% confluency and lysed. Proteins (25µg) were 
quantified and resolved by SDS-PAGE. (A) Western blot analysis was used to 
detect Sab levels. Tubulin was used as loading control. (B) Quantification of 
expression levels.  
 

 
Figure 12. Schematic representation of Sab splice variants.  

(A) Sab full-length. (B) Sab splice variant. This representation of the Sab splice 
variants shows the different regions of each splice variant. CC1: coiled-coiled motif 
1, CC2: coiled-coiled motif 2, TM transmembrane domain, KIM1: kinase interaction 
motif 1, KIM2: kinase interaction motif 2, S: phosphorylation sites. 
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3.1 Expression of the Sab splice variant is heterogenous in a population of 

cells. We selected SF268 cells to determine if the Sab variant is homogenously 

expressed across an entire population of cells. We developed 11 different SF268 

clones by expanding a population of cells that originated from a single cell. The 

expression of the Sab splice variant was heterogenous among clones, showing 

different levels of expression of the variant and/or ratios between Sab full-length 

and Sab variant. From the 11 clones developed, SF286 clone #6 was the only 

clone that didn’t express the variant and therefore was selected for our future 

comparative studies (Figure 13).  

3.2 Sab splice variant localizes to mitochondria. Because the mitochondrial 

localization signal is located in the N-terminus of Sab, a shorter N-terminus for the 

splice variant suggests that it lacks the canonical mitochondrial localization signal 

and the Sab variant will have a distinct cellular localization. To determine the 

cellular localization of the Sab splice variant we performed co-localization studies 

between immunofluorescence against Sab and the mitochondrial specific dye 

Mitotracker Deep Red FM. We did not observe any differences in Sab distribution 

between SF268 cells that express both Sab full-length and the variant (Figure 

14A), and SF268 clone #6 that only expresses Sab full-length (Figure 14B).  Our 

immunofluorescence localization findings were validated by subcellular 

fractionation and mitochondrial isolation that showed the Sab splice variant only in 

the mitochondrial fraction and not in the cytosolic fraction (Figure 15). 
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Figure 13. Sab variant expression among a population of SF268 clones. 
(A) SF268 clones were grown to 85% confluency and lysed. Proteins (25µg) were 
quantified and resolved by SDS-PAGE. Western blot analysis was used to detect 
Sab levels. Actin was used as loading control.  Sab expression levels were 
measured using an antibody against the C-terminus (B) and quantified (C) 
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Figure 14. Cellular distribution of Sab in SF268 cells.  
Confocal microscopy images were obtain using the GBM cell line SF268 (A) and 
SF268 clone #6 (B), cells were stained with DAPI (nucleus), Mitrotacker Deep Red 
FM (mitochondria) and Sab. 
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Figure 15. Cellular fractionation and Sab distribution. 
Subcellular fractionation was performed from SF268 and H4 cells and analyzed 
for the presence of Sab. Proteins (25µg) were quantified and resolved by SDS-
PAGE. Western blot analysis was used to detect Sab levels. Mitochondrial 
enrichment was determined by the relative abundance of COX-IV, contamination 
by other subcellular compartments was determined: cytosol (Actin), ER (Calnexin). 
 
3.4 Sab variant expression reduces oxidative metabolism. To determine if the 

expression of the Sab variant has an effect on mitochondrial physiology, we 

measured mitochondrial respiration and glycolysis. We observed a 35% decrease 

in basal respiration in SF268 cells (Figure 16A), which express the Sab variant, 

while SF268 clone #6 have 60% more spare respiratory capacity (Figure15B), 

reduced basal glycolysis (Figure 16C, and increased capacity for pyruvate 

oxidation (Figure 16E, F). Together these observations suggest that expression of  
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Figure 16. Sab variant expression reduces oxidative metabolism.  

The respiratory profile of cells with and without the Sab splice variant was measured using the Seahorse XF-96 
extracellular flux analyzer. (A) Basal respiration (B) spare capacity (C) basal glycolysis, (D) OCR/ECAR ratio, (E) 
Pyruvate oxidation and (F) pyruvate oxidation capacity. Comparisons between groups was performed using the Mann-
Whitney test.  
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the Sab variant affects mitochondrial oxidative metabolism by reducing the cell’s 

respiratory capacity. 

3.5 Sab splice variant expression increases cell proliferation. To determine if 

expression of the Sab splice variant had an effect on cellular physiology, we 

compared cellular proliferation and viability between cells with and without Sab 

variant expression. SF268 and SF268 clone # 6 cells were treated with increasing 

concentrations of FBS (0-10%) for 48 hours. We observed that SF268 cells that 

expressed the Sab variant had increased cell viability in comparison to SF268 

clone #6 cells in a dose dependent manner when treated with increasing 

concentrations of FBS (Figure 17A). SF268 cells also had increased cellular 

proliferation, specially at lower serum concentrations, in comparison to SF268 

clone #6. At higher serum concentrations there was no significant difference in 

proliferation rates (Figure 17B).  

3.6 Sab variant expression increases chemosensitivity. To determine if Sab 

variant expression also has an effect on chemoresponse, we measured cell 

viability in SF268 and SF268 clone #6 cells after treatment with increasing 

concentrations with either irinotecan or rotenone. We observed a more 

pronounced decrease in cell viability in SF268 cells (Figure 18), suggesting that 

the Sab splice variant expression improves chemosensitivity. To determine if 

decreased viability was due to an increase in apoptosis we measured caspase 

activity in SF268 and SF268 clone #6 cells treated with either irinotecan (3.5µM) 

or rotenone (1µM) for 24, 36 and 48 hours, staurosporine (1µM) was used as a 

positive control.  We did not observed differences in response between SF268  
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cells and SF268 clone #6, irinotecan induced a more robust caspase activation 

than rotenone and the positive control staurosporine in both cell lines (Figure 18C 

&17F). These results suggest that changes in drug response and cell viability 

elicited by the Sab variant are independent of caspase activation.    

 

 

 

Figure 17. Sab splice variant increases cell viability and proliferation. 
SF268 and SF268 clone #6 cell lines were incubated for 48 hours with increasing 
concentrations of FBS (0-10%). (A) The cells were then fixed and stained with 
CellTag 700 Stain to determine cell viability (B) Fluorescence quantification for 
each FBS dose. (C)  Cell proliferation was measured by BrdU incorporation. 
Comparisons between groups was performed using the Mann-Whitney test.  
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Figure 18. Determining IC50 values for Irinotecan and Rotenone in SF268 Cell Lines. 
(SF268 and SF268 clone #6 cell lines were incubated for 72 hours in the presence of 0-15µM Irinotecan (A) or 0.005-
10µM Rotenone (D). The cells were then fixed and stained with CellTag 700 stain to determine the number of cells. The 
fluorescence for each of irinotecan (B) or rotenone (E)dose was plotted and the IC50 value was calculated using 
GraphPad® Prism. Induction of apoptosis by 3.5µM Irinotecan (C) or 1µM rotenone (F) was measured by caspase 
activation, STS was used as a positive control. Comparisons between groups was performed using the Mann-Whitney 
test.  
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4. Discussion 

The scaffold protein Sab is involved in outer membrane mitochondrial signaling 

and it plays a role in mitochondrial dysfunction and apoptosis (J. W. Chambers 

and LoGrasso, 2011; T. P. Chambers et al., 2015). Our current study focused on 

characterizing a novel Sab splice variant that we recently discover in GBM cell 

lines. We found that expression of the Sab variant only occurs in some GBM cell 

lines. In particular, SF268 cells had the highest variant expression levels; however, 

within a population of these cells expression is heterogenous with some cells 

expressing both the full-length and the truncated variant, while others only express 

only full-length Sab. No cells were found to express only the variant. This was an 

interesting observation that suggests isoform 1 of Sab (full-length) is necessary for 

cellular function. This is also reflected by our unpublished attempts to make global 

Sab knockout mice. Mice that are homozygous for the Sab knockout cassette die 

before day 7 of embryogenesis. These data highlight a yet to be described 

essential activity for Sab-mediated signaling beyond the induction of apoptosis. 

Despite our initial hypothesis that the truncated form may be in the cytosol acting 

as a JNK inhibitor, we found that the Sab splice variant localizes to mitochondria 

according to immunolocalization and subcellular fractionation. A closer analysis of 

the protein sequence reveals that there is a polycationic stretch of lysines and 

arginines near the N-terminus of the polypeptide that resemble cryptic 

mitochondrial localization sequences. Consequently, this means that both sab 

isoforms would have cytosolic KIM2 motifs for JNK (or other MAPK interactions). 

The transmembrane motif is intact meaning that the KIM1 motif is likely obscured 
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by the OMM. This means that the variant (isoform 2) still has a functional SH3-

motif within the coil-coiled 2 (CC2) domain. However, the CC1 domain is gone. 

This means that Sab isoform 2 has lost a protein-protein interaction site. With the 

CC2 motif looking extremely familiar to a dimerization domain (and our preliminary 

data support that Sab is a dimer) it is probable that CC1 interacts with proteins in 

the intermembrane space. Perhaps, the protein interacting with CC1 in full-length 

Sab is an inhibitor of complex I; thus, in Sab isoform 2, the inhibitor is released and 

would explain the diminished respiration in cells possessing the variant. Previous 

studies, have shown that stress-induced mitochondrial JNK signaling leads to Sab-

mediated inhibition of respiratory complexes, specifically complex I (J. W. 

Chambers and LoGrasso, 2011). Unlike Sab full length, the truncated N-terminus 

of the Sab splice variant is missing the first coiled coil motif, as a scaffolding protein 

Sab interacts with other proteins acting as a signaling hub while providing stability 

to protein complexes and losing a site for protein-protein interaction likely has 

profound downstream effects (Strauss and Keller, 2008). Additionally, Win and 

colleagues showed that when active JNK binds Sab on the outer mitochondrial 

membrane a conformational change releases the protein phosphatase SHP1 in 

the inner mitochondrial space, leading to intramitochondrial Src inactivation and 

electron transport inhibition (Win et al., 2016). We predict this missing coiled coil 

motif is required for proper regulation of Sab-mediated inner mitochondrial 

signaling, either because of its interacting partners or due to required 

conformational changes in Sab structure for proper signal transduction.  
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The metabolic shift observed in cells expressing the Sab splice variant may confer 

an advantage that allows cells to show increased proliferation (Figure16). 

Utilization of glucose for aerobic glycolysis produces a series of precursors for 

macromolecule synthesis, such as fatty acids, nonessential amino acids and 

nucleotides (Vander Heiden et al., 2009).  

Surprisingly, we also observed that cells expressing the Sab variant are not more 

susceptible to both genotoxic and mitochondrial stress (Figure 18). Enhanced Sab-

mediated signaling has been linked to chemosensitization (T. P. Chambers et al., 

2015) However, the lack of difference in caspase activation and the failure to 

display changes in Bcl-2 proteins may suggest that the OM scaffolding properties 

of Sab remain intact and mitochondrial JNK signaling on the OMM proceeds as 

normal.   

In summary, we propose that the splice variant of Sab reduces oxidative 

metabolism by inhibiting complex I activity, promoting a metabolic shift that 

contributes to increased proliferation.   
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CHAPTER V 

Sab-Mediated Signaling Influences Metabolism and Chemosusceptibility in 

Human Neuroblastoma Cells. 
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1. Introduction 

Neuroblastoma is a prevalent pediatric cancer accounting for approximately 15% 

of cancer-related deaths in children (Maris, 2010). Late stage neuroblastomas are 

resistant to conventional treatments, including chemotherapy (Matthay et al., 2009; 

Porro et al., 2010; Teitz et al., 2000). New therapeutic options targeting the unique 

aspects of neuroblastomas are needed to treat late-stage malignancies and 

improve patient survival. 

Neuroblastoma cells undergo specific changes in metabolism to support growth 

and develop resistance to apoptosis during oncogenesis. Metabolically, cells shift 

their bioenergetic and biosynthetic processes to sustain proliferation and survival 

(Vander Heiden et al., 2009). While cancer cells increase glucose utilization for 

biosynthesis and ATP generation, tumor cells rely on mitochondrial reactions to 

replenish the tricarboxylic acid (TCA) cycle and maintain reducing equivalents 

(DeBerardinis et al., 2007). Glutamine utilization can replenish TCA cycle 

intermediates and maintain mitochondrial integrity, redox homeostasis, and 

macromolecular biosynthesis (Qing et al., 2012). Consequently, the unique 

metabolism of tumor cells can be a predictive index for chemosensitivity and the 

proteins responsible for metabolic changes may be useful neuroblastoma drug 

targets (Ren et al., 2015; Sandulache et al., 2011; L. Yang et al., 2014). 

The attenuation of apoptosis is a hallmark of cancers, including neuroblastomas 

(Hanahan and Weinberg, 2011). Circumventing the pathways for apoptosis 

involves manipulation of Bcl-2 protein function. Apoptotic evasion is associated 

with increasing pro-survival Bcl-2 proteins (Bcl-2, Mcl-1, and Bcl-xL), while 
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abundant BH3-only proteins (Bim, Bid, Puma, Noxa, etc.) indicate pro-apoptotic 

mitochondria susceptible to treatments (Brunelle and Letai, 2009; Certo et al., 

2006; Chonghaile et al., 2011; Letai et al., 2002). In neuroblastoma, BH3-only 

protein levels can be used to predict chemotherapeutic responses and resistance 

(Goldsmith et al., 2012; 2010). The levels of Bcl-2 proteins and chemo-

responsiveness has been well evaluated recently; however, the molecular 

mechanisms responsible for controlling Bcl-2 proteins abundance on mitochondria 

in neuroblastoma has yet to be fully delineated.  

The c-Jun N-terminal kinase (JNK) can induce apoptotic signaling. JNK signaling 

has been linked to induction of apoptosis and chemosensitization in 

neuroblastoma cells (Cheng et al., 2014; Fey et al., 2015; Filomeni et al., 2003; 

Waetzig et al., 2009). Previous research has demonstrated that mitochondrial JNK 

is required to induce cell death responses (J. W. Chambers et al., 2011a; 2013a; 

J. W. Chambers and LoGrasso, 2011; J. W. Chambers et al., 2013b; Nijboer et al., 

2013; Win et al., 2014). Silencing Sab, an outer mitochondrial scaffold protein, or 

selectively inhibiting the interaction between JNK and Sab prevents JNK 

translocation to mitochondria and decreases mitochondrial dysfunction (J. W. 

Chambers et al., 2011a). Furthermore, blocking mitochondrial JNK translocation 

impairs Bcl-2 emigration from mitochondria preventing apoptosis (Matthay et al., 

2009). Preventing mitochondrial JNK signaling is a useful means to block induction 

of apoptosis in neuroblastoma cells (J. W. Chambers et al., 2013a; 2011b; 

Kristiansen et al., 2010; Nijboer et al., 2013; Zhou et al., 2008). These studies 
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demonstrate the influence of mitochondrial JNK signaling on apoptosis in 

neuroblastoma. 

In this study, we examined the impact of Sab-mediated signaling on mitochondrial 

function and apoptosis in human neuroblastoma cells. We found that Sab 

expression was significantly diminished in neuroblastoma patients. Inhibiting Sab-

mediated signaling decreased proliferation, reduced glycolysis, and increased 

oxidative metabolism; meanwhile, over-expression of Sab resulted in decreased 

pyruvate dehydrogenase and complex I activities. Sab-inhibited neuroblastoma 

cells had more Bcl-2 proteins and less BH3-only proteins. Cells treated with an 

inhibitory Sab peptide were less sensitive to chemotherapy agents. Finally, Sab 

levels correspond to metabolic phenotype and chemo-sensitivity in a small panel 

of neuroblastoma cells. Thus, Sab levels may be a useful prognostic biomarker for 

neuroblastoma. 

2. Materials and Methods 

Gene Expression: The expression of Sab (SH3-binding protein 5; SH3BP5) was 

examined using the Oncomine database (http://www.oncomine.org) in October 

2017 (Rhodes et al., 2007). By querying four neuroblastoma datasets that included 

Sab as part of past studies (Albino et al., 2008; Asgharzadeh et al., 2006; 

Janoueix-Lerosey et al., 2008; Wang et al., 2006), we compared experimental data 

for normal tissue, ganglioneuromas, and neuroblastomas. The data were compiled 

from a total of 8 normal tissue samples and 286 neuroblastoma samples (Table 

6).  
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Table 6: Summary of Neuroblastoma Expression Studies and Observed Changes in Sab Expression. 
*The mean fold changes were generated by averaging the fold changes from the studies. 

STUDY TOTAL 
SAMPL
ES 

CANCER 
SAMPLE
S 

NORMAL 
SAMPLES 

NORMAL 
TISSUE 

GENES 
ANALYZED 

HUMAN 
GENOME 
ARRAY(S) 

LOG2 
FOLD 
CHANGE 

AVG. 
FOLD 
CHANGE 

P  REFERE
NCE 

ALBINO 19 15 4 Ganglioneu
roma 

12,624 U113A -0.804 -1.75 0.002 Albino, D. 
Cancer. 
(2008) 

ASGHAR
ZADEH 

117 117 0 None 12,624 U133A N/A N/A N/A Asgharza
deh, S. 
J. Natl. 
Cancer 
Inst. 
(2006) 

JANOUE
IX-
LEROSE
Y 

56 53 3 Ganglioneu
roma 

19,574 U133 Plus 
2.0 

-1.22 -1.815 2.59
E-5 

Janoueix-
Lerosey I. 
Nature. 
(2008) 

WANG 102 101 1 Fetal Brain 8,603 U95A-Av2 
 

-2.20 -2.437 0.001 Wang, Q. 
Cancer 
Res. 
(2006) 

TOTALS/
MEANS 

294 286 8    -1.408 -2.001   
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Materials: CHP-212 (CRL-2273), IMR-32 (CCL-127), SK-N-SH (HTB-11), and SH-

SY5Y cells (CRL-2266) were purchased from American Type Culture Collection. 

General reagents were purchased from Fisher Scientific and Sigma Aldrich.  

Cell Culture and Treatment with Peptides: Human SH-SY5Y neuroblastoma cells 

were cultured as described in previously (Biedler et al., 1978). CHP-212, IMR-32, 

and SK-N-SH lines, cells were grown in DMEM with 10% FBS, 100U/mL penicillin, 

100µg/mL streptomycin, and 5µg/mL plasmocin. To inhibit Sab-mediated 

signaling, cells were treated with either the Tat-SabKIM1 peptide or the Tat-

Scrambled peptide as described below and in our prior studies (J. W. Chambers 

et al., 2013b; 2013a; 2011a).  

Cell Proliferation: We employed two assays to measure cellular abundance: 5-

bromo-2'-deoxyuridine (BrdU) and 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) cell proliferation assays. First, we used the 

BrdU Cell Proliferation assay kit (Cell Signaling Technologies). Neuroblastoma 

cells were plated at a density of 0.8 x104 cells per well and treated as indicated 

below. Cell growth was monitored using the manufacturer’s protocol over the 

course of five days. Absorbance was read at 450nm. Similarly, we employed the 

MTT Proliferation Assay (Cayman Chemical). Neuroblastoma cells were plated as 

described for the BrdU assay, and the cells were cultured for up to five days. The 

assay was performed following the manufacturer’s instructions. The absorbance 

was measured at 590nm. The number of cells was calculated based on a standard 

curve of known cell numbers and averaged between the two assays.  
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Caspase Activity: To assess caspase 3/7 activity in neuroblastoma cell lines, cells 

were grown on clear 96-well plates. The plate was centrifuged (400xg) for five 

minutes, and the supernatant was removed. The cells washed in 150µL of PBS 

and centrifuged (400xg for 5 minutes). Next, 100µL of PBS supplemented with 1% 

TritonX-100 was added to lyse the cells. Following a 30-minute incubation on a 

room temperature orbital shaker, the plate was centrifuged at 800xg for 10 

minutes, and 90µL of the lysate was transferred to a black 96-well plate. Then, 

10µL of PBS or 10µL of a caspase inhibitor (Ac-DEVD-CHO; 10µM) was added to 

the well, and 100µL of caspase substrate Ac-DEVD-AMC (100µM) in PBS 

supplemented with 20mM DTT was added last. The assay incubated at 37oC for 

30 minutes, and fluorescence was measured (excitation: 488nm; emission: 

535nm).  

Metabolic Analysis: Cellular metabolism was assessed by measuring the 

extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR) of 

neuroblastoma cells using the Seahorse Biosciences XF-96 extracellular flux 

analyzer (Wu et al., 2007). Cells were assayed (1.5x104 cells/well) using the 

glycolytic and mitochondrial stress kits. For our studies, 1.0µM oligomycin, 100µM 

2-DOG, 50µM 5-thioglucose (5-tGlc), and 1µM FCCP were used. From these 

measurements, we derived glycolytic and respiratory parameters, including spare 

respiratory capacity as previously described (Wu et al., 2007). Data were 

normalized to cell number.  
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Mitochondrial Isolation: A modified protocol as described in (Magalhães et al., 

1998; J. Yang et al., 1997) was used to obtain mitochondria as described in our 

previous studies (J. W. Chambers et al., 2013b; 2013a; 2011a). Mitochondrial 

samples with greater than 80% purity were used for experiments. 

Lactate Measurements: Lactate concentrations were measured in cell culture 

media using a Lactate Assay Kit (MAK064, Sigma-Aldrich). Samples (10µL) were 

added to a black-walled clear-bottom 96-well plate and combined with reagents 

according to manufacturer’s instructions. After a 30-minute incubation, the 

fluorescence was measured (excitation: 535nm; emission: 585nm). Lactate 

concentrations were determined using a standard curve. 

Glucose Uptake: To monitor glucose uptake, we utilized the IRDye® 800CW 2-

deoxy-D-glucose (2-DOG) probe from Li-Cor Biosciences (926-08946). Cells were 

plated in a black-walled, clear bottom 96-well plate. Next, the 800CW 2-DOG probe 

was added to the culture media to a final concentration of 20µM. After two hours, 

the media was removed, and the cells were placed in warm Hanks Buffered Saline 

solution (HBSS). The plate was imaged on a Li-Cor Odyssey CLx Imager and data 

were analyzed using the ImageStudio software package (Li-Cor).  

Enzyme Assays: To verify the metabolic changes, biochemical assays were 

employed to assess pyruvate dehydrogenase complex and respiratory chain 

complexes. For pyruvate dehydrogenase (PDH) complex, the PDH activity assay 

kit was purchased from Sigma-Aldrich and conducted following manufacturer’s 

instructions. Mitochondria [50µg (protein)] were used. Absorbance was measured 

at 450nm. Enzyme activity was quantified using a standard curve using 
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recombinant, active PDH and normalized to protein levels. For respiratory chain 

assays, we used colorimetric analyses for activity in 100µg of mitochondria isolates 

and normalized the data to mitochondrial protein concentrations. Specifically, 

Complex I (NADH dehydrogenase) activity was analyzed with the MitoToxTM 

Complex I OXPHOS Activity Assay kit (Abcam) according to the vendor’s 

instructions.  

Cellular Lysis and Western Blot Analysis: Cell lysis and western blotting were 

performed as previously described (J. W. Chambers et al., 2013a; 2011b). Primary 

antibodies for our studies were Sab (Novus Biologicals, H00009467-M01), β-actin 

(Cell Signaling Technology (CST), 4970), α-tubulin (CST 2144), hexokinase-1 

(CST #2024), hexokinase-2 (CST #2867), lactate dehydrogenase (CST #3582), 

pyruvate kinase (CST #3190), pyruvate kinase M2 (CST #4053), pyruvate 

dehydrogenase (CST #3205), GLUT-1 (CST #12939), GLUT4 (CST #2213), Bcl-2 

(CST #2870), Bcl-xL (CST #2764), Mcl-1 (CST #5453), Bim (CST #2933), Bid 

(CST, #2002), PUMA (CST, #12450), COX-IV (CST, #4850), Pyruvate 

dehydrogenase E1a-subunit (Abcam, ab110334), MCT-1 (Santa Cruz, sc50324), 

and MCT-4 (Santa Cruz, sc50329) and secondary antibodies used were IRDye 

680RD Goat anti-Rabbit (926-32211) and IRDye 800CW Goat anti-Mouse (926-

68070) from Li-Cor. Western blots were developed using the Odyssey CLx (Li-Cor) 

and quantified using the Image Studio software (Li-Cor). 

Chemosensitivity: The IC50s for carboplatin, cyclophosphamide, doxorubicin, 

etoposide, and vincristine in neuroblastoma cells were determined using the TO-

PRO-3 near-infrared dye (Invitrogen) as described in our previous studies (T. P. 
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Chambers et al., 2015). General cytotoxicity measurements were performed at 2x 

the IC50s for SH-SY5Y cells for carboplatin and vincristine. 

Overexpression of Sab: To increase Sab levels in neuroblastoma cells, we 

transiently transfected SH-SY5Y with plasmids designed to express Sab 

(pLOC:Sab) or red fluorescent protein (RFP; pLOC:RFP) (T. P. Chambers et al., 

2015; 2017). Plasmid DNA and FugeneHD (Promega) were combined in Optimem 

(Invitrogen) at a ratio of 1:9 and incubated for 15 minutes at RT before addition to 

culture. Eight hours after the addition of the transfection complex to media, the 

media was exchanged. Protein levels were assessed by western blot analysis at 

72 hours post-transfection, and only cells that demonstrated a greater than four-

fold increase in Sab expression were used. 

Mitochondrial ROS Production: To determine if ROS generation was increased in 

mitochondria, we assessed ROS levels using MitoSOX Red (Invitrogen). We used 

the approach described in our previous studies (J. W. Chambers et al., 2013a; 

2011a; J. W. Chambers and LoGrasso, 2011). 

Statistical Analysis and Replicates: Biochemical and other cellular measures were 

done with a minimum of six experimental replicates. Mitochondrial and protein 

analysis experiments were performed on a minimum of three biological replicates. 

To determine statistical significance, Mann-Whitney analysis was employed for 

significance between treatments. Statistical significance is indicated by an asterisk 

in figures in which the p-value is less than 0.05. Data are displayed as means with 

error bars representing plus and minus one standard deviation. 
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3. Results  

3.1 Sab expression is decreased in neuroblastoma tumors. We found four 

neuroblastoma patient datasets in the Oncomine repository (Rhodes et al., 2007) 

that evaluated Sab expression (summarized in Table 6). Across 286 

neuroblastoma clinical samples, we found that Sab was decreased in all the 

studies an average of 2-fold in neuroblastoma patients compared to normal tissue 

and ganglioneuroma controls. However, other pro-apoptotic JNK signaling genes 

were not altered consistently among the studies (data not shown). Further analysis 

revealed that Sab expression was decreased in recurrent neuroblastoma (-1.33-

fold), increased in tumors with Schwann cell rich stromata (1.62-fold), and Sab 

expression did not change between neuroblastoma stages. These observations 

suggest that altered Sab expression may impact neuroblastoma physiology.   

3.2 Inhibition of Sab-mediated signaling slows proliferation. JNK signaling on 

Sab can be inhibited using a peptide (Tat-SabKIM1) in human SH-SY5Y 

neuroblastoma cells (J. W. Chambers et al., 2013a). To discern if neuroblastoma 

cells were affected by diminished Sab-mediated events, we measured cellular 

proliferation in the presence and absence of the Tat-SabKIM1 inhibitor. SH-SY5Y 

cells were treated with increasing concentrations of the Tat-SabKIM1 peptide (0-

25µM) or scrambled control (Tat-Scramble) for five days. SH-SY5Y cells treated 

with the Tat-SabKIM1 had diminished proliferation in a dose-dependent manner; 

wherein, 25µM Tat-SabKIM1 slowed proliferation by nearly 40% (Figure 19A). To 

determine if decreased proliferation was due to an acute or sustained effect, we 

measured cell proliferation daily over five days. SH-SY5Y cells treated with Tat- 
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SabKIM1 peptide had reduced proliferation from the initial dosing of the peptide, and 

this sustained inhibition was increased dose-dependently (Figure 19B). To assess 

whether the decrease in proliferation was due to less cell growth rather than 

increased apoptosis, we measured caspase activity in SHSY5Y cells treated with 

increasing doses of Tat-SabKIM1. As compared to the positive control [1µM 

staurosporine (STS)], Tat-SabKIM1 treatment did not significantly increase caspase 

activity (Figure 19C). Thus, decreased Sab-mediated signaling slows proliferation 

of SH-SY5Y cells. 

3.3 Impaired Sab-mediated signaling decreases the glycolytic rate. Because 

proliferation is integrated with cancer metabolism, specifically glycolysis, we 

examined the impact of diminished Sab-mediated signaling in neuroblastoma cell 

metabolism. We first assessed the glycolytic rate and found that SH-SY5Y cells 

treated with 5µM Tat-SabKIM1 for 24 hours had decreased glycolysis (Figure 19D). 

Specifically, we noticed a decrease in the basal glycolytic rate and the glycolytic 

capacity (Figure 19D & 18E). To verify the decreased extracellular acidification 

was due to less lactate production, we measured lactate content in the supernatant 

of SH-SY5Y cells treated with either 5µM Tat-Scramble or TatSabKIM1 for 24 hours. 

There was a reduction (~25%) in extracellular lactate levels from SH-SY5Y cells 

treated with 5µM Tat-SabKIM1 (Figure 19F). To address if the change in glycolysis 

was due to altered glucose import into SH-SY5Y cells, we performed a glucose 

transport assay (Figure 19G, top panel). We found that treatment with increasing 

concentrations of the Tat-SabKIM1 peptide impaired glucose import in a dose-

dependent manner; however, only a modest change was noted at 5µM Tat-SabKIM1 
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(Figure 19G). To determine if the changes in glucose metabolism stemmed from 

reduced gene expression, we measured the levels of glycolytic proteins following 

24 hours of treatment 5µM TatSabKIM1 (Figure 19H). We didn’t find any discernable 

change in protein levels among those surveyed. Consequently, Sab-mediated 

signaling may affect glycolysis by post-translational mechanisms. 

3.4 Targeting Sab-mediated signaling relieves PDH inhibition. Pyruvate 

dehydrogenase (PDH) complex is an important nexus between aerobic glycolysis 

and oxidative metabolism; recently, the JNK has been shown to phosphorylate the 

PDH E1a subunit and impair enzymatic activity (Zhou et al., 2008; 2009). To 

determine if PDH E1a phosphorylation and catalytic activity are altered by 

diminished Sab levels, we examined the phosphorylation of PDH E1a in the 

presence and absence of the Tat-SabKIM1. Following 24 hours of treatment with 

TatSabKIM1, western blotting for PDH E1a revealed two bands in control cells, 

which the slower migrating form represents phosphorylated E1a subunit (Figure 

20A). SH-SY5Y mitochondria from cells treated with 5µM Tat-SabKIM1 for 24 hours 

had less phosphorylated PDH E1a (Figure 20A), which when quantified was nearly 

a 50% decrease (Figure 20B). To assess if the change in phosphorylation status 

impacted catalysis, we measured PDH activity with increasing concentrations of 

Tat-SabKIM1. Inhibition of Sab-mediated signaling enhanced PDH activity in SH-

SY5Y in a dose-dependent manner (Figure 20C). To determine if this was an effect 

exclusive to PDH, we measured the activities of lactate dehydrogenase (Figure 

20D) and a-ketoglutarate dehydrogenase (Figure 20E) after 24 hours of treatment  
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Figure 19. Inhibition of Sab-mediated signaling slows proliferation and decreases glycolysis.  

SH-SY5Y cells were grown in the presence of increasing concentrations of Tat-SabKIM1 or scrambled controls and 
proliferation were assessed at day 5 (A) or daily over the course of 5 days (B). The induction of apoptosis in these cells 
was measured by caspase assay with STS as a control (C). The glycolytic profile of SH-SY5Y cells treated with 5µM 
Tat-SabKIM1 for 24 hours and controls was measured (D) and the basal rate (E) and maximum rate (F) were obtained. 
Extracellular lactate levels were measured (G) along with glucose uptake using a near-fluorescent probe (H). The relative 
abundance of glycolysis-relevant proteins was measured (I). 
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with 5µM TatSabKIM1 peptide, and there was no change in activities for either 

enzyme (Figure 20D & 20E). These data imply that impaired Sab-mediated 

signaling improves PDH activity. 

3.5 Inhibition of Sab-mediated signaling increases oxidative metabolism. To 

determine if oxidative metabolism was altered by changing Sab levels, we 

measured respiration in the presence and absence of 5µM Tat-SabKIM1 (Figure 

20F). Cells treated with the Tat-SabKIM1 had significantly elevated (~20%) basal 

respiration (Figure 20G, top panel) and increased (~15%) spare respiratory 

capacity (Figure 20G, bottom panel). In Figure 20H, the oxidation of glucose 

(Figure 20H, top panel) glutamine (Figure 20H, middle panel) were increased in 

the absence of Sab-mediated signaling while, no significant change was observed 

in branched-chain amino acid oxidation (Figure 20H, bottom panel). To discern 

whether the substrate discrepancies in oxygen consumption were due to changes 

in respiratory complex activities, we used biochemical assays and found that only 

complex I activity significantly increased after treatment 5µM Tat-SabKIM1 (data not 

shown). Further analysis of complex I activity in cells treated with 5µM Tat-SabKIM1 

had increased oxygen consumption in the presence of complex I substrates, and 

the introduction of 500nM rotenone did not inhibit oxygen consumption to the same 

extent as controls (Figure 20I). This effect was not observed with complexes II and 

III (Figure 20J). To determine if increased complex I activity was due to elevated 

protein levels, we measured the abundance of proteins from each complex and, 

no change was observed (Figure 20K). Therefore, Sab-mediated signaling may 

suppress oxidative metabolism by inhibiting complex I. 
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Figure 20. Diminished Sab-mediated signaling increases oxidative metabolism.  

PDH phosphorylation was assessed by western blotting (A) and quantified (B) after treatment with peptides for 24 hours. 
PDH activity was also measured in the presence of increasing concentrations of Tat-SabKIM1 and control peptide (C). 
LDH and KDH were assayed as well (D). The respiratory profile of cells with and without Sab inhibition was measured 
using the Seahorse XF-96 extracellular flux analyzer (D). Basal respiration, spare capacity (E), and oxidation of glucose, 
glutamine and isoleucine (F) were measured. Complex I (I) and Complex II/III (J) functions were also measured along 
with respiratory protein levels (K) in the presence of Tat-SabKIM1 (24h). 
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3.6 Inhibiting Sab-based signaling increases chemoresistance in a Bcl-2 

dependent manner. Because of the relationship between JNK and Bcl-2 proteins 

(J. W. Chambers et al., 2011a), we examined whether impaired Sab-mediated 

signaling altered Bcl-2 family proteins levels. After treatment of SH-SY5Y cells with 

5µM Tat-SabKIM1, mitochondria were found to have increased Bcl-2 levels in cells 

treated with Tat-SabKIM1 (Figure 21A & 18B). Also, a decrease in Bim levels was 

observed (Figures 18A & 18B). To determine if impaired Sab-mediated apoptotic 

signaling, we measured viability after treatment with 750nM cisplatin in SH-SY5Y 

cells exposed to increasing concentrations of Tat-SabKIM1. Inhibition of Sab-

mediated signaling improved cell viability in cells treated with cisplatin in a dose-

dependent manner (Figure 21C). To determine if the cisplatin resistance was 

specific or applicable to other drugs, we treated SH-SY5Y cells with chemotherapy 

agents following administration of 5µM Tat-SabKIM1. We found that for 

cyclophosphamide, doxorubicin, etoposide, and vincristine, inhibiting Sab-

mediated signaling improved viability (Figure 21D), suggesting that limiting Sab-

mediated signaling prevents robust induction of apoptosis. 

3.7 Increased Sab expression induces glycolysis and enhances 

chemosensitivity. To determine if the metabolic and apoptotic changes could be 

specifically attributed to Sab levels, we over-expressed Sab in SH-SY5Y cells 

(Figure 22A & B), which did not alter mitochondrial density (Figure 22C). We 

observed that Sab-overexpressing cells had higher cell numbers (~30%) than 

controls (Figure 22D). SH-SY5Y cells with heightened Sab expression had an 

increased glycolytic rate (Figure 22E), decreased PDH activity (Figure 22F),  
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Figure 21. Impaired Sab-mediated signaling leads to chemoresistance.  

Pro-survival (A, left) and pro-apoptotic (A, right) Bcl-2 family protein levels were measured and quantified (B) in the 

presence and absence of Sab-mediated signaling (Tat-SabKIM1, 24h). Cytotoxicity of 750nM cisplatin in the presence 

and absence of increasing Tat-SabKIM1 was assessed (C). The effect of Sab-inhibition (5µM Tat-SabKIM1 concurrent with 

drugs) was examined with 750nM cisplatin, 1µM cyclophosphamide, 100nM doxorubicin, 2.5µM etoposide, and 150nM 

vincristine (D). 
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reduced basal oxygen consumption (Figure 22G), and less complex I activity 

(Figure 4H). We also observed increased ROS generation in mitochondria from 

cells overexpressing Sab (Figure 22I). Increasing Sab resulted in a decrease in 

Bcl-2 levels and an increase in Bim on mitochondria (Figure 22J), and improved 

chemoresponsiveness to cisplatin (Figure 22K) and vincristine (Figure 22L). Thus, 

increasing Sab sensitizes neuroblastoma cells to chemotherapy. 

3.8 Metabolic and chemoresponsive phenotypes correlate to Sab levels in 

neuroblastoma cells. We examined a panel of three neuroblastoma cell lines with 

different levels of Sab expression and found that CHP-212 had high Sab 

expression, SK-N-SH has a moderate amount of Sab expressing line, and IMR-32 

was a low Sab expressing line (Figure 23A). Metabolic analysis of these cell lines 

revealed that cells with lower Sab expression had higher OCR/ECAR ratios (Figure 

23B) suggesting that the cells were more oxidative. We also examined chemo-

responsiveness of the three lines to cisplatin and vincristine, which revealed that 

CHP-212 (high Sab levels) was the most sensitive, while IMR-32 (low Sab 

expression) had significantly higher cell viability (Figure 23C). Consequently, the 

concentration of Sab may be influencing mitochondrial function and apoptosis in 

neuroblastoma cells. 
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Figure 22. Overexpression of Sab enhances glycolysis and chemoresponsiveness. 
 Sab was overexpressed in SH-SY5Y cells as confirmed by western blotting (A) and quantitation (B) in regards to 

mitochondrial density (C). Proliferation (D), glycolytic rate (E), PDH activity (F), basal respiration (G), complex I activity 

(H), and mitochondrial ROS production (I) were measured following 72 hours of transfection. Bcl-2 and Bim levels were 

measured (J) in addition to chemosensitivity to cisplatin (K) and 150nM vincristine(L). 
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Figure 23. Metabolic and chemoresistant phenotypes correspond to Sab 
levels.   

Three neuroblastoma lines were subjected to western blotting to detect the relative 
abundance of Sab (A), which was normalized to mitochondrial content (B). The 
oxidative character of the lines was determined using the OCR/ECAR ratio (C).  
Chemosensitivities for the three lines were assessed towards cisplatin and 
vincristine (D). 

 
 

4. Discussion 

The MOM scaffold protein Sab has been shown to affect mitochondrial dysfunction 

and apoptosis (J. W. Chambers and LoGrasso, 2011; T. P. Chambers et al., 2015). 

Our current study expanded the role of Sab-mediated signaling to include 

metabolic regulation in neuroblastoma. We found that Sab expression was 

reduced in neuroblastoma patients, and diminished Sab-mediated signaling 
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slowed cellular proliferation and decreased glycolysis, and enhanced PDH and 

complex I activities. Inhibiting Sab alters mitochondrial Bcl-2 proteins promoting 

resistance to chemotherapy-induced apoptosis.  Meanwhile, over-expressing Sab 

induced proliferation, increased glycolysis, reduced oxidative metabolism, and 

enhanced sensitivity to chemotherapeutic drugs. We surmised that decreasing 

Sab expression may be part of oncogenesis in neuroblastoma. 

The decrease in Sab expression in neuroblastoma patients was significant as 

indicated by the impact of Sab-JNK signaling on apoptosis. We believe that the 

lack of normal tissue controls, such as fetal brain tissue instead of ganglioneuroma 

in many studies, dampened the actual change in Sab expression between 

cancerous and non-transformed samples based on the impact of Sab inhibition 

and overexpression observed in the cell lines. We predict that Sab levels may be 

even lower in neuroblastoma cells than anticipated by this study.  

The inhibition of Sab-mediated signaling impaired cellular proliferation and 

glycolysis (Figure 19) in neuroblastoma cells. Given that inhibition of Sab-mediated 

signaling has been shown not to affect nuclear JNK signaling (J. W. Chambers et 

al., 2011a), we surmised that the effects of Sab inhibition were post-translational, 

and this notion was supported by the lack of changes in glycolytic and respiratory 

protein levels (Figure 19 & 20). Additionally, we found a change in the relative 

abundance of phosphorylation on the Ea1 subunit of pyruvate dehydrogenase 

(Figure 20). The post-translational impact of JNK signaling has been linked to 

glycolysis before; wherein, JNK1 signaling events promote the activity of 

phosphofructokinase 1 (PFK1) (Deng et al., 2008). JNK phosphorylation of Bad 
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releases PFK-1 allowing for catalysis. Thus, JNK phosphoregulation of Bad and 

other glycolytic proteins may be a product of Sab-mediated signaling in 

neuroblastoma.  

The decreased proliferation by impaired Sab-mediated signaling (Figure 19) 

stands in contrast to a study by Fey and colleagues, who found that Akt signaling 

inhibits JNK activation in SH-SY5Y cells (Fey et al., 2015). Thus, inhibiting JNK 

signaling, including Sab-mediated, may increase Akt-mediated proliferation. 

Unfortunately, Fey and colleagues did not investigate if this was an isoform-

specific event, so it’s possible that mitochondrial-specific JNK isoforms may not be 

affected by Akt signaling but could be by TatSabKIM1. We also see parallels with 

our observations and Fey et. al.  For example, suppression of nuclear JNK 

signaling by Akt is likely to decrease Sab expression in neuroblastoma. We 

recently demonstrated that cells lacking JNK have significantly lower Sab levels 

(T. P. Chambers et al., 2015). Akt inhibition of JNK may result in the decreased 

Sab expression observed in neuroblastoma patients. Thus, detangling the JNK 

isoforms and specific contributions of individual variants to neuroblastoma will be 

crucial.  

We found that Sab-mediated signaling affects PDH phosphorylation in 

neuroblastoma cells (Figure 20A & 22F). This may indicate that active JNK 

signaling on Sab in neuroblastoma is contributing to aerobic glycolysis similar to 

the aging brain30,42. However, it should be noted that ERK1/2 and p38 isoforms 

have been found on mitochondria (Kim et al., 2006; Nowak et al., 2006), and the 

KIMs on Sab are MAPK-specific. Similarly, mitochondrial ERK signaling is linked 
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to complex I inhibition. Consequently, we cannot rule out the contributions of these 

two MAPKs to oxidative metabolism. Despite evidence indicating that 

mitochondrial JNK inhibits complex I and amplifies ROS production (J. W. 

Chambers and LoGrasso, 2011) through Src (Win et al., 2016), additional studies 

are needed to resolve the mechanism of complex I inhibition. 

Recently, enhanced Sab-mediated signaling was linked to chemosensitization of 

cervical cancer cells (T. P. Chambers et al., 2015), which may have been facilitated 

the emigration of Bcl-2 proteins from mitochondria following cytotoxic stress (J. W. 

Chambers et al., 2011a). We found that Bcl-2 levels increased following Sab 

inhibition in SH-SY5Y cells (Figure 21). We propose that the increase in Bcl-2 and 

decrease in Bim in the absence of Sab-mediated signaling are due to diminished 

JNK phosphorylation of Bcl-2 and Bim (Putcha et al., 2003). The increased Bcl-2 

will prevent Bax/Bak oligomerization and apoptosis. This may explain the chemo-

resistance in neuroblastoma populations with low Sab expression. We correlated 

Sab levels to the metabolic phenotype and chemoresponsiveness of 

neuroblastoma cells (Figure 23). This result parallels clinical observations that 

indicate the robustness of cytotoxic JNK signaling could serve as a prognostic for 

neuroblastoma (Fey et al., 2015). 

In summary, scaffold protein concentrations, such as Sab, at specific cellular 

locations represent the magnitude of the signaling event on an organelle influence 

the biological outcomes of signaling (Good et al., 2011). In that regard, we propose 

that the relative abundance of Sab on the MOM determines the robustness of JNK 

apoptotic signaling and the survival of neuroblastoma cells. Specifically, patients 
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with high Sab expression may be more susceptible to therapies and have a greater 

likelihood of survival. Chemo-sensitization in high Sab-expressing tumors would 

reduce drug doses and minimize the detrimental side-effects in patients. 

Ultimately, Sab concentrations ascertained from biopsies or emerging imaging 

techniques may be useful to discern appropriate treatment regimens for 

neuroblastoma patients. 
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1. Summary 

Tumors of the central nervous system (CNS) remain some of the most difficult 

malignancies to treat because the blood brain barrier can limit the efficacy 

chemotherapeutic and immunotherapeutic approaches, but the physiology of 

these cancers has yet to be rigorously interrogated due to the difficulty of their 

locations. Only recently have techniques been developed to begin to address the 

biology of CNS tumors in vivo.  By improving the collective understanding of CNS 

tumor physiology, one proposes that effective therapeutics can be designed to 

target unique aspects of a particular malignancy and improve the survival 

outcomes for patients. In our current study, we chose to take a stepwise approach 

to dissecting the complexities of tumor physiology and focused on aberrations of 

mitochondrial function. Mitochondria are critical to brain function, not only because 

they supply 90% of the ATP required by the organ, but because they are central 

mediators of neurotransmission and calcium buffering in neurons and modulators 

of clearance functions and detoxification reactions in glial cells. In CNS 

malignancies, mitochondrial induction of apoptosis may be altered accounting for 

the high rates of recurrence and resistance in these disorders. Based on the 

important roles for mitochondria in bioenergetic requirements for brain cells and 

mediating cell death responses, we focused our studies on these two aspects of 

CNS tumor cell physiology. 

1.1 Chapter 3 Summary 

In our first study (presented in Chapter 3), we examined the bioenergetic 

parameters and capacity for apoptosis in ten (10) distinct glioblastoma (GBM) cell 
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lines. Real-time metabolic profiling of the established cell lines revealed that there 

were no considerable differences in glycolysis and respiration. The metabolic 

similarities of the cell lines were corroborated by the examination of protein levels 

of glycolytic enzymes, glucose transporters, and monocarboxylate transporters. 

Next, we examined if the cell lines exhibited different responsiveness to the 

prevailing chemotherapeutic agent temozolomide (TMZ). We were able to 

characterize the 10 cell lines as either resistant, responsive, or sensitive to TMZ, 

and western blot analysis revealed that there was no difference in O-6-

methylguanine-DNA methyltransferase (MGMT) levels (a proposed clinical 

biomarker) among the cell lines. This lead us to examine the relative abundance 

of anti-apoptotic and pro-apoptotic members of the Bcl-2 family of proteins. It has 

been previously shown that the concentrations of Bcl-2 family members can 

indicate the potential for cells to induce apoptosis as well as represent the relative 

sensitivity to therapeutic approaches in solid tumors. Our evaluation found that 

differences in the concentrations of anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-xL, and 

Mcl-1) and the pro-apoptotic BH3-only protein Bim correlated to the extent of 

resistance to TMZ. This observation was verified by inducing chemoresistance in 

U87 cells by exposing the cells to hypoxia for 18 hours. The hypoxic treatment 

increased the levels of anti-apoptotic Bcl-2 proteins and reduced the concentration 

of BIM in U87. Furthermore, pharmacological inhibition of both Bcl-2/Bcl-xL with 

ABT-737 (a BIM mimetic) and Mcl-1 with S63A45 effectively induced complete 

apoptosis in the 10 established cell lines at a dose of 1µM; however, individual 

treatments with either ABT-737 or S63A45 failed to alter cellular viability. To 
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determine if these observations corresponded to the apoptotic capacity of GBM in 

clinically relevant samples, we profiled expression of Bcl-2 proteins in glioma-like 

stem cells (GSCs) recently acquired from patient tumors. We found that with 

respect to TMZ exposure the four (4) GSC lines segregated across the same trend. 

Whereby, GSCs with high anti-apoptotic Bcl-2 levels and low Bim concentrations 

were resistant to TMZ, and cells with low anti-apoptotic proteins and elevated Bim 

levels were sensitive to TMZ. Likewise, we found that the GSCs were sensitive to 

a combination treatment of ABT-737 and SC63A45, but GSCs were far less 

susceptible to individual exposures to the drugs. Our results indicate that GBM 

tumors may be subject to BCl-2/BH3-only profiling and determining the apoptotic 

capacity of these tumors could represent a means to personalize treatments 

depending of the relative abundance of these proteins. Similarly, a combination of 

ABT-737 and S62A45 might be a useful approach to sensitize highly resistant 

tumors to contemporary therapy options.  

1.2 Chapter 4 Summary 

In our second study (Chapter 4), we examined the relative concentrations of the 

outer mitochondrial membrane (OMM) Sab, which based on our studies in 

gynecological cancers, facilitates c-Jun N-terminal Kinase (JNK) signaling on 

mitochondria. Increased JNK-Sab signaling was linked to diminished anti-

apoptotic Bcl-2 levels and elevated BH3-only concentrations on mitochondria 

resulting in chemosensitive cancer cells. Our secondary analysis of GBM patient 

data revealed that Sab expression (mRNA) was decreased in tumor samples from 

patients, and this decrease was consistent across six independent studies. We 
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surveyed the 10 GBM cell lines to determine if Sab levels correlated to TMZ 

response, and there was absolutely no correlation between Sab concentration and 

the sensitivity of cells to TMZ. To determine if this was an artifact of prolonged cell 

culture, the GSCs were then analyzed for Sab concentrations, and again, there 

was no correlation between Sab abundance and chemoresponsiveness. However, 

we did notice the expression of a truncated version of Sab in the 10 established 

GBM cell lines that was not present in the GSCs. Using RT-PCR and sequencing, 

we found that a second transcript for Sab existed, which had lost the N-terminus 

of the protein (1-156). This matches the description for Sab isoform 2 identified 

previously in human gene expression studies. Because this splice variant lacks the 

original mitochondrial targeting sequence of Sab, we surmised that this variant 

may be impairing the ability of GBM cells to induce robust apoptosis. Therefore, 

we took SF268 cells and selected for clones that did not express the variant, and 

we found one clone (SF268-6) that expressed only full-length Sab. Our analysis 

revealed that there was no difference in chemosenstivity towards, TMX, irinotecan, 

or mitochondrial toxins. Immunofluerescence later revealed that the Sab-variant 

still localized to mitochondria, and this was confirmed by the presence of the 

variant protein in mitochondrial isolates. Therefore, the OMM signaling (including 

apoptosis) of Sab was still intact. However, previous studies have linked Sab-

mediated signaling to inhibition of respiratory complex I. Previous topology studies 

in the Kaplowitz lab and recent studies in the Chambers lab suggest that the C-

terminus of Sab is on the cytosolic face of mitochondria, and the N-terminal 

portions reside in the intermembrane space. This model places two coiled-coiled 
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motifs (CC-1 and CC-2) of Sab in the intermembrane space for protein-protein 

interactions. However, CC-1 is not present in Sab isoform 2 (the splice variant). 

Our examination of SF268 and SF268-6 reveal that SF268 had a faster 

proliferation rate than clone 6 (which expresses the full-length Sab only). Reflecting 

the increased proliferation rate, SF268 cells had a greater rate of glycolysis that 

SF268-6 clones. Further, cells expressing only full-length Sab (SF268-6) had a 

30% higher basal respiratory rate that SF268 cells. Moreover, SF268 cells had a 

60% lower respiratory capacity than clones with only full-length Sab. Pyruvate 

oxidation analysis reveal that the deficiency in oxidative phosphorylation occurs at 

the level of complex I. This would suggest that the loss of CC1 in the Sab variant 

releases a protein component capable of inhibiting respiration in mammalian cells. 

Future studies will be aimed at elucidating the molecular mechanisms of this novel 

form of metabolic control. 

1.3 Chapter 5 Summary 

In our final study, our goal was to determine if the observations in the previous two 

studies could be applied to other CNS malignancies, namely CNS-based 

neuroblastoma. Using secondary analysis of patient samples, we found that Sab 

expression in neuroblastoma was significantly lower than control samples. To 

determine if Sab abundance impacted mitochondrial capacity for apoptosis and 

cellular metabolism, we overexpressed Sab and a version of Sab (SabKIML-A) 

incapable of binding mitogen-activated protein kinases (MAPKs), such as JNK, as 

a negative control in human SH-SY5Y neuroblastoma cells. As expected, 

increasing Sab expression lead to a decrease in the levels of anti-apoptotic Bcl-2 
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proteins and elevated the concentrations of pro-apoptotic BH3-only proteins. This 

trend was not observed in the cells expressing SabKIML-A or red-fluorescent protein 

(RFP). The increased levels of Sab were sufficient to induce chemo-sensitization 

of Sab in the SH-SY5Y cells. With respect to metabolism, ectopic expression of 

Sab promoted increased glycolysis in SH-SY5Y cells; meanwhile, elevated Sab 

concentrations resulted in decreased respiration and spare respiratory capacity. 

The diminished respiration could be linked to inhibition of pyruvate dehydrogenase 

(PDH) by JNK phosphorylation on the E1a subunit. Additionally, increased Sab 

levels resulted in diminished complex I activity, which appear to be attributed to a 

loss of specific complex I components, namely NADH dehydrogenase component, 

NDUFS8. Inhibition of Sab mediated signaling with a small peptide (Tat-SabKIM1) 

was able to prevent the changes in Bcl-2 proteins and cellular metabolism. Finally, 

analysis of three (3) additional CNS-based neuroblastoma cell lines revealed, at 

least in this very small sample size, that Sab concentrations correlated to relative 

oxidative metabolism phenotypes and susceptibility to cisplatin and vincristine. 

These findings suggest that Sab-mediated signaling is a crucial modulator of cell 

vulnerability and metabolism in neuroblastoma cells; however, future studies in 

patient-derived samples and in mouse models will be useful in determining if these 

observations are clinically valid. 

1.4 Conclusions 

The results of our studies highlight that even in malignancies of the same organ 

the molecular mechanisms governing cancer pathogeneses are heterogeneous 

and unique among malignancies. While Sab-mediated signaling was not crucial to 
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chemo-susceptibility in GBM, Sab-facilitated events were crucial to the induction 

of apoptosis in neuroblastoma cells. However, and perhaps more interesting is the 

novel metabolic regulation observed in both GBM and neuroblastoma. The direct 

impact of Sab-mediated signaling on metabolism may represent a novel metabolic 

control point that may be exploited to weaken the bioenergetic capacity of CNS 

cancers, and perhaps creating a metabolic conflict may lead to apoptotic priming 

effectively rendering tumor cells more vulnerable to therapies. For these reasons, 

continued investigation of mitochondrial regulation in CNS cancers is likely to result 

in novel therapies capable of extending patient survival and cognitive health-

spans. 

 2. Pitfalls and critical analysis 

In the previous chapters, we have tried to highlight the weaknesses and pitfalls in 

our studies, and in doing so, we identified key limitations in our studies that could 

affect our analyses of the outcomes. There limitations include: 

1. The experiments were not conducted in the context of the brain. 

2. There are few cell lines and limited patient-derived samples used in the 

studies. 

3. Many of the analyses conducted are based on endpoint analyses. 

4. We were unable to transfect the Sab variant into clone SF268-6 to perform 

rescue experiments. 

Each limitation will be addressed in more detail in the respective sections below. 
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2.1 Studies were performed in a cell autonomous setting.  

The prevailing disconnect between the Sab expression studies in GBM patients 

and the lack of contribution of Sab to chemo-susceptibility or Bcl-2 protein levels 

in GBM cell lines or GSCs may be indicative of working with cells that have been 

adapted to culture or isolation of a particular cell population. It is well demonstrated 

that tumors are comprised of a very heterogeneous population of cells, and it is 

likely the culmination of the collective environment created by the different cell 

types that is ultimately responsible for the phenotypes of a particular tumor. Thus, 

any technique that isolates and enriches one type is probably not a true depiction 

of the tumor. Thereby, when we observe Sab protein levels that are easily detected 

by western blotting in cell culture, one may reason that the cells selected for in 

culture are not representative GBM tumor cells. Also, the tight correlation between 

Sab and the induction of apoptosis in neuroblastoma cells may also not be entirely 

reflective of neuroblastoma tumors cells. In fact, the culturing of cells from patient 

tumors and sustained culture of established cell lines can be viewed as a selection 

process for cells most adept at surviving in a particular set of growth conditions. 

Further complicating the use of cell lines is the nutrient-rich media, which in the 

right cells can lead to increased metabolism and elevated production of oxidants. 

These oxidizing compounds can lead to DNA damage and mutations that may alter 

the genetic background of the cell and remove it further from the original 

background in the patient tumor. Finally, the tumor microenvironment also plays a 

considerable role in the oncogenesis, progression, recurrence, and resistance. 

This complex environment is comprised of not only the tumor cells, but also 
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immune cells and additional support cells. Without the influence of these 

contributors and the products they secrete into the tumor microenvironment, it is 

highly unlikely that one could accurately reproduce cell physiology with a single 

cell type under robust growth conditions in culture. Therefore, our results should 

be taken with these limitations in mind, and our future studies will move to using in 

situ systems to better understand how Sab levels influence CNS tumor cell 

physiology in the brain. 

2.2 Lack of sample numbers and patient context.  

Another critical limitation to our studies would be the number of cell lines employed 

in the work. The ten GBM cell lines, the four GSC lines, and the four established 

CNS-neuroblastoma cell lines are insufficient to generate the statistical power 

needed to make relevant correlations between events. A limited number of cells 

were used in these studies because the ultimate goal was to move the studies into 

a patient-derived animal-based system once funding for the project became 

available. It was our intention to take the lessons learned from cell culture and 

apply them to the animal models to produce more clinically-relevant data. 

Unfortunately, the project was only funded recently, and now the patient derived 

animal studies will begin. This approach also highlights another limitation, and that 

is the lack of robust patient data related to our cells. Beyond genetic 

characterization, many of the patient-relevant information did not accompany the 

cells, even the NCI-60 panel. This information may support or contradict some of 

the findings, and this information would be crucial when making claims about 

personalization. Ultimately, switching into patient-derived in vivo models will fill this 
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gap, as our collaborators at Baptist Health South Florida will collect all relevant 

patient information, and (at the appropriate time) share it with our team. Thus, 

future studies will be supported by significant clinical insights into the samples. 

2.3 Studies employed largely endpoint analyses.  

Our studies focused primarily on the current state of existing cells lines, at time 

points well after the manipulation of Sab expression, or after a prolonged exposure 

to chemotherapeutic compounds. It is likely that the pathways we are measuring 

are very dynamic and under the controll of synchronized regulation. Therefore, the 

physiology of the cell may undergo multiple changes before arriving at the final 

measured state. It is possible that one of the intermediate phases may contribute 

greatly to the measured event. Perhaps, the manipulation of Sab expression and 

treatment with toxic compounds could serve as further selective pressures, and 

the resulting cells are a product of these artificial systems making the results less 

than reliable. Regardless, future endeavors should consider more kinetic-based 

approaches to assay what happens over the course of these treatments not simply 

what occurs when a drug is most potent or ectopic expression is at its highest 

point. 

2.4 Inability to express Sab isoform 2 in SF268-6 cells.  

Unfortunately, the major experiment missing from Chapter 4 is the ectopic 

expression of Sab isoform 2 in the SF268-6 cells (the clone that only expresses 

full-length Sab). Because time was limited, only two attempts were made at 

liposome-mediated transfection of a plasmid encoding Sab isoform 2. In the 

immediate future, I am anticipating using lentiviruses to introduce the plasmid to 
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the cells and reintroduce Sab isoform 2 into these cells and then monitor the impact 

on glycolysis and respiration, with emphasis on complex I. 

3. Future directions 

Future directions related to this study will primarily consist of using orthotopic 

xenografts of patient-derived tumor cells and monitoring mitochondrial physiology 

in these tumors. Additionally, perturbations in cancer-specific alterations in 

mitochondrial function will be exploited in order to improve therapeutic outcomes 

in patients.  
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Supplemental figure 1. Expression of metabolic enzymes in GBM cell lines. 
GBM cell lines were grown, lysed, and metabolic enzymes protein levels were 
assessed by western blot. Expression was normalized to the actin loading control.   
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Supplemental Figure 2. Metabolic profiling. The respiratory profile of cells with 
and without the Sab splice variant was measured using the Seahorse XF-96 
extracellular flux analyzer in the presence of Glucose, Glutamine, and or Pyruvate. 
(A) Basal respiration (B) maximum respiration (C) spare capacity (D) basal 
glycolysis, (E) maximum glycolysis (F) OCR/ECAR ratio. Comparisons between 
groups was performed using the Mann-Whitney test.  
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Supplemental Figure 3. MGMT expression in GBM cell lines. GBM cell lines 
were grown, lysed, and MGMT protein levels were assessed by western blot 
analysis for Bcl-2 family proteins. Expression was normalized to red Ponceau S 
staining. (A) Representative western blot. (B) Quantification of normalized protein 
expression. 
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Supplemental Figure 4. Bcl-2 profiling of GBM cell lines. GBM cell lines were grown, lysed, and protein levels were 
assessed by western blot analysis for Bcl-2 family proteins. Expression was normalized to the actin loading control. (A) 
Representative western blot. Quantification of normalized protein expression of (B) Bcl-xL, (C) Bad, (D) Bid (E) Bik. One-
way ANOVA was used to determine differences in protein expression between cell lines, p<0.05.  
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Supplemental Figure 5. Combination treatment of GBM cell lines with ABT-
737 and chemotherapeutic drugs. GBM cell lines were incubated for 72 hours in 
the presence of 0-5µM of ABT-737, in combination with 125-250µM TMZ, 1-2.5 
µM Irinotecan, or 35 µM Carboplatin. The cells were then fixed and stained with 
CellTag 700 stain to determine the number of cells. The fluorescence for each drug 
combination was plotted.  
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Supplemental Figure 6. Percentage of Cell Viability after treatment with Bcl-
2 and Mcl-1 inhibitors in GBM Cell Lines. GBM cell lines were incubated for 72 
hours in the presence of 0-10µM of ABT-737, 0-10µM S63845, or both. The cells 
were then fixed and stained with CellTag 700 stain to determine the number of 
cells (A) A172, SF268, (B) SF295, SF539, (C) U87, U118. The fluorescence for 
each TMZ dose was plotted (D, E, F, G, H, I) and comparisons between treatments 
was performed using ANOVA followed by Tukey’s honest test. ***p<0.001, 
****p<0.0001  
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Supplemental Figure 7. Percentage of Cell Viability after treatment with Bcl-2 and Mcl-1 inhibitors in Glioma 
Stem Cells. GSCs were incubated for 72 hours in the presence of 0-10µM of ABT-737, 0-10µM S63845, or both. The 
cells were then fixed and stained with CellTag 700 stain to determine the number of cells. The fluorescence for each 
TMZ dose was plotted and comparisons between treatments was performed using ANOVA followed by Tukey’s honest 
test. ***p<0.001, ****p<0.0001  
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Supplementary information for chapter 4 
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Supplemental Figure 8. Sab expression in Glioma Stem Cells. GSCs were 
grown and lysed. Proteins (25µg) were quantified and resolved by SDS-PAGE. (A) 
Western blot analysis was used to detect Sab levels. Actin was used as loading 
control. (B) Quantification of expression levels.  
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