
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-21-2018

Memory-Aware Scheduling for Fixed Priority Hard
Real-Time Computing Systems
Gustavo A. Chaparro-Baquero
Florida International University, gchap002@fiu.edu

DOI: 10.25148/etd.FIDC004092
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer and Systems Architecture Commons, Hardware Systems Commons, and
the VLSI and Circuits, Embedded and Hardware Systems Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Chaparro-Baquero, Gustavo A., "Memory-Aware Scheduling for Fixed Priority Hard Real-Time Computing Systems" (2018). FIU
Electronic Theses and Dissertations. 3712.
https://digitalcommons.fiu.edu/etd/3712

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3712?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

MEMORY-AWARE SCHEDULING FOR FIXED PRIORITY HARD REAL-TIME

COMPUTING SYSTEMS

A dissertation submitted in partial ful�llment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Gustavo A. Chaparro-Baquero

2018

To: Dean John L. Volakis

College of Engineering and Computing

This dissertation, written by Gustavo A. Chaparro-Baquero, and entitled Memory-Aware

Scheduling for Fixed Priority Hard Real-Time Computing Systems, having been approved

in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Jean Andrian

Nezih Pala

Deng Pan

Wujie Wen

Gang Quan, Major Professor

Date of Defense: March 21, 2018

The dissertation of Gustavo A. Chaparro-Baquero is approved.

Dean John L. Volakis

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2018

ii

c⃝ Copyright 2018 by Gustavo A. Chaparro-Baquero

All rights reserved.

iii

DEDICATION

I would like to dedicate this Doctoral dissertation to my beloved wife, Viky Arnedo, my

dearest mother and aunt, Ana Luc�́a Baquero and Shirley Sanchez, and all my family.

Without their love, understanding, support, and encouragement, the completion of this

endeavor would never have been possible.

iv

ACKNOWLEDGMENTS

First, I want to express my heartfelt appreciation to my major advisor, Dr. Gang Quan,

for his constant guidance and encouragement during the last six years of my doctoral

study. I also want to express my gratitude to my Ph.D. committee members, Dr. Jean

Andrian, Dr. Nezih Pala, Dr. Deng Pan, and Dr. Wujie Wen, for their insightful feedback,

comments and suggestions in improving the quality of this dissertation. I am proud to

have such wonderful and knowledgeable people serving on my dissertation committee.

In addition, I want to thank Dr. Gustavo Roig, Dr. Alexander Perez-Pons, Dr. Kang Yen,

and Dr. Amaury Caballero for their unconditional and always kind advice.

I am thankful to the staff of the ECE department at FIU, specially to Mrs. Pat Bram-

mer, Mr. Oscar Silveira, Mrs. Layla El-Hilu, Mrs. Mais Kayyali, and Mrs, Xiang Li for

their great commitment to student services.

Next, I would like to thank my lab mates and friends, Dr. Soamar Homsi, Dr. Shi

Sha, Dr. Ming Fan, Dr. Shuo Liu, Dr. Tianyi Wang, Dr. Qiushi Han, and Dr. Vivek

Chaturvedi, for creating a wonderfully collaborative and friendly work environment.

Last, but not least, my deepest gratitude goes to all my family, sisters, cousins, aunts,

uncles, in-laws, nieces, nephews, and friends, for their constant love and support during

this journey. I am very grateful to my beloved wife, Mrs. Viky Arnedo, for accompanying

and encouraging me through all these years. I want to give my life-long gratitude to my

dearest mother and aunt, Mrs. Ana Luc�́a Baquero and Mrs. Shirley Sanchez, for all the

love and affection they have showered upon me. I want to express also my gratitude to

my friend Cavally for all his support.

v

ABSTRACT OF THE DISSERTATION

MEMORY-AWARE SCHEDULING FOR FIXED PRIORITY HARD REAL-TIME

COMPUTING SYSTEMS

by

Gustavo A. Chaparro-Baquero

Florida International University, 2018

Miami, Florida

Professor Gang Quan, Major Professor

As a major component of a computing system, memory has been a key performance

and power consumption bottleneck in computer system design. While processor speeds

have been kept rising dramatically, the overall computing performance improvement of

the entire system is limited by how fast the memory can feed instructions/data to pro-

cessing units (i.e. so-called memory wall problem). The increasing transistor density and

surging access demands from a rapidly growing number of processing cores also signi�-

cantly elevate the power consumption of memory systems. In addition, the interference of

memory accesses from different applications and processing cores signi�cantly degrades

the computation predictability, which is essential to ensure timing speci�cations in real-

time system design. The recent IC technologies (such as 3D-IC technology) and emerging

data-intensive real-time applications (such as Virtual Reality/Augmented Reality, Arti�-

cial Intelligence, Internet of Things) further amplify these challenges. We believe that it

is not simply desirable but necessary to adopt a joint CPU/Memory resource management

framework to deal with these grave challenges.

In this dissertation, we focus on studying how to schedule �xed-priority hard real-time

tasks with memory impacts taken into considerations. We target on the �xed-priority real-

time scheduling scheme since this is one of the most commonly used strategies for prac-

tical real-time applications. Speci�cally, we �rst develop an approach that takes into con-

vi

sideration not only the execution time variations with cache allocations but also the task

period relationship, showing a signi�cant improvement in the feasibility of the system.

We further study the problem of how to guarantee timing constraints for hard real-time

systems under CPU and memory thermal constraints. We �rst study the problem under

an architecture model with a single core and its main memory individually packaged.

We develop a thermal model that can capture the thermal interaction between the proces-

sor and memory, and incorporate the periodic resource sever model into our scheduling

framework to guarantee both the timing and thermal constraints. We further extend our

research to the multi-core architectures with processing cores and memory devices inte-

grated into a single 3D platform. To our best knowledge, this is the �rst research that

can guarantee hard deadline constraints for real-time tasks under temperature constraints

for both processing cores and memory devices. Extensive simulation results demonstrate

that our proposed scheduling can improve signi�cantly the feasibility of hard real-time

systems under thermal constraints.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1

1.1 Real-time systems and real-time scheduling 2

1.2 The challenges presented by memory systems in design of real-time systems . 10

1.2.1 The memory wall problem . 11

1.2.2 The memory access time variation problem 13

1.2.3 The power/energy consumption and thermal problem for memory systems . 17

1.3 The research problem and our contributions 25

1.4 Summary and structure of the document . 30

2. BACKGROUND AND RELATED WORK 31

2.1 Real-time scheduling . 31

2.2 Power/thermal-aware scheduling . 48

2.3 Memory-Aware Scheduling . 57

2.3.1 Shared Cache Memory . 57

2.3.2 Main-Memory Power and Thermal . 61

2.4 Summary . 68

3. CACHE ALLOCATION FOR FIXED-PRIORITY REAL-TIME SCHEDULING

ON MULTI-CORE PLATFORMS . 69

3.1 Related Work . 70

3.2 Preliminary . 73

3.2.1 Architecture and System Model . 74

3.2.2 Cache Allocation Example . 75

3.3 Simple Harmonic-Based Cache Allocation Approach (HBCA1) 77

3.4 Enhanced Harmonic-Based Cache Allocation Approach (HBCA2) 81

3.5 Experiments, Analysis and Results . 86

3.5.1 SPEC CPU2000 Benchmarks Cache Simulation 86

3.5.2 Target Architecture . 87

3.5.3 Simulation results of testing HBCA1 and HBCA2 approaches 87

3.5.4 Full Factorial Experiment . 90

3.6 Summary . 91

4. PROCESSOR/MEMORY CO-SCHEDULING USING PERIODIC RESOURCE

SERVER FORREAL-TIME SYSTEMSUNDER PEAKTEMPERATURECON-

STRAINTS . 96

4.1 Related Work . 96

4.2 Preliminary . 98

4.2.1 Architecture and System Model . 98

4.2.2 CPU and DRAM Thermal Model . 100

4.2.3 Problem Formulation . 104

viii

4.3 Our Approach . 104

4.3.1 Bound the peak temperature for a periodic server 105

4.3.2 Periodic server optimization . 108

4.3.3 CPU/Memory Co-Scheduling using Periodic Server (CSPS) 110

4.4 Experiments, Analysis and Results . 112

4.5 Summary . 118

5. THERMAL-AWARE JOINT CPUANDMEMORY SCHEDULING FORHARD

REAL-TIME TASKS ON MULTICORE 3D PLATFORMS 120

5.1 Related Work . 122

5.2 Preliminary . 124

5.2.1 System Architecture . 124

5.2.2 System Model . 126

5.2.3 3D Platform Power Models . 128

5.2.4 3D Platform Thermal Model . 129

5.2.5 Problem Formulation . 131

5.3 Our Approach . 132

5.3.1 A Periodic Resource Model Based Approach 132

5.3.2 Real-Time Task Partitioning Strategies . 133

5.4 Experiments, Analysis and Results . 138

5.5 Summary . 145

6. CONCLUSIONS AND FUTURE WORK . 146

6.1 Summary . 146

6.2 Future Work . 148

BIBLIOGRAPHY . 153

VITA . 174

ix

LIST OF TABLES

TABLE PAGE

2.1 Example of task set to be scheduled in two processing units using RMS [1] . 41

3.1 Example of Task Set and the WCET values for different mi 74

3.2 Motivation Example Solution Using IBRT-MCI-RMS [2] 76

3.3 Motivation Example Solution by Inspection 77

3.4 Solution to Example 3.1 using HBCA1 . 81

3.5 Solution to Example 3.1 using HBCA2 . 86

3.6 2-Level Factorial Experiment - Factors and Levels 90

5.1 Schedulability ratio per method with two temperature thresholds 141

x

LIST OF FIGURES

FIGURE PAGE

1.1 Embedded systems development industries in 2015 [3] 3

1.2 Current embedded systems capabilities in 2015 [3] 4

1.3 MICRON's applications driving requirements for embedded systems in the
near future [4] . 12

1.4 Technology forecast of share of DRAM bits [5] 12

1.5 Typical sample distribution of runtimes of a program, along with sample of
BCET and WCET [6] . 14

1.6 Most important challenges for embedded systems development in 2015 [3] . 18

1.7 DRAM technology data rate per pin over the time [7] 20

1.8 DRAM technology latency and density over the time [7] 21

1.9 DRAM capacity and latency over the time [8] 21

1.10 DRAM technology power ef�ciency decrement over the time [7] 22

1.11 DRAM chip density increase over the time [7] 22

2.1 Example for timing feasibility check for each processing unit scheduling
tasks using RMS . 42

2.2 Hierarchical scheduling framework . 45

2.3 Shin and Lee [9] periodic resource server example 45

2.4 Power density and total power consumption of computing platforms over the
years [10] . 49

2.5 40 years of microprocessor trend data [11] 49

2.6 Lumped RC circuit example . 54

2.7 Example of cache related preemption delay 59

2.8 Example of dual-core con�guration with cache partitioning [12] 60

2.9 DRAM Rank organization [13] . 62

2.10 DRAM Bank organization [13] . 63

2.11 DRAM Row organization [13] . 63

xi

2.12 DRAM System organization [13] . 64

3.1 Number of Tasks VS. Scheduling Success Ratio. Cache Unit Size = 1 KB . . 93

3.2 Number of Tasks VS. Scheduling Success Ratio. Cache Unit Size = 4 KB . . 94

3.3 90% Schedulability Ratio. Cache Unit Size = 1 KB 95

3.4 Average 90% Schedulability Ratio . 95

3.5 Pareto Chart of Standardized Effects (response is S with a= 0.05) 95

4.1 Architecture block diagram . 99

4.2 Periodic server time schedule . 100

4.3 CPU Thermal Model. 101

4.4 DRAM Thermal Model. 101

4.5 Joint CPU and DRAM Thermal Model . 102

4.6 Periodic Server Time Schedule Example 106

4.7 Task set feasibility comparison using each different method, for different
types of tasks with DRAM peak threshold temperature of 85◦C 115

4.8 Average task set feasibility comparison with CPU peak threshold tempera-
ture of 90◦C and DRAM peak threshold temperature of 85◦C 116

4.9 Task set feasibility comparison using each different method, for different
types of tasks with DRAM peak threshold temperature of 60◦C 117

4.10 Average task set feasibility comparison with CPU peak threshold tempera-
ture of 90◦C and DRAM peak threshold temperature of 60◦C 118

5.1 3D platform example with 16 cores in one logic layer and 16 banks per
DRAM layer in 4 memory layers . 125

5.2 Periodic server time schedule example for any processing core Pk and its
associated DRAM rank . 127

5.3 3D Platform Super-Core Thermal Model and its Equivalent Circuit 131

5.4 Task set feasibility comparison by total number of tasks in Gwith TempThrSC=
70◦C . 140

5.5 Task set feasibility comparison by total number of tasks in Gwith TempThrSC=
75◦C . 141

xii

5.6 Upper-Bound Index by total number of tasks in G with TempThrSC = 70◦C
and SC = 4 . 143

5.7 Upper-Bound Index by total number of tasks in G with TempThrSC = 75◦C
and SC = 4 . 144

xiii

CHAPTER 1

INTRODUCTION

Computing systems are everywhere. Millions of computing systems are built every

year destined to cover multiple needs in general purpose computing applications (e,g.

personal computers, workstations, and servers) and specialized applications, known as

embedded systems computing (e.g. portable devices, camcorders, and home appliances).

Many computing systems, especially many embedded systems, require the execution of

real-time processes, with the correctness depending not only on the logical correctness of

the computational result, but also on the time such a result is produced. These kinds of

systems are known as real-time systems. Real-time systems cover a wide spectrum of ap-

plications, from smart devices and systems (e.g. surveillance cameras, home automation

systems, smart TVs, in-vehicle infotainment systems) to numerous more sophisticated

real-time systems used to monitor and control physical systems and processes in many

domains (e.g. manned and unmanned vehicles, critical infrastructures, process control

systems in industrial plants, smart medical instruments, etc.) [14]. Thus, real-time sys-

tems are ubiquitous and their correct design is critical to almost every aspect of our daily

life.

Memory system, as a major component in computing systems, has increasingly be-

come a major barrier in real-time system design. Due to the rapid evolution of processors,

and with the increasing adoption of multi-core platforms for multiple computing applica-

tions, more and more data travel back and forth between the processor and the memory.

Therefore, the bandwidth of the memory (i.e. the speed of the memory) becomes one of

the major constraints impacting the system performance [15].

Moreover, higher memory capacity and bandwidth requirements have increased the

use of cache memories on the CPU, which increases the memory access latency variance

and thus the unpredictability during the execution time for real-time tasks. Furthermore, a

1

larger amount of memory has also signi�cantly increased power consumption and operat-

ing temperature. Today, how to effectively deal with these technical challenges presented

by the memory system has been vital in the design of new generations of real-time com-

puting systems [16�18].

Our research presented in this dissertation focuses on developing memory-aware re-

source allocation strategies for time-critical real-time systems. In this chapter, we �rst

introduce the basics of real-time systems and real-time allocation strategies. Then, we dis-

cuss the challenges presented by memory systems in design of real-time systems. Next,

we de�ne our research problem and brie�y summarize our contributions. Finally, we

present the structure of this dissertation.

1.1 Real-time systems and real-time scheduling

In real-time computing domain, the correctness of a system depends not only on the log-

ical result of the computation, but also on the time such a computation is produced [14].

A reaction that occurs too late could be useless or even dangerous. For example, many

smart devices and systems (surveillance cameras, home automation systems, smart TVs,

in vehicle infotainment systems) demand the capability of performing real-time computa-

tions. The correct design of real-time systems is becoming more and more critical to our

society because there is an increasing number of complex computing systems requiring

accurate and on-time computations. As an illustration, systems such as self-driving auto-

motive controls and aircraft navigation systems require the execution of certain tasks in a

timely manner, otherwise the consequences can be loss of human lives.

Real-time systems are ubiquitous and affect almost every aspect of our daily life.

Real-time system designs cover a wide spectrum of applications, from relatively simple

ones to extremely complex ones. In many cases, the real-time computer running the ap-

plication is embedded into the system to be controlled. As we can see in Fig. 1.1, there

2

Figure 1.1: Embedded systems development industries in 2015 [3]

is a wide variety of industries where embedded systems are being developed. For ex-

ample, as shown in Fig. 1.1, industrial controls is the industry implementing the larger

number of embedded systems with 34% if its projects involving embedded systems in

2015. Consumer electronics, communications and internet-of-things (IoT) are the follow-

ing industries with 21%, 21% and 19% of projects involving embedded systems in 2015,

respectively. Based on a Zion Market Research report, the global embedded systems'

market was valued at 159.00 billion USD in 2015, and is expected to generate a revenue

of 225.34 billion USD by the end of 2021, growing at a Compound Annual Growth Rate

(CAGR) of slightly above 6% between 2016 and 2021 [19]. In the meantime, as shown in

Fig. 1.2, 62% of embedded systems on the market for 2015 were developed with real-time

capabilities, highlighting the signi�cant economic impacts of real-time systems.

A real-time system is still a computing system, and shares many common characteris-

tics with other computing systems. However, what makes a real-time system unique is that

3

Figure 1.2: Current embedded systems capabilities in 2015 [3]

it is expected to guarantee a correct response within speci�ed time constraints. In other

words, processes executed on a real-time system are expected to be completed before

their predetermined deadlines. Even for a logically correct result, if it is a �late result,� it

might be as negative as the incorrect output from the computation, leading to catastrophic

consequences for certain applications. For instance, in a production line control system,

various machines have to receive their orders at the right time to ensure smooth operation

of a plant and to ful�ll customer orders on time. For �ight control systems, the timing

situation is even more restrictive.

The de�nition of �late result� depends on the context and application of the real-time

system. In general, from the perspective of the nature of the system deadlines, real-

time systems are classi�ed as soft real-time and hard real-time systems depending on

the consequences of missing a deadline. Missing a deadline may not imply a system

failure for a soft real-time system, but the usefulness of a result that misses its deadline

is degraded. Thus, applications such as video decoders are soft-real time systems, in

the sense that if a frame misses its deadline to be decoded, the image would not suffer

much degradation in usefulness and the viewer may not notice the failure. In contrast,

4

for applications such as car's cruise control systems, anti-lock brakes, aircraft control

systems and heart pacemakers, if they do not react in a certain strict period of time, the

consequences could be catastrophic. These systems are hard real-time systems. Thus, for

a hard real-time system it is imperative to guarantee the successful execution of every task

before its deadline, whenever such tasks are activated.

Real-time systems are composed of collections of tasks that have speci�c timing and

resource constraints that require the implementation of an ef�cient scheduling algorithm

(or scheduling policy) to guarantee their successful execution under different timing con-

straints. The scheduler of any computing system decides what task to execute next when

faced with a choice in the execution of a set of concurrent tasks. It also decides the assign-

ment of resources to each task at any speci�c time [20]. A general purpose computing

scheduler is aimed to schedule non-time-critical applications and may favor fairness of

the distribution of resources among all tasks, as well as the overall throughput and per-

formance, without considering strict �nishing times for each task. The main goal when

designing a real-time system is to guarantee the successful execution of all real-time tasks

in the system before accomplishing the timing constraints. This makes the system's pre-

dictability, i.e. the capability to determine timing characteristics of a computing system

with certainty, an important parameter to consider when designing a real-time scheduler.

Different real-time scheduling algorithms have been proposed to ful�ll the different

requirements of modern real-time applications. These scheduling algorithms can be clas-

si�ed in different ways, e.g. on-line/off-line, priority/non-priority, and single-core/multi-

core [21].

Real-time scheduling algorithms can be implemented either as online or off-line mech-

anisms. Scheduling algorithms implemented online generate scheduling information while

the system is running. They assume little or no a-priori knowledge of tasks that have not

arrived yet, which restricts the potential for the system to meet timing and resource shar-

5

ing requirements. This type of algorithms are adaptive, �exible, and can consider in the

scheduling decisions the run-time variations of the system and the environment. However,

the calculations required to make such decisions may produce a large run-time overhead,

which force them to implement simple scheduling rules. Also, this type of systemmay not

offer guarantees to the system's timing constraints, due to its inherent variability nature.

Unlike online scheduling algorithms, off-line ones generate �xed scheduling decisions

prior to the system's execution. Such scheduling decisions are later utilized by a sim-

ple task dispatcher during runtime with a small run-time overhead. This property makes

possible to implement off-line scheduling algorithms with high computational costs, be-

cause their high complexity does not affect the run-time overhead. By de�nition such

algorithms are not �exible and usually must account for worst-case operating conditions,

which may generate pessimistic schedules. In a predictable environment, off-line imple-

mentations can guarantee system performance, and most importantly, off-line scheduling

algorithms can guarantee the system's timing constraints. These reasons make off-line

scheduling algorithms a �rst choice for designing hard real-time systems.

One of the critical problems in real-time scheduling is in what order should the real-

time tasks be executed. Depending on the properties of the real-time tasks or the schedul-

ing implementation mechanisms, real-time scheduling algorithms can be categorized as

non-priority-based or priority-based. In scheduling terms, a priority is usually a positive

integer representing the urgency or importance assigned to a task. Thus, non-priority-

based algorithms schedule tasks with the same level of importance, and priority-based

algorithms make a distinction between the importance of each task.

Non-priority-based algorithms are suitable for applications requiring a guaranteed fair

distribution of the resources among tasks. However, a fair distribution of resources may

not be suf�cient to guarantee the timing constraints, because the behavior of such schedul-

ing methods is hard to predict. An example of non-priority-based algorithm is the Round-

6

Robin algorithm. This scheduling algorithm assigns a �xed amount of computation time

to each task. This type of methods have the advantage that their implementation is rela-

tively easy, compared to priority-based algorithms.

Real-time scheduling algorithms usually implement a strict order of execution for

tasks in the system, in order to maximize its predictability. A common mechanism to

develop such an order is by assigning tasks with priorities, which is the case for priority-

based algorithms. By assigning tasks with different priorities of execution it is possible

guarantee completion of tasks with higher time sensitivity over tasks with a lower time

sensitivity. In some cases, the scheduling algorithm may allow preemption of tasks, so

that the latency in executing higher priority tasks may be reduced by executing them over

lower priority tasks. However, one of the severe problems that can occur with priority-

based preemptive algorithms is the �priority inversion� phenomenon. Priority inversion

may be present in systems executing tasks that have dependencies among themselves.

Priority inversion occurs in a real-time system when a high-priority task has to wait for

a lower priority task to execute, because another lower priority task is using exclusively

a shared resource needed by the high priority task. Multiple improvement mechanisms

and algorithms, e.g. the priority inheritance protocol (PIP), have been proposed in the

literature to overcome this problem [22].

Multiple methodologies have been proposed for assigning priorities to each task either

statically or dynamically. A very common method for assigning and scheduling �xed-

priority tasks (statically) is the rate-monotonic scheduling (RMS). The RMS scheduling

algorithm is one of the most widely studied and used in practice, due to its low over-

head and simplicity in implementation [23]. This method assigns priorities to tasks in

ascending order with respect to their periodicity; i.e., a larger task period leads to a lower

priority task. RMS has been proven to be an optimal scheduling policy for �xed-priority

tasks on a single-core processor [24]. A very common method for assigning and schedul-

7

ing dynamic-priority tasks is the earliest-deadline �rst (EDF). As stated in its name, this

method assigns priorities to tasks dynamically in an inverse proportion with respect to the

difference between the actual time and the task deadline. In other words, as the difference

in current time and deadline time shrinks for a speci�c task, its priority increases. EDF

has been proven to be the optimal dynamic scheduling algorithm for hard real-time tasks

on a single-core platform [24].

Real-time systems used to be developed on single-core platforms because of the al-

ready high level of predictability achieved by single-core scheduling algorithms imple-

mented in these types of systems. A high increase in processing demands has led the

industry to develop them on multi-core platforms in the past few years. Thus, based on

the underlying hardware infrastructure, real-time scheduling algorithms can be catego-

rized as single-core scheduling algorithms or multi-core scheduling algorithms.

The design and implementation of an ef�cient scheduler for real-time tasks on a

single-core platform is a hard work process, but scheduling tasks on a multi-core plat-

form usually requires a bigger effort. Different from single-core scheduling, multi-core

scheduling needs to decide not only when, but also where a task should be executed.

Hence, multi-core scheduling is known to be a NP-hard problem and more complicated

than single-core scheduling [14]. If tasks have dependencies, such as shared resources

like memory, calculating task completion times on a multi-core system is inherently more

dif�cult than on a single-core system.

Different multi-core scheduling mechanisms have been proposed, such as global schedul-

ing, semi-partitioned scheduling, and partitioned scheduling. In the global scheduling ap-

proach, any job from any task can be executed on any processing unit of the system. For

global scheduling algorithms allowing preemption, a single job may start its execution on

one processing unit and resume on a different one. In the partitioned scheduling approach,

it is �xed the processing unit that will always execute all jobs from a speci�c task. The

8

semi-partitioned scheduling approach is a combination of the two previous approaches,

i.e. some tasks are assigned to a dedicated processor, while the rest of the tasks can be

allocated among all available processing cores.

For the case of partitioned scheduling, by �xing the task to a processing unit, the pre-

dictability of the system is increased. This premise makes multi-core partitioned schedul-

ing the �rst choice for designing a hard real-time system. However, the key problem

becomes to statically choose what group of tasks allocate together, sharing the same sys-

tem resources, e.g. sharing one or multiple cache memories, or one or multiple memory

controllers. Thus, multiple research works have proposed various allocation strategies

looking to improve the system schedulability, when scheduling tasks using multi-core

partitioned scheduling. The most common studied ones are the strategies based on the tra-

ditional Bin-packing approach, i.e. First Fit (FF), Best Fit (BF), and Worst Fit (WF) [25].

Besides real-time constraints, real-time scheduling algorithms are also developed with

different optimization goals in mind, such as power/energy consumptions, thermal im-

pacts, reliability, etc. Therefore, real-time scheduling algorithms can also be categorized

based on their design optimization goals as power/energy aware real-time scheduling,

thermal-aware real-time scheduling, reliability-aware real-time scheduling, etc. Research

works such as [26, 27] present power-aware and energy-aware schedulers that look to

minimize the consumption of each parameter or both. Additionally, some real-time de-

vices, either mobile or �xed, are intended to be used in enclosed extreme conditions or

near environments that restrict their peak temperature of operation, beyond of the peak

temperature operation imposed by the chip and its package. Therefore, some research

works such as [28] have proposed schedulers to account for the power and thermal issues

of the platform in order to guarantee an operation below a certain temperature threshold.

Another example are devices implemented on computing platforms which have a great

variability in their manufacturing characteristics from one processing unit to the next one.

9

Thus, some research works such as [29] have proposed schedulers that account for the

changes in execution time due to the unexpected manufacturing process variations. Also,

some real time devices are deployed on extreme environmental conditions that increases

the probability of present computing errors at any speci�c time. Some research works

such as [30] have proposed schedulers that implement supplementary timing error detec-

tion and correction mechanisms in order to maximize the reliability and fault tolerance of

real-time systems.

To summarize, real-time systems are ubiquitous and critical to our daily lives. Real-

time scheduling plays a critical role to ensure the timeliness of real-time systems, espe-

cially for real-time applications that are critically sensitive to time. In the past, numerous

research works have focused extensively on real-time scheduling, but most of them have

focused on the CPU resource management. This dissertation takes into consideration in

the design process of hard-real time systems, not only performance characteristics of pro-

cessing units, but also restrictions and latencies imposed by memory devices considering

the effects that different memory parameters in�ict on each real-time task.

1.2 The challenges presented by memory systems in design of real-

time systems

Memory has played an important role in computers since the early days of computing.

Memory is essential to the operation of a computer system because of its purpose of

supplying instructions and data for calculations in a timely manner. In the early days

of computing, accessing the memory was as fast as the rate of performing the actual

calculations by the processor unit. As processing units became faster and as the size of

problems grew, access to memory became steadily slower than the rate of computations

[31].

10

Although a �at memory system built using a single manufacturing technology was de-

sirable for implementing computing systems because of its simplicity, none of the avail-

able memory technologies is capable of complying with the continuously increasing need

of having high memory speed, high memory capacity and low cost per bit. In this regard,

nothing is more important to the development of modern memory systems than the con-

cept of the memory hierarchy, for it provides a computing system with a memory closer

to the ideal case of having the highest capacity, with the minimum latency for each mem-

ory access, at the lowest possible cost per bit [13]. However, memory hierarchy alone

falls short of satisfying the rapidly growing needs of higher memory bandwidth and ca-

pacities for new generations of real-time applications. The execution time variances due

to memory hierarchy also signi�cantly degrade the predictability of real-time systems.

Moreover, as memory capacity and transistor density continue to grow, the power/energy

consumption and thermal impacts of memory devices also raise signi�cant challenges in

design of new generations of real-time systems.

1.2.1 The memory wall problem

Memory performance has also become a signi�cant issue in the design of real-time sys-

tems. Real-time systems processing huge streaming of data such as cameras and special-

ized sensors are becoming popular, and such applications not only generate large amounts

of I/O workloads, but also become more and more memory intensive, which is translated

in the need to develop real-time platforms with higher memory bandwidth and capacity.

Applications such as IoT, wearable, networking and automotive markets are driving main

memory innovation. Fig. 1.3 shows the applications driving requirements envisioned by

MICRON in the near future, where we can see that a variety of applications in embedded

computing systems will rely on a higher memory capacity and bandwidth. Additionally,

11

Figure 1.3: MICRON's applications driving requirements for embedded systems in the near future

[4]

Figure 1.4: Technology forecast of share of DRAM bits [5]

as seen in Fig. 1.4 mobile DRAM share has been increasing over the last few years, which

is an indicator of the increment of memory-bounded applications for embedded systems.

As an illustration, in the automotive industry, there are now hundreds of microproces-

sors in every car. New applications such as the Advanced Driver Awareness Systems

(ADAS), involving data processing for multicamera vision, improved infotainment, and

even self-driving sub-systems, have demands for memory system inclusion of large ca-

pacity DRAM devices [32]. Speci�cally, a study shows that a network-connected car can

create tens of megabytes of data per second and an autonomous vehicle is estimated to

generate data at the rate of about 1 gigabyte per second [33].

Despite the fact that employing memory hierarchy can greatly improve the memory

access performance, researchers noticed that the rate of improvement in microprocessor's

speed exceeds the rate of improvement in memory speed. While each one is improving

12

exponentially, the exponent for microprocessors is substantially larger than that for mem-

ories. This disparity is known as the Processor-Memory Performance Gap or the Mem-

ory wall problem [34, 35]. In recent years, while the performance of processing cores

has increased dramatically (60% per year), the improvement in access time of memory

(10% per year) has not kept up with the pace [36]. According to Amdahl's law [35],

the continuous increment in Processor-Memory Performance Gap would lead to a stall

of system performance improvement no matter how much processor performance can be

further improved. Therefore, how to overcome the so-called �memory wall� to satisfy the

increasing performance demand of computing systems, including those of high perfor-

mance real-time systems, has presented a great challenge problem, attracting tremendous

research efforts from both industry and academy [31,37].

1.2.2 The memory access time variation problem

In order to design an ef�cient scheduling algorithm for a speci�c real-time application, it

is important to de�ne the real-time system task model. A real-time task model refers to the

set of pre-de�ned characteristics and assumptions that are fed to the scheduling algorithm,

so it can make its decisions. Typically a real-time task is characterized by its execution

time, period, and deadline. Unlike a typical general purpose computing scheduler, a real-

time scheduler must assume that every task terminates, and such an event is associated

with a predetermined deadline. Usually, it is also assumed that each task is repeated

iteratively and a period time for the task execution is also assigned.

Along with the correct de�nition of a task model comes the correct estimation of the

Worst-Case Execution Time (WCET) of each real-time task. The estimation of WCET

values for real-time tasks is done either by performing a theoretical analysis of the ma-

chine code executed on a particular family of processor architectures with speci�c char-

13

Figure 1.5: Typical sample distribution of runtimes of a program, along with sample of BCET and

WCET [6]

acteristics, or by performing an empirical analysis where different execution times are

measured considering different machine states and input conditions. Fig. 1.5 shows a

typical sample distribution of runtimes of a real-time task, along with sample Best Case

Execution Time (BCET) and WCET [6]. It can be seen that since the real WCET is un-

known for many tasks, an often over-provisioned estimate must be assigned to each task,

in order to develop a safe real-time scheduling.

The correct estimation of WCET values is critical in order to further estimate the

amount of resources needed by any task when it is activated. An underestimated WCET

may lead to assign a poor amount of resources to a task, which may signi�es that such

a task misses its deadline. This is why a correct WCET estimation is critical for hard

real-time systems, because all hard real-time deadlines must be met under any circum-

stances. In contrast, pessimistic over-provisioned WCET estimates for some real-time

tasks counteract the increments in performance expected from the platform deploying the

real-time system. In other words, to excessively overestimate the WCET for each task, in

order to obtain safe values, can have a negative effect and may nullify the extra computa-

tional capacity that the real-time platform may offer. Therefore, it is necessary to estimate

an accurate and safe WCET for each real-time task to develop an ef�cient schedule that

guarantees the successful execution of all real-time tasks [23].

14

The primary goal for any real-time scheduling algorithm is to complete all tasks within

speci�c time constraints, by allocating the available resources of the system judiciously

to each task. Although the maximization of system resource utilization is of interest, it

is not a primary design motivation. In fact, as explained before, predictability and tem-

poral correctness are the main concerns. Consequently, a problem driving the research

community, during the past decades, is how to implement ef�cient schedulers able to

achieve high computational performance while guaranteeing the timing constraints, and

preserving the system predictability. For this purpose, it is necessary to estimate an ac-

curate and safe WCET for each real-time task in the system, accounting for all possible

execution time variations of each task. However, modern memory systems are introduc-

ing additional sources of execution time variation for real-time tasks. These execution

time variations may result in direct predictability reduction for the whole system, and

pessimistic over-provisioned WCET estimations.

A �rst source of execution time variation is due to a memory hierarchy implementing

multiple levels of storage. In the vast majority of computing systems implementing a

memory hierarchy, not every memory access from the same task has a uniform latency.

This fact is mostly due to the the architectural features at each memory level, in com-

bination with the task's characteristics (e.g. the task's instructions, variables, and data).

For instance, a cache hit will have a different latency than a cache miss, and the number

of cache misses may vary within multiple executions of the same task. Also, a memory

access to a DRAM position may be prioritized differently depending on the region of

memory it refers to. To put it differently, if the system would be executing a single task,

such a task would generate a different memory access pattern every time it is activated. In

essence, memory systems have been designed and commercialized to favor the reduction

of latencies for the average case. Statistical observations show that memory hierarchy im-

provements speed up the computation time in average, by reducing the delay in memory

15

access time in average. However, statistical observations may provide only an estima-

tion of the average behavior of a task, but they cannot be used for deriving worst-case

bounds. Since safe WCET estimates come from an analysis that depends on architectural

features, the memory hierarchy architectural advancements may lead to inaccurate or un-

safe WCET estimations, degrading the predictability or the performance of the real-time

system.

A second source of execution time variations is due to memory resource sharing

among: (i) different real-time tasks, for either single-core or multi-core platforms; (ii) pro-

cessing units, for the case of multi-core platforms. In preemptive systems, the memory

systems are affected by the number of preemptions, because preemption nulli�es the ben-

e�ts of program spatial and temporal locality. For instance, a higher priority task may

evict an unbounded number of cache blocks already brought to the cache by a lower pri-

ority task. The cache-related preemption delay (CRPD) depends on the speci�c point at

which preemption takes place. Therefore such CRPD is very dif�cult to precisely esti-

mate [14]. A similar effect is seen on DRAM memory systems implementing open-row

policies. Multiple memory controllers implement complex algorithms to prioritize mem-

ory accesses referencing an already open row, because the access time to an already open

row is much faster than to a closed one. For further details on the DRAM memory archi-

tecture, we reference the reader to the chapter 2 of this dissertation and to [13]. The un-

predictability affecting real-time systems is exacerbated in multi-core platforms, because

different tasks on different cores, contend for bandwidth and capacity at the different lev-

els of the memory system, such as memory controllers, interconnects and caches. Thus, in

multi-core platforms, the memory contention (i.e. memory interference) between differ-

ent cores critically undermines the overall real-time system predictability, and therefore

impacts even more its performance [38]. Large inter-task interferences due to increased

resource sharing on multi-core platforms have severely undermined the predictability of

16

real-time systems [39, 40]. An increase of 300% has been seen in the estimated values of

WCET of real-time tasks, when memory interferences are taken into consideration [41],

which can lead to extremely pessimistic designs.

The restrictions to real-time systems imposed by memory devices do not come ex-

clusively from communication delays and timing related problems. Since the power and

energy consumption of memory devices continue to grow, the effects in performance im-

posed by memory power and thermal management mechanisms are becoming more and

more notorious. Thus, we also believe that it is necessary to address the scheduling re-

strictions in�icted on the execution of hard real-time tasks, added by power and thermal

management mechanisms, when considering the power consumed by memory devices.

1.2.3 The power/energy consumption and thermal problem formem-

ory systems

As transistor counts and density of processors and memory devices, as well as the memory

capacity and bandwidth, continue to grow, the power consumption of computing systems

has also been increasing exponentially, resulting in tremendous heat generation, even

to the point that threatens to disrupt the operation of the system under normal condi-

tions [42]. Fig. 1.6 shows the most important challenges for embedded systems devel-

opment in 2015, and it can be seen that power management is one of the most important

concerns with a consideration in 13% (compared to a 9% in 2014) of embedded system

developments. An increasing chip temperature due to an excessive power dissipation has

a signi�cant impact on other design metrics, such as reliability, cost and especially on per-

formance. Real time systems and specially embedded systems with real-time capabilities

are developed on resource constrained platforms, which impose additional restrictions on

how a real-time scheduler must manage the overall resources of the system in order to

17

Figure 1.6: Most important challenges for embedded systems development in 2015 [3]

guarantee the timing constrains. An example of a constrained platform can be found in

modern mobile systems, where it is important to maximize the operational autonomy of

each device by operating them on tight power and energy restrictions, and it is important

to keep temperature below unconformable threshold values for the �nal user. Further-

more, for multiple applications, cooling down the chip temperature using mechanical

methods such as cooling fans, heat spreaders, and heat sinks becomes inadequate and too

expensive. This is especially true, for instance, in platforms aimed for wearable devices,

or for future generations of Internet-of-Things (IoT) applications [43].

Techniques implemented on processors based on the dynamic power/thermal manage-

ment (DPM/DTM) mechanism have become an appealing solution to manage the thermal

emergencies of the system. The DPM/DTM mechanism switch the processor to a low-

power inactive state as long as possible, or following an speci�c power trace pattern,

looking to reduce the overall energy consumption, or reduce the maximum system peak

temperatures [44]. While many DPM/DTM solutions have been proposed in the literature

(e.g. [45, 46]), most of them focus on considering the CPU characteristics exclusively, as

CPU traditionally is the major power source in a computer system. However, the power

18

consumption of main memory has become a signi�cant portion of total power consump-

tion of the system, in processors ranging from low-end to high-end [18]. As an example,

it is estimated that as much as 40% of the total power consumed in a smartphone or a

data-center is attributed to its memory system [47�49], mostly the DRAM-based memory

systems.

Systems utilizing modern versions of DRAM technologies suffer high power con-

sumption if the performance needs are high, requiring appropriate power/thermal manage-

ment mechanisms that consider the memory devices. Multiple versions and standards of

DRAM technologies have been published, including standards for low-power energy de-

vices. However, as mentioned before, all DRAM types of memories have experienced an

immense bandwidth requirement increment and are expected to continue growing in den-

sity and performance. Fig. 1.7 shows the increment in data rate per pin on various types of

DRAMmemories in the past few years, and we can see that such rates have increased near

six times for some DRAM technologies [7]. Additionally, Fig. 1.8 shows that DRAM

technology density has increased by a thousand times over the past two decades, while

its latency has decreased only by 56%, which brings design issues such as capacity/cost

limitation, scaling, and severe die overhead increase. Another study [8] also shows that

in contrast of the continued scaling of cost-per-bit, the latency of DRAM has remained

almost constant for different DRAM standards up to DDR3. During an eleven-year in-

terval, data in which DRAM's cost-per-bit decreased by a factor of 16, DRAM latency

(as measured by the tRCD and tRC timing constraints �the two most important timing

parameters when accessing DRAM memory �) decreased by only 30.5% and 26.3%, as

shown in Fig 1.9. Hence, the reduction in power and increment in performance are always

trade-offs for DRAM technologies. Although, the power ef�ciency of DRAM technology

has decrease in the past decades (see Fig. 1.10), the number of DRAM chips necessary

to achieve a high performance has increase considerably too. Thus, in Fig. 1.11 it can

19

Figure 1.7: DRAM technology data rate per pin over the time [7]

be seen that to achieve a speed of 3.2 Gbps in 2017 it was necessary to have a DRAM

memory with 78 DRAM chips and 1248 connection pins (i.e. # of DQ), compared to a

speed of 0.8 Gbps, achieved with only 4 DRAM chips and 64 connection pins in 2008.

The constant increment of DRAM chips leads to a continuously growing power and en-

ergy consumption in order to supply the increasing application's performance demands.

Therefore, DRAM technology is known to have nowadays scalability problems, because

its power consumption is reaching the system power threshold limits.

While some novel memory technologies [50, 51] help to reduce power consumption

of memory chips, the small latency of DRAMs still makes them the top choice for main

memory systems. Capacity, performance, scalability and also energy ef�ciency are the

four key factors that designers of memory hierarchies have to deal with to satisfy the ever-

increasing need for current data-intensive applications [52]. DRAM technology has faced

dif�culties in the scaling process in order to reduce its transistors size, and increase the

20

Figure 1.8: DRAM technology latency and density over the time [7]

Figure 1.9: DRAM capacity and latency over the time [8]

21

Figure 1.10: DRAM technology power ef�ciency decrement over the time [7]

Figure 1.11: DRAM chip density increase over the time [7]

22

capacity of the memory. Besides, the inclusion of a larger number of transistors and cells

is leading to an increment in power consumption due to the inherent leakage of current in

each cell, which also increments the number of refresh cycles necessary to keep the mem-

ory properly functioning. Thus, a hypothetical 64Gb DRAM device would spend 46% of

its time and 47% of all DRAM energy for refreshing its cells, in contrast to a 4Gb device

which spend 8% of the time and 15% of the DRAM energy on refresh cycles [38]. There

are multiple promising technologies to manufacture memory, such as Magnetoresistive

Random Access Memory (MRAM), Phase Change Random Access Memory (PCM), Re-

sistive Random Access Memory (ReRAM), and Ferroelectric Random Access Memory

(FeRAM), each with its own peculiar properties and speci�c challenges. However, today

there is still no memory technology able to surpass DRAM technology in all four key

design factors of memory. Consequently, industry and academia have been looking to in-

clude different technologies into the memory hierarchy, in order to improve such factors

along side with DRAM technology [52].

A high power consumption usually leads to high peak temperatures in any comput-

ing system. High temperatures decrease the DRAM retention capability, and increase the

refreshing rates, impacting reliability, lifetime, power consumption, and specially system

predictability [53, 54]. Additionally, it may also signi�cantly degrade the performance

and, therefore, compromise the timing constraints for real-time applications. For exam-

ple, it has been reported [55] that for memory systems, when the temperature is above

60◦C, the performance/latency is degraded by the increment in the number of DRAM

refreshes (around 50% more refreshes every 10◦C of temperature increment), due to the

leakage of charge on each DRAM cell [56]. DRAM high temperature problems are par-

ticularly exacerbated on multi-layer chips (2.5D and 3D chips) [57,58] where restrictions

in space and energy consumption are tight, power densities are higher, and CPU and

memory temperatures are highly correlated. Most of today's CPU and memory chips are

23

embedded with built-in thermal sensors, and they will shut down automatically when the

temperature exceeds a pre-determined threshold [59]. Such an unplanned shutdown will

eventually cause real-time tasks to miss their deadlines.

As mentioned before, while several DTM-based solutions have been proposed, many

of them have focused exclusively on CPU, as CPU traditionally is the major power source

in a computer system. However, some of them have been aimed to dynamically manage

the heat generated by the memory system, but without offering static guarantees on the

scheduling of hard-real time tasks. For instance, one common approach is to migrate data

between hot and cold devices to avoid thermal emergencies on a memory system [60].

Another approach dynamically adjusts the memory throughput to ensure that each mod-

ule has a temperature below the emergency level [42]. These approaches do not take the

heat generated by the CPU into account. Multiple DTM-based mechanisms already im-

plemented in commercial hardware or proposed in the literature, react to critical temper-

ature levels and reduce or even stall the number of memory requests [18]. Some research

studies consider the heat dissipation from both the CPU and memory systems, but these

approaches are best-effort approaches and cannot guarantee real-time system deadlines at

all [61]. Consequently, such approaches can signi�cantly affect the response time of the

system by introducing an additional source of uncertainty, due to the variable number of

stall times needed by the system to cool down the memory, each one with an unknown

duration. Hence, the excessive power consumption and heat dissipation of the memory

system must be dealt with carefully. Otherwise, they can signi�cantly affect the schedu-

lability and predictability of real-time systems because of the uncertainties introduced by

different memory power/thermal management techniques.

In summary, a complete and effective thermal management solution, able to guaran-

tee the schedulability of hard real-time tasks, should take into consideration not only the

power and thermal issues of processing units, but also synergistically the power and ther-

24

mal issues of the CPU and memory subsystems as well. Studies have clearly shown that

performance of memory systems (not only DRAM but other memory devices as well) is

directly related with their operating temperature (e.g. [55]). In general, an increasing chip

temperature, either on CPU or memory devices, due to an excessive power dissipation

has a signi�cant impact on other system design metrics, such as reliability, cost and es-

pecially on performance. Thus, the restrictions to real-time systems imposed by memory

devices do not come exclusively from communication delays and timing-related prob-

lems. Since the power and energy consumption of memory devices continue to grow, the

effects in performance imposed by memory power and thermal management mechanisms

are becoming more and more notorious. For this reason, it is necessary to address the

scheduling restrictions in�icted on the execution of real-time tasks, added by power and

thermal management mechanisms, when considering the power consumed by memory

devices.

1.3 The research problem and our contributions

A real-time system is a system whose execution time is expected to comply with dead-

lines, and missing a deadline is as negative as the incorrect output from the computation,

leading to catastrophic consequences for certain applications. Thus, the most important

requirement of a real-time system is predictability and not performance, which makes

very important the correct implementation of a system scheduler to ensure timing con-

strains. Traditionally the scheduler design has considered only CPU and performance

characteristics of the system. However, real-time systems processing lager amounts of

data are becoming popular. Such applications not only generate large amounts of I/O

workloads, but also become more and more memory intensive, which is translated to the

need to develop real-time platforms with higher memory bandwidth and capacity. Hence,

25

the restrictions and latencies imposed by memory devices have gained a signi�cant im-

pact not only on the execution time, but also on other aspects such as power consumption

and temperature of operation.

There have been extensive research efforts from different abstraction levels and per-

spectives, involving architectural hardware and software mechanisms, looking to improve

the schedulability of real-time systems. For instance, since a major source of unpre-

dictability when scheduling real-time tasks comes from shared cache memories, cache

memory partitioning has proven to be one of the most effective methods to improve the

predictability and schedulability of real-time systems. This method partitions cache mem-

ory among programs and cores to reduce cache contention. By isolating real-time task

memory accesses, cache memory partitioning can avoid or considerably reduce the inter-

task interferences, and therefore reduce the uncertainty when bounding the WCET and

improve the core utilization [62]. Additionally, power and thermal management solutions

at architecture and systems levels, such as dynamic thermal management (DTM) [18],

and memory access throttling [63], have also been proposed to deal with power/thermal

management-related uncertainties.

We seek to exploit these advanced features into a real-time scheduling framework to

improve the feasibility in design of hard real-time systems. The challenge becomes how

to incorporate these architecture and system mechanisms into one integrated framework,

and to develop ef�cient and effective resource management solutions that can guarantee

the timing requirements for hard real-time systems, maximizing the system schedula-

bility, while also guaranteeing the operation under peak temperature constrains. This

dissertation focuses on analyzing the problem how to design future hard real-time sys-

tems schedulers demanding highly deterministic computations when considering the role

that memory systems play in designing effectively such hard real-time system scheduler

algorithms. The general research problem can be formulated as follows: Given a set

26

of independent hard real-time tasks, implemented on a computing platform featuring a

memory system, design static allocation scheduling algorithms to co-schedule CPU and

memory subsystems, such that real-time and other design constraints (e.g. maximum

temperature of operation) can be satis�ed and other design metrics (e.g. feasibility or

power/energy consumption) can be optimized. Toward this problem, we have made the

following contributions.

1. First, we analyze the problem of how to assign private portions of cache memory,

to real-time tasks, as a static memory resource management solution. We assumed

a set of �xed-priority real-time tasks, to be scheduled on a multi-core platform that

features a shared common cache memory. Our analysis is based on two facts: �rst,

the performance of any task may be improved by increasing the size of the cache

memory that task has access to, because the WCET of a real-time task varies de-

pending on the amount of cache memory assigned privately to it; second, harmonic

tasks can utilize the CPU resources more effectively, i.e. with a CPU utilization as

high as 100% for each core in the system. However, not all the tasks can see the

same amount of bene�t in the reduction of its WCET by assigning them with an

speci�c amount of cache memory. Thus, since this problem is known to be NP-

hard, our approach seeks to develop a static task partitioning CPU and memory

co-scheduling heuristic framework that wisely allocates tasks to cores, and portions

of cache memory to tasks, synergistically, so that the feasibility of the whole system

is increased, while guaranteeing hard-real-time deadlines. In essence, the proposed

solution approach can judiciously choose the cache size for each task, while ex-

ploiting the task harmonic relationships within the task set. The signi�cance of our

proposed approach relies in that it enhances the existing heuristic allocation meth-

ods, by incorporating task period relation into cache allocation and task mapping,

to improve the schedulability of hard real-time systems. Additionally, the proposed

27

solution approach statically co-schedule CPU and memory without increasing the

predictability analysis complexity. The results show that the solution approach can

signi�cantly improve the schedulability of hard real-time tasks (up to four times),

when compared with other scheduling mechanisms.

2. We also analyze the problem of how to guarantee timing constraints for hard real-

time systems under CPU and memory thermal constraints. As previously explained,

the increase in power density for both the CPU and memory systems makes nec-

essary the implementation of effective thermal management mechanisms that can

deal with the heat generated not only from CPU but also from memory. While

many thermal management techniques have been proposed, most of them focus ex-

clusively on either CPU or memory. Moreover, most of such techniques are on-line

reactive in nature, which threatens the predictability of real-time systems. Our so-

lution approach takes advantage of the periodic resource server for its capability of

providing hard deadline guarantees for real-time tasks. The periodic resource server

relies on the scheduling concept of providing real-time tasks with resources only

during periodic windows of time, which increases the predictability of the system.

Thus, by periodically (deterministically) throttling the accesses of the CPU and

memory resources, our approach can effectively guarantee the thermal constraints

for both the CPU and memory. To the best of our knowledge, this is the �rst work

for thermal-aware hard real-time systems design that takes the heat generations and

their interactions from both the CPU and memory devices. The signi�cance of

our proposed approach relies in that it enhances the existing thermal management

methods, by incorporating the periodic resource sever model into a CPU and mem-

ory co-scheduling framework to guarantee both the timing and thermal constraints

of the hard-real time systems. Our experimental results, with system parameters

drawn from manufacture data sheets, clearly demonstrate the effectiveness of our

28

proposed approach in reducing the peak temperature, by supplying a static sched-

ule that, combining active and power-down modes of each subsystem, generates

deterministic power traces for CPU and memory devices. Additionally, such re-

sults show the need to take both the CPU and memory systems into considerations

simultaneously for system-level thermal management.

3. Additionally, we analyze thermal-aware resource management strategies for both

CPUs and memory systems when realizing hard real-time systems on 3D platforms

under given peak temperature constraints. Designing 3D systems with on-chip

DRAM is a promising solution to improve memory bandwidth and reduce mem-

ory access latency. However, 3D chips exacerbate the chip thermal problem due

to their longer heat dissipation path, as well as the tight thermal coupling between

logic and memory layers. Given the dramatically increased power density not only

from CPUs but also from memory systems as well, we believe that a joint CPU

and memory system resource management is highly desired for 3D platforms to

effectively deal with the heat dissipation con�ned in a small package. In addition,

different from many existing thermal management strategies, which are reactive

and best-effort in nature, we are more interested in ones that can ensure the strong

guarantee for real-time applications. Our novel solution approach also incorporates

the periodic resource server to guarantee timing constraints for hard real-time sys-

tems under thermal constraints. We extended our analysis by proposing a solution

approach for the case of multi-core architectures, when both CPU and memory

devices are combined into a single package in a 3D integrated platform. The signif-

icance of our proposed approach relies in that it enhances the feasibility of existing

heuristic multi-core task partitioning scheduling methods for real-time systems that

require to be deployed under strict temperature constraints, by using thermal man-

agement mechanisms to co-schedule CPU and memory resources. Speci�cally, our

29

solution approach incorporates into the same scheduling framework the relation-

ship among real-time task periods, the periodic resource sever model, and thermal

analysis mechanisms for 3D integrated platforms. Simulation studies show that our

proposed method can schedule on average 19.5% more tasks than the comparative

methodology based on previous allocation mechanisms.

1.4 Summary and structure of the document

The rest of this dissertation is organized as follows. In Chapter 2, we introduce back-

ground to this dissertation and discuss related works that are close to our research prob-

lems. In Chapter 3, we study the problem of how to allocate the cache memory that

is accessible by multiple processing cores when scheduling �xed-priority real-time tasks

based on the rate monotonic scheduling (RMS) policy. In Chapter 4, we study the problem

of how to schedule �xed-priority real-time tasks such that they can meet their deadlines

with temperatures for both the CPU and memory systems under their potentially different

peak temperature limits. In Chapter 5, we study the problem of how to schedule a set of

�xed-priority hard real-time tasks on a 3-D multicore platform, while keeping tempera-

tures for both the logic layer and memory layer under peak temperature limits. Finally, in

Chapter 6, we conclude this dissertation and discuss possible future work.

30

CHAPTER 2

BACKGROUND AND RELATEDWORK

This chapter presents the pertinent research background and related work. We �rst

introduce several important concepts related to real-time scheduling for single-core and

multi-core platforms. Then, we introduce important concepts and related work about

power aware/thermal aware scheduling. Further, we discuss the role, organization, and

challenges of memory design and introduce important concepts and related work about

memory aware real-time scheduling research. Finally, we summarize the contents of this

chapter.

2.1 Real-time scheduling

Real-time systems are usually reactive systems that must comply with deadlines, and for

such systems, missing a deadline is as negative as the incorrect output from the compu-

tation. The most important property of a real-time system is its predictability; that is, its

functional and timing behavior should be as deterministic as necessary to satisfy system

speci�cations. A correct real-time system must produce a functionally (algorithmically

and mathematically) correct output response prior to a well-de�ned deadline relative to

the request for a service [64].

A real-time system is often modeled as a �nite collection of n independent recurring

tasks t, each of which generates a potentially in�nite sequence of jobs [65]. The set of

real-time tasks will be de�ned as G = {t1,t2,t3, ...,tn}. Each task ti is formally char-

acterized by a worst-case execution time (WCET) requirement Ci, a relative deadline Di

and a period Ti. Such a task ti ∈ G generates a potentially in�nite sequence of jobs, and

successive jobs of ti arrive with at least Ti units of time apart. Thus, any task ti is usually

represented by at least its timing parameters, i.e. ti = {Ci,Di,Ti}. In an implicit-deadline

system, for each task ti, the deadline is equal to the period, i.e. Di = Ti, ∀ti ∈ G.

31

The main purpose of the scheduler in a computing system is to assign tasks to be

executed by the processing unit in the case of a single-core platform or by each processing

unit in the case of a multi-core platform. The scheduler usually manages processes or

tasks with the concept of queues, i.e. long-term, middle-term and short-term queues.

Such a scheduler selects tasks from each queue depending on the state of each task at

any scheduling point in time (e.g. a task still waiting for a peripheral response cannot

be scheduled to be executed yet). The speci�c schedule that may be generated by the

scheduler is very important for any computing system. This is because it affects the

overall performance of the system by determining which tasks will wait in the queues and

which tasks will be executed.

Multiple types of general purpose schedulers have been developed and implemented

on general purpose computing platforms. For instance, �rst-in-�rst-out (FIFO), round-

robin (RR), or the completely-fair-scheduler (CFS). This last scheduler is implemented in

the modern Linux kernel, and it is speci�cally aimed to maximize the overall utilization

and performance of the whole system. However, unlike general-purpose schedulers, real-

time schedulers are aimed to guarantee the timing and predictability of real-time tasks.

This guarantee is performed basically by assigning a speci�c deadline for the successful

execution of each real-time task, i.e. ∀ti ∈ G, ∃ a time Di such thatDi ≤ Ti. Thus, such

deadlines constitute the main difference between real-time and non-real-time scheduling.

This is because any predetermined deadline should be met under all circumstances, even

when the worst external conditions are present [66]. Therefore, the most important goal

for a real-time scheduler is to maximize the system's predictability and not the system's

performance, even to the point that by ensuring predictability, the whole system may

decrease its performance.

For a real-time scheduler, it is necessary to ensure that resources are available for each

task in time, and that the sequencing of events meets precedence constraints, in order to

32

guarantee all tasks' deadlines. A very common goal of a real-time scheduler is to al-

locate in the system as many tasks as possible, i.e. maximize the schedulability of the

system, conditioned to meeting all tasks timing requirements. Satisfying the timing re-

quirements of real-rime systems demands the scheduling of system resources according to

some well-understood algorithms so that the timing behavior of the system is understand-

able, predictable, and maintainable. Therefore, every real-time system should implement

a scheduler able to allocate resources judiciously to make certain that any critical timing

constraints can be met with the available resources, assuming that the hardware and soft-

ware function correctly and the external environment does not stress the system beyond

to what it is desired to handle [67].

There are different ways to categorize real-time schedulers. In general, real-time

schedulers can be categorized from the perspective of the characteristics of the system

workload, the system architecture, the scheduling policy, and the different optimization

objectives. In what follows, we discuss the details of the above categorizations to clearly

understand the behaviors of real-time scheduling.

To begin with, real-time systems and schedulers can be classi�ed according to the

characteristics of the tasks they are intended to schedule. Thus, multiple schedulers have

been developed to handle systems executing hard or soft real-time tasks, tasks with pe-

riodic or aperiodic behaviors, tasks with interdependencies on each other, or tasks with

different levels of criticality within the same system.

Hard Real-Time and Soft-Real Time Tasks: The most common perspective classi-

�es real-time systems depending on the consequences that may occur because of a missed

deadline. Thus, a real-time task is said to be soft if any result produced after its deadline

still has some utility for the system, but degrades performance. In contrast, a real-time

task is said to be hard if producing the results after its deadline may cause a catastrophic

consequence on the system. To avoid undesirable or catastrophic consequences, all hard

33

real-time tasks should be guaranteed on design time, i.e. off-line, and a hard real-time

scheduler should aim to provide deterministic guarantees to all task deadlines. Exam-

ples of hard real-time tasks may be found commonly in safety-critical systems, typically

related to sensing, actuation and control activities such as avionic systems [14]. In this

dissertation, we focus our efforts on hard real-time tasks scheduling.

Periodic and Aperiodic Tasks: In a real-time system, a task can be periodic or ape-

riodic. A periodic task executes on a regular basis, and can potentially generate an in�nite

number of jobs activated or executed at a constant rate, which makes its execution deter-

ministic. Aperiodic tasks, i.e. non-periodic tasks, also consist of an in�nite sequence of

jobs, but their activations are not regularly interleaved, which increases the unpredictabil-

ity of the system. However, off-line guarantees for aperiodic tasks with critical timing

constraints can be offered by making proper assumptions on the environment. Thus, jobs

from aperiodic tasks can be assumed to be separated by a minimum inter-arrival time, and

such tasks are commonly known as sporadic tasks [14].

Independent and Dependent Tasks: Different real-time schedulers are imple-

mented with the assumption that all the tasks in the system are independent. In reality, it

is possible to �nd that real-time tasks present dependencies. This means that one or more

tasks in the system have explicit or implicit relationships speci�ed among themselves. A

common mode of dependency arises when one task needs the result of another one to pro-

ceed with its computations. For instance, in avionic systems, a task calculating positional

error may need as input the result of another task calculating velocity and acceleration

values. Also, certain tasks may require running in a certain order. For example, a module

initialization task may need to be executed before other tasks may run.

Traditional scheduling mechanisms cannot directly be used to schedule tasks that

share critical resources. Therefore, additional methods have been proposed to account

for the additional restrictions imposed by the inter-dependencies of real-time tasks. How-

34

ever, traditional scheduling mechanisms, especially those assigning priorities of execution

to real-time tasks (further explained in this section), can be augmented to make them ap-

plicable to tasks with dependencies [22]. In this dissertation, for the sake of simplicity

and without loss of generality, we assume that all real-time tasks are independent in their

execution. Any further mechanism able to account for tasks' dependencies can be applied

orthogonally.

Mixed-Criticality-Based Scheduling: Real-time system have been diversi�ed for

multiple applications, generating a variety of real-time tasks with different properties.

Other workload models, such as the mixed criticality-based scheduling, have been pro-

posed aimed to schedule real-time tasks with different characteristics, timing properties

and requirements. One common property considered to schedule real-time tasks is the

criticality of each task. Criticality is the property that designates the level of assurance

against failure needed for a system component. Thus, a mixed criticality system is one

that has two or more distinct levels (e.g. safety-critical, mission-critical and low-critical).

A key aspect of mixed criticality real-time systems is that some system parameters,

such as the WCETCi of a real-time task, become dependent on the criticality level of the

task. Thus, the same task will have a higher estimated value of WCET if it is de�ned to be

safety-critical, than if it would be just considered mission-critical or non-critical. As the

level of criticality changes during the operation of the system, the scheduler has to gener-

ate a different schedule, adjusting the values of the parameters of each task according to

the current level of criticality set on the system. This behavior of mixed criticality systems

can modify the results of traditional scheduling mechanisms [68]. However, the results

of traditional scheduling mechanisms can also be augmented to make them applicable to

tasks with different criticality levels.

Schedulers can also be classi�ed according to the characteristics of the architecture

of the system they are aimed to be implemented in. Thus, many schedulers were devel-

35

oped to schedule tasks on single-core platforms, but later different mechanisms have been

proposed to schedule real-time tasks on multi-core platforms. Some of those multi-core

platforms have been developed with homogeneous processing units, others with hetero-

geneous ones, depending on different applications. Thus, numerous real-time schedulers

have been proposed for each type of platform. Also, either in single-core or multi-core

platforms, multiple resources (e.g. peripherals, software routines, etc.) are limited in

number. Therefore, scheduling mechanisms have been developed to guarantee the cor-

rect access of real-time tasks to such shared resources without affecting the strict timing

behavior.

Single-Core and Multi-Core Scheduling: As mentioned in chapter 1 different

mechanisms have been formulated for scheduling real-time tasks on single core platforms,

but an increment in processing demands from real-time systems has led the industry to

adapt some designs to be deployed using multi-core platforms. It is noteworthy to mention

that a single-core system is built by integrating only one processing unit into a single chip,

while multi-core systems integrate multiple processing units into the same chip. Different

from single-core scheduling, multi-core scheduling needs to decide not only when a tasks

needs to be executed, but also on what processing core. The two more general approaches

to schedule tasks on a multi-core platform are global scheduling and partitioned schedul-

ing [23,69]. In general terms, the former treats every task and processing unit equally and

each task that is ready to start or resume its execution is assigned to any processing unit

available in the system. Note that a task may start executing on one processing unit and

resume in a different one. Partitioned scheduling allocates tasks to be scheduled within

a speci�c processing unit. Thus, each processing unit of the multi-core platform will be

assigned to execute exclusively a speci�c sub task set. Only such a sub task set will share

the resources assigned to its processing unit.

36

With a static multi-core partitioned scheduling, the problem becomes how to allocate

statically real-time tasks to cores in a way to maximize the schedulability of the whole

task set, while guaranteeing the timing and resource constraints of the system. Multiple

solutions to this problem have been proposed by many authors in the literature. For in-

stance, a common implemented solution is to allocate tasks on each core of the multi-core

platform using partitioned scheduling, incorporating different allocation schemes such

as traditional bin-packing approaches, i.e. First Fit (FF), Best Fit (BF), and Worst Fit

(WF) [25]. Then, a speci�c intra-core scheduling policy to schedule the already assigned

tasks to the core can be used. Other solutions, such as the ones presented in [70], also

have evaluated how the ordering of tasks can affect the task allocation results, proposing

additional scheduling frameworks using partitioned scheduling.

Homogeneous and Heterogeneous: Further, multi-core scheduling can be classi-

�ed as homogenous and heterogenous according to the characteristics of the underlying

multi-core system. In homogenous systems, all processing cores are identical in terms of

processing speed, power/thermal characteristics, and so forth. In comparison, the cores in

a heterogenous system can vary widely, which further complicates the multi-core schedul-

ing problem.

Schedulers can also be classi�ed according to the characteristics of the scheduling

policy they will be implementing. Thus, many scheduling policies can be categorized as

static or dynamic approaches. Certain policies may assign priorities to the real-time tasks,

while other policies may not. Also, some policies may allow preemption of the scheduled

tasks, while other policies may prevent such a behavior.

Static and Dynamic: In the past, numerous schedulers have been proposed to guar-

antee the timing constrains of real-time tasks. Depending on the type of real-time system,

some of those schedulers have been developed to schedule tasks statically, i.e. in a �xed

predetermined way; others have been developed to schedule tasks following a set of rules,

37

but able to make decisions dynamically during the process of scheduling tasks. On one

hand, scheduling decisions for each task made by a static scheduler need to be prede-

termined beforehand, which requires prior knowledge of the characteristics of the tasks,

the system and its environment. On the other hand, a dynamic scheduler needs to per-

form such decisions on-line, based on calculations performed during runtime. Thus, such

schedulers can provide more �exibility to react to uncertainties of tasks and system re-

sources, as well as environment conditions. However, it is dif�cult to provide strict timing

guarantees with a dynamic scheduler [23]. This makes static schedulers the �rst option to

implement a highly time-sensitive real-time system, such as hard real-time ones.

Preemptive and Non-Preemptive: On one hand, a scheduler that allows all tasks

to run until completion is known as a non-preemptive scheduler. The design and analysis

of such types of schedulers are relatively simple and have served as basis for multiple

proposed scheduling mechanisms for real-time systems. On the other hand, a preemptive

scheduler is able to make scheduling decisions during the execution of any task, stopping

the current executed task and assigning any other ready task to be executed. The operation

of suspending the running task and inserting it into a ready queue is called preemption.

Preemption in real-time systems is important because it allows exception handling tasks

to be executed over the current running task, allowing the scheduler to execute the crit-

ical tasks as soon as they arrive. However, preemption destroys program locality and

introduces a runtime overhead that in�ates the execution time of tasks [14].

Priority-Driven and Non-Priority-Driven: One of the major differences between

traditional computing scheduling and real-time systems scheduling focuses on how to

schedule recurrent jobs from different tasks. Multiple methodologies have been proposed

in real-time scheduling in order to offer certain guarantees on the successful execution of

each incoming job. For instance, a round-robin scheduling would be suitable for some

applications in order to guarantee a fair distribution of the resources among tasks and

38

multiple works have been proposed based on such a mechanism. Such works treat each

task without any speci�c priority and are known to be non-priority-driven. However, a

fair distribution of resources may not be suf�cient to guarantee the timing constraints of

some real-time tasks in the system, because the timing behavior of each task is hard to

predict with such scheduling methods.

Multiple scheduling methods that assign priorities to real-time tasks have been pro-

posed and analyzed in order to offer timing guarantees and analysis methods to verify the

schedulability of a real-time task set. In scheduling terms, a priority is usually a positive

integer representing the urgency or importance assigned to a task. The ability to assign a

priority of execution to a task is specially important to schedule hard real-time tasks sets

due to the strict determinism they require, because a high priority task will have a higher

chance to utilize the system resources before than a low priority task, and �nish before its

deadline.

Two single-core priority-based preemptive scheduling policies, i.e. Rate Monotonic

Scheduling (RMS) and Earliest Dead-line First(EDF), have gain a especial interest in the

research community and in the industry. These two scheduling policies play a fundamen-

tal role in the design of real-time scheduling algorithms [71, 72].

RateMonotonic Scheduling (RMS) and Earliest Deadline First Scheduling (EDF):

A very common method for assigning and scheduling priority-drive tasks in a static fash-

ion way is the Rate-Monotonic Scheduling (RMS). This method assigns priorities to tasks

in ascending order with respect to their predetermined period Ti, which means that a larger

task period leads to a lower priority task, i.e. if Ti < Tj, then priority of task ti is higher

than priority of task t j. RMS has been proven to be an optimal scheduling policy for

�xed-priority tasks scheduling on single-core processors [24].

A very common mechanism for assigning and scheduling priority-driven tasks in a

dynamic fashion way is the Earliest Deadline First Scheduling (EDF) method. As stated in

39

its name, this method assigns priorities to tasks dynamically depending on the remaining

time for each task completion. Thus, as the difference in current time and deadline time

shrinks for an speci�c task, its priority increases. This method evaluates and assigns the

priority of each real-time task, every certain period of time during run-time. EDF has

been proven to be the optimal dynamic scheduling algorithm for hard real-time tasks on

a single-core platform [73].

The feasibility of a task set can be de�ned as the successful execution of all real-time

tasks before their deadlines. Such a feasibility should be guaranteed in advance; that is,

before task execution. Thus, it is necessary to perform an off-line mathematical analysis

of how precisely the system timing constraints are met, to guarantee the feasibility of

the whole real-time task set, implementing a certain scheduling algorithm. Such math-

ematical analysis is called schedulability analysis. It must consider both the task model

parameters predetermined for each task, each task assigned priority, and the available re-

sources in the system. If more �exibility is needed, for instance in a soft real-time system

case, additional best-effort scheduling techniques can be applied, limiting the number of

deadlines missed. Multiple suf�cient schedulability conditions have been proposed and

demonstrated in the literature in the past decades. The most common one was proposed

by Liu and Layland [24], stating the task set CPU resource utilization upper-bound when

scheduling tasks using RMS. However, a higher task set utilization can be guaranteed by

an appropriate choice of task periods.

Harmonic-Periodicity-Based Scheduling Model: Some characteristics of real-time

tasks have been exploited to develop more effective multi-core task partitioning schemes

[1, 30, 74�76]. For instance, as shown in [1], by grouping harmonic tasks into the same

core, system schedulability can be greatly improved, with each core reaching a much

higher processor utilization than that de�ned by the RMS utilization bound, as de�ned

in [24]. Harmonic tasks are de�ned as tasks with periods being integer multiples of each

40

Table 2.1: Example of task set to be scheduled in two processing units using RMS [1]

Task Number (ti) WCET (Ci) Period (Ti) CPU Utilization (Ui)

1 1 4 0.25

2 2 8 0.25

3 3 10 0.30

4 8 16 0.50

5 8 20 0.40

6 8 40 0.30

other. If task periods are harmonic, i.e., each task periodicity value is a exact integer mul-

tiple of the next task periodicity value, then the schedulability can be guaranteed up to a

100% of processing unit utilization [75, 77]. Table 2.1 shows an example of a task set to

be allocated in two processing units (core 1 and core 2). The task number is correlated to

each task's priority, i.e. for ti and t j, if i < j then Priority(ti) > Priority(t j). It can be

seen that both processing units can achieve a 100% utilization, by choosing the correct

mapping of tasks allocated to each core. Therefore, �g. 2.1 shows the timing feasibility

check for each processing unit scheduling tasks using RMS when tasks 1, 2 and 4 are

statically assigned to core 1, and tasks 3, 5 and 6 are assigned statically to core 2. Parti-

tioning of dynamic-priority periodic tasks on multi-core processors has been explored as

well [78]. Other research works have proposed task partitioning schemes for hard real-

time tasks with fault-tolerance requirements on multi-core platforms by exploiting the

periodic relationships among tasks [30].

Sever-Based Scheduling Model: Real-time systems are often complex systems that

must react to the environment. This premise is especially true for some embedded sys-

tems. These kind of systems commonly deal with tasks whose activation is triggered

by sensor readings or voltage signal changes. Since the activation of such tasks is non-

deterministic, those tasks are considered non-periodic tasks, i.e. sporadic tasks. Sporadic

tasks are commonly required to be scheduled in real-time systems. Numerous real-time

systems aimed for control applications require scheduling both types of processes, i.e. pe-

41

Figure 2.1: Example for timing feasibility check for each processing unit scheduling tasks using

RMS (see Table 2.1), when tasks 1, 2 and 4 are statically assigned to core 1, and tasks 3, 5 and 6

are assigned statically to core 2 [1]

riodic and non-periodic. For any real-time task, the characteristic of being either periodic

or non-periodic may differ from its criticality. Again, off-line guarantees for aperiodic

tasks with critical timing constraints can be offered under peak-load situations, by assum-

ing each job to be separated by a minimum inter-arrival time. This analysis is important

to design schedulers able to schedule non-periodic hard real-time tasks.

If the minimum inter-arrival rate of a sporadic task cannot be bounded in design time,

such an aperiodic task cannot be guaranteed off-line. However, an online guarantee of

individual aperiodic requests can still be done. Aperiodic tasks requiring an online guar-

antee on individual instances are called �rm real-time tasks. Whenever a �rm aperiodic

request enters the system, an acceptance test can be performed by the scheduler to verify

whether the request can be served within its deadline. If such a guarantee cannot be done,

the request is rejected.

42

Multiple scheduling algorithms for handling hybrid task sets consisting of a subset of

hard periodic tasks and a subset of soft aperiodic tasks have been proposed in the literature

and implemented on different real-time systems. Such solutions are based on the concept

of server; that is, a periodic task characterized by a period Ts and a computation time Cs

called capacity or budget. The server is scheduled with the same algorithm used for the

periodic tasks, and once activated, it serves the aperiodic tasks within the limit of its bud-

get. The scheduling of aperiodic tasks within the server can be performed independently

of the global scheduling algorithm in charge of scheduling periodic tasks [14]. This con-

cept will be useful to explain further the concept of compositional real-time scheduling,

and how to offer guarantees to periodic tasks associated with a server instance.

Compositional Real-Time Scheduling: An important alternative concept proposed

in the literature towards the analysis and scheduling of periodic and aperiodic real-time

tasks is the possibility to allocate system resources privately to a speci�c subset of tasks

within a certain periodic time. Such a concept would enable the possibility to guarantee

the schedulability of a subset of real-time tasks with similar characteristics, and to guar-

antee the schedulability of each subset independently from the schedulability of other

subsets. For this, it is necessary to implement a closed environment able to supply pri-

vate resources to each subset of tasks. This environment may be associated to a periodic

server task, with each periodic server having a period and a budget (also known as allo-

cation time). Any task associated to the server may be executed only using the resources

allocated to the server within the speci�ed allocation time of the server [14].

Multiple research works have been proposed based on the server concept but one

in particular was proposed by Shin and Lee [79] [9]. Their research work claims that

for real-time systems, it is desirable to design large complex systems by breaking them

into simpler components, based on systematic abstraction and composition. In this way,

real-time tasks with similar characteristics can be abstracted into a single subset of tasks

43

forming a single component. The primary goal of these authors is to develop a composi-

tional real-time scheduling framework to support abstraction and composition techniques

for real-time aspects of components. A central idea in component-based design is to as-

semble components into a system without violating the principle of compositionality such

that properties that have been established at the component level also hold at the system

level. Especially for real-time systems it is necessary to support the abstraction and com-

position for timing properties of the system. Thus, they introduce the �periodic resource

server model� to characterize resource allocations provided to a single component. Their

work presents the exact schedulability conditions for the standard Liu and Layland [24]

periodic task model when applied to the proposed periodic resource server model under

EDF and RMS scheduling. Our work for this dissertation represents an advancement of

the state-of-the-art for scheduling hard real-time tasks, because it incorporates the peri-

odic resource sever model concept into the scheduling framework to guarantee both the

timing and thermal constraints of real-time systems when considering the memory power

and timing characteristics.

An example of hierarchical scheduling framework proposed by Shin and Lee is shown

in Fig. 2.2, where it can be seen that different portions of a resource are scheduled by

a high-level scheduler and each share of the resource is subsequently scheduled by a

different scheduler. Thus, if a periodic server is seen as a resource, a group of tasks may

be assigned to such a server, and scheduled with their own intra-server scheduling policy

(such as RMS or EDF). Then, each server may be treated as a periodic task by a higher

abstraction layer scheduler. Therefore, each periodic resource server on each abstraction

layer may have a different scheduling methodology to schedule its own tasks.

The periodic resource server model proposed by Shin and Lee is characterized by

a 2-tuple (P,Q), where P is the resource period, and Q is the allocation time. Both

parameters satisfy that 0 < Q ≤ P. The capacity of each periodic resource server is

44

Figure 2.2: Hierarchical scheduling framework: a resource is scheduled by a scheduler and each

share of the resource is subsequently scheduled by a different scheduler [9]

Figure 2.3: Shin and Lee [9] periodic resource server example

de�ned as C = Q/P. Also, the main characteristic of the periodic resource is that each

task assigned to each periodic resource is allowed to be scheduled, executed and consume

resources only during the allocation time Q. Figure 2.3 shows an example of the periodic

resource model.

Shin and Lee de�ned a utilization upper bound to guarantee the schedulability of real-

time tasks assigned to be executed within a periodic resource server when the intra-server

scheduling method is RMS, i.e. UBRMS. Thus, if the total task set utilization is less than

or equal to the upper-bound, such a task set is schedulable according to RMS, i.e. if for a

speci�c G, U(G) = ån
i=1

Ci/Ti ≤UBRMS, then G is schedulable according to RMS. Such

upper-bound is de�ned in the following theorem:

45

Theorem 2.1. [9, 80]. Given a task set G and a single periodic resource server, with

periodP, allocation timeQ, and capacityC, i.e. C=Q÷P, if ∀i,1≤ i≤N,Ti≥ 2P−Q,

the task utilization bound under RMS is:

UBRMS = C ·N

[(
2k+2(1−C)
k+2(1−C)

)1/N

−1

]
, (2.1)

where k = max{k ∈ N0,s.t.(k+1)P−Q< Tmin}, with Tmin = min{Ti|∀ti ∈ G}.

Also, Shin and Lee proposed the concept of Abstract Bound under RMS (ABRMS).

The abstract bound under RMS of any periodic server is the minimum server capacity C

that such a server must offer to its assigned tasks in order to guarantee their schedulability

under RMS. Such abstract bound is de�ned in the following theorem:

Theorem 2.2. [9]. Given a task set G and a single periodic resource server, with period

P, allocation time Q, and capacity C, i.e. C = Q÷P, if ∀i,1 ≤ i ≤ N,Ti ≥ 2P−Q, the

server abstract bound under RMS is:

ABRMS =
UG

log

[
2k+2(1−UG)

k+2(1−UG)

] , (2.2)

where k = max{k ∈ N0,s.t.(k+ 1)P−Q < Tmin}, and UG is the total CPU utilization of

task set G.

Different optimization criteria: Some research works have proposed schedulers

that by considering different applications and platform restrictions, they look to opti-

mize different aspects of the system such as power consumption, thermal chip operation,

reliability and fault tolerance. An example of a constrained platform can be found in

modern mobile systems, where it is important to maximize the operational autonomy of

each device by operating it on tight power and energy restrictions. Research works such

as [26, 27] present power-aware and energy-aware schedulers that look to minimize the

46

consumption of each parameter or both. Additionally, some real-time devices, either mo-

bile or �xed, are intended to be used in enclosed extreme conditions or near environments

that restrict their peak temperature of operation, beyond the peak temperature operation

imposed by the chip and its package. Some research works such as [28] have proposed

schedulers to account for the power and thermal issues of the platform in order to guaran-

tee an operation below a certain temperature threshold. Another example is devices im-

plemented on computing platforms, which have a great variability in their manufacturing

characteristics from one processing unit to the next one. Thus, some research works such

as [29] have proposed schedulers that account for the changes in execution time due to the

unexpected manufacturing process variations. Also, some real-time devices are deployed

on extreme environmental conditions that increase the probability of present computing

errors at any speci�c time. Some research works such as [30] have proposed schedulers

that implement supplementary timing error detection and correction mechanisms in order

to maximize the reliability and fault tolerance of real-time systems.

Multiple research works predominately focus on guaranteeing the timing constraints

for hard real-time tasks based on the characteristics of the processing unit(s). As discussed

in Chapter 1, other design constraints, e.g. power consumption and temperature of oper-

ation, are becoming increasingly critical in the design of real-time systems. Speci�cally,

our interest for this dissertation is to analyze how to schedule �xed-priority hard real-time

tasks with memory impacts taken into consideration also as design constrains. In what

follows, we introduce some important real-time scheduling techniques that explicitly ac-

count for these design constraints, and also relevant concepts related to the co-scheduling

of CPU and memory.

47

2.2 Power/thermal-aware scheduling

Due mainly to cost issues, the trend for many years was to develop computing platforms

with a single-core chip and increase its performance by increasing the number of tran-

sistors and the frequency of operation of the chip, but the industry realized that with an

increase in transistor density, the power density of the chip increases as well, making

the power consumption of a single chip excessively large, requiring cooling capabilities

beyond reasonable techniques. Fig. 2.4 shows the power density (a) and total power con-

sumption per chip (b) over the time. It can be seen in Fig. 2.4a a steady increment of

power density in PC microprocessors trend until 2006, when Intel released a chip with a

power density higher than the core of a nuclear pressurized water reactor (PWR). After

that, chip design strategies changed, including the popularization of multi-core platforms,

looking to reduce the high-power densities. By adopting multi-core architectures, the po-

tential performance gains due to parallel execution of tasks were increased, making the

chip performance rely less on the increment in clock frequency. Multi-core architectures

also offered the possibility of utilizing only some portions of the chip, which helps to

reduce the power and energy consumed. Fig. 2.5 shows a signi�cant increment in typical

microprocessor chip power consumption and their operating frequencies over the past 40

years, but also shows both parameters being relatively steady during the past few years.

However, looking at the absolute power consumed by a microprocessor chip (Fig. 2.4b),

it indicates that with the increasing number of transistors (see also Fig. 2.5), the total

power of microprocessor units is still increasing over time despite the reduction in power

density [10].

In order to design a computer platform, multiple design constraints and speci�cations

must be taken into consideration. However, nowadays a big portion of design time is

tailored to manage the power and thermal issues of computing systems, because multiple

48

Figure 2.4: Power density and total power consumption of computing platforms over the years [10]

Figure 2.5: 40 years of microprocessor trend data [11]

49

problems in computing platforms are derived from a high power and energy consump-

tion, including an excess in temperature operation of such devices. For instance, the

increase in temperature leads to an increase in leakage power in transistor-based com-

puting systems, which exacerbates even more the problem of excessive power consump-

tion. Also, the increment in power consumption goes in detriment of the autonomy of

battery-powered applications such as IoT devices, that need not only a miniaturized and

autonomous platform to be portable and self-sustainable, but also to be energy-ef�cient as

well. Additionally, high power consumption increases dramatically the maintenance cost

of high-performance computing systems. Future exascale computers capable of reaching

1018 operations per second will require a substantial decrease in the amount of power and

energy dissipated into heat compared to present standards. For instance, the U.S. Depart-

ment of Energy aims to bring its �rst exascale supercomputer on-line sometime in the

2020s and their goal is to have the machine consuming no more than 20 megawatts [81].

As power and energy consumption has emerged in previous years as a critical design

concern when designing computing systems ranging from high-performance computers

(HPC) to embedded systems, it is expected to continue being an important aspect in the

design of computing systems in the future. Thus, numerous research projects have pro-

posed techniques to perform power management and thermal management in computing

platforms. Some of those works are aimed to propose mechanisms to manage the power

and thermal issues in HPC systems [82�85], while other research works [26, 49] are tai-

lored to manage power and thermal on lower performance applications and embedded

systems. Most real HPC applications do not utilize the peak power allocated power-per-

node, leading to inef�cient use of both nodes and power. Thus, in average, applications

utilize 70% or less of the provisioned power, which leads to an inevitable waste of not

only power, but also performance and infrastructure, making clear that hardware solutions

are not suf�cient and improved software solutions are needed as well for power manage-

50

ment [86, 87]. Additionally, modern supercomputers consume an enormous amount of

power, where a signi�cant fraction is dedicated to offer cooling capabilities considering

the peak power provision of the whole infrastructure. Therefore, it is possible to build

an exascale computer today, but if the power consumption trend of current HPC systems

is followed, it would need a nuclear reactor to be powered [81]. Equally important, low-

power devices such as embedded systems, either deployed using single-core or multi-core

platforms, are being driven by applications such as video streaming and sensor data pro-

cessing, showing an increase in peak power dissipation. Thus, some modern low-power

microprocessors may offer operating modes consuming low power, but the more and more

computationally intensive tasks require them to signi�cantly increase the power consump-

tion [10]. As a result, it can also be seen in Fig. 2.4b, that the total power consumption

for HPC, PC and portable applications has been increasing over the years.

The power consumption has become a critical problem for increasing a microproces-

sor's performance because such a power is directly proportional to the number of transis-

tors, the supply voltage and the frequency of operation of the chip. During the previous

decades, power and energy management has become a prime design and operation di-

mension for many real-time platforms. In CMOS technology, which is still the dominant

approach in the VLSI circuit design, the power consumption has both dynamic and static

components, which are due to the system activity and leakage dissipation, respectively.

It can be seen that the number of transistors being integrated into a single chip approxi-

mately doubles every two years to keep providing desirable processor performance (ac-

cording to the so called Moors's law). But to keep increasing the transistor density it

is necessary to reduce the size of each transistor, which makes quantum effects of the

material less neglectable, and also makes it necessary to reduce the supply voltage and

frequency of operation, thereby reducing the dynamic power consumption of the chip.

Even though the threshold voltage has also been lowered, the gap between supply and

51

threshold voltages has been reduced, which leads to a signi�cant increase in the leakage

consumption, because the smaller the gap, the higher the subthreshold dissipation. Con-

sequently, the static power consumption has become as important as the dynamic power

consumption. Since the transistor density has been increasing over the years, and it is

expected to continue growing , the static power of each integrated circuit and the total

power density have been increased too, generating a high power dissipation and energy

consumption in computing platforms. High power density leads computing system de-

signers to deal in many cases with excessive thermal dissipation in one or multiple points

of the platform [88].

Multiple power models have been proposed in the literature to predict dynamic power

consumption in a processing unit. The most common model established in [88] states

that the dynamic power is proportional to the switching capacitanceC, the supply voltage

value V CPU
dd and the frequency of operation f CPU , as shown in Eq. 2.3.

Pdyn =C · (V CPU
dd)2 · f CPU (2.3)

The leakage power, also known as static power, is generated by leakage currents pass-

ing through active transistors. The values of such leakage currents are dependent on the

temperature of the silicon and processor voltage. A high power consumption tends to gen-

erate a high temperature, which in turn aggravates the power consumption of the system.

The leakage power is formulated as:

Pleak = Ngate · (V CPU
dd) · I0 ·

[
AT 2 · e

aV+b
T +B · eg·V+s

]
, (2.4)

where T and (V CPU
dd) are the temperature and supply voltage, respectively. Ngate is the

number of gates in the circuit, and T0 is the reference leakage current. A, B, a, b and g are

technology dependent constants [89].

In this dissertation we assume that the CPUworking frequency is linearly proportional

to the CPU supply voltageV CPU
dd , and the dynamic power consumption can be formulated

52

as Pdyn = C2 · (V CPU
dd)3, where C2 is an architecture-dependent constant. On the other

hand, the static power has a very complicated relationship between leakage current and

temperature, as seen in Eq. 2.4, but it can be approximated to a linear function as follows:

Pleak = C0+C1 ·T j(t), where C1 and C2 are also architecture-dependent constants and

T j(t) is the CPU junction temperature [28]. Thus, the total CPU power can be formulated

as: P CPU =C0+C1 ·T j(t)+C2 ·(V CPU
dd)3. Further, we assume that each task ti may have

a different switching activity, modeled using µi (with µi ∈ (0,1]), de�ning how intensively

the CPU is consuming dynamic power by the execution of ti. Hence, the CPU power

associated with each task ti can be reformulated as follows:

P CPU
i =C0+C1 ·T j(t)+µi ·C2 · (V CPU

dd)3 (2.5)

As seen in chapter 1 an increment in power consumption often increments the temper-

ature of operation of many single-core and multi-core platforms in different applications,

such as embedded systems and HPC systems. Multiple power models have been proposed

in the literature to predict the thermal behavior of an electronic circuit, but the majority

of them are based on the analogy between the �ow of current in an electronic circuit and

the �ow of heat in any thermal device.

Thus, in this dissertation, similarly to multiple research works [28,90], we use a model

elaborated based on the commonly known lumped RC thermal model [91] (as shown in

Fig. 2.6). Speci�cally, assuming a �xed ambient temperature (Tamb), let T (t) denote the

temperature at time t. Then, we have:

RC
dT (t)

dt
+T (t)−RP(t) = Tamb (2.6)

where P(t) denotes the power consumption in Watts at time t, and R and C denote the

thermal resistance (in J/◦C) and thermal capacitance (inWatts/◦C), respectively.

Researchers in both academia and industry have proposed numerous techniques to

manage the power consumption and minimize energy consumption in computing systems.

53

Figure 2.6: Lumped RC circuit example

Speci�cally for real-time embedded systems, two widely used techniques for reducing

energy consumption in the processing unit are Dynamic Voltage and Frequency Scaling

(DVFS) and Dynamic Power Management (DPM). DVFS approaches trade energy with

performance by decreasing the voltage and the frequency of the processor to reduce the

overall energy consumption. Since reducing the frequency increases the task execution

times, a common objective in real-time systems is to derive processor/task speed values

that still guarantee the timing constraints while minimizing the total energy. On the other

hand, DPM techniques switch the processor to a low-power inactive state as long as pos-

sible, while guaranteeing that all real-time tasks will �nish within their deadlines [44].

Some of those research works have proposed mechanisms to minimize the energy con-

sumption while guaranteeing the timing constraints of real-time systems using a DVFS

technique [92�97], or a DPM technique [98�100]. For instance, Awan et al. [96] address

the problem of task-to-core allocation onto heterogeneous multi-core platforms such that

the overall energy consumption of the system is minimized, considering both dynamic

and leakage energy consumption. Using a DVFS technique, their approach considers

core frequency set-points, tasks energy consumption and sleep states of the cores to re-

duce the energy consumption of the system. Additionally, Huang et al. [99] propose

54

online algorithms that adaptively control the power mode of a system, procrastinating the

processing of arrived events as late as possible, providing solutions for preemptive EDF

and �xed-priority scheduling policies. Bhatti et al. [98] propose a generic power/energy

management scheme that takes a set of existing DPM and DVFS policies, each of which

performs well for a set of conditions, and adapts at runtime to the best-performing pol-

icy for any given workload. Han et al. [101] study the problem of energy minimization

for scheduling periodic �xed-priority tasks in multi-core platforms with fault tolerance

requirements.

Similarly, multiple research works have noticed the importance of considering the

increment of power and energy consumption, as well as their effects on the thermal man-

agement for real-time computing systems, as a very important optimization criteria for

scheduling real-time tasks. The increment in power and energy consumption, as well as

the increase in thermal emergencies in multiple computing platforms, are affecting the

design of real-time systems too. Real-time schedulers must make decisions of execution

of tasks not only considering their timing parameters, but also considering their power

consumption and their potential effects over the system's operating temperature, in order

to keep the system's power and temperature below manageable thresholds. Consequently,

multiple scheduling techniques have been proposed to perform power and energy man-

agement, as well as thermal management for real-time systems [28, 90, 93, 102].

Some research works also have acknowledged the problem of manage the thermal

operation of the processing unit as well, either in single-core or multi-core platforms,

optimizing different parameters of the system, such as performance, energy consump-

tion or reliability [45, 103�105]. For instance, Huang et al. [106] study the problem of

how to maximize the throughput for a periodic real-time system under the given peak

temperature constraint, when deployed on a single-core platform. Authors assumed that

different tasks in the system may have different power and thermal characteristics, allow-

55

ing their proposed DPM scheduler to alternate the processor active/sleep modes. Their

approach equally divide different tasks into m equal time sections in order schedule the

execution of each section, lowering the system's peak temperature. Also, Fan et al. [28]

present a closed-form analytical solution to calculate the system thermal steady-state en-

ergy consumption for a periodic voltage schedule on a multi-core platform, with the leak-

age/temperature dependency taken into consideration. Using these authors' approach, it

is possible to quickly obtain the temperature dynamics in the system thermal steady state.

Then, based on their temperature calculation method, they develop a closed-form solu-

tion of energy calculation for any scheduling period, particularly in system thermal steady

state. Also, Han et al. [102] study the problem of how to determine if a periodic DVFS

schedule for a multi-core platform is thermally feasible in satisfying a given peak tem-

perature constraint. Ahmed et al. [46] propose a methodology for minimizing the peak

temperature in embedded systems using periodic resource allocation. Egilmez et al. [107]

develop a method to control the skin temperature in smartphones, by predicting the sur-

face temperature and scaling the frequency of application processor by taking user com-

fort limit into consideration. Sha et al. [108] study the problem of how to maximize the

computing performance of multi-core platforms without violating their peak temperature

constraint and present a novel technique to maximize the throughput of the platform. Het-

tiarachchi et al. [109] propose a methodology to design predictable real-time systems in

an unpredictable thermal environment where the environmental temperature may dynam-

ically change, by allowing the system to adjust the scheduling according to a prede�ned

set of performance modes.

Additionally, some research works have focused on solutions to the thermal manage-

ment problem on HPC platforms. For instance, in [110] authors study the thermal-aware

allocation of virtual machines in data centers, in [111] authors characterizes the thermal

behavior of HPC systems using machine learning methods in order to enhance the sched-

56

uler by reducing the number of hot-spots in the system, and in [85] authors present a

survey of thermal-aware scheduling techniques for green data centers.

2.3 Memory-Aware Scheduling

In this section, we present some preliminaries and review existing works related to schedul-

ing mechanisms considering memory characteristics and issues. First, we review prelimi-

nary concepts and existing works related to mechanisms aimed to improve the predictabil-

ity of the system, considering the timing delays imposed by task preemption scheduling

methods and shared cache architectures. Second, we review preliminary concepts and

existing works related to mechanisms enhancing the performance and predictability, by

considering power and thermal issues.

2.3.1 Shared Cache Memory

Modern computing systems supplement the main memory of the computer with a set

of local registers and one or more levels of cache in a memory hierarchy, where the

cache level closest to the processing core(s) is small and fast, but contains only a subset

of the contents of memory. Caches are transparent to the programmer, with hardware

determining which parts of memory should be placed at any given time in the cache.

Cache memory is the part of the memory hierarchy that has seen the most change over the

years, increasing the size and number of cache layers that has been introduced between

the register �le and memory [31]. For the sake of scalability, �exibility, and to deal with

power limitations, it has become mainstream to group multiple cores sharing a local cache

memory.

The majority of the algorithms proposed to guarantee the schedulability of real-time

systems (e.g. RMS or EDF), especially hard real-time ones, assume that tasks are fully

57

preemptive. This means that tasks can be suspended at arbitrary points in favor of higher-

priority tasks. Preemption simpli�es the schedulability analysis but introduces a runtime

overhead (sometime called preemption cost) during task execution, due to the context

switching between tasks, the pipeline invalidation delay, and the cache-related preemp-

tion delay (CRPD), especially for shared caches in multi-core platforms [16, 17]. The

preemption cost is often assumed to be constant and speed independent. However, the

CRPD is de�ned as the delay that a preempted job incurs due to a loss of cache af�n-

ity after resuming execution. This delay may vary greatly, depending on the architecture

characteristics and the workload characteristics. Thus, such CPRD delay introduces a sig-

ni�cant source of uncertainty in the timing analysis of real-time systems. In essence, the

sharing of local cache memory helps to improve the average case execution time of each

task, but can be hazardous to the estimation of the worst-case execution time (WCET).

This is because the number of memory accesses, locations in time, and bus loads origi-

nated from other concurrent tasks are dif�cult to determine precisely. Fig. 2.7 shows an

example of cache-related preemption delay. It can be seen that a low-priority task t1 with

T1 = 10ms and C1 = 5ms (Fig. 2.7a) is scheduled along with a high-priority task t2 with

T1 = 10ms andC1 = 3ms (Fig. 2.7b). However, if t2 unloads suf�cient cached data of t1,

C1 increases and the second job of t2 misses its deadline (Fig. 2.7c) [112].

Multiple research works have acknowledged the problem of preemption cost, and

speci�cally the CRPD increasing the uncertainties in the execution of tasks, which leads

to even more pessimistic estimated WCET for each task, and one of the most common

methodologies to tackle such a problem is based on the concept of cache partitioning.

Shared cache partitioning approaches are widely applied in both general-purpose and

real-time computing systems [113�116]. However, since a major source of pessimism

in WCET estimation comes from shared cache memories, cache memory partitioning

has proven to be one of the most effective methods to improve the predictability and

58

Figure 2.7: Example of cache related preemption delay. A low priority task t1 with T1 = 10ms and

C1 = 5ms (a), is scheduled along with a high priority task t2 with T1 = 10ms andC1 = 3ms (b). If

t2 unloads suf�cient cached data of t1, C1 increases and the second job of t2 misses its deadline

(c) [112].

schedulability of real-time systems. Fig 2.8 shows a typical con�guration of computing

platforms with two cores and two levels of cache memory. The �rst level is private to

each core, but the second level is shared among the two cores. Such second level of cache

memory is divided into partitions. In the �gure, two partitions are assigned privately to

core 0 and one partition is assigned privately to core 1. Cache partitions can be managed

at the hardware level, the compiler level or the operating system level. Therefore, it

is possible to assign partitions privately to, not only cores, but also to real-time tasks.

In essence, WCETs are bounded and controlled much more tightly when the cache is

partitioned. This allows the estimation of real-time tasks' WCETs relatively tight, yet

safe, which promotes processor utilization in both single-core and multi-core platforms.

The main goal of implementing shared cache partitioned approaches, in hard and soft

real-time embedded systems, is to improve the predictability of the WCET, and conse-

quently improve the response time of the real-time system [62, 117�121]. For exam-

ple, authors in [122] propose a compiler-based method that partitions the cache among

59

Figure 2.8: Example of dual-core con�guration with cache partitioning [12]

tasks at compilation time. Authors in [113] propose a dynamic cache partitioning scheme

that decreases the allocated spaces to the faster threads and allocates them to the critical

ones to minimize the system overall response time. Authors in [114] and [115] suggest

a software-based page coloring technique, while in [116] a hardware-based partitioned

method is introduced.

Existing work on cache partitioning can be largely categorized into two groups: cache

allocation policies and cache management schemes [123]. The �rst ones focus on policies

to dictate how to allocate available cache resources to different tasks to achieve different

objectives, such as fairness, priorities, and performance maximization (e.g. [116, 118,

124]). The second ones intend to enforce, by means of hardware or software, the distribu-

tion of the outcomes of the cache allocations so that each program can access its allocated

cache memory (e.g. [62, 125, 126]). For instance, at the operating system level, cache

coloring is an important cache allocation policy to optimize the performance of real-time

and general purpose systems by cache allocating the contiguous pages from the cores

60

point of view. This technique sets up the virtual-to-physical-address translation so that no

two tasks access the same cache set in the shared cache and hence one task cannot evict a

cache block that another task has fetched to the shared cache [127].

As mentioned in chapter 1, multiple research works have realized the need to address

the problems of the increasing power consumption in memory systems and thermal is-

sues related to such a high power. Some of those research works have focused on the

timing problems seen by real-time systems when power and thermal issues are taken into

consideration. The power consumption of on-chip cache memories is usually assumed

to be a constant value in many research works [128]. Since cache memories are imple-

mented close to the CPU, their power can be associated with the power consumed by the

entire CPU. Unlike cache memories, external main memory manufactured with DRAM

technology usually has an additional power consumption, comparable to that of the CPU

in today's platforms and dependent on multiple factors, e.g. the memory capacity and

bandwidth. Thus, in what follows, we provide a general introduction of the role and or-

ganization of DRAM memories, along with the challenges of real-time system design,

considering main memory power and thermal issues.

2.3.2 Main-Memory Power and Thermal

DRAMdevices are designed utilizing very complex architectures that have evolved through

time to deliver high-volume storage at low cost per bit, in the fastest way. A DRAM

memory is divided into ranks, as shown in Fig. 2.9, and each rank is divided into multiple

banks. As shown in Fig. 2.10, bank-level parallelism allows each bank in the memory

to be accessed in parallel, so the memory space is interleaved among all the banks. Each

bank comprises a row-buffer and an array of storage cells organized as rows and columns,

as shown in Fig. 2.11. In order to access data, the memory controller (MC) activates a

61

Figure 2.9: DRAM Rank organization [13]

row of a certain bank, copying all its columns on the row-buffer. An example of DRAM

system organization is shown in Fig. 2.12. The access of data already on the row-buffer is

faster than the data stored in the array of cells [13]. Since banks are interleaved, any core

in the system can access any bank. If two applications running in parallel on different

cores access two different rows in the same bank, they might force the MC to continu-

ously pre-charge the row-buffer and open a new row every time an access is performed,

making the latency of each memory request variable.

In this dissertation, we build our memory model similarly as numerous research works,

based on the DRAM power model published by Micron [129] [130]. The DRAM power

is directly proportional to the number of memory requests of each task ti (Hi maximum),

and bounded by the DRAM chip maximum bandwidth BWDRAM
max in MB/s. Therefore,

each task ti has a single associated DRAM power value determined solely by its memory

access rate.

The DRAMpower consumption is composed of three components: background power,

active power and read/write power. The background power varies with the CKE signal

62

Figure 2.10: DRAM Bank organization [13]

Figure 2.11: DRAM Row organization [13]

63

Figure 2.12: DRAM System organization [13]

of the DRAM chip. CKE is the master on-off switch. When the CKE signal is low, the

DRAM goes off into a Power-Down state, consuming less power than active or stand-by.

If the CKE signal is high the DRAM chip is able to receive commands from the MC.

To ensure timely response, we assume that the DRAM does not enter the power-down

mode during the execution of any task. The background power also contains the power

for DRAM refreshes, i.e. PREF . The active power depends on the currents to decode the

command/addresses and transfer the data from the DRAM array to the sense ampli�ers,

and vice versa. The read/write power is related to the currents to place or store data to or

from the bus. Consequently, the total power consumed by the DRAM when the CPU is

executing a task ti is as follows:

P DRAM
i = (Pbg i+Pact i+PRW i) ·NChip, (2.7)

where NChip is the total number of DRAM chips in the rank. Finally, for our experiments

we consider the DDR3 manufacturing technology. Such DDR3 technology offers three

64

different power-down modes to save power. We are focused on the self-refresh power-

down mode with power consumption denoted as PDRAMSR [130].

Main memory systems, especially systems built upon DRAMmemory technology, in-

troduce an additional level of uncertainty in the WCET estimation for real-time tasks. For

instance, the bi-directional data path of the memory requires several cycles to switch from

read to write and vice versa. Also, to prevent data loss, the memory must occasionally be

refreshed before executing the next request and the added refresh time may be longer than

the time to serve the request itself. These effects make the latency of each memory request

variable. A critical problem seen in main memory systems is the so-called bank-sharing

problem. This problem is similar to the sharing of cache spaces by multiple processing

cores. When a task references a speci�c memory position, the row containing such a

memory position is stored in a row-buffer, making successive references faster. However,

if another task references a memory position in a different row, but in the same bank,

the previous row has to be stored back and the new one is stored in the row-buffer. This

represents a problem when real-time tasks are accessing the same bank address space,

due to the unbounded delay added due to the interference. To avoid the bank-sharing

problem, an approach called bank partitioning has been proposed, where each core is

assigned with a set of exclusive banks. Some bank partitioning methods are software-

based [127, 131, 132], and others are hardware-based [133, 134]. An additional mecha-

nism proposed to guarantee the delay time each task sees from main memory consists of

managing the bandwidth assigned to different real-time tasks [135, 136] by throttling the

number of memory accesses of each core, in order to guarantee a speci�c bandwidth to

critical tasks in the system. However, the implementation of techniques, such as bank

partitioning or memory bandwidth throttling, brings and additional increment of the ca-

pacity and bandwidth that a memory system must comply with. This issue exacerbates

the already high power consumption and excessive system temperature problem.

65

Multiple research works have proposed micro-architectural and system-level tech-

niques for managing the power consumption, and also for managing the thermal behavior

of the system [137�141]. Many of them propose the synergistic modi�cation of opera-

tion modes and DVFS on CPU and memory devices [49]. Authors in [142] propose for

embedded systems to consider the dynamic change of frequency of L2 cache memory,

besides processors and main memory, in a multidimensional frequency scaling fashion,

to improve the energy ef�ciency of the system. By evaluating different frequency lev-

els, it is shown that the energy-delay-product (EDP) can be improved up to 46.4% when

compared to the standard way that the frequencies are con�gured, without impacting per-

formance. Other works, such as [143], adopt the concept of group of applications, which

contains thread group and memory rank group. Their proposed mechanism manages a

group of applications, by simultaneously scaling CPU frequency and controlling memory

power mode to reduce both CPU and memory power.

Some works, such as [144], work with GPU systems. Authors in [144] seek to reduce

power with minimal performance degradation in high-performance GPUs, by tuning the

processing units' frequency, number of active computing units, and memory bandwidth.

By tracking the time-dependent computing and memory demands for each task, the cor-

responding hardware power con�gurations of the core and memory system can be set

to reduce overall platform power and thereby improve energy ef�ciency with minimal

compromises in performance.

Authors in [145] present a model-based methodology that takes computation-speci�c

properties into account, which guides power allocations for CPU and DRAM domains to

maximize performance. Their methodology can predict the performance impacts of the

power capping allocation schemes for different types of computations from real applica-

tions with absolute mean error of less than 6%. Also, authors in [146] present energy-

management algorithms that coordinate core and DRAM frequency scaling under a spec-

66

i�ed energy budget. Additionally, authors in [147] propose a DRAM frequency selection

method based on memory usage. The proposed method was implemented and tested with

embedded Linux on a system equipped with a multi-core processor and 2GB LPDDR3

DRAM. Their method enhances energy ef�ciency of the device by up to 18%.

Regarding real-time systems, for instance, research works such as [148] propose

a methodology to offer guarantees to legacy applications implemented on autonomous

helicopter-style aircrafts. The method relies on NoC architectures and a DRAM con-

troller contention-aware mechanism, and is based on the existing interference-sensitive

WCET computation and the memory bandwidth throttling mechanism.

Authors in [149] investigate system-level thermal-aware data/task mapping policies

for 3D memory architectures. Over a simulation framework, different workloads from a

combination of the PARSEC benchmark suite are scheduled on a many-core 3D platform

with a DRAM layer on top of a logic layer. Memory-bounded benchmarks from the PAR-

SEC suite (such as canneal and streamcluster) have signi�cant performance improvement

due to an increase in the memory access bandwidth. However, 3D many-core systems

consistently show higher peak temperatures [150].

During the past decade, 3D memory-processor integration has received considerable

attention in the literature [151�153], and multiple research studies have been proposed to

manage the thermal problems in 3D integration technology. Meng et al. [128] introduce a

framework to model on-chip DRAM accesses and analyze performance, power, and tem-

perature trade-offs of 3D systems. Their architecture focuses on one single layer of logic

and one layer of DRAM memory. Chen et al. [154] characterize the thermal and perfor-

mance behavior of the target architecture when the voltage and frequency levels of cores

and DRAMs are synergistically controlled, targeting an architecture with multiple layers

of DRAM memory. Some studies propose to manage the power and thermal parameters

in 3D ICs by performing memory mapping techniques [155, 156]. Other thermal man-

67

agement approaches for 3D architectures, such as [157], propose to reduce temperature

variance and the peak temperature of a 3D multi-core processor and stacked DRAM by

thermally-aware thread migration among processor cores.

2.4 Summary

In this section, we presented the essential pertinent of our research and reviewed some

closely related works in the literature. We �rst presented a general overview of the basic

concepts and critical techniques in real-time scheduling. Particularly, we introduced dif-

ferent categorizations of real-time scheduling and two important scheduling methodolo-

gies for single-core scheduling (RMS and EDF). Next, we presented an overview of the

periodic resource model and the concept of �resource server� used in scheduling methods

to provide resource isolation to real-time tasks and allow the implementation of com-

positional real-time scheduling. Then, we presented some preliminaries for power and

thermal-aware scheduling including the basic power and thermal models found in the lit-

erature. Also, we discussed some important research works on CPU-related power and

thermal-aware scheduling. Finally, we presented some preliminaries of CPU and mem-

ory co-scheduling, including the DRAM memory technologies' power model, along with

some discussion of related works, including works considering 3D integrated platforms.

In this dissertation, our goal is to develop effective scheduling mechanisms for hard

real-time systems to guarantee timing constraints, while satisfying other constraints such

as peak temperature of operation, when the scheduling of tasks considers the effects and

delays imposed by memory devices. In the following chapters, i.e. chapters 3, 4 and 5,

we present our contributions. Then, we conclude this dissertation in chapter 6.

68

CHAPTER 3

CACHE ALLOCATION FOR FIXED-PRIORITY REAL-TIME SCHEDULING

ONMULTI-CORE PLATFORMS

As stated in previous chapters, in this dissertation we study the problem of how to

allocate cache memory that is accessible by multiple processing cores when scheduling

�xed-priority real-time tasks based on the rate monotonic scheduling (RMS) policy. Thus,

we �rst present our research on cache allocation for real-time scheduling on multi-core

platforms.

Since the WCET of a real-time task varies with its cache allocation, our research

problem involves two intertwined problems: i) how to allocate the available cache mem-

ory partitions among all tasks, and ii) how to map each task to a core in the multi-core

platform. One simple approach to partition the cache memory is to allocate the cache

memory in such a way that it minimizes the normalized resource usage [158] �which

includes both CPU utilization and memory utilization� for each task. However, the

cache allocation that optimizes the resource usage for a single task does not necessarily

optimize that for the entire task set. To map tasks to multiple cores and optimize CPU

resource usage is a classical NP-hard problem.

It has been a well-known fact that harmonic tasks (tasks with periods being integer

multiples of each other) can utilize CPU resource more effectively, i.e. with CPU uti-

lization as high as 1 [159]. However, how to take the interplay of cache partitioning,

execution time variations and task harmonic relationship into considerations to deal with

cache allocation and task mapping in an integrated manner is the challenging problem we

want to study in this chapter.

The rest of the chapter is organized as follows. Section 3.1 describes the most related

research projects. Section 3.2 describes the architecture and real-time system models and

shows a cache partitioning example. Section 3.3 and section 3.4, describe in detail our

69

�rst and second solution approach, respectively. Next, section 3.5 shows the results for

the conducted experiments, and �nally, we present the summary in section 3.6.

3.1 Related Work

The large inter-task interferences due to increased resource sharing (such as shared buses

and memory) on multi-core platforms have severely undermined the predictability of real-

time systems [39, 40]. For the sake of scalability, �exibility, and to deal with power

limitation in the era of �dark silicon,� it has become mainstream to group multiple cores

sharing a local cache memory [160] [161] [162].

The sharing of local cache memory helps to improve the average case execution time

of each task, but can be hazardous to the estimation of the worst-case execution time

(WCET). One major problem in estimating the WCET bounds on multi-core systems is

the unpredictability of the workload on other cores. Therefore, the number of memory

accesses, locations in time, and bus loads originated from other concurrent tasks are dif-

�cult to determine precisely [40]. To assume the worst case scenario for each factor can

be extremely pessimistic and nulli�es the extra computational capacity of the multi-core

platforms in the design of real-time systems.

In a �rst stage in this dissertation, we study the problem of how to allocate the cache

memory that is accessible by multiple processing cores when scheduling �xed-priority

real-time tasks based on the rate monotonic scheduling (RMS) policy. Thus, with more

isolated memory accesses, each real-time task can avoid or reduce considerably the inter-

task memory interferences. Therefore the WCET can be more accurately bounded and

CPU utilization can be signi�cantly increased. It is noteworthy to mention that the �xed-

priority multi-core partitioned scheduling scheme is one of the most commonly used

scheduling mechanisms for real-time system design [23], due to its advantage of better

predictability. Besides, it is supported by almost all real-time operating systems available

70

on the market due to its low overhead and simplicity in implementation, and it is still the

method of choice in industry. We assume that each real-time task will be executed on

a dedicated processing core, and its WCET, for a speci�ed cache size, can be estimated

beforehand using strategies such as those presented in [163].

Since a major source of pessimism in WCET estimation comes from shared cache

memories, cache memory partitioning has proven to be one of the most effective meth-

ods for managing the shared fast local memory while optimizing other design objectives,

such as performance maximization [164], quality-of-service (QoS) enhancement [165],

and fairness [114], and also to improve the predictability and schedulability of real-time

systems [62, 114, 118, 119, 126, 127]. This method partitions cache memory among pro-

grams and cores to reduce cache contention between tasks and/or cores. By isolating

real-time task memory accesses, cache memory partitioning can avoid or considerably

reduce the inter-task interferences, and therefore reduce the uncertainty when bounding

the WCET and improve the core utilization.

Existing work on cache partitioning can be largely categorized into two groups [123]:

cache allocation policies and cache management schemes. The �rst ones focus on poli-

cies to dictate how to allocate available cache resources to different tasks to achieve dif-

ferent objectives, such as fairness, priorities, and performance maximization (e.g. [116,

118, 166]). The second ones intend to enforce, by means of hardware or software, the

distribution of the outcomes of the cache allocations so that each program can access its

allocated cache memory (e.g. [62, 125,126,167]).

From this perspective, we are interested in developing static cache allocation policies

for real-time systems to enhance the predicability and schedulability when scheduled in a

multi-core environment. Unlike our proposed allocation policies, some techniques have

been proposed for single-core platforms [112,168], and some others use a non-preemptive

EDF policy for intra-core scheduling [169, 170]. A few approaches that have been pub-

71

lished are closely related to our work. Chang et. al. [2,158] develop a series of algorithms

for real-time systems scheduled based on EDF in island-based multi-core real-time sys-

tems with local and global heterogeneous memories. The algorithm, so called Island

Based Real-Time Scheduling for Multi-Core Islands (IBRT-MCI), intends to optimize the

system resource (CPU and fast local memory) usage for a single task. A variant of this

algorithm is also introduced in a later publication [2], in which the intra-core scheduling

is performed according to RMS, i.e. IBRT-MCI-RMS. As discussed later in this chapter,

the optimal solution that can optimize the system resource usage for a single task does

not necessarily optimize that for the entire task set. Also, as we show in our simulation

results, incorporating period relation into cache allocation and task mapping can signi�-

cantly improve the schedulability of real-time systems. Kim et. al. [171] propose a cache

allocation policy that relies on page coloring as the cache management scheme. Different

from our approach, their algorithm assigns cache units privately to cores instead of tasks,

thus allowing intra-core cache units sharing. This alleviates the memory co-partitioning

problem due to the page coloring management scheme, but increases the predictability

analysis complexity. Suzuki et. al. [127] propose two algorithms as cache allocation poli-

cies, taking into consideration the cache memory partitions and the main memory banks

assigned to each task. Unlike our approaches, such algorithms assume EDF as intra-core

scheduling policy instead of RMS.

Alternatively, Fan and Quan [1] present a new multi-core partitioned scheduling al-

gorithm, the Harmonic-Fit Partitioned Scheduling (HFPS) algorithm, for �xed-priority

sporadic task systems. The authors exploited the fact that harmonic tasks or tasks close

to harmonic can utilize the processor more ef�ciently increasing feasibility. Particularly,

HFPS allocates tasks group by group in order to �nd the best combination in terms of

system utilization, maximizing the mutual harmonicity among the task scheduled on a

particular core. Their experimental results show that their proposed algorithm can signif-

72

icantly improve the scheduling performance compared with previous scheduling param-

eters, such as RM-Next-�t, RM-First-�t and RM-Best-Fit. However this work assumes a

WCET for each real-time task as a single and predetermine value, non-dependant of the

amount of fast local memory assigned to the task. Even for tasks that are not entirely

harmonic, Fan and Quan [172] show that mapping tasks closer to harmonic together into

one processing core can greatly improve the feasibility of real-time systems. The problem

is how to take into consideration both factors, i.e. the harmonic relationship and variable

execution times, to allocate cache memory and map tasks to cores.

We propose two algorithms in this chapter. The �rst algorithm combines two ex-

isting works: one based on fast local memory partitioning [158], and the other one, on

harmonic-based scheduling [172]. The second algorithm is a more elaborated approach

that can judiciously choose the cache size for each task and also exploit task harmonic

relationships. Therefore, it can signi�cantly improve the system resource usage and task

set schedulability. We use a third party data report of the cache performance for the SPEC

CPU2000 benchmarks suite [173] to validate our approaches. The results show that our

approach can signi�cantly improve the schedulability of real-time tasks, i.e. up to four

times, when compared with other scheduling mechanisms.

3.2 Preliminary

In this section, we introduce the architecture and the real-time system model used in this

chapter. We also show an example to motivate our research.

73

Table 3.1: Example of Task Set and the WCET values for different mi

mi

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ti

C
m1

1
5 5 4 4 3 3 3 3 3 3 3 3 3 3 3 3 10

C
m2

2
20 18 10 6 6 6 6 2 1 1 1 1 1 1 1 1 25

C
m3

3
10 8 6 6 6 5 5 5 4 4 4 4 4 4 4 4 13

C
m4

4
10 9 8 7 6 5 5 5 5 5 5 5 5 5 5 5 25

3.2.1 Architecture and System Model

The multi-core platform consists of a set of P homogeneous processing cores, denoted as

Pk with k = 1,2, ...,P. The cache memory is divided into a �nite number of allocation

units of the same size called cache units. The total number of cache units is denoted as B.

The task set consists of N independent implicit-deadline periodic tasks, denoted as

G= {t1,t2, ...,tN}, scheduled according to RMS. Each task ti, where 1≤ i≤ N, is char-

acterized by its minimum inter-arrival time Ti. A �nite number, denoted as mi, of cache

units are assigned privately to a single task ti executed by a core of the system, and its

WCET varies with mi, which is denoted as C
mi
i . Therefore, the task set G may be char-

acterized by a matrix like the one shown Table 3.1. In this table, the rows indicate each

task belonging to the task set (four tasks for the example), and each column (except for

the last one) indicates the number of assigned cache units mi to each task (1≤ mi ≤ 16).

The numbers shown in the matrix correspond to each C
mi
i of each task. The last column

indicates the period of each task.

Each task ti ∈ G is characterized by a CPU-utilization and a memory-utilization. We

de�ne U
mi

i as the CPU-utilization of ti, where U
mi

i = C
mi

i /Ti and Bi as the Memory-

utilization of ti where Bi = mi/B. In the same way, we also de�ne the CPU-utilization of

a task set G as U(G) = åti∈GU
mi

i , and the total number of cache units used by a task set

q(G) = åti∈Gmi. When task t j ∈ G is assigned with a speci�c value of m j, we reference

its CPU utilization asU j.

74

3.2.2 Cache Allocation Example

Before we present our algorithms, we �rst show an example, i.e. Example 3.1, of a

cache allocation problem along with two possible solution methods: the �rst one, using a

previous proposed technique, and the second one, using a simple inspection.

Example 3.1. Consider a task set consisting of four tasks, as shown in Table 3.1, to be

scheduled in a platform consisting of two cores, sharing a cache memory with 16 cache

units.

The problem de�ned in Example 3.1 has proven to be NP-hard. One solution for

this problem, i.e. IBRT-MCI-RMS presented by Chang et al. [2], is to �rst allocate the

cache space that can optimize the resource usage for a single task, and then transform this

problem to the traditional bin-packing problem. To this end, they �rst de�ne a metric,

called normalized resource usage, to balance CPU and cache resource usage, as shown in

the following de�nition.

De�nition 3.1. The minimum normalized resource usage [2] of task ti ∈ G, denoted as

li, is de�ned as:

li = min
0≤mi≤B

(
U
mi

i

P
+

mi

B

)
(3.1)

Essentially, the minimum normalized resource usage of a task is the minimum sum

of its normalized processor utilization and the normalized cache allocation. With task

execution times and cache allocations given, the minimum normalized resource usage of

a task can be readily identi�ed. Table 3.2 shows the cache allocation results based on

this approach. Columns mi and Ci, and thus Ui are obtained based on Def. 3.1. Then,

IBRT-MCI-RMS sorts tasks in a non-decreasing order with respect to their values of mi,

and packs tasks to cores with utilization bounded by the traditional Liu&Layland upper-

bound [25]. In the case of a task set of two tasks, such bound is of 0.83. For this example,

75

Table 3.2: Motivation Example Solution Using IBRT-MCI-RMS [2]

ti Ti Ci mi Ui Sub Task Set Utilization Sched. Cond. Feasibility

2 25 6 4 0.24

3 13 6 3 0.46 U(G2,3) = 0.70 U(G2,3)
?

≤ 0.83 Core 1 - YES

1 10 5 1 0.50

4 25 10 1 0.40 U(G1,4) = 0.90 U(G1,4)
?

≤ 0.83 Core 2 - NO

as shown in Table 3.2, the total utilization for the subtask set with t2 and t3 (a value of

0.70) is less than the upper bound. However, the value of total utilization for the subtask

set t1 and t4 (a value of 0.90) is larger than the utilization bound. Therefore, IBRT-MCI-

RMS fails to schedule the task set of Example 3.1.

For the problem de�ned above, a feasible solution does exist. As shown in Table 3.3,

by assigning 3 cache units to t1 and 2 cache units to t4, t1 and t4 would decrease their

WCETs from 5 to 4 and from 10 to 9, respectively, making the task set comply with

the schedulability condition de�ned by the Liu&Layland upper-bound. Besides, the total

number of cache units used by the task set would be increased from 9 to 12, which is

still less than 16. The numbers underlined in Table 3.3 represent the changed values from

the solution shown in Table 3.2. This shows that, even though IBRT-MCI-RMS allocates

cache space to optimize the resource usage (according to li of Def. 3.1) of a single

task, the local optimum solution cannot guarantee that the solution is globally optimal.

In addition, it is well-known that period relationship of real-time tasks has a signi�cant

impact on their schedulability on a processor [75,159]. The question is how to take it into

consideration in cache allocation and task mapping to improve system resource usage and

schedulability of real-time task sets.

76

Table 3.3: Motivation Example Solution by Inspection

ti Ti Ci mi Ui Sub Task Set Utilization Sched. Cond. Feasibility

2 25 6 4 0.24

3 13 6 3 0.46 U(G2,3) = 0.70 U(G2,3)
?

≤ 0.83 Core 1 - YES

1 10 4 3 0.40

4 25 9 2 0.36 U(G1,4) = 0.76 U(G1,4)
?

≤ 0.83 Core 2 - YES

3.3 Simple Harmonic-Based Cache Allocation Approach (HBCA1)

One way to exploit the period relationship among tasks is to simply incorporate the task

period into the task mapping phase only. During the cache allocation phase, we can

search a local optimal value for the parameters Ci and mi for each ti ∈ G based on the

metric li described in Def. 3.1 [2]. Note that, after li is de�ned, the WCET for each

task is also de�ned. Then, we can employ the harmonic-based task mapping method

(such as the one in [172]) to map tasks to multi-core platforms. We call this approach

HBCA1 (Harmonic-Based Cache Allocation 1), which is shown in Alg. 1. In Alg. 1,

we assume that all processing cores share the same cache memory. The algorithm can be

easily extended to deal with the scenario of when processing cores share multiple cache

memories.

While a harmonic task set can be schedulable with total utilization reaching as high

as 1, not all tasks are harmonic. Therefore, to better exploit the harmonic relationship

among tasks, one critical question is how harmonic a task set is. To this end, Fan et

al. [172] introduce the concept of primary sub-harmonic task set and, based on it, they

develop the harmonic index to quantify the harmonicity.

De�nition 3.2. [172] Given a task set G = {t1,t2, ...,tN} where ti = (Ci,Ti), let G
′ =

{t′
1
,t′

2
, ...,t′N} be a harmonic task set with t′i = (Ci,T

′
i) and T ′i ≤ Ti. Then, G

′ is called

a Primary Sub-Harmonic (PSH) task set of G if there exists no harmonic task set G′′ =

{t′′
1
,t′′

2
, ...,t′′N}, t′′i = (Ci,T

′′
i) and T

′′
i ≤ Ti, such that for T

′
i ≤ T ′′i for all 1≤ i≤ N.

77

Algorithm 1 Simple Harmonic-Based Cache Allocation Approach (HBCA1)

Input: G, P, B, WCET Task Matrix

Output: Cache Allocation && Task Partition Results

1: rem cacheunits= B /*Remaining cache units in memory*/

2: rem Cores= P /*Remaining idle cores sharing mem.*/

3: GTS = /0; P = {P1,P2, ...,P};
4: for all ti ∈ G do

5: Find mi such that:

(
U

mi

i

P
+
mi

B

)
is minimum;

6: Ci =U
mi

i · Ti;
7: end for

8: while G ̸= /0 && |P | ̸= 0 do

9: Sort ti increasing order with respect to Ti;

10: n= |G|;UTS =−¥; Bth = rem cacheunits
rem Cores

;

11: for i= 1 to n do

12: Construct G′ (PSH task set of G) using DCT [75] with ti as base;

13: Sort all t j ∈ G in increasing order with respect to DU j =U ′j−U j;

14: Gk j = pick up k j tasks from G such that:

15: (1)U(G′k j)≤ 1;

16: (2)U(Gk j) is maximized;

17: (3) q(Gk j) ≤ Bth;

18: if {U(G′k j)≤ 1} AND {U(Gk j)>U(GTS)} then
19: GTS = Gk j ;

20: end if

21: end for

22: Assign GTS to Pk ∈ P ;
23: P = P −Pk;

24: G= G−GTS;
25: Recalculate rem cacheunits and rem Cores;

26: end while

27: if G ̸= /0 then

28: Return: G is not schedulable;

29: end if

78

De�nition 3.3. [172] Given a task set G= {t1,t2, ...,tN}where ti=(Ci,Ti), let PSH (G)

denote the set of all PSH task sets for G. The harmonic index, denoted as H(G), is de�ned

as:

H(G) = min
G′∈PSH (G)

(U(G′)−U(G)), (3.2)

where U(G′) and U(G) are the overall system utilizations for G′ and G, respectively.

The lower a task set's harmonic index is, the closer it is to one of its primary sub-

harmonic task sets and therefore more harmonic. As discussed by Fan et al. [172], one

approach to identify sub-harmonic task sets for a given task set is to employ the DCT

algorithm [75]. In addition, the schedulability of a real-time task set can be predicted

based on its sub-harmonic task sets, as stated in the following theorem:

Theorem 3.1. [75] Let G′ be a sub-harmonic task set of G. Then, G is feasible on a single

processing unit under RMS, if U(G′)≤ 1.

Alg. 1 �rst determines the local optimal cache allocation based on the metric li de-

scribed in Def. 3.1 (lines 4 to 7). Then, it packs tasks that are most harmonic to the

reference task (ti) in a sub task set Gk j and maximizes the task utilization (line 16). To

prevent �greedy� tasks from hoarding all the available memory cache units, we set a cache

units allocation threshold (CUAT), i.e. Bth, requiring that the total cache units allocated

to tasks on the same sub task set Gk j should not exceed Bth (line 17). In our approach, we

de�ne Bth as the average available cache units for each core. This procedure is repeated

by taking each ti ∈ G as the reference task (for loop line 11). The schedulable task set

with the highest utilization, i.e. GTS, is allocated to a processing core (line 22). The CUAT

is recalculated and the procedure is repeated for the rest of the tasks and cores, until there

are no more tasks left or no more cores are available in the system (while loop line 8).

As an example, Table 3.4 shows the solution to the problem described in Example 3.1

using HBCA1. The two sections in the table correspond to the procedures to �nd the sub

79

task sets for Core 1 and Core 2, respectively. Columns labeled asCi, mi, Ti corresponds to

the WCETs, allocated cache units, and periods of tasks. Columns labeled as T ′i ,U
′
i andUi

show periods and utilizations of tasks in the PSH task sets. Tasks in Table 3.4 are sorted

based on DUi. Columns of DTi, DUi are the period and utilization differences between a

task with its corresponding task in the PSH task set. Columns ofCum.Ui andCum.U
′
i are

the sums of the values forUi andU
′
i for when each task in the row is added. For example,

in the �rst PSH task set, for t1 the Cum.U
′
i = 0.5, for t1+ t2 the Cum.U

′
i = 0.8, and for

t1+ t2+ t4 the Cum.U
′
i = 1.3, which is larger than 1, indicating that only t1 and t2 can

be scheduled together in one core (according to Theorem 3.1).

At the beginning, there are four tasks in the task set to be scheduled, and therefore

the algorithm generates four different PSH task sets, as shown in the four rows of the

�rst section in Table IV. The �rst one generated is the best candidate to be scheduled in

core 1 since the feasible sub-task set (i.e. t1,t2) has the largest accumulated utilization

(i.e. U({t1,t2}) = 0.74) among the four. Hence, t1 and t2 are scheduled to core 1. The

algorithm continues allocating the remaining tasks, repeating the process. In this case, the

algorithm generates two different PSH task sets. The second row in the second section of

Table IV shows thatU({t3,t4}) = 0.86 andU ′({t3,t4}) = 0.88≤ 1. This ensures that t3

and t4 can be scheduled to core 2.

The complexity of Alg. 1 mainly comes from the loop from lines 10-15 with a com-

plexity of O(n2log n). Since the loop will be executed for P times, the overall complexity

of Alg. 1 isO(Pn2log n). While Alg. 1 can successfully schedule the task sets in Example

3.1, one big limitation of this approach is its local optimum cache allocation, i.e. opti-

mum from each task's perspective. In what follows, we develop a more elaborate cache

allocation and task scheduling approach that considers the task harmonic relationship.

80

Table 3.4: Solution to Example 3.1 using HBCA1

CHOOSE SUB TASK SET FOR CORE 1

1 ti Ti Ci mi Ui T ′i U ′i DTi DUi Cum.U ′i Cum.Ui

t1 10 5 1 0.50 10 0.50 0 0 0.5 0.50 X
t2 25 6 4 0.24 20 0.30 5 0.06 0.8 0.74 X
t4 25 10 1 0.40 20 0.50 5 0.10 1.3 1.14

t3 13 6 3 0.46 10 0.60 3 0.14 1.9 1.60

2 ti Ti Ci mi Ui T ′i U ′i DTi DUi Cum.U ′i Cum.Ui

t3 13 6 3 0.46 13 0.46 0 0 0.47 0.46

t2 25 6 4 0.24 13 0.46 12 0.22 0.92 0.70

t1 10 5 1 0.50 6.5 0.77 3.5 0.27 1.69 1.20

t4 25 10 1 0.40 13 0.77 12 0.37 2.46 1.60

3 ti Ti Ci mi Ui T ′i U ′i DTi DUi Cum.U ′i Cum.Ui

t2 25 6 4 0.24 25 0.24 0 0 0.24 0.24

t4 25 10 1 0.40 25 0.40 0 0 0.64 0.64

t3 13 6 3 0.46 12.5 0.48 0.50 0.02 1.12 1.10

t1 10 5 1 0.50 6.26 0.80 3.75 0.30 1.92 1.60

4 ti Ti Ci mi Ui T ′i U ′i DTi DUi Cum.U ′i Cum.Ui

t2 25 6 4 0.24 25 0.24 0 0 0.24 0.24

t4 25 10 1 0.40 25 0.40 0 0 0.64 0.64

t3 13 6 3 0.46 12.5 0.48 0.50 0.02 1.12 1.10

t1 10 5 1 0.50 6.25 0.80 3.75 0.30 1.92 1.60

CHOOSE SUB TASK SET FOR CORE 2

1 ti Ti Ci mi Ui T ′i U ′i DTi DUi Cum.U ′i Cum.Ui

t3 13 6 3 0.46 13 0.46 0 0 0.46 0.46

t4 25 10 1 0.40 13 0.77 12 0.37 1.23 0.86

2 ti Ti Ci mi Ui T ′i U ′i DTi DUi Cum.U ′i Cum.Ui

t4 25 10 1 0.40 25 0.40 0 0 0.40 0.40 X
t3 13 6 3 0.46 12.5 0.48 0.5 0.02 0.88 0.86 X

3.4 EnhancedHarmonic-Based Cache Allocation Approach (HBCA2)

In order to increase the schedulability of the system, we propose a second and more

elaborate approach. The second approach is called the HBCA2 (Harmonic-Based Cache

Allocation 2), and is shown in Alg. 2. It does not allocate cache memory based solely

on the relation of WCET and number of cache units for each individual task. Instead,

HBCA2 �rst groups tasks according to their harmonic relationship. Then, it allocates

memory cache units to tasks in a way that can decrease the task set CPU utilization the

most, when assigned with the same or less number of cache units possible.

81

The �rst problem for HBCA2 is to identify the candidate sub-task sets that may be

assigned to a single core. Since the harmonic task sets can better utilize CPU resources,

one intuitive approach is to employ the harmonic index as de�ned in Def. 3.3 and allocate

tasks with a high harmonic index to the same core. However, since the cache allocations

have not been determined, and thus the WCETs are not available, the harmonic index de-

�ned in Def. 3.3 does not apply. As a result, we use a different harmonic index (Ht(ti,t j))

to quantify, for a given task set, how harmonic a task is to a reference task.

De�nition 3.4. Let G′j = {t′1,t′2, ...,t′N} be a PSH task set of a task set G= {t1,t2, ...,tN}

with t′j = t j. The harmonic index of task ti ∈ G with respect to task t′i ∈ G′j, denoted as

Ht(ti,t j), is de�ned as:

Ht(ti,t j) =
Ti−T ′i
Ti

. (3.3)

Note that the harmonic index de�ned in Def. 3.4 is independent of its WCET or cache

allocation. Therefore, we can construct the PHS task sets and order tasks based on the

new harmonic index before the cache allocation is performed. The question becomes how

to allocate cache units to the selected tasks with a high degree of harmonic relationship.

We develop an incremental approach for the cache allocation. Speci�cally, we �rst

set the number of cache units to be 1 (i.e. mi = 1) for each task, i.e. the most unbalanced

resource allocation when the CPU utilization is maximized and the memory utilization is

minimized for each task (line 4). Tasks with high harmonic index values are grouped into

one sub-task set G′i, until (i) no task can be added to the sub-task set while keeping the task

set schedulable; (ii) the total cache units are no more than CUAT, i.e. Bth, as explained

before (line 12).

Since the number of total cache units for the selected tasks is less than Bth, an op-

portunity is presented to allocate more cache units to the selected tasks, i.e. G′i. As these

selected tasks decrease their execution times with more cache units, more tasks can be

82

assigned in the processing core without compromising the schedulability (while loop line

13).

To this end, we design a new metric CRRI(t j) (Combined Resources Ratio Index

(CRRI)) as follows:

De�nition 3.5. Let C
mi

i and C
mi+x
i be the WCETs with respect to the (privately assigned)

shared cache size of mi and mi+ x cache units. The Combined Resources Ratio Index

(CRRI) of ti, denoted as CRRI(ti,mi,x), is de�ned as

CRRI(ti,mi,x) =
DUi

DBi
(3.4)

where DUi = (Cmi
i −C

mi+x
i)/Ti (the decrement in CPU utilization for ti) and DBi = x/B

(the increase in memory utilization for ti), B is the total number of cache units in a shared

cache.

CRRI is essentially a bene�t/cost index for cache allocation to a task. A higher CRRI

value means that the decrement of WCET of ti is larger with a smaller number of extra

cache units assigned to it. Thus, the higher the value for CRRI, the better the resource

usage ef�ciency. One by one the next tasks in line (according to the harmonic index order)

are assigned to G′i (line 14), making the task set unschedulable. Therefore, the number

of cache units for the task with the highest CRRI value, so called the Guilty-Task(GT), is

increased until the task set is schedulable again, i.e. U(G′i) ≤ 1, or the number of total

cache units assigned to the task set exceeds Bth (while loop line 15). This procedure is

then repeated until the maximum number of cache units allowed for tasks on each core

is reached (line 24). If the next task in line cannot be added to the existing task set, the

original cache allocation for the existing task set is recovered (line 23).

The complexity of Alg. 2 mainly comes from the loop from lines 8 to 30. Assuming

that in the worst case each core can accommodate n tasks, the complexity of the loop is

O(n3) and the overall complexity of the algorithm is O(Pn3).

83

Algorithm 2 Enhanced Harmonic-Based Cache Allocation Approach (HBCA2)

Input: G, B, P, WCET Task Matrix

Output: Cache Allocation && Task Partition Results

1: rem cacheunits= B /*Remaining cache units in memory*/

2: rem Cores= P /*Remaining idle cores sharing mem.*/

3: GTS = /0; P = {P1,P2, ...,P};
4: for all ti ∈ G do mi = 1;Ci =C1

i ; end for

5: while G ̸= /0 && |P | ̸= 0 do

6: Sort ti ∈ G by the increasing order of Ti;

7: n= |G|;UTS =−¥; Bth = rem cacheunits
rem Cores

;

8: for i= 1 to n do

9: Construct G′ (PSH task set of G) using DCT [75] with ti as base;

10: Sort t j ∈ G by the increasing order of Ht(t j,ti);
11: step= 1; G′i = /0;

12: G′i = pick up the �rst j tasks listed from G such that:

13: (1)U(G′i)≤ 1; (2) q(G′i)≤ Bth;

14: while j ≤ n do

15: j = j+1; G′i = G′i+ t j;

16: whileU(G′i)> 1 && q(G′i) < Bth do

17: Find tGT ∈ G′i s.t: CRRI(tGT ,mGT ,step) is max.;

18: if tGT is unique then

19: mGT = mGT + step; step= 1; recalculate q(G′i) andU(G′i);
20: else

21: step= step+1;

22: end if

23: end while

24: ifU(G′i)> 1 then G′i = G′i− t j; end if
25: if q(G′i)≥ Bth then break; end if

26: end while

27: ifU(G′i)>U(GTS) then
28: if {|Gi|> |GTS|} OR {|Gi|== |GTS| AND q(G′i)≤ q(GTS)} then GTS = G′i; end if
29: end if

30: end for

31: Assign GTS to Pk ∈ P ; P = P −Pk; G= G−GTS;
32: Recalculate rem cacheunits and rem Cores;

33: end while

34: if G ̸= /0 then Return: G is not schedulable; end if

84

Similar to Alg. 1, Alg. 2 constructs the sub-harmonic task set based on each task

using the DCT algorithm. As the DCT algorithm generates one PSH task set when each

ti is taken as the reference task, the algorithm comes up with n different sub-task sets

to be allocated to a core. These task sets may have different performances in terms of

system utilizations, task numbers, and total numbers of cache units, which con�ict with

each other. To explore all the Pareto optimal solutions may lead to an extremely large

search space and is not realistic. In our approach, we adopt a simple metric as follows

to choose the best sub-tasks to map to a core: The chosen task set is the one that has the

maximumU(G′i) value with the highest total number of tasks |G′i|. If the task numbers are

the same, then the one with the smaller total number of used cache units q(G′i) wins (lines

26 to 28).

As an example, Table 3.5 shows the solution to the problem described in Example

3.1 using HBCA2. Data is presented in the same way as in Table 3.4, but tasks in Table

3.5 are sorted based on DTi. Unlike HBCA1, algorithm HBCA2 is able to notice that

by assigning three extra cache units to t4 (values underlined in the table), it is possible

to schedule tasks t2, t3 and t4 together on core 1, with a CPU utilization of 0.98 and

using 11 memory cache units. Then, t1 is scheduled to core 2. Although the algorithm

still requires two cores to schedule the task set, it leaves more CPU utilization to be used

on core 2 by an additional 5th task. Consequently, we can say that our second approach

is able to improve the system resource usage and the schedulability. It is noteworthy

to mention that for the �rst two sub-harmonic task sets generated, the algorithm notices

that t1 is not schedulable along with t3 (using the condition of Alg. 2, line 23). Such

unschedulability is shown in the table with the strikethrough text. Then, the algorithm

proceeds to try to schedule the next task in the list, i.e. t2.

85

Table 3.5: Solution to Example 3.1 using HBCA2

CHOOSE SUB TASK SET FOR CORE 1

1 ti Ti Ci mi Ui T ′i U ′i DTi DUi Cum.U ′i Cum.Ui

t1 10 5 1 0.50 10 0.50 0 0 0.5 0.50

t3 13 6 3 0.46 10 0.60 3 0.14 1.1 0.96

t2 25 6 4 0.24 20 0.30 5 0.06 0.8 0.74

t4 25 7 4 0.28 20 0.35 5 0.07 1.15 1.02

2 ti Ti Ci mi Ui T ′i U ′i DTi DUi Cum.U ′i Cum.Ui

t3 13 6 3 0.46 13 0.46 0 0 0.47 0.46

t1 10 5 1 0.50 6.5 0.77 3.5 0.27 1.23 0.96

t2 25 6 4 0.24 13 0.46 12 0.22 0.92 0.70

t4 25 7 4 0.28 13 0.54 12 0.26 1.46 0.98

3 ti Ti Ci mi Ui T ′i U ′i DTi DUi Cum.U ′i Cum.Ui

t2 25 6 4 0.24 25 0.24 0 0 0.24 0.24 X
t4 25 7 4 0.28 25 0.28 0 0 0.52 0.52 X
t3 13 6 3 0.46 12.5 0.48 0.50 0.02 1 0.98 X
t1 10 5 1 0.50 6.26 0.80 3.75 0.30 1.32 1.02

4 ti Ti Ci mi Ui T ′i U ′i DTi DUi Cum.U ′i Cum.Ui

t2 25 6 4 0.24 25 0.24 0 0 0.24 0.24

t4 25 7 4 0.28 25 0.28 0 0 0.52 0.52

t3 13 6 3 0.46 12.5 0.48 0.50 0.02 1 0.98

t1 10 5 1 0.50 6.25 0.80 3.75 0.30 1.32 1.02

3.5 Experiments, Analysis and Results

In sections 3.3 and 3.4, two approaches are proposed. It is hard to prove if one dominates

the other analytically. Therefore, we use simulation results to study their performance

and compare them with related work.

3.5.1 SPEC CPU2000 Benchmarks Cache Simulation

In order to test our scheduling approach, we use the data presented in [173], corresponding

to the simulation results of the SPEC CPU2000 benchmarks [174] using the Simplescalar

toolset [175]. The SPEC CPU2000 benchmark suite is a collection of 26 compute-

intensive, non-trivial programs used to evaluate the performance of a computer's CPU,

86

memory system, and compilers. The benchmarks in this suite were chosen to represent

real-world applications, and thus exhibit a wide range of runtime behaviors.

In order to test our algorithm, we generated a group of synthetic task sets. Each of

the 26 SPEC CPU2000 benchmarks forms a curve with different points [memory size,

execution time]. An exponential-�t model (with the form of a = exp(b)) can thus be

obtained with the 95% con�dence interval values for a and b for each benchmark.

In our simulations, synthetic task sets were generated by randomly choosing a speci�c

number of tasks n, where each task corresponds to a curve generated from the exponential-

�t model of one of the 26 SPEC CPU2000 benchmarks. A thousand task sets are gen-

erated for each n. Besides, each time a new curve for a task set was generated, we used

random values for a and b that fall into the 95% con�dence interval of each of the two

parameters.

3.5.2 Target Architecture

For the architecture in our experiments, we assume it contains a total of four cores and

one cache memory, which is accessible to all cores. Similar architectures can be found

commercially [176, 177]. Our cache allocation scheme may be implemented with any

cache management scheme that can provide a �xed size of cache unit, and enforce strict

isolation guarantees. The implementation is independent of the associativity or the re-

placement policy, as long as the relationship between execution times and number of

cache units are given.

3.5.3 Simulation results of testing HBCA1 and HBCA2 approaches

We compare two approaches, i.e. HBCA1 and HBCA2, with three different representative

scheduling schemes. The �rst one is the Partitioned Rate Monotonic Scheduling (P-RMS)

87

algorithm. This is one of the most commonly used approaches for partitioned scheduling

on multi-core. A drawback for P-RMS is that it does not take the task period and execution

time relationship into consideration for cache allocation and task partitioning. We use this

approach as our base line approach. The second approach we investigate is the Harmonic-

Fit Fixed-Priority Scheduling (HFPS) algorithm, proposed by Fan et al. [1]. This scheme

takes period relationship among multiple tasks into consideration when scheduling �xed-

priority tasks on multi-core platforms. Both P-RMS and HFPS do not take the variable

execution times with cache allocations into consideration. Therefore, we have to use the

WCET values corresponding to the worst-case scenario when mi = 1. The third approach

is IBRT-MCI-RMS [2] as mentioned before, which determines cache allocation based on

the metric that optimizes the resource usage for a single task. These three scheduling

algorithms with both HBCA1 and HBCA2 were employed to schedule the task sets on

the architecture discussed above.

We de�ne Schedulability Success Ratio (SSR) as the ratio between the number of

successfully scheduled task sets divided by the total task sets tested. Figures 3.1 and 3.2

report the SSR for the tested task sets with different number of real-time tasks. Figure 3.1

shows results using a cache unit size of 1 KB. Figure 3.2 shows results using a cache unit

size of 4 KB.

In Figure 3.1(a), when task number is around 14 for the case of P-RMS and 20 for

the case of HFPS, we can see that the SSR starts decreasing. Also, as the number of

cache units increases, as shown in Figure 3.1(b) and 3.1(c), we can see that the SSRs of

P-RMS and HFPS remain almost constant. This is because they are not memory aware

and therefore cannot take advantage of the increase of the number of memory cache units.

On the other hand, the methods IBRT MCI RMS, HBCA1 and HBCA2 take advantage

of the increase of the number of cache units. For instance, the schedulability success ratio

88

of HBCA2 starts decreasing when task number is around 45 in Figure 3.1(b) (with 256

cache units) and around 60 in Figure 3.1(c) (with 512 cache units).

In Figure 3.2(a), when the task number is around 25 for cases P-RMS, IBRT MCI RMS

and HFPS, we can see that the SSRs start decreasing. When the task number is around

30, the SSRs start decreasing for HBCA1 and HBCA2. As the number of cache units in-

creases (Figures 3.2(b) and 3.2(c)), IBR MCI RMS, HBCA1 and HBCA2 starts decreas-

ing their SSR, for example, with task number values around 37, 49 and 58, respectively

(see Figure 3.2(c)).

From the above-mentioned observations, it can be inferred that with a larger cache

memory size, the memory-aware mechanisms, and especially our two approaches, are

able to schedule a larger number of tasks in the system. One exception to the pattern is

Figure 3.2(a). Note that this is because the number of cache units in this con�guration is

not large enough for the memory-aware methods to reduce the WCET values in order to

increase the number of tasks schedulable in the system.

Figure 3.3 shows the schedulability of each tested mechanism with cache unit size

of 1KB. Each mechanism displays the value S (maximum number of tasks such that the

SSR of the evaluated method is greater than or equal to 90%) normalized against the

S value obtained with P-RMS. For instance, in Figure 3.1(c), the S values for HBCA1

and HBCA2 are 47 and 62, respectively. It can be seen that HFPS always shows the same

improvement, because it is a non-memory-aware mechanism. The remaining mechanisms

that are memory-aware show an increasing improvement with the increment of memory

cache units available per cache memory. The HBCA2 approach is able to schedule up to

4.1 times more tasks when compared to P-RMS.

Figure 3.4 shows the average values of S for data using both cache unit sizes (i.e. 1KB

and 4KB) and the four cache memory sizes. From the �gure, HBCA2 is able to schedule

89

Table 3.6: 2-Level Factorial Experiment - Factors and Levels

Factor Name Low High

A Ci and mi init. state Ci = 1,mi = 1 li (Def. 3.1)
B Find sub task set GTS Simple (Alg. 1) Enhanced (Alg. 2)

C Cache Memory Size 256 KB 1024 KB

D Cache Unit Size 1 KB 4 KB

up to 267% more real-time tasks than the P-RMS, and 101%, 64% and 26% more tasks

when compared to HFPS, IBRT-MCI-RMS and HBCA1, respectively.

3.5.4 Full Factorial Experiment

To further study the effectiveness of the proposed algorithms, we design a 2-Level Full

Factorial Design [178] in order to identify the important factors that are affecting the

schedulability of the system. The four identi�ed factors, their names and corresponding

levels are shown in Table 3.6.

Fig. 3.5 shows the Pareto Chart [179] for the standardized effects, including the terms

in the model up through second order. The response of the experiment is the value S,

with a criterion for statistical signi�cance, i.e. a, equal to 0.05 [178]. In general terms,

the Pareto Chart shows each factor and their interaction for up to two factors. If the

standardized effect for a single factor or interaction is larger than the reference line, it

means that such a factor or interaction has a signi�cant effect on the result. On the other

hand, if the standardized effect of a single factor or interaction is lower than the reference

line, its effect is not signi�cant.

From Figure 3.5, we can see the signi�cant single factors that affect the schedulability

of the system. On top of the list is the total cache memory size of the architecture (C),

which concludes the obvious assumption that the more memory, the higher the number

of tasks able to be scheduled. The second most signi�cant factor is the method chosen

90

to �nd the sub task set GTS (B), which concludes that our second approach (Alg. 2) can

signi�cantly increase the schedulability of the system.

It is noteworthy of mentioning that we saw that the schedulability of the system re-

mains constant if the high level of the factor B is used, no matter the value of the factor A.

For example, this observation can be seen also in the chart realizing that the single factor

(A) is also signi�cant, but has the same effect of its interaction with the factor of �nding

the sub task set in the general algorithm (B). This indicates that the signi�cance of the

effect of assigning the memory cache units at the beginning of the algorithm is important,

but totally conditioned to the signi�cance of the effect of �nding the sub task set GTS

using our second approach. It can be said that our second approach algorithm (high level

of factor B) completely voids the effect of the utilization of the li mechanism.

From Figure 3.5 we can also see that the cache unit size (D), is not signi�cant for the

schedulability of the system. This may be explained by the fact that our second approach

uses the metric CRRI (Def. 3.5) to assign fairly the memory cache units in the system to

the task which is able to decrease its CPU utilization most with the less amount of memory

used. We observe that in most cases, the task that receives a small number of cache units

in the �rst iteration of the algorithm has a very high chance to receive more cache units in

the subsequent iterations. Thus, giving no effect to the granularity of memory cache units

assignment.

3.6 Summary

We study the cache allocation and task partitioning problem when running a set of �xed-

priority real-time tasks on a multi-core platform sharing a common cache memory. We

have developed two static schemes for cache allocation and task partitioning. The �rst one

(HBCA1) combines two previous research studies that take task variable WCET times

91

and period relationship into consideration. The second one (HBCA2) is a more elaborate

approach that can judiciously choose the cache size for each task, while exploiting the

task harmonic relationships within the task set. Both of them are able to successfully and

signi�cantly improve the system resource usage and the schedulability of real-time tasks,

when compared with other scheduling mechanisms. Our simulation results show that our

second approach increases the schedulability of real-time tasks up to four times, when

compared to a conventional Partitioned Rate Monotonic Scheduling (P-RMS).

92

(a) Number of cache units B= 128

(b) Number of cache units B= 256

(c) Number of cache units B= 512

Figure 3.1: Number of Tasks VS. Scheduling Success Ratio. Cache Unit Size = 1 KB

93

(a) Number of cache units B= 32

(b) Number of cache units B= 64

(c) Number of cache units B= 128

Figure 3.2: Number of Tasks VS. Scheduling Success Ratio. Cache Unit Size = 4 KB

94

Figure 3.3: 90% Schedulability Ratio. Cache Unit Size = 1 KB

Figure 3.4: Average 90% Schedulability Ratio

Figure 3.5: Pareto Chart of Standardized Effects (response is S with a= 0.05)

95

CHAPTER 4

PROCESSOR/MEMORY CO-SCHEDULING USING PERIODIC RESOURCE

SERVER FOR REAL-TIME SYSTEMS UNDER PEAK TEMPERATURE

CONSTRAINTS

As stated in previous chapters, in this dissertation we study the problem of how to

schedule �xed-priority real-time tasks such that they can meet their deadlines with tem-

peratures for both the CPU and memory systems under their potentially different peak

temperature limits. Thus, in this chapter, we present our research on processor and mem-

ory co-scheduling using periodic resource server considering thermal and power effects

on the scheduling of real-time tasks.

The rest of the chapter is organized as follows. Section 4.1 describes the most related

research projects. In section 4.2 we present our architecture and system model, the CPU

and Memory power and thermal models along with our problem formulation. Section 4.3

discuss our approach in detail. We present in section 4.4 the experimental evaluation and

we summarize in section 4.5.

4.1 Related Work

As previously pointed out, transistor density of processors and memory devices, as well as

the memory capacity and bandwidth continue to grow, the power consumption of comput-

ing systems has also been increasing exponentially, resulting in tremendous heat genera-

tion, even to the point that threatens to disrupt the operation of the system under normal

conditions [42]. An increasing chip temperature due to an excessive power dissipation

has a signi�cant impact on other design metrics, such as reliability, cost and especially

on performance. Cooling down the chip temperature using mechanical methods such as

cooling fans, heat spreaders, and heat sinks becomes inadequate and too expensive.

96

There are some techniques proposed for dynamically managing the heat generated

by the memory system. For instance, one common approach is to migrate data between

hot and cold devices to avoid thermal emergencies on a memory system [60]. Another

approach dynamically adjusts the memory throughput to ensure that each module has a

temperature below the emergency level [42]. These approaches do not take the heat gen-

erated by the CPU into account. Also, these mechanisms react to critical temperature

levels and reduce or even stall the number of memory requests [18]. Consequently, such

approaches can signi�cantly affect the response time of the system and introduce an addi-

tional source of uncertainty. Thus, the excessive power consumption and heat dissipation

of the memory system must be dealt with carefully. Otherwise, they can signi�cantly

affect the schedulability and predictability of real-time systems because of uncertainties

introduced by different memory power/thermal management techniques. There are also

research studies that consider the heat dissipation from both the CPU and memory sys-

tems, but these approaches are best-effort approaches and cannot guarantee real-time sys-

tem deadlines at all [61].

In this chapter, we study the problem of how to schedule �xed-priority real-time tasks

such that they can meet their deadlines with temperatures for both the CPU and memory

systems under their potentially different peak temperature limits. In other words, we ex-

plore the problem of how to guarantee the feasibility of a real-time task sets under CPU

and DRAM thermal constrains executed on a single-core platform. Thus, we propose an

off-line mechanism to offer thermal guarantees on CPU and DRAMmemory systems, for

hard real-time applications, while guaranteeing also their timing constraints. We focus on

�xed-priority assignment since this is the most commonly used scheme for real-time sys-

tems design in industry [23], and our proposed method can be easily extended for other

scheduling methods. In our approach, we adopt the periodic resource model to manage

both the processor and memory concurrently. We take advantage of the feasibility condi-

97

tions for a periodic resource server, established in the existing work [9], to guarantee the

timing constraints for real-time tasks, and judiciously choose the periodic server settings

in such a way that the peak temperature constraints for both the CPU and memory can be

satis�ed. To the best of our knowledge, this is the �rst work for thermal-aware hard real-

time systems design that take the heat generations and their interactions from both the

CPU and memory devices. Our experimental results, with system parameters drawn from

manufacture data sheets, clearly demonstrate the effectiveness of our proposed approach

in reducing the peak temperature as well as the need to take both the CPU and memory

systems into considerations simultaneously for system-level thermal management.

4.2 Preliminary

In this section, we introduce the architecture and the real-time system model used in this

chapter, along with the power and thermal models.

4.2.1 Architecture and System Model

In this chapter, we consider an architecture with an in-order execution single-core proces-

sor communicating to a DRAM memory of M ranks, through a single bus arbitrated by a

single Memory Controller (MC), shown in Fig. 4.1. For simplicity, we assume that the

DRAM MC operates the DRAM memory using a �close-row� policy and that all write

memory requests are not buffered and thus consume memory bandwidth and power.

The task set consists of N independent implicit-deadline periodic tasks, denoted as

G = {t1,t2, ...,tN}, scheduled according to Rate Monotonic Scheduling (RMS). Each

task ti, where 1 ≤ i ≤ N, is characterized by its minimum inter-arrival time Ti and a

WCETCi. The maximum number of DRAM requests from any job of a task ti is de�ned

as Hi.

98

Figure 4.1: Architecture block diagram

The scheduler implements a periodic resource control mechanism (periodic server) to

throttle the access of each ti ∈ G to the CPU and DRAM resources, based on the periodic

resource model proposed by Shin and Lee [9] for compositional real-time systems. The

reader may recall from chapter 2 that the periodic server consists of two parameters: �rst,

the period of the server (P), which is the recurrent time of repetition; and second, the

allocation time (Q) when the resources are available to the current scheduled task ti. An

example schematic for a periodic server is shown in Fig. 4.2. Thus, task ti can not be

executed or issue memory requests during the timeP−Q. We de�neOSq as the operating

system time slice, thus we assume that OSq ≤ Q ≤ P, with P,Q ∈ R+ s.t. P = j ·OSq

and Q= m ·OSq with j,m ∈ N+.

To ensure deadlines of hard real-time tasks in our system, we employ the schedula-

bility condition proposed by Shin and Lee for periodic resource servers when scheduling

tasks using RMS, stated in the Thm. 2.1 of chapter 2.

We assume that the CPU and DRAM systems will enter into low-power modes (see

chapter 2), during the time P−Q. Therefore, every time the system must exit from a

low-power mode, it requires an extra overhead time Dl that must be accounted into the

server allocation time Q. Such Dl time is architecture dependent and considers delays,

such as CPU and DRAM power mode changes and caches cold starts.

99

Figure 4.2: Periodic server time schedule

4.2.2 CPU and DRAM Thermal Model

For modeling the CPU system thermal behavior, we use the lumped RC model similar

to Quan et al. [90], as shown in Fig. 4.3. It can be seen that the heat in the junction is

dissipated through the case, a heat-spreader and then to ambient.

For modeling the DRAM system thermal behavior we use the lumped RC model simi-

lar to Ayoub et al. [180], as shown in Fig. 4.4. In this model, we see that each DRAM chip

of the rank is modeled separatively with its own power source P
Chip
i , and a junction-to-

case resistance R jc, along with its thermal capacitance C jc. Since the value of power for

each chip is the same at any given time instant, there are no resistors in between DRAM

chips. All DRAM chips will be dissipating the heat through a single heat-spreader layer,

and the heat-spreader to ambient.

We consider the dependency of temperature change between both the CPU and DRAM

memory systems by including a thermal resistor Rcp connecting both heat spreaders. A

similar model is proposed, for instance in [181], for modeling the thermal interaction be-

tween layers of 3D chips, where the authors state that the large interface area between

layers results in a low thermal resistance. Also, ICs connected using a silicon interposer

100

Figure 4.3: CPU Thermal Model.

(2.5D fashion) may present a considerable thermal conductance among them due to the

heat dissipation of each chip through the interposer [57]. In addition, the model of Fig.

4.4 can be converted into a model similar to the one in Fig. 4.3 using superposition [180]

and by making RDRAMjc =R
Chip
jc ÷Nchip andC

DRAM
jc =C

Chip
jc ·Nchip. The joint thermal model

for both systems is shown in Fig. 4.5.

By applying Kirkoff's current law method to solve electrical networks, we can ob-

tain six equations (one for each of the six nodes and not shown for space constrains).

Figure 4.4: DRAM Thermal Model.

101

Figure 4.5: Joint CPU and DRAM Thermal Model

Considering the ambient temperature Tamb, the resulting equations system is:

P= C · d
dt
T+G ·T(t)+d ·Tamb, (4.1)

where G and d are matrices dependent on the resistor values of the circuit, and P =

[PCPUi ,0,0,PDRAMi ,0,0]. The matrix C is a diagonal matrix with the values of all the six

capacitances, thus it is invertible. Also, P can be expressed as P = Y+F ·T (t), where

Y and F are matrices containing the temperature independent and dependent portions of

power, respectively. Therefore, we have the expression:

d

dt
T(t) =−C−1 · (G−F) ·T(t)+C−1(Y−d ·Tamb). (4.2)

Also, if A = −C−1 · (G−F) and B = C−1 · (Y− d · Tamb), the �nal expresion for the

equations system is:

d

dt
T(t) = A ·T(t)+B. (4.3)

This joint system thermal model, which has a form of �rst-order ordinary differential

equations, has a solution for T(t) as follows:

T(t) = etA ·T0+A−1(etA− I) ·B. (4.4)

where T0 is the initial temperature.

102

To analyze the temperature in each of the six nodes of the circuit of Fig. 4.5, we can

follow the method proposed by Fan et al. [28] to analyze stable state temperature in multi-

node processors. Speci�cally, the authors propose an analysis to calculate the temperature

of any node in the circuit network, for any point in time, and for the stable state. For the

sake of clarity of the following sections, we include a portion of their analysis as follows.

For any arbitrary state interval in time [tq−1, tq], with kq the corresponding interval

mode determined by the power values applied on the circuit network during such interval,

once the temperatures at the starting point, i.e., T(tq−1), are given, according to Eq. 4.4,

the ending temperatures of that interval, i.e., T(tq) , can be directly formulated as:

T(tq) = eDtqAkq ·T(tq−1)+A−1kq (e
DtqAkq − I) ·Bkq , (4.5)

where Akq = C−1(Gkq−Fkq), Bkq = C−1(Ykq−d ·Tamb), and Dtq = tq− tq−1. Note that

since Akq and Bkq are only dependent on the core running modes, i.e., kq, within a state

interval [tq−1, tq], both Akq and Bkq are constant. Furthermore, it can be probed that the

ratio between Bkq and Akq , corresponds to the temperature the system would trend to, in

an in�nite time, if the conditions kq would not change, i.e. T
¥(kq) = Bkq/Akq .

4.2.3 Problem Formulation

Based on the models introduced above, our problem can be formulated as follows:

Problem 4.1. Given a real-time task set G= {t1,t2, ...,tn}, where ∀ti ∈G|ti= [Ci,Ti,Hi,µi],

determine the optimal settings for a periodic server, i.e. [P,Q], that can ensure the timing

constraints for tasks in G while keeping peak temperatures of the CPU and memory under

their peak temperature constraints, i.e. ThrCPU and ThrDRAM, all the time.

103

4.3 Our Approach

In this section, we discuss our approach in detail and present our algorithm to identify the

parameters for the periodic server.

Our goal is to design a periodic server that can guarantee the deadlines for a given

real-time task set, and also the peak temperature constraints for both the CPU and mem-

ory. Note that, Theorem 2.1 helps to identify the P and corresponding allocation time

Q for a periodic server such that the timing constraints can be satis�ed. The problem,

however, is how to ensure the temperature constraints of the CPU and memory can be

guaranteed using the periodic server. We solve this problem by attacking the following

two sub-problems: (1) for a periodic server, how to bound its peak temperature; (2) how

to optimize a periodic server to satisfy the peak temperature constraints for both the CPU

and memory? We discuss our approach for these two sub problems below.

4.3.1 Bound the peak temperature for a periodic server

To satisfy the peak temperature constraint, one fundamental problem is to identify the

peak temperature of CPU and memory for a periodic server. This may be simple for a

system with a single active thermal node since, as proved by Quan et al. [90], the peak

temperature must occur at one of the scheduling points. However, when dealing with

both the CPU and memory, i.e. a thermal model with more than one active thermal node,

to identify the peak temperature can be challenging since the peak temperature does not

necessarily occur at a scheduling point, as demonstrated by Han et al. [102] and Pagani

et al. [182].

When running a periodic task set on a given periodic server, there may be in�nite run-

time scenarios, which lead to an in�nite number of power traces for both the CPU and

memory. For each given power trace, Han et al. [102] and Pagani et al. [182] introduce

104

different methods to check its peak temperature. It is not clear, however, if a periodic

server setting can guarantee that peak temperature constraints can be satis�ed for all pos-

sible power traces. To this end, we de�ne below a special power trace, called the peak

power trace.

De�nition 4.1. Given a task set G and a periodic server [P,Q], let PCPUmax =maxti∈G
[
PCPUi

]
and PDRAMmax =maxti∈G

[
PDRAMi

]
. The peak power trace of the periodic server is de�ned as

the one that CPU (memory, resp.) runs at a constant power mode of PCPUmax (PDRAMmax , resp.)

during its designated allocation time Q of the periodic server.

For a given periodic server, we can prove that the peak temperature when running the

peak power trace is higher or equal than any other temperature obtained from any other

possible power trace, when running the same task set. This conclusion is formulated in

the following theorem.

Theorem 4.1. Given a task set G and a periodic server [P,Q], the peak temperatures of

CPU and memory when executing G on the periodic server are no more than the ones

when running the peak power trace on the same server.

The theorem can be easily proved by noting that at any point the power consumption

when running the peak power trace is higher than that when running any other possible

power traces of the same task set.

More importantly, for a peak power trace, we can quickly determine the peak temper-

atures for the CPU and memory, as formulated in the following theorem.

Theorem 4.2. Given a task set G and a periodic server [P,Q], the peak temperatures for

the CPU and memory must occur at any of the end points of any of the active intervals

within one hyperperiod of the task set, i.e. the least common multiple of all task periods.

105

Figure 4.6: Periodic Server Time Schedule Example

Proof. The proof of this theorem is based on the analysis presented in [28, 102, 183].

Consider a periodic server schedule as seen in �g. 4.6 that has an speci�c values of power

for CPU power and DRAM power during the timeQ, and has zero power consumption for

both CPU and DRAM during the interval [t0,P−Q]. We assumed each periodic server is

running with its peak power trace (see Def. 4.1). Therefore, the periodic server is running

with only two possible scenarios. We have the system with only two possible values of

kq (see Eq. 4.5), i.e. kON for the active mode and kOFF for the power-down mode. Thus,

it is possible to calculate the temperature the system would trend to, in an in�nite time, if

the conditions kON and kOFF would not change. We have T¥(kON) =BkON/AkON =Tmax
sys

and T¥(kOFF) = BkOFF/AkOFF = Tamb, with T
max
sys being the maximum temperature of the

system if the peak power trace values were applied steadily. Then, the objective is to

prove that the peak temperature must occur at any allocation time ending point, i.e. any

point integer multiple of the server period P.

The temperature TSS(t) denotes the stable-state temperature of the nodes in the system

at any instant time t. According to the following theorem proposed in the literature, it is

possible to calculate such a value of TSS(t).

Theorem 4.3. [28] Given a periodic power trace, let T(L) and T(tq) be the temperatures

at time instant L and tq, where tq ∈ [0,L], respectively. If for each eigenvalue li of K, we

106

have |li|< 1, then the steady-state temperature corresponding to tq can be formulated as

TSS(tq) = T(tq)+Kq(I−K)−1 · (T(L)−T(0)). (4.6)

where Kq = eAkqDtq · eAkq−1Dtq−1 · . . . · eAk1Dt1 ,q= 1,2, . . . ,s.

Using Thm. 4.3, it is possible to calculate TSS(t0), TSS(P−Q), and TSS(P). Also,

note that sinceTmax
sys is the maximum temperature in the system, TSS(t0),TSS(P−Q),TSS(P)∈

[Tamb,T
max
sys].

According to the following theorem proposed in the literature

Theorem 4.4. [102] Given a multi-node platform and a state interval, the temperature

on each node must monotonically decrease if all the nodes' starting temperature is higher

than the running mode's stable state temperature.

and knowing that TSS(t0) ≥ Tamb, it is possible to conclude that the stable-state tem-

perature of the system monotonically decreases within [t0,P−Q].

Similarly, according to the following theorem proposed in the literature

Theorem 4.5. [102] Given a multi-node platform and a state interval, the temperature

on each node must monotonically increase if all the nodes' starting temperature is lower

than the running mode's stable state temperature.

and knowing that TSS(P−Q) ≤ Tmax
sys , it is possible to conclude that the stable-state

temperature of the system monotonically increases within [P−Q,P]. In sum, the tem-

perature monotonically decreases within [t0,P−Q] and monotonically increases within

[P−Q,P], so the peak temperature must occur at P.

Again, note that due to the periodicity of the peak power trace, the stable temperatures

of the thermal nodes (i.e. CPU and memory) can be readily calculated using the method

presented by Fan et. al in [28] (Thm. 4.3).

107

4.3.2 Periodic server optimization

The problem now becomes how to optimize the periodic server to meet the peak tempera-

ture constraints for both the CPU and memory. Note that, given a task set G, Theorem 2.1

helps to identify the upper bound forP and corresponding allocation timeQ for a periodic

server such that the timing constraints of G can be satis�ed. In addition, with the method

introduced above, we can also quickly bound the peak temperature of a given server. The

problem, however, is what if the peak temperature constraints cannot be satis�ed? To ad-

dress this problem, we made an interesting �nding, which is formulated in the following

theorem.

Theorem 4.6. Given a task set G and two periodic servers [Pi,Qi] and [P j,Q j], let

Qi/Pi = Q j/P j and Pi ≤ P j. Let Tmax(i) and Tmax(j) be the peak temperatures when

running with the corresponding peak power traces for the two periodic servers with no

power mode transition overhead, then Tmax(i)≤ Tmax(j).

Proof. The proof of this theorem is based on the analysis presented in [183]. Authors

in [183] introduce the concept of m-Oscillating schedule for a periodic power trace in

their following de�nition

De�nition 4.2. [183] Let S(t) be a periodic power trace schedule on a multi-node plat-

form. The corresponding m-Oscillating schedule, denoted as S(m, t), is the one that scales

down the length of each state interval by m times without changing its running modes kq.

Note that the peak power trace periodic server of our analysis match with Def. 4.2

with m = Tmin/P, where Tmin is the smallest period of any task allocated to the server,

as de�ned in Thm. 2.1. Therefore, we can have mi ≥ m j, with mi = Tmin/Pi and m j =

Tmin/P j, because Pi ≤P j.

According to the following theorem,

108

Theorem 4.7. [183] Let S(t) be a periodic power trace schedule on a multi-node plat-

form that contains z state intervals, S(m, t) be the corresponding m-Oscillating schedule,

and Tmax(t) be the peak temperature of the system at any time t. Then, Tmax(S(m, t)) ≥

Tmax(S(m+1, t)).

we may conclude that since mi ≥ m j, then Tmax(i)≤ Tmax(j).

According to Theorem 4.6, if a periodic server cannot meet the temperature con-

straints, we can always try to minimize its peak temperature by reducing the server period

while keeping the capacity, i.e. Q j/P j, to ensure the timing constraints. From Theo-

rem 4.6, the smaller the period, the lower the peak temperature. However, this conclusion

is true and can be proved only when the power mode transition overhead can be ignored.

In practical scenarios, when the CPU or memory transit from one power mode to an-

other, the system incurs not only a timing penalty but also a power penalty. The more the

transitions happen, the larger the total overhead becomes and compromises the potential

improvement. In our approach, we resort to a simple search algorithm to �nd the trade-

offs between the increased transition overhead and server period reduction to maximize

the peak temperature reduction.

4.3.3 CPU/Memory Co-Scheduling using Periodic Server (CSPS)

We are now ready to present our CPU/memory co-scheduling algorithm using periodic

server, developed based on Theorems 2.1, 4.1, 4.2 and 4.6, as shown in Alg. 3.

Alg. 3 takes inputs including task set G, the operating system time slice (OSq), the

temperature thresholds for the CPU and DRAM, and the server overhead time Dl. For

a given value of the server period Px, the algorithm �nds the minimum allocation time

Qmin that guarantees the timing constrains of G according to theorem 2.1 (line 6). The

overhead time is further accounted into the allocation time (line 7). Then, with the server

109

period, allocation time, and power values of CPU and DRAM (PCPUmax and PDRAMmax for time

Q, PCPUS0 and PDRAMSR for time P−Q), the algorithm generates the peak power traces for

the CPU and DRAM (lines 8 and 9, respectively). The peak temperatures for CPU and

for DRAM in stable state are calculated using Theorem 4.2 (line 10), then compared

against the corresponding thresholds (line 11). If the peak temperatures are both under

the thresholds, then the parameters Px and Qx are stored in a matrix L (line 16).

Algorithm 3 iteratively tests all possible values of Px between a maximum and a

minimum value (for loop line 5), seeking to obtain a lower peak temperature bound,

following Theorem 4.6. According to Theorem 2.1, it is necessary that the period for the

server must be lower than the minimum period of any ti ∈ G, i.e. ∀i,1≤ i≤ N,Pi ≤ Tmin.

Also, the minimum value or the server period must be the operating system time slice.

Thus, OSq ≤ Px ≤ Tmin (lines 1 and 2). According to Theorem 4.1, if there exists at

least one single setting [P,Q] in the set of feasible combinations L, then it is possible to

conclude that G is safely feasible and schedulable under the CPU and DRAM temperature

constrains, and the algorithm chooses the schedulable combination Lsch such that the

overall system temperature is minimum as the �nal output. If L is empty, then we cannot

conclude that G is feasible (lines 19 to 23).

4.4 Experiments, Analysis and Results

To study the effectiveness of our proposed approach, we compared the simulation results

of our approach with other related approaches listed below:

• No-Server This is the most primitive approach. CPU/memory runs a task when the

task queue is not empty and enters low power modes when no task is ready. No

periodic server is applied in the scheduler. This is the traditional dynamic power-

down approach.

110

Algorithm 3 Co-Scheduling using Periodic Server (CSPS)

Input: G= [C,T,H,µ], OSq, Thr
DRAM, ThrCPU , Dl

Output: Whether G is feasible or not, and Lsch

1: L= /0; Pmin = OSq; PTS = ¥; QTS = ¥;

2: Pmax = minimum period of any ti ∈ G;
3: PCPUmax =max

ti∈G

[
PCPUi

]
;

4: PDRAMmax =max
ti∈G

[
PDRAMi

]
;

5: for Px =Pmax downto Pmin with step= OSq do

6: Qmin =MinimumAllocationTime(Px,G);
7: Qx = ⌈(Qmin+Dl)÷OSq⌉ ·OSq;
8: P CPU

x = PowerTraceCPU(Qx,Px,P
CPU
max ,PCPUS0);

9: P DRAM
x = PowerTraceDRAM(Qx,Px,P

DRAM
max ,PDRAMSR);

10: (T pCPUx ,T pDRAMx) = SystemTemperature(P CPU
x ,P DRAM

x);
11: if T pCPUx ≤ ThrCPU AND T pDRAMx ≤ ThrDRAM then

12: PTS =Px;

13: QTS =Qx;

14: T pCPUTS = T pCPUx ;

15: T pDRAMTS = T pDRAMx ;

16: L= L
∪
{T pCPUTS ,T pDRAMTS ,PTS,QTS};

17: end if

18: end for

19: if L ̸= /0 then

20: Lsch = {T pCPU ,T pDRAM,P,Q} ∈ L, s.t. overall system temperature is minimum;

21: else

22: Return: G is not schedulable;

23: end if

111

• CPU-Only: This represents many existing approaches (such as [46]) that ignore the

thermal impacts of memory. CPU is managed using a periodic server, with server

parameters [P,Q] determined by the heat dissipation of CPU only;

• Mem-Only: This approach ignores the thermal impacts of CPU. CPU is managed

using a periodic server, with server parameters [P,Q] determined by the heat dissi-

pation of memory only;

• CPU/Mem-Co-Scheduling: This is our approach illustrated in Algorithm 3.

In our simulation, we adopted the similar CPU parameters used in previous works,

such as [28, 90, 106]. We built our memory model based on the Micron's power model.

Speci�cally, we adopted the power model for the DDR3 DRAM chip of 2GB, using a

low conductivity substrate [184], for a memory system with a total of four ranks (M = 4).

Based on this model, we observed that the maximum DRAM power is approximately half

of the maximum CPU power, which �ts the power ratio of CPU and memory reported in

the literature [59]. We assumed an ambient temperature value of 35◦C.

We randomly generated 3000 task sets for our simulation. Speci�cally, we randomly

generated task periods and execution times such that the task set utilizations cover a range

from 0.01 to 0.69. We randomly generated values for the parameter µi in Eq. 2.5 within

speci�c ranges to generate different types of tasks: High-memory bounded ([0.8,1.0]),

mild-memory bounded ([0.6,0.8]), and CPU-bounded ([0.01,0.6]). Also, using the same

ranges, we randomly generated the ratio between each task maximum number of memory

requests and the maximum memory bandwidth, i.e., Hi/BW
DRAM
max . For overhead, we

chose a value of 1 ms which is able to account for CPU and memory wake ups, plus cache

cold starts [185]. We assume an OSq = 5ms, which is a common value among operating

systems.

112

We set the peak temperature threshold for CPU with the typical value of 90◦C. Also,

we set the memory peak temperature threshold as the memory datasheet nominal max-

imum value of 85◦C. Additionally, we compare also with a memory peak temperature

threshold value of 60◦C. Although such a temperature is below the datasheet maximum

ratings, according to recent studies [186], it is possible to further improve the retention

time and achieve additional power and energy savings in a DRAM system if memory

temperature is low.

Fig. 4.7 compares the feasibility of the tested task sets using each of the different

approaches and setting the DRAM peak temperature threshold to 85◦C. Fig. 4.7a com-

pares high-memory bounded tasks, 4.9b and 4.7c compare mild-memory bounded and

CPU-bounded tasks, respectively. Additionally, Fig. 4.8 shows the average of these three

sub-�gures. Each sub-�gure shows feasibility results using different values for the cou-

pling thermal resistor Rcp of Fig. 4.5, with values equal to 0.1 K/W , 1 K/W and 10 K/W .

Also Fig. 4.9 compares the feasibility of the tested task sets like Fig. 4.7, but setting the

DRAM peak temperature threshold to 60◦C.

When comparing the results of the No-Server approach, we can immediately see the

signi�cant improvement of task set feasibility when using a periodic server. All three sub-

�gures of Fig. 4.7 show that theNo-Server approach has less than 40% schedulability than

the other three approaches implementing a periodic server. Also, the schedulability of the

Memory-only approach decreases with a higher memory usage, which is a logical result

since with a higher memory usage the power consumption of DRAM is increased and

therefore its operating temperature.

Additionally, the schedulability of the CPU-only approach is the lowest for CPU-

bounded tasks (Fig. 4.7c). However, the schedulability of CPU-only for the case of

mild-memory bounded tasks is higher than for the case of high-memory bounded tasks.

This can be explained in the fact that such type of workload is generating a balanced

113

power consumption of CPU and DRAM that allows both systems to reduce their peak

temperatures.

When comparing theCPU/MemCo-Scheduling approach withMemory-only andCPU-

only, for the cases of mild-memory bounded and high-memory bounded tasks, our ap-

proach CPU/Mem Co-Scheduling always shows a higher schedulability for all the three

different values of coupling resistor Rcp. The increment in schedulability for theCPU/Mem

Co-Scheduling approach is around 3% when compared to the CPU-only approach, and

more than 40% in average, when compared to the Memory-only approach. Fig. 4.7a

and 4.7b show that for some cases it is necessary to consider the parameters from both

the CPU and memory sub-systems to generate an schedule that guarantee the timing and

temperature constraints of the system. When comparing the CPU/Mem Co-Scheduling

approach with the CPU-only approach, for the case of CPU-bounded tasks, it can be seen

that our approach has almost the same schedulability values as CPU-only (see Fig. 4.7c).

This can be explained by the fact that for these type of tasks the major power consumption

is performed by the CPU, and the CPU will drive the system's peak temperatures.

Fig. 4.8 shows the average feasibility values for the three types of task sets consid-

ered (from high-memory bounded to CPU-bounded) when the DRAM peak temperature

threshold is set to 85◦C. It can be seen an increment of feasibility when using our pro-

posed methodology, compared to the other three approaches. Also notice that when the

value of Rcp is small, since both the CPU and memory sub-systems are highly coupled,

the memory power can be dissipated more ef�ciently through the CPU cooling platform,

lowering the overall systems peak temperatures. As can be seen, our methodology is able

to identify real-time task workloads where the dependency of either the CPU or the mem-

ory makes the system unschedulable under peak temperature constraints, if the server

parameters are analyzed considering only the CPU characteristics or considering only the

memory characteristics.

114

(a)

(b)

(c)

Figure 4.7: Task set feasibility comparison using each different method, for different types of

tasks with DRAM peak threshold temperature of 85◦C. High memory bounded (a), mild memory

bounded (b) and CPU bounded (c), using also different values for Rcp of Fig 4.5.

115

Figure 4.8: Average task set feasibility comparison with CPU peak threshold temperature of 90◦C
and DRAM peak threshold temperature of 85◦C

Fig. 4.9 shows similar results as Fig. 4.7, but with reduced values in the schedulability

of tasks sets using any method. Since the peak temperature threshold for DRAM is set to

60◦C, the majority of the resulting feasibility values are conditioned by the schedulability

of the DRAM device. Notice that even for the case of CPU-bounded tasks, our proposed

approach is able to increase the feasibility of the system (Fig. 4.9c).

Fig. 4.10 shows the average feasibility values for the three types of task sets consid-

ered (from high-memory bounded to CPU-bounded) when the DRAM peak temperature

threshold is set to 60◦C.

We can con�rm our previous conclusion above mentioned, i.e., that when CPU and

memory are tightly coupled within a small space, and tasks are mixed between memory-

bounded and CPU-bounded ones, the heat dissipation generated from the memory can

be more effectively dissipated using the cooling methods for CPU, at a cost of increased

CPU temperature. If the peak temperature threshold of the DRAM device must be set to

a low value in order to extend the retention time and minimize the number of refreshes, it

is still possible to implement a periodic server in the platform that guarantee a higher task

set feasibility, but the DRAM peak temperature will drive mostly the feasibility condition

of a particular task set, with a task set feasibility decrement.

116

(a)

(b)

(c)

Figure 4.9: Task set feasibility comparison using each different method, for different types of

tasks with DRAM peak threshold temperature of 60◦C. High memory bounded (a), mild memory

bounded (b) and CPU bounded (c), using also different values for Rcp of Fig 4.5.

117

Figure 4.10: Average task set feasibility comparison with CPU peak threshold temperature of

90◦C and DRAM peak threshold temperature of 60◦C

Thus, as our experimental results demonstrate, as memory power consumption be-

comes more and more signi�cant, an effective thermal solution needs to handle the heat

dissipation not only from CPU but also from memory as well.

4.5 Summary

Thermal management is critical for many IoT applications that exhibit real-time character-

istics with high power densities. We develop a novel strategy that employs periodic server

to collaboratively schedule both the CPU and memory to meet the timing constraints for

a real-time task set and in the meantime satisfy the temperature constraints for both the

CPU and memory. To the best of our knowledge, this is the �rst work for thermal-aware

hard real-time system design that takes into account the heat generations and their inter-

actions from both the CPU and memory devices. Our experimental results, with system

parameters drawn from manufacture data sheets, clearly demonstrate the effectiveness of

our proposed approach in reducing the peak temperature as well as the need to take both

the CPU and memory systems into consideration simultaneously for system-level thermal

management.

118

CHAPTER 5

THERMAL-AWARE JOINT CPU AND MEMORY SCHEDULING FOR HARD

REAL-TIME TASKS ON MULTICORE 3D PLATFORMS

As introduced in chapter 1, it is expected that in the near future multiple industries be-

gin to develop commercially real-time systems using 3D integrated platforms, and given

the dramatically increased power density not only from CPUs but also from memory sys-

tems as well, which are expected to consume as much power as the processing cores in

embedded 3D platforms [154], we believe that a joint CPU and memory system resource

management is highly desired for 3D platforms to effectively deal with the heat dissi-

pation con�ned in a small package. In addition, different from many existing thermal

management strategies, which are reactive and best-effort in nature, we are more inter-

ested in ones that can ensure the strong guarantee for real-time applications.

Thus, in this chapter we study the problem of how to schedule a set of �xed-priority

hard real-time tasks on a 3D multi-core platform, while keeping temperatures for both the

logic layer and memory layers under peak temperature limits. Again, we focus on a �xed-

priority assignment since this is the most commonly used scheme for real-time systems

design in industry [23, 77]. Additionally, our proposed method can be easily extended to

other scheduling methods.

A key challenge in our problem is how to manage CPUs and memory systems in a

collaborative manner to meet the task's timing requirements and peak temperature con-

straints. There have been many thermal aware resource management strategies proposed

on 3D architectures, e.g. [155�157, 187]. Most of them are reactive and best-effort in

nature. Thus, these approaches are intuitive and may be effective in dealing with thermal

emergencies. However, one major problem is that they cannot guarantee that the chip's

temperature will not exceed pre-determined thresholds.

119

To overcome this challenge, we present a novel approach that incorporates the pe-

riodic resource model [9] for both CPUs and memory systems to guarantee the timing

constraints for hard real-time systems under thermal constraints. The periodic resource

model can accurately capture the characteristics that guarantee resource allocations of Q

time units every P time units [9] [80]. The beauty of such a model is that it allows us to

take advantage of the feasibility conditions for a periodic resource server (see chapter 2),

to guarantee the timing constraints for real-time tasks. More importantly, we can also take

advantage of the periodic behaviors of CPU and memory and formulate the temperature

dynamics analytically to achieve the deterministic guarantee for thermal constraints. Our

approach chooses judiciously the periodic server settings for each processing core and for

the memory bus arbitration in such a way that the peak temperature constraints for both

the multi-core layer and memory layers are satis�ed. To the best of our knowledge, this is

the �rst work for thermal-aware hard real-time systems design implemented on a 3D plat-

form that considers the heat generations and their interactions from both the multi-core

and memory layers. Our experimental results, with system parameters drawn from man-

ufacturer's data sheets, clearly demonstrate the effectiveness of our proposed approach in

increasing the schedulability of real-time tasks, while keeping the peak temperature of the

system under a threshold value.

The rest of the chapter is organized as follows. Section 5.1 describes the most related

research projects. In section 5.2 we present our architecture and system model, the CPU

and memory power and thermal models. Section 5.3 describes our problem formulation

and discuss our approach in detail. We present in section 5.4 the experimental evaluation

and we summarize in section 5.5.

120

5.1 Related Work

3D integration technology is a way to mitigate the �Memory Wall� challenge in future

microprocessors [153]. This sharp rise in temperature prohibits the full potential of 3D

stacks even though they have much higher bandwidth and thus capability to handle higher

loads. In other words, 3D stacks hit the thermal wall at higher frequencies prohibiting per-

formance scaling. It should be noted that the rise in temperature is caused by the higher

activity of the cores which can occur due to various reasons, such as, higher frequency,

complex cores, compute-intensive applications, power-hungry accelerators, etc. Further-

more, the increase in temperature decreases the charge retention capability of DRAM in-

creasing refresh rate, and also has a signi�cantly negative impact on DRAM lifetime and

reliability. As a result, it has been advised to use 3D stacks only for memory-intensive

applications running at a lower frequency [53], diminishing the full potential of 3D inte-

gration technology.

3D memory-processor integration has received considerable attention in the litera-

ture [151�153], and multiple research studies have been proposed to manage the ther-

mal problems in 3D integration technology. For instance, Meng et al. [128] introduces

a framework to model on-chip DRAM accesses and analyzes performance, power, and

temperature trade-offs of 3D systems. Their architecture focuses on one single layer of

logic and one layer of DRAM memory. Chen et al. [154] characterize the thermal and

performance behavior of the target architecture when the voltage and frequency levels

of cores and DRAMs are synergistically controlled, targeting an architecture with multi-

ple layers of DRAM memory. Some studies propose to manage the power and thermal

parameters in 3D ICs by performing memory mapping techniques [155, 156]. The re-

search proposed in [188] describes a novel runtime system that scales the frequency of

both processor and DRAM-based on the performance and power models. Authors model

121

the system power consumption at various processor and DRAM frequencies to �nd op-

portunities for scaling the voltage and frequencies of both CPU and DRAM in order to

minimize the energy consumption. Other thermal management approaches for 3D archi-

tectures, such as [157], propose to reduce temperature variance and the peak temperature

of a 3D multi-core processor and stacked DRAM by thermally-aware thread migration

among processor cores. However, these thermal management mechanisms are online re-

active in nature, and cannot ensure real-time guarantee under thermal constraints on 3D

platforms.

There are research works (e.g. [80]) that offer mechanisms to guarantee the schedula-

bility of real-time systems on multi-core platforms, employing periodic resource servers,

but without considering the power and thermal properties of the applications. There are

also a few research works, such as [28] that consider the power and thermal properties of

the system, but they only consider processing cores neglecting the DRAM power impact

on the whole system temperature. Research works, such as [45, 46] propose mechanisms

to minimize the peak temperature of the CPU using periodic resource models. However,

these works do not consider the effect of the number of memory requests of each task,

nor the power and temperature of the DRAM system. Additional works such as [189]

and [190], propose thermal management mechanisms, considering only the thermal in-

teraction of adjacent layers in a 3D architecture, neglecting the thermal relation between

areas within the same layer, due to the high thermal coupling between layers. These

works use the concept of super-core, where all the architecture areas vertically adjacent

are treated as a single thermal unit in order to manage its temperature. However, their

methodologies are aimed to be implemented on 3D logic-to-logic integration.

Other research works, such as [191], consider the power-performance trade-off be-

tween memory and CPU, but do not consider the thermal behavior of the system. A

closely related work is proposed in [187]. Authors propose a thermal-aware task allo-

122

cation, memory mapping, and task scheduling methodology for the 3D stacked memory

and processor architecture in order to reduce the system's peak temperature. However,

this research work does not speci�cally address the timing guarantees of hard-real time

task. Unlike their mechanism for reducing the power consumption of the memory layers

only, our methodology proposes to use periodic resource servers to synergistically control

the power of logic and memory layers.

5.2 Preliminary

In this section, we introduce the architecture and the real-time system model used in this

paper, along with the power and thermal models.

5.2.1 System Architecture

In this work, we consider a 3D system architecture, similar to that in [192], consisting of

a logic layer with multiple DRAM layers on top of it. We assume face-to-back bonding

and inter-layer communication using through-silicon vias (TSVs) that are etched through

the bulk silicon for vertically connecting the layers [150].

The logic layer consists of P in-order execution processing cores denoted as Pk, with

k = 1,2, ...,P, each one with its own L1 instruction and data caches. Each core also has a

private L2 cache. We further assume that such a logic layer is the closest to the heat sink.

The DRAM layers consist of Y different layers. Each DRAM layer consists of B

symmetrical banks. For this work, we assume that P = B, such that each core P has

Y banks on top of it. In total, the platform has L layers (memory plus logic), where

L = Y + 1. We also assume that each set of banks of different DRAM layers comprises

a DRAM rank. Thus, the system has B different ranks, each of which has Y banks.

Additionally, the number of ranks is equal to the number of processing cores, and each

123

Figure 5.1: 3D platform example with 16 cores in one logic layer and 16 banks per DRAM layer

in 4 memory layers

pair is vertically aligned. We consider the system to be implemented using memory-

partitioning, such that each processing core Pk can issue memory requests only to the

rank Bk on top of it, and such memory requests will be equally distributed among all the

banks of the same rank. An example 3D architecture with one logic layer holding 16

processing cores and 4 DRAM layers with 16 DRAM banks each is shown in Fig. 5.1.

The logic layer also has Q on-chip memory controllers (MC), denoted as MCq with

q= 1,2, ...,Q, to interface with the different DRAM ranks. We do not make any assump-

tion on the number of MCs in the system. However, since the timing constraints depend

on the task execution time that is affected by the memory delay, we assume the mem-

ory accesses to each rank of each processing unit are bound by the implementation of a

TDMA bus arbitration [193] on each memory controller in the platform. Normally the

power of each MC is a constant [128] [154], so in this work, we do not consider the effect

of the power consumed by each MC in the system's peak temperature.

For simplicity, we assume that the MC operates the DRAM ranks using a �close-

row� policy, and that all write memory requests are not buffered and consume memory

124

bandwidth and power. Furthermore, we assume that each memory transaction consumes

the same amount of power in the memory.

5.2.2 System Model

Task Set Model

The task set consists of N independent implicit-deadline periodic tasks, denoted as G =

{t1,t2, ...,tN}, scheduled according to the Rate Monotonic Scheduling (RMS). Each task

ti, where 1≤ i≤N, is characterized by its minimum inter-arrival time Ti and a worst-case

execution time (WCET) Ci when running in isolation in the system with all the DRAM

Bandwidth available (BWmax). The maximum DRAM BW used by any job of a task ti

is de�ned as H BWi, and the minimum DRAM BW from any job of a task ti is de�ned

as Z BWi. We consider a system with static partitioning, i.e., each processing core is

assigned with a �xed subset of tasks Gk.

Periodic Resource Model

We consider that the scheduler implements a periodic resource control mechanism (pe-

riodic server) on each processing core Pk to throttle the access of each ti ∈ Gk to the

corresponding core resource, based on the periodic resource model proposed by Shin and

Lee [9] for compositional real-time systems. In our implementation, the periodic server

consists of two parameters: �rst, the period of the server (Pk), which is the recurrent

time of repetition; second, the allocation time (Qk) when the resources are available to the

currently scheduled task ti ∈ Gk. Hence, we have that Qk ≤ Pk. Thus, task ti cannot be

executed during the time Pk−Qk. A schematic of a periodic server is shown in Fig. 5.2.

125

Figure 5.2: Periodic server time schedule example for any processing core Pk and its associated

DRAM rank

To ensure deadlines of each sub-task-set assigned to each processing core in our sys-

tem, we employ two approaches. The �rst schedulability condition was proposed by Shin

and Lee [9], stated in Thm. 2.1 of chapter 2.

The second schedulability condition was proposed by Guo et.al. [80] when consider-

ing the harmonic periods of a task set, stated in the following theorem.

Theorem 5.1. [9,80]. Given a single periodic resource server, with periodPk, allocation

time Qk and capacity Ck, i.e. Ck = Qk/Pk, and a task set Gk with its harmonic transfor-

mation G′k with respect to Pk, if U(G′k) ≤ Qk/Pk, then the task set Gk is schedulable on

the periodic server under RM scheduling policy.

We assume that each processing core will enter into a low-power mode (see chapter

2) during the time Pk−Qk. When the core exits from its low-power mode, it requires an

extra overhead time Dl that must be accounted into the server allocation time Qk. Such

Dl time is architecture dependent and considers delays such as CPU and DRAM power

mode changes and caches cold starts.

In addition, we consider that each DRAM memory access has an speci�c delay time

that depends on the accessing time to the caches, the DRAM commands decoding per-

126

formed by the MC and the DRAM data retrieving. Such a delay time is architecture

dependent. Besides, we assume that each LLC miss is a DRAM memory access and that

a local cache miss is stalling, which means whenever there is a miss in an LLC, the core

is stalling until the cache-line is fetched from memory. Furthermore, we consider that

preemption does not affect the number of cache-misses of a task (e.g. by partitioning

cache to each task).

5.2.3 3D Platform Power Models

In this chapter we use the model for CPU as described in chapter 2, and to be conservative,

the dynamic power switching activity factor parameter µi is de�ned based on its best-case

bandwidth Z BWi, that is: µi = 1− ((Z BWi · tDL)/(BxRQ)), where tDL is the worst-case

latency of a DRAM request, and BxRQ is the number of bytes of each memory request.

Thus, the CPU power consumed on a speci�c core and associated with each task ti can

be formulated as Eq. 2.5, and for the sake of clarity we rewrite it as follows:

Pci =C0+C1 ·TC(t)+µi ·C2 · (V CPU
dd)3 (5.1)

We also contemplate that the CPU has at least two power operation states (which may

be applied to a wide range of today's microprocessors): (i) Active (S1): Fully operational

state; CPU is ON and operating at the maximum voltage and frequency; CPU is con-

suming both static and dynamic power, i.e. P CPU
S1 i = Pleak+Pdyn i. (ii) Deep Sleep (S0):

Stand-by mode state; CPU clock generator is OFF; Majority of CPU internal devices are

OFF; delayed wake-up time; CPU is not consuming either static or dynamic power, i.e.

PCPUS0
∼= 0..

Also in this chapter we use the model for DRAM memory devices as described in

chapter 2. As stated before, we assume that each bank of the same rank has the same

bandwidth. Therefore, the bandwidth of each task ti in each bank is assumed to be

127

H BWbanki = H BWi÷ (L− 1). Also, since active and read/write powers are dependent

on the bandwidth of ti, they can be simpli�ed into a single constant PARW for the DRAM

bank power calculation [157]. Consequently, the total power consumed by the DRAM

bank when executing a task ti is as follows:

Pmbanki = Pbg+PARW ·H BWbanki. (5.2)

Recall also from chapter 2 that DDR3 technology offers three different power-down

modes to save power, and we are focused on the self-refresh power-down mode with

power consumption denoted as PDRAMSR .

5.2.4 3D Platform Thermal Model

The 3D platform thermal behavior is similar to existing works (e.g. Zhou et.al. [190],

Meng et.al. [128], and Chen et.al. [154]). 3D platforms have a relatively weak thermal

correlation between banks or cores within the same layer. Instead, they have a much

larger intra-layer thermal resistance than an inter-layer thermal resistance. Hence, it is

reasonable to consider the thermal effect of one supercore (SC), consisting of a processing

core plus its associated DRAM rank, to be isolated from the rest in the same platform,

similar to [189,190]. From this point, we will refer to each SC as SC j as the combination

of core Pj and its associated rank B j.

Figure 5.3a shows our thermal model for one core with its associated rank of L−

1 banks on top of it. Each bank in each layer is vertically interconnected by a series

of thermal resistors R1,R2, ...,RL of small value in order to model the strong thermal

correlation of vertically adjacent layers. The resistance Rc connecting the logic layer

to the ambient includes the effect of the heat spreader and the heat sink. Each rank is

consuming Pmbank watts and the core is consuming Pc watts. The whole SC has a tight

thermal coupling, modeled as a single thermal capacitance Csc.

128

From the thermal model in Fig. 5.3a, a simpli�ed thermal model is shown in Fig.

5.3b, with an equivalent power source and equivalent thermal resistance, PSC and Re re-

spectively. The temperature in the only node of the equivalent model represents the tem-

perature of the top DRAM layer of the SC. If such a top layer temperature Ttop is kept

under the temperature threshold, we can guarantee, in a stable state, that the tempera-

tures for other layers beneath the top one are under the temperature threshold too. This

conclusion is formulated in the following theorem.

Theorem 5.2. Given a 3D platform with one logic layer closer to the system heat sink,

and L− 1 DRAM layers on top of it, modeled as an electrical circuit as shown in Fig.

5.3a, the peak temperature in the periodic stable state of any layer in the platform is

lower than the peak temperature of the top DRAM layer.

Proof. For the electrical circuit shown in Fig. 5.3a all the currents from the current

sources (representing the power of each layer) are positive. In stable state, starting from

the top node (layer) T1, the current from the current source attached to each node must

be added in the node, and the resulting current must �ow to the node below through the

inter-layer resistance. Therefore, the voltage of each inter-layer resistance has the positive

polarity on its top node. Hence, since the temperature of each layer is represented by the

voltage of each node in the network, the temperature of each layer will be larger or equal

than the temperature of the layer beneath it. Thus, the farther a layer is from the heatsink,

the hotter it may get. So, the temperature of the top layer must be larger than or equal

than any other node in the network.

The value of Ttop depends on thermal resistances values and average power values

PmGk and PcGk when a task set Gk is executed on a SC running a resource server of

parameters ([Pk,Qk]). We calculate PmGk = (Pk/Qk) ·åti∈GkUi ·Pmbanki and PcGk−dyn =

(Pk/Qk) ·åti∈GkUi ·Pci−dyn. Assuming R1 = R2 = ...= RL = Rm, Ttop k can be calculated

129

(a) (b)

Figure 5.3: 3D Platform Super-Core Thermal Model and its Equivalent Circuit. (a) One core with

its associated rank of L−1 banks on top of it. Each layer is vertically interconnected by thermal

resistors R1,R2, ...,RL. Rc includes the effect of the heat spreader and the heat sink. Each rank is

consuming Pmbank watts and each core is consuming Pc watts. SC tight thermal coupling modeled

as a single thermal capacitanceCsc. (b) Equivalent thermal model with an equivalent power source

and equivalent thermal resistance, PSC and Re respectively.

as:

Ttop k =
Tss− ((Tss−Tamb) · (e−Qk·B))−Tamb · (e−Pk·B)

(1− e−Pk·B)
, (5.3)

where, Tss = A/B, with A = (Re ·CSC)
−1 · [a ·PmGk + b ·PcGk−dyn+ b ·C0+ Tamb] and

B= (Re ·CSC)
−1 · [1−b ·C1] [106]. Also, a= Rc ·(L−1)+Rm ·kl , and b= Rc+Rm, with

kl = å
L−1
x=1

(x+1), and Re = Rc+L ·Rm.

5.2.5 Problem Formulation

Given the system models as introduced above, we can formally formulate our research

problem as follows:

130

Problem 5.1. Given a 3D platform with a logic layer of CMPs, multiple DRAM layers on

top and a set of �xed priority real time tasks G scheduled using RMS, �nd the optimal task

partition among the processing cores {SC1,SC2, ...,SCP}, and the optimal parameters

[Pk,Qk] for each resource server implemented in each SCk to guarantee the feasibility

of the task set, i.e. the timing constraints of all tasks can be guaranteed while the peak

temperatures in stable state of the processing cores and DRAM banks are kept under a

given threshold (TempThr).

5.3 Our Approach

To solve Problem 5.1, one key challenge is how to ensure that temperature for the process-

ing core and memory does not exceed their threshold. While there have been extensive

thermal aware techniques proposed on multi-core platforms (e.g. [155�157, 187]), most

of them are responsive and best-effort in nature and cannot guarantee the temperature

constraints. Temperature constraint violation can severely degrade memory performance

and/or lead to unexpected processor shutdown, and thus make real-time tasks miss their

deadlines. While there are some works (e.g. [194]) that analytically capture temperature

variations based on existing power traces, how to optimize the task allocations in face of

real-time and temperature constraints remains a problem. To solve this problem, we adopt

the periodic resource model in our approach to manage the CPU and memory resources.

5.3.1 A Periodic Resource Model Based Approach

Different from the traditional resource model that keeps active when the ready queue

is not empty, the periodic resource model proactively suspends the service for requests

periodically but guarantees the availability of resources for Q time units every P time

units. It has been well recognized [46] [80] that the periodic resource model can greatly

131

facilitate the analytical study of hierarchical resource sharing strategies with different

scheduling algorithms for different services. Many feasibility conditions are introduced

based on the periodic resource model.

Note that the periodic behavior of the periodic resource model also makes it a highly

deterministic model for peak temperature guarantee based on Eq. (5.3). Given a task

set Gk to be allocated to a supercore SCk, and a speci�c server period value Pk, we can

readily develop an algorithm, as shown in Alg. 4, to determine (1) the allocation time for

the periodic server (Qk), which can make the Gk feasible, and (2) the SC's peak temper-

ature. The algorithm determines the two possible Qk using the two feasibility conditions

presented in Theorems 2.1 and 5.1 (Lines 1 to 4), and the two corresponding peak tem-

peratures are calculated using Eq. 5.3 (Line 5). If for the given task set Gk there exists a

feasible Qk, then the algorithm returns the smallest possible peak temperature Tpeak and

the pair [Pk,Qk] that allocated Gk (Line 7).

As shown in Alg. 4, for a given task set, we can readily determine its periodic server

and analytically check its feasibility in terms of the timing and temperature constraints.

The problem then becomes how to determine the task partitioning that can lead to the

optimal solution. It is not dif�cult to see that the task partitioning results have profound

impacts on parameter settings for periodic servers, and thus timing and temperature con-

straints. We next study how to develop appropriate task partitioning strategies.

5.3.2 Real-Time Task Partitioning Strategies

It is a well-known fact that task partitioning is a NP-hard problem [23]. Therefore, we

focus on developing some effective and computationally ef�cient heuristics. To this end,

we can readily design a resource constrained bin-packing based approach, called Simple

Combined Resource Usage Partitioning (SCRUP) approach.

132

Algorithm 4 Function FeasibilityChecking(Gk,Pk)

Input: Gk = [C,T,H BW,Z BW], and Pk (period for the periodic server).

Output: Peak temp. of top DRAM layer and periodic server con�g. [Qk,Pk]

1: Obtain the harmonic task set of Gk, i.e. G
′
K , using Pk as the base period;

2: ifU(G′k)≤ 1 then QHUB
k =U(G′k) ·Pk; end if

3: Let Nk = |Gk| andUBRM =U(Gk); Using Eq. 2.1 solve for Ck;

4: if Ck ≤ 1 then QSL
k = Ck ·Pk; end if

5: Use Eq. 5.3 to calculate T hub
top Gk

for [QHUB
k ,Pk] and T

sl
top Gk

for [QSL
k ,Pk];

6: if ∃ feasible Qk then

7: Return Tpeak = min
[QHUB

k ,Pk]
∧
[QSL

k ,Pk]

(
T hub
top Gk

,T sl
top Gk

)
, and [Qk,Pk];

8: else Return Tpeak = ¥, and [0,0]; end if

Since resource utilization is closely related to the feasibility of a real-time task set, in

the SCRUP approach, each task is characterized by the Combined Resource Utilization of

processing core and memory. Speci�cally, the combined resource utilization ResUtili of

a task ti ∈ G, is de�ned by the following equation.

ResUtili =Ui+Ui ·
[
H BWi

BWmax

]
. (5.4)

In Eq. (5.4), Ui is the CPU utilization required by task ti. Its memory bandwidth

percentage H BWi/BW
max scaled by Ui indicates the fact that memory usage is needed

only when ti is being executed. With the combined task utilization de�ned in Eq. (5.4),

we can then sort the tasks based on their combined task utilization and then employ the

traditional �rst-�t bin package method to allocate tasks to a SC. The detailed algorithm is

shown in Alg. 5. Speci�cally, in Alg. 5, tasks are �rst sorted with their ResUtili (Line 2).

Subsequently, the algorithm packs tasks in the sorted order for the core verifying that the

subtask set chosen is feasible (for loop lines 8 to 12). Such a subtask set is assigned to the

next available core and the process is repeated over the remaining unallocated tasks until

there are no more tasks to allocate or no more available cores (while loop line 5). The

algorithm returns if the task set is feasible or not. If feasible, it also returns the sub task

set allocated to each core.

133

While the combined resource utilization helps to identify the resource requirement

of different sources by a task, one major pitfall of this metric is that two tasks with the

same combined resource utilization may have different overall power consumption. In

addition, even though both tasks may consume the same amount of total power by CPU

and memory, the result peak temperatures may be different as indicated in Eq. (5.3).

Therefore, to better deal with the temperature constraints, we develop another metric, i.e.

the Nominal Total Power consumption (NTP), to measure the combined resource usage,

which is de�ned in the following equation:

NTPi = (b ·Ui ·Pci−dyn)+(a ·Ui ·Pmbanki), (5.5)

where Pci−dyn and Pmbanki are power consumptions for processing core (dynamic power)

and memory when executing task ti, which are de�ned in Eq. 2.5 and 2.7, respectively.

a and b are two constants de�ned in Eq. (5.3). Essentially, NTPi is the equivalent total

power consumption when a task is executed in the reduced thermal model as depicted in

Figure 5.3b.

With the introduction of a new metric as shown in Eq. (5.5), we can develop another

algorithm, called the Thermal Aware Task Partitioning (TATP) approach. The TATP ap-

proach follows the same algorithm structure as that in Alg. 5. The only difference is

that, instead of sorting tasks based on their combined resource utilization as de�ned in

Eq. (5.4), the TATP approach sorts tasks based on the nominal total power consumption

of each task as de�ned in Eq. (5.5). The approach is also shown in Alg. 5, considering

the change of line 2 by line 3 and performing the new sorting in line 6.

The previous two approaches partition tasks based solely on their resource utilization,

and the feasibility and periodic server settings are determined based on Alg. 4. It is a well-

known fact that the relationship of task periods, if explored appropriately, can signi�cantly

increase the feasibility [75]. For example, a harmonic task set can be schedulable using

134

Algorithm 5 Approach SCRUP OR TATP

Input: G= [C,T,H BW,Z BW], TempThrSC, SC = {SC1, ...,SCP}, L, Ptest .

Output: Whether G is feasible or not, and allocation for each ti ∈ G to a SC j

1: for all ti ∈ G do

2: Let ResUtili =Ui+Ui ·
[
H BWi

BWmax

]
, using Eq. 5.4, OR

3: Let NTPi = (b ·Ui ·Pci)+(a ·Ui ·Pmbanki), using Eq. 5.5
4: end for

5: while G ̸= /0 && |SC| ̸= 0 do

6: Sort tasks ti ∈ G according to ResUtili OR NTPi in descending order;

7: n= |G|; Gk = /0;

8: for i= 1 to n do

9: Gk = Gk+ ti;

10: Tpeak← FeasibilityChecking(Gk,Ptest);
11: if Tpeak > TempThrSC then Gk = Gk− ti end if
12: end for

13: Assign Gk to SCk ∈ SC ; SC = SC −SCk; G= G−Gk;
14: end while

15: if G ̸= /0 then Return: G is not schedulable; end if

RMS with total utilization reaching as high as 1. Even for tasks that are not perfectly

harmonic, a harmonic index has been developed [172] to quantify the harmonicity among

task sets to improve the feasibility of task partitioning results. Moreover, as shown in the

existing work [80], making the period of the periodic server harmonic to the task set can

greatly reduce the resource usage. Based on the existing work, we can readily prove the

following theorem.

Theorem 5.3. When scheduling a task set, i.e. G , with total utilization UG on a periodic

server (Q, P), the capacity of the periodic server, i.e. C = Q/P, is minimized if the task

set is perfectly harmonic and the server period is also harmonic to the task set.

Proof. The reader may recall that the minimum server allocation time Q to allocate a task

set G (with total utilization UG) using a server with period P may be obtained using two

methods as explained in section 5.2. According to Thm. 5.1, if G is a perfectly harmonic

task set and it is also perfectly harmonic with respect to P, then the minimum server

capacity to allocate G is equal to the total task set utilization UG. On the other hand, it is

135

possible to �nd the minimum server capacity to allocate any task set G according to Thm.

2.2 from chapter 2. Thus, we need to proved that:

UG

?

≤ UG

log

[
2k+2(1−UG)

k+2(1−UG)

] = ABRMS, (5.6)

for any valid k andUG. Thus, we may have:

log

[
2k+2(1−UG)

k+2(1−UG)

]
?

≤ 1.[
2k+2(1−UG)

k+2(1−UG)

]
?

≤ 10,

2k+2(1−UG)
?

≤ 10k+20(1−UG),

0
?

≤ 8k+18(1−UG).

(5.7)

Since, k must be an positive integer and UG must be a positive number between 0 and 1,

therefore the inequality in 5.6 is true.

Theorem 5.3 implies that a task set Gk with the same utilization may need a periodic

server with smaller server capacity. Also, choosing the server period harmonic with the

task set also helps to minimize the server capacity. Since a small server capacity can

lead to a lower peak temperature, we develop another task partitioning approach, called

Harmonic and Temperature Aware Task Partitioning (HTTP) approach, able to take ad-

vantage of the harmonic relationship among task periods to improve the task partitioning

results.

Our HTTP approach is formulated in Alg. 6. First, tasks are sorted by their periods Ti

(line 3). Then, using ti ∈ G as a reference task, the algorithm sorts all other tasks based

on the harmonic index related to the reference task (lines 6-7). Next, it picks a timing

feasible sub task set with the most harmonic tasks with respect to the reference task, such

that the total transformed utilization is maximum, and the SC's peak temperature is below

the threshold (lines 8-10). Among all possible n sub task sets, the one with the highest

136

Algorithm 6 Harmonic and Temp. Aware Task Part. (HTTP)

Input: G= [C,T,H BW,Z BW], TempThrSC, SC = {SC1, ...,SCP}, L, Ptest .

Output: Whether G is feasible or not, and allocation for each ti ∈ G to a SC j

1: GTS = /0;

2: while G ̸= /0 && |SC| ̸= 0 do

3: Sort ti increasing order with respect to Ti;

4: n= |G|;UTS =−¥;
5: for i= 1 to n do

6: Construct G′ (Sub-Harmonic of G) using DCT [75] with ti as base;

7: Sort all t j ∈ G in increasing order w/ respect to H(t j) =
U ′j−U j

U j

;

8: Gk j = pick up k j tasks from G s.t. for the corresponding G′k j ∈ G
′:

9: (1)U(G′k j)≤ 1; AND (2) |G′k j | is maximized; AND

10: (3) Tpeak ≤ TempThrSC (Tpeak← FeasibilityChecking(Gk j ,Ptest))
11: if G′k j is feasible ANDU(Gk j)>U(GTS) then GTS = Gk j ;

12: end for

13: Assign GTS to SCk ∈ SC ; SC = SC −SCk; G= G−GTS;
14: end while

15: if G ̸= /0 then Return: G is not schedulable; end if

total utilization (Line 11) is allocated to an SC (line 13). The remaining tasks will go

through the same procedure again until there are no more tasks to allocate or there are no

more available cores (while loop line 2). The algorithm returns if the task set is feasible

or not. If feasible, it also returns the sub task set allocated to each core.

5.4 Experiments, Analysis and Results

In section 5.3.2 different approaches are proposed. It is hard to prove if one dominates

the other analytically. Therefore, we use simulation results to study their performance

and compare them.

In our simulation, we adopted the similar 3D platform parameters used in previous

works, such as [59, 128, 154]. We target architectures consisting of a single logic layer

closer to a heat sink with 4 and 16 symmetrical and homogeneous cores (SC = {4,16}),

plus four DRAM memory layers (L = 5) on top of the logic layer. Thus, we have four

137

banks per each rank symmetrically stacked on its associated core. We adopted the power

model for the DDR3 DRAM chip of 1GB, using a low conductivity substrate, for each

DRAM layer. Hence, each layer has 1 GB and 4GB in total with four layers. Each

bank has 64 MB and each rank has 256 MB. We assume that each core has an in-order

execution architecture and power model constants similar to [106]. We consider the CPU

and DRAM subsystems running at the same frequency of 2000 MHz. We also consider

that each DRAM rank drives a 1024 TSVs bus with a DRAM best-case delay of 30ns (4ns

LLC, 24nsMC, 2ns DRAM) [54]. The values for constants Pbg and PARW are very similar

to the ones reported in [157]. Based on this model, we observe that the DRAM power is

comparable to the core power, which �ts the power ratio of core and memory reported in

the literature [59]. We assume an ambient temperature value of 35◦C.

We randomly generated 12000 task sets for our simulation for each architecture and

for each temperature threshold tested. Speci�cally, the utilization for each task is gener-

ated randomly using the UUnifast algorithm [195], which provides a uniform distribution

for all task utilizations while keeping �xed the total task set utilization. For the case of

4 cores architecture, the total task set utilization falls in the range U(G) = [0.49,0.57]

for TempThrSC = 70◦C and U(G) = [0.56,0.65] for TempThrSC = 75◦C, and for 16

cores the range is U(G) = [2.08,2.25] for TempThrSC = 70◦C and U(G) = [2.36,2.57]

for TempThrSC = 75◦C. Likewise, the maximum tasks bandwidth is randomly generated

in the range H BWi = [17,34]GB/s, and the minimum Z BWi = [0.34,H BWi]GB/s. For

overhead, we choose a value of 0.5 ms which is able to account for CPU and memory

wake ups, plus cache cold starts. Since a smaller server period offers a smaller SC's peak

temperature [194], we choose the value of Ptest = 10 ms.

Fig. 5.4 and 5.5 show the schedulability ratio of the task sets versus a �xed number

of tasks (x-axis), when setting TempThrSC = 70◦C and TempThrSC = 75◦C, respectively.

Fig. 5.4a and 5.5a for an architecture of 4 cores, and Figures 5.4b and 5.5b for an archi-

138

(a) (b)

Figure 5.4: Task set feasibility comparison by total number of tasks in Gwith TempThrSC = 70◦C.
(a) For 4 SC and (b) For 16 SC.

tecture of 16 cores. Both Fig. 5.4 and 5.5 show a signi�cant increment in schedulability

ratio of HTTP compared to the classic scheduling methodologies SCRUB and TATP, for

both analyzed architectures. The schedulability of task sets with a small number of tasks

is reduced because some tasks may have average power values that prevent them from

being allocated alone to any SC. Also, it can be seen in Fig. 5.4a and 5.5a that SCRUB

and TATP decreases with a larger number of tasks. This effect is due to the fact that with a

smaller number of tasks, we may have a higher harmonicity value. Thus, the server capac-

ity to guarantee the timing of the sub task set is usually calculated using the schedulability

condition of Thm. 5.1, which tends to be lower than the server capacity calculated using

Thm. 2.1. A smaller server capacity leads to a smaller SC's peak temperature. Therefore,

it is possible to allocate more tasks to the same core keeping the peak temperature under

the temperature threshold.

Table 5.1 shows the total schedulability ratio per method with the two tested tem-

perature thresholds. A 19.5% average increment of HTTP over SCRUB and TATP can

be obtained from the data. This is because HTTP allocates sub-task sets with a higher

harmonicity value, which is directly translated into a smaller allocation time Qk, which

139

(a) (b)

Figure 5.5: Task set feasibility comparison by total number of tasks in Gwith TempThrSC = 75◦C.
(a) For 4 SC and (b) For 16 SC.

Table 5.1: Schedulability ratio per method with two temperature thresholds

SCs TempThrSC HTTP SCRUP TATP TATP�SCRUB

4
75◦C 67.84% 48.27% 48.65% 0.38%

70◦C 65.91% 46.14% 46.66% 0.52%

16
75◦C 61.20% 40.05% 42.11% 2.06%

70◦C 58.63% 35.43% 38.07% 2.64%

derives in a smaller server capacity, and, therefore, a smaller SC's peak temperature. It is

noteworthy to mention that with a tighter temperature, TATP increases the schedulability

ratio compared to SCRUB (see the last column of table 5.1), because TATP considers

the thermal and power parameters of the system, which become more signi�cant than the

actual utilization of each task with a lower temperature threshold.

As shown in Alg. 4 there are two different methods to obtain the server allocation

time (Qk) for an speci�c server period (Pk),i.e., either using the Harmonic-Upper Bound

method to obtain QHUB
k (using Thm. 5.1) or using the ShinLee method to obtain QSL

k

(using Thm. 2.1), whichever is smaller. For the next set of experiments we want to test

how many task sets were schedulable with using either of the two methods. Hence, we

will use a new metric called the Upper-Bound Index (UBI) value per task number. First,

140

let each schedulable sub-task set assigned to each SC to have a tag (VGSC) of either 1 or

2. If the sub-task set is found schedulable obtaining QHUB
k , the tag of such a sub-task

set is assign to 1 (VGSC = 1). On the other hand, if the task set is found schedulable

obtaining QSL
k , the tag of such a task set is assign to 2 (VGSC = 2). Thus, theUBI(n) value

per task number n is equal to the average value of all the VG of task sets with the same

speci�c task number n. Fig. 5.6 and Fig. 5.7 plot the UBI values for each integer value of

n= [10,100] and for each core in an architecture of four cores when TempThrSC = 70◦C

and TempThrSC = 75◦C, respectively.

By taking a closer look to each method to obtain the minimum server allocation time,

we can see that for the same Pk, Q
HUB
k tends to be smaller than QSL

k , which directly

translates into a smaller server capacity and therefore a smaller peak temperature for both

the CPU and the memory layers. Of course, this condition is not always true and depends

on the relationship of the task periods of the tasks assigned on each sub-task set. Thus,

UBI(n) is an indicator of how much an scheduling method (HTTP for example) is able

to partition tasks such that actually QHUB
k < QSL

k . Hence, it can be seen in Fig. 5.6a and

Fig. 5.7a that HTTP is able to �nd the server allocation time for all the sub-task sets in

the �rst core using always the Harmonic-Upper Bound method, because ∀n,UBI(n) = 1.

Also, the UBI(n) values using HTTP for cores 2 and 3 (Fig. 5.6b, 5.6c, 5.7b and 5.7c) are

equal to 1 for almost all n values. Plus, the UBI(n) values using HTTP for core 4 (Fig.

5.6d and 5.7d) are smaller than the values obtained with TATP and SCRUB.

This results demonstrate that by allocating tasks with a higher harmonicity on the

same sub-task set (by using the HTTP method), it is possible to obtain a smaller server

allocation time for the same server period value, and thus obtain a smaller SC peak tem-

perature, which translates directly into an increase in schedulability ratio as seen in Fig.

5.4 and 5.5.

141

(a) (b)

(c) (d)

Figure 5.6: Upper-Bound Index by total number of tasks inGwith TempThrSC = 70◦C and SC= 4.

(a) ForCore1, (b) ForCore2, (c) ForCore3, (d) ForCore4.

142

(a) (b)

(c) (d)

Figure 5.7: Upper-Bound Index by total number of tasks inGwith TempThrSC = 75◦C and SC= 4.

(a) ForCore1, (b) ForCore2, (c) ForCore3, (d) ForCore4.

143

5.5 Summary

The increased power density and low heat dissipation ef�ciency have presented a great

challenge on how to develop real-time applications on 3D IC platforms. As memory

power consumption continues to grow to be comparable or even exceed the core power

consumption, we believe that it is critical to schedule both processing cores and memory

in a collaborative manner to deal with the thermal challenges. We develop a novel strat-

egy that employs periodic resource servers to ensure timing and thermal constraints for

real-time tasks on a 3D platform. Speci�cally, we take considerations of different factors,

such as core and memory resource requirement, power consumption, the harmonic rela-

tionship among tasks, and timing and temperature constraints in our approach to partition

real-time tasks on different cores. Simulation studies show that our proposed method

can schedule on average 19.5% more tasks than the comparative methodology based on

previous allocation mechanisms.

144

CHAPTER 6

CONCLUSIONS AND FUTUREWORK

In this chapter, we summarize our contributions presented in this dissertation. Then, we

discuss the possible directions for our future research work.

6.1 Summary

Many computing platforms and especially embedded systems are being developed with

real-time capabilities by multiple industries, such as automotive, biomedical and aerospace,

covering a spectrum from the very simple to the very complex, making real-time systems

ubiquitous and critical to our personal and social life. A real-time system is a system

whose execution time is expected to comply with deadlines, and missing a deadline is

as negative as the incorrect output from the computation, leading to catastrophic conse-

quences for certain applications. As a result, the most important requirement of a real-

time system is predictability and not performance, which makes the correct implementa-

tion of a system scheduler to ensure timing constrains very important. Traditionally, when

designing scheduling strategies, designers have considered only CPU and performance

characteristics of the system. However, real-time systems processing huge streaming of

data, such as cameras and specialized sensors, are becoming popular. Such applications

not only generate large amounts of I/O workloads, but also become more and more mem-

ory intensive, which is translated in the need to develop real-time platforms with higher

memory bandwidth and capacity. Hence, the restrictions and latencies imposed by mem-

ory devices have gained a signi�cant impact, not only on the execution time, but also on

other aspects, such as power consumption and temperature of operation. Since memory

devices are expected to keep increasing in size, capacity, bandwidth and power consump-

tion, we believe that today and future real-time system scheduler mechanisms must be

145

developed considering not only the characteristics of the processing units of the system,

but also the increasing restrictions and latencies imposed by memory devices. In this

dissertation, we analyzed two memory-related scheduling problems affecting the correct

design of a real-time system.

First, real-time systems encounter an important degradation of predictability due to

the uncertainties in the execution time imposed by an unbounded number of cache mem-

ory accesses. This is aggravated for real-time systems developed on multi-core platforms

with a common shared cache memory across a group of cores. We studied how to enhance

the predictability by partitioning cache memory on a multi-core platform when scheduling

hard real-time tasks, and we developed two static schemes for cache allocation and task

partitioning that consider not only the execution time variations with cache allocations but

also the task period relationship, showing a signi�cant improvement in the feasibility of

the system. Both of them are able to signi�cantly improve the system resource usage and

the schedulability of hard real-time tasks, when compared with other scheduling mech-

anisms. From our experimental studies, we can see that our second approach is able to

increase the schedulability of hard real-time tasks by up to four times, when compared to

conventional partitioned RMS.

Second, since the power consumption of computing systems has been increasing ex-

ponentially, resulting in tremendous heat generation, many thermal management tech-

niques have been proposed. Most of them focus exclusively on either CPU or memory.

Moreover, most of such techniques are on-line reactive in nature, which threatens the pre-

dictability of real-time systems. In this dissertation, we studied the problem of how to

guarantee timing constraints for hard real-time systems under CPU and memory thermal

constraints from two perspectives. On one hand, for the case of a single core and its main

memory individually packaged, but with a high thermal interaction. We developed a novel

strategy that employs the periodic server model to collaboratively schedule both the CPU

146

and memory to meet the timing constraints for a hard real-time task set, and in the mean-

time satisfy the temperature constraints for both the CPU and memory devices. From our

experimental studies, we can demonstrate the effectiveness of our proposed approach in

reducing the peak temperature, as well as the need to take both the CPU and memory

systems into consideration simultaneously for system-level thermal management. On the

other hand, we extended our analysis for the case of multi-core architectures where both

CPU and memory devices are combined into a single package in a 3D integrated plat-

form. Our proposed scheduling method that employs periodic resource servers is able to

effectively guarantee the thermal constraints of both the logic layer and memory layers,

as well as the timing constrains of hard real-time tasks when deployed using a 3D IC

integrated platform. From our experimental studies, we can conclude that our proposed

method can schedule on average 19.5% more tasks than the comparative methodology

based on previous allocation mechanisms.

6.2 Future Work

In this dissertation, we primarily focus on developing scheduling mechanisms for hard

real-time tasks when considering restrictions imposed by memory devices, including re-

strictions in temperature of operation. In particular, we can extend our research to include

and test additional aspects or parameters of different platforms and real-time systems in

our proposed scheduling mechanisms. First, our set of scheduling mechanisms proposed

in chapter 3 can be extended to partition not only cache memories but also DRAMmemo-

ries using bank partitioning [196]. The interaction between both methodologies of cache

and bank partitioning when maximizing the schedulability of the system can be further

explored. Next, our scheduling mechanism proposed in chapter 4 can be added with an

additional abstraction layer by including multiple periodic servers capable of scheduling

147

different types of tasks. The problem becomes how to characterize the tasks in the sys-

tem in order to allocate them in the different servers, keeping the goal of maximizing the

schedulability of the system while keeping the peak temperature of both the CPU and

memory under threshold. Then, another problem is how to assign different resources to

each server in terms of allocation time, processor speed and memory bandwidth. Finally,

our scheduling mechanism proposed in chapter 5 can also be extended by relaxing the

constraints of the system model. For instance, since it is known that the performance of

each task is not a linear function with respect to the memory bandwidth, it is possible to

allow that each rank in the system is managed by the scheduler depending on the require-

ments of the server by implementing a memory throttling mechanism [63]. We believe

this would further reduce the power consumed by the memory on some of the supercores,

allowing a larger number of tasks to be allocated in the system.

Also, as mentioned in chapter 5, 3D Integrated Circuits (3D-ICs) is a promising so-

lution to overcome the Processor-Memory Gap problem because it is possible to include

a high-capacity memory with a high bandwidth. However, the current trend in chip man-

ufacturing adopted by the research community and the industry regarding the 3D-ICs

architectures is changing rapidly. Therefore, we believe that it is necessary to consider

such memory architectures and technologies when designing future schedulers to guar-

antee hard-real time tasks' timing. With this in mind, in the following paragraphs we

elaborate more on this idea.

The semiconductor industry is actively pursuing 3D-ICs with Through-Silicon Via

(TSV) technology, which allows the integration of two different layers of chips with dif-

ferent manufacturing processes into a single package one of top of the other, reducing the

wires' size and the communication path. However, while the micron-ranged TSV pitches

are enough for stacking memory on top of processors and memory-on-memory stacking,

they may not be enough to signi�cantly mitigate the well-known on-chip interconnect

148

problems. Hence, a new manufacturing process called monolithic 3D-ICs offers through-

silicon connections with 50nm diameter or less and is capable to provide 10,000 times the

areal density of TSV technology [197].

Qualcom is producing or planning to produce their 3D-ICs for mobile applications

using monolithic 3D technology, which they claim allows them to use edge manufacturing

technology of 10 nm or less, in the �rst layer and 28 nm for the top layers. Also, according

to their �oorplanning methodology, they can achieve temperatures comparable or even

smaller than the ones obtained with 2D technology [198], by using 2D �oorplanning for

creating 3D integrated designs using monolithic 3D [199]. Their process can achieve up

to 12% and 8% power savings for a single block and SoC, respectively, when compared

with their 2-D counterparts implemented using commercial tools. According to them, it

is possible to achieve a reduction in power consumption in a 3D platform but still the

thermal problem in the platform exists.

Monolithic 3D ICs bring new improvements compared to other 3D integration tech-

nologies, but they require a different analysis in terms of power and thermal management.

For instance, authors in [200] focus on thermal-aware 3D �oorplanning for logic-to-logic

integration for microprocessors targeting mobile applications, because monolithic 3D re-

duces the power of the chips, but still the power density is high, increasing the temperature

of the whole chip. The major bottleneck of considering thermal aspect within the physical

design process is the huge runtime required for accurate temperature analysis. Therefore,

the authors of this paper identify the factors affecting temperature and develop a very fast

and accurate non-linear regression-based temperature evaluation model for monolithic

3D ICs. Also, they show that monolithic 3D ICs have almost zero lateral conduction at

the source of power due to very thin layers and show no lateral spreading in the device

layers, developing a methodology to obtain packaging-aware fast and accurate thermal

analysis models for monolithic 3D ICs with a different number of stacking layers. They

149

used this model in a thermal-aware �oorplanner to show signi�cant temperature reduction

with minimum area overhead. The speed of their thermal model enables them to use it

in the �oorplanning process without any runtime issues, and faster than simulators such

as HotSpot and its patch extension for 3D thermal modeling. Depending on the design

power density, 5% to 16% total power reduction in 3D-ICs is needed before junction

temperature can be similar to that of the corresponding 2D-ICs [201]. Authors conclude

that emerging monolithic 3D-ICs integration technologies are actually thermally friendly

for mobile applications due to their corresponding boundary conditions, as well as their

relatively lower total power budget.

Some works started proposing the combined manufacturing of memory and logic de-

vices using monolithic 3D approaches [202]. The problem is that common fabrication

technologies for DRAM layers (NMOS) are not the same as for logic layers (CMOS/FFET).

Thus, it is necessary to generate different mechanisms for manufacturing and different ar-

chitectures to include memory devices into the 3D chip, which brings the need to account

for different thermal models that include the new memory technologies.

Generally speaking, many research works are aimed to develop mechanisms to per-

form thermal management on 3D platforms but with logic-to-logic integration. One rea-

son for this is because the integration of memory devices is dif�cult due to the alignment

problems at manufacturing and the big size of the TSVs to communicate the different lay-

ers. Moreover, the interposers and bonding materials are much thicker, making the heat

dissipation a problem. However, using monolithic manufacturing, the layers are build on

of top of the other with a very thin separation between both, making the thermal depen-

dencies practically between inter-layer thermal resistances only.

Equally important is the fact that in the future with the power increasing and the dark

silicon becoming more dominant in some devices, adaptive multi-core architectures may

improve the performance of some systems. The idea is to dynamically use only the pro-

150

cessor parts needed, including on-chip memories, such as caches, scratch pad memories,

DRAM caches, and 3D on-chip DRAMs. For instance, research works such as [203] are

working speci�cally on recon�gurable hardware and the best way to adapt it according

to the current running application. However, there still remains the challenge of how to

co-schedule the CPU with the memory devices in such architectures.

In addition, chip manufacturers are still paying close attention to the 2.5D integra-

tion process because it is cheaper and is readily available for commercial devices. 2.5D

is now seen as a way to improve yield by manufacturing smaller parts/chips, then con-

necting them on a single interposer. It would be possible to implement and manufacture

separately, in a single many-core platform, different types of memory devices, including

the cache, DRAM cache, or even on-chip DRAM [204].

We believe that the problem of how to perform the schedule of computing applica-

tions including real-time ones still remains open, considering the new memory layouts

and features or how to perform the co-scheduling between CPU and memory using the

above-mentioned architectures. Also, another research problem that still remains open is

to how to increment the performance of memory-bounded applications, while implement-

ing an ef�cient thermal management using a diversi�ed memory hierarchy with different

memory technologies on different layers, perhaps with some memories on-chip when us-

ing a monolithic 3D-IC, or a combination of 3D-ICs inter-communicated using a 2.5D

integration architecture. As an illustration, the new generation of Xeon processors from

Intel (KNL) [205] are able to provide on-chip 3D DRAM, con�gurable in the machine

BIOS as cache, addressable memory or a mixture, depending on the application. In the

future, some platforms may even offer the possibility to change the memory con�guration

online. If it could be the case, what would be the optimal con�guration for memory to

maximize performance, power, energy, reliability, and temperature of operation among

other optimization parameters when scheduling real-time systems?

151

BIBLIOGRAPHY

[1] M. Fan and G. Quan, �Harmonic-�t partitioned scheduling for �xed-priority real-

time tasks on the multiprocessor platform,� in Embedded and Ubiquitous Comput-

ing (EUC), 2011 IFIP 9th International Conference on. IEEE, 2011, pp. 27�32.

[2] C.-W. Chang, J.-J. Chen, T.-W. Kuo, and H. Falk, �Real-time task scheduling on

island-based multi-core platforms,� IEEE Transactions on Parallel and Distributed

Systems, vol. 26, no. 2, pp. 538�550, 2015.

[3] U. Tech., �2015 embedded market study. Then, now: What's next?� UBM, Tech.

Rep., 2015.

[4] J. Cooke, �IoT, wearable, networking and automotive markets driving external

memory innovation,� 2016. [Online]. Available: http://www.memcon.com/pdfs/

proceedings2016/KEY103.pdf

[5] A. Shilov, �Price check: Price gap between DDR3 and DDR4 memory

almost gone,� 2016. [Online]. Available: https://www.anandtech.com/show/

10058/price-check-price-gap-between-ddr3-and-ddr4-memory-almost-gone

[6] T. Kelter, �WCET Analysis and Optimization for Multi-Core Real-Time Systems,�

Ph.D. dissertation, Technischen Universitat Dortmund, 2015.

[7] K. Tran and J. Ahn, �HBM: Memory solution for high performance processors,�

Proceedings of MEMCON, 2014.

[8] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, �Tiered-latency

DRAM: A low latency and low cost DRAM architecture,� in High Performance

Computer Architecture (HPCA2013), 2013 IEEE 19th International Symposium

on. IEEE, 2013, pp. 615�626.

[9] I. Shin and I. Lee, �Compositional real-time scheduling framework with periodic

model,� ACM Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3,

p. 30, 2008.

[10] G. Fagas, J. P. Gallagher, L. Gammaitoni, and D. J. Paul, �Energy Challenges for

ICT,� in ICT-Energy Concepts for Energy Ef�ciency and Sustainability. InTech,

2017.

[11] K. Rupp, �40 years of microprocessor trend data,� 2015. [Online]. Available:

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

152

http://www.memcon.com/pdfs/proceedings2016/KEY103.pdf
http://www.memcon.com/pdfs/proceedings2016/KEY103.pdf
https://www.anandtech.com/show/10058/price-check-price-gap-between-ddr3-and-ddr4-memory-almost-gone
https://www.anandtech.com/show/10058/price-check-price-gap-between-ddr3-and-ddr4-memory-almost-gone
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

[12] G. Rose, �Alleviating memory and cache contention in safety-critical applications,�

2014. [Online]. Available: https://www.aerodefensetech.com/component/content/

article/adt/features/articles/20339#

[13] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk. Morgan

Kaufmann, 2010.

[14] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algo-

rithms and applications. Springer Science & Business Media, 2011, vol. 24.

[15] M. Qiu and J. Li, Real-time Embedded Systems: Optimization, Synthesis, and Net-

working. CRC Press, 2011.

[16] A. Bastoni, B. Brandenburg, and J. Anderson, �Cache-related preemption and mi-

gration delays: Empirical approximation and impact on schedulability,� Proceed-

ings of OSPERT, pp. 33�44, 2010.

[17] S. Altmeyer, R. I. Davis, and C. Maiza, �Improved cache related pre-emption delay

aware response time analysis for �xed priority pre-emptive systems,� Real-Time

Systems, vol. 48, no. 5, pp. 499�526, 2012.

[18] S. Mittal, �A survey of architectural techniques for dram power management,� In-

ternational Journal of High Performance Systems Architecture, vol. 4, no. 2, pp.

110�119, 2012.

[19] J. John, �Global Embedded Systems Market Will Reach USD 225.34

billion by 2021,� June 2017, [Online; posted 8-June-2017]. [Online].

Available: https://globenewswire.com/news-release/2017/06/08/1010414/0/en/

Global-Embedded-Systems-Market-Will-Reach-USD-225-34-billion-by-2021.

html

[20] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-physical

systems approach. MIT Press, 2016.

[21] A. Mohammadi and S. G. Akl, �Scheduling algorithms for real-time systems,�

School of Computing Queens University, Tech. Rep, 2005.

[22] R. Mall, Real-time systems: theory and practice. Pearson Education India, 2009.

[23] R. I. Davis and A. Burns, �A survey of hard real-time scheduling for multiprocessor

systems,� ACM computing surveys (CSUR), vol. 43, no. 4, p. 35, 2011.

153

https://www.aerodefensetech.com/component/content/article/adt/features/articles/20339#
https://www.aerodefensetech.com/component/content/article/adt/features/articles/20339#
https://globenewswire.com/news-release/2017/06/08/1010414/0/en/Global-Embedded-Systems-Market-Will-Reach-USD-225-34-billion-by-2021.html
https://globenewswire.com/news-release/2017/06/08/1010414/0/en/Global-Embedded-Systems-Market-Will-Reach-USD-225-34-billion-by-2021.html
https://globenewswire.com/news-release/2017/06/08/1010414/0/en/Global-Embedded-Systems-Market-Will-Reach-USD-225-34-billion-by-2021.html

[24] C. L. Liu and J. W. Layland, �Scheduling algorithms for multiprogramming in a

hard-real-time environment,� Journal of the ACM (JACM), vol. 20, no. 1, pp. 46�

61, 1973.

[25] J. W. Liu, Real-time systems. Prentice Hall PTR, 2000.

[26] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma, �Modeling,

pro�ling, and debugging the energy consumption of mobile devices,� ACM Com-

puting Surveys (CSUR), vol. 48, no. 3, p. 39, 2016.

[27] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras, �Predictive dynamic thermal and

power management for heterogeneous mobile platforms,� inDesign, Automation &

Test in Europe Conference & Exhibition (DATE), 2015. IEEE, 2015, pp. 960�965.

[28] M. Fan, R. Rong, S. Liu, and G. Quan, �Energy calculation for periodic multi-

core scheduling in system thermal steady state with consideration of leakage and

temperature dependency,� The Journal of Supercomputing, vol. 71, no. 7, pp. 2565�

2584, 2015.

[29] T. Wang, G. Quan, S. Ren, and M. Qiu, �Topology virtualization for throughput

maximization on many-core platforms,� in Parallel and Distributed Systems (IC-

PADS), 2012 IEEE 18th International Conference on. IEEE, 2012, pp. 408�415.

[30] Q. Han, T. Wang, and G. Quan, �Enhanced fault-tolerant �xed-priority schedul-

ing of hard real-time tasks on multi-core platforms,� in Embedded and Real-Time

Computing Systems and Applications (RTCSA), 2015 IEEE 21st International Con-

ference on. IEEE, 2015, pp. 21�30.

[31] R. Nair, �Evolution of memory architecture,� Proceedings of the IEEE, vol. 103,

no. 8, pp. 1331�1345, 2015.

[32] M. Greenberg, �DRAM in the Automobilie: what, where, why, and how,� 2016.

[Online]. Available: http://www.memcon.com/pdfs/proceedings2016/KEY102.pdf

[33] M. Chiang and T. Zhang, �Fog and IoT: An overview of research opportunities,�

IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854�864, 2016.

[34] W. A. Wulf and S. A. McKee, �Hitting the memory wall: implications of the ob-

vious,� ACM SIGARCH computer architecture news, vol. 23, no. 1, pp. 20�24,

1995.

154

http://www.memcon.com/pdfs/proceedings2016/KEY102.pdf

[35] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative ap-

proach. Elsevier, 2012.

[36] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo, �Memory-centric

scheduling for multicore hard real-time systems,� Real-Time Systems, vol. 48,

no. 6, pp. 681�715, 2012.

[37] S. A. McKee, �Re�ections on the memory wall,� in Proceedings of the 1st confer-

ence on Computing frontiers. ACM, 2004, p. 162.

[38] O. Mutlu and L. Subramanian, �Research problems and opportunities in memory

systems,� Supercomputing frontiers and innovations, vol. 1, no. 3, pp. 19�55, 2015.

[39] L. A. D. Bathen and N. D. Dutt, �Software controlled memories for scalable many-

core architectures,� in Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA), 2012 IEEE 18th International Conference on. IEEE, 2012, pp.

1�10.

[40] O. Kotaba, J. Nowotsch, M. Paulitsch, S. M. Petters, and H. Theiling, �Multi-

core in real-time systems�temporal isolation challenges due to shared resources,�

in Workshop on Industry-Driven Approaches for Cost-effective Certi�cation of

Safety-Critical, Mixed-Criticality Systems, 2013.

[41] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, �Memory access control in

multiprocessor for real-time systems with mixed criticality,� in Real-Time Systems

(ECRTS), 2012 24th Euromicro Conference on. IEEE, 2012, pp. 299�308.

[42] J. Lin, H. Zheng, Z. Zhu, and Z. Zhang, �Thermal modeling and management of

DRAM systems,� IEEE Transactions on Computers, vol. 62, no. 10, pp. 2069�

2082, 2013.

[43] M. Benson, The art of software thermal management for embedded systems.

Springer, 2014.

[44] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, �Energy-aware schedul-

ing for real-time systems: a survey,� ACM Transactions on Embedded Computing

Systems (TECS), vol. 15, no. 1, p. 7, 2016.

[45] L. Cheng, K. Huang, G. Chen, B. Hu, and A. Knoll, �Periodic thermal management

for hard real-time systems,� in 10th IEEE International Symposium on Industrial

Embedded Systems (SIES). IEEE, 2015, pp. 1�10.

155

[46] M. Ahmed, N. Fisher, S. Wang, and P. Hettiarachchi, �Minimizing peak tempera-

ture in embedded real-time systems via thermal-aware periodic resources,� Sustain-

able Computing: Informatics and Systems (SUSCOM), vol. 1, no. 3, pp. 226�240,

2011.

[47] L. Minas and B. Ellison, �The problem of power consumption in servers,� Intel

Corporation, 2009.

[48] L. A. Barroso, J. Clidaras, and U. Hölzle, �The datacenter as a computer: An in-

troduction to the design of warehouse-scale machines,� Synthesis lectures on com-

puter architecture, vol. 8, no. 3, pp. 1�154, 2013.

[49] S. Mittal, �A survey of techniques for improving energy ef�ciency in embedded

computing systems,� International Journal of Computer Aided Engineering and

Technology, vol. 6, no. 4, pp. 440�459, 2014.

[50] A. Suresh, P. Cicotti, and L. Carrington, �Evaluation of emerging memory tech-

nologies for hpc, data intensive applications,� in Cluster Computing (CLUSTER),

2014 IEEE International Conference on. IEEE, 2014, pp. 239�247.

[51] O. Mutlu, J. Meza, and L. Subramanian, �The main memory system: Challenges

and opportunities,� Communications of the Korean Institute of Information Scien-

tists and Engineers, 2015.

[52] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao, �Emerging NVM: A Survey on

Architectural Integration and Research Challenges,� ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 23, no. 2, p. 14, 2017.

[53] S. M. Hassan, �Exploiting On-Chip Memory Concurrency in 3D Manycore Archi-

tectures,� Ph.D. dissertation, Georgia Institute of Technology, 2016.

[54] J. Meng and A. K. Coskun, �Analysis and runtime management of 3D systems with

stacked DRAM for boosting energy ef�ciency,� in Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2012. IEEE, 2012, pp. 611�616.

[55] A. Rahmati, M. Hicks, D. Holcomb, and K. Fu, �Refreshing thoughts on DRAM:

Power saving vs. data integrity,� in Workshop on Approximate Computing Across

the System Stack (WACAS), 2014.

[56] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,

�Adaptive-latency DRAM: Optimizing DRAM timing for the common-case,� in

156

High Performance Computer Architecture (HPCA), 2015 IEEE 21st International

Symposium on. IEEE, 2015, pp. 489�501.

[57] H. Zhang, X. Zhang, B. Lau, S. Lim, L. Ding, M. Yu, and Y. Lee, �Thermal

characterization and simulation study of 2.5D packages with multi-chip module

on through silicon interposer,� in Electronics Packaging Technology Conference

(EPTC 2013), 2013 IEEE 15th. IEEE, 2013, pp. 363�368.

[58] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and K. Goossens, �System and

circuit level power modeling of energy-ef�cient 3D-stacked wide I/O DRAMs,�

in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013.

IEEE, 2013, pp. 236�241.

[59] Y.-J. Chen, C.-L. Yang, P.-S. Lin, and Y.-C. Lu, �Thermal/performance charac-

terization of CMPs with 3D-stacked DRAMs under synergistic voltage-frequency

control of cores and DRAMs,� in Proceedings of the 2015 Conference on research

in adaptive and convergent systems. ACM, 2015, pp. 430�436.

[60] R. Ayoub, K. R. Indukuri, and T. S. Rosing, �Energy ef�cient proactive ther-

mal management in memory subsystem,� in Low-Power Electronics and Design

(ISLPED), 2010 ACM/IEEE International Symposium on. IEEE, 2010, pp. 195�

200.

[61] S. Liu, B. Leung, A. Neckar, S. O. Memik, G. Memik, and N. Hardavellas, �Hard-

ware/software techniques for DRAM thermal management,� in High Performance

Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on.

IEEE, 2011, pp. 515�525.

[62] G. Gracioli and A. A. Frohlich, �An experimental evaluation of the cache partition-

ing impact on multicore real-time schedulers,� in Embedded and Real-Time Com-

puting Systems and Applications (RTCSA), 2013 IEEE 19th International Confer-

ence on. IEEE, 2013, pp. 72�81.

[63] H. Hanson and K. Rajamani, �What computer architects need to know about mem-

ory throttling,� in International Symposium on Computer Architecture. Springer,

2010, pp. 233�242.

[64] S. Siewert, Real-time embedded components and systems. Cengage Learning,

2006.

[65] S. Baruah and K. Pruhs, �Open problems in real-time scheduling,� Journal of

Scheduling, vol. 13, no. 6, pp. 577�582, 2010.

157

[66] F. Rammig, M. Ditze, P. Janacik, T. Heimfarth, T. Kerstan, S. Oberthuer, and

K. Stahl, �Basic concepts of real time operating systems,� in Hardware-dependent

Software. Springer, 2009, pp. 15�45.

[67] J. A. Stankovic, �Misconceptions about real-time computing: A serious problem

for next-generation systems,� Computer, vol. 21, no. 10, pp. 10�19, 1988.

[68] A. Burns and R. Davis, �Mixed criticality systems-a review,� Department of Com-

puter Science, University of York, Tech. Rep, pp. 1�69, 2013.

[69] G. Gracioli, A. A. Fröhlich, R. Pellizzoni, and S. Fischmeister, �Implementation

and evaluation of global and partitioned scheduling in a real-time OS,� Real-Time

Systems, vol. 49, no. 6, pp. 669�714, 2013.

[70] Y. Oh and S. H. Son, �Allocating �xed-priority periodic tasks on multiprocessor

systems,� Real-Time Systems, vol. 9, no. 3, pp. 207�239, 1995.

[71] G. C. Buttazzo, �Rate monotonic vs. EDF: judgment day,� Real-Time Systems,

vol. 29, no. 1, pp. 5�26, 2005.

[72] J. M. Rivas, J. J. Gutiérrez, and M. G. Harbour, �Fixed priorities or EDF for dis-

tributed real-time systems?� ACM SIGBED Review, vol. 10, no. 2, pp. 21�21,

2013.

[73] J. C. Palencia and M. G. Harbour, �Response time analysis of EDF distributed

real-time systems,� Journal of Embedded Computing, vol. 1, no. 2, pp. 225�237,

2005.

[74] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, �New strategies for assigning real-

time tasks to multiprocessor systems,� IEEE transactions on computers, vol. 44,

no. 12, pp. 1429�1442, 1995.

[75] C.-C. Han and H.-Y. Tyan, �A better polynomial-time schedulability test for

real-time �xed-priority scheduling algorithms,� in Real-Time Systems Symposium,

1997. Proceedings., The 18th IEEE. IEEE, 1997, pp. 36�45.

[76] M. Fan, Q. Han, G. Quan, and S. Ren, �Multi-core partitioned scheduling for �xed-

priority periodic real-time tasks with enhanced rbound,� in Quality Electronic De-

sign (ISQED), 2014 15th International Symposium on. IEEE, 2014, pp. 284�291.

158

[77] L. Sha, T. Abdelzaher, K.-E. 	Arzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo,

M. Caccamo, J. Lehoczky, and A. K. Mok, �Real time scheduling theory: A his-

torical perspective,� Real-time systems, vol. 28, no. 2-3, pp. 101�155, 2004.

[78] T. P. Baker, �A comparison of global and partitioned EDF schedulability tests for

multiprocessors,� in In International Conf. on Real-Time and Network Systems.

Citeseer, 2005.

[79] I. Shin and I. Lee, �Periodic resource model for compositional real-time guaran-

tees,� in Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE. IEEE,

2003, pp. 2�13.

[80] C. Guo, X. Hua, H. Wu, D. Lautner, and S. Ren, �Best-harmonically-�t periodic

task assignment algorithm on multiple periodic resources,� IEEE Transactions on

Parallel and Distributed Systems, vol. 27, no. 5, pp. 1303�1315, 2016.

[81] J. Hsu, �Power problems threaten to strangle exascale computing,�

2015. [Online]. Available: https://spectrum.ieee.org/computing/hardware/

power-problems-threaten-to-strangle-exascale-computing

[82] K. Zhang, A. Guliani, S. Ogrenci-Memik, G. Memik, K. Yoshii, R. Sankaran, and

P. Beckman, �Machine learning-based temperature prediction for runtime thermal

management across system components,� IEEE Transactions on Parallel and Dis-

tributed Systems, 2017.

[83] Q. Zhang and W. Shi, �Energy-ef�cient workload placement in enterprise datacen-

ters,� Computer, vol. 49, no. 2, pp. 46�52, 2016.

[84] M. Dayarathna, Y. Wen, and R. Fan, �Data center energy consumption modeling:

A survey,� IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 732�794,

2016.

[85] M. T. Chaudhry, T. C. Ling, A. Manzoor, S. A. Hussain, and J. Kim, �Thermal-

aware scheduling in green data centers,� ACMComputing Surveys (CSUR), vol. 47,

no. 3, p. 39, 2015.

[86] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth, B. L. Rountree, M. Schulz,

and B. R. De Supinski, �Practical resource management in power-constrained, high

performance computing,� in Proceedings of the 24th International Symposium on

High-Performance Parallel and Distributed Computing. ACM, 2015, pp. 121�

132.

159

https://spectrum.ieee.org/computing/hardware/power-problems-threaten-to-strangle-exascale-computing
https://spectrum.ieee.org/computing/hardware/power-problems-threaten-to-strangle-exascale-computing

[87] M. Maiterth, T. Wilde, D. Lowenthal, B. Rountree, M. Schulz, J. Eastep, and

D. Kranzlmiiller, �Power aware high performance computing: Challenges and op-

portunities for application and system developers - survey & tutorial,� in High Per-

formance Computing & Simulation (HPCS), 2017 International Conference on.

IEEE, 2017, pp. 3�10.

[88] V. Chaturvedi, H. Huang, and G. Quan, �Leakage aware scheduling on maxi-

mum temperature minimization for periodic hard real-time systems,� in Computer

and Information Technology (CIT), 2010 IEEE 10th International Conference on.

IEEE, 2010, pp. 1802�1809.

[89] I. Ukhov, M. Bao, P. Eles, and Z. Peng, �Steady-state dynamic temperature analysis

and reliability optimization for embedded multiprocessor systems,� in Proceedings

of the 49th Annual Design Automation Conference. ACM, 2012, pp. 197�204.

[90] G. Quan and V. Chaturvedi, �Feasibility analysis for temperature-constraint hard

real-time periodic tasks,� IEEE Transactions on Industrial Informatics, vol. 6,

no. 3, pp. 329�339, 2010.

[91] K. Skadron, T. Abdelzaher, and M. R. Stan, �Control-theoretic techniques and

thermal-rc modeling for accurate and localized dynamic thermal management,�

in High-Performance Computer Architecture, 2002. Proceedings. Eighth Interna-

tional Symposium on. IEEE, 2002, pp. 17�28.

[92] B. Zhao, H. Aydin, and D. Zhu, �Generalized reliability-oriented energy man-

agement for real-time embedded applications,� in Design Automation Conference

(DAC), 2011 48th ACM/EDAC/IEEE. IEEE, 2011, pp. 381�386.

[93] A. A. Fröhlich, �A comprehensive approach to power management in embedded

systems,� International Journal of Distributed Sensor Networks, vol. 7, no. 1, p.

807091, 2011.

[94] G. A. Chaparro-Baquero, Q. Zhou, C. Liu, J. Tang, and S. Liu, �Power-Ef�cient

Schemes Via Workload Characterization on the Intel's Single-chip Cloud Com-

puter,� in Parallel and Distributed Processing Symposium Workshops & PhD Fo-

rum (IPDPSW), 2012 IEEE 26th International. IEEE, 2012, pp. 999�1006.

[95] B. Zhao, H. Aydin, and D. Zhu, �Energy management under general task-level

reliability constraints,� in Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2012 IEEE 18th. IEEE, 2012, pp. 285�294.

160

[96] M. A. Awan, P. M. Yomsi, G. Nelissen, and S. M. Petters, �Energy-aware task

mapping onto heterogeneous platforms using DVFS and sleep states,� Real-Time

Systems, vol. 52, no. 4, pp. 450�485, 2016.

[97] X. Pan, W. Jiang, K. Jiang, L. Wen, and Q. Dong, �Energy optimization of stochas-

tic applications with statistical guarantees of deadline and reliability,� in Design

Automation Conference (ASP-DAC), 2016 21st Asia and South Paci�c. IEEE,

2016, pp. 324�329.

[98] M. K. Bhatti, C. Belleudy, andM. Auguin, �Hybrid power management in real time

embedded systems: an interplay of dvfs and dpm techniques,� Real-Time Systems,

vol. 47, no. 2, pp. 143�162, 2011.

[99] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo, �Applying real-

time interface and calculus for dynamic power management in hard real-time sys-

tems,� Real-Time Systems, vol. 47, no. 2, pp. 163�193, 2011.

[100] G. Terzopoulos and H. Karatza, �Performance evaluation and energy consumption

of a real-time heterogeneous grid system using dvs and dpm,� Simulation Mod-

elling Practice and Theory, vol. 36, pp. 33�43, 2013.

[101] Q. Han, M. Fan, L. Niu, and G. Quan, �Energy minimization for fault tolerant

scheduling of periodic �xed-priority applications on multiprocessor platforms,� in

Proceedings of the 2015 Design, Automation & Test in Europe Conference & Ex-

hibition. EDA Consortium, 2015, pp. 830�835.

[102] Q. Han, M. Fan, O. Bai, S. Ren, and G. Quan, �Temperature-constrained feasibility

analysis for multicore scheduling,� IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 35, no. 12, pp. 2082�2092, 2016.

[103] T. Chantem, X. S. Hu, and R. P. Dick, �Temperature-aware scheduling and as-

signment for hard real-time applications on MPSoCs,� IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 19, no. 10, pp. 1884�1897, 2011.

[104] O. Sahin, P. T. Varghese, and A. K. Coskun, �Just enough is more: Achieving sus-

tainable performance in mobile devices under thermal limitations,� in Computer-

Aided Design (ICCAD), 2015 IEEE/ACM International Conference on. IEEE,

2015, pp. 839�846.

[105] J.-J. Chen, S. Wang, and L. Thiele, �Proactive speed scheduling for real-time tasks

under thermal constraints,� in Real-Time and Embedded Technology and Applica-

tions Symposium, 2009. RTAS 2009. 15th IEEE. IEEE, 2009, pp. 141�150.

161

[106] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu, �Throughput maximization

for periodic real-time systems under the maximal temperature constraint,� ACM

Transactions on Embedded Computing Systems (TECS), vol. 13, no. 2s, p. 70,

2014.

[107] B. Egilmez, G. Memik, S. Ogrenci-Memik, and O. Ergin, �User-speci�c skin

temperature-aware DVFS for smartphones,� in Proceedings of the 2015 Design,

Automation & Test in Europe Conference & Exhibition. EDA Consortium, 2015,

pp. 1217�1220.

[108] S. Sha, W. Wen, M. Fan, S. Ren, and G. Quan, �Performance maximization via

frequency oscillation on temperature constrained multi-core processors,� in Paral-

lel Processing (ICPP), 2016 45th International Conference on. IEEE, 2016, pp.

526�535.

[109] P. M. Hettiarachchi, N. Fisher, M. Ahmed, L. Y. Wang, S. Wang, and W. Shi, �A

design and analysis framework for thermal-resilient hard real-time systems,� ACM

Transactions on Embedded Computing Systems (TECS), vol. 13, no. 5s, p. 146,

2014.

[110] J. V. Wang, C.-T. Cheng, and K. T. Chi, �A power and thermal-aware virtual ma-

chine allocation mechanism for cloud data centers,� in Communication Workshop

(ICCW), 2015 IEEE International Conference on. IEEE, 2015, pp. 2850�2855.

[111] K. Zhang, S. Ogrenci-Memik, G. Memik, K. Yoshii, R. Sankaran, and P. Beck-

man, �Minimizing thermal variation across system components,� in Parallel and

Distributed Processing Symposium (IPDPS), 2015 IEEE International. IEEE,

2015, pp. 1139�1148.

[112] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez, �Impact of cache partitioning on

multi-tasking real time embedded systems,� in Embedded and Real-Time Comput-

ing Systems and Applications, 2008. RTCSA'08. 14th IEEE International Confer-

ence on. IEEE, 2008, pp. 101�110.

[113] S. P. Muralidhara, M. Kandemir, and P. Raghavan, �Intra-application cache parti-

tioning,� in Parallel & Distributed Processing (IPDPS), 2010 IEEE International

Symposium on. IEEE, 2010, pp. 1�12.

[114] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, �Gaining insights

into multicore cache partitioning: Bridging the gap between simulation and real

systems,� in High Performance Computer Architecture, 2008. HPCA 2008. IEEE

14th International Symposium on. IEEE, 2008, pp. 367�378.

162

[115] Y. Chen, W. Li, C. Kim, and Z. Tang, �Ef�cient shared cache management through

sharing-aware replacement and streaming-aware insertion policy,� in Parallel &

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on.

IEEE, 2009, pp. 1�11.

[116] M. K. Qureshi and Y. N. Patt, �Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches,� in Microarchi-

tecture, 2006. MICRO-39. 39th Annual IEEE/ACM International Symposium on.

IEEE, 2006, pp. 423�432.

[117] J. Liedtke, H. Hartig, and M. Hohmuth, �OS-controlled cache predictability for

real-time systems,� in Real-Time Technology and Applications Symposium, 1997.

Proceedings., Third IEEE. IEEE, 1997, pp. 213�224.

[118] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni, �Real-

time cache management framework for multi-core architectures,� in Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2013 IEEE 19th.

IEEE, 2013, pp. 45�54.

[119] N. Guan, M. Stigge, W. Yi, and G. Yu, �Cache-aware scheduling and analysis

for multicores,� in Proceedings of the seventh ACM international conference on

Embedded software. ACM, 2009, pp. 245�254.

[120] A. Chousein and R. N. Mahapatra, �Fully associative cache partitioning with don't

care bits for real-time applications,� ACM SIGBED Review, vol. 2, no. 2, pp. 35�38,

2005.

[121] M. Shekhar, A. Sarkar, H. Ramaprasad, and F. Mueller, �Semi-partitioned hard-

real-time scheduling under locked cache migration in multicore systems,� in Real-

Time Systems (ECRTS), 2012 24th Euromicro Conference on. IEEE, 2012, pp.

331�340.

[122] X. Vera, B. Lisper, and J. Xue, �Data caches in multitasking hard real-time sys-

tems,� in Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE. IEEE,

2003, pp. 154�165.

[123] D. Sanchez and C. Kozyrakis, �Vantage: scalable and ef�cient �ne-grain cache

partitioning,� ACM SIGARCH Computer Architecture News, vol. 39, no. 3, pp. 57�

68, 2011.

163

[124] A. Sarkar, F. Mueller, and H. Ramaprasad, �Static task partitioning for locked

caches in multicore real-time systems,� ACM Transactions on Embedded Com-

puting Systems (TECS), vol. 14, no. 1, p. 4, 2015.

[125] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, �Outstanding paper

award: Making shared caches more predictable on multicore platforms,� in Real-

Time Systems (ECRTS), 2013 25th Euromicro Conference on. IEEE, 2013, pp.

157�167.

[126] B. Lesage, I. Puaut, and A. Seznec, �PRETI: Partitioned REal-TIme shared cache

for mixed-criticality real-time systems,� in Proceedings of the 20th International

Conference on Real-Time and Network Systems. ACM, 2012, pp. 171�180.

[127] N. Suzuki, H. Kim, D. De Niz, B. Andersson, L. Wrage, M. Klein, and R. Ra-

jkumar, �Coordinated bank and cache coloring for temporal protection of memory

accesses,� in Computational Science and Engineering (CSE), 2013 IEEE 16th In-

ternational Conference on. IEEE, 2013, pp. 685�692.

[128] J. Meng, K. Kawakami, and A. K. Coskun, �Optimizing energy ef�ciency of 3D

multicore systems with stacked DRAM under power and thermal constraints,� in

Proceedings of the 49th Annual Design Automation Conference. ACM, 2012, pp.

648�655.

[129] J. Ji, C. Wang, and X. Zhou, �System-level early power estimation for memory

subsystem in embedded systems,� in Embedded Computing, 2008. SEC'08. Fifth

IEEE International Symposium on. IEEE, 2008, pp. 370�375.

[130] MICRON, �Calculating Memory System Power for DDR3 - Technical Note,� Mi-

cron Technol. Inc., Tech. Rep., 2007.

[131] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, �PALLOC: DRAM bank-aware

memory allocator for performance isolation on multicore platforms,� in Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th.

IEEE, 2014, pp. 155�166.

[132] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, �A software memory

partition approach for eliminating bank-level interference in multicore systems,�

in Proceedings of the 21st international conference on Parallel architectures and

compilation techniques. ACM, 2012, pp. 367�376.

164

[133] W.Mi, X. Feng, J. Xue, and Y. Jia, �Software-hardware cooperative dram bank par-

titioning for chip multiprocessors,� in IFIP International Conference on Network

and Parallel Computing. Springer, 2010, pp. 329�343.

[134] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, �PRET DRAM controller:

Bank privatization for predictability and temporal isolation,� inHardware/Software

Codesign and System Synthesis (CODES+ ISSS), 2011 Proceedings of the 9th In-

ternational Conference on. IEEE, 2011, pp. 99�108.

[135] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, �MemGuard: Mem-

ory bandwidth reservation system for ef�cient performance isolation in multi-core

platforms,� in Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2013 IEEE 19th. IEEE, 2013, pp. 55�64.

[136] R. Inam, J. Slatman, M. Behnam, M. Sjödin, and T. Nolte, �Towards implementing

multi-resource server on multi-core linux platform,� in Emerging Technologies &

Factory Automation (ETFA), 2013 IEEE 18th Conference on. IEEE, 2013, pp.

1�4.

[137] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, �Memory power

management via dynamic voltage/frequency scaling,� in Proceedings of the 8th

ACM international conference on Autonomic computing. ACM, 2011, pp. 31�40.

[138] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini, �Multi-

Scale: memory system DVFS with multiple memory controllers,� in Proceedings

of the 2012 ACM/IEEE international symposium on Low power electronics and

design. ACM, 2012, pp. 297�302.

[139] R. Begum, D. Werner, M. Hempstead, G. Prasad, and G. Challen, �Energy-

performance trade-offs on energy-constrained devices with multi-component

DVFS,� in Workload Characterization (IISWC), 2015 IEEE International Sympo-

sium on. IEEE, 2015, pp. 34�43.

[140] I. Anagnostopoulos, J.-M. Chabloz, I. Koutras, A. Bartzas, A. Hemani, and

D. Soudris, �Power-aware dynamic memory management on many-core platforms

utilizing DVFS,� ACM Transactions on Embedded Computing Systems (TECS),

vol. 13, no. 1s, p. 40, 2013.

[141] R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt, �Predicting performance impact

of DVFS for realistic memory systems,� in Proceedings of the 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture. IEEE Computer So-

ciety, 2012, pp. 155�165.

165

[142] W. dos Santos Marques, P. S. S. de Souza, A. F. Lorenzon, A. C. S. Beck, M. B.

Rutzig, and F. D. Rossi, �Improving EDP in multi-core embedded systems through

multidimensional frequency scaling,� in Circuits and Systems (ISCAS), 2017 IEEE

International Symposium on. IEEE, 2017, pp. 1�4.

[143] G. Jia, X. Li, J. Wan, C. Wang, D. Dai, and C. Jiang, �Coordinate task and memory

management for improving power ef�ciency,� in International Conference on Al-

gorithms and Architectures for Parallel Processing. Springer, 2013, pp. 267�278.

[144] I. Paul, W. Huang, M. Arora, and S. Yalamanchili, �Harmonia: balancing compute

and memory power in high-performance GPUs,� in Computer Architecture (ISCA),

2015 ACM/IEEE 42nd Annual International Symposium on. IEEE, 2015, pp. 54�

65.

[145] A. Tiwari, M. Schulz, and L. Carrington, �Predicting optimal power allocation for

CPU and DRAM domains,� in Parallel and Distributed Processing Symposium

Workshop (IPDPSW), 2015 IEEE International. IEEE, 2015, pp. 951�959.

[146] R. Begum, M. Hempstead, G. P. Srinivasa, and G. Challen, �Algorithms for CPU

and DRAM DVFS under inef�ciency constraints,� in Computer Design (ICCD),

2016 IEEE 34th International Conference on. IEEE, 2016, pp. 161�168.

[147] J. Jang and M. Park, �DRAM frequency scaling for energy ef�ciency based on

memory usage,� in Consumer Electronics (ICCE), 2017 IEEE International Con-

ference on. IEEE, 2017, pp. 308�309.

[148] A. Agrawal, G. Fohler, J. Freitag, J. Nowotsch, S. Uhrig, and M. Paulitsch,

�Contention-Aware Dynamic Memory Bandwidth Isolation With Predictability in

COTS Multicores: An Avionics Case Study,� in LIPIcs-Leibniz International Pro-

ceedings in Informatics, vol. 76. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik, 2017.

[149] L. Siddhu and P. R. Panda, �Thermal aware runtime management of 3D memory

architecture,� CSI transactions on ICT, vol. 5, no. 2, pp. 129�134, 2017.

[150] N. Kumari, R. Shih, S. Escobar-Vargas, T. Cader, A. Govyadinov, S. Anthony, and

C. Bash, �Air cooling limits of 3D stacked logic processor and memory dies,� in

Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2014

IEEE Intersociety Conference on. IEEE, 2014, pp. 92�97.

[151] G. L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood, and K. Banerjee,

�A thermally-aware performance analysis of vertically integrated (3-D) processor-

166

memory hierarchy,� in Design Automation Conference, 2006 43rd ACM/IEEE.

IEEE, 2006, pp. 991�996.

[152] G. H. Loh, �3D-stacked memory architectures for multi-core processors,� in Com-

puter Architecture, 2008. ISCA'08. 35th International Symposium on. IEEE, 2008,

pp. 453�464.

[153] Y. Zhang, L. Li, Z. Lu, A. Jantsch, M. Gao, H. Pan, and F. Han, �A survey of mem-

ory architecture for 3d chip multi-processors,�Microprocessors and Microsystems,

vol. 38, no. 5, pp. 415�430, 2014.

[154] Y.-J. Chen, C.-L. Yang, P.-S. Lin, and Y.-C. Lu, �Opportunities of synergistically

adjusting voltage-frequency levels of cores and DRAMs in CMPs with 3d-stacked

DRAMs for ef�cient thermal control,� ACM SIGAPP Applied Computing Review,

vol. 16, no. 1, pp. 26�35, 2016.

[155] B. K. Mohanty, V. Chaturvedi, V. Rathore, and T. Srikanthan, �Memory-access

aware work-load distribution for peak-temperature reduction of 3D multi-core em-

bedded systems,� in Digital Signal Processing (DSP), 2015 IEEE International

Conference on. IEEE, 2015, pp. 1270�1273.

[156] S.-Y. Lin and J.-Y. Lin, �Thermal-aware architecture and mapping for multi-

channel three-dimensional DRAM systems,� in Consumer Electronics (GCCE),

2014 IEEE 3rd Global Conference on. IEEE, 2014, pp. 713�714.

[157] D. Zhao, H. Homayoun, and A. V. Veidenbaum, �Temperature aware thread mi-

gration in 3D architecture with stacked DRAM,� in Quality Electronic Design

(ISQED), 2013 14th International Symposium on. IEEE, 2013, pp. 80�87.

[158] C.-W. Chang, J.-J. Chen, T.-W. Kuo, and H. Falk, �Real-time partitioned schedul-

ing on multi-core systems with local and global memories,� in Design Automation

Conference (ASP-DAC), 2013 18th Asia and South Paci�c. IEEE, 2013, pp. 467�

472.

[159] F. Eisenbrand, N. Hähnle, M. Niemeier, M. Skutella, J. Verschae, and A. Wiese,

�Scheduling periodic tasks in a hard real-time environment,� in International Col-

loquium on Automata, Languages, and Programming. Springer, 2010, pp. 299�

311.

[160] M. B. Taylor, �A landscape of the new dark silicon design regime,� IEEE Micro,

vol. 33, no. 5, pp. 8�19, 2013.

167

[161] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, �Dark

silicon and the end of multicore scaling,� in Computer Architecture (ISCA), 2011

38th Annual International Symposium on. IEEE, 2011, pp. 365�376.

[162] J. Rosén, P. Eles, Z. Peng, and A. Andrei, �Predictable worst-case execution time

analysis for multiprocessor systems-on-chip,� in Electronic Design, Test and Ap-

plication (DELTA), 2011 Sixth IEEE International Symposium on. IEEE, 2011,

pp. 99�104.

[163] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., �The worst-case execution-

time problem overview of methods and survey of tools,� ACM Transactions on

Embedded Computing Systems (TECS), vol. 7, no. 3, p. 36, 2008.

[164] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni, �Communist, utilitarian,

and capitalist cache policies on CMPs: caches as a shared resource,� in Parallel

Architectures and Compilation Techniques (PACT), 2006 International Conference

on. IEEE, 2006, pp. 13�22.

[165] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu,

and S. Reinhardt, �QoS policies and architecture for cache/memory in CMP plat-

forms,� in ACM SIGMETRICS Performance Evaluation Review, vol. 35, no. 1.

ACM, 2007, pp. 25�36.

[166] D. Tam, R. Azimi, L. Soares, and M. Stumm, �Managing shared L2 caches on

multicore systems in software,� inWorkshop on the Interaction between Operating

Systems and Computer Architecture. Citeseer, 2007, pp. 26�33.

[167] V. Suhendra and T. Mitra, �Exploring locking & partitioning for predictable shared

caches on multi-cores,� in Proceedings of the 45th annual Design Automation Con-

ference. ACM, 2008, pp. 300�303.

[168] S. Altmeyer, R. Douma, W. Lunniss, and R. Davis, �Evaluation of cache partition-

ing for hard real-time systems,� in proceedings Euromicro Conference on Real-

Time Systems (ECRTS), 2014, pp. 15�26.

[169] B. Berna and I. Puaut, �PDPA: period driven task and cache partitioning algorithm

for multi-core systems,� in Proceedings of the 20th International Conference on

Real-Time and Network Systems. ACM, 2012, pp. 181�189.

[170] M. Paolieri, E. Qui�nones, F. J. Cazorla, R. I. Davis, and M. Valero, �IA�3: An

interference aware allocation algorithm for multicore hard real-time systems,� in

168

Real-Time and Embedded Technology and Applications Symposium (RTAS), 2011

17th IEEE. IEEE, 2011, pp. 280�290.

[171] H. Kim, A. Kandhalu, and R. Rajkumar, �A coordinated approach for practical OS-

level cache management in multi-core real-time systems,� in Real-Time Systems

(ECRTS), 2013 25th Euromicro Conference on. IEEE, 2013, pp. 80�89.

[172] M. Fan and G. Quan, �Harmonic-aware multi-core scheduling for �xed-priority

real-time systems,� IEEE Transactions on Parallel and Distributed Systems,

vol. 25, no. 6, pp. 1476�1488, 2014.

[173] J. F. Cantin and M. D. Hill, �Cache performance for selected SPEC CPU2000

benchmarks,� ACM SIGARCH Computer Architecture News, vol. 29, no. 4, pp.

13�18, 2001.

[174] J. L. Henning, �SPEC CPU2000: Measuring CPU performance in the new millen-

nium,� Computer, vol. 33, no. 7, pp. 28�35, 2000.

[175] D. Burger and T. M. Austin, �The simplescalar tool set, version 2.0,� ACM

SIGARCH computer architecture news, vol. 25, no. 3, pp. 13�25, 1997.

[176] Y. Zhang, L. Peng, B. Li, J.-K. Peir, and J. Chen, �Architecture comparisons be-

tween Nvidia and ATI GPUs: Computation parallelism and data communications,�

in Workload Characterization (IISWC), 2011 IEEE International Symposium on.

IEEE, 2011, pp. 205�215.

[177] Y. Iwase, D. Abe, and T. Yakoh, �GPGPU aided method for real-time systems,�

in Industrial Informatics (INDIN), 2012 10th IEEE International Conference on.

IEEE, 2012, pp. 841�845.

[178] R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical design and analysis of experi-

ments: with applications to engineering and science. John Wiley & Sons, 2003,

vol. 474.

[179] L.Wilkinson, �Revising the Pareto chart,� The American Statistician, vol. 60, no. 4,

pp. 332�334, 2006.

[180] R. Ayoub, R. Nath, and T. S. Rosing, �CoMETC: Coordinated management of

energy/thermal/cooling in servers,� ACM Transactions on Design Automation of

Electronic Systems (TODAES), vol. 19, no. 1, p. 1, 2013.

169

[181] C. Zhu, Z. Gu, L. Shang, R. P. Dick, and R. Joseph, �Three-dimensional chip-

multiprocessor run-time thermal management,� IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 27, no. 8, pp. 1479�1492,

2008.

[182] S. Pagani, J.-J. Chen, M. Sha�que, and J. Henkel, �MatEx: ef�cient transient and

peak temperature computation for compact thermal models,� in Proceedings of

the 2015 Design, Automation & Test in Europe Conference & Exhibition. EDA

Consortium, 2015, pp. 1515�1520.

[183] S. Sha, W. Wen, S. Ren, and G. Quan, �M-oscillating: Performance maximization

on temperature-constrained multi-core processors,� IEEE Transactions on Parallel

and Distributed Systems (TPDS), 2018, (Under review).

[184] MICRON, �MICRON 2Gb DDR3 SDRAM,� Micron Technol. Inc., Tech. Rep.,

2006.

[185] L. Yuan, S. Leventhal, and G. Qu, �Temperature-aware leakage minimization tech-

nique for real-time systems,� in Proceedings of the 2006 IEEE/ACM international

conference on Computer-aided design. ACM, 2006, pp. 761�764.

[186] M. Jung, É. Zulian, D. M. Mathew, M. Herrmann, C. Brugger, C. Weis, and

N. Wehn, �Omitting Refresh: A Case Study for Commodity and Wide I/O

DRAMs,� in Proceedings of the 2015 International Symposium on Memory Sys-

tems. ACM, 2015, pp. 85�91.

[187] W.-K. Cheng and T.-W. Hsu, �Thermal-aware task allocation, memory mapping,

and task scheduling for 3d stacked memory and processor architecture,� in TEN-

CON Spring Conference, 2013 IEEE. IEEE, 2013, pp. 95�98.

[188] V. Sundriyal andM. Sosonkina, �Joint frequency scaling of processor and DRAM,�

The Journal of Supercomputing, vol. 72, no. 4, pp. 1549�1569, 2016.

[189] T.-H. Tsai and Y.-S. Chen, �Thermal-throttling server: A thermal-aware real-time

task scheduling framework for three-dimensional multicore chips,� Journal of Sys-

tems and Software, vol. 112, pp. 11�25, 2016.

[190] X. Zhou, J. Yang, Y. Xu, Y. Zhang, and J. Zhao, �Thermal-aware task schedul-

ing for 3D multicore processors,� IEEE Transactions on Parallel and Distributed

Systems, vol. 21, no. 1, pp. 60�71, 2010.

170

[191] R. Ge, X. Feng, Y. He, and P. Zou, �The case for cross-component power coor-

dination on power bounded systems,� in Parallel Processing (ICPP), 2016 45th

International Conference on. IEEE, 2016, pp. 516�525.

[192] J. Meng, D. Rossell, and A. K. Coskun, �Exploring performance, power, and tem-

perature characteristics of 3D systems with on-chip DRAM,� in Green Computing

Conference and Workshops (IGCC), 2011 International. IEEE, 2011, pp. 1�6.

[193] J. Rosen, A. Andrei, P. Eles, and Z. Peng, �Bus access optimization for predictable

implementation of real-time applications on multiprocessor systems-on-chip,� in

Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE International. IEEE,

2007, pp. 49�60.

[194] G. A. Chaparro-Baquero, S. Sha, S. Homsi, W. Wen, and G. Quan, �Proces-

sor/memory co-scheduling using periodic resource server for real-time systems

under peak temperature constraints,� in Quality Electronic Design (ISQED), 2017

18th International Symposium on. IEEE, 2017, pp. 360�366.

[195] E. Bini and G. C. Buttazzo, �Measuring the performance of schedulability tests,�

Real-Time Systems, vol. 30, no. 1-2, pp. 129�154, 2005.

[196] R. Inam and M. Sjödin, �Combating unpredictability in multicores through the

multi-resource server,� in Emerging Technology and Factory Automation (ETFA),

2014 IEEE. IEEE, 2014, pp. 1�8.

[197] R. Ishihara, J. Derakhshandeh, M. T. Mofrad, T. Chen, N. Golshani, and

C. Beenakker, �Monolithic 3d-ics with single grain si thin �lm transistors,� Solid-

State Electronics, vol. 71, pp. 80�87, 2012.

[198] MONOLITHIC3D.COM, �Qualcomm to leverage Mono-

lithic 3D to win Smartphone Market Share,� April

2015. [Online]. Available: http://www.monolithic3d.com/blog/

qualcomm-to-leverage-monolithic-3d-to-win-smartphone-market-share

[199] S. Panth, K. Samadi, Y. Du, and S. K. Lim, �Shrunk-2D: A Physical Design

Methodology to Build Commercial-Quality Monolithic 3D ICs,� IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 2017.

[200] S. K. Samal, S. Panth, K. Samadi, M. Saedi, Y. Du, and S. K. Lim, �Fast and

accurate thermal modeling and optimization for monolithic 3D ICs,� in Design

Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE. IEEE, 2014, pp.

1�6.

171

http://www.monolithic3d.com/blog/qualcomm-to-leverage-monolithic-3d-to-win-smartphone-market-share
http://www.monolithic3d.com/blog/qualcomm-to-leverage-monolithic-3d-to-win-smartphone-market-share

[201] M. Saeidi, K. Samadi, A. Mittal, and R. Mittal, �Thermal implications of mo-

bile 3D-ICs,� in 3D Systems Integration Conference (3DIC), 2014 International.

IEEE, 2014, pp. 1�7.

[202] Y. Yu and N. K. Jha, �Energy-Ef�cient Monolithic 3D on-Chip Memory Architec-

tures,� IEEE Transactions on Nanotechnology, 2017.

[203] Y. Turakhia, G. Liu, S. Garg, and D. Marculescu, �Thread progress equaliza-

tion: Dynamically adaptive power-constrained performance optimization of multi-

threaded applications,� IEEE Transactions on Computers, vol. 66, no. 4, pp. 731�

744, 2017.

[204] G. H. Loh, N. E. Jerger, A. Kannan, and Y. Eckert, �Interconnect-memory chal-

lenges for multi-chip, silicon interposer systems,� in Proceedings of the 2015 In-

ternational Symposium on Memory Systems. ACM, 2015, pp. 3�10.

[205] A. Sodani, �Knights landing (KNL): 2nd Generation Intel R⃝ Xeon Phi processor,�

in Hot Chips 27 Symposium (HCS), 2015 IEEE. IEEE, 2015, pp. 1�24.

172

VITA

GUSTAVO A. CHAPARRO-BAQUERO

2002 B.S., Electronics Engineering

Ponti�cal Xavierian University

Bogotá, Colombia

2007 M.S., Computer Engineering

University of Puerto Rico at Mayagüez (UPRM)

Mayagüez, Puerto Rico

2018 Ph.D., Electrical and Computer Engineering

Florida International University (FIU)

Miami, Florida

PUBLICATIONS

• Chaparro-Baquero G., Sha S., Homsi S., Wen W., Quan G. �Thermal-aware Joint

CPU and Memory Scheduling for Hard Real-Time Tasks on Multicore 3D Plat-

forms.� On 8th IEEE International Green and Sustainable Computing Conference

(IGSC). 2017.

• Chaparro-Baquero G., Sha S., Homsi S., Wen W., Quan G. �Processor/Memory

Co-scheduling Using Periodic Resource Server for Real-Time System Under Peak

Temperature Constraints.� On 18th IEEE International Symposium on Quality Elec-

tronic Design (ISQED). 2017.

• Homsi S., Liu S., Chaparro-Baquero G., Bai O., Ren S., Quan G. �Workload Con-

solidation for Cloud Data Centers with Guaranteed QoS Using Request Reneging.�

On IEEE Transactions on Parallel and Distributed Systems.

doi: 10.1109/TPDS.2016.2642941. 2016.

• Chaparro-Baquero G., Homsi S., Vichot O., Ren S. Quan G., Ren S. �Cache Allo-

cation for Fixed-Priority Real-Time Scheduling on Multi-Core Platforms.� On 33rd

IEEE International Conference on Computer Design (ICCD). 2015.

• Chaparro-Baquero, G., Zhou Q., Liu C., Tang J., and Liu S. �Power-Ef�cient Schemes

via Workload Characterization on the Intel's Single-Chip Cloud Computer.� On

26th IEEE International Parallel and Distributed Processing Symposium Workshop

& Ph.D. Forum (IPDPSW). 2012.

• Chaparro-Baquero, Gustavo A. �Petri-Net Work�ow Modeling for Digital Publish-

ing - Measuring Quantitative Dependability Attributes.� VDM Verlag Dr. Müller.

2007. ISBN-10: 3836418894. ISBN-13: 978-3836418898.

173

	Florida International University
	FIU Digital Commons
	3-21-2018

	Memory-Aware Scheduling for Fixed Priority Hard Real-Time Computing Systems
	Gustavo A. Chaparro-Baquero
	Recommended Citation

	ABSTRACT OF THE DISSERTATION
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Real-time systems and real-time scheduling
	The challenges presented by memory systems in design of real-time systems
	The memory wall problem
	The memory access time variation problem
	The power/energy consumption and thermal problem for memory systems

	The research problem and our contributions
	Summary and structure of the document

	BACKGROUND AND RELATED WORK
	Real-time scheduling
	Power/thermal-aware scheduling
	Memory-Aware Scheduling
	Shared Cache Memory
	Main-Memory Power and Thermal

	Summary

	CACHE ALLOCATION FOR FIXED-PRIORITY REAL-TIME SCHEDULING ON MULTI-CORE PLATFORMS
	Related Work
	Preliminary
	Architecture and System Model
	Cache Allocation Example

	Simple Harmonic-Based Cache Allocation Approach (HBCA1)
	Enhanced Harmonic-Based Cache Allocation Approach (HBCA2)
	Experiments, Analysis and Results
	SPEC CPU2000 Benchmarks Cache Simulation
	Target Architecture
	Simulation results of testing HBCA1 and HBCA2 approaches
	Full Factorial Experiment

	Summary

	PROCESSOR/MEMORY CO-SCHEDULING USING PERIODIC RESOURCE SERVER FOR REAL-TIME SYSTEMS UNDER PEAK TEMPERATURE CONSTRAINTS
	Related Work
	Preliminary
	Architecture and System Model
	CPU and DRAM Thermal Model
	Problem Formulation

	Our Approach
	Bound the peak temperature for a periodic server
	Periodic server optimization
	CPU/Memory Co-Scheduling using Periodic Server (CSPS)

	Experiments, Analysis and Results
	Summary

	THERMAL-AWARE JOINT CPU AND MEMORY SCHEDULING FOR HARD REAL-TIME TASKS ON MULTICORE 3D PLATFORMS
	Related Work
	Preliminary
	System Architecture
	System Model
	3D Platform Power Models
	3D Platform Thermal Model
	Problem Formulation

	Our Approach
	A Periodic Resource Model Based Approach
	Real-Time Task Partitioning Strategies

	Experiments, Analysis and Results
	Summary

	CONCLUSIONS AND FUTURE WORK
	Summary
	Future Work

	BIBLIOGRAPHY
	VITA

