
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-28-2018

Rethinking the I/O Stack for Persistent Memory
Mohammad Ataur Rahman Chowdhury
Florida International University, mchow017@fiu.edu

DOI: 10.25148/etd.FIDC006534
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer and Systems Architecture Commons, Data Storage Systems Commons, OS
and Networks Commons, Software Engineering Commons, and the Systems Architecture
Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Chowdhury, Mohammad Ataur Rahman, "Rethinking the I/O Stack for Persistent Memory" (2018). FIU Electronic Theses and
Dissertations. 3572.
https://digitalcommons.fiu.edu/etd/3572

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3572?utm_source=digitalcommons.fiu.edu%2Fetd%2F3572&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

RETHINKING THE I/O STACK FOR PERSISTENT MEMORY

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Mohammad Chowdhury

2018

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Mohammad Chowdhury, and entitled Rethinking the I/O
Stack for Persistent Memory, having been approved in respect to style and intellectual
content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Giri Narasimhan

Jason Liu

Leonardo Bobadilla

Gang Quan

Raju Rangaswami, Major Professor

Date of Defense: March 28, 2018

The dissertation of Mohammad Chowdhury is approved.

Dean John L. Volakis
College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2018

ii

c© Copyright 2018 by Mohammad Chowdhury

All rights reserved.

iii

DEDICATION

I dedicate this dissertation to Dr. Muhammad Ali Choudhury, who has been the

inspiration behind all my academic achievements.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Raju Rangaswami for supporting me during

these past five years. I am very grateful to him for his advice, all the insightful

discussions, and suggestions. I consider myself very lucky for getting him as my PhD

supervisor, as his unequivocal support for my research has always boosted my

confidence in the periods of frustation.

I thank all my dissertation committee members: Professor Giri Narasimhan, Professor

Jason Liu, Professor Leonardo Bobadilla, and Professor Gang Quan for their insights

and valuable feedback.

I also thank all my friends in Miami who helped me throughout my stay. I am very much

indebted my friend Kishwar Ahmed, who has been my constant companion for the last

six years. Thank you!

Last but not the least, I want to thank my family who never lost their faith in me. Special

thanks to my wife Tashfia, for being a great friend, partner, and a wonderful mother. You

have pulled me up when I was down, made me smile when I was sad, and most

importantly you were my constant reminder that there is life other than PhD. Having you

and Yusra in my life is a beautiful blessing.

v

ABSTRACT OF THE DISSERTATION

RETHINKING THE I/O STACK FOR PERSISTENT MEMORY

by

Mohammad Chowdhury

Florida International University, 2018

Miami, Florida

Professor Raju Rangaswami, Major Professor

Modern operating systems have been designed around the hypotheses that (a) memory

is both byte-addressable and volatile and (b) storage is block addressable and persistent.

The arrival of new Persistent Memory (PM) technologies has made these assumptions

obsolete. Despite much of the recent work in this space, the need for consistently sharing

PM data across multiple applications remains an urgent, unsolved problem. Furthermore,

the availability of simple yet powerful operating system support remains elusive.

In this dissertation, we propose and build The Region System – a high-performance

operating system stack for PM that implements usable consistency and persistence for

application data. The region system provides support for consistently mapping and shar-

ing data resident in PM across user application address spaces. The region system cre-

ates a novel IPI based PMSYNC operation, which ensures atomic persistence of mapped

pages across multiple address spaces. This allows applications to consume PM using

the well understood and much desired memory like model with an easy-to-use interface.

Next, we propose a metadata structure without any redundant metadata to reduce CPU

cache flushes. The high-performance design minimizes the expensive PM ordering and

durability operations by embracing a minimalistic approach to metadata construction and

management.

To strengthen the case for the region system, in this dissertation, we analyze different

types of applications to identify their dependence on memory mapped data usage, and

vi

propose user level libraries LIBPM-R and LIBPMEMOBJ-R to support shared persistent

containers. The user level libraries along with the region system demonstrate a compre-

hensive end-to-end software stack for consuming the PM devices.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1

2. PROBLEM STATEMENT . 7
2.1 Dissertation Statement . 7
2.2 Dissertation Contribution . 7
2.3 Dissertation Significance . 8
2.3.1 Minimize Cache Flush Requirements . 8
2.3.2 Direct and Consistent Access to Mapped Data 9
2.3.3 Simplified and Shared Application Development 10
2.4 Summary . 10

3. BACKGROUND . 12
3.1 Persistent Memory . 12
3.2 Consistency Requirements for PM . 13
3.2.1 The Importance of Instruction Ordering 14
3.2.2 Comparison of Cache Flush Instructions on PMEP 16
3.3 Summary . 17

4. REGION SYSTEM: ARCHITECTURE AND INTERFACE 18
4.1 Assumptions . 18
4.2 Application Requirements from PM Software Stack 19
4.2.1 Persistent Namespaces . 19
4.2.2 Mapped Data Consistency . 19
4.2.3 Consistent Sharing . 20
4.2.4 Simple Memory-like Interface . 21
4.2.5 Arbitrary and Unordered PM Allocation 22
4.3 The OS Memory/Storage Stack for PM . 23
4.3.1 Elements of the Stack . 23
4.3.2 PM Use Cases . 24
4.4 The Region System Interface . 25
4.4.1 Example . 27
4.5 Architecture . 27
4.5.1 Persistent Metadata in the Region System 28
4.5.2 Volatile Metadata in the Region System 31
4.6 Summary . 32

5. REGION SYSTEM: DESIGN . 33
5.1 Region System Operations . 33
5.1.1 Persistent Metadata Operations . 34
5.1.2 Persistent Data Operation . 38

viii

5.1.3 Pmsync . 39
5.1.4 Recovery . 42
5.2 Summary . 43

6. REGION SYSTEM: IMPLEMENTATION AND EVALUATION 44
6.1 Implementation . 44
6.1.1 Kernel Modifications . 44
6.1.2 Kernel Interaction for Region System Operations 46
6.1.3 Memory Management . 48
6.2 Evaluation . 49
6.2.1 Methodology . 49
6.3 Microbenchmarks . 50
6.3.1 Pmsync Comparison with EXT4-DAX . 53
6.3.2 Pmsync Comparison with PMEM.IO . 54
6.3.3 Cost of Pmsync . 56
6.4 Summary . 58

7. USER LEVEL LIBRARIES . 59
7.1 Introduction . 59
7.2 Background . 61
7.2.1 Contemporary Sharing Mechanisms . 61
7.2.2 Transparent Sharing . 62
7.2.3 Shared Atomic Durability . 63
7.3 Persistent Containers . 63
7.3.1 Challenges of Sharing Persistent Containers 64
7.4 LIBPM-R: Fixed Map Shared Containers 65
7.4.1 Architecture . 66
7.4.2 Shared Atomic Transactions . 67
7.5 LIBPMEMOBJ-R: Location Independent Shared Containers 76
7.5.1 Architecture . 76
7.6 Analysis of Performance . 77
7.7 Summary . 80

8. RELATED WORK . 81
8.1 Application usage of PM . 81
8.2 Native OS support for PM . 83
8.2.1 PM as a block device . 83
8.2.2 File systems . 83
8.2.3 Memory Mapping . 85
8.2.4 Other PM-optimized OS features: . 85
8.2.5 PM optimized architectures and data structures 86
8.3 Summary . 86

ix

9. CONCLUSIONS AND FUTURE WORK . 88

BIBLIOGRAPHY . 91

VITA . 98

x

LIST OF FIGURES

FIGURE PAGE

3.1 PM and DRAM on memory bus. 13

3.2 CPU, caches and memory controller layout. 14

3.3 Comparisons of cache flush instructions. 17

4.1 Applications requirements for PM usage. 20

4.2 A PM augmented memory/storage stack. 22

4.3 Region System Tree. 28

4.4 Region System Root. 29

4.5 Region Root - rnode. 30

5.1 Region Create: Required ordering of updates to the PM metadata. 35

5.2 Copy-on-Write propagation elimination. 42

6.1 Simplified diagram of kernel and region system interaction. 45

6.2 Pmsync Example. 47

6.3 Comparison of region system interface with ext4-dax using microbenchmarks. 51

6.4 Average latency of region system operations relative to EXT4-DAX. 52

6.5 Pmsync comparison with EXT4-DAX msync. 53

6.6 Normalized average libpmem and libpmem-DAX latency with respect to
libpmem-region. 54

6.7 Comparison of libpmem, libpmem-dax and libpmem-region latency with re-
spect to number of dirty pages. 55

6.8 Pmsync breakdown. 56

6.9 Possible write orderings for region system and PMEM.IO. 57

7.1 Mapping two persistent containers to Process A’s address space. 64

7.2 Mapping two persistent containers to Process B’s address space fails. 65

7.3 LIBPM-R Architecture. 66

7.4 LIBPM-R transaction: Container state after a successful open. Pages are
write protected. 68

xi

7.5 LIBPM-R transaction: The application tries to update object C which is
mapped read-only. 69

7.6 LIBPM-R transaction: The update triggers the fault handler in the region
system, which initiates the write by making a copy of the page containing
the faulting address. 70

7.7 LIBPM-R transaction: The page is granted write permission, and the write
to C goes through. 71

7.8 LIBPM-R transaction: The write to D takes place without any overhead. . . 72

7.9 LIBPM-R transaction: A commit is issued. 73

7.10 LIBPM-R transaction: The page is write protected, and the snapshot pointer
now points to current page, and the old snapshot page is deleted. 74

7.11 LIBPMEMOBJ-R Architecture. 77

7.12 LIBPMEMOBJ-R vs LIBPM-R (Inserts). 78

7.13 LIBPMEMOBJ-R vs LIBPM-R (Lookups). 79

7.14 LIBPMEMOBJ-R vs LIBPM-R (Deletes). 79

xii

CHAPTER 1

INTRODUCTION

Memory and storage have been managed as separate entities within operating systems

(OS) because of their uniquely different properties. Whereas memory is byte-addressable,

volatile, and fast, storage is block addressable, persistent, and slow. The emergence

of byte-addressable persistent memory (PM) hardware, such as ReRAM, STT-MRAM,

PCM, and 3D-XPoint present a combination of properties of both memory and storage.

The current OS software stack, which was not designed to exploit the unique properties

of PM, thus requires a rethink.

Persistent memory raises two fundamental challenges for building future systems.

First, while the relatively significant software overheads can be reluctantly tolerated today

with µs latency flash devices to accommodate legacy software, entirely new approaches

to device access would become inevitable with persistent memory that is three orders

of magnitude faster. The latency of PM access affects not just application latency but

also system resource consumption. The longer an operation executes it consumes host

resources within the application, libraries, and the OS, thereby increasing resource provi-

sioning requirements to address a certain level of application load. Thus, it is critical for

PM access and management software to minimize its footprint; making accesses purely

memory-oriented and highly efficient will become inevitable. Second, working with per-

sistent memory is significantly different than block storage since it is directly exposed to

the CPU. Working with it correctly can introduce significant complexity to development

work flow. Radically new approaches for exposing persistent memory to applications,

and simplifying the role of the developer would become critical in the near future.

Current OS support for PM involves reusing the abstractions and interfaces of the file

or memory subsystems. Conventional file systems expose persistent storage by presenting

a file abstraction to applications and using block-oriented access to persist data. For byte-

1

addressable PM, accessing PM in large blocks slows down both read and write operations

significantly, owing to higher data software stack and data transfer overheads [CDC+10,

CME+12] as well as the read-before-write requirements [UKRV11, CLK+15]. On the

other hand, while memory management systems support byte-granularity access via map-

ping physical addresses, they do not support persistent namespaces nor the notion of con-

sistency or durability of memory updates. What is necessary is a PM-tailored OS software

stack that can address the unique needs of applications when using PM and simplifying

their development without sacrificing the performance benefits of using PM.

Recent work has tackled the above impedance mismatch by building PM-aware file

systems [CNF+09, WR11, DKK+14, XS16], programming abstractions [CCA+11, VTS11,

GMC+12], PM-optimized block devices [CDC+10, CME+12], RDMA-based PM file

system back-ends [ZYMS15], and user-level PM libraries [pmea]. Some of these address

the issue of PM data consistency when being updated by a single application [ZYMS15,

XS16, OS16, ZHL+16]. However, the issue of consistently sharing PM data across

multiple applications, as file systems today allow, remains a visible, unsolved prob-

lem. Recent file systems have introduced techniques like epochs, short-circuit-shadow

paging [CNF+09], atomic-in-place updates [DKK+14, XS16], and fine grained meta-

data journaling [CYW+16] to optimize metadata updates. However, these solutions do

not minimize the number of metadata updates necessary for a given operation. For in-

stance, appending to or increasing the size of a file may require an addition of a new

data block, which could result in multiple updates to the inode including rewriting the

file size, initializing data pointers, and free-space bitmap updates. In fact, the exist-

ing PM specific solutions all store redundant metadata for ensuring the consistency of

data stored in PM, a design that has seamlessly percolated from legacy file systems

designed for block storage. The more pieces of metadata a PM managing layer main-

tains, the greater the burden of ordering these updates, which in turn impacts perfor-

2

mance [CCA+11, CNF+09, GMC+12, VTS11, DKK+14, XS16]. The file systems build

on the well-established POSIX interface, utilize PM’s byte-addressability, and provide

durability guarantees, but they do not address the consistency of updates to file data –

mapped and shared between applications. Consequently, applications are required to im-

plement custom mechanisms for ensuring the consistency of their PM-resident data, a

difficult task given the nuanced treatment necessary for ordering operations to PM with-

out loss of performance.

Solutions for consuming PM target supporting the vast majority of applications that

consume storage using the file read/write/fsync interface. This interface is not best

suited for PM which can support direct load/stores. When using the mmap interface

to make this possible, most existing solutions does not provide consistency and atomic

durability guarantee. The only exception here is failure-atomic msync [PKS13] which

proposed a journaling based solution to address the issue for conventional block-based

file systems. Thus surprisingly, despite being a very important usage model for PM, the

topic of mapped data durability remains largely unexplored. Furthermore, how such data

would be shared across multiple processes or applications remains unaddressed.

Our thesis is that persistent memory will drive new applications — applications that

use it not just for its persistence but also its memory like properties. Such applications

would ideally want to map PM space within their address spaces for direct access. Fur-

ther, they would require arbitrary and unordered allocation and deallocation of PM space

similar to how memory is used today. Finally, they would want a simple interface that

atomically persists a group of updates to in-memory state. To fill this need, we propose

the region system, a new PM-specific OS software stack that exposes a persistent names-

pace with memory-like operations augmented with transactional consistency.

The region system is both lightweight and low-overhead; it minimizes the amount of

metadata it maintains and eschews redundancy to simplify durability and consistency op-

3

erations. To support mapping PM space within process address spaces for direct access,

the region system provides a persistent msync operation pmsync which provides atomicity

and gives full control on mapped data persistence to the applications. The region system

supports mapping of PM pages within multiple application address space at the same

time. To achieve transparent yet consistent sharing across the sharing processes, updates

are reflected across all processes upon invocation of pmsync by one of the processes. The

region system uses an inter-processor interrupt (IPI) based solution which ensures that

invocation of pmsync by any one of the cooperating processes gets immediately reflected

within the address spaces of all processes sharing the region. Synchronizing region up-

dates and persistence operations is done by the cooperating processes which share such

pages. We believe that these semantics provide the necessary simplicity in sharing data

within persistent memory without sacrificing logical functionality.

The region system also presents a novel dual-pointer mechanism at in how it man-

ages the internal metadata which prevents copy on write amplification throughout the

region system tree. The region system supports the creation and management of regions

which allows for unordered and arbitrary allocation of PM space at the page granular-

ity. This is a necessary requirement for applications to fully benefit from memory like

usage of PM. Maintaining consistency of PM requires careful ordering of updates which

involves flushing dirty cache lines to the PM adding significant cost to the overall pro-

cess [DKK+14, LDK+14a]. As a remedy, the region system employs a non-redundant

metadata architecture requiring only atomic 8-byte updates to ensure durable PM opera-

tion.

The final part of the dissertation explores the new interactions of the applications with

the PM devices. Applications find new and interesting ways to store data in PM devices.

Customized key-value stores [MSTR15, MGA16, LHZS17, ZSLH16] have been pro-

posed as popular options to optimize PM usage. Though key-value stores provide a simple

4

interface for data storage it might not be sufficient for applications that employ complex

object models to store data. It is possible that forcing the applications to use PM optimized

key value stores would force applications to change their traditional work flow as well as

data access pattern. Multiple persistent object stores [CCA+11, VTS11, pmea] have been

proposed to access persistent memory in conventional memory like way. PMEM.IO is the

latest development in this space which provides persistent object store (container) support

with the LIBPMEMOBJ library. However, these libraries do not allow the containers to

be shared across multiple applications as they are limited by their underlying consistency

mechanism. Besides that, developers are required to make specific annotations for each of

the PM objects and the transactions involving those objects. Specifying each transactions

separately to ensure consistency of the operations is a cumbersome task for the application

developers. We propose a way to provide strong consistency guarantees for PM specific

libraries sans the development complexities at the application level. We show that, ap-

plications can achieve immediate data persistence consistently by using the region system

based persistent container solution LIBPM-R which also facilitates transparent sharing

of the persistent containers. LIBPM-R is only restricted by the requirement to map the

containers at the same virtual address across all applications. However, we demonstrate

that the existing persistent container solutions such as PMEM.IO can be easily modified

to use region system, and propose LIBPMEMOBJ-R to build shared persistent containers

that can be mapped independently across multiple applications.

In this dissertation, we tailor a complete solution for consuming PM devices by dif-

ferent layers of the current software stack. Our contributions and the significance of the

dissertation is clearly outlined in Chapter 2. Chapter 3 provides an overview of the per-

sistent memory technology. In Chapter 4, we discuss the requirements from applications

point of view for ensuring a seamless and consistent use of PM as storage class memory.

We also highlight the limitations of the current I/O stack in getting the best out of the

5

PM devices. A new OS subsystem - “the region system” is introduced along with the

interfaces in this chapter. Chapter 5 delves into the details of persistent region system

operations to elaborate how the region system minimizes cache flush cost by introducing

non-redundant metadata structure. We also discuss and demonstrate the pmsync interface

to achieve atomic durability of shared mapped data in a shared environment. In the fol-

lowing chapter, we provide details on region system implementation and provide compar-

ative analysis of region system with respect to the contemporary solutions. In Chapter 7,

we present LIBPM-R, a persistent memory library to support fixed-map shared persis-

tent containers by making use of the region system interface. In addition to that, we also

present a LIBPMEMOBJ-R to achieve a map-anywhere shared persistent containers solu-

tion. In Chapter 8, we discuss and analyze the contemporary research on PM usage before

concluding our dissertation.

6

CHAPTER 2

PROBLEM STATEMENT

This chapter introduces the proposed research problems and their significance. In

addition, this chapter also identifies the major challenges associated with the problems

under consideration and outline our unique contributions.

2.1 Dissertation Statement

We propose to build “Region System”, a kernel subsystem, to support persistent memory

to achieve the following goals:

• Minimizing unwanted latency in the persistent memory access path by eliminating

metadata redundancy.

• Provide users with direct and consistent access to shared persistent memory areas

across multiple applications.

• Provide developers with tools to simplify application development by supporting

transparently shared persistent containers.

2.2 Dissertation Contribution

This dissertation provides solutions to integrate persistent memory management into the

current system software. First, we analyze and establish the requirements of applications

using PM. Beside that, we identify the road blocks to achieve full utilization of PM de-

vices. Based on our findings, we designed “The Region System” – a kernel subsystem,

which guarantees direct and consistent access to PM resident shared data. The “region

system” uses a non-redundant metadata structure to reduce cache flush cost aimed to lower

the cost of achieving consistency. We also reduce COW amplification by introducing a

7

novel dual-pointer mechanism for the data pages. Finally, we present LIBPM-R, a persis-

tent memory library that supports consistent sharing of persistent containers. LIBPM-R

simplifies the development complexity inherent to the contemporary persistent container

based solutions. We also present a region system augmented version of PMEM.IO, which

makes it possible for the applications to map the persistent containers anywhere in the

address space.

2.3 Dissertation Significance

The emergence of high-speed and byte-addressable persistent memory devices makes the

existing OS abstractions obsolete for PM usage. While the memory subsystem does not

provide namespace support, the file system abstraction falls short on providing consistent

direct access to PM. Contemporary solutions, as a whole, are built in the mold of existing

file systems which eventually means the same storage usage model is extended to PM. In

this dissertation, we propose a new kernel subsystem to achieve maximum benefit without

forfeiting consistency guarantees. With the support provided by the region system, we

present two versions of persistent containers that can be shared with different degree of

flexibility with strong consistency guarantees.

2.3.1 Minimize Cache Flush Requirements

If multiple inter-dependent objects reside in a system, the updates to those objects require

to happen simultaneously to maintain data integrity. With file systems for instance, the file

inode and free-space bitmap contain redundant information, which need to be atomically

written out to maintain consistency. Conventionally, such redundant information is main-

tained for performance reasons; loading all file inodes to reconstruct the free-space bitmap

was considered expensive because of increased I/O requirements and thus the redundant

8

persistent versions. However, the redundancy also adds complexity to file system design

and overhead during runtime. Furthermore, updates to PM requires careful ordering of

instructions, and the problems of not doing so are well-described in contemporary PM

research literature [CCA+11, CNF+09, GMC+12, VTS11, DKK+14, XS16]. Addition-

ally, costly cache line flushes has to be enforced to maintain the order of updates to PM.

The “region system” does not keep any redundant metadata. The absence of redundant

metadata significantly lowers the ordering requirements for PM updates, which eventually

lowers the required number of cache line flushes contributing to better performance.

2.3.2 Direct and Consistent Access to Mapped Data

Previous studies have shown that with PM, the current storage stack contributes 97% of

the access overhead [CS13] and that direct CPU loads/stores can significantly lower la-

tency and improve the CPU efficiency of applications [Fus]. PM-specific solutions, either

as OS optimizations or development of new programming abstractions, fall short on pro-

viding comprehensive support for mapped application data management. Existing support

provided by the file system and memory interfaces through traditional mmap-msync inter-

face does not provide any consistency guarantee to the updates to the file backed memory

mapped data. This deficiency of consistency guarantee makes the interface even unsuit-

able for PM. However, not being able to use memory mapping interface forces program-

mers to use complex transactional mechanism which requires specifying each individual

transactions. The region system’s pmmap-pmsync interface provides strong consistency

guarantee for mapped data which enables applications to make all the changes atomically

durable rather than specifying individual transactions. This direct access mechanism to

PM mapped areas completely eliminates the software stack overhead and provides the

users with an easy-to-use model.

9

2.3.3 Simplified and Shared Application Development

The emergence of PM devices requires a careful consideration of the existing applica-

tions concerning PM usage. Most of the existing applications follow the read-write-fsync

model to do smaller writes to the PM. Though, this model works well for the existing slow

storage, it does not fit well to the PM. Characteristics of the PM creates new opportunities

for the existing applications, hints at new class of applications. This class of applications

are the ones requiring persistence of dynamically allocated data. PMEM.IO’s LIBPMEM-

OBJ, the most recent persistent memory library, has proposed transactional consistency of

data structures. However, similar to previous solutions [VTS11, CCA+11], the persistent

object stores can not be shared by multiple applications and the manipulation of the ob-

jects requires specific annotations. Annotating every operation by the developers is cum-

bersome as well as error prone from the developers perspective. In this regard, we propose

a persistent memory library which removes the need for annotation and simplifies devel-

opment complexity. The LIBPM-R library provides a simplified transactional model al-

lowing atomic durability of transactions in a shared environment. Applications can share

persistent object stores (containers) only being restricted by the fact that the containers

have to be mapped to the exact same address across the sharing applications. To overcome

this limitation, we present a portable persistent container library LIBPMEMOBJ-R, which

combines the strict durability guarantee of the region system with the indirect persistent

pointers PMEMOID’s to achieve location independent persistent containers.

2.4 Summary

We have introduced the dissertation statement in this section briefly outlining the signifi-

cance and the contributions of the dissertation. In the next chapter, we provide a necessary

overview of the PM devices, explain the PM integrated system architecture, and point out

10

the consistency issues arising from the integration. We also present a comparison of dif-

ferent cache flush instructions to identify the best available option.

11

CHAPTER 3

BACKGROUND

We have stated the significance and contributions of our dissertation in the previous

chapter. However, in this dissertation we extensively refer to the new and upcoming

persistent memory devices which are not yet introduced to the mainstream systems. In

this chapter, introduce persistent memory devices and the characteristics of these devices

in comparison with the traditional memory and storage. We also discuss the architecture

of a PM integrated system as well as the complexities of achieving consistency for these

systems. Finally, we discuss the instructions that help to achieve PM consistency and

provide our reasoning for the instruction we choose to use throughout our implementation.

3.1 Persistent Memory

The technology curve for storage is at a tipping point wherein within a years time we

will witness a new class of storage devices that are astronomically faster than todays

state-of-the-art flash-based storage (as shown in Table 3.1). Such a drastic and unilateral

performance improvement for a single computing resource has not been witnessed in the

recent past. Simply put, the new disruptive storage technology will challenge all that we

know about how systems should be built.

DRAM 3D Xpoint NAND
Endurance (P/E Cycles) 1015 107 103

Read latency Nanoseconds 10s of Nanoseconds 10 - 100 Microseconds
Normalized read latency 1 10 104 ∼ 105

Table 3.1: Comparison of Memory technology

While a range of persistent memory technologies including ReRAM, STT-MRAM,

and PCM, have been discussed in the literature, Intel’s 3D-XPoint is the most recently

announced, assumed to be the most promising, and expected to be available within the

12

DRAM PM

CPU

Physical Memory

Figure 3.1: PM and DRAM on memory bus.

span of one year. 3D-XPoint promises storage access latencies in the order of tens of

nanoseconds for 512-byte accesses. This is three orders of magnitude faster than state-

of-the-art flash and immediately brings into focus the overheads contained in the storage

stack. Conventional block I/O processing in the OS has shown to add as much as 300µs

of overhead to each operation and even highly optimized software stacks that bypass the

OS for device access add as much as 20µs of overhead.

These devices will be sharing the memory bus alongside conventional DRAM and

constitute the total physical memory of a system as shown in Figure 3.1. This byte-

addressability combined with persistence presents new challenges to the operating system

components as well as application developers to achieve best performance from the new

technology. However, persistence at the memory bus also requires additional measures to

be taken to achieve consistency.

3.2 Consistency Requirements for PM

Traditionally, being volatile in nature, memory (DRAM) is considered merely a place-

holder for intermediate data in the traditional I/O stack. File data are made durable by

writing to persistent storage by means of read-write-fsync system calls or to mapped

13

DRAM

PM

CPU

c
a
c
h
e

Memory

Controller

Figure 3.2: CPU, caches and memory controller layout.

data by the msync interface. Persistent memory, on the other hand, is directly exposed

to the CPU load/stores. Persistence at the memory level makes this narrow in-

terface unsuitable as the operating system or applications need to think about intricate

details of cache flushes to the memory as well as the ordering of load/stores to the mem-

ory [LDK+14b, Mck05].

3.2.1 The Importance of Instruction Ordering

To understand the implications of persistent memory on the memory bus, we need to delve

into details of the interactions among the CPU, the caches, and the memory controller.

Figure 3.2 presents typical architecture of a system with PM on the memory bus.

The three places for data to reside in a PM based system are the CPU caches, the

memory controller, and the memory (persistent and volatile). When a store instruction

is executed the cache contents for the address is modified. Eventually, the cache lines

may be evicted to be written to the memory which goes through the memory controller.

However, the memory controllers hold their own small storage to optimize the writes to

the memory. As a result, the store instructions that are executed by the CPU might not

reach memory in the same order of execution. In case of a system or power failure, out of

order writes can corrupt the system.

To ensure the ordering of writes a special cache line flush instruction (CLFLUSH/

CLFLUSHOPT/ CLWB) followed by a barrier (MFENCE/ SFENCE) has to be issued to ensure

14

a cache line is flushed immediately from the cache. This combination does not influence

the contents of the memory controller which requires separate mechanism to flush the

contents from there to the memory. Intel has recently deprecated the PCOMMIT instruc-

tion which was proposed to clear the contents of the memory controller in favour of ADR.

We present some of the CPU instructions that are relevant to our dissertation.

CLFLUSH: Invalidates the cache line that contains the linear address specified with the

source operand from all levels of the processor cache hierarchy (data and instruction).

The invalidation is broadcast throughout the cache coherence domain. If, at any level of

the cache hierarchy, the line is inconsistent with memory (dirty) it is written to memory

before invalidation. The source operand is a byte memory location.

CLFLUSHOPT: Similar to CLFLUSH, but with ordering optimizations

CLWB: Writes back to memory the cache line (if modified) that contains the linear address

specified with the memory operand from any level of the cache hierarchy in the cache

coherence domain. The line may be retained in the cache hierarchy in non-modified state.

Retaining the line in the cache hierarchy is a performance optimization (treated as a hint

by hardware) to reduce the possibility of cache miss on a subsequent access. Hardware

may choose to retain the line at any of the levels in the cache hierarchy, and in some cases,

may invalidate the line from the cache hierarchy. The source operand is a byte memory

location.

ADR: ADR stands for Asynchronous DRAM Refresh. ADR is a feature supported on Intel

chipsets that triggers a hardware interrupt to the memory controller which will flush the

write-protected data buffers and place the DRAM in self-refresh. This process is critical

during a power loss event or system crash to ensure the data is in a safe state when the

NVDIMM takes control of the DRAM to backup to Flash. Note that ADR does not flush

the processor cache. In order to do so, an NMI routine would need to be executed prior

to ADR.

15

3.2.2 Comparison of Cache Flush Instructions on PMEP

We wanted to find out which of the cache flush instructions perform best in a real PM

augmented environment. However, PM devices are not readily available at present. For-

tunately, we had access to a physical machine that closely emulates PM behavior. We

deployed and evaluated our system on an instance of PMEP– Persistent Memory Emula-

tor Platform [LDK+14b, DKK+14], built by Intel. According to the developers, PMEP

partitions the available DRAM memory into emulated PM and regular volatile mem-

ory, emulates configurable latencies and bandwidth for the PM range, allows configuring

pm wbarrier latency (default 100ns), and emulates the optimized cache flush operation.

PMEP is implemented on a dual-socket Intel R© Xeon R© processor-based platform, using

special CPU microcode and custom platform firmware. Each processor runs at 2.6GHz,

has 8 cores, and supports up to 4 DDR3 Channels (with up to 2 DIMMs per Channel).

The custom BIOS partitions available memory such that channels 2-3 of each processor

are hidden from the OS and reserved for emulated PM. Channels 0-1 are used for regular

DRAM. NUMA is disabled for PM channels to ensure uniform access latencies. In our

machine, PMEP has 32GB DRAM and 32GB PM, for a 1:1 capacity ratio.

CLFLUSH and CLFLUSHOPT instructions invalidate the cache lines while flushing the

cache lines, which adds additional penalty to the overall process besides the cost of main-

taining ordering of instructions. However, CLWB does not incur that cost resulting in

better performance. We have done a simple test where we write 8 bytes to each of 2048

pages (4KB pages) and plotted the average per page latency of flushing those 8 bytes to

the PM. CLWB, performs 10X better than the CLFLUSH and CLFLUSHOPT as shown in

Figure 3.3. Therefore, in our implementation we decided to use CLWB for better perfor-

mance.

16

Figure 3.3: Comparisons of cache flush instructions.

3.3 Summary

In this chapter, we introduced the features of PM devices and described the challenges

associated with achieving consistency when PM is added to the conventional system. We

have introduced the persistent memory emulator platform PMEP and also explained the

reasoning behind our selection to use CLWB as the cache flush instruction for implement-

ing the region system. In the next chapter, we first analyze the requirements from the

system for PM based application developer. Then, we introduce a new kernel subsystem

“the region system”, layout the interface, and provide the architecture of the system.

17

CHAPTER 4

REGION SYSTEM: ARCHITECTURE AND INTERFACE

In the previous chapter, we have presented a short overview of PM devices and an intro-

duction on the ordering requirements of the PM integrated systems. In this chapter, we

will discuss the architecture and the interface of the region system putting emphasis on

the design decisions important to minimize cache flush and to support consistent sharing

of PM mapped areas.

We first layout the assumptions and application usage of the PM followed by an anal-

ysis on the requirements of PM application developers from a PM integrated IO stack.

Then we present the region system interface that fulfills those requirements, and conclude

the chapter with a description of the persistent and volatile metadata architecture of the

system.

4.1 Assumptions

Taking note of the current industry developments and predictions about PM devices we

make the following assumptions:

1. PM devices will share the same address space with DRAM and they will be be added

to memory bus as shown in Figure 3.1 to achieve lowest possible latency and direct CPU

access. In other words, volatile and persistent memory will co-exist in the I/O stack.

2. The CPU memory access mechanisms in PM systems will remain fundamentally

same as they are today.

3. PM will continue to be managed in hardware as pages, and by the OS via page tables

with hardware accelerated accesses enabled by a hierarchy of volatile CPU caches.

18

4. The CPU instruction set may evolve to support PM in the future [VTS11, LDK+14a,

DKK+14].

5. The management of new memories remains a task for the OS along with the resource

management and security enforcement of the hardware device.

4.2 Application Requirements from PM Software Stack

The characteristics of PM devices blurs the conventional boundary of storage and mem-

ory, and exposes the limitations of the existing solutions in managing PM optimally. We

believe that PM access interfaces within the OS should be tailored to expose the unique

properties of PM devices so applications can exploit the full potential of this new tech-

nology with ease. In this section, we justify a minimum set of requirements (as shown in

Figure 4.1) that the OS should meet to satisfy both the support of new PM devices and its

use by applications.

4.2.1 Persistent Namespaces

As with conventional storage, applications using PM will require the ability to identify

previously stored data and distinguish it from unrelated data stored by other applications.

4.2.2 Mapped Data Consistency

Unlike block-based persistent storage of today, PM devices can be accessed directly by

the CPU. To utilize this new, powerful capability, it is valuable to expose PM directly

within a process’ virtual address space. Previous studies have shown that with PM, the

current storage stack contributes to 97% of the access overhead [CS13] and that direct

CPU loads/stores can significantly lower latency and improve the CPU efficiency of ap-

19

plications [Fus]. Thus, the conventional memory mapping approach used for volatile

DRAM and files becomes very valuable with PM. However, the possibility of corruption

increases as the PM can contain uncommitted data after a system failure or crash. Thus, it

is necessary to have a mechanism to achieve atomic durability of mapped data and to re-

vert back to a previously application defined consistent state in case of a failure to achieve

atomic durability.

Figure 4.1: Applications requirements for PM usage.

4.2.3 Consistent Sharing

Direct exposure of PM to CPU load/stores provides an unique opportunity to reflect all the

changes made to a particular PM location visible to multiple applications simultaneously.

The current PM-specific solutions does not support any notion of shared data consistency.

The file mapping mechanism either supports private copies (MAP PRIVATE) of the data,

or shared copies (MAP SHARED) which might not be transparent across the applications

at any given time. We posit that the applications which map the same PM area have some

motive to do so, and they should be able to transparently make the updates visible to all

concerned parties. However, the applications may decide durability points by synchro-

20

Table 4.1: A summary of recent research on PM-specific software solutions

Namespace
Mapped Data
Consistency

Consistent
Sharing

Memory
Like

Transactions

Arbitrary and
Unordered
Allocation

File systems [CNF+09, WR11, DKK+14, ZHL+16, OS16] 3 7 7 7 7

Memory subsystem 7 7 7 3 3

Block devices [CDC+10, CME+12, CMH14] 3 7 7 7 7

Persistent Heaps [CCA+11, VTS11, pmea] 3 3[transactional] 7 7 3

NOVA [XS16] 3 3[private] 7 3 7

Mojim [ZYMS15] 3 3[replicated] 7 3 7

Atomic Msync [PKS13, VMP+15] 3 3[non-PM] 7 3 7

nizing amongst themselves. The OS, in this case, should provide the basic support for

transparent atomic durability of shared PM areas across sharing applications.

4.2.4 Simple Memory-like Interface

Mapping the PM directly to applications address space only to update the PM areas using

a complex transactional mechanism would bring little benefit to the application develop-

ers. Current transactional mechanisms [pmea, CCA+11, VTS11] require specific set of

steps to start, end, or persist a transaction. In some cases, the applications have to go

through the cumbersome task of identifying each of the PM resident objects. We believe

that this approach does not yield full benefit of direct PM access, and makes the devel-

opment process harder for the developers. Our proposal is that applications should be

able to continue their current approach of using in-memory objects and should not have

to worry about individually ensuring each objects durability. They should be able to make

changes to objects in a PM area and persist the updates with a simple call like msync at

a single point in time. The changes that were made durable at a certain time should be

recoverable until the application issues durability for a second set of modifications to the

same region.

21

Virtual File System

DRAM

APPLICATIONS

3

Memory library (POSIX)

ReRAMSTTRAMPCM

nvmfsRegion
...

2

kernel

of the

Rest

1

FS library (POSIX)PM libraries

Block Layer

Page Tables

SSDDISK

4

existing fs (ext4, ntfs, etc.)

U
S

E
R

...

5

Memory

Virtual

K
E

R
N

E
L

System

Figure 4.2: A PM augmented memory/storage stack.

4.2.5 Arbitrary and Unordered PM Allocation

Let’s assume an use case where an application wants to construct and manipulate a per-

sistent B-tree to store some data. The application would allocate memory for the B-tree

internal nodes as well as data nodes and these could have different sizes. The allocated

nodes can be deleted in arbitrary order depending on the applications requirements. The

memory subsystem can easily handle the use case by allocating chunks of memory for the

B-tree nodes, which can later be de-allocated irrespective of the order of allocation. The

only issue here is that the memory subsystem does not support associating a persistent

namespace to the allocations. This capability is also not supportable using the file inter-

face, where files are sequential byte streams that do not support arbitrary and unordered

allocation of PM. Some file systems support punching holes in a file, but the support is

offset by the complexity of managing arbitrary chunk sizes. We postulate that, for future

PM consuming applications, adding and removing PM areas of arbitrary sizes within a

defined namespace in an unordered manner would be a primary requirement.

22

4.3 The OS Memory/Storage Stack for PM

In this section, we discuss an augmented OS memory/storage stack that addresses PM

devices. We then identify a wide spectrum of interactions that are possible with PM de-

vices and the OS support that make such interactions possible. These PM interaction

alternatives address existing persistent storage interfaces that applications today are fa-

miliar with as well as new ones that are specific to the properties of byte-addressable PM

devices. Our goal here is not to recommend one approach over the other, but rather to

identify possible approaches and discuss the potential use-case for each.

4.3.1 Elements of the Stack

Figure 4.2 presents an augmentation of the current memory and persistent storage soft-

ware stack that addresses the new PM devices. Boxes indicate software or hardware

components in the system and dashed lines indicate that the component code bases are

tightly coupled, i.e., designed to work together.

The OS contains a new data management entity, the Region system, besides the con-

ventional virtual memory system and file system. The most important characteristic of

this entity is that the region system is tightly coupled with the virtual memory manager

and exposes PM areas directly to processes via appropriate page table mappings. The

region system would also be tightly integrated with PM specific file system implementa-

tions illustrated by the NVMFS component. Further, we anticipate that an entirely new

suite of user-level PM libraries will become available to facilitate application interaction

with PM. Finally, since this work is focused on OS support, we do not discuss or pre-

clude other alternatives to accessing PM devices directly by bypassing the OS partially or

entirely [CME+12].

23

4.3.2 PM Use Cases

We identify five types of interactions that are possible with the region system, either

directly or indirectly, each of which lead to a different use case for PM. These interactions

are indicated using numbered arrows in Figure 4.2:

1. Applications interact directly with the region system using an PM-tailored system call

interface (discussed in §4.4). This use case has been proposed recently [sni].

2. Applications interact with PM specific libraries that provide advanced support for

allocating and using persistent memory similar to volatile memory. The libraries in turn

can use the OS interface exported by the region system. Several recent proposals exist

that follow this approach [CCA+11, GMC+12, VTRC11, VTS11].

3. Applications use the familiar file system interface (with potential PM-specific exten-

sions to POSIX) to interact with an underlying PM specific file system. This use case

supports legacy applications as well as newer applications that rely on the familiar file

abstraction. Recent proposals on file systems specifically designed for PM follow this

approach [CNF+09, WR11].

4. Applications interact with an existing file system (such as ext4, ntfs) and the file

system itself interacts with the region system to implement PM specific bindings. Recent

proposals for extending current file systems for PM follow this approach [LBN13].

5. Finally, the region system can also provide persistent memory access to the rest of

the kernel. For instance, process and network management subsystems could store their

state persistently to resume services upon system restarts.

Combinations of these use cases can also exist. For example, PM libraries can interact

with the region system or with file systems that export PM.

24

Class Name Description

1,5
region d open(char

*region name, flags f);
Open|Create a persistent region; returns a valid
region descriptor on success.

int close(region d rd); Close an open region with descriptor rd; returns
success or failure.

1,5 int delete(char

*region name);
Delete a persistent region region name freeing
any associated unshared persistent pages; re-
turns success or failure.

2 ppage number
alloc ppage(region d
rd);

Given a valid region descriptor, allocate a per-
sistent page within the region; returns persistent
page descriptor for the new page.

int free ppage(region d
rd, ppage number ppn);

Free a persistent page from a region; persistent
page can now be allocated again to other regions;
returns success or failure.

3,5 vaddr pmmap(vaddr
va, region d rd,
ppage number ppn, int
nbytes, flags f);

Map a persistent page to the process virtual ad-
dress space at address vaddr (hint); flags specify
the type of mapping; returns mapped virtual ad-
dress vaddr.

int pmunmap(vaddr va); Unmap the persistent page mapped at the given
virtual address; returns success or failure

4 int pmsync(vaddr va); Atomically persist all modifications to mapped
pages of the region which is maped at va so that
the contents of the region are always consistent
with the latest pmsync.

Table 4.2: A system call interface to persistent memory. Syscalls address one or more
of the following classes of functions: (1) Namespace management, (2) Allocation, (3)
Mapping, (4) Consistency, and (5) Legacy support.

4.4 The Region System Interface

In Table 4.2, we suggest a possible OS interface to the region system. We had the follow-

ing goals in mind: (i) expose PM areas directly within a process address space, (ii) provide

support for safely and consistently modifying/sharing persistent memory, and (iii) reuse

familiar notions of file system namespace and memory mapping. While the suggested OS

interface is not intended to be comprehensive, we chose components to highlight both the

unique potential and challenges when working with PM. Besides these PM-specific sys-

tem calls, classic file system calls (e.g., read,write) can be supported via PM-specific

25

file systems or PM-specific bindings in existing file systems that in turn interact with the

region system.

The region system exports a namespace management capability similar to file sys-

tems, allowing the creation of named regions and region directories (open, close,

delete). This allows for straightforward integration with conventional POSIX file sys-

tem interface in the future as necessary. Applications can also allocate/free persistent

memory pages (alloc ppage|free ppage) within a specified region. Similar to cur-

rent memory mapping support for files, they can map/unmap persistent pages within a

region to their address space (pmmap|pmunmap). We believe that the key distinction be-

tween this and existing POSIX file interfaces is the pmsync interface that implements

the transactional persistence of regions, allowing an application to atomically persist all

modifications to mapped pages of a region. This simplifies application development when

using PM whereby the developer does not need to worry about temporarily inconsistent

versions of their data structures in PM mapped memory pages; they retain the flexibility

to specify pmsync operations once the in-memory data is deemed consistent from the

application’s viewpoint.

Regions: The region system creates the region abstraction for using persistent mem-

ory. A region is an unordered collection of persistent pages (ppages) identified by an

unique region descriptor. Ppages, which are distinguished by page numbers, can be

added to a region and deleted later in arbitrary sequence irrespective of the sequence in

which they were allocated. The size of the ppages are 4KB, which is same as the kernel

page size. Unlike conventional file systems, there is no read/write access to regions;

memory-mapping of ppages is the only mechanism to consume PM. The pmmap system

call allows the application to map ppages to the process address space, while pmunmap

reverses the mapping. By invoking pmsync, applications can make all the changes to a

regions’ mapped ppages atomically durable.

26

4.4.1 Example

The code snippet in Listing 4.1 illustrates how an application would consume PM through

the region system interfaces. The similarity with existing POSIX interface makes the

region system interface very easy to use.

Listing 4.1: Region system usage illustration

d e f i n e PAGE SIZE 4096

i n t rd = o p e n r e g i o n (” r e g i o n 1 ”) ;

i n t ppage no = a l l o c p p a g e (rd) ;

void ∗ d a t a = pmmap (NULL, rd , ppage no , PAGE SIZE ,

MAP SHARED) ;

/∗ w r i t e s o m e t h i n g t o da ta ∗ /

pmsync (l o g) ;

pmunmap (l o g) ;

c l o s e r e g i o n (rd) ;

4.5 Architecture

In this section, we present the region system architecture. The architecture of the persis-

tent metadata is self sufficient, which means the region system metadata can be rebuilt

using the information stored in itself. However, region system also uses some volatile

metadata to interact with the kernel and to optimize the metadata operations. The separa-

tion of volatile and persistent metadata is achieved so that the volatile metadata does not

have any impact on consistency.

27

Figure 4.3: Region System Tree.

4.5.1 Persistent Metadata in the Region System

Region system design is partially inspired by the WAFL [HLM94](Write Anywhere File

Layout) file system. However, region system is designed to hold no redundant metadata

to avoid additional cache flushes. This design choice leads to a fixed layout for the re-

gion system metadata. The metadata is stored in the persistent memory physical pages.

Figure 4.3 shows the layout of the region system.

The region system can be best thought as a tree of 4KB pages. For the rest of the

discussion, we will identify these 4KB pages as blocks. There are 5 types of blocks –

rsroot, rnode, indirect blocks, pre-data, and data blocks. rsroot con-

tain the information for a region system instance, which includes the name, permission,

etc. Rnode contains the region specific information such as name, id, flags, etc. The

indirect blocks each contain 512 pointers to the next blocks. Data blocks are ppages,

and those are the leaf nodes. However, the pre-data blocks has two pointers for each

ppage – one for the snapshot, another for the current version of data, thus limiting the

28

Figure 4.4: Region System Root.

number of pointers to 256 per block.

Rsroot

Rsroot is the root of the region system instance. It contains the necessary information

to traverse the region system tree. The starting physical address and the size of the region

system have to be known beforehand to mount the region system instance. The rsroot

contains an identifier, a flag, and pointers the next indirect layer as shown in Figure 4.4.

The pointers, FP and FR, in conjunction with the flag ensure a faster mount time in case of

a clean shutdown. The flag value can be either RS VALID or RS CLEAN SHUTDOWN. The

flag is checked during the mount operation to verify if a region system instance already

exists at the provided address with the same name, and to identify the status of the region

if it exists. Presence of any of the above mentioned flags confirm the existence of a region

system instance. If the flag is RS CLEAN SHUTDOWN, the free space bitmaps can be

readily used. However, flag value RS VALID indicates that a complete traversal of the

recovery process has to be done in order to generate the bitmaps.

29

Figure 4.5: Region Root - rnode.

Rnode

The rnode is the root of a region. A simplified version with important fields is shown in

Figure 4.5. It contains the name, id, and pointers to the next indirect blocks for the region.

However, the most important part of the rnode is the STATUS field which helps to ensure

idempotent PMSYNC which is further discussed in chapter 5. The rnodes are 64 bytes in

size, which means one rnode block contains 64 rnodes once created.

Indirect Pointers

Indirect pointers are the simplest metadata block which contain 512 8-byte pointers to the

next level.

Pre-data Nodes

Pre-data nodes reside at the last level of the metadata. Instead of one pointer to the data

pages, we store two pointers – one for the snapshot and one for the current version

of the data. The contents of the pointers denote a state for the ppage in concern as shown

in Table 4.3.

30

Table 4.3: Ppage states derived from pre-data current and snapshot pointers

Current Snapshot State
0 0 No Ppage
0 y Invalid – There can not be a snapshot without a current
x 0 Un-synced page, mapped to the address space

x == y, Page in synced state
x y

x!=y, Page in un-synced state, “y” is the consistent version

Data Pages

Data pages are simple 4KB blocks memory page-aligned data. The current version of

the page is mapped to the process address space during a mapping. A “synced” page is

mapped read-only. In case of an “un-synced” page, the current version is mapped with

read-write privilege, and the snapshot version is kept in PM for potential recovery.

Pointer Values

The pointers in the metadata tree are not actual physical addresses. The region system

does the physical to kernel virtual address conversion when it requires to map the pages.

4.5.2 Volatile Metadata in the Region System

Region system keeps volatile metadata carefully separated from the persistent metadata.

The volatile metadata at the region level includes PM free page bitmap, free rnode

lists, a red-black tree to quickly lookup open regions, and a red-black tree to help quick

lookup of existing regions. These trees are generated during the mount, and they grow

depending on the operations on regions within the region system. Region level volatile

metadata includes a region free page list, which is persisted on a successful region

close operation.

31

4.6 Summary

In this chapter, we proposed the region system interface after laying out the assumptions

of PM usage alongside possible PM use cases. We have also presented the on-PM archi-

tecture of the region system as well as the volatile metadata. The separation of persistent

and volatile metadata in the region system design is intended to make the consistency

operations independent of the volatile metadata.

In the next chapter, we explore the design of the region system volatile and persistent

operations based on the architecture. Furthermore, we delve into the details of atomic

data persistence of mapped data.

32

CHAPTER 5

REGION SYSTEM: DESIGN

In the previous chapter, we described the inadequacy of the current OS software stack

to fully support PM application development. We proposed a new kernel subsystem –

region system, and presented the architecture of the system along with the interfaces that

are exposed by the system. In this chapter, we initially elaborate how we minimize cache

flushes by designing optimized region system operations on the aforementioned architec-

ture. Finally, we discuss how region system architecture supports atomic durability of

mapped data in a shared environment.

5.1 Region System Operations

To support low-latency operations, the region system adopts a lightweight and low over-

head approach to managing PM. First, it carefully avoids keeping any redundant data

persistently. Avoiding the use of redundant metadata eliminates the need for atomic up-

dates to inter-dependent metadata, simplifying the task of keeping metadata consistent.

Only a single version of the metadata necessary to reconstruct the region system state is

kept up-to-date on the PM device. More importantly, the region system metadata oper-

ations has been designed to preserve the atomicity of the operations. In this section, we

distinguish the region system operations by their nature and delve deep into the discussion

of how the atomicity of operations are maintained minimizing the redundant metadata.

We carefully consider the impact of the system calls from Table 4.2 on the region

system metadata and define two classes of syscalls. The first class, which is of most im-

portance, is the persistent syscalls. Syscalls like create region, delete region,

allocate ppage, deallocate ppage, pmsync are defined as persistent syscalls as

they modify the persistent metadata tree. Other syscalls do not modify the metadata tree,

33

but rely on the interactions of the region system volatile metadata and kernel data struc-

tures; we identify these as volatile syscalls. Based on their scope of operation, we further

divide the persistent operations into two categories – persistent metadata operations and

persistent data operation.

5.1.1 Persistent Metadata Operations

For the persistent syscalls, it is very crucial to identify the updates going to be made to

the persistent metadata and the order of those updates. The concept of durability point is

associated with all the syscalls. A durability point is the place where the last update in a

set of updates is done to the PM for that operation. Until the durability point is reached,

the syscalls are not complete. The same general principle holds for all the system calls—

all region metadata get updated atomically to implement atomicity of the system calls

themselves. CLWB and SFENCE instructions are used to ensure the proper ordering

of writes to the PM. Noting that the previously introduced PCOMMIT instruction is

now deprecated [pco], we rely on the recommended alternative technique, ADR (Asyn-

chronous DRAM Refresh), to flush the write pending queue of the memory controller.

The non-redundant metadata design minimizes the number of updates requiring memory

ordering. Next, we outline the updates to the PM, the order of those updates, and the

durability point for each operation.

Create

Figure 5.1 illustrates the region system meatdata which are updated or written into for

creating a region. The circles show the where the metadata is being updated, and the

numbers inside the circles indicate the ordering of the update. Upon a region create

invocation, the rnode free list is generated by allocating a rnode page (64 rnodes) if the

34

Figure 5.1: Region Create: Required ordering of updates to the PM metadata; circled
numbers show the order of the update.

list is empty, otherwise a rnode is picked from the list. If a rnode indirect slot is available

then the indirect pointer is updated to point to the rnode (at line 13 of the Algorithm 1,

and 2© in the figure). Otherwise a new indirect block is allocated (512 indirect pointers)

and the address of the page is saved inside the rs root (at line 10 of the Algorithm 1,

and 1© in the figure). Finally, the rnode picked from the list is updated with necessary

information including the region status to achieve consistency. In case of a system failure,

the rnode status helps to identify if a rnode visited while traversing the region system

tree from rs root during recovery should go to the free list or if the r node is for a valid

region. A persistent barrier (CLWB + SFENCE) is executed after rnode status is set to

valid, which marks the completion of the syscall (at line 15 of the Algorithm 1, and 3© in

the figure). This is the durability point for the create system call. The updates at 1© and

2© are forced to complete before this point as the CLWB+SFENCE combination is invoked

to force the updates out of the cache lines, so that there is no inconsistency if 3© failed.

Delete

Region delete (Algorithm 2) operation also requires ordering of updates and careful set up

of rnode flag. We have to deal with the volatile metadata and then persistent metadata. The

volatile metatdata management involves clearing the free lists and removing the region

from the red black trees. The allocated pages for the region needs to be free and added

35

Algorithm 1: Algorithm: Region Create
Data: Region name
Result: Region id after creating region

1 if free rnode not available in free rnode list then
2 Allocate new rnode block;
3 Add rnodes to the free rnode list;
4 else
5 Pick the next available rnode from the list;

6 Calculate the indirect pointer address for that rnode;
7 if indirect block not available then
8 Allocate indirect block;
9 Update appropriate rsroot pointer for the indirect block;

10 CLWB(RSROOT POINTER)+SFENCE

11 else
12 Update the appropriate indirect block pointer for the rnode;
13 CLWB(INDIRECT POINTER)+SFENCE;

14 Update rnode status;
15 CLWB(RNODE)+SFENCE;
16 Return Region Id ;

to the global free page list. However, the most important task is to set rnode status to

REGION ON DELETE to mark the start of the deletion process. Once the flag is set, the

region delete operation will always complete even in the case of a power failure. This is

the durability point for the delete operation. Upon completion, the rnode is added to the

free rnode list and rnode status set to RNODE INVALID.

Allocate

Allocation of a ppage is also done atomically. The durability point of the syscall is when

the current pre-data pointer is updated with the address of a newly alloated page,

and the update is persisted with a CLWB+SFENCE combination. Another cache flush

operation is done before updating the pre-data current pointer if any of the indirect blocks

were also allocated. Algorithm 3 shows how the pre-data snapshot pointer is set to zero

to set the state of the page to unsynced state as described in Table 4.3.

36

Algorithm 2: Algorithm: Region delete
Data: Region name
Result: success or failure

1 if Region not present in rs region rb tree then
// region not present

2 return failure;

3 Set rnode status RNODE ON DELETING;
4 CLWB(RNODE)+SFENCE;
5 Clear the volatile metadata for the region including the dirty page lists;
6 if Region had pages allocated then
7 De-allocate all the pages;
8 De-allocate indirect pointers;
9 Add the above to PM free page list;

10 Add rnode to PM free rnode list;
11 Set rnode status RNODE INVALID;
12 CLWB(RNODE)+SFENCE;
13 Return success;

Algorithm 3: Algorithm: Allocate ppage
Data:
Result: ppage

1 Get next free page from region free page list;
2 Calculate the 1st indirect pointer, 2nd indirect pointer, and pre-data pointer address;
3 foreach indirect pointers upto last level do
4 if Any pointer block do not exist then
5 Allocate block and update previous pointer;

6 CLWB(POINTER ADDRESS)+SFENCE;
7 Allocate 4KB page;
8 Update pre-data current pointer with the page address;
9 Update pre-data snapshot pointer with 0;

10 CLWB(PRE-DATA POINTER)+SFENCE;
11 Return ppage no;

37

De-allocate

For this system call, we need to free the ppage assigned for the ppage number. However,

there can be one or two pages assigned for the ppage number according to the state of

the page. If the page is in synced state, only one page has to be freed as both snapshot

and current pointers point to the same page. If the page is unsynced but has a valid

snapshot pointer, two pages are freed. For an unsynced page only the current version

of the page needs to be deleted as shown in Algorithm 4.

Algorithm 4: Algorithm: Deallocate ppage
Data: ppage number
Result: success or failure

1 Calcualte pre-data address;
2 Save snapshot and current pointer values;
3 Set pre-data snapshot =0 and current = 0;
4 CLWB(PRE-DATA POINTER)+SFENCE;
5 if snapshot == current OR snapshot == 0 then
6 Free the page pointed by current;

7 if snapshot 6= current then
8 Free both current and snapshot;

9 Add freed page/s to the Region free page list;
10 Return success;

5.1.2 Persistent Data Operation

Traditionally, The mmap-msync based POSIX interface is not atomic. Most of the PM-

specific file systems ignore the benefits of the directly mapped data as they follow the

traditional read-write-fsync interface which disallows the applications to get complete

benefit of using PM. Mapping the PM directly to the process address space minimizes

the OS intervention, hence maximizing the performance. However, there are multiple

complexities with writing to PM directly. First, if every update is not a desired unit of

38

atomic write, the PM content is bound to be inconsistent if a failure occurs. Secondly,

today’s multi-processor system supports multiple processes executing at the same time.

All the contents of the different cache lines associated with the mapped page do not reach

the PM voluntarily when one process issues an msync. Third, additional writes can in-

filtrate the PM when a sync process is ongoing, polluting the desired content of the PM.

To ensure proper and consistent use of PM three capabilities are absolutely necessary –

1) maintain some kind of state for PM mapped data, 2) implement mechanism to reflect

cache contents of all CPUs to the PM immediately at the time of the sync operation, 3)

keep mapped data protected from further writes during the syncing process.

The pmsync interface achieves all of the above goals and simplifies the consistent

management of durable data mapped into an application’s address space. We now discuss

how the pmsync operation provides an atomic durability mechanism for shared ppages

across multiple processes.

5.1.3 Pmsync

Region system manages data in the form of ppages, which are mapped to the applications

address space. With pmsync, an application can choose when it wants to make any of its

in-memory data durable. Region system provides the support by encapsulating states to

the ppages as depicted in Table 4.3 in conjunction with the rnode status flags. The rnode

status flags shown in Figure 4.5 is very relevant to the pmsync discussion.

Initially, when a ppage from a region is mapped to an application’s address space,

updates to the page are not made durable until a pmsync is invoked. At this point,

the region is in unsynced state. On pmsync, all updates to the page since the pre-

vious pmsync are made atomically durable. Upon a pmsync completion the current

and snapshot pointer both point to the same ppage, and the rnode status is set to PM-

39

SYNC COMPLETE. Any updates to ppages after the latest pmsync get discarded in

case of a system crash or failure. If the rnode status is not PMSYNC IN PROGRESS

after a system restart, it means that the changes to the current pages are not final. Hence,

those pages can be discarded, and the snapshot pages are recovered to be the current page.

The rnode flag makes sure the states are clearly transitioned. Regardless of the number

of pages mapped to a process’ address space, all updates to a region are always made

atomically durable.

Protecting the Sync

CPUs are free to execute load/store instructions to mapped ppages at any time. Further-

more, multiple applications may share ppages of a single region. A trivial use case is

applications accessing a single data structure stored in the ppages of a particular region.

As a result, ppages from the same region can be mapped to address spaces of processes

running in different CPUs. It is imperative that not only the invoking CPU but all CPUs

are restricted access to the region pages upon a pmsync invocation. However, CPUs may

not be deprive other tasks from executing for more than a short period of time to preserve

system responsiveness to ongoing tasks. Thus, a mechanism that bars all CPUs from ac-

cessing the mapped region pages upon pmsync invocation and sets up the protection of

the mapped pages quickly is necessary.

To implement pmsync, the region system first issues an Inter-processor Interrupt (IPI)

to all the CPUs to put them in a non-maskable interrupt state. IPIs are intended to stop

all the access to the region while the regions dirty pages are write protected for all the

processes. For efficiency, the region system keeps a list of dirty pages which contains all

the necessary information for write protecting the pages and setting up copy-on-write

(CoW) operations. The invoking CPU’s IPI-handler sets up the mapped pages for CoW.

The other CPU’s IPI-handlers wait for the completion of the invoking CPU’s IPI handler

40

before they become ready for normal execution, thus ensuring that no memory pages

get modified while the invoking CPU’s IPI handler is executing. The invoking CPU’s IPI

handler write protects all the mapped pages of the region. Upon this handler’s completion,

processes are disallowed access to the mapped pages; the pmsync operation acquires

a region-wide lock which page fault handlers as well as other persistent operations are

required to acquire before accessing the region.

System Wide Cache Flush

Upon returning from the IPI, the active CPU also flushes the dirty cache lines for the

region using the kernel virtual address. At this point CPU cache snooping mechanisms

make the pages transparent across all the processes. After cache flush, an idempotent

execution of pmsync is initiated. First, the region r node status is updated to PM-

SYNC IN PROGRESS. Dual pointers, used in combination with the r node flags PM-

SYNC IN PROGRESS, PMSYNC COMPLETE, ensure an idempotent pmsync. After the

r node is set to PMSYNC IN PROGRESS, pmsync is guaranteed to finish successfully,

even after a system crash. Finally, the snapshot pointer is modified to point to the current

page and the previous snapshot if there was any is deleted, before setting the region status

to PMSYNC COMPLETE. The modifications to the r node status are protected by

the (clwb+sfence) persistent barrier to enforce proper ordering of updates.

Eliminate CoW Propagation

During normal operation, any access to a mapped page within a pmsync’ed region results

in a copy of the current page, and the snapshot pointer is changed to point to the copied

page while the current (old) page is made accessible to the user. Existing snapshot mech-

anisms allow the copy-on-write (CoW) update to propagate to intermediate layers

of metadata, even up to the root. The region systems novel dual pointer technique

41

1

2 3

4 5

6 7 8

9 10

rnode

(a) Initial state of the
Region System meta-
data tree.

1'

2'

4'

7'

9'

(b) Conventional copy on write ap-
proach when page 9 is updated.

c s

9

7

9'

pre-data

(c) Optimized
CoW with
dual pointers
in the region
system.

Figure 5.2: Copy-on-Write propagation elimination.

eliminates such CoW amplification by limiting recursive updates to the lowest metadata

layer in the region system metadata hierarchy.

An example can be seen in Figure 5.2, where a write attempt to page 9 would force 5

blocks in the upper layer copied for the region system architecture. However, because of

the pre-data dual pointers, only one block gets copied.

5.1.4 Recovery

The persistent metadata stored by the region system has sufficient information to recover

from a crash. During startup, the region system looks for a rs root in a particular

physical location which is provided as a kernel boot parameter. If the rs root is found

at that location, the region system can be mounted by following the steps below.

In case of an unclean shutdown, the entire metadata for the region system can be re-

built by traversing the tree starting from rs root in case the system is recovering from

an unclean shutdown. The volatile metadata structures are also reconstructed during the

42

recovery process. While reconstructing, the r node status provides support for com-

pleting region wide operations such as pmsync and delete. To ensure proper recovery,

other operations on the region system are suspended until the region system is recon-

structed.

During a normal (clean) shutdown or clean region close operation, system wide

and region wide free page bitmaps are persisted to ensure a faster boot. The rs root

contains a pointer to the PM free page list and free rnode list for the region system, while

the r node holds a pointer to the region wide free page list. However, after a crash or

power failure they are reconstructed by walking the region system metadata structures

depending on the rs root or r node status.

5.2 Summary

In this chapter, we have classified the region system operations into two categories – per-

sistent and volatile operations. The persistent operations are further divided into data and

metadata operations. We have described the process of achieving atomic persistence for

metadata operations by carefully planning the order of updates to the PM and by iden-

tifying the durability point for each operation. We have also outlined the pre-requisites

of maintaining consistency of shared PM areas, and provided the solution by means of

pmsync.

In the next chapter, we will delve into our implementation, provide a visual example

of pmsync operation, and finally present some comparison with the contemporary PM

specific solutions.

43

CHAPTER 6

REGION SYSTEM: IMPLEMENTATION AND EVALUATION

In the previous chapter we have described how the design of region system operations op-

timize the PM usage. We also outlined the steps required to achieve atomically durability

of mapped data as the durability points of the persistent metadata operations. However, to

verify the validity of our design, in this chapter, we discuss the implementation of region

system as a kernel module and evaluate with the state-of-the-art file system and persistent

memory library.

6.1 Implementation

Region system is implemented as a Linux kernel module for Linux version 3.10.14. The

core module contains almost 4000 lines of code. However, the modification to the kernel

is less than 100 lines of code. The kernel modifications, though small in quantity are

very significant to combine region system to the I/O stack. Next, we provide a high level

overview of the kernel modifications and their relations with region system persistent and

volatile metadata.

6.1.1 Kernel Modifications

Region system runs with minimal modification to the Linux kernel code base . There are

several critical data structures which had to be modified to support region system opera-

tions. Figure 6.1 shows a simplified version of the kernel and region system interaction,

and separation of persistent and volatile memory.

The task struct holds an array of all regions opened by that process by means of

nvm regions which is an additional data structure to support the region system. The

44

Figure 6.1: Simplified diagram of kernel and region system interaction.

45

nvm regions struct contains a pointer to the rnode as well as a dirty list of pages. The

list elements, which holds the address of the snapshot pages for that particular mapping

are also referenced by the vma area struct by the vm private data pointer. There

could be multiple mapping for an address space. The red-black trees serve the purpose

of optimized searching for existing regions for the region system and open regions of

the process. The important volatile metadata’s are shown in Figure 6.1 alongside the

persistent metadata. The data structures bounded by red boxes are added by the region

system.

6.1.2 Kernel Interaction for Region System Operations

The volatile operations consist of open, close, pmmap, and pmunmap. The open

syscall involves setting up the regions struct for a process. As shown in Figure 6.1,

the regions struct contains an array to store pointers to the nvm regions. An in-

stance of the nvm region data structure is created for each open region which contains the

count of processes that opened the region. The counter inside the nvm region is incre-

mented during the create operation. The nvm region also contains a pointer to the PM

resident rnode which is used to get the rnode features such as name and status for the

other region system operations such as close, delete, pmmap, pmsync, etc. Once the re-

gion is opened, the rnode is added to the open regions rb tree to help quick lookup

of the region.

pmmap and pmsync fall in the category of persistent operations. However, both of

these operations rely on some volatile metadata to maintain atomicity. The pmmap syscall

involves recording the mapped pte entry, mm struct, and kernel virtual address of the

snapshot pointer for the pages per mapping. A list of the above mentioned combina-

tion is also kept per region for an easier traversal during pmsync, which we will discuss

46

shortly. The nature of the volatile metadata is such that, after a system crash the region

system can be returned to a consistent state without these information. These metadata

are only stored to speed up the pmsync process. To provide a complete understanding of

the process an example of the pmsync operation is given below.

Pmsync Example

The steps involved in pmsync are described in Figure 6.2 with the aid of an example.

It illustrates pmsync using a simplified version of the region system metadata structure

(sans indirect blocks).

Figure 6.2: Simplified pmsync example.

Initial state: Region A has 2 pages mapped, ppage 1 (physical address:E2) is in

unsynced state, and mapped by Task Y (CPU 1). Ppage 4 (E6) is in synced state and

mapped by Task Y (CPU 1) and Task Z (CPU 2). Region B has 3 ppages 1, 2, and 4,

47

among which 2 (EE) is not mapped to any process. Ppage 1 (E8) (unsynced) is mapped

to Task Y (CPU 1), ppage 4 (F0)(previously synced) is mapped to Task Z.

On pmsync invocation for rnode A the following steps occur:

1. CPU 1 sends IPI to CPU 2.

2. IPI handler in CPU 1 write protects all the dirty pages mapped to each process

belonging to region A at this point. The IPI handler in CPU 1 write protects user

mapped page for ppage 1 (E2), nothing is done of ppage 4 (E6) as the page is not

dirty, already write protected. CPU 2’s IPI handler waits for CPU 1’s IPI handler to

complete. Ppages from Region B are untouched.

3. CPU 2’s IPI handler finishes.

4. CPU 1 flushes dirty cache lines of ppage 1 (E2).

5. The rnode A flag set to PMSYNC IN PROGRESS protected by CLWB+SFENCE.

At this point even after a system crash or power failure pmsync will complete on

next mount of RS.

6. ppage 1’s snapshot pointer points to E2. At this step all the current and snapshot

pages of region A point to same ppage.

7. The rnode A flag is set to PMSYNC COMPLETE protected by CLWB+SFENCE.

6.1.3 Memory Management

Persistent memory allocation and de-allocation are managed by the region system rather

than the kernel memory management subsystem.. It is important to restrict the kernel

memory manager from accessing the subsystem so that it cannot treat these physical

pages (PM) as regular DRAM pages. The reasoning is quite simple – decoupling the

PM management from DRAM management so that other subsystems can not affect PM

48

by accident. As an example, it would not be ideal for the PM pages to be swapped out or

replaced by other pages brought in from storage. Hence, the PM is reserved so that only

region system can modify this portion of physical memory.

We deploy a simple 4KB page allocation policy , and maintain a PM free page bitmap

for book keeping. The garbage collection is also done by the region system module.

6.2 Evaluation

For evaluation, we compare region system operations with regular state-of-the-art file sys-

tem ext4 (DAX enabled), alongside contemporary persistent memory library PMEM.IO.

Both ext4-DAX msync and PMEM.IO flushing primitives provide weak or no atomic

durability guarantees. On that note, no contemporary solution provide similar atomic

durability and consistency guarantee like region system.

6.2.1 Methodology

Given that persistent memory hardware is currently unavailable for purchase in the mar-

ketplace, we rely on both hardware and software emulation. All our experiments were

conducted on Intel’s persistent memory emulation platform (PMEP [LDK+14b]) which

allows realistic evaluation of software that are intended to run on top of CPU-addressable

and byte-addressable persistent memroy devices. The PMEP environment also allows for

fine-grained latency control over PM access times and supports Intel’s advanced x86 in-

structions specifically developed for PM. The machine was equipped with a Intel(R) Xeon

CPU E5-4620 v2 @ 2.60GHz, 32 GB of volatile memory, 32 GB of persistent memory,

and a custom version of the Linux kernel v4.1.18. The region system is installed as a

module on kernel version 3.10.14 under the same conditions.

49

We separate the evaluation into two parts; first we compare the metadata operations

followed by the comparison of pmsync operation.

6.3 Microbenchmarks

The region system exports a minimal interface to the applications for mmap based us-

age of PM. The system calls in Table 4.2 are designed based on the POSIX standard file

system calls in terms of functionality. Writing applications using this interface is straight-

forward. We wrote several simple applications to compare the performance of similar

operations of region system to the ext4-DAX file system. The DAX code avoids the ex-

tra copy in the page cache by performing reads and writes directly to the storage device,

which is similar in principle to region system. DAX also primarily supports block sizes

of kernel “PAGE SIZE” which is also the case for region system. However, DAX does

not provide any of the atomic durability for data as provided by the region system. The

main purpose of this evaluation is thus an evaluation of the cost of the additional features

provided by the region system relative to the state-of-the-art DAX performance features.

We compare the latency of similar operations across these systems in Figure 6.3. We

measure performance in terms of operation latency for up to 2K operations. The basic

operations are open (6.3f), close (6.3g), create (6.3a), delete (6.3b) a region or a file, and

allocating (6.3c) and deallocating (6.3d) multiple of 4KB PM chunks/pages for files or

regions. Other operations include mapping pages of the file/region into the user address

space (6.3e). We also measure the latency of punching holes in the file or region system

(6.3h); this operation allows simple deallocation of file space when using file-mapped PM

space.

The operations can be grouped into two categories – persistent and volatile.

The persistent operations require updates to PM resident metadata and data; create,

50

(a) Create (b) Delete

(c) Allocate (d) Deallocate

(e) Pmmap (f) Open

(g) Close (h) Punch hole

Figure 6.3: Comparison of region system interface with ext4-dax using microbenchmarks.
X-axis shows the number of operations (file size in case of pmmap), Y-axis shows latency
in microseconds.

51

Figure 6.4: Average latency of region system operations relative to EXT4-DAX.

delete, allocate, deallocate, pmsync, and punching holes fall into this category. Other op-

erations fall into the volatile category, where no PM-resident data or metadata is updated.

We note from Figures 6.3a, 6.3b, and 6.3d that the region system performs better than the

ext4-dax counterpart by a significant margin. This is achieved because of low metadata

flush cost since the region system does not contain any redundant persistent metadata. The

region system’s allocate operation does not outperform ext4-DAX fallocate because

of the volatile metadata dependency on the page allocation process. The volatile opera-

tions perform worse than DAX due to the additional book-keeping required for various

volatile data structures.

Punching holes: The region system is designed to support unordered and arbitrary alloc-

ation-deallocation. Though traditional POSIX file systems do not support this mecha-

nism, this feature is rather useful to support arbitrarily ordered allocations and dealloca-

tions of data within files as necessary with memory-like usage of PM. Ext4-DAX supports

punching holes via the fallocate system call. We compare the performance of deal-

locating every alternate pages after a file/region is initially allocated. Figure 6.3h shows

that region system performs much better than ext4-DAX in punching holes in the allo-

52

Figure 6.5: Pmsync comparison with EXT4-DAX msync.

cated PM space.

6.3.1 Pmsync Comparison with EXT4-DAX

The ext4 file system has recently enabled support for direct access to the underlying de-

vice. By eliminating page cache, the DAX code removes the extra copy (page cache) by

performing reads and writes directly to the storage device. For file mappings, the storage

device is mapped directly into userspace. Ext4 file system has two modes of msync oper-

ation – SYNC and ASYNC. SYNC mode waits until all the changes are made durable to

the media by the file system, while the ASYNC mode returns instantly without waiting

for the msync to complete. None of the modes guarantee atomic durability of the mapped

data.

Figure 6.5 shows the latency of performing pmsync on files ranging from 256KB

to 8MB, where all the pages are made dirty by writing 8 bytes to them before invoking

pmsync. Interestingly, pmsync performs better than ext4-DAX’s msync despite msync

not providing any data consistency guarantee like region system for smaller flush sizes.

53

Figure 6.6: Normalized average libpmem and libpmem-DAX latency with respect to
libpmem-region.

However, pmsync latency increases with number of pages to be flushed and ext4-DAX

msync latency remains almost constant. We provide our reasoning for the slower perfor-

mance for larger size in Section 6.3.3 For this benchmark, pmsync performs better than

msync for up to 13248 dirty pages of a file sized 56MB.

6.3.2 Pmsync Comparison with PMEM.IO

PMEM.IO [pmea] is a suite of persistent memory libraries developed for making per-

sistent memory programming easier. PMEM.IO’s LIBPMEM provides an interface to

map PM via the underlying PM specific file system (e.g., ext4-DAX). However, it im-

plements PM specific functions such as pmem flush, pmem drain, etc. in user space

without involving the underlying file system. LIBPMEM can also be configured to use

ext4-DAX’s msync instead of the user level flushing functions. We call the former vari-

54

Figure 6.7: Comparison of libpmem, libpmem-dax and libpmem-region latency with re-
spect to number of dirty pages.

ation as LIBPMEM and the latter variation as LIBPMEM-DAX. Neither variant provides

support for transactional consistency of the data stored using LIBPMEM. We created a

variant of LIBPMEM which is built to consume regions implemented by the region system

and supports mapping ppages to the user address space. We call this variant LIBPMEM-

REGION. By using LIBPMEM-REGION, pending data updates are made transactionally

durable when using pmsync.

We compared the LIBPMEM-REGION which provides atomic durability of PM changes

with the non transactional LIBPMEM and LIBPMEM-DAX. We ran the LIBPMEM library’s

pmem flush benchmark [pmeb] for all three systems. This benchmark writes a single

byte to several pages of the mapped file/region and flushes the contents later. We ran the

tests for different sizes of files/regions (12MB to 786MB) while pmembench executed

multi-threaded (1 to 16). To determine how the region system performs on an average

relative to these two variants we calculated their normalized average latency over the

same dataset. Pmsync performs within 2% of LIBPMEM-DAX msync, and 30% of LIBP-

55

Figure 6.8: Pmsync breakdown.

MEM pmem flush. The normalized average latency of LIBPMEM and LIBPMEM-DAX

are shown in Figure 6.6 along with a comparison of latency with respect to increasing

number of dirty pages in Figure 6.7. For an application that dirties a small number of

pages between consecutive syncs, the performance of LIBPMEM-REGION is competitive

relative to its less transactional variants.

6.3.3 Cost of Pmsync

To further investigate pmsync behaviour, we have done an analysis on the average time

taken by the different sub tasks of the pmsync operation. In Figure 6.8, we have plotted

the percentage of time taken for flushing the cache lines, to write protect the pages, and to

change the snapshot pointer to the current data page for a pmsync operation on a region

with 6400 dirty pages.

We can see that, cache flushing takes up 95% of the total pmsync time, which should

be the common cost with ext4-DAX msync. However, the costs of write protecting the

pages and changing the snapshots are associated with achieving atomic durability of the

56

W1 P1

W2 P2

pmsync

W3 P1

W4 P2

pmsync

t0 t1 t2

pmem.io:

[(1, 2, 3, 4),

(2, 1, 3, 4),

(1, 3, 2, 4),

(1, 2, 4, 3),

(2, 4, 1, 3)

...]

region system:

[((1, 2), (3, 4)),

((2, 1), (4, 3)),

((1, 2), (4, 3)),

((2, 1), (3, 4))]

Figure 6.9: Possible write orderings for region system and PMEM.IO.

region. The region system has to do two additional passes on the dirty page list to ensure

an idempotent pmsync. The first one is to write protect the ppages, the second pass to

flush the cache lines, and the third pass to change the snapshots. As a result, the pmsync

operation experiences a linear increase of cost directly proportional to the number of dirty

pages. On the other hand, the total cost of cache line flushes may reach a plateau when

the total size of dirty data is more than the CPU cache size. Unfortunately, region system

can not avoid traversing the dirty ppage list thrice to ensure an idempotent sync operation.

Furthermore, the region system pmsync maintains ordering of writes across all the pro-

cessors. The pmsync is designed in such a way that all the updates made after a pmsync

call will be made durable only after the previous pmsync is completed and a consistent

state is achieved. However, for DAX file systems as well as PMEM.IO-LIBPMEM, that

is not the case. In Figure 6.9, we demonstrate how the writes from different processors

can be intermingled between two invocation of msync in case of LIBPMEM. LIBPMEM

only maintains ordering among the writes issued from a single CPU. On the other hand,

57

region system maintains a strict ordering of write between two different pmsync across

multiple CPU’s, which ensures writes from a later state (in this case t1-t2) can not corrupt

a previously issued pmsync (t0 - t1) or vice versa. In case of region system, the writes

that are issued during an ongoing pmsync operation are delayed until the pmsync is fin-

ished. Furthermore, the subsequent writes are made durable in strict order by virtue of

page protection and copy-on-write mechanism. To achieve consistency, region system

has to forgo durability of simultaneous writes and maintain strict sequential order across

multiple CPU’s. For this reason, pmsync performance is not as good as ext4-DAX or

LIBPMEM when the number of dirty pages is high.

6.4 Summary

In this chapter, we discussed the region system implementation as a kernel module which

can be installed alongside a patch of less than 100 lines of code. We have also examined

the interaction between the region system operations and kernel entities. Besides that, we

evaluated region system operations with mainstream ext4-DAX file system and PMEM.IO

persistent memory library. In our findings, region system performs better than ext4-DAX

for most of the persistent operations. Besides that, despite providing strict atomic dura-

bility guarantees, region system-pmsync performs competitively compared to PMEM.IO

flush. In the next chapter, we introduce two versions of shared persistent containers built

on top of region system which either provide simplicity of application development or

flexibility of location independent mapping.

58

CHAPTER 7

USER LEVEL LIBRARIES

In the previous chapters we described the design of OS level support for integrating

PM into the I/O stack via the region system. The region system uses a non-redundant

metadata architecture to minimize cache flushes, the concept of regions that allows ar-

bitrary and unordered allocation of PM, and finally an interface that supports shared and

transparent atomic durability of mapped data. In this chapter, we discuss the shortcomings

of contemporary designs that support persistent memory containers of data and present

two solutions - LIBPM-R and LIBPMEMOBJ-R to achieve shared persistent memory con-

tainers with different degree of flexibility with regards to mapping the containers into the

applications address space.

7.1 Introduction

The possibility of having a universally consistent view of persistent storage for multiple

applications across multiple CPU’s is yet unexplored due to the hardware barrier im-

posed by the traditional storage stack. Memory, being the temporary placeholder for

the data brought in from disk, only provides a local view of the data to the applications

which might be inconsistent with the on-disk version. On the other hand, persistent mem-

ory (PM) devices can be mapped directly to the applications address space and could

be accessed simultaneously by the CPUs with the changes being transparently visible

across the system. The composite nature of the PM devices allowing byte-addressable-

persistence opens the door for transparent sharing of durable data. It is thus timely to

investigate the possibility of consistently sharing persistent objects in real time across

multiple applications which could alter the way applications work today and how future

applications get built. Now that the hardware limitations are overcome, we envision that

in the near future applications would be willing to share large data structures residing

59

in PM to minimize persistent memory usage while maintaining consistency of the data

across the applications.

Contemporary persistent containers or object stores [CCA+11, VTS11, pmea, Mar17]

provide support for working with in-memory persistent objects. Specifically PMEM.IO,

a persistent memory library supported by Intel, has been focusing on developing primi-

tives for programming using PM. PMEM.IO’s transactional object store – LIBPMEMOBJ-

converts EXT4-DAX persistent files into persistent object stores along with the support

for annotating persistent objects, operations, and transactions. However, there are a few

drawbacks of the system. First, the developers have to carefully annotate all the persistent

operations including operations that are part of an atomic transactions. Second, in some

cases one operation on an object could internally require a sequence of multiple opera-

tions on the data structure before a desired consistent state is reached. An insertion or

deletion of a node into an AVL tree would be such an operation where multiple additional

nodes have to be rearranged inside the parent data structure. In such cases programmers

have to rewrite the complex data structures to capture such occurrences and to retrofit the

PM library, whereas it would have been easier to have a single instruction to commit all

the changes at once. SoftPM [GMC+12], and subsequently LIBPM [Mar17] overcomes

the complexity of specific annotation of objects by providing an easy-to-use persistent

container model with atomic persistent sync support. However, both of them are limited

by the fact that these containers can not be shared by different processes simultaneously.

Based on the experience of consistently sharing PM regions [CR17], we explore the

possibilities of sharing persistent containers across multiple applications consistently and

simultaneously. In this chapter, we propose two solutions for consistently sharing PM

containers or object stores across multiple applications based on the shared atomic dura-

bility capabilities of region system. First, we propose LIBPM-R and show that persistent

containers can be maintained consistently with the simplicity of memory like transac-

60

tions alongside the ability to share the containers transparently among multiple processes

but with the restriction that the containers are mapped to the same virtual address within

each applications address space. Second, we propose LIBPMEMOBJ-R, and demonstrate

that with region system support PMEM.IO persistent object stores can be shared across

multiple processes, and additionally overcome the fixed map constraint of the previous

solution.

7.2 Background

In this section, we discuss different sharing techniques used by the contemporary OS

subsystems, and briefly re-examine transparent sharing and shared atomic durability of

mapped data.

7.2.1 Contemporary Sharing Mechanisms

Sharing data helps to reduce pressure on storage and memory. Consider a situation where

the C library is not shared and has to be loaded separately to the memory for every pro-

gram that is using it. That would be a disaster. The same rule applies for storage – when

multiple applications read from a file, multiple copies are not generally mapped to the

physical memory. However, file and memory interfaces achieve sharing differently.

File Backed Mappings

File backed mappings mirror the contents of an existing file. The contents of those pages

are initialized by reading the contents of the file being mapped, at the appropriate offset

for that page. Writes to file mappings created with the MAP SHARED flag update the

page cache pages, making the updated file content immediately visible to other processes

using the file, and eventually the cached pages will be flushed to disk, updating the on-disk

61

copy of the file. Flushing the content of cached pages can be forced by issuing a msync

call. However, the cache being flushed to the storage is not guaranteed to be atomic as

some of the cache pages from a set of changes may reach the storage while others reside

in memory when a failure occurs.

Writes to file mappings created with the MAP PRIVATE flag result in a copy-on-write

operation, allocating a new local copy of the page to store the changes. These changes

are not made visible to other processes, and do not update the on-disk copy of the file.

Anonymous mappings may be created by passing the MAP ANONYMOUS flag to

mmap(). Anonymous memory is a memory mapping with no file or device backing it and

therefore not persistent at all. Instead, it provides a mechanism for programs to allocate

memory from the operating system to implement temporary structures such as a process’

stack and heap.

Sharing Memory

The Unix processes share the address space of the parent process when a child is forked.

This mapping is mostly copy-on-write which helps speedier creation of processes. How-

ever, Unix threads share heap data and other shared libraries. Normally the shared heap is

not saved after the threads complete their execution. PM based heap changes this assump-

tion and opens new dimensions for the applications to achieve shared data persistence at

the application level.

7.2.2 Transparent Sharing

In conventional block-based storage, the applications need to communicate between them-

selves to get the latest updates to a shared file. One way to do that is to issue msync()

synchronously and notify the concerned applications to remap the file after the comple-

62

tion of the synchronization operation. However, for DAX mapped PM where the PM is

directly mapped to the applications address space, any updates should be visible across

the shared applications immediately. We characterize this outcome as real-time transpar-

ent sharing of persistent storage.

7.2.3 Shared Atomic Durability

As we have discussed in Chapter 5, while direct CPU access to the PM can easily achieve

transparent sharing, it provides no support with regards to maintaining PM consistency

and thus is practically useless for sharing by itself. The region system [CR17] supports

atomic durability of mapped data by propagating all the in-flight changes to the PM all

while keeping the mapped region isolated from further modifications during this process

by using Inter-Processor Interrupts (IPI). It also implements a novel dual-pointer tech-

nique to manage a consistent snapshot version of the current mapping in the address

space. The region system supports a universal access usage model where any process can

make changes to the mapped region at any given time, and “all” modifications across the

applications are made durable if any of them decides to persist the changes.

7.3 Persistent Containers

The need for application data persistence and reusing the data without requiring serializa-

tion lead to multiple solutions [CCA+11, VTS11, GMC+12, pmea, Mar17] which offer

persistence of software data for traditional storage as well as PM. However, the proposed

solutions do not recognize the concept of sharing for persistent object stores nor do they

provide support for it.

63

Container X

Container Y

Process A's virtual address space

0xC 0xD

0xE 0xF

0xB

0XA

Figure 7.1: Mapping two persistent containers to Process A’s address space.

7.3.1 Challenges of Sharing Persistent Containers

Though sharing object stores among multiple application address spaces appeared infea-

sible due to the hardware limitations until now, with the addition of PM to the IO stack, it

will be possible for multiple applications to access objects from a persistent container si-

multaneously . However, there are a few obstacles in sharing persistent containers. First,

when the containers are mapped to a process address space it is possible that the mapped

address in the process virtual address space would not be same as the virtual address

where the container was created. In this case, while mapping, the pointers to in-container

objects need to be updated to match the target virtual address space of the process. All the

objects need to be traversed, and the pointers have to be fixed before the control is handed

back to the application.

Second, the containers might have pointers to other objects either in the same con-

tainer or to a different container. In both the cases, if the containers are not mapped to

the same location in different applications, the pointers will be corrupt. In the latter case,

all the inter-related containers (which have pointers across each other) have to be mapped

at the exact same virtual addresses within all applications at all times. Figure 7.1 depicts

64

Container X

Container Y

Process A's virtual address space

0x2000 0x5000

0xD000 0xF000

0xFFEE

0XAE00

Figure 7.2: Mapping two persistent containers to Process B’s address space fails.

two containers X and Y, where X has some outgoing pointers to the Container Y besides

in-container pointers. Container Y has one outgoing pointer to Container X. As shown in

Figure 7.2, when the same virtual address of process B is not available to map Container

X, even if Container Y is free to map at the desired address, the entire mapping can not

be complete because of the dependency.

Next, we explore two possible solutions to achieve shared persistent containers with

regions. First, we present LIBPM-R, which supports shared persistent containers with a

simple memory like interface. Second, we propose LIBPMEMOBJ-R which is built on the

support provided by the region system interface to overcome the limitation of LIBPM-R,

although providing a less developer-friendly interface.

7.4 LIBPM-R: Fixed Map Shared Containers

We propose a persistent container library - LIBREGION - which facilitates the sharing

of object stores. LIBREGION exports API’s similar to SoftPM and LIBPM [GMC+12,

Mar17], and provides a simple transactional model in comparison to the other [VTS11,

65

Figure 7.3: LIBPM-R Architecture.

pmea, CCA+11] solutions. These containers present a powerful abstraction for the devel-

oper who simply identifies a single top-level container root data structure to persist. All

data reachable from this top-level data structure is automatically discovered and atom-

ically persisted by the library infrastructure. The library uses regions as the data store

rather than using regular files. The pmsync operation exported by the region system ker-

nel subsystem is issued while committing changes to the object store. This usage model

allows applications to make a batch of changes and then commit all changes at once rather

than flushing and logging every modification to the container.

7.4.1 Architecture

LIBPM-R is built around the design principles of SoftPM [GMC+12]. Figure 7.3 presents

a simplified logical diagram of the LIBPM-R architecture. The core provides the support

for container memory allocations, pointer management, and data discovery. The core

component does not need any effort in terms of transaction management due to the trans-

actional consistency support provided by region system. We present a short description of

66

Category API Description

Container Management

open(...) Open / create container.
close(...) Close open container.
clear(...) Clear container contents.

delete(...) Delete all container data and metadata (persistently).

Memory Allocation
pmalloc(...) Allocate persistent object in container.

pfree(...) Free persistent objects.

Transactional Updates
commit(...) Atomically apply all pending updates to the container.
rollback(...) Undo all updates to the container.

Annotation
setroot(...) Set object as the root of the container.
getroot(...) Get address of root object.

exclude(...) Do not follow pointer during container closure.

Table 7.1: The LIBPM-R API.

API’s followed by brief discussion on the different components of LIBPM-R. The API

table presented in Table 7.1 provides a concise summary of the LIBPM-R functionality.

The three groups containing memory allocation, container management, and annotation

provide support spanning from complex object management and namespace management

to annotation support for containers. The transactional support for commit and rollback

are directly linked to the region system interface depicted in Table 4.2 .

7.4.2 Shared Atomic Transactions

LIBPM-R’s transactional mechanism provides shared atomic durability of transactions

across multiple processes. The transaction model works at a page granularity and all the

implementation heavy lifting is performed by the region system at the OS level. LIBPM-

R has two types of segments – metadata and data. The data segments consist of ppages

allocated from a region. The containers and regions have one-to-one mapping, which

means all the data segments of a container are part of the same region.

Figure 7.4 illustrates LIBPM-R’s handling of updates to containers starting from a

recently opened container using segments of size three pages. The container is opened by

67

Figure 7.4: LIBPM-R transaction: Container state after a successful open. Pages are
write protected.

68

Figure 7.5: LIBPM-R transaction: The application tries to update object C which is
mapped read-only.

69

Figure 7.6: LIBPM-R transaction: The update triggers the fault handler in the region
system, which initiates the write by making a copy of the page containing the faulting
address.

70

Figure 7.7: LIBPM-R transaction: The page is granted write permission, and the write to
C goes through.

71

Figure 7.8: LIBPM-R transaction: The write to D takes place without any overhead.

72

Figure 7.9: LIBPM-R transaction: A commit is issued.

73

Figure 7.10: LIBPM-R transaction: The page is write protected, and the snapshot pointer
now points to current page, and the old snapshot page is deleted.

74

two processes P and Q; LIBPM-R maps the container at the same location in the address

space of both the processes. When a container is opened, all data segments are write

protected. First, process P tries to update an object C [Figure 7.5]. Since the page hosting

the object is write protected, region system takes control of the write process. Then the

entire page gets copied and the snapshot pointer is updated to point to the copied page

[Figure 7.6]. Finally, the page is made writeable [Figure 7.7] and the update proceeds.

Subsequent updates to the same page by process P do not trigger additional faults and

can proceed without any overhead [Figure 7.8]. During a commit by process Q, the

current page is made read-only and the old snapshot is deleted after the snapshot pointer

is updated to point to the current page [Figure 7.10].

The key to achieving shared atomicity of transactions is that, the state of the pages

are maintained by the region system rather than the user level library. The region system

module always maps the current pages to the application’s address space, and the map-

ping never changes even when the page permissions are changed. Additionally, as the

snapshots are maintained by the region system, there are no local copies for each process

ensuring that all the processes look at the same page at any given time.

The limitation of LIBPM-R lies in the fact that the containers need to be mapped at the

same location across all the process address spaces as the LIBPM-R library uses a fixed

pointer model. In other words, we can say that, LIBPM-R provides supports for fixed map

shared containers. However, as the OS is designed to return random addresses to prevent

security threats to the system, the desired mapping to a specific address might fail. This

restriction can be overcome by providing hints for mapping and disabling Address Space

Layout Randomization (ASLR). The former is successful in most of the cases in a 64

bit architecture, however disabling ASLR will impose security threats to the system. In

the next section, we discuss how we can achieve location independent shared containers

using fat pointers.

75

7.5 LIBPMEMOBJ-R: Location Independent Shared Containers

Persistent memory pointers can be managed in several ways. LIBPM-R deals the pointers

as fixed map pointers. Other techniques like pointer swizzling can also be used to man-

age persistent objects where the programmer provides serialization methods for the data

types. More relevant to our discussion are the fat pointers – which do not store the actual

addresses but provide a mechanism to calculate the target addresses from the stored infor-

mation. The downside of the fat pointers is that they need to be dereferenced at runtime.

However, fat pointers can be used to achieve location independent shared containers. To

overcome the limitations of fixed-map shared containers, we identified that if the pointers

can be stored as an offset to the root of the container, then the applications are free to map

the containers at any location available. Conveniently, LIBPMEMOBJ does something

similar.

7.5.1 Architecture

LIBPMEMOBJ is part of the PMEM.IO nvmdk suite [pmea]. It presents interfaces to create

persistent memory pool, in other word persistent containers. Rather than storing absolute

pointers, it stores PMEMOID’s, which are a combinations of the id of the container

and offset from the root of the container for each object. The library provides some

mechanism to store and lookup virtual addresses from the stored PMEMoids.

1 struct pmemoid {

2 uint64_t pool_uuid_lo;

3 uint64_t off;

4 };

Listing 7.1: PMEM.IO’s definition of persistent pointer.

76

Figure 7.11: LIBPMEMOBJ-R Architecture.

However, the consistency method used by PMEM.IO is neither failure atomic nor

does it support consistent shared mappings. We replaced the consistency primitives of

LIBPMEMOBJ, and redesigned it to work with regions instead of files. Consequently,

the LIBPMEMOBJ-R library now supports shared atomic durability inherited from region

system. The method of persisting objects is changed to batch durability from a per-object

persist operation requirement. Rather than persisting each modification to the container,

applications now have the flexibility to decide when to make the containers durable by

communicating between themselves. Figure 7.11 presents a simple schematic diagram of

the modified architecture.

7.6 Analysis of Performance

PMEM.IO provides a set of persistent data structures with transactional support, which

we ported to LIBPM-R and we compared the latency of each major operation. The data

structures we considered were the following:

Hashmap A hashtable that deals with collisions by linking entries together in the same

bucket.

77

Hashmap BTree RB-Tree Skiplist
Persistent Datastructure

4 × 103

5 × 103

6 × 103

In
se

rt
La

te
nc

y
(μ
s)

LibPmemObj-R LibPM-R

Figure 7.12: LIBPMEMOBJ-R vs LIBPM-R (Inserts).

BTree An in-memory version of a regular BTree with branching factor of eight.

RBTree A standard Red Back Tree (RBTree).

Skiplist A skiplist with a single value per node and eight levels.

The ease of use and simplified development complexity of fix mapped persistent con-

tainers over fat pointer based containers are well established by LIBPM [Mar17]. In our

experiments, we tried to verify if the same data structures can be mapped by different

processes. In all our experiments, same persistent containers were safely and consistently

shared across multiple applications.

Each one of these data structures can create a mapping between a 64bit integer and a

value of an arbitrary size. Figure 7.12 depicts the results of comparing the insert opera-

tions for all persistent data structures for both LIBPM-R and LIBPMEMOBJ-R. We see

that LIBPM-R outperforms LIBPMEMOBJ-R for every data structure consistently for all

the operations from 1.2x to 1.9x. The delete operation in Figure 7.14 also show similar

trend where LIBPM-R does better than LIBPMEMOBJ-R by 1.3x to 1.8X .

78

Hashmap BTree RB-Tree Skiplist
Persistent Da as ruc ure

10−1

100

101

102

Lo
ok

up
 L

a
en

cy
 (μ

s)

LibPmemObj-R LibPM-R

Figure 7.13: LIBPMEMOBJ-R vs LIBPM-R (Lookups).

Hashmap BTree RB-Tree Skiplist
Persistent Datastructure

4×103

5×103

6×103

De
le

te
 L

at
en

cy
 (μ

s)

LibPmemObj-R LibPM-R

Figure 7.14: LIBPMEMOBJ-R vs LIBPM-R (Deletes).

79

7.7 Summary

In this chapter, we first described the challenges in achieving shared persistent contain-

ers. Next, we proposed two shared persistent container solutions based on fixed pointers

and fat pointers. Finally, we analyzed that fixed map containers outperform fat pointer

based containers by a small margin. In our experience, we find that LIBPM-R provides

simpler transactional model and comparative ease of application development. However,

LIBPMEMOBJ-R, with consistency guarantees of region system, provides a safer environ-

ment for development. Persistent memory application developers can choose any of these

two solutions to achieve shared persistent containers depending on the requirements of

the product they are developing.

In the next chapter, we talk about contemporary PM solutions related to our work, and

finally conclude our dissertation.

80

CHAPTER 8

RELATED WORK

In this section, we look at the PM-centric solutions for a better understanding of the scope

of the research.

Research on PM-centric software stacks has mainly addressed two areas: (i) applica-

tion usage of the persistent memory, and (ii) native OS support for PM. As we discuss

below, these two classes of solutions have been developed as silos and solutions that span

the concerns of both areas remain unexplored. While we discuss individual solutions

in the remainder of this section, Table 8.1 summarizes the recent research in this space

evaluated against several requirements of PM-specific software solutions.

8.1 Application usage of PM

The work on application usage of persistent memory has focused on new programming

abstractions and models [CCA+11, VTS11, GMC+12]. NV-Heaps [CCA+11] and Mne-

mosyne [VTS11] propose persistent heap-based solutions for PM. Both utilize the mmap()

system call to provide the abstraction of persistent heaps. NV-heaps [CCA+11] are

treated as regular files internally within the PM-mounted file system. On the other hand,

Mnemosyne [VTS11] introduces persistent regions mapped directly to the address space

of processes; a user level library explicitly manages the region-file mappings for each

process. The persistent memory library effort [pmea] provides object-based transactional

support (libpmemobj) built on top of low level persistent memory library (libpmem).

All these solutions rely on memory transactions to make PM updates atomic and durable.

Thus, while these solutions support consistent updates and provide transactional consis-

tency, they require that applications explicitly specify individual updates to PM, a cumber-

81

Table 8.1: A summary of recent research on PM-specific software solutions

Class Solution Persistent namespace
Arbitrary and unordered

allocation & deallocation

User space

mapping

Mapped data

consistency

Guarantee

Mapped data

consistency

mechanism

Consistency

implementation

sharing

support

File systems

BPFS [CNF+09] Y N N N - - N

SCMFS [WR11] Y N Y N - - N

PMFS [DKK+14] Y N Y N - - N

NOVA [XS16] Y N Y Y duplicate page mapping copy-on-write N

HVMFS [ZHL+16] Y N Y N - - N

FCFS [OS16] Y N Y N - - N

Persistent Heaps
Mnemosyne [VTS11] Y (File backed) Y Y Y Transactional

Compiler support

+

User level library

N

NVHeaps [CCA+11] Y (File backed) Y Y Y Transactional User level library N

Replication Mojim [ZYMS15] Y (File backed) N Y
Y (replicated)

N (unreplicated)

Mirroring based

atomic msync (region-wide)

& gmsync(multi-region)

OS N

Atomic Msync Msync [PKS13, VMP+15] Y (File backed) N Y Y
File-wide

atomic msync
File-system specific N

Block devices
Moneta+ [CDC+10, CME+12] Y (combined with file systems) N N - - - -

PMBD [CMH14] Y (Combined with file system) N N - - - -

Region System Regions Y Y Y Y
Region-wide

atomic pmsync
OS Y

82

some task. Finally, there is lack of support for sharing data stored in PM across processes

in these solutions.

8.2 Native OS support for PM

The second class of solutions address optimizing the current OS stack for PM [CDC+10,

CME+12, WR11, CNF+09, DKK+14, YMH12, LBN13, BCLN13, ZYMS15, ZHL+16].

These solutions fill critical gaps in the software stack as we discuss below. However,

none of these solutions empower applications with simple-to-use consistency primitives

for updates to PM-mapped areas of the application’s address-space.

8.2.1 PM as a block device

PM can be exported as a block device to provide backwards compatibility with existing

storage stacks [CMH14]. Pointing out the software stack overheads, Moneta [CDC+10]

proposes a optimized software stack to use PM as block device, while Moneta-D [CME+12]

improves the performance further by carefully eliminating OS interference during an IO

operation. However, at a fundamental level, the interface is not ideally suited for PM

because it does not support byte-addressability. Application reads of a few bytes, that can

be efficiently supported by PM, get translated to much larger block granularity accesses

to the device; additionally, writes may incur read-modify-write overheads [CLK+15].

8.2.2 File systems

Recent file systems such as PMFS [DKK+14], BPFS [CNF+09], SCMFS [WR11], HVM-

FS [ZHL+16], FCFS [OS16] provide PM-specific file management solutions. These so-

lutions all provide persistent namespace and support mapping portions of files to pro-

83

cess address spaces. BPFS supports durable consistency guarantees in the form of epoch

barriers [CNF+09] but does not allow application access to PM mapped areas directly.

Neither PMFS nor SCMFS guarantee the ordering or consistency of updates to the PM

pages mapped to the process address space. FCFS provide applications failure consis-

tency by using transactional mechanism to encapsulate file system writes to the PM us-

ing the write() syscall into transactions. HVMFS proposes a snapshotting mechanism

primarily triggered by fsync for keeping multiple consistent versions of a file. The

Nova file system [XS16] has addressed minimizing the cache flush requirements by op-

timizing the log, while the work of Chen et al. does so using fine grained metadata

journalling [CYW+16]. However, none of the above-discussed PM-specific file systems

support arbitrary and unordered allocation/deallocation as well as mapped data consis-

tency.

The Nova [XS16] file system proposed support for atomic-mmap with strong consis-

tency guarantees. However, the atomic-mmap primitive does not present actual file pages

to application address space as it maps copies of the persistent pages. Upon invocation of

msync, a non-temporal write operation is performed to write to the original pages from the

“copy” pages. Though this version of atomic-mmap achieves consistency, it forfeits the

basic advantages of sharing mapped pages across multiple applications. As the mapped

pages are not actual physical pages, it disables multiple applications to share and have a

coherent view of the page. When actual physical pages are mapped by different appli-

cations running in different cores concurrently, processor snooping mechanism can make

sure that all the CPU caches and the applications have a coherent view of the shared pages

– which is not possible in this case.

84

8.2.3 Memory Mapping

Though byte-addressability makes PM devices readily accessible by CPU load/stores, few

solutions address consistent access to PM mapped areas. Mojim [ZYMS15] proposed a

set of replication schemes with varying degrees of reliability and consistency guaran-

tees. Mojim exposes file-backed PM regions to the user address space for direct loads

and stores. A system configuration file is used to specify the Mojim regions that can be

replicated across mirror and the backup nodes. The OS service provides the applications

with simpler interfaces for creating sync points for the data area by calling specific system

calls (such as msync or gmsync). Mojim provides availability, reliability, and consis-

tency guarantees via replication to a peer node. However, no consistency guarantees are

provided for the application-mapped data areas for the general un-replicated case.

Other researchers have explored the consistency of memory-mapped data. The impor-

tance of failure-atomic msync when using file systems has been articulated well by Park

and Verma et al. [PKS13, VMP+15]. Though their proposed solutions are independent of

the underlying storage type, they are designed for specific file systems. However, safely

mapping shared PM data within multiple processes cannot be dealt by the applications

on their own. At any consistency point, updates to the PM need to be reflected to all the

different user-space mappings for that portion of data. To that end, in designing designing

the region system we seek to provide native support to ensure that synced data is shared

transparently across multiple mappings.

8.2.4 Other PM-optimized OS features:

OS behavior has been revisited for PM devices by several researchers. Due to the reduced

latency of the PM devices, synchronous polling mechanism has been suggested for better

performance over interrupt driven I/O. [YMH12]. Significant improvement in I/O perfor-

85

mance is also offered by optimizing the buffer cache [LBN13]. Baek et al. [BCLN13]

propose a unified memory hierarchy which supports file objects and memory objects re-

siding on the PM device as well as interchanging the objects without copy overhead. This

allows the applications to associate a namespace to a memory object by converting it to a

file and vice-versa. However, the solution does not support atomic durability of multiple

updates to the memory objects.

8.2.5 PM optimized architectures and data structures

A lot of work has been done on how to combine persistent memory into the current

software stack [LIMB09, ZZYZ09, QSR09, WZ94]. Apart from that, significant effort

has been focused on memory persistence [PCW14, DSST89, CNC+96, NH12, SMK+93,

LSS16]. These systems focus on either part on whole system persistence with the help

of persistent memory. Integrating persistent memory introduces a lot of new questions

on how to maintain a consistent system. Researchers have analyzed the effects of order-

ing [CSADAD12, CI08], logging [KKB+16, CCV15], and proposed solutions to achieve

crash consistency [RZK+15, SKB+17, PKS13]. Other group of research focus on PM

optimized data structures such as B+ tree [CJ15, CLX14, LLS13, OLN+16, YWC+15,

HKWN18, MAK+13], radix tree [LLS+17], other generalized data structures [VTRC11].

8.3 Summary

In this section we looked at the different classes of contemporary solutions for consum-

ing PM. Our finding is that the consistently sharing PM data among applications is not

considered as a viable option because of absence of proper solutions. In our dissertation,

we have focused on bridging the gap and enabling applications with the memory like us-

age model by supporting consistent sharing of PM data by introducing the region system.

86

While doing so, we have reduced the cost of PM interaction by eliminating redundant

metadata from the system. Finally, we proposed two viable alternatives for achieving

shared persistent containers with the help of the region system.

87

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

Persistent memory enables a new breed of applications — applications that are both

stateful and extremely high performant. Current operating system abstractions are not

well-suited to deliver the capabilities of this new class of memory-like storage devices to

applications whereby developers experience the simplicity and flexibility of the memory

interface and the durability of storage. Consequently, developers today must either com-

promise on transactional durability properties of weaker abstractions or take on significant

additional development complexity to build these capabilities themselves.

In the previous chapter (Chapter 8), we have presented a comprehensive summary of

the existing solutions that tackle the problem of PM integration into the I/O stack. The

existing solutions concentrate on different classes of applications but fail to guarantee

atomic durability of mapped data in a multi-processor system. Besides that, transpar-

ent sharing of persistent objects across multiple applications was not addressed by these

previous solutions. In this dissertation, we have presented region system, a new kernel

subsystem for managing PM consistently and exposing it directly within application ad-

dress spaces. We have proposed the region system interface based on the requirements

from an application developers point-of-view. A fundamental driving principle behind

the region system is to reduce development complexity significantly when using PM to

develop powerful stateful applications. Developers benefit from a simple durability inter-

face that makes a group of application updates to PM-resident data atomically durable.

This dissertation highlights the ease of use, sharing capabilities, and strong consistency

and data durability guarantees provided by the region system for mmap based applica-

tions. The region system also supports arbitrary and unordered allocation/deallocation of

data within regions at the page granularity. This capability allows developers to use PM

88

as they would use DRAM within their code, thus drastically simplifying development of

applications.

In Chapters 4 and 5 of this dissertation, we have presented the architecture, inter-

face, and design of the region system. An overview of the implementation of the re-

gion system is provided in Chapter 6 followed by the evaluation. We have evaluated

our system with a contemporary PM file system (i.e. Ext4-DAX) and a state-of-the-art

PM library PMEM.IO [pmea]. In our experiments, for persistent operations, where per-

sistent metadata of the system are modified, the region system performs 1.1× to 2.85×

better than EXT4-DAX. These results validate that minimizing cache flushes by design-

ing a non-redundant metadata architecture reduces latency of persistent PM operations.

We have evaluated the atomically durable pmsync operation with the non-transactional

PMEM.IO pmem flush operation, and observed that the strongly consistent pmsync

operation performs competitively (within 30%) when compared against the PMEM.IO li-

brary’s weakly consistent pmem flush operation. The performance penalty for attaining

atomic durability and providing strong consistency guarantee are likely to be acceptable

for applications that have PM data consistency requirements.

The design of region system opens a new window for existing mmap based applica-

tions to migrate to using PM effectively and easily. Based on the guarantee of shared

atomic durability of mapped regions, we proposed two viable implementations of shared

persistent containers, LIBPM-R and LIBPMEMOBJ-R, in Chapter 7. These container

types facilitate seamless application development when the data structures are shared

across multiple processes, system-wide. Most importantly, LIBPM-R allows applica-

tions to be developed without worrying about complex transactional mechanisms, while

the modified version of LIBPMEMOBJ-R supports location independent sharing of con-

tainers. In our experiments, LIBPM-R consistently performs better than LIBPMEMOBJ-

R by 1.2× to 1.9×. However, LIBPM-R is susceptible to security attacks due to dis-

89

abling ASLR (Address Space Layout Randomization). LIBPMEMOBJ-R, on the other

hand, provides the flexibility of mapping the container data anywhere within an applica-

tion’s address space without compromising its security. Developers can choose between

the two versions of containers based on the requirements for security and performance

withing their applications.

The concept of shared persistent containers can be readily applied to contemporary

storage architectures. These containers could be used as the building blocks for large scale

object-based file systems, or these could also be used to alleviate the resource constraints

in multi-tenant database systems where resources such as PM would be in high demand.

Besides that, these containers can be also used to consistently store intermediate results

in a parallel pipelined computation platform. The above mentioned scenarios would be

worthy candidates for extending the applicability of the shared persistent containers in

future research. A current limitation of our proposed region-based container solutions is

such that, the containers they support must use data structures which would eventually

reside completely in the PM. Supporting shared hybrid containers where data can reside

in persistent as well as volatile memory is an interesting area for future work as well.

In this dissertation, we have proposed a complete solution for integrating PM de-

vices to the traditional I/O stack. The Region System provides support to the applications

for directly accessing PM resident data consistently while minimizing the latency of the

PM access path by providing a non-redundant metadata architecture. The shared persis-

tent containers provide the ability to effortlessly share persistent objects in contemporary

multi-processor systems. We expect that, the dissemination of our research would facili-

tate finding optimal solutions for using PM devices across multiple layers of the storage

stack.

90

BIBLIOGRAPHY

[BCLN13] Seungjae Baek, Jongmoo Choi, Donghee Lee, and Sam H. Noh. Energy-
efficient and high-performance software architecture for storage class
memory. ACM Trans. Embed. Comput. Syst., 12(3), April 2013.

[CCA+11] Joel Coburn, Adrian Caulfield, Ameen Akel, Laura Grupp, Rajesh Gupta,
Ranjit Jhala, and Steven Swanson. Nv-heaps: Making persistent objects
fast and safe with next-generation, non-volatile memories. In ASPLOS,
2011.

[CCV15] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. Rewind:
Recovery write-ahead system for in-memory non-volatile data-structures.
Proc. VLDB Endow., 8(5):497–508, January 2015.

[CDC+10] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollow, Rajesh K.
Gupta, and Steven Swanson. Moneta: A high-performance storage ar-
ray architecture for next-generation, non-volatile memories. In Proceed-
ings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pages 385–395, Washington, DC, USA,
2010. IEEE Computer Society.

[CI08] Nathan Chong and Samin Ishtiaq. Reasoning about the arm weakly con-
sistent memory model. In Proceedings of the 2008 ACM SIGPLAN Work-
shop on Memory Systems Performance and Correctness: Held in Con-
junction with the Thirteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’08), MSPC ’08, pages 16–19, New York, NY, USA, 2008. ACM.

[CJ15] Shimin Chen and Qin Jin. Poersistent b+-trees in non-volatile main mem-
ory. Proc. VLDB Endow., 8(7):786–797, February 2015.

[CLK+15] Daniel Campello, Hector Lopez, Ricardo Koller, Raju Rangaswami, and
Luis Useche. Non-blocking writes to files. In 13th USENIX Conference
on File and Storage Technologies (FAST 15), 2015.

[CLX14] Ping Chi, Wang-Chien Lee, and Yuan Xie. Making b+-tree efficient in
pcm-based main memory. In Proceedings of the 2014 International Sym-
posium on Low Power Electronics and Design, ISLPED ’14, pages 69–74,
New York, NY, USA, 2014. ACM.

91

[CME+12] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De, Joel
Coburn, and Steven Swanson. Providing safe, user space access to fast,
solid state disks. In ASPLOS, 2012.

[CMH14] Feng Chen, M.P. Mesnier, and S. Hahn. A protected block device for
persistent memory. In Mass Storage Systems and Technologies (MSST),
2014 30th Symposium on, 2014.

[CNC+96] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher Ay-
cock, Gurushankar Rajamani, and David Lowell. The rio file cache: Sur-
viving operating system crashes. In Proceedings of the Seventh Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS VII, pages 74–83, New York, NY, USA,
1996. ACM.

[CNF+09] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Doug Burger, Benjamin Lee, and Derrick Coetzee. Better i/o through
byte-addressable, persistent memory. In SOSP, 2009.

[CR17] Mohammad Chowdhury and Raju Rangaswami. Native os support for per-
sistent memory with regions. In Proceedings of 33rd International Con-
ference on Massive Storage Systems and Technology, MSST ’17, 2017.

[CS13] Adrian Caulfield and Steven Swanson. QuickSAN: A Storage Area Net-
work for Fast, Distributed Solid State Disks, March 2013.

[CSADAD12] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Consistency without ordering. pages 9–9,
2012.

[CYW+16] Cheng Chen, Jun Yang, Qingsong Wei, Chundong Wang, and Mingdi
Xue. Fine-grained metadata journaling on nvm. In IEEE 32nd Inter-
national Conference on Massive Storage Systems and Technology, MSST
’16, 2016.

[DKK+14] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System soft-
ware for persistent memory. In Proceedings of the Ninth European Con-
ference on Computer Systems, EuroSys ’14, pages 15:1–15:15, New York,
NY, USA, 2014. ACM.

92

[DSST89] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.
Making data structures persistent, February 1989.

[Fus] Fusion-io directFS and ACM. http://www.fusionio.com/blog/blurring-
the-line-between-memory-and-storage-introducing-filesystem-support-
for-persistent-memory/.

[GMC+12] Jorge Guerra, Leonardo Marmol, Daniel Campello, Carlos Crespo, Raju
Rangaswami, and Jinpeng Wei. Software persistent memory. In USENIX
ATC, 2012.

[HKWN18] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
Endurable transient inconsistency in byte-addressable persistent b+-tree.
In 16th USENIX Conference on File and Storage Technologies (FAST 18),
pages 187–200, Oakland, CA, 2018. USENIX Association.

[HLM94] Dave Hitz, James Lau, and Michael Malcolm. File system design for an
nfs file server appliance. In Proceedings of the USENIX Winter 1994
Technical Conference on USENIX Winter 1994 Technical Conference,
WTEC’94, pages 19–19, Berkeley, CA, USA, 1994. USENIX Associa-
tion.

[KKB+16] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and
Youjip Won. Nvwal: Exploiting nvram in write-ahead logging. SIGPLAN
Not., 51(4):385–398, March 2016.

[LBN13] Eunji Lee, Hyokyung Bahn, and Sam H. Noh. Unioning of the Buffer
Cache and Journaling Layers with Non-Volatile Memory. In FAST, 2013.

[LDK+14a] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran, and
Jeff Jackson. Yat: A validation framework for persistent memory soft-
ware. In 2014 USENIX Annual Technical Conference (USENIX ATC 14),
2014.

[LDK+14b] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran, and
Jeff Jackson. Yat: A validation framework for persistent memory soft-
ware. In Proceedings of the USENIX Annual Technical Conference, ATC
’14, June 2014.

[LHZS17] H. Liu, L. Huang, Y. Zhu, and Y. Shen. Librekv: A persistent in-memory
key-value store. IEEE Transactions on Emerging Topics in Computing,
PP(99):1–1, 2017.

93

[LIMB09] Benjamin Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting
Phase Change Memory as a Scalable DRAM Alternative. In ISCA, 2009.

[LLS13] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. The bw-
tree: A b-tree for new hardware platforms. In Proceedings of the 2013
IEEE International Conference on Data Engineering (ICDE 2013), ICDE
’13, pages 302–313, Washington, DC, USA, 2013. IEEE Computer Soci-
ety.

[LLS+17] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H.
Noh. Wort: Write optimal radix tree for persistent memory storage sys-
tems. In Proceedings of the 15th Usenix Conference on File and Stor-
age Technologies, FAST’17, pages 257–270, Berkeley, CA, USA, 2017.
USENIX Association.

[LSS16] Youyou Lu, Jiwu Shu, and Long Sun. Blurred persistence: Efficient trans-
actions in persistent memory. Trans. Storage, 12(1):3:1–3:29, January
2016.

[MAK+13] Iulian Moraru, David Anderson, Michael Kaminsky, Parthasarathy Ran-
ganathan, Niraj Tolia, and Nathan Binkert. From Filesystem Designer
to Persistent Memory Data Structure Designer: Enabling Safe Memory
Management for Byte Addressable NVRAM, March 2013.

[Mar17] Leonardo Marmol. Customized interfaces for modern storage devices.
2017.

[Mck05] Paul E. Mckenney. Memory ordering in modern microprocessors. Linux
Journal, 30:52–57, 2005.

[MGA16] Leonardo Mármol, Jorge Guerra, and Marcos K. Aguilera. Non-volatile
memory through customized key-value stores. In Proceedings of the 8th
USENIX Conference on Hot Topics in Storage and File Systems, HotStor-
age’16, pages 101–105, Berkeley, CA, USA, 2016. USENIX Association.

[MSTR15] Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and
Raju Rangaswami. NVMKV: A scalable, lightweight, ftl-aware key-value
store. In 2015 USENIX Annual Technical Conference (USENIX ATC 15),
pages 207–219, Santa Clara, CA, 2015. USENIX Association.

[NH12] Dushyanth Narayanan and Orion Hodson. Whole-system persistence,
March 2012.

94

[OLN+16] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. Fptree: A hybrid scm-dram persistent and concurrent
b-tree for storage class memory. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 371–386, New
York, NY, USA, 2016. ACM.

[OS16] Jiaxin Ou and Jiwu Shu. Fast and failure-consistent updates of applica-
tion data in non-volatile main memory file system. In IEEE 32nd Inter-
national Conference on Massive Storage Systems and Technology, MSST
’16, 2016.

[pco] Deprecating the PCOMMIT Instruction. https://software.intel.com/en-
us/blogs/2016/09/12/deprecate-pcommit-instruction.

[PCW14] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persis-
tency. In Proceeding of the 41st Annual International Symposium on Com-
puter Architecuture, ISCA ’14, pages 265–276, Piscataway, NJ, USA,
2014. IEEE Press.

[PKS13] Stan Park, Terence Kelly, and Kai Shen. Failure-atomic msync(): A sim-
ple and efficient mechanism for preserving the integrity of durable data. In
Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, 2013.

[pmea] Persistent Memory Programming. http://pmem.io.

[pmeb] Pmem.io Benchmarks. https://github.com/pmem/nvml/tree/master/src/
benchmarks.

[QSR09] Moinuddin Qureshi, Viji Srinivasan, and Jude A. Rivers. Scalable High-
Performance Main Memory System using Phase Change Memory Tech-
nology. In Proceedings of the ISCA, 2009.

[RZK+15] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and
Onur Mutlu. Thynvm: Enabling software-transparent crash consistency
in persistent memory systems. In Proceedings of the 48th International
Symposium on Microarchitecture, MICRO-48, pages 672–685, New York,
NY, USA, 2015. ACM.

[SKB+17] Jihye Seo, Wook-Hee Kim, Woongki Baek, Beomseok Nam, and Sam H.
Noh. Failure-atomic slotted paging for persistent memory. SIGPLAN
Not., 52(4):91–104, April 2017.

95

[SMK+93] Mahadev Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C.
Steer, and James J. Kistler. Lightweight Recoverable Virtual Memory.
Proc. of the ACM Symposium on Operating Systems Principles, December
1993.

[sni] SNIA NVM TWG. http://www.snia.org/nvmsummit.

[UKRV11] Luis Useche, Ricardo Koller, Raju Rangaswami, and Akshat Verma. Truly
non-blocking writes. In Proceedings of the 3rd USENIX Conference on
Hot Topics in Storage and File Systems, HotStorage’11, 2011.

[VMP+15] Rajat Verma, Anton Ajay Mendez, Stan Park, Sandya Srivilliputtur Man-
narswamy, Terence P. Kelly, and Charles B. Morrey III. Failure-atomic
updates of application data in a linux file system. In Proc. of the USENIX
Conference on File and Storage Technologies (FAST 15), February 2015.

[VTRC11] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and
Roy H. Campbell. Consistent and durable data structures for non-volatile
byte-addressable memory. In Proc. of USENIX FAST, February 2011.

[VTS11] Haris Volos, Andres Jaan Tack, and Michael Swift. Mnemosyne:
Lightweight persistent memory. In Proc. of ASPLOS, 2011.

[WR11] Xiaojian Wu and A. L. Narasimha Reddy. Scmfs: a file system for storage
class memory. In Proc. of SC, 2011.

[WZ94] Michael Wu and Willy Zwaenepoel. envy: A non-volatile, main memory
storage system. SIGPLAN Not., 29(11):86–97, November 1994.

[XS16] Jian Xu and Steven Swanson. Nova: A log-structured file system for
hybrid volatile/non-volatile main memories. In 14th USENIX Conference
on File and Storage Technologies (FAST 16), pages 323–338, Santa Clara,
CA, February 2016. USENIX Association.

[YMH12] Jisoo Yang, Dave B. Minturn, and Frank Hady. When Poll is Better than
Interrupt. In FAST, 2012.

[YWC+15] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. Nv-tree: Reducing consistency cost for nvm-
based single level systems. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies, FAST’15, pages 167–181, Berke-
ley, CA, USA, 2015. USENIX Association.

96

[ZHL+16] Shengan Zheng, Linpeng Huang, Hao Liu, Linzhu Wu, and Jin Zha.
Hmvfs: A hybrid memory versioning file system. In IEEE 32nd Inter-
national Conference on Massive Storage Systems and Technology, MSST
’16, 2016.

[ZSLH16] J. Zhou, Y. Shen, S. Li, and L. Huang. Nvht: An efficient key-value
storage library for non-volatile memory. In 2016 IEEE/ACM 3rd Interna-
tional Conference on Big Data Computing Applications and Technologies
(BDCAT), pages 227–236, Dec 2016.

[ZYMS15] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swanson.
Mojim: A reliable and highly-available non-volatile memory system. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’15, 2015.

[ZZYZ09] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A Durable and Energy
Efficient Main Memory using PCM Technology. In ISCA, 2009.

97

VITA

MOHAMMAD ATAUR RAHMAN CHOWDHURY
mchow017@fiu.edu

December 2017 Masters in Computer Science
Florida International Universiy
Miami, Florida

October 2009 B.S. Computer Science & Engineering
Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

June 2013 - Present Graduate Research Assistant
System Research lab
Florida International University
Miami, FL

May 2017 - August 2017 Software Enngineering Intern
Datos IO
San Jose, CA

May 2014 - August 2014 Research Intern
Fusion-io
San Jose, CA

September 2012 - May 2013 Graduate Teaching Assistant
Florida International University
Miami, FL

October 2009 - August 2012 Software Engineer
IMS Health
Dhaka, Bangladesh

PUBLICATIONS AND PRESENTATIONS

• Native OS Support for Persistent Memory with Regions
33rd International Conference on Massive Storage Systems and Technology
(MSST2017)
Authors: Mohammad Chowdhury, Raju Rangaswami

98

• Shared Atomic Consistency for Persistent Memory Containers
9th Annual Non-Volatile Memories Workshop (NVMW 2018)
Authors: Mohammad Chowdhury, Raju Rangaswami

• LibPM: Simplifying Application Usage of Persistent Memory
Submitted to Transaction of Storage (Under revision)
Authors: Leonardo Marmol, Mohammad Chowdhury, Raju Rangaswami

• Location aware code offloading on mobile cloud with QoS constraint
2014 IEEE 11th Consumer Communications and Networking Conference (CCNC),
Las Vegas, NV, 2014, pp. 74-79.
Authors: S. Tasnim, M. Chowdhury, K. Ahmed, N. Pissinou and S. S. Iyengar

99

	Florida International University
	FIU Digital Commons
	3-28-2018

	Rethinking the I/O Stack for Persistent Memory
	Mohammad Ataur Rahman Chowdhury
	Recommended Citation

	INTRODUCTION
	PROBLEM STATEMENT
	Dissertation Statement
	Dissertation Contribution
	Dissertation Significance
	Minimize Cache Flush Requirements
	Direct and Consistent Access to Mapped Data
	Simplified and Shared Application Development

	Summary

	BACKGROUND
	Persistent Memory
	Consistency Requirements for PM
	The Importance of Instruction Ordering
	Comparison of Cache Flush Instructions on PMEP

	Summary

	REGION SYSTEM: ARCHITECTURE AND INTERFACE
	Assumptions
	Application Requirements from PM Software Stack
	Persistent Namespaces
	Mapped Data Consistency
	Consistent Sharing
	Simple Memory-like Interface
	Arbitrary and Unordered PM Allocation

	The OS Memory/Storage Stack for PM
	Elements of the Stack
	PM Use Cases

	The Region System Interface
	Example

	Architecture
	Persistent Metadata in the Region System
	Volatile Metadata in the Region System

	Summary

	REGION SYSTEM: DESIGN
	Region System Operations
	Persistent Metadata Operations
	Persistent Data Operation
	Pmsync
	Recovery

	Summary

	REGION SYSTEM: IMPLEMENTATION AND EVALUATION
	Implementation
	Kernel Modifications
	Kernel Interaction for Region System Operations
	Memory Management

	Evaluation
	Methodology

	Microbenchmarks
	Pmsync Comparison with EXT4-DAX
	Pmsync Comparison with PMEM.IO
	Cost of Pmsync

	Summary

	USER LEVEL LIBRARIES
	Introduction
	Background
	Contemporary Sharing Mechanisms
	Transparent Sharing
	Shared Atomic Durability

	Persistent Containers
	Challenges of Sharing Persistent Containers

	LibPM-R: Fixed Map Shared Containers
	Architecture
	Shared Atomic Transactions

	LibpmemObj-R: Location Independent Shared Containers
	Architecture

	Analysis of Performance
	Summary

	RELATED WORK
	Application usage of PM
	Native OS support for PM
	PM as a block device
	File systems
	Memory Mapping
	Other PM-optimized OS features:
	PM optimized architectures and data structures

	Summary

	CONCLUSIONS AND FUTURE WORK
	BIBLIOGRAPHY
	VITA

