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ABSTRACT OF THE DISSERTATION
ENERGY DEMAND RESPONSE FOR HIGH-PERFORMANCE COMPUTING
SYSTEMS
by
Kishwar Ahmed
Florida International University, 2018
Miami, Florida

Professor Jason Liu, Major Professor

The growing computational demand of scientific applications has greatly moti-
vated the development of large-scale high-performance computing (HPC) systems
in the past decade. To accommodate the increasing demand of applications, HPC
systems have been going through dramatic architectural changes (e.g., introduction
of many-core and multi-core systems, rapid growth of complex interconnection net-
work for efficient communication between thousands of nodes), as well as significant
increase in size (e.g., modern supercomputers consist of hundreds of thousands of
nodes). With such changes in architecture and size, the energy consumption by these
systems has increased significantly. With the advent of exascale supercomputers in
the next few years, power consumption of the HPC systems will surely increase;
some systems may even consume hundreds of megawatts of electricity. Demand
response programs are designed to help the energy service providers to stabilize the
power system by reducing the energy consumption of participating systems dur-
ing the time periods of high demand power usage or temporary shortage in power
supply.

This dissertation focuses on developing energy-efficient demand-response models
and algorithms to enable HPC system’s demand response participation. In the

first part, we present interconnection network models for performance prediction of
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large-scale HPC applications. They are based on interconnected topologies widely
used in HPC systems: dragonfly, torus, and fat-tree. Our interconnect models are
fully integrated with an implementation of message-passing interface (MPI) that
can mimic most of its functions with packet-level accuracy. Extensive experiments
show that our integrated models provide good accuracy for predicting the network
behavior, while at the same time allowing for good parallel scaling performance. In
the second part, we present an energy-efficient demand-response model to reduce
HPC systems’ energy consumption during demand response periods. We propose
HPC job scheduling and resource provisioning schemes to enable HPC system’s
emergency demand response participation. In the final part, we propose an economic
demand-response model to allow both HPC operator and HPC users to jointly reduce
HPC system’s energy cost. Our proposed model allows the participation of HPC
systems in economic demand-response programs through a contract-based rewarding

scheme that can incentivize HPC users to participate in demand response.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

High-performance computing (HPC) systems, such as petaflops supercomputers,
can consume a tremendous amount of power. For example, as of November 2016,
China’s 34-petaflops Tianhe-2 supercomputer, which currently consumes the most
power in the list of top 500 supercomputers [TOP16], has been reported to consume
almost 18 MWs of power, sufficient to power a small town of 20,000 residences. With
the advent of exascale supercomputers in the next few years, power consumption of
the HPC systems will surely increase: a recent projection indicates that an exascale
system would reach 60-130 MWs of power [YZW™13]. The massive power consump-
tion of these HPC systems can expound significant stress for the power grid. HPC
has also shown significant fluctuations in the power consumption due to the vary-
ing job execution profiles and also sporadic maintenance schedules. Effective power
saving and power stabilizing methods must be seriously considered when building
future HPC systems.

Demand response programs are designed to help the energy service providers to
stabilize the power system by reducing the energy consumption of participating sys-
tems when the power grid becomes unstable due to a sudden rise in power demand
or other emergency incidents. Demand response can be broadly categorized into two
types: economic demand response and emergency demand response. In economic
demand response, participants voluntarily enroll in the programs (without the need
of prior commitment) and willingly reduce the load based on economic incentives of-
fered by the supplier. Emergency demand response requires prior commitment from

the participants; once enrolled, it is mandatory for the participants to reduce the



energy consumption to requested levels when supply shortage situations or emer-
gency conditions occur. The U.S. Department of Energy (DoE) and the National
Institute of Standards and Technology (NIST) have identified demand response as
one of the important policy goals to achieve power grid efficiency [HBH14, Fed16].
In addition to monetary benefits, demand response can also provide the associated
environmental benefits, such as reducing carbon emission [PJM14]. We have ob-
served a recent increase in the participation of the demand response programs in
various sectors [Thel3, McA17]. Recent projection also shows that there will be
substantial growth in the coming years—an anticipated doubling of the overall par-
ticipation in the demand response programs in 2020 has been projected [ME13].
Motivated by an increase in popularity of demand response program participation
and massive energy consumption of HPC systems, this dissertation aims to explore
the opportunity of HPC systems’ energy consumption reduction through emergency
and economic demand response participation.

To enable HPC systems’ demand response participation, we need to analyze
the power-performance tradeoff of HPC applications, and develop detailed perfor-
mance prediction models for HPC systems containing thousands of nodes. The
rapid advancement towards exascale computing has led to the emergence of novel
hardware architecture designs in HPC systems that include accelerator technolo-
gies (such as GPUs), high core-count compute nodes with shared memory, deep
instruction pipelines, deep memory hierarchies with aggressive memory prefetch-
ing strategies, and sophisticated branch prediction for speculative execution. These
new architectural features enable massive parallelism and latency hiding that in
principle allow software and codes to scale to next-generation HPC systems. For
example, Intel’s Knight’s Corner node features 61 cores with shared main mem-

ory (albeit at a non-uniform access speed) that enables thread-level parallelism.



In contrast, NVIDIA’s Tesla GPU accelerators have up to 3,000 CUDA Cores per
CPU enabling vector parallelism. Different parallelization strategies were adopted
in these cases. CPU-based nodes use a significant fraction of their chip real estate
to implement pipelining logic (to enable instruction-level parallelism) and memory
prefetching logic at different cache levels (to enable latency hiding), whereas GPU
designs tend to maximize core counts with arithmetic logic units (ALUs) for enabling
vector parallelism. These novel hardware technologies have turned out to be dis-
ruptive to existing software portfolios in many industries and government branches
because simple re-compilation does not exploit these features very well. This in
turn has led to massive code re-factoring in many sectors, including—and perhaps
most pronounced—among users of high-performance computational physics code.
Performance prediction on how fast and how energy-efficient a code will run on a

platform is at the heart of computational co-design.

1.2 Problem Definition and Contributions

The primary goal of this dissertation is to identify the key challenges and explore
the power and performance modeling to enable HPC system’s demand response

participation.

1.2.1 Rapid Performance Modeling for HPC Systems

With frequent changes in HPC systems, it is imperative that performance prediction
of future HPC systems is properly realized. Of particular importance is the model
for the interconnection networks as it is critical to the understanding of the com-
munication cost and thus the performance limitations of large-scale applications

on high-performance computing infrastructures. Such large-scale interconnection



network models allow performance prediction of HPC applications on many nodes,
and therefore enable analysis of power-performance tradeoff of HPC applications.
There has been significant research effort on performance prediction and model-
ing of extreme-scale interconnection networks (e.g., [LHSJ15, LC11, Perl0, PP14]).
However, few of these research efforts consider the effect of complex, dynamic appli-
cation behaviors, such as computational physics code, on the underlying large-scale
interconnection network.

The Performance Prediction Toolkit (PPT) is a DOE co-design project that
aims at developing a comprehensive prediction capability for computational physics
code, algorithms and methods that perform on novel hardware architectures, thus
enabling fast adoption of new code by quickly identifying and ruling out unsuc-
cessful refactoring schemes. PPT models both hardware and software at levels of
abstraction that are appropriate to the concrete question at hand, by applying a
mix of discrete-event simulation, stochastic and analytical models at various lay-
ers on the software and hardware stack. PPT relies on Simian [SEL15], a parallel
discrete-event simulation engine, and essentially consists of libraries of hardware
models, application models, and middleware models. PPT, along with Simian, is
designed to be lean, written in Python (or alternatively Lua) with minimal reliance
on third-party libraries in an effort to keep the code simple, understandable, and
yet offer high performance.

Contributions. Our contributions to performance modeling of large-scale HPC

system are summarized below:

1. We present PPT’s interconnection network models to model communication
among many nodes in HPC systems and predict performance of HPC applica-
tions. Our interconnection network models include widely-used interconnect

topologies with emphasis on production networks (both existing and planned



interconnection networks). In today’s top-ranked HPC systems, we see three
common network types: torus (e.g., Cray’s Gemini, IBM’s Blue Gene/Q),
dragonfly (e.g., Cray’s Aries), and fat-tree (e.g., Infiniband). They constitute
a majority of the production network topologies. Our survey on the latest
supercomputers (http://www.top500.o0rg, June 2016) shows that the three
topologies account for 54% of the 500 fastest supercomputers in the world (44%
for fast ethernet and 2% proprietary). Among the top 100 supercomputers, the
three topologies grow up to 82%. 14 of the top 15 ranked supercomputers are
interconnected by the three types. In PPT, separate interconnection network
models have been developed and carefully parameterized in PPT to capture
various production interconnection networks. We present sufficiently detailed
interconnection models for Cray’s Gemini 3-D torus, IBM’s Blue Gene/Q 5-D

torus, Cray’s Aries dragonfly, and Infiniband’s fat-tree network.

. PPT’s interconnection network models are packet-level models, where network
transactions (e.g., for MPI send /receive and for collective operations) are mod-
eled as discrete events representing individual packets (typically, around 64
bytes in size) being transferred by the network switches and compute nodes.
This is a conscious design decision. Our hypothesis is that in most scenarios,
packet-level simulation should be sufficient to capture major network behav-
iors (throughput, delay, loss, and network congestion) with sufficient accuracy,
and as such, should be able to identify potential performance bottlenecks at
the interconnection networks while running large-scale scientific applications.
Compared to more detailed models, such as those implemented at the phit
level (virtual channels), packet-level simulation can easily outperform detailed
models by several orders of magnitude. We present extensive validation stud-

ies of our MPI and interconnect models, including a trace-based study using



data obtained from executing real-life computational physics code on an exist-
ing high-performance computing platform. Our experiments suggest that our

packet-level models can provide sufficient accuracy.

. PPT’s interconnection network models can be easily incorporated with the
application models. Our interconnection network models interface with the
message-passing interface (MPI) model. MPT is the most commonly used par-
allel programming tools for scientific applications on modern HPC platforms.
Our MPI model provides convenient methods for deploying the parallel appli-
cations and performing communications on the target parallel platform. We
have implemented all common MPI functions, including point-to-point com-
munications (both blocking and asynchronous methods) and collective oper-
ations (such as gather/scatter, barriers, broadcast, reduce, and all-to-all). In
addition, we implemented MPI groups and communicators so that collective
communications can take place among an arbitrary subset of processes. As
a result, most scientific applications can be simulated directly using the com-

munication functions provided by the MPI model.

. We conduct extensive validation study of our interconnect models, includ-
ing a trace-driven simulation of real-life scientific application communication
patterns. We also perform performance study of a computational physics-
based parallel application using our interconnect model. All the results show
that our interconnect models provide reasonably good accuracy. Moreover, we
study the parallel performance of our integrated models on large-scale HPC

platforms and show good parallel scaling performance.



1.2.2 Emergency Demand Response for HPC Systems

Being a massive energy consumer of the power grid, the HPC sector can contribute
toward ensuring grid stability and energy reduction through its participation in the
demand response programs. Recent research has studied the feasibility and iden-
tified the associated challenges in the HPC demand response [BGA*15, PBG*16].
Patki et al. [PBGT16] suggested that supercomputing systems in the U.S. may be
willing to participate in the demand response programs if tighter and more frequent
communications can be established between the supercomputing centers and their
energy service providers. Patki’s study is based on a qualitative analysis of coop-
erative demand-management strategies. We note, however, that there is no related
work on the job scheduling and resource provisioning strategies at HPC centers that
can operate with demand response. Various energy-efficient HPC job scheduling
algorithms (e.g., [SLGK14, PLST15, ECLV12]) and resource provisioning methods
(e.g., [GFFCO07, LM06, BHC*16]) have been proposed in the literature. These stud-
ies aim at reducing the overall energy consumption of the HPC systems, but do
not consider demand response. In this dissertation, we explore the opportunities of
the HPC centers participating in the demand response programs through a study
of detailed job scheduling and resource provisioning strategies.

Contributions. Our contributions to power modeling in terms of emergency

demand response participation from HPC systems are summarized below:

1. We propose an HPC job scheduling and resource provisioning algorithm for
demand response. For job scheduling, we assume first-come-first-serve (FCFS)
with possible job eviction and restart in response to the reduced power level
during the demand response periods. For resource provisioning, we dynam-

ically scale the frequency of the processors in order to achieve optimal en-



ergy conservation and power stability during the demand response periods.
During normal periods, the processors in HPC systems operate at maximum
frequency for best performance. Also, we develop a simulator for job schedul-
ing and resource provisioning to study the effect of demand response. The
simulator is built upon a parallel discrete-event simulation engine capable for
handling large-scale models. The simulator has been validated using real-life

HPC workload traces.

. We exploit the power-capping capability in the modern processors to enable
HPC system emergency demand response participation. We present predic-
tion models for power and performance prediction with respect to different
power-capping values. We propose a demand response participation model for
HPC systems based on the prediction models with power capping. We extend
the HPC system demand response model by exploiting job malleability. We
incorporate an energy-to-solution prediction model to the demand response

model in order to determine the optimal job size and power-capping values.

. We conduct extensive trace-based simulation studies to show the effectiveness
of the proposed job scheduling and resource provisioning algorithm for demand
response. The results demonstrate that our proposed approach is a viable
solution for attracting supercomputing centers to participate in the demand
response programs as it can improve power stability and energy reduction
with only moderate increase in execution time for the jobs. Moreover, we
perform experiments using real-life scientific applications on an existing cluster
to measure application performance and power usage under different power-
capping values. Using these measurements, we use trace-based simulation to
show the effectiveness of our proposed demand-response model and compare

it with power-capping policies implemented in processors.



1.2.3 Economic Demand Response for HPC Systems

Demand response program anticipates customers to reduce energy consumption
upon requests from the power utility companies during the time periods of high
demand power usage or temporary shortage in power supply. Customers are willing
to participate in demand response programs in expectation to receive financial or
operational benefits from the utility companies. Overall, demand response has be-
come increasingly popular among power utility companies. Revenue earnings from
demand response has increased significantly in recent years. For example, a re-
port from PJM Interconnection (a large utility company servicing many states in
the U.S.) shows that it has achieved an earning of $650 million from various de-
mand response participation in 2016, a significant increase from only about $50
million in 2006 [PJM17]. Much of this growth can be attributed to the economic
demand response programs using incentives provided via fluctuations in electricity
pricing, through which the power utility companies can signal the consumers to
adapt their behaviors at various time granularities (such as hourly). In the final
part of this dissertation, we address how to reduce energy cost in HPC systems
through a contract-based economic demand response participation.

Contributions. Our contributions are summarized below:

1. We propose an economic demand response participation model for HPC sys-
tems for energy reduction. We propose a rewarding scheme to be offered by
the HPC operator to the HPC users based on contract design to encourage

the willing participation of the users in demand response.

2. Our analyses demonstrate that the proposed contract-based demand response
mechanism preserves important properties of the contract theory, including

indiwidual rationality (IR), incentive compatibility (1C), and monotonicity.



3. Through trace-based simulation, we provide the empirical evidence of our pro-
posed approach and further demonstrate the effectiveness of our proposed
mechanism compared to other existing approaches. The simulation experi-

ments also support our analytical claims in practice.

1.3 Related Publications

This dissertation is drawn from the following publications:

e Kishwar Ahmed, Jason Liu, and Kazutomo Yoshii. Enabling Demand Re-
sponse for HPC Systems Through Power Capping and Node Scaling. Submit-
ted to IEEE International Conferene on High Performance Computing and

Communications (HPCC), 2018.

e Kishwar Ahmed, Jesse Bull, and Jason Liu. Contract-Based Demand Re-
sponse Model for HPC Systems. Submitted to International Conference on

Parallel Processing (ICPP), 2018.

e Kishwar Ahmed, Jason Liu, Abdel-Hameed Badawy, and Stephan Eidenbenz.
A Brief History of HPC Simulation and Future Challenges. In 2017 Winter
Simulation Conference (WSC), pages 419-430. IEEE, 2017.

e Kishwar Ahmed, Jason Liu, and Xingfu Wu. An Energy Efficient Demand-
Response Model for High Performance Computing Systems. In 2017 IEEE
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1.4 Outline of the Dissertation

We discuss the background and related work in Chapter 2. We first provide a snap-
shot of the existing performance prediction models and simulators in Section 2.1.
We consider models for different sub-systems, including processors, memory, and
interconnection networks. We also discuss application models that can capture
the runtime behavior of the large-scale scientific applications. We discuss analytical
models and tools for energy and power prediction of the HPC systems in Section 2.2.

We present how to model HPC applications’ performance on underlying archi-
tecture, and present our rapid performance prediction models for large-scale inter-
connection network in Chapter 3. Section 3.1 discusses background information and
challenges. Section 3.2 describes related works and compares our approach with
the existing methods. Section 3.3 provides an overview of our design. In the same
section, we also provide the MPI model and the details of our torus, dragonfly, and
fat-tree interconnection network models (along with validations). In Section 3.4,
we present trace-driven simulation of real-life scientific application communication
patterns, as well as performance study of a computational physics-based parallel

application using one of our interconnect models.
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Chapter 4 describes our approach to address HPC system’s massive power con-
sumption and presents our energy-efficient emergency demand-response models for
HPC systems. We present background information and contributions in Section 4.1.
In Section 4.2, we describe related work and compare the existing approaches with
our proposed method. In Section 4.3, we explore the opportunities of the HPC sys-
tems participating in the emergency demand programs through a study of detailed
job scheduling and resource provisioning strategies. In Section 4.4, we exploit the
power-capping property in the modern processors and node scaling of HPC appli-
cations to enable HPC system emergency demand response participation.

Chapter 5 presents our economic demand-response model for HPC systems. Sec-
tion 5.1 discusses background information and challenges. Section 5.2 describes
related works and compares our approach with the existing methods. Section 5.3
describes the contract-based HPC economic demand response participation model.
In Section 5.4, we present the problem formulation and corresponding algorithm.
We also describe the necessary conditions for contract design mechanisms in the
same section. In Section 5.5, we use real-life data to show effectiveness of our pro-
posed solution. Finally, we present our concluding remarks and provide direction

for future work in Chapter 6.

12



CHAPTER 2
BACKGROUND

2.1 Performance Prediction Models

HPC systems today consist of hundreds of thousands of compute nodes, and can
perform tens or hundreds of quadrillion floating point operations per second [Tsal3,
Coul6]). HPC architectures have gone through rapid changes to facilitate the in-
creasing computational demand of scientific applications in many areas, such as
astrophysics, particle physics, earth and climate science, computational chemistry,
computational biology, and so on. Novel technologies, for example, many-core pro-
cessors, GPUs, persistent memory, and complex interconnection networks, have been
introduced constantly to fulfill the increasing scale and performance of such systems.
With the changing hardware architectures also comes the changing software design
and implementation of scientific applications in order to take best advantage of the
new computing resources.

Modeling and simulation plays an important role for performance prediction and
analysis of current and future HPC systems. It can be particularly useful for evalu-
ating the whole-system impact when new components are introduced, for comparing
the performance of different system design alternatives, and for locating performance
issues of computational code on novel HPC platforms even before their realization.
It is thus not surprising to see many HPC models and simulation tools created in
the past for exactly the same purposes. They model the HPC systems at different
granularity: some are created to study specific components of the HPC systems
(processors, memory, interconnect, storage, and so on), and others are meant for

studying the overall system performance in aggregate. The important difference lies
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in the accuracy-performance trade-off that has been applied to effectively capture

the salient features of the target system.

2.1.1 Interconnection Network

HPC interconnection network offers a systematic way to connect compute nodes,
processors, memory, and storage units. Important aspects of an interconnection
network model include accurate representation of the network topology, routing,
resource scheduling (such as flow control), and network queuing. Different intercon-
nection network topologies exist in current HPC systems, including fat-tree (e.g.,
IBM’s Infiniband), torus (e.g., IBM’s Blue Gene/Q, Cray’s Gemini), and dragonfly
(e.g., Cray’s Aries). An accurate model of these interconnection networks is im-
portant for us to understand the communication cost as one of the most important
constraints on the performance of scientific applications running on HPC systems.

BigSim [ZKKO04] is an early effort for performance prediction of large-scale par-
allel machines (e.g., Blue Gene/L machines), based on the model of parallel applica-
tions on the target architecture (such as using MPI). The interconnection network
models developed in BigSim are relatively simple as they do not consider network
congestion [CGL*"14]. BigSim is implemented using Charm++, an object-based
and message-driven parallel programming system [KK93]. The simulator adopts
optimistic parallel simulation for scalability, using inherent determinacy of the tar-
get parallel applications to reduce the synchronization overhead. Experiments show
that BigSim is capable of scaling up to 64K simulated processors.

Structural Simulation Toolkit (SST) is an all-inclusive simulation framework for
modeling large-scale HPC systems, including processors, memory, interconnection
networks, and I/O systems [RHB*11]. SST consists of models of various hardware

components with different levels of accuracy and granularity, and attempts to achieve
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scalability by using conservative parallel simulation based on the “distance” between
the system components. SST supports generic router models which can be used to
build different network topologies, such as binary tree, fat-tree, hypercube, flattened
2-D butterfly, 2-D and 3-D mesh, and fully-connected graph. The interconnection
network models in SST, however, do not support flow control between routers and
the links between routers are assumed to have infinite capacity. SST is an ongoing
project and is able to include active contributions of many advanced component
models as part of a scalable and open-source simulation framework.

Extreme-scale Simulator (xSim) is a performance-prediction toolkit for future
HPC architectures [EL10, BE11]. xSim applies parallel discrete-event simulation
using lightweight threads and has achieved good scalability with millions of MPI
ranks running a simple MPI program. [JE11] extended xSim to incorporate a net-
work model with different topologies (star, ring, mesh, torus, and tree), and different
hierarchical network combinations (such as network-on-chip and network-on-node).
However, the xSim models do not consider traffic congestion or any detailed blocking
behavior which can be important to applications on real interconnection networks.

pr [Perl0] is an MPI simulator built upon an efficient conservatively-synchronized
parallel simulator that presents a feature-oriented world-view. pm supports simu-
lation of large-scale MPI applications. Experiments show that it can run up to 27
million virtual MPI ranks on as many as 216,000 cores of a Cray XT5. More re-
cently, Perumalla et. al. [PP14] proposed to extend pm and include direct execution
to run even larger number of tasks. The simulator focus on MPI communication of
applications, but does not contain any detailed interconnection network models.

Co-Design of Exascale Storage System (CODES) simulator is another compre-
hensive simulation platform to model various large-scale systems, including storage

systems, interconnection networks, HPC and data center applications [CLL"11].
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CODES provides detailed interconnect models for various interconnect topologies,
including torus [LC11], dragonfly [MCRC14], and fat-tree [LHSJ15]. The simulator
is built on Rensselaer Optimistic Simulation System (ROSS), a parallel discrete-
event simulation engine using reverse computation [CBP02], and is capable of simu-
lating very large interconnect configurations (with millions of nodes). Trace-driven
capabilities have also been added to CODES to replay large execution traces for
studying network performance [AJB*15].

Garnet [AKPJ09] is an on-chip interconnection network simulator, which builds
upon the lacking of GEMS [MSB*05] and performs “detailed” interconnect commu-
nication between on-chip routers. Through modeling detailed router microarchitec-
ture, Garnet is able to capture various details such as virtual channel arbitration
and realistic link contention. Garnet has provision for easy-configuration of various
parameters (e.g., different network topologies, interconnect bandwidth configuration
through flit size, router parameters such as arbitrary number of input and output
ports, various routing algorithms). TOPAZ [APM™12] is yet another open-source
NoC simulator with broader analysis spectrum (e.g., tradeoffs between accuracy,
simulation speed for various interconnection network). It has an easy incorporation
capability with other simulation tools (e.g., GEMS and gem5) in runtime. TOPAZ
is multithreaded, therefore providing more accurate prediction capability without
compromising simulation execution time. In addition to being capable of simulat-
ing NoCs in multicore processors, TOPAZ also supports simulation of large-scale
interconnection networks and is able to simulate networks consisting of millions of

routers.

16



2.1.1.1 A Parallel Discrete-Event Simulation Engine

All our initerconnection network models are developed based on Simian, which
is an open-source, process-oriented parallel discrete-event simulation (PDES) en-
gine [SEL15]. Simian has two independent implementations written in two inter-
preted languages, Python and Lua, respectively. Simian uses a conservative barrier-
based synchronization algorithm [Nic93] for parallel execution.

Simian has several distinct features. First, Simian adopts a minimalistic design.
For example, the Python implementation of Simian consists of only around 500 lines
of code. As a result, it requires low effort to understand the code and it is thus easy
for model development and debugging. Second, Simian features a very simplistic
application programming interface (API). To maximize portability, Simian requires
minimal dependency on third-party libraries. Third, Simian takes advantage of just-
in-time (JIT) compilation for interpreted languages. For certain models, Simian has
demonstrated capable of outperforming the C/C++ based simulation engine.

To develop models on Simian, it is necessary to understand the Simian API,
which contains only three main modules: the simulation engine, entities, and pro-
cesses. A simulation engine is a logical process responsible for synchronizing with
other logical processes (using a simple window-based conservative synchronization
mechanism). Entities are containers for state (such as a network switch or a com-
pute node). The entities also contain event handlers (called services in Simian).
An entity can communicate with others by scheduling services at the other enti-
ties. Processes are independent threads of execution on the entities. Simian uses
lightweight threads to implement the processes—greenlets in Python and coroutines

in Lua.
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2.1.2 Memory System

The processor memory has also gone through rapid changes in architectural de-
sign for increased capacity and performance. [DBM*11] projected that the mem-
ory capacity would reach as much as 128 peta bytes, mixing different technologies
from DRAM to non-volatile memory with varying performance aspects (in terms of
throughput, access latency, etc.) There exist a number of simulators in the literature
for modeling the memory system.

Among the early efforts for simulation of memory system, CACTI [WJ96] is per-
haps the most versatile tool with capability to model memory hierarchy at various
levels: registers, buffers, caches, main memory. Another well-established mem-
ory simulator is DRAMsim [WGT*05]. It is an open-source cycle-accurate DRAM
simulator, which supports various DRAM types, including SDRAM, DDR, DDR
IT Memory. The simulator considers various components of DRAM (e.g., DRAM
memory controllers, DRAM modules for bits/data storage, and buses through which
the DRAM modules communicates), and model them at great detail. It can also
model the power consumption of DRAMs. DRAMsim2 [RCBJ11] is an extension of
DRAMsim where it can simulate DDR II and III memory systems. It is important
to note that both DRAMsim and DRAMsim2 are publicly available, and they can
be incorporated with other simulators (e.g., gem5 as noted in Subsection 2.1.3) as
part of a large system simulation framework.

There are also many recently-proposed memory simulators to support simula-
tion of DRAM memory system. For example, USIMM [CBS*12] is a DRAM main
memory system simulator with support for power model based on the Micron power
calculator [Jan10]. The USIMM simulator is capable of working with multiple work-

load traces, where each trace represent a different program being executed on a dif-
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ferent processor. USIMM provides interfaces to trace-based processor model. The
simulator supports a number of memory scheduling algorithms proposed in the liter-
ature, including FCFS, credit-fair, power-down, close-page, first-ready-round-robin,
and MLP-aware. The trace based nature of the simulator is both an advantage and
disadvantage at the same time. DrSim [JYE12] is another open-source cycle-based
DRAM memory system simulator. A main feature of this simulator is its focus on
achieving flexibility, which makes it easy to incorporate a variety of DRAM system
topologies. Ramulator [KYM15] is a recent open-source simulator for current and
future DRAM systems. Ramulator aims to be fast, efficient and easily extensible.
Currently, it provides cycle-accurate performance models for a variety of DRAM
standards (such as DDR III/IV, LPDDR3/4, GDDR5, SALP, AL-DRAM, etc.)
Ramulator’s memory model has been validated against an actual implementation
of DDR3 memory (with Micron’s DDR3 Verilog model). Compared to the other
simulators thus far, Ramulator can be shown to have achieved the best simulation

performance.

2.1.3 Processor System

The processor architecture in HPC system has gone through perhaps the most rapid
changes in recent years. Introduction of multicore and manycore architectures,
support for various instruction sets, and the arrival of accelerator technologies (such
as GPUs) are some examples of recent changes. Many simulators exist; a few have
been proposed recently to incorporate new processor architectures with modified
capabilities. They differ mostly in terms of how many instructions can be executed
per second, how many cores they can support, and how accurately they can replicate
the instruction execution behavior. In this subsection, we present some of the well-

known processor models.
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Processor simulators have gone from a single processor (core) trace-based, func-
tional, atomic, in-order, and in-order with Cycles Per Instruction (CPI) of one, to
out-of-order cycle-accurate multicore simulators. The most famous and most widely
used single processor/core simulator is SimpleScalar [ALE02]. It simulated almost
all of the complex interactions a “modern” superscalar processor (at the time) would
have from reorder buffer, multiple issue, register renaming, complex branch predic-
tion schemes, caches, and Simultaneous multithreading [TEL95] (SMT, now known
as Hyperthreading in Intel Processors). SimpleScalar implemented Alpha and PISA
Instruction Set Architectures (ISAs). After Alpha died as a commercial processor,
Simplescalar suffered the stigma of an outdated ISA even though RISC ISAs were
still similar to what Alpha implemented. Depending on which version and which re-
search group used it, the simulator lacked a realistic memory system that simulated
contentions on buses connecting the caches to the memory system and the con-
tention in the DRAMs themselves and by the time that was widely available, Chip
Multiprocessors (CMPs) now known as multicores had taken the processor world
by storm. The advent of such complex processors pushed researchers to implement
multicore simulators that spanned a wider range of capabilities. RSIM [PRA97]
was the only multiprocessor simulator that was publicly available but it was not
maintained and thus was outdated by the time multicores were fashionable.

Some of the most known multicore processor simulators that came out pub-
licly were: SIMICS [MCE*02], GEMS [MSB*05], M5 [BDH"06] and lately GEMS
merged with M5 generating the gem5 [BBBT11]. gemb is a simulator that tries
to simulate with varying degrees of accuracy and speed for different components
of a multicore system. It has the entire spectrum from atomic cores to cycle-
accurate out-of-order cores. It does have a memory subsystem including caches

and coherence protocols. It also can accommodate an on-chip interconnection net-
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work (i.e., Network on Chip “NoC”) model/simulator (e.g., Topaz [APM*12] or
Garnet [AKPJO09]) both independently implemented. One can implement his own
coherence protocol and plug it in seamlessly. As we pointed out in Subsection 2.1.2,
DRAMSim and DRAMSim 2.0 are two examples of how flexible gem5 is. It allows
hooking up a detailed cycle-accurate memory system simulator seamlessly. GPG-
PUs as accelerators that have taken their fair share of publicity also has an existence
in gemb5 where there is an implementation of a GPGPU integrated into gem5 (called
gembGPGPU [WSS*T12]).

Another aspect of gemb is that it can perform either in System Call Emulation
(SE) mode or in Full System (FS) mode. This last point pertains to the interaction
of the programs running on the processor and the operating system (OS). In system
call emulation mode, the simulator fakes the existence of an OS by only imple-
menting the minimal set of services that a program needs to run (e.g., reading and
writing files). Whereas, in Full System mode, the simulator really boots up an OS
(e.g., Linux or Android) and the user gets a command prompt to run his or her pro-
gram(s) on the simulator. There is a trade-off between these two modes, one gives
a more realistic view of the interaction in a real system where the OS interacts and
influences the benchmarks/applications (e.g., database applications, OLTP, Data
Mining etc.), as opposed to the other applications where such interactions are not
present and only the application/benchmark performance is observed (e.g., most
scientific applications). Full system mode is far slower than system emulation mode
and likewise an out-of-order cycle-accurate core will be far slower than an in-order
CPI of one core. At the end of the day, it is a judgment call and an experimental
design parameter that has to be made consciously by the research team.

The main advantages of gemb are the facts that it is a community research

project and that it is highly extensible. It does support a variety of instruction
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sets spanning commercially available CPUs such as x86 and ARM as well as famous
outdated essentially extinct ISAs such as SPARC and Alpha. A new branch is
implementing the RISCV [WLPA11] open-source ISA. gem5 has taken the place
of Simplescalar in the processor simulation world where it is the defacto processor
simulator.

There are many other recent multicore and manycore simulators. For example,
McSimA+ [ALSJ13] is a lightweight, flexible, open-source simulator with detailed
models for the micro-architecture of uni-core, multicore and manycore processors.
The overall simulator design is divided into two parts: the (front-end) functional
simulation and the (back-end) timing simulation. The functional simulation is based
on Pin, a dynamic binary instrumentation tool [LCM*05] for generating the instruc-
tion stream. The timing simulation is based on an event-driven engine, responsible
for calculating the correct timing for different operations (such as cache access,
and packet traversal). McSimA+ supports simulation of various asymmetric core
structures, hierarchical cache architectures (e.g., private, shared, and non-blocking),
NoCs (e.g., buses, crossbars, ring, and 2-D mesh), memory controller, and main
memory. McSimA+ has been shown to achieve good accuracy by comparing with
previously published results and with real machine runs. McSimA+ has demon-
strated to be able to scale to a processor with thousands of cores. Like McSimA+,
ZSim [SK13] is another multicore simulator that has been shown to be lightweight,
accurate, fast, and scalable. The simulator is lightweight through the use of a user-
level virtualization technique. It is accurate for its instruction-driven timing models
and leveraging dynamic binary translation. The simulator is fast and scalable, and
runs in parallel.

Manifold [WBB*14] is another multicore simulator. It can support full sys-

tem simulation, including, for example, operating system and system binaries, and
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can incorporate various models for transient and steady-state simulation of power,
thermal, energy and reliability. It has an open architecture with a component-
based design, so that new components can be easily incorporated through commu-
nity efforts. Manifold uses QSim [KRY12], which is a multicore emulator based on
dynamic binary translation. The emulator communicates with the back-end tim-
ing model for transparent parallel discrete-event simulation. Experiment has not
shown, however, that Manifold can scale to larger systems with more than 64 cores.
Also, its performance can only achieve a few thousand instructions per second.
This probably can be attributed partially to the fact that the simulator considers
full system multicore architecture simulation (including processors, cache, memory).
Graphite [MKK™10] is yet another multicore processor simulator that aims to scale
to thousands of cores. One of its main strengths is that it is designed to run in par-
allel. Other processor simulators exist such as ESESC [AR13], SimFlex [WWF*06],
and MARSS [PACG11].

2.1.4 HPC Applications

HPC applications exhibit distinct behaviors. An accurate model for these appli-
cations is crucial for determining the impact of technological advances in novel
HPC architectures. Some of the HPC applications are data-intensive (e.g., molec-
ular dynamics simulation and computational fluid dynamics applications). Some
are communication-intensive (e.g., NERSC MIMD Lattice Computation applica-
tion and NAS parallel benchmark applications). And yet others are I/O-intensive.
There exist many application models and analysis tools in the literature to describe
the behavior of the HPC applications with various details.

Vampir [KBD*08] is a performance analysis tool for parallel MPI/OpenMPT ap-

plications. Vampir consists of two major components: a runtime instrumentation
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and measurement system and a visual analysis tool. The former supports program
instrumentation in different programming languages. It also supports different types
of programs: sequential programs, MPI programs, OpenMP programs, and hybrid
MPI and OpenMP programs. Vampir also supports various types of instrumen-
tation, including compiler instrumentation, library instrumentation, and manual
instrumentation. It provides runtime measurement capability to capture dynamic
application behaviors (such as application’s memory usage, /O performance, user-
defined performance counters, etc.)

Tuning and Analysis Utilities (TAU) is a well-established, flexible, portable, ro-
bust performance instrumentation, measurement, analysis and visualization frame-
work for HPC applications [SM06]. TAU provides flexible instrumentation capa-
bility, allowing the user to select performance instrumentation at different levels of
application code. The instrumentation provides various performance information,
including various system events and user-defined events, which can be later used
for profiling and tracing. HPCTOOLKIT [ABF*10] is another application per-
formance measurement, analysis, and presentation toolkit for both sequential and
parallel applications. Instead of using source code instrumentation, HPCTOOLKIT
works directly with application binaries. HPCTOOLKIT provides effective applica-
tion analysis by providing measurement ability for a number of derived performance
metrics (e.g., peak and actual performance difference rather than simple raw data
such as operation counts).

The above tools can be used for measuring and displaying the runtime per