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to be bonded on the surface or embedded in the structure, higher bandwidth capability [29], 

[30]. However, their high price has been their main disadvantage in some applications. 

Magnetostrictive sensors are another promising transducer in guided-wave SHM methods 

[31]. They are flexible to be bonded on the surface or embedded in the structure, capable 

of being used as both a sensor and actuator and not expensive. However, they have not 

been studied enough and the characterization of this type of transducers is still under 

evaluation. Hertzian contact transducers and lasers are another type of transducers for the 

offline monitoring of the structures but they are not useful for SHM due to the size, 

specifically in the aerospace industry where the mass and size of the transducers are 

essential factors [32], [33]. PZTs are most commonly used transducers in structural health 

monitoring applications. They are not only light, small and inexpensive, they are also 

convenient and capable of being used as both a sensor and actuator. 

         

                       

Figure 4 Different types of sensors 
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1.5. Summary and Scope of this Thesis 

The main goal of this dissertation is to improve and modify the existing SHM approaches 

for new applications and also develop a reliable and cost-effective SHM system for bond 

inspection. Since ceramic piezoelectric wafer transducers are mostly smaller and more 

compact compared to the common transducers which are used in nondestructive evaluation 

approaches, they are the most popular option for SHM researchers. In this study, PZT 

transducers were chosen as actuators and sensors for all experimental setups. In the course 

of experiments, several signal-processing techniques in time and frequency domains were 

utilized.  

Objectives of the study are as follows: 

· It has been shown that the dynamic response of the structure is not only sensitive 

to defects but is also sensitive to loading. The performance of the surface response 

to the excitation method as a low-cost alternative for Electromechanical Impedance 

based methods in some load monitoring applications was investigated (sensing data 

in a fraction of a second by triggering technique and using Power Spectral Density 

(PSD) technique to filter low-frequency noise). 

· The quality of the part may be evaluated while geometric features such as holes and 

slots are created during the machining process. The feasibility of the modified 

SuRE method was evaluated for inspection of the quality of the machined features 

on aluminum plates. 

· Composite materials have gained popularity in high tech applications due to their 

high strength-to-weight ratio and durability against corrosion.  Composite parts 

may be joined by using adhesive bonding and/or fasteners including rivets and 
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bolts.  Weakening or partial separation of bonded regions or delamination 

drastically reduce the strength of the structure and may lead to failure. A low cost 

and reliable SHM approach for bond inspection of composite materials based on 

heterodyning effect were developed.   

· By using finite element simulation software, a theoretical justification for the 

validity of SuRE and heterodyning method was provided. 

 

These four areas are individually addressed in the subsequent chapters of this thesis. In the 

end, the main contributions of this thesis are summarized and future possible directions of 

research are suggested.  
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CHAPTER 2 

2. THEORETICAL BACKGROUND 

The theoretical backgrounds for the SuRE and heterodyne effect are explained in the 

following section by considering a simple experimental setup as a linear and nonlinear 

methods, respectively.   

2.1. Surface response to the excitation (SuRE) method as a linear method 

In the electro-Mechanical based methods, Piezoelectric lead Zirconate Titanate (PZT) 

transducers are used as the actuator. Based on their characteristic feature, they are able to 

excite the surface of the structure in a broad frequency range in response to an applied 

electric field. On the other hand, they are also able to be used as a sensor and generate 

electric charge in response to an applied mechanical stress. By creating a defect in the 

structure, the mechanical impedance of the structure will change and this change will 

reflect on the response of the system which is the electrical signal of the PZT that is used 

for recording the response of the system. By monitoring the response signal of the structure, 

we are able to detect the presence of structural damage at early stages. 

Shown below is the strain formulation for a constitutive model of a general one-

dimensional piezoelectric material which show their ability to generate an electrical charge 

in proportion to an externally applied force [34, 35]: 
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In these equations, D is electrical flux density, S is a mechanical strain, 𝜀𝑇 is permittivity 

in constant stress, d is piezoelectric charge coefficient, 𝑆𝐸 is compliance in constant 

electrical field, E is electrical field, T is mechanical stress, V is voltage, f is total force, C 

is capacitance measured with no force, Ka is stiffness when V=0, k is electromechanical 

coupling factor, Q is the total charge of electrodes of the transducer, and Δ is the total 

elongation. 

In this thesis, a modified surface response to excitation (SuRE) method has been 

implemented for monitoring and identifying different levels of load on a structure and 

characterization of milling operation for identical aluminum plates. Normally, in the SuRE 

method, the surface of a structure is excited by a sweep sine wave over a certain frequency 

range using a piezoelectric transducer and an additional piezoelectric transducer is used on 

the other side of the structure to sense the dynamic response of the system. The frequency 

spectrum of the signal (x(t)) is then obtained by using Fast Fourier Transform (FFT) [36]. 

The frequency response of the structure is consistent as long as there is no change in the 

system. However, when the condition changes, in terms of applying load or appearance of 

the defect, a different frequency spectrum is obtained. 

In order to quantify the difference between pristine and damaged structure, the sum of the 

squared differences (SSD) of FFT of frequency response is calculated, as shown in 

equation (1): 

2

1 1

1

m

m m

i

SSD B R 



   (1) 

Here, B and R are the FFT of baseline and loaded structure responses, respectively, and 

also m denotes the size of FFT. 
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In the load monitoring study, instead of FFT approach for calculating damage metric, 

power spectral density (PSD) of the frequency domain data was employed to decrease the 

effect of noise and also to increase the resolution of primary features: 

21
( )PSD X f

f
   (2) 

  

2.2. Heterodyning effect as a nonlinear method 

Many communication systems and optical measurement devices use the heterodyning 

method to transfer information between different frequency bands without any information 

loss. The main component of a heterodyne system is the nonlinear component which is 

called the mixer.  Diodes and transistors are the typical nonlinear components of electrical 

engineering applications, which are used as the mixer. For the implementation of the 

heterodyning method in SHM applications, the structure is excited at two different 

frequencies.  As long as the structure is in pristine condition, these two frequencies are the 

main components in the response of the structure to the excitation.  That is, when two metal 

plates are held together with well-tightened bolts, the contact surfaces have elastic 

deformations and behave like a unit solid plate.  Well-built composite plates also behave 

in a similar manner either they are used as a single panel or they are held together with 

well-built joints.  Adhesives or fasteners may be used for holding composite plates 

together.  The following equation represents the general form of the excitation signals and 

also response signals:          

 

)sin()sin( 21210 tbtabvavv    (3) 
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Where a and b are the amplitudes of the signals and  𝜔1 ,𝜔2 are the angular frequencies of 

the excitation signals.  If a defect such as a crack, loose bolt or delamination exists in the 

system, there is not perfect contact between surfaces of plates or layers and very small gaps 

appear at the debonded or delaminated regions of the composite plates. In the absence of 

the appropriate surface pressure, the surfaces of plates held together with the bolts are in 

light contact with each other.  Therefore, the waves created by the excitation signals on one 

plate propagate to the other surface after going through some certain alterations which 

cause the nonlinear behavior of the structure when it is subjected to bitonal excitation. The 

signals which move to the mating plate or layer with the influence of the defect will have 

nonlinear characteristics.  The following equation represents the general expected form of 

the response in the second plate:   

 









))cos(())cos(()2cos()2cos()sin()sin(

)()(

21212121

3

21

2

21210

tftetdtctbta

vvdvvcbvavv

  

(4) 

 

Equation 4, represents the nonlinear response of the structure which contains the harmonic 

signals at two original excitation frequencies (𝜔1 ,𝜔2) and the new frequencies at the 

summation and subtraction of the original excitation frequencies. The schematic of the 

wave transmission process between the surfaces of two adjacent plates with a small gap is 

presented in Figure5 and is explained via numerical simulation.  
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(a) 

(b) 
 

Figure 5.  Transfer of surface excitation from one plate to the other a) Partial transmission 

of the excitation signal from one plane to the other one b) Expressions and the 

corresponding waves. 

 

Two harmonic signals )sin( 11 tv   and )sin( 22 tv   were added in order to generate the 

surface waves at the bottom plate.  The top surface will be subjected to excitation only if 

the waves of the bottom plate reach it.  The transferred waves to the top surface are 

 

 

)sin( 11 tv   

  

 

 

)sin( 22 tv   

 

Time domain signal (Linear) 

210 vvv   

Time domain signal(Nonlinear) 

 3

21

2

21210 )()( vvdvvcbvavv  

Frequency domain signal(Nonlinear) 





))(())((

)()()(

2121

210





dc

bav  

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1

Time(S)

A
m

p
li
tu

d
e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1

Time(S)

A
m

p
li
tu

d
e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2

0

2

Time(S)

A
m

p
li
tu

d
e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

Time(S)

A
m

p
li
tu

d
e

0 5 10 15 20 25 30
0

0.2

0.4

frequency (Hz)

A
m

p
li
tu

d
e

Gap 

Sensing 

surface 

Excited 

surface 

 

2  

 

 

1  

 

12    

 

12    



18 

 

well established that dynamic characteristics of a structure are sensitive to certain changes 

in structure. Over the last few years, many studies have been performed to improve the 

understanding on the interaction between defects and changes in the dynamic response of 

structures. A considerable amount of research in this field mainly focused on damage 

detection and localization in plate structures [42-50]. 

In the Electromechanical Impedance (EMI) method, the health of the structure will be 

investigated by measuring the mechanical impedance of the structure using piezoelectric 

transducers [49]. However, impedance analyzers are extremely costly and there have been 

attempts at replacing with cheaper alternatives such as cheaper electronic circuits [51-54]. 

Also, other variations of this method, such as the SuRE method, have been recently 

introduced which eliminated the need for the impedance analyzer [54-57]. 

It has been shown that the dynamic response of a structure is not only sensitive to defects 

but it is also sensitive to loading [44,47,58]. Annamdas et al. used the electromechanical 

impedance method for monitoring of load on a carbon steel gear specimen [59]. The US 

Army Construction Engineering Research Laboratory also reported the use of the 

electromechanical impedance method in load monitoring application for unreinforced 

masonry wall specimens and masonry wall reinforced with composite overlays [60]. 

Electromechanical impedance approaches have been also utilized in the monitoring of bolt-

joints structures and investigation of loose bolts [61, 62]. However, the interaction between 

loads and dynamic response of structures, which normally is recorded by bonded 

piezoelectric transducers, is not well understood yet. In this experiment, the performance 

of the SuRE method as a low-cost alternative for EMI based methods in some load 
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In this study, the response of the plate to a sweep sine wave in excitation range of 1-400 

kHz is obtained and shown in Figure 6. The sampling frequency was chosen to be 5 times 

larger than the highest excitation frequency. 

 

Figure 6 FFT response of plate for 1-400 kHz 

 

From Figure 6, it can be seen that the range of 1-200 kHz has a higher dynamic interaction 

within the excitation range and it is chosen for further examination. Then, this area is 

narrowed down to 1-50 kHz by the trial-and-error method. The results of that are shown in 

the following sections.  

3.1.3. Load monitoring 

In this study, weights and bolts were used in order to study the effectiveness of load 
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experiments, different combinations of loading positions and types were examined. A 

schematic of the experimental setup is shown in Figures 7, 8. 

 

Figure 7 Experiment schematic 
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Figure 8 Experiment schematic 

 

3.1.4. Results and discussion 

3.1.4.1. Application of a single load at the center of a plate  

In this test, applied force was increased from F1 to F3 using 1 lbs. steps. The schematic 

and experimental setup is shown in Figure 9. The collected results from piezoelectric 

sensors and the laser vibrometer are shown in Figures 10, 11, 12 and 13.  
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Figure 9 Experimental setup for single load into the center of the plate 

 

Using PZT for data collection, PSD of the frequency response of the plate for baseline (no 

load) and each of the applied loads was acquired. Results are plotted in Figures 10, 11 and 

it can be seen as the load is increased, the amplitude of the PSD monotonically decreases. 

The peak at 30 kHz is magnified to demonstrate the dominant trend that could be seen in 

the majority of other peaks of the spectrum. 

 
Figure 10 Comparing FFT of different applying forces using PZT for data collection 
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Figure 11 comparing SSD of different applying forces using PZT for data collection 

 

In a non-contact approach, a laser vibrometer was utilized for collecting the response. After 

calculating PSD of responses for each step of loading, the same behavior was observed, as 

can be seen in Figure 12, 13.  

 

Figure 12 comparing FFT of different applying forces using laser vibrometer for data 

collection 
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Figure 13 comparing SSD of different applying forces using laser vibrometer for data 

collection 

 

 

3.1.4.2. Application of two sets of loads 

To show the capability of the SuRE method in monitoring multiple loads, two loads were 

simultaneously applied in different locations of the aluminum plate. Applied loads were 

increased from F1 to F3 using 0.5 lbs. steps in each point. The schematic of the 

experimental setup is shown in Figure 14. The collected results from piezoelectric sensors 

and the laser vibrometer are shown in Figures 15 and 16, respectively. 
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Figure 14 Experimental setup two loads 

 

Similar to the application of a single load, a PZT was used for excitation and a second piezo 

recorded the response of the plate for baseline and each of the steps after applying loads. 

PSD of recorded signals is represented in Figure 15, 16.  

 

 

Figure 15 comparing FFT of different applying forces using PZT for data collection 
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Figure 16 comparing SSD of different applying forces using PZT for data collection 

 

In order to examine the validity of the SuRE method for monitoring the presence of 

multiple loads with the aid of non- contact sensors, a laser vibrometer was utilized for 

collecting the response, as shown in Figure 17, 18. 

 

Figure 17 comparing FFT of different applying forces using laser vibrometer for data 

collection 
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Figure 18 Comparing SSD of different applying forces using laser vibrometer for data 

collection 

 

It can be seen that the aluminum plate shows similar behavior when it is subjected to 

multiple loads. That is, amplitudes of the PSD of response signals decrease as the applied 

force is increased from F1 to F3. 

 

3.1.4.3. Application of the SuRE method in finding a loose bolt 

In another study, the SuRE method was applied to monitor the state of tightness in 

mechanical fasteners. A system of a nut and bolt was utilized to vary the tightness of a 

bolting system in 4 steps using predetermined torques from 2-5Nm in 1Nm steps, as can 

be seen in Figure 19. 
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Figure 19 Schematic of bolt tightness setup 

 

 

A PZT was used for excitation and another piezo and the laser vibrometer recorded the 

response of the plate for baseline and after increasing torque in each of the 4 steps; the PSD 

of recorded signals for the PZT and the laser vibrometer are shown in Figures 20, 21, 22 

and 23, respectively. It is observed that the system shows a monotonic behavior regarding 

the change in applied torque. That is, by increasing the torque, amplitude of the PSD 

monotonically increases. This indicates the potential of application of the SuRE method 

for finding loose bolts in more complicated systems and critical applications. 
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5) Considering the frequency of difference used in heterodyning effect method, which 

is in the audible range, it would be possible to using this approach for sensor free 

detection of nonlinear behavior in composite structures. 

6) Future investigations on the localization of delamination should be another area for 

the future work regarding the heterodyning effect method to focus on. 

7) Simulation models can provide the opportunity to investigate the other parameters 

that may have a significant effect on the results. The effect of size and shape of the 

piezoelectric transducers on the wave transition can be studied. Also, 

implementation of heterodyning effect for different type of materials and various 

kind of composites must be studied. 

8) By using COMSOL models, it would be possible to explore the implementation of 

heterodyning effect method for more complicated and realistic scenarios when the 

structure is not as simple as two mating plates. 
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