Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-21-2018

Memory-Aware Scheduling for Fixed Priority Hard
Real-Time Computing Systems

Gustavo A. Chaparro-Baquero
Florida International University, gchap002@fiu.edu

DOI: 10.25148/etd . FIDC004092
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

b Part of the Computer and Systems Architecture Commons, Hardware Systems Commons, and
the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation

Chaparro-Baquero, Gustavo A., "Memory-Aware Scheduling for Fixed Priority Hard Real-Time Computing Systems" (2018). FIU
Electronic Theses and Dissertations. 3712.
https://digitalcommons.fiu.edu/etd/3712

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3712?utm_source=digitalcommons.fiu.edu%2Fetd%2F3712&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

MEMORY-AWARE SCHEDULING FOR FIXED PRIORITY HARD REAL-TIME
COMPUTING SYSTEMS

A dissertation submitted in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY

in
ELECTRICAL ENGINEERING
by

Gustavo A. Chaparro-Baquero

2018

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Gustavo A. Chaparro-Baquero, and entitled Memory-Aware
Scheduling for Fixed Priority Hard Real-Time Computing Systems, having been approved

in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Jean Andrian

Nezih Pala

Deng Pan

Wujie Wen

Gang Quan, Major Professor

Date of Defense: March 21, 2018

The dissertation of Gustavo A. Chaparro-Baquero is approved.

Dean John L. Volakis
College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2018

il

(© Copyright 2018 by Gustavo A. Chaparro-Baquero

All rights reserved.

1ii

DEDICATION

I would like to dedicate this Doctoral dissertation to my beloved wife, Viky Arnedo, my
dearest mother and aunt, Ana Lucia Baquero and Shirley Sanchez, and all my family.
Without their love, understanding, support, and encouragement, the completion of this

endeavor would never have been possible.

v

ACKNOWLEDGMENTS

First, I want to express my heartfelt appreciation to my major advisor, Dr. Gang Quan,
for his constant guidance and encouragement during the last six years of my doctoral
study. I also want to express my gratitude to my Ph.D. committee members, Dr. Jean
Andrian, Dr. Nezih Pala, Dr. Deng Pan, and Dr. Wujie Wen, for their insightful feedback,
comments and suggestions in improving the quality of this dissertation. T am proud to
have such wonderful and knowledgeable people serving on my dissertation committee.
In addition, I want to thank Dr. Gustavo Roig, Dr. Alexander Perez-Pons, Dr. Kang Yen,
and Dr. Amaury Caballero for their unconditional and always kind advice.

I am thankful to the staff of the ECE department at FIU, specially to Mrs. Pat Bram-
mer, Mr. Oscar Silveira, Mrs. Layla El-Hilu, Mrs. Mais Kayyali, and Mrs, Xiang Li for
their great commitment to student services.

Next, I would like to thank my lab mates and friends, Dr. Soamar Homsi, Dr. Shi
Sha, Dr. Ming Fan, Dr. Shuo Liu, Dr. Tianyi Wang, Dr. Qiushi Han, and Dr. Vivek
Chaturvedi, for creating a wonderfully collaborative and friendly work environment.

Last, but not least, my deepest gratitude goes to all my family, sisters, cousins, aunts,
uncles, in-laws, nieces, nephews, and friends, for their constant love and support during
this journey. I am very grateful to my beloved wife, Mrs. Viky Arnedo, for accompanying
and encouraging me through all these years. I want to give my life-long gratitude to my
dearest mother and aunt, Mrs. Ana Lucia Baquero and Mrs. Shirley Sanchez, for all the
love and affection they have showered upon me. I want to express also my gratitude to

my friend Cavally for all his support.

ABSTRACT OF THE DISSERTATION
MEMORY-AWARE SCHEDULING FOR FIXED PRIORITY HARD REAL-TIME
COMPUTING SYSTEMS
by
Gustavo A. Chaparro-Baquero
Florida International University, 2018
Miami, Florida

Professor Gang Quan, Major Professor

As a major component of a computing system, memory has been a key performance
and power consumption bottleneck in computer system design. While processor speeds
have been kept rising dramatically, the overall computing performance improvement of
the entire system is limited by how fast the memory can feed instructions/data to pro-
cessing units (i.e. so-called memory wall problem). The increasing transistor density and
surging access demands from a rapidly growing number of processing cores also signifi-
cantly elevate the power consumption of memory systems. In addition, the interference of
memory accesses from different applications and processing cores significantly degrades
the computation predictability, which is essential to ensure timing specifications in real-
time system design. The recent IC technologies (such as 3D-IC technology) and emerging
data-intensive real-time applications (such as Virtual Reality/Augmented Reality, Artifi-
cial Intelligence, Internet of Things) further amplify these challenges. We believe that it
is not simply desirable but necessary to adopt a joint CPU/Memory resource management
framework to deal with these grave challenges.

In this dissertation, we focus on studying how to schedule fixed-priority hard real-time
tasks with memory impacts taken into considerations. We target on the fixed-priority real-
time scheduling scheme since this is one of the most commonly used strategies for prac-

tical real-time applications. Specifically, we first develop an approach that takes into con-

vi

sideration not only the execution time variations with cache allocations but also the task
period relationship, showing a significant improvement in the feasibility of the system.
We further study the problem of how to guarantee timing constraints for hard real-time
systems under CPU and memory thermal constraints. We first study the problem under
an architecture model with a single core and its main memory individually packaged.
We develop a thermal model that can capture the thermal interaction between the proces-
sor and memory, and incorporate the periodic resource sever model into our scheduling
framework to guarantee both the timing and thermal constraints. We further extend our
research to the multi-core architectures with processing cores and memory devices inte-
grated into a single 3D platform. To our best knowledge, this is the first research that
can guarantee hard deadline constraints for real-time tasks under temperature constraints
for both processing cores and memory devices. Extensive simulation results demonstrate
that our proposed scheduling can improve significantly the feasibility of hard real-time

systems under thermal constraints.

vii

TABLE OF CONTENTS

CHAPTER PAGE
1. INTRODUCTION e 1
1.1 Real-time systems and real-time scheduling 2
1.2 The challenges presented by memory systems in design of real-time systems . 10
1.2.1 The memory wall problem 11
1.2.2 The memory access time variation problem 13
1.2.3 The power/energy consumption and thermal problem for memory systems . 17
1.3 The research problem and our contributions 25
1.4 Summary and structure of the document 30
2. BACKGROUND AND RELATEDWORK 31
2.1 Real-timescheduling o L. 31
2.2 Power/thermal-aware scheduling 48
2.3 Memory-Aware Scheduling L o oL 57
2.3.1 Shared Cache Memory 57
2.3.2 Main-Memory Power and Thermal 61
24 SUumMmary oLl e e e e e 68
3. CACHE ALLOCATION FOR FIXED-PRIORITY REAL-TIME SCHEDULING
ON MULTI-CORE PLATFORMS 69
3.1 RelatedWork e 70
3.2 Preliminary e e e e e 73
3.2.1 Architecture and System Model oo L. 74
3.2.2 Cache Allocation Example 75
3.3 Simple Harmonic-Based Cache Allocation Approach (HBCA1) 77
3.4 Enhanced Harmonic-Based Cache Allocation Approach (HBCA2) 81
3.5 Experiments, AnalysisandResults 86
3.5.1 SPEC CPU2000 Benchmarks Cache Simulation 86
3.5.2 Target Architecture Lo 87
3.5.3 Simulation results of testing HBCA1 and HBCA?2 approaches 87
3.5.4 Full Factorial Experiment 90
3.6 Summary e e e e e e e e 91

4. PROCESSOR/MEMORY CO-SCHEDULING USING PERIODIC RESOURCE
SERVER FOR REAL-TIME SYSTEMS UNDER PEAK TEMPERATURE CON-

STRAINTS e 96
4.1 Related Work 96
4.2 Preliminary e 98
4.2.1 Architecture and System Model, 98
422 CPUand DRAM Thermal Model 100
4.2.3 Problem Formulation 104

viil

43 OurApproach e 104

4.3.1 Bound the peak temperature for a periodic server 105
4.3.2 Periodic server optimizationo L a e e e 108
4.3.3 CPU/Memory Co-Scheduling using Periodic Server (CSPS) 110
4.4 Experiments, AnalysisandResults 112
4.5 Summary e e e e e e e e e e e e e e e 118
5. THERMAL-AWARE JOINT CPU AND MEMORY SCHEDULING FOR HARD
REAL-TIME TASKS ON MULTICORE 3D PLATFORMS 120
5.1 Related Work 122
5.2 Preliminary L 124
5.2.1 System Architecture e 124
5.22 SystemModel e 126
5.2.3 3DPlatformPowerModels oL 128
5.2.4 3D Platform Thermal Model 129
5.2.5 Problem Formulation L oo oL 131
53 OurApproach L 132
5.3.1 A Periodic Resource Model Based Approach 132
5.3.2 Real-Time Task Partitioning Strategies 133
5.4 Experiments, Analysisand Results 138
5.5 Summaryo 145
6. CONCLUSIONS AND FUTUREWORK 146
6.1 Summary 146
6.2 Future Work e 148
BIBLIOGRAPHY e 153
VITA o e e 174

1X

LIST OF TABLES

TABLE PAGE
2.1 Example of task set to be scheduled in two processing units using RMS [1] . 41
3.1 Example of Task Set and the WCET values for differentm; 74
3.2 Motivation Example Solution Using IBRT-MCI-RMS (2] 76
3.3 Motivation Example Solution by Inspection 77
3.4 Solution to Example 3.1 using HBCA1 81
3.5 Solution to Example 3.1 using HBCA2 86
3.6 2-Level Factorial Experiment - Factors and Levels 90
5.1 Schedulability ratio per method with two temperature thresholds 141

LIST OF FIGURES

FIGURE PAGE
1.1 Embedded systems development industries in 2015 [3] 3
1.2 Current embedded systems capabilitiesin 2015 (3] 4
1.3 MICRON’s applications driving requirements for embedded systems in the

near future [4] 12
1.4 Technology forecast of share of DRAMbits [5] 12
1.5 Typical sample distribution of runtimes of a program, along with sample of

BCETand WCET [6] 14
1.6 Most important challenges for embedded systems development in 2015 [3] 18
1.7 DRAM technology data rate per pin over the time [7] 20
1.8 DRAM technology latency and density over the time [7] 21
1.9 DRAM capacity and latency over the time [8] 21
1.10 DRAM technology power efficiency decrement over the time [7] 22
1.11 DRAM chip density increase over the time [7] 22
2.1 Example for timing feasibility check for each processing unit scheduling

tasksusing RMSo oo 42
2.2 Hierarchical scheduling framework 45
2.3 Shin and Lee [9] periodic resource server example 45
2.4 Power density and total power consumption of computing platforms over the

years [10] oL 49
2.5 40 years of microprocessor trend data [11] 49
2.6 Lumped RCcircuitexample L. 54
2.7 Example of cache related preemptiondelay 59
2.8 Example of dual-core configuration with cache partitioning [12] 60
2.9 DRAM Rank organization [13] L oL 62
2.10 DRAM Bank organization [13] 63
2.11 DRAM Row organization [13] 63

X1

2.12
3.1
32
3.3
34
3.5
4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10

5.1

5.2

5.3
54

5.5

DRAM System organization [13] 64
Number of Tasks VS. Scheduling Success Ratio. Cache Unit Size=1KB . . 93

Number of Tasks VS. Scheduling Success Ratio. Cache Unit Size=4 KB . . 94

90% Schedulability Ratio. Cache UnitSize=1KB 95
Average 90% Schedulability Ratio 0. 95
Pareto Chart of Standardized Effects (response is S with o =0.05) 95
Architecture block diagram0 0 0oL, 99
Periodic server time schedule 100
CPU Thermal Model. 101
DRAM Thermal Model. 101
Joint CPU and DRAM Thermal Model 102
Periodic Server Time Schedule Example 106

Task set feasibility comparison using each different method, for different

types of tasks with DRAM peak threshold temperature of 85°C 115
Average task set feasibility comparison with CPU peak threshold tempera-

ture of 90°C and DRAM peak threshold temperature of 85°C 116
Task set feasibility comparison using each different method, for different

types of tasks with DRAM peak threshold temperature of 60°C 117
Average task set feasibility comparison with CPU peak threshold tempera-

ture of 90°C and DRAM peak threshold temperature of 60°C 118
3D platform example with 16 cores in one logic layer and 16 banks per

DRAM layer in 4 memory layers 125
Periodic server time schedule example for any processing core Py and its

associated DRAMrank o o Lo 127
3D Platform Super-Core Thermal Model and its Equivalent Circuit 131

Task set feasibility comparison by total number of tasks in I" with TempT hrsc =
TO°C . o 140

Task set feasibility comparison by total number of tasks in I" with TempT hrgc =
TS5°C 141

Xii

5.6

5.7

Upper-Bound Index by total number of tasks in I" with TempT hrgc = 70°C
and SC=4 e

Upper-Bound Index by total number of tasks in I" with TempT hrsc = 75°C
and SC=4

xiil

CHAPTER 1
INTRODUCTION

Computing systems are everywhere. Millions of computing systems are built every
year destined to cover multiple needs in general purpose computing applications (e,g.
personal computers, workstations, and servers) and specialized applications, known as
embedded systems computing (e.g. portable devices, camcorders, and home appliances).
Many computing systems, especially many embedded systems, require the execution of
real-time processes, with the correctness depending not only on the logical correctness of
the computational result, but also on the time such a result is produced. These kinds of
systems are known as real-time systems. Real-time systems cover a wide spectrum of ap-
plications, from smart devices and systems (e.g. surveillance cameras, home automation
systems, smart TVs, in-vehicle infotainment systems) to numerous more sophisticated
real-time systems used to monitor and control physical systems and processes in many
domains (e.g. manned and unmanned vehicles, critical infrastructures, process control
systems in industrial plants, smart medical instruments, etc.) [14]. Thus, real-time sys-
tems are ubiquitous and their correct design is critical to almost every aspect of our daily
life.

Memory system, as a major component in computing systems, has increasingly be-
come a major barrier in real-time system design. Due to the rapid evolution of processors,
and with the increasing adoption of multi-core platforms for multiple computing applica-
tions, more and more data travel back and forth between the processor and the memory.
Therefore, the bandwidth of the memory (i.e. the speed of the memory) becomes one of
the major constraints impacting the system performance [15].

Moreover, higher memory capacity and bandwidth requirements have increased the
use of cache memories on the CPU, which increases the memory access latency variance

and thus the unpredictability during the execution time for real-time tasks. Furthermore, a

larger amount of memory has also significantly increased power consumption and operat-
ing temperature. Today, how to effectively deal with these technical challenges presented
by the memory system has been vital in the design of new generations of real-time com-
puting systems [16—18].

Our research presented in this dissertation focuses on developing memory-aware re-
source allocation strategies for time-critical real-time systems. In this chapter, we first
introduce the basics of real-time systems and real-time allocation strategies. Then, we dis-
cuss the challenges presented by memory systems in design of real-time systems. Next,
we define our research problem and briefly summarize our contributions. Finally, we

present the structure of this dissertation.
1.1 Real-time systems and real-time scheduling

In real-time computing domain, the correctness of a system depends not only on the log-
ical result of the computation, but also on the time such a computation is produced [14].
A reaction that occurs too late could be useless or even dangerous. For example, many
smart devices and systems (surveillance cameras, home automation systems, smart TV,
in vehicle infotainment systems) demand the capability of performing real-time computa-
tions. The correct design of real-time systems is becoming more and more critical to our
society because there is an increasing number of complex computing systems requiring
accurate and on-time computations. As an illustration, systems such as self-driving auto-
motive controls and aircraft navigation systems require the execution of certain tasks in a
timely manner, otherwise the consequences can be loss of human lives.

Real-time systems are ubiquitous and affect almost every aspect of our daily life.
Real-time system designs cover a wide spectrum of applications, from relatively simple
ones to extremely complex ones. In many cases, the real-time computer running the ap-

plication is embedded into the system to be controlled. As we can see in Fig. 1.1, there

Industrial controls s "
Consumer electronics i A
Communications/netwk 213"2‘;’%&%
Internet of Things* C12% L
Electronic instrumnts] riﬁ
Automotive 18%
Medical Sl
Aero/Military (Net) 7%
Computers/periphs - 1”"@’1?@]%
Power generation/utils 83%:”

Transportation i

Security " 2015 (N=1152)

Video & imaging R 2% 2014 (N=1529)
M2M s = 2013 (N=2080)
Audio [

Govt & municipal

Figure 1.1: Embedded systems development industries in 2015 [3]

is a wide variety of industries where embedded systems are being developed. For ex-
ample, as shown in Fig. 1.1, industrial controls is the industry implementing the larger
number of embedded systems with 34% if its projects involving embedded systems in
2015. Consumer electronics, communications and internet-of-things (IoT) are the follow-
ing industries with 21%, 21% and 19% of projects involving embedded systems in 2015,
respectively. Based on a Zion Market Research report, the global embedded systems’
market was valued at 159.00 billion USD in 2015, and is expected to generate a revenue
of 225.34 billion USD by the end of 2021, growing at a Compound Annual Growth Rate
(CAGR) of slightly above 6% between 2016 and 2021 [19]. In the meantime, as shown in
Fig. 1.2, 62% of embedded systems on the market for 2015 were developed with real-time
capabilities, highlighting the significant economic impacts of real-time systems.

A real-time system is still a computing system, and shares many common characteris-

tics with other computing systems. However, what makes a real-time system unique is that

62%

Real-time capabhility 61%

Digital signal processing
Networking capability

Analog signal processing W 2015 (N = 1,606)

W 2014 (N = 2,048)

Wireless capability
* Added in 2015

GUI*

Project rugged

Figure 1.2: Current embedded systems capabilities in 2015 [3]

it is expected to guarantee a correct response within specified time constraints. In other
words, processes executed on a real-time system are expected to be completed before
their predetermined deadlines. Even for a logically correct result, if it is a “late result,” it
might be as negative as the incorrect output from the computation, leading to catastrophic
consequences for certain applications. For instance, in a production line control system,
various machines have to receive their orders at the right time to ensure smooth operation
of a plant and to fulfill customer orders on time. For flight control systems, the timing
situation is even more restrictive.

The definition of “late result” depends on the context and application of the real-time
system. In general, from the perspective of the nature of the system deadlines, real-
time systems are classified as soft real-time and hard real-time systems depending on
the consequences of missing a deadline. Missing a deadline may not imply a system
failure for a soft real-time system, but the usefulness of a result that misses its deadline
is degraded. Thus, applications such as video decoders are soft-real time systems, in
the sense that if a frame misses its deadline to be decoded, the image would not suffer

much degradation in usefulness and the viewer may not notice the failure. In contrast,

for applications such as car’s cruise control systems, anti-lock brakes, aircraft control
systems and heart pacemakers, if they do not react in a certain strict period of time, the
consequences could be catastrophic. These systems are hard real-time systems. Thus, for
a hard real-time system it is imperative to guarantee the successful execution of every task
before its deadline, whenever such tasks are activated.

Real-time systems are composed of collections of tasks that have specific timing and
resource constraints that require the implementation of an efficient scheduling algorithm
(or scheduling policy) to guarantee their successful execution under different timing con-
straints. The scheduler of any computing system decides what task to execute next when
faced with a choice in the execution of a set of concurrent tasks. It also decides the assign-
ment of resources to each task at any specific time [20]. A general purpose computing
scheduler is aimed to schedule non-time-critical applications and may favor fairness of
the distribution of resources among all tasks, as well as the overall throughput and per-
formance, without considering strict finishing times for each task. The main goal when
designing a real-time system is to guarantee the successful execution of all real-time tasks
in the system before accomplishing the timing constraints. This makes the system’s pre-
dictability, i.e. the capability to determine timing characteristics of a computing system
with certainty, an important parameter to consider when designing a real-time scheduler.

Different real-time scheduling algorithms have been proposed to fulfill the different
requirements of modern real-time applications. These scheduling algorithms can be clas-
sified in different ways, e.g. on-line/off-line, priority/non-priority, and single-core/multi-
core [21].

Real-time scheduling algorithms can be implemented either as online or off-line mech-
anisms. Scheduling algorithms implemented online generate scheduling information while
the system is running. They assume little or no a-priori knowledge of tasks that have not

arrived yet, which restricts the potential for the system to meet timing and resource shar-

ing requirements. This type of algorithms are adaptive, flexible, and can consider in the
scheduling decisions the run-time variations of the system and the environment. However,
the calculations required to make such decisions may produce a large run-time overhead,
which force them to implement simple scheduling rules. Also, this type of system may not
offer guarantees to the system’s timing constraints, due to its inherent variability nature.
Unlike online scheduling algorithms, off-line ones generate fixed scheduling decisions
prior to the system’s execution. Such scheduling decisions are later utilized by a sim-
ple task dispatcher during runtime with a small run-time overhead. This property makes
possible to implement off-line scheduling algorithms with high computational costs, be-
cause their high complexity does not affect the run-time overhead. By definition such
algorithms are not flexible and usually must account for worst-case operating conditions,
which may generate pessimistic schedules. In a predictable environment, off-line imple-
mentations can guarantee system performance, and most importantly, off-line scheduling
algorithms can guarantee the system’s timing constraints. These reasons make off-line
scheduling algorithms a first choice for designing hard real-time systems.

One of the critical problems in real-time scheduling is in what order should the real-
time tasks be executed. Depending on the properties of the real-time tasks or the schedul-
ing implementation mechanisms, real-time scheduling algorithms can be categorized as
non-priority-based or priority-based. In scheduling terms, a priority is usually a positive
integer representing the urgency or importance assigned to a task. Thus, non-priority-
based algorithms schedule tasks with the same level of importance, and priority-based
algorithms make a distinction between the importance of each task.

Non-priority-based algorithms are suitable for applications requiring a guaranteed fair
distribution of the resources among tasks. However, a fair distribution of resources may
not be sufficient to guarantee the timing constraints, because the behavior of such schedul-

ing methods is hard to predict. An example of non-priority-based algorithm is the Round-

Robin algorithm. This scheduling algorithm assigns a fixed amount of computation time
to each task. This type of methods have the advantage that their implementation is rela-
tively easy, compared to priority-based algorithms.

Real-time scheduling algorithms usually implement a strict order of execution for
tasks in the system, in order to maximize its predictability. A common mechanism to
develop such an order is by assigning tasks with priorities, which is the case for priority-
based algorithms. By assigning tasks with different priorities of execution it is possible
guarantee completion of tasks with higher time sensitivity over tasks with a lower time
sensitivity. In some cases, the scheduling algorithm may allow preemption of tasks, so
that the latency in executing higher priority tasks may be reduced by executing them over
lower priority tasks. However, one of the severe problems that can occur with priority-
based preemptive algorithms is the “priority inversion” phenomenon. Priority inversion
may be present in systems executing tasks that have dependencies among themselves.
Priority inversion occurs in a real-time system when a high-priority task has to wait for
a lower priority task to execute, because another lower priority task is using exclusively
a shared resource needed by the high priority task. Multiple improvement mechanisms
and algorithms, e.g. the priority inheritance protocol (PIP), have been proposed in the
literature to overcome this problem [22].

Multiple methodologies have been proposed for assigning priorities to each task either
statically or dynamically. A very common method for assigning and scheduling fixed-
priority tasks (statically) is the rate-monotonic scheduling (RMS). The RMS scheduling
algorithm is one of the most widely studied and used in practice, due to its low over-
head and simplicity in implementation [23]. This method assigns priorities to tasks in
ascending order with respect to their periodicity; i.e., a larger task period leads to a lower
priority task. RMS has been proven to be an optimal scheduling policy for fixed-priority

tasks on a single-core processor [24]. A very common method for assigning and schedul-

ing dynamic-priority tasks is the earliest-deadline first (EDF). As stated in its name, this
method assigns priorities to tasks dynamically in an inverse proportion with respect to the
difference between the actual time and the task deadline. In other words, as the difference
in current time and deadline time shrinks for a specific task, its priority increases. EDF
has been proven to be the optimal dynamic scheduling algorithm for hard real-time tasks
on a single-core platform [24].

Real-time systems used to be developed on single-core platforms because of the al-
ready high level of predictability achieved by single-core scheduling algorithms imple-
mented in these types of systems. A high increase in processing demands has led the
industry to develop them on multi-core platforms in the past few years. Thus, based on
the underlying hardware infrastructure, real-time scheduling algorithms can be catego-
rized as single-core scheduling algorithms or multi-core scheduling algorithms.

The design and implementation of an efficient scheduler for real-time tasks on a
single-core platform is a hard work process, but scheduling tasks on a multi-core plat-
form usually requires a bigger effort. Different from single-core scheduling, multi-core
scheduling needs to decide not only when, but also where a task should be executed.
Hence, multi-core scheduling is known to be a NP-hard problem and more complicated
than single-core scheduling [14]. If tasks have dependencies, such as shared resources
like memory, calculating task completion times on a multi-core system is inherently more
difficult than on a single-core system.

Different multi-core scheduling mechanisms have been proposed, such as global schedul-
ing, semi-partitioned scheduling, and partitioned scheduling. In the global scheduling ap-
proach, any job from any task can be executed on any processing unit of the system. For
global scheduling algorithms allowing preemption, a single job may start its execution on
one processing unit and resume on a different one. In the partitioned scheduling approach,

it is fixed the processing unit that will always execute all jobs from a specific task. The

semi-partitioned scheduling approach is a combination of the two previous approaches,
i.e. some tasks are assigned to a dedicated processor, while the rest of the tasks can be
allocated among all available processing cores.

For the case of partitioned scheduling, by fixing the task to a processing unit, the pre-
dictability of the system is increased. This premise makes multi-core partitioned schedul-
ing the first choice for designing a hard real-time system. However, the key problem
becomes to statically choose what group of tasks allocate together, sharing the same sys-
tem resources, e.g. sharing one or multiple cache memories, or one or multiple memory
controllers. Thus, multiple research works have proposed various allocation strategies
looking to improve the system schedulability, when scheduling tasks using multi-core
partitioned scheduling. The most common studied ones are the strategies based on the tra-
ditional Bin-packing approach, i.e. First Fit (FF), Best Fit (BF), and Worst Fit (WF) [25].

Besides real-time constraints, real-time scheduling algorithms are also developed with
different optimization goals in mind, such as power/energy consumptions, thermal im-
pacts, reliability, etc. Therefore, real-time scheduling algorithms can also be categorized
based on their design optimization goals as power/energy aware real-time scheduling,
thermal-aware real-time scheduling, reliability-aware real-time scheduling, etc. Research
works such as [26, 27] present power-aware and energy-aware schedulers that look to
minimize the consumption of each parameter or both. Additionally, some real-time de-
vices, either mobile or fixed, are intended to be used in enclosed extreme conditions or
near environments that restrict their peak temperature of operation, beyond of the peak
temperature operation imposed by the chip and its package. Therefore, some research
works such as [28] have proposed schedulers to account for the power and thermal issues
of the platform in order to guarantee an operation below a certain temperature threshold.
Another example are devices implemented on computing platforms which have a great

variability in their manufacturing characteristics from one processing unit to the next one.

Thus, some research works such as [29] have proposed schedulers that account for the
changes in execution time due to the unexpected manufacturing process variations. Also,
some real time devices are deployed on extreme environmental conditions that increases
the probability of present computing errors at any specific time. Some research works
such as [30] have proposed schedulers that implement supplementary timing error detec-
tion and correction mechanisms in order to maximize the reliability and fault tolerance of
real-time systems.

To summarize, real-time systems are ubiquitous and critical to our daily lives. Real-
time scheduling plays a critical role to ensure the timeliness of real-time systems, espe-
cially for real-time applications that are critically sensitive to time. In the past, numerous
research works have focused extensively on real-time scheduling, but most of them have
focused on the CPU resource management. This dissertation takes into consideration in
the design process of hard-real time systems, not only performance characteristics of pro-
cessing units, but also restrictions and latencies imposed by memory devices considering

the effects that different memory parameters inflict on each real-time task.

1.2 The challenges presented by memory systems in design of real-
time systems

Memory has played an important role in computers since the early days of computing.
Memory is essential to the operation of a computer system because of its purpose of
supplying instructions and data for calculations in a timely manner. In the early days
of computing, accessing the memory was as fast as the rate of performing the actual
calculations by the processor unit. As processing units became faster and as the size of

problems grew, access to memory became steadily slower than the rate of computations

[31].

10

Although a flat memory system built using a single manufacturing technology was de-
sirable for implementing computing systems because of its simplicity, none of the avail-
able memory technologies is capable of complying with the continuously increasing need
of having high memory speed, high memory capacity and low cost per bit. In this regard,
nothing is more important to the development of modern memory systems than the con-
cept of the memory hierarchy, for it provides a computing system with a memory closer
to the ideal case of having the highest capacity, with the minimum latency for each mem-
ory access, at the lowest possible cost per bit [13]. However, memory hierarchy alone
falls short of satisfying the rapidly growing needs of higher memory bandwidth and ca-
pacities for new generations of real-time applications. The execution time variances due
to memory hierarchy also significantly degrade the predictability of real-time systems.
Moreover, as memory capacity and transistor density continue to grow, the power/energy
consumption and thermal impacts of memory devices also raise significant challenges in

design of new generations of real-time systems.

1.2.1 The memory wall problem

Memory performance has also become a significant issue in the design of real-time sys-
tems. Real-time systems processing huge streaming of data such as cameras and special-
ized sensors are becoming popular, and such applications not only generate large amounts
of I/0 workloads, but also become more and more memory intensive, which is translated
in the need to develop real-time platforms with higher memory bandwidth and capacity.
Applications such as IoT, wearable, networking and automotive markets are driving main
memory innovation. Fig. 1.3 shows the applications driving requirements envisioned by
MICRON in the near future, where we can see that a variety of applications in embedded

computing systems will rely on a higher memory capacity and bandwidth. Additionally,

11

Market | ___IoT | Wearables | Networking | _Automotive _

. . MCU external , - Instrument cluster,
Appllcatlon e Graphics, Icons Primary boot ADAS, IVI
Performance Medium to High Medium Medium to High Medium to High
Needs
Densrty Wide Range High Medium Medium
Needs (128MB-1GB) (32-256MB) (32-256MB)

Figure 1.3: MICRON’s applications driving requirements for embedded systems in the near future

[41

DRAM technology forecast - bit basis
100%-------_———— | B B B B B B B B |
e ™
- e
= 60% | [R p— — -_—_ - ——
2 B B B
o J—
%5 40%
2
=
£
) - | l I I I l I
= FES=mER o
Q114 Q214 Q3-14 Q414 Q115 Q215 Q3-15 Q415 Q116 Q2-16 Q3-16 Q4-16 2011 2012 2013 2014 2015 2016 2017 2018 2019
mDDR4 =DDR3 mDDR2 Mobile = Graphic Legacy
82014 HS

Figure 1.4: Technology forecast of share of DRAM bits [5]

as seen in Fig. 1.4 mobile DRAM share has been increasing over the last few years, which
is an indicator of the increment of memory-bounded applications for embedded systems.
As an illustration, in the automotive industry, there are now hundreds of microproces-
sors in every car. New applications such as the Advanced Driver Awareness Systems
(ADAS), involving data processing for multicamera vision, improved infotainment, and
even self-driving sub-systems, have demands for memory system inclusion of large ca-
pacity DRAM devices [32]. Specifically, a study shows that a network-connected car can
create tens of megabytes of data per second and an autonomous vehicle is estimated to
generate data at the rate of about 1 gigabyte per second [33].

Despite the fact that employing memory hierarchy can greatly improve the memory
access performance, researchers noticed that the rate of improvement in microprocessor’s

speed exceeds the rate of improvement in memory speed. While each one is improving

12

exponentially, the exponent for microprocessors is substantially larger than that for mem-
ories. This disparity is known as the Processor-Memory Performance Gap or the Mem-
ory wall problem [34,35]. In recent years, while the performance of processing cores
has increased dramatically (60% per year), the improvement in access time of memory
(10% per year) has not kept up with the pace [36]. According to Amdahl’s law [35],
the continuous increment in Processor-Memory Performance Gap would lead to a stall
of system performance improvement no matter how much processor performance can be
further improved. Therefore, how to overcome the so-called “memory wall” to satisfy the
increasing performance demand of computing systems, including those of high perfor-
mance real-time systems, has presented a great challenge problem, attracting tremendous

research efforts from both industry and academy [31,37].

1.2.2 The memory access time variation problem

In order to design an efficient scheduling algorithm for a specific real-time application, it
is important to define the real-time system task model. A real-time task model refers to the
set of pre-defined characteristics and assumptions that are fed to the scheduling algorithm,
so it can make its decisions. Typically a real-time task is characterized by its execution
time, period, and deadline. Unlike a typical general purpose computing scheduler, a real-
time scheduler must assume that every task terminates, and such an event is associated
with a predetermined deadline. Usually, it is also assumed that each task is repeated
iteratively and a period time for the task execution is also assigned.

Along with the correct definition of a task model comes the correct estimation of the
Worst-Case Execution Time (WCET) of each real-time task. The estimation of WCET
values for real-time tasks is done either by performing a theoretical analysis of the ma-

chine code executed on a particular family of processor architectures with specific char-

13

\

*
B :--#JTT».TTH TTTTT-T TLT*-: e

Frequency

Program runtime o)
BCET,ou WCET, el
Figure 1.5: Typical sample distribution of runtimes of a program, along with sample of BCET and
WCET [6]
acteristics, or by performing an empirical analysis where different execution times are
measured considering different machine states and input conditions. Fig. 1.5 shows a
typical sample distribution of runtimes of a real-time task, along with sample Best Case
Execution Time (BCET) and WCET [6]. It can be seen that since the real WCET is un-
known for many tasks, an often over-provisioned estimate must be assigned to each task,
in order to develop a safe real-time scheduling.

The correct estimation of WCET values is critical in order to further estimate the
amount of resources needed by any task when it is activated. An underestimated WCET
may lead to assign a poor amount of resources to a task, which may signifies that such
a task misses its deadline. This is why a correct WCET estimation is critical for hard
real-time systems, because all hard real-time deadlines must be met under any circum-
stances. In contrast, pessimistic over-provisioned WCET estimates for some real-time
tasks counteract the increments in performance expected from the platform deploying the
real-time system. In other words, to excessively overestimate the WCET for each task, in
order to obtain safe values, can have a negative effect and may nullify the extra computa-
tional capacity that the real-time platform may offer. Therefore, it is necessary to estimate
an accurate and safe WCET for each real-time task to develop an efficient schedule that

guarantees the successful execution of all real-time tasks [23].

14

The primary goal for any real-time scheduling algorithm is to complete all tasks within
specific time constraints, by allocating the available resources of the system judiciously
to each task. Although the maximization of system resource utilization is of interest, it
is not a primary design motivation. In fact, as explained before, predictability and tem-
poral correctness are the main concerns. Consequently, a problem driving the research
community, during the past decades, is how to implement efficient schedulers able to
achieve high computational performance while guaranteeing the timing constraints, and
preserving the system predictability. For this purpose, it is necessary to estimate an ac-
curate and safe WCET for each real-time task in the system, accounting for all possible
execution time variations of each task. However, modern memory systems are introduc-
ing additional sources of execution time variation for real-time tasks. These execution
time variations may result in direct predictability reduction for the whole system, and
pessimistic over-provisioned WCET estimations.

A first source of execution time variation is due to a memory hierarchy implementing
multiple levels of storage. In the vast majority of computing systems implementing a
memory hierarchy, not every memory access from the same task has a uniform latency.
This fact is mostly due to the the architectural features at each memory level, in com-
bination with the task’s characteristics (e.g. the task’s instructions, variables, and data).
For instance, a cache hit will have a different latency than a cache miss, and the number
of cache misses may vary within multiple executions of the same task. Also, a memory
access to a DRAM position may be prioritized differently depending on the region of
memory it refers to. To put it differently, if the system would be executing a single task,
such a task would generate a different memory access pattern every time it is activated. In
essence, memory systems have been designed and commercialized to favor the reduction
of latencies for the average case. Statistical observations show that memory hierarchy im-

provements speed up the computation time in average, by reducing the delay in memory

15

access time in average. However, statistical observations may provide only an estima-
tion of the average behavior of a task, but they cannot be used for deriving worst-case
bounds. Since safe WCET estimates come from an analysis that depends on architectural
features, the memory hierarchy architectural advancements may lead to inaccurate or un-
safe WCET estimations, degrading the predictability or the performance of the real-time
system.

A second source of execution time variations is due to memory resource sharing
among: (i) different real-time tasks, for either single-core or multi-core platforms; (ii) pro-
cessing units, for the case of multi-core platforms. In preemptive systems, the memory
systems are affected by the number of preemptions, because preemption nullifies the ben-
efits of program spatial and temporal locality. For instance, a higher priority task may
evict an unbounded number of cache blocks already brought to the cache by a lower pri-
ority task. The cache-related preemption delay (CRPD) depends on the specific point at
which preemption takes place. Therefore such CRPD is very difficult to precisely esti-
mate [14]. A similar effect is seen on DRAM memory systems implementing open-row
policies. Multiple memory controllers implement complex algorithms to prioritize mem-
ory accesses referencing an already open row, because the access time to an already open
row is much faster than to a closed one. For further details on the DRAM memory archi-
tecture, we reference the reader to the chapter 2 of this dissertation and to [13]. The un-
predictability affecting real-time systems is exacerbated in multi-core platforms, because
different tasks on different cores, contend for bandwidth and capacity at the different lev-
els of the memory system, such as memory controllers, interconnects and caches. Thus, in
multi-core platforms, the memory contention (i.e. memory interference) between differ-
ent cores critically undermines the overall real-time system predictability, and therefore
impacts even more its performance [38]. Large inter-task interferences due to increased

resource sharing on multi-core platforms have severely undermined the predictability of

16

real-time systems [39,40]. An increase of 300% has been seen in the estimated values of
WCET of real-time tasks, when memory interferences are taken into consideration [41],
which can lead to extremely pessimistic designs.

The restrictions to real-time systems imposed by memory devices do not come ex-
clusively from communication delays and timing related problems. Since the power and
energy consumption of memory devices continue to grow, the effects in performance im-
posed by memory power and thermal management mechanisms are becoming more and
more notorious. Thus, we also believe that it is necessary to address the scheduling re-
strictions inflicted on the execution of hard real-time tasks, added by power and thermal

management mechanisms, when considering the power consumed by memory devices.

1.2.3 The power/energy consumption and thermal problem for mem-

ory systems

As transistor counts and density of processors and memory devices, as well as the memory
capacity and bandwidth, continue to grow, the power consumption of computing systems
has also been increasing exponentially, resulting in tremendous heat generation, even
to the point that threatens to disrupt the operation of the system under normal condi-
tions [42]. Fig. 1.6 shows the most important challenges for embedded systems devel-
opment in 2015, and it can be seen that power management is one of the most important
concerns with a consideration in 13% (compared to a 9% in 2014) of embedded system
developments. An increasing chip temperature due to an excessive power dissipation has
a significant impact on other design metrics, such as reliability, cost and especially on per-
formance. Real time systems and specially embedded systems with real-time capabilities
are developed on resource constrained platforms, which impose additional restrictions on

how a real-time scheduler must manage the overall resources of the system in order to

17

The debugging process

Meeting schedules

Meeting application performance standards
Power management/Energy efficiency
Testing/Systems Integration

Increased lines of code & software complexity
Maintaining legacy code

Ensuring data security™

Sticking to our cost budget

Keeping pace with embedded systems technology
Meeting safety & development process standards
Software compatibility when porting to new devices
Providing network connectivity™

Selecting the right processors for the job
Configuring/ selecting scalable cloud services
Managing remote design team/multiple locations
Managing multiple operating environments

B 2015 (N = 1216)
6% 2014 (N = 1597)
* Added in 2015

Figure 1.6: Most important challenges for embedded systems development in 2015 [3]

guarantee the timing constrains. An example of a constrained platform can be found in
modern mobile systems, where it is important to maximize the operational autonomy of
each device by operating them on tight power and energy restrictions, and it is important
to keep temperature below unconformable threshold values for the final user. Further-
more, for multiple applications, cooling down the chip temperature using mechanical
methods such as cooling fans, heat spreaders, and heat sinks becomes inadequate and too
expensive. This is especially true, for instance, in platforms aimed for wearable devices,
or for future generations of Internet-of-Things (IoT) applications [43].

Techniques implemented on processors based on the dynamic power/thermal manage-
ment (DPM/DTM) mechanism have become an appealing solution to manage the thermal
emergencies of the system. The DPM/DTM mechanism switch the processor to a low-
power inactive state as long as possible, or following an specific power trace pattern,
looking to reduce the overall energy consumption, or reduce the maximum system peak
temperatures [44]. While many DPM/DTM solutions have been proposed in the literature
(e.g. [45,46]), most of them focus on considering the CPU characteristics exclusively, as

CPU traditionally is the major power source in a computer system. However, the power

18

consumption of main memory has become a significant portion of total power consump-
tion of the system, in processors ranging from low-end to high-end [8]. As an example,
it is estimated that as much as 40% of the total power consumed in a smartphone or a
data-center is attributed to its memory system [47-49], mostly the DRAM-based memory
systems.

Systems utilizing modern versions of DRAM technologies suffer high power con-
sumption if the performance needs are high, requiring appropriate power/thermal manage-
ment mechanisms that consider the memory devices. Multiple versions and standards of
DRAM technologies have been published, including standards for low-power energy de-
vices. However, as mentioned before, all DRAM types of memories have experienced an
immense bandwidth requirement increment and are expected to continue growing in den-
sity and performance. Fig. 1.7 shows the increment in data rate per pin on various types of
DRAM memories in the past few years, and we can see that such rates have increased near
six times for some DRAM technologies [7]. Additionally, Fig. 1.8 shows that DRAM
technology density has increased by a thousand times over the past two decades, while
its latency has decreased only by 56%, which brings design issues such as capacity/cost
limitation, scaling, and severe die overhead increase. Another study [¢] also shows that
in contrast of the continued scaling of cost-per-bit, the latency of DRAM has remained
almost constant for different DRAM standards up to DDR3. During an eleven-year in-
terval, data in which DRAM’s cost-per-bit decreased by a factor of 16, DRAM latency
(as measured by the tRCD and tRC timing constraints —the two most important timing
parameters when accessing DRAM memory —) decreased by only 30.5% and 26.3%, as
shown in Fig 1.9. Hence, the reduction in power and increment in performance are always
trade-offs for DRAM technologies. Although, the power efficiency of DRAM technology
has decrease in the past decades (see Fig. 1.10), the number of DRAM chips necessary

to achieve a high performance has increase considerably too. Thus, in Fig. 1.11 it can

19

Data Rate/Pin

10

® LPSDR
® LPDDR GDDR6(?)
A LPDDR2 1
LPDDR3 ”
¢ LPDDR4 ‘
® DDR1 ’ LPDDR5(?)
{ DDR2 Vid ~
DDR3 ’ jf
DDR4 ’
GDDR3 4 -
2 4 ® GDDR5 ’ T,

DDR5 (?)

- -

1

.....-"V"‘f
-——

- -

0 - -
2000 2005 2007 2010 2013 2015
(Source : SK hynix)

Figure 1.7: DRAM technology data rate per pin over the time [7]

be seen that to achieve a speed of 3.2 Gbps in 2017 it was necessary to have a DRAM
memory with 78 DRAM chips and 1248 connection pins (i.e. # of DQ), compared to a
speed of 0.8 Gbps, achieved with only 4 DRAM chips and 64 connection pins in 2008.
The constant increment of DRAM chips leads to a continuously growing power and en-
ergy consumption in order to supply the increasing application’s performance demands.
Therefore, DRAM technology is known to have nowadays scalability problems, because
its power consumption is reaching the system power threshold limits.

While some novel memory technologies [50, 51] help to reduce power consumption
of memory chips, the small latency of DRAMs still makes them the top choice for main
memory systems. Capacity, performance, scalability and also energy efficiency are the
four key factors that designers of memory hierarchies have to deal with to satisfy the ever-
increasing need for current data-intensive applications [52]. DRAM technology has faced

difficulties in the scaling process in order to reduce its transistors size, and increase the

20

Density/Latency

8Gb
10000 T
=) 16X - 140
s > 4 2
o e
— (]
° o
2 1000 r120 =
9 2
o 256Mb g
& 64)(L 100 S
¢ ==
[
(=)
= 100 50
| 60
10
L 40
1 L 20
1992 2002 2012 2014

(Source : SK hynix)

Figure 1.8: DRAM technology latency and density over the time [7]

2.5 4 . : - 100
-{}-Capacity ——Latency (tRCD) —O—Latency (tRC)
5 2.0 - Bt 80 =
Q o c
=~ 15 - 60
el %]
i 10 . . "',--I:I' B 40 §
8 05 et - 203
0.0 5l 0
SDR-200 DDR-400 | DDR2-800 |DDR3-1066|DDR3-1333
2000 2003 2006 2008 2011

Figure 1.9: DRAM capacity and latency over the time [8]

21

(Unit : Ghps)

Power Efficiency

DDR 256Mb
] 100% —4€)
§ DDR DDR2 DDR3 DDR4
é Gbps | 04 0.8 16 32
x 80%
=]
S -57%
=
=
E 60% '
o
=z
DDRZ 1Gb a
40% '79A)

20% ® ‘—-70?

UOR34Gh
DR4 4Gb

2002 2003 2012 2014
(Source : SK hynix)

Figure 1.10: DRAM technology power efficiency decrement over the time [7]

=P Required memory BW =» Per DRAM BW

5000 -
2008 2011 2014 2017
Mode DDR2 DDR3 DDR4 DDR4
4000 -
Speed(Mbps) 800 1600 2133 3200
#of DRAM 4 15 48 78 :
3000 #of DQ 64 240 768 1248
2000 e
1000
] - .
2008 2011 2014 2017
(Required Memory Bandwidth = 4 x Linerate) (Source : SK hynix| 1

Figure 1.11: DRAM chip density increase over the time [7]

22

capacity of the memory. Besides, the inclusion of a larger number of transistors and cells
is leading to an increment in power consumption due to the inherent leakage of current in
each cell, which also increments the number of refresh cycles necessary to keep the mem-
ory properly functioning. Thus, a hypothetical 64Gb DRAM device would spend 46% of
its time and 47% of all DRAM energy for refreshing its cells, in contrast to a 4Gb device
which spend 8% of the time and 15% of the DRAM energy on refresh cycles [38]. There
are multiple promising technologies to manufacture memory, such as Magnetoresistive
Random Access Memory (MRAM), Phase Change Random Access Memory (PCM), Re-
sistive Random Access Memory (ReRAM), and Ferroelectric Random Access Memory
(FeRAM), each with its own peculiar properties and specific challenges. However, today
there is still no memory technology able to surpass DRAM technology in all four key
design factors of memory. Consequently, industry and academia have been looking to in-
clude different technologies into the memory hierarchy, in order to improve such factors
along side with DRAM technology [572].

A high power consumption usually leads to high peak temperatures in any comput-
ing system. High temperatures decrease the DRAM retention capability, and increase the
refreshing rates, impacting reliability, lifetime, power consumption, and specially system
predictability [53, 54]. Additionally, it may also significantly degrade the performance
and, therefore, compromise the timing constraints for real-time applications. For exam-
ple, it has been reported [55] that for memory systems, when the temperature is above
60°C, the performance/latency is degraded by the increment in the number of DRAM
refreshes (around 50% more refreshes every 10°C of temperature increment), due to the
leakage of charge on each DRAM cell [56]. DRAM high temperature problems are par-
ticularly exacerbated on multi-layer chips (2.5D and 3D chips) [57, 58] where restrictions
in space and energy consumption are tight, power densities are higher, and CPU and

memory temperatures are highly correlated. Most of today’s CPU and memory chips are

23

embedded with built-in thermal sensors, and they will shut down automatically when the
temperature exceeds a pre-determined threshold [59]. Such an unplanned shutdown will
eventually cause real-time tasks to miss their deadlines.

As mentioned before, while several DTM-based solutions have been proposed, many
of them have focused exclusively on CPU, as CPU traditionally is the major power source
in a computer system. However, some of them have been aimed to dynamically manage
the heat generated by the memory system, but without offering static guarantees on the
scheduling of hard-real time tasks. For instance, one common approach is to migrate data
between hot and cold devices to avoid thermal emergencies on a memory system [60].
Another approach dynamically adjusts the memory throughput to ensure that each mod-
ule has a temperature below the emergency level [42]. These approaches do not take the
heat generated by the CPU into account. Multiple DTM-based mechanisms already im-
plemented in commercial hardware or proposed in the literature, react to critical temper-
ature levels and reduce or even stall the number of memory requests [8]. Some research
studies consider the heat dissipation from both the CPU and memory systems, but these
approaches are best-effort approaches and cannot guarantee real-time system deadlines at
all [61]. Consequently, such approaches can significantly affect the response time of the
system by introducing an additional source of uncertainty, due to the variable number of
stall times needed by the system to cool down the memory, each one with an unknown
duration. Hence, the excessive power consumption and heat dissipation of the memory
system must be dealt with carefully. Otherwise, they can significantly affect the schedu-
lability and predictability of real-time systems because of the uncertainties introduced by
different memory power/thermal management techniques.

In summary, a complete and effective thermal management solution, able to guaran-
tee the schedulability of hard real-time tasks, should take into consideration not only the

power and thermal issues of processing units, but also synergistically the power and ther-

24

mal issues of the CPU and memory subsystems as well. Studies have clearly shown that
performance of memory systems (not only DRAM but other memory devices as well) is
directly related with their operating temperature (e.g. [55]). In general, an increasing chip
temperature, either on CPU or memory devices, due to an excessive power dissipation
has a significant impact on other system design metrics, such as reliability, cost and es-
pecially on performance. Thus, the restrictions to real-time systems imposed by memory
devices do not come exclusively from communication delays and timing-related prob-
lems. Since the power and energy consumption of memory devices continue to grow, the
effects in performance imposed by memory power and thermal management mechanisms
are becoming more and more notorious. For this reason, it is necessary to address the
scheduling restrictions inflicted on the execution of real-time tasks, added by power and
thermal management mechanisms, when considering the power consumed by memory

devices.

1.3 The research problem and our contributions

A real-time system is a system whose execution time is expected to comply with dead-
lines, and missing a deadline is as negative as the incorrect output from the computation,
leading to catastrophic consequences for certain applications. Thus, the most important
requirement of a real-time system is predictability and not performance, which makes
very important the correct implementation of a system scheduler to ensure timing con-
strains. Traditionally the scheduler design has considered only CPU and performance
characteristics of the system. However, real-time systems processing lager amounts of
data are becoming popular. Such applications not only generate large amounts of I/O
workloads, but also become more and more memory intensive, which is translated to the

need to develop real-time platforms with higher memory bandwidth and capacity. Hence,

25

the restrictions and latencies imposed by memory devices have gained a significant im-
pact not only on the execution time, but also on other aspects such as power consumption
and temperature of operation.

There have been extensive research efforts from different abstraction levels and per-
spectives, involving architectural hardware and software mechanisms, looking to improve
the schedulability of real-time systems. For instance, since a major source of unpre-
dictability when scheduling real-time tasks comes from shared cache memories, cache
memory partitioning has proven to be one of the most effective methods to improve the
predictability and schedulability of real-time systems. This method partitions cache mem-
ory among programs and cores to reduce cache contention. By isolating real-time task
memory accesses, cache memory partitioning can avoid or considerably reduce the inter-
task interferences, and therefore reduce the uncertainty when bounding the WCET and
improve the core utilization [62]. Additionally, power and thermal management solutions
at architecture and systems levels, such as dynamic thermal management (DTM) [18],
and memory access throttling [63], have also been proposed to deal with power/thermal
management-related uncertainties.

We seek to exploit these advanced features into a real-time scheduling framework to
improve the feasibility in design of hard real-time systems. The challenge becomes how
to incorporate these architecture and system mechanisms into one integrated framework,
and to develop efficient and effective resource management solutions that can guarantee
the timing requirements for hard real-time systems, maximizing the system schedula-
bility, while also guaranteeing the operation under peak temperature constrains. This
dissertation focuses on analyzing the problem how to design future hard real-time sys-
tems schedulers demanding highly deterministic computations when considering the role
that memory systems play in designing effectively such hard real-time system scheduler

algorithms. The general research problem can be formulated as follows: Given a set

26

of independent hard real-time tasks, implemented on a computing platform featuring a
memory system, design static allocation scheduling algorithms to co-schedule CPU and
memory subsystems, such that real-time and other design constraints (e.g. maximum
temperature of operation) can be satisfied and other design metrics (e.g. feasibility or
power/energy consumption) can be optimized. Toward this problem, we have made the

following contributions.

1. First, we analyze the problem of how to assign private portions of cache memory,
to real-time tasks, as a static memory resource management solution. We assumed
a set of fixed-priority real-time tasks, to be scheduled on a multi-core platform that
features a shared common cache memory. Our analysis is based on two facts: first,
the performance of any task may be improved by increasing the size of the cache
memory that task has access to, because the WCET of a real-time task varies de-
pending on the amount of cache memory assigned privately to it; second, harmonic
tasks can utilize the CPU resources more effectively, i.e. with a CPU utilization as
high as 100% for each core in the system. However, not all the tasks can see the
same amount of benefit in the reduction of its WCET by assigning them with an
specific amount of cache memory. Thus, since this problem is known to be NP-
hard, our approach seeks to develop a static task partitioning CPU and memory
co-scheduling heuristic framework that wisely allocates tasks to cores, and portions
of cache memory to tasks, synergistically, so that the feasibility of the whole system
is increased, while guaranteeing hard-real-time deadlines. In essence, the proposed
solution approach can judiciously choose the cache size for each task, while ex-
ploiting the task harmonic relationships within the task set. The significance of our
proposed approach relies in that it enhances the existing heuristic allocation meth-
ods, by incorporating task period relation into cache allocation and task mapping,

to improve the schedulability of hard real-time systems. Additionally, the proposed

27

solution approach statically co-schedule CPU and memory without increasing the
predictability analysis complexity. The results show that the solution approach can
significantly improve the schedulability of hard real-time tasks (up to four times),

when compared with other scheduling mechanisms.

. We also analyze the problem of how to guarantee timing constraints for hard real-
time systems under CPU and memory thermal constraints. As previously explained,
the increase in power density for both the CPU and memory systems makes nec-
essary the implementation of effective thermal management mechanisms that can
deal with the heat generated not only from CPU but also from memory. While
many thermal management techniques have been proposed, most of them focus ex-
clusively on either CPU or memory. Moreover, most of such techniques are on-line
reactive in nature, which threatens the predictability of real-time systems. Our so-
lution approach takes advantage of the periodic resource server for its capability of
providing hard deadline guarantees for real-time tasks. The periodic resource server
relies on the scheduling concept of providing real-time tasks with resources only
during periodic windows of time, which increases the predictability of the system.
Thus, by periodically (deterministically) throttling the accesses of the CPU and
memory resources, our approach can effectively guarantee the thermal constraints
for both the CPU and memory. To the best of our knowledge, this is the first work
for thermal-aware hard real-time systems design that takes the heat generations and
their interactions from both the CPU and memory devices. The significance of
our proposed approach relies in that it enhances the existing thermal management
methods, by incorporating the periodic resource sever model into a CPU and mem-
ory co-scheduling framework to guarantee both the timing and thermal constraints
of the hard-real time systems. Our experimental results, with system parameters

drawn from manufacture data sheets, clearly demonstrate the effectiveness of our

28

proposed approach in reducing the peak temperature, by supplying a static sched-
ule that, combining active and power-down modes of each subsystem, generates
deterministic power traces for CPU and memory devices. Additionally, such re-
sults show the need to take both the CPU and memory systems into considerations

simultaneously for system-level thermal management.

. Additionally, we analyze thermal-aware resource management strategies for both
CPUs and memory systems when realizing hard real-time systems on 3D platforms
under given peak temperature constraints. Designing 3D systems with on-chip
DRAM is a promising solution to improve memory bandwidth and reduce mem-
ory access latency. However, 3D chips exacerbate the chip thermal problem due
to their longer heat dissipation path, as well as the tight thermal coupling between
logic and memory layers. Given the dramatically increased power density not only
from CPUs but also from memory systems as well, we believe that a joint CPU
and memory system resource management is highly desired for 3D platforms to
effectively deal with the heat dissipation confined in a small package. In addition,
different from many existing thermal management strategies, which are reactive
and best-effort in nature, we are more interested in ones that can ensure the strong
guarantee for real-time applications. Our novel solution approach also incorporates
the periodic resource server to guarantee timing constraints for hard real-time sys-
tems under thermal constraints. We extended our analysis by proposing a solution
approach for the case of multi-core architectures, when both CPU and memory
devices are combined into a single package in a 3D integrated platform. The signif-
icance of our proposed approach relies in that it enhances the feasibility of existing
heuristic multi-core task partitioning scheduling methods for real-time systems that
require to be deployed under strict temperature constraints, by using thermal man-

agement mechanisms to co-schedule CPU and memory resources. Specifically, our

29

solution approach incorporates into the same scheduling framework the relation-
ship among real-time task periods, the periodic resource sever model, and thermal
analysis mechanisms for 3D integrated platforms. Simulation studies show that our
proposed method can schedule on average 19.5% more tasks than the comparative

methodology based on previous allocation mechanisms.

1.4 Summary and structure of the document

The rest of this dissertation is organized as follows. In Chapter 2, we introduce back-
ground to this dissertation and discuss related works that are close to our research prob-
lems. In Chapter 3, we study the problem of how to allocate the cache memory that
is accessible by multiple processing cores when scheduling fixed-priority real-time tasks
based on the rate monotonic scheduling (RMS) policy. In Chapter 4, we study the problem
of how to schedule fixed-priority real-time tasks such that they can meet their deadlines
with temperatures for both the CPU and memory systems under their potentially different
peak temperature limits. In Chapter 5, we study the problem of how to schedule a set of
fixed-priority hard real-time tasks on a 3-D multicore platform, while keeping tempera-
tures for both the logic layer and memory layer under peak temperature limits. Finally, in

Chapter 6, we conclude this dissertation and discuss possible future work.

30

CHAPTER 2
BACKGROUND AND RELATED WORK

This chapter presents the pertinent research background and related work. We first
introduce several important concepts related to real-time scheduling for single-core and
multi-core platforms. Then, we introduce important concepts and related work about
power aware/thermal aware scheduling. Further, we discuss the role, organization, and
challenges of memory design and introduce important concepts and related work about
memory aware real-time scheduling research. Finally, we summarize the contents of this

chapter.
2.1 Real-time scheduling

Real-time systems are usually reactive systems that must comply with deadlines, and for
such systems, missing a deadline is as negative as the incorrect output from the compu-
tation. The most important property of a real-time system is its predictability; that is, its
functional and timing behavior should be as deterministic as necessary to satisfy system
specifications. A correct real-time system must produce a functionally (algorithmically
and mathematically) correct output response prior to a well-defined deadline relative to
the request for a service [64].

A real-time system is often modeled as a finite collection of n independent recurring
tasks T, each of which generates a potentially infinite sequence of jobs [65]. The set of
real-time tasks will be defined as I’ = {t,1»,13,...,T,}. Each task 7; is formally char-
acterized by a worst-case execution time (WCET) requirement C;, a relative deadline D;
and a period 7;. Such a task 7; € I" generates a potentially infinite sequence of jobs, and
successive jobs of T; arrive with at least 7; units of time apart. Thus, any task t; is usually
represented by at least its timing parameters, i.e. T; = {C;, D;, T;}. In an implicit-deadline

system, for each task 7;, the deadline is equal to the period, i.e. D; =T;, V1; € T.

31

The main purpose of the scheduler in a computing system is to assign tasks to be
executed by the processing unit in the case of a single-core platform or by each processing
unit in the case of a multi-core platform. The scheduler usually manages processes or
tasks with the concept of queues, i.e. long-term, middle-term and short-term queues.
Such a scheduler selects tasks from each queue depending on the state of each task at
any scheduling point in time (e.g. a task still waiting for a peripheral response cannot
be scheduled to be executed yet). The specific schedule that may be generated by the
scheduler is very important for any computing system. This is because it affects the
overall performance of the system by determining which tasks will wait in the queues and
which tasks will be executed.

Multiple types of general purpose schedulers have been developed and implemented
on general purpose computing platforms. For instance, first-in-first-out (FIFO), round-
robin (RR), or the completely-fair-scheduler (CFS). This last scheduler is implemented in
the modern Linux kernel, and it is specifically aimed to maximize the overall utilization
and performance of the whole system. However, unlike general-purpose schedulers, real-
time schedulers are aimed to guarantee the timing and predictability of real-time tasks.
This guarantee is performed basically by assigning a specific deadline for the successful
execution of each real-time task, i.e. Vt; € I', d a time D; such thatD; < T;. Thus, such
deadlines constitute the main difference between real-time and non-real-time scheduling.
This is because any predetermined deadline should be met under all circumstances, even
when the worst external conditions are present [66]. Therefore, the most important goal
for a real-time scheduler is to maximize the system’s predictability and not the system’s
performance, even to the point that by ensuring predictability, the whole system may
decrease its performance.

For a real-time scheduler, it is necessary to ensure that resources are available for each

task in time, and that the sequencing of events meets precedence constraints, in order to

32

guarantee all tasks’ deadlines. A very common goal of a real-time scheduler is to al-
locate in the system as many tasks as possible, i.e. maximize the schedulability of the
system, conditioned to meeting all tasks timing requirements. Satisfying the timing re-
quirements of real-rime systems demands the scheduling of system resources according to
some well-understood algorithms so that the timing behavior of the system is understand-
able, predictable, and maintainable. Therefore, every real-time system should implement
a scheduler able to allocate resources judiciously to make certain that any critical timing
constraints can be met with the available resources, assuming that the hardware and soft-
ware function correctly and the external environment does not stress the system beyond
to what it is desired to handle [67].

There are different ways to categorize real-time schedulers. In general, real-time
schedulers can be categorized from the perspective of the characteristics of the system
workload, the system architecture, the scheduling policy, and the different optimization
objectives. In what follows, we discuss the details of the above categorizations to clearly
understand the behaviors of real-time scheduling.

To begin with, real-time systems and schedulers can be classified according to the
characteristics of the tasks they are intended to schedule. Thus, multiple schedulers have
been developed to handle systems executing hard or soft real-time tasks, tasks with pe-
riodic or aperiodic behaviors, tasks with interdependencies on each other, or tasks with
different levels of criticality within the same system.

Hard Real-Time and Soft-Real Time Tasks: The most common perspective classi-
fies real-time systems depending on the consequences that may occur because of a missed
deadline. Thus, a real-time task is said to be soft if any result produced after its deadline
still has some utility for the system, but degrades performance. In contrast, a real-time
task is said to be hard if producing the results after its deadline may cause a catastrophic

consequence on the system. To avoid undesirable or catastrophic consequences, all hard

33

real-time tasks should be guaranteed on design time, i.e. off-line, and a hard real-time
scheduler should aim to provide deterministic guarantees to all task deadlines. Exam-
ples of hard real-time tasks may be found commonly in safety-critical systems, typically
related to sensing, actuation and control activities such as avionic systems [14]. In this
dissertation, we focus our efforts on hard real-time tasks scheduling.

Periodic and Aperiodic Tasks: In a real-time system, a task can be periodic or ape-
riodic. A periodic task executes on a regular basis, and can potentially generate an infinite
number of jobs activated or executed at a constant rate, which makes its execution deter-
ministic. Aperiodic tasks, i.e. non-periodic tasks, also consist of an infinite sequence of
jobs, but their activations are not regularly interleaved, which increases the unpredictabil-
ity of the system. However, off-line guarantees for aperiodic tasks with critical timing
constraints can be offered by making proper assumptions on the environment. Thus, jobs
from aperiodic tasks can be assumed to be separated by a minimum inter-arrival time, and
such tasks are commonly known as sporadic tasks [14].

Independent and Dependent Tasks: Different real-time schedulers are imple-
mented with the assumption that all the tasks in the system are independent. In reality, it
is possible to find that real-time tasks present dependencies. This means that one or more
tasks in the system have explicit or implicit relationships specified among themselves. A
common mode of dependency arises when one task needs the result of another one to pro-
ceed with its computations. For instance, in avionic systems, a task calculating positional
error may need as input the result of another task calculating velocity and acceleration
values. Also, certain tasks may require running in a certain order. For example, a module
initialization task may need to be executed before other tasks may run.

Traditional scheduling mechanisms cannot directly be used to schedule tasks that
share critical resources. Therefore, additional methods have been proposed to account

for the additional restrictions imposed by the inter-dependencies of real-time tasks. How-

34

ever, traditional scheduling mechanisms, especially those assigning priorities of execution
to real-time tasks (further explained in this section), can be augmented to make them ap-
plicable to tasks with dependencies [22]. In this dissertation, for the sake of simplicity
and without loss of generality, we assume that all real-time tasks are independent in their
execution. Any further mechanism able to account for tasks’ dependencies can be applied
orthogonally.

Mixed-Criticality-Based Scheduling: Real-time system have been diversified for
multiple applications, generating a variety of real-time tasks with different properties.
Other workload models, such as the mixed criticality-based scheduling, have been pro-
posed aimed to schedule real-time tasks with different characteristics, timing properties
and requirements. One common property considered to schedule real-time tasks is the
criticality of each task. Criticality is the property that designates the level of assurance
against failure needed for a system component. Thus, a mixed criticality system is one
that has two or more distinct levels (e.g. safety-critical, mission-critical and low-critical).

A key aspect of mixed criticality real-time systems is that some system parameters,
such as the WCET C; of a real-time task, become dependent on the criticality level of the
task. Thus, the same task will have a higher estimated value of WCET if it is defined to be
safety-critical, than if it would be just considered mission-critical or non-critical. As the
level of criticality changes during the operation of the system, the scheduler has to gener-
ate a different schedule, adjusting the values of the parameters of each task according to
the current level of criticality set on the system. This behavior of mixed criticality systems
can modify the results of traditional scheduling mechanisms [68]. However, the results
of traditional scheduling mechanisms can also be augmented to make them applicable to
tasks with different criticality levels.

Schedulers can also be classified according to the characteristics of the architecture

of the system they are aimed to be implemented in. Thus, many schedulers were devel-

35

oped to schedule tasks on single-core platforms, but later different mechanisms have been
proposed to schedule real-time tasks on multi-core platforms. Some of those multi-core
platforms have been developed with homogeneous processing units, others with hetero-
geneous ones, depending on different applications. Thus, numerous real-time schedulers
have been proposed for each type of platform. Also, either in single-core or multi-core
platforms, multiple resources (e.g. peripherals, software routines, etc.) are limited in
number. Therefore, scheduling mechanisms have been developed to guarantee the cor-
rect access of real-time tasks to such shared resources without affecting the strict timing
behavior.

Single-Core and Multi-Core Scheduling: As mentioned in chapter 1 different
mechanisms have been formulated for scheduling real-time tasks on single core platforms,
but an increment in processing demands from real-time systems has led the industry to
adapt some designs to be deployed using multi-core platforms. It is noteworthy to mention
that a single-core system is built by integrating only one processing unit into a single chip,
while multi-core systems integrate multiple processing units into the same chip. Different
from single-core scheduling, multi-core scheduling needs to decide not only when a tasks
needs to be executed, but also on what processing core. The two more general approaches
to schedule tasks on a multi-core platform are global scheduling and partitioned schedul-
ing [23,69]. In general terms, the former treats every task and processing unit equally and
each task that is ready to start or resume its execution is assigned to any processing unit
available in the system. Note that a task may start executing on one processing unit and
resume in a different one. Partitioned scheduling allocates tasks to be scheduled within
a specific processing unit. Thus, each processing unit of the multi-core platform will be
assigned to execute exclusively a specific sub task set. Only such a sub task set will share

the resources assigned to its processing unit.

36

With a static multi-core partitioned scheduling, the problem becomes how to allocate
statically real-time tasks to cores in a way to maximize the schedulability of the whole
task set, while guaranteeing the timing and resource constraints of the system. Multiple
solutions to this problem have been proposed by many authors in the literature. For in-
stance, a common implemented solution is to allocate tasks on each core of the multi-core
platform using partitioned scheduling, incorporating different allocation schemes such
as traditional bin-packing approaches, i.e. First Fit (FF), Best Fit (BF), and Worst Fit
(WF) [25]. Then, a specific intra-core scheduling policy to schedule the already assigned
tasks to the core can be used. Other solutions, such as the ones presented in [70], also
have evaluated how the ordering of tasks can affect the task allocation results, proposing
additional scheduling frameworks using partitioned scheduling.

Homogeneous and Heterogeneous: Further, multi-core scheduling can be classi-
fied as homogenous and heterogenous according to the characteristics of the underlying
multi-core system. In homogenous systems, all processing cores are identical in terms of
processing speed, power/thermal characteristics, and so forth. In comparison, the cores in
a heterogenous system can vary widely, which further complicates the multi-core schedul-
ing problem.

Schedulers can also be classified according to the characteristics of the scheduling
policy they will be implementing. Thus, many scheduling policies can be categorized as
static or dynamic approaches. Certain policies may assign priorities to the real-time tasks,
while other policies may not. Also, some policies may allow preemption of the scheduled
tasks, while other policies may prevent such a behavior.

Static and Dynamic: In the past, numerous schedulers have been proposed to guar-
antee the timing constrains of real-time tasks. Depending on the type of real-time system,
some of those schedulers have been developed to schedule tasks statically, i.e. in a fixed

predetermined way; others have been developed to schedule tasks following a set of rules,

37

but able to make decisions dynamically during the process of scheduling tasks. On one
hand, scheduling decisions for each task made by a static scheduler need to be prede-
termined beforehand, which requires prior knowledge of the characteristics of the tasks,
the system and its environment. On the other hand, a dynamic scheduler needs to per-
form such decisions on-line, based on calculations performed during runtime. Thus, such
schedulers can provide more flexibility to react to uncertainties of tasks and system re-
sources, as well as environment conditions. However, it is difficult to provide strict timing
guarantees with a dynamic scheduler [23]. This makes static schedulers the first option to
implement a highly time-sensitive real-time system, such as hard real-time ones.
Preemptive and Non-Preemptive: On one hand, a scheduler that allows all tasks
to run until completion is known as a non-preemptive scheduler. The design and analysis
of such types of schedulers are relatively simple and have served as basis for multiple
proposed scheduling mechanisms for real-time systems. On the other hand, a preemptive
scheduler is able to make scheduling decisions during the execution of any task, stopping
the current executed task and assigning any other ready task to be executed. The operation
of suspending the running task and inserting it into a ready queue is called preemption.
Preemption in real-time systems is important because it allows exception handling tasks
to be executed over the current running task, allowing the scheduler to execute the crit-
ical tasks as soon as they arrive. However, preemption destroys program locality and
introduces a runtime overhead that inflates the execution time of tasks [14].
Priority-Driven and Non-Priority-Driven: One of the major differences between
traditional computing scheduling and real-time systems scheduling focuses on how to
schedule recurrent jobs from different tasks. Multiple methodologies have been proposed
in real-time scheduling in order to offer certain guarantees on the successful execution of
each incoming job. For instance, a round-robin scheduling would be suitable for some

applications in order to guarantee a fair distribution of the resources among tasks and

38

multiple works have been proposed based on such a mechanism. Such works treat each
task without any specific priority and are known to be non-priority-driven. However, a
fair distribution of resources may not be sufficient to guarantee the timing constraints of
some real-time tasks in the system, because the timing behavior of each task is hard to
predict with such scheduling methods.

Multiple scheduling methods that assign priorities to real-time tasks have been pro-
posed and analyzed in order to offer timing guarantees and analysis methods to verify the
schedulability of a real-time task set. In scheduling terms, a priority is usually a positive
integer representing the urgency or importance assigned to a task. The ability to assign a
priority of execution to a task is specially important to schedule hard real-time tasks sets
due to the strict determinism they require, because a high priority task will have a higher
chance to utilize the system resources before than a low priority task, and finish before its
deadline.

Two single-core priority-based preemptive scheduling policies, i.e. Rate Monotonic
Scheduling (RMS) and Earliest Dead-line First(EDF), have gain a especial interest in the
research community and in the industry. These two scheduling policies play a fundamen-
tal role in the design of real-time scheduling algorithms [71,72].

Rate Monotonic Scheduling (RMS) and Earliest Deadline First Scheduling (EDF):
A very common method for assigning and scheduling priority-drive tasks in a static fash-
ion way is the Rate-Monotonic Scheduling (RMS). This method assigns priorities to tasks
in ascending order with respect to their predetermined period 7;, which means that a larger
task period leads to a lower priority task, i.e. if 7; < T}, then priority of task T; is higher
than priority of task T;. RMS has been proven to be an optimal scheduling policy for
fixed-priority tasks scheduling on single-core processors [24].

A very common mechanism for assigning and scheduling priority-driven tasks in a

dynamic fashion way is the Earliest Deadline First Scheduling (EDF) method. As stated in

39

its name, this method assigns priorities to tasks dynamically depending on the remaining
time for each task completion. Thus, as the difference in current time and deadline time
shrinks for an specific task, its priority increases. This method evaluates and assigns the
priority of each real-time task, every certain period of time during run-time. EDF has
been proven to be the optimal dynamic scheduling algorithm for hard real-time tasks on
a single-core platform [73].

The feasibility of a task set can be defined as the successful execution of all real-time
tasks before their deadlines. Such a feasibility should be guaranteed in advance; that is,
before task execution. Thus, it is necessary to perform an off-line mathematical analysis
of how precisely the system timing constraints are met, to guarantee the feasibility of
the whole real-time task set, implementing a certain scheduling algorithm. Such math-
ematical analysis is called schedulability analysis. It must consider both the task model
parameters predetermined for each task, each task assigned priority, and the available re-
sources in the system. If more flexibility is needed, for instance in a soft real-time system
case, additional best-effort scheduling techniques can be applied, limiting the number of
deadlines missed. Multiple sufficient schedulability conditions have been proposed and
demonstrated in the literature in the past decades. The most common one was proposed
by Liu and Layland [24], stating the task set CPU resource utilization upper-bound when
scheduling tasks using RMS. However, a higher task set utilization can be guaranteed by
an appropriate choice of task periods.

Harmonic-Periodicity-Based Scheduling Model: Some characteristics of real-time
tasks have been exploited to develop more effective multi-core task partitioning schemes
[1,30,74-76]. For instance, as shown in [1], by grouping harmonic tasks into the same
core, system schedulability can be greatly improved, with each core reaching a much
higher processor utilization than that defined by the RMS utilization bound, as defined

in [24]. Harmonic tasks are defined as tasks with periods being integer multiples of each

40

Table 2.1: Example of task set to be scheduled in two processing units using RMS [1]

Task Number (t;) | WCET (C)) | Period (7;) | CPU Utilization (U;)
1 1 4 0.25
2 2 8 0.25
3 3 10 0.30
4 8 16 0.50
5 8 20 0.40
6 8 40 0.30

other. If task periods are harmonic, i.e., each task periodicity value is a exact integer mul-
tiple of the next task periodicity value, then the schedulability can be guaranteed up to a
100% of processing unit utilization [75,77]. Table 2.1 shows an example of a task set to
be allocated in two processing units (core 1 and core 2). The task number is correlated to
each task’s priority, i.e. for t; and t;, if i < j then Priority(t;) > Priority(t;). It can be
seen that both processing units can achieve a 100% utilization, by choosing the correct
mapping of tasks allocated to each core. Therefore, fig. 2.1 shows the timing feasibility
check for each processing unit scheduling tasks using RMS when tasks 1, 2 and 4 are
statically assigned to core 1, and tasks 3, 5 and 6 are assigned statically to core 2. Parti-
tioning of dynamic-priority periodic tasks on multi-core processors has been explored as
well [78]. Other research works have proposed task partitioning schemes for hard real-
time tasks with fault-tolerance requirements on multi-core platforms by exploiting the
periodic relationships among tasks [30].

Sever-Based Scheduling Model: Real-time systems are often complex systems that
must react to the environment. This premise is especially true for some embedded sys-
tems. These kind of systems commonly deal with tasks whose activation is triggered
by sensor readings or voltage signal changes. Since the activation of such tasks is non-
deterministic, those tasks are considered non-periodic tasks, i.e. sporadic tasks. Sporadic
tasks are commonly required to be scheduled in real-time systems. Numerous real-time

systems aimed for control applications require scheduling both types of processes, i.e. pe-

41

T, H ; ‘ 3
T | 2 _ |
T M 3] A 3
0 4 8 12 16
Processing Core 1
A . | ‘
T3 [3] [3] EN EX
| 7w @ e @
Te | lTi | [6]
0 10 20 30 40

Processing Core 2

Figure 2.1: Example for timing feasibility check for each processing unit scheduling tasks using
RMS (see Table 2.1), when tasks 1, 2 and 4 are statically assigned to core 1, and tasks 3, 5 and 6
are assigned statically to core 2 [1]

riodic and non-periodic. For any real-time task, the characteristic of being either periodic
or non-periodic may differ from its criticality. Again, off-line guarantees for aperiodic
tasks with critical timing constraints can be offered under peak-load situations, by assum-
ing each job to be separated by a minimum inter-arrival time. This analysis is important
to design schedulers able to schedule non-periodic hard real-time tasks.

If the minimum inter-arrival rate of a sporadic task cannot be bounded in design time,
such an aperiodic task cannot be guaranteed off-line. However, an online guarantee of
individual aperiodic requests can still be done. Aperiodic tasks requiring an online guar-
antee on individual instances are called firm real-time tasks. Whenever a firm aperiodic
request enters the system, an acceptance test can be performed by the scheduler to verify
whether the request can be served within its deadline. If such a guarantee cannot be done,

the request is rejected.

42

Multiple scheduling algorithms for handling hybrid task sets consisting of a subset of
hard periodic tasks and a subset of soft aperiodic tasks have been proposed in the literature
and implemented on different real-time systems. Such solutions are based on the concept
of server; that is, a periodic task characterized by a period 75 and a computation time Cj
called capacity or budget. The server is scheduled with the same algorithm used for the
periodic tasks, and once activated, it serves the aperiodic tasks within the limit of its bud-
get. The scheduling of aperiodic tasks within the server can be performed independently
of the global scheduling algorithm in charge of scheduling periodic tasks [14]. This con-
cept will be useful to explain further the concept of compositional real-time scheduling,
and how to offer guarantees to periodic tasks associated with a server instance.

Compositional Real-Time Scheduling: An important alternative concept proposed
in the literature towards the analysis and scheduling of periodic and aperiodic real-time
tasks is the possibility to allocate system resources privately to a specific subset of tasks
within a certain periodic time. Such a concept would enable the possibility to guarantee
the schedulability of a subset of real-time tasks with similar characteristics, and to guar-
antee the schedulability of each subset independently from the schedulability of other
subsets. For this, it is necessary to implement a closed environment able to supply pri-
vate resources to each subset of tasks. This environment may be associated to a periodic
server task, with each periodic server having a period and a budget (also known as allo-
cation time). Any task associated to the server may be executed only using the resources
allocated to the server within the specified allocation time of the server [14].

Multiple research works have been proposed based on the server concept but one
in particular was proposed by Shin and Lee [79] [9]. Their research work claims that
for real-time systems, it is desirable to design large complex systems by breaking them
into simpler components, based on systematic abstraction and composition. In this way,

real-time tasks with similar characteristics can be abstracted into a single subset of tasks

43

forming a single component. The primary goal of these authors is to develop a composi-
tional real-time scheduling framework to support abstraction and composition techniques
for real-time aspects of components. A central idea in component-based design is to as-
semble components into a system without violating the principle of compositionality such
that properties that have been established at the component level also hold at the system
level. Especially for real-time systems it is necessary to support the abstraction and com-
position for timing properties of the system. Thus, they introduce the “periodic resource
server model” to characterize resource allocations provided to a single component. Their
work presents the exact schedulability conditions for the standard Liu and Layland [24]
periodic task model when applied to the proposed periodic resource server model under
EDF and RMS scheduling. Our work for this dissertation represents an advancement of
the state-of-the-art for scheduling hard real-time tasks, because it incorporates the peri-
odic resource sever model concept into the scheduling framework to guarantee both the
timing and thermal constraints of real-time systems when considering the memory power
and timing characteristics.

An example of hierarchical scheduling framework proposed by Shin and Lee is shown
in Fig. 2.2, where it can be seen that different portions of a resource are scheduled by
a high-level scheduler and each share of the resource is subsequently scheduled by a
different scheduler. Thus, if a periodic server is seen as a resource, a group of tasks may
be assigned to such a server, and scheduled with their own intra-server scheduling policy
(such as RMS or EDF). Then, each server may be treated as a periodic task by a higher
abstraction layer scheduler. Therefore, each periodic resource server on each abstraction
layer may have a different scheduling methodology to schedule its own tasks.

The periodic resource server model proposed by Shin and Lee is characterized by
a 2-tuple (I1,®), where II is the resource period, and © is the allocation time. Both

parameters satisfy that 0 < ® < II. The capacity of each periodic resource server is

44

Resource

Scheduler

Workload

Application Application

Workload

Figure 2.2: Hierarchical scheduling framework: a resource is scheduled by a scheduler and each
share of the resource is subsequently scheduled by a different scheduler [9]

]] i I I I i [
e @— e O— e @— @ — |
| e 1 L > 7 L e T7 L >
time
t,=0 ® I M© 2T 20+© KII KT+

Figure 2.3: Shin and Lee [9] periodic resource server example

defined as C = ®/TIL. Also, the main characteristic of the periodic resource is that each
task assigned to each periodic resource is allowed to be scheduled, executed and consume
resources only during the allocation time ®. Figure 2.3 shows an example of the periodic
resource model.

Shin and Lee defined a utilization upper bound to guarantee the schedulability of real-
time tasks assigned to be executed within a periodic resource server when the intra-server
scheduling method is RMS, i.e. UBgys. Thus, if the total task set utilization is less than
or equal to the upper-bound, such a task set is schedulable according to RMS, i.e. if for a
specific I', U(T") = ¥, C;/T; < UBRus, then I is schedulable according to RMS. Such

upper-bound is defined in the following theorem:

45

Theorem 2.1. [9, 80]. Given a task set I and a single periodic resource server, with
period I, allocation time ©, and capacity C, i.e. C=0 =11, ifVi,1 <i < N,T; > 2I1— 0,

the task utilization bound under RMS is:

B 1/N
U — C-N <M> _1], o

k+2(1—C)

where k = max{k € N, s.t.(k4+ D)I1— @ < Typin }, with Ty = min{T;|Vt; €T},

Also, Shin and Lee proposed the concept of Abstract Bound under RMS (ABgys).
The abstract bound under RMS of any periodic server is the minimum server capacity C
that such a server must offer to its assigned tasks in order to guarantee their schedulability

under RMS. Such abstract bound is defined in the following theorem:

Theorem 2.2. [9]. Given a task set I" and a single periodic resource server, with period
I1, allocation time ®, and capacity C, i.e. C=0 =11, if Vi,1 <i < N,T; > 2I1— O, the

server abstract bound under RMS is:

ABrys = l k(=) (2.2)
Sl k+2(1—0r)

where k = max{k € N, s.t.(k+ 1)I1 — ® < Ty, }, and Ur is the total CPU utilization of

task set T.

Different optimization criteria: Some research works have proposed schedulers
that by considering different applications and platform restrictions, they look to opti-
mize different aspects of the system such as power consumption, thermal chip operation,
reliability and fault tolerance. An example of a constrained platform can be found in
modern mobile systems, where it is important to maximize the operational autonomy of
each device by operating it on tight power and energy restrictions. Research works such

as [26,27] present power-aware and energy-aware schedulers that look to minimize the

46

consumption of each parameter or both. Additionally, some real-time devices, either mo-
bile or fixed, are intended to be used in enclosed extreme conditions or near environments
that restrict their peak temperature of operation, beyond the peak temperature operation
imposed by the chip and its package. Some research works such as [28] have proposed
schedulers to account for the power and thermal issues of the platform in order to guaran-
tee an operation below a certain temperature threshold. Another example is devices im-
plemented on computing platforms, which have a great variability in their manufacturing
characteristics from one processing unit to the next one. Thus, some research works such
as [29] have proposed schedulers that account for the changes in execution time due to the
unexpected manufacturing process variations. Also, some real-time devices are deployed
on extreme environmental conditions that increase the probability of present computing
errors at any specific time. Some research works such as [30] have proposed schedulers
that implement supplementary timing error detection and correction mechanisms in order
to maximize the reliability and fault tolerance of real-time systems.

Multiple research works predominately focus on guaranteeing the timing constraints
for hard real-time tasks based on the characteristics of the processing unit(s). As discussed
in Chapter 1, other design constraints, e.g. power consumption and temperature of oper-
ation, are becoming increasingly critical in the design of real-time systems. Specifically,
our interest for this dissertation is to analyze how to schedule fixed-priority hard real-time
tasks with memory impacts taken into consideration also as design constrains. In what
follows, we introduce some important real-time scheduling techniques that explicitly ac-
count for these design constraints, and also relevant concepts related to the co-scheduling

of CPU and memory.

47

2.2 Power/thermal-aware scheduling

Due mainly to cost issues, the trend for many years was to develop computing platforms
with a single-core chip and increase its performance by increasing the number of tran-
sistors and the frequency of operation of the chip, but the industry realized that with an
increase in transistor density, the power density of the chip increases as well, making
the power consumption of a single chip excessively large, requiring cooling capabilities
beyond reasonable techniques. Fig. 2.4 shows the power density (a) and total power con-
sumption per chip (b) over the time. It can be seen in Fig. 2.4a a steady increment of
power density in PC microprocessors trend until 2006, when Intel released a chip with a
power density higher than the core of a nuclear pressurized water reactor (PWR). After
that, chip design strategies changed, including the popularization of multi-core platforms,
looking to reduce the high-power densities. By adopting multi-core architectures, the po-
tential performance gains due to parallel execution of tasks were increased, making the
chip performance rely less on the increment in clock frequency. Multi-core architectures
also offered the possibility of utilizing only some portions of the chip, which helps to
reduce the power and energy consumed. Fig. 2.5 shows a significant increment in typical
microprocessor chip power consumption and their operating frequencies over the past 40
years, but also shows both parameters being relatively steady during the past few years.
However, looking at the absolute power consumed by a microprocessor chip (Fig. 2.4b),
it indicates that with the increasing number of transistors (see also Fig. 2.5), the total
power of microprocessor units is still increasing over time despite the reduction in power
density [10].

In order to design a computer platform, multiple design constraints and specifications
must be taken into consideration. However, nowadays a big portion of design time is

tailored to manage the power and thermal issues of computing systems, because multiple

48

Power density (W/cm?)

400 T T T T ®)
200 4

PWR nuclear -

100 F reactor core q/.‘ 3 E

e c

@ Lo

Al

PC MPUs ofe z

Yo o o 2

10 | % o 4 5

- ® @]] o

L] L]] S

- ’e o

@ h o ° 3

o® o o° ° o

J 8

°

10} Portable MPUs ® =
0.5 i i ; . ®

1970 1980 1990 2000 2010 2020
Year

108 LA S B S S S S S e v T e
HPC ="
- & 11
o
10° s = /
E - L] I' E
[0 -7 - I]
PL !
10‘ 1 ;' Fd
>
r pcmpUs o7
10° ﬂ ;
3 I E
[) I
i]
10° ® = 'f
] ° :- 1
F _+” Portable MPUs /° :
-2 > | 1 | ! L
1940 1960 1980 2000 2020 2040
Year

Figure 2.4; Power density and total power consumption of computing platforms over the years [10]

vw

VY ST : -

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 103)

Frequency (MHz)
Typical Power
(Watts)

Number of
Logical Cores

1970

1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Figure 2.5: 40 years of microprocessor trend data [1 1]

49

problems in computing platforms are derived from a high power and energy consump-
tion, including an excess in temperature operation of such devices. For instance, the
increase in temperature leads to an increase in leakage power in transistor-based com-
puting systems, which exacerbates even more the problem of excessive power consump-
tion. Also, the increment in power consumption goes in detriment of the autonomy of
battery-powered applications such as 0T devices, that need not only a miniaturized and
autonomous platform to be portable and self-sustainable, but also to be energy-efficient as
well. Additionally, high power consumption increases dramatically the maintenance cost
of high-performance computing systems. Future exascale computers capable of reaching
10'8 operations per second will require a substantial decrease in the amount of power and
energy dissipated into heat compared to present standards. For instance, the U.S. Depart-
ment of Energy aims to bring its first exascale supercomputer on-line sometime in the
2020s and their goal is to have the machine consuming no more than 20 megawatts [31].

As power and energy consumption has emerged in previous years as a critical design
concern when designing computing systems ranging from high-performance computers
(HPC) to embedded systems, it is expected to continue being an important aspect in the
design of computing systems in the future. Thus, numerous research projects have pro-
posed techniques to perform power management and thermal management in computing
platforms. Some of those works are aimed to propose mechanisms to manage the power
and thermal issues in HPC systems [82—85], while other research works [26,49] are tai-
lored to manage power and thermal on lower performance applications and embedded
systems. Most real HPC applications do not utilize the peak power allocated power-per-
node, leading to inefficient use of both nodes and power. Thus, in average, applications
utilize 70% or less of the provisioned power, which leads to an inevitable waste of not
only power, but also performance and infrastructure, making clear that hardware solutions

are not sufficient and improved software solutions are needed as well for power manage-

50

ment [86, 87]. Additionally, modern supercomputers consume an enormous amount of
power, where a significant fraction is dedicated to offer cooling capabilities considering
the peak power provision of the whole infrastructure. Therefore, it is possible to build
an exascale computer today, but if the power consumption trend of current HPC systems
is followed, it would need a nuclear reactor to be powered [81]. Equally important, low-
power devices such as embedded systems, either deployed using single-core or multi-core
platforms, are being driven by applications such as video streaming and sensor data pro-
cessing, showing an increase in peak power dissipation. Thus, some modern low-power
microprocessors may offer operating modes consuming low power, but the more and more
computationally intensive tasks require them to significantly increase the power consump-
tion [10]. As a result, it can also be seen in Fig. 2.4b, that the total power consumption
for HPC, PC and portable applications has been increasing over the years.

The power consumption has become a critical problem for increasing a microproces-
sor’s performance because such a power is directly proportional to the number of transis-
tors, the supply voltage and the frequency of operation of the chip. During the previous
decades, power and energy management has become a prime design and operation di-
mension for many real-time platforms. In CMOS technology, which is still the dominant
approach in the VLSI circuit design, the power consumption has both dynamic and static
components, which are due to the system activity and leakage dissipation, respectively.
It can be seen that the number of transistors being integrated into a single chip approxi-
mately doubles every two years to keep providing desirable processor performance (ac-
cording to the so called Moors’s law). But to keep increasing the transistor density it
is necessary to reduce the size of each transistor, which makes quantum effects of the
material less neglectable, and also makes it necessary to reduce the supply voltage and
frequency of operation, thereby reducing the dynamic power consumption of the chip.

Even though the threshold voltage has also been lowered, the gap between supply and

51

threshold voltages has been reduced, which leads to a significant increase in the leakage
consumption, because the smaller the gap, the higher the subthreshold dissipation. Con-
sequently, the static power consumption has become as important as the dynamic power
consumption. Since the transistor density has been increasing over the years, and it is
expected to continue growing , the static power of each integrated circuit and the total
power density have been increased too, generating a high power dissipation and energy
consumption in computing platforms. High power density leads computing system de-
signers to deal in many cases with excessive thermal dissipation in one or multiple points
of the platform [3&].

Multiple power models have been proposed in the literature to predict dynamic power
consumption in a processing unit. The most common model established in [88] states
that the dynamic power is proportional to the switching capacitance C, the supply voltage

value VddCP U and the frequency of operation f ¥V, as shown in Eq. 2.3.
den — C . (VngU)Z . f CPU (23)

The leakage power, also known as static power, is generated by leakage currents pass-
ing through active transistors. The values of such leakage currents are dependent on the
temperature of the silicon and processor voltage. A high power consumption tends to gen-
erate a high temperature, which in turn aggravates the power consumption of the system.

The leakage power is formulated as:
av+p
Preat = Neare - (V,GPV) Iy [AT? - 57" 4 B e1VH0] | 2.4)

where 7" and (Vdgp U) are the temperature and supply voltage, respectively. Ngare 18 the
number of gates in the circuit, and Ty is the reference leakage current. A, B, a., 3 and y are
technology dependent constants [59].

In this dissertation we assume that the CPU working frequency is linearly proportional

to the CPU supply voltage Vdgp U, and the dynamic power consumption can be formulated

52

as Pyy, = C2- (VdglD U)3, where C2 is an architecture-dependent constant. On the other
hand, the static power has a very complicated relationship between leakage current and
temperature, as seen in Eq. 2.4, but it can be approximated to a linear function as follows:
Pioqk = CO+C1-Tj(r), where C1 and C2 are also architecture-dependent constants and
T;(z) is the CPU junction temperature [28]. Thus, the total CPU power can be formulated
as: P PV =C0+C1-T;(t)+C2-(V,5"Y)3. Further, we assume that each task T; may have
a different switching activity, modeled using u; (with y; € (0, 1), defining how intensively
the CPU is consuming dynamic power by the execution of t;. Hence, the CPU power

associated with each task T; can be reformulated as follows:
PPV =CO+C1-T(t) + - C2- (V,GY)° (2.5)

As seen in chapter 1 an increment in power consumption often increments the temper-
ature of operation of many single-core and multi-core platforms in different applications,
such as embedded systems and HPC systems. Multiple power models have been proposed
in the literature to predict the thermal behavior of an electronic circuit, but the majority
of them are based on the analogy between the flow of current in an electronic circuit and
the flow of heat in any thermal device.

Thus, in this dissertation, similarly to multiple research works [25,90], we use a model
elaborated based on the commonly known lumped RC thermal model [91] (as shown in
Fig. 2.6). Specifically, assuming a fixed ambient temperature (7,,;), let T(¢) denote the
temperature at time ¢. Then, we have:

dT (t)
dt

RC +T(t) = RP(t) = T (2.6)

where P(¢) denotes the power consumption in Watts at time #, and R and C denote the
thermal resistance (in J/°C) and thermal capacitance (in Watts/°C), respectively.
Researchers in both academia and industry have proposed numerous techniques to

manage the power consumption and minimize energy consumption in computing systems.

53

P I R C

/\ \/ \\/\ ®

Figure 2.6: Lumped RC circuit example

Specifically for real-time embedded systems, two widely used techniques for reducing
energy consumption in the processing unit are Dynamic Voltage and Frequency Scaling
(DVFS) and Dynamic Power Management (DPM). DVFS approaches trade energy with
performance by decreasing the voltage and the frequency of the processor to reduce the
overall energy consumption. Since reducing the frequency increases the task execution
times, a common objective in real-time systems is to derive processor/task speed values
that still guarantee the timing constraints while minimizing the total energy. On the other
hand, DPM techniques switch the processor to a low-power inactive state as long as pos-
sible, while guaranteeing that all real-time tasks will finish within their deadlines [44].
Some of those research works have proposed mechanisms to minimize the energy con-
sumption while guaranteeing the timing constraints of real-time systems using a DVES
technique [92—-97], or a DPM technique [98—100]. For instance, Awan et al. [96] address
the problem of task-to-core allocation onto heterogeneous multi-core platforms such that
the overall energy consumption of the system is minimized, considering both dynamic
and leakage energy consumption. Using a DVFS technique, their approach considers
core frequency set-points, tasks energy consumption and sleep states of the cores to re-

duce the energy consumption of the system. Additionally, Huang et al. [99] propose

54

online algorithms that adaptively control the power mode of a system, procrastinating the
processing of arrived events as late as possible, providing solutions for preemptive EDF
and fixed-priority scheduling policies. Bhatti et al. [98] propose a generic power/energy
management scheme that takes a set of existing DPM and DVFS policies, each of which
performs well for a set of conditions, and adapts at runtime to the best-performing pol-
icy for any given workload. Han et al. [101] study the problem of energy minimization
for scheduling periodic fixed-priority tasks in multi-core platforms with fault tolerance
requirements.

Similarly, multiple research works have noticed the importance of considering the
increment of power and energy consumption, as well as their effects on the thermal man-
agement for real-time computing systems, as a very important optimization criteria for
scheduling real-time tasks. The increment in power and energy consumption, as well as
the increase in thermal emergencies in multiple computing platforms, are affecting the
design of real-time systems too. Real-time schedulers must make decisions of execution
of tasks not only considering their timing parameters, but also considering their power
consumption and their potential effects over the system’s operating temperature, in order
to keep the system’s power and temperature below manageable thresholds. Consequently,
multiple scheduling techniques have been proposed to perform power and energy man-
agement, as well as thermal management for real-time systems [28, 90,93, 1.

Some research works also have acknowledged the problem of manage the thermal
operation of the processing unit as well, either in single-core or multi-core platforms,
optimizing different parameters of the system, such as performance, energy consump-
tion or reliability [45, 103—105]. For instance, Huang et al. [106] study the problem of
how to maximize the throughput for a periodic real-time system under the given peak
temperature constraint, when deployed on a single-core platform. Authors assumed that

different tasks in the system may have different power and thermal characteristics, allow-

55

ing their proposed DPM scheduler to alternate the processor active/sleep modes. Their
approach equally divide different tasks into m equal time sections in order schedule the
execution of each section, lowering the system’s peak temperature. Also, Fan et al. [2§]
present a closed-form analytical solution to calculate the system thermal steady-state en-
ergy consumption for a periodic voltage schedule on a multi-core platform, with the leak-
age/temperature dependency taken into consideration. Using these authors’ approach, it
is possible to quickly obtain the temperature dynamics in the system thermal steady state.
Then, based on their temperature calculation method, they develop a closed-form solu-
tion of energy calculation for any scheduling period, particularly in system thermal steady
state. Also, Han et al. [102] study the problem of how to determine if a periodic DVFS
schedule for a multi-core platform is thermally feasible in satisfying a given peak tem-
perature constraint. Ahmed et al. [46] propose a methodology for minimizing the peak
temperature in embedded systems using periodic resource allocation. Egilmez et al. [107]
develop a method to control the skin temperature in smartphones, by predicting the sur-
face temperature and scaling the frequency of application processor by taking user com-
fort limit into consideration. Sha et al. [108] study the problem of how to maximize the
computing performance of multi-core platforms without violating their peak temperature
constraint and present a novel technique to maximize the throughput of the platform. Het-
tiarachchi et al. [109] propose a methodology to design predictable real-time systems in
an unpredictable thermal environment where the environmental temperature may dynam-
ically change, by allowing the system to adjust the scheduling according to a predefined
set of performance modes.

Additionally, some research works have focused on solutions to the thermal manage-
ment problem on HPC platforms. For instance, in [| 0] authors study the thermal-aware
allocation of virtual machines in data centers, in [1 1] authors characterizes the thermal

behavior of HPC systems using machine learning methods in order to enhance the sched-

56

uler by reducing the number of hot-spots in the system, and in [85] authors present a

survey of thermal-aware scheduling techniques for green data centers.

2.3 Memory-Aware Scheduling

In this section, we present some preliminaries and review existing works related to schedul-
ing mechanisms considering memory characteristics and issues. First, we review prelimi-
nary concepts and existing works related to mechanisms aimed to improve the predictabil-
ity of the system, considering the timing delays imposed by task preemption scheduling
methods and shared cache architectures. Second, we review preliminary concepts and
existing works related to mechanisms enhancing the performance and predictability, by

considering power and thermal issues.

2.3.1 Shared Cache Memory

Modern computing systems supplement the main memory of the computer with a set
of local registers and one or more levels of cache in a memory hierarchy, where the
cache level closest to the processing core(s) is small and fast, but contains only a subset
of the contents of memory. Caches are transparent to the programmer, with hardware
determining which parts of memory should be placed at any given time in the cache.
Cache memory is the part of the memory hierarchy that has seen the most change over the
years, increasing the size and number of cache layers that has been introduced between
the register file and memory [31]. For the sake of scalability, flexibility, and to deal with
power limitations, it has become mainstream to group multiple cores sharing a local cache
memory.

The majority of the algorithms proposed to guarantee the schedulability of real-time

systems (e.g. RMS or EDF), especially hard real-time ones, assume that tasks are fully

57

preemptive. This means that tasks can be suspended at arbitrary points in favor of higher-
priority tasks. Preemption simplifies the schedulability analysis but introduces a runtime
overhead (sometime called preemption cost) during task execution, due to the context
switching between tasks, the pipeline invalidation delay, and the cache-related preemp-
tion delay (CRPD), especially for shared caches in multi-core platforms [16, 17]. The
preemption cost is often assumed to be constant and speed independent. However, the
CRPD is defined as the delay that a preempted job incurs due to a loss of cache affin-
ity after resuming execution. This delay may vary greatly, depending on the architecture
characteristics and the workload characteristics. Thus, such CPRD delay introduces a sig-
nificant source of uncertainty in the timing analysis of real-time systems. In essence, the
sharing of local cache memory helps to improve the average case execution time of each
task, but can be hazardous to the estimation of the worst-case execution time (WCET).
This is because the number of memory accesses, locations in time, and bus loads origi-
nated from other concurrent tasks are difficult to determine precisely. Fig. 2.7 shows an
example of cache-related preemption delay. It can be seen that a low-priority task T; with
Ty = 10ms and C = 5ms (Fig. 2.7a) is scheduled along with a high-priority task T, with
T = 10ms and C; = 3ms (Fig. 2.7b). However, if T, unloads sufficient cached data of 7y,
C increases and the second job of T, misses its deadline (Fig. 2.7c) [112].

Multiple research works have acknowledged the problem of preemption cost, and
specifically the CRPD increasing the uncertainties in the execution of tasks, which leads
to even more pessimistic estimated WCET for each task, and one of the most common
methodologies to tackle such a problem is based on the concept of cache partitioning.
Shared cache partitioning approaches are widely applied in both general-purpose and
real-time computing systems [! 13-116]. However, since a major source of pessimism
in WCET estimation comes from shared cache memories, cache memory partitioning

has proven to be one of the most effective methods to improve the predictability and

58

Ay =10ms Ay =20ms A5 =30ms

b)

Figure 2.7: Example of cache related preemption delay. A low priority task T, with 7} = 10ms and
C1 = 5ms (), is scheduled along with a high priority task t, with 7y = 10ms and C| = 3ms (b). If
T, unloads sufficient cached data of Ty, C| increases and the second job of T, misses its deadline
©[112].
schedulability of real-time systems. Fig 2.8 shows a typical configuration of computing
platforms with two cores and two levels of cache memory. The first level is private to
each core, but the second level is shared among the two cores. Such second level of cache
memory is divided into partitions. In the figure, two partitions are assigned privately to
core 0 and one partition is assigned privately to core 1. Cache partitions can be managed
at the hardware level, the compiler level or the operating system level. Therefore, it
is possible to assign partitions privately to, not only cores, but also to real-time tasks.
In essence, WCETs are bounded and controlled much more tightly when the cache is
partitioned. This allows the estimation of real-time tasks® WCETs relatively tight, yet
safe, which promotes processor utilization in both single-core and multi-core platforms.
The main goal of implementing shared cache partitioned approaches, in hard and soft
real-time embedded systems, is to improve the predictability of the WCET, and conse-
quently improve the response time of the real-time system [62, 117-121]. For exam-

ple, authors in [122] propose a compiler-based method that partitions the cache among

59

L2
Cache

Figure 2.8: Example of dual-core configuration with cache partitioning [12]

tasks at compilation time. Authors in [| 3] propose a dynamic cache partitioning scheme
that decreases the allocated spaces to the faster threads and allocates them to the critical
ones to minimize the system overall response time. Authors in [114] and [115] suggest
a software-based page coloring technique, while in [16] a hardware-based partitioned
method is introduced.

Existing work on cache partitioning can be largely categorized into two groups: cache
allocation policies and cache management schemes [123]. The first ones focus on policies
to dictate how to allocate available cache resources to different tasks to achieve different
objectives, such as fairness, priorities, and performance maximization (e.g. [116, 118,
124]). The second ones intend to enforce, by means of hardware or software, the distribu-
tion of the outcomes of the cache allocations so that each program can access its allocated
cache memory (e.g. [62, 125, 126]). For instance, at the operating system level, cache
coloring is an important cache allocation policy to optimize the performance of real-time

and general purpose systems by cache allocating the contiguous pages from the cores

60

point of view. This technique sets up the virtual-to-physical-address translation so that no
two tasks access the same cache set in the shared cache and hence one task cannot evict a
cache block that another task has fetched to the shared cache [127].

As mentioned in chapter 1, multiple research works have realized the need to address
the problems of the increasing power consumption in memory systems and thermal is-
sues related to such a high power. Some of those research works have focused on the
timing problems seen by real-time systems when power and thermal issues are taken into
consideration. The power consumption of on-chip cache memories is usually assumed
to be a constant value in many research works [128]. Since cache memories are imple-
mented close to the CPU, their power can be associated with the power consumed by the
entire CPU. Unlike cache memories, external main memory manufactured with DRAM
technology usually has an additional power consumption, comparable to that of the CPU
in today’s platforms and dependent on multiple factors, e.g. the memory capacity and
bandwidth. Thus, in what follows, we provide a general introduction of the role and or-
ganization of DRAM memories, along with the challenges of real-time system design,

considering main memory power and thermal issues.

2.3.2 Main-Memory Power and Thermal

DRAM devices are designed utilizing very complex architectures that have evolved through
time to deliver high-volume storage at low cost per bit, in the fastest way. A DRAM
memory is divided into ranks, as shown in Fig. 2.9, and each rank is divided into multiple
banks. As shown in Fig. 2.10, bank-level parallelism allows each bank in the memory
to be accessed in parallel, so the memory space is interleaved among all the banks. Each
bank comprises a row-buffer and an array of storage cells organized as rows and columns,

as shown in Fig. 2.11. In order to access data, the memory controller (MC) activates a

61

. address and command

DMC _‘Ea_ta_b&

_data bus

- .
16

data Q_us

-
16

chip-select 0
chip-select 1

Figure 2.9: DRAM Rank organization [13]

row of a certain bank, copying all its columns on the row-buffer. An example of DRAM
system organization is shown in Fig. 2.12. The access of data already on the row-buffer is
faster than the data stored in the array of cells [13]. Since banks are interleaved, any core
in the system can access any bank. If two applications running in parallel on different
cores access two different rows in the same bank, they might force the MC to continu-
ously pre-charge the row-buffer and open a new row every time an access is performed,
making the latency of each memory request variable.

In this dissertation, we build our memory model similarly as numerous research works,
based on the DRAM power model published by Micron [129] [130]. The DRAM power
is directly proportional to the number of memory requests of each task t; (H; maximum),
and bounded by the DRAM chip maximum bandwidth BWPRAM in MB/s. Therefore,
each task 7; has a single associated DRAM power value determined solely by its memory
access rate.

The DRAM power consumption is composed of three components: background power,

active power and read/write power. The background power varies with the CKE signal

62

CKE

command
decode

ITTTTTT]

DRAM
Array

refresh
counter
mode
register
addr f
bus
bank
address
Rl register #=| control
. address
counter

)
sense amp array

-

Bank 0

- Bank 1

Bank 2

Bank 3

data out

read data latch
write drivers

/ register

c.oi'umn
decoder

Figure 2.10: DRAM Bank organization [3]

DRAM devices arranged in parallel in a given rank

Fi

1

Sense amp ar

I sense amp array

i

\ data in

register

TTTTTT]

DRAM -

Array _|

/

one row spanning multiple DRAM devices

¥

Figure 2.11: DRAM Row organization [3]

63

bank ID = 1 rank ID = 1 column ID = 0x187

row |ID = 0x0B1D

Memory System

|
i
|
— |
|
|
J

Figure 2.12: DRAM System organization [13]

of the DRAM chip. CKE is the master on-off switch. When the CKE signal is low, the
DRAM goes off into a Power-Down state, consuming less power than active or stand-by.
If the CKE signal is high the DRAM chip is able to receive commands from the MC.
To ensure timely response, we assume that the DRAM does not enter the power-down
mode during the execution of any task. The background power also contains the power
for DRAM refreshes, i.e. Prer. The active power depends on the currents to decode the
command/addresses and transfer the data from the DRAM array to the sense amplifiers,
and vice versa. The read/write power is related to the currents to place or store data to or
from the bus. Consequently, the total power consumed by the DRAM when the CPU is

executing a task 7; is as follows:
PR = (Pyg i+ Pact.i+ Prw i) - Nenip: 2.7)

where Ncyp 1s the total number of DRAM chips in the rank. Finally, for our experiments

we consider the DDR3 manufacturing technology. Such DDR3 technology offers three

64

different power-down modes to save power. We are focused on the self-refresh power-
down mode with power consumption denoted as P&RAM [130].

Main memory systems, especially systems built upon DRAM memory technology, in-
troduce an additional level of uncertainty in the WCET estimation for real-time tasks. For
instance, the bi-directional data path of the memory requires several cycles to switch from
read to write and vice versa. Also, to prevent data loss, the memory must occasionally be
refreshed before executing the next request and the added refresh time may be longer than
the time to serve the request itself. These effects make the latency of each memory request
variable. A critical problem seen in main memory systems is the so-called bank-sharing
problem. This problem is similar to the sharing of cache spaces by multiple processing
cores. When a task references a specific memory position, the row containing such a
memory position is stored in a row-buffer, making successive references faster. However,
if another task references a memory position in a different row, but in the same bank,
the previous row has to be stored back and the new one is stored in the row-buffer. This
represents a problem when real-time tasks are accessing the same bank address space,
due to the unbounded delay added due to the interference. To avoid the bank-sharing
problem, an approach called bank partitioning has been proposed, where each core is
assigned with a set of exclusive banks. Some bank partitioning methods are software-
based [127, ,], and others are hardware-based [133,]. An additional mecha-
nism proposed to guarantee the delay time each task sees from main memory consists of
managing the bandwidth assigned to different real-time tasks [135, 136] by throttling the
number of memory accesses of each core, in order to guarantee a specific bandwidth to
critical tasks in the system. However, the implementation of techniques, such as bank
partitioning or memory bandwidth throttling, brings and additional increment of the ca-
pacity and bandwidth that a memory system must comply with. This issue exacerbates

the already high power consumption and excessive system temperature problem.

65

Multiple research works have proposed micro-architectural and system-level tech-
niques for managing the power consumption, and also for managing the thermal behavior
of the system [137-141]. Many of them propose the synergistic modification of opera-
tion modes and DVFES on CPU and memory devices [49]. Authors in [142] propose for
embedded systems to consider the dynamic change of frequency of L2 cache memory,
besides processors and main memory, in a multidimensional frequency scaling fashion,
to improve the energy efficiency of the system. By evaluating different frequency lev-
els, it is shown that the energy-delay-product (EDP) can be improved up to 46.4% when
compared to the standard way that the frequencies are configured, without impacting per-
formance. Other works, such as [143], adopt the concept of group of applications, which
contains thread group and memory rank group. Their proposed mechanism manages a
group of applications, by simultaneously scaling CPU frequency and controlling memory
power mode to reduce both CPU and memory power.

Some works, such as [144], work with GPU systems. Authors in [144] seek to reduce
power with minimal performance degradation in high-performance GPUs, by tuning the
processing units’ frequency, number of active computing units, and memory bandwidth.
By tracking the time-dependent computing and memory demands for each task, the cor-
responding hardware power configurations of the core and memory system can be set
to reduce overall platform power and thereby improve energy efficiency with minimal
compromises in performance.

Authors in [145] present a model-based methodology that takes computation-specific
properties into account, which guides power allocations for CPU and DRAM domains to
maximize performance. Their methodology can predict the performance impacts of the
power capping allocation schemes for different types of computations from real applica-
tions with absolute mean error of less than 6%. Also, authors in [146] present energy-

management algorithms that coordinate core and DRAM frequency scaling under a spec-

66

ified energy budget. Additionally, authors in [147] propose a DRAM frequency selection
method based on memory usage. The proposed method was implemented and tested with
embedded Linux on a system equipped with a multi-core processor and 2GB LPDDR3
DRAM. Their method enhances energy efficiency of the device by up to 18%.

Regarding real-time systems, for instance, research works such as [148] propose
a methodology to offer guarantees to legacy applications implemented on autonomous
helicopter-style aircrafts. The method relies on NoC architectures and a DRAM con-
troller contention-aware mechanism, and is based on the existing interference-sensitive
WCET computation and the memory bandwidth throttling mechanism.

Authors in [149] investigate system-level thermal-aware data/task mapping policies
for 3D memory architectures. Over a simulation framework, different workloads from a
combination of the PARSEC benchmark suite are scheduled on a many-core 3D platform
with a DRAM layer on top of a logic layer. Memory-bounded benchmarks from the PAR-
SEC suite (such as canneal and streamcluster) have significant performance improvement
due to an increase in the memory access bandwidth. However, 3D many-core systems
consistently show higher peak temperatures [150].

During the past decade, 3D memory-processor integration has received considerable
attention in the literature [151-153], and multiple research studies have been proposed to
manage the thermal problems in 3D integration technology. Meng et al. [128] introduce a
framework to model on-chip DRAM accesses and analyze performance, power, and tem-
perature trade-offs of 3D systems. Their architecture focuses on one single layer of logic
and one layer of DRAM memory. Chen et al. [154] characterize the thermal and perfor-
mance behavior of the target architecture when the voltage and frequency levels of cores
and DRAMs are synergistically controlled, targeting an architecture with multiple layers
of DRAM memory. Some studies propose to manage the power and thermal parameters

in 3D ICs by performing memory mapping techniques [155, 156]. Other thermal man-

67

agement approaches for 3D architectures, such as [157], propose to reduce temperature
variance and the peak temperature of a 3D multi-core processor and stacked DRAM by

thermally-aware thread migration among processor cores.

2.4 Summary

In this section, we presented the essential pertinent of our research and reviewed some
closely related works in the literature. We first presented a general overview of the basic
concepts and critical techniques in real-time scheduling. Particularly, we introduced dif-
ferent categorizations of real-time scheduling and two important scheduling methodolo-
gies for single-core scheduling (RMS and EDF). Next, we presented an overview of the
periodic resource model and the concept of “resource server” used in scheduling methods
to provide resource isolation to real-time tasks and allow the implementation of com-
positional real-time scheduling. Then, we presented some preliminaries for power and
thermal-aware scheduling including the basic power and thermal models found in the lit-
erature. Also, we discussed some important research works on CPU-related power and
thermal-aware scheduling. Finally, we presented some preliminaries of CPU and mem-
ory co-scheduling, including the DRAM memory technologies’ power model, along with
some discussion of related works, including works considering 3D integrated platforms.
In this dissertation, our goal is to develop effective scheduling mechanisms for hard
real-time systems to guarantee timing constraints, while satisfying other constraints such
as peak temperature of operation, when the scheduling of tasks considers the effects and
delays imposed by memory devices. In the following chapters, i.e. chapters 3, 4 and 5,

we present our contributions. Then, we conclude this dissertation in chapter 6.

68

CHAPTER 3
CACHE ALLOCATION FOR FIXED-PRIORITY REAL-TIME SCHEDULING
ON MULTI-CORE PLATFORMS

As stated in previous chapters, in this dissertation we study the problem of how to
allocate cache memory that is accessible by multiple processing cores when scheduling
fixed-priority real-time tasks based on the rate monotonic scheduling (RMS) policy. Thus,
we first present our research on cache allocation for real-time scheduling on multi-core
platforms.

Since the WCET of a real-time task varies with its cache allocation, our research
problem involves two intertwined problems: i) how to allocate the available cache mem-
ory partitions among all tasks, and ii) how to map each task to a core in the multi-core
platform. One simple approach to partition the cache memory is to allocate the cache
memory in such a way that it minimizes the normalized resource usage [1558] —which
includes both CPU utilization and memory utilization— for each task. However, the
cache allocation that optimizes the resource usage for a single task does not necessarily
optimize that for the entire task set. To map tasks to multiple cores and optimize CPU
resource usage is a classical NP-hard problem.

It has been a well-known fact that harmonic tasks (tasks with periods being integer
multiples of each other) can utilize CPU resource more effectively, i.e. with CPU uti-
lization as high as 1 [159]. However, how to take the interplay of cache partitioning,
execution time variations and task harmonic relationship into considerations to deal with
cache allocation and task mapping in an integrated manner is the challenging problem we
want to study in this chapter.

The rest of the chapter is organized as follows. Section 3.1 describes the most related
research projects. Section 3.2 describes the architecture and real-time system models and

shows a cache partitioning example. Section 3.3 and section 3.4, describe in detail our

69

first and second solution approach, respectively. Next, section 3.5 shows the results for

the conducted experiments, and finally, we present the summary in section 3.6.

3.1 Related Work

The large inter-task interferences due to increased resource sharing (such as shared buses
and memory) on multi-core platforms have severely undermined the predictability of real-
time systems [39, 40]. For the sake of scalability, flexibility, and to deal with power
limitation in the era of “dark silicon,” it has become mainstream to group multiple cores
sharing a local cache memory [160] [161] [162].

The sharing of local cache memory helps to improve the average case execution time
of each task, but can be hazardous to the estimation of the worst-case execution time
(WCET). One major problem in estimating the WCET bounds on multi-core systems is
the unpredictability of the workload on other cores. Therefore, the number of memory
accesses, locations in time, and bus loads originated from other concurrent tasks are dif-
ficult to determine precisely [40]. To assume the worst case scenario for each factor can
be extremely pessimistic and nullifies the extra computational capacity of the multi-core
platforms in the design of real-time systems.

In a first stage in this dissertation, we study the problem of how to allocate the cache
memory that is accessible by multiple processing cores when scheduling fixed-priority
real-time tasks based on the rate monotonic scheduling (RMS) policy. Thus, with more
isolated memory accesses, each real-time task can avoid or reduce considerably the inter-
task memory interferences. Therefore the WCET can be more accurately bounded and
CPU utilization can be significantly increased. It is noteworthy to mention that the fixed-
priority multi-core partitioned scheduling scheme is one of the most commonly used
scheduling mechanisms for real-time system design [23], due to its advantage of better

predictability. Besides, it is supported by almost all real-time operating systems available

70

on the market due to its low overhead and simplicity in implementation, and it is still the
method of choice in industry. We assume that each real-time task will be executed on
a dedicated processing core, and its WCET, for a specified cache size, can be estimated
beforehand using strategies such as those presented in [163].

Since a major source of pessimism in WCET estimation comes from shared cache
memories, cache memory partitioning has proven to be one of the most effective meth-
ods for managing the shared fast local memory while optimizing other design objectives,
such as performance maximization [!64], quality-of-service (QoS) enhancement [165],
and fairness [1 14], and also to improve the predictability and schedulability of real-time
systems [62, 114, 118,119,126, 127]. This method partitions cache memory among pro-
grams and cores to reduce cache contention between tasks and/or cores. By isolating
real-time task memory accesses, cache memory partitioning can avoid or considerably
reduce the inter-task interferences, and therefore reduce the uncertainty when bounding
the WCET and improve the core utilization.

Existing work on cache partitioning can be largely categorized into two groups [123]:
cache allocation policies and cache management schemes. The first ones focus on poli-
cies to dictate how to allocate available cache resources to different tasks to achieve dif-
ferent objectives, such as fairness, priorities, and performance maximization (e.g. [1 16,

,]). The second ones intend to enforce, by means of hardware or software, the
distribution of the outcomes of the cache allocations so that each program can access its
allocated cache memory (e.g. [62, , , D.

From this perspective, we are interested in developing static cache allocation policies
for real-time systems to enhance the predicability and schedulability when scheduled in a
multi-core environment. Unlike our proposed allocation policies, some techniques have
been proposed for single-core platforms [12,168], and some others use a non-preemptive

EDF policy for intra-core scheduling [169, 170]. A few approaches that have been pub-

71

lished are closely related to our work. Chang et. al. [2, 58] develop a series of algorithms
for real-time systems scheduled based on EDF in island-based multi-core real-time sys-
tems with local and global heterogeneous memories. The algorithm, so called Island
Based Real-Time Scheduling for Multi-Core Islands (IBRT-MCI), intends to optimize the
system resource (CPU and fast local memory) usage for a single task. A variant of this
algorithm is also introduced in a later publication [2], in which the intra-core scheduling
is performed according to RMS, i.e. IBRT-MCI-RMS. As discussed later in this chapter,
the optimal solution that can optimize the system resource usage for a single task does
not necessarily optimize that for the entire task set. Also, as we show in our simulation
results, incorporating period relation into cache allocation and task mapping can signifi-
cantly improve the schedulability of real-time systems. Kim et. al. [171] propose a cache
allocation policy that relies on page coloring as the cache management scheme. Different
from our approach, their algorithm assigns cache units privately to cores instead of tasks,
thus allowing intra-core cache units sharing. This alleviates the memory co-partitioning
problem due to the page coloring management scheme, but increases the predictability
analysis complexity. Suzuki et. al. [127] propose two algorithms as cache allocation poli-
cies, taking into consideration the cache memory partitions and the main memory banks
assigned to each task. Unlike our approaches, such algorithms assume EDF as intra-core
scheduling policy instead of RMS.

Alternatively, Fan and Quan [1] present a new multi-core partitioned scheduling al-
gorithm, the Harmonic-Fit Partitioned Scheduling (HFPS) algorithm, for fixed-priority
sporadic task systems. The authors exploited the fact that harmonic tasks or tasks close
to harmonic can utilize the processor more efficiently increasing feasibility. Particularly,
HFPS allocates tasks group by group in order to find the best combination in terms of
system utilization, maximizing the mutual harmonicity among the task scheduled on a

particular core. Their experimental results show that their proposed algorithm can signif-

72

icantly improve the scheduling performance compared with previous scheduling param-
eters, such as RM-Next-fit, RM-First-fit and RM-Best-Fit. However this work assumes a
WCET for each real-time task as a single and predetermine value, non-dependant of the
amount of fast local memory assigned to the task. Even for tasks that are not entirely
harmonic, Fan and Quan [!72] show that mapping tasks closer to harmonic together into
one processing core can greatly improve the feasibility of real-time systems. The problem
is how to take into consideration both factors, i.e. the harmonic relationship and variable
execution times, to allocate cache memory and map tasks to cores.

We propose two algorithms in this chapter. The first algorithm combines two ex-
isting works: one based on fast local memory partitioning [58], and the other one, on
harmonic-based scheduling [172]. The second algorithm is a more elaborated approach
that can judiciously choose the cache size for each task and also exploit task harmonic
relationships. Therefore, it can significantly improve the system resource usage and task
set schedulability. We use a third party data report of the cache performance for the SPEC
CPU2000 benchmarks suite [173] to validate our approaches. The results show that our
approach can significantly improve the schedulability of real-time tasks, i.e. up to four

times, when compared with other scheduling mechanisms.

3.2 Preliminary

In this section, we introduce the architecture and the real-time system model used in this

chapter. We also show an example to motivate our research.

73

Table 3.1: Example of Task Set and the WCET values for different m;

mi
1[2]3]4|5]6]7]8][9]10]11][12][13][14]15]16] T,
" 5]5 413[3[3[3[3[3[3[3]3]|3]3]|3]10
G2ll2o[18|10[6]6]6]6[2]1 1 [1 [1|]1[1]1]1]25
G108 6f6[6][5][5]5]4]4]4[4]4]4a]4]4]13
o] 98[7]6]5[5[5|5]5[5]5]5[5]5]5]25

3.2.1 Architecture and System Model

The multi-core platform consists of a set of P homogeneous processing cores, denoted as
P, with k = 1,2,...,P. The cache memory is divided into a finite number of allocation
units of the same size called cache units. The total number of cache units is denoted as B.

The task set consists of N independent implicit-deadline periodic tasks, denoted as
I' = {71,72,...,Tn }, scheduled according to RMS. Each task t;, where 1 < i < N, is char-
acterized by its minimum inter-arrival time 7;. A finite number, denoted as m;, of cache
units are assigned privately to a single task T; executed by a core of the system, and its
WCET varies with m;, which is denoted as C;"". Therefore, the task set I' may be char-
acterized by a matrix like the one shown Table 3.1. In this table, the rows indicate each
task belonging to the task set (four tasks for the example), and each column (except for
the last one) indicates the number of assigned cache units m; to each task (1 < m; < 16).
The numbers shown in the matrix correspond to each C;" of each task. The last column
indicates the period of each task.

Each task t; € I' is characterized by a CPU-utilization and a memory-utilization. We
define U™ as the CPU-utilization of t;, where U = C."/T; and B; as the Memory-
utilization of t; where B; = m;/B. In the same way, we also define the CPU-utilization of
atask set I"as U(T") = L1 U™, and the total number of cache units used by a task set

q(I") = Yr,erm;. When task t; € I is assigned with a specific value of m, we reference

its CPU utilization as U;.

74

3.2.2 Cache Allocation Example

Before we present our algorithms, we first show an example, i.e. Example 3.1, of a
cache allocation problem along with two possible solution methods: the first one, using a

previous proposed technique, and the second one, using a simple inspection.

Example 3.1. Consider a task set consisting of four tasks, as shown in Table 3.1, to be
scheduled in a platform consisting of two cores, sharing a cache memory with 16 cache

units.

The problem defined in Example 3.1 has proven to be NP-hard. One solution for
this problem, i.e. IBRT-MCI-RMS presented by Chang et al. [7], is to first allocate the
cache space that can optimize the resource usage for a single task, and then transform this
problem to the traditional bin-packing problem. To this end, they first define a metric,
called normalized resource usage, to balance CPU and cache resource usage, as shown in

the following definition.

Definition 3.1. 7he minimum normalized resource usage [”] of task T; € I, denoted as

= min <i+@) G.1)

0<m;<B\ P B

Ai, is defined as:

Essentially, the minimum normalized resource usage of a task is the minimum sum
of its normalized processor utilization and the normalized cache allocation. With task
execution times and cache allocations given, the minimum normalized resource usage of
a task can be readily identified. Table 3.2 shows the cache allocation results based on
this approach. Columns m; and C;, and thus U; are obtained based on Def. 3.1. Then,
IBRT-MCI-RMS sorts tasks in a non-decreasing order with respect to their values of m;,
and packs tasks to cores with utilization bounded by the traditional Liu&Layland upper-

bound [25]. In the case of a task set of two tasks, such bound is of 0.83. For this example,

75

Table 3.2: Motivation Example Solution Using IBRT-MCI-RMS [2]

| % | T | G| mi| U; | Sub Task Set Utilization | Sched. Cond. | Feasibility |
2257647024

?
3/13| 6|3]046 U(T23) =0.70 U(3) <0.83 | Core 1 - YES
111051050

?
412510 1 040 U(T4) =0.90 U(I'4) <0.83 | Core2-NO

as shown in Table 3.2, the total utilization for the subtask set with T, and T3 (a value of
0.70) is less than the upper bound. However, the value of total utilization for the subtask
set T; and T4 (a value of 0.90) is larger than the utilization bound. Therefore, IBRT-MCI-
RMS fails to schedule the task set of Example 3.1.

For the problem defined above, a feasible solution does exist. As shown in Table 3.3,
by assigning 3 cache units to T; and 2 cache units to T4, T; and T4 would decrease their
WCETs from 5 to 4 and from 10 to 9, respectively, making the task set comply with
the schedulability condition defined by the Liu&Layland upper-bound. Besides, the total
number of cache units used by the task set would be increased from 9 to 12, which is
still less than 16. The numbers underlined in Table 3.3 represent the changed values from
the solution shown in Table 3.2. This shows that, even though IBRT-MCI-RMS allocates
cache space to optimize the resource usage (according to A; of Def. 3.1) of a single
task, the local optimum solution cannot guarantee that the solution is globally optimal.
In addition, it is well-known that period relationship of real-time tasks has a significant
impact on their schedulability on a processor [75, 159]. The question is how to take it into
consideration in cache allocation and task mapping to improve system resource usage and

schedulability of real-time task sets.

76

Table 3.3: Motivation Example Solution by Inspection

| % | T, [Gi [mi| Ui [SubTask Set Utilization | Sched. Cond. | Feasibility
2[25]6] 4024
?
311363]046 U(Ip3) =0.70 U(p3) <0.83 | Core 1 - YES
1110 4| 3]040
?
41251921036 U 4)=0.76 U(T14) <0.83 | Core 2 - YES

3.3 Simple Harmonic-Based Cache Allocation Approach (HBCA1)

One way to exploit the period relationship among tasks is to simply incorporate the task
period into the task mapping phase only. During the cache allocation phase, we can
search a local optimal value for the parameters C; and m; for each 1; € I based on the
metric A; described in Def. 3.1 [2]. Note that, after A; is defined, the WCET for each
task is also defined. Then, we can employ the harmonic-based task mapping method
(such as the one in [172]) to map tasks to multi-core platforms. We call this approach
HBCA1 (Harmonic-Based Cache Allocation 1), which is shown in Alg. 1. In Alg. 1,
we assume that all processing cores share the same cache memory. The algorithm can be
easily extended to deal with the scenario of when processing cores share multiple cache
memories.

While a harmonic task set can be schedulable with total utilization reaching as high
as 1, not all tasks are harmonic. Therefore, to better exploit the harmonic relationship
among tasks, one critical question is how harmonic a task set is. To this end, Fan et
al. [172] introduce the concept of primary sub-harmonic task set and, based on it, they

develop the harmonic index to quantify the harmonicity.

Definition 3.2. [/72] Given a task set T = {11,T2,...,Tn } where 1; = (C;,T;), let T' =
{1}, 75,.... Ty} be a harmonic task set with t, = (C;,T!) and T < T;. Then, I is called
a Primary Sub-Harmonic (PSH) task set of I if there exists no harmonic task set T" =

{1, ..t} v = (Ci, T) and T < T,, such that for T/ < T/ forall 1 <i<N.

7

Algorithm 1 Simple Harmonic-Based Cache Allocation Approach (HBCAT1)

Input: I, P, B, WCET Task Matrix
Output: Cache Allocation && Task Partition Results

: rem_cacheunits = B /*Remaining cache units in memory*/
: rem_Cores = P /*Remaining idle cores sharing mem.*/

: Trs =0, P={P,P,,....P};

: forallt; €I do

m;

1
2
3
4
5: Find m; such that: < 113 + n;,) 1S minimum;
6
7
8

C=U" Ty
: end for
: while ' # 0 && |P| # 0 do
9: Sort T; increasing order with respect to 7;;
10: n=|T|; Urs = —oo; By, = ucodiemis,
11: fori=1tondo ’
12: Construct I (PSH task set of I') using DCT [75] with T; as base;
13: Sort all t; € I' in increasing order with respect to AU; = U} — Uj;
14: I'y; = pick up k; tasks from I" such that:
15: (1) U(F;(/,) <1
16: (2) U(Iy,) is maximized;
17: (3) ¢(Ty,) < Buy:
18: if {U(F;Cj) < 1} AND {U(ij) > U(FTS)} then
19: FTS = Fk,/';
20: end if
21: end for

22: Assign I'rg to P € P

23: P=P—P;

24 Ir=Ir- FTS;

25: Recalculate rem_cacheunits and rem_Cores;
26: end while

27. if I' # 0 then

28: Return: I' is not schedulable;

29: end if

78

Definition 3.3. [/72] Given a task setT" = {t,,72,...,Tn } where T, = (C;, T;), let PSH (T)
denote the set of all PSH task sets for T. The harmonic index, denoted as H(T'), is defined
as:

HT)= min (UT)-U(I)), (3.2)
['ePSH(T)

where U(I") and U (T') are the overall system utilizations for I and T, respectively.

The lower a task set’s harmonic index is, the closer it is to one of its primary sub-
harmonic task sets and therefore more harmonic. As discussed by Fan et al. [172], one
approach to identify sub-harmonic task sets for a given task set is to employ the DCT
algorithm [75]. In addition, the schedulability of a real-time task set can be predicted

based on its sub-harmonic task sets, as stated in the following theorem:

Theorem 3.1. [75] Let I” be a sub-harmonic task set of I'. Then, I is feasible on a single

processing unit under RMS, if U(T") < 1.

Alg. 1 first determines the local optimal cache allocation based on the metric A; de-
scribed in Def. 3.1 (lines 4 to 7). Then, it packs tasks that are most harmonic to the
reference task (T;) in a sub task set L and maximizes the task utilization (line 16). To
prevent “greedy” tasks from hoarding all the available memory cache units, we set a cache
units allocation threshold (CUAT), i.e. By, requiring that the total cache units allocated
to tasks on the same sub task set I should not exceed By, (line 17). In our approach, we
define B,;, as the average available cache units for each core. This procedure is repeated
by taking each 7; € I" as the reference task (for loop line 11). The schedulable task set
with the highest utilization, i.e. I'rg, is allocated to a processing core (line 22). The CUAT
is recalculated and the procedure is repeated for the rest of the tasks and cores, until there
are no more tasks left or no more cores are available in the system (while loop line 8).

As an example, Table 3.4 shows the solution to the problem described in Example 3.1

using HBCAT1. The two sections in the table correspond to the procedures to find the sub

79

task sets for Core 1 and Core 2, respectively. Columns labeled as C;, m;, T; corresponds to
the WCETSs, allocated cache units, and periods of tasks. Columns labeled as Tl/ , Ul.' and U;
show periods and utilizations of tasks in the PSH task sets. Tasks in Table 3.4 are sorted
based on AU;. Columns of AT;, AU; are the period and utilization differences between a
task with its corresponding task in the PSH task set. Columns of Cum. U; and Cum. U] are
the sums of the values for U; and Ul-’ for when each task in the row is added. For example,
in the first PSH task set, for T the Cum. U] = 0.5, for T; + 1, the Cum. U] = 0.8, and for
T1 + T2 + T4 the Cum. Ul-' = 1.3, which is larger than 1, indicating that only T and 7, can
be scheduled together in one core (according to Theorem 3.1).

At the beginning, there are four tasks in the task set to be scheduled, and therefore
the algorithm generates four different PSH task sets, as shown in the four rows of the
first section in Table IV. The first one generated is the best candidate to be scheduled in
core 1 since the feasible sub-task set (i.e. T1,T2) has the largest accumulated utilization
(i.e. U({t1,72}) = 0.74) among the four. Hence, T and T, are scheduled to core 1. The
algorithm continues allocating the remaining tasks, repeating the process. In this case, the
algorithm generates two different PSH task sets. The second row in the second section of
Table TV shows that U ({t3,74}) = 0.86 and U’({13,74}) = 0.88 < 1. This ensures that T3
and T4 can be scheduled to core 2.

The complexity of Alg. 1 mainly comes from the loop from lines 10-15 with a com-
plexity of O(n*log n). Since the loop will be executed for P times, the overall complexity
of Alg. 1is O(Pn’log n). While Alg. 1 can successfully schedule the task sets in Example
3.1, one big limitation of this approach is its local optimum cache allocation, i.e. opti-
mum from each task’s perspective. In what follows, we develop a more elaborate cache

allocation and task scheduling approach that considers the task harmonic relationship.

80

Table 3.4: Solution to Example 3.1 using HBCA1

CHOOSE SUB TASK SET FOR CORE 1
1|7 T; Ci | m; Ui 7}, Ui, AT, AU; Cum.Ui’ Cum.U;
T | 10] 5 1 050 10 | 0.50 0 0 0.5 0.50 v
T [25| 6 0.24 | 20 | 0.30 5 0.06 0.8 0.74 v
T4 25110 1 | 040 | 20 | 0.50 5 0.10 1.3 1.14
3| 13| 6 046 | 10 | 0.60 3 0.14 1.9 1.60
2 Ti T; C,' m; U; Ti/ Ui/ AT; AU,' Cum.Ui’ Cum.Ui
3|13 6 | 3 |046 | 13 | 0.46 0 0 0.47 0.46
T |25 6 | 4 1024 | 13 | 046 | 12 | 0.22 0.92 0.70
T |10] 5 1 1050 65 | 077 | 3.5 | 0.27 1.69 1.20
T4 [25|10 1 | 040 | 13 | 0.77 | 12 | 0.37 2.46 1.60
3 % | |G| m| U T/ U' | AT, | AU; | Cum.U] | Cum.U;
T, |25 6 | 4 1024 | 25 | 0.24 0 0 0.24 0.24
T4 25110 1 | 040 | 25 | 040 0 0 0.64 0.64
3| 13 6 | 3 |046 | 125|048 | 0.50 | 0.02 1.12 1.10
T | 10| 5 1 | 050|626 | 0.80]| 375 | 0.30 1.92 1.60
4 Ti T; C,' m; U; Ti/ Ui/ AT, AU, CumU,' Cum.U,-
T |25 6 | 4 1024 | 25 | 0.24 0 0 0.24 0.24
T4 | 25110 1 | 040 | 25 | 040 0 0 0.64 0.64
3|13 6 | 3]046 | 125|048 | 0.50 | 0.02 1.12 1.10
T | 10| 5 1]050|6.25]| 080|375 | 0.30 1.92 1.60
CHOOSE SUB TASK SET FOR CORE 2
| Ti T; C,' m; U; Ti/ Ui/ AT, AU, CumU,' Cum.U,-
73|13 6 | 3]046| 13 | 046 0 0 0.46 0.46
T4 25|10 1 | 040 | 13 | 0.77 | 12 | 0.37 1.23 0.86
2 % | T |G| m | U T/ U' | AT; | AU; | Cum.U] | Cum.U;
T4 | 25110 1 | 040 | 25 | 040 0 0 0.40 0.40 v
3|13 6 | 3046 | 125|048 | 0.5 | 0.02 0.88 0.86 v

3.4 Enhanced Harmonic-Based Cache Allocation Approach (HBCA2)

In order to increase the schedulability of the system, we propose a second and more
elaborate approach. The second approach is called the HBCA?2 (Harmonic-Based Cache
Allocation 2), and is shown in Alg. 2. It does not allocate cache memory based solely
on the relation of WCET and number of cache units for each individual task. Instead,
HBCAZ2 first groups tasks according to their harmonic relationship. Then, it allocates
memory cache units to tasks in a way that can decrease the task set CPU utilization the

most, when assigned with the same or less number of cache units possible.

81

The first problem for HBCA?2 is to identify the candidate sub-task sets that may be
assigned to a single core. Since the harmonic task sets can better utilize CPU resources,
one intuitive approach is to employ the harmonic index as defined in Def. 3.3 and allocate
tasks with a high harmonic index to the same core. However, since the cache allocations
have not been determined, and thus the WCETSs are not available, the harmonic index de-
fined in Def. 3.3 does not apply. As a result, we use a different harmonic index (H,(t;,7;))

to quantify, for a given task set, how harmonic a task is to a reference task.

Definition 3.4. Let F’j = {1],7,...,Ty} be a PSH task set of a task set T = {11,%2,..., Ty}
with ‘c'i = 1;. The harmonic index of task t; € I" with respect to task T; € I"j, denoted as

H,(t;,7;), is defined as:

oy LT
H,(7,7j) = o (3.3)
l

Note that the harmonic index defined in Def. 3.4 is independent of its WCET or cache
allocation. Therefore, we can construct the PHS task sets and order tasks based on the
new harmonic index before the cache allocation is performed. The question becomes how
to allocate cache units to the selected tasks with a high degree of harmonic relationship.

We develop an incremental approach for the cache allocation. Specifically, we first
set the number of cache units to be 1 (i.e. m; = 1) for each task, i.e. the most unbalanced
resource allocation when the CPU utilization is maximized and the memory utilization is
minimized for each task (line 4). Tasks with high harmonic index values are grouped into
one sub-task set I';, until (i) no task can be added to the sub-task set while keeping the task
set schedulable; (i) the total cache units are no more than CUAT, i.e. By, as explained
before (line 12).

Since the number of total cache units for the selected tasks is less than By, an op-
portunity is presented to allocate more cache units to the selected tasks, i.e. I'.. As these

selected tasks decrease their execution times with more cache units, more tasks can be

82

assigned in the processing core without compromising the schedulability (while loop line
13).
To this end, we design a new metric CRRI(t;) (Combined Resources Ratio Index

(CRRI)) as follows:

Definition 3.5. Let C!" and C]"™™ be the WCETs with respect to the (privately assigned)
shared cache size of m; and m; + x cache units. The Combined Resources Ratio Index
(CRRI) of t;, denoted as CRRI(T;,m;,x), is defined as

AU;
CRRI(t;,m;,x) = Ej (3.4)
i

where AU; = (C!" — C;""H)/Ti (the decrement in CPU utilization for t;) and AB; = x/B
(the increase in memory utilization for T;), B is the total number of cache units in a shared

cache.

CRRI is essentially a benefit/cost index for cache allocation to a task. A higher CRRI
value means that the decrement of WCET of 7; is larger with a smaller number of extra
cache units assigned to it. Thus, the higher the value for CRRI, the better the resource
usage efficiency. One by one the next tasks in line (according to the harmonic index order)
are assigned to I'; (line 14), making the task set unschedulable. Therefore, the number
of cache units for the task with the highest CRRI value, so called the Guilty-Task(GT), is
increased until the task set is schedulable again, i.e. U (Fﬁ) < 1, or the number of total
cache units assigned to the task set exceeds By, (while loop line 15). This procedure is
then repeated until the maximum number of cache units allowed for tasks on each core
is reached (line 24). If the next task in line cannot be added to the existing task set, the
original cache allocation for the existing task set is recovered (line 23).

The complexity of Alg. 2 mainly comes from the loop from lines 8 to 30. Assuming
that in the worst case each core can accommodate n tasks, the complexity of the loop is

O(n?) and the overall complexity of the algorithm is O(Pn?).

83

Algorithm 2 Enhanced Harmonic-Based Cache Allocation Approach (HBCA2)
Input: T, B, P, WCET Task Matrix
Output: Cache Allocation && Task Partition Results

1: rem_cacheunits = B /*Remaining cache units in memory*/
2: rem_Cores = P /*Remaining idle cores sharing mem.*/
3: FTSZQ;fZ{Pl,Pz,...,P};
4: forallt, €cI'dom;=1;C; = C,-l; end for
5: whileI"' # 0 && |P| # 0 do
6: Sort T; € I' by the increasing order of T;;
T n= L) Urs = —oo: By, = o
8: fori=1tondo
9: Construct I (PSH task set of I') using DCT [75] with T; as base;
10: Sort T; € I' by the increasing order of H;(t;,7;);
11: step=1,T} =0;
12: 'l = pick up the first j tasks listed from I such that:
13: (HUuT) <t (2)q(l) <Bu;
14: while j <ndo
15: j=j+ LI ="T+1;
16: while U (")) > 1 && ¢(T"}) < By, do
17: Find tg7y € I} s.t: CRRI(Tgr,mgr,step) is max.;
18: if Tgr is unique then
19: mgr = mgr + step; step = 1; recalculate g(I")) and U (I'});
20: else
21: step = step+1;
22: end if
23: end while
24: if U(I) > 1 then I, =TI —1;; end if
25: if ¢(I'}) > By, then break; end if
26: end while
27: if U(Fj) > U(FTS) then
28: if {|[;| > |T'rs|} OR {|T;| == |Trs| AND ¢(T7}) < ¢(I'rs)} then I'yg =I'; end if
29: end if
30: end for
31: AssignI'rgto B € P; P=P—P; I' =1 —TIrg;
32: Recalculate rem_cacheunits and rem_Cores;

33: end while
34: if ' # 0 then Return: T is not schedulable; end if

84

Similar to Alg. 1, Alg. 2 constructs the sub-harmonic task set based on each task
using the DCT algorithm. As the DCT algorithm generates one PSH task set when each
T; is taken as the reference task, the algorithm comes up with n different sub-task sets
to be allocated to a core. These task sets may have different performances in terms of
system utilizations, task numbers, and total numbers of cache units, which conflict with
each other. To explore all the Pareto optimal solutions may lead to an extremely large
search space and is not realistic. In our approach, we adopt a simple metric as follows
to choose the best sub-tasks to map to a core: The chosen task set is the one that has the
maximum U (T';) value with the highest total number of tasks |T"|. If the task numbers are
the same, then the one with the smaller total number of used cache units ¢(I";) wins (lines
26 to 28).

As an example, Table 3.5 shows the solution to the problem described in Example
3.1 using HBCAZ2. Data is presented in the same way as in Table 3.4, but tasks in Table
3.5 are sorted based on A7;. Unlike HBCAT1, algorithm HBCA?2 is able to notice that
by assigning three extra cache units to T4 (values underlined in the table), it is possible
to schedule tasks T2, T3 and T4 together on core 1, with a CPU utilization of 0.98 and
using 11 memory cache units. Then, T is scheduled to core 2. Although the algorithm
still requires two cores to schedule the task set, it leaves more CPU utilization to be used
on core 2 by an additional 5th task. Consequently, we can say that our second approach
is able to improve the system resource usage and the schedulability. It is noteworthy
to mention that for the first two sub-harmonic task sets generated, the algorithm notices
that T; is not schedulable along with T3 (using the condition of Alg. 2, line 23). Such
unschedulability is shown in the table with the strikethrough text. Then, the algorithm

proceeds to try to schedule the next task in the list, i.e. T».

85

Table 3.5: Solution to Example 3.1 using HBCA2

CHOOSE SUB TASK SET FOR CORE 1
1| 7 T | Ci | m; U; Ti/ Ui/ AT} AU,' Cum.U,-’ Cum.U;
T |10 5|1 1050] 10 | 050 0 0 0.5 0.50
| 1316|3046 | 10 | 0.60 3 0.14 + 096
T 2516 | 4024 | 20 |030 5 0.06 0.8 0.74
T4 |25 7 | 4]1028] 20 |0.35 5 0.07 1.15 1.02
2 Ti T; C,' m; U; T;-/ Ui/ AT; AU,' Cum.Ui’ Cum.U,-
3| 1316|3046 13 | 046 0 0 0.47 0.46
T |10 5|1 05| 65 |077 | 3.5 | 0.27 +23 096
T |25 6|4 1024] 13 | 046 | 12 | 0.22 0.92 0.70
T4 |25 7 | 4 1028] 13 | 054] 12 | 0.26 1.46 0.98
3 Ti T; C,' m; U; T;-/ Ui/ AT, AU, Cum.U,-’ CumU,
T |25 6 | 41024 25 | 024 0 0 0.24 0.24 v
T4 | 25| 7 | 41028 25 | 028 0 0 0.52 0.52 v
| 1316|3046 | 125|048 | 0.50 | 0.02 1 0.98 v
T |10 5|1 0501626 | 080|375]| 0.30 1.32 1.02
4 Ti T; C,' m; U; Ti/ Uil ATI AU, Cum.Ui/ CumU,
T, 12516 | 41024 25 | 024 0 0 0.24 0.24
T4 | 25| 7 | 41028 25 | 028 0 0 0.52 0.52
B3| 1316|3046 125|048 | 0.50 | 0.02 1 0.98
T |10 5|1 1050625080375 0.30 1.32 1.02

3.5 Experiments, Analysis and Results

In sections 3.3 and 3.4, two approaches are proposed. It is hard to prove if one dominates
the other analytically. Therefore, we use simulation results to study their performance

and compare them with related work.

3.5.1 SPEC CPU2000 Benchmarks Cache Simulation

In order to test our scheduling approach, we use the data presented in [1 73], corresponding
to the simulation results of the SPEC CPU2000 benchmarks [174] using the Simplescalar
toolset [175]. The SPEC CPU2000 benchmark suite is a collection of 26 compute-

intensive, non-trivial programs used to evaluate the performance of a computer’s CPU,

86

memory system, and compilers. The benchmarks in this suite were chosen to represent
real-world applications, and thus exhibit a wide range of runtime behaviors.

In order to test our algorithm, we generated a group of synthetic task sets. Each of
the 26 SPEC CPU2000 benchmarks forms a curve with different points [memory size,
execution time]. An exponential-fit model (with the form of a = exp(b)) can thus be
obtained with the 95% confidence interval values for a and b for each benchmark.

In our simulations, synthetic task sets were generated by randomly choosing a specific
number of tasks n, where each task corresponds to a curve generated from the exponential-
fit model of one of the 26 SPEC CPU2000 benchmarks. A thousand task sets are gen-
erated for each n. Besides, each time a new curve for a task set was generated, we used
random values for a and b that fall into the 95% confidence interval of each of the two

parameters.

3.5.2 Target Architecture

For the architecture in our experiments, we assume it contains a total of four cores and
one cache memory, which is accessible to all cores. Similar architectures can be found
commercially [176, 177]. Our cache allocation scheme may be implemented with any
cache management scheme that can provide a fixed size of cache unit, and enforce strict
isolation guarantees. The implementation is independent of the associativity or the re-
placement policy, as long as the relationship between execution times and number of

cache units are given.

3.5.3 Simulation results of testing HBCA1 and HBCA?2 approaches

We compare two approaches, i.e. HBCA1 and HBCAZ2, with three different representative

scheduling schemes. The first one is the Partitioned Rate Monotonic Scheduling (P-RMS)

87

algorithm. This is one of the most commonly used approaches for partitioned scheduling
on multi-core. A drawback for P-RMS is that it does not take the task period and execution
time relationship into consideration for cache allocation and task partitioning. We use this
approach as our base line approach. The second approach we investigate is the Harmonic-
Fit Fixed-Priority Scheduling (HFPS) algorithm, proposed by Fan et al. [1]. This scheme
takes period relationship among multiple tasks into consideration when scheduling fixed-
priority tasks on multi-core platforms. Both P-RMS and HFPS do not take the variable
execution times with cache allocations into consideration. Therefore, we have to use the
WCET values corresponding to the worst-case scenario when m; = 1. The third approach
1s IBRT-MCI-RMS [2] as mentioned before, which determines cache allocation based on
the metric that optimizes the resource usage for a single task. These three scheduling
algorithms with both HBCA1 and HBCA2 were employed to schedule the task sets on
the architecture discussed above.

We define Schedulability Success Ratio (SSR) as the ratio between the number of
successfully scheduled task sets divided by the total task sets tested. Figures 3.1 and 3.2
report the SSR for the tested task sets with different number of real-time tasks. Figure 3.1
shows results using a cache unit size of 1 KB. Figure 3.2 shows results using a cache unit
size of 4 KB.

In Figure 3.1(a), when task number is around 14 for the case of P-RMS and 20 for
the case of HFPS, we can see that the SSR starts decreasing. Also, as the number of
cache units increases, as shown in Figure 3.1(b) and 3.1(c), we can see that the SSRs of
P-RMS and HFPS remain almost constant. This is because they are not memory aware
and therefore cannot take advantage of the increase of the number of memory cache units.
On the other hand, the methods IBRT_MCI_RMS, HBCA1 and HBCA?2 take advantage

of the increase of the number of cache units. For instance, the schedulability success ratio

88

of HBCAZ2 starts decreasing when task number is around 45 in Figure 3.1(b) (with 256
cache units) and around 60 in Figure 3.1(c) (with 512 cache units).

In Figure 3.2(a), when the task number is around 25 for cases P-RMS, IBRT_MCI_RMS
and HFPS, we can see that the SSRs start decreasing. When the task number is around
30, the SSRs start decreasing for HBCA1 and HBCA2. As the number of cache units in-
creases (Figures 3.2(b) and 3.2(c)), IBR MCI_RMS, HBCA1 and HBCA?2 starts decreas-
ing their SSR, for example, with task number values around 37, 49 and 58, respectively
(see Figure 3.2(c)).

From the above-mentioned observations, it can be inferred that with a larger cache
memory size, the memory-aware mechanisms, and especially our two approaches, are
able to schedule a larger number of tasks in the system. One exception to the pattern is
Figure 3.2(a). Note that this is because the number of cache units in this configuration is
not large enough for the memory-aware methods to reduce the WCET values in order to
increase the number of tasks schedulable in the system.

Figure 3.3 shows the schedulability of each tested mechanism with cache unit size
of 1KB. Each mechanism displays the value S (maximum number of tasks such that the
SSR of the evaluated method is greater than or equal to 90%) normalized against the
S value obtained with P-RMS. For instance, in Figure 3.1(c), the S values for HBCA1
and HBCA?2 are 47 and 62, respectively. It can be seen that HFPS always shows the same
improvement, because it is a non-memory-aware mechanism. The remaining mechanisms
that are memory-aware show an increasing improvement with the increment of memory
cache units available per cache memory. The HBCA?2 approach is able to schedule up to
4.1 times more tasks when compared to P-RMS.

Figure 3.4 shows the average values of S for data using both cache unit sizes (i.e. IKB

and 4KB) and the four cache memory sizes. From the figure, HBCA?2 is able to schedule

89

Table 3.6: 2-Level Factorial Experiment - Factors and Levels

Factor | Name Low High
A C; and m; init. state Ci=1m=1 A; (Def. 3.1)
B Find sub task set I'rg | Simple (Alg. 1) | Enhanced (Alg. 2)
C Cache Memory Size 256 KB 1024 KB
D Cache Unit Size 1 KB 4 KB

up to 267% more real-time tasks than the P-RMS, and 101%, 64% and 26% more tasks

when compared to HFPS, IBRT-MCI-RMS and HBCAI, respectively.

3.5.4 Full Factorial Experiment

To further study the effectiveness of the proposed algorithms, we design a 2-Level Full
Factorial Design [!78] in order to identify the important factors that are affecting the
schedulability of the system. The four identified factors, their names and corresponding
levels are shown in Table 3.6.

Fig. 3.5 shows the Pareto Chart [| 79] for the standardized effects, including the terms
in the model up through second order. The response of the experiment is the value S,
with a criterion for statistical significance, i.e. o, equal to 0.05 [178]. In general terms,
the Pareto Chart shows each factor and their interaction for up to two factors. If the
standardized effect for a single factor or interaction is larger than the reference line, it
means that such a factor or interaction has a significant effect on the result. On the other
hand, if the standardized effect of a single factor or interaction is lower than the reference
line, its effect is not significant.

From Figure 3.5, we can see the significant single factors that affect the schedulability
of the system. On top of the list is the total cache memory size of the architecture (C),
which concludes the obvious assumption that the more memory, the higher the number

of tasks able to be scheduled. The second most significant factor is the method chosen

90

to find the sub task set I'7g (B), which concludes that our second approach (Alg. 2) can
significantly increase the schedulability of the system.

It is noteworthy of mentioning that we saw that the schedulability of the system re-
mains constant if the high level of the factor B is used, no matter the value of the factor A.
For example, this observation can be seen also in the chart realizing that the single factor
(A) is also significant, but has the same effect of its interaction with the factor of finding
the sub task set in the general algorithm (B). This indicates that the significance of the
effect of assigning the memory cache units at the beginning of the algorithm is important,
but totally conditioned to the significance of the effect of finding the sub task set I'rg
using our second approach. It can be said that our second approach algorithm (high level
of factor B) completely voids the effect of the utilization of the A; mechanism.

From Figure 3.5 we can also see that the cache unit size (D), is not significant for the
schedulability of the system. This may be explained by the fact that our second approach
uses the metric CRRI (Def. 3.5) to assign fairly the memory cache units in the system to
the task which is able to decrease its CPU utilization most with the less amount of memory
used. We observe that in most cases, the task that receives a small number of cache units
in the first iteration of the algorithm has a very high chance to receive more cache units in
the subsequent iterations. Thus, giving no effect to the granularity of memory cache units

assignment.

3.6 Summary

We study the cache allocation and task partitioning problem when running a set of fixed-
priority real-time tasks on a multi-core platform sharing a common cache memory. We
have developed two static schemes for cache allocation and task partitioning. The first one

(HBCAT) combines two previous research studies that take task variable WCET times

91

and period relationship into consideration. The second one (HBCA?2) is a more elaborate
approach that can judiciously choose the cache size for each task, while exploiting the
task harmonic relationships within the task set. Both of them are able to successfully and
significantly improve the system resource usage and the schedulability of real-time tasks,
when compared with other scheduling mechanisms. Our simulation results show that our
second approach increases the schedulability of real-time tasks up to four times, when

compared to a conventional Partitioned Rate Monotonic Scheduling (P-RMS).

92

“4=P-RMS <B=HFPS =4=IBRT_MCI_RMS ==HBCA1 =#=HBCA2

2 100%
1]
= 80%
73]
8 60% X N
3 40% \S_
E; 20%
3 0% T T
10 15 20 25 30 35 40 45
Number of Real-Time Tasks
(a) Number of cache units B = 128
=4=P-RMS <@=HFPS =4=IBRT_MCI_RMS =+=HBCAl =#=HBCA2
-% 100%
e 30%
%
§ 60%
a 40%
E; 20%
2 0%
10 15 20 25 30 35 40 45 50 55 60
Number of Real-Time Tasks
(b) Number of cache units B = 256
=4=P-RMS <-B=HFPS =4=|BRT_MCI_RMS =<=HBCA1l =#«=HBCA2
% 100%
£ 80%
0
g 60%
a 40%
T 20%
S 0%

10 15 20 25 30 35 40 45 50 55 60 65 70 75
Number of Real-Time Tasks

(c) Number of cache units B =512

Figure 3.1: Number of Tasks VS. Scheduling Success Ratio. Cache Unit Size = 1 KB

93

=+=P-RMS -@=HFPS =4=|BRT_MCI_RMS ===HBCA1 =#HBCA2

R o~ S
[
= 80%
2 60% A\ X\
] \
3 0%
o 20%
§ O% T T T T T T T

20 21 22 23 24 25 26 27 28 29 30 31 32 33

Number of Real-Time Tasks
(a) Number of cache units B = 32

=4=P-RMS <=@=HFPS =4=|BRT_MCI_RMS =+=HBCAl =#=HBCA2
2 100%
e g0%

o
e 2V VR W .. ¥
(8
3 40% \ \ L
< \ “
T 20%
S 0% . .

20 25 30 35 40 45 50 55

Number of Real-Time Tasks
(b) Number of cache units B = 64

=#=P-RMS <@=HFPS =#=|BRT_MCI_RMS ==HBCA1 =#=HBCA2
-% 100% YWWWYYY‘.N,H\
= 80% x\x
v
o e
= 0,
) (o]
-qc; 20% “ y\ \(
S 0% . .

20 25 30 35 40 45 50 55 60 65 70
Number of Real-Time Tasks

(c) Number of cache units B = 128

Figure 3.2: Number of Tasks VS. Scheduling Success Ratio. Cache Unit Size = 4 KB

94

HFPS IBRT_MCI_RMS HBCA1

HBCA2

5
=)
2813 W HFPS
- 0O N
LR i IBRT_MCI_RMS
S wn X
E E 51 M HBCA1
S a e W HBCA2
o — (8] O -
28
= 128 256 384 512
Cache Memory Size (KB)
Figure 3.3: 90% Schedulability Ratio. Cache Unit Size = 1 KB
2.8
% = 26
o\; e 3 24
BES 22
S ®©
Esyg ?
E ENR
% o 16
[} 1.4
1.2 -
1 - .

Figure 3.4: Average 90% Schedulability Ratio

TERM

Standardized Effect

18

Figure 3.5: Pareto Chart of Standardized Effects (response is § with ot = 0.05)

95

CHAPTER 4
PROCESSOR/MEMORY CO-SCHEDULING USING PERIODIC RESOURCE
SERVER FOR REAL-TIME SYSTEMS UNDER PEAK TEMPERATURE
CONSTRAINTS

As stated in previous chapters, in this dissertation we study the problem of how to
schedule fixed-priority real-time tasks such that they can meet their deadlines with tem-
peratures for both the CPU and memory systems under their potentially different peak
temperature limits. Thus, in this chapter, we present our research on processor and mem-
ory co-scheduling using periodic resource server considering thermal and power effects
on the scheduling of real-time tasks.

The rest of the chapter is organized as follows. Section 4.1 describes the most related
research projects. In section 4.2 we present our architecture and system model, the CPU
and Memory power and thermal models along with our problem formulation. Section 4.3
discuss our approach in detail. We present in section 4.4 the experimental evaluation and

we summarize in section 4.5.

4.1 Related Work

As previously pointed out, transistor density of processors and memory devices, as well as
the memory capacity and bandwidth continue to grow, the power consumption of comput-
ing systems has also been increasing exponentially, resulting in tremendous heat genera-
tion, even to the point that threatens to disrupt the operation of the system under normal
conditions [42]. An increasing chip temperature due to an excessive power dissipation
has a significant impact on other design metrics, such as reliability, cost and especially
on performance. Cooling down the chip temperature using mechanical methods such as

cooling fans, heat spreaders, and heat sinks becomes inadequate and too expensive.

96

There are some techniques proposed for dynamically managing the heat generated
by the memory system. For instance, one common approach is to migrate data between
hot and cold devices to avoid thermal emergencies on a memory system [60]. Another
approach dynamically adjusts the memory throughput to ensure that each module has a
temperature below the emergency level [42]. These approaches do not take the heat gen-
erated by the CPU into account. Also, these mechanisms react to critical temperature
levels and reduce or even stall the number of memory requests [18]. Consequently, such
approaches can significantly affect the response time of the system and introduce an addi-
tional source of uncertainty. Thus, the excessive power consumption and heat dissipation
of the memory system must be dealt with carefully. Otherwise, they can significantly
affect the schedulability and predictability of real-time systems because of uncertainties
introduced by different memory power/thermal management techniques. There are also
research studies that consider the heat dissipation from both the CPU and memory sys-
tems, but these approaches are best-effort approaches and cannot guarantee real-time sys-
tem deadlines at all [61].

In this chapter, we study the problem of how to schedule fixed-priority real-time tasks
such that they can meet their deadlines with temperatures for both the CPU and memory
systems under their potentially different peak temperature limits. In other words, we ex-
plore the problem of how to guarantee the feasibility of a real-time task sets under CPU
and DRAM thermal constrains executed on a single-core platform. Thus, we propose an
off-line mechanism to offer thermal guarantees on CPU and DRAM memory systems, for
hard real-time applications, while guaranteeing also their timing constraints. We focus on
fixed-priority assignment since this is the most commonly used scheme for real-time sys-
tems design in industry [23], and our proposed method can be easily extended for other
scheduling methods. In our approach, we adopt the periodic resource model to manage

both the processor and memory concurrently. We take advantage of the feasibility condi-

97

tions for a periodic resource server, established in the existing work [9], to guarantee the
timing constraints for real-time tasks, and judiciously choose the periodic server settings
in such a way that the peak temperature constraints for both the CPU and memory can be
satisfied. To the best of our knowledge, this is the first work for thermal-aware hard real-
time systems design that take the heat generations and their interactions from both the
CPU and memory devices. Our experimental results, with system parameters drawn from
manufacture data sheets, clearly demonstrate the effectiveness of our proposed approach
in reducing the peak temperature as well as the need to take both the CPU and memory

systems into considerations simultaneously for system-level thermal management.

4.2 Preliminary

In this section, we introduce the architecture and the real-time system model used in this

chapter, along with the power and thermal models.

4.2.1 Architecture and System Model

In this chapter, we consider an architecture with an in-order execution single-core proces-
sor communicating to a DRAM memory of M ranks, through a single bus arbitrated by a
single Memory Controller (MC), shown in Fig. 4.1. For simplicity, we assume that the
DRAM MC operates the DRAM memory using a “close-row” policy and that all write
memory requests are not buffered and thus consume memory bandwidth and power.

The task set consists of N independent implicit-deadline periodic tasks, denoted as
' ={t1,72,...,Tv}, scheduled according to Rate Monotonic Scheduling (RMS). Each
task T;, where 1 <i < N, is characterized by its minimum inter-arrival time 7; and a
WCET C;. The maximum number of DRAM requests from any job of a task 7; is defined

as H;.

98

Single Channel Command and Address Bus

=)
JCKE <
o
A
>
>
o)
Q
=}
Sing. Channel Data Bus)

CPU DRAM

Figure 4.1: Architecture block diagram

The scheduler implements a periodic resource control mechanism (periodic server) to
throttle the access of each 1; € I' to the CPU and DRAM resources, based on the periodic
resource model proposed by Shin and Lee [9] for compositional real-time systems. The
reader may recall from chapter 2 that the periodic server consists of two parameters: first,
the period of the server (I), which is the recurrent time of repetition; and second, the
allocation time (®) when the resources are available to the current scheduled task t;. An
example schematic for a periodic server is shown in Fig. 4.2. Thus, task T; can not be
executed or issue memory requests during the time IT—©. We define OS,, as the operating
system time slice, thus we assume that OS, < © <II, with I[,® € Rt s.t. 1= J- 08,
and ® = m- OS, with j,m € NT.

To ensure deadlines of hard real-time tasks in our system, we employ the schedula-
bility condition proposed by Shin and Lee for periodic resource servers when scheduling
tasks using RMS, stated in the Thm. 2.1 of chapter 2.

We assume that the CPU and DRAM systems will enter into low-power modes (see
chapter 2), during the time II — ®. Therefore, every time the system must exit from a
low-power mode, it requires an extra overhead time D!/ that must be accounted into the
server allocation time ®. Such DI/ time is architecture dependent and considers delays,

such as CPU and DRAM power mode changes and caches cold starts.

99

DRAM

v

(O — | I |
e J] L—»! | |
—
=
o
(&
1 P
to=0 ® II IM+® 211

Figure 4.2: Periodic server time schedule

4.2.2 CPU and DRAM Thermal Model

For modeling the CPU system thermal behavior, we use the lumped RC model similar
to Quan et al. [90], as shown in Fig. 4.3. It can be seen that the heat in the junction is
dissipated through the case, a heat-spreader and then to ambient.

For modeling the DRAM system thermal behavior we use the lumped RC model simi-
lar to Ayoub et al. [180], as shown in Fig. 4.4. In this model, we see that each DRAM chip
of the rank is modeled separatively with its own power source Pl-Chip , and a junction-to-
case resistance R ¢, along with its thermal capacitance Cj.. Since the value of power for
each chip is the same at any given time instant, there are no resistors in between DRAM
chips. All DRAM chips will be dissipating the heat through a single heat-spreader layer,
and the heat-spreader to ambient.

We consider the dependency of temperature change between both the CPU and DRAM
memory systems by including a thermal resistor R, connecting both heat spreaders. A
similar model is proposed, for instance in [181], for modeling the thermal interaction be-
tween layers of 3D chips, where the authors state that the large interface area between

layers results in a low thermal resistance. Also, ICs connected using a silicon interposer

100

P_CPU

Rjc

Rchs

Figure 4.3: CPU Thermal Model.

(2.5D fashion) may present a considerable thermal conductance among them due to the
heat dissipation of each chip through the interposer [57]. In addition, the model of Fig.
4.4 can be converted into a model similar to the one in Fig. 4.3 using superposition [30]
and by making RPFAM — ch.chip “+ Nepip and CRRAM — Cjcchip *Nepip. The joint thermal model
for both systems is shown in Fig. 4.5.

By applying Kirkoff’s current law method to solve electrical networks, we can ob-

tain six equations (one for each of the six nodes and not shown for space constrains).

Pchip_1 ! Cj Pchip_2 I LCJ' Pchip_N I Cj
Rjc I Rjc I Rjc I

% Rots %;c

Figure 4.4: DRAM Thermal Model.

101

Figure 4.5: Joint CPU and DRAM Thermal Model

Considering the ambient temperature 7, the resulting equations system is:

P:C-%T+G-T(t)+6-Tamb, (4.1)

where G and d are matrices dependent on the resistor values of the circuit, and P =
[PEPY 0,0, PPRAM () 0]. The matrix C is a diagonal matrix with the values of all the six
capacitances, thus it is invertible. Also, P can be expressed as P =¥ + ® - T'(¢), where
Y and @ are matrices containing the temperature independent and dependent portions of
power, respectively. Therefore, we have the expression:

%T(r) = C ' (G-®) Tt)+C (¥ -8 Tym). (4.2)

Also, if A= —C ' (G—®) and B=C"!- (¥ —3§-T,,), the final expresion for the
equations system is:
d

—T(0)=A-T(t)+B. (4.3)

This joint system thermal model, which has a form of first-order ordinary differential

equations, has a solution for T(¢) as follows:
T(1) =€ To+A" ' (e ~1)-B. (4.4)

where 7y is the initial temperature.

102

To analyze the temperature in each of the six nodes of the circuit of Fig. 4.5, we can
follow the method proposed by Fan et al. [28] to analyze stable state temperature in multi-
node processors. Specifically, the authors propose an analysis to calculate the temperature
of any node in the circuit network, for any point in time, and for the stable state. For the
sake of clarity of the following sections, we include a portion of their analysis as follows.

For any arbitrary state interval in time [t,_1,1,], with ¥, the corresponding interval
mode determined by the power values applied on the circuit network during such interval,
once the temperatures at the starting point, i.e., T(z,—1), are given, according to Eq. 4.4,

the ending temperatures of that interval, i.e., T(z;) , can be directly formulated as:
T(t,) = Y™ - Tty 1) + A, (¥4 —1) By, (4.5)

where A, = C (G, — ®x,), By, = C 1 (W, — 8- Tup), and Aty = 1, — 1,1 Note that
since Ay ; and BKq are only dependent on the core running modes, i.e., K,, within a state
interval [t,-1,,], both A, and By, are constant. Furthermore, it can be probed that the
ratio between By, and Ay, corresponds to the temperature the system would trend to, in

an infinite time, if the conditions &, would not change, i.e. T*(x,) = By : /A -

4.2.3 Problem Formulation

Based on the models introduced above, our problem can be formulated as follows:

Problem 4.1. Given a real-time task set U = {11,172, ...,T, }, where V1, € U|t; = [C;, T;, Hy, i,
determine the optimal settings for a periodic server, i.e. [I1,0), that can ensure the timing
constraints for tasks in I" while keeping peak temperatures of the CPU and memory under

their peak temperature constraints, i.e. ThrCPY and ThrPRAM 4] the time.

103

4.3 Our Approach

In this section, we discuss our approach in detail and present our algorithm to identify the
parameters for the periodic server.

Our goal is to design a periodic server that can guarantee the deadlines for a given
real-time task set, and also the peak temperature constraints for both the CPU and mem-
ory. Note that, Theorem 2.1 helps to identify the I1 and corresponding allocation time
® for a periodic server such that the timing constraints can be satisfied. The problem,
however, is how to ensure the temperature constraints of the CPU and memory can be
guaranteed using the periodic server. We solve this problem by attacking the following
two sub-problems: (1) for a periodic server, how to bound its peak temperature; (2) how
to optimize a periodic server to satisfy the peak temperature constraints for both the CPU

and memory? We discuss our approach for these two sub problems below.

4.3.1 Bound the peak temperature for a periodic server

To satisfy the peak temperature constraint, one fundamental problem is to identify the
peak temperature of CPU and memory for a periodic server. This may be simple for a
system with a single active thermal node since, as proved by Quan et al. [90], the peak
temperature must occur at one of the scheduling points. However, when dealing with
both the CPU and memory, i.e. a thermal model with more than one active thermal node,
to identify the peak temperature can be challenging since the peak temperature does not
necessarily occur at a scheduling point, as demonstrated by Han et al. [102] and Pagani
etal. [182].

When running a periodic task set on a given periodic server, there may be infinite run-
time scenarios, which lead to an infinite number of power traces for both the CPU and

memory. For each given power trace, Han et al. [102] and Pagani et al. [182] introduce

104

different methods to check its peak temperature. It is not clear, however, if a periodic
server setting can guarantee that peak temperature constraints can be satisfied for all pos-
sible power traces. To this end, we define below a special power trace, called the peak

power trace.

Definition 4.1. Given a task set T and a periodic server [I1,0), let PSPV = maxq,cr [PEPV]

and P%;“M = maXqer [PiDRAM } . The peak power trace of the periodic server is defined as
the one that CPU (memory, resp.) runs at a constant power mode of PSPV (PPRAM ' yesp)

during its designated allocation time ® of the periodic server.

For a given periodic server, we can prove that the peak temperature when running the
peak power trace is higher or equal than any other temperature obtained from any other
possible power trace, when running the same task set. This conclusion is formulated in

the following theorem.

Theorem 4.1. Given a task set T and a periodic server [I1,0)], the peak temperatures of
CPU and memory when executing 1" on the periodic server are no more than the ones

when running the peak power trace on the same server.

The theorem can be easily proved by noting that at any point the power consumption
when running the peak power trace is higher than that when running any other possible
power traces of the same task set.

More importantly, for a peak power trace, we can quickly determine the peak temper-

atures for the CPU and memory, as formulated in the following theorem.

Theorem 4.2. Given a task set I and a periodic server [I1,0], the peak temperatures for
the CPU and memory must occur at any of the end points of any of the active intervals

within one hyperperiod of the task set, i.e. the least common multiple of all task periods.

105

power

DRAM

CPU

time

t, I1I-® I1 2II-® 211

Figure 4.6: Periodic Server Time Schedule Example

Proof. The proof of this theorem is based on the analysis presented in [28, , 183].
Consider a periodic server schedule as seen in fig. 4.6 that has an specific values of power
for CPU power and DRAM power during the time ®, and has zero power consumption for
both CPU and DRAM during the interval [ry,IT— ®]. We assumed each periodic server is
running with its peak power trace (see Def. 4.1). Therefore, the periodic server is running
with only two possible scenarios. We have the system with only two possible values of
K, (see Eq. 4.5), i.e. Koy for the active mode and kppr for the power-down mode. Thus,
it is possible to calculate the temperature the system would trend to, in an infinite time, if
the conditions Koy and Korr would not change. We have T (kon) = By, /Axoy = T
and T (Korr) = Bxorr / Axorr = Tamp, With TS being the maximum temperature of the
system if the peak power trace values were applied steadily. Then, the objective is to
prove that the peak temperature must occur at any allocation time ending point, i.e. any
point integer multiple of the server period I1.

The temperature Tgg(¢) denotes the stable-state temperature of the nodes in the system

at any instant time z. According to the following theorem proposed in the literature, it is

possible to calculate such a value of Tgg(7).

Theorem 4.3. [28] Given a periodic power trace, let T(L) and T(t,) be the temperatures

at time instant L and tg, where t, € [0, L], respectively. If for each eigenvalue A; of K, we

106

have |\i| < 1, then the steady-state temperature corresponding to t, can be formulated as
Tss(tg) = T(1g) + K, (I-K) ™' - (T(L) = T(0)). (4.6)
where K; = eArglla . pArg 1 Mgt | A A q=1,2,...s.

Using Thm. 4.3, it is possible to calculate Tgg(zp), Tss(IT— ©), and Tgg(IT). Also,
note that since T is the maximum temperature in the system, Tss(#p), Tss(IT—®), Tss(I1) €

sys

[Tamba Tmax] .

sys
According to the following theorem proposed in the literature

Theorem 4.4. [/02] Given a multi-node platform and a state interval, the temperature

on each node must monotonically decrease if all the nodes’ starting temperature is higher

than the running mode’s stable state temperature.

and knowing that Tss(79) > T, it is possible to conclude that the stable-state tem-
perature of the system monotonically decreases within |7y, [T— ©].

Similarly, according to the following theorem proposed in the literature

Theorem 4.5. [/02] Given a multi-node platform and a state interval, the temperature
on each node must monotonically increase if all the nodes’ starting temperature is lower

than the running mode’s stable state temperature.

and knowing that Tss(IT— @) < T, it is possible to conclude that the stable-state
temperature of the system monotonically increases within [I[T— ®,II]. In sum, the tem-
perature monotonically decreases within [tp,IT — ®] and monotonically increases within

[TT— ®,11], so the peak temperature must occur at IT.

]

Again, note that due to the periodicity of the peak power trace, the stable temperatures
of the thermal nodes (i.e. CPU and memory) can be readily calculated using the method

presented by Fan et. al in [28] (Thm. 4.3).

107

4.3.2 Periodic server optimization

The problem now becomes how to optimize the periodic server to meet the peak tempera-
ture constraints for both the CPU and memory. Note that, given a task set I', Theorem 2.1
helps to identify the upper bound for IT and corresponding allocation time ® for a periodic
server such that the timing constraints of I" can be satisfied. In addition, with the method
introduced above, we can also quickly bound the peak temperature of a given server. The
problem, however, is what if the peak temperature constraints cannot be satisfied? To ad-
dress this problem, we made an interesting finding, which is formulated in the following

theorem.

Theorem 4.6. Given a task set I and two periodic servers [I1;,0;] and [I1;,0;], let
0;/I1; = ©; /11 and I1; <I1;. Let Tyux(i) and Tyux(j) be the peak temperatures when
running with the corresponding peak power traces for the two periodic servers with no

power mode transition overhead, then T4, (1) < Toax(Jj)-

Proof. The proof of this theorem is based on the analysis presented in [183]. Authors
in [183] introduce the concept of m-Oscillating schedule for a periodic power trace in

their following definition

Definition 4.2. [/83] Let S(t) be a periodic power trace schedule on a multi-node plat-
form. The corresponding m-Oscillating schedule, denoted as S(m,t), is the one that scales

down the length of each state interval by m times without changing its running modes ;.

Note that the peak power trace periodic server of our analysis match with Def. 4.2
with m = T, /T1, where Ty, is the smallest period of any task allocated to the server,
as defined in Thm. 2.1. Therefore, we can have m; > m;, with m; = T,,;, /I1; and m =
Tnin/ 11, because IT; < IT;.

According to the following theorem,

108

Theorem 4.7. [/83] Let S(t) be a periodic power trace schedule on a multi-node plat-
form that contains 7 state intervals, S(m,t) be the corresponding m-Oscillating schedule,
and Ty (t) be the peak temperature of the system at any time t. Then, Ty, (S(m,t)) >

Tnax(S(m+1,1)).

we may conclude that since m; > m, then Tyax (i) < Tinax (/). O

According to Theorem 4.6, if a periodic server cannot meet the temperature con-
straints, we can always try to minimize its peak temperature by reducing the server period
while keeping the capacity, i.e. ®;/II;, to ensure the timing constraints. From Theo-
rem 4.6, the smaller the period, the lower the peak temperature. However, this conclusion
is true and can be proved only when the power mode transition overhead can be ignored.
In practical scenarios, when the CPU or memory transit from one power mode to an-
other, the system incurs not only a timing penalty but also a power penalty. The more the
transitions happen, the larger the total overhead becomes and compromises the potential
improvement. In our approach, we resort to a simple search algorithm to find the trade-
offs between the increased transition overhead and server period reduction to maximize

the peak temperature reduction.

4.3.3 CPU/Memory Co-Scheduling using Periodic Server (CSPS)

We are now ready to present our CPU/memory co-scheduling algorithm using periodic
server, developed based on Theorems 2.1, 4.1, 4.2 and 4.6, as shown in Alg. 3.

Alg. 3 takes inputs including task set I', the operating system time slice (OS,), the
temperature thresholds for the CPU and DRAM, and the server overhead time DI/. For
a given value of the server period IL,, the algorithm finds the minimum allocation time
®,,in that guarantees the timing constrains of I' according to theorem 2.1 (line 6). The

overhead time is further accounted into the allocation time (line 7). Then, with the server

109

period, allocation time, and power values of CPU and DRAM (P$FY and PPRAM for time
0, PSCOP U and P&RAM for time I — ®), the algorithm generates the peak power traces for
the CPU and DRAM (lines 8 and 9, respectively). The peak temperatures for CPU and
for DRAM in stable state are calculated using Theorem 4.2 (line 10), then compared
against the corresponding thresholds (line 11). If the peak temperatures are both under
the thresholds, then the parameters I, and ®, are stored in a matrix A (line 16).
Algorithm 3 iteratively tests all possible values of II, between a maximum and a
minimum value (for loop line 5), seeking to obtain a lower peak temperature bound,
following Theorem 4.6. According to Theorem 2.1, it is necessary that the period for the
server must be lower than the minimum period of any t; € ', i.e. Vi, 1 <i < N,I1; < Tip-
Also, the minimum value or the server period must be the operating system time slice.
Thus, OS; < Iy < Ty, (lines 1 and 2). According to Theorem 4.1, if there exists at
least one single setting [IT,®] in the set of feasible combinations A, then it is possible to
conclude that I" is safely feasible and schedulable under the CPU and DRAM temperature
constrains, and the algorithm chooses the schedulable combination A, such that the

overall system temperature is minimum as the final output. If A is empty, then we cannot

conclude that I' is feasible (lines 19 to 23).

4.4 Experiments, Analysis and Results

To study the effectiveness of our proposed approach, we compared the simulation results

of our approach with other related approaches listed below:

e No-Server This is the most primitive approach. CPU/memory runs a task when the
task queue is not empty and enters low power modes when no task is ready. No
periodic server is applied in the scheduler. This is the traditional dynamic power-

down approach.

110

Algorithm 3 Co-Scheduling using Periodic Server (CSPS)

Input: I'= [Cv Tanu]’ OSq, ThrDRAM, ThrCPU, Dl
Output: Whether I' is feasible or not, and Ay,

el el e e e
PRI AERY D2

NN
Wy T2

AU S

—_
> \O

A=0; Ilun =08y Ilrg=o; Org=co;
I1,,,, = minimum period of any t; € I;

PU _ CPU .
Plgax - I‘{lél%([Pi] ’
Pt = max [PPFHM];

el

for I, = I1,,,,, downto IL,;, with step = OS, do
O,uin = MinimumAllocationTime(I1,,T);
@y = [(@pin +DI) = 0S,] - 0S,:
PPV = PowerTraceCPU(®,,I1,, PSPV PEPY);

X% max

PDPRAM — powerTraceDRAM (@, I1,, PRRAM pDRAM).

(T pSPY | T pPRAMY = SystemTemperature(P LYV P PRAM),
if TpSPU < Thr¢PU AND T pPRAM < T pyPRAM then

IITS = Hx;
Ors = 0,;
Tpgsd =Tper:;
TP = 7
A=A U{TpGY, TpPEM T;g,Ors}:
end if
: end for
. if A # 0 then

Agen = {T pCPY T pPRAM T1,0} € A, s.t. overall system temperature is minimum;

. else

Return: I" is not schedulable;

: end if

111

e CPU-Only: This represents many existing approaches (such as [46]) that ignore the
thermal impacts of memory. CPU is managed using a periodic server, with server

parameters [I1,®] determined by the heat dissipation of CPU only;

e Mem-Only: This approach ignores the thermal impacts of CPU. CPU is managed
using a periodic server, with server parameters [I1, ®] determined by the heat dissi-

pation of memory only;

o CPU/Mem-Co-Scheduling: This is our approach illustrated in Algorithm 3.

In our simulation, we adopted the similar CPU parameters used in previous works,
such as [28, 90,]. We built our memory model based on the Micron’s power model.
Specifically, we adopted the power model for the DDR3 DRAM chip of 2GB, using a
low conductivity substrate [| 84], for a memory system with a total of four ranks (M = 4).
Based on this model, we observed that the maximum DRAM power is approximately half
of the maximum CPU power, which fits the power ratio of CPU and memory reported in
the literature [59]. We assumed an ambient temperature value of 35°C.

We randomly generated 3000 task sets for our simulation. Specifically, we randomly
generated task periods and execution times such that the task set utilizations cover a range
from 0.01 to 0.69. We randomly generated values for the parameter y; in Eq. 2.5 within
specific ranges to generate different types of tasks: High-memory bounded ([0.8,1.0]),
mild-memory bounded ([0.6,0.8]), and CPU-bounded ([0.01,0.6]). Also, using the same
ranges, we randomly generated the ratio between each task maximum number of memory
requests and the maximum memory bandwidth, i.e., H;/ BWn?alfCAM . For overhead, we
chose a value of 1 ms which is able to account for CPU and memory wake ups, plus cache

cold starts [185]. We assume an OS, = 5ms, which is a common value among operating

systems.

112

We set the peak temperature threshold for CPU with the typical value of 90°C. Also,
we set the memory peak temperature threshold as the memory datasheet nominal max-
imum value of 85°C. Additionally, we compare also with a memory peak temperature
threshold value of 60°C. Although such a temperature is below the datasheet maximum
ratings, according to recent studies [|86], it is possible to further improve the retention
time and achieve additional power and energy savings in a DRAM system if memory
temperature is low.

Fig. 4.7 compares the feasibility of the tested task sets using each of the different
approaches and setting the DRAM peak temperature threshold to 85°C. Fig. 4.7a com-
pares high-memory bounded tasks, 4.9b and 4.7c compare mild-memory bounded and
CPU-bounded tasks, respectively. Additionally, Fig. 4.8 shows the average of these three
sub-figures. Each sub-figure shows feasibility results using different values for the cou-
pling thermal resistor R, of Fig. 4.5, with values equal to 0.1 K/W, 1 K/W and 10 K/W.
Also Fig. 4.9 compares the feasibility of the tested task sets like Fig. 4.7, but setting the
DRAM peak temperature threshold to 60°C.

When comparing the results of the No-Server approach, we can immediately see the
significant improvement of task set feasibility when using a periodic server. All three sub-
figures of Fig. 4.7 show that the No-Server approach has less than 40% schedulability than
the other three approaches implementing a periodic server. Also, the schedulability of the
Memory-only approach decreases with a higher memory usage, which is a logical result
since with a higher memory usage the power consumption of DRAM is increased and
therefore its operating temperature.

Additionally, the schedulability of the CPU-only approach is the lowest for CPU-
bounded tasks (Fig. 4.7c). However, the schedulability of CPU-only for the case of
mild-memory bounded tasks is higher than for the case of high-memory bounded tasks.

This can be explained in the fact that such type of workload is generating a balanced

113

power consumption of CPU and DRAM that allows both systems to reduce their peak
temperatures.

When comparing the CPU/Mem Co-Scheduling approach with Memory-only and CPU-
only, for the cases of mild-memory bounded and high-memory bounded tasks, our ap-
proach CPU/Mem Co-Scheduling always shows a higher schedulability for all the three
different values of coupling resistor R.,. The increment in schedulability for the CPU/Mem
Co-Scheduling approach is around 3% when compared to the CPU-only approach, and
more than 40% in average, when compared to the Memory-only approach. Fig. 4.7a
and 4.7b show that for some cases it is necessary to consider the parameters from both
the CPU and memory sub-systems to generate an schedule that guarantee the timing and
temperature constraints of the system. When comparing the CPU/Mem Co-Scheduling
approach with the CPU-only approach, for the case of CPU-bounded tasks, it can be seen
that our approach has almost the same schedulability values as CPU-only (see Fig. 4.7¢).
This can be explained by the fact that for these type of tasks the major power consumption
is performed by the CPU, and the CPU will drive the system’s peak temperatures.

Fig. 4.8 shows the average feasibility values for the three types of task sets consid-
ered (from high-memory bounded to CPU-bounded) when the DRAM peak temperature
threshold is set to 85°C. It can be seen an increment of feasibility when using our pro-
posed methodology, compared to the other three approaches. Also notice that when the
value of R, is small, since both the CPU and memory sub-systems are highly coupled,
the memory power can be dissipated more efficiently through the CPU cooling platform,
lowering the overall systems peak temperatures. As can be seen, our methodology is able
to identify real-time task workloads where the dependency of either the CPU or the mem-
ory makes the system unschedulable under peak temperature constraints, if the server
parameters are analyzed considering only the CPU characteristics or considering only the

memory characteristics.

114

Rcp=10 WRcp=1 MWRcp=0.1
No Server
°
(7
h-]
c
3
a Memory_only
z
o
g CPU_onl
s _only
£
S0
T
CPU/Mem-Co-Scheduling
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(@)
Rcp=10 ®WRcp=1 MRcp=0.1
|
No Server
°
7
°
c
=]
2 Memory_only
=
)
5 |
s CPU_only
=
=
CPU/Mem-Co-Scheduling
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(b)
Rcp=10 MWRcp=1 MRcp=0.1
| |
°
3 Memory_only
E
o
D
2 CPU_only
o
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(©)

Figure 4.7: Task set feasibility comparison using each different method, for different types of
tasks with DRAM peak threshold temperature of 85°C. High memory bounded (a), mild memory
bounded (b) and CPU bounded (¢), using also different values for R, of Fig 4.5.

115

Rcp=10 MRcp=1 MWRcp=0.1

No Server

Memory_only

Average

It

CPU_only

CPU/Mem-Co-Scheduling

T T T T T

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.8: Average task set feasibility comparison with CPU peak threshold temperature of 90°C
and DRAM peak threshold temperature of 85°C

Fig. 4.9 shows similar results as Fig. 4.7, but with reduced values in the schedulability
of tasks sets using any method. Since the peak temperature threshold for DRAM is set to
60°C, the majority of the resulting feasibility values are conditioned by the schedulability
of the DRAM device. Notice that even for the case of CPU-bounded tasks, our proposed
approach is able to increase the feasibility of the system (Fig. 4.9c¢).

Fig. 4.10 shows the average feasibility values for the three types of task sets consid-
ered (from high-memory bounded to CPU-bounded) when the DRAM peak temperature
threshold is set to 60°C.

We can confirm our previous conclusion above mentioned, i.e., that when CPU and
memory are tightly coupled within a small space, and tasks are mixed between memory-
bounded and CPU-bounded ones, the heat dissipation generated from the memory can
be more effectively dissipated using the cooling methods for CPU, at a cost of increased
CPU temperature. If the peak temperature threshold of the DRAM device must be set to
a low value in order to extend the retention time and minimize the number of refreshes, it
is still possible to implement a periodic server in the platform that guarantee a higher task
set feasibility, but the DRAM peak temperature will drive mostly the feasibility condition

of a particular task set, with a task set feasibility decrement.

116

Rcp=10 ®mRcp=1 mRcp=0.1

No Server

©
(7]
k-]
i=
3
2 Memory_only !
z
5]
°E-' CPU |
g _only
=
.20
T <

CPU/Mem-Co-Scheduling

T T T T T T T

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

(a)
Rcp=10 mRcp=1 mWRep=0.1
No Server

k-]
[T}
k-]
c
3
2 Memory_only H
z
S
°E~' CPU |
g _only
2
= <

CPU/Mem-Co-Scheduling

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%
(b)
Rcp=10 ®mRcp=1 mRcp=0.1
No Server

el
R Memory_only
S
o
[
z CPU_only
o

CPU/Mem-Co-Scheduling

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

(c)

Figure 4.9: Task set feasibility comparison using each different method, for different types of
tasks with DRAM peak threshold temperature of 60°C. High memory bounded (a), mild memory
bounded (b) and CPU bounded (c), using also different values for R, of Fig 4.5.

117

Rcp=10 ®WRcp=1 mRcp=0.1

No Server H
Memory_only h

CPU_only

Average

CPU/Mem-Co-Scheduling

T T T T T T T T T

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

Figure 4.10: Average task set feasibility comparison with CPU peak threshold temperature of
90°C and DRAM peak threshold temperature of 60°C

Thus, as our experimental results demonstrate, as memory power consumption be-
comes more and more significant, an effective thermal solution needs to handle the heat

dissipation not only from CPU but also from memory as well.

4.5 Summary

Thermal management is critical for many IoT applications that exhibit real-time character-
istics with high power densities. We develop a novel strategy that employs periodic server
to collaboratively schedule both the CPU and memory to meet the timing constraints for
a real-time task set and in the meantime satisfy the temperature constraints for both the
CPU and memory. To the best of our knowledge, this is the first work for thermal-aware
hard real-time system design that takes into account the heat generations and their inter-
actions from both the CPU and memory devices. Our experimental results, with system
parameters drawn from manufacture data sheets, clearly demonstrate the effectiveness of
our proposed approach in reducing the peak temperature as well as the need to take both
the CPU and memory systems into consideration simultaneously for system-level thermal

management.

118

CHAPTER 5
THERMAL-AWARE JOINT CPU AND MEMORY SCHEDULING FOR HARD
REAL-TIME TASKS ON MULTICORE 3D PLATFORMS

As introduced in chapter 1, it is expected that in the near future multiple industries be-
gin to develop commercially real-time systems using 3D integrated platforms, and given
the dramatically increased power density not only from CPUs but also from memory sys-
tems as well, which are expected to consume as much power as the processing cores in
embedded 3D platforms [54], we believe that a joint CPU and memory system resource
management is highly desired for 3D platforms to effectively deal with the heat dissi-
pation confined in a small package. In addition, different from many existing thermal
management strategies, which are reactive and best-effort in nature, we are more inter-
ested in ones that can ensure the strong guarantee for real-time applications.

Thus, in this chapter we study the problem of how to schedule a set of fixed-priority
hard real-time tasks on a 3D multi-core platform, while keeping temperatures for both the
logic layer and memory layers under peak temperature limits. Again, we focus on a fixed-
priority assignment since this is the most commonly used scheme for real-time systems
design in industry [23,77]. Additionally, our proposed method can be easily extended to
other scheduling methods.

A key challenge in our problem is how to manage CPUs and memory systems in a
collaborative manner to meet the task’s timing requirements and peak temperature con-
straints. There have been many thermal aware resource management strategies proposed
on 3D architectures, e.g. [155-157,]. Most of them are reactive and best-effort in
nature. Thus, these approaches are intuitive and may be effective in dealing with thermal
emergencies. However, one major problem is that they cannot guarantee that the chip’s

temperature will not exceed pre-determined thresholds.

119

To overcome this challenge, we present a novel approach that incorporates the pe-
riodic resource model [9] for both CPUs and memory systems to guarantee the timing
constraints for hard real-time systems under thermal constraints. The periodic resource
model can accurately capture the characteristics that guarantee resource allocations of ©®
time units every II time units [9] [80]. The beauty of such a model is that it allows us to
take advantage of the feasibility conditions for a periodic resource server (see chapter 2),
to guarantee the timing constraints for real-time tasks. More importantly, we can also take
advantage of the periodic behaviors of CPU and memory and formulate the temperature
dynamics analytically to achieve the deterministic guarantee for thermal constraints. Our
approach chooses judiciously the periodic server settings for each processing core and for
the memory bus arbitration in such a way that the peak temperature constraints for both
the multi-core layer and memory layers are satisfied. To the best of our knowledge, this is
the first work for thermal-aware hard real-time systems design implemented on a 3D plat-
form that considers the heat generations and their interactions from both the multi-core
and memory layers. Our experimental results, with system parameters drawn from man-
ufacturer’s data sheets, clearly demonstrate the effectiveness of our proposed approach in
increasing the schedulability of real-time tasks, while keeping the peak temperature of the
system under a threshold value.

The rest of the chapter is organized as follows. Section 5.1 describes the most related
research projects. In section 5.2 we present our architecture and system model, the CPU
and memory power and thermal models. Section 5.3 describes our problem formulation
and discuss our approach in detail. We present in section 5.4 the experimental evaluation

and we summarize in section 5.5.

120

5.1 Related Work

3D integration technology is a way to mitigate the “Memory Wall” challenge in future
microprocessors [153]. This sharp rise in temperature prohibits the full potential of 3D
stacks even though they have much higher bandwidth and thus capability to handle higher
loads. In other words, 3D stacks hit the thermal wall at higher frequencies prohibiting per-
formance scaling. It should be noted that the rise in temperature is caused by the higher
activity of the cores which can occur due to various reasons, such as, higher frequency,
complex cores, compute-intensive applications, power-hungry accelerators, etc. Further-
more, the increase in temperature decreases the charge retention capability of DRAM in-
creasing refresh rate, and also has a significantly negative impact on DRAM lifetime and
reliability. As a result, it has been advised to use 3D stacks only for memory-intensive
applications running at a lower frequency [53], diminishing the full potential of 3D inte-
gration technology.

3D memory-processor integration has received considerable attention in the litera-
ture [151-153], and multiple research studies have been proposed to manage the ther-
mal problems in 3D integration technology. For instance, Meng et al. [128] introduces
a framework to model on-chip DRAM accesses and analyzes performance, power, and
temperature trade-offs of 3D systems. Their architecture focuses on one single layer of
logic and one layer of DRAM memory. Chen et al. [154] characterize the thermal and
performance behavior of the target architecture when the voltage and frequency levels
of cores and DRAMs are synergistically controlled, targeting an architecture with multi-
ple layers of DRAM memory. Some studies propose to manage the power and thermal
parameters in 3D ICs by performing memory mapping techniques [155, 156]. The re-
search proposed in [188] describes a novel runtime system that scales the frequency of

both processor and DRAM-based on the performance and power models. Authors model

121

the system power consumption at various processor and DRAM frequencies to find op-
portunities for scaling the voltage and frequencies of both CPU and DRAM in order to
minimize the energy consumption. Other thermal management approaches for 3D archi-
tectures, such as [157], propose to reduce temperature variance and the peak temperature
of a 3D multi-core processor and stacked DRAM by thermally-aware thread migration
among processor cores. However, these thermal management mechanisms are online re-
active in nature, and cannot ensure real-time guarantee under thermal constraints on 3D
platforms.

There are research works (e.g. [80]) that offer mechanisms to guarantee the schedula-
bility of real-time systems on multi-core platforms, employing periodic resource servers,
but without considering the power and thermal properties of the applications. There are
also a few research works, such as [28] that consider the power and thermal properties of
the system, but they only consider processing cores neglecting the DRAM power impact
on the whole system temperature. Research works, such as [45, 46] propose mechanisms
to minimize the peak temperature of the CPU using periodic resource models. However,
these works do not consider the effect of the number of memory requests of each task,
nor the power and temperature of the DRAM system. Additional works such as [189]
and [190], propose thermal management mechanisms, considering only the thermal in-
teraction of adjacent layers in a 3D architecture, neglecting the thermal relation between
areas within the same layer, due to the high thermal coupling between layers. These
works use the concept of super-core, where all the architecture areas vertically adjacent
are treated as a single thermal unit in order to manage its temperature. However, their
methodologies are aimed to be implemented on 3D logic-to-logic integration.

Other research works, such as [191], consider the power-performance trade-off be-
tween memory and CPU, but do not consider the thermal behavior of the system. A

closely related work is proposed in [187]. Authors propose a thermal-aware task allo-

122

cation, memory mapping, and task scheduling methodology for the 3D stacked memory
and processor architecture in order to reduce the system’s peak temperature. However,
this research work does not specifically address the timing guarantees of hard-real time
task. Unlike their mechanism for reducing the power consumption of the memory layers
only, our methodology proposes to use periodic resource servers to synergistically control

the power of logic and memory layers.

5.2 Preliminary

In this section, we introduce the architecture and the real-time system model used in this

paper, along with the power and thermal models.

5.2.1 System Architecture

In this work, we consider a 3D system architecture, similar to that in [192], consisting of
a logic layer with multiple DRAM layers on top of it. We assume face-to-back bonding
and inter-layer communication using through-silicon vias (TSVs) that are etched through
the bulk silicon for vertically connecting the layers [150].

The logic layer consists of P in-order execution processing cores denoted as Py, with
k=1,2,...,P, each one with its own L1 instruction and data caches. Each core also has a
private .2 cache. We further assume that such a logic layer is the closest to the heat sink.

The DRAM layers consist of Y different layers. Each DRAM layer consists of B
symmetrical banks. For this work, we assume that P = B, such that each core P has
Y banks on top of it. In total, the platform has L layers (memory plus logic), where
L =Y + 1. We also assume that each set of banks of different DRAM layers comprises
a DRAM rank. Thus, the system has B different ranks, each of which has Y banks.

Additionally, the number of ranks is equal to the number of processing cores, and each

123

DRAM Layer

Figure 5.1: 3D platform example with 16 cores in one logic layer and 16 banks per DRAM layer
in 4 memory layers
pair is vertically aligned. We consider the system to be implemented using memory-
partitioning, such that each processing core P; can issue memory requests only to the
rank By on top of it, and such memory requests will be equally distributed among all the
banks of the same rank. An example 3D architecture with one logic layer holding 16
processing cores and 4 DRAM layers with 16 DRAM banks each is shown in Fig. 5.1.

The logic layer also has Q on-chip memory controllers (MC), denoted as MC, with
qg=1,2,...,0, to interface with the different DRAM ranks. We do not make any assump-
tion on the number of MCs in the system. However, since the timing constraints depend
on the task execution time that is affected by the memory delay, we assume the mem-
ory accesses to each rank of each processing unit are bound by the implementation of a
TDMA bus arbitration [193] on each memory controller in the platform. Normally the
power of each MC is a constant [| 28] [154], so in this work, we do not consider the effect
of the power consumed by each MC in the system’s peak temperature.

For simplicity, we assume that the MC operates the DRAM ranks using a “close-

row” policy, and that all write memory requests are not buffered and consume memory

124

bandwidth and power. Furthermore, we assume that each memory transaction consumes

the same amount of power in the memory.

5.2.2 System Model
Task Set Model

The task set consists of N independent implicit-deadline periodic tasks, denoted as I" =
{71,72,...,Tn }, scheduled according to the Rate Monotonic Scheduling (RMS). Each task
T;, where 1 <i < N, is characterized by its minimum inter-arrival time 7; and a worst-case
execution time (WCET) C; when running in isolation in the system with all the DRAM
Bandwidth available (BW"*), The maximum DRAM BW used by any job of a task T;
is defined as H_BW;, and the minimum DRAM BW from any job of a task 7; is defined
as Z_BW;. We consider a system with static partitioning, i.e., each processing core is

assigned with a fixed subset of tasks I';.

Periodic Resource Model

We consider that the scheduler implements a periodic resource control mechanism (pe-
riodic server) on each processing core P to throttle the access of each tT; € I, to the
corresponding core resource, based on the periodic resource model proposed by Shin and
Lee [9] for compositional real-time systems. In our implementation, the periodic server
consists of two parameters: first, the period of the server (Il;), which is the recurrent
time of repetition; second, the allocation time (®;) when the resources are available to the
currently scheduled task t; € I';. Hence, we have that ®; < II;. Thus, task T; cannot be

executed during the time IT; — ®;. A schematic of a periodic server is shown in Fig. 5.2.

125

power | I I I

RANK

CORE

me
t=0 © I [1+0 211

Figure 5.2: Periodic server time schedule example for any processing core P, and its associated
DRAM rank

To ensure deadlines of each sub-task-set assigned to each processing core in our sys-
tem, we employ two approaches. The first schedulability condition was proposed by Shin
and Lee [Y], stated in Thm. 2.1 of chapter 2.

The second schedulability condition was proposed by Guo et.al. [80] when consider-

ing the harmonic periods of a task set, stated in the following theorem.

Theorem 5.1. [9,80]. Given a single periodic resource server, with period I, allocation
time ®y and capacity Cy, i.e. C;, = Oy /T, and a task set Ty with its harmonic transfor-
mation T, with respect to IIy, if U(I'}) < Oy /Iy, then the task set Ty is schedulable on

the periodic server under RM scheduling policy.

We assume that each processing core will enter into a low-power mode (see chapter
2) during the time IT; — ®;. When the core exits from its low-power mode, it requires an
extra overhead time D/ that must be accounted into the server allocation time ®;. Such
DI time is architecture dependent and considers delays such as CPU and DRAM power
mode changes and caches cold starts.

In addition, we consider that each DRAM memory access has an specific delay time

that depends on the accessing time to the caches, the DRAM commands decoding per-

126

formed by the MC and the DRAM data retrieving. Such a delay time is architecture
dependent. Besides, we assume that each LLC miss is a DRAM memory access and that
a local cache miss is stalling, which means whenever there is a miss in an LLC, the core
is stalling until the cache-line is fetched from memory. Furthermore, we consider that
preemption does not affect the number of cache-misses of a task (e.g. by partitioning

cache to each task).

5.2.3 3D Platform Power Models

In this chapter we use the model for CPU as described in chapter 2, and to be conservative,
the dynamic power switching activity factor parameter y; is defined based on its best-case
bandwidth Z_BW,, that is: y; = 1 — ((Z_BW; -tDL)/(BxRQ)), where tDL is the worst-case
latency of a DRAM request, and BxRQ is the number of bytes of each memory request.
Thus, the CPU power consumed on a specific core and associated with each task t; can

be formulated as Eq. 2.5, and for the sake of clarity we rewrite it as follows:
Pc;=CO+C1-Te(t) +p;-C2- (V,57Y)° (5.1)

We also contemplate that the CPU has at least two power operation states (which may
be applied to a wide range of today’s microprocessors): (i) Active (S1): Fully operational
state; CPU is ON and operating at the maximum voltage and frequency; CPU is con-
suming both static and dynamic power, i.e. PSICf;U = Pieak + Payn_i- (i1) Deep Sleep (S0):
Stand-by mode state; CPU clock generator is OFF; Majority of CPU internal devices are
OFF; delayed wake-up time; CPU is not consuming either static or dynamic power, i.e.
PSPV = 0.

Also in this chapter we use the model for DRAM memory devices as described in

chapter 2. As stated before, we assume that each bank of the same rank has the same

bandwidth. Therefore, the bandwidth of each task T; in each bank is assumed to be

127

H _BWpank; = H_.BW; = (L —1). Also, since active and read/write powers are dependent
on the bandwidth of 1;, they can be simplified into a single constant Pygw for the DRAM
bank power calculation [!57]. Consequently, the total power consumed by the DRAM

bank when executing a task T; is as follows:
Pmpani; = Ppg + Parw - H BWpank, - (5.2)

Recall also from chapter 2 that DDR3 technology offers three different power-down
modes to save power, and we are focused on the self-refresh power-down mode with

power consumption denoted as PHRAM,

5.2.4 3D Platform Thermal Model

The 3D platform thermal behavior is similar to existing works (e.g. Zhou et.al. [190],
Meng et.al. [128], and Chen et.al. [154]). 3D platforms have a relatively weak thermal
correlation between banks or cores within the same layer. Instead, they have a much
larger intra-layer thermal resistance than an inter-layer thermal resistance. Hence, it is
reasonable to consider the thermal effect of one supercore (SC), consisting of a processing
core plus its associated DRAM rank, to be isolated from the rest in the same platform,
similar to [189, |. From this point, we will refer to each SC as SC; as the combination
of core P; and its associated rank B;.

Figure 5.3a shows our thermal model for one core with its associated rank of L —
1 banks on top of it. Each bank in each layer is vertically interconnected by a series
of thermal resistors Rj,R,...,R;, of small value in order to model the strong thermal
correlation of vertically adjacent layers. The resistance R, connecting the logic layer
to the ambient includes the effect of the heat spreader and the heat sink. Each rank is
consuming Pmy,,; watts and the core is consuming Pc watts. The whole SC has a tight

thermal coupling, modeled as a single thermal capacitance Ci,.

128

From the thermal model in Fig. 5.3a, a simplified thermal model is shown in Fig.
5.3b, with an equivalent power source and equivalent thermal resistance, Psc and R, re-
spectively. The temperature in the only node of the equivalent model represents the tem-
perature of the top DRAM layer of the SC. If such a top layer temperature 7;,, is kept
under the temperature threshold, we can guarantee, in a stable state, that the tempera-
tures for other layers beneath the top one are under the temperature threshold too. This

conclusion is formulated in the following theorem.

Theorem 5.2. Given a 3D platform with one logic layer closer to the system heat sink,
and L —1 DRAM layers on top of it, modeled as an electrical circuit as shown in Fig.
5.3a, the peak temperature in the periodic stable state of any layer in the platform is

lower than the peak temperature of the top DRAM layer.

Proof. For the electrical circuit shown in Fig. 5.3a all the currents from the current
sources (representing the power of each layer) are positive. In stable state, starting from
the top node (layer) 77, the current from the current source attached to each node must
be added in the node, and the resulting current must flow to the node below through the
inter-layer resistance. Therefore, the voltage of each inter-layer resistance has the positive
polarity on its top node. Hence, since the temperature of each layer is represented by the
voltage of each node in the network, the temperature of each layer will be larger or equal
than the temperature of the layer beneath it. Thus, the farther a layer is from the heatsink,
the hotter it may get. So, the temperature of the top layer must be larger than or equal

than any other node in the network. [

The value of T;,, depends on thermal resistances values and average power values
Pmr, and Pcr, when a task set I'; is executed on a SC running a resource server of
parameters ([IT;, ©]). We calculate Pmr, = (I1x/Oy) - Yr.cr, Ui - PMpank; and Per,—gyn =

(ITx/®r) - Xrer, Ui Pci—dyn- Assuming Ry = Ry = ... = Ry = Ry, Ty, & can be calculated

129

JH

(Pe} | =

P mi T {P_bank} |R_1 il .
= C_Sg_
ME
P m2] {P_bank} |R_2 o Tamb P_SC
[—) L T1=T_top

B Hi P bank} JR_(L-1) = Re

T_L) _

I e 4, C_SC
@ il

Pc i {P_core}
- Tamb . O Tamb
(a) (b)

Figure 5.3: 3D Platform Super-Core Thermal Model and its Equivalent Circuit. (a) One core with
its associated rank of L — 1 banks on top of it. Each layer is vertically interconnected by thermal
resistors Ry, Ry, ...,R;. R, includes the effect of the heat spreader and the heat sink. Each rank is
consuming Py, Watts and each core is consuming Pc watts. SC tight thermal coupling modeled
as a single thermal capacitance C;.. (b) Equivalent thermal model with an equivalent power source
and equivalent thermal resistance, Psc and R, respectively.

as:

T o Is — ((]:cs - Tamb)) (e_Gk.B)) — Lamp - (e_nk.B)
top-k — (1 _ e*Hk'B))

(5.3)

where, Ty, = A/B, with A = (Re -Cgc>71 . [OC'Pka + |3 'PCFk—dyn + B -CO+ Tamb] and
B= (R, -Csc)~'-[1—-B-C1][106]. Also, &t = R (L—1) +R,, - k;, and B = R. + R,,, with

ki =Zf;1(x+1), and R, =R.+L-R,,.

5.2.5 Problem Formulation

Given the system models as introduced above, we can formally formulate our research

problem as follows:

130

Problem 5.1. Given a 3D platform with a logic layer of CMPs, multiple DRAM layers on
top and a set of fixed priority real time tasks I" scheduled using RMS, find the optimal task
partition among the processing cores {SC1,8C,...,SCp}, and the optimal parameters
[[1;, O] for each resource server implemented in each SCy to guarantee the feasibility
of the task set, i.e. the timing constraints of all tasks can be guaranteed while the peak
temperatures in stable state of the processing cores and DRAM banks are kept under a

given threshold (TempT hr).

5.3 Our Approach

To solve Problem 5.1, one key challenge is how to ensure that temperature for the process-
ing core and memory does not exceed their threshold. While there have been extensive
thermal aware techniques proposed on multi-core platforms (e.g. [155-157, 187]), most
of them are responsive and best-effort in nature and cannot guarantee the temperature
constraints. Temperature constraint violation can severely degrade memory performance
and/or lead to unexpected processor shutdown, and thus make real-time tasks miss their
deadlines. While there are some works (e.g. [194]) that analytically capture temperature
variations based on existing power traces, how to optimize the task allocations in face of
real-time and temperature constraints remains a problem. To solve this problem, we adopt

the periodic resource model in our approach to manage the CPU and memory resources.

5.3.1 A Periodic Resource Model Based Approach

Different from the traditional resource model that keeps active when the ready queue
is not empty, the periodic resource model proactively suspends the service for requests
periodically but guarantees the availability of resources for ® time units every II time

units. It has been well recognized [46] [80] that the periodic resource model can greatly

131

facilitate the analytical study of hierarchical resource sharing strategies with different
scheduling algorithms for different services. Many feasibility conditions are introduced
based on the periodic resource model.

Note that the periodic behavior of the periodic resource model also makes it a highly
deterministic model for peak temperature guarantee based on Eq. (5.3). Given a task
set I'; to be allocated to a supercore SCy, and a specific server period value I, we can
readily develop an algorithm, as shown in Alg. 4, to determine (1) the allocation time for
the periodic server (®;), which can make the I'; feasible, and (2) the SC’s peak temper-
ature. The algorithm determines the two possible ®; using the two feasibility conditions
presented in Theorems 2.1 and 5.1 (Lines 1 to 4), and the two corresponding peak tem-
peratures are calculated using Eq. 5.3 (Line 5). If for the given task set 'y there exists a
feasible ©y, then the algorithm returns the smallest possible peak temperature 7p,eq and
the pair [T, ®] that allocated T’ (Line 7).

As shown in Alg. 4, for a given task set, we can readily determine its periodic server
and analytically check its feasibility in terms of the timing and temperature constraints.
The problem then becomes how to determine the task partitioning that can lead to the
optimal solution. It is not difficult to see that the task partitioning results have profound
impacts on parameter settings for periodic servers, and thus timing and temperature con-

straints. We next study how to develop appropriate task partitioning strategies.

5.3.2 Real-Time Task Partitioning Strategies

It is a well-known fact that task partitioning is a NP-hard problem [23]. Therefore, we
focus on developing some effective and computationally efficient heuristics. To this end,
we can readily design a resource constrained bin-packing based approach, called Simple

Combined Resource Usage Partitioning (SCRUP) approach.

132

Algorithm 4 Function FeasibilityChecking(T'y,I1;)

Input: Iy = [C,T,H_BW,Z_BW]|, and I1; (period for the periodic server).
Output: Peak temp. of top DRAM layer and periodic server config. [, TT;]

Obtain the harmonic task set of I';, i.e. F}(, using I1; as the base period;
if U(I',) < 1 then ©/Y5 = U(T7}) - TIi; end if

Let Ny = |I'x| and UBgy = U (I'k); Using Eq. 2.1 solve for Cy;

if C; <1 then @iL = Cy - Iy; end if

Use Eq. 5.3 to calculate 7,4 for [@V8,TL;] and T;}), 1, for [@F,Ti];
if d feasible ®; then

NNk

Thub TSZ) , and [®k7 Hk])

Return Tpeak = topTy> “top Ty

min (
[GfUB 7Hk] /\[®£L7Hk]
8: else Return Tpeqx = oo, and [0,0]; end if

Since resource utilization is closely related to the feasibility of a real-time task set, in
the SCRUP approach, each task is characterized by the Combined Resource Utilization of
processing core and memory. Specifically, the combined resource utilization ResUtil; of

a task t; € I, is defined by the following equation.

54

H_BW;
ResUtil; =U; + U; - { ‘} .
BWmax

In Eq. (5.4), U; is the CPU utilization required by task 7;. Its memory bandwidth
percentage H_BW;/BW™® scaled by U; indicates the fact that memory usage is needed
only when 7; is being executed. With the combined task utilization defined in Eq. (5.4),
we can then sort the tasks based on their combined task utilization and then employ the
traditional first-fit bin package method to allocate tasks to a SC. The detailed algorithm is
shown in Alg. 5. Specifically, in Alg. 5, tasks are first sorted with their ResUtil; (Line 2).
Subsequently, the algorithm packs tasks in the sorted order for the core verifying that the
subtask set chosen is feasible (for loop lines 8 to 12). Such a subtask set is assigned to the
next available core and the process is repeated over the remaining unallocated tasks until
there are no more tasks to allocate or no more available cores (while loop line 5). The
algorithm returns if the task set is feasible or not. If feasible, it also returns the sub task

set allocated to each core.

133

While the combined resource utilization helps to identify the resource requirement
of different sources by a task, one major pitfall of this metric is that two tasks with the
same combined resource utilization may have different overall power consumption. In
addition, even though both tasks may consume the same amount of total power by CPU
and memory, the result peak temperatures may be different as indicated in Eq. (5.3).
Therefore, to better deal with the temperature constraints, we develop another metric, i.e.
the Nominal Total Power consumption (NTP), to measure the combined resource usage,

which is defined in the following equation:
NTP; = (B'Ui'PCifdyn)"f—((X'Ui'Pmbanki)7 (5.5)

where Pc; 4y, and Pmpgy, are power consumptions for processing core (dynamic power)
and memory when executing task T;, which are defined in Eq. 2.5 and 2.7, respectively.
o and P are two constants defined in Eq. (5.3). Essentially, NTP; is the equivalent total
power consumption when a task is executed in the reduced thermal model as depicted in
Figure 5.3b.

With the introduction of a new metric as shown in Eq. (5.5), we can develop another
algorithm, called the Thermal Aware Task Partitioning (TATP) approach. The TATP ap-
proach follows the same algorithm structure as that in Alg. 5. The only difference is
that, instead of sorting tasks based on their combined resource utilization as defined in
Eq. (5.4), the TATP approach sorts tasks based on the nominal total power consumption
of each task as defined in Eq. (5.5). The approach is also shown in Alg. 5, considering
the change of line 2 by line 3 and performing the new sorting in line 6.

The previous two approaches partition tasks based solely on their resource utilization,
and the feasibility and periodic server settings are determined based on Alg. 4. Itis a well-
known fact that the relationship of task periods, if explored appropriately, can significantly

increase the feasibility [75]. For example, a harmonic task set can be schedulable using

134

Algorithm 5 Approach SCRUP OR TATP

Input: I' = [C,T,H_BW,Z_BW]|, TempThrsc, SC = {SC1,...,SCp}, L, IT;p5.

Output: Whether I' is feasible or not, and allocation for each 1; € I' to a SC;
1: forallt;, €I do

H_BW,;
2: LetResUtil; = U;+U;- [] , using Eq. 5.4, OR

BWmas
3: Let NTP; = (B-U;- Pc;) + (o U; - Pmpani,), using Eq. 5.5

4: end for

5: while"' # 0 && |SC| # 0 do

6: Sort tasks 1; € I according to ResUtil; OR NTP; in descending order;
7: n=|T;Tx=0;

8: fori=1tondo

9: Iy =Tr+7;
10: Tpeak < FeasibilityChecking(Ti,Ileq);
11: if Tpeak > TempThrSC thenI', =1} —1; end if

12: end for

13: Assign 'y to SC, € SC; SC=SC—SCy; I' =1T"—T7};
14: end while
15: if I" 0 then Return: I is not schedulable; end if

RMS with total utilization reaching as high as 1. Even for tasks that are not perfectly
harmonic, a harmonic index has been developed [72] to quantify the harmonicity among
task sets to improve the feasibility of task partitioning results. Moreover, as shown in the
existing work [80], making the period of the periodic server harmonic to the task set can
greatly reduce the resource usage. Based on the existing work, we can readily prove the

following theorem.

Theorem 5.3. When scheduling a task set, i.e. I' , with total utilization Ut on a periodic
server (®, T1), the capacity of the periodic server, i.e. C = ®/I1, is minimized if the task

set is perfectly harmonic and the server period is also harmonic to the task set.

Proof. The reader may recall that the minimum server allocation time ® to allocate a task
set I (with total utilization Ur) using a server with period II may be obtained using two
methods as explained in section 5.2. According to Thm. 5.1, if I is a perfectly harmonic
task set and it is also perfectly harmonic with respect to II, then the minimum server

capacity to allocate I" is equal to the total task set utilization Ur. On the other hand, it is

135

possible to find the minimum server capacity to allocate any task set I according to Thm.

2.2 from chapter 2. Thus, we need to proved that:

<
Ur = l2k+2(1 — Ur)}
log | —————F

k+2(1 —Ur)

= ABRrus, (5.6)

for any valid k and Ur. Thus, we may have:

2k+2(1— ?
lg{ +2(UF)}gl.

k+2(1—Ur)
2k+2(1—Ur)} ?
el S VA S T
[k+2(1—Ur) =10 (5.7)

?
2k +2(1—Urp) < 10k+20(1 — Up),
?
0 < 8k+18(1 —Ur).

Since, kK must be an positive integer and Ur must be a positive number between 0 and 1,

therefore the inequality in 5.6 is true. [

Theorem 5.3 implies that a task set I'; with the same utilization may need a periodic
server with smaller server capacity. Also, choosing the server period harmonic with the
task set also helps to minimize the server capacity. Since a small server capacity can
lead to a lower peak temperature, we develop another task partitioning approach, called
Harmonic and Temperature Aware Task Partitioning (HTTP) approach, able to take ad-
vantage of the harmonic relationship among task periods to improve the task partitioning
results.

Our HTTP approach is formulated in Alg. 6. First, tasks are sorted by their periods 7;
(line 3). Then, using T; € I as a reference task, the algorithm sorts all other tasks based
on the harmonic index related to the reference task (lines 6-7). Next, it picks a timing
feasible sub task set with the most harmonic tasks with respect to the reference task, such
that the total transformed utilization is maximum, and the SC’s peak temperature is below

the threshold (lines 8-10). Among all possible n sub task sets, the one with the highest

136

Algorithm 6 Harmonic and Temp. Aware Task Part. (HTTP)
Input: I' = [C,T,H_BW,Z_BW], TempThrsc, SC = {SC1,...,SCp}, L, I;0y.
Output: Whether I' is feasible or not, and allocation for each 1; € I' to a SC;

1: FTS = 0;

2: whileI" # 0 && |SC| # 0 do

3: Sort T; increasing order with respect to 7;;

4 n=I; Urs = —oo;

5 fori=1tondo

6: Construct I (Sub-Harmonic of I') using DCT [75] with T; /as base;
7 Sort all T; € I' in increasing order w/ respect to H(t;) = Ui U Ui ;
8: Iy, = pick up k; tasks from I s.t. for the corresponding Fij GJF’ :
9: (LU (F;cj) < 1;AND (2) \F;q\ is maximized; AND
10: (3) Tpear < TempThrsc (Tpeak < FeasibilityChecking(U't;, e))
11: if F;(j is feasible AND U (Ty;) > U(I'zs) then T'yg =TIy
12: end for

13: AssignI'rst0 SCL € SC; SC=85C—-SC; I’ =T —TI'rg;
14: end while
15: if I" 0 then Return: I' is not schedulable; end if

total utilization (Line 11) is allocated to an SC (line 13). The remaining tasks will go
through the same procedure again until there are no more tasks to allocate or there are no
more availa