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ABSTRACT OF THE DISSERTATION 

PLASMONIC NANOPLATFORMS FOR BIOCHEMICAL SENSING AND MEDICAL 

APPLICATIONS 

by 

Arash Ahmadivand 

Florida International University, 2018  

Miami, Florida 

Professor Nezih Pala, Major Professor 

Plasmonics, the science of the excitation of surface plasmon polaritons (SPP) at the 

metal-dielectric interface under intense beam radiation, has been studied for its immense 

potential for developing numerous nanophotonic devices, optical circuits and lab-on-a-

chip devices. The key feature, which makes the plasmonic structures promising is the 

ability to support strong resonances with different behaviors and tunable localized 

hotspots, excitable in a wide spectral range. Therefore, the fundamental understanding of 

light-matter interactions at subwavelength nanostructures and use of this understanding to 

tailor plasmonic nanostructures with the ability to sustain high-quality tunable resonant 

modes are essential toward the realization of highly functional devices with a wide range 

of applications from sensing to switching.  

We investigated the excitation of various plasmonic resonance modes (i.e. Fano 

resonances, and toroidal moments) using both optical and terahertz (THz) plasmonic 
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metamolecules. By designing and fabricating various nanostructures, we successfully 

predicted, demonstrated and analyzed the excitation of plasmonic resonances, 

numerically and experimentally. A simple comparison between the sensitivity and 

lineshape quality of various optically driven resonances reveals that nonradiative toroidal 

moments are exotic plasmonic modes with strong sensitivity to environmental 

perturbations. Employing toroidal plasmonic metasurfaces, we demonstrated ultrafast 

plasmonic switches and highly sensitive sensors. Focusing on the biomedical applications 

of toroidal moments, we developed plasmonic metamaterials for fast and cost-effective 

infection diagnosis using the THz range of the spectrum. We used the exotic behavior of 

toroidal moments for the identification of Zika-virus (ZIKV) envelope proteins as the 

infectious nano-agents through two protocols: 1) direct biding of targeted biomarkers to 

the plasmonic metasurfaces, and 2) attaching gold nanoparticles to the plasmonic 

metasurfaces and binding the proteins to the particles to enhance the sensitivity. This led 

to developing ultrasensitive THz plasmonic metasensors for detection of nanoscale and 

low-molecular-weight biomarkers at the picomolar range of concentration. 

In summary, by using high-quality and pronounced toroidal moments as sensitive 

resonances, we have successfully designed, fabricated and characterized novel plasmonic 

toroidal metamaterials for the detection of infectious biomarkers using different methods. 

The proposed approach allowed us to compare and analyze the binding properties, 

sensitivity, repeatability, and limit of detection of the metasensing devices.  
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CHAPTER 1 

Introduction 

1.1. Plasmonics 

The study of the interaction between an intense electromagnetic (EM) field and free 

electrons in the d-band of subwavelength metallic components is well-known as “surface 

plasma oscillations” [1-4]. The existence of these collective, coherent and evanescent 

fluctuations of optically excited electrons at the metal-dielectric interfaces has been 

demonstrated successfully using several practical methods such as electron energy-loss 

experiments [6-8], excitation by electrons-matter interaction [1,9], light-matter 

interaction [1-4,10-12], and electrical excitation [13,14]. As one of the fundamental 

techniques, light-matter interaction has been acknowledged as a promising and practical 

approach for the excitation of dynamic surface plasmon polaritons in the subwavelength 

regime. The optical excitation of plasmons strongly depends on the light intensity, 

material, and geometry of the components [15,16]. The electrical component of the 

incident wave plays the major role in the induction of free electrons in metals [4]. On the 

other hand, noble metals (i.e. gold (Au), silver (Ag), copper (Cu), and aluminum (Al)) are 

the substances that have widely been employed for excitations of surface plasmons and 

development of plasmonic structures and devices for a couple of decades [17-19]. 

1.2. Motivation 

As a key counterpart of photonics, plasmonics is of interest to various fields of 

researches, because of having a broad range of applications extending from ultraviolet 

(UV) to the far-infrared (FIR) and terahertz (THz) spectra [2,20]. Plasmonic structures 
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are being explored for their significant potential for tailoring several optic-based devices 

and platforms including but limited to telecommunication nanophotonic devices [21-27], 

light harvesters and solar cells [28-32], biochemical and environmental sensors and 

transducers [33-36], transistors and photodetectors [37-40], metamaterials [41-44] 

advanced medical surgery tools [45,46], tumor and cancer therapies [47,48], 

photothermal heat generation [49,50], bubble formation for surgery [51], DNA detection 

[52], nonlinear optics [53,54], and surface-enhanced Raman spectroscopy (SERS) 

applications [52,55]. Although plasmonics facilitates the development of various efficient 

and practical devices, these devices suffer from both radiative and nonradiative losses 

[15]. To address such an inherent shortcoming, several strategies have been carried out to 

reduce the lossy behavior and increase the efficiency and responsivity of plasmonic 

devices that will be discussed in the following chapters [56]. 

1.3. Scope 

The major objective of this dissertation is to investigate novel subwavelength plasmonic 

structures to support ultrastrong resonances along the UV to the THz spectrum. Using the 

optically excited moments, we tailored and analyzed nanoplasmonic devices for various 

applications from sensing to switching. By underlying the physics behind the formation 

of fundamental and famous plasmonic resonances such as Fano lineshape, charge transfer 

plasmons (CTP), and toroidal moments, we employed these structures to develop 

efficient, cost-effective, functional, and practical advanced nanophotonic and bio-related 

devices. Using all of the mentioned resonant moments for developing optical and 

optoelectronic nano and microscale devices, we numerically and experimentally studied 

the plasmonic response of several devices for real nanophotonic applications. 
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This work also describes the biomedical applications of plasmonic moments and their 

advantages in biosensing applications. As promising platforms, this dissertation also 

focuses on the utilization of toroidal THz plasmonic metamaterials to design optical 

sensors for the detection of nanoscale and low molecular-weight infectious biomarkers. 

Introducing various structures and platforms, the exquisite properties of toroidal 

plasmonic metasurfaces for the detection of the presence of Zika-virus envelope proteins 

is discussed comprehensively with experimental demonstrations. This work also explains 

the methods and techniques to enhance the detection quality, sensitivity, repeatability, 

and reliability of toroidal THz plasmonic metasurfaces. 

1.4.Organization of the Dissertation 

The rest of the dissertation is organized as follows: Chapter 2 provides a brief review of 

the theory of surface plasmons excitation and the physics behind the formation of 

electron oscillations at the metal-dielectric interface in subwavelength regime. This 

chapter also covers the conventional numerical methods for analyzing the plasmonic 

response of various devices and nanostructures. The unique result of light-matter 

interaction is the formation of EM modes, described in Chapter 3. The spectral properties 

of various nanoscale structures based on both classical near-field coupling and strongly-

coupled (hybridized of plasmons) systems are expressed in details. Chapter 4 provides 

the plasmonic behavior of nanoscale objects located in subnanometer gap spots, 

characterized by quantum mechanical principle. In addition, this chapter focuses on the 

direct transfer of optically driven charges in jointed nanoparticles. Furthermore, the 

possibility of finely tuning the excited spectral features in these regimes are discussed in 

this chapter and the proposed solutions are explained using numerical tools. A new 
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family of EM multipoles, known as toroidal moments are explained in Chapter 5. This 

chapter introduces the theory of the excitation of dipolar and multipolar toroidal modes 

along the NIR to the THz band, and the solutions to optimize the tunability of these 

moments are explained comprehensively. By demonstrating the numerically analyzed and 

experimentally defined spectral properties of our tailored structures, this chapter helps to 

introduce the toroidal moments as fundamental resonances for developing advanced 

nanophotonic devices and biomedical-related platforms. 

In Chapter 6, the advantages of utilizing plasmonic structures in biomedical and 

clinical applications are reviewed and discussed. The generation of photothermal heat 

flux in Fano-resonant plasmonic assemblies is explained here. Finally, Chapters 7 and 8 

focus on the use of toroidal plasmonic metasurfaces for advanced biosensing 

applications. The simulations are followed by experimental investigations to define the 

sensitivity of toroidal THz plasmonic metamaterials for the detection of low-molecular 

weight infectious biomarkers and the methods for the optimization of sensors. Taking the 

advantage of the non-invasive and non-poisonous features of THz beam technology and 

also by employing the narrowness of the resonant lineshape of the toroidal plasmonic 

multipoles, we successfully provided label-free, real-time, room-temperature, fast, cost-

effective, promising, and accurate plasmonic metasensors as leading structures for 

advanced biosensing purposes. Chapter 9 concludes the work and provides a summary of 

the works that have been done and also provides a view for the possible future works that 

can be done using the proposed nano and microdevices. 
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CHAPTER 2 

Fundamental of Plasmonics 

Here, we describe the fundamentals, theory and existing and potential applications of 

surface plasmon resonances (SPR) that are required for better understaning the operation 

of the structures and devices presented in the rest of this dissertation. This chapter also 

provides an introduction to surface plasma fluctuations and a summary of their properties 

in metallic components, as well as the numerical approaches to analyze the spectral 

response of subwavelength plasmonic structures. 

2.1.Theory 

To understand the properties of SPRs in various subwavelength structures, one needs to 

understand the spectral response of noble metals. In a wide range of frequencies, the 

optical properties of metals can be explained by a plasma model. In this model, a free 

electron gas moves against fixed positive ion cores, while the electron-electron 

interactions are ignored. The corresponding response of the free electron gas to the 

applied electric field describes the optical properties of metals. Coherent oscillation of 

optical driven electrons is damped due to electron-core collisions with a characteristic 

collision frequency γ=1/τ of the order of 100 THz, where τ is mean free time of free 

electron gas, which is of the order of 10-14 s at room temperature. By using the Drude 

model for metals, one can obtain the complex permittivity of metals as a function of 

frequency in the following form [1]: 

 
2

2

1

1

p

i


 




 
 

 
 

     (2.1) 
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where ωp is the plasmon frequency of the corresponding bulk metal. The Drude free 

electron model of metals considers the valence electrons of the atoms to be free. When an 

electric field is applied, the free electrons accelerate and then undergo collisions with the 

characteristic scattering time [2]. By assuming the system is a loss-less medium, and 

neglecting the collision and scattering parameters, then: 

 
2

2
1

p
 


       (2.2) 

Consequently, the permittivity is negative when the frequency is lower than ωp. 
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Figure 2.1. Surface plasmon resonance excitation. a) Schematic, and b) cross-sectional 

representations for the excitation and oscillation of plasmons at the metal-dielectric interface. 
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hen a metal with negative permittivity meets another substance with a positive 

permittivity, therefore, an EM wave can be restricted at their interface according to the 

Maxwell’s equations (see Fig. 2.1), as follows: 

. 0

. 0

i

i





 

  

 

 

E B

H D

E

H

     (2.3) 

The corresponding TM equations can be written as: 

0

0

0

x z
y

y

x

y

z

E E
i H

z x

H
i E

z

H
i E

x



 

 

 
 

 


  




  



     (2.4) 

where the corresponding TM wave equation is: 

 
2

2 2

02
0

y

x y

H
k k H

z



  


    (2.5) 

Therefore, the electric and magnetic components above (z>0) and inside (z<0) the 

metallic surface can be written as follows: 

 

 

 

1

2 21
1 1 0 1

0

1

0

exp exp( ),

exp exp( ),      ( 0) where;   =

exp exp( ).

y x

x x x

x
z x

H A K z ik x

AK
E K z ik x z K k k

i

Ak
E K z ik x

i


 

 


  



    



  


 (2.6) 
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and, 

 

 

 

2

2 22
2 2 0 2

0

2

0

exp exp( ),

exp exp( ),      ( 0) where;   =

exp exp( ).

y x

x x x

x
z x

H B K z ik x

BK
E K z ik x z K k k

i

Bk
E K z ik x

i


 

 


  



   



  


 (2.7) 

Now, for the following boundary conditions:  

1 2

1 2

D D

E E

 


     (2.8) 

Then, we have: 

1 2

1 2

0

A B

AK AK

 



 
     (2.9) 

By considering the expressions for K1 and K2 as above, the dispersion relation equations 

are given by: 

22 2

2 22 22 2

22 2
2 1 2

2 2

1 2

11

       ;

2 1

pp px

p

x
p

k c

k
c

 


 

   
  

  
    

  
      

   (2.10) 

Consequently, the frequency-dependent complex permittivity can be written as: 

 
2

2
1

p
 


       (2.11) 
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Also, the complex wave vector x x xk k ik    for the propagation direction can be found 

using the previous equations as: 

1
2

1 2

1 2

1
2

1 1 2

2

1 1 22( )

x

x

k
c

k
c

  

 

   

  

  
       

     
          

   (2.12) 

where 1 1 1i     is the complex permittivity of the dielectric medium. In the other 

words, the complex wave vector can be written simply as follows: 

1
2

m d
x x x

m d

k k ik
c

  

 

 
     

 
   (2.13) 

where εm and εd are the permittivities of metal and dielectric media. The corresponding 

dispersion relation is plotted in Fig. 2.2. It should be noted that for the excitation of 

plasmons, it is impossible to generate such electron fluctuations directly from free space 

employing beam due to momentum mismatch. As shown in Fig. 2.2, the dispersion 

relation slightly approaches the light line at the minor complex wave vector (kx), which is 

why the excited nonradiative plasmon resonances cannot transform into light. Finally, for 

large complex wave vector (kx) and when 1 2  , we have: 

21

P
SPR








     (2.14) 

In this regime, both group and phase velocities decrease significantly and approach to 

zero, thereby, the SPR look like a localized oscillation of electron plasma [1]. In past 
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years, several methods have been carried out to excite plasmonic moments in a resonant 

manner based on light-matter interactions, such as Otto (see Fig. 2.3a), and Kretschmann 

configurations (see Fig. 2.3b). In the Otto setup a dielectric spacer between the prism 

(air) and the metallic surface, while in the Kretschmann configuration the dielectric prism 

directly contacts to the metallic surface and the dielectric section couples with the 

optically driven evanescent SPRs. Both setups have been broadly used for nonradiative 

plasmon resonance excitation and developing advanced nanophotonic systems. 

2.2.Numerical Methods 

In this subsection, we briefly describe number of well-known and promising numerical 

methods through analyzing their fundamental equations, which help to understand the 

 

Figure 2.2. Scheme of the dispersion relation diagram of nonradiative plasmons. a) 

Dispersion relation as a function of real part and b) imaginary part of wave vector. 
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type of problem correlating with subwavelength systems. Given the variety of approaches 

for analyzing nanophotonic and plasmonic structures, we explained some of the 

successful methods that are used for studying the optical response of the proposed 

structures and devices. One should note that most numerical methods are based on 

differential methods for solving the Maxwell’s equations in differential form. These 

techniques fundamentally rely on the volume discretization in a finite computational 

workplace [3]. 

2.2.1. FDTD Method 

The Finite-Difference Time-Domain (FDTD) algorithm is highly suited for modeling 

plasmon resonances and associated nanophotonic structures and nanodevices because of 

providing discretization flexibility and matrix free nature [3,4]. In this method, both time 

and workplace are discretized and also, all spatial and temporal derivatives in Maxwell’s 

 

Figure 2.3. SPR excitation setups. a) Otto configuration, b) Kretschmann configuration. 
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curl equations are substituted by finite difference equations [5,6]. In the FDTD 

framework, the most popular algorithm is introduced by Yee [7] and the corresponding 

details about Yee cell and additional details can be found in Refs. [3-8]. Here, we briefly 

explain the formulation and technical mechanism of the numerical tool. In the presence of 

beam source charges (ρ) and currents (J), Maxwell’s equations can be written in their 

differential form as follows: 

. 

. 0

t

t




  




  



 

 

D
H J

B
E

D

B

        (2.15) 

In the Yee algorithm, a Cartesian grid of rectangular cells with side lengths dx, dy, dz, for 

the spatial discretization and a time step dt for the temporal discretization are selected. 

The time step plays fundamental role to determine the stability of numerical analysis, 

known as Courant stability [9,10]. This would help to ensure about having stable 

numerical results, which can be described using following relation: 

0

2 2 2

1

1 1 1

x y z

c dt

d d d



 

    (2.16) 

Noticing in the Maxwell’s equations in Eq. 2.15, as an example, both Ampere’s and 

Faraday’s laws without the corresponding currents are considered. Taking the Ampere’s 

law as an example, the finite-difference update equations for the electric-field in the 

dielectric region can be extracted as: 
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   (2.19) 

where the subscript refers to spatial grid indexing, and the superscript refers to the time 

step. The obtained coordinate-dependent permittivity can be effectively utilized for the 

dispersive models in metallic sections. In terms of accuracy, the size of the discrete cells 

is critical for obtaining high accuracy and small dimensions are preferred (not larger than 

λ/20, where λ is the wavelength of the incident beam). Furthermore, to reduce and 

minimize the spurious reflection and destructive interference of scattered waves from 

boundaries into the workplace, perfectly matched layers (PML) can be incorporated 

through a modified Nabla operator with complex stretching coordinates, where complex-

frequency shifted stretching is employed [11,12]. Conventionally, in numerical methods 

based on the differential form of Maxwell’s equations, boundary conditions must be 

applied to the workplace. Depending on the planned application, several types of 

boundaries for the surrounding field can be applied such as PML, perfectly magnetic 
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conductor (PMC), metal, periodic, Bloch, Dirichlet, von Neumann, etc. It should be 

underlined that in the subwavelength systems with discrete symmetry, some nontrivial 

symmetry-driven boundary conditions can be applied on truncated domains [13]. In our 

analysis, the beam propagation direction is bounded with PML boundaries and the other 

directions are assumed to be periodic, resembles a planar metasurface composed of 

periodic blocks in arrays. 

On the other hand, the far field can also be perfectly calculated from the numerically 

defined near-field spectral response without the need of extending the computation grid 

[5]. Using such a technique, known as near- to far-field transformation, the Green 

theorem is applied on surface currents that are computed at the boundaries of the 

computational domain. In order to obtain the far-field properties of a subwavelength 

system, an incident pulse can be used and the Fourier transform of the interacting field 

can be calculated, which yields an entire spectrum in a single calculation [5]. This 

methodology needs nevertheless continuing the time iteration until the field values have 

decayed below a given threshold value and is limited in precision for resonators with high 

quality factors which decay slowly with the simulation time. Ultimately, the time-domain 

tools such as FDTD can provide the required calculations for light propagation in an 

ordinary manner. Propagation lengths, both radiative and nonradiative losses can be 

defined in a variety of nanoscale devices. [5,14]. The software that is employed in this 

thesis for FDTD calculations is FDTD Solutions, developed by LUMERICAL Inc. [15].  

2.2.2. Finite Element Method (FEM) 

The Finite Element Method (FEM) is one of common numerical analysis tools in 

nanophotonics, which allows for accurate calculation of EM field in the frequency 
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domain. By assuming a linear dependence of the magnetic and electric polarizations and 

also, by eliminating the magnetic field with the aid of the constitutive relations, the 

vectorial wave can be written using Maxwell’s equations as [16]: 

2

2

1
e

t t t
 



    
      

   

E E J
E    (2.20) 

where μ is the magnetic permeability, ε is the electric permittivity, and σe is the electrical 

conductivity. It is noteworthy that an exponential time-dependency (e-iωt) is applied for 

the time-harmonic fields. In this limit, the electric field equations in the frequency 

domain can be written by combining the Maxwell’s equations with an electrical current 

source (J) as follows: 

2

0 0 0

1
r

r

k ik Z


 
     

 
E E J     (2.21) 

in which μr, εr, k0, and Z0 are the relative permeability, relative permittivity, free space 

wave vector, and impedance, respectively. The solution of this equation with defined 

current and in the presence of general boundary conditions can be written as: 

   
1

ˆ ˆ ˆ
e

r

n n n


     E E U     (2.22) 

where γe and U are known parameter and vector, respectively. Then, using the functional 

as below [12]: 
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   (2.23) 

Therefore, searching for the stationary point of the functional above with respect to the 

electric field (δF=0) is equivalent to solving the boundary value problem including both 

Eqs. 2.21 and 2.22. It should be underlined that the proposed functional in Eq. 2.23 is for 

isotropic media and the same approach can be employed to extract a functional for an 

anisotropic media. In this limit, once the problem solved, the V domain can be separated 

in a set of elements and the corresponding electric field is expanded in each element on a 

set of basic functions. Similar to the FDTD and other numerical computational 

techniques, the entire workplace must be discretized including the structure, substrate and 

the superstrate. Looking for stationary point of the mentioned functional in Eq. 2.23, 

gives rise to solution which do not satisfy the divergence condition and boundary 

conditions at the edges and corners. To solve these shortcomings, edge elements with 

vector basis functions Nj were introduced via enforcing continuity of the fields and their 

curl for the basis functions. This results in implicit satisfaction of Gauss’ laws. For the N 

number of unknown as the number of edges, the electric field is expanded as follows: 

1

( )
N

j j

j

E


E N r     (2.24) 

where Ej are the unknown coefficients. By decomposing the equation above (Eq. 2.24), 

the variant problem δF=0 becomes: 
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and  

0 0. .j j j

S V

b dS ik Z dV   N U N J    (2.27) 

Finally, the system of equations above can be written in matrix notion consist of vector of 

unknown electric field intensities (E), source terms (b), and sparse matrix (M): 

ME b      (2.28) 

The calculation of eigenvalue problems employing FEM can be also applied to lossy 

structures such as plasmonic waveguides and analogous nanoscale devices. It should be 

noted that eigenvalue equations are not specific to FEM methods but also can be found in 

other approaches in the frequency domain computations. Furthermore, as a differential 

method, the FEM method needs the use of boundaries (i.e. PML) in a similar way to 

other numerical programs. 

Converse to FDTD method, the use of basis functions enables meshing the geometry 

of nanostructures with a high accuracy, which can be crucial when studying the effect of 

nanoscale variations of shapes on the optical properties and also sharp edges and cavities 
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[17]. Such a highly fine meshing makes FEM-based techniques highly fit for the 

simulation of subwavelength systems based on light localization and their related 

applications. Dispersive materials can also be directly implemented as the FEM method 

is in the frequency domain. In the frequency domain, the modes as well as their 

resonance frequencies, losses, and area can be directly calculated, which are critical in the 

design of cavities for nanolasers [18]. The software that is employed in this thesis for 

FEM calculations COMSOL Multiphysics 5.2 modeling tool, developed by COMSOL 

Inc. [19]. 
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CHAPTER 3 

Traditional Plasmon Resonant Modes 

It is well-accepted that light-matter interactions in subwavelength systems lead to the 

excitation of electric and magnetic dipole and multipoles with different intensities [1]. 

The optical properties of subwavelength materials can be determined by the 

corresponding EM dipole and multipole moments that can be excited in the constituent 

particles of a system. In this section, we present a brief explanation of the excitation and 

calculation of classical EM multipoles in arbitrary arrays of metallic scatterers. We also 

consider the excitation of dark modes in various nanoscale structures such as oligomers 

and multipixel resonators. This would help us to understand the formation of pronounced 

antisymmetric lineshapes in the system (i.e. Fano resonances). Then we present our 

numerical design and analysis of several novel structures and devices based on Fano-

resonances for advanced photodetection and chemical sensing applications in the UV 

spectrum. 

3.1. Classical Electromagnetic Multipoles 

The initial result of light-matter interaction in subwavelength regime is the excitation of 

dipolar and multipolar moments. The classical EM multiple expansion theory has been 

proposed and employed to analyze the electric and magnetic fields generated by spatially 

localized electric charges and currents [2]. In the optical physics, the multipole expansion 

tool is highly appropriate for explaining the scattering of optical fields by subwavelength 

objects. Conventionally, if the wavelength of the incident field is large compared to the 

size of the object (λ>>d), the scattering can be described by the lowest-order multipoles, 

the electric dipole, while the contribution of all higher-order multipoles are considered as 



26 

 

pure perturbations [2,3]. Therefore, the geometry of the scatterer determines the types of 

electric current modes that can be induced in it by the incident beam. To describe these 

modes, a set of orthogonal electric current multipoles must be accounted, composed of 

elementary point currents in simple configurations. In this method, each presumed 

element of the induced current multipole tensor reflects the strength of one of these 

configurations, which leads to having the ability to visualize the real electric current 

modes that will be excited in the targeted scatterer. 

To describe the multipole expansion of the scattered field, we firstly consider a plane 

wave with the electric field intensity of E0, angular frequency of ω, and wave vector of k. 

It is assumed that the particle is located in a lossless dielectric medium. The scattered EM 

field can be written in spherical coordinates in the form of the multipole expansion as 

follows [2]: 
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where Xlm and (1)

lh  are the normalized vector spherical harmonics and the spherical 

Hankel functions of the first kind, respectively. The wavenumber k is for the ambient 

with the impedance of Z. Here, the normalization of the multipole expansion was selected 

for both compact scattering and extinction cross-sections [4]. Now, by assuming the 
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scattered electric field Es is known in the area surrounding the scatterer, we use the 

orthogonality properties of the vector spherical harmonics (Xlm) and the scalar spherical 

harmonics (Ylm) to calculate the multipole coefficients from the distribution of the 

scattered electric field on any spherical surface encompassing the scatterer as: 
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The expressions for the coefficients above can be written in terms of scattered magnetic 

field Hs as well, as below: 
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As a specific case, for symmetric nanoparticles, all the coefficients of higher-order in l 

than lmax can be made equal to zero by correctly choosing the origin of the coordinate 

system. The value of lmax strongly depends on both the size and the geometrical 

complexity of the nanoparticle. The assumptions and calculations above were performed 

for single nanoparticles. In the multiparticle systems or arrays of nanoparticles (i.e. 

metasurfaces), the multipole coefficients must be deduced from the distributions of the 

electric current density in the particles. 

In continue, by applying the dielectric medium to the particle-based system, we can 

write the scattering current density as [3]: 
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0 ,( ) ( ) ( )s r r di      J r r E r    (3.6) 

Here εr,d is the real-valued relative electric permittivity of the dielectric and εr(r) is the 

complex-valued relative electric permittivity at any coordinate r. The electric field in Eq. 

3.5 contains both the incident and scattered fields by each nanoparticle (j) in a 

multiparticle system: 

,( ) i s jj
 E r E E      (3.7) 

It is assumed that each discrete nanoparticle consists of a non-magnetic, isotropic, and 

linear material. This allows to determine a distinct scattering source current (JS,j) in each 

nanoparticle (j) as: 

,S S jj
J J      (3.8) 

Using the Maxwell’s equations, one can derive the following equations for each particle 

[3]: 
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In these series of equations, the incident EM field and the scattered field by proximal 

nanoparticles are discreetly present through JS,j, resembling the effective current density 

that generates the scattered field of the jth nanoparticle. Therefore, using the first and last 

equations in Eq. 3.8, the scalar wave equations can be obtained as [2]: 
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By solving the Eqs. 3.10 and 3.11 and inserting them into Eqs. 3.3 and 3.4, one can 

obtain the multipole coefficients as below [3]: 
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where jl is the spherical Bessel functions. Using the integration of Eqs. 3.12 and 3.13 by 

parts to cast in the form below [3]: 
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where ( ) ( )l lkr krj kr   are the Riccati-Bessel functions, and the parameters ( )l kr  and 

( )l kr  are the first and second derivatives with respect to the argument kr. The 

corresponding Legendre polynomials are discussed by Jackson [2]. In additions the 

following functions are employed in the equations above: 
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Ultimately, for the scattering of light by a single nanoparticle, we can introduce the 

scattering cross-sectional spectra based on multipole coefficients based on Bohren 

method [5]: 
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and the extinction cross-section can be defined as below by following the same 

methodology, where the incident beam is x-polarized: 
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For y-polarized beam, the extinction cross-section can be written as: 
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Excitation of classical EM modes is not the sole result of light-matter interaction in 

nanoscale dimensions. In closely-packed and multiparticle systems such as nanoparticles 

clusters, excitation of various types of moments is possible that will be discussed in the 

following sections. 

3.2.Hybridization Theory 

Ultrastrong confinement and interaction of optically driven plasmons in subnanometer 

spots lead to hybridization of plasmons, has been employed as a theoretical approach to 

describe the sensitive structural tunability of the plasmon resonance frequency of any 

arbitrary shape of nanoparticles and also employed for developing advanced 

nanophotonic and bio-related devices [6-16]. The first observation of the plasmon 

resonance hybridization has been reported in concentric nanoshells or nanomatryoshka 

arrangement with high geometrical tunability and the ability to strongly confine plasmons 

(see Fig. 3.1). According to the hybridization theory in metallic nanoscale components, 

the electron gas deformations can be decomposed as spherical harmonics of order n. In 

this regime, the interaction of the excited plasmons on the inner and outer surfaces of a 

given nanoshell leads to two hybridized plasmonic modes for each positive harmonic 

order. Thereby, the frequencies of these moments can be described as [15]: 
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where the 
 mode corresponds to antisymmetric coupling between the sphere and 

cavity modes and the 
 mode corresponds to symmetric coupling between the two 

modes (see Fig. 3.2). Figure 3.2 illustrates a schematic model for the plasmon resonance 

hybridization for a nanomatryoshka system. Such an expression for the nanoshell 

plasmon resonance energies has been confirmed using quantum mechanical computations 

[17]. Although there have been outstanding progresses on the excitation of both spherical 

and nonspherical nanoparticles, the oligomers family consisting of spherical 

nanoparticles have witnessed growing attention because of possessing exquisite spectral 

lineshapes in hybridized plasmons states [18]. The simplest member of oligomers family 

is a pair of adjacent nanoparticles, known as dimer antenna, depicted in Fig. 3.3 [16]. 

Simple dimer aggregates allows for better understanding of plasmon hybridization 

concept. 

 

Figure 3.1. A representation of plasmonic nanomatryoshka. 
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In the plasmon hybridization theory, the conduction band electrons are modeled as 

charged, incompressible liquid locating on top of a rigid, positive charges represents the 

ion cores [19]. According to Nordlander et al. [19], the ion cores are treated within the 

 

Figure 3.2. An energy level diagram, for the hybridization model in metallic nanoshells 

resulting interaction between the sphere and cavity plasmons. 

 

Figure 3.3. Schematic art picture of a dimer antenna in hybridized condition 
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jellium approximation, hence, the positive charge (n0) is consistently allocates within the 

nanoparticle’s boundaries. Being consistent with both classical calculations, ab initio 

computations, and generalized multiparticle Mie theory [20], the proposed hydrodynamic 

method gives rise to the plasmon energies for metallic nanoparticles larger than a few 

nanometers. The plasmonic resonant modes can be resembled as self-sustained 

deformations of electron incompressible liquid. Therefore, the mere effect of such 

deformations is the formation of surface charges. These surface charges for an individual 

metallic nanosphere can be written by [9]: 
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    (3.23) 

where R is the radius of spherical nanoparticle, Ylm(Ω) is a spherical harmonic of the solid 

angle Ω, and Slm is the deformations amplitude defined the new degrees of freedom. 

 

Figure 3.4. Energy level diagram for plasmon resonances coupling in a) classical near-

field and b) hybridized regimes for a dimer nanostructure. 
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Accordingly the dynamics of the deformations is described by following Lagrangian: 
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where the bulk plasmon frequency is: 
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For a pair of spherical nanoparticles (with a separation distance of D) with 

subwavelength dimensions, the retardation effect can be simply neglected. Therefore, the 

dynamic of the plasmons can be estimated and defined by the instantaneous Coulomb 

interaction between the surface charges as below as a function of intercenter distance 

between nanoparticles: 
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el can be optimized for the polar axis along the dimer assembly axis and a real 

representation can be applied for the spherical harmonics [16]. As a specific case, dimer 

assembly is strongly polarization-dependent and for the excitation polarization along the 

dimer axis, large plasmonic resonance shifts in hybridized regime can be expected [1,21]. 

Conversely, for the transverse beam excitation, the structure does not show significant 

variations in the plasmonic response. In terms of plasmon hybridization theory, while the 

proposed dimer is hybridized, the bonding diagram reflects strong perturbations in the 

energy levels of bonding modes. Figure 3.4a exhibits the energy level diagram for a 

dimer assembly consisting of gold nanoparticles with the radii of 60 nm, located apart 

with two gap openings. For the dimer antenna with distant nanoparticles from each other, 

the arising moments weakly couple to each other. While for the proximal nanoparticles 

with a few nanometers gap spot between nanodisks, the induced moments strongly 

interact and leads to severe perturbations in the energy band diagram [21,22] as shown in 

Fig. 3.4b. 

 

Figure 3.5. Plasmonic response of an Al nanodimer. The extinction spectra and the E-field 

map are calculated numerically. The resonant multipolar peaks are denoted by P. 
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Figure 3.5 illustrates the hybridization of plasmons for a dimer structure composed of 

Al nanorings in strongly hybridized regime, obtained by our numerical analysis based on 

FDTD method. As a strategic and alternative metal for conventional costly noble metals 

for plasmonic purposes, Al has received growing attention in recent years due to 

providing low-cots nanofabrication feature and absence of interband transitions in the UV 

to the visible domain [23]. Considering the fast that Al suffers from rapid oxidation at 

low energy levels, the plotted profile in Fig. 3.5 is obtained by applying a few nanometer 

of oxide coverage around the nanoparticles (Al2O3). To this end, the Bruggeman model 

was applied to model the natural composition of Al/Al2O3 dielectric function using the 

equation below [24]: 
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where nAl and nox are the volume functions of Al and oxide encompassing the material, 

respectively. Here, to characterize the plasmonic response of the structure, we used the 

modified Drude model as: 
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where ωp is the bulk plasmon frequency, Γ is the damping constant, and ε∞ is the high-

frequency response. According to empirically defined values, following settings were 

applied to extract the spectral response of the structure: The thickness of the oxide cover 

is assumed to be 4 nm, with metallic Drude damping of Γ=1.2 eV and ε∞=3. Under the 
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plane wave illumination, three multipolar resonant modes are excited along the UV to the 

NIR spectra correlating with the dipolar (P1), quadrupolar (P2), and octupolar (P3) 

resonant moments. The inset is the E-field map, showing the resonance excitation and 

near-field coupling at the gap between proximal nanoparticles. 

The provided method works properly and accurately for simple nanoparticle 

assemblies (i.e. dimer, trimer), however, this model becomes extremely complicated for 

more complex nanostructure and nanoparticle assemblies. Therefore, numerical tools and 

programs can be considered as promising and simple approaches to study and estimate 

the plasmonic response of colloidal and self-assembled plasmonic nanoassemblies. 

3.2.1. Dark Modes 

As we mentioned in prior section, plasmonic dark modes are pure near-field resonances 

that can be successfully induced through the hybridization of plasmonic momenta 

interferences in a set of closely-packed nanoparticles in a quasi-static approximation [6]. 

In addition, dark modes also arise from the interaction of the bright modes of strongly 

coupled nanoparticles. Possessing longer lifetime compared to the bright modes, absence 

of classical losses, and lack of net dipole moments made the dark modes attractive for 

several applications from sensing [6] to waveguiding [13,14]. As it is presented in the 

earlier section, the simplest example of the excitation of dark modes is a coupled 

nanodimer composed of two adjacent nanoparticles, in which a dark mode can originate 

from an out-of-phase oscillation of the bonding superradiant bright mode (or dipolar 

moment) of the particles. This resulting in excitation of collective plasmon mode without 

a net dipole moment. Dark plasmonic modes cannot be directly excited with linearly 
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polarized beams, and in turn, one needs other illumination techniques and the proper 

geometries to excite such modes. As the initial and basic components, geometrical 

variations and symmetry breaking have been employed as the fundamental methods to 

excite dark plasmons in nanoparticle-based structures and antennas based on blocks 

[11,25,26]. Besides, several approaches have been carried out to excite dark plasmons in 

both symmetric and antisymmetric structures based on metallic and all-dielectric 

nanoparticles, such as using cylindrical vector beams (radially and azimuthally polarized 

lights), vortex beam to excite dark plasmons, and focused electron beams [6,27-30]. This 

was accomplished by using tailored far-field radiations techniques such as spatially 

inhomogeneous fields [31], evanescent excitation [32], subtle retardation effects [33], and 

spatial phase reshaping [34]. 

In terms of the optical physics, the interaction between LSPR excites in their electric 

near-fields can be resulted in Coulomb-type interaction between dipoles. Electrostatic 

approximation has been employed to model these interactions by neglecting the 

retardation effects on the basis of the subwavelength dimensions of nanoparticles [6,35]. 

This model indicates that the coupling between two neighbor particles (A and B) can be 

described by a coupling coefficient as follows [36]: 
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where GAB is a factor defining the geometrical coupling between the particles, ω is the 

applied field frequency, and ωA-iΓ/2 is the complex resonance frequency of confined 
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plasmons. Here, the geometrical factor (GAB) can be described as a dipole-dipole coupling 

term as [36]: 
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where d is the intercenter distance between nanoparticles and ABp  are the dipole 

moments, and d  is a unit vector along the line separating the nanoparticles. For smaller 

openings between nanoparticles, the high-order multipolar resonant moments can be 

excited and must be included in the expansion of the geometrical factor, hence, the 

coupling coefficient can be written as below, which includes all multipolar terms l and j 

of each individual particles: 
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In this limit, for an isolated nanoparticle (A), the incident beam will excite plasmon 

resonances at the surface of nanoparticle with the charge distribution of ( )r . Such a 

charge distribution can be written in terms of the eigenmodes of the nanoparticle ( ( )m

A r

) according to [6]: 
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where ( )m

Aa   are the excitation amplitudes, describes the coupling of the incident EM 

wave field with a particular eigenmode, and m is an index which indicates the mth mode 
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sustained by particle A. The arisen modes in this regime consist of doubly degenerate 

superradiant binding modes which are spanning the irreducible representation, including 

substantial red-shift in the corresponding frequency of plasmonic modes from proximal 

nanoparticles. The excited dipole moment in this regime can be written as: 
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in which φ is the angle of incident linearly polarized beam, and G is the interparticle 

coupling factor. The induced eigenmodes of the system strongly depends on the 

symmetry of the structure and dark mode between them can be identified by its 

narrowness, blue-shift and zero dipole moment. 

 

 

Figure 3.6. Schematic of interference between the superradiant and subradiant modes in a unit 

cell. 
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3.2.2. Fano Resonances 

The spectral response of a certain plasmonic subwavelength structure determines by the 

corresponding behavior of the excited surface plasmon resonances. In nanoparticles-

coupled systems, strong field enhancement between closely-packed nanoparticles gives 

rise to formation of energetic hotspots. Depending on the morphological and inherent 

characteristics of these components, some of them display unique spectral lineshapes 

known as Fano resonances, characterized by a narrow spectral transparency windows. In 

the Fano minimum wavelength, the scattering significantly suppresses and the absorption 

cross-section enhances [11,12,23,26-28,37,38]. It is well-acknowledged that Fano 

resonances arise from weak and destructive interaction between subradiant dark and 

superradiant bright modes in the energy continuum of the bright mode. Figure 3.6 

demonstrates the classical schematic of interference between the superradiant and 

subradiant moments in a given unit cell. It should be underlined that in the retarded 

region, the dark mode cannot couple directly to the incident beam. Furthermore, in terms 

of Mie theory for light scattering principle [2], the fundamental components of extinction 

cross-section are the scattering and absorption spectra, given by the following expression: 

ϭ=πd2Q, where d is the size of the nanoparticle or nano-object, and Q is the 

corresponding efficiency. Therefore, the scattering cross-section can be written as a 

function of resonance wavelength (λ), geometrical parameters, and EM intensities (aλ and 

bλ) as (the simplified form of Eq. 3.20): 
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size parameter, defining by q=ωd/c, where c is the velocity of light in a vacuum, and ω is 

the incident-beam frequency. The scattering intensities are reported by Bohren [5]. In the 

radiative coupling limit [38], an interaction between the dipolar (as the bonding bright 

mode) and quadrupole (as the antibonding dark mode) resonances leads to the excitation 

of Fano resonant moment. Interference of the incident and re-emitted beam generates a 

complex near-field pattern and gives rise to both destructive (field suppression) and 

constructive (field enhancement) interference of the EM field, similar to the Fano 

resonances arisen from quantum particles scattered by a potential with quasidiscrete 

 

Figure 3.7. (a) Schematic and (b) top-view image of an eight-member octamer cluster 

composed of gold nanorings on a multilayer substrate. 
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levels [39]. Depend on the geometry of a given nanostructure, high multipolar surface 

modes can also interfere with the broad dipole moment and generate higher-order Fano 

resonances when the size of the system increased. The simplest example of the double or 

triple Fano-resonant nanostructures is the symmetric heptamer composed of split-rings, 

proposed by Zhang et al. [40]. 

In the next section, we present our numerical and analytical studies for the excitation 

of Fano lineshapes in plasmonic assemblies for biochemical and gas sensing as part of 

this dissertation work. 

3.2.2.1.Fano-Resonant Asymmetric Nanoring Clusters 

As an example for the formation of Fano lineshape, Figs. 3.7a and 3.7b illustrate the 

schematics for a plasmonic octamer cluster composed of gold nanorings, closely coupled 

to each other with the description to the geometrical parameters [10]. It is assumed that 

the entire cluster is deposited on a multilayer substrate consisting of Si, SiO2, and 3C-SiC 

sublayers to provide strong confinement of light and induce strong Fano lineshape. The 

refractive index of each layer was set to: nSi=2.647, nSiO2=1.446, and nSiC=3.497 [41]. 

Employing Au substance with the empirically defined refractive indices by Johnson-

Christy measurements [42], we calculated the plasmonic response of the structures and 

the formation of Fano resonant dip numerically, shown in Fig. 3.8. The utilized 

geometrical sizes are listed inside the picture and the thickness and gap distance between 

nanorings are fixed to 60 nm and 12.5 nm. Technically, the two relevant modes for Fano 

interference are a superradiant bright mode, where the dipolar plasmons of all nanorings 

oscillate in-phase and in the same direction. In addition, a subradiant dark mode for the 

middle nanoparticle oscillate out-of-phase respect to the surrounding nanorings. The 
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Fano dip here arises in the retarded limit and in this regime, the bright mode becomes 

superradiant and the dark mode remains subradiant. In this limit, a weak and destructiuve 

interference between the dark and bright modes gives rise to the formation of a minimum 

in the scattering spectra. Here, we observed the excitation of distinct Fano lineshape 

around the near infrared region for variations in both inner and outer radii of nanorings 

homogenously. For the inner radius variations (Rci), increasing the inner radius red-shifts 

 

Figure 3.8. The plasmonic responses for the octamer cluster composed of Au nanoshells. 
a) The scattering spectra for the octamer assembly, while the inner radius of central particles 

is variant. b) The spectral responses for the octamer cluster composed of Au shells under 

transverse electric polarization mode, while the outer radius of central particles is variant. c) 

The two-dimensional snapshot of plasmon resonance excitation inside the nanoshells and its 

coupling between proximal particles. 
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the position of the Fano minimum to the longer wavelengths and the narrowness 

enhances (see Fig. 3.8a). On the other hand, by keeping other geometrical components 

size unchanged, and increasing the outer radius leads to more enhancement in the 

linewidth of Fano dip and minor red-shift in the position of the Fano dip (see Fig. 3.8b). 

Figure 3.8c exhibits the E-field maps for the plasmon hybridization in the octamer cluster 

and formation of hotspots at the Fano dip frequency under x-polarized beam illumination. 

In continue, we demonstrate the plasmonic response and the corresponding charge 

distribution at the position of bright mode and Fano dip for various structures, verifying 

the in-phase and out-of-phase oscillation of electrons at the superradiant bright and Fano 

mode, respectively. These examples contain the oscillation of charges in both simple and 

complex, symmetric and antisymmetric nanostructures, giving further insight into the 

 

Figure 3.9. Plasmonic Response of a single-stone ring-shapes structure. a) Scattering cross-

section for the formation of Fano dip. b), and c) Charge distribution and E-field maps at the Fano 

dip position, respectively. 
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Fano resonance formation mechanism. This proves how the charge distribution 

destructively perturbs across the structures, consistent with hybridization theory. Figure 

2.9 demonstrates the spectral properties of a single-stone ring-shaped nanostructure 

composed of a splitted nanoring and a nanodisk [43]. As a simple nanostructure, using a 

step-by-step method, we plotted the formation of Fano-like lineshape. This approach 

allows for defining the excitation of Fano-like resonant dip with high accuracy. 

Considering the Au nanosphere as a part of the proposed structure with the radius of 85 

nm, a distinct broad extreme appears at λ=580 nm (solid curve in Fig. 3.9a). The other 

curve (dashed) is correlated with the isolated split-ring spectral response and has two 

distinct peaks for narrow plasmon resonant modes. The dotted curve representing the 

scattering cross section spectrum of the combined system includes a dip around λ∼800 

nm. The overlapping region is shown with the shaded area between the low energy tail of 

the sphere peak and the high energy of the split-ring. In this region, electric charge 

density plot could help to understand the behavior of the structure and also formation of 

Fano-like mode. Figure 3.9b and 3.9c illustrate the charge density direction and E-field 

distribution in the proposed system, where the direction of the incident E-field is in 

 

Figure 3.10. Plasmonic Response of an Al heptamer. a) Schematic of the Al heptamer with a 

coverage of oxide layer around nanodisks. b) Scattering and absorption cross-section for the 

formation of Fano dip. c) E-field maps at the Fano dip position. 
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opposite direction with the excited fields in the split-ring (out-of-phase regime), which is 

the most important requirement to generate Fano resonance dip. 

3.2.2.2.Fano-Resonant Al Clusters for UV band 

As another example, Fig. 3.10a exhibits the schematic picture of a seven-member 

heptamer assembly composed of Al nanodisks, employed for developing a photodetector 

device. Here, we used Al nanodisks to induce Fano resonances along the UV domain. To 

this end, Al nanodisks with the radius of 70 nm located in 12 nm distance from each other 

with the thickness of 35 nm. Figure 3.10b represents the scattering and absorption cross-

sections for the Al heptamer. Clearly, an antisymmetric, narrow, and tunable plasmonic 

Fano minimum mode is induced around λ~325 nm, which is between two distinct 

shoulders correlating with the bonding and antibonding plasmon modes at λ~250 nm and 

λ~385 nm, respectively. Using previously discussed geometries for the heptamer clusters, 

we set the Al2O3 layer thickness to tox=2 nm. In our analysis, we detected a distinct 

absorption extreme at the Fano dip position with a couple of absorption shoulders in the 

vicinity of the bonding and antibonding modes in both of the examined heptamers. The 

E-field map in Fig. 3.10c demonstrates the plasmon resonance hybridization and 

formation of hotspots in the cluster at the Fano dip wavelength. The ultrahigh sensitivity 

of the Fano resonances to the environmental perturbations and geometrical variations has 

been exploited for developing advanced and sensitive plasmonic devices such as 

biosensors, modulators, and nonlinear optics [11,44,45]. In addition, the strong 

absorption of optical power at the Fano dip frequency has led the researchers to employ 

this exquisite feature for developing light absorbers and photocurrent generation in 

several types of plasmonic devices [46,47]. In continue, we summarize some important 
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and fundamental applications of Fano-resonant nanostructures in advanced nanophotonic 

systems. 

3.2.2.3.Fano-Resonant Biochemical Sensors 

Much of the recent and current interest in Fano-resonant plasmonic nanosystems 

originates from their potential as efficient, precise, real-time, and label-free LSPR sensors 

[10,12]. The highly complex interference phenomena underlying the excitation of Fano 

modes in plasmonic structures are extremely sensitive to the environmental refractive 

 

Figure 3.11. Plasmonic Response of an Al decamer. a) and b) Schematics of the Al decamer 

with a coverage of oxide layer around nanodisks. c) Scattering cross-section for different 

geometrical variations. 
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index variations. Possessing typically narrow linewidth allows for accurate measurement 

of minor Fano lineshape shift due to changes in the dielectric properties of the 

nanostructure medium. The sensitivity of LSPR of a plasmonic nanosystem evaluates by 

figure of merit (FoM). This parameter defines as the ratio of the plasmon energy shift per 

refractive index unit change in the surrounding medium, divided by the width of the 

spectral feature or lineshape [48]. In other words, the FoM can be calculated by dividing 

the sensitivity of the structure by the resonance shift (Δλ). As a practical example, we 

calculated the sensitivity and accuracy of a plasmonic nanosystem for the presence of 

various gases in the surrounding medium of a Fano-cluster using numerical methods [49]. 

Figures 3.11a and 3.11b show schematic pictures of a ten-member decamer assembly 

composed of Al nanodisks with a few nanometers of Al2O3 oxide layer around the 

nanodisks. The plasmonic properties of the system are shown in Fig. 3.11c for various 

 

Figure 3.12. Numerically calculated scattering spectral responses for the decamer cluster, 

while the refractive index of the environmental medium is variant. a) The position of the FRs 

to the presence of N2 and O2 are evaluated. b) The position of the FRs for the presence of Ar and 

CO2 is determined. c) The position of the FRs for the presence of He and Xe is drawn. 
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geometrical dimensions, specified inside the profile. Obviously, a distinct Fano dip is 

appeared at the UV band and slightly red-shifted to the lower energies by varying the 

corresponding geometrical sizes. The unique sensitivity of the induced Fano dip is 

employed for the detection of various gases. It is well-accepted that plasmonic 

nanostructures can be tailored to sense the gas analytes based on refractive index 

adsorption-dependent mechanism [50]. Accordingly, Jackšič et al. [50] have qualitatively 

demonstrated the performance of plasmonic sensors capable to sense the environmental 

refractive index perturbations based on adsorption technique. Considering the refractive 

index fluctuations through the surrounding medium of the structure, thus, the refractive 

index alterations are pertinent to the number of adsorbed molecules. 

Using the proposed decamer nanosystem in this study, we try to present a simpler and 

effective method to sense the subtle refractive index variations based on Fano resonance 

behavior. To this end, the appeared Fano minimum in the UV spectrum is exploited to 

sense subtle variations in the refractive index of the ambient perturbations, while the 

dielectric substances in the ambient are gases, such as nitrogen (N2), oxygen (O2), carbon 

dioxide (CO2), argon (Ar), helium (He), and xenon (Xe). The challenging issue here is 

the small differences between the refractive indices of these materials which makes the 

identification of these elements highly difficult. Thus to sense the presence of these 

gases, we have to yield Fano minimum in the UV spectrum based on a plasmonic Fano-

resonant decamer. Therefore, illuminating the examined assembly by an incident plane 

wave source (with the transverse polarization mode), and exposing the structure by each 

one of the gases, we are able to calculate and draw the scattering spectral profile 

numerically based on FDTD method, as exhibited in Fig. 3.12. To provide more clear and 
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definitive results, we demonstrated each one of the diagrams separately for two different 

gases with exact diagrams that illustrate the slight movements in the Fano dip and its 

quality as well. Figure 3.12a reveals excitation of pronounced Fano minima at λ∼ 281 nm 

and 275 nm for the presence of nitrogen (N2) and oxygen (O2), respectively. It is obvious 

that minor differences between the refractive indices of declared gases cause difference in 

the position of Fano dips and also the corresponding depth. Accordingly, the induced 

Fano dip for the N2 with higher refractive index is deeper and red-shifted to the longer 

wavelengths. Next, we compared the spectral response of the decamer in presence of two 

other gases (CO2 and Ar) that have pronounced differences in refractive indices. Figure 

 

Figure 3.13. Sensitivity measurement of the plasmonic gas sensor. a) A linear plot of 

sensitivity for the position of plasmon resonance peaks over the refractive index variations of the 

ambient for an Al-based decamer. b) Linear plot for the figure of merit is depicted in the 

presence of various gases and quantified for the proposed compositional decamer for the 

presence of various gases. 
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3.12b illustrates calculated scattering cross-section for the assumed regime under 

transverse electric polarization mode numerically. Noticing in this plot, we detected two 

Fano minima at λ∼ 284 nm and 320 nm for the presence of Ar and CO2, respectively. The 

noteworthy point here is the dramatic depth of the Fano dip for CO2 in comparison to N2. 

As a result, increasing the refractive index directly yields deeper Fano minimum which 

provide precise detection at the different surrounding ambient. Finally, we evaluated the 

spectral response of the nanostructure to the presentment of the He and Xe in Fig. 3.12c. 

Here, two different gases with a big gap between refractive index measures are 

considered which verifies the subtle modifications around the decamer. As we expected, 

the Fano minima for the He with the smallest refractive index occurred at λ∼ 192 nm and 

for the Xe the Fano position red-shifted to the λ∼ 280 nm. For the final verification of the 

structure to utilize in sensing of LSPR in the UV spectrum, we quantified corresponding 

sensitivity and FoM by plotting the linear diagrams for each one. For sensitivity 

determination, we plotted energy peaks positions over the refractive index variations, 

where for FoM definition the energy deviations over the refractive index variations are 

computed and depicted. Figure 3.13a depicts the sensitivity diagram for the examined 

decamer during exposing by various gases which is quantified as S= 329 nm.RIU−1. In 

addition, we computed the plasmon resonance energy shifts over the refractive index 

variations as a linear plot. Technically, dividing the plasmon energy shifts per refractive 

index variations of the ambient by the width of scattering peak helps to realize the 

required FoM numerically. For the obtained asymmetric Fano resonances in the UV 

spectrum, the resonance energy is defined as the middle point between the plasmon 

energy (eV) of the minimum and maximum peaks. Figure 3.13b depicts the linear plot of 
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FoM determination and accordingly, the FoM is measured as 15.24 which proves the 

preciseness of the designed complex plasmonic nanostructure in sensing the minor 

alterations in the refractive index of environmental gas substances. The same strategy can 

be utilized for detection of liquids or chemical components. Plasmonic biochemical and 

biological detractors based on Fano resonances have been employed for several practical 

applications with different accuracy. Here, we propose and describe the sensing 

 

Figure 3.14. a) The cross-sectional snapshot of the transverse electric mode distribution in a 

proposed multilayer nanocluster-based sensor, while the refractive index of the medium is n= 

1.44. A low leakage of the confined field is observable between SiC and SiO2 layer due to high 

confinement of light by cluster. b) Calculated confinement factor for the multilayer structure 

over the thickness of SiC layer, while the size of nanocluster is unchanged. Also, this 

parameter has been compared for a structure composed of Au slot and without plasmon 

resonance property regimes. 
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properties of a Fano-resonant nanoshell cluster on a multilayer substrate composed of β-

SiC/SiO2/Si for advanced sensing applications [10]. The schematic picture and the 

plasmonic response of the structure were plotted and explain in previous section (see 

Figs. 3.7 and 3.8). Here, the narrowness of Fano dip and also the strong field confinement 

due to the specific properties of the substrate allows for precise sensing of the 

environmental perturbations. In practical biochemical sensing applications, perturbations 

in the environmental refractive index causes to blue- or red-shift of Fano dip. In this 

regime, excitation of the presented plasmonic nanostructure by a plane wave source and 

immersing it in a dielectric liquid, we would be able to probe and investigate its 

plasmonic response by sketching the scattering cross-sectional profile as a function of the 

refractive index. Considering Lambert–Beer's law for the chemical sensing systems, 

distributing the optical energy along the nanostructure, a large amount of incident light 

can be absorbed by a simple waveguide substrate such as SiO2. As a results, using 

multicomponent structures would be helpful to reduce the amount of this destructive 

influence [41]. Pandraud et al. [51] have proved that the absorption of optical energy in 

waveguide systems can be described as: 

01

e a

E
log

flc E
       (3.35) 

where α is the absorption coefficient,  f is the confinement factor, l is the length of the 

substrate waveguide, ce is the concentration of sensing environment, which is a variable 

parameter based on refractive index modifications, and E0 and Ea are the incident light 

intensity (amplitude) without and with energy absorption in the sensing environment. 

Here, two mechanisms were employed to define the accuracy of the proposed plasmonic 
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sensor by quantifying the confinement factor of the structure [52] and plotting the 

corresponding FoM. We first use the confinement factor measurement to evaluate the 

effect of multilayer structure on this parameter, help us to determine the exact thicknesses 

of the layers. Then, we quantified corresponding FoM for the structure numerically by 

plotting the plasmon resonance energy alterations (ΔE (eV)) across the ambient refractive 

index (n) variations. To estimate the confinement factor, we used following method to set 

the appropriate geometrical dimensions for substrate layers: It is shown that the 

sensitivity of a simple multilayer sensor is proportional to “lfα,” or in other words, 

dividing the ratio of absorbance variations (ΔA) with the concentration perturbations 

(Δce) in the environmental condition yields the sensitivity of the plasmonic structure [53]. 

Previous studies have verified that using multilayer component and depositing metallic 

layer above the substrate as a sensing zone is a promising approach to improve the 

sensitivity of the structure due to the light confinement by metallic layer [54]. Here, for 

sensing part of the proposed multilayer structure, we used a Fano-resonant nanocomplex 

to provide strong confinement of light and localization of excited plasmon resonance 

modes via strong localization and hybridization of plasmon resonances, resulting strong 

and sharp Fano minimum. Figure 3.14a exhibits a cross-sectional snapshot for the EM 

field confinement between β-SiC substrate and nanoshell octamer under illumination of 

transverse polarized beam. The geometrical dimensions for the cluster are based on the 

values used in the prior section and the default thickness for the β-SiC layer is set to 85 

nm. By varying the thickness of the β-SiC substrate, we calculated the confinement factor 

and depicted the results in Fig. 3.14b. Numerically calculated confinement profile verifies 

the point that for the presence of the metallic nanoshell octamer, the maximum of 
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confinement factor is achievable for the β-SiC with a thickness of 75 nm. The figure also 

compares the confinement factor for the presence of simple Au layer with a thickness of 

55 nm, Au nanoshell cluster, and non-surface plasmon (or pure β-SiC) regimes, 

numerically. As it is obvious, employing a cluster with the height of h=60 nm, the 

structure shows superior behavior in comparison to the other investigated structural 

alternatives and provides a confinement factor of 0.992 for a SiC layer with the thickness 

 

Figure 3.15. Chemical sensing properties of sensors. a) Calculated scattering spectra for the 

proposed nanosensor while immersing by mentioned liquids. The Fano dip red-shifts by 

increasing the refractive index of the medium and becomes narrower and deeper. b) Quantified 

FoM for the plasmonic sensor by sketching the linear fit of plasmon energy (ΔE) differences over 

the refractive index (n) alterations. 
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of 75 nm. For the case of using an Au slot with a thickness of 55 nm, the confinement 

component is lower than the cluster-based configuration reaching to a maximum value of 

0.951 for a β-SiC layer with a thickness of 115 nm. Noticing in depicted snapshot in Fig. 

3.14a, increasing the thickness of the β-SiC layer improves the confinement of plasmon 

resonance modes and prevents field escaping to the isolation section (SiO2) of the 

multilayer structure. Finally, for the pure β-SiC or non-surface plasmon resonance 

regime, the situation is worse and the confinement factor is lower than <0.52. The 

confinement factor decreases by increasing the SiC layer thickness exponentially due to 

high absorption of optical energy by the substrate layer, led to undesirable losses. The 

noteworthy point here is the high confinement factor in the range of 0.912–0.992, 

achieved for the proposed configuration with various thickness of SiC layer. This short 

range of variation in is an advantage for the fabrication processes, making the 

performance of the structure relatively insensitive to the subtle variations in the thickness 

of semiconductor layer. 

To determine the performance of the proposed nanostructure for practical sensing 

applications, we investigated changes in its plasmonic response when the refractive index 

(n) in the surrounding medium is changed. Immersing the multilayer structure with Au 

nanoshell cluster in various liquids with different refractive indices, we measured the 

scattering spectra as a function of refractive index numerically. To this end, we used 

following liquids: C4H10O (Butanol) n=1.399, CH3COCH3 (Acetone) n=1.351, CHCl3 

(Chloroform) n=1.445, and C6H6 (Benzene) n=1.501. Figure 3.15a exhibits the computed 

scattering cross-sectional profile for the proposed structure for varying the refractive 

index of the ambient. Increasing the refractive index of the surrounding medium red-
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shifts the Fano resonance position to the longer spectra, while the Fano dip becomes 

narrower and deeper. For instance, a pronounced Fano minimum is observed at λ ∼ 1380 

nm for the air ambience and on the other hand, for the benzene medium the Fano dip is 

red-shifted to λ ∼ 1690 nm. Using this profile, we determined the sensitivity of the LSPR 

for the studied nanostructure by calculating the FoM. To quantify the FoM, we 

determined the ratio of the antisymmetric Fano resonance energy (ΔE (eV)) shift per 

refractive index (n) unit variations of the environmental medium. To this end, finding the 

midpoint of the resonance energies of the initial and last Fano dips, we calculated the 

change of the resonant energy in response to the ambient index change. This dependence 

is plotted in Fig. 3.15b with a linear fit. Finally, we divided the slope of linear fit by a 

Fano line width (0.102 eV) and found the FoM as 22.25 for the proposed structure. In the 

next section, we present numerical studies for the Fano-resonant nanoparticle clusters-

mediated UV photodetector device as part of this dissertation work. 

3.2.2.4.Fano-Resonant Plasmonic UV Photodetectors 

In recent years, there has been growing interest for plasmonic optoelectronic devices (i.e. 

transistors, photodetectors, light harvesters) for a wide spectral range covering THz to 

visible frequencies [55,56]. In all these works, several strategies have been carried out to 

enhance the photocurrent, responsivity, and quantum efficiency of the optoelectronic 

devices. Recently, applying the Fano effect in developing optoelectronic devices has 

received growing attention due to unique features of this resonant moment. As strategic 

devices for the next-generation advanced nanophotonic technologies, plasmonic 

photodetectors are promising optoelectronic devices with a wide range of applications 

from sensing to filtering and switching [55,57,58]. In the past decade, several schemes 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-24-12-13665&id=344486#ref1–3
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have been used to enhance the efficiency and responsivity of plasmonic photodetectors. 

For instance, graphene plasmonics has been introduced as a reliable approach to optimize 

the absorption of metal-semiconductor-metal (MSM) photodetectors including Schottky 

contacts across the optical domain to the MIR [59]. Moreover, plasmonic nanoparticles 

with absorptive characteristics (Ohmic losses) have widely been utilized to improve the 

spectral response of detectors [60]. In the previously reported works, several techniques 

were used to enhance the detection performance of plasmonic photodetectors such as 

improving the Schottky barrier height at the metal-semiconductor interface, which 

provides a wider depletion region and excitation of surface plasmon resonances based on 

collective, coherent hot electron oscillations [61]. 

Comparing various types of plasmonic photodetectors for various ranges of spectrum, 

the UV detectors are very useful for applications in UV astronomy, environmental 

monitoring, missile warning, and biotechnology and medicine. However, in spite of the 

extensive researches, the UV photodetectors suffer from dissipative losses, large dark 

currents, limited responsivity and quantum efficiency [62]. To address these challenges 

and improve the performance of the plasmonic UV detectors, two major methods have 

been proposed: (1) Avalanche multiplication, and (2) photoconductive gain [62]. 

However, high responsive gallium nitride (GaN)-based avalanche detectors suffer from 

an increased noise. On the other hand, the photoconductive UV detectors are slow and 

noisy. As another solution, GaN-based UV photodetectors with Ag plasmonic 

nanoparticles have been introduced to enhance the responsivity [63]. The major problem 

correlating with this method is the performance of utilized metals for UV bandwidth. As 

we discussed in the previous sections, the plasmon resonances in the subwavelength 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-24-12-13665&id=344486#ref4
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-24-12-13665&id=344486#ref8,9
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structures based on conventional noble metals (e.g. Au, Ag, and Cu) can be effectively 

tuned across the visible wavelengths to the NIR. However, extending these plasmonic 

properties into the UV spectrum is highly challenging due to the intrinsic limitations in 

the chemical characteristics of the used metals. For instance, Ag shows dramatic 

degradation in plasmonic properties because of rapid oxidation and Au suffers from the 

interband transitions in the UV band. Lately, Al, Rhodium (Rh), Gallium (Ga), 

Chromium (Cr), and Indium (In) have been introduced as potential plasmonic materials 

for the UV spectrum [64]. Al has extensively been utilized for designing light harvesting 

devices, nanoantennas, cathodoluminescence spectroscopy, and antireflective surfaces 

[65], in spite of the inherent and rapid oxidation. Al also shows significant EM field 

localization because of its low screening (ε∞≈1) in comparison to gold (ε∞≈9) and Ag 

(ε∞≈5). In addition, Al has high electron density since a single Al atom contributes three 

 

Figure 3.16. Aluminum plasmonic photodetector. a) Schematic of the plasmonic photodetector 

composed of Al nanodisk clusters deposited on GaN-sapphire substrates. The inset are the 

definitions for a nanodisk and a heptamer cluster with geometrical parameters. b) A top-view of 

the photodetector with the geometrical dimensions identification. c) The cross-sectional view of 

the hot electron generation and transform under the Al-based nanodisk clusters at the GaN-metal 

interface. d) Schematic band diagram for the Al-GaN interface, showing the carrier formation 

mechanism in the device. 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-24-12-13665&id=344486#ref19
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electrons compared to a single electron per atom for Au and Ag [65]. Due to the 

negligible influence of interband transitions in Al across the UV spectrum, therefore, the 

geometry of nanoscale structure plays a major role in decaying plasmons and generation 

of photoexcited hot carriers during light-matter interactions. Here, we propose and 

extensively analyze a novel device based on plasmonic Al/Al2O3 nanoparticle assemblies 

integrated into a GaN UV photodetector. To this end, we utilized seven-member 

heptamers with the symmetry of a benzene molecule as Fano-resonant plasmonic 

nanoclusters. All of the Al particles are deposited between Nickle (Ni)/Au fingers on a 

GaN active layer grown on a sapphire substrate. The presented results show that 

nanoplasmonic Al assemblies could generate hot electrons to enhance the absorption via 

inducing the Fano resonance modes across the UV spectrum. The proposed structure 

could realize the UV photodetectors with a significantly improved responsivity.  

Both radiative and non-radiative excitation of plasmons in metallic structures and 

their drastic decay leads to generation of hot carriers at the metal-semiconductor 

interfaces [66]. The surface modes are important to attain the plasmon resonant behavior 

and hot carrier distribution at the metal-semiconductor interfaces. In the proposed system 

here, the confined plasmons also give rise to the formation of dynamic hotspots with 

extremely intense local fields in the capacitive regions between the closely-coupled 

particles. Assuming electrons have an isotropic momentum distribution, approximately 

half of the photoexcited electrons are expected to be transported to the Al-GaN interface. 

Due to the continuous distribution of highly energetic hot electrons in the Al 

nanostructures [67], hence, we expect large number of charges to reach the metal-

semiconductor interface compared to the conventional noble metals. Figure 3.16a shows 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-24-12-13665&id=344486#ref22
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a three-dimensional schematic of the proposed plasmonic UV detector (not to scale). The 

device comprises arrays of Al/Al2O3 heptamer nanoclusters between two Ni/Au fingers 

(electrodes) deposited on an undoped n-type GaN epilayer with the thickness of 4 μm 

which is grown on a sapphire substrate. The inset figure shows the geometry of the 

heptamer assembly. The space between two proximal heptamers is set to 250 nm to 

prevent any destructive optical interference between the scattered fields associating with 

hybridized modes arising from the nearby antennas. In Fig. 3.16b, we depict the 

important geometrical dimensions for the metallic electrodes, the overall size of the 

proposed photodetector, and the distance between two fingers. Using the plasmon 

hybridization theory to analyze closely packed nanoscale assemblies [15], the plasmon 

responses of various types of Al-based nanodisk oligomers and monomers have already 

been investigated numerically and analytically in the previous sections. It is also shown 

that Al nanodisk heptamer antennas with a thin oxide layer (2-25 nm, depends on the size 

of consisting particles) can be tailored to support strong plasmonic FR mode across the 

near-UV (λ~350 nm) band. However, this wavelength is not unique and the position of 

Fano minimum can be tuned via modifications in the geometrical, chemical and 

environmental parameters of the assembly. In the proposed plasmonic UV detector, we 

used nanodisks with following geometrical dimensions: the radius of nanodisks is R= 70 

nm with the thickness of t= 35 nm separated with the offset gap of D7h= 12 nm. It should 

be noted that while the thickness of the oxide layer around nanoparticles is varied the size 

of offset gap is kept fixed to satisfy the required near-field coupling strength. To provide 

a detailed study and compare the effect of Al heptamer arrays on the responsivity and 

performance of the structure, we also demonstrate the spectral response of the structure 
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without presence of antennas on GaN as the non-plasmonic regime. The frequency-

dependent absorption mechanism of the proposed plasmonic UV detector is based on the 

hybridized plasmon resonant modes due to the interaction of an incident beam with the 

metallic antenna. The maximum absorption can be achieved at the spectral position of the 

antisymmetric Fano lineshape, because of the suppression of the scattering bright 

resonant dipolar peak by narrow antibonding dark mode. Such a significant absorption 

leads to generation of large number of hot carriers at the metal-dielectric interface, which 

are transferred to semiconductor surmounting the Schottky barrier and collected by the 

electrodes resulting a remarkable photocurrent and hence, high responsivity. Figure 2.16c 

displays a two-dimensional (xz-view) cross-sectional schematic of the proposed UV 

detector displaying the hot electron transport in the GaN layer to the adjacent electrodes. 

It is well-understood that in a metal-semiconductor system, reduced electron-electron 

scattering in the metallic part of the nanoantenna increases the number of hot electrons 

transferred to the semiconductor layer [66,68]. This ultrafast transition of plasmonic 

charges leads to accumulation of more hot electrons and sweeping them before 

immediate recombination. Figure 2.16d demonstrates the schematic band diagram profile 

for the proposed plasmonic device, showing the carrier formation and transition 

mechanisms and sweeping opposite charges to the nearby electrodes. When a bias is 

applied between the metallic contacts one forward and one reverse biased Schottky 

junctions are formed. The large electric field in between, results in sweeping of the 

photogenerated hot electrons to the positive electrode and thus producing a photocurrent. 

However, due to losses via back-scattering, inelastic collisions, and heat energy 

conversion (internal damping), not all of the photoexcited electrons are injected to the 
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semiconductor [68]. Thus we have to consider only the hot carriers within the mean-free 

path (MFP) length (lp) distance from the interface for transferring to the semiconductor 

over the Schottky barrier [69]. In this approach, the optically driven electrons are excited 

 

Figure 3.17. The plasmon responses for the UV photodetector. a) The absorption spectra for 

heptamer clusters deposited in GaN epilayer with variant oxide thickness and without metallic 

heptamers. b) E-field enhancement diagram for the UV device with and without Al clusters. c) 

Numerically plotted absorption spectra for the oxide layer thickness as a function of incident 

UV beam in a heptamer nanocluster. 
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from the energy states below the Fermi level to the higher energy levels, and once they 

arrive at the interface with an energy larger than the Schottky barrier height get injected 

to the GaN. Experimental results show that MFP for electrons is strongly energy-

dependent and minor perturbations in energy level results significant changes [70]. In our 

analysis we assumed lp=25 nm for electrons 5 eV above Fermi level energy as reported in 

Ref. [70]. 

Considering plotted band diagram for the Al-GaN-Ni/Au interface, the electrical 

simulation results verify formation of a Schottky barrier with the height of ΦB=0.87 eV. 

In this regime, the decayed plasmons result hot electrons that are arrived to the interface 

with higher energies more than ~0.87 eV are able to pass the barrier and transit to reach 

the biased electrode. In the examined device, hot electron generation rate (Ghe) by Al 

nanoantennas at the Fano dip wavelength due to photoexcitation can be calculated using 

[71]: Ghe = PCabs(λ)/ħωAh, where P is the incident light power (20 μW), Cabs(λ) is the 

absorption cross section as a function of resonant wavelength, and Ah is the metallic 

nanoantenna area and found to be Ghe= 5×1017 s-1. Then, the electron concentration can 

be calculated as: ne=τGhe/Ah, where τ is the relaxation time, which assessed to be 

0.825×10-6 s, using following method: For the examined plasmonic nanocluster the 

relaxation time can be written as [72]: 

 
22

tr Lt R C        (3.36) 

where RL is the Al antenna resistance, and C is the gate-interface capacitance that can be 

defined as below: 
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where ɛ0 is the permittivity of the vacuum., L and W are the pitch and electrode width, 

respectively. Therefore, for L=500 nm, W=200 nm, RL=250 kΩ, and ɛGaN=9.7, the 

capacitance is calculated as 330 pF. The approximate electron concentration at the Al-

GaN interface is defined as ne=1.04×1017 cm-2. Comparing hot electron generation rate 

and the associated concentration in the proposed system with Al nonamers and gratings 

for the same purpose [71], we realized a significant enhancement due to inherent and 

remarkable absorptive behavior of Al across the UV spectrum as well as continuous 

electron energy distribution [73]. 

For conventional semiconductor layers that have broadly been utilized for 

photocurrent generation in designing plasmonic devices (e.g. Si, CdSe, etc.), the carrier 

lifetime is in the range of ~100 μs. Long carrier lifetime prevents immediate 

recombination and facilitates generation of large photocurrent. In contrast, the carrier 

lifetime and recombination process for UV-compatible GaN around is in the range of a 

few nanoseconds. In this regime, extremely short transition time (in the range of a few 

picoseconds) is required to overcome the immediate recombination of the carriers. Using 

experimentally and theoretically obtained values for the saturation velocity (Vsat) in n-

type GaN [74], the transition time (ttr) can be determined by: ttr=L/Vsat, where L is the 

pitch. As a general rule for III-V materials, the bulk saturation velocity in high-field 

mobility can be defined by modeling as a function of lattice temperature given by [75]: 
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where Vsat is the saturation velocity at the lattice temperature (T=300 K), and A 

represents the temperature coefficient, showing the strong dependency of the various 

materials which are included in the mechanism (Monte Carlo simulations model). 

Therefore, for the saturation velocity of 105 cm/s, with the pitch of 500 nm, the transition 

time is calculated as 5 ×10-12 s (5 ps) which is extremely short (ttr<<τn) compared to the 

carrier lifetime in GaN which is around 6.5 ns [76]. Consequently, large number of 

electrons can be collected before they recombine resulting photocurrent with gain. 

Additionally, for the uncovered parts of the photodetector, the incident photons with the 

energies larger than the bandgap of GaN can also be absorbed and generate electron-hole 

pairs. These electron-hole pairs in the uncovered parts will be added to the hot electron 

pairs of clusters and contribute to the photocurrent (see Fig. 2.16d). The fast relaxation 

and transition times constitute the base for very fast temporal response for the proposed 

devices. We estimated that the rise and fall times are in the sub-microsecond range using 

the standard methods [77]. 

By considering the plasmonic response of an Al heptamer cluster (see Fig. 2.10), 

next, we analyze the electric response of the structure. The absorption spectra for an 

isolated Al nanodisk heptamer on a glass host is plotted in Fig. 3.17a. Increasing the 

thickness of the oxide layer leads to enhancements in the absorption efficiency due to 

formation of narrower Fano minimum resulted by the suppression of the scattering 

extreme by antibonding dark resonant mode. This phenomenon includes a red-shift in the 
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position of the peaks to the longer wavelengths. The reason originates from the strong 

EM field hybridization of plasmonic resonances in large size heptamer clusters. As a 

result, deeper Fano minimum in the extinction profile can be induced, including a 

significant enhancement in the ratio of the absorbed power. Noticing in the absorption 

profile in Fig. 3.17a, for the heptamer assembly with thicker oxide layer, the peak of the 

absorption is shifted to the visible spectrum that is not desired for our UV photodetector. 

In addition, for the ideal case, for an entirely Al cluster without oxide layer (tox~0 nm), a 

noticeable extreme is appeared at the short wavelengths around λ~280 nm, close to deep-

UV band. For tox=2 nm and 4 nm two absorption extremes are obtained at λ~320 nm and 

345 nm, respectively, which have almost equal amplitude. This profile also shows the 

absorption spectra for the UV detector without presence of nanoparticle clusters. Noticing 

in the corresponding curve, due to the absence of metallic components and plasmonic 

effects, we observe only the natural absorption of incoming UV beam by GaN substrate, 

which is reduced dramatically after UV band λ>400 nm. Figure 3.17b represents 

numerically obtained absorption spectra for Al2O3 thickness variations as a function of 

incident beam. The absorption ratio increased significantly including a red-shift to the 

visible spectrum by increasing the thickness and the entire size of the heptamer. The 

enhancement of the electric field (|E|) at the gap spots between central nanodisks of the 

heptamer cluster is shown in Fig. 3.17c. Significant enhancements of the electric field is 

observed at the offset spots between Al nanodisks because of hybridization and strong 

confinement of the plasmonic resonant modes. Comparing two types of antennas with 

different oxide thicknesses, a slight difference in the enhancement is noticed. This effect 

can be described by the effect of oxide layer thickness on the Bruggeman dielectric 
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function of the entire composite Al antenna, yielding different real and imaginary 

permittivities at different wavelengths. Hence, modifying the oxide thickness can lead to 

severe changes in the spectral response of the structure, as shown in the preceding 

profiles. This plot also shows that no distinct shoulder is observed in the electric field 

profile at the illumination spots for the absence of metallic heptamers and therefore the 

absence of the plasmonic effects. For the case without the heptamers, a thin layer of 

electric field appears at the surface of the GaN (with the magnitude of 1.15×105 V/cm). 

While for the plasmonic case, a much larger electric field is monitored below the cluster 

due to hybridization of plasmons (with the magnitude of 3.95×106 V/cm). 

 

Figure 3.18. Electrical response of plasmonic UV photodetector. a, b) Carrier concentration 

for the detector system without heptamers with bias (5.0 V), while the UV light is in OFF and 

ON states, respectively. c, d) Carrier concentration for the system with heptamers with bias (5.0 

V), while the UV light is in OFF and ON states, respectively. e, f) E-field enhancement map for 

the device with and without clusters, while the UV light is ON and bias is 0.0 V. 
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Figures 3.18a and 3.18b demonstrate the electron concentration for the proposed UV 

photodetector device without presence of Al heptamers, while the bias is applied (5.0 V) 

and the light source is OFF and ON, respectively (these states are indicated inside the 

corresponding profile in Fig. 3.18). By applying both bias and UV beam, comparing to 

the absence of the beam (Fig. 3.18a), a noticeable electron concentration is obtained 

under the electrodes (Fig. 3.18b), resulting a photocurrent. On the other hand, by adding 

metallic nanoscale heptamers between electrodes, we observed a dramatic enhancement 

in the concentration of carriers resulted by the metallic clusters, as shown in Figs. 3.18c 

and 3.18d, respectively. To show the effect of plasmonic clusters on carrier generation, 

we used Al nanoparticles with the oxide coverage of tox=2 nm. In this regime, the 

generated large carrier concentration causes Schottky barrier lowering which could 

 

Figure 3.19. Electrical response for the UV photodetector. a) Numerically achieved 

photocurrent-voltage (I-V) curves for two different oxide thicknesses of a heptamer cluster and 

without heptamers. The inset is the dark current-voltage (I-V) curves for the non-plasmonic and 

plasmonic UV photodetector for two different oxide thicknesses at λ=325 nm and 335 nm for 

tox=2 nm, and 4 nm, respectively. b) Polarization-independency of the generated photocurrent 

(blue-spheres) of the device for the polarization angle variations of the incident UV beam. 
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contribute to the enhancement of the photocurrent. The above comparison between non-

plasmonic and plasmonic UV detectors can be further illustrated by plotting 

corresponding E-field maps for the excited electric field at the surface of the GaN, below 

the antennas, as shown in Figs. 3.18e and 3.18f, where the effect of plasmonic antennas 

in formation of a large field at the GaN-Al interface is obvious. 

Further, we study the electrical response of the plasmonic GaN photodetector. Figure 

3.19a illustrates the current-voltage (I-V) characteristic calculated for the peak of the 

absorption profile along with the one for the device without plasmonic assemblies. In the 

calculated response, the voltage is changed between 0 V to 5.0 V. For a bias of 5.0V the 

plasmonic detector with the heptamer arrays with tox=2 nm and 4 nm, yield the 

photocurrents of 88.56 μA and 90.25 μA, respectively. For the non-plasmonic case 

(absence of metallic nanoparticle clusters), the photocurrent is found as 1.72 μA under 

 

Figure 3.20. The spectral responses for the UV detector in both non-plasmonic and 

plasmonic regimes, with variant Al2O3 thicknesses of heptamer clusters. a) Responsivity 

profile under 5.0 V applied bias. Inset is the responsivity profile for the non-plasmonic regime. b) 

The IQEs for different regimes of the UV detector. 
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5.0 V bias. Dramatic enhancement in the photocurrent due to the plasmonic heptamers is 

clearly visible. The inset of Fig. 3.19a shows the extracted dark current as a function of 

the bias voltage, which reaches to 47.95 nA, 52.5 nA and 55.25 nA for the non-plasmonic 

case without the heptamers, tox=2 nm and 4 nm, respectively, under 5.0 V bias. Figure 

3.19b shows the photocurrent as a function of the polarization angle of the incoming 

light. In the plotted figure, hallow and solid circles represent the calculated photocurrents 

for different incident polarization modes in two types of heptamers with different oxide 

thicknesses. It is observed that the response of the proposed structure is insensitive to the 

variations of the polarization angle of the incident EM energy due to the inherent 

symmetry of the molecular heptamer cluster. In addition, besides the ability to support 

pronounced Fano dip at the UV spectrum, it should be noted that antisymmetric 

structures with more complex geometries cannot provide such a high and polarization-

independent absorption spectra [78]. 

Figure 3.20a represents the spectral response of the proposed UV detector with and 

without Al antenna arrays, where the thickness of the oxide layer is changed and the bias 

is kept as 5.0 V. For the plasmonic regime, the responsivity peaks are at λ~325 nm and 

λ~330 nm, and the cutoff wavelengths here is at λ~335 nm and λ~345 nm, for tox=2 nm 

and 4 nm, respectively. The peak responsivity (Rph) corresponds to the position of Fano 

dip of heptamers. At the peaks of the curve for the heptamer with tox=2 nm and 4 nm, the 

responsivity of the proposed plasmonic UV photodetector exceed 20.8 A/W and 21.9 

A/W, respectively. This outcome shows the superior responsivity of the examined UV 

detector in comparison to analogous nanoscale devices [79]. On the other hand, for the 

non-plasmonic case, we observed a conventional responsivity with a distinct shoulder at 
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the UV spectra in the range of λ~300 nm to 350 nm, where at the highest peak this 

parameter is measured as approximately 0.13 A/W (the inset diagram in Fig.3.20a). 

Using the calculated responsivity data for the proposed plasmonic UV photodetector, we 

extracted the EQE for the structure in two different regimes by employing the 

conventional equation: EQE=hcR/eλ, where h is the Planck’s constant, c is the velocity of 

light, e is the electron charge, R is the responsivity of the device, and λ is the wavelength 

of the incoming optical power. The calculated EQE for the UV detector in non-plasmonic 

case is 64.5% while EQE is 8065% and 8116% for the devices with the presence of Al 

clusters with tox=2 nm and 4 nm, respectively. This dramatic enhancement in the 

responsivity and efficiency of the device during transition from non-plasmonic to the 

plasmon regime originates from the generation of hot carriers due to strong hybridization 

of plasmons at resonant frequencies. As the other important parameter, we estimated the 

IQE of the proposed UV photodetector, which is the number of the produced charge 

carriers per incident photon and can be calculated using the computed photocurrent 

profile as well as the incoming photon energy flux on the subwavelength heptamer 

antennas. The absorbed power by the structure is given by:  
2

0.5 Imabs p effP E   , 

where |E| is the amplitude of the incident electric field, and 
eff is the effective 

permittivity of the semiconductor substrate and metallic heptamer that are contributed in 

the absorption mechanism. Accordingly, the number of the absorbed photons is given by: 

 
2

0.5 Imp eff

ph

E
N

 
      (3.39) 

On the other hand, using the equation above, we define the IQE: 
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Figure 3.20b exhibits numerically obtained IQE for the proposed device as a function 

of the incident UV light, where the peaks for tox=2 nm and 4 nm with the values of 38% 

and 40%, respectively are induced at the FR dip positions. It is also worth noting that at 

these short wavelengths, generation of hot electrons by metallic nanodisk heptamers has 

an undeniable impact in having such a large photocurrent as well as a significant IQE. 

We also calculated corresponding IQE for the UV detector without nanodisk clusters 

displayed in the profile with dotted curve as 15.6%. A comparison of the performance of 

all the examined regimes for the proposed UV photodetector shows that inducing the 

plasmonic effect via Al clusters enhances the responsivity and photocurrent of the device 

with the expense of having a few nano-amperes dark current. The response of the 

plasmonic UV photodetector is comparable with the more complex designs that have 

been proposed, such as coupling of plasmons between Al and ZnO nanoparticles, or 

using multilayer substrate to enhance the electron-hole confinement to improve generated 

photocurrent. Finally, we estimated the corresponding gain (Γph) of the investigated 

photodetector using: 

R ph

ph

hc

IQE q

 
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 
     (3.41) 

where q is the elementary charge, and c is the velocity of light. The corresponding gain is 

found to be ph=2.1×102 for the Al cluster with the oxide thickness of tox=2 nm. In this 

section by proposing a recent study for the application of Fano resonances to develop 

optoelectronic devices such as plasmonic photodetectors. By calculating the important 
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parameters for the proposed photodetector, we proved its superior performance and 

quality in comparison to analogous devices without plasmonic structures. Possessing high 

responsivity, quantum efficiency, internal gain, and significant photocurrent across the 

UV spectrum make this structure as a potential platform for designing and fabricating 

optoelectronic UV devices for several sensing applications. This study also shows the 

significant impact of the enhanced absorption cross-section at the Fano dip wavelength in 

achieving high responsivity and photocurrent. 
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CHAPTER 4 

Quantum and Junction Plasmonic Modes 

If the capacitive offset gap spot between closely-coupled nanoparticles fills with a 

conductive junction, this leads to the direct shuttle of charges across the nanoparticles and 

accumulation of charges and resulting in the excitation of new plasmonic moment, 

known as charge transfer plasmons (CTP). The CTP is a highly tunable mode is the direct 

result of quantum mechanical effect that possesses unique and exotic properties with a 

broad range of applications for tailoring and building plasmonic sensors, modulators, 

nanomotors, and artificial molecules [1-5]. The CTP modes are distinguished spectral 

features, arising at the energy states far from the classical EM multipoles. As an exquisite 

spectral feature, the CTP modes have been induced successfully using several methods. 

Four fundamental techniques have been introduced for the excitation of CTP modes using 

both experimental and numerical studies: 1) direct quantum tunneling [6,7], 2) Fowler-

Nordheim indirect quantum tunneling [8], 3) direct charge transfer in linked 

nanostructures [3-5,9,10], and 4) conductive sublayer-mediated nanostructures [11,12]. In 

this chapter, we will describe two fundamental principles for the excitation of CTP 

resonant moments, and the utilized methods to enhance the tunability of CTP modes are 

discussed in details. Using numerical and experimental studies, we show the transition 

from capacitive coupling to direct charge transfer in THz plasmonic assemblies. In 

addition, to enhance the tunability of optically induced CTP modes, we use optothermally 

and optoelectronically controllable sublayers beneath a pair of nanoparticles to show how 

the CTP modes can be tuned along the NIR spectra and the associated devices will be 

presented and characterized. 
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4.1.Tunneling Plasmonics 

The incident intense beam can be efficiently confined in subwavelength metallic 

structures due to reduced field penetration through a dense electron sea [13]. Reducing 

the gap distance between nanoscale particles or cavities down to atomic scales (below 1 

nm or a few Angstroms) leads to direct tunneling of optically excited charges and 

separation of charges, describing by tunneling plasmonic principle in the quantum regime 

[6]. In terms of theoretical analysis, the physics behind the formation of plasmonic 

moments in tunneling regime cannot be modeled through hydrodynamic approach for 

quantum effects [14]. On the other hand, the experimental realization of nanoparticles 

 

Figure 4.1. General spectral response of a dimer in classical and quantum models. The 

solid line is for the classical model and the dashed line demonstrating the non-local 

hydrodynamic model for the quantum model. The inset is a dimer antenna. 
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with atomic scale gaps is challenging and reaching the quantum tunneling regime is 

complex. The first observation of this phenomenon was reported by using two gold-

nanoparticle-terminated atomic force microscope (AFM) tips with tip-to-tip orientation 

[6]. It is presumed that the tips apices act as a cavity, supporting plasmonic resonances 

created through strong coupling between localized plasmons on each tip [15]. On the 

other hand, as a numerical approach, time-dependent density functional theory (TDDFT) 

model has been introduced as a numerical tool to study the quantum tunneling principle 

based on density functional theory with exact reformulation of time-dependent quantum 

mechanics [6]. In addition quantum corrected model (QCM) has been developed by 

Esteban et al. [17], which incorporating the electron tunneling effect into the local 

classical formulism. In contrast to classical calculations, quantum model results for very 

narrow gaps show pronounced effects of electron tunneling such as a strong reduction of 

the field enhancement, a continuous transition of modes between the non-touching and 

contact regimes and the appearance of a CTP mode before the nanoparticles touch [18]. 

Figure 4.1 illustrates the sketch of two different regimes for plasmon resonance of 

sphere-dimer in vacuum, identified as a function of the separation offset distance (d). 

These regimes are demonstrated by the energies of the plasmonic moments estimated by 

classical hybridization (solid line) and non-local hydrodynamic model for quantum 

regime (dashed line). As we mentioned formerly, for large gaps in the range of few 

nanometers, the system is in classical regime and the corresponding plasmonic response 

can be explained and analyzed by using Maxwell’s equations. Conversely, in the non-

local regime, the actual position of the screening charges strongly depends on the 

conductivity of the gap and its physical distance. It should be underlined that in the 
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plasmon tunneling limit, the AC tunneling current across the atomic opening strongly 

perturbed the optical response. While this effect becomes more obvious when the 

conductivity of atomic junction becomes larger than the threshold conductivity of the 

gap. 

In conventional plasmonic systems, the size of the offset gap between proximal 

nanoparticles is much smaller than the radius of the curvature. In this limit, the local 

geometry of the nanojunction can be estimated as two flat semi-infinite parallel metallic 

surfaces that are separated by a dielectric gap with the size of d. To compute the electron 

transmission through the potential barrier between the flat free-electron metal as a 

function of energy (Ω) and separation opening (d), one needs to employ a wave packet 

propagation approach proposed by Zugarranurdi et al [19]. This method is operating 

based on launching an electron wave packet as a probe from the inside of one of the 

meals onto the junction. Two virtual detectors that are placed in the asymptotic areas are 

responsible to collect the transmitted and reflected electron fluxes, required to extract the 

transmission and reflection profiles. By assuming the incident beam along the z-direction, 

the evolution of the probe electron wave packet can be written using 1D time-dependent 

Schrödinger equation. In the real plasmonic systems, the properties of the effective 

medium inside the atomic gap can be extracted using the full atomistic quantum 

calculations. Accordingly, the plain form of the model potential for the electron 

interaction with a semi-infinite metal surface can be described by [20]: 
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in which U0, zim, and ζ are parameters for the metallic surfaces with the orientation of 

<111>. The numerical values for A and B can be determined by requiring continuity of 

the potential and its derivatives at z=zim. In the jellium model for metallic components, 

the tunneling barrier determines by the vacuum part of the interface potential, hence, the 

defined transmission of the junction is strong with respect to the choice of the surface 

orientations [17-20]. For an electron located on the vacuum side above the surface of the 

particle (z>zim), the corresponding potential can be determined by the first term of Eq. 4.1 

[21]. For the nearly touching regime of metallic nanoparticles, the image potential must 

be corrected by the insertion of the multiple image term (Vmi(z)) accounting for the cross 

terms in the screening interactions [20]: 
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where the indices (l) and (r) stand for the left and right metallic surface, respectively. For 

z inside the metals, ( )l

imz z or ( )r

imz z , the multiple image term vanishes Vmi(z)=0. The 

jellium model potential parameters for various metals such as Au and Ag are quantified 

and reported in Ref. [17], describes the position of the image plane (zim) and jellium edge 

zg to the position of the surface atomic layer zal. Accordingly, by taking the distance l 

between the two surfaces, then:  
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Finally, the total potential accounting for the long-rage image-potential tail of the 

electron-surface interaction is specified by [20,21]: 

( ) ( )( ) ( )l r

s im s im miU z V z z V z z V z              (4.4) 

In the plasmon tunneling calculations, the conductivity of the gap, and the distance 

between two surfaces in atomic dimensions play key role in defining the total potential 

and other corresponding parameters. It is shown that there is good agreement between the 

QCM and TDDFT models in strongly coupled plasmonic nanostructures. The major idea 

behind the QCM and TDDFT simulations is how the charges behave between metal-

metal surfaces with atomic gaps, and also these models allow for demonstrating the 

possibility of quantum tunneling with fully classical analysis of the optical response and 

properties of nanoparticle clusters with narrow junctions. The distinguished result of such 

a tunneling effect is the excitation of CTP resonances. However, the need for advanced 

and complex fabrication techniques and also complicated quantum mechanical 

computations have stimulated researches to replace much easier methods to induce CTP 

resonances with high quality and simpler analysis methods. It should be noted that in the 

quantum tunneling, due to the limited geometrical tunability and fixed dielectric constant 

of the gap, hence, the tunability of the induced CTP mode via tunneling of photoinduced 

charge is extremely limited and can be just control by the intensity of the incident beam 

[9]. To address these limitations and also to enhance the functionality of CTP-type 

resonant moments, in continue, we consider one of the novel and highly tunable methods 

to excite CTP resonances and their applications for developing advanced nanophotonic 
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devices. In the next sections, we present numerical and experimental studies for the 

excitation of CTP moments in THz plasmonic metasurfaces designed, fabricated and 

analyzed as part of this dissertation work. 

4.2.Plasmonic Switching Based on Direct Charge Transport 

The presence of a conductive pathway between neighbor nanoparticles leads to the 

shuttle of optically driven charges across the junction and accumulation of charges, and 

thereby excitation of CTP resonances [5,9]. It is shown that the AC conductivity of the 

nanojunction between nanoparticles play fundamental role in the excitation of CTP 

resonances [22]. As leading studies, Pérez-González et al. [22] and Wen et al. [9] have 

shown that connecting a pair of adjacent nanoparticles by a conductive link leads to the 

direct transition of charges across the junction. Evidently, the conductivity of the 

nanobridge between particles plays a crucial role in controlling the shuttling charges as 

well as the excitation of CTP. To illustrate the impact of the conductance, the 

conductivity of bridge can be modeled as a pure conductor with conductivity of κJ as 

follows [22]: 

 

Figure 4.2. a) and b) The schematic and tip view pictures of the assembly, respectively. c) 

Calculated and measured normalized transmission amplitude (NTA) for the capacitive coupling 

for the following dimensions: a/b/c/d=10/25/10/35 μm. The inset is an SEM image of the 

plasmonic assembly. d) The applied electro-optical signal amplitude (mV) as a function of time 

delay (ps). e) E-field map for the asymmetric assembly under longitudinal polarization excitation, 

respectively. 
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The corresponding conductance of the junction can be quantified analytically as a 

function of the geometry of the bridge using: 

 ext
ˆ R , JG G  

     (4.6) 

To show the dependence of the CTP to the bridge quality, one needs to move from 

the capacitive coupling to the direct charge transfer gradually. To this end, by utilizing 

both numerical and experimental studies and monitoring the plasmonic response of a 

four-member quadrumer from capacitive coupling through a spacer to direct shuttle of 

charges, we showed that the CTP resonances can be efficiently excited at the THz regime 

[10]. This example provides better understanding of the excitation of CTP resonances 

simple manner. Here, we used an assembly of V-shaped blocks, and the schematic is 

shown in Fig.4.2a for the V-shaped assembly (not to scale). The capacitive gap between 

the resonators was set to 12 μm. Figure 4.2b specifies the geometrical parameters of the 

plasmonic system. The corresponding geometrical sizes are described in the figure 

caption. The normalized transmission amplitude for the plasmonic assembly is shown in 

Fig. 4.2c. The capacitive coupling plays major role in emerging of distinct dips along the 

curve. The deeper minimum around 1.75 THz correlates with the dipolar resonant mode, 

while the quadrupole mode appears as a weaker dip around 2.35 THz. The inset is the 

scanning electron microscopy (SEM) image of the fabricated THz plasmonic assembly. 

Figure 4.2d shows the applied electro-optical signal amplitude as a function of time 

delay, utilized in the THz time domain spectrometer (TDS) setup. The comparison with 

the simulated curves allows us to interpret the charge transfer plasmon resonances. Figure 
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trates the E-field map for the plasmon resonance excitation and concentration in the 

junction area of the V-shaped blocks at the frequency of the dipole dip. The charges are 

mainly concentrated at the tips of the blocks that are parallel to the incident beam 

polarization. The plasmonic assembly were fabricated by photolithography technique on 

a high resistivity silicon wafer (>10 kΩ.cm) (to provide the required transparency in the 

THz domain). Two layers of the positive photoresists (LOR 3B and S1805) with the total 

thickness of 2.6 μm were deposited and patterned. Employing the e-beam evaporation, 

we then deposited the 750 nm of Ti layer at the rate of 5 Å/s (99.99% purity, pressure 

7.6×10-7 Torr). The lift-off was performed by immersing in remover PG for 120 min at 

70 °C followed by IPA and DI water rinse. The assembly arrays were fabricated in the 

area of 1500 × 1500 μm2 with the periodicity of 80 μm. The SEM pictures shown along 

the manuscript were obtained using the JEOL 7000 tool. The THz characterization was 

performed using a THz-TDS setup with the beam bandwidth of 10 GHz to 4.5 THz with 

 

Figure 4.3. a) Characterized and simulated NTA profiles for the asymmetric THz assembly for 

the presence of (a) a nanodisk between gaps, (b) a touching disk to the VSMBs, and c) an 

overlapping nanodisk. The insets are the corresponding SEM pictures for nanodisk variations. 

d), e), and f) The corresponding E-field maps for different studied regimes for the CTP mode. 

The charge transfer is plotted inside the numerically defined maps. 
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the average power of ~100 W. For the numerical modelling, the FDTD method was 

used with the PML layers as the workplace boundaries for radiation direction (z-axis) and 

periodic boundaries for x and y-axes. A plane wave pulse of 2.6 ps served as an external 

THz source. The Ti dielectric function was taken from the empirically defined values by 

Palik. Reducing the gap distance between V-shaped resonators is a typical strategy to 

narrow the transmission dips, however, achieving significant dips needs for very small 

offset gaps. The fabrication of thin three-dimensional microstructures with small gaps is 

highly challenging.  

Our goal is to demonstrate THz CTPs using the direct transfer of charges between V-

shaped blocks. To this end, we inserted conductive disks with the same thickness and 

material as V-shaped resonators with the varying diameters to follow the transition from 

the capacitive coupling to the direct transfer of charges. First, the disk with the diameter 

of 7 μm was used, while the gap between disk and V-shaped blocks apexes was reduced 

to 2.5 μm on each side. According to the Mie’s theory a particle with the size of the 

considered disk is able to support dipolar modes at THz resonances [23]. In this regime, 

the central disk sustains a strong dipolar mode enhancing the quality of the observed 

transmission lineshapes via the dipole-dipole interaction. Figure 4.3a depicts the effect of 

this geometrical variation. In the normalized transmission amplitude profile, both dipole 

and quadrupole dips were enhanced and shifted to the smaller THz frequencies, while this 

enhancement is more appreciable for the dipolar dip. The experimental data is in 

complete agreement with the numerical predictions. By increasing the diameter of the 

central conductive disk, we provided a path for shuttling of the charges between V-

shaped blocks. In this regime, keeping the other geometries the same and increasing the 
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diameter of the conductive disk to 12 μm (touch the tips of each block) provided a 

conductive bridge for the charges. Figure 4.3b exhibits the corresponding normalized 

transmission amplitude spectra for the asymmetric cross design with the central disk 

touching the blocks apexes. The inset is the SEM image of the fabricated assembly. The 

major difference compared to the prior case is elimination of the multipolar mode and 

emerging of the CTP dip around 0.5 THz. Due to the formation of a small pathway 

between the blocks, we expect direct shuttling of charges in the same way as in the 

optical nanoscale systems characterized by quantum transition [24]. However, in the 

examined microstructure for the touching regime, the connected small parts can supports 

a limited number of transporting charges across the assembly. Increasing the size of the 

 

Figure 4.4. a), b), c), and d) The cross-sectional E-field maps and field concentration diagrams 

for capacitive coupling, presence of a nontouching disk, presence of a touching disk, and 

presence of an overlapping disk, respectively. e) Comparative absorption profiles for the VSMBs 

assembly with the absence and presence of intermediate disk with various diameters. f) The 

resistance variations as a function of the intermediate disk diameter. The inset is the CTP 

position as a function of conductive disk diameter. 
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central conductive disk to the overlapping regime leads to a sensible shift in the position 

of the induced resonant modes to the sub-THz spectra, while both dipolar and CTP dips 

became narrower and deeper. Increasing the size of the overlapping region causes a 

dramatic damping in the energy of both modes reflecting the electrical properties of the 

disk that will be discussed in the following. Figure 4.3c illustrates the normalized 

transmission amplitude profile for the overlapping regime for both simulation and 

experimental analysis. The inset is the corresponding SEM picture of the fabricated 

assembly. The corresponding E-field snapshots illustrate the effect of the conductive disk 

in the formation of the CTP mode. Figure 4.3d presents the structure with a non-touching 

disk in between, where the plasmons are concentrated at the tips and in the gap areas 

between the disk and the VSMB apexes. For the touching and overlapping conditions 

shown in Figs. 4.3e and 4.3f, respectively, the E-field concentration at the middle section 

of the assembly (disk location) is nearly zero, while the all charges are transported to the 

left and right sides of the V-shaped blocks parallel to the THz beam. The charges that are 

transported to the perpendicular blocks are negligible. This effect is highly distinct for the 

overlapping regime, and the charges being nearly zero for both the central disk and 

perpendicular blocks are consistent with the optical charge transfer studies for nanoscale 

systems [9]. 

The cross-sectional analysis of the E-field plot along the assembly provides a better 

understanding for the distribution of the charges across the structure. Figures 4.4a-4.4d 

show the E-field maps and diagrams (|E|) as functions of the assembly position (x-axis) 

for different regimes. When the intermediate disk is absent, the field localization is 

concentrated at the apex tips of the V-shaped blocks. Adding the conductive disk to the 
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central part and increasing its diameter from non-touching to overlapping condition 

transfers the localization of the E-field from the central region to the arms tips with the 

field at the conductive disk becoming nearly zero. The overlapping areas help induce 

sharper and enhanced plasmonic dipolar and CTP modes. The geometry of the 

overlapping areas allows to trade-off the charges between the V-shaped blocks of a 

standalone assembly. This can be described by defining the resistance (R) of the disk as a 

function of the junction geometry [25]: 

2 2
( )

( ) x

d
R ln

t   

 
   

 
    (4.7) 

where σ(ω) is the frequency-dependent conductivity, t is the thickness of structure, d is 

the length between junctions, and δx is the contact width at the junctions. The 

conductivity is given by σ=nTie
2τ/me [10], where nTi is the electron density for Ti 

(4.44×1028 m-3), e is the elementary charge, τ is the mean time between collisions, and me 

is the electron mass. Increasing the diameter of the overlapping disk extends the length 

between junctions, and the corresponding resistance increases accordingly. In this limit, 

while charges would be able to travel through the pathway, the dissipative losses can be 

substantial due to the disk resistance. 

When incident THz radiation is resonant with the transmission lineshape, the intense 

localization of charges across the lossy metallic components causes a dramatic energy 

dissipation. By increasing the diameter of the intermediate disk, the induced dips shift to 

the lower energies due to the enhanced dissipative absorption cross-section. This is in 

contrast with the CTP resonant shift observed in dimers at optical frequencies [9]. We 
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compared the absorption spectra for different regimes in Fig. 4.4e, which is showing 

monotonically growing absorption spectra with increasing the size of the overlapping 

disk. This can be explained by the resistance increase as a function of the disk diameter 

(Fig. 4.4f). The inset exhibits the position of the CTP mode as a function of the disk 

diameter, which is consistent with the experimental results. Obviously, by increasing the 

size of the middle disk (Diameter >16 μm), the absorption extreme correlating with the 

CTP peak is vanished due to strong damping in the corresponding CTP peak, while the 

absorption at the dipole position is unchanged. Next, Changing the polarization of the 

THz radiation to transverse mode (φ=90°) resulting with nearly similar plasmonic 

response with subtle variations in the amplitude of the dipolar dip. For the capacitive 

coupling, we expected same resonant modes with lower amplitude of dips. For the 

presence of an overlapping disk, the same CTP peak is expected, while the dipolar dip 

becomes broader and shallower in comparison to longitudinal case. We also quantified 

the dephasing time for the induced CTP dip at the THz band using the proposed method 

based on Fourier-transformation. The Cauchy-Lorentz distribution was used to define the 

damped harmonic oscillator. Thus, the dephasing time for the induced CTP dip for the 

presence of overlapping disk is given by: TCTP=2ħ/FWHM, where ħ is the reduced 

Planck’s constant. For the deepest CTP dip at 0.58 THz, the dephasing time is estimated 

as 5.49×10-12 s (~5.5 ps). 

All these studies verify the strong dependency of the charge transfer on the AC 

conductance and also the corresponding geometrical dimensions of the nanojunction. At 

first glance, in most of the proposed and analyzed nanostructures, the induced CTP 

resonances strongly suffer from lack of tunability. As very first studies, to enhance the 
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functionality of induced CTP resonances and utilize them in the practical nanophotonic 

applications, we used optoelectronically and optothermally controllable materials in the 

blueprints to enhance the tunability. In the next sections, we focus on the functional CTP 

modes and their applications. 

4.2.1. Optothermally Tunable CTP Modes 

As it is elucidated previously, having active control on the plasmonic properties of a 

given nanosystem requires the presence of either optoelectronically or optothermally 

controllable components in the structure. Here, we first focus on the optothermally 

 

Figure 4.5. a) An artistic rendering of the proposed tunable dimer nanoantenna on a glass 

substrate. b) A top-view plot of the dimer nanoantenna with corresponding geometrical 

parameters. 
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controllable substances to optimize the tunability of CTP moments, and also use them in 

practical modulation applications for the telecommunication purposes. Recently, phase-

change materials (PCM) such as VO2 [26], Ge2Sb2Te5 (GST) [27], and AgInSbTe [28] 

are introduced as promising compounds of which optical properties can be altered by 

electrical Joule heating or incident radiation. As a specific case, GST or GST225 which is 

formed by chalcogenide family has been utilized for nonvolatile random access memory 

(NVRAM) technology due to room-temperature adoptability [29]. In these works, it is 

demonstrated that GST can keep its state without any external energy source until the 

next phase change process starts. The small active area filled by GST can be reversibly 

and quickly toggled among at least two different phases namely a conductive crystalline 

phase (c-GST) and highly resistive amorphous phase (a-GST) by applying either bias or 

incident optical pulses. Conventional plasmonic modes such as Fano resonances with 

tunability by optical stimuli have been observed in metal-GST-metal metamaterials [30]. 

Figure 4.5a shows an artistic rendering of the proposed nanosystem composed of a 

couple of plasmonic nanoparticles linked to each other by a metallic nanowire bridge and 

a GST section located in the middle of the bridge. The intermediate GST layer is in 

perfect contact with the metallic bridge in both sides in the numerical analysis. The 

geometrical parameters for each part of the dimer nanoantenna are indicated in Fig. 4.5b. 

Since our goal is to show the effect of the GST layer on the transition of the excited 

plasmonic modes, the diameter of the satellite metallic disks are be fixed to D=200 nm, 

and the length of the metallic parts (LM) in the bridge design is varied depending on the 

size of the GST section. The thickness of the entire system is fixed to 45 nm. Excitation 

of the CTP mode strongly depends on the geometry and conductivity of the junction 
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between plasmonic elements, which allows for transition of charges swiftly. Thus, having 

active control on the optical properties of this nanobridge would be useful to control the 

excited CTP mode effectively. This tunability is provided by applying conductivity 

variations via phase switching in the GST section between the junctions. The 

wavelength-dependent conductivity of the GST layer can be defined as [31,32]: 

 ( ) 1 ( )
2

GST eff

c
   


      (4.8) 

where, c is the velocity of light in a vacuum, εeff (λ) is the effective permittivity of GST 

bridge in the intermediate phases that can be defined by using Lorentz-Lorenz effective-

medium expression at crystallization level [33]: 
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where fi is the volume function of the ith phase as follows: 
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where nj is the density of the jth phase. Transition (switching) between amorphous and 

crystalline phases is accomplished by formation of localized Joule heating due to 

illumination with specific power for an adequate duration. The reported critical 

temperature for this phase change is ~477 °C [32], which must be achieved via light-

matter interaction by tuning the incident light intensity and absorption coefficient (Qabs). 

It is shown that in the quasi-electrostatic limit, the photothermal heat process for 
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compositional nanostructures can be characterized by using multicapacitive cascading 

approach [33]. This theoretical model contains the enhanced E-field corresponding with 

the individual parts of a plasmonic nanostructure. The absorbed photothermal heat energy 

(EH) in the metallodielectric system can be determined by [34]: EH=AQabsF(r), where A is 

the entire area of the plasmonic dimer, and F(r) represents the optical fluence of the 

incident gating pulse. 

For the crystallization of GST sections of the unit cells, we used an incident 

continuous wave (Gaussian beam) with the irradiation power of P0=3.2 μW, beam 

fluence of ϕ=60 Jm-2, and repetition of fr=10 KHz. Using these settings, for the sample 

with the distance of “r” form the source, the light fluence defines by [35]: 

2 2

0( ) 2 exp( 2 ) rF r P r w w f  , where w is the waist of the Gaussian beam. Finally, the 

produced thermal power can be calculated as a function of distance and time delay (t0):

2 2

0( , ) ( 1.77 ) exp( ( ) )aT r t AQ t t      [36], where τ is the time constant of the 

irradiation beam. The FDTD method was used to study the proposed plasmonic optical 

device. Following settings were applied for numerical analysis: The boundaries were 

surrounded by highly absorptive PML and the incident beam for crystallization was a 

broadband plane wave with the bandwidth of 400 nm-1600 nm, with the irradiation 

power of P0=3.2 μW, beam fluence of 60 Jm-2, pulse duration of 2.7 ns, and repetition of 

10KHz. The distance from source to the targeted nanostructure was set to 1 μm. We also 

defined a light source with the duration of 0.9 ns and irradiation power of 5.5 mW to 

provide the required energy for the change from crystalline to amorphous phase 

(amorphization process). To provide accurate results, the workplace discretization was set 

to 0.5 nm in all of the axes. According to the Courant stability, the simulation time step is 
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set to dt~0.1 fs. The permittivity of the glass (SiO2) substrate was set to 2.1 according to 

the Palik constants, while the dielectric function empirically determined by Johnson-

Christy was used for the gold plasmonic elements. The corresponding complex 

permittivity for different phases of the GST were taken from the experimental data 

reported by Shportko et al. [37]. 

Using the settings for the Gaussian beam source that are explained above, and also by 

tuning the dimer geometries, the required thermal heat is produced to switch the GST 

phase. It should be underlined that a-GST shows low-loss behavior at lower energies 

(below E<0.8 eV) which gives rise to drastically poor absorption coefficient while the c-

GST shows significant absorption cross-section across this spectra. Figure 4.6a shows the 

normalized extinction spectra for the dimer system for four different compositional 

regimes of the bridge. We consider a bridge with the total length of LB=100 nm with a 

GST section with the length of LGST=10 nm and assume that the GST is in amorphous 

state initially with 0% crystallization and then switched to full crystallization state 

(100%). For the entirely gold bridge without PCM, a classical bright dipolar resonant 

mode is induced due to capacitive coupling between nanoparticles at λ=0.73 μm, and a 

pronounced CTP extreme appeared at the longer wavelengths (λ=2.4 μm) due to the 

shuttling of the charges across the dimer through the conductive pathway. By removing a 

small part of the metallic wire and making an offset gap of 10 nm (air space) as a 

capacitive region at the center of the metallic bridge, the same dipolar mode is observed 

due to coupling of the distant nanodisks, while a significant dipolar peak is also induced 

due to capacitive coupling between rectangular bridges. It should be noted that the second 

extreme is more intense due to small gap distance between bridge arms. Insertion of a 
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short a-GST section with high resistivity (in the range of ~104 Ω.cm) at the center of the 

bridge causes the more intense dipolar peak to red-shift to the longer wavelengths (λ=2.2 

μm). Due to the low-loss behavior of the a-GST at low energies (k~0), the extinction 

coefficient at the GST interface is negligible, hence, the induced dipolar mode remains 

intense. 

Switching the state of the GST to full crystallized phase (100% crystallization) results 

in a substantial decrease in the corresponding resistivity (~10-3 Ω.cm)) and charge 

 

Figure 4.6. a) Normalized extinction spectra of the bridged dimer in GST-mediated, full-

metallic, and air regimes. The inset is the normalized extinction cross-section for the same dimer 

without conductive junction and plotted for the capacitive coupling regime (the offset gap 

between nanoparticles is 15 nm). b), c) E-field maps across the bridged dimer for dipolar and 

CTP resonant mode in full metallic regime, respectively, for both (i) top-view and (ii) cross-

sectional views. d), e) The local E-field distributions correlating with the dipolar and CTP 

resonant peaks, respectively, for both (i) top-view and (ii) cross-sectional views. (iii) The 

electric-field intensity diagrams |E|2 for the metallodielectric and metallic dimers at the position 

of CTP and dipolar modes. 
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transfer becomes dominant mechanism (negligible capacitive coupling). The result of 

such a charge transfer is formation of a significant CTP peak at λ=2.3 μm. Here, the 

notable red-shift in the position of CTP mode is caused by the absorptive behavior of the 

c-GST layer at low energies. As shown in the figure, there is δ~100 nm difference 

between dipolar and CTP modes for different GST phases. Position and amplitude of the 

leftmost dipolar mode shoulder is particularly independent of the conductive bridge 

properties for all examined regimes. The inset is the comparative extinction curve for an 

isolated dimer structure with capacitive coupling showing the induced dipolar peak 

around 0.7 μm. Figures 4.6b and 4.6c, and subsequent diagrams exhibit the E-field maps 

(i and ii) and intensities (iii) for the position of dipolar and CTP modes in full gold 

regime, respectively, revealing the charge distribution difference with the CTP mode. For 

the presence of GST intermediate layer, the gap distance between nanodisks is set to 15 

nm and the corresponding local electric-field (E-field) distribution across the antenna for 

three-different regimes are shown in Figs. 4.6d and 4.6e. For the junction between 

plasmonic nanodisks with a-GST, opposite charges are concentrated in the nanodisks as 

well as around the dielectric junction (Fig. 4.6d), while a concentration of E-fields is 

visible across the GST section caused by its resistive behavior, which causes a small 

damping in the induced dipolar peak. For the c-GST, the E-field is much lower, and the 

extinction of plasmons is still obvious (Fig. 4.6e), however, the charges can pass through 

the bridge and the capacitive coupling is eliminated. In contrast, in the entirely gold 

bridge regime, the charges are transported easily and their concentration around and in 

the middle of the bridge is invisible compared to the other metallodielectric regimes (Fig. 

4.6c). Comparing the calculated E-field intensity profiles for all of the examined regimes 
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(Fig. 4.6(iii)), with the presence of the dielectric material (GST), the field intensity at the 

central part of the nanoantenna is reduced, which is consistent with the numerical charge 

distribution maps.  

In continue, we optimize the spectral tunability of the proposed metallodielectric 

dimer by varying its geometry and monitoring the dipolar and CTP mode response. For 

the full metallic bridge, it was shown that increasing the length of the nanojunction leads 

to longer time and lengthier path for travelling of the induced charges across the junction, 

resulting reduction in the quality of the CTPs significantly [10]. In the presented case, 

different electrical and optical properties of the amorphous and crystalline phases of GST 

provides the key advantage for tunability [29]. The resistance contrast for two opposite 

states of the GST (Ra/Rc) is around ~107 [38]. By keeping the overall length of the 

interconnecting nanobridge fixed at LB=200 nm, and by varying only the length of the 

GST junction, we shifted the resonant mode to the shorter spectra for both a-GST and c-

GST as shown in Fig. 4.7. By increasing LGST (10 nm ≤ LGST ≤ 100 nm) and reducing the 

length of the metallic bridges (the entire bridge length is kept fixed), for the a-GST phase, 

 

Figure 4.7. a), b), c), and d): (i) Normalized extinction spectra for the GST-mediated bridged 

dimer, while the LGST is variant. (ii) and (iii) The corresponding E-field maps for LGST variations 

for both amorphous and crystalline phases. 
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the dipolar peak is blue-shifted to the shorter wavelengths and became narrower 

including a small damping in the amplitude of the peak. For the c-GST phase, the CTP 

extreme is red-shifted for all of the examined sizes, while this shift is approximately 

three-times larger than the previous analysis (δ~300 nm). For instance, for the longest 

GST length (LGST=100 nm), a narrow dipolar resonant peak is induced around λ~1.54 μm 

for amorphous state, while for the same geometry and crystallized regime the resonant 

mode is shifted to λ~1.85 μm (as a CTP peak) which is useful for designing NIR optical 

telecommunication devices. The E-field maps next to the normalized extinction profiles 

 

Figure 4.8. a), b), c) and d): Normalized extinction profiles for the GST-mediated bridge dimer 

antenna with different bridge thickness (W). (e) and (f) The FWHM profiles as a function of LGST 

and W for the presence of both a-GST and c-GST layers at the center of bridge. 
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(Figs. 4.7(ii) and 4.7(iii)) provide a better view of the effect of the GST length variations 

on the CTP. 

 Next, we analyze the effect of further geometrical variations on the resonant 

extinction peaks as demonstrated in Figs. 4.8a-4.8d. We increased the width of the 

nanobridge as W=60 nm, 70 nm, 80 nm, and 90 nm for both phases of the GST section. 

For W=60 nm, the resonant dipolar and CTP peaks in both states are blue-shifted slightly 

(Fig. 4.8a), while by increasing the width of the bridge, both peaks show similar shift to 

the higher energies with the amplitude comparable with earlier investigations (Figs. 4.8b 

and 4.8c). Here, increasing the widths of the bridge up to W=80 nm leads to blue-shift of 

both resonance peaks to the higher energies. However, continuous increase in the width 

of the GST and extinction of gold parts of the junction also causes significant damping 

(decoupling) in the peaks. This decay in the amplitude and energy of CTP mode (for c-

GST) is significant in Fig. 4.8d. The blue-shift and amplitude damping in both dipolar 

and CTP modes can be described based on the behavior of the GST material. For the 

presence of a-GST at the junction, the excited modes in individual metallic arms can 

couple efficiently leading to formation of strong dipolar mode in the range of 60 

nm<W<80 nm. In this regime, the dipolar peak slightly blue-shifts to the higher energies. 

However, by increasing the width of the bridge for W>90 nm, the energy losses increases 

drastically leading to an appreciable damping in the amplitude of the dipolar peak. For 

the presence of c-GST, the charges can transit across the bridge and by increasing the 

width of the bridge, therefore, more charges can travel to the outermost nanodisks and 

gives rise to blue-shift in the position of the induced CTP. However, for W>90nm, due to 

inherent lossy behavior of metallic components and also absorptive behavior of 
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crystalline PCM for E>0.8 eV, the peak is damped drastically. This decay in both dipolar 

and CTP is accompanied with a noticeable and progressive damping in the leftmost 

dipolar shoulder including a giant blue-shift in the position of the dipolar shoulder. 

Figures 4.8e and 4.8f compare the corresponding full wave at half maximum (FWHM) of 

the induced dipolar and CTP extremes for different phases as a function of GST length 

and widths. By increasing the length of the GST section, the corresponding FWHM is 

reduced substantially for both phases of PCM, showing the required narrowness for 

accurate and fast operations (Fig. 4.8e). For the entire bridge width variations, the 

corresponding FWHM increased (decreased) with the increasing width for c-GST (a-

GST) state. These opposing trends can be attributed to the different loss mechanism of 

the dipolar and CTP modes as explained above. Possessing sharp and narrow peak with 

small FWHM would help to design high-precision plasmonic devices [39]. However, the 

obtained narrowness for the wider bridge is accompanied with dramatic damping in the 

induced dipolar and CTP extremes. 

For conventional all-optical and electro-optical plasmonic switches that are tailored to 

operate at the NIR, low cross-talk and field leakage, and fast switching are the 

fundamental requirements of high performance. Sharpness and position of the induced 

dipolar and CTP modes play key roles in determining the suitability of the proposed 

nanoplatform for optical switching. Our foregoing analysis show that the nanostructure 

with the geometry of LGST=100 nm, W=50 nm, T=45 nm, and D=200 nm is the best 

candidate for switching applications. Providing approximately δ~300 nm shift for the 

resonance peak between two different phases (Fig. 4.8d) and fast switching from 

amorphous to the full crystallization state (requiring a few nanoseconds) as well as 
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switching back to amorphization (requiring hundreds of femtoseconds) [38], these 

structures could be used for designing fast and efficient plasmonic photonic switches. We 

demonstrate the switching performance of the studied metallodielectric nanostructure by 

adjusting the position of the GST-mediated resonant peak centered at 1.55 μm and 

analyzing the transmission ratio, as shown in Fig. 4.9. First we assume that the GST 

section of the bridge is in amorphous phase (OFF state of the switch). Then, by applying 

a high-power gating pulse signal [39], crystallization process is started and the resonance 

wavelength shifts to the lower energies (ON state of the switch). As it was mentioned 

earlier, in order to reverse the switching process from ON to OFF state, a gating beam 

with higher power and shorter duration must be applied (see the Supplementary 

Information). According to the transmission ratio profile, the modulation depth across the 

telecommunication band (λ=1.55 µm) is around 88%. As a specific case, for λ=1.55 µm, 

the corresponding insertion loss (IL) for switching from OFF to ON state is calculated 

 

Figure 4.9. The transmission ratio of the GST-mediated metallodielectric switch in OFF 

(amorphous) and ON (crystalline) states. 
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based on the monitored power (Pm) and the incident (Pi) by: IL=-10Log10 (Pi/Pm) [3], 

which yields ~4.5 dB for LGST=100 nm.  

Here, using full electromagnetic wave calculations, we have shown that the GST 

section in amorphous phase hinders direct transfer of charges across the nanobridge and 

acts as a capacitive region resulting a distinguished dipolar extinction peak at the global 

telecom wavelength (λ=1.55 μm), which constitutes the OFF state of the switch. By 

applying a high power gating pulse to produce the required photothermal heat energy, a-

GST switches to the crystalline orientation (c-GST) and attains low resistivity at the 

operating domain, leading to a CTP peak at the lower energies (δ~300 nm apart from the 

dipolar peak for the a-GST), corresponding to the ON state. Fast and reversible switching 

performance of the proposed optothermally functional metallodielectric nanostructure 

could be used for designing efficient all-optical and optoelectronic devices for advanced 

telecommunication applications. 

4.2.2. Optoelectronically Tunable CTP Modes 

In previous section, we examine the possibility of tuning the induced CTP resonances 

using optothermally functional substances in the design of the structure. However, 

switching between amorphous and crystalline phases of a nonvolatile material needs for 

applying Joule heating at high temperatures (≥477 °C), and in some cases, the 

nanophotonic components in a given device are highly sensitive to high temperature 

variations. Hence, using tunable materials with electrical-tunability helps to develop 

temperature-independent nanophotonic devices. In continue, using an analogous strategy 

to the previously analyzed dimer structure, we induce CTP resonances by replacing the 

functional junction by an optoelectronically controllable 2D carbon layer, known as 



110 

 

graphene [40]. Graphene has a wide range of usage in advanced nanophotonic technology 

and has been acknowledged as a promising substance for plasmonic applications [41]. 

Recently, Frenzel et al. [42] have verified that the photoconductivity of a monolayer 

graphene sheet can be tuned efficiently by applying bias via controlling the generated 

carrier density. Such a feature was achieved by modelling the electronic properties of 

graphene in terms of massless Dirac fermions [41,42]. In addition, graphene has been 

successfully demonstrated as a reliable substance for plasmonic purposes due to its 

substantial optical power absorption along a wide range of spectrum [43], and also its 

semi-metallic behavior with an optical conductivity as a function of quantum 

conductance as [43]: σ=πe2/2h, where e is the elementary charge and h is the Planck’s 

constant. Similar to the nanoplasmonic components, the spectral response of graphene 

single-monolayer can be understood by Drude absorption model for a wide range of 

carrier densities [44]. This temperature-independent model for free carrier 

photoconductivity with parabolic dispersion in a 2D monolayer can be written as a 

function of frequency [40]: σ(ω)=ne2/m(Γ-iω), where m is the electron mass and Γ is the 

transport scattering rate. It should be underlined that in the presented work, graphene 

monolayer with local conductivity is presented with the ability to transfer charges with 

lower decay rate and higher lifetime of charges [42].  

All these features and advantages stimulated us to utilize graphene for the transition 

of charges and induce ultrastrong plasmonic moments such as CTP modes for real 

applications such as switching. To this end, we report a systematic study of a pair of 

metallic nanoparticles connected with a gate tunable graphene sublayer to control the 

transfer of photoinduced electrons across the atomic junction effectively via tuning the 
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corresponding carrier density. Using full wave electromagnetic numerical including 

FDTD and FE methods, we show that the optically excited charges supported by 

proximal metallic nanoparticles can be tuned and guided by electrically varying the 

conductivity of the graphene sublayer. The achieved results verified that at the 

semiconducting regime of graphene capacitive coupling between the dipolar modes on 

the nanodisks becomes dominant and leads to formation of a distinguished dipolar peak 

of extinction in the visible region. Then, by applying gate bias to the system, graphene 

sublayer acts as a semi-metallic conductive layer, in which a new tunable peak appears at 

the NIR spectra, correlating with the CTP mode in addition to the dipolar peak in the 

visible domain. Both longer lifetime and better confinement of the optically driven 

plasmons in n-doped graphene layer lead to efficient manipulation of charges in the 

system by varying the doping level through electrostatic gating approach. Using the 

interplay between photoexcited charges at both semiconducting and semi-metallic 

regimes, we adjusted the peak of the CTP mode at the global telecommunication 

wavelength (λ=1550 nm) to develop a tunable and fast graphene-plasmonic nanoswitch. 

 

Figure 4.10. a) An artistic rendering of the proposed device composed of gold nanodisks and 

graphene monolayer. b) A top-view of the device showing the corresponding geometrical 

parameters. c) Electrical transport characteristic curves as resistance variations (R) as a function 

of back-gate voltage (Vg) for the proposed graphene-plasmonic platform. The diameter of 

nanodisks is d=125 nm and the offset space between them is La=100 nm while the thickness is 

t=45 nm for both. The distance between source-drain electrodes is Lg=500 nm and the width of 

graphene sublayer is W=160 nm. 
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Figures 4.10a and 4.10b illustrate the 3D schematic and top-view image, respectively 

(not to scale), of the proposed plasmonic switching device composed of a pair of gold 

nanodisks connected with a single-layered graphene sublayer with back-gated voltage 

(Vg) as well as source and drain contacts. We used the experimentally dielectric function 

determined by Johnson-Christy for the gold nanoparticles and relative permittivity of 

~2.1 for the glass (SiO2) substrate, measured by Palik. It should be noted that the 

graphene monolayer is in ohmic contact with the source and drain electrodes in both 

sides. It should be underlined that the thickness of the graphene monolayer is set to 0.35 

nm and for simplicity the thickness of the plasmonic nanodimer is set to 45 nm due to 

having negligible influence on the CTP intensity. 

For the absence of gold nanodisks, the graphene monolayer with carrier density close 

to the neutrality point acts similar to the conventional semiconductors, and we expect 

generation of electron-hole pairs under light exposure and significant absorption of 

incident EM wave at this point [45-47]. Conversely, when the charge density in graphene 

is high, variations in the charge distribution are close to the Fermi level [42]. In this 

regime, graphene sheet behaves as a conductive substance similar to the metals. 

However, in the presence of metallic nanoparticles in direct contact with the graphene 

layer, injection of hot-electrons into the graphene layer plays fundamental role in 

determining the spectral and electronic response of the system. In the dimer nanoantenna 

case, the photoinduced hot-electrons generated in the metallic disks are injected into the 

graphene sheet, resulting in n-type doped graphene monolayer, possessing minor role in 

the doping type. As a major and critical parameter, the doping concentration of graphene 

can be electrically tuned allowing for switching between semiconductor and semi-
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metallic regimes via the control over its photoconductivity. Figure 4.10c exhibits the 

resistance (R) variations for the plasmonic dimer nanoassembly on the graphene sublayer 

as a function of back-gate voltage under incident beam illumination. This characteristic 

profile indicates the Dirac point for graphene-plasmonic regime. In the graphene-

plasmonic limit, the Dirac point is reached at the gate voltage around ~28 V, while the 

applied source-drain (VDS) bias in both analyses was set to 1 mV [48]. Using this 

approach, the carrier concentration qualitatively can be tuned around ~2×1013 cm-2. The 

shift in the Dirac point for the graphene-plasmonic case can be explained by considering 

the variations in the graphene work function due to direct contact with gold nanoparticles. 

Comparing the graphene sheet without and with contact with metallic structures, for the 

latter case, there is a steady inclination of the Dirac energy level along the horizontal 

direction close to the contact edge due to work function difference between illuminated 

graphene sheet and the 2D layer beneath the metallic nanoparticles [49]. 

Figures 4.11a and 4.11b evaluate the extinction spectra for the absence and presence 

of plasmonic dimer antenna on the graphene monolayer. The electromagnetic response of 

the nanosystem is obtained for the n-doped graphene with the Fermi energy of EF=0.61 

eV, taken from the experimental report by Fang et al. [50] for graphene disks and rings in 

hybridized regime (EF=ħvF(πn)1/2, where, vF=106 m/s, and n is the charge carrier density) 

[41]. Thus for the applied gate bias and incident beam, highly-doped graphene sheet 

shows substantially conductive behavior and a distinct dipolar peak appears at E=0.44 

eV, consistent with atomistic analysis achieved by random-phase approximation (RPA) 

for graphene plasmonics in previous studies [51]. The inset shows the local E-field map 

for the dipolar plasmon resonance excitation in a graphene layer. On the other hand, for 
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the presence of nanodisks in direct contact with highly-doped graphene sublayer, we 

observed formation of distinguished resonant peaks at E=2.78 eV and 0.81 eV, 

correlating with the dipolar and CTP modes, respectively. The large gap area between 

proximal nanodisks prevents strong near-field hybridization of plasmons. Here graphene 

layer acts as a conductive pathway to transfer the charges between the neighbor 

nanodisks, therefore, opposite charges accumulate at both sides, giving rise to formation 

of a CTP mode at lower energies. The mechanism of the transport of photoexcited 

charges can be better understood by analyzing the behavior of graphene at high doping 

(EF>ω) [52]. It is well-accepted that using Drude model, homogenous graphene with 

plasmonic properties supports propagation of photoinduced electrons with the wave 

vector of [52]: 

 

Figure 4.11. a) Extinction cross-section of a highly-doped to EF=0.61 eV (n-type) graphene 

nanoribbon under optical excitation at room-temperature T=300K. The inset is the E-field 

intensity map for the dipolar mode. b) Extinction spectra of plasmonic nanodimer antenna on the 

highly doped graphene nanoribbon bridge, supporting dipolar (II), CTP (III), quadrupolar (IV), 

and dipolar (V) moments. c) The local |E|-field intensity snapshots for the plasmon resonance 

excitation and distribution across the device for dipole (II) and CTP (III) modes. d) The charge 

density plots for the CTP spectral feature and dipolar modes. 
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where τ is the finite relaxation time, and ε is the relative permittivity. Therefore, due to 

large photoconductivity of graphene, we expect longer relaxation time compared to noble 

metals and lower dissipative losses similar to the graphene nanoribbon waveguides with 

plasmonic properties. In other words, graphene monolayer underneath the metallic 

particles acts as the charge transfer channel between the metallic (Au) and oxide (SiO2) 

interfaces, has been previously confirmed and measured by Kelvin probe force 

microscopy [53]. On the other hand, two distinct resonant peaks are induced at 0.43 eV 

and 0.31 eV correlating with the quadrupolar and dipolar modes supported by conductive 

graphene sublayer junction between nanodisks. Here, the quadrupolar mode appeared due 

to intense doping of graphene monolayer simultaneously by the gate bias and injected 

electrons to the graphene sheet, enhancing the plasmonic properties of the layer. 

Moreover, variations in the doping properties of graphene lead to a red-shift in the 

position of the dipolar peak to the lower energies. The charge distribution maps for the 

graphene plasmonic regime at different modes are illustrated in Fig. 4.11c. Figure 4.11d 

shows the local E-field intensity for the charge distribution across the dimer for both CTP 

and dipole modes. These results strongly confirm the claim that at the CTP position the 

negative and positive charges are concentrated at the opposite sides due to direct 

transport of charges through the channel, while in the dipolar mode energy, the capacitive 

coupling becomes dominant due to weak interference of energetic dipolar modes from 

each nanodisk. 
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Here, the optically excited CTP can be simply tuned at the desired energy or wavelength 

by varying the conductivity of the atomic sublayer. To this end, we carried out specific 

geometrical variations for the analyzed plasmonic device. Figures 4.12a and 4.12b 

illustrate the behavior of both dipolar and CTP modes supported by the metallic 

nanodisks. One should note that we neglected the behavior of dipolar and multipolar 

modes at the low energies supported with graphene sheet and the Fermi level is fixed to 

 

Figure 4.12. a) Normalized extinction spectra for interparticle distance (50 nm≤La≤120 nm) 

and b) nanodisks diameters (75 nm≤d≤150 nm) variations, respectively. The doping of 

graphene is n-type Fermi level energy if fixed to EF=0.61 eV. 
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EF=0.61 eV. As shown in Fig. 4.12a, increasing the edge-to-edge distance (La) between 

nanoparticles from 50 nm to 120 nm gives rise to dramatic red-shift in the position of 

CTP mode to the lower energies, while the diameter of the disks is fixed to d=125 nm. 

This can be better understood by analyzing the conductance of the graphene junction. It is 

shown that increasing the length of the conductive bridge between neighbor nanoparticles 

causes increase in electron travel time between the nanoparticles as well as dramatic 

decay of plasmons due to longer travel area [3]. Therefore, for the highly-doped n-type 

graphene layer, the frequency-dependent conductance can be written as: 

G(ω)=σ(ω)WT/La, where W, T, and La are the width (fixed to 160 nm), thickness (here set 

and fixed to 0.35 nm), and the length of the graphene layer, respectively. The frequency-

 

Figure 4.13. Normalized extinction spectra for the “On” and “Off” states of the graphene-

plasmonic nanoswitch in the presence and absence of back-gate voltage. The critical geometrical 

parameters are: La=100 nm, d=120 nm. The inset is the local E-field map for the dipolar 

resonance, when the graphene sublayer is in semiconducting regime. 
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dependent conductivity of an atomic graphene bridge composed of intraband (Drude 

model response) and interband transitions (lossy part) has been reported using RPA as 

below [52,53]: 
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  (4.12) 

Consequently, by increasing the length of the pathway, the conductance reduces slightly 

and delays the shuttle of the photoexcited charges. Nevertheless, it is noteworthy that due 

to the substantial conductivity of highly doped graphene sheet, we do not expect dramatic 

shift in the position of CTP peak to the MIR as it happens in dissipative metallic and 

lossy junctions. On the other hand, increasing the space between proximal disks causes 

drastic decay in the amplitude of the dipolar peak at high energies. Figure 4.12b 

represents the spectral response of the analyzed device for variations in the diameter (d) 

of the nanodisks. Keeping the dimer system symmetric, we homogenously increased the 

diameter from 75 nm to 150 nm, while the edge-to-edge gap is fixed to La=100 nm. In 

this limit, by increasing the size of nanodisks, the CTP extreme red-shifts to the lower 

energies due to simultaneous increases in both charge separation distance and electron 

travel time across the structure. The dipolar peak at high energies significantly enhanced 

by increasing the size of disks due to stronger dipolar interference. 
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Possessing tunable CTP modes around the telecommunication band leads to using the 

graphene-plasmonic nanostructure as an optoelectronic nanodevice for NIR optical 

modulation. In this process, tunable conductivity of graphene determines the 

electromagnetic response of the structure and hence, the corresponding switching 

 

Figure 4.14. The CTP energy as a function of gate voltage variations (ΔVg). The insets are the 

extinction diagram for the plasmonic nanoswitch for the gate voltage variations below the Dirac 

point and the quality factor of CTP peak for the gate voltage variations. 

 

Figure 4.15. Numerically quantified MD of the graphene-plasmonic switch as a function of 

incident photon wavelength with higher resolution under back-gate bias application (at the Dirac 

point). 
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characteristics. As it was mentioned above, graphene with carrier density close to 

neutrality point acts similar to the semiconductors. Therefore, we expect formation of 

dipolar peak at high energies (here ~2.7 eV) and elimination of CTP peak due to absence 

of conductive junction to transfer the charges (Off state). On the other hand, highly n-

doped graphene with semi-metallic behavior shows high conductivity [54], and facilitates 

transfer of charges resulting excitation of CTP mode at the targeted wavelength (On 

state). Figure 4.13 demonstrates the normalized extinction spectra for the proposed 

device under incident beam illumination and varying back-gate bias. Obviously, in the 

absence of gate voltage, the CTP mode vanishes, while for the required applied bias and 

n-doped regime, a pronounced CTP peak appeared around 0.8 eV (1.55 μm), shown by a 

dotted line in the plotted profile. The inset is the local E-field map for dipolar 

resonant mode (~2.7 eV) when the graphene sublayer is in semiconducting or 

intrinsic regime (Vg Off). The position and energy of CTP peak as a function of 

back-gate voltage variations (35 V≤ ΔVg ≤ 50 V) is shown in Fig. 4.14. As 

discussed earlier, the peak of CTP mode is located at 0.8 eV for the applied voltage 

far away from the Dirac point with lower resistance and intense doping of 

graphene sheet (Vg=50 V). Continuous reduction in the back-gate voltage leads to 

a blue-shift in the position of the resonant mode to higher energies due to reaching 

the intrinsic point and huge increase in the atomic sheet resistance. The insets in 

Figs. 4.14 provide more details for destructive results of gate-voltage variations. 

Here, the extinction spectra reveal how the CTP mode greatly damped for ΔVg ≤35 

V (reaching the intrinsic level). This originates due to significant reduction in the 

carrier concentration (low doping regime) and the conductance of the atomic 
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carbon bridge. The other inset profile demonstrates the quality factor of CTP mode 

as a function of gate voltage variations, confirming the drastic decay of CTP mode 

by reducing the bias voltage and losing the conductivity of junction. Here, the 

quality factor is quantified as the ratio of resonance wavelength to the full width at 

half maximum (FWHM). Figure 4.15 shows the MD of the switch as a function of 

incident light wavelength. This profile confirms the archived high modulation 

depth (MD) up to 98% at the global telecommunication wavelength (C-band) using 

functional CTP resonant mode. Such a high MD is comparable with and higher 

that analogous plasmons inspired graphene-based, molecular, and atomic all-

optical and optoelectronic switches [54]. The framework developed in this study 

would allow realizing ultrafast, high-quality devices for advanced and next-generation 

integrated nanophotonic technology. 
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CHAPTER 5 

Toroidal Moments 

The interaction of incident intense EM wave with matter in subwavelength regime has 

been established as a fundamental approach for developing advanced photonic devices 

including but not limited to telecommunication applications, data storage, biosensing, and 

information processing. As we mentioned in the earlier sections, the traditional result of 

such a process is the excitation of classical EM multipoles. Therefore, EM media can be 

represented by a set of point-like multipole sources [1,2]. It is well-acknowledged that 

traditional electric and magnetic multipoles can be successfully represented by oscillating 

charges and closed-loop currents, respectively [3]. This led to discovery of a third family 

of multipoles independent from conventional EM multipoles, introduced for the very first 

time by Zel’dovich in 1957, categorized in toroidal topology [4]. Accordingly, the 

toroidization concept was demonstrated and verified in nuclear and atomic physics [5], 

solid state physics [6], and classical electrodynamics [7]. For the latter case, in the 

classical electrodynamic limit, the recent experiments for the toroidal response of 

materials have shown that dynamic toroidal multipole patterns can be detected 

successfully in both biological and artificial objects [8-10].  

In this chapter, we will first trace the progress of toroidal electrodynamics and 

excitation of dynamic toroidal multipoles in both theoretical and experimental viewpoints 

and numerical and experimental analysis results for our novel toroidal plasmonic 

metamaterials. By using the proposed approaches and methods from the literature and 
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also by describing our developed toroidal unit cells, we numerically and experimentally 

explain the formation and spectral behavior of toroidal moments. 

5.1.Dynamic Toroidal Dipoles and Static Multipoles 

In this subsection, we summarize the excitation of static toroidal dipoles and multipoles 

using theoretical and numerical studies. Similar to the macroscopic electric polarization 

and magnetization proposed by Dubovik et al. [11], toroidal multipoles can be considered 

by an order parameter, known as toroidization or toroidal polarization. In this regime, one 

can consider the electric polarization as the electric dipole density and the magnetic 

polarization as the magnetic dipole density, where toroidization signifies the density of 

toroidal resonances [2]. In terms of condensed matters and nuclear physics, toroidization 

concept operates based on both time-reversal ( t t ) and space inversion ( r r ) 

symmetry [11,12]. In the macroscopic regime, media can display macroscopic 

toroidization, known as ferrotoroids, analogous to ferroelectrics and ferromagnets. In 

other words, although ferroelectrics break spatial inversion symmetry and ferromagnets 

break time-reversal symmetry, ferrotoroids with magnetic toroidization concurrently 

 

Figure 5.1. Schematic for the EM dipoles (p and m) and unconventional toroidal dipoles (T), 

obtained with permissions from APS, Ref. [14]. 
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break both time-reversal and spatial inversion symmetry. Ferrotoroids exhibit electric 

polarization (magnetization) in response to an external magnetic (electric) field [13]. 

5.1.1. Theory of Toroidal Dipolar Excitation 

The toroidal dipole is an unconventional EM excitation with concealed far-field signature 

masked by strong classical EM multipoles patterns that cannot be explained in terms of 

typical electric and magnetic multipoles principles [14]. Figure 5.1 illustrates an art 

picture of toroidal dipole or anapole as a first and fundamental member of toroidal 

multipoles and compares it with classical EM resonances [14]. As plotted in this picture, 

the toroidal dipole moment can be identified as a circular head-to-tail and closed-loop 

arrangement of magnetic dipoles, all squeezed into a single spot [11]. The unique 

complexity of the current distribution leads to the excitation of toroidal dipole moments 

in the highly confined high-quality resonant modes of the integrated metallic and all-

dielectric scatterers or resonators. So far, toroidal dipoles and other complex multipoles 

have successfully been experienced and observed in molecular structures [15,16], 

ferroelectric systems [13,17], microwave and THz metamaterials [18,19], and optical 

frequency metasurfaces [20,21]. 

In continue, we analyze the theory of the excitation of toroidal dipole moments 

arising from an infinite 2D or planar periodic array of arbitrary subwavelength resonators 

or unit cells. To this end, using the homogenized Maxwell’s equations, one needs to 

study the EM properties of the media in terms of macroscopic material parameters such 

as dielectric permittivity and magnetic permeability, etc. [14]. This allows for 

establishing a connection between the macroscopic EM response arisen from media and 
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the microscopic charge- current excitations induced in atomic or molecular level media 

[14,22]. By assuming an array of planar multipixel resonators and using the proposed 

theoretical mechanism by Radescu et al. [23], the toroidal dipole can be expressed as a 

function of electric and magnetic moments: 

( )j j j jj
q r r dr dt    T p m     (5.1) 

Relatively, Gostescu et al. [24] have shown that the most general distribution of charge 

and currents stated by the charge (ρ) and current (j) densities can be expressed as a 

continuity relation: 

 
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,
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
     5.2) 

Parametrizing the above equation is terms of three components including electric (Qlm(-

k2,t)), magnetic (Mlm(-k2,t)), and toroidal (Tlm(-k2,t)) multipoles allows to express the 

charge and current densities as [24]: 
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where 
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 2
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k

k dk m l l l
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        (5.5) 

In the equations above and in the upcoming relations, the sum over l starts at l=0 for the 

electric multipole and l=1 for magnetic and toroid multipoles. The dot over Qlm defines 

derivation with respect to t. Finally, the factor of ( )lmkF r  is the system of regular 

solutions of the Helmholtz equation: 

 2 ( ) 0lmkk F r         (5.6) 
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       (5.8) 

where jl and jl+1/2 are the spherical and cylindrical Bessel functions, respectively and Ylm 

are the classical spherical harmonics. Here, the normalized of Helmholtz factor can be 

written as: 
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And the basis factor function can be found as: 

 2 ( ) 0lmkk F r         (5.13) 
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The corresponding spherical vectors are described in details in Ref. [24]. Accordingly, 

the EM and toroidal multipolar form factors can be defined as a function of the functions 

described previously as: 
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The conjugate of the equations above can be obtained using the following relations: 
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Next, to calculate the radiation intensity arising from resonators at large distances, one 

needs to find the exact descriptions for the electric and magnetic fields by considering 

their behavior at large distances. To this end, we use the extracted electric and magnetic 

fields emitted from a unit cell in terms of Fourier transforms in time: 
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By computing the EM fields in the order of r→∞, we have: 
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Employing the Eq. 5.24, we firstly extract the far-field radiation pattern of the electric 

field scattered from a single oscillating toroidal dipole as follows [14,23-25]: 
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where μ0 is the magnetic permeability of vacuum, r is the connecting vector between the 

location of the dipole moment with the detector. Here, T resembles the toroidal dipole 

mode and J is the current density. The total field radiated by a metasurface consists of 

infinite arrays of resonators and toroidal dipoles (Es) can be obtained by the summation 

of contributions from all dipoles at the position of the observer. We assumed all excited 

dipoles are oscillating in-phase and the metamolecule arrays are adequately smaller than 

the incident beam wavelength. Then, we presumed that the complex-valued field emitted 

by the single emitter at rs and detected by the detector at point rd is given by [14]: 
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in which k is the wave number and as we discussed previously, Y denotes the spherical 

harmonics [26]. In this limit, the total field reaching the detector at distance R away from 

the array will be: 
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Now, using this assumption that the array lies in the xy-plane at z=0 and the detector is 

located at z=R, we can substitute the sum over the metamolecules of the array with 

following integral: 
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r
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where Δ is the area of the metamolecule. Then, by carrying out the integration, we have: 

 ( ) ,0

, , 2

2 1
( , , ) expd m

k l m d d

l
A x y R ikR

ik






 


   (5.33) 

In continue, by assuming that the propagation direction of radiation occurs in a space 

with negligible losses and by focusing on the far-field component of the radiation for the 

distances much bigger than the incident wave wavelength, one can claim that: 
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By substituting the Eq. 5.26 into Eq. 5.32 and utilizing Eq. 5.34, we have: 
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More simplification of the equation above leads to the final form of the scattered field as 

[14]: 
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The projected toroidal dipole ( T ) from the xy-plane is given by: ˆ ˆ
x yT T T x y  or in 

general: ˆ ˆ( . ) T T T R R . To derive the far-field distributions for other isolated 

multipoles, one needs to use the expression for the radiation emitted by single multipole 

sources [23]. Due to the large number of terms, it would be better to separate the series 

into different orders of l. We listed three of the dipolar (l=1), quadrupolar (l=2), and 

octupolar (l=3) contributions here: 
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The total emitted field is given by: 

( 1) ( 2) ( 3) ...l l l     E E E E     (5.40) 

It should be underline that the terms above l>3 (i.e. hexadecapole, etc.) can be neglected 

due to weak impact on the total emitted electric field. Ultimately, the far-field for the 

electric field propagation can be written as [14]: 
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The equation above leads to qualitative calculation of electric field emitted by a surface 

composed of planar resonators. The contributed terms to the emitted field are electric (p), 

magnetic (m), and toroidal dipoles (T), electric (Q(e)), magnetic (Q(m)), and toroidal 

(Q(T)) quadrupoles, electric(O(e)), magnetic(O(m)), and toroidal (O(T)) octupoles. The 

mean-square radii of toroidal and magnetic dipoles are denoted by T(1) and m(1), 

respectively. 

5.1.2. The Toroidal Multipoles Excitation Power 

As it was discussed theoretically in the previous sections, toroidal resonances were 

induced with high-quality in artificially fabricated all-dielectric and plasmonic 

metamaterials composed of both planar and 3D metamolecules along the visible to the 

microwave frequencies. The quality, frequency, and order of toroidal resonant moments 

strongly depend on the geometry of the metamolecules. In order to confirm the multipole 

nature of these resonant modes, an analytical model of multipole expansion can be 

utilized [23]. In principle, either the transmission or reflection spectra can be 

disintegrated into radiating contribution of multipoles, including all the electric, 

magnetic, and toroidal modes. The localized distribution of the volume current density 

(J) in a random metamolecule can be utilized to analyze the resonant moments properties 

in terms of multipoles scattering contributions as follows [23,27]: 
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where P, M, T, Qαβ, and Mαβ are the electric dipole, magnetic dipole, toroidal dipole, 

electric quadrupole, and magnetic quadrupole moments, respectively, and also, αβ=x, y, z. 

the scattering field power for each moment is given by [21]: 
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In addition, the scattering intensity of the octupolar moment is given by: 51OI c O . 

It should be noted that the engineering of artificial metamolecules, the dielectric function, 

and the environmental components play fundamental role in determining the intensity of 

the toroidal moments and also its performance 

In the next section, we present numerical and experimental studies for the excitation 

of toroidal multipoles in plasmonic metasurfaces designed, fabricated and analyzed as 

part of this dissertation work. 

5.1.3. Numerical and Experimental Observation of Toroidal Moments 

In this subsection, we provide our numerical and experimental data for the observation of 

toroidal moments in plasmonic metamaterials consist of multipixel planar metamolecules. 

Although it is verified that pronounced toroidal moments can be excited in 3D unit cells, 

the fabrication of these structures, especially in the nanoscale dimensions is challenging 

and costly [28,29]. Therefore, the excitation of strong toroidal moments in planar unit 

cells with easier electron beam lithography (EBL) and classical photolithography 

techniques allows for developing efficient and optimized plasmonic devices such as 

sensors and modulators. Here, the radiation transmitted from a planar array of 

metamolecules can be found by employing the following relation [30]: 

ˆˆT s IR k
 E E E      (5.43) 
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where EI is the incident field intensity, and k is the unit vector points in the propagation 

direction, which is presumed in the z-axis in the following demonstrations. Figures 5.2a 

and 5.2b represent the schematic and top-view images of the proposed multipixel 

plasmonic unit cell with the description of geometrical parameters. As plotted in the 

associated profile, we use a bimetallic and planar arrangement of Fe and Ti resonators, 

respectively, to design a multipixel metamolecule composed of asymmetric resonators to 

support ultrastrong and sharp toroidal dipolar momentum across the sub-THz spectrum. 

With coupled-resonator effects, the magnetic nature of Fe resonators intensifies 

resonating circular currents around the central block of the plasmonic metamolecule. 

Therefore, the middle Ti rectangle acts as a meridian for oscillation of closed-loop, head-

to-tail array of magnetic dipoles. Exploiting the polarization-dependency of the induced 

toroidal dipole to the incident magnetic component, we analyze and estimate the 

switching properties of the proposed plasmonic multipixel metamolecule numerically and 

experimentally. Figure 5.2c illustrates an SEM image of the fabricated bimetallic 

metamolecules on a high-resistivity silicon wafer with the gap distance of Dg=3 μm 

between peripheral and central resonators. It should be underlined that three different 

 

Figure 5.2. a) Graphical representation of bimetallic plasmonic metamolecules on a silicon host 

under THz beam illumination. b) An introduction to the geometrical components of unit cell. c) 

The SEM image of fabricated plasmonic multipixel structures in arrays with the gap spots 

between surrounding and central resonators of Dg=3 µm, while the other geometries are fixed to: 

L=240 µm, R=50 µm, W1=30 µm, and W2=40 µm. 
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samples with different gap distances (3/4/5 μm) were fabricated and analyzed here. For 

the fabrication of the proposed multipixel devices, we developed a two-level lithography 

microfabrication process. An undoped and high-resistivity (>10 kΩ cm) silicon wafer 

with the crystal orientation of <100> and thickness of 500 µm was used as a substrate. 

We deposited 2 μm negative photoresists (NLOF 2020) and patterned in two different 

steps. Employing e-beam evaporation, we then deposited 300 nm of Fe and Ti layers 

separately with the rate of 2 Å/s (99.99% purity for Ti and 99.95% purity for Fe, pressure 

~2.7×10-7 Torr). The lift-off process was performed for 15 min by immersing the samples 

in acetone. Finally, the samples were plunged in remover PG for 120 min at 70 °C heat. 

The SEM images shown in the manuscript were obtained using JEOL 7000 machine.  

To characterize the multimetallic specimens and extract the plasmon response of 

multipixel arrays at room-temperature, a millimeter wave backward wave oscillator 

(BWO) setup combined with frequency multiplier (Microtech Instruments, Inc.) and 

broadband pyroelectric detector (Gentec Electro Optics Inc.) was used. The spectral 

range of the incident radiation was between 100 GHz and 1.5 THz. On the other hand, to 

predict the plasmonic response of the structure, we carried out numerical analysis, 

performed using FDTD method. The bimetallic resonators on top of a semi-infinite high-

resistive silicon substrate were simulated using the refractive index of ~3.64+i0.0001for 

Si at THz spectrum [31]. The dielectric responses Ti and Fe were taken from empirically 

defined Palik values. Perfectly matched layers were used as boundaries, and the light 

source was a linear plane wave and to achieve precise results, the grid sizes in all axes 

were set to 25 nm. 
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By launching the THz wave in the [–z] direction, the excited local modes lead to 

formation of circular magnetic fields in the central zone of the peripheral curved 

structures. The experimental and numerical transmission spectrum for the plasmonic 

metamaterial are in consistent and depicted for the unit cells with three different gaps in 

Figs. 5.3a and 5.3b, respectively, under y-polarized beam illumination. In all three 

regimes, a significant toroidal dipole is excited around ≈200 GHz, while the intensity and 

 

Figure 5.3. a), b) Experimentally and numerically defined transmission amplitudes for the 

plasmonic metamolecule with different gap distances, respectively. c) An artistic 

illustration for the formation of toroidal moment and circulation of closed-loop current. 

d), e) The local H-field map for the localization of plasmons at the toroidal frequency, 

and surface current density plot for the magnetic current oscillation across the antenna. 
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linewidth of the optically induced lineshapes are slightly reduced by increasing the 

opening distance between central and peripheral resonators. This results in dramatic 

suppression of the electric dipole moment by the excited magnetic and toroidal 

resonances [18]. Figure 5.3c artistically demonstrates formation of a head-to-tail 

configuration of a magnetic moment as a toroidal dipolar moment (T) at the center of the 

unit cell created by the currents (j) on the surface of a torus along the circular meridian. 

The arrows show the current flux direction and magnetic moment (m) oscillation as a 

close-loop arrangement inside the profile. Obviously, the head-to-tail configuration is 

formed with 90° angle to the central block due to asymmetric geometry of metamolecule. 

Fundamentally, the antiparallel magnetic moments in peripheral resonators causes 

formation the toroidal moment, oscillating around the central resonator. The experimental 

and numerical quality factors for the toroidal dipole for the metamolecule with Dg=3 μm 

are estimated as 18 and 20, respectively. It should be noted that a distinct resonant mode 

is observed in simulated and measured transmission spectrum for Dg=3 μm and 4 μm 

around ≈220 GHz correlating with the rotating magnetic momentum (m) arising from 

peripheral resonators that are not the case of interest here because they have a negligible 

influence on the polarization-dependency of the device and can be observed under both x 

and y-polarized beam exposures. As it is obvious in the transmission spectra, there is an 

amplitude difference between the induced toroidal moments in numerical analysis and 

experimental measurements due to air humidity and the presence of impurities in the 

BWO setup environment. The local H-field intensity is illustrated in Fig. 5.3d for the 

toroidal dipole frequency, showing localization of magnetic momentum at the position of 

head-to-tail current oscillation. Finally, Fig. 4.3e illustrates the surface current plot for the 
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toroidal metamolecule, verifying antiparallel oscillation of current in the peripheral 

resonators. 

By taking advantage of the inherent asymmetry of the plasmonic structure, we 

demonstrate an efficient polarization-dependency and fast plasmonic response for the 

toroidal structure. This would help us to develop a promising toroidal platform for 

photonic switching applications with ultrafast spectral response. By choosing the 

structures with the highest quality factor from the prior investigations, we analyze the 

behavior of a sample unit cell under varying THz beam polarization states. In Fig 5.4a, 

we plotted the experimentally measured normalized transmission spectra for the unit cell 

with the following geometries: Dg=3 µm, with L=240 µm, R=50 µm, W1=30 µm, and 

W2=40 µm, to achieve the highest possible quality factor. In principle, for the incident 

magnetic beam in the longitudinal polarization limit (φ=90°) parallel to the central block 

(H║), the same toroidal dipolar dip is induced with high quality around ≈200 GHz and the 

beam transmissivity is low and around ~19%. Slightly rotating the angle of the incidence 

 

Figure 5.4. a) Experimentally measured normalized transmission amplitude for both toroidal and 

magnetic responses of the plasmonic unit cell under different magnetic polarization angles 

0°≤φ≤90°. b) Toroidal response of the unit cell as a function of incident THz radiation magnetic 

component angle. c) The MD percentage as a function of Dg, showing the highest value around 

~96%. d) The polar plot for both experimentally and numerically obtained transmission spectra at 

the position of the toroidal mode. 
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to φ=45°, we observed a drastic decay in the toroidal resonant mode dip. Eventually, for 

φ=0°, where the incident magnetic component entirely transverse (H┴) to the central 

block, the toroidal dip is eliminated and the plasmonic metasurface acts as a transparent 

medium at this frequency. As a result of this rotation, the toroidal resonance 

characteristics disappeared. To underline the physics behind the process of toroidal mode 

removal, we look into the incident electric component (E║) as well. For φ=0°, due to the 

asymmetric geometry of the plasmonic unit cell, the incident electric component becomes 

parallel (E║) to the central block and offset gaps. In this regime, the electric field 

becomes dominant and the required head-to-tail magnetic current close-loop cannot be 

formed around the central block of the multiplex unit cell. Interestingly, however, a 

distinct magnetic dipolar momentum around ≈225 THz still remained due to excitation of 

dipolar magnetic resonances supporting by peripheral curves via transverse incident 

magnetic beam. Moreover, the transmission spectra (for the toroidal response) as a 

function of the magnetic component of the incident beam angle (φ) is plotted in Fig. 5.4b. 

Such a huge dependency of toroidal minimum on the incidence angle can be exploited for 

fast and efficient on/off routing and filtering purposes. As a key parameter, we also 

computed the corresponding MD for the proposed metasurface as a function of gap 

distance between resonators [32-34], as shown in Fig. 5.4c. Here, the best MD percentage 

is estimated around ~96% for a resonator with the gap size of Dg=3 μm. The plotted 

diagram shows the strong dependency of the toroidal dipolar mode and subsequently MD 

to both geometrical and polarization distributions. Ultimately, to verify this claim, we 

plotted the polar plan for the analyzed unit cell for the transmission spectra in Fig. 5.4d. 

Sustaining an ultrasharp toroidal mode by a bimetallic metamolecule allowed us to 
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develop a polarization-dependent and high quality structure for advanced THz 

applications such as switching and filtering. 

5.2.Tunable Toroidal Resonances 

The radiation patterns produced by the examined resonant modes in pearlier sections and 

in the current chapter (i.e. toroidal and Fano lineshapes) cannot efficiently couple to free 

space, hence, we expect strong localization of EM field squeezed in a single point at the 

position of these resonances. Although both Fano and toroidal modes can be exploited for 

development of advanced optical devices, they largely suffer from the lack of spectral 

tunability [35,36]. Despite of exquisite features of the induced resonances in regular 

resonators, however, lack of geometrical flexibility in either planar or 3D unit cells limits 

possessing active control over the excited modes. Designing a unit cell with the ability of 

supporting different resonances without physical changes in the design would allow for 

tailoring a metasurface with exquisite controllability over the spectral response. Such an 

advantage can be obtained by using heat, voltage, and/or light-intensity dependent 

materials in the geometry of the proposed design. 

As it is mentioned in chapter 4, PCMs are chalcogenide alloys, have been employed for 

fabricating efficient non-volatile and rewritable data storages. The advantage of 

switching between entirely opposite phases of amorphous and crystalline states was a 

concept of interest to develop various nanophotonic devices [37-39]. Similar to the 

previous analysis, we use GST as one of the most common PCMs, which shows 

reasonably fast and large refractive index variance between amorphous and crystalline 

phases in the NIR [38]. For instance at the C-band (telecommunication bandwidth, 

λ~1550 nm), the a-GST and c-GST reflect have the refractive indices: na-
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GST~18.89+i2.175 (Im(n)/Re(n)<0.1) and nc-GST~48.61+i18.68 (Im(n)/Re(n)<0.3), 

respectively [34,39]. 

To address the limited tunability of plasmonic moments, in this section, we describe a 

novel metallodielectric plasmonic unit cell consisting of a blend of metallic and PCM 

parts to support both Fano and toroidal dipolar moment along the NIR at different states 

of the employed PCM. Taking advantage of the switching between amorphous and 

crystalline phases of the PCM in the designed plasmonic resonator, we demonstrated the 

excitation of distinctly different resonant modes in the unit cell without any geometrical 

variations. Using electromagnetic computations, we show that a careful combination of 

metallic and GST parts helps to have active control over the interplay between Fano and 

 

Figure 5.5. Fano resonant unit cell with the geometrical dimensions as follows: 

(Ro/Ri/Dg/W/L)=(95/65/10/70/325) nm. a) Schematic and b) top-view profiles for the plasmonic 

unit cell. c) Normalized amplitude transmission spectra for the Fano resonant structure. The inset 

is a rendering for the coherent oscillation of charges. d) Normalized absorption and reflection 

spectra for the proposed unit cell. e), f) The local E-field maps for the plasmon resonance 

excitation at the Fano dip and bright mode positions, respectively. g) The surface current of 

resonator at narrow Fano dip wavelength. 
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toroidal dipolar resonances by varying the magnetic resonance circulation direction. We 

also analyzed the NIR switching mechanism of the proposed structure to develop 

practical telecommunication devices. 

The schematic and top-view images for the firstly analyzed symmetric plasmonic unit 

cell is shown in Figs. 5.5a and 5.5b, respectively, with geometrical details inside. The 

required materials data and EM computation techniques are explained in the Methods 

section. The proposed nanoplasmonic system composed of two nanorings located apart 

with a rectangular bar in between. Figure 5.5c illustrates the normalized transmission 

amplitude for the plasmonic resonator showing formation of an antisymmetric and 

pronounced Fano resonant (F) mode around ~1700 nm. According to the plasmon 

hybridization theory [40], two nanorings located close to each other with a rectangle 

resonator in between as a bright electric dipole supporter, directly interact and couple to 

free space. Besides, as the near-field components, the surrounding nanorings sustain dark 

magnetic dipoles (m), which couple efficiently to the bright electric mode [41,42]. The 

inset is the rendering for the magnetic moment rotation and direction of the excited 

charges. The geometrical dimensions are specified in the figure legend. Here, the 

magnetic moments in both peripheral rings oscillate in the coherently and destructively 

couple to the bright mode from the central bar and leads to formation of a distinct Fano 

minimum. The normalized absorption and reflection spectra are exhibited in Fig. 5.5d, 

consistent with the optically driven Fano dip. The local E-field maps for the excited 

plasmons at the Fano dip and bright dipolar mode positions are plotted as snapshots in 

Figs. 5.5e and 5.5f. Figure 5.5g exhibits the surface current density in a vectorial plot at 
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the Fano dip wavelength, confirming that magnetic moments in surrounding nanorings 

are oscillating in the same direction. 

On the other hand, previous studies have shown that breaking the symmetry of 

plasmonic nanostructures enhances the dark mode and alters the width and position of the 

Fano resonance [42-44]. Conversely, in the present system, breaking the symmetry leads 

to significant alterations in the magnetic current direction, resulting in unveiling of 

significant toroidal momentum. Figures 5.6a and 5.6b illustrate the schematic and top-

view pictures, respectively, for the new unit cell with the broken rings. By removing a 

certain part of the nanorings with a given arc length (defined by: o2 ( 360 )arc oL R  ), 

 

Figure 5.6. Toroidal resonant unit cell. a) Schematic and b) top-view profiles for the 

plasmonic unit cell. c) Normalized amplitude transmission spectra for the toroidal structure. 

The inset is a rendering for the opposite oscillation of magnetic moments, showing formation 

of a closed-loop current. d) The local E-field maps for the plasmon resonance excitation at the 

toroidal dipole position. e) and f) The surface current of resonator at toroidal and magnetic 

dipole wavelengths, respectively. 
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we prevent coherent rotation of magnetic moment in both rings, whereas the capacitive 

gaps play fundamental role in the elimination of Fano minimum. Assuming the 

metasurface consists of infinite number of the proposed 2D unit cells in both x- and y-

axes, the corresponding projection of toroidal dipolar moment normal to the z-axis (k 

direction) can be defined by: ˆ ˆ
x yT T T x y  or in general: ˆ ˆ( . ) T T T R R , as 

discussed comprehensively in the previous section of this chapter. Using Eq. 5.36, the 

reflected electric field from the metasurface for toroidal dipolar momentum as dominant 

component can be written in a brief version of Eq. 5.41 as below: 
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In the equation above, only the dominant term, which is the dipolar toroid term is kept 

and multipolar terms for toroidal moment are ignored. Figure 5.6c shows the transmission 

spectra for the modified structure, where the Fano dip disappeared and a new narrow 

resonance appeared around ~1775 nm. Further, a magnetic dipole moment (m) is excited 

at lower energies around ~2350 nm. The transmitted electric field from the nanostructure 

is defined by adding up the incident beam and the scattered electric field from Eq. 5.44. 

The inset shows the formation of a closed-loop current correlating with the toroidal 

moment due to the incoherent rotation of the magnetic moments in surrounding broken 

rings graphically. The local E-field intensity map in Figure 5.6d illustrates excitation of 

magnetic resonances at the toroidal mode position using FEM analyses. In order to verify 

formation of toroidal resonance, we plotted the surface current vectorial plot as shown in 

Figs. 5.6e and 5.6f. At 1675 nm, the charges oscillate in opposite directions in the 
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surrounding broken nanorings, hence, the magnetic moments do not couple to the bright 

dipolar mode arising from the central resonator. The magnetic vectorial charge plot 

demonstrates oscillation of charges in a head-to-tail configuration (toroidal magnetic 

moment, T) in each isolated nanoring, and leading to formation of a big close-loop 

arrangement. This magnetic closed-loop current is formed due to opposite rotation of 

magnetic dipolar momenta in the nanorings stimulated by the capacitive gap regions. 

Noticing in Fig. 5.6f, at the magnetic dipole moment position, the excited magnetic fields 

in both rings oscillate in a head-to-head configuration. To verify this claim, we plotted 

the yz-plane of magnetic (H-field) for the plasmonic structure with and without arc 

section at both Fano and toroidal momenta wavelengths as shown in Figures 5.7a and 

5.7b, respectively. Obviously, for the Fano dip position, the charges oscillates coherently 

and couple to the bright mode (Figure 5.7a). On the other hand, for the toroidal mode, the 

charges oscillate in a head-to-tail arrangement across the unit cell (Figure 54.7b). 

 

Figure 5.7. The yz-plane for the magnetic field (|H|-field) excitation and direction across the 

unit cell for a) Fano dip and b) toroidal dipole. 



152 

 

Focusing on the toroidal moment as the unique response of the structure, the length of 

the arc plays important role in the behavior and position of both toroidal dipole and 

magnetic modes. To show the effect of arc length, we studied the effect of this parameter 

on the excited modes for 87 nm<Larc<209 nm, as shown in Figure 5.8a. Increasing the arc 

length (gap distance) leads to a dramatic blue-shift in the position of magnetic dipole to 

the shorter spectra and finally disappeared and dampened for the largest examined arc 

length (Larc=209 nm). On the other hand, the toroidal dipole slightly blue-shifted 

including an enhancement in its depth. Such a spectral response can be better understood 

by plotting the current density flowing on the surface of the surrounding nanorings and 

central block for toroidal dipole and magnetic modes as depicted in Figures 5.8b-5.8e for 

Larc=104 nm and 174 nm. At the toroidal dipole wavelength, the direction and intensity 

were not affected significantly by the morphological variations (see Figures 5.8b and 

5.8c). In contrast to the Fano resonance, the negligible dependence of the toroidal 

resonances on major geometrical variations and antisymmetric properties is verified here. 

On the other hand, by increasing the length of the arc, the head-to-head magnetic 

 

Figure 5.8. (a) Transmission spectra for the toroidal resonator for samples having different arc 

lengths (Larc). (b) and (c) The surface current of resonator at toroidal dipole position for two 

different arc lengths, 104 and 174 nm, respectively. (d) and (e) The surface current of resonator at 

magnetic dipole moment for two different arc lengths, 104 and 174 nm, respectively. 
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oscillation decayed due to imperfect rotation of the magnetic dipoles (see Figures5.8d 

and 5.8e). 

Comparing Figure 5.8a and surface currents flow for two specific arc lengths, the 

results for the toroidal and magnetic resonance intensities are consistent. The effect of arc 

length can be further investigated by quantifying the far-field scattering power or 

intensity for toroidal and magnetic moments using Eqs. 5.42b and 5.42c. Figure 5.9a 

exhibits the quantified scattering intensity profiles for both projected toroidal and 

magnetic dipole resonant moments for Larc=87 nm. The appeared distinct peaks are 

correlated with the targeted resonant modes with dominant scattering power for projected 

toroidal and magnetic moments normal to the incident beam direction (z-axis). Fig. 5.9b 

illustrates the scattering power profile as a function of varying arc length, showing the 

intensity of magnetic moment decayed drastically, however, the intensity of toroidal 

dipole remained nearly constant with a slight blue-shift to the higher energies. The 

provided numerical calculations for the proposed plasmonic unit cell show formation of 

strong and pronounced Fano and toroidal resonant modes along the NIR using a fully 

metallic unit cell in two different regimes. Although, supporting both Fano and toroidal 

 

Figure 5.9. a) Scattering powers of toroidal and magnetic moments (Larc). (b) The scattering 

power as a function of arc length variations for toroidal and magnetic moments. 
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resonance modes on the same structure without geometrical modifications helps to design 

advanced nanoscale devices, the currently analyzed metasurface still lacks tunability on 

the plasmonic response similar to the analogous nano and microstructures in previous 

works [14,46-48]. To address this limitation, in continue, we show that how we can 

efficiently control the interplay between Fano and toroidal resonances without 

morphological variations. To this end, we introduce a PCM (here GST) into the gap areas 

(arcs) with the ability to support different amorphous and crystalline states at different 

temperatures. This approach yields an active switching between two distinctly different 

resonances. Figure 5.10a illustrates an artistic picture for the metallic unit cell with the 

presence of GST in the arc-shape gap areas, resembling a metallodielectric plasmonic 

nanostructure. By changing the length of the arc filled with GST substance, we computed 

the spectral response in Figs. 5.10b and 5.10c. For the amorphous phase (a-GST), the arc 

acts as a dielectric material, and due to dominancy of capacitive coupling, we expect 

formation of toroidal moment as well as a weak magnetic moment at lower energies (Fig. 

5.10b). By increasing the arc length from 87 nm to 174 nm, we detected a minor decay in 

the toroidal dipole moment, while the magnetic dipole damped significantly and blue-

shifted similar to the previous analyses in this context. On the other hand, by applying the 

continuous beam to change the phase of GST sections to the crystalline state (see 

methods), the arc behaves as a semi-metallic and conductive material, leading to 

formation of a Fano dip in the spectral response (Fig. 5.10c). In addition, an intense 

magnetic dipole appeared at the left side of the Fano dip for shorter arc lengths, led to 

formation of a broad electromagnetically induced transparency (EIT)-like response 

around ~1400 nm. However, increasing the arc length causes to blue-shift in the position 
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of magnetic dip and finally vanishing, while the Fano minimum approximately remains 

unchanged. The E-field maps for the plasmonic Fano and toroidal modes are illustrated in 

Figs. 5.10d and 5.10e (for Larc=87 nm). Accordingly, the c-GST arcs in both rings act as a 

 

Figure 5.10. a) Schematic for the metallodielectric unit cell with GST arcs. b) and c) The 

transmission spectra for the arc length variations in a-GST and c-GST states of arcs, 

respectively. d) and e) The E-field maps for the metallodielectric unit cell in c-GST and a-

GST phases of arcs, respectively at the Fano and toroidal wavelengths. f) and g) The 

surface current density for the c-GST and a-GST states of arcs. 
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conductive substance, leading to coherent excitation of charges and formation of 

asymmetric Fano dip (Fig. 5.10d). On the other hand, for the a-GST, due to dielectric 

behavior of GST arc, the charges oscillate oppositely, whereas the effect of arc section is 

distinct in Fig. 5.10e. Figures 5.10f and 5.10g compare the surface current density for the 

metallodielectric unit cells with GST substance in two opposite phases, which are 

consistent with the earlier studies in this work. The dashed circles at the GST position, 

exhibits how charges intensely couple in capacitive a-GST arc and easily shuttle in c-

GST regimes. In continue, we carry out series of computations to enhance the quality 

factor of the induced Fano dip and toroidal moment by concentrating on the geometrical 

modifications. Due to different natures of Fano and toroidal modes, we expect strong 

dependency of each resonance to specific geometrical components. Starting from 

metallodielectric unit cell with a-GST arc, which can sustain pronounced toroidal dipole, 

we analyzed the spectral behavior as shown in Fig. 5.11. The inner radius (Ri) variations 

in the range of 25 nm to 75 nm, (see figure legend) for the satellite nanorings, while the 

other geometries are kept fixed, did not affect the toroidal dipole considerably. A minor 

 

Figure 5.11. Transmission spectra for the toroidal dipole for (a) inner radius, (b) outer 

radius, and (c) gap distance variations. 
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blue-shift in the position of toroidal mode to the shorter wavelengths (Fig. 5.11a) is 

observed. In addition, it is noteworthy that the magnetic dipole (m) is located at longer 

spectra beyond 2800 nm (not shown). On the other hand, a dramatic decay in the toroidal 

dipole is observed by increasing the outer radius (Ro) of the particles. Interestingly, the 

magnetic dipole remarkably red-shifted to the higher energies including a continuous 

broadening in the lineshape (Fig. 5.11b). Finally, we examined the effect of gap distance 

(Dg) between the central resonator and the surrounding nanorings on the plasmonic 

response of toroidal unit cell (Fig. 5.11c). By changing the gap distance between central 

bar and the neighbor nanorings homogenously in the range of 5 nm to 50 nm, we observe 

that the toroidal moment is not affected by the capacitive gap size due to missing 

coupling between the dipolar electric mode excited from central bar and the magnetic 

moment from the peripheral rings. Noticing in the transmission spectra for gap variations, 

a subtle red-shift in the position of the toroidal dipole is observed including a decay in the 

amplitude. One should note that due to negligible influence of the central resonator on the 

toroidal response, we did not consider the effect of this component. On the other hand, 

for the unit cell with the c-GST arc, the induced Fano resonance strongly depends on the 

gap spots and the central block. Figures 5.12a-5.12d exhibit the geometrical variations for 

the inner and outer radii, gap distance, and central resonator geometries, respectively. It is 

obvious that how Fano resonance is sensitive to the minor geometrical alterations, 

comparing to the toroidal dipole. Being almost fixed for the nanoring variations (Fig. 

5.12a), a huge sensitivity for Fano dip is observed for the variations in the offset gap 

distance and central resonator. Figure 5.12b shows the red-shift in the position of Fano 

dip by increasing the gap size including a decay in the asymmetric dark mode. On the 
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other hand, minimizing the size of the middle bar (both L and W), significantly blue-shifts 

the Fano dip to the shorter wavelengths (Figs. 5.12c and 5.12d). One should note that the 

magnetic moment disappeared or greatly suppressed due to these geometrical variations. 

By using the obtained data and careful selection of the dimensions for the unit cell 

 

Figure 5.12. Transmission spectra for the Fano dip for (a) inner and other radii, (b) gap 

distance, (c) and (d) length and width of the central bar, respectively, variations. 
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geometries, we plotted the transmission amplitude for a potential telecommunication 

switch (see Fig. 5.13). The optimized geometries for the metallodielectric unit cell with 

the high quality toroidal dipole and asymmetric Fano dip are 

(Ro/Ri/Dg/W/L)=(95/65/10/70/325) nm. The corresponding quality factors for toroidal 

dipole and Fano dip are quantified as 14.8 and 15.6, respectively. As shown in Fig. 5.13, 

the GST arc supports a toroidal resonance at 1550 nm (global telecommunication 

wavelength, Off-state) when it is in amorphous state. By applying an optical pulse and 

heating the structure, the GST arc switches to the crystalline phase, leading to formation 

of a Fano dip away from 1550 nm (On-state). The rapid switching between opposite 

states of GST helps to develop promising and efficient plasmonic devices for practical 

applications.  

In this section, using PCM-mediated metallodielectric unit cells, we demonstrated 

fully reversible active control over the interplay between Fano and toroidal plasmonic 

resonant modes. For the purely metallic unit cell and complete nanorings, we observed 

excitation of asymmetric Fano resonant lineshape across the NIR. By removing arc-shape 

sections of the nanorings, we interfered in the direction of oscillation of magnetic modes 

and induced toroidal dipole resonance along the same domain. To provide reversible and 

fully controllable modulation of the excited plasmons and switching between Fano and 

toroidal moments, we introduced GST arcs as a thermally functional compound in the 

unit cell. Our numerical results confirm that switching the phase of GST arc between 

amorphous and crystalline regimes gives rise to variations in the magnetic moment 

oscillation in both nanorings. This study represents a useful and practical approach to the 

active tuning and controlling of the excited plasmonic resonances without morphological 
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variations in the geometry of the unit cell. The expressed understanding in this section of 

chapter opens new avenues to tailor novel and advanced nanoplasmonic devices and also 

shows how strategic resonant moments can be tuned efficiently using functional materials 

in designing the meta-atoms and metamolecules. 
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CHAPTER 6 

Plasmonics for Photothermal Heat Generation 

Plasmonics has provided exquisite features and opened new avenues for developing 

promising advanced medical techniques including but not limited to biosensing [1,2], 

fluorescence spectroscopy [3,4], tumor and cancer therapies [5-7], photothermal heat 

generation [8-11], cell and optoacoustic imaging [12,13], drug delivery and 

nanomedicine [14-16], nanosurgery [17], neuron stimulation [18,19], DNA assays [20]. 

Such broad and extensive applications of plasmonics in modern nanomedical sciences 

have stimulated researchers to exploit the associated exotic features for developing novel 

medical and clinical devices and apertures [21]. In the following sections, we briefly 

summarize our studies and achievements in nano- and microscale plasmonics for 

photothermal heat generation.  

6.1. Photothermal Heat Generation 

Photothermal heat generation in metallic subwavelength structures in a short time scale 

has been extensively utilized in biological applications [22], photothermal cancer and 

tumor therapies [23-25], bubble formation [26], control of enzyme reaction [27], etc. All 

these applications show the importance of photothermal heat flux production in 

subwavelength plasmonic structures for advanced clinical applications. For the noble 

metallic particles, LSPRs in nanosize structures with absorptive behavior leads to 

tremendous dissipation of an incident optical energy [28]. This large amount of light 

absorption can be achieved in an extremely short time interval by the free electron gas 

through electron-electron scattering in a picosecond time scale at the metal-dielectric 

boundary, and results in photothermal heat generation [29,30]. The photothermal 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#ref1
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https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#ref10
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responses of various shapes of nanoparticles in different orientations have been 

investigated analytically and experimentally, and also, the effects of structural, optical, 

and environmental parameters were included in these analysis [8,31]. Considering 

experimentally measured refractive index and dielectric constant [32], thermal 

conductivity [33], and specific thermal heat capacity [34] for several substances, Ag and 

Al have emerged as the metals of choice for light-to-heat conversion. In the past decade, 

hybridization of plasmon resonances was introduced as one of the most important 

mechanisms in excitation and intensification of plasmon resonant modes inside and 

between metallic molecular nanoparticles [35]. This phenomenon can be understood by 

analyzing the plasmon response of simple nanoparticle assemblies such as dimers and 

trimers. The formation of Fano lineshape and the unique behavior of this resonant mode 

were analyzed in Chapter 3, comprehensively. Technically, at this point a high amount of 

optical energy accumulates in the structure and can be controlled based on application. 

Behaviors of hybridized and localized plasmon resonant modes and also Fano mode 

depend on the material and geometrical properties of nanoparticles. A simple evaluation 

between noble metals showed that Ag provides a remarkable absorption of optical energy 

in the visible to the NIR due to Ohmic losses and also the plasmon resonances excitation 

here depending on the complexity of the aggregate [36,37]. On the other hand, very 

recently, cascaded plasmon resonant modes in simple compositional trimer clusters have 

been used in light to heat conversion process which resulted a significant temperature 

change with picoseconds relaxation time [38]. Using inanoparticles with high geometrical 

tunability and absorptive properties yield remarkable enhancement in photothermal 

response. Comparing the geometrical properties of various nanoparticles, core-shell 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#ref12
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particles and cavities provide unique geometrical tunability which can be employed to 

design highly symmetrical nanoparticle assemblies to support strong resonances [39,40]. 

In the recent years, there have been great efforts to increase the temperature and 

efficiency of photothermal heat flux production in nanoplasmonic devices [8,11]. 

However, the highest possible temperature variations that have been obtained was around 

~100 K with the power flux of near to ~50 μWcm−2. Here, we study the plasmon and 

photothermal responses for a quadrumer cluster comprises of Ag core-shell 

nanostructures in free space and aqueous ambiences. Using plasmon hybridization theory, 

we analyzed and compared the plasmon response for metallic and metallodielectric 

quadrumers. It is proved that a symmetric and identical four-member cluster is able to 

support pronounced Fano dip during laser pump exposure. Determining the photothermal 

heat energy flux produced by the cluster, we quantified the temperature changes 

numerically and theoretically. Then, with the placement of carbon nanospheres in the 

offset gap space between nanoparticles, we introduced a metallodielectric molecular 

assembly to enhance the photothermal efficiency. Analyzing the photothermal response 

of the proposed metallodielectric nanostructure, we enhanced the quality of Fano 

minimum by inducing new magnetic dark modes by tiny carbon nanospheres. It is 

verified that this structural modification can result in a dramatic enhancement in the 

temperature. Figures 6.1a-6.1c exhibit schematic diagrams for the proposed quadrumer 

cluster with the description of geometrical parameters inside and also in both metallic and 

metallodielectric regimes. Four identical Ag core-shell nanoparticles were located with 

the dimensions of ra/rb/rc/h = 60/105/140/85 nm close to each other with an offset 

distance of D4q= 15nm (see the inset in Fig. 6.1d). Then we calculated the scattering and 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#ref12,22
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absorption profiles for the quadrumer cluster in free space and water which are shown 

Figs. 6.1d and 6.1e, respectively. For free space (n=1), a noticeable Fano mode is induced 

at the visible spectrum (λ= 0.690 μm), while for the fluid system (n= 1.33) like biological 

mechanisms, the Fano lineshape is red-shifted to the longer spectra (λ= 0.760 μm) and 

 

Figure 6.1. a, b, c) Schematic diagrams for an Ag nanoparticle and a four-member 

quadrumer composed of nanoparticles in both metallic and metallodielectric regimes, 

respectively. d, e) Scattering and absorption profiles for the metallic quadrumer in the free 

space and aqueous ambiences under transverse polarization excitation (Eexc). The insets show 

the gap distance between core-shell units and E-field illumination direction. f, g) E-field 

profiles during plasmon resonance excitations coupling in the metallic quadrumer in free 

space and liquid systems. 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g001
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also becomes deeper due to high amount of energy accumulation at this position [41]. 

This red-shift in the position of Fano dip accompanies with a noticeable field 

intensification at the resonance frequency (ωLSPR). In addition, a huge amount of power 

dissipation is recorded at the resonance wavelength. Noticing in the numerically obtained 

E-field maps as two-dimensional snapshots for each profile (see Figs. 6.1f and 6.1g), the 

plasmon resonance enhancement in the aqueous ambience is superior and the excitation 

of plasmon resonances in all of the nanoparticle members is achieved. Also, in this 

system, the EM energy is localized in the offset gaps between nanoparticles and in the 

space between the core and shell parts. This strong localization of plasmon modes can 

lead to large amount of heat energy production. In this regime, we expect an enhanced 

photothermal power generation at sub-nanosecond time scale according to the incident 

Gaussian pulse length (~2.65 fs). The amount of power dissipation and heat generation 

can be analyzed in nanoscale dimensions considering all the parameters for the structural 

and environmental characteristics using the following equation [42]: 

absC
T

cV




      (6.1) 

Where Cabs is the, absorption coefficient φ is the optical flux of the incident light 

source (Jm−2), c is the specific heat capacity of the core-shell nanoparticles (JKg−1K−1) 

NPs, ΔT is the temperature variations in a specific time scale (K), ρ is the density of the 

particles (Kgm−3) NPs, and V is the volume of the entire nanocluster (m3). Practically, the 

mechanism of photothermal heat generation and transfer in nanoscale is a nonequilibrium 

process. Hence, we assume that the phonons interact with the cluster as a hot object, with 

the aqueous medium as a cool object and travel in this ambience. Considering the amount 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#ref25,26
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of the absorbed power and environmental properties, the absorption coefficient at ωLSPR is 

given by: 

2

0 0

2

LSPR

LSPR

abs

m exc

P dV
C

n E


 


       (6.2) 

where PLSPR is the optical power loss density per volume that is absorbed by 

nanoparticles based on Ohmic losses of core-shell units at ωLSPR, nm is the refractive 

index of the surrounding medium, 𝜀0 and 𝜇0 are the permittivity and permeability of the 

free space, respectively, and Eexc is the amplitude of the incident transverse electric field. 

 

Figure 6.2. a) Thermal heat power flux (Qh) profile for a metallic nanoassembly during laser 

pump exposure in a liquid system. b) Dissipated power density mapping in a metallic 

quadrumer at the peak of absorption. 
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Here, we put into the account, the amount of energy that was absorbed at ωLSPR, and then, 

we determined the photothermal heat generated in a very short time scale by setting the 

relevant simulation parameters in picoseconds. Figure 6.2a shows the total generated heat 

flux (Qh) by the quadrumer cluster in the water medium, which can be quantified at ωLSPR 

by using the equation: Qh=0.5(nmc0ε0|E0|2Cabs) proposed by Baffou et al. [8]. More than 

the distinct extreme that is appeared for the position of Fano minimum, we also observed 

 

Figure 6.3. a, b) Scattering and absorption spectra for quadrumer cluster with the carbon 

nanospheres with different quantities in an aqueous system. c, d) The electric field profile 

|E| showing the hybridization and enhancement in metallodielectric quadrumer clusters 

with two and four CNSs, respectively. e, f) The electric field distribution diagram inside the 

metallodielectric quadrumer with four carbon nanospheres at Fano dip position for bright 

and dark modes. Carbon nanospheres are denoted by CNS in the picture. 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g002
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a couple of shoulders at the visible (~0.580 μm) and NIR (~1.1 μm) spectra which are 

correlated with small amount of optical power absorption at the bonding and antibonding 

resonant modes positions, respectively. For the considered setting above, we calculated 

the temperature changes as ΔT= 150 K for a metallic quadrumer cluster composed of Ag 

nanoparticle units with the optical fluence of the incident pulse of 20 Jm−2. The energy 

dissipation inside the metallic quadrumer cluster at ωLSPR is shown in Fig. 6.2b as heat 

power map. It should be underlined that such a high temperature is obtained in a sub-

nanoscale time duration due to high dissipation of optical power inside the quadrumer 

cluster. 

However, this performance of the proposed nanocluster can be further enhanced by 

utilizing plasmon transmutation effect [43]. To this end, we modified the plasmon 

response of the quadrumer cluster with the placement of carbon nanospheres to the offset 

junctions between proximal nanoparticles (Ag-C-Ag). For the carbon spheres, we 

employed carbon particles with the experimentally determined complex permittivity as 

ε=2.25+i0.0215, and absorption coefficient, α= 1531.5 cm−1 [44]. The plasmon 

transmuting in a four-member subwavelength cluster includes inducing collective 

antibonding magnetic plasmon resonant modes which leads to intensifying the energy of 

the induced Fano dip. To show the effect of carbon nanospheres placement to the metallic 

quadrumer cluster, we calculated the photothermal response for the metallodielectric 

nanocomplex with breaking the symmetry of the cluster due to the presence of the 

nanospheres. It should be noted that due to the concentration of hybridized plasmon 

resonant modes at the edge-to-edge distances (gaps) between core-shell units, we expect 

more heat generation in these regions. The placement of the carbon nanospheres in the 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g002
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#ref28,29
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gaps accompanied by the formation of strong collective magnetic modes results in large 

plasmon resonance energy accumulation at these gaps. Figures 6.3a and 6.3b exhibit the 

scattering and absorption cross-sectional profiles for the metallodielectric assembly, 

respectively. It is observed that placement of two carbon spheres with the radii of 14nm 

in the junction between Ag-C nanoparticles makes corresponding Fano dip deeper, 

meanwhile its position red-shifts to the longer wavelengths due to symmetry cancellation 

caused by addition of carbon particles. Considering the plasmon resonance hybridization 

mechanism, with the placement of one or two carbon spheres at the left side of the 

quadrumer, collective magnetic subradiant modes could be induced, while a symmetry 

breaking can be performed as a result of this metal-dielectric contribution. Formation of 

collective magnetic dark modes can result in a deeper Fano minimum. However, 

comparing the effect of symmetry breaking and the carbon spheres deposition, the role of 

dark modes induced by carbon spheres in Fano minimum intensification is significant. 

Hence, increasing the number of carbon nanospheres at the offset gaps between Ag-C 

nanoparticles leads to formation of enhanced subradiant modes. Therefore, for the 

quadrumer cluster with four carbon spheres, a sharper dip appears at λ= 0.950 μm, 

corresponding to the strong hotspots. Note that in the depicted scattering spectra in Fig. 

6.3a, increasing the number of the deposited carbon nanospheres at the gaps, red-shifts 

the Fano spectral feature and leads to narrower and deeper dips. The inset in Fig. 6.3a 

shows a schematic for the examined quadrumer with the placement of carbon spheres, 

while the illumination and polarization directions are indicated by arrows. Figure 6.3c 

displays the field distribution and E-field map for the plasmon resonance hybridization 

and excitation inside a metallodielectric quadrumer with two carbon nanoparticles in the 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g003
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g003
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left side of the quadrumer (the location of dielectric spheres are indicated by the arrows). 

For the metallodielectric quadrumer with four carbon particles, analyzing the 

photothermal response of the latest nanocomplex immersed in the aqueous ambience (see 

E-map profile depicted in Fig. 6.3d), we found a significant improvement in the electric 

field enhancement in comparison to the fully metallic quadrumer and a cluster with two 

carbon nanoparticles. In order to show the behavior of quadrumer at the position of bright 

and dark modes, we plotted electric field distribution diagram for both of the modes, as 

shown in Figs. 6.3e and 6.3f, respectively. Noticing in the depicted arrows, in Fig. 6.3e 

all of the dipolar plasmons oscillate in-phase and in the same direction in all of the 

metallodielectric units. On the other hand, considering Fig. 6.3d, the dipolar moments of 

two units are in the opposite direction of the other units, which is in complete agreement 

 

Figure 6.4. a) Field enhancement factor (|Ein|/|Eexc|) over the photon energy for both 

metallic and metallodielectric (with four carbon nanospheres) clusters in an aqueous 

ambience. b) Photothermal heat power flux (Qh) spectra at the interparticle junction for a 

metallodielectric assembly with carbon nanospheres. c) Photothermal heat density in 

quadrumer with four carbon spheres. d) Photothermal heat temperature variations over the 

laser pulse intensity for both metallic and metallodielectric plasmonic clusters. Carbon 

nanospheres are denoted by CNS in the picture. 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g003
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g003
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g003
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g003
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with the plasmon hybridization theory. Figure 6.4a shows the internal electric field 

enhancement factor (|Ein|/|Eexc|) which is the ratio of the overall localized field in the 

nanoparticles gaps and in the space between cores and shells to the incoming electric 

field for the clusters in all the examined structural alterations. This field enhancement is 

calculated at the Fano dip position. Comparing this parameter for both metallic and 

metallodielectric (with four carbon nanoparticles) clusters, a significant enhancement in  

the electric field intensity for the metallodielectric structure with four carbon 

nanoparticles is observed. Figure 6.4b shows numerically computed photothermal heat 

flux where the peak of power is red-shifted to the longer spectra by increasing the 

number of carbon nanospheres. For the cluster with four carbon spheres, the 

photothermal heat power flux is calculated as 93.3 μW.cm−2. Figure 6.4c exhibits the 

absorbed power loss density by nanoparticles as a two-dimensional snapshot. Employing 

the method described above, temperature variation in the metallodielectric nanocomplex 

is estimated as ΔT= 172 K. 

Finally, we examined the effect of variations in the intensity of the incident laser 

power on the photothermal heal temperature production as shown in Fig. 6.4d for both 

metallic and metallodielectric quadrumer clusters. Using the proposed method by Fang et 

al. [45] that was proposed for plasmonic particles immersed in water medium, the 

temperature variations in the proposed nanoscale structure can be plotted as a function of 

incident laser source power. According to depicted I-T curve, increasing the intensity of 

light up to 1.5 mW.μm−2 leads to minor enhancements in the produced photothermal heat 

temperature, while for higher intensities (I>1.5 mW.μm−2) temperature variation is very 

small and negligible, due to limited geometrical capacity of the quadrumer nanostructure 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g004
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g004
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g004
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#g004
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-11-A682&id=318883#ref31
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in supporting high energies. For instance, for I = 2 mW.μm−2, change in the temperature 

due to generated thermal heat could not reach above ΔT~180 K (saturating condition). 

Also, it should be underlined that for practical applications, such a high power can result 

in destructive effects such as defects in the geometries of the cluster. Carbon nanotubes 

and graphene sheets [16] and more recently plasmonic nanoshells and nanomatryoshkas 

[46] have been employed in bio-medical applications such as tumor and cancer therapies. 

Here, we proposed a numerical method to analyze the behavior of a nanoplasmonic 

structure with the contribution of carbon nanospheres. Comparing the performance of the 

proposed nanostructure with the analogous ones that have been reported in the literature 

[16,46], the plasmon response of the proposed structure is superior. Therefore, with their 

improved characteristics, we expect that the proposed metallodielectric nanostructures 

will make a great contribution to various bio-medical and photothermal spectroscopy 

applications. 
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CHAPTER 7 

Terahertz Toroidal Plasmonic Metamaterial for Biomarker Protein Detection 

In previous chapters, the plasmonic response and the characteristics of toroidal 

metamolecules at the near-infrared to the THz spectra were discussed comprehensively. 

Unconventional characteristics of magnetic toroidal multipoles have triggered researchers 

to study these unique resonant phenomena by using both 3D and planar resonators under 

intense radiation. High-quality and ultra-narrow resonance lineshapes and substantial 

sensitivity of this mode to the environmental perturbations (i.e. refractive index of the 

medium) can be effectively used for identification of ultralow weight atomic proteins and 

bio-agents for biochemical and biological sensing purposes. 

Utilizing the exotic features of toroidal moments in the THz band, in this chapter, we 

provide detailed reports on the using toroidal modes for advanced biosensing 

applications. To this end, we used our proposed and studies microstructure in Chapter 5. 

This chapter also demonstrates that how the high-quality factor toroidal dipolar moment 

can be excited in plasmonic multi-metallic unit cells. Then, by taking the advantage of 

high quality toroidal lineshape and its dependence on the environmental perturbations, in 

the current chapter, we demonstrate that room-temperature toroidal metasurface is a 

reliable platform for immunosensing applications. As a proof of concept, we utilized our 

plasmonic metasurface to detect Zika-virus (ZIKV) envelope proteins (with diameter of 

40 nm and molecular weight of ~13 kDa) using a specific ZIKV antibody. The sharp 

toroidal resonant modes of the surface functionalized structures shift as a function of the 

ZIKV envelope protein for small concentrations (~ pM). In the following sections, we 

first describe the characteristics and importance of the targeted infectious proteins in 
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details and the employed treatment and detection methods that have been proposed 

recently. Then, using the proposed toroidal metasurface, we qualitatively analyze the 

detection performance of ZIKV envelope proteins and the associated sensing parameters. 

7.1. Targeted Infectious (ZIKA-Virus) 

In this section, we briefly summarize the targeted infectious properties and practical 

trends in identification of disorder. Zika is a new medical threat across the world as an 

infectious disease which causes serious health disorders, possibly leading to death [1,2]. 

This type of infection spreads in humans through the mosquitoes Aedes aegypti and 

Aedes albopictus. The transmission mode consists of a mosquito biting an infected host, 

taking in infected blood containing the virus, and further injecting the infectious saliva 

into the healthy host system. This process ends in a serious infection, resulting in life-

threatening pathogenesis and disease progression [3]. ZIKV infection has various 

transmission modes [4] and mechanisms including from mother to child; through blood 

transfusion, bone marrow transplants, or organ transplants, and sexual transmission [5]. 

 

Figure 7.1 Contribution of the ZIKV external morphology and the cryo-electron 

microscopic image of hydrated ZIKV. a) An artistic representation of the ZIKV virion 

structure. b) The cross-section of cryo-electron microscopic illustration of ZIKV, showing 

the radial density distribution with specific color coding, obtained with permissions from 

Ref. [10]. 
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As a major and fundamental infection spread, horizontal transmission, that is, from 

mother to child during pregnancy, gives rise to microcephaly in newborns and also other 

birth defects [6]. Several approaches have been introduced and conducted for practical 

detection of this type of infection such as reverse transcriptase-polymerase chain reaction 

[7], antibody-based methods (e.g. ELISA) [7], point-of-care molecular detection [8], and 

electrochemical biosensing [9]. Despite of the growing research, most of these 

applications suffer from high-costs, lack of sensitivity and repeatability, and complex 

processing. Therefore, providing an all-optical microscale metasurface with an ability to 

detect picomolar concentrations of ZIKV envelope protein would help us to tailor 

 

Figure7.2 Point-of-care molecular detector. a) Schematic of saliva sample preparation. 

Saliva samples are first collected in a saliva collection tube and then lysed in Qiagen 

binding/ lysis (AVL) buffer. b) The lysed sample is filtered through the isolation membrane 

of our microfluidic cassette for nucleic acid extraction. c) Exploded view of the chemically 

heated cup. The cup consists of a thermos cup body, a 3D-printed cup lid, a chip holder, 

PCM material, heat sink and single-use Mg−Fe alloy pack heat source. d) A photograph of 

the chemically heated cup for point of care molecular diagnostics of ZIKV, obtained with 

permissions from Ref. [11]. 
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practical, easy to fabricate, and accurate detection mechanism with high reliability. 

Figure 7.1a illustrates an art picture of the ZIKV virion structure with the description to 

various components of the molecular protein. The cryo-electron microscopic cross-

sectional image of frozen hydrated ZIKV is plotted in Fig.7.1b [10], showing the color 

coding of the virus based on radii as follows: blue, up to 130 Å; cyan, 131 to 150 Å; 

green, 151 to 190 Å; yellow, 191 to 230 Å; red, 231 Å and above. The region shown in 

blue fails to follow icosahedral symmetry, and therefore its density is uninterruptable, as 

is the case with other flaviviruses. 

 

Figure 7.3 Toroidal plasmonic metamolecule. a) Artistic perspective of compositional 

plasmonic resonators assembly as a unit cell on a silicon host. b) A top-view schematic of 

the microstructure unit cell with an introduction to geometrical components. c) The SEM 

image of fabricated plasmonic structures in arrays for the unit cells with the gap spots 

between surrounding and central resonators of Dg=3 µm with L=240 µm, R=50 µm, W1=30 

µm, and W2=40 µm. d) The magnified SEM images for each unit cell with Dg=3 µm. 
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As we described above, so far, various detection method have been carried out to 

increase the sensitivity of devices at very low concentrations of ZIKV agents. Newly, a 

sensing system has been developed based on highly sensitive reverse-transcription loop-

mediated, isothermal amplification assay for rapid detection of ZIKV and its 

implementation in a simple, handy, cost-effective, point-of-care disposable cassette that 

carries out all the unit operations from sample introduction to detection [11]. The thermal 

control of the cassette was established by using a chemically heated cup without a need 

for electrical power. Figure 7.2 exhibits the illustrations of the proposed ZIKV sensor by 

Song et al. [11]. The operating mechanism of this sensors is based on spiking saliva 

samples with varying concentration of ZIKV infection. Then, a colorimetric detection 

system was carried out based on including leuco crystal violet (LCV) dye with the 

associated reaction mixture. Once the infectious virus is detected, the colorless LCV turn 

into violet. Although this method looks promising and fast, it suffers from poor detection 

performance at very low concentrations of ZIKV agents, which is around a few 

micromolar (μM). Therefore, finding an approach to detect low level of infectious agents 

would help to attain early-stage identification of disease. In the upcoming section, we 

describe our all-optical method for the detection of ZIKV envelope proteins at very low 

concentrations using THz plasmonic metamaterials. 

7.2. Tailoring Bimetallic Multipixel Toroidal Unit Cells 

Here, we employed the analyzed plasmonic metasurface that is investigated in Chapter 5 

in details. Using both numerical and experimental studies, we verified the excitation of 

strong and high-quality toroidal moments in multimetallic plasmonic metamolecules in 

the THz regime. In the following subsections, we briefly summarize the spectral 
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properties and toroidal response of the developed metadevice and then the unique 

advantages of the multimetallic metasurface for the detection of ZIKV envelope proteins 

will be discussed comprehensively. 

7.2.1. The Spectral Properties 

Figure 7.3 demonstrates the schematic view of the proposed planar micro-assembly unit 

on a silicon host (not to scale) with the incident THz beam direction and electric field 

polarization. The geometrical and material descriptions of the resonators and components 

are demonstrated in a top-view profile in Fig. 7.3b. Figure 7.3c exhibits an SEM image of 

the fabricated compositional unit cell arrays on a high-resistivity silicon wafer with the 

gap distance of Dg=3 μm between peripheral and central resonators. The magnified SEM 

image of the planar plasmonic unit cell is presented in Fig. 6.3d. In numerical analysis, 

we assumed formation of a few nanometers natural oxide (Fe2O3) on the Fe structures at 

room temperature [12]. 

By launching a THz beam in –z direction (Fig. 7.3a), the excited local modes lead to 

formation of circular magnetic fields in the central zone of the peripheral curved 

structures. This results in dramatic suppression in the electric dipole moment by the 

excited magnetic and toroidal resonances [13]. The suppressed dipolar moment is 

associated with the strong electric resonant mode arising from the central resonator and 

the weak modes in the curved split resonators. Looking at the magnetic resonance (m) 

direction in the upper and lower parts of the magnetic split resonators (Fig. 7.4a, not to 

scale) and central block, strong magnetic fields oscillate in antiphase regime, while the 

excited weaker magnetic modes at the central resonator acts as an in-phase component 

[14]. On the other hand, Fig. 76.4b illustrates formation of a head-to-tail configuration of 
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the magnetic moments leading to a toroidal dipolar moment (T) at the center of the unit 

cell created by the currents (j) on the surface of a torus along the circular meridian. The 

arrows show the current flux direction and magnetic moment (m) oscillation as a close-

loop arrangement inside the profile. Obviously, the head-to-tail configuration is 

performed with 90° angle to the central block due to antisymmetric geometry of the unit 

cell. The corresponding transmitted magnetic radiation from the magnetoplasmonic unit 

cells arrays can be obtained by taking the summation of the scattered magnetic and 

incident electromagnetic fields. The total contribution of the far-field scattering of the 

magnetic field (Hscat) can be written as [15]: 
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where k is the wave vector, Z0 is the impedance of the medium, ɛ0 is the permittivity of 

the vacuum, n is a unit vector in the direction of the incident illumination, and finally, mc 
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where J is the induced current density over the entire volume of the area and c is the 

conventional speed of the light. To show the strong dependence of the magnetic response 

to the geometrical parameters, we first analyze the effect of the offset gaps between the 

peripheral and central resonators on the electromagnetic response as shown in 

Figs.7.4c(i)-7.4e(i). These analysis would help us to control the position and sharpness of 

the induced magnetoplasmonic resonances by varying the offset gap. A sharp magnetic 
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dipolar minimum is observed at ~230 GHz (indicated by m in Fig. 7.4c) in the 

experimentally measured normalized transmission amplitude profile for Dg=3 μm which 

is attributed to an in-phase magnetic mode. On the other hand, an ultrasharp and distinct 

lineshape is induced at ~203 GHz correlating with the magnetic toroidal dipole (T). At 

this point, the induced magnetic fields in the satellite split resonators and the close-loop 

magnetic moment at the offset gap area (the point that both resonators meet each other) 

cause to formation of a head-to-tail configuration of the magnetic dipoles via suppression 

of the classical modes in a similar fashion that has been reported for 3D structures 

 

Figure 7.4. a) and b) The 3D schematics of the magnetic (m) and toroidal (T) resonances around 

and across the central and surrounding magnetic resonators, respectively. c), d), and e) The 

electromagnetic response of the compositional THz plasmonic resonator: (i) Experimentally 

obtained normalized transmission amplitude profiles for the unit cells with three different offset 

gaps, (ii) the SEM images for different offset gaps between resonators, (iii) Numerically 

calculated transmission spectra for three different offset gaps. 
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[16,17]. One should note that inducing such a distinct and pronounced toroidal magnetic 

moment using conventional planar structures is a serious challenge. Our tailored 

plasmonic unit cell has an exquisite geometrical asymmetry which is enhanced by using 

two different materials. Presence of Fe resonators with high magnetic moment and 

plasmonic properties helps to formation of giant magnetic current around the middle Ti 

rectangle. The good electric and poor magnetic responses of the central Ti block help to 

prevent destructive interference of the strong magnetic moments arising from peripheral 

magnetic resonators with the moments from the middle rectangle. As a result, formation 

 

Figure 7.5. The electromagnetic response of the plasmonic unit cell at a) toroidal and b) 

magnetic resonance frequencies. Numerically obtained local |H|-field (A/m) snapshots for the 

toroidal and magnetic resonance confinement and excitation at the gap spot area between 

resonators in (i) linear and (ii) logarithmic scales. (iii) The cross-sectional vectorial maps for the 

magnetic field lines at the position of toroidal and magnetic resonant modes. c) Simulated surface 

currents (j) of unit cell at toroidal and magnetic resonances. 
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of a closed-loop head-to-tail magnetic moment configuration would be possible around 

the central part of the unit cell. Furthermore, the presence of the substrate below the 

planar unit cell resonator increases the asymmetry of the entire metasurface. In this 

regime, formation of multipolar magnetic and electric modes is feasible, however, these 

modes are not resonant at the toroidal frequency and cannot be observed in the 

transmission spectrum. By increasing the gap distance between the proximal resonators to 

4 μm and 5 μm homogenously, we observed a trivial broadening in the linewidth and 

suppression of the toroidal dip which dramatically affected the quality-factor of both 

magnetic and toroidal modes (Figs. 7.4d(i) and 7.4e(i)). Such a trend can be better 

understood by analyzing the effect of the offset gap on the circulating had-to-tail toroidal 

mode. In fact, for larger offset gaps (Dg>4 μm), the excited magnetic field which 

contributes to formation of the circulating current becomes weaker, causing a huge 

mismatch between the induced electromagnetic currents in the peripheral and central 

resonators. The SEM images for the gap spot variations between Fe and Ti resonators in 

unit cells are shown in Figs. 7.4(ii)-7.4e(ii). The experimentally obtained results are in 

perfect agreement with the simulation predictions (see Figs 7.4c(iii)-7.4e(iii)). We 

calculated the corresponding experimental quality-factors as high as 
expQm =14 and 

expQT

=18 for the magnetic and toroidal modes, respectively, using the highest peak and lowest 

minimum of the induced toroidal dipolar dip. Achieving such a high narrow toroidal 

lineshape by a planar metasurface is the direct result of the strong magnetic resonance 

confinement and weak free-space coupling. 

Figures 7.5a and 7.5b exhibit the numerically calculated local magnetic field (|H|) 

localization in a standalone unit cell resonator, showing the intense magnetic field 
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confinement at the center of the antenna at the toroidal and magnetic frequencies, 

respectively in both linear and logarithmic scales. In addition, we demonstrated the cross-

sectional panels for the magnetic field (H-field) excitation across the plasmonic unit cell 

at both toroidal and magnetic resonant moments as shown in Figs. 7.5a(iii) and 7.5b(iii), 

respectively. These planes provide a better view of the magnetic field disturbance due to 

formation of heat-to-tail circular magnetic fields at the center of the unit cell. The surface 

current (j) also simulated for both resonant modes as shown in Fig. 7.5c. 

In continue, we analyzed the effect of the geometrical variations in the magnetic 

peripheral curved resonators on the plasmonic response of the metasurface. To this end, 

 

Figure 7.6. Normalized transmission amplitude profiles of the THz resonator system with 

three different offset gaps obtained (i) experimentally and (ii) numerically for (a) Dg=3 µm, (b) 

Dg=4 µm, and (c) Dg=5 µm. The insets are the SEM images with the geometrical parameters. 
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by keeping the width of the central block fixed at W2=40 µm, we reduced the widths of 

the satellite resonators to W1=25 µm with the radii fixed to R=50 µm. Figure 7.6 shows 

both simulation and experimental results for three different gaps. With the reducing width 

of the magnetic components strength of the magnetic dipole moment (m) decays 

dramatically and does not radiate as strong as it does in the previous cases. Therefore, a 

significant decay is expected in the oscillating magnetic field around the central block 

(toroidal mode) due to dominant behavior of the excited classical electric dipolar and 

multipolar moments. It should be noted that despite of possessing prevailing response, 

both electric and magnetic multipolar moments are not still resonant in this frequency due 

to poor scattering efficiency [18]. Comparing Fig. 7.6a and Fig. 7.4a, the significant 

decay in the corresponding quality-factor of the toroidal mode is clear. In the same way, 

the magnetic dipole moment also decays dramatically due to both electric and magnetic 

classical multipolar modes’ dominancy. In this limit, increasing the gap distance between 

the central and peripheral resonators gives rise to continuing decay in the quality factor of 

both induced modes (see Figs. 7.6b and 7.6c). For Dg=5 µm, the magnetic dipolar 

moment almost disappears and hard to identify in the experiments. The minor blue-shift 

in the positions of both resonant dips is attributed to the geometrical variations, which 

can be described by Mie scattering theory [17,19]. The insets in simulation profiles (Figs. 

7.6a(ii)-7.6c(ii)) are the SEM images of the studied geometrical variations. 

7.2.2. The Detection Performance 

As a promising technique, THz spectroscopy allows for non-invasive, non-contact, non-

destructive, and label-free biomarker detection and therefore attracted growing interest 

for biomedical and clinical applications [20-23]. It is shown that electromagnetic field 
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enhancement and confinement by metallic THz components facilitate detection of 

targeted bio-agents such as specific proteins, antibodies, and etc. [20-23,24]. Despite of 

such a unique potential, the selectivity and sensitivity of THz metasurfaces for 

immunosensing sensing applications have not been analyzed comprehensively due to 

mismatch between resonance frequency of nanoscale bio-targets and metasurfaces. This 

is because of non-responsivity of micro- and nano-organisms with the size of 

 

Figure 7.7. a) Schematic demonstration of ZIKV envelope protein binding with respective 

antibody on the toroidal THz plasmonic metasurface. b), and c) The SEM images for the 

plasmonic toroidal resonator covered with antibody and ZIKV envelope proteins attached to the 

antibody, respectively. 
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approximately ~λ/100, causing to be almost transparent to the incident radiation, 

therefore, reflect poor scattering cross-section [25]. This challenge in THz metamaterials 

can be circumvented using two approaches: 1) introducing nanosize particles (e.g. 

nanospheres) [25] on the micro-scale plasmonic chips to trap and bind biological objects 

and monitor their effect on the spectral response, and 2) excitation of ultrasharp 

antisymmetric resonances (with high-quality-factors) to show super-sensitivity to the 

small environmental variations. 

The unique electromagnetic response of the studied THz structure can be used to tailor 

highly sensitive and accurate plasmonic sensor. To this end, we prepared series of chips 

with the best quality-factor (with the following geometrical parameters: Dg=3 µm, L=240 

µm, R=50 µm, W1=30 µm, and W2=40 µm) to achieve precise sensing. The 

immunosensing samples were prepared in three different configurations: 1) with 

antibody, 2) with antibody and bovine serum albumin (BSA), and 3) with antibody, 

bovine serum albumin (BSA), and variant concentration (1pg/mL to 104 pg/mL) of 

immobilized ZIKV envelope protein. To prepare the samples for the fingerprint 

biological assay, we used both lyophilized 99% bovine serum albumin (BSA) purchased 

from Sigma-Aldrich, and pH 7.4 phosphate buffer solution (PBS) to dissolve the 

immunoreagents. The antibody and envelope proteins were purified by 

Diethylaminoethyl (DEAE) column chromatography and presented in 0.015 M potassium 

phosphate (KH2PO4) and 0.85% of NaCl with the pH around ~7.2. For preparing the 

samples for real-time characterization, 10 μL of Zika antibodies (1 mg/mL) in PBS were 

locally deposited on the sensing area of THz structures and incubated for 15 min. 
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After washing the chips with PBS, antibody-modified structures were incubated in 

PBS containing 0.1 wt. % BSA for 15 min, and then, in a solution of a recombinant Zika 

diluted in PBS for at least 20 min (The ZIKV envelope protein concentration was ranged 

from 1 to 104 pg/mL). Here, the recombinant of ZIKV envelope protein is an artificial 

ZIKV protein created through genetic engineering process (recombinant DNA 

technology). The recombinant ZIKA envelope protein in our research was purchased 

from Sino biological USA. Once prepared, antibody-functionalized microstructures were 

rinsed and stored at 4 °C until used. The mouse monoclonal antibody for ZIKV and the 

envelope proteins purchased from Aalto Bio Reagents and Sino Biological Inc. 

respectively. 

Figure 7.7a shows an artistic picture for the proposed metasurface with the presence 

of antibody and trapped envelope proteins around and on the plasmonic resonators. 

Figures 7.7b and 7.7c are the SEM images of the presence of immobilized ZIKV 

antibody on a sample metallic microstructure and a chip covered with antibody-attached 

ZIKV envelope protein, respectively. These images helps to understand the binding 

quality of antibody and capturing of biomarker proteins to the bimetallic metamolecules 

directly right after the deposition in the metasurface. Figures 7.8(i) and 7.8(ii) illustrate 

the transmission spectra of the plasmonic metasurface for different concentrations of 

ZIKV envelope protein captured by the antibody. By focusing on the behavior of 

magnetic toroidal mode, we observed a prominent resonance in the presence of ZIKV 

envelope protein concentration between 1 pg/mL to 104 pg/mL. In the earlier section, we 

observed excitation of the toroidal resonance mode at 203 GHz for the bare resonators. In 

the presence of the ZIKV antibody, the toroidal mode remained unchanged at 203 GHz 
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due to its optically non-responsiveness to the incident radiation. For the solution 

composed of ZIKV antibody plus BSA the magnetic toroid moment red-shifted to 198 

GHz. This is because of formation of a layer on top of the plasmonic sensing device, 

which affects the entire refractive index of the surrounding ambience and shifting the 

toroid moment. It should be underlined that the presence of BSA layer helps to improve 

ZIKV envelope protein capturing by respective antibody effectively and preventing non-

specific binding of ZIKV envelope protein. Adding 1 pg/mL and 10 pg/mL of the target 

protein did not cause any shift in the position of the toroidal moment, and it remained at 

198 GHz. However, increasing the concentration to 50 pg/mL and 100 pg/mL, shifted the 

 

Figure 7.8. Transmission spectra for the toroidal resonant mode behavior for presence of 

different concentration of ZIKV envelope protein from (i) antibody to 50 pg/mL and (ii) 100 

pg/mL to 104 pg/mL. 
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toroidal resonance to 194 GHz and 188 GHz, respectively. Such a large shift in the 

resonance frequency shows the sensitivity of the toroid dip to the concentration of the 

infection protein. Interestingly, the narrowness and sharpness of the dipolar toroidal 

moment is almost unchanged, which helps keeping the sensing precision high by keeping 

the quality-factor high. This is unusual compared to classical plasmonic biosensing 

systems operating based on antisymmetric resonant lineshapes such as Fano and EIT 

resonances where perturbation in the environmental refractive index or physical changes 

cause to destructive effects on the lineshape quality [26-28]. Such a decay in the quality 

of resonant modes is caused by their strong dependency on the morphological and 

geometrical perturbations affecting the spectral response dramatically. Conversely, 

Savinov et al. [29] have theoretically and experimentally verified that the quality of 

toroidal moment does not decrease by minor morphological variations. Further increases 

in the concentration of ZIKV envelope protein to 500 pg/mL leads to a shift of the 

position of the pronounced toroidal resonant dip to 187 GHz. In continue, by increasing 

the concentration of target protein to 103 pg/mL and 104 pg/mL, we observed a drastic 

decay in the quality of toroidal mode in both cases. Figure 7.9a presents the frequency 

shifts (GHz) as a function of protein concentration (pg/mL). ZIKV envelope protein with 

the concentration ranging from 1 pg/mL to 10 pg/mL did not cause to a noticeable 

frequency shift, reflecting weak sensitivity. While for the concentration ranging from 50 

pg/mL to 500 pg/mL a significant red-shift in the frequency of the toroidal mode is 

recorded. In this study, the limit of detection (LOD) can be defined by: LOD=3(SD)/S 

[30], where “SD” is the standard deviation of the frequency shift and “S” is the slope of 

the fitting line (shown by the dashed line in Fig. 7.9a), and the LOD is quantified as ~24 
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pg/mL. By defining the slope of the toroidal position shift as a function of ZIKV 

envelope protein concentration, we estimated the sensitivity of the structure as 6.47 

GHz/log(pg/mL). 

We also analyzed the longevity and repeatability of the demonstrated THz plasmonic 

biosensors. To this end, samples with the antibody were prepared with the described 

technique above and stored at 4 °C before the measurements. Figure 7.9b shows the 

measured transmission spectra for three consecutive days with the ZIKV concentration of 

500 pg/mL. The resonance quality remained excellent for three days. However, after this 

period of time, the toroidal dip became broader and dramatically damped. This 

deterioration also included a significant blue-shift in the position of magnetic resonant 

mode to the higher energies. Ultimately, we believe that the ability to identify low 

concentrations of a specific biomarker with low molecular-weight will be feasible by 

using the proposed metasensor. A comparison between newly reported THz plasmonic 

biosensing works, we facilitated detection of proteins with the molecular-weight of ≈13 

Figure 7.9. a) Toroidal resonance frequency shifts due to conjugated ZIKV protein concentration 

(solid) and fitting line (dotted). b) The transmission spectra for a THz plasmonic chip 

characterized for three days to define the repeatability of a sample. 
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kDa, while the recent achievements show detection of bio-objects with the weight of over 

70 kDa using THz biosensors. 

7.2.3. Conclusions 

Here, we have shown the excitation of ultrasharp toroidal dipoles in THz frequencies 

using bimetallic asymmetrical planar resonators. Using the magnetic nature of Fe and 

also the exotic geometrical design of the proposed structure, we achieved experimentally 

measured quality factor of 18 for the toroidal resonance. Taking advantage of the high 

quality toroidal moment resonance, we also demonstrated biosensing capability of the 

proposed structures. Spectral response of the samples loaded with the relevant antibody 

to the assays of ZIKV envelope protein with different concentrations shows that limit of 

detection of ~24 pg/mL and 6.47 GHz/log(pg/mL) is achievable. Further studies proved 

that the demonstrated biosensing platform could be reliable up to three days. The unique 

geometry of the proposed resonators also results in high polarization sensitivity which 

allows for their use in THz switching applications. Rapid detection capability combined 

with the very sharp resonance and easy fabrication of THz resonators compared to its 

counterparts in optical frequencies make the demonstrated devices promising platforms 

for biosensing purposes. 
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CHAPTER 8 

Nanoparticles-Enhanced Terahertz Toroidal Metasurface for Biomarker Proteins 

Detection 

In previous chapters, the biosensing properties of a toroidal THz plasmonic metasurface 

were analyzed numerically and experimentally for the identification of ZIKV envelope 

proteins. Although the sensitivity of the proposed metasensor was significant, it suffers 

from poor repeatability due to weak binding of bio-agents and the artificial 

metamolecules. To address this shortcoming, for a given plasmonic toroidal unit cell, we 

enhanced its spectral properties, sensitivity, and repeatability for tracing ultralow 

concentration of biomarker molecules by introducing GNPs to the metasystem. 

8.1.The Influence of Gold Nanoparticles on Toroidal Momentum 

In this section and following subsections, we focus on the spectral properties of a toroidal 

metasensor and the influence of the presence of GNPs attached to the unit cells using 

both numerical and experimental analysis. Then, the developed metamaterial will be 

employed for ZIKV envelope proteins detection. 

8.1.1. The Spectral Properties 

Figure 8.1a demonstrates an artistic 3D rendering of the investigated planar toroidal gold 

unit cell composed of two symmetric proximal resonators with an offset capacitive gap in 

the curved arms. The important geometrical parameters of the plasmonic structure are 

given in Fig. 8.1b. As a critical component in the formation of toroidal momentum, we 

focused our electromagnetic and experimental analysis on the capacitive gaps (g) 
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variations by providing constant values for the other geometrical parameters as follows: 

Ri/W/L/D=60/15/105/15 μm. The scanning electron microscope (SEM) image of the 

fabricated metamolecule arrays with the gap of g=5 μm is depicted in Fig. 8.1c. The 

schematic image of toroidal dipole (T) formation is shown in Fig. 8.1d, which is 

originated due to near-field interference of antiparallel magnetic moments arising from 

proximal resonators. The circulation of magnetic field around the parallel arms of the unit 

cell blocks is plotted with the direction of magnetic field (m) across the unit cell, 

verifying the formation of head-to-tail and closed-loop configuration of toroidal dipole 

that will be discussed later. It should be noted that the proposed unit cells are strongly 

polarization-dependent and the toroidal resonance can be excited only under y-polarized 

beam excitation, while for the x-polarized illumination the toroidal mode does not form. 

Figure 8.1e exhibits the utilized THz BWO setup, used for excitation and characterization 

 

Figure 8.1. a) Artistic rendering of the toroidal unit cell. b) Geometrical parameters of the unit 

cell. c) SEM image of the fabricated metasurface. (d) Schematics of the formation of head-to-tail 

arrangement correlating with the toroidal momentum between the proximal resonators with the 

direction of magnetic momenta. e) A schematic representation of the BWO setup used to 

characterize the spectral response of the metasensor. 
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of toroidal moments. For the fabrication of the proposed planar metasensors conventional 

single-level lithography based microfabrication process was developed. An undoped and 

high-resistivity silicon (Si) wafer (>10 kΩ.cm) with the crystal orientation of <100> and 

thickness of 500 µm was used as substrate. It was sonicated in acetone for 10 min, and 

rinsed with isopropyl alcohol (IPA), deionized (DI) water, and dried by Nitrogen prior to 

the fabrication process. In continue, we deposited negative photoresists (NLOF 2020) 

with the thickness of 2.2 μm and patterned intently in two different steps. Employing e-

beam evaporation, we then deposited 50 nm of Ti and 300 nm of Au layers separately 

with the rate of 1 Å/s (99.99% purity for Ti and 99.9995% purity for Au, vacuum 

pressure ~3.2×10-4 mTorr). The Ti sublayer was used to enhance the adherence of gold 

layer to the surface of the Si wafer. The lift-off process was performed for 15 min by 

immersing the samples in acetone for 20 min at room-temperature using a sonication 

device, followed by IPA and DI water rinse. To characterize samples and extract the 

plasmon response of arrays with and without biological targets, a millimeter wave 

backward wave oscillator (BWO) setup combined with frequency multiplier (Microtech 

Instruments, Inc.) and broadband pyroelectric detector (Gentec Electro Optics Inc.) was 

operated at room-temperature. The spectral range of the incident radiation is between 100 

GHz and 1.5 THz. The spectral resolution of the system is 10 MHz. 

The proposed structure here is based on gold with the dielectric function 

experimentally obtained by Ordal et al. [1] for submillimeter wavelengths. By assuming 

the electric component (E) of the incident beam is parallel with the adjacent arms of unit 

cell (y-polarized wave), and interacting with the planar metamolecules in the z-direction, 

we calculated and measured the transmission amplitude spectra in Figs. 8.2a-8.2c. These 
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profiles show the projected toroidal dipole momentum normal to the z-axis for varying 

capacitive gap sizes (3 μm ≤ g ≤ 7 μm) as a function of wavenumber, ω (cm-1). The 

toroidal resonance slightly red-shifted by decreasing the capacitive gap distance (g). In all 

three regimes distinct and pronounced toroidal dipoles are excited in the transmission 

spectra, while the deepest and the most significant enhancement of toroidal dipole 

resonance is observed for g=5 μm around ω≈7 cm-1. There is an excellent agreement 

between the numerical analysis and the experimental measurements of the metasurface 

due to high resolution fabrication of the metamaterial. Theoretically, formation of 

coplanar loops of magnetic dipoles (m) in proximal planar resonators that are oscillating 

oppositely leading to creating a platform for formation of toroidal multipoles (with the 

dominancy of strong toroidal dipole). The local electric-field (E-field) map for the 

plasmonic unit cell in the xy-plane at the toroidal dipole momentum is shown in Fig. 8.2d, 

 

Figure 8.2. a), b), and c) Normalized transmission amplitude for the toroidal metamaterials with 

three different gap distances g=7 μm, 5 μm, and 3 μm, respectively. d) Local near-field map of 

the E-field enhancement at the gaps at the toroidal mode frequency. e) Surface current plot for 

the current across the structure and formation of toroidal mode. f) A cross-sectional yz-plane of 

the resonators, showing the head-to-tail magnetic moments forming the toroidal moment in a 

vectorial map. 
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demonstrating the strong electric field intensity and localization at the capacitive 

openings. Formation of a magnetic circular head-to-tail current in the proposed structure 

is substantiated by plotting the surface current density (j) plane, shown in Fig. 8.2e. In 

this profile, we plotted the antiparallel current distribution in the proximal resonators, 

which have significant role in formation of strong toroidal dipole excitation. The perfect 

antiparallel oscillation of surface currents and magnetic fields are taken place in two sides 

of a single plasmonic metamolecule gives rise to formation of toroidal spectral feature. 

Besides, the vectorial profile for the yz-plane magnetic-field (H-field) intensity provides 

complete verification for the creation of closed-loop magnetic field around the central 

arms of a unit cell (Figure 8.2f).  

The effect of the gap distance on the plasmonic response of the toroidal antenna can 

be further analyzed by comparing the surface current density for three different gap 

distances. Figure 8.3a illustrates these variations in an yz-plane, showing the highest 

current density for g=5 μm at the toroidal dipole resonant mode, reaching up to ~6.5×105 

A/m. This plot implies that stronger surface currents leads to formation of intense shared 

inductance between neighboring resonators and resulting in substantial confinement of 

magnetic power in the metamolecules arrays [2,3]. We also quantified the far-field (FF) 

scattered toroidal power or intensity for varying capacitive gap distances as shown in 

Figure 8.3b using [3]: 

2
6 5

T 2 3FF

xyI c T     (8.1) 
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The arisen distinct extremes are correlated with the targeted magnetic toroidal dipole 

resonant mode with dominant scattering power for the projected toroidal normal to the 

incident beam direction (z-axis). The electromagnetic computations demonstrate the 

highest scattered intensity for the gap of 5 μm. Finally, the quality factor of the induced 

toroidal momentum in the system for several gap sizes is plotted in Figure 8.3c, using the 

following equation: 

   2FWHM 4(FWHM)Q   T T     (8.2) 

where FWHM=|ω1-ω2|, and ωT is the center frequency of toroidal resonance. Here, for 

the absence of capacitive opening (g=0 μm), the toroidal moment does not exist. A 

 

Figure 8.3. Surface current as a function of x-axis for three different gap spacing. b) The 

toroidal scattering intensity as a function of frequency for three different gap spacing. c) The 

quality factor of the toroidal lineshape and dephasing time (τ) as a function of three different gap 

spacing. 
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homogenous increase in the capacitive opening of the curved part of resonators leads to 

the substantial enhancement in the toroidal quality factor and reaches the highest value 

~30 for g=5 μm. Increasing the gap spacing causes drastic reduction in the quality factor 

due to perturbations in the antiparallel surface currents flowing in proximal resonators, 

which prevents formation of pronounced toroidal dipole. As a crucial parameter for 

surface plasmon-enhanced sensing systems [4], this profile also contains the quantified 

resonance dephasing time (τ), calculated using Fourier transformation approach. To 

model the damped harmonic oscillator, we utilized the Cauchy-Lorentz distribution [5], 

with the dephasing time of toroidal dipole given by: 2   , in which  is the 

reduced Planck’s constant. As shown in Fig. 8.3c, the dephasing time of toroidal 

lineshape increases up to ~3.9 ns for the resonators with capacitive opening of 5 μm. The 

presented optimizations for the proposed plasmonic unit cell should enable stronger 

interactions with the dielectric biological substances, leading to more precise and 

accurate sensing via shifting the position of the toroidal lineshape [6]. 

8.1.2. The Detection Performance 

Much of the current interest in plasmonic subwavelength on-chip sensors stems from 

the high sensitivity of asymmetric Fano resonance lineshapes [7-9]. The exquisite 

sensitivity of Fano-resonant structures to the environmental perturbations led to tailoring 

of advanced biochemical and biological sensors [10-12]. Despite of the high sensitivity of 

Fano-resonant nanoscale platforms to the presence of biological nano-objects in direct 

contact with them, Fano-based THz plasmonic sensors suffer from low accuracy due to 

the transparency, low scattering cross-section and non-responsivity of nanoscale bio-

agents (with the geometry of on the order of ~λ/100) and proteins to the incident THz 
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wave [13]. On the other hand, THz spectroscopy based biosensing attracts attention due 

to the advantages like simpler fabrication techniques, low-costs, and high signal to noise 

ratio [14]. Consequently, THz plasmonic metasurfaces with the ability to recognize the 

presence of a specific nanosize biomarkers would be an excellent device for practical 

biomedical applications. To realize this feature, we integrated the studied plasmonic 

metasurface and colloidal GNPs with each other to enhance the sensitivity of the 

metasurface. Using functionalized and conjugated colloidal GNPs, we investigated the 

change in the toroidal response to detect the presence of a specific biomarker. 

To this end, surface functionalized gold colloids (with the diameter of 42 nm, and 

with an OD of 20.09, BioReady NHS dried, NanoComposix) were used with robust 

covalent conjugation to primary amines (-NH2) of proteins. For the conjugation of ZIKV 

antibody with the GNPs, a reconstitution buffer was prepared by combining 1 mL of 

reaction buffer was with 35 μL of purified ZIKV antibody. Then the prepared buffer was 

 

Figure 8.4. a) Schematic flowchart of functionalized gold nanoparticle conjugation with the ZIKV 
antibody and ZIKV-envelope proteins (NS1) with the explanation for different parts. b) Schematic 

representation of gold nanoparticles-integrated toroidal unit cells. c) and d) The SEM images of 

plasmonic metamolecule in the presence of GNPs with antibody and ZIKV envelop proteins, 

respectively. 
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added to the NHS dried gold colloid, sonicated for 30 seconds. The solution is incubated 

while rotating at room temperature for 60 minutes. Next, we added 10 μL of quencher to 

deactivate the possible remaining active NHS-esters. The solution centrifuged at 3600 

RCF for 10 min, then the supernatant removed cautiously and resuspended with 1 mL of 

reaction buffer including a sonication until fully resuspension. By repeating the previous 

protocol from centrifuging process with the same protocol, finally, we added 50 μL of 

conjugate diluent by sonication. The conjugated samples were stored at 4 °C. To 

conjugate the prepared GNPs with the fabricated toroidal unit cells, we dropped 10 μL (1 

mg/mL) of colloidal solution to the chips and wait till dried. Then, the prepared targeted 

ZIKV biomarker proteins were added to the prepared plasmonic metamolecules and 

stored at 4 °C. 

Similar to the previous chapter, we used ZIKV-envelope proteins (NS1) with the 

molecular-weight of ≈13 kDa as a biological target in the presence of respective ZIKV 

antibody, as shown schematically in Figure 8.4a with the subsequent components of 

ZIKV protein and illustration of ZIKV antibody and ZIKV envelope proteins 

conjugation. The GNPs here are used to trap the proteins (see the schematic picture and 

SEM image in Figure 8.4b and 8.4c, respectively) and change the refractive index of the 

 

Figure 8.5. a), (b) TEM images of functionalized GNPs binding with antibody in two different 

scales. (c) The TEM image of ZIKV envelope proteins captured by antibody-conjugated GNPs. In 

this picture, the AB stands for antibody. 
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medium to facilitate substantial shift in the position of toroidal dipole. For simplicity, we 

used fixed concentration of nanoparticles (10 μg/mL or ~77 picomolar (pM)), while the 

injected envelope protein concentration was varied between 1 fg/mL and 1 μg/mL. Figure 

8.4d illustrates the SEM image of the toroidal unit cell with the presence of ZIKV 

envelope proteins, captured by functionalized nanoparticles. To show the binding quality 

of ZIKV antibody and ZIKV envelope proteins to the GNPs, we illustrated the 

corresponding transmission electron microscopy (TEM) pictures in Figure 8.5a-8.5c to 

show the uniform, and strong binding of the bio-molecules to the nanoparticles, which 

enhances the sensitivity of the metasensor. The corresponding TEM pictures were taken 

by PHILIPS CM200 machine. 

The experimentally obtained THz transmission spectra with distinct toroidal 

responses for different concentrations of ZIKV envelope proteins are presented in Figure 

8.6a. For the absence of colloidal GNPs and biological agents and in the ambient 

atmosphere, the magnetic toroidal moment appears at 6.67 cm-1. By introducing the 

ZIKV-antibody-conjugated GNPs to the metasurface chips, the toroidal mode red-shifts 

to 6.53 cm-1, while for the absence of nanoparticles and direct binding of ZIKV antibody 

to the metamolecule, the resonant mode slightly shifts to 6.6 cm-1. Adding ZIKV 

envelope proteins with increasing concentration from 1 fg/mL to 100 pg/mL did not 

cause any shift in the toroidal moment and it stayed at the initial position of the presence 

of ZIKV antibody in both cases. The major toroidal shift in the position of toroidal 

resonance was observed for 1 ng/mL concentration of biomarker proteins for the presence 

of GNPs-conjugated system (red-shifts to 6.33 cm-1), while the toroidal lineshape did not 

shift for the bare metamolecule with the presence of the same amount of envelope 
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proteins. Further increase in the concentration of biomarker proteins leads to further shift 

in the position of toroidal dipole, while for the presence of 100 ng/mL of proteins, the 

toroidal mode appears at 6.13 cm-1. On the other hand, the bare unit cell starts to show 

reaction to the presence of ZIKV envelope proteins at the concentration of 10 ng/mL 

(red-shifts to 6.47 cm-1). Moreover, for the concentration of 100 ng/mL of proteins, the 

 

Figure 8.6. a) The transmission amplitude spectra for the fabricated metasurfaces in both W/ and 

W/O GNPs regimes in the presence of ZIKV antibody and ZIKV envelope proteins with different 

concentrations. b) The toroidal resonance shift as a function of ZIKV envelope proteins 

concentration W/ and W/O GNPs with the corresponding determination coefficient. c) The 

magnified transmission spectra as a function of frequency, showing the maximum shift of the 

toroidal moment in the presence and absence of GNPs attached to the system. 
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toroidal dipole red-shifts slightly to 6.4 cm-1. It should be underlined that the position of 

toroidal moment shows trivial shift for the concentrations of proteins more than ≥ 1 

μg/mL. The toroidal dipole shifts (Δω) as a function of concentration is plotted in a semi-

logarithmic graph in Figure 8.6b for the presence and absence of GNPs attached to the 

system. This profile clearly shows how the presence of GNPs improved the sensitivity of 

the toroidal metasurface significantly. A large red-shift was obtained for GNPs-

introduced system around Δω~0.35 cm-1 (Δf ~10 GHz, Figure 8.6c) for the biomarker 

concentration of 100 ng/mL (~77 pM) with the coefficient of determination R2=0.982. 

For the system without plasmonic nanoparticles, the largest shift was around Δω~0.14 

cm-1 (Δf ~4 GHz, Figure 7.6c), with determination coefficient of R2=0.88. 

In continue, we studied the repeatability and stability of the THz toroidal response by 

time as demonstrated in Figures 8.7a and 8.7b for nanoparticle integrated and bare 

metasurfaces, respectively. These experiments were done at the presence of 100 ng/mL of 

ZIKV envelope proteins bound to the system. We compared the toroidal shifts and the 

corresponding quality factors as a function of time. For the GNPs-integrated metasurface, 

 

Figure 8.7. a) and (b) The toroidal resonance shift (Δω) and quality factor as a function to time 

in hours for the presence and absence of GNPs, respectively. 
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the resonance shift remains fixed for approximately 60 hours, while a gradual blue-shift 

in the position of is monitored afterwards. However, the blue-shift and deterioration of 

the toroidal mode are drastic in bare metamolecules in the absence of GNPs (Figures 

8.7b). The same behavior observed for the quality factor, where the quality factor of the 

bare unit cells monotonically declined. This deterioration also included a significant blue-

shift in the position of magnetic resonant mode to the higher energies. As a final 

comparison between two types of studied samples, we accurately quantified the limit of 

detection (LoD) and sensitivity of the metasensors as: ~560 pg/mL and 5.81 

GHz/log(pg/mL) for the GNP-integrated metasurface and 12 ng/mL and 2.25 

GHz/log(pg/mL) for the bare metasurface. Recently, THz based biosensors with 

noteworthy sensitivities for detection of bio-molecules with larger molecular weights 

such as Avidin (~68 kDa) [15] and Rat IgG (~150 kDa) [16] have been reported. 

Demonstration of high-sensitivity detection of ZIKV envelope proteins with much lower 

molecular weight (~13 kDa) shows the superiority of the proposed toroidal plasmonic 

THz metasensor over the previously reported THz based biosensors. Use of plasmonic 

GNPs enabled strong binding of proteins and further improved the sensitivity and 

responsivity. 

7.2.3. Conclusions 

To conclude, we have analyzed the plasmonic response of a multipixel metamolecule 

with the ability to support high quality factor toroidal dipole moment along the THz 

domain. By introducing gold nanospheres to the system, we have shown that the toroidal 

resonance can be tuned effectively. To show the exotic dependency of the induced 

resonant mode to the surrounding variations, by using infectious proteins to the system, 
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we investigated the resonant mode behavior for different concentrations of biomarker 

proteins. To show the influence of the presence of plasmonic GNPs, we provided the 

experimental data for the presence and absence of gold particles. The results verified that 

in the presence of gold nanoparticles the sensitivity of the metasensor can be enhanced 

and large resonance shift can be achieved. In addition, due to strong binding of 

nanoparticles and biomarker nano-objects, a significant repeatability was observed for the 

chip integrated with GNPs for more than 75 h. We believe that this study paves new 

methods to provide highly sensitive, efficient, and promising THz metamaterials for 

detection of biomarker agents. 
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CHAPTER 9 

Conclusions 

In this dissertation, we have presented our work on the plasmonic response of several 

metallic and metallodielectric nano- and microstructures to support conventional and 

novel resonant moments along a wide range of spectrum. Initially, by focusing on the 

classical electromagnetic response of plasmonic subwavelength objects, we analyzed the 

theoretical mechanism behind the formation of EM modes along the UV to the THz band 

of spectrum. Then, the plasmonic response of strongly coupled and hybridized systems 

were analyzed numerically and theoretically by providing the description for the 

formation of dark plasmons and generation of Fano spectral feature. Using this advantage 

of significant absorption cross-section at the Fano lineshape wavelength, we studied our 

developed plasmonic devices such as precise biochemical sensors and photodetectors. 

The study of plasmonic moments were continued by providing an explanation for the 

excitation of novel quantum-mechanical-based plasmonic moments in nanoparticles with 

atomic scale offset openings and also in directly connected nanoparticles with a 

conductive link. We have shown that in both cases, the optically excited charges tunnels 

(in atomic gap regime) and shuttles (in directly connected regime) and leads to the 

formation of CTP resonances. By carrying out highly accurate numerical analysis, we 

enhanced the tunability of the induced CTP moment by employing optothermally 

controllable substances in the geometry of the plasmonic nanostructures. Such a strategy 

led us to develop nanoplasmonic metaswitches to operate at the telecommunication band 

with high speed and low insertion losses. 
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On the other hand, we showed that subwavelength multipixel plasmonic 

metamolecules and meta-atoms can be tailored to support a novel and third family of 

multipoles, known as toroidal moments. Our comprehensive investigations for the 

excitation of toroidal moments including theoretical physics, numerical studies, and 

experimental results were described along the work. In addition, we have developed THz 

plasmonic metasurafces for practical switching and modulation applications based on 

toroidal dipolar resonances. 

Ultimately, by explaining the applications of plasmonic platforms in advanced 

medical, pharmacology and clinical applications, we tailored plasmonic THz 

metamaterials for biosensing applications. To this end, we developed artificial plasmonic 

metamolecules to sustain strong toroidal resonant modes across the THz band. Both 

numerical and experimental studies were employed with high accuracy to effectively 

predict and measure the toroidal response of different types of planar plasmonic 

metamaterials. We showed that the exquisite features of THz waves allows for 

developing non-contact, nonpoisonous, non-destructive, and cost-effective sensing 

devices for identification of low molecular-weight molecules in the range of a few kDa. 

To this end, we designed and fabricated planar toroidal metamolecules capable to support 

high quality narrow toroidal lineshapes across the sub-THz spectrum. Then, the 

developed platforms were employed for the detection of a wide spreading infectious 

envelope protein for Zika virus. Our analyses have shown that in the presence of 

biomarker envelope proteins and its respective antibody, the toroidal resonance 

significantly red-shifts, leading to obtaining high sensitivity to the environmental 

variations.  
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We further enhanced the sensitivity and repeatability of plasmonic metasensors by 

carrying out a novel approach. To this end, we introduced plasmonic nanoscale particles 

to the microsize artificial metamolecules to enhance the binding of biomarker proteins 

and increase the sensitivity of the biodetection system to the presence of nano-objects 

around the structures. The experimental studies for Zika-virus envelope proteins showed 

that the metasurface reflects significant sensitivity and large toroidal dipole moment shift 

to the presence of bio-agents. This protocol allowed us to optimize the repeatability of the 

metasensor from three days in the classical system to five days in the nanoparticles-

integrated system. We envision that our developed plasmonic metasensors are potential 

candidates for practical quick infection diagnosis, cost-effective and real-time 

pharmacology applications owing to the non-destructive and harmless interaction with 

biological tissues in both in vivo and in vitro assays. 

9.1. Key Contributions of the Dissertation 

In this dissertation, we reported on the substantial achievements that have been done for 

the first time. Here, we analyzed the possibility of the excitation of various types of 

classical and novel electromagnetic moments using plasmonic subwavelength structures 

such as Fano resonances, CTP, and toroidal moments. Employing optothermally and 

optoelectronically controllable substances for designing our nanostructures, as a very first 

report, we efficiently and successfully tuned the plasmonic resonant moments along the 

targeted spectra and developed functional plasmonic nanodevices such as modulators, 

sensors, switches, and photodetectors. 
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By tailoring and fabricating artificial THz plasmonic metamolecules, we developed 

toroidal metamaterials with high sensitivity to the presence of nanoscale biological 

objects and biomarkers proteins. By choosing ZIKV envelope proteins as target 

biomarkers, for the first time, we detected biomarker agents with the size of around 40 

nm and molecular weight of ~13 kDa in the presence of its respective antibody. We also, 

enhanced the sensitivity, selectivity, and repeatability of the toroidal metasurfaces by 

introducing GNPs to the microscale system. This method and having high resolution 

spectral feature allowed us to enhance the binding of biological objects to the 

metasurface and increase the sensitivity and toroidal resonance shift due to the variations 

in the concentration of the substance around the medium. The non-invasive and non-

poisonous feature of THz waves and employing the toroidal plasmonic technology, we 

provided label-free, real-time, room-temperature, fast, cost-effective, promising, and 

accurate plasmonic metasensors as leading structures for advanced biosensing purposes. 

9.2. Recommendations for the Future Work 

The THz plasmonic metamaterials technology can be also enhanced for the detection of 

various biomarker and infectious agents such as (Alzheimer’s disease, etc.) with high 

accuracy and reliability. High resolution and ultra-narrow spectra lineshapes can be 

induced by well-engineered planar and 3D artificial plasmonic metamolecules to provide 

enhanced sensing. Moreover, excitation of tunable resonant moments in a given 

metamaterial leads to having multispectral platform to operate at different frequencies 

depending on the application and targeted spectral range. We envision that this work 

paves new methods for developing advanced, next-generation nanophotonic devices as 

well as nanomedical applications based on plasmonic technology. 
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