
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-22-2018

Energy Demand Response for High-Performance
Computing Systems
Kishwar Ahmed
Florida International University, kahme006@fiu.edu

DOI: 10.25148/etd.FIDC006527
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Contracts Commons, Digital Communications and Networking Commons, and the
Power and Energy Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Ahmed, Kishwar, "Energy Demand Response for High-Performance Computing Systems" (2018). FIU Electronic Theses and
Dissertations. 3569.
https://digitalcommons.fiu.edu/etd/3569

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/591?utm_source=digitalcommons.fiu.edu%2Fetd%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.fiu.edu%2Fetd%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.fiu.edu%2Fetd%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3569?utm_source=digitalcommons.fiu.edu%2Fetd%2F3569&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

ENERGY DEMAND RESPONSE FOR HIGH-PERFORMANCE COMPUTING

SYSTEMS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Kishwar Ahmed

2018

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Kishwar Ahmed, and entitled Energy Demand Re-
sponse for High-Performance Computing Systems, having been approved in respect
to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

S. S. Iyengar

Deng Pan

Leonardo Bobadilla

Wujie Wen

Jason Liu, Major Professor

Date of Defense: March 22, 2018

The dissertation of Kishwar Ahmed is approved.

Dean John L. Volakis

College of Engineering and Computing

Andres G. Gil

Vice President for Research and Economic Development and
Dean of the University Graduate School

Florida International University, 2018

ii

c© Copyright 2018 by Kishwar Ahmed

All rights reserved.

iii

DEDICATION

To my parents and my wife.

iv

ACKNOWLEDGMENTS

This dissertation would not have been possible without the guidance and help of

my advisor, Dr. Jason Liu. In spite of his very busy schedule, he made every

effort to guide me throughout the entire process. I am really grateful to him for his

tremendous support, and no word of gratitude is sufficient to convey it.

I am also thankful to my committee members, Dr. S. S. Iyengar, Dr. Deng Pan,

Dr. Leonardo Bobadilla, and Dr. Wujie Wen for their valuable suggestions regard-

ing my dissertation. I am grateful to Dr. Stephan Eidenbenz and Dr. Nandakishore

Santhi from Los Alamos National Laboratory, Dr. Xingfu Wu from Argonne Na-

tional Laboratory, and Dr. Jesse Bull from Florida International University for their

constructive suggestions and contributions on my dissertation. I also want to thank

Kazutomo Yoshii, Dr. Rob Ross, and Dr. Misbah Mubarak for the opportunity

to work with them at Argonne National Laboratory as an intern. Their valuable

guidance and help have benefited me a lot in my doctoral study. I would like to

thank Mohammad Atiqul Islam, with whom I collaborated during first few years of

my doctoral study.

My utmost gratitude goes to my parents Erfanuddin Ahmed and Shaheda Be-

gum. With their encouragement and valuable suggestions, I have been able to reach

this far. My wife, Samia Tasnim, has accompanied throughout my doctoral journey.

Her love, care and support have propelled me through the difficult times of doc-

toral study. I owe her everything. I am grateful to my brother, Shaer Ahmed, who

gave inspiration at various times. I would also like to thank my friends Mohammad

Chowdhury, Mohammad Obaida, Naeemul Hassan, Tanay Kumar Saha, Jesun Feroz

for giving me much-needed breaks during exhausting research times.

v

ABSTRACT OF THE DISSERTATION

ENERGY DEMAND RESPONSE FOR HIGH-PERFORMANCE COMPUTING

SYSTEMS

by

Kishwar Ahmed

Florida International University, 2018

Miami, Florida

Professor Jason Liu, Major Professor

The growing computational demand of scientific applications has greatly moti-

vated the development of large-scale high-performance computing (HPC) systems

in the past decade. To accommodate the increasing demand of applications, HPC

systems have been going through dramatic architectural changes (e.g., introduction

of many-core and multi-core systems, rapid growth of complex interconnection net-

work for efficient communication between thousands of nodes), as well as significant

increase in size (e.g., modern supercomputers consist of hundreds of thousands of

nodes). With such changes in architecture and size, the energy consumption by these

systems has increased significantly. With the advent of exascale supercomputers in

the next few years, power consumption of the HPC systems will surely increase;

some systems may even consume hundreds of megawatts of electricity. Demand

response programs are designed to help the energy service providers to stabilize the

power system by reducing the energy consumption of participating systems dur-

ing the time periods of high demand power usage or temporary shortage in power

supply.

This dissertation focuses on developing energy-efficient demand-response models

and algorithms to enable HPC system’s demand response participation. In the

first part, we present interconnection network models for performance prediction of

vi

large-scale HPC applications. They are based on interconnected topologies widely

used in HPC systems: dragonfly, torus, and fat-tree. Our interconnect models are

fully integrated with an implementation of message-passing interface (MPI) that

can mimic most of its functions with packet-level accuracy. Extensive experiments

show that our integrated models provide good accuracy for predicting the network

behavior, while at the same time allowing for good parallel scaling performance. In

the second part, we present an energy-efficient demand-response model to reduce

HPC systems’ energy consumption during demand response periods. We propose

HPC job scheduling and resource provisioning schemes to enable HPC system’s

emergency demand response participation. In the final part, we propose an economic

demand-response model to allow both HPC operator and HPC users to jointly reduce

HPC system’s energy cost. Our proposed model allows the participation of HPC

systems in economic demand-response programs through a contract-based rewarding

scheme that can incentivize HPC users to participate in demand response.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 1
1.2 Problem Definition and Contributions 3
1.2.1 Rapid Performance Modeling for HPC Systems 3
1.2.2 Emergency Demand Response for HPC Systems 7
1.2.3 Economic Demand Response for HPC Systems 9
1.3 Related Publications . 10
1.4 Outline of the Dissertation . 11

2. BACKGROUND . 13
2.1 Performance Prediction Models . 13
2.1.1 Interconnection Network . 14
2.1.2 Memory System . 18
2.1.3 Processor System . 19
2.1.4 HPC Applications . 23
2.2 HPC Power Models . 25

3. RAPID PERFORMANCE MODELING FOR HPC SYSTEMS 28
3.1 Background . 28
3.2 Related Work . 31
3.3 Model . 34
3.3.1 MPI Model . 36
3.3.2 Interconnection Network Models . 41
3.3.3 Interconnect Model Validations . 49
3.4 Experiments . 59
3.4.1 Trace-Driven MPI Simulation . 59
3.4.2 SNAP Peformance Study . 65
3.4.3 Parallel Performance . 67
3.5 Summary . 69

4. EMERGENCY DEMAND RESPONSE FOR HPC SYSTEMS 70
4.1 Background . 70
4.2 Related Work . 72
4.3 Demand-Response Model Based on Frequency Scaling 76
4.3.1 Power and Performance Prediction Models 76
4.3.2 Job Scheduling and Resource Provisioning 79
4.3.3 Determining Optimal Frequency . 86
4.3.4 Job Eviction . 87
4.3.5 Performance Evaluation . 88
4.4 Demand-Response Model Based on Power Capping and Node Scaling . . 95

viii

4.4.1 Exploiting Power-Capping Property 96
4.4.2 Exploiting Power-Capping and Node-Scaling Properties 102
4.4.3 Performance Evaluation . 105
4.5 Summary . 108

5. ECONOMIC DEMAND RESPONSE FOR HPC SYSTEMS 110
5.1 Background . 110
5.2 Related Work . 112
5.2.1 Reducing Energy Cost . 112
5.2.2 Demand Response . 114
5.2.3 Contract Theory and Applications . 115
5.3 Model . 116
5.3.1 An Example . 117
5.3.2 HPC System Model . 119
5.4 Formulation and Algorithm . 124
5.4.1 Feasibility and Optimality of Solutions 125
5.4.2 Contract Design with Continuum Type 130
5.5 Experiments . 131
5.5.1 Data Set . 131
5.5.2 Energy Reduction and Utility . 133
5.5.3 Benchmark Comparison . 135
5.6 Summary . 137

6. CONCLUSIONS . 138
6.1 Summary . 138
6.2 Future Directions . 140

BIBLIOGRAPHY . 143

VITA . 168

ix

LIST OF FIGURES

FIGURE PAGE

3.1 An architectural design of PPT. 35

3.2 An example showing running 16 MPI processes on Hopper. 39

3.3 Simulating Cannon’s matrix multiplication. 40

3.4 Cray Gemini ASIC block diagram. 42

3.5 Interconnect model using Simian entities, processes, and services. 43

3.6 Cray Aries block diagram. 47

3.7 A histogram of end-to-end delay between compute nodes of the simu-
lated HPC cluster. 52

3.8 Duration of the MPI Allreduce call for different number of ranks and
data size on the simulated HPC cluster. 53

3.9 MPI throughput from simulation as a function of message size for 1, 2
and 4 MPI processes per node. 54

3.10 Gemini FMA put throughput (as reported in [ARK10]) versus simulated
throughput as a function of transfer size for 1, 2, and 4 processes per
node. 55

3.11 Aries validation. 56

3.12 Comparison with FatTreeSim and Emulab. 58

3.13 Format of MPI calls in the processed trace file (there is one trace file for
each MPI rank). 60

3.14 Comparing the duration of MPI calls between trace and simulation with
and without time shift. 62

3.15 Comparison of different architectures for trace-based run. 64

3.16 SNAPSim vs. SNAP Edison strong scaling. 66

3.17 Observed run time and event rate for running Simian with an 156K-rank
MPI model on a parallel compute cluster. 68

4.1 Result of the power and performance prediction models for six HPC
applications. 78

4.2 The overall design of our job scheduler simulator. 84

4.3 Comparing results from PYSS and our simulator. 86

x

4.4 Power usage over time with and without power capping. 90

4.5 Comparing performance and energy for different scheduling policies and
with different system size. 92

4.6 Impact on the demand response event ratio. 93

4.7 Power stability during the demand response periods. 94

4.8 Impact of power capping on application characteristics. 96

4.9 Power regression model for different applications. 99

4.10 Runtime regression model for different applications. 100

4.11 Node scaling model for different applications. 103

4.12 Benchmark comparison with power capping. 106

4.13 Benchmark comparison with power capping and node scaling. 107

5.1 Energy reduction and electricity pricing from PJM economic demand
response on July 18, 2013 [PJM17]. 111

5.2 Job arrivals and electricity price data. 132

5.3 Energy reduction and utility. 134

5.4 Incentive compatibility constraint. 135

5.5 Benchmark comparison. 135

5.6 Change in electricity price. 136

xi

CHAPTER 1

INTRODUCTION

1.1 Motivation

High-performance computing (HPC) systems, such as petaflops supercomputers,

can consume a tremendous amount of power. For example, as of November 2016,

China’s 34-petaflops Tianhe-2 supercomputer, which currently consumes the most

power in the list of top 500 supercomputers [TOP16], has been reported to consume

almost 18 MWs of power, sufficient to power a small town of 20,000 residences. With

the advent of exascale supercomputers in the next few years, power consumption of

the HPC systems will surely increase: a recent projection indicates that an exascale

system would reach 60-130 MWs of power [YZW+13]. The massive power consump-

tion of these HPC systems can expound significant stress for the power grid. HPC

has also shown significant fluctuations in the power consumption due to the vary-

ing job execution profiles and also sporadic maintenance schedules. Effective power

saving and power stabilizing methods must be seriously considered when building

future HPC systems.

Demand response programs are designed to help the energy service providers to

stabilize the power system by reducing the energy consumption of participating sys-

tems when the power grid becomes unstable due to a sudden rise in power demand

or other emergency incidents. Demand response can be broadly categorized into two

types: economic demand response and emergency demand response. In economic

demand response, participants voluntarily enroll in the programs (without the need

of prior commitment) and willingly reduce the load based on economic incentives of-

fered by the supplier. Emergency demand response requires prior commitment from

the participants; once enrolled, it is mandatory for the participants to reduce the

1

energy consumption to requested levels when supply shortage situations or emer-

gency conditions occur. The U.S. Department of Energy (DoE) and the National

Institute of Standards and Technology (NIST) have identified demand response as

one of the important policy goals to achieve power grid efficiency [HBH14, Fed16].

In addition to monetary benefits, demand response can also provide the associated

environmental benefits, such as reducing carbon emission [PJM14]. We have ob-

served a recent increase in the participation of the demand response programs in

various sectors [The13, McA17]. Recent projection also shows that there will be

substantial growth in the coming years—an anticipated doubling of the overall par-

ticipation in the demand response programs in 2020 has been projected [ME13].

Motivated by an increase in popularity of demand response program participation

and massive energy consumption of HPC systems, this dissertation aims to explore

the opportunity of HPC systems’ energy consumption reduction through emergency

and economic demand response participation.

To enable HPC systems’ demand response participation, we need to analyze

the power-performance tradeoff of HPC applications, and develop detailed perfor-

mance prediction models for HPC systems containing thousands of nodes. The

rapid advancement towards exascale computing has led to the emergence of novel

hardware architecture designs in HPC systems that include accelerator technolo-

gies (such as GPUs), high core-count compute nodes with shared memory, deep

instruction pipelines, deep memory hierarchies with aggressive memory prefetch-

ing strategies, and sophisticated branch prediction for speculative execution. These

new architectural features enable massive parallelism and latency hiding that in

principle allow software and codes to scale to next-generation HPC systems. For

example, Intel’s Knight’s Corner node features 61 cores with shared main mem-

ory (albeit at a non-uniform access speed) that enables thread-level parallelism.

2

In contrast, NVIDIA’s Tesla GPU accelerators have up to 3, 000 CUDA Cores per

CPU enabling vector parallelism. Different parallelization strategies were adopted

in these cases. CPU-based nodes use a significant fraction of their chip real estate

to implement pipelining logic (to enable instruction-level parallelism) and memory

prefetching logic at different cache levels (to enable latency hiding), whereas GPU

designs tend to maximize core counts with arithmetic logic units (ALUs) for enabling

vector parallelism. These novel hardware technologies have turned out to be dis-

ruptive to existing software portfolios in many industries and government branches

because simple re-compilation does not exploit these features very well. This in

turn has led to massive code re-factoring in many sectors, including—and perhaps

most pronounced—among users of high-performance computational physics code.

Performance prediction on how fast and how energy-efficient a code will run on a

platform is at the heart of computational co-design.

1.2 Problem Definition and Contributions

The primary goal of this dissertation is to identify the key challenges and explore

the power and performance modeling to enable HPC system’s demand response

participation.

1.2.1 Rapid Performance Modeling for HPC Systems

With frequent changes in HPC systems, it is imperative that performance prediction

of future HPC systems is properly realized. Of particular importance is the model

for the interconnection networks as it is critical to the understanding of the com-

munication cost and thus the performance limitations of large-scale applications

on high-performance computing infrastructures. Such large-scale interconnection

3

network models allow performance prediction of HPC applications on many nodes,

and therefore enable analysis of power-performance tradeoff of HPC applications.

There has been significant research effort on performance prediction and model-

ing of extreme-scale interconnection networks (e.g., [LHSJ15, LC11, Per10, PP14]).

However, few of these research efforts consider the effect of complex, dynamic appli-

cation behaviors, such as computational physics code, on the underlying large-scale

interconnection network.

The Performance Prediction Toolkit (PPT) is a DOE co-design project that

aims at developing a comprehensive prediction capability for computational physics

code, algorithms and methods that perform on novel hardware architectures, thus

enabling fast adoption of new code by quickly identifying and ruling out unsuc-

cessful refactoring schemes. PPT models both hardware and software at levels of

abstraction that are appropriate to the concrete question at hand, by applying a

mix of discrete-event simulation, stochastic and analytical models at various lay-

ers on the software and hardware stack. PPT relies on Simian [SEL15], a parallel

discrete-event simulation engine, and essentially consists of libraries of hardware

models, application models, and middleware models. PPT, along with Simian, is

designed to be lean, written in Python (or alternatively Lua) with minimal reliance

on third-party libraries in an effort to keep the code simple, understandable, and

yet offer high performance.

Contributions. Our contributions to performance modeling of large-scale HPC

system are summarized below:

1. We present PPT’s interconnection network models to model communication

among many nodes in HPC systems and predict performance of HPC applica-

tions. Our interconnection network models include widely-used interconnect

topologies with emphasis on production networks (both existing and planned

4

interconnection networks). In today’s top-ranked HPC systems, we see three

common network types: torus (e.g., Cray’s Gemini, IBM’s Blue Gene/Q),

dragonfly (e.g., Cray’s Aries), and fat-tree (e.g., Infiniband). They constitute

a majority of the production network topologies. Our survey on the latest

supercomputers (http://www.top500.org, June 2016) shows that the three

topologies account for 54% of the 500 fastest supercomputers in the world (44%

for fast ethernet and 2% proprietary). Among the top 100 supercomputers, the

three topologies grow up to 82%. 14 of the top 15 ranked supercomputers are

interconnected by the three types. In PPT, separate interconnection network

models have been developed and carefully parameterized in PPT to capture

various production interconnection networks. We present sufficiently detailed

interconnection models for Cray’s Gemini 3-D torus, IBM’s Blue Gene/Q 5-D

torus, Cray’s Aries dragonfly, and Infiniband’s fat-tree network.

2. PPT’s interconnection network models are packet-level models, where network

transactions (e.g., for MPI send/receive and for collective operations) are mod-

eled as discrete events representing individual packets (typically, around 64

bytes in size) being transferred by the network switches and compute nodes.

This is a conscious design decision. Our hypothesis is that in most scenarios,

packet-level simulation should be sufficient to capture major network behav-

iors (throughput, delay, loss, and network congestion) with sufficient accuracy,

and as such, should be able to identify potential performance bottlenecks at

the interconnection networks while running large-scale scientific applications.

Compared to more detailed models, such as those implemented at the phit

level (virtual channels), packet-level simulation can easily outperform detailed

models by several orders of magnitude. We present extensive validation stud-

ies of our MPI and interconnect models, including a trace-based study using

5

data obtained from executing real-life computational physics code on an exist-

ing high-performance computing platform. Our experiments suggest that our

packet-level models can provide sufficient accuracy.

3. PPT’s interconnection network models can be easily incorporated with the

application models. Our interconnection network models interface with the

message-passing interface (MPI) model. MPI is the most commonly used par-

allel programming tools for scientific applications on modern HPC platforms.

Our MPI model provides convenient methods for deploying the parallel appli-

cations and performing communications on the target parallel platform. We

have implemented all common MPI functions, including point-to-point com-

munications (both blocking and asynchronous methods) and collective oper-

ations (such as gather/scatter, barriers, broadcast, reduce, and all-to-all). In

addition, we implemented MPI groups and communicators so that collective

communications can take place among an arbitrary subset of processes. As

a result, most scientific applications can be simulated directly using the com-

munication functions provided by the MPI model.

4. We conduct extensive validation study of our interconnect models, includ-

ing a trace-driven simulation of real-life scientific application communication

patterns. We also perform performance study of a computational physics-

based parallel application using our interconnect model. All the results show

that our interconnect models provide reasonably good accuracy. Moreover, we

study the parallel performance of our integrated models on large-scale HPC

platforms and show good parallel scaling performance.

6

1.2.2 Emergency Demand Response for HPC Systems

Being a massive energy consumer of the power grid, the HPC sector can contribute

toward ensuring grid stability and energy reduction through its participation in the

demand response programs. Recent research has studied the feasibility and iden-

tified the associated challenges in the HPC demand response [BGA+15, PBG+16].

Patki et al. [PBG+16] suggested that supercomputing systems in the U.S. may be

willing to participate in the demand response programs if tighter and more frequent

communications can be established between the supercomputing centers and their

energy service providers. Patki’s study is based on a qualitative analysis of coop-

erative demand-management strategies. We note, however, that there is no related

work on the job scheduling and resource provisioning strategies at HPC centers that

can operate with demand response. Various energy-efficient HPC job scheduling

algorithms (e.g., [SLGK14, PLS+15, ECLV12]) and resource provisioning methods

(e.g., [GFFC07, LM06, BHC+16]) have been proposed in the literature. These stud-

ies aim at reducing the overall energy consumption of the HPC systems, but do

not consider demand response. In this dissertation, we explore the opportunities of

the HPC centers participating in the demand response programs through a study

of detailed job scheduling and resource provisioning strategies.

Contributions. Our contributions to power modeling in terms of emergency

demand response participation from HPC systems are summarized below:

1. We propose an HPC job scheduling and resource provisioning algorithm for

demand response. For job scheduling, we assume first-come-first-serve (FCFS)

with possible job eviction and restart in response to the reduced power level

during the demand response periods. For resource provisioning, we dynam-

ically scale the frequency of the processors in order to achieve optimal en-

7

ergy conservation and power stability during the demand response periods.

During normal periods, the processors in HPC systems operate at maximum

frequency for best performance. Also, we develop a simulator for job schedul-

ing and resource provisioning to study the effect of demand response. The

simulator is built upon a parallel discrete-event simulation engine capable for

handling large-scale models. The simulator has been validated using real-life

HPC workload traces.

2. We exploit the power-capping capability in the modern processors to enable

HPC system emergency demand response participation. We present predic-

tion models for power and performance prediction with respect to different

power-capping values. We propose a demand response participation model for

HPC systems based on the prediction models with power capping. We extend

the HPC system demand response model by exploiting job malleability. We

incorporate an energy-to-solution prediction model to the demand response

model in order to determine the optimal job size and power-capping values.

3. We conduct extensive trace-based simulation studies to show the effectiveness

of the proposed job scheduling and resource provisioning algorithm for demand

response. The results demonstrate that our proposed approach is a viable

solution for attracting supercomputing centers to participate in the demand

response programs as it can improve power stability and energy reduction

with only moderate increase in execution time for the jobs. Moreover, we

perform experiments using real-life scientific applications on an existing cluster

to measure application performance and power usage under different power-

capping values. Using these measurements, we use trace-based simulation to

show the effectiveness of our proposed demand-response model and compare

it with power-capping policies implemented in processors.

8

1.2.3 Economic Demand Response for HPC Systems

Demand response program anticipates customers to reduce energy consumption

upon requests from the power utility companies during the time periods of high

demand power usage or temporary shortage in power supply. Customers are willing

to participate in demand response programs in expectation to receive financial or

operational benefits from the utility companies. Overall, demand response has be-

come increasingly popular among power utility companies. Revenue earnings from

demand response has increased significantly in recent years. For example, a re-

port from PJM Interconnection (a large utility company servicing many states in

the U.S.) shows that it has achieved an earning of $650 million from various de-

mand response participation in 2016, a significant increase from only about $50

million in 2006 [PJM17]. Much of this growth can be attributed to the economic

demand response programs using incentives provided via fluctuations in electricity

pricing, through which the power utility companies can signal the consumers to

adapt their behaviors at various time granularities (such as hourly). In the final

part of this dissertation, we address how to reduce energy cost in HPC systems

through a contract-based economic demand response participation.

Contributions. Our contributions are summarized below:

1. We propose an economic demand response participation model for HPC sys-

tems for energy reduction. We propose a rewarding scheme to be offered by

the HPC operator to the HPC users based on contract design to encourage

the willing participation of the users in demand response.

2. Our analyses demonstrate that the proposed contract-based demand response

mechanism preserves important properties of the contract theory, including

individual rationality (IR), incentive compatibility (IC), and monotonicity.

9

3. Through trace-based simulation, we provide the empirical evidence of our pro-

posed approach and further demonstrate the effectiveness of our proposed

mechanism compared to other existing approaches. The simulation experi-

ments also support our analytical claims in practice.

1.3 Related Publications

This dissertation is drawn from the following publications:

• Kishwar Ahmed, Jason Liu, and Kazutomo Yoshii. Enabling Demand Re-

sponse for HPC Systems Through Power Capping and Node Scaling. Submit-

ted to IEEE International Conferene on High Performance Computing and

Communications (HPCC), 2018.

• Kishwar Ahmed, Jesse Bull, and Jason Liu. Contract-Based Demand Re-

sponse Model for HPC Systems. Submitted to International Conference on

Parallel Processing (ICPP), 2018.

• Kishwar Ahmed, Jason Liu, Abdel-Hameed Badawy, and Stephan Eidenbenz.

A Brief History of HPC Simulation and Future Challenges. In 2017 Winter

Simulation Conference (WSC), pages 419-430. IEEE, 2017.

• Kishwar Ahmed, Jason Liu, and Xingfu Wu. An Energy Efficient Demand-

Response Model for High Performance Computing Systems. In 2017 IEEE

25th International Symposium on Modeling, Analysis, and Simulation of Com-

puter and Telecommunication Systems (MASCOTS), pages 175-186. IEEE,

2017.

• Kishwar Ahmed, Jason Liu, Stephan Eidenbenz, and Joe Zerr. Scalable inter-

connection network models for rapid performance prediction of HPC applica-

10

tions. In High Performance Computing and Communications (HPCC), 2016

IEEE 18th International Conference on, pages 1069-1078. IEEE, 2016.

• Kishwar Ahmed, Mohammad Obaida, Jason Liu, Stephan Eidenbenz, Nandak-

ishore Santhi, and Guillaume Chapuis. An integrated interconnection network

model for large-scale performance prediction. In Proceedings of the 2016 ACM

SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS),

pages 177-187. ACM, 2016.

1.4 Outline of the Dissertation

We discuss the background and related work in Chapter 2. We first provide a snap-

shot of the existing performance prediction models and simulators in Section 2.1.

We consider models for different sub-systems, including processors, memory, and

interconnection networks. We also discuss application models that can capture

the runtime behavior of the large-scale scientific applications. We discuss analytical

models and tools for energy and power prediction of the HPC systems in Section 2.2.

We present how to model HPC applications’ performance on underlying archi-

tecture, and present our rapid performance prediction models for large-scale inter-

connection network in Chapter 3. Section 3.1 discusses background information and

challenges. Section 3.2 describes related works and compares our approach with

the existing methods. Section 3.3 provides an overview of our design. In the same

section, we also provide the MPI model and the details of our torus, dragonfly, and

fat-tree interconnection network models (along with validations). In Section 3.4,

we present trace-driven simulation of real-life scientific application communication

patterns, as well as performance study of a computational physics-based parallel

application using one of our interconnect models.

11

Chapter 4 describes our approach to address HPC system’s massive power con-

sumption and presents our energy-efficient emergency demand-response models for

HPC systems. We present background information and contributions in Section 4.1.

In Section 4.2, we describe related work and compare the existing approaches with

our proposed method. In Section 4.3, we explore the opportunities of the HPC sys-

tems participating in the emergency demand programs through a study of detailed

job scheduling and resource provisioning strategies. In Section 4.4, we exploit the

power-capping property in the modern processors and node scaling of HPC appli-

cations to enable HPC system emergency demand response participation.

Chapter 5 presents our economic demand-response model for HPC systems. Sec-

tion 5.1 discusses background information and challenges. Section 5.2 describes

related works and compares our approach with the existing methods. Section 5.3

describes the contract-based HPC economic demand response participation model.

In Section 5.4, we present the problem formulation and corresponding algorithm.

We also describe the necessary conditions for contract design mechanisms in the

same section. In Section 5.5, we use real-life data to show effectiveness of our pro-

posed solution. Finally, we present our concluding remarks and provide direction

for future work in Chapter 6.

12

CHAPTER 2

BACKGROUND

2.1 Performance Prediction Models

HPC systems today consist of hundreds of thousands of compute nodes, and can

perform tens or hundreds of quadrillion floating point operations per second [Tsa13,

Cou16]). HPC architectures have gone through rapid changes to facilitate the in-

creasing computational demand of scientific applications in many areas, such as

astrophysics, particle physics, earth and climate science, computational chemistry,

computational biology, and so on. Novel technologies, for example, many-core pro-

cessors, GPUs, persistent memory, and complex interconnection networks, have been

introduced constantly to fulfill the increasing scale and performance of such systems.

With the changing hardware architectures also comes the changing software design

and implementation of scientific applications in order to take best advantage of the

new computing resources.

Modeling and simulation plays an important role for performance prediction and

analysis of current and future HPC systems. It can be particularly useful for evalu-

ating the whole-system impact when new components are introduced, for comparing

the performance of different system design alternatives, and for locating performance

issues of computational code on novel HPC platforms even before their realization.

It is thus not surprising to see many HPC models and simulation tools created in

the past for exactly the same purposes. They model the HPC systems at different

granularity: some are created to study specific components of the HPC systems

(processors, memory, interconnect, storage, and so on), and others are meant for

studying the overall system performance in aggregate. The important difference lies

13

in the accuracy-performance trade-off that has been applied to effectively capture

the salient features of the target system.

2.1.1 Interconnection Network

HPC interconnection network offers a systematic way to connect compute nodes,

processors, memory, and storage units. Important aspects of an interconnection

network model include accurate representation of the network topology, routing,

resource scheduling (such as flow control), and network queuing. Different intercon-

nection network topologies exist in current HPC systems, including fat-tree (e.g.,

IBM’s Infiniband), torus (e.g., IBM’s Blue Gene/Q, Cray’s Gemini), and dragonfly

(e.g., Cray’s Aries). An accurate model of these interconnection networks is im-

portant for us to understand the communication cost as one of the most important

constraints on the performance of scientific applications running on HPC systems.

BigSim [ZKK04] is an early effort for performance prediction of large-scale par-

allel machines (e.g., Blue Gene/L machines), based on the model of parallel applica-

tions on the target architecture (such as using MPI). The interconnection network

models developed in BigSim are relatively simple as they do not consider network

congestion [CGL+14]. BigSim is implemented using Charm++, an object-based

and message-driven parallel programming system [KK93]. The simulator adopts

optimistic parallel simulation for scalability, using inherent determinacy of the tar-

get parallel applications to reduce the synchronization overhead. Experiments show

that BigSim is capable of scaling up to 64K simulated processors.

Structural Simulation Toolkit (SST) is an all-inclusive simulation framework for

modeling large-scale HPC systems, including processors, memory, interconnection

networks, and I/O systems [RHB+11]. SST consists of models of various hardware

components with different levels of accuracy and granularity, and attempts to achieve

14

scalability by using conservative parallel simulation based on the “distance” between

the system components. SST supports generic router models which can be used to

build different network topologies, such as binary tree, fat-tree, hypercube, flattened

2-D butterfly, 2-D and 3-D mesh, and fully-connected graph. The interconnection

network models in SST, however, do not support flow control between routers and

the links between routers are assumed to have infinite capacity. SST is an ongoing

project and is able to include active contributions of many advanced component

models as part of a scalable and open-source simulation framework.

Extreme-scale Simulator (xSim) is a performance-prediction toolkit for future

HPC architectures [EL10, BE11]. xSim applies parallel discrete-event simulation

using lightweight threads and has achieved good scalability with millions of MPI

ranks running a simple MPI program. [JE11] extended xSim to incorporate a net-

work model with different topologies (star, ring, mesh, torus, and tree), and different

hierarchical network combinations (such as network-on-chip and network-on-node).

However, the xSim models do not consider traffic congestion or any detailed blocking

behavior which can be important to applications on real interconnection networks.

µπ [Per10] is an MPI simulator built upon an efficient conservatively-synchronized

parallel simulator that presents a feature-oriented world-view. µπ supports simu-

lation of large-scale MPI applications. Experiments show that it can run up to 27

million virtual MPI ranks on as many as 216,000 cores of a Cray XT5. More re-

cently, Perumalla et. al. [PP14] proposed to extend µπ and include direct execution

to run even larger number of tasks. The simulator focus on MPI communication of

applications, but does not contain any detailed interconnection network models.

Co-Design of Exascale Storage System (CODES) simulator is another compre-

hensive simulation platform to model various large-scale systems, including storage

systems, interconnection networks, HPC and data center applications [CLL+11].

15

CODES provides detailed interconnect models for various interconnect topologies,

including torus [LC11], dragonfly [MCRC14], and fat-tree [LHSJ15]. The simulator

is built on Rensselaer Optimistic Simulation System (ROSS), a parallel discrete-

event simulation engine using reverse computation [CBP02], and is capable of simu-

lating very large interconnect configurations (with millions of nodes). Trace-driven

capabilities have also been added to CODES to replay large execution traces for

studying network performance [AJB+15].

Garnet [AKPJ09] is an on-chip interconnection network simulator, which builds

upon the lacking of GEMS [MSB+05] and performs “detailed” interconnect commu-

nication between on-chip routers. Through modeling detailed router microarchitec-

ture, Garnet is able to capture various details such as virtual channel arbitration

and realistic link contention. Garnet has provision for easy-configuration of various

parameters (e.g., different network topologies, interconnect bandwidth configuration

through flit size, router parameters such as arbitrary number of input and output

ports, various routing algorithms). TOPAZ [APM+12] is yet another open-source

NoC simulator with broader analysis spectrum (e.g., tradeoffs between accuracy,

simulation speed for various interconnection network). It has an easy incorporation

capability with other simulation tools (e.g., GEMS and gem5) in runtime. TOPAZ

is multithreaded, therefore providing more accurate prediction capability without

compromising simulation execution time. In addition to being capable of simulat-

ing NoCs in multicore processors, TOPAZ also supports simulation of large-scale

interconnection networks and is able to simulate networks consisting of millions of

routers.

16

2.1.1.1 A Parallel Discrete-Event Simulation Engine

All our initerconnection network models are developed based on Simian, which

is an open-source, process-oriented parallel discrete-event simulation (PDES) en-

gine [SEL15]. Simian has two independent implementations written in two inter-

preted languages, Python and Lua, respectively. Simian uses a conservative barrier-

based synchronization algorithm [Nic93] for parallel execution.

Simian has several distinct features. First, Simian adopts a minimalistic design.

For example, the Python implementation of Simian consists of only around 500 lines

of code. As a result, it requires low effort to understand the code and it is thus easy

for model development and debugging. Second, Simian features a very simplistic

application programming interface (API). To maximize portability, Simian requires

minimal dependency on third-party libraries. Third, Simian takes advantage of just-

in-time (JIT) compilation for interpreted languages. For certain models, Simian has

demonstrated capable of outperforming the C/C++ based simulation engine.

To develop models on Simian, it is necessary to understand the Simian API,

which contains only three main modules: the simulation engine, entities, and pro-

cesses. A simulation engine is a logical process responsible for synchronizing with

other logical processes (using a simple window-based conservative synchronization

mechanism). Entities are containers for state (such as a network switch or a com-

pute node). The entities also contain event handlers (called services in Simian).

An entity can communicate with others by scheduling services at the other enti-

ties. Processes are independent threads of execution on the entities. Simian uses

lightweight threads to implement the processes—greenlets in Python and coroutines

in Lua.

17

2.1.2 Memory System

The processor memory has also gone through rapid changes in architectural de-

sign for increased capacity and performance. [DBM+11] projected that the mem-

ory capacity would reach as much as 128 peta bytes, mixing different technologies

from DRAM to non-volatile memory with varying performance aspects (in terms of

throughput, access latency, etc.) There exist a number of simulators in the literature

for modeling the memory system.

Among the early efforts for simulation of memory system, CACTI [WJ96] is per-

haps the most versatile tool with capability to model memory hierarchy at various

levels: registers, buffers, caches, main memory. Another well-established mem-

ory simulator is DRAMsim [WGT+05]. It is an open-source cycle-accurate DRAM

simulator, which supports various DRAM types, including SDRAM, DDR, DDR

II Memory. The simulator considers various components of DRAM (e.g., DRAM

memory controllers, DRAM modules for bits/data storage, and buses through which

the DRAM modules communicates), and model them at great detail. It can also

model the power consumption of DRAMs. DRAMsim2 [RCBJ11] is an extension of

DRAMsim where it can simulate DDR II and III memory systems. It is important

to note that both DRAMsim and DRAMsim2 are publicly available, and they can

be incorporated with other simulators (e.g., gem5 as noted in Subsection 2.1.3) as

part of a large system simulation framework.

There are also many recently-proposed memory simulators to support simula-

tion of DRAM memory system. For example, USIMM [CBS+12] is a DRAM main

memory system simulator with support for power model based on the Micron power

calculator [Jan10]. The USIMM simulator is capable of working with multiple work-

load traces, where each trace represent a different program being executed on a dif-

18

ferent processor. USIMM provides interfaces to trace-based processor model. The

simulator supports a number of memory scheduling algorithms proposed in the liter-

ature, including FCFS, credit-fair, power-down, close-page, first-ready-round-robin,

and MLP-aware. The trace based nature of the simulator is both an advantage and

disadvantage at the same time. DrSim [JYE12] is another open-source cycle-based

DRAM memory system simulator. A main feature of this simulator is its focus on

achieving flexibility, which makes it easy to incorporate a variety of DRAM system

topologies. Ramulator [KYM15] is a recent open-source simulator for current and

future DRAM systems. Ramulator aims to be fast, efficient and easily extensible.

Currently, it provides cycle-accurate performance models for a variety of DRAM

standards (such as DDR III/IV, LPDDR3/4, GDDR5, SALP, AL-DRAM, etc.)

Ramulator’s memory model has been validated against an actual implementation

of DDR3 memory (with Micron’s DDR3 Verilog model). Compared to the other

simulators thus far, Ramulator can be shown to have achieved the best simulation

performance.

2.1.3 Processor System

The processor architecture in HPC system has gone through perhaps the most rapid

changes in recent years. Introduction of multicore and manycore architectures,

support for various instruction sets, and the arrival of accelerator technologies (such

as GPUs) are some examples of recent changes. Many simulators exist; a few have

been proposed recently to incorporate new processor architectures with modified

capabilities. They differ mostly in terms of how many instructions can be executed

per second, how many cores they can support, and how accurately they can replicate

the instruction execution behavior. In this subsection, we present some of the well-

known processor models.

19

Processor simulators have gone from a single processor (core) trace-based, func-

tional, atomic, in-order, and in-order with Cycles Per Instruction (CPI) of one, to

out-of-order cycle-accurate multicore simulators. The most famous and most widely

used single processor/core simulator is SimpleScalar [ALE02]. It simulated almost

all of the complex interactions a “modern” superscalar processor (at the time) would

have from reorder buffer, multiple issue, register renaming, complex branch predic-

tion schemes, caches, and Simultaneous multithreading [TEL95] (SMT, now known

as Hyperthreading in Intel Processors). SimpleScalar implemented Alpha and PISA

Instruction Set Architectures (ISAs). After Alpha died as a commercial processor,

Simplescalar suffered the stigma of an outdated ISA even though RISC ISAs were

still similar to what Alpha implemented. Depending on which version and which re-

search group used it, the simulator lacked a realistic memory system that simulated

contentions on buses connecting the caches to the memory system and the con-

tention in the DRAMs themselves and by the time that was widely available, Chip

Multiprocessors (CMPs) now known as multicores had taken the processor world

by storm. The advent of such complex processors pushed researchers to implement

multicore simulators that spanned a wider range of capabilities. RSIM [PRA97]

was the only multiprocessor simulator that was publicly available but it was not

maintained and thus was outdated by the time multicores were fashionable.

Some of the most known multicore processor simulators that came out pub-

licly were: SIMICS [MCE+02], GEMS [MSB+05], M5 [BDH+06] and lately GEMS

merged with M5 generating the gem5 [BBB+11]. gem5 is a simulator that tries

to simulate with varying degrees of accuracy and speed for different components

of a multicore system. It has the entire spectrum from atomic cores to cycle-

accurate out-of-order cores. It does have a memory subsystem including caches

and coherence protocols. It also can accommodate an on-chip interconnection net-

20

work (i.e., Network on Chip “NoC”) model/simulator (e.g., Topaz [APM+12] or

Garnet [AKPJ09]) both independently implemented. One can implement his own

coherence protocol and plug it in seamlessly. As we pointed out in Subsection 2.1.2,

DRAMSim and DRAMSim 2.0 are two examples of how flexible gem5 is. It allows

hooking up a detailed cycle-accurate memory system simulator seamlessly. GPG-

PUs as accelerators that have taken their fair share of publicity also has an existence

in gem5 where there is an implementation of a GPGPU integrated into gem5 (called

gem5GPGPU [WSS+12]).

Another aspect of gem5 is that it can perform either in System Call Emulation

(SE) mode or in Full System (FS) mode. This last point pertains to the interaction

of the programs running on the processor and the operating system (OS). In system

call emulation mode, the simulator fakes the existence of an OS by only imple-

menting the minimal set of services that a program needs to run (e.g., reading and

writing files). Whereas, in Full System mode, the simulator really boots up an OS

(e.g., Linux or Android) and the user gets a command prompt to run his or her pro-

gram(s) on the simulator. There is a trade-off between these two modes, one gives

a more realistic view of the interaction in a real system where the OS interacts and

influences the benchmarks/applications (e.g., database applications, OLTP, Data

Mining etc.), as opposed to the other applications where such interactions are not

present and only the application/benchmark performance is observed (e.g., most

scientific applications). Full system mode is far slower than system emulation mode

and likewise an out-of-order cycle-accurate core will be far slower than an in-order

CPI of one core. At the end of the day, it is a judgment call and an experimental

design parameter that has to be made consciously by the research team.

The main advantages of gem5 are the facts that it is a community research

project and that it is highly extensible. It does support a variety of instruction

21

sets spanning commercially available CPUs such as x86 and ARM as well as famous

outdated essentially extinct ISAs such as SPARC and Alpha. A new branch is

implementing the RISCV [WLPA11] open-source ISA. gem5 has taken the place

of Simplescalar in the processor simulation world where it is the defacto processor

simulator.

There are many other recent multicore and manycore simulators. For example,

McSimA+ [ALSJ13] is a lightweight, flexible, open-source simulator with detailed

models for the micro-architecture of uni-core, multicore and manycore processors.

The overall simulator design is divided into two parts: the (front-end) functional

simulation and the (back-end) timing simulation. The functional simulation is based

on Pin, a dynamic binary instrumentation tool [LCM+05] for generating the instruc-

tion stream. The timing simulation is based on an event-driven engine, responsible

for calculating the correct timing for different operations (such as cache access,

and packet traversal). McSimA+ supports simulation of various asymmetric core

structures, hierarchical cache architectures (e.g., private, shared, and non-blocking),

NoCs (e.g., buses, crossbars, ring, and 2-D mesh), memory controller, and main

memory. McSimA+ has been shown to achieve good accuracy by comparing with

previously published results and with real machine runs. McSimA+ has demon-

strated to be able to scale to a processor with thousands of cores. Like McSimA+,

ZSim [SK13] is another multicore simulator that has been shown to be lightweight,

accurate, fast, and scalable. The simulator is lightweight through the use of a user-

level virtualization technique. It is accurate for its instruction-driven timing models

and leveraging dynamic binary translation. The simulator is fast and scalable, and

runs in parallel.

Manifold [WBB+14] is another multicore simulator. It can support full sys-

tem simulation, including, for example, operating system and system binaries, and

22

can incorporate various models for transient and steady-state simulation of power,

thermal, energy and reliability. It has an open architecture with a component-

based design, so that new components can be easily incorporated through commu-

nity efforts. Manifold uses QSim [KRY12], which is a multicore emulator based on

dynamic binary translation. The emulator communicates with the back-end tim-

ing model for transparent parallel discrete-event simulation. Experiment has not

shown, however, that Manifold can scale to larger systems with more than 64 cores.

Also, its performance can only achieve a few thousand instructions per second.

This probably can be attributed partially to the fact that the simulator considers

full system multicore architecture simulation (including processors, cache, memory).

Graphite [MKK+10] is yet another multicore processor simulator that aims to scale

to thousands of cores. One of its main strengths is that it is designed to run in par-

allel. Other processor simulators exist such as ESESC [AR13], SimFlex [WWF+06],

and MARSS [PACG11].

2.1.4 HPC Applications

HPC applications exhibit distinct behaviors. An accurate model for these appli-

cations is crucial for determining the impact of technological advances in novel

HPC architectures. Some of the HPC applications are data-intensive (e.g., molec-

ular dynamics simulation and computational fluid dynamics applications). Some

are communication-intensive (e.g., NERSC MIMD Lattice Computation applica-

tion and NAS parallel benchmark applications). And yet others are I/O-intensive.

There exist many application models and analysis tools in the literature to describe

the behavior of the HPC applications with various details.

Vampir [KBD+08] is a performance analysis tool for parallel MPI/OpenMPI ap-

plications. Vampir consists of two major components: a runtime instrumentation

23

and measurement system and a visual analysis tool. The former supports program

instrumentation in different programming languages. It also supports different types

of programs: sequential programs, MPI programs, OpenMP programs, and hybrid

MPI and OpenMP programs. Vampir also supports various types of instrumen-

tation, including compiler instrumentation, library instrumentation, and manual

instrumentation. It provides runtime measurement capability to capture dynamic

application behaviors (such as application’s memory usage, I/O performance, user-

defined performance counters, etc.)

Tuning and Analysis Utilities (TAU) is a well-established, flexible, portable, ro-

bust performance instrumentation, measurement, analysis and visualization frame-

work for HPC applications [SM06]. TAU provides flexible instrumentation capa-

bility, allowing the user to select performance instrumentation at different levels of

application code. The instrumentation provides various performance information,

including various system events and user-defined events, which can be later used

for profiling and tracing. HPCTOOLKIT [ABF+10] is another application per-

formance measurement, analysis, and presentation toolkit for both sequential and

parallel applications. Instead of using source code instrumentation, HPCTOOLKIT

works directly with application binaries. HPCTOOLKIT provides effective applica-

tion analysis by providing measurement ability for a number of derived performance

metrics (e.g., peak and actual performance difference rather than simple raw data

such as operation counts).

The above tools can be used for measuring and displaying the runtime perfor-

mance of specific applications. There also exist several analytical models to capture

high-level performance. Performance and Architecture Lab Modeling Tool (Palm)

is an analytical performance model for parallel applications [TH14]. Palm performs

static and dynamic analysis of the source code and generates a tree-like hierarchical

24

data structure following some well-defined rules. Palm combines top-down semantic

insight and bottom-up static and dynamic analysis capability for parallel application

execution. Aspen [SV12] is a domain-specific language for analytical performance

modeling to enable exploration of novel algorithms and architectures. A formal

definition in Aspen includes application behavior (e.g., parameters, kernels, control

flow) and the abstract machine (e.g., node, interconnect, cache, memory, core).

2.2 HPC Power Models

HPC systems consume a massive amount of energy to support their operation. It is

well understood that effective energy-saving techniques must be considered in future

HPC systems. Power and performance prediction models are essential for designing

and evaluating energy-saving algorithms for these HPC systems. Many power and

performance modeling techniques have been proposed in the literature.

There are a number of analytical models for power and performance predic-

tion. [SBM09] proposed an analytical model for real-time prediction of processor

and system power consumption. Performance Monitoring Counters (PMCs) are

used to estimate power consumption of the processors. The proposed prediction

model is based on linear regression models where the power consumption is assumed

to be a piece-wise linear function. Similarly, [SBK13] proposed a unified quasi-

analytical performance and power model, which combines analytical modeling and

empirical analysis. The proposed method combines application analysis description

with different computation and communication parameters obtained through micro-

benchmarking to assess the impact of different applications on the performance and

energy efficiency of the target HPC system.

25

Next, we discuss some of the existing tools for power prediction. [HRT+12] pro-

posed a power, area and thermal modeling framework with leakage power prediction

capability for large-scale HPC simulation on SST. The framework provides power

and performance prediction capability of the entire HPC system (including pro-

cessor, memory and network subsystems) by incorporating different power model

libraries, including McPAT [LAS+09], HotSpot, IntSim, and ORION [KLPS09],

to support analysis of different system components (such as core, shared cache,

memory controller and network-on-chip). Multiple Metrics Modeling Infrastruc-

tures (MuMMI) environment provides a platform to facilitate analysis, modeling

and prediction of power, performance, and power-performance tradeoffs of parallel

applications on multicore systems [WCM+13]. For example, [WTCM16] proposed

performance and power models based on hardware performance counters with CPU

frequency. They used non-negative multivariate regression analysis to build models

for application execution time, system power, CPU and memory power, using a

small set of major performance counters and CPU frequency.

A different line of work on energy modeling and prediction focuses on data com-

munication in scientific applications. [DGML13] proposed a power and energy pre-

diction method for MPI communication operations. The method takes two steps:

at the calibration step, the power consumption of node and switch are measured

experimentally using an external power meter, considering the underlying features

of the supercomputer architecture; during the estimation step, the model estimates

the energy consumption of the communication operations using data obtained from

the calibration step with the user-provided program and runtime parameters (such

as the number of nodes, number of cores per node, etc.) The proposed method

has been validated at a large-scale HPC platform (Grid5000), and has been shown

to achieve accurate energy prediction for different broadcast algorithms. [GRP+13]

26

also proposed an energy-performance tradeoff for large-scale complete HPC system,

with particular consideration of energy consumption during communication phases.

The proposed analytical model uses a compiler-based architecture-independent ap-

plication analysis tool (Byfl) to identify different data-centric operations, including

the number of memory accesses, and the number of operations performed by the

application. The model captures energy consumption both for MPI communications

and shared memory communications.

27

CHAPTER 3

RAPID PERFORMANCE MODELING FOR HPC SYSTEMS

Interconnection network is a critical component of high-performance computing

architecture and application co-design. For many scientific applications, the increas-

ing communication complexity poses a serious concern as it may hinder the scaling

properties of these applications on novel architectures. It is apparent that a scal-

able, efficient, and accurate interconnect model would be essential for performance

evaluation studies. In this part of the dissertation, we present interconnect models

for predicting the performance of large-scale applications on high-performance ar-

chitectures. In particular, we present sufficiently detailed interconnect models for

Cray’s Gemini 3-D torus, IBM’s Blue Gene/Q 5-D torus, Cray’s Aries dragonfly,

and Infiniband’s fat-tree network.

3.1 Background

Recent years have witnessed dramatic changes in high-performance computing to

accommodate the increasing computational demand of scientific applications. New

architectural changes, including the rapid growth of multi-core and many-core sys-

tems, deeper memory hierarchies, complex interconnection fabrics that facilitate

more efficient data movement for massive-scale scientific applications, have com-

plicated the design and implementation of the HPC applications. Translating ar-

chitectural advances to application performance improvement may involve delicate

changes to sophisticated algorithms, to include new programming structures, dif-

ferent data layouts, more efficient buffer management and cache-effective methods,

and alternative parallel strategies, which typically require highly skilled software

architects and domain scientists.

28

Modeling and simulation plays a significant role, in identifying performance is-

sues, evaluating design choices, performing parameter tuning, and answering what-if

questions. It is thus not surprising that there exists today a large body of literature

in HPC modeling and simulation, ranging from coarse-level models of full-scale sys-

tems, to cycle-accurate simulations of individual components (such as processors,

cache, memory, networks, and I/O systems), to analytical approaches. We note,

however, that none of the existing methods is capable of modeling a full-scale HPC

architecture running large scientific applications in detail.

To do so would be both unrealistic and unnecessary. Today’s supercomputers are

rapidly approaching exascale. Modeling and simulation needs to address important

questions related to the performance of parallel applications on existing and future

HPC systems at similar scale. Although a cycle-accurate model may render good

fidelity for a specific component of the system (such as a multi-core processor)

and a specific time scale (such as within a microsecond), the model cannot be

naturally extended to handle arbitrarily larger systems or longer time durations.

Partially this is due to the computational complexity of the models (both spatial and

temporal). More importantly, no existing models are known capable of capturing

the entire system’s dynamics in detail. HPC applications are written in specific

programming languages; they interact with other software modules, libraries and

operating systems, which in turn interact with underlying resources for processing,

data access, and I/O. Any uncertainties involved with the aforementioned hardware

and software components (e.g., a compiler-specific library) can introduce significant

modeling errors, which may undermine the fidelity achieved by the cycle-accurate

models for each specific component.

George Box, a statistician, once said: “All models are wrong but some are useful.”

In order to support full-system simulation, we must raise the level of modeling

29

abstractions. Conceptually, we can adopt an approach, called “selective refinement

codesign modeling”, where we begin with both architecture and application models

at coarse level, gradually refine the models with potential performance bottlenecks,

and eventually stop at models sufficient to answer the specific research questions.

This iterative process is based on the assumption that we can identify performance

issues from the models in a timely manner. To do so, we need to develop methods

that facilitate rapid and yet accurate assessment and performance prediction of

large-scale scientific applications on current and future HPC architectures.

Performance prediction of large-scale parallel computers consisting thousands of

node and more is a challenging task. In recent years, we have witnessed the fast

growth in supercomputer design that can perform operations at scale of quadrillions

of calculations per second. The tremendous rise in the computational power is in

part attributed to the government agencies that have been supporting (and en-

couraging) the growth of large-scale supercomputing infrastructures. For example,

significant investment by the U.S. Department of Energy (DOE) on building state-

of-the-art supercomputers through programs (such as FastForward [VSC12], and

recently FastForward 2 [Dep14]) support the fact that exascale computing will con-

tinue to receive attention in years to come. Consequently, the community faces a

significant challenge for complex large-scale scientific and engineering applications

to keep up and take full advantage of the fast growth of supercomputing capabilities.

We design and develop a simulator, called the Performance Prediction Toolkit

(PPT). Four major aspects distinguish our effort from other existing approaches.

First, our simulator needs to easily integrate large-scale applications (especially,

computational physics code) with full-scale architecture models (processors, mem-

ory/cache, interconnect, and so on). Second, our simulator must be able to combine

selected models of various components, potentially at different levels of modeling ab-

30

straction, providing a trade-off between the computational demand of the simulator

and the accuracy of the models. Third, the simulator needs to adopt a minimalistic

approach in order to achieve a short development cycle. It is important that new

models can be easily incorporated in the simulator; the simulator needs to keep

up with the fast refresh rate of HPC systems. Last, the simulator must be able

to achieve scalability and high performance; it needs to be capable of handling ex-

tremely large-scale models, e.g., using advanced parallel discrete-event simulation

techniques.

PPT relies on the Simian [SEL15], a parallel discrete-event simulation engine,

and essentially consists of libraries of hardware models, application models, and

middleware models. PPT, along with Simian, is designed to be lean, written in

Python (or alternatively Lua) with minimal reliance on third-party libraries in an

effort to keep the code simple, understandable, and yet offer high performance. We

also present scaling runs of our interconnect model, which confirm the scalability of

the underlying simulation engine.

3.2 Related Work

Many HPC simulators exist. Here we focus on those that provide interconnection

network models. Some of these simulators aim at full-system simulation, where

parallel applications are simulated to their behavior on the target architecture.

BigSim [ZKK04] falls into this category. BigSim is built on Charm++ for scalable

performance, which is an object-based and message-driven parallel programming

system [KK93]. BigSim adopts an optimistic approach using the inherent deter-

minacy of the target parallel applications to reduce the overhead of the optimistic

scheme. Experiments show that BigSim is capable of scaling up to 64K processors.

31

The interconnection network model implemented in BigSim, however, is relatively

simple. For example, it does not consider network congestion in detail [CGL+14].

To study the performance of large-scale MPI applications, µπ is an MPI simulator

based on an efficient conservatively-synchronized parallel simulator that features a

process-oriented world-view [Per10]. Experiments show that the simulator is capa-

ble of simulating hundreds of millions of MPI ranks running on parallel machines.

However, µπ does not have any reasonably detailed interconnection network model.

The Extreme-scale Simulator (xSim) is a performance-prediction toolkit for fu-

ture HPC architectures [BE11]. xSim applies parallel discrete-event simulation

using lightweight threads to achieve scalability up to millions of application pro-

cesses [EL10, Eng14]. xSim also incorporates different network topologies, including

star, ring, tree, mesh, and torus [JE11]. However, unlike our interconnect model,

network congestion is omitted in xSim to gain scalability. As such, their simulator

cannot accurately model the blocking behavior of the target interconnection network

which may be of importance to the architecture/application co-design.

The Structural Simulation Toolkit (SST) [RHB+11] is a comprehensive simula-

tion framework for modeling large-scale HPC systems, including processors, memory,

network, and I/O systems. It attempts to achieve scalability using a conservative

parallel simulation approach. SST can model hardware components with different

granularity and accuracy. SST’s network model in particular contains a variety of

interconnect topologies: binary tree, fat-tree, hypercube, butterfly, mesh, and so

on. The interconnect model, however, does not provide the necessary details for

capturing important network behaviors for performance prediction. For example,

it does not support network flow control and also the links are assumed to have

infinite capacity. Our interconnect model, on the contrary, provides packet-level

32

details that can support realistic network scenarios, such as the transient network

congestion occurred during the execution of large complex applications.

The CODES simulator [CLL+11] is a comprehensive simulation platform that

can model various large-scale HPC systems, including storage systems, interconnec-

tion networks, HPC and data center applications. CODES is built on ROSS, a par-

allel discrete-event simulation engine using reverse computation [CBP02]. CODES

provides detailed models for various interconnect topologies, including torus [LCC+12],

dragonfly [MCRC12], and fat-tree [LHSJ15]. CODES has shown capable of simulat-

ing large-scale interconnect configurations (with millions of nodes). A recent paper

has proposed a trace-driven simulator (TraceR) to replay large execution traces to

predict and understand network performance and behavior [AJB+15]. TraceR is

built upon ROSS-based CODES simulator and has been shown to be able to sim-

ulate a network consisting of half million nodes using traces produced by running

BigSim applications.

Although CODES is complementary to our work, there are three major differ-

ences. First, the interconnection network models in CODES are phit-level models

that can capture more detailed transactions related to virtual channels than the cor-

responding packet-level models in PPT. While conceptually, more detailed models

may render higher simulation fidelity, the computational demand would be much

higher (by as much as several orders of magnitude). As such, a performance study

using CODES typically would only focus on simple operations (for example, a ran-

dom send/receive pattern or one collective call) and at a much smaller time scale,

while using PPT we can study more complex application behaviors with greater

efficiency and flexibility. In terms of accuracy, our experiments show that PPT’s in-

terconnection models can reasonably produce performance results that match from

other empirical studies.

33

Second, CODES does not have a full-fledged MPI model. On the contrary, the

interconnection network models in PPT are fully integrated with the MPI implemen-

tation from design. In this way, one can easily model complex application behaviors

in PPT.

Last, the interconnection network models in PPT are designed to reflect real

implementations (e.g., Cray’s Gemini, Aries, IBM Blue Gene/Q, and Infiniband). In

doing so, we can study the performance of applications over various interconnection

networks of real (either existing or planned) HPC systems.

3.3 Model

To design interconnect model for performance prediction, one need to take several

important factors into account:

• Scale: The interconnect model must be able to accommodate high-performance

computing platforms and applications at extreme scale.

• Performance: The interconnect model must run reasonably fast so that it can

be used to explore design alternatives of system architectures, software, and parallel

applications.

• Accuracy: The interconnect model must provide high fidelity sufficient to repre-

sent the effect of important design decisions, constraints and optimizations. Simple

analytical models may not be sufficient for projecting the performance of dynamic,

complex applications.

• Integration: The interconnect model must be easy to integrate with other

models, including those for processors, memory, and file systems. It is also important

that the model can be readily integrated with common software tools, such as MPI,

34

Large-Scale Scientific Applications (SNAP, TAD, MC, ..)

Message-Passing Interface (MPI)

Interconnect Models Node Models

Fat Tree Dragonfly Torus I/O and File
Systems

Memory
Cache Processor

Simian (Parallel Discrete-Event Simulation Engine)

Figure 3.1: An architectural design of PPT.

so that various scientific applications can be easily incorporated in the performance

study.

PPT is designed specifically to allow rapid assessment and performance pre-

diction of large-scale scientific applications on existing and future high-performance

computing platforms. More specifically, PPT is a library of models of computational

physics applications, middleware, and hardware that allows users to predict execu-

tion time by running stylized pseudo-code implementations of physics applications.

Fig. 3.1 presents an architectural design of PPT.

PPT models are highly parameterized for applications, middleware, and hard-

ware models, allowing parameter scans to optimize parameter values for hardware-

middleware-software pairings. PPT does not yield cycle-accurate performance met-

rics. Instead, the results from PPT are used to examine underlying algorithmic

trends and seek bottlenecks to on-node performance and scaling on HPC platforms.

The conclusions of such analysis may range from optimization of current methods

to further investigation of more substantial algorithmic variations.

An application is a stylized version of the actual application that captures the

loop structure of important numerical kernels. Not all elements of the code are

35

included in a PPT application, and it does not predict numerical accuracy of an

algorithm, but rather predicts the execution time of a given job instance.

Middleware models in PPT currently include only MPI. It interfaces with the

PPT application models and implements the communication logic in the loop struc-

ture of the actual applications.

Hardware models exist for interconnection networks and compute nodes. PPT’s

interconnection models are fully integrated with the MPI model. The interconnec-

tion models implement different network topologies and can be set up with different

configurations. The library consists of configurations for various common production

interconnection networks.

The node models in PPT use hardware parameters clock-speed, cache-level ac-

cess times, memory bandwidth, etc. Application processes can advance simulated

execution time by calling a compute-function with a task list as input, which consists

of a set of commands to be executed by the hardware, including, for example, the

number of integer operations, the number of floating-point operations, the number

of memory accesses, etc. The hardware model uses this information to predict the

execution time for retrieving data from memory, performing ALU operations, and

storing results.

3.3.1 MPI Model

The message-passing interface (MPI) model is commonly used by parallel applica-

tions and is one of the most popular parallel programming tools on today’s HPC

platforms.

The design of an MPI implementation is intricately influenced by the underlying

interconnection network. For example, Cray’s MPI implementation for the Gemini

interconnect uses Fast Memory Access (FMA). It allows a maximum of 64 bytes

36

of data transfer for each network transaction. A network transaction initiates a

single request from the source to the destination, which triggers a response from the

destination back to the source. A large message will get broken down into many

individual 64-byte transactions. There are two types of transactions. A typical PUT

transaction sends 64 bytes of data from a source to a destination. A PUT message

consists of a 32-phit request packet (i.e., 96 bytes, where each phit is 24 bits). Each

PUT message is followed by a 3-phit response packet (9 bytes) from destination to

source. A typical GET transaction consists of a 8-phit request packet (24 bytes),

followed by a 27-phit response packet (81 bytes), including 64 bytes of data.

To design an MPI model for Gemini, we need to incorporate the FMA request

and response scheme at the level of each network transaction. Cray’s MPI imple-

mentation uses both PUT and GET protocols, the decision of which to use depends

on the data size [PVB+13]. It was observed that, for data size up to 4K bytes and

also beyond 256K bytes, Cray’s MPI uses PUT. For data size between 4K and 256K

bytes, MPI chooses GET. In our implementation, we only use PUT for simplicity.

Since both PUT and GET transactions have a total of 105 bytes of traffic for each

request and response pair between the source and the destination, we expect that

the effect of selecting between PUT and GET, both in terms of network latency and

bandwidth, would be rather insignificant.

In our model, upon receiving a send request of a large MPI message, the MPI

sender needs to break down the message into individual PUT requests of at most

64 bytes each. Each message will be sent over the network with an extra 32-byte

message overhead. Upon receiving the PUT request, the MPI receiver responses

with a 9-byte ACK. We implemented a message retransmission mechanism to ensure

reliable data delivery of the MPI messages.

37

As another example of how the underlying interconnection network determines

the details of the MPI implementation, we present an example based on dragonfly

topology. Cray’s XC series network uses Aries dragonfly interconnect [AFKR12].

MPI uses Fast Memory Access (FMA) for message passing. Messaging are performed

as either GET or PUT operations (depending on the size of the message). A PUT

operation initiates data flow from the source to the target node. When a packet

reaches destination, a response from the destination is returned to the source. FMA

allows a maximum of 64 bytes of data transfer for each network transaction—larger

messages must be broken down into individual 64-byte transactions. A PUT message

consists of a 14-phit request packet (i.e., 42 bytes, where each phit is 24 bits). Each

request packet is followed by a 1-phit response packet (3 bytes) from destination to

source. A GET transaction consists of a 3-phit request packet (9 bytes), followed

by a 12-phit response packet (36 bytes) with 64 bytes of data.

To easily incorporate scientific applications that use MPI, we take advantage

of Simian’s process oriented design. As we mentioned earlier, each compute node

(host) is by itself a Simian entity. Different compute nodes communicate by sending

and receiving events (via scheduling services in Simian). We implemented each user

MPI process as a Simian process on the compute node. This allows each user MPI

process to run independently from other MPI ranks as well as other system-level

simulation processes.

Fig. 3.2 provides an example showing how to start the MPI processes on a sim-

ulated HPC cluster. The program starts by calling HPCSim to instantiate the model

for the entire cluster, including the interconnect model and the compute nodes.

Model parameters are passed as an argument in the form of a python dictionary.

Most common hardware configurations are preset in PPT for easy reuse and cus-

38

from ppt import *

config hopper (17x8x24 gemini interconnect)

model_cfg = { # a dictionary

"intercon_type" : "gemini",

"host_type" : "mpihost",

"torus" : configs.hopper_intercon,

"mpiopt" : configs.gemini_mpiopt,

}

model = HPCSim(model_cfg, ..)

mpi main function, n is matrix dimension

def cannon(mpi_comm_world, n):

... # we describe this later

start 16 mpi ranks, pass matrix dimension

model.start_mpi(range(16), cannon, 10000)

simulation starts

model.run()

Figure 3.2: An example showing running 16 MPI processes on Hopper.

tomization, including those parameters that are needed by the MPI implementation

for specific interconnection networks.

The start mpi function creates the MPI processes on the designated compute

nodes. To allow maximum flexibility, we require the users to specify a mapping

from the MPI ranks to the host IDs. The first argument to start mpi is a list. In

the example, the simulator creates 16 MPI processes and maps them to 16 compute

nodes. On the other hand, if a compute node contains multiple cores (say, 4), one

may want to allocate as many MPI ranks to the compute node. This can be easily

achieved by specifying a list in python, like: [i/4 for i in range(n)].

Each MPI process is simply a python function that takes at least one argument:

mpi comm world. Like in a real MPI implementation, it is an opaque data structure

that represents the set of MPI processes among which communication may take

place. Our design, to a large extent, resembles the MPI API. To illustrate its use,

39

cannon’s algorithm on matrix multiplication

def cannon(mpi_comm_world, n):

p = mpi_comm_size(mpi_comm_world)

id = mpi_comm_rank(mpi_comm_world)

use p, id to calc i, j, and neighbor ranks

time for reading/initing submatrics

sleep(sometime) # proportional to m^2

shift A(i,j) left by i columns

mpi_sendrecv(left_i, None, m*m*8, right_i, mpi_comm_world)

shift B(i,j) up by j rows

mpi_sendrecv(up_j, None, m*m*8,

down_j, mpi_comm_world)

for r in range(sqrt(p)-1):

time for multiplying A(i,j) and B(i,j)

sleep(sometime) # proportional to m^3

shift A(i,j) to the left

mpi_sendrecv(left, None, m*m*8,

right, mpi_comm_world)

shift B(i,j) upward

mpi_sendrecv(up, None, m*m*8,

down, mpi_comm_world)

mpi_finalize(mpi_comm_world)

Figure 3.3: Simulating Cannon’s matrix multiplication.

we use a simple example of Cannon’s matrix multiplication algorithm [Can69]. The

algorithm applies a 2-D block decomposition of the matrices. Suppose the dimension

of the matrices is n × n, each processor would be in charge of calculating a sub-

matrix of size m ×m, where m = n/
√
p, and p is the total number of MPI ranks

(assuming it’s a square number).

Fig. 3.3 shows a simulation of the Cannon’s algorithm. As we see, the pro-

gram captures the main execution skeleton of the algorithm. The timing calcu-

lation for loading and initializing the sub-matrices and for multiplying the sub-

matrices depends on the processor, cache/memory, and file system models that we

40

Table 3.1: Implemented MPI Functions
MPI Send blocking send (until message delivered to destination)
MPI Recv blocking receive

MPI Sendrecv send and receive messages at the same time
MPI Isend non-blocking send, return a request handle
MPI Irecv non-blocking receive, return a request handle
MPI Wait wait until given non-blocking operation has completed

MPI Waitall wait for a set of non-blocking operations
MPI Reduce reduce values from all processes, root has final result

MPI Allreduce reduce values from all, everyone has final result
MPI Bcast broadcast a message from root to all processes

MPI Barrier block until all processes have called this function
MPI Gather gather values form all processes at root

MPI Allgather gather values from all processes and give to everyone
MPI Scatter send individual messages from root to all processes

MPI Alltoall send individual messages from all to all processes
MPI Alltoallv same as above, but each can send different amount

ignore here. The MPI calls are mapped to the real MPI functions. We imple-

mented most common MPI functions. Table 3.1 summarizes the functions included

in our MPI model. In addition to the MPI functions specified in the table, we

also support functions that deal with groups and communicators. They include:

MPI Comm split (create new sub-communicators), MPI Comm dup, MPI Comm free,

MPI Comm group (new group), MPI Group size, MPI Group rank, MPI Group incl

(new subgroups), MPI Group excl, MPI Group free, MPI Cart create (new carte-

sian communicator), MPI Cart coords, MPI Cart rank and MPI Cart shift.

3.3.2 Interconnection Network Models

In this subsection, we present details of our interconnection network models. First,

we outline implementation of torus-based Gemini and Blue Gene/Q interconnects.

Next, we describe our dragonfly interconnect model and then focus specifically on

Cray’s Aries interconnect that has been applied in many real HPC systems. Finally,

41

Yarc-2
Router

Netlink Block

NIC 0 NIC 1Node 0 Node 1

X

Y

Z

Figure 3.4: Cray Gemini ASIC block diagram.

we present our fat-tree topology model design and an implementation of Infiniband

interconnect architecture based on fat-tree topology.

3.3.2.1 Torus-Based Interconnect Model

We designed and implemented a relatively detailed model for the Gemini intercon-

nection network. Gemini is a part of the Cray’s XE6 architecture. Cray XE6 is

a system currently used by many large-scale high-performance computing systems,

including, for example, Hopper at National Energy Research Scientific Computing

Center (NERSC), Cielo at Los Alamos National Laboratory (LANL), Blue Waters at

the National Center for Supercomputing (NCSA), Titan at the Oak Ridge National

Laboratory, and ISTeC at Colorado State University.

Each Cray XE6 compute node has two AMD Opteron processors, coupled with

its own memory (either 32 GB or 64 GB) and communication interface. The Gem-

ini network was first introduced in 2010 in Cray XE6 systems and was the most

notable difference from the earlier Cray XT systems. In Gemini, the two AMD

Opteron nodes are connected to the Gemini Application-Specific Integrated Circuit

(ASIC) through two Network Interface Controllers (NICs). The NICs have their

own HyperTransport (HT) 3 link to connect to the nodes, where the link offers up

to 8 GB/s bandwidth per node and direction [PCD+13]. The NICs within an ASIC

42

Outport

Inport

Outport

Inport

Outport

Inport

In
te
rfa
ce

Pa
ra

lle
l

In
pu

t P
or

ts
Pa

ra
lle

l
O

ut
pu

t P
or

ts

Simian Service
handle_packet_arrival()

Schedule service at other Simian entity
req.service(handle_packet_arrival)

+X

+Z

-Y

H
-Z

+Y

-X

Simian Process
routing_process()

R
Simian Process

receive_process()

Host
Simian Entity

Switch
Simian Entity

Figure 3.5: Interconnect model using Simian entities, processes, and services.

are connected through a Netlink block, enabling internal communication between

the NICs. At the heart of Gemini is a 48-port YARC router (shown in Fig. 3.4),

which is configured to construct a 3-D torus topology. The router is connected to

Netlink block through 8 links. Each router gives ten torus connection: two connec-

tions per direction in the “X” and “Z” dimension and one connection per direction

in the “Y” direction.

Unlike some other interconnection networks, such as fat-tree, torus is a blocking

network. It is possible that congestion may happen in the network where queuing

delays may negatively affect the performance of parallel applications in a significant

fashion. It is thus important to model the traffic behavior in the network imposed

by high-level applications. To do that, we need to provide a detailed queuing model

to capture the interactions of network transactions.

We implemented each compute node (which is also called a host) or interconnect

switch as a Simian entity. Fig. 3.5 shows a diagram of the design. The hosts and

switches are connected via network interfaces that simulate the queuing behavior.

A network interface may consists of multiple ports to handle parallel connections

43

between the switches (e.g., in the “X” and “Z” dimensions). Each port consists of an

output port (“outport”) and an input port (“inport”) for sending and receiving mes-

sages. To send data from the output port, Simian schedules a service (i.e., an event

handler), called handle packet arrival, at the next node (which can be either a

switch or a host), with a delay that is the sum of the current queuing delay at the

output port, the packet transmission time, and the link propagation delay between

the two nodes. Upon a packet’s arrival at a switch, the handle packet arrival

service inserts the packet into the buffer of the corresponding input port and informs

the routing process. The routing process is a Simian process that takes packets from

the input ports, calculates the next hop using the selected routing algorithm, and

then forwards the packet to the corresponding output port. If a host receives the

packet, the handle packet arrival service inserts the packet into the input buffer

of the host interface and informs the receive process, which hands the packet to the

corresponding MPI receiver accordingly.

Gemini supports multiple routing algorithms, such as deterministic, hashed, and

adaptive [VDP12]. Each routing algorithm follows dimension-order routing, where

“X” dimension is always traversed first, then “Y” dimension, and finally “Z” dimen-

sion [PVB+13]. Different routing algorithms provide different level of flexibility in

using links at dimensions. For example, the deterministic dimension-order routing

provides least amount of flexibility, where links are predetermined in each dimension.

The adaptive dimension-order routing provides most flexibility, allowing packets to

be adaptively scheduled to lightly-loaded links. In our implementation, the user can

explicitly select the routing algorithm when configuring the interconnect model.

We extended the Gemini model and developed a generic model for the torus

topologies for all dimensions (i.e., 5-D torus, 6-D torus etc.). We now specifically

44

focus on the interconnect for the Blue Gene/Q architecture, which is based on a 5-D

torus topology.

IBM’s Blue Gene/Q is a system currently used by many large-scale high-performance

systems (e.g., Sequoia and Vulcan at Lawrence Livermore National Laboratory, Mira

at Argonne National Laboratory). Blue Gene/Q is a 5-D torus-based interconnect

architecture, where each switch node connects to ten neighboring switches (two in

each direction in five dimensions). The network is optimized for both point-to-

point and collective MPI communications [IDR16]. The message unit (MU) in Blue

Gene/Q supports both direct PUT and remote GET, where messages are packe-

tized for transmission [CEH+11]. Data portion of packets increments in chunks of

32 bytes, up to 512 bytes [CEH+11]. Packets contain 32-byte header: 12 bytes for

the network and 20 bytes for the MU.

3.3.2.2 Dragonfly-Based Interconnect Model

Dragonfly topology was first proposed in [KDSA08]. It is a cost-efficient topology,

which reduces network cost through exploiting the economical, optical signaling

technologies and high-radix (virtual) routers. Dragonfly topology has a three-tier

network architecture [KDSA08]. At first level, each router is connected to p nodes,

usually through backplane printed circuit boards (PCBs) links. At second level, a

group is formed through connecting a routers to each other. The local connections

used in this level are referred to as intra-group connections. These connections are

typically built using short-length electrical cables. At the last level, each router

has h inter-group connections to routers in other groups. These global connections

are usually built using longer optical cables. The maximum network size of such

dragonfly topology is ap(ah+ 1) nodes.

45

In our work, we consider a dragonfly topology with local link arrangement to be

completely-connected (i.e., a 1-D flattened butterfly). Therefore, each router has

a − 1 local connections to the other routers in the group. Global link arrangement

specifies how switch in a group is connected to switch of the other group. Several

alternatives for global link arrangements are defined and evaluated against each

other in the literature (e.g., consecutive, palmtree, circulant-based [CVB15]). In

this work, we consider the consecutive arrangement of global links, as also consid-

ered in the paper where dragonfly was initially proposed [KDSA08, CVB15]. The

consecutive arrangement connects routers in each group consecutively, where groups

are also numbered consecutively.

In our dragonfly implementation, we support two types of routing: minimal

(MIN) and non-minimal (VAL). MIN routing is ideal for benign traffic patterns (e.g.,

uniform random traffic). Since we consider completely-connected local channels,

any packet can reach destination in at most three hops: one hop within the source

group to reach the switch with global connection to the destination group, one hop

to traverse the global link and one hop within the destination group to reach the

destination node. VAL routing [Val82], on the other hand, is suitable for adversarial

traffic patterns. Following the principal of this algorithm, we route a packet to a

randomly chosen intermediate group first and then route to the final destination. As

a result of using 1-D local channels, a packet generally reaches destination through

traversing two global channels and three local channels.

Another dragonfly routing variation is Universal Globally-Adaptive Load-balanced

routing (UGAL), which chooses between MIN and VAL on a packet-by-packet basis

and sends packet to paths with least queuing delay to alleviate congestion. Since

for a large-scale system, it is infeasible to know the queue information on all other

queues (UGAL-G), the switching between MIN and VAL can be performed based on

46

(a) Aries ASIC (b) Aries connections

Figure 3.6: Cray Aries block diagram.

local queue information (UGAL-L). We do not consider adaptive routing at all in our

current implementation. Our logics behind such decision are the followings: 1) We

expect adaptive routing to play a minor role in the overall performance prediction

of large-scale HPC applications compared to other factors; and 2) The additional

overhead of message communication necessary for implementing adaptive routing

would significantly impact scalability of our simulation.

Cray’s Aries network (developed as part of Defense Advanced Research Projects

Agency’s or DARPA’s program) uses dragonfly topology [FBR+12, AFKR12]. Aries

contains a 48-port router, four network interface controllers (NICs) connecting four

nodes and a multiplexer known as Netlink. The system is built from four-node Aries

blade (where each blade contains a single Application-specific Integrated Circuit or

ASIC). A simplified block diagram for Aries ASIC is shown in Fig. 3.6(a). Aries

network consists of Cascade cabinets, where each pair of cabinets can house up

to 384 nodes. There are three chassis per cabinet, each chassis contains 16 Aries

blades. Two such cabinets construct a group (i.e., each group in Cray Aries contains

six chassis or 96 Aries blades).

47

Both minimal (MIN) and non-minimal (VAL) routings are supported in Aries

architecture [Alv12]; we implemented both in our model. There are two cases. For

intra-group routing, MIN routing requires at most two hops, while VAL routing

selects a random switch inside the group and thus requires up to four hops. For

inter-group routing, MIN routing requires at most five hops to reach destination

(two local link traversals each for source and destination groups, and one global link

traversal), where VAL routing selects a random intermediate group. For the latter,

a packet needs to be routed to a random intermediate switch in each of the source

group, destination group and intermediate group, thus requiring at most fourteen

hops before a packet is reaching its destination.

3.3.2.3 Fat-Tree-Based Interconnect Model

Fat-tree is one of the most widely-used topologies for current HPC clusters and also

the dominant topology on Infiniband (IB) technology [Mel16]. Besides, this inter-

connect has also received significant attraction in data center networks [AFLV08].

Some unique properties that make fat-tree much popular among HPC and data cen-

ter networks are: deadlock avoidance without use of virtual channels, easier network

fault-tolerance, full bisection bandwidth, and so on.

Since its first introduction, many variations of fat-tree have been proposed in

the literature (e.g., [LCH04, PV97]). Among them, m-port n-tree fat-tree proposed

in [LCH04] and k-ary n-tree [PV97] are the most popular ones. In this work, we

implement the m-port n-tree variations due to its wide popularity compared to

other existing fat-tree variations [Bog14]. As such, it has been considered in recent

literature as the fat-tree topology variation for large-scale systems [LHSJ15].

An m-port n-tree is a fixed-arity fat-tree consisting of 2(m/2)n processing nodes

and (2n − 1)(m/2)n−1 m-port switches [LCH04]. The height of the tree is n + 1.

48

Each of the switches in an m-port n-tree have an unique identifier based on the

level and value of m and n. The processing nodes are the nodes in the leaf and

are also denoted uniquely. We use notation scheme outlined in [LCH04] to denote

both switches and processing nodes. We connect the switches to each other in

both upward and downward directions and also to processing nodes based on the

conditions specified in [LCH04].

We implemented routing in the fat-tree network as two separate phases: upward

phase and downward phase. In upward phase, the packet is forwarded from a source

towards the direction of one of the root switches. In downward phase, the packet

is forwarded downwards towards one of the leaf nodes as the destination. Transi-

tion between these two phases takes place at the lowest common ancestor (LCA)

switch. The LCA switch can reach both the source and destination using down-

ward ports of that switch. Many efforts exist to improve the routing performance

in fat-tree network (e.g., Valiant algorithm [VB81], ECMP [Tha00], Multiple LID

routing scheme [LCH04]). We implement the Multiple Local Identifier (MLID) rout-

ing scheme for Infiniband network, as presented in [LCH04]. MLID routing scheme

relieves the link congestion through exploiting multiple paths available in fat-tree

topology.

3.3.3 Interconnect Model Validations

Now we describe the experiments for validation of our interconnect models.

49

3.3.3.1 3-D Torus Model Validation

For these experiments, we measure the model-predicted MPI performance on Cray’s

Gemini network and compare that with published results in the literature to validate

our interconnect model.

We consider a large-scale interconnect system in real deployment. Hopper was

built by National Energy Research Scientific Computing Center/NERSC (a high-

performance computing facility of the U.S. Department of Energy (DOE)[WSB+11]).

It is a Cray XE6 system that consists of 6, 384 compute nodes connected via the

Gemini interconnect1. Each compute node contains two 12-core AMD Magny Cours

processors running at 2.1 GHz, and DDR3 1.3 GHz RAM (32 GB for each of the

6, 000 nodes and 64 GB for each of the rest 384 nodes). The entire system contains

a total of 153, 216 cores, 212 terabytes of memory, and 2 petabytes of disk. The

peak floating point operations per node is 201.6 Gflops. The peak performance of

the system has been demonstrated to reach 1.3 petaflops [KT11].

As mentioned earlier, Cray’s Gemini interconnect is a 3-D torus interconnect of

high performance [ARK10]. Dimensions of Hopper’s torus network are 17× 8× 24.

As outlined in the original design and considered in various literature [KBVH14],

the peak link speed across the X and Z dimensions is 9.375 GB/sec and in the Y di-

mension is 4.68 GB/sec. Inter-node latency is measured about 1.27 µs between the

nearest nodes and 3.88 µs between the farthest nodes across the system. Although

topologically it is a regular 3-D torus, Hopper’s interconnect is wired specifically to

optimize for the application performance, in which case the hosts are not necessar-

ily named consecutively. To account for that in our model, we provide a mapping

from the host IDs to the 3-D torus coordinates of the corresponding interconnect

1Cray XE6 has been used by many of the largest supercomputing systems over the last
decade [KBVH14].

50

switches [NER15b]. Using this one-to-one mapping, we design the hopper intercon-

nect to closely represent the communication behavior of the applications running on

the compute nodes.

The end-to-end latency between two end nodes is determined by the link (propa-

gation) delay and the number of hops between the nodes. For Hopper, the inter-node

latency has been reported to be 1.27 µs between the nearest nodes. Consequently,

we configure the link delay between the compute nodes and the corresponding switch

in our model to be half of that, which is 635 nanoseconds. The inter-node latency for

the farthest nodes on Hopper is measured to be 3.88 µs. Since the network diameter

for a 17× 8× 24 torus is 24, we can subtract two node-switch link delays from the

inter-node latency and divide the results by the network diameter. In this way, we

obtain the link delay between the adjacent torus switches to be 108.75 nanoseconds.

The result per-hop latency seems to be consistent with the empirical measurement

reported in the original design paper [ARK10].

We did a latency test by having an MPI process to send a 4-byte data to all

other MPI processes mapped on different compute nodes and measure the end-to-

end delay. Fig. 3.7 shows the histogram of the end-to-end delay. The delays are

measured between 1.27 µs and 4.07 µs, which are considered within expectation.

We also conducted a latency measurement for MPI collective operations. In partic-

ular, we measured the duration of a call to MPI Allreduce, as we vary the number

of MPI ranks and the data size. Fig. 3.8 shows the results. As expected, the collec-

tive operation has a logarithmic cost in the number of processes under the normal

situation. When the number of processes increases along with the data size, part of

the network becomes congested and the delay increase superlinearly.

To measure the MPI throughput, we select two compute nodes to run multiple

MPI processes; we designate one compute node to run only the MPI senders and

51

End−to−End Delay (in nanoseconds)

1500 2000 2500 3000 3500 4000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

13
36

206

448

320

828

1016

1070

508

882

640

224
260

72

4

Figure 3.7: A histogram of end-to-end delay between compute nodes of the simulated
HPC cluster.

the other only the MPI receivers. We vary the number of the sender and receiver

pairs (i.e., the number of processes per node, PPN) to be 1, 2 and 4. Each MPI

sender sends a series of MPI messages of a given fixed size back-to-back, using

MPI Send call, to the designated MPI receiver on the other host. The MPI receiver

simply loops and calls the MPI Recv. We run different experiments varying the size

of the MPI messages from 8 bytes to 128K bytes doubling each time between the

experiments. To get reasonable bounds of the throughput, we select two extremes:

one with the two compute nodes next to each other, and the other with the two

nodes farthest apart over the interconnect network.

Fig. 3.9 shows the aggregate throughput of all MPI senders as a function of MPI

message size. The performance levels off at 6.75 GB/s when the traffic becomes

52

0.0*100

5.0*104

1.0*105

1.5*105

2.0*105

2.5*105

3.0*105

3.5*105

 16 64 256 1K 4K 16K 64K

T
im

e
(n

an
os

ec
on

ds
)

Number of Ranks

64 bytes
256 bytes
1K bytes
4K bytes
16K bytes

Figure 3.8: Duration of the MPI Allreduce call for different number of ranks and
data size on the simulated HPC cluster.

largely bandwidth constrained. As expected, multiplexing MPI sends at the source

host achieves proportionally higher aggregate throughput for small data sizes when

the total is less than the bandwidth cap. The throughput between the farthest

nodes is lower than that between the nearest nodes due to the increased end-to-end

latency.

In Gemini, Fast Memory Access (FMA) is a mechanism for user processes to

generate network transactions. In our model, we implemented MPI only as FMA

put, where the source can write up to 64 bytes at a time. In Fig. 3.10, we reproduce

the Gemini FMA put throughput (solid lines) as a function of transfer size for 1, 2

and 4 processes per node (as published in [ARK10]). We noticed that the FMA put

throughput is significantly higher than what we have achieved using MPI, especially

at small transfer sizes, although both level off at above 6 MB/s for large transfer

sizes. We speculated that this is due to the MPI overhead. On a quiet network,

remote put has an end-to-end latency of less than 700 nanoseconds. But with MPI,

the end-to-end latency increases to 3.88 µs between the farthest nodes. To verify

53

 0

 1

 2

 3

 4

 5

 6

 7

 8 32 128 512 2K 8K 32K 128K

T
h

ro
u

g
h

p
u

t
(G

b
y
te

s
/s

e
c
)

Data Size (bytes)

MPI Throughput (Simulation Results)

nearest pair, PPN=4
nearest pair, PPN=2
nearest pair, PPN=1
farthest pair, PPN=4
farthest pair, PPN=2
farthest pair, PPN=1

Figure 3.9: MPI throughput from simulation as a function of message size for 1, 2
and 4 MPI processes per node.

that this is indeed the cause of the lowered throughput of our MPI performance,

we artificially reconfigured the link delay so that the end-to-end delay for MPI

becomes 700 nanoseconds. The results are shown in Fig. 3.10 (dashed lines), which

clearly indicates a much closer match of the simulated results with the empirical

measurements.

3.3.3.2 5-D Torus Model Validation

Now we present a validation of our 5-D torus-based Blue Gene/Q interconnect

model. We considered a real HPC system, IBM Sequoia supercomputer, that de-

ploys Blue Gene/Q interconnect architecture. IBM Sequoia was built by IBM and

is maintained by Lawrence Livermore National Laboratory. Sequoia consists of 96

racks containing 98,304 compute nodes connected via the 5-D torus topology of

dimensions 16 × 12 × 16 × 16 × 2 [CEH+12]. The bandwidth along the links is 2

GB/s [CEH+11]. The link delay is set to be 40 ns [CEH+12]. We measured the

end-to-end latency between two end nodes for a Blue Gene/Q system (to compare

54

 0

 1

 2

 3

 4

 5

 6

 7

 8 32 128 512 2K 8K 32K

T
h

ro
u

g
h

p
u

t
(G

b
y
te

s
/s

e
c
)

Data Size (bytes)

FMA Put Throughput (Empirical vs. Simulation)

empirical, PPN=4
empirical, PPN=2
empirical, PPN=1
simulation, PPN=4
simulation, PPN=2
simulation, PPN=1

Figure 3.10: Gemini FMA put throughput (as reported in [ARK10]) versus simu-
lated throughput as a function of transfer size for 1, 2, and 4 processes per node.

with the latency values reported in [CEH+11]). The end-to-end latency is measured

by the propagation delay and the number of hops between the two end nodes. In

this latency test, an MPI process sent an 8-byte data to all other MPI processes

(mapped on different compute nodes). The measured delays are between 700 ns and

1300 ns. The results are consistent with the data reported in [CEH+11] (where the

Blue Gene/Q system end-to-end latency is reported to be between 718 ns and 1264

ns).

3.3.3.3 Dragonfly Model Validation

Aries has 96 switches per group, 4 hosts per switch. Each switch has 48 network

ports: 40 of which are used to connect the switches together and 8 are used to

connect the switch to processors. We set the inter-group link bandwidth to be

4.7 GB/s per direction and intra-group link bandwidth per direction to be 5.25

GB/s [BJL+15]. The bandwidth of the interface connecting a host to its router

55

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 8 16 32 64 128 256 512 1024

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Data Size (bytes)

simulation
empirical

(a) Comparison of Aries latencies in terms
of message size

 0
 2
 4
 6
 8

 10
 12
 14
 16

 64 256 1K 4K 16K 64K 256K1024K

Th
ro

ug
hp

ut
 (G

by
te

s/
se

c)

Data Size (bytes)

simulation (pingpong)
empirical (pingpong)
simulation (unidirectional)
empirical (unidirectional)

(b) Comparison of Aries MPI throughput
in terms of message size

 10

 20

 30

 40

 50

 60

 4 8 16 32 64 128 256 512 1K 2K

Ti
m

e
(m

ic
ro

se
co

nd
s)

Data Size (bytes)

simulation
empirical

(c) Comparison of MPI Allreduce time

Figure 3.11: Aries validation.

is set to be 16 GB/s [AFKR12]. The link latency is set to be 100 ns (in a quiet

network, measured router-to-router latency is reported to be 100 ns [AFKR12]).

For validation, we considered a large-scale interconnect at a recently-developed

HPC system for validation of Aries. Trinity is being built at Los Alamos National

Laboratory by U.S. Department of Energy (DOE). Trinity uses a Cray XC40 system

that consists of 9436 nodes [WNC+15] connected via the Aries dragonfly network.

We measured average end-to-end latency for considered interconnect system as a

function of transfer size. Fig. 3.11(a) shows measured MPI latencies from our sim-

ulator. Fig. 3.11(a) also compares our latencies with the empirical result reported

in [AFKR12]. As shown in the figure, our measured MPI latencies closely resembles

the published results.

56

We measured the MPI throughput between two different nodes for different mes-

sage sizes and compared it with the empirical values also published in [AFKR12].

The results are demonstrated in Fig. 3.11(b). We considered two different types of

traffic for throughput comparison: pingpong and unidirectional. Fig. 3.11(b) shows

that, in case of pingpong traffic, the simulation closely resembles the empirical re-

sults until 4K data size and after 4K data size, we can observe a slight shift. For

unidirectional traffic, a good match is observed above 16K data size. Overall, the

model has a good prediction of the throughput in general. There are many factors

that may affect the throughput, including buffer management at both the sender

and receiver, and also system overheads that may not be included in our model.

We also conducted a latency measurement for MPI collective operations. For

this experiment, we used the configuration of interconnect deployed at supercom-

puter Darter. Darter was built by National Institute of Computational Sciences

(NICS) [FBCM14]. It is a Cray XC30 system that consists of 748 compute nodes and

10 service nodes in two groups. The nodes are connected using dragonfly network

topology with Cray Aries interconnect. Fig. 3.11(c) shows the result of measured

time for MPI Allreduce, as we vary the message size. As expected, the latency

of collective operation increases with increase in message size. When message size

becomes much higher, delay increases due to congestion in the network. We com-

pared our results for Allreduce time with the one reported at [BCY13], for a similar

configuration (i.e., the Darter supercomputer). The compared results show close

correspondence to each other.

3.3.3.4 Fat-Tree Model Validation

Now we present validation of our m-port n-tree fat-tree-based Infiniband intercon-

nect system. As an example of HPC system deploying fat-tree interconnect, we

57

 0

 1000

 2000

 3000

 4000

 5000

500 1000 2000 4000 8000Av
er

ag
e

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Number of Messages

Emulab
Simulation
FatTreeSim

(a) Nearest neighbor traffic

 0

 1000

 2000

 3000

 4000

 5000

 6000

500 1000 2000 4000 8000Av
er

ag
e

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Number of Messages

Emulab
Simulation
FatTreeSim

(b) Random destination traffic

Figure 3.12: Comparison with FatTreeSim and Emulab.

consider Stampede supercomputer specifications. Stampede is built by National

Science Foundation (NSF) at the Texas Advanced Computing Center (TACC), U.S.

Stampede consists of 6,400 nodes connected via fat-tree-based Infiniband FDR net-

work [Tex17]. The FDR Infiniband consists of 56 Gb/s Mellanox switches [Tex17]

and we use this configuration in both uplink and downlink bandwidth of our fat-tree

model. We assign 0.7 µs as uplink and downlink latency for our considered fat-tree

interconnect.

We compare our model with the output reported by a recently-proposed fat-tree

simulator, FatTreeSim [LHSJ15]. We also compare with Emulab (a network testbed)

output reported at [LHSJ15] for similar system setup. We consider a 4-port 3-tree

fat-tree interconnect with total 16 processing nodes and 20 switches. We set the

message size to 1,024 bytes. We consider two traffic patterns for comparison: nearest

neighbor and random destination. We vary the number of messages from 500 to

8,000 for conducting similar comparison to data reported in [LHSJ15]. Figs. 3.12(a)

and 3.12(b) show comparison with Emulab and FatTreeSim for the nearest neighbor

and random destination traffic, respectively. As evident from both figures, average

latency calculated for each message in our model demonstrates close correspondence

58

to the result from both Emulab and FatTreeSim and for both types of traffic with

varying number of messages.

3.4 Experiments

In this section, we first present a trace-based simulation study to demonstrate the

capability of our model for incorporating realistic applications. Next, we describe a

performance study of a parallel application (computational physics) using one of our

interconnection network models and show that our model can accurately predict the

strong-scaling trends of the application. Finally, we present a study on the parallel

performance of the interconnect model.

3.4.1 Trace-Driven MPI Simulation

Now we present a trace-based simulation study to demonstrate the capability of

our interconnect model of incorporating realistic application behaviors, and further

validate our model by comparing the communication cost predicted by our model

against the actual performance of running the scientific applications on target HPC

platforms.

In this study, we use real application communication traces provided by the

National Energy Research Scientific Computing Center (NERSC). These traces are

used for characterizing the demand of various DOE (US Department of Energy)

mini-apps run at various large-scale computing facilities [NER15a]. The traces con-

tain single-node execution profiles of the mini-apps, which include the execution

time, the execution speed (the number of instructions per second), the workload

(the number of floating-point operations), as well as other cache/memory perfor-

mance metrics, such as cache miss ratios at different levels. The traces also provide

59

0.409470006 0.410042020 MPI_Isend 2601 MPI_DOUBLE 16 9

Start time End time MPI call Data type

Count Destination
rank

Request ID

0.890784086 0.891833593 MPI_Waitall 15 13 12 11 10 9 16

Start time End time MPI call Request IDs

Figure 3.13: Format of MPI calls in the processed trace file (there is one trace file
for each MPI rank).

parallel speedup performance and MPI communication operations. The latter is of

particular interest in our study.

The DOE mini-apps in the trace collection were run at DOE’s three co-design

centers, each covering two main applications. ExMatEx (Extreme Materials at

Extreme Scale) [Law11] contains the traces of the Neutron Transport Evaluation

and Test Suite (HILO) and the Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics (LULESH). CESAR (Center for Exascale Simulation of Advanced

Reactors) [Off13] contains the traces for the MOC emulator and Nekbone, which

solves a poison equation using conjugate gradient iteration with no preconditioner

on a block or linear geometry. ExaCT (Exascale Simulation of Combustion in Tur-

bulence) [ASC17] contains traces for a multigrid solver and CNS, a stencil-based

algorithm for computing the Compressible Navier-Stokes equations.

The MPI traces was performed on Hopper (described earlier) using the open-

source DUMPI toolkit [Lab15] for different number of cores (e.g., 64, 256, and 1024

cores). For each run of the given application, there are a set of trace files, one for each

MPI rank. The original trace files are in a binary format. We converted the binary

files to text files, using the SST DUMPI toolkit [Lab15] and then processed the files

60

to assemble the necessary information of each MPI call in order, which includes the

measured start and end time of the MPI call, and the specific parameters associated

with the call, such as the source or destination rank, data size, etc. As an example,

Fig. 3.13 shows two entries of a processed trace file, one for MPI Isend and the other

for MPI Waitall.

MPI Isend is a non-blocking send; the function is expected to return immedi-

ately with a request handle, which the user can later use to query or wait for the

completion of the corresponding non-blocking MPI operation. An entry associated

with the MPI Isend call includes the start time and the end time of the MPI call.

The count indicates the number of data elements to be sent. Using the count and

the data type, one can easily determine the true size of the MPI message. In the

example, 2, 601 elements of the MPI DOUBLE type (8 bytes each) would give 20, 808

bytes of data which is scheduled to be transferred for this MPI non-blocking call.

The entry also provides the destination MPI rank and an ID to represent the request

handle returned by the MPI call. MPI Wallall waits for a list of MPI requests to

complete. Accordingly the corresponding entry in the trace provides a list of the

request IDs. The MPI function will not return until all corresponding non-blocking

operations (which may include both MPI Isend and MPI Irecv calls) are completed.

To run the trace, we start the simulation with the same number of simulated

MPI ranks. At each MPI rank, we read the corresponding processed trace file for

the rank, one entry at a time. For each entry, we first advance the simulation clock

to the exact start time of the MPI call shown in the trace, by having the simulation

process to sleep for the exact amount time equal to the difference between the MPI

start time and current simulation clock. We then call the same MPI routine in our

model and measure the time it takes to complete the MPI call in simulation. We

61

0.0*100
5.0*107
1.0*108
1.5*108
2.0*108
2.5*108
3.0*108

 0 2 4 6 8 10

D
ur

at
io

n
of

 M
PI

 C
al

l (
na

no
se

co
nd

s)

Time (seconds)

Trace Data

(a)

0.0*100
5.0*107
1.0*108
1.5*108
2.0*108
2.5*108
3.0*108

 0 2 4 6 8 10

D
ur

at
io

n
of

 M
PI

 C
al

l (
na

no
se

co
nd

s)

Time (seconds)

Simulation (without Time Shift)

(b)

0.0*100
5.0*107
1.0*108
1.5*108
2.0*108
2.5*108
3.0*108

 0 2 4 6 8 10

D
ur

at
io

n
of

 M
PI

 C
al

l (
na

no
se

co
nd

s)

Time (seconds)

Simulation (with Time Shift)

(c)

Figure 3.14: Comparing the duration of MPI calls between trace and simulation
with and without time shift.

record the time and later compare it against the end time of the MPI call in the

trace.

Fig. 3.14 shows the results of our trace-driven simulation for LULESH from Ex-

MatEx running on 64 MPI processes. Our method can be generally applied to all

other traces. LULESH is a mini-app that approximates a typical hydrodynamics

model and solves Sedov blast wave problem in 3-D [Law15]. It is a widely-studied

proxy application, which can efficiently run on various platforms and has been

ported to a number of programming models (including MPI, OpenMPI, Chapel,

and Charm++) [KBK+13]. The particular trace runs for approximately 55 sec-

onds. There are a total of 123, 336 calls to MPI Isend and the same number for

62

MPI Irecv and MPI Wait. There are 12, 864 calls to MPI Waitall, 6, 336 calls to

MPI Allreduce, 64 calls each to MPI Barrier and MPI Reduce.

Fig. 3.14(a) shows the duration of MPI calls observed from the trace (by sub-

tracting the start time from the end time). For easy exposition, we show only the

first 10 seconds of the experiment (later time exhibits similar behavior). Fig. 3.14(b)

shows the trace-driven simulation result. At first glance, the simulation shows very

similar pattern, yet the duration of the MPI calls spreads as much as three times of

the empirical results. A closer inspection shows that the simulation clock sometimes

may go beyond the start time of the MPI calls in trace. This is possible since the

simulated process may take longer time to complete the previous MPI operation.

To eliminate this bias for comparing the duration of the MPI calls between

the simulation and the empirical measurements, we introduce time shift for the

trace. When the simulation process detects that its clock goes beyond the time of

the trace, we shift the start time of all subsequent MPI calls in the trace by the

difference so that the delay of the previous MPI calls in the simulation will not affect

the subsequent calculations of the duration of the MPI calls.

Fig. 3.14(c) shows the result of simulation with this time shift. We observe that

the duration of the MPI calls becomes much lower. The outstanding spikes (up to

around 100 milliseconds) are from MPI Waitall. The staggering pattern seems to

be related to the skew in the wall-clock time of the participating compute nodes in

the original trace. This would explain the spread of the durations of the MPI calls

observed in the original trace (in the top plot).

Also, we perform a brief comparison study of different topology performance

based on the application communication traces. We run the trace for each of the in-

terconnect models we have presented (i.e., Aries, Infiniband, Gemini, Blue Gene/Q).

We use configurations of Trinity and Stampede interconnects to represent architec-

63

 0
 2
 4
 6
 8

 10
 12
 14

Aries
Infiniband

Gemini

BG/Q
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Av
er

ag
e

N
um

be
r o

f H
op

s

Si
m

ul
at

io
n

Ti
m

e
(s

ec
on

ds
)

Number of Hops
Simulation Time

Figure 3.15: Comparison of different architectures for trace-based run.

tures of Aries and Infiniband, respectively. We use interconnect configuration of

Hopper (a supercomputer built by NERSC [NER15b]) in our Gemini interconnect

validation. Hopper contains 6,384 nodes connected via the Gemini interconnect at

17×8×24. For Blue Gene/Q architecture, we use the interconnect configuration of

Mira (a supercomputer at Argonne National Laboratory, which uses 5-D torus-based

Blue Gene/Q at dimensions: 8× 12× 16× 16× 2) [ZYL+15].

For this experiment, we collected the traces for DOE mini-app Big FFT (which

solves 3-D FFT problem) on 100 processes from [NER15a]. There are a total of 400

calls to MPI Alltoallv and 500 calls to MPI Barrier. The trace also contains a num-

ber of group and sub-communication MPI calls: 4000 calls to MPI Group free, 2000

calls to MPI Group incl and 2000 calls each to MPI Comm create an MPI Comm group.

Running such trace-based simulation serves two purposes: 1) It demonstrates that

our designed topology models are capable of supporting real communication appli-

cations, and 2) It provides a comparison among different interconnect topologies

with respect to their effect on parallel applications.

64

Fig. 3.15 shows average number of hops traversed by each of the different topolo-

gies considered in this work. As can be seen in the figure, Aries incurs the mini-

mum number of hops in average, while Gemini has the maximum number of hops.

Fig. 3.15 also shows that the simulation time differs in accordance with the num-

ber of hops: Aries incurs minimum simulation time, while Gemini takes the most

simulation time, among all four types of topologies.

3.4.2 SNAP Peformance Study

The SN Application Proxy (SNAP) [ZB13] is a “mini-app” based on the production

code PARTISN [ABD+15] at Los Alamos National Laboratory (LANL). PARTISN

is a code for solving the radiation transport equation for neutron and gamma trans-

port. The resulting solution is the distribution of these sub-atomic particles in space,

direction of travel, particle speed, and time. These dimensions of space, direction,

speed, and time form a phase space that is discretized to formulate a linear system

of equations. Solving this system of equations in parallel in the most efficient man-

ner may depend on the architecture of the supercomputer employed. Simulation

capabilities provided by the PPT will allow faster exploration of the optimizations

and variations necessary when considering different computing systems.

A group of researchers at Los Alamos National Laboratory implemented an ap-

plication model for the parallel wavefront solution technique of SNAP, called SNAP-

Sim. SNAPSim uses similar input variables as described above to parameterize the

problem to describe the size of the problem and the size of the individual tasks.

Although SNAP requires iterations to formulate a solution, SNAPSim uses a fixed

number of iterations, which is a sufficient abstraction for modeling the cost of in-

structions, data flow, and communications for an actual SNAP simulation. The

sum of all work is broken up into work chunks, where each chunk represents the

65

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Processes

Predicted (SNAPSim)
Measured (SNAP)

(a) Study #1: smaller problem demon-
strates scaling limitation

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 200 400 600 800 1000 1200 1400 1600

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Processes

Predicted (SNAPSim)
Measured (SNAP)

(b) Study #2: larger problem for contin-
ued scaling

Figure 3.16: SNAPSim vs. SNAP Edison strong scaling.

solution for some chunk of spatial cells, all directions captured by a single octant

of a unit sphere, and all particles binned into a single energy group. The nature of

the problem permits that some work chunks be performed concurrently, and other

chunks wait for these upstream tasks to be completed before progressing. The model

captures this scheduling and estimates the compute time associated with a single

chunk for different architectures. The time is computed per a hardware simulator

that uses machine-specific details to estimate the computation time.

To test the SNAPSim model using the MPI and interconnect simulators provided

by the PPT, we use the PPT hardware and interconnect model of NERSC’s Edison

supercomputer. Edison is a Cray XC30 system that uses the Aries interconnect with

a dragonfly topology. Each node in Edison is composed of two sockets, each with

12 Intel Ivy Bridge cores and 32 GB of main memory.

The first problem uses a 32 × 32 × 48 spatial mesh, 192 angles, and 8 groups.

Chunk sizes for spatial parallelism contain 8 cells in the x-dimension and a number

that ranges from four cells to one cell in both the y- and z-dimensions as the number

of processes is increased. We always start from 24 cores or one compute node

to focus on the effects of off-node communication on scaling. Fig. 3.16(a) shows

66

that this problem has a low computational load at high core counts. The small

computation-to-communication ratio leads to diminishing returns with increasing

cores and perhaps even worse performance. While not in exact agreement, the

simulator is capturing the trend from measured SNAP simulations quite well.

The second problem is larger with a 64× 32× 48 spatial mesh, 384 angles, and

42 energy groups. Each chunk has 16 cells in the x-dimension and a number of cells

in the other dimensions that varies with increasing processes. Fig. 3.16(b) shows

how this problem maintains a much more consistent scaling trend due to the larger

amount of computation between communications. And importantly the PPT model

again predicts the measured trend well.

The results show the PPT can accurately predict strong scaling trends for SNAP

on modern hardware with a well-understood interconnect. Succeeding in this vali-

dation exercise permits future deployment of SNAPSim and the PPT for optimizing

performance according the strong scaling properties without requiring a system al-

location and extensive testing.

3.4.3 Parallel Performance

To assess the parallel performance of our integrated model, we conducted a set

of experiments on a 1, 500-node compute cluster located at Los Alamos National

Laboratory. Each compute node in the cluster is equipped with a 12-core Opteron

6176 12C 2.3GHz CPU. The compute nodes are connected by an Infiniband QDR

interconnect.

To obtain strong-scaling results, we simulated 156,672 MPI processes running

on the Hopper. That is, there is one MPI process running at each core of the target

supercomputer platform. For the experiment, the MPI processes perform a collective

operation, using MPI Allreduce, with different data size (1K or 4K bytes).

67

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 12 48 192 768 3072
0.0*100

2.0*105

4.0*105

6.0*105

8.0*105

1.0*106

1.2*106

1.4*106

R
un

 T
im

e
(s

ec
on

ds
)

E
ve

nt
 R

at
e

Number of Cores

1KB, run time
4KB, run time
1KB, evt rate
4KB, evt rate

Figure 3.17: Observed run time and event rate for running Simian with an 156K-
rank MPI model on a parallel compute cluster.

Fig. 3.17 shows the performance results. We ran the model varying the num-

ber of compute nodes, from 1 (12 cores) to 256 nodes (that’s 3,072 cores). For

data size of 4KB, we ran the model with at least 48 cores to save compute time.

The results demonstrate decent parallel performance of the simulator as we see the

run time steadily decreases as we increase parallelism. However, the cost of using

Simian’s Python implementation is also obvious. The aggregate event rate is low,

even for 3,072 cores. For this experiment, we did not use Python just-in-time (JIT)

compilation, which is expected to significantly improve the performance. We are

in the process of translating our model to Lua, for which Simian has demonstrated

superior performance. Using JIT and with sufficient event granularity, Simian has

been shown to achieve as much as three times the event rate of an optimized C++

parallel simulator [SEL15].

68

3.5 Summary

In this part of the dissertation, we present integrated HPC interconnect models

for performance prediction of HPC applications. Performance prediction for large-

scale scientific applications require an accurate representation of the communica-

tion cost between an extremely large number of compute nodes. Our interconnect

models are fully integrated with an MPI implementation that includes all common

point-to-point communication functions and collective operations with packet-level

accuracy. We present interconnect models for three widely-used interconnect topolo-

gies and corresponding interconnect architectures: torus (Cray’s Gemini and IBM’s

Blue Gene/Q), dragonfly (Cray’s Aries) and fat-tree (Infiniband). We conducted

extensive validation study of our integrated model, including a trace-driven simu-

lation of real-life scientific application communication patterns. We also performed

performance study of a computational physics-based parallel application using our

interconnect model. All the results show that our interconnect models provide rea-

sonably good accuracy for predicting the network behavior, while at the same time

allowing for good parallel scaling performance.

69

CHAPTER 4

EMERGENCY DEMAND RESPONSE FOR HPC SYSTEMS

Demand response refers to reducing energy consumption of participating systems

in response to transient surge in energy demand or decrease in energy supply from

the power grid, possibly resulted from an emergency incident. Demand response is

particularly important for maintaining power grid transmission stability, as well as

achieving overall energy saving. HPC systems can be considered as ideal participants

for demand-response programs, due to their massive energy demand. In this part

of the dissertation, we explore the opportunity of HPC emergency demand response

by proposing new HPC job scheduling and resource provisioning schemes.

4.1 Background

Demand response aims at energy reduction during peak electricity periods or other

emergency events, and as such provides financial incentives to its participants. Var-

ious demand response programs are offered by energy service providers to encourage

energy reduction from participants. Among these programs, emergency demand re-

sponse is most widely adopted, taking up 87% of all the demand response capabilities

across the U.S [Man14]. When supply shortage situations or emergency conditions

occur (e.g., extremely cold/hot weather, natural disasters), energy consumers re-

duce the energy consumption to requested levels and collectively prevent the power

grid from getting into blackouts, potentially saving billion of dollars’ loss. Thus,

many demand response resources, e.g., office buildings and residential customers, are

emerging and sought to participate in emergency demand response. Many electricity

markets (e.g., PJM, NYISO, and ISO-NE) serving major states in the United States

contribute to power grid stability through demand response participation [Ene14].

Prominent companies (such as Apple [FP16] and Equinix [Mis15]) are participating

70

in demand response based on electricity price. The literature includes a large body

of research and field studies of demand response for various sectors, such as data

centers and smart buildings (e.g., [WLLMR14, BCPC16, GGMP12]).

HPC systems are generally large infrastructures containing thousands of nodes

with a low latency interconnect and distributed file system. Scientific applications

with high computation and communication requirements are generally executed on

HPC systems. HPC systems can consume an enormous amount of energy during

their operation. In the U.S., the Department of Energy has set a limit in the total

power consumption of an upcoming exascale system to be within 20 MWs. It is

projected nevertheless that future HPC systems in many other countries can easily

exceed this amount; some systems may even consume hundreds of megawatts of

electricity [GR17]. Apparently, the energy cost is a major component of the overall

cost of operation. Any reduction in the electricity bill can be a significant benefit for

HPC facilities. Furthermore, the energy consumption of HPC systems can fluctuate

drastically due to workload diversity, temperature fluctuation, and dynamic power

saving technologies such as clock gating and power gating. Being able to predict

and control the massive energy demand can be important for maintaining stability

of the energy provider. We argue that by participating in the demand response pro-

gram and earning rewards from such participation, HPC systems can both reduce

the overall cost of operation and contribute to the power system stability. However,

to enable HPC systems’ demand response participation, the potential loss of per-

formance must be weighed against the possible gain in power system stability and

energy reduction.

71

4.2 Related Work

In this section, we discuss related work in performance and power prediction models,

dynamic voltage and frequency scaling (DVFS) methods for energy saving, HPC job

scheduling and resource provisioning strategies, demand response techniques for data

centers, and power allocation methods.

Many power and performance prediction models have been proposed in the lit-

erature. For example, Singh, Bhadauria, and McKee [SBM09] proposed an ana-

lytical model for real-time prediction of processor and system power consumption.

Performance monitoring counters are used to estimate the power consumption of

the processors. Shoukourian et al. [SWAB14] proposed an analytical model for

application-specific power and energy prediction. Based on historical energy us-

age by specific applications, the model predicts future power and energy usage; the

model can also adapt the prediction accuracy with further execution of the applica-

tions. Shoukourian et al. extended the AEPCP model and proposed the Lightweight

Adaptive Consumption Prediction (LACP) model to predict application execution

time, power, energy for different number of nodes and CPU frequency [SWA+15].

The LACP model, however, does not predict application characteristics for differ-

ent power capping values. Song, Barker, and Kerbyson [SBK13] proposed a uni-

fied quasi-analytical performance and power model. Their model combines applica-

tion analysis with different computation and communication parameters obtained

through micro-benchmarking to assess the impact of different applications on per-

formance and energy efficiency of HPC systems. Olschanowsky et al. [ORS+10] pro-

posed energy prediction for non-existent machines using existing application traces

with performance counters. The method, however, requires instrumentation of the

applications (at the basic block level) and predicts the total energy cost based on

72

the average energy cost at each operation. Wu et al. [WTCM16] also presented

performance and power models based on hardware performance counters with CPU

frequency. They used non-negative multivariate regression analysis to build models

for application execution time, system power, CPU and memory power, using a

small set of major performance counters and CPU frequency. They implemented a

counter-ranking method to identify the model contribution of the measured coun-

ters. The model can be used to suggest modifications of applications to improve

execution time and power consumption.

Different energy saving techniques have also been proposed for HPC systems.

They include energy-efficient design for hardware components, including CPU, mem-

ory, and interconnection network. Saving energy intuitively implies a reduction in

power consumption, runtime, or both. Wu et al. [WTCM16] classified the methods

in this area into three categories: reduce time and power, reduce time but allow an

increase in power, and reduce power while allowing an increase in time.

Energy-saving methods that exploit the dynamic voltage and frequency scal-

ing (DVFS) capabilities on processors have been introduced (e.g., [GFFC07, LM06,

RLDS+09, FPK+05]). CPU MISER [GFFC07] is an early effort that includes a

runtime DVFS-based HPC power management scheme, which exploits different ap-

plication phases using performance measurements (in cycles per instruction) during

the execution of the applications. Freeh et al. [FPK+05] proposed an energy saving

approach exploiting the energy-time tradeoff of MPI programs. Adagio [RLDS+09]

performs runtime CPU frequency scaling and exploits the variations in the energy

consumption during computation and communication phases of an application to

reduce the overall energy consumption without impacting the overall execution time

of the application. A more recent effort on DVFS by Bao et al. [BHC+16] automat-

73

ically selects the optimal frequency and core count at compile-time to achieve lower

energy.

Job scheduling and resource provisioning methods have also been proposed for

HPC systems to save energy. They assume bounded energy consumption of the

systems (e.g., [SLGK14, PLS+15, ECLV12]). Yang et al. [YZW+13] proposed a job

scheduling approach to exploit the variable electricity price and power consumption

profile of the jobs. A day is divided into two parts based on the electricity price:

on-peak and off-peak. Jobs are classified based on their power profiles (derived from

past execution data). Low power-consuming jobs are executed preferably during

the on-peak time periods, while high power-consuming jobs are executed preferably

during the off-peak time periods. Two power-aware job scheduling solutions are pro-

posed: a greedy policy and a 0-1 knapsack-based policy, where fairness is ensured

through a window-based scheduling mechanism. Sarood et al. [SLGK14] proposed an

online job scheduling and resource allocation approach to achieve power-efficiency

in HPC systems. The resource management system leverages over-provisioning,

power-capping and job malleability (i.e., dynamic shrinking and expanding the job

size) to optimally allocate power and nodes. The optimization objective is to max-

imize throughput with power constraints by dynamically allocating resources to

new and running jobs. They also proposed a prediction model that estimates an

application power characteristics at any scale. The proposed dynamic scheduling

method, however, may not be practical for HPC systems, where most jobs are

not malleable and a scheduling policy needs to ensure fairness. Pointing out these

limitations, Patki et al. [PLS+15] proposed a more practical resource management

scheme with improved power utilization and application performance (in terms of

average turnaround time). Cao, He, and Kondo [CHK16] recently proposed a job

scheduling algorithm to limit the overall system power consumption within a given

74

power budget and improve the system throughput and resource utilization. While

we also implement power-capped job scheduling in our proposed model, our goal is

to improve power grid stability and energy saving for HPC demand-response par-

ticipation. We schedule jobs and allocate resources to achieve optimal energy (only

during demand response events), while theirs is to achieve power capping.

Workload scheduling and resource provisioning in data center with considera-

tion of demand response scheme has been studied quite extensively. Load shifting

in time, geographical load balancing, speed-scaling, server consolidation, power-

capping are some of the approaches proposed in the literature for data center’s de-

mand response [WLLMR14]. However, these approaches are applicable for internet

transaction-based data center workload, not for HPC applications. For data center

workload, the service time is typically assumed to be uniform and delay intolerant

(most jobs need to be serviced within the hour from which they are submitted).

HPC jobs are much less uniform both in terms of service time and job size (re-

quested resources in the number of processors). Also, most HPC jobs can tolerate

some delays (given that some jobs may take hours or days to finish). As such, the

data center demand-response models cannot be applied to HPC systems.

Various power-capping-aware methods have been proposed in the literature to

optimize power, performance, and energy in HPC systems. Before the emergence of

hardware-level power-capping mechanisms, dynamic voltage frequency scaling, idle

cycle injection, and clock cycle modulation were popular approaches to limit the

power consumption of processors. Hardware-level power capping is the most lucra-

tive choice, since it gives the highest opportunity to save energy [GAO14]. RAPL,

an implementation of hardware-level power capping, was first introduced in Sandy

Bridge processors [RADS+12]. Patki et al. [PLR+13] performed an extensive study

of application performance for an entire cluster while limiting the power usage at the

75

node level. An optimal power allocation scheme was proposed with consideration

of application parallel efficiency and memory intensity to achieve the best applica-

tion performance. Recently, Liu et al. proposed FastCap [LCD+16], a system-wide

power-capping approach based on both CPU and memory DVFS to achieve optimal

system performance within a given budget for systems with a large number of cores.

4.3 Demand-Response Model Based on Frequency Scaling

In this section, we present our HPC demand response model based on processor

frequency scaling. At first, we present performance and energy models based on

frequency scaling in section 4.3.1, which we use for determining a job’s runtime

and energy consumption in the proposed job scheduling and resource provisioning

algorithm, which we describe next in section 4.3.2. The algorithm involves dynam-

ically adjusting the processors’ frequency for all running jobs in order to achieve

optimal energy conservation, which we describe in section 4.3.3. The algorithm pos-

sibly involves evicting running jobs during a demand-response period if the power

consumption exceeds the set limit. We describe an optimal job eviction method in

section 4.3.4. Section 4.3.5 presents a performance evaluation study.

4.3.1 Power and Performance Prediction Models

Consider the set of jobs to be executed on an HPC system is {1, 2, · · · , J}. For

each job j, we denote the average power consumption running at CPU frequency f

as p(j, f), and the execution time as t(j, f). There are quite a number of models

existed for predicting a job’s average power consumption and execution time. Here,

we use a rather simple regression-based model. We derive the relationship between

CPU power and runtime with respect to frequency using linear regression. To do so,

76

we first observe the average power and runtime characteristics of each job running at

different frequency values. We then determine a polynomial fitting function based

on the observed data.

Similar approaches can be found in other studies (e.g., [ABB+14, AW14]). The

purpose of this study is to assess the feasibility of having HPC centers to partici-

pate in the demand response programs, by proposing a job scheduling and resource

provisioning algorithm that can improve power stability and energy conservation

while maintaining good application runtime performance. Here we choose simple

prediction models, which can be later improved for more general applications.

For determining the average power consumption, we use a similar model as

proposed in [WTCM16]. The average power consumption of job j running on a

processor at frequency f can be estimated using the following third-order polynomial

function:

p(j, f) = a+ b · f + c · f 2 + d · f 3 (4.1)

where a, b, c, and d are constants determined from empirical analysis of average

power relation with different frequency values. Here, a represents the static power

consumption while running the job.

In a similar approach, we can determine the execution time of job j at frequency

f using the following function:

t(j, f) = α + β · f + γ · f 2 (4.2)

where α, β, and γ are regression coefficients determined from polynomial fitting

function using empirical data.

We assume that a job j runs with the same CPU frequency f on all nj processors.

As such, the total energy consumption of the job can then be determined as follows:

e(j, f) = nj · p(j, f) · t(j, f) (4.3)

77

 50

 100

 150

 200

 250

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Av
er

ag
e

Po
w

er
 (W

at
t)

CPU Frequency (GHz)

Quantum ESPRESSO
Gadget
Seissol
WaLBerla
PMATMUL
STREAM

(a) Average Power

 0

 20

 40

 60

 80

 100

 120

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Ex
ec

ut
io

n
Ti

m
e

(M
in

)

CPU Frequency (GHz)

Quantum ESPRESSO
Gadget
Seissol
WaLBerla
PMATMUL
STREAM

(b) Execution Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

En
er

gy
 C

on
su

m
pt

io
n

(K
J)

CPU Frequency (GHz)

Quantum ESPRESSO
Gadget
Seissol
WaLBerla
PMATMUL
STREAM

(c) Energy Consumption

Figure 4.1: Result of the power and performance prediction models for six HPC
applications.

To illustrate the power and performance prediction models, we collected fre-

quencies and frequency-related power variations for six HPC applications from an

existing study [ABB+14]. More specifically, the six applications include four sci-

entific applications (including Quantum ESPRESSO [GBB+09], Gadget [Spr05],

Seissol [KPC+08] and WaLBerla [FDK+11]) and two synthetic benchmarks (where

PMATMUL is a parallel benchmark for dense matrix multiplication, and STREAM

is a benchmark for measuring sustainable memory bandwidth [McC02]). Measure-

ments were collected when running these applications with different CPU frequen-

cies, ranging from 1.2 GHz to 2.7 GHz.

78

We use the regression models to derive the least square polynomial fitting func-

tions representing the relationship of average power consumption and execution time

with the scaling frequency for each application. Fig. 4.1 shows the result from the

power and performance regression models for the six HPC applications, as well as

their total energy consumption. Fig. 4.1(a) and Fig. 4.1(b) show the empirical data

and fitted polynomial function for average power and execution time, respectively.

Fig. 4.1(c) shows the total energy consumption for different frequencies, derived

from the average power and execution time polynomial fitting function models.

In general, the average power consumption of the applications increases as we

increase the CPU frequency. The execution time decreases as we increase the CPU

frequency. The total energy for running the applications is the product of the

average power and execution time, which may either increase, decrease, or have its

minimum somewhere in the given frequency range, depending on the applications.

4.3.2 Job Scheduling and Resource Provisioning

We describe the proposed job scheduling and resource provisioning algorithm in this

subsection. When a job is submitted, it is inserted in the waiting queue Q and the

job scheduling algorithm is invoked. Here we use the first-come-first-serve (FCFS)

policy, although other job scheduling policies can be applied as well.

The job scheduler keeps the list of running jobs R. Each job j ∈ R runs on

nj processors as requested. The scheduler determines the frequency of the proces-

sors, fj, that the job is run. The frequency can be changed dynamically during

the job’s execution depending on the current running jobs and the available power

limit. (We assume all processors running the same job maintain the same frequency

nevertheless.)

79

Algorithm 1 HPC Demand Response Job Scheduler

1: find the first eligible job j in Q
2: if job j exists then
3: dequeue job j from Q
4: allocate nj processors to run job j
5: R← R ∪ {j}
6: goto line 1
7: end if
8: determine optimal frequency ∀j ∈ R (section 4.3.3)
9: if no optimal solution exist then

10: evict jobs to reduce power consumption (section 4.3.4)
11: goto line 8
12: end if
13: reset processor frequency if changed ∀j ∈ R

Let fmin and fmax denote the minimum and maximum frequency allowed by the

HPC processor architecture. That is,

fmin ≤ fj ≤ fmax (4.4)

Let p̂ be the current power limit set by the energy service provider. The power

cap p̂ can be set to a lower value during a demand response period and infinite

otherwise. In any case, the scheduling algorithm needs to ensure that the average

power consumption of all the running jobs, prun, is bounded by the current power

limit. That is,

prun =
∑
j∈R

p(j, fj) ≤ p̂ (4.5)

The pseudo-code of the proposed HPC scheduler is shown in Alg. 1. When

invoked, the scheduler first checks to see if there is an eligible job to run in the job

waiting queue (line 1). We scan the waiting jobs from the head of the queue to the

tail of the queue according to the FCFS policy. The job w is eligible to run, (a) if

there are enough available processors, that is,

nw +
∑
j∈R

nj ≤ n̂ (4.6)

80

where n̂ is the total number of processors in the system, and (b) if the average power

consumption of all running jobs remains within the power limit (assuming we run

job w with the minimum allowed frequency):

p(w, fmin) + prun ≤ p̂ (4.7)

If such a job is found, we remove the job from the waiting queue (line 3) and

allocate the processors to run the job (line 4). The new job is placed into R, which

maintains the set of all currently running jobs (line 5). This process is then repeated

until we find all eligible running jobs from the waiting queue.

Before the new jobs begin, we first need to determine the optimal frequency

of the processors to run them (line 8). Also, it may be necessary to adjust the

frequency of existing running jobs (not just the new arrivals) to achieve the optimal

energy conservation. We discuss the details of calculating optimal frequencies in

section 4.3.3.

The job scheduler is invoked when a new job is submitted or when a running

job has finished execution. In the latter case, the completed job is simply removed

from R and the scheduler is invoked so that other eligible jobs can be scheduled to

run. Another possible case for invoking the scheduler is when the energy service

provider changes the power limit p̂ of the HPC system. This can be the start of a

demand response event, in which case a lower power limit is imposed, or at the end

of a demand response event, when the power limit returns to normal (e.g., infinite or

some higher values for hardware overprovisioned systems [PLR+16]). If the power

limit is reduced for a demand response event, it is possible that no optimal solution

can be found for frequency scaling of the existing running jobs. In that case, one

or more running jobs must be terminated prematurely to preserve power (line 10).

We discuss this step in more detail in section 4.3.4 on how to choose the victims

81

so that we can minimize the overall impact. Once the eviction is done, we need to

calculate again the optimal frequency of the remaining running jobs.

In the last step (line 13), we change the frequency of the processors of the run-

ning jobs, as long as their newly calculated frequency is different from the previous

settings. The job scheduler finishes the current invocation and will wait until it is

invoked again in response to either a new job arrival, a job departure, or a demand

response event.

4.3.2.1 Job Scheduler Simulator

We use simulation to study the effect of the proposed job scheduling and resource

provisioning algorithm both on performance and energy. Plenty job scheduler sim-

ulators exist. For example, PYSS (Python Scheduler Simulator) is an open-source

HPC workload scheduling simulator written in Python [PSL10]. The simulator

was developed by the Experimental System Lab at the Hebrew University, and has

been used to study various scheduling algorithms (e.g., [GGRT15, MV15, BGK+16,

LW15]). CQSim is another event-based simulator to study the detailed queuing

behavior of job schedulers using real system workload [Ill12]. The simulator was

developed by Illinois Institute of Technology and has been used to evaluate fault-

aware utility-based job scheduling [TLDB09], adaptive metric-aware job schedul-

ing [TRLD12], and so on. Current HPC simulators provide only limited capabilities

for studying job scheduling. For example, SST/Macro contains only limited support

for running multiple jobs via trace replay [JAC+12]. CODES offers similar capabil-

ities using trace replay to study multi-job workload of proxy applications and their

impact on communication over different interconnection networks [JBW+16].

In general, job scheduling is relatively straightforward to simulate and validate.

We developed our own simulator with trace-driven capabilities so that we can have

82

the flexibility to incorporate new scheduling functions, power-aware methods, as

well as demand response models.

Our job scheduler simulator is developed based on Simian, which is an open-

source, process-oriented, parallel discrete-event simulation engine [SEL15]. Simian

has several unique design features that make it more attractive for us to build our

scheduler simulator. First, Simian has a very simple application programming in-

terface (API). The simulator adopts a minimalistic design with only a handful of

core functions. The code base is around 500 lines at its core, which makes it easier

to understand and debug the applications. Simian also supports process-oriented

world view for easy model development. Second, Simian is developed using inter-

preted languages, including Python, LUA, and Javascript. Simian takes advantage

of just-in-time (JIT) compilation and, for some models, has demonstrated capable

of even outperforming simulators using compiled languages, such as C or C++.

Simian is also a parallel discrete-event simulator, capable of running large-scale

models on parallel platforms. Third, there has been a significant ongoing effort

in developing models for HPC architectures and applications using Simian (e.g.,

[CESP15, CNEP16, AOL+16, ALEZ16]). Our job scheduler can take advantage of

these models.

The overall design of the simulator is illustrated in Fig. 4.2. The job scheduler

simulator consists of five major components: a job dispatcher, a job executioner,

scheduling policies, application models, and a resource manager. The job dispatcher

takes four different types of events: job arrival, job departure, job eviction (when

an executed job is interrupted and removed in the middle of the run), and power

demand change (when the power service provider of the HPC center changes the

current power limit either at the start or the end of a demand response event). When

a job is submitted, it enters the job waiting queue and invokes the job dispatcher.

83

job arrival

Job
Dispatcher

Waiting Jobs Running Jobs

Job
Executioner

job departure

Resource
Manager

Processor
Allocation

Power
Allocation

Application
Models

Power
Models

Performance
Models

power demand
change

Scheduling
Policies

job eviction

Figure 4.2: The overall design of our job scheduler simulator.

The job dispatcher determines whether the job is eligible to run according to the

application models (that describe the job’s power and performance characteristics)

and the current available resources from the resource manager. The job dispatcher

processes the jobs from the waiting queue according to the scheduling policies. For

this study, we only use FCFS, although other policies, such as backfilling [SKSS02],

may be incorporated as well.

When a job is scheduled to run, the job dispatcher removes the job from the

waiting queue and put it in the list of running jobs. The job executioner allocates

the resources using the resource manager to represent the occupied processors (at

the specified frequencies) with associated power consumption for running the job.

The job executioner then simulates the job’s execution accordingly. For this study,

it is sufficient to simulate using the job’s execution time and power consumption

according to the estimates from the power and performance models. Detailed job

execution can also be simulated for specific computation and communication de-

mands, in case one needs to model the application’s runtime behavior. When a job

84

completes its execution, the job executioner removes the job from the list of running

jobs, reclaims the resources occupied by the job, and then invokes the job dispatcher

to select new eligible jobs to run.

Our simulator has also been augmented to handle demand response. We can

schedule an event to indicate the power demand change, with a lower power limit

upon the arrival of a demand response event, or an another when the power limit

returns to level for normal operations. In the former case, the job executioner may

evict jobs if the current power level is no longer sufficient to support all running

jobs. In the latter case, the job scheduler may start new jobs to run.

4.3.2.2 Simulator Validation

We conducted experiments to validate the basic functions of our job scheduler sim-

ulator. We used the real system workload traces, obtained from the Parallel Work-

loads Archive [FTK14]. The workload traces contain runtime information collected

at the San Diego Supercomputer Center (SDSC) during the time period from May

1998 through April 2000. The runtime information contains the job start time, the

job run time, the requested number of processors, and the job wait time, etc. We use

this dataset for validation by comparing the performance of our simulator with that

of PYSS [PSL10], which has been previously validated against empirical results.

The results are shown in Fig. 4.3. The specific workload trace we use contains

5,000 jobs running on a system with 512 processors. The top plot shows the length

of the job waiting queue as it fluctuates over time. The bottom plot shows the

number of available processors in the system. In both cases, we can observe that

our simulator generates results that match well with those from PYSS.

85

 0

 10

 20

 30

 40

 50

 60

 0 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

Q
u

e
u

e
 L

e
n

g
th

Time (s)

PYSS
Our Simulator

(a) Queue length

 0

 100

 200

 300

 400

 500

 600

 0 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

A
v
a

ila
b

le
 P

ro
c
e

s
s
o

rs

Time (s)

PYSS
Our Simulator

(b) Available processors

Figure 4.3: Comparing results from PYSS and our simulator.

4.3.3 Determining Optimal Frequency

This step is to calculate the frequency of the processors running the jobs. During

the normal operating time, the power limit should be infinite (or set to be the peak

power), in which case the jobs can run at the maximum allowed CPU frequency, i.e.,

fmax, to achieve the best performance. This is a conscious decision. HPC systems are

designed for high performance. A willing participation of supercomputing centers

in the demand response programs should not alter the main design purpose of these

HPC systems. We want to minimize the overall impact of demand response, in this

case, by recovering the potential performance loss by maximizing the application

performance outside the demand response periods.

However, once a demand response event happens, we need to resort to the energy

conservation mode. In this case, we want to select the proper CPU frequencies of

all running jobs so that we can minimize the energy use while observing the reduced

power limit set by the energy service provider. By reducing the energy demand, we

can contribute to stabilizing the power grid which may encounter possible emergency

situations. This frequency selection problem can be formulated as an optimization

86

problem, as follows:

Minimize:
∑

j∈R eR(j, fj)

subject to constraints (4.4) and (4.5)

where eR(j, fj) denotes the remaining energy expected to be consumed if running

job j at frequency fj. It can be calculated as follows:

eR(j, fj) = (1− αj) · nj · p(j, fj) · t(j, fj) (4.8)

where αj is the percentage of job j that has been completed thus far. This quantity

can be accumulated by the job scheduler upon each time the job is updated with a

new frequency.

It is commonly believed that the energy and frequency observe the convexity

property under certain conditions [DVMJC13], such as a job’s average power con-

sumption and execution time are monotonic functions of the frequency within a

given range. This convexity property suggests the existence of an optimal frequency

where energy consumption can be minimalized. We can therefore solve the opti-

mization problem with the sequential least squares programming algorithm using

the Han-Powell quasi-Newton method [Pow78]. The optimization problem solver

returns the frequencies f1, f2, ·, f|R| for all running jobs in j ∈ R. Note that in prac-

tice, processors can choose from a certain set of frequencies dictated by hardware.

In this case, we can pick the closest allowed frequency that is no larger than the

optimal frequency value.

4.3.4 Job Eviction

As mentioned earlier, with reduced power limit during a demand response event, it

is possible that no optimal frequencies can be found for the existing running jobs,

87

in which case some jobs have to be terminated to preserve power. In this section,

we provide an algorithm for choosing the jobs so that we can minimize the impact.

We represent the selection of job j by a binary variable, xj ∈ {0, 1}. We formulate

an optimization problem to determine the optimal subset of the running jobs such

that the power bound constraint can be satisfied, with the objective of maximizing

the energy that has already been spent by the running jobs. The idea is that we

want to keep the jobs that have consumed more energy, because evicting them would

mean this energy would be wasted as they need to rerun.

We formulate the optimization problem as follows:

Maximize:
∑

j∈R (xj · eX(j))

subject to
∑

j∈R (xj · p(j, fmin)) ≤ p̂

where eX(j) is the energy that has so far been spent running job j. On the one

hand, the job scheduler can accumulate eX(j) using power measurement. On the

other hand, we can adopt an easier alternative, by estimating the energy cost of a

job using the job’s completion percentage value αj and the projected energy used

under the current frequency fj. That is,

eX(j) ≈ αj · nj · p(j, fj) · t(j, fj) (4.9)

We can convert this optimization problem into a 0-1 knapsack problem and solve

it directly. In this case, we treat p̂ as the knapsack capacity, p(j, fmin) as the weight

associated with each job, and the spent energy eX(j) as the job’s value.

4.3.5 Performance Evaluation

In this subsection, we present an elaborate trace-based simulation study to evaluate

the effectiveness of the proposed HPC job scheduling and resource provisioning

algorithm for emergency demand response.

88

4.3.5.1 Data Sets for Benchmarking

We use real-life workload trace to evaluate our design. More specifically, the trace

was collected at the San Diego Supercomputer Center (SDSC SP2), which contains

5,000 jobs. This trace has been used widely in the literature, and referenced in a

number of studies throughout the years to generate useful workloads (e.g., [DSRI13,

KMY15]).

We use the performance and power data at different frequencies for four HPC

applications (Quantum ESPRESSO [GBB+09], Gadget [Spr05], Seissol [KPC+08]

and WaLBerla [FDK+11]), as outlined in Section 4.3.1. We use discrete frequency

values for the processors, ranging from 1.2 GHz to 2.4 GHz at 0.2 GHz intervals

and 2.7 GHz. The peak power of the processors was set to 220 W (determined

from the power consumption of the four HPC applications when running at the

maximum frequency). We target three HPC systems, which consist of 128, 256, and

512 processors, respectively. The peak power capacity for the 512-processor system

can reach 112.64 KW.

To evaluate the performance of our job scheduling and resource provisioning

algorithm for demand response, we compare it with two scheduling policies that

do not consider demand response. Performance-policy is one of the CPU frequency

scaling policies implemented in the Linux kernel [Arc17]. It always chooses the max-

imum frequency to ensure best application runtime performance [PS06, BHC+16].

Powersave-policy is the opposite to the previous one, also implemented in the Linux

kernel [Arc17]. Under this policy, the processors are run instead with the minimum

frequency, to minimize the power consumption for application execution.

In the following, we show the results from our simulation study. We first present

the power capping capability of our demand-response algorithm. We then com-

89

 0

 10

 20

 30

 40

 50

 60

 1x10
6

 2x10
6

 3x10
6

 4x10
6

Power Limit

P
o

w
e

r
U

s
a

g
e

 (
K

W
)

Time (s)

(a) With Power Capping

 0

 20

 40

 60

 80

 100

 120

 1x10
6

 2x10
6

 3x10
6

 4x10
6

P
o

w
e

r
U

s
a

g
e

 (
K

W
)

Time (s)

(b) Without Power Capping

Figure 4.4: Power usage over time with and without power capping.

pare results from the demand response algorithm with those from the two demand-

response-agnostic policies, both in terms of average job turnaround time and average

energy consumption. Finally, we show the potential improvement in the power sta-

bility achieved by the demand response algorithm.

4.3.5.2 Power Capping

During a demand response event, the proposed job scheduling and resource pro-

visioning algorithm switches to the energy conservation mode. In addition, the

system’s power consumption is also kept to be within a given power limit in order

to improve power stability. To show its effect of power capping, we designed an

experiment by changing the power limit at different time intervals to demonstrate

that our algorithm can schedule jobs according to the set power constraint at the

time.

In this experiment, we arbitrarily set different power limit over time. Fig. 4.4

shows the result when we set the power limit at regular intervals to be 50%, 30%,

41.7%, 15%, and 30% of the system’s peak power. The figure shows the power

usage of the system over time, with and without power capping. In the former case,

90

we used our demand response algorithm. In the latter case, we used the default

performance-policy, which selects the maximum CPU frequency to run the jobs.

The figure shows that our demand response algorithm can adapt to the changes in

the power limit and schedule jobs accordingly under the power constraint.

4.3.5.3 Energy versus Performance

We conducted second set of experiments to study the effect of the proposed schedul-

ing algorithm for demand response on the job’s energy consumption and execution

time.

For this study, we vary the system size to be 128, 256, or 512 processors. We

assume that a demand response event happens randomly during the system’s op-

eration and lasts for 25% of the entire duration of operation. When the demand

response event happens, we expect the power limit of the system to drop to 80%

from the peak power. We measure the job turnaround time to be between the time

when the job is submitted and the time when the job has completed its execu-

tion. We report the average job turnaround time and the average energy among all

jobs. For the demand response algorithm, we also make a distinction of the average

turnaround time and average energy between jobs that start inside or outside the

demand response period. Finally, we compare the results of our demand response

algorithm with those from using the performance-policy and the powersave-policy.

Fig. 4.5(a) shows the average job turnaround time decreases for all scheduling

policies when we increase the system size (from 128 to 256 to 512 processors). This is

expected: the average job waiting time would decrease due to less contentions when

more resources are available. The scheduler running performance-policy has the

smallest job turnaround time among the three scheduling algorithms since it always

uses the maximum CPU frequency to achieve best application runtime performance.

91

 1000
 1500

 2500

 3500

 4500

 5500

128 256 512

Av
er

ag
e

Tu
rn

ar
ou

nd
 T

im
e

(s
)

Number of Processors

Performance-policy
Demand-response (DR Event)
Demand-response (Non-DR Event)
Powersave-policy

(a) Turnaround Time

 200

 220

 240

 260

 280

 300

128 256 512

Av
er

ag
e

En
er

gy
 (K

J)

Number of Processors

Performance-policy
Demand-response (DR Event)
Demand-response (Non-DR Event)
Powersave-policy

(b) Energy Consumption

Figure 4.5: Comparing performance and energy for different scheduling policies and
with different system size.

Our demand response algorithm operates in the same way as the performance-policy

during the normal operation time (non-DR event), but performs slightly worse than

the performance-policy during the demand response time period (DR Event). The

processors may be set to run jobs with less than the maximum frequency in order

to achieve the optimal energy conservation during the demand response period.

Fig. 4.5(b) shows the average energy consumption of the jobs. The per-job en-

ergy consumption is largely independent of the system size. The difference between

performance-policy and powersave-policy is almost negligible, which is not unex-

pected. As shown previously in Fig. 4.1(c), the energy consumption of the four

applications we choose for our study (e.g., Seissol) is at a similar level at both fre-

quency extremes (at 1.2 GHz and 2.7 GHz). Considerable energy savings (around

15%) are achieved during the demand response period, when our algorithm finds

the optimal CPU frequencies to achieve the best energy conservation for running

the jobs.

We observed that both average job turnaround time and average job energy

consumption depend on the demand response event ratio (i.e., the percentage of time

in the system operation that demand response happens). In the next experiment,

92

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 20 25 33 50 100

A
v
e

ra
g

e
 T

u
rn

a
ro

u
n

d
 T

im
e

 (
s
)

Demand-response Event Ratio (%)

Powersave-policy
Demand-response

4.4% 5.4% 6.9%
10.7%

21.0%

Performance-policy

(a) Turnaround Time

 230

 235

 240

 245

 250

 255

 260

 20 25 33 50 100

A
v
e

ra
g

e
 E

n
e

rg
y
 (

K
J
)

Demand-response Event Ratio (%)

Powersave-policy
Performance-policy
Demand-response

2.9%
3.4%

4.2%

5.8%

10.6%

(b) Energy Consumption

Figure 4.6: Impact on the demand response event ratio.

we fixed the system size to be 512 processors and varied the demand response event

ratio from 20% to 100%. Fig. 4.6 shows the results. Fig. 4.6(a) shows that the

average turnaround time increases only slightly for our scheduling algorithm when

the demand response event lasts longer. Relative to the average job turnaround time

achieved by performance-policy (which does not change with the demand response

event ratio), we see that the demand response algorithm may introduce an increase

between 4.4% and 21.0% in the average turnaround time.

Fig. 4.6(b) shows that the average job energy consumption decreases with the

longer demand response event, since our scheduling algorithm would be more likely

to operate in the energy-conservation mode. Relative to the average energy achieved

by powersave-policy, we see that the demand response algorithm can achieve energy

savings from 2.9% to 10.6%.

4.3.5.4 Power Stability

An important aspect of the demand response program is that it is expected to help

stabilize the power system during the demand response periods when the power grid

may encounter instability, either due to the sudden rise in the demand or because

93

 6.5

 6.75

 7

 7.25

 7.5

 7.75

 8

 20 25 33 50 100

P
o

w
e

r
S

ta
n

d
a

rd
 D

e
v
ia

ti
o

n

Demand-response Event Ratio (%)

2.8% 3.0%
3.7%

7.7%

15.6%

Figure 4.7: Power stability during the demand response periods.

of some emergency incidents. In this case, we would like to be able to minimize the

fluctuations in the power demand of the HPC systems during the demand response

events.

Fig. 4.7 shows the standard deviation of power usage of the system over time.

In this experiment, we use the same simulation setup as in the previous experiment.

We observe that the standard deviation of the power consumption decreases as the

demand response event ratio increases. Relative to the standard deviation of the

power usage under performance-policy, the demand response algorithm is shown

to have achieved a reduction from 2.8% to 15.6%, and thus can contribute to the

stability of the power system.

94

4.4 Demand-Response Model Based on Power Capping and

Node Scaling

To cope with the variations in processing, modern processors are becoming adap-

tive, providing hardware-level power-capping capabilities that can opportunistically

adjust their core frequency based on thermal and energy constraints (e.g., Intel’s

Turbo Boost Technology). Power capping is the allocation of power to nodes mainly

to achieve an overall HPC cluster power limit. Power-capping capability is becoming

a standard feature for modern processors through various programming interfaces,

such as Intel’s running average power limit (RAPL) [Int14], AMD’s advanced power

management link (APML) [How09], and NVIDIA’s NVIDIA management library

(NVML) [Nvi15]. New intelligent features have been introduced in processors to

achieve energy efficiency through power capping at various locations in the system

hierarchy. For example, Intel’s Intelligent Power Node Manager and Data Center

Manager allow power capping at the node level and component level (e.g., pro-

cessor, memory) to achieve energy efficiency with different granularity [SCC+12].

Power capping not only helps achieve power reduction in the node but also opti-

mizes application performance within a power budget.

Power capping can be optimized to control performance and power of applica-

tions. With changes in the power limit, application execution time and average

power consumption may change, which can impact the energy-to-solution of an

application. Fig. 4.8 shows an example application behavior under different power-

capping values. Fig. 4.8(a) presents our measured energy consumption and execution

time for running an HPC application (Intel’s DGEMM application from the HPCC

suite [LBD+06]) on a cluster. As can be observed in the figure, energy consump-

tion has a convex characteristic that can be exploited to achieve optimal energy

95

 9

 10

 11

 12

 13

 14

 30 35 40 45 50 55 60 65 70
 3

 4

 5

 6

 7

 8

 9

En
er

gy
 C

on
su

m
pt

io
n

(K
J)

Ex
ec

ut
io

n
Ti

m
e

(m
in

)

Power Cap Level (Watt)

Energy Consumption
Execution Time

(a) Measurements on a Cluster

 400
 420
 440
 460
 480
 500
 520
 540
 560

 25 30 35 40 45 50 55 60
 600

 700

 800

 900

 1000

 1100

 1200

En
er

gy
 C

on
su

m
pt

io
n

(M
W

h)

Ex
ec

ut
io

n
Ti

m
e

(H
ou

rs
)

Power Cap Level (Watt)

Energy Consumption
Execution Time

(b) Reported Measurements in [TTG+16]

Figure 4.8: Impact of power capping on application characteristics.

consumption. We exploit the property to enable demand response participation in

this study. Such convexity can also be observed in the literature. For example,

Fig. 4.8(b) presents application characteristics reported in [TTG+16], where the sci-

entific applications were collected from the Rodinia benchmark suite and the NPB

benchmark suite. As evident from this figure, energy consumption has a convex

relation with changes in the power-capping values.

In this section, we propose an emergency demand-response model for HPC sys-

tems based on power capping and node scaling.

4.4.1 Exploiting Power-Capping Property

In this subsection, we present the performance prediction models we consider and

the optimization problem we implement for demand response participation of HPC

systems. We leverage the power-capping property in each node to enable demand

response participation.

96

4.4.1.1 Power and Performance Prediction Models

We now present the power-capping prediction model that we use to predict applica-

tion behavior under different power-capping values. The average power consumption

of job j running on a processor at power-capping level P can be estimated by the

following polynomial function:

p(j, P) = aj + bj · P + cj · P 2 + dj · P 3, (4.10)

where aj, bj, cj, and dj are constants determined from empirical analysis of the aver-

age power relation with different power-capping values. In particular, aj represents

the static power consumption while running the application.

In a similar approach, we can determine the execution time of job j at power-

capping level P using the following equation:

t(j, P) = αj · eβj ·P + γj, (4.11)

where αj, βj, and γj are regression coefficients determined from polynomial fitting

function using empirical data.

To gain confidence in the proposed models, we present a validation study of

the power and execution time prediction models based on real-life measurements of

application running on a cluster.

We used a system monitoring/controlling tool, called pycoolr [Yos15], to sample

per-CPU core temperatures and CPU/DRAM power consumption. The tool uses the

Intel RAPL interface to take measurements and reports the results in the JavaScript

Object Notation (json) format for later analysis. The tool can also be used to

set the upper limit of CPU power consumption. In the validation study, we used

pycoolr to set the processor’s power limit and to characterize the behavior of HPC

applications, particularly focusing on performance, temperature change, and actual

power consumption with various power-capping values.

97

We selected various HPC applications from different sources, such that they

can be representative of different application characteristics (e.g., compute-intensity

vs. communication-intensity). In particular, we chose the applications from the

CORAL benchmarks [Oak14], the NAS Parallel Benchmarks (NPB) [BBB+91], and

the HPCC Suite [LBD+06].

The CORAL initiative is a collaboration among Lawrence Livermore National

Laboratory, Oak Ridge National Laboratory, and Argonne National Laboratory and

contains a number of HPC benchmarks, representing various DOE applications. We

selected applications from the following divisions: scalable science benchmarks (ap-

plications expected to run at full scale on the CORAL systems), throughput bench-

marks (applications representing large ensemble runs), data-centric benchmarks (ap-

plications representing data-intensive workloads, such as integer operations, instruc-

tion throughput, and indirect addressing), and skeleton benchmarks (proxy appli-

cations that investigate various platform characteristics including network perfor-

mance, and multithreading overheads.) The following applications were chosen in

particular from CORAL: (1) Nekbone, a compute-intensive application supporting

various operations (such as MPI Allreduce, vector operations, and matrix-matrix

multiplication); (2) LULESH, an application that models hydrodynamics for un-

structured meshes and solves a simple Sedov blast problem; (3) Hash, an application

that evaluates the performance of architecture integer operations; and (4) XSBench,

an application that stresses system through memory capacity.

The NPB suite includes a small set of programs designed to help evaluate the

performance of parallel applications. From this suite, we selected the CG application

(class C), which uses a conjugate gradient algorithm for solving particular systems

of linear equations. From the HPCC suite, we selected Intel’s DGEMM application

for our study. DGEMM is a double-precision general dense-matrix multiply routine

98

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Level (Watt)

Prediction
Measurements

(a) AMG

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Level (Watt)

Prediction
Measurements

(b) NAS Parallel Benchmark (CG)

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Level (Watt)

Prediction
Measurements

(c) DGEMM

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140

Av
er

ag
e

Po
w

er
 (W

at
t)

Power Cap Level (Watt)

Prediction
Measurements

(d) Nekbone

Figure 4.9: Power regression model for different applications.

in the Intel MKL library. The application is designed to measure the sustained,

floating-point computational rate of a single node.

For our validation study, we varied the power-capping level from 40 W to 140

W at the increment of 20 W. We measured the average power usage and execution

time of the applications using the pycoolr tool. Fig. 4.9 shows the average power

consumption of running different applications: AMG, CG, DGEMM, and Nekbone,

respectively. We plot both the measured experiment data and the fitted model data

in the same figures. We observe that the prediction model matches with the appli-

cation power usage generally well. Fig. 4.10 shows the execution time of different

applications with different power-capping values. Similar to the power prediction

model, the execution time prediction model is reasonably accurate, as evident from

99

 105
 110
 115
 120
 125
 130
 135
 140
 145
 150

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Level (Watt)

Prediction
Measurements

(a) AMG

 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Level (Watt)

Prediction
Measurements

(b) NAS Parallel Benchmark (CG)

 170
 180
 190
 200
 210
 220
 230
 240
 250
 260

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Level (Watt)

Prediction
Measurements

(c) DGEMM

 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54

 40 60 80 100 120 140

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Power Cap Level (Watt)

Prediction
Measurements

(d) Nekbone

Figure 4.10: Runtime regression model for different applications.

the figure. We later use the measured data and prediction models to demonstrate

the effectiveness of our proposed HPC system demand-response model.

4.4.1.2 Determining Optimal Power Cap

Next, we present an optimal power cap allocation algorithm for HPC system demand

response participation.

During normal operating time, we set the power-capping value to the maximum

limit. This is to ensure that the applications are run with maximum performance,

such that demand response participation from HPC system does not impact the

original target: to achieve high-performance capability for running the applications.

100

When a demand response event happens, we exploit the power-capping property

and select an appropriate power-capping value to reduce energy consumption.

For simplicity, we assume that a job j runs with the same power cap P on all nj

processors, where nj is the job size. The total energy consumption of the job can

be determined as follows:

e(j, P) = nj · p(j, P) · t(j, P). (4.12)

Let Pmin and Pmax denote the minimum and maximum power cap allowed by

the HPC processor architecture, respectively. We determine the power cap of the

processors Pj for job j such that

Pmin ≤ Pj ≤ Pmax. (4.13)

During the demand response period, we resort to the energy conservation mode

by selecting the appropriate power cap values of all running jobs so that we can

minimize the overall energy usage. The power cap limit allocation problem can be

formulated as an optimization problem, as follows:

Minimize:
∑
j∈R

eR(j, Pj)

subject to constraint (4.4),

(4.14)

where eR(j, Pj) denotes the remaining energy expected to be consumed if running

job j at power cap Pj, which can be calculated as follows:

eR(j, Pj) = (1− αj) · nj · p(j, Pj) · t(j, Pj), (4.15)

where αj is the percentage of job j that has been completed thus far. As outlined

earlier, the energy consumption of applications at different power-capping values

has been in general shown to be convex. We can therefore solve the optimization

problem using standard optimization solver and determine optimal power-capping

values for each job.

101

4.4.2 Exploiting Power-Capping and Node-Scaling Properties

In this subsection, we extend our demand-response model to incorporate node scal-

ing for jobs that can vary the job size (i.e., with job malleability). In the preceding

section, we considered only power capping. We do so when one cannot change the

job size, that is, when the jobs are specified with a fixed number of nodes upon

arrival. In this section, we relax this constraint for malleable jobs and exploit both

node-scaling and power-capping capabilities for HPC system demand response par-

ticipation.

4.4.2.1 Energy-to-Solution Prediction Model

We first present a prediction model that incorporates the effect of both node scaling

and power capping for demand response. We consider various regression prediction

models (e.g., linear interpolation, spline interpolation) for predicting the energy-to-

solution (EtS) of the same HPC applications. We determine the type of predictor to

be used in the demand-response model based on the root-mean-square-error value

determined from the learned data and predicted data.

We implemented the following five predictor functions: (1) Linear, which cap-

tures the linear behavior of predicted function; (2) Spline, which captures the non-

linear behavior of the prediction; (3) Linear + Spline, which is a combination that

first captures the linear and then the non-linear behavior of the prediction; (4)

Spline + Linear, which is a combination that first captures the non-linear behavior

of the prediction and then the linear behavior of prediction; and (5) Linear + Spline

+ Linear, which is a combination that captures the nonlinear behavior in-between

the linear behavior predictions at the beginning and at the end. For the combined

cases, we determine the boundary value between different prediction regimes (i.e.,

102

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 100 200 300 400 500

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Number of Nodes

Prediction
Learned

(a) Hydro (Strong Scaling)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 100 200 300 400 500

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Number of Nodes

Prediction
Learned

(b) Hydro (Weak Scaling)

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Number of Nodes

Prediction
Learned

(c) Epoch (Strong Scaling)

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 100 200 300 400 500

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Number of Nodes

Prediction
Learned

(d) Epoch (Weak Scaling)

Figure 4.11: Node scaling model for different applications.

the points at which transition is made from linear to nonlinear or vice versa). After

determining the appropriate prediction function and boundary values, we are able

to predict the application behavior for unknown numbers of nodes. Then, we inter-

polate across known power-capping values to predict the application characteristics

for unknown power-capping values.

To validate the EtS prediction model for different job sizes, we collected and used

the values reported in [SWAB14] for two HPC applications: Hydro [LdVW+12] and

EPOCH [A+14]. We first consider a strong-scaling scenario for the application Hydro

and use the values from [SWAB14]. For this case, the data available were for node

numbers 1, 2, 4, 8, 16, 165, 450, and 500. Fig. 4.11(a) shows the measured data

points and predicted results for this scenario. We observe that the prediction model

103

correctly predicts a combination of nonlinear and linear predictor functions to be

used for prediction, along with the appropriate boundary value (i.e., 450 nodes in

this example). The prediction error is low. We make similar observations for Hydro

under weak scaling, as shown in Fig. 4.11(b): the prediction error is reasonably low

for this application.

Next, we consider a strong-scaling scenario for the application EPOCH. Fig. 4.11(c)

presents the prediction for EPOCH application with strong scaling. We use the val-

ues from [SWAB14]. For this case, the data available were for node numbers 64, 75,

90, and 128. Fig. 4.11(d) presents the measured data points (for node numbers 16,

40, and 64) and predicted results for this scenario. As can be seen from the figures,

the prediction model correctly predicts based on the measured data.

4.4.2.2 Determining Optimal Power Cap and Node Number

We now formulate an optimization problem to determine the optimal power cap

and node number for the HPC system emergency demand response participation.

The optimal number of nodes and optimal power cap determination problem during

demand response periods can be formulated as follows:

Minimize:
∑
j∈R

eR(j, Pj, nj)

subject to constraint (4.4),

(4.16)

where eR(j, Pj, nj) denotes the remaining energy expected to be consumed if running

job j at power cap Pj on nj number of nodes, which can be calculated as follows:

eR(j, Pj, nj) = (1− αj) · nj · p(j, Pj) · t(j, Pj). (4.17)

We determine nj and Pj for job j to optimize (4.16).

104

4.4.3 Performance Evaluation

In this subsection, we present experiments and results to show the effectiveness of

our demand-response model exploiting the power-capping capability. We used two

benchmarks:

• Demand-Response, which determines the optimal power-capping value based

on the optimization problem and solution given in (4.14) during a demand response

period. It chooses the maximum power-capping limit during the normal operating

time.

• Non-Demand-Response, which always chooses the maximum power-capping

limit to ensure best application performance. We choose this benchmark since it

ensures the high-performance requirements of HPC applications. Such policy is also

denoted as the default method for power allocation to processors [LSSS16].

To evaluate our design, we used a real-life workload trace from the parallel

workload archive [FTK14]. The trace was collected at the San Diego Supercomputer

Center (SDSC SP2), which contains 5,000 jobs. This trace has been widely-used in

various studies [DSRI13, KMY15]. The trace includes information about job start

time, job run time, job wait time, requested number of processors, and so on. The

workload trace, however, does not contain any power-related information. For that,

we ran real-life applications on the cluster to measure the power consumption. The

details of the applications’ power and execution time are given in Section 4.4.1.

Fig. 4.12 compares the two benchmarks with different demand response events

ratio. We vary the demand response events ratio from 25% (i.e., a demand re-

sponse event lasts 25% of the entire operation duration) to 100%. As can be seen in

Fig. 4.12(a), Demand-Response achieves reduced per job average energy consump-

tion compared with the Non-Demand-Response benchmark. The energy saving is

105

 50

 55

 60

 65

 70

25 50 75 100

En
er

gy
 C

on
su

m
pt

io
n

(K
J)

Demand Response Events Ratio (%)

Demand-Response
Non-Demand-Response

(a) Job Energy Consumption

 0
 20
 40
 60
 80

 100
 120
 140

25 50 75 100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Demand Response Events Ratio (%)

Demand-Response
Non-Demand-Response

(b) Job Execution Time

Figure 4.12: Benchmark comparison with power capping.

more pronounced as the demand response events ratio increases. Demand-Response

incurs only a moderate increase in the per job average average execution time com-

pared with that of the performance-mode. Since Demand-Response reduces the

energy consumption during the critical demand response periods, the increase in

application execution time is understandable.

In the rest of the subsection, we present an experiment to show the effectiveness of

the demand-response model with both power-capping and node-scaling capabilities.

We compare the following two benchmarks:

• Demand-Response-Scale, which determines optimal power-capping value and

node allocation that reduces EtS. The benchmark solves (4.16) to determine the

optimal resource allocation during the demand response period. The benchmark

allocates all available nodes and chooses the maximum power-capping limit on all

nodes during the normal operation time.

•Non-Demand-Response-Scale, which always chooses the maximum power-capping

limit to ensure the best application performance. It also allocates the maximum

number of nodes to the job. Note that, this allocation policy is also chosen in the

literature as baseline case [SLK+13].

106

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

En
er

gy
-to

-s
ol

ut
io

n
(K

J)

Job Malleability (%)

Demand-Response-Scale
Non-Demand-Response-Scale

(a) Lulesh

 90

 100

 110

 120

 130

 140

 150

 10 20 30 40 50 60 70 80 90 100

En
er

gy
-to

-s
ol

ut
io

n
(K

J)

Job Malleability (%)

Demand-Response-Scale
Non-Demand-Response-Scale

(b) AMR

Figure 4.13: Benchmark comparison with power capping and node scaling.

We collected the execution time and energy consumption data from [LDKP15]

for the following two HPC applications: AMR (an application for adaptive mesh

refinement simulations) and LULESH (a shock hydrodynamic modeling application

for unstructured meshes). The applications were executed on 4, 8, 12, and 16 nodes.

The power-capping values were set to be between 31 W and 55 W with 3 W intervals.

We collected the measurements from [LDKP15] and used the prediction model in

Section 4.4.2 to predict the application characteristics (i.e., EtS) for unknown node

numbers and power-capping values. We used the SDSC SP2 trace from the parallel

workload archive [FTK14] for other job-related information (e.g., job start time, job

wait time).

Fig. 4.13 compares the results. Fig. 4.13(a) shows the effect of running the

jobs using the power and performance data of the Lulesh application. Fig. 4.13(b)

shows the effect of using the power and performance data of AMR application. As

evident from the figures, the Demand-Response-Scale benchmark always achieves

smaller EtS than the Non-Demand-Response-Scale benchmark. This is because

Demand-Response-Scale considers optimization of energy consumption during the

demand response event through both power capping and node scaling, while Non-

Demand-Response-Scale does not consider such optimization. In the figures, job

107

malleability denotes the percentage of jobs that are allowed to change the job size.

We change the job malleability from 10% (in which case, only 10% of the jobs can

be distributed on an optimal number of nodes) to 100%. As expected, with higher

job malleability, more jobs can be flexible in choosing the job size for optimized

performance, increasing the opportunity to reduce the energy consumption with

our proposed algorithm.

4.5 Summary

In this part of the dissertation, we propose emergency demand-response-aware job

scheduling and resource provisioning algorithm for HPC systems. The job schedul-

ing algorithm operates between the power-constrained energy-conservation mode

(using DVFS) and the performance-conservation mode, depending on whether the

system is in a demand response period or not. We develop a scheduler simulator

to evaluate the effectiveness of our approach. The simulator has been validated by

comparing with existing simulators using real-life workload traces. We performed

evaluation studies and results have demonstrated that our proposed emergency de-

mand response method can achieve energy savings with only moderate impact to

the application performance due to demand response. Next, we study HPC system

demand response participation and propose an emergency demand-response model

that leverages power-capping and node-scaling capabilities. We present power, per-

formance, and energy prediction models for HPC applications with unknown power-

capping values and job sizes. We validated our prediction models using real-life

measurement of application characteristics (including both power and execution

time) and compared our models with approaches in literature. We propose an HPC

emergency demand-response model by selecting optimal power limit and job size.

108

Using real-life measurements and trace-based data, we examined the effectiveness

of our proposed approach and compare it with existing approaches. Our model can

effectively reduce the HPC system’s energy consumption during critical demand re-

sponse periods and by doing so enable emergency demand response participation

from HPC systems.

109

CHAPTER 5

ECONOMIC DEMAND RESPONSE FOR HPC SYSTEMS

HPC systems can consume an enormous amount of electricity during their opera-

tion, and consequently incur significant energy cost. In this part of the dissertation,

we propose an economic demand-response model to allow both HPC operators and

HPC users to jointly reduce the energy cost. More specifically, we apply the con-

tract theory originated from economics for studying the contractual arrangements

among economic actors, and design a rewarding scheme to ensure participation of

both HPC operators and HPC users in the demand response program.

5.1 Background

Energy cost is a major part of the overall cost-of-operation of HPC systems. With

significant increase in the size of the supercomputers recently, the energy consump-

tion has also increased. For example, the recently-built Summit supercomputer at

Oak Ridge National Laboratory in United States has reached a peak power con-

sumption of 15 MWs. Considering that 1 MW electricity costs approximately $1

million, the Summit supercomputer would need to add a $15 million annual recur-

ring cost to the overall operation expense. Demand response is a scheme adopted

by energy consumers to reduce energy use during high energy load periods at the

request of the power grid.

Various demand response programs (including both economic demand response

and emergency demand response programs) are offered by energy service providers

to encourage energy reduction from participants. Fig. 5.1 shows an example of

the hourly energy reduction amount from various participants of PJM and loca-

tion marginal pricing (LMP) value offered for participation in economic demand

response program on a typical day [PJM17]. In this work, we particularly study

110

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 4 6 8 10 12 14 16 18 20 22 24
 0

 100

 200

 300

 400

 500

 600

En
er

gy
 R

ed
uc

tio
n

(M
W

)

Lo
ca

tio
na

l M
ar

gi
na

l P
ric

e
($

/M
W

h)

Time (Hour)

Energy Reduction
Locational Marginal Price

Figure 5.1: Energy reduction and electricity pricing from PJM economic demand
response on July 18, 2013 [PJM17].

the possibility of HPC systems in economic demand response participation through

voluntary energy reduction. By doing so, HPC systems can reduce their overall cost

of operation. To achieve this goal, however, one main challenge is to incentivize

the HPC users to participate in the demand response program. Since participation

in demand response program can introduce delays in application execution, HPC

users may be reluctant. Consequently, a proper rewarding mechanism is necessary

to enable willing participation from HPC users in the demand response program.

In general, an incentive mechanism should reward users commensurate to their

contributions: an HPC user with more contribution toward demand response should

be allowed with more rewards compared to users with lower contribution, and vice

versa. Yet, an HPC operator may not have the information of HPC users’ will-

ingness to participate. There is information asymmetry between the HPC opera-

tor and the HPC users. A proper rewarding mechanism must reward HPC users

based on their willingness to participate. As such, we resort to the contract the-

ory, a powerful tool from microeconomics, where an employer (in this case, the

111

HPC operator) offers contracts to the employees (the HPC users) based on the

employees’ preference and yet under information asymmetry. Contract theory is a

well-established rewarding mechanism which has been used in different areas, such

as spectrum trading in relay network [GWXZ11, ZSS+15], mobile cloud computing

environment [KBC+11, DKS+14], and device-to-device communication in cellular

network [SNHH14]. In summary, to motivate HPC users’ energy reduction for HPC

system demand response, we propose a contract design approach where an HPC

operator offers a set of contracts (i.e., energy reduction goals and financial rewards)

to HPC users who can voluntarily select either none or one of the contracts to ac-

cept to run the jobs. Our approach addresses the energy reduction problem in HPC

systems through the contract-based demand response mechanism.

5.2 Related Work

We provide the background and discuss existing work related to our proposed

contract-based economic demand response model for HPC systems. In particular,

we describe existing approaches for reducing energy cost in HPC systems, introduce

existing demand response models for data centers, and provide a brief overview of

the contract theory and its applications.

5.2.1 Reducing Energy Cost

Utility companies charge their customers based on two types of costs: (1) energy

charge, and (2) demand charge. For example, HPC facilities, such as the one in

the Oak Ridge National Laboratory, pay two types of electricity charges from the

utility company: energy charge and demand charge [PBG+16]. Energy charge is

determined based on the total energy consumption of the system. Demand charge

112

is calculated based on the peak power usage of a customer during a billing cycle

(usually a month). This charge is introduced by the utility company to compensate

for the support in running the infrastructure at the maximum capacity. In this

work, we consider both energy charge and demand charge. Our model takes into

consideration the time-varying electricity price and tries to reduce the energy cost

by focusing on the peak price periods.

There are different approaches to reducing energy cost for HPC systems. One

can explore job scheduling to reduce the size of the electricity bill. For example,

Yang et al. [YZW+13] proposed a job scheduling approach to exploit variable elec-

tricity price and power consumption profile of jobs. Each day is divided into two

parts based on the electricity price: on-peak and off-peak. Jobs are classified based

on their power profile (derived from past execution data). Low power-consuming

jobs are preferably chosen to run during the on-peak time periods, while high

power-consuming jobs are preferably run during the off-peak time periods. Zhou

et al. [ZLTD13] also proposed an electricity pricing-aware job scheduling and power

budgeting approach (based on on-peak and off-peak electricity pricing). However,

their approach specifically focuses on the IBM Blue Gene/P systems, and may not

be easily generalized to other systems. Murali et al. [MV15] proposed a method to

exploit the spatio-temporal variation in electricity price and use it to dispatch work-

loads to geographically distributed supercomputers. Their scheduling algorithm is

formulated as a minimum cost maximum flow problem. They use different pre-

diction algorithms to calculate the response times of the jobs and electricity cost

variations. Several strategies have been evaluated in [AS11] to exploit variations

in electricity prices, carbon intensity and renewable energy. Through adapting the

workload execution in accordance with the time variation in electricity price, one

can demonstrate the potential in energy cost saving. Our proposed economic de-

113

mand response model also considers time-varying electricity price and workload for

reducing the energy cost in HPC systems.

Reducing peak power usage has been studied extensively for data centers. For ex-

ample, Liu et al. [LWC+13] proposed to use workload scheduling and backup power

generation to perform peak shaving to enable data center demand response partici-

pation. Zhou et al. [ZYGL15] exploited two types of energy storage devices (ESDs),

battery storage and thermal energy storage, to reduce the data center operation

cost through shaving peak power consumption. Shi et al. [SXZW16] proposed to

exploit ESDs exclusively to reduce peak power consumption in data center. Specific

to HPC systems, some recent studies have focused on peak shaving. For example,

Chiesi et al. [CVM+15] performed HPC job scheduling in heterogeneous CPU-GPU

architectures to reduce the peak power under a predetermined budget. In this work,

we consider only resource management schemes with frequency scaling capabilities,

although methods such as using ESDs can be considered for HPC systems demand

response.

5.2.2 Demand Response

Energy cost reduction through demand response is a well-studied topic in certain

areas (such as data centers and smart buildings). As a large energy consumer, data

centers have proven beneficial to the demand response programs [WLLMR14]. Data

center demand response can exploit different workload scheduling (such as load shift-

ing in time [LWC+13] and load balancing among geographical locations [WHLMR16])

and resource provisioning (such as frequency scaling [LLRL12]) to enable demand

response participation.

It is important to note that data center demand response deals with specific types

of workload (such as map-reduce applications or network transaction based applica-

114

tions), which are quite different from HPC applications. HPC applications possess

unique power and performance characteristics. Unlike data center jobs, many HPC

applications are less flexible with changing job size, and most are non-interactive

(delay-tolerant) jobs submitted through a batch job scheduler that collectively sched-

ules, manages, and monitors jobs running on the HPC systems. More importantly,

HPC users usually have different expectations from data center users: achieving

high performance is typically the main objective of running those jobs on HPC sys-

tems in the first place. With this mentality, energy saving is at best a secondary

consideration. It is thus a challenge to translate energy saving concerns of an HPC

operator into a judicious user decision making of running computational tasks with

best energy conservation which can often lead to suboptimal runtime performance.

5.2.3 Contract Theory and Applications

A contract is the agreement between involved parties that specifies various actions

that the parties are supposed to take at different times. There is the “principal” who

offers the contracts; there are “agents” who are offered with the contracts and make

decisions on whether to accept or refuse the contracts. Contract theory studies how

the parties deal with the contracts in the presence of hidden or asymmetric infor-

mation. The agents keep their private information (e.g., the type to which the agent

belongs). The principal may be uninformed about agents’ private information, and

yet needs to design the contracts in order to maximize agents’ participation as well

as the principal’s payoff. Such problem is termed as the adverse selection problem

or hidden information problem. This problem was studied by [Ake70]. A contract-

based solution is to offer a menu of contract bundles. See, for example, [GL84].

Contract theory has been applied in many fields, including economics and com-

munication systems (e.g., radio network, vehicular network, and cellular network).

115

In economics, for example, contract theory has contributed to formulating labor con-

tract (employer offering wage contract to employees with unknown productivity),

and financial contract (lender deciding investment with unknown profitability). In

radio networks, there have been studies to enable cooperation among relay nodes to

improve relay performance (e.g., [ZWXL15, HJB12]). Contract theory has helped

in developing models to incentivize participation of relay nodes in cooperative relay.

Nazari and Jamalipour [NJ14] proposed a power allocation and price assignment

algorithm to maximize utility of multi-hop wireless networks. Their algorithm is

based on a contract-auction mechanism in the presence of asymmetric information.

Recent studies [GCWL13, WNC+14] have also applied contract theory to coordi-

nate a large number of electric vehicles (EVs) to appropriately charge or discharge

as ancillary services to the power grid, based on information asymmetry between the

EVs and the power grid (e.g., different EVs have different preferences toward charg-

ing/discharging at different times). To encourage device-to-device (D2D) communi-

cation in cellular networks, various contract-based approaches have been proposed

to increase network capacity [ZSS+15, MLY+16]. In them, information asymmetry

exists since the base station may not know user’s willingness to contribute to the

D2D communication.

5.3 Model

In this section, we describe the system model along with different notations used.

We consider a discrete-time model and divide the entire time period into T time

slots of equal length (e.g., 15 minutes or one hour). We denote the time slots by

t = 1, · · · , T and duration of each time slot by ts. To simplify the notations, we

exclude the time notations from the model. We decide and allocate resources at the

116

Table 5.1: List of Key Notations
Notation Description

Θ Set of job types, Θ = {θ1, θ2, · · · , θi, · · · , θn}
θi Flexibility of job type i

∆ei Energy reduction by job type i
∆ti Percentage increase in execution time for job type i
ri Reward awarded to job type i
ni Number of processors required for job type i
fi Frequency allocated to processors for job type i
φ Electricity price

beginning of each time period. The key notations and their meanings are given in

Table 5.1, while description of these terms and some other notations are given in

the text.

5.3.1 An Example

We start with a hypothetical example to demonstrate how our proposed contract-

based model would work. We assume for simplicity there are only three types of

jobs: {θ1, θ2, θ3} = {0.2, 0.4, 0.8}. The θ values, which can any positive numbers,

are preselected to represent the flexibility of the job types to participate in the

demand response. A lower value indicates that the job type is more flexible and the

HPC operator can have more flexibility (or cause less inconvenience to the users) to

”stretch” the runtime of the jobs belonging to this type in order to save the energy.

A higher value, on the contrary, would mean that the job type is more rigid; the

HPC operator has less flexibility (or cause more inconvenience to users) to ”stretch”

the runtime of the jobs to save energy. When job submission, the user will select a

job type for the submitted job depending on the urgency of the job’s completion.

More rigid job types generate less opportunities for the HPC operators to change

the execution of the jobs to save energy. To incentivize the participation, a user can

117

expect more reward given for jobs with more flexibility. As an example, we consider

three jobs currently in the system, denoted by job#1, job#2, job#3. Assume we

assign job#1 to type θ1, job#2 to type θ2, and job#3 to type θ3. That is, job#1 is

the most flexible job among the three, and job#3 is the least flexible job.

At each time slot, the HPC operator considers all jobs in the submission queue

(three in this example). However, she does not know the types of these jobs. This

information is considered private to the users. (Giving this information to the

HPC operator would be disadvantageous to the users as the HPC operator may

use this information to exploit the users and trick them into suboptimal contracts

with less rewards). The HPC operator knows the current electricity price, say,

$20/kWh, and with this information, she can design a contract bundle for each

job type. A contract bundle contains two elements: the monetary reward, and the

expected increase in percentage of time to run the jobs belonging to this type. In our

example, the HPC operator would provide three contract bundles, one for each job

type: ($2550, 30), ($1200, 15), ($200, 5). Details on how this is done will be discussed

in the sections to follow.

Upon receiving the three contracts, the users need to determine for each job

which of three contracts to accept, or reject them all. To do that, the user needs

to calculate a utility for each job. A job must have positive utility to accept a

contract; in addition, a job will choose the contract type that can maximize the

utility. There are several ways to define the utility. For our model, we define a

job’s utility with respect to a contract as the difference between the reward and the

inconvenience cost, which is a function of the percentage increase in execution time.

For the example, we use θic∆ti as the inconvenience cost, where we set c = 10 and

∆ti is the percentage increase in execution time for job type i (Eq. 5.4).

118

As such, the utility of job#1 for job type 1 contract ($2550, 30) can be calculated

as 2550−0.2 · (30)2 ·10 = 750. Similarly, the utility of job#1 for job type 2 contract

($1200, 15) is 1200 − 0.2 · (15)2 · 10 = 750, and the utility of job#1 for job type

3 contract ($200, 5) is 200 − 0.2 · (5)2 · 10 = 150. Therefore, the user submitting

job#1 may select the contract for job type 1 as an optimal decision. Using the

same argument, the utilities of job#2 for the three contracts are -1050, 300, and

100, respectively; and the utilities of job#3 are -4650, -600, and 0, respectively.

The users submitting job#2 and job#3 will select the contract for job type 2 and 3,

respectively. This is not a coincidence. As we show later, contract theory guarantees

that optimally the users choose the contracts designed for the job types to which

their jobs belong.

At the system side, the HPC operator can calculate the total energy savings from

the three jobs if the users choose to enter the respective contracts for the rewards

and therefore willingly extend the execution time of the jobs with the specified

percentage. Energy saving is achieved by the HPC operator lowering the CPU

frequency of the processors running the jobs to a predetermined value (determined by

an energy optimization model). The total amount of energy saved can be translated

and distributed among the users as monetary rewards stipulated in the contracts.

After providing the rewards to the users, the operator shall still maintain a positive

amount for its own demand response participation. As a result, it creates a win-win

situation for both HPC users and the HPC operator, as well as the energy supplier

for reduced energy consumption.

5.3.2 HPC System Model

We consider an HPC system with one HPC operator and set of Θ jobs types.

We assume that jobs are distributed to one of the job types denoted by Θ =

119

{θ1, θ2, · · · , θi, · · · , θn}. The operator will offer a menu of contracts with the con-

tract bundle intended for job of type i as (ri,∆ti), where ri is the reward to the job

of type i and ∆ti is the application performance change for jobs belonging to type i

due to demand response participation. Note that the operator needs to design one

contract item for each job type in order to obtain the optimal result [BD05].

We now formulate the job power consumption and execution time characteristics.

To determine the average power consumption, we use a similar model as proposed

in [WTCM16]. We assume that a job of type i runs at frequency fi on the requested

processors. We estimate the processor’s power consumption at frequency fj for job

of type i using the following third-order polynomial function:

p(fi) = ai + bi · fi + ci · f 2
i + di · f 3

i (5.1)

where ai, bi, ci, and di are constants determined from empirical analysis of average

power relation with different frequency values. Here, ai represents the static power

consumption while running the jobs. We assume that HPC operator can determine

the parameters based on historical data and update the parameters for each job

type with more learned data related to power consumption behavior.

During each time slot, the HPC system operator determines the optimal con-

figuration (i.e., frequency allocation) for the incoming jobs. While there are many

different energy-saving techniques available, we consider frequency allocation as a

possible method in this work. To reduce power consumption with particular focus

on demand response, the HPC operator allocates optimized speeds to processors for

new jobs. We assume that changed server frequency of servers allocated to job of

type i is denoted by f ′i . The average power consumption by job of type i with such

changed speed is denoted by:

p(f ′i) = ai + bi · f ′i + ci · f ′2i + di · f ′3i

120

The following constraint ensures the upper and lower limits for changed frequency

allocation for job of type i:

fmin ≤ f ′i ≤ fmax (5.2)

where, fmin and fmax denote the lower and upper limit of frequency allocation to

processors, respectively.

In the same fashion we estimate the execution time for job of type i at frequency

fi using the second-order polynomial function:

t(fi) = αi + βi · fi + γi · f 2
i (5.3)

where, αi, βi, and γi are regression coefficients determined from polynomial fitting

function using empirical data. After changing the frequency to f ′i , the execution

time for job of type i can be represented as follows:

t(f ′i) = αi + βi · f ′i + γi · f ′2i

We assume that by default the jobs are run at highest frequency to achieve the best

performance. Energy consumption for job of type i at maximum frequency can be

represented as following: ei = ni·p(fmax)·ts, where ts denotes duration of time period

(e.g., 15 minutes or 1 hour). We consider ts = 1 hour for this work since various

values (such as the electricity price) are reported hourly. Energy consumption for

job of type i at changed frequency f ′i can be represented as following: e′i = ni ·

p(f ′i) · ts. Therefore, energy reduction by job of type i through frequency scaling

can be represented as ∆ei = ei− e′i. Moreover, the change in execution time due to

changing the frequency to f ′i is denoted by t(fmax)−t(f ′i). We denote the percentage

change in execution time by ∆t = 100 · [t(fmax)− t(f ′i)]/t(fmax).

HPC users need to be compensated for changes in their application execution

performance, so that they are willing to participate in demand response program for

121

energy reduction. Now we formulate the HPC jobs’ inconvenience cost (or implicit

cost [MHL+13]) due to demand response participation. We denote job of type i’s

flexibility to participate in demand response by θi. A higher value of θi would denote

that the job of such type is less flexible towards participation in the demand response

program (e.g., due to deadline for project completion). On the other hand, some jobs

would be more flexible and correspondingly have lower value of θi. Such information

may be private to the user, which produces an information asymmetry between the

job types and operator. We denote the job of type i’s incurred inconvenience cost

due to demand response participation as a general function of execution time change,

denoted by the following:

v(θi,∆ti) = θi · c(∆ti) (5.4)

where ∆ti denotes the percentage execution time change due to demand response

participation for job of type i. Without loss of generality, we assume that c(∆ti) =

c0 · (∆ti)2, where c0 is the coefficient to convert the quantity into monetary value.

Here, other functions can be incorporated as well. Representing inconvenience as

a quadratic cost function is common in economics and has also been considered

in other applications [ZWXL15, KC15]. HPC operator may not have complete

information of how jobs are distributed to different types. Since there is information

asymmetry between the operator and the users, we resort to contract theory to

design an incentive mechanism to ensure users’ willing participation in the demand

response program.

We define the utility for jobs of type i as following:

ui = ri − v(θi,∆ti),∀i ∈ {1, 2 · · ·n} (5.5)

The objective of the HPC operator is to determine the optimal resource allocation

to incoming jobs and corresponding rewards such that HPC system’s profit from

122

demand response participation is maximized. From the HPC operator’s perspective,

the utility function in terms of type-i job can be defined as:

uiop = mi · (φ · γ ·∆ei − ri)

where mi denotes the number of jobs belonging to job type i and φ denotes electricity

price. For the user’s participation to be of benefit to the HPC operator, the following

needs to be satisfied: uiop ≥ 0. Note that we focus on the server power consumption,

while the power consumption of non-IT parts of the HPC system such as cooling

and power supply system is captured using the factor of power usage effectiveness

(PUE), denoted by γ. The total utility for HPC operator can be represented as

following:

uop =
n∑
i=1

uiop. (5.6)

The HPC operator may not have complete information on the job types (e.g., what

jobs are assigned to what type). However, the operator may maintain statistical

information on the distribution of jobs (i.e., the probability of a job belonging to a

certain type i). Based on historical data, the HPC operator can approximate the

optimal choices for the job types and provide rewards to the HPC users accordingly.

Although such information may be quite imprecise initially, the HPC operator can

gradually improve the estimate through “online learning” [GCWL13, SL14]. In this

way, the operator can learn and update the job types based on whether the offered

contracts are accepted or not.

123

5.4 Formulation and Algorithm

In this section, we formulate the HPC system demand response participation prob-

lem and outline the algorithm. We first define two constraints that are essential for

designing a direct revelation contract1.

Definition 5.4.1 (Individual Rationality) Individual rationality (IR) constraint

or participation constraint ensures that participants in contract mechanism achieve

non-negative pay-off or utility. This ensures that an HPC user has an incentive

to participate in the demand response program. Mathematically, for job type i, IR

constraint can be described as following:

ui = ri − θi · c(∆ti) ≥ 0 (5.7)

The reward received must compensate participation through energy reduction to moti-

vate user’s participation. However, if ui < 0 the user will not participate in demand

response program.

Definition 5.4.2 (Incentive Compatibility) Incentive compatibility (IC) constraint

represents the fact that utility is maximized when participant chooses own contract

type over the other contract types. It reflects that, although a participant of type i

can choose a contract intended for another type (which we denote by i′), the utility

is maximized when the user chooses its own type i. Mathematically, for type i, IC

constraint can be described as following:

ri − θi · c(∆ti) ≥ ri′ − θi · c(∆ti′). (5.8)

1Direct revelation principle ensures that the agents are willing to reveal their true
identity to the mechanism designer

124

Now, the optimization objective along with the constraints can be represented as

following:

max
(∆e,r)

n∑
i=1

mi · [φ · γ ·∆ei − ri] (5.9)

s.t. Eqs. (5.2), (5.7), and (5.8)

where φ denotes electricity price and mi denotes number of jobs of job type i. The

HPC operator determines the optimal energy reduction amount ∆e, corresponding

reward r and performance change ∆t for teach job type and shares the contract

bundle (r, ∆t) to the users. Note that, the operator may not have information

about the job distribution information to different types. However, the operator may

assume job distribution information to different types (e.g., normal distribution) as

considered in literature [NJ14, KC15]. The operator then can maximize the expected

utility to derive the optimal energy reduction amount and reward for each job type.

The problem is intractable to solve due to large number of IR and IC constraints.

However, we can resort to constraint reductions to reduce the number of constraints

and make the problem solvable, which we present in the next section.

5.4.1 Feasibility and Optimality of Solutions

In this subsection, we provide contract feasibility and optimality for discrete-type

problem formulation in (5.9). The following two conditions are necessary conditions

to ensure feasibility and optimality of designed contracts:

Conditions for feasibility. We assume the contract set is C = {(ri,∆ti)} with

the following relation: θ1 < θ2 < · · · < θn. Then the contract is feasible if and only

if:

125

rn − θn · c(∆tn) ≥ 0 (5.10)

ri−1 − θi−1 · c(∆ti−1) ≥ ri − θi−1 · c(∆ti),

∀i ∈ {2, · · · , n− 1} (5.11)

Conditions for optimality. For the optimal solution, the individual rationality

condition for the highest type and adjacent ICs are binding, and all other conditions

can be ignored. Let a feasible contract list be given by (r,∆t). Then, we can state

the following:

r∗n = θn · c(∆tn) (5.12)

r∗i−1 = r∗i + θi−1 · (c(∆ti−1))− c(∆ti)),

∀i ∈ {2, · · · , n− 1} (5.13)

Based on the above conditions, we can state the following theorem and reduced

optimization problem.

Theorem 5.4.3 (Contract Feasibility) The designed reduced contract-based for-

mulation ensures IR and IC constraints and hence the formulation is feasible.

Proof. We first consider a case with two types of HPC jobs. Next, we extend and

generalize to multiple types of HPC jobs.

A Two-Type Scenario.

Suppose there are two types of HPC jobs so that Θ = {θ1, θ2}, with θ1 < θ2. As

before, the reward for lowering usages is denoted by rj and the cost of doing so is

given by θic(∆tj), where j may or may not equal i (the HPC operator may choose

the contract intended for the other type).

This yields the following incentive compatibility (IC) constraints:

IC1 : r1 − θ1c(∆t1) ≥ r2 − θ1c(∆t2), (5.14)

126

and

IC2 : r2 − θ2c(∆t2) ≥ r1 − θ2c(∆t1). (5.15)

The participation constraints (or individual rationality constraints) are given by:

IR1 : r1 − θ1c(∆t1) ≥ 0,

and

IR2 : r2 − θ2c(∆t2) ≥ 0.

Since θ1 < θ2 combining the Eqs. 5.14 and 5.15 yields

r1 − θ1c(∆t1) ≥ r2 − θ1c(∆t2) > r2 − θ2c(∆t2) ≥ r1 − θ2c(∆t1),

which implies

r1 − θ1c(∆t1) > r2 − θ2c(∆t2) ≥ 0. (5.16)

So θ1’s IR must be satisfied strictly.

Now, adding the ICs yields

r1 − θ1c(∆t1) + r2 − θ2c(∆t2) ≥ r2 − θ1c(∆t2) + r1 − θ2c(∆t1),

which implies

−θ1c(∆t1)− θ2c(∆t2) ≥ −θ1c(∆t2)− θ2c(∆t1),

or

[θ2 − θ1]c(∆t1) ≥ [θ2 − θ1]c(∆t2),

which implies

c(∆t1) ≥ c(∆t2).

Since c(.) is increasing, we have

∆t1 ≥ ∆t2.

127

The intuition here is that the lower cost job θ1 will reduce usage by a larger amount,

hence incur larger increase in execution time. Note that type θ1 can act like (or

choose the contract intended for) θ2, but we do not need to worry about θ2 acting

like θ1. 2

These imply that we are concerned with only the following two constraints:

IC1 : r1 − θ1c(∆t1) ≥ r2 − θ1c(∆t2),

and

IR2 : r2 − θ2c(∆t2) ≥ 0.

Both of these constraints must bind. If not, the HPC operator could reduce ri and

receive a higher payoff. So we have

IC1 : r1 − θ1c(∆t1) = r2 − θ1c(∆t2),

and

IR2 : r2 − θ2c(∆t2) = 0.

We can solve the reduced optimization problem through standard optimization solv-

ing algorithm.

Extension to n-type Case.

Next we can consider extending this two-type case to a setting with Θ = {θ1, θ2, · · · θn}.

The cost is given by θic(∆ti), with c increasing. So, thinking in terms of the contin-

uum of types case of Section 5.4.2, we have the analogue of this having a strictly pos-

itive cross partial with respect to θi and ∆ti. Thus, this satisfies the Spence-Mirrlees

property so that satisfying the “local” constraints implies the global constraints are

satisfied. More precisely, we can define:

Ui = ri − θic(∆ti).
2We can verify this after finding the optimal menu of contracts. This follows a standard

procedure. See, for example [LM09].

128

So we have U∆ti = −θic′(∆ti) and Uri = 1. Thus, we have

U∆ti

Uri
= −θic′(∆ti),

which implies

∂

∂θi

U∆ti

Uri
= −c′(∆ti) < 0.

This implies that the Spence-Mirrlees property is satisfied and we have a monotonic-

ity property. Thus, we need only to consider local constraints or the constraints

associated with adjacent types. 3 Therefore, the reduced optimization problem is

feasible and satisfies the IR and IC constraints.

After reduction of number of IR and IC constraints, the overall optimization

problem can be formulated as following:

max
(∆e,r)

mi ·

[
n∑
i=1

φ · γ ·∆ei − ri

]
s.t.rn − θn · c(∆tn) = 0 (5.17)

ri−1 − θi−1 · c(∆ti−1) = ri − θi−1 · c(∆ti) (5.18)

fmin ≤ f ′i ≤ fmax

The HPC operator can solve the above reduced optimization problem using stan-

dard optimization solving methods, such as the sequential least squares program-

ming algorithm using the Han-Powel quasi-Newton method [Pow78]. Operator will

then distribute the contract bundles to the users for their selection. Alternatively,

the problem can also be solved taking Lagrangian multipliers to the equality con-

straints and then solving the Lagrangian formulation, as also considered in the

literature [ZJYH16, ZSS+15].

3Ref. [LM09] contains a good discussion of these ideas, and the setting here is similar to
theirs with the reward being analogous to the agent’s transfer and θic(∆ti) being analogous
to the quantity the agent produces.

129

5.4.2 Contract Design with Continuum Type

In this subsection, we present contract design formulation of continuous types and

present theoretical analysis. We assume that the types are continuum (i.e., types are

denoted by continuous function [θ′, θ′′], where θ′ denotes initial value of type and

θ′′ denotes ending value of type). Under asymmetrically incomplete information,

we assume that {f(θ)}θ∈Θ denotes probability distribution function (PDF) of types

and {F (θ)}θ∈Θ denotes the cumulative distribution function (CDF). HPC system

operator’s objective in such continuum of types is given by:

max
(∆e,r)

∫ θ′′

θ′

[∑
θ∈Θ

φ · γ ·∆e(θ)− r(θ)

] ∣∣f(θ)dθ (5.19)

s.t.r(θ)− θ · c(∆t(θ)) ≥ 0,∀θ (5.20)

r(θ)− θ · c(∆t(θ)) ≥ r(θ)− θ · c(∆t(θ)),∀θ, θ (5.21)

Note that, with a continuum types, the number of IC constraints becomes intractable

due to double continuum of IC constraints.

Theorem 5.4.4 (Reduction of Continuum Types) The intractable continuum

IC constraints can be reduced and solved.

Proof. We reduce the number of IC constraints based on the Single-Crossing prop-

erty (or Spence-Mirrless condition) [Mir71], where IC constraints are reduced by

corresponding first order condition (FOC) [Mir71]. The incentive constraint Eq. 5.8

for continuum case can be replaced by following two conditions: ∆t(θ) and r(θ) are

incentive compatible iff

−c′(∆t(θ)) · d∆t(θ)

dθ
≤ 0 (5.22)

d(t(θ))

dθ
≤ 0. (5.23)

130

Eq. 5.22 is referred to as local adjacency constraint and follows from the FOC and

second order condition for payoff maximization by type θ. Eq. 5.23 is called the

monotonicity constraint.

This is analogous to the conditions in [LM09] and the Spence-Mirrlees condition

applies, as in the binary case above, and the local constraints imply the global

constraints.4 Further, for settings in which the monotone hazard ratio property

is not satisfied everywhere along the distribution f(θ), we can resort to Myerson’s

ironing mechanism to design contract for the HPC users [Mye81].

5.5 Experiments

In this section, we present a trace-based simulation study to validate our proposed

approach and show effectiveness. First, we present the data set we used for bench-

marking. Then, we present how our proposed approach performs for the trace data

and show that basic properties of contract theory is preserved. We then compare

our proposed approach with a system that does not consider demand response par-

ticipation. Finally, we present a sensitivity study.

5.5.1 Data Set

We considered an HPC system which includes one HPC operator and six job types

(denoted as Type#1, Type#2, Type#3, Type#4, Type#5 and Type#6). The job

types’ flexibilities are denoted as {θ1, θ2, θ3, θ4, θ5, θ6} = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

The PUE for the system is considered to be 1.3. We collected real-life HPC workload

trace from the parallel workload archive [FTK14]. The workload traces contain

runtime information collected at the University of Luxemburg Gaia HPC cluster

4See also [Hol16].

131

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16 18 20 22 24

Jo
b

Ar
riv

al
s

(%
)

Time (Hour)

(a) Percent of job arrivals during different
hours

 20
 25
 30
 35
 40
 45
 50
 55
 60

 2 4 6 8 10 12 14 16 18 20 22 24

El
ec

tri
ci

ty
 P

ric
e

($
/M

W
h)

Time (Hour)

(b) Electricity price data on a day of Octo-
ber 2017 at PJM

Figure 5.2: Job arrivals and electricity price data.

during the time period from May 2014 through August 2014. The trace contains

51,987 jobs. The trace includes information about job start time, job run time,

job wait time, requested number of processors, and so on. We processed the data

and collected number of job arrivals during each hour to determine percentage job

arrivals during a day. Fig. 5.2(a) presents the percentage of job arrivals during each

hour of a day. We collected electricity price data for a 24-hour period on a day of

October 2017 from PJM Interconnect. The data is shown in Fig. 5.2(b). We consider

the cost for job execution on the system to be 0.023$/hour, which is a pricing used

in Amazon EC2 cluster [Ama17]. Different HPC clusters have such pricing scheme

for their users, while other clusters are envisioned to deploy such scheme in their

systems [MHL+13].

The workload trace we collected does not contain any power usage information.

Therefore, we collected and used power-related information from literature for this

study. We use the power data at different frequencies for six applications from an

existing study [ABB+14]. The details of the applications and related power data

are described in Section 4.3.1. Measurements were collected when running these

applications with different CPU frequencies, ranging from 1.2 GHz to 2.4 GHz at

132

0.2 GHz intervals and 2.7 GHz. That is, the minimum and maximum frequency are

1.2 GHz and 2.7 GHz, respectively. The peak power of the processors was set to

240 W (determined from the power consumption of the six HPC applications when

running at the maximum frequency).

5.5.2 Energy Reduction and Utility

We first demonstrate how different HPC users participate in demand response pro-

gram and their rewards for such participation. Fig. 5.3 presents results for energy

reduction and users’ and operator’s utilities. Fig. 5.3(a) shows energy reduction

amount by all jobs of different types. As evident from the figure, different jobs

participate in energy reduction at varying level to enable demand response partic-

ipation. Fig. 5.3(b) shows rewards awarded to all the jobs of various job types.

During high electricity price periods, the users contribute more to energy reduction

and therefore are rewarded more. Fig. 5.3(c) shows the inconvenience cost for each

job in different job types. As can be seen in the figure, lower-type jobs (i.e., with

lower θi values) have higher inconvenience value than higher-type jobs, a requirement

for designing feasible contracts. Fig. 5.3(d) shows utility of each job for different

job types. As can be seen in the figure, different job types have non-negative utility

(Type#1 jobs have 0 utility). Fig. 5.3(e) shows the operator’s utility throughout

the time period. As evident from the figure, the operator will have positive utility

at different time period. Therefore, participation in demand response program will

be beneficial to the operator, after rewarding the users for their participations in

the program.

Fig. 5.4 shows the jobs types’ utilities when the same job type is offered different

contract options. In the figure, we show the utilities of each job type, when selecting

all the contracts offered by the operator. As clearly evident from the figure, each

133

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

En
er

gy
 R

ed
uc

tio
n

(K
W

h)

Time (Hour)

Type#1
Type#2
Type#3
Type#4
Type#5
Type#6

(a) Energy reduction

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
ew

ar
d

($
)

Time (Hour)

Type#1
Type#2
Type#3
Type#4
Type#5
Type#6

(b) Reward

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

In
co

nv
en

ie
nc

e

Time (Hour)

Type#1
Type#2
Type#3
Type#4
Type#5
Type#6

(c) Inconvenience

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

U
til

ity

Time (Hour)

Type#1
Type#2
Type#3
Type#4
Type#5
Type#6

(d) Job type utility

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

U
til

ity

Time (Hour)

(e) Operator’s utility

Figure 5.3: Energy reduction and utility.

type of user will achieve maximum utility when the user selects the contract that is

intended to its own type. Hence, if operator design the contracts using our designed

mechanism, the hidden types of the users will be revealed to the operator. Since

134

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 1 2 3 4 5 6

U
til

ity

Type Number

Type#1
Type#2
Type#3
Type#4
Type#5
Type#6

Figure 5.4: Incentive compatibility constraint.

 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000

 1 3 5 7 9 11 13 15 17 19 21 23

En
er

gy
 C

on
su

m
pt

io
n

(K
W

h)

Time (Hour)

Demand-Response
Non-Demand-Response

(a) Energy Consumption

 500

 1000

 1500

 2000

 2500

 1 3 5 7 9 11 13 15 17 19 21 23

En
er

gy
 C

os
t (

$)

Time (Hour)

Demand-Response
Non-Demand-Response

(b) Energy Cost

Figure 5.5: Benchmark comparison.

each type of users would be willing to accept the contract designed for own type,

incentive compatibility constraint is satisfied using our designed mechanism.

5.5.3 Benchmark Comparison

To evaluate the performance of our resource provisioning algorithm for demand

response, we compare it with another policy that does not consider demand response.

We denote our policy for resource allocation as Demand-Response and the other

135

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 20 30 40 50 60 70 80 90 100

Av
er

ag
e

En
er

gy
 C

os
t (

$)

Electricity Price Increase (%)

Demand-Response
Non-Demand-Response

7.6%

8.1%

8.6%

9.06%

9.5%

Figure 5.6: Change in electricity price.

policy which does not consider demand response participation as Non-Demand-

Response. Fig. 5.5 compares the two benchmarks in terms of energy reduction and

energy cost during different time periods. Fig. 5.5(a) compares two benchmarks

for energy consumption. As evident from the figure, Demand-Response achieves

lower energy consumption throughout the time period. The energy consumption

reduction is more pronounced during the peak electricity period (for example, energy

consumption is reduced as much as 10% during hour#20 when the electricity price is

highest for the day). Fig. 5.5(b) compares the energy cost for both the benchmarks.

Demand-Response incurs lower energy cost throughout the time period compared

to Non-Demand-Response.

Fig. 5.6 shows effect of increase in hourly electricity price. We change the origi-

nal electricity price from 20% to 100% and compare the two benchmarks. Average

energy cost in the figure denotes the hourly average energy cost for the entire day.

As evident from the figure, Demand-Response incurs lower energy cost compared

to Non-Demand-Response for different electricity price values. Moreover, the per-

136

centage savings in energy cost for Demand-Response compared to Non-Demand-

Response increases with higher electricity price. This is because Demand-Response

captures the variation in time-varying electricity price, and therefore is able to re-

duce the energy cost more significantly when the electricity price is higher.

5.6 Summary

In this chapter, we present an economic demand participation model for HPC sys-

tems. Based on contract theory, we design a rewarding mechanism for HPC users

to enable their willing participation in demand response program, so that HPC op-

erators and HPC users can jointly reduce the energy cost. Our proposed demand

response model benefits all the involved participant: HPC system can reduce energy

cost, HPC users can earn reward from such participation and energy service provider

can achieve grid stability through overall energy reduction. We performed analytical

study to show that our proposed model can satisfy the necessary properties of con-

tract theory. We also present simulation study to show that our model preserves the

necessary properties of contract theory and is effective than other existing approach.

137

CHAPTER 6

CONCLUSIONS

In this chapter, we present a brief summary of this dissertation and provide some

future directions the research could be taken.

6.1 Summary

This dissertation addresses massive energy consumption of HPC system through

presenting detailed power and performance demand response participation models.

1. In the first part of the dissertation, we present how to accurately model HPC

applications’ performance running on large-scale HPC systems containing hun-

dreds of thousands of nodes. More specifically, we do the following:

• We present interconnection network models for performance prediction

of large-scale scientific applications in high-performance architectures.

Specifically, we present interconnect models for Cray’s Gemini 3-D torus,

IBM’s Blue Gene/Q 5-D torus, Cray’s Aries dragonfly, and Infiniband’s

fat-tree network. Our interconnection network models have been fully

integrated with an implementation of the MPI model, which mimics all

common MPI commands, including various send and receive functions,

as well as collective operations. The MPI model can achieve packet-level

accuracy at the target platforms.

• We present extensive validation studies of our MPI and interconnect

models, including a trace-based study using data obtained from execut-

ing real-life computational physics code on an existing high-performance

138

computing platform. We also present a performance study of a paral-

lel computational physics application to show that our model can accu-

rately predict the parallel behavior of large-scale applications. All the

results show that our models can provide sufficient accuracy. Moreover,

our study of the parallel performance of integrated models on large-scale

HPC platforms show good parallel scaling performance.

2. In the next part of the dissertation, we present power and performance mod-

els to enable HPC system’s demand response participation. To this end, we

develop emergency demand-response models for HPC systems.

• We explore the opportunity of HPC emergency demand response by

proposing a new HPC job scheduling and resource provisioning model.

More specifically, the proposed model applies power-bound energy-conservation

job scheduling and resource allocation (using DVFS) during the critical

demand-response events, while maintaining the traditional performance-

optimized job scheduling during the normal period.

• We implemented the proposed method in a simulator and compare it

with the traditional scheduling approach. Using trace-driven simulation,

we demonstrate that HPC demand response is a viable approach toward

power stability and energy savings with only marginal increase in the

jobs’ execution time.

• We propose an emergency demand-response model exploiting both power

capping of HPC systems and node scaling of HPC applications. We

present power and performance prediction models for HPC systems with

only power capping, upon which we propose our demand-response model.

We validated the models with real-life measurements of application char-

139

acteristics. Next, we present models to predict energy-to-solution for

HPC applications with different numbers of nodes and power-capping

values, and we validate the models. Finally, we demonstrate the effec-

tiveness of our proposed emergency demand-response model using real-life

measurements and trace data.

3. Finally, we address HPC system’s significant energy cost reduction through

proposing an economic demand response participation model. Specifically,

we:

• Propose an economic demand response model to allow both HPC oper-

ators and HPC users to jointly reduce the energy cost. We apply the

contract theory to prepare a rewarding scheme to be offered by the HPC

operator to the HPC users to encourage users’ willing participation in

economic demand response.

• Performed both analytical and simulation studies of our proposed ap-

proach. We show that our contract-based demand response model is

both feasible (in ensuring both individual rationality and incentive com-

patibility) and optimal. Through trace-based simulation, we demonstrate

that our model preserves the necessary properties of contract theory and

is effective compared to other existing approach.

6.2 Future Directions

In the first part of the dissertation, we discuss how to perform rapid performance

prediction modeling in large-scale HPC systems. A possible future extension to this

work would be to include more recent interconnect topologies (e.g., Slim Fly), and

140

integrate the interconnect model with detailed system models, including processors,

cache, and file systems. Another possible future work is to translate all our inter-

connect models to Simian Lua. Such translation would help us to study the parallel

performance of our integrated models on large-scale platforms and also to compare

with performance of current Python-based interconnect model implementation.

In the second part of the dissertation, we present job scheduling and resource

allocation algorithms to reduce energy consumption in HPC systems during demand

response periods. There are many opportunities to extend our proposed demand-

response model for HPC systems.

1. Our job scheduler uses linear regression models for predicting the job’s power

consumption and execution time. Regression models require empirical mea-

surements of each application’s power consumption and execution time with

different CPU frequencies. In practice, this may not be readily available a pri-

ori, especially for unknown applications, at the job’s submission. More ad-

vanced models may be applied in this case. For example, inference and learn-

ing techniques (such as artificial neural networks) may be employed to help in

these scenarios [IdSSM05, LBdS+07].

2. For all types of power and performance models, prediction errors may occur.

A future work would be to investigate the effect of prediction errors on the

job scheduling and resource provisioning, and also to consider more adaptive

methods in power and performance prediction models.

3. Our demand response job scheduler considers only processor-level frequency

scaling. Some current HPC systems can support only machine-level DVFS.

In future systems, frequency scaling may also be available more commonly

at individual cores. We have not yet investigated these options. Moreover,

141

frequency scaling and power capping are not the only control knobs for energy

saving. More adaptable power-aware scheduling policies and resource pro-

visioning algorithms can be considered in addition to frequency scaling and

power capping.

4. There are techniques that consider power consumption as a function of com-

putation and communication at the system level and/or at the sub-job level.

For example, Adagio [RLDS+09] considers variations in the energy consump-

tion during computation and communication phases of the applications. Also,

SERA-IO [GFS12] replaces the traditional I/O middleware with an energy-

conscious mechanism that combines with DVFS for power-performance schedul-

ing. These techniques can be considered in our future studies to allow more

effective demand response.

In the final part of the dissertation, we address HPC system’s economic demand

response participation and present a contract-based demand-response model. In

our study, we assume that the HPC operator have complete information on the

job types (e.g., which jobs belong to what type). In practice, the operator may

not directly have such information. Updating the statistical information on the

jobs’ distribution to different types (e.g., through “online learning”), can be an

interesting future work. We performed a brief theoretical study of the continuum

types of contracts. However, a more rigorous study of continuum types of contracts,

along with implementation of such types in practice, can be another future direction

to explore.

142

BIBLIOGRAPHY

[A+14] T Arber et al. Epoch: Extendable pic open collaboration. http:

//www.ccpp.ac.uk/codes.html, 2014.

[ABB+14] Axel Auweter, Arndt Bode, Matthias Brehm, Luigi Brochard, Nicolay
Hammer, Herbert Huber, Raj Panda, Francois Thomas, and Torsten
Wilde. A case study of energy aware scheduling on SuperMUC. In
International Supercomputing Conference, pages 394–409. Springer,
2014.

[ABD+15] R. E. Alcouffe, R. S. Baker, J. D. Dahl, E. D. Fichtl, S. A. Turner,
R. C. Ward, and R. J. Zerr. Partisn: a time-dependent, parallel
neutral particle transport code system. LANL, LA-UR-08-07258, last
revised, December 2015, 2015.

[ABF+10] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel,
Gabriel Marin, John Mellor-Crummey, and Nathan R Tallent. Hpc-
toolkit: Tools for performance analysis of optimized parallel programs.
Concurrency and Computation: Practice and Experience, 22(6):685–
701, 2010.

[AFKR12] Bob Alverson, Edwin Froese, Larry Kaplan, and Duncan Roweth.
Cray xc series network. http://www.cray.com/sites/default/

files/resources/CrayXCNetwork.pdf, 2012.

[AFLV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. In ACM SIG-
COMM Computer Communication Review, pages 63–74. ACM, 2008.

[AJB+15] Bilge Acun, Nikhil Jain, Abhinav Bhatele, Misbah Mubarak, Christo-
pher D Carothers, and Laxmikant V Kale. Preliminary evaluation of
a parallel trace replay tool for HPC network simulations. In Euro-Par
2015: Parallel Processing Workshops, pages 417–429, 2015.

[Ake70] George Akerlof. The market for lemons. Quarterly Journal of Eco-
nomics, 89:488–500, 1970.

[AKPJ09] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K Jha.
Garnet: A detailed on-chip network model inside a full-system simula-
tor. In Performance Analysis of Systems and Software, 2009. ISPASS
2009. IEEE International Symposium on, pages 33–42. IEEE, 2009.

143

[ALE02] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infras-
tructure for computer system modeling. Computer, 35(2):59–67, 2002.

[ALEZ16] K. Ahmed, J. Liu, S. Eidenbenz, and J. Zerr. Scalable interconnec-
tion network models for rapid performance prediction of HPC appli-
cations. In 2016 IEEE 18th International Conference on High Perfor-
mance Computing and Communications (HPCC), pages 1069–1078,
Dec 2016.

[ALSJ13] Jung Ho Ahn, Sheng Li, O Seongil, and Norman P Jouppi. Mcsima+:
A manycore simulator with application-level+ simulation and detailed
microarchitecture modeling. In Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on, pages
74–85, 2013.

[Alv12] Robert Alverson. Cray high speed networking. In Proceedings of the
20th Annual Symposium on High-Performance Interconnects (HOTI),
2012.

[Ama17] Amazon. Amazon EC2 reserved instances pricing. https://aws.

amazon.com/ec2/pricing/reserved-instances/pricing/, 2017.

[AOL+16] Kishwar Ahmed, Mohammad Obaida, Jason Liu, Stephan Eidenbenz,
Nandakishore Santhi, and Guillaume Chapuis. An integrated inter-
connection network model for large-scale performance prediction. In
Proceedings of the 2016 annual ACM Conference on SIGSIM Princi-
ples of Advanced Discrete Simulation, pages 177–187. ACM, 2016.

[APM+12] Pablo Abad, Pablo Prieto, Lucia G Menezo, Adrián Colaso, Valentin
Puente, and Jose-Angel Gregorio. Topaz: An open-source interconnec-
tion network simulator for chip multiprocessors and supercomputers.
In Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International
Symposium on, pages 99–106. IEEE, 2012.

[AR13] Ehsan K Ardestani and Jose Renau. Esesc: A fast multicore sim-
ulator using time-based sampling. In High Performance Computer
Architecture (HPCA2013), 2013 IEEE 19th International Symposium
on, pages 448–459. IEEE, 2013.

[Arc17] Arch Linux. CPUs frequency scaling. https://wiki.archlinux.

org/index.php/CPU_frequency_scaling, 2017.

144

[ARK10] Robert Alverson, Duncan Roweth, and Larry Kaplan. The Gemini
system interconnect. In 2010 18th IEEE Symposium on High Perfor-
mance Interconnects, pages 83–87. IEEE, 2010.

[AS11] David Aikema and Rob Simmonds. Electrical cost savings and clean
energy usage potential for hpc workloads. In Sustainable Systems and
Technology (ISSST), 2011 IEEE International Symposium on, pages
1–6. IEEE, 2011.

[ASC17] ASCR. ExaCT: Exascale Simulation of Combustion in Turbulence.
https://crd.lbl.gov/projects/combustion-codesign/, 2017.

[AW14] Brian Austin and Nicholas J Wright. Measurement and interpretation
of microbenchmark and application energy use on the Cray XC30. In
Proceedings of the 2nd International Workshop on Energy Efficient
Supercomputing, pages 51–59. IEEE Press, 2014.

[BBB+91] David H Bailey, Eric Barszcz, John T Barton, David S Browning,
Robert L Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Freder-
ickson, Thomas A Lasinski, Rob S Schreiber, et al. The NAS parallel
benchmarks summary and preliminary results. In Supercomputing,
1991.

[BBB+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower,
Tushar Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM
SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[BCPC16] Enes Bilgin, Michael C Caramanis, Ioannis Ch Paschalidis, and Chris-
tos G Cassandras. Provision of regulation service by smart buildings.
IEEE Transactions on Smart Grid, 7(3):1683–1693, 2016.

[BCY13] Reuben D Budiardja, Lonnie Crosby, and Haihang You. Effect of rank
placement on cray xc30 communication cost. In The Cray User Group
Meeting, 2013.

[BD05] Patrick Bolton and Mathias Dewatripont. Contract theory. MIT press,
2005.

[BDH+06] Nathan L Binkert, Ronald G Dreslinski, Lisa R Hsu, Kevin T Lim,
Ali G Saidi, and Steven K Reinhardt. The m5 simulator: Modeling
networked systems. IEEE Micro, 26(4):52–60, 2006.

145

[BE11] Swen Böhm and Christian Engelmann. xsim: The extreme-scale simu-
lator. In High Performance Computing and Simulation (HPCS), 2011
International Conference on, pages 280–286, 2011.

[BGA+15] Natalie Bates, Girish Ghatikar, Ghaleb Abdulla, Gregory A Koenig,
Sridutt Bhalachandra, Mehdi Sheikhalishahi, Tapasya Patki, Barry
Rountree, and Stephen Poole. Electrical grid and supercomputing
centers: an investigative analysis of emerging opportunities and chal-
lenges. Informatik-Spektrum, 38(2):111–127, 2015.

[BGK+16] Tekin Bicer, Doga Gürsoy, Rajkumar Kettimuthu, Francesco
De Carlo, and Ian T Foster. Optimization of tomographic recon-
struction workflows on geographically distributed resources. Journal
of Synchrotron Radiation, 23(4), 2016.

[BHC+16] Wenlei Bao, Changwan Hong, Sudheer Chunduri, Sriram Krish-
namoorthy, Louis-Noël Pouchet, Fabrice Rastello, and P Sadayap-
pan. Static and dynamic frequency scaling on multicore CPUs.
ACM Transactions on Architecture and Code Optimization (TACO),
13(4):51, 2016.

[BJL+15] Abhinav Bhatele, Nikhil Jain, Yarden Livnat, Valerio Pascucci, and
Peer-Timo Bremer. Simulating and visualizing traffic on the dragonfly
network. https://cug.org/proceedings/cug2016_proceedings/

includes/files/pap155.pdf, 2015.

[Bog14] Bartosz Bogdaski. Optimized Routing for Fat-tree Topologies. PhD
thesis, University of Oslo, Oslo, Norway, 2014.

[Can69] L. E. Cannon. A Cellular Computer to Implement the Kalman Filter
Algorithm. PhD thesis, Montana State University, Bozeman, MT,
1969.

[CBP02] Christopher D Carothers, David Bauer, and Shawn Pearce. Ross: A
high-performance, low-memory, modular time warp system. Journal
of Parallel and Distributed Computing, 62(11):1648–1669, 2002.

[CBS+12] Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor,
S Pugsley, A Udipi, Ali Shafiee, Kshitij Sudan, Manu Awasthi, and
Zeshan Chishti. USIMM: The utah simulated memory module. Uni-
versity of Utah, Tech. Rep, 2012.

146

[CEH+11] Dong Chen, Noel A Eisley, Philip Heidelberger, Robert M Senger,
Yutaka Sugawara, Sameer Kumar, Valentina Salapura, David L Sat-
terfield, Burkhard Steinmacher-Burow, and Jeffrey J Parker. The ibm
blue gene/q interconnection network and message unit. In 2011 Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 1–10. IEEE, 2011.

[CEH+12] Dong Chen, Noel Eisley, Philip Heidelberger, Robert Senger, Yu-
taka Sugawara, Sameer Kumar, Valentina Salapura, David Satter-
field, Burkhard Steinmacher-Burow, and Jeffrey Parker. The ibm blue
gene/q interconnection fabric. IEEE Micro, 32(1):32–43, 2012.

[CESP15] G. Chapuis, S. Eidenbenz, N. Santhi, and E. J. Park. Simian inte-
grated framework for parallel discrete event simulation on GPUs. In
2015 Winter Simulation Conference (WSC), pages 1127–1138, Dec
2015.

[CGL+14] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson,
and Frédéric Suter. Versatile, scalable, and accurate simulation of
distributed applications and platforms. Journal of Parallel and Dis-
tributed Computing, 74(10):2899–2917, 2014.

[CHK16] Thang Cao, Yuan He, and Masaaki Kondo. Demand-aware power
management for power-constrained HPC systems. In Cluster, Cloud
and Grid Computing (CCGrid), 2016 16th IEEE/ACM International
Symposium on, pages 21–31. IEEE, 2016.

[CLL+11] Jason Cope, Ning Liu, Sam Lang, Phil Carns, Chris Carothers, and
Robert Ross. Codes: Enabling co-design of multilayer exascale storage
architectures. In Proceedings of the Workshop on Emerging Supercom-
puting Technologies, pages 303–312, 2011.

[CNEP16] Guillaume Chapuis, David Nicholaeff, Stephan Eidenbenz, and
Robert S Pavel. Predicting performance of smoothed particle hy-
drodynamics codes at large scales. In Winter Simulation Conference
(WSC), 2016, pages 1825–1835. IEEE, 2016.

[Cou16] Rachel Courtland. China inches toward the exascale[news]. IEEE
Spectrum, 53(8):14–15, 2016.

[CVB15] Cristóbal Camarero, Enrique Vallejo, and Ramón Beivide. Topolog-
ical characterization of hamming and dragonfly networks and its im-

147

plications on routing. ACM Transactions on Architecture and Code
Optimization (TACO), 11(4):39, 2015.

[CVM+15] Matteo Chiesi, Luca Vanzolini, Claudio Mucci, Eleonora Franchi
Scarselli, and Roberto Guerrieri. Power-aware job scheduling on het-
erogeneous multicore architectures. IEEE Transactions on Parallel
and Distributed Systems, 26(3):868–877, 2015.

[DBM+11] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Gio-
vanni Aloisio, Jean-Claude Andre, David Barkai, Jean-Yves Berthou,
Taisuke Boku, Bertrand Braunschweig, et al. The international exas-
cale software project roadmap. International Journal of High Perfor-
mance Computing Applications, 25(1):3–60, 2011.

[Dep14] Department of Energy. Department of energy awards $425 million for
next generation supercomputing technologies, 2014.

[DGML13] Mohammed El Mehdi Diouri, Olivier Glück, J-C Mignot, and Laurent
Lefèvre. Energy estimation for mpi broadcasting algorithms in large
scale hpc systems. In Proceedings of the 20th European MPI Users’
Group Meeting, pages 111–116, 2013.

[DKS+14] Lingjie Duan, Takeshi Kubo, Kohei Sugiyama, Jianwei Huang,
Teruyuki Hasegawa, and Jean Walrand. Motivating smartphone col-
laboration in data acquisition and distributed computing. IEEE
Transactions on Mobile Computing, 2014.

[DSRI13] Kefeng Deng, Junqiang Song, Kaijun Ren, and Alexandru Iosup. Ex-
ploring portfolio scheduling for long-term execution of scientific work-
loads in IaaS clouds. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
page 55. ACM, 2013.

[DVMJC13] Karel De Vogeleer, Gerard Memmi, Pierre Jouvelot, and Fabien
Coelho. The energy/frequency convexity rule: Modeling and experi-
mental validation on mobile devices. In International Conference on
Parallel Processing and Applied Mathematics, pages 793–803. Springer
Berlin Heidelberg, 2013.

[ECLV12] Maja Etinski, Julita Corbalan, Jesus Labarta, and Mateo Valero. Par-
allel job scheduling for power constrained HPC systems. Parallel Com-
puting, 38(12):615–630, 2012.

148

[EL10] Christian Engelmann and Frank Lauer. Facilitating co-design for
extreme-scale systems through lightweight simulation. In Clus-
ter Computing Workshops and Posters (CLUSTER WORKSHOPS),
2010 IEEE International Conference on, pages 1–8, 2010.

[Ene14] EnerNOC. IEA workshop: Demand response. https://www.iea.

org/media/workshops/2014/esapworkshopii/Jeff_Renaud.pdf,
2014.

[Eng14] Christian Engelmann. Scaling to a million cores and beyond: Using
light-weight simulation to understand the challenges ahead on the road
to exascale. Future Generation Computer Systems, 30:59–65, 2014.

[FBCM14] Mark R Fahey, Reuben Budiardja, Lonnie Crosby, and Stephen Mc-
Nally. Deploying darter-a cray xc30 system. In International Super-
computing Conference, pages 430–439. Springer, 2014.

[FBR+12] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Edwin Froese, Bob
Alverson, Tim Johnson, Joe Kopnick, Mike Higgins, James Reinhard,
et al. Cray cascade: a scalable hpc system based on a dragonfly
network. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, page 103.
IEEE Computer Society Press, 2012.

[FDK+11] Christian Feichtinger, Stefan Donath, Harald Köstler, Jan Götz, and
Ulrich Rüde. Walberla: HPC software design for computational engi-
neering simulations. Journal of Computational Science, 2(2):105–112,
2011.

[Fed16] Federal Energy Regulatory Commission. Assessment of demand
response and advanced metering. https://www.ferc.gov/legal/

staff-reports/2016/DR-AM-Report2016.pdf, 2016.

[FP16] Peter Fox-Penner. Why Apple is getting into
the energy business. https://hbr.org/2016/11/

why-apple-is-getting-into-the-energy-business, 2016.

[FPK+05] Vincent W Freeh, Feng Pan, Nandini Kappiah, David K Lowenthal,
and Robert Springer. Exploring the energy-time tradeoff in MPI pro-
grams on a power-scalable cluster. In Parallel and Distributed Process-
ing Symposium, 2005. Proceedings. 19th IEEE International, pages
10–pp. IEEE, 2005.

149

[FTK14] Dror G. Feitelson, Dan Tsafrir, and David Krakov. Experience with
using the parallel workloads archive. Journal of Parallel and Dis-
tributed Computing, 74(10):2967 – 2982, 2014.

[GAO14] QIANWEN GAO. Investigation of power capping techniques for better
computing energy efficiency. PhD thesis, Politecnico di Milano, 2014.

[GBB+09] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra,
Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti,
Matteo Cococcioni, Ismaila Dabo, et al. Quantum espresso: a modular
and open-source software project for quantum simulations of materi-
als. Journal of physics: Condensed matter, 21(39):395502, 2009.

[GCWL13] Yang Gao, Yan Chen, Chih-Yu Wang, and KJ Ray Liu. A contract-
based approach for ancillary services in v2g networks: Optimality and
learning. In INFOCOM, 2013 Proceedings IEEE, pages 1151–1159.
IEEE, 2013.

[GFFC07] Rong Ge, Xizhou Feng, Wu-chun Feng, and Kirk W Cameron. CPU
MISER: A performance-directed, run-time system for power-aware
clusters. In Parallel Processing, 2007. ICPP 2007. International Con-
ference on, pages 18–18. IEEE, 2007.

[GFS12] R. Ge, X. Feng, and X. H. Sun. SERA-IO: Integrating energy con-
sciousness into parallel i/o middleware. In 2012 12th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CC-
GRID 2012), pages 204–211, May 2012.

[GGMP12] Girish Ghatikar, Venkata Ganti, Nance Matson, and Mary Ann Piette.
Demand response opportunities and enabling technologies for data
centers: Findings from field studies. Technical report, Lawrence
Berkeley National Lab, 2012.

[GGRT15] Yiannis Georgiou, David Glesser, Krzysztof Rzadca, and Denis Trys-
tram. A scheduler-level incentive mechanism for energy efficiency in
HPC. In Cluster, Cloud and Grid Computing (CCGrid), 2015 15th
IEEE/ACM International Symposium on, pages 617–626. IEEE, 2015.

[GL84] Roger Guesnerie and Jean-Jacques Laffont. A complete solution to a
class of principal-agent problems with an application to the control of
a self-managed firm. Journal of Public Economics, 25:329–369, 1984.

150

[GR17] Al Geist and Daniel A Reed. A survey of high-performance computing
scaling challenges. The International Journal of High Performance
Computing Applications, 31(1):104–113, 2017.

[GRP+13] Marc Gamell, Ivan Rodero, Manish Parashar, Janine C Bennett, He-
manth Kolla, Jacqueline Chen, Peer-Timo Bremer, Aaditya G Landge,
Attila Gyulassy, Patrick McCormick, et al. Exploring power behaviors
and trade-offs of in-situ data analytics. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking,
Storage and Analysis, page 77, 2013.

[GWXZ11] Lin Gao, Xinbing Wang, Youyun Xu, and Qian Zhang. Spectrum
trading in cognitive radio networks: A contract-theoretic modeling
approach. IEEE Journal on Selected Areas in Communications, 2011.

[HBH14] David G Holmberg, Steven T Bushby, and David B Hardin. Facil-
ity smart grid interface and a demand response conceptual model.
Technical Report NIST Technical Note 1832, NIST, 2014.

[HJB12] Ziaul Hasan, Abbas Jamalipour, and Vijay K Bhargava. Cooperative
communication and relay selection under asymmetric information. In
Wireless Communications and Networking Conference (WCNC), 2012
IEEE, pages 2373–2378. IEEE, 2012.

[Hol16] Richard Holden. Contract Theory Notes. http://

research.economics.unsw.edu.au/richardholden/assets/

2060-rh-2016-v2.pdf, 2016.

[How09] Paul G Howard. Six-core amd opteron processor istanbul. White
Paper, Microway Inc, 2009.

[HRT+12] Ming-yu Hsieh, Rolf Riesen, Kevin Thompson, William Song, and
Arun Rodrigues. Sst: A scalable parallel framework for architecture-
level performance, power, area and thermal simulation. The Computer
Journal, 55(2):181–191, 2012.

[IDR16] IDRIS. Turing, IBM Blue Gene/Q: Hardware configuration. http:

//www.idris.fr/eng/turing/hw-turing-eng.html, 2016.

[IdSSM05] Engin Ipek, Bronis R. de Supinski, Martin Schulz, and Sally A. Mc-
Kee. An approach to performance prediction for parallel applications.
Euro-Par 2005 Parallel Processing, pages 627–628, 2005.

151

[Ill12] Illinois Institute of Technology. CQsim. http://bluesky.cs.iit.

edu/cqsim/, 2012.

[Int14] Intel Corporation. Intel 64 and ia-32 architectures software developers
manual. Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C, 2014.

[JAC+12] Curtis L Janssen, Helgi Adalsteinsson, Scott Cranford, Joseph P
Kenny, Ali Pinar, David A Evensky, and Jackson Mayo. A simulator
for large-scale parallel computer architectures. Technology Integration
Advancements in Distributed Systems and Computing, 179, 2012.

[Jan10] Jeff Janzen. The micron system-power calculator. https://www.

micron.com/support/tools-and-utilities/power-calc, 2010.

[JBW+16] Nikhil Jain, Abhinav Bhatele, Sam White, Todd Gamblin, and
Laxmikant V. Kale. Evaluating HPC networks via simulation of par-
allel workloads. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’16, pages 14:1–14:12, Piscataway, NJ, USA, 2016. IEEE Press.

[JE11] Ian S Jones and Christian Engelmann. Simulation of large-scale hpc
architectures. In Parallel Processing Workshops (ICPPW), 2011 40th
International Conference on, pages 447–456, 2011.

[JYE12] Min Kyu Jeong, Doe Hyun Yoon, and Mattan Erez. Drsim: A plat-
form for flexible DRAM system research. http://lph.ece.utexas.

edu/public/DrSim, 2012.

[KBC+11] Rico Knapper, Benjamin Blau, Tobias Conte, Anca Sailer, Andrzej
Kochut, and Ajay Mohindra. Efficient contracting in cloud service
markets with asymmetric information-a screening approach. In Com-
merce and Enterprise Computing (CEC), 2011.

[KBD+08] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz,
Matthias Lieber, Holger Mickler, Matthias S Müller, and Wolfgang E
Nagel. The vampir performance analysis tool-set. In Tools for High
Performance Computing, pages 139–155. Springer, 2008.

[KBK+13] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L Chamberlain,
Johanne Cohen, Zachary DeVito, Rakibul Haque, Daniel Laney, Ed-
ward Luke, Felix Wang, et al. Exploring traditional and emerging

152

parallel programming models using a proxy application. In Paral-
lel & Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on, pages 919–932. IEEE, 2013.

[KBVH14] Darren J Kerbyson, Kevin J Barker, Abhinav Vishnu, and Adolfy
Hoisie. A performance comparison of current HPC systems: Blue
Gene/Q, Cray XE6 and InfiniBand systems. Future Generation Com-
puter Systems, 30:291–304, 2014.

[KC15] Angeliki V Kordali and Panayotis G Cottis. A contract-based spec-
trum trading scheme for cognitive radio networks enabling hybrid ac-
cess. IEEE Access, 3:1531–1540, 2015.

[KDSA08] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. Technology-
driven, highly-scalable dragonfly topology. In ACM SIGARCH Com-
puter Architecture News, pages 77–88. IEEE Computer Society, 2008.

[KK93] Laxmikant V Kale and Sanjeev Krishnan. Charm++: A portable
concurrent object oriented system based on c++. In ACM Sigplan
Notices, pages 91–108, 1993.

[KLPS09] Andrew B Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi.
ORION 2.0: A fast and accurate noc power and area model for early-
stage design space exploration. In Proceedings of the conference on
Design, Automation and Test in Europe, pages 423–428, 2009.

[KMY15] Kamran Kianfar, Ghasem Moslehi, and R Yahyapour. A novel meta-
heuristic algorithm and utility function for qos based scheduling in
user-centric grid systems. The Journal of Supercomputing, 71(3):1143–
1162, 2015.

[KPC+08] Martin Käser, Josep de al Puente, Cristóbal Castro, Verena Hermann,
and Michael Dumbser. Seismic wave field modelling using high per-
formance computing. In SEG Technical Program Expanded Abstracts
2008, pages 2884–2888. Society of Exploration Geophysicists, 2008.

[KRY12] Chad D Kersey, Arun Rodrigues, and Sudhakar Yalamanchili. A uni-
versal parallel front-end for execution driven microarchitecture simu-
lation. In Proceedings of the 2012 Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools, pages 25–32, 2012.

153

[KT11] Volodymyr Kindratenko and Pedro Trancoso. Trends in high-
performance computing. Computing in Science & Engineering,
13(3):92–95, 2011.

[KYM15] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast
and extensible dram simulator. IEEE Computer Architecture Letters,
2015.

[Lab15] Sandia National Laboratories. Structural simulation toolkit
(sst) dumpi trace library. https://github.com/sstsimulator/

sst-dumpi, Accessed December 2015.

[LAS+09] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M
Tullsen, and Norman P Jouppi. McPAT: An integrated power, area,
and timing modeling framework for multicore and manycore architec-
tures. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 469–480, 2009.

[Law11] Lawrence Livermore National Lab. ExMatEx: Extreme Materials at
Extreme Scale. https://codesign.llnl.gov/exmatex.php, 2011.

[Law15] Lawrence Livermore National Lab. Livermore Unstructured La-
grangian Explicit Shock Hydrodynamics (LULESH). https://

codesign.llnl.gov/lulesh.php, Accessed December 2015.

[LBD+06] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner,
Robert F Lucas, Rolf Rabenseifner, and Daisuke Takahashi. The
hpc challenge (hpcc) benchmark suite. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 213. Citeseer, 2006.

[LBdS+07] Benjamin C Lee, David M Brooks, Bronis R de Supinski, Martin
Schulz, Karan Singh, and Sally A McKee. Methods of inference and
learning for performance modeling of parallel applications. In Pro-
ceedings of the 12th ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 249–258. ACM, 2007.

[LC11] Ning Liu and Christopher D Carothers. Modeling billion-node torus
networks using massively parallel discrete-event simulation. In Pro-
ceedings of the 2011 IEEE Workshop on Principles of Advanced and
Distributed Simulation, pages 1–8, 2011.

154

[LCC+12] Ning Liu, Christopher Carothers, Jason Cope, Philip Carns, and
Robert Ross. Model and simulation of exascale communication net-
works. Journal of Simulation, 6(4):227–236, 2012.

[LCD+16] Yanpei Liu, Guilherme Cox, Qingyuan Deng, Stark C Draper, and
Ricardo Bianchini. FastCap: An efficient and fair algorithm for power
capping in many-core systems. In ISPASS, 2016.

[LCH04] Xuan-Yi Lin, Yeh-Ching Chung, and Tai-Yi Huang. A multiple lid
routing scheme for fat-tree-based infiniband networks. In Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th Interna-
tional, page 11. IEEE, 2004.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: Building customized program analysis tools
with dynamic instrumentation. In Acm sigplan notices, volume 40,
pages 190–200, 2005.

[LDKP15] Akhil Langer, Harshit Dokania, Laxmikant V Kalé, and Udatta S
Palekar. Analyzing energy-time tradeoff in power overprovisioned hpc
data centers. In Parallel and Distributed Processing Symposium Work-
shop (IPDPSW), 2015 IEEE International, pages 849–854. IEEE,
2015.

[LdVW+12] Pierre-François Lavallée, Guillaume Colin de Verdiere, Philippe
Wautelet, Dimitri Lecas, and Jean-Michel Dupays. Porting and op-
timizing HYDRO to new platforms and programming paradigms-
lessons learnt. Technical report, PRACE, 2012.

[LHSJ15] Ning Liu, Adnan Haider, Xian-He Sun, and Dong Jin. Fattreesim:
Modeling large-scale fat-tree networks for hpc systems and data cen-
ters using parallel and discrete event simulation. In Proceedings of
the 3rd ACM Conference on SIGSIM-Principles of Advanced Discrete
Simulation, pages 199–210, 2015.

[LLRL12] Jie Li, Zuyi Li, Kui Ren, and Xue Liu. Towards optimal electric
demand management for internet data centers. IEEE Transactions
on Smart Grid, 3(1):183–192, 2012.

[LM06] Jian Li and Jose F Martinez. Dynamic power-performance adaptation
of parallel computation on chip multiprocessors. In High-Performance

155

Computer Architecture, 2006. The Twelfth International Symposium
on, pages 77–87. IEEE, 2006.

[LM09] Jean-Jacques Laffont and David Martimort. The theory of incentives:
the principal-agent model. Princeton university press, 2009.

[LSSS16] Gary Lawson, Vaibhav Sundriyal, Masha Sosonkina, and Yuzhong
Shen. Runtime power limiting of parallel applications on Intel Xeon
Phi processors. In Proceedings of the 4th International Workshop on
Energy Efficient Supercomputing, 2016.

[LW15] Feng Liu and Jon B Weissman. Elastic job bundling: An adaptive
resource request strategy for large-scale parallel applications. In Pro-
ceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, page 33. ACM, 2015.

[LWC+13] Zhenhua Liu, Adam Wierman, Yuan Chen, Benjamin Razon, and Ni-
angjun Chen. Data center demand response: Avoiding the coincident
peak via workload shifting and local generation. Performance Evalu-
ation, 2013.

[Man14] Katrina Managan. Demand response: A market overview. Technical
report, Institute for Building Efficiency, 2014.

[McA17] James McAnany. 2016 demand response operations markets activity
report: April 2017. http://www.pjm.com/~/media/markets-ops/

dsr/2016-demand-response-activity-report.ashx, 2017.

[McC02] John D McCalpin. Stream benchmark. URL: http: // www. cs.

virginia. edu/ stream/ stream2 , 2002.

[MCE+02] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel
Forsgren, Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas
Moestedt, and Bengt Werner. Simics: A full system simulation plat-
form. Computer, 35(2):50–58, 2002.

[MCRC12] Misbah Mubarak, Christopher D Carothers, Robert Ross, and Philip
Carns. Modeling a million-node dragonfly network using massively
parallel discrete-event simulation. In High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages
366–376. IEEE, 2012.

156

[MCRC14] Misbah Mubarak, Christopher D Carothers, Robert B Ross, and
Philip Carns. Using massively parallel simulation for mpi collective
communication modeling in extreme-scale networks. In A. Tolk, S. Y.
Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, ed-
itors, Proceedings of the 2014 Winter Simulation Conference, pages
3107–3118, Piscataway, New Jersey, 2014. Institute of Electrical and
Electronics Engineers, Inc.

[ME13] Hedin Marianne and Woods Eric. Market data: Demand response.
residential, commercial, and industrial demand response participation
and sites, load curtailment, and spending: Global and regional market
sizing and forecasts. https://www.pjm.com/-/media/markets-ops/
dsr/2017-demand-response-activity-report.ashx, 2013.

[Mel16] Mellanox Technologies. Deploying hpc cluster with mellanox infini-
band interconnect solutions, 2016.

[MHL+13] Aniruddha Marathe, Rachel Harris, David K Lowenthal, Bronis R
De Supinski, Barry Rountree, Martin Schulz, and Xin Yuan. A com-
parative study of high-performance computing on the cloud. In Pro-
ceedings of the 22nd international symposium on High-performance
parallel and distributed computing, pages 239–250. ACM, 2013.

[Mir71] James A Mirrlees. An exploration in the theory of optimum income
taxation. The review of economic studies, pages 175–208, 1971.

[Mis15] Mission Critical Power. Equinix in R&D phase of de-
mand response experiments. https://missioncriticalpower.uk/

equinix-tests-demand-response/, 2015.

[MKK+10] Jason E Miller, Harshad Kasture, George Kurian, Charles Gruen-
wald III, Nathan Beckmann, Christopher Celio, Jonathan Eastep, and
Anant Agarwal. Graphite: A distributed parallel simulator for mul-
ticores. In High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on, pages 1–12. IEEE, 2010.

[MLY+16] Chuan Ma, Yuqing Li, Hui Yu, Xiaoying Gan, Xinbing Wang, Yong
Ren, and Jun Jim Xu. Cooperative spectrum sharing in d2d-
enabled cellular networks. IEEE Transactions on Communications,
64(10):4394–4408, 2016.

157

[MSB+05] Milo MK Martin, Daniel J Sorin, Bradford M Beckmann, Michael R
Marty, Min Xu, Alaa R Alameldeen, Kevin E Moore, Mark D Hill, and
David A Wood. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. ACM SIGARCH Computer Architecture
News, 33(4):92–99, 2005.

[MV15] Prakash Murali and Sathish Vadhiyar. Metascheduling of HPC jobs
in day-ahead electricity markets. In 2015 IEEE 22nd International
Conference on High Performance Computing (HiPC), pages 386–395.
IEEE, 2015.

[Mye81] Roger B Myerson. Optimal auction design. Mathematics of operations
research, 6(1):58–73, 1981.

[NER15a] NERSC. Design forward characterization of DOE mini-apps. http:

//portal.nersc.gov/project/CAL/doe-miniapps.htm, 2015.

[NER15b] NERSC. NERSC. Interconnect. https://www.nersc.gov/

users/computational-systems/retired-systems/hopper/

configuration/interconnect/, 2015.

[Nic93] David M Nicol. The cost of conservative synchronization in parallel
discrete event simulations. Journal of the ACM (JACM), 40(2):304–
333, 1993.

[NJ14] Bahareh Nazari and Abbas Jamalipour. A contract-auction mecha-
nism for multi-relay cooperative wireless networks. In Vehicular Tech-
nology Conference (VTC Spring), 2014 IEEE 79th, pages 1–5. IEEE,
2014.

[Nvi15] Nvidia Corporation. Nvml api reference manual. https://docs.

nvidia.com/deploy/pdf/NVML_API_Reference_Guide.pdf, 2015.

[Oak14] Oak Ridge National Laboratory, Argonne National Laboratory,
Lawrence Livermore National Laboratory. CORAL benchmark codes.
https://asc.llnl.gov/CORAL-benchmarks/, 2014.

[Off13] Office of Science Co-design Center. CESAR: Center for Exascale Sim-
ulation of Advanced Reactors. https://cesar.mcs.anl.gov/, 2013.

[ORS+10] Catherine Mills Olschanowsky, Tajana Rosing, Allan Snavely, Laura
Carrington, Mustafa M Tikir, and Michael Laurenzano. Fine-grained

158

energy consumption characterization and modeling. In High Perfor-
mance Computing Modernization Program Users Group Conference
(HPCMP-UGC), 2010 DoD, pages 487–497. IEEE, 2010.

[PACG11] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. Marss:
A full system simulator for multicore x86 cpus. In Proceedings of the
48th Design Automation Conference, pages 1050–1055. ACM, 2011.

[PBG+16] Tapasya Patki, Natalie Bates, Girish Ghatikar, Anders Clausen, Sonja
Klingert, Ghaleb Abdulla, and Mehdi Sheikhalishahi. Supercom-
puting centers and electricity service providers: a geographically
distributed perspective on demand management in Europe and the
United States. In International Conference on High Performance
Computing, pages 243–260. Springer, 2016.

[PCD+13] Antonio J Peña, Ralf G Correa Carvalho, James Dinan, Pavan Balaji,
Rajeev Thakur, and William Gropp. Analysis of topology-dependent
MPI performance on Gemini networks. In Proceedings of the 20th
European MPI Users’ Group Meeting, pages 61–66. ACM, 2013.

[Per10] Kalyan S Perumalla. µπ: A scalable and transparent system for sim-
ulating mpi programs. In Proceedings of the 3rd International ICST
Conference on Simulation Tools and Techniques, page 62, 2010.

[PJM14] PJM Interconnect. Demand response and why its impor-
tant. https://www.pjm.com/~/media/markets-ops/dsr/

end-use-customer-fact-sheet.ashx, 2014.

[PJM17] PJM Interconnection. Demand response strategy. http://www.

pjm.com/~/media/library/reports-notices/demand-response/

20170628-pjm-demand-response-strategy.ashx, 2017.

[PLR+13] Tapasya Patki, David K Lowenthal, Barry Rountree, Martin Schulz,
and Bronis R De Supinski. Exploring hardware overprovisioning in
power-constrained, high performance computing. In SC, 2013.

[PLR+16] T. Patki, D. K. Lowenthal, B. L. Rountree, M. Schulz, and B. R.
d. Supinski. Economic viability of hardware overprovisioning in power-
constrained high performance computing. In 2016 4th International
Workshop on Energy Efficient Supercomputing (E2SC), pages 8–15,
Nov 2016.

159

[PLS+15] Tapasya Patki, David K Lowenthal, Anjana Sasidharan, Matthias
Maiterth, Barry L Rountree, Martin Schulz, and Bronis R de Supin-
ski. Practical resource management in power-constrained, high per-
formance computing. In Proceedings of the 24th International Sympo-
sium on High-Performance Parallel and Distributed Computing, pages
121–132. ACM, 2015.

[Pow78] Michael JD Powell. A fast algorithm for nonlinearly constrained opti-
mization calculations. In Numerical analysis, pages 144–157. Springer,
1978.

[PP14] Kalyan S Perumalla and Alfred J Park. Simulating billion-task parallel
programs. In Performance Evaluation of Computer and Telecommuni-
cation Systems (SPECTS 2014), International Symposium on, pages
585–592, 2014.

[PRA97] Vijay S Pai, Parthasarathy Ranganathan, and Sarita V Adve. Rsim:
An execution-driven simulator for ilp-based shared-memory multipro-
cessors and uniprocessors. In Proceedings of the Third Workshop on
Computer Architecture Education, volume 178. Citeseer, 1997.

[PS06] Venkatesh Pallipadi and Alexey Starikovskiy. The ondemand gover-
nor. In Proceedings of the Linux Symposium, pages 215–230, 2006.

[PSL10] Parallel Systems Lab. Python scheduler simulator. https://code.

google.com/archive/p/pyss/, 2010.

[PV97] Fabrizio Petrini and Marco Vanneschi. k-ary n-trees: High perfor-
mance networks for massively parallel architectures. In Parallel Pro-
cessing Symposium, 1997. Proceedings., 11th International, pages 87–
93. IEEE, 1997.

[PVB+13] Kevin Pedretti, Courtenay Vaughan, Richard Barrett, Karen Devine,
and K Scott Hemmert. Using the Cray Gemini performance counters.
Proc Cray User Group (CUG), 2013.

[RADS+12] Barry Rountree, Dong H Ahn, Bronis R De Supinski, David K Lowen-
thal, and Martin Schulz. Beyond dvfs: A first look at performance
under a hardware-enforced power bound. In Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2012
IEEE 26th International, pages 947–953. IEEE, 2012.

160

[RCBJ11] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2:
A cycle accurate memory system simulator. Computer Architecture
Letters, 10(1):16–19, 2011.

[RHB+11] Arun F Rodrigues, K Scott Hemmert, Brian W Barrett, Chad Kersey,
Ron Oldfield, Marlo Weston, R Risen, Jeanine Cook, Paul Rosenfeld,
E CooperBalls, et al. The structural simulation toolkit. ACM SIG-
METRICS Performance Evaluation Review, 38(4):37–42, 2011.

[RLDS+09] Barry Rountree, David K Lownenthal, Bronis R De Supinski, Martin
Schulz, Vincent W Freeh, and Tyler Bletsch. Adagio: making dvs
practical for complex HPC applications. In Proceedings of the 23rd
international conference on Supercomputing, pages 460–469. ACM,
2009.

[SBK13] Shuaiwen Leon Song, Kevin Barker, and Darren Kerbyson. Unified
performance and power modeling of scientific workloads. In Proceed-
ings of the 1st International Workshop on Energy Efficient Supercom-
puting, page 4, 2013.

[SBM09] Karan Singh, Major Bhadauria, and Sally A McKee. Real time power
estimation and thread scheduling via performance counters. ACM
SIGARCH Computer Architecture News, 37(2):46–55, 2009.

[SCC+12] Cagri Sahin, Furkan Cayci, James Clause, Fouad Kiamilev, Lori Pol-
lock, and Kristina Winbladh. Towards power reduction through im-
proved software design. In Energytech, 2012.

[SEL15] Nandakishore Santhi, Stephan Eidenbenz, and Jason Liu. The simian
concept: parallel discrete event simulation with interpreted languages
and just-in-time compilation. In Proceedings of the 2015 Winter Sim-
ulation Conference, pages 3013–3024. IEEE Press, 2015.

[SK13] Daniel Sanchez and Christos Kozyrakis. Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems. In ACM
SIGARCH Computer Architecture News, volume 41, pages 475–486,
2013.

[SKSS02] Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Subramani, and
P Sadayappan. Characterization of backfilling strategies for parallel
job scheduling. In Parallel Processing Workshops, 2002. Proceedings.
International Conference on, pages 514–519. IEEE, 2002.

161

[SL14] Shang-Pin Sheng and Mingyan Liu. Profit incentive in trading nonex-
clusive access on a secondary spectrum market through contract
design. IEEE/ACM Transactions on Networking, 22(4):1190–1203,
2014.

[SLGK14] Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kale.
Maximizing throughput of overprovisioned HPC data centers under a
strict power budget. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 807–818. IEEE Press, 2014.

[SLK+13] Osman Sarood, Akhil Langer, Laxmikant Kalé, Barry Rountree, and
Bronis De Supinski. Optimizing power allocation to cpu and mem-
ory subsystems in overprovisioned hpc systems. In Cluster Comput-
ing (CLUSTER), 2013 IEEE International Conference on, pages 1–8.
IEEE, 2013.

[SM06] Sameer S Shende and Allen D Malony. The tau parallel performance
system. International Journal of High Performance Computing Ap-
plications, 20(2):287–311, 2006.

[SNHH14] Lingyang Song, Dusit Niyato, Zhu Han, and Ekram Hossain. Game-
theoretic resource allocation methods for device-to-device communi-
cation. IEEE Wireless Communications, 2014.

[Spr05] Volker Springel. The cosmological simulation code gadget-2. Monthly
notices of the royal astronomical society, 364(4):1105–1134, 2005.

[SV12] Kyle L Spafford and Jeffrey S Vetter. Aspen: A domain specific lan-
guage for performance modeling. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, page 84, 2012.

[SWA+15] Hayk Shoukourian, Torsten Wilde, Axel Auweter, Arndt Bode, and
Daniele Tafani. Predicting energy consumption relevant indicators of
strong scaling HPC applications for different compute resource con-
figurations. In Proceedings of the Symposium on High Performance
Computing, pages 115–126. Society for Computer Simulation Interna-
tional, 2015.

[SWAB14] Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode.
Predicting the energy and power consumption of strong and weak

162

scaling HPC applications. Supercomputing frontiers and innovations,
1(2):20–41, 2014.

[SXZW16] Yuanyuan Shi, Bolun Xu, Baosen Zhang, and Di Wang. Leveraging
energy storage to optimize data center electricity cost in emerging
power markets. In Proceedings of the Seventh International Conference
on Future Energy Systems, page 18. ACM, 2016.

[TEL95] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In ACM SIGARCH
Computer Architecture News, pages 392–403. ACM, 1995.

[Tex17] Texas Advanced Computing Center. Stampede user guide. https:

//portal.tacc.utexas.edu/user-guides/stampede, 2017.

[TH14] Nathan R Tallent and Adolfy Hoisie. Palm: Easing the burden of
analytical performance modeling. In Proceedings of the 28th ACM
international conference on Supercomputing, pages 221–230, 2014.

[Tha00] D Thaler. Multipath issues in unicast and multicast next-hop se-
lection. In RFC 2991, Nov. 2000 [Online]. Available: http: //

tools. ietf. org/ html/ rfc2991 . Citeseer, 2000.

[The13] The Energy Collective. Demand response in the US electric-
ity market. http://theenergycollective.com/rasika-athawale/

195536/demand-response-us-electricity-market, 2013.

[TLDB09] W. Tang, Z. Lan, N. Desai, and D. Buettner. Fault-aware, utility-
based job scheduling on Blue Gene/P systems. In 2009 IEEE In-
ternational Conference on Cluster Computing and Workshops, pages
1–10, Aug 2009.

[TOP16] TOP500.org. Top 500 list. https://www.top500.org/lists/2016/

11/, 2016.

[TRLD12] Wei Tang, Dongxu Ren, Zhiling Lan, and Narayan Desai. Adaptive
metric-aware job scheduling for production supercomputers. In Par-
allel Processing Workshops (ICPPW), 2012 41st International Con-
ference on, pages 107–115. IEEE, 2012.

[Tsa13] Brian Tsay. The Tianhe-2 supercomputer less than meets the eye.
SITC Bulletin Analysis, 2013.

163

[TTG+16] Kun Tang, Devesh Tiwari, Saurabh Gupta, Ping Huang, Qiqi Lu,
Christian Engelmann, and Xubin He. Power-capping aware check-
pointing: On the interplay among power-capping, temperature, relia-
bility, performance, and energy. In Dependable Systems and Networks
(DSN), 2016 46th Annual IEEE/IFIP International Conference on,
pages 311–322. IEEE, 2016.

[Val82] Leslie G. Valiant. A scheme for fast parallel communication. SIAM
journal on computing, 11(2):350–361, 1982.

[VB81] Leslie G Valiant and Gordon J Brebner. Universal schemes for par-
allel communication. In Proceedings of the thirteenth annual ACM
symposium on Theory of computing, pages 263–277. ACM, 1981.

[VDP12] Abhinav Vishnu, Jeff Daily, and Bruce Palmer. Designing scalable
PGAS communication subsystems on Cray Gemini interconnect. In
High Performance Computing (HiPC), 2012 19th International Con-
ference on, pages 1–10. IEEE, 2012.

[VSC12] Brian Van Straalen and Phil Collela. Resiliency and codesign. In DOE
Exascale Research Conference, 2012.

[WBB+14] Jun Wang, Jesse Beu, Rishiraj Bheda, Tayana Conte, Zhenjiang Dong,
Chad Kersey, Mitchelle Rasquinha, George Riley, Wanjuan Song,
He Xiao, et al. Manifold: A parallel simulation framework for mul-
ticore systems. In Performance Analysis of Systems and Software
(ISPASS), 2014 IEEE International Symposium on, pages 106–115,
2014.

[WCM+13] Xingfu Wu, Hung-Ching Chang, Shirley Moore, Valerie Taylor, Chun-
Yi Su, Dan Terpstra, Charles Lively, Kirk Cameron, and Chee Wai
Lee. Mummi: multiple metrics modeling infrastructure for exploring
performance and power modeling. In Proceedings of the Conference on
Extreme Science and Engineering Discovery Environment: Gateway
to Discovery, page 36, 2013.

[WGT+05] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen
Baynes, Aamer Jaleel, and Bruce Jacob. Dramsim: A memory system
simulator. ACM SIGARCH Computer Architecture News, 33(4):100–
107, 2005.

164

[WHLMR16] Hao Wang, Jianwei Huang, Xiaojun Lin, and Hamed Mohsenian-
Rad. Proactive demand response for data centers: A win-win solution.
IEEE Transactions on Smart Grid, 7(3):1584–1596, 2016.

[WJ96] Steven JE Wilton and Norman P Jouppi. Cacti: An enhanced cache
access and cycle time model. Solid-State Circuits, IEEE Journal of,
31(5):677–688, 1996.

[WLLMR14] Adam Wierman, Zhenhua Liu, Iris Liu, and Hamed Mohsenian-Rad.
Opportunities and challenges for data center demand response. In
Green Computing Conference (IGCC), 2014 International, pages 1–
10. IEEE, 2014.

[WLPA11] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste
Asanovic. The risc-v instruction set manual, volume i: Base user-level
isa. EECS Department, UC Berkeley, Tech. Rep. UCB/EECS-2011-
62, 2011.

[WNC+14] Yubo Wang, Hamidreza Nazaripouya, Chi-Cheng Chu, Rajit Gadh,
and Hemanshu R Pota. Vehicle-to-grid automatic load sharing with
driver preference in micro-grids. In Innovative Smart Grid Technolo-
gies Conference Europe (ISGT-Europe), 2014 IEEE PES, pages 1–6.
IEEE, 2014.

[WNC+15] Nathan Wichmann, Cindy Nuss, Pierre Carrier, Ryan Olson, Sarah
Anderson, Mike Davis, Randal Baker, Erik W Draeger, Stefan
Domino, Anthony Agelastos, et al. Performance on trinity (a cray
xc40) with acceptance-applications and benchmarks. Memory, 2:4,
2015.

[WSB+11] NJ Wright, H Shan, F Blagojevic, H Wasserman, T Drummond,
J Shalf, K Fuerlinger, K Yelick, S Ethier, M Wagner, et al. The
NERSC-Cray center of excellence: Performance optimization for the
multicore era. CUG Proceedings, 2011.

[WSS+12] Hao Wang, Vijay Sathish, Ripudaman Singh, Michael J Schulte, and
Nam Sung Kim. Workload and power budget partitioning for single-
chip heterogeneous processors. In Proceedings of the 21st international
conference on Parallel architectures and compilation techniques, pages
401–410. ACM, 2012.

165

[WTCM16] Xingfu Wu, Valerie Taylor, Jeanine Cook, and Philip Mucci. Using
performance-power modeling to improve energy efficiency of HPC ap-
plications. IEEE Computer, 49(10):20–29, 2016.

[WWF+06] Thomas F Wenisch, Roland E Wunderlich, Michael Ferdman, Anas-
tassia Ailamaki, Babak Falsafi, and James C Hoe. Simflex: Statistical
sampling of computer system simulation. Micro, IEEE, 26(4):18–31,
2006.

[Yos15] Kazutomo Yoshii. Python script collection for COOLR. https://

github.com/coolr-hpc/pycoolr, 2015.

[YZW+13] Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan, Wei Tang, Susan
Coghlan, and Michael E Papka. Integrating dynamic pricing of elec-
tricity into energy aware scheduling for HPC systems. In Proceed-
ings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, page 60. ACM, 2013.

[ZB13] R. J. Zerr and R. S. Baker. Snap: Sn (discrete ordinates) application
proxy, version 1.01: user’s manual. LANL, https://github.com/

losalamos/SNAP, Accessed May 23, 2016, 2013.

[ZJYH16] Biling Zhang, Chunxiao Jiang, Jung-Lang Yu, and Zhu Han. A con-
tract game for direct energy trading in smart grid. IEEE Transactions
on Smart Grid, 2016.

[ZKK04] Gengbin Zheng, Gunavardhan Kakulapati, and Laxmikant V Kalé.
Bigsim: A parallel simulator for performance prediction of extremely
large parallel machines. In Parallel and Distributed Processing Sym-
posium, 2004. Proceedings. 18th International, page 78, 2004.

[ZLTD13] Zhou Zhou, Zhiling Lan, Wei Tang, and Narayan Desai. Reducing
energy costs for ibm blue gene/p via power-aware job scheduling. In
Workshop on Job Scheduling Strategies for Parallel Processing, 2013.

[ZSS+15] Yanru Zhang, Lingyang Song, Walid Saad, Zaher Dawy, and Zhu Han.
Contract-based incentive mechanisms for device-to-device communi-
cations in cellular networks. IEEE Journal on Selected Areas in Com-
munications, 2015.

166

[ZWXL15] Nan Zhao, Minghu Wu, Wei Xiong, and Cong Liu. Optimal contract
design for cooperative relay incentive mechanism under moral hazard.
Journal of Electrical and Computer Engineering, 2015:56, 2015.

[ZYGL15] Haihang Zhou, Jianguo Yao, Haibing Guan, and Xue Liu. Compre-
hensive understanding of operation cost reduction using energy stor-
age for idcs. In Computer Communications (INFOCOM), 2015 IEEE
Conference on, pages 2623–2631. IEEE, 2015.

[ZYL+15] Zhou Zhou, Xu Yang, Zhiling Lan, Paul Rich, Wei Tang, Vitali
Morozov, and Narayan Desai. Improving batch scheduling on blue
gene/q by relaxing 5d torus network allocation constraints. In Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE Interna-
tional, pages 439–448. IEEE, 2015.

167

VITA

KISHWAR AHMED

2009 B.Sc., Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

2017 M.Sc., Computer Science
Florida International University
Miami, Florida

2018 Doctoral Candidate, Computer Science
Florida International University
Miami, Florida

PUBLICATIONS

1. Kishwar Ahmed, Jason Liu, and Kazutomo Yoshii. Enabling Demand Re-
sponse for HPC Systems Through Power Capping and Node Scaling. Submit-
ted to IEEE International Conference on High Performance Computing and
Communications (HPCC), 2018.

2. Kishwar Ahmed, Jesse Bull, and Jason Liu. Contract-Based Demand Re-
sponse Model for HPC Systems. Submitted to International Conference on
Parallel Processing (ICPP), 2018.

3. Kishwar Ahmed, Jason Liu, Abdel-Hameed Badawy, and Stephan Eidenbenz.
A Brief History of HPC Simulation and Future Challenges. In 2017 Winter
Simulation Conference (WSC), pages 419-430. IEEE, 2017.

4. Kishwar Ahmed, Jason Liu, and Xingfu Wu. An Energy Efficient Demand-
Response Model for High Performance Computing Systems. In 2017 IEEE
25th International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), pages 175-186. IEEE,
2017.

5. Kishwar Ahmed, Jason Liu, Stephan Eidenbenz, and Joe Zerr. Scalable inter-
connection network models for rapid performance prediction of HPC applica-
tions. In High Performance Computing and Communications (HPCC), 2016
IEEE 18th International Conference on, pages 1069-1078. IEEE, 2016.

6. Kishwar Ahmed, Mohammad Obaida, Jason Liu, Stephan Eidenbenz, Nandak-
ishore Santhi, and Guillaume Chapuis. An integrated interconnection network
model for large-scale performance prediction. In Proceedings of the 2016 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS),
pages 177-187. ACM, 2016.

168

7. Mohammad A. Islam, Kishwar Ahmed, Hong Xu, Nguyen Tran, Gang Quan,
and Shaolei Ren. Exploiting Spatio-Temporal Diversity for Water Saving
in Geo-Distributed Data Centers. IEEE Transactions on Cloud Computing,
2016.

8. Kishwar Ahmed, Mohammad A. Islam, and Shaolei Ren. A Contract Design
Approach for Colocation Data Center Demand Response. In Computer-Aided
Design (ICCAD), 2015 IEEE/ACM International Conference on, pages 635-
640. IEEE, 2015.

9. Kishwar Ahmed, Shaolei Ren, Yuxiong He, and Athanasios V. Vasilakos. On-
line Resource Management for Carbon-Neutral Cloud Computing. In Hand-
book on Data Centers, pages 607-630. Springer, New York, NY, 2015.

10. Kishwar Ahmed, Mohammad A. Islam, Shaolei Ren, and Gang Quan. Can
data center become water self-sufficient?. In 6th Workshop on Power-Aware
Computing and Systems (HotPower). USENIX Association, 2014.

11. Mohammad A. Islam, Kishwar Ahmed, Shaolei Ren, and Gang Quan. Ex-
ploiting Temporal Diversity of Water Efficiency to Make Data Center Less
“Thirsty”. In 11th International Conference on Autonomic Computing (ICAC),
pages 145-152. USENIX Association, 2014.

12. Samia Tasnim, Mohammad Ataur Rahman Chowdhury, Kishwar Ahmed, Niki
Pissinou, and S. Sitharama Iyengar. Location aware code offloading on mobile
cloud with QoS constraint. In Consumer Communications and Networking
Conference (CCNC), 2014 IEEE 11th, pages 74-79. IEEE, 2014.

13. Kishwar Ahmed, Shaolei Ren, Vance Turnewitsch, and Athanasios V. Vasi-
lakos. Credibility optimization and power control for secure mobile crowd-
sourcing. In Communication, Control, and Computing (Allerton), 2013 51st
Annual Allerton Conference on, pages 1501-1508. IEEE, 2013.

169

	Florida International University
	FIU Digital Commons
	3-22-2018

	Energy Demand Response for High-Performance Computing Systems
	Kishwar Ahmed
	Recommended Citation

	Energy Demand Response for High-Performance Computing Systems

