Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-25-2002

A real-time distributed analysis automation for
hurricane surface wind observations

Sonia Otero
Florida International University

DOI: 10.25148/etd.F115103037
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Otero, Sonia, "A real-time distributed analysis automation for hurricane surface wind observations" (2002). FIU Electronic Theses and
Dissertations. 3466.
https://digitalcommons.fiu.edu/etd/3466

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3466?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A REAL-TIME DISTRIBUTED ANALYSIS AUTOMATION FOR HURRICANE SURFACE

WIND OBSERVATIONS

A thesis submitted in partial fulfiliment of the
requirements for the degree of
MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Sonia Otero

2002

To: Dean Arthur W. Herriott
Coliege of Arts and Sciences

This thesis, written by Sonia Otero, and entitted A Real-Time Distributed Analysis
Automation For Hurricane Surface Wind Observations, having been approved in respect
to style and intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved

Yi Deng

Mark Powell

Raimund Ege, Major Professor

Date of Defense: July 25, 2002

The thesis of Sonia Otero is approved.

Dean Arthur W. Herriott
Coliege of Arts and Sciences

Dean Douglas Wartzok
University Graduate School

Florida international University, 2002

DEDICATION

| jointly dedicate this thesis to the people who benefit (scientifically or not) from the use

of this application, and to my sister, Dania, for just being there.

i

ACKNOWLEDGMENTS

I wish to thank the stimulating instruction of Dr. Raimund Ege and Dr. Yi Deng on their
respective courses, which shaped my inclination within software engineering. Dr. Mark
Powell and scientists from the Hurricane Research Division (tco many to mention), who
have devoted so much effort to this analysis model, deserve a most special recognition.
This thesis hopes to bring prominence to their arduous work.

The dedication of my team colleagues, Nicholas Carrasco, Nirva Morisseau-Leroy,
George Soukup, and Russell St. Fleur, was invaluable to achieve such degree of overall
accomplishment. | would like to express my gratitude to Luis Amat, for being my study
partner throughout the coursework and providing a well-oriented foundation for this
project.

Finally, 1 cannot forget those friends who helped me maintain my mental and physical

endurance during this lengthy but rewarding experience.

ABSTRACT OF THE THESIS
A REAL-TIME DISTRIBUTED ANALYSIS AUTOMATION FOR HURRICANE SURFACE
WIND OBSERVATIONS
by
Sonia Otero
Florida International University, 2002
Miami, Florida
Professor Raimund Ege, Major Professor

From 1993 until 1999, the Hurricane Research Division of the National Oceanic and
Atmospheric Administration (NOAA) produced real-time analyses of surface wind
observations to help determine a storm’s wind intensity and extent. Limitations of the
real-time analysis system included platform and filesystem dependency, lacking data
integrity and feasibility for Internet deployment.

in 2000, a new system was developed, built upon a Java prototype of a quality control
graphical client interface for wind observations and an object-relational database. The
objective was to integrate them in a distributed object approach with the legacy code
responsible for the actual real-time wind analysis and image product generation.
Common Object Request Broker Architecture (CORBA) was evaluated, but Java
Remote Method Invocation (RMI) offered important advantages in terms of reuse and
deployment. Even more substantial, though, were the efforts towards object-oriented re-
design, implementation and testing of the quality control interface and its database
performance interaction.

As a result, a full-featured application can now be launched from the Web, potentially

accessible by tropical cyclone forecast and warning centers worldwide.

TABLE OF CONTENTS

CHAPTER PAGE
1. INTRODUCTION. ...ttt ettt e st et saeaeaaes 1
1.1 Mission of the application..........ccovveiveriiiii e 1
1.2 Origins of the application............cocoviiiiiiiii 2
1.3 Why was the old system obsolete?..........ccccoiiiiiiini 4
2. DESCRIPTION OF THE HRD SPLINE ANALYSIS (HSA)...........ocooiiiiinn. 7
3. DISTRIBUTED OBJECTS TECHNOLOGY (DO).......ccooiiiiiiiiiiiiiinncieee 10
4, APPLICATION REQUIREMENTS. ...ttt 13
4.1 USer reqUIremMENTS.ot e et 13
4.2 Analysis subsystem requirements............coeveiiniiniiii 16
5. USE CASES. .. i 19
5.1 Create a quality control set..............ooiiiiiiiiiiiiii 20
5.2 Load a quality control Set..........ccouviiuiiviiiiiiiiirii e 23
5.3 Perform an analysis (scientist's perspective)................ccocovviiniiiinn, 23
5.4 Perform an analysis (Analysis server’'s perspective).................c.ooovnenn, 27
5.5 Store a quality control set to database............cc.cooveeiiiiiiiiiiiii i 28
5.6 Store an analysis to database...........ooooiiiiiiiiiii 30
5.7 Flight-level surface-adjustment based on eyewall tilt corrections............... 30
6. OBJECT-ORIENTED ANALYSIS. ..o 32
7. OBJECT-ORIENTED DESIGN. ...ttt 37
7.1 lIssues raised on the Quality Control subsystem..............c... 37
7.2 lIssues raised on the Analysis subsystem................... 47
8. IMPLEMENT ATION. ... i e et 52
9. OBJECT-ORIENTED TESTINGttt 56
10. SUMMARY AND FUTURE WORK.o 58
BIBLIOGRAPHY ... e 60
AP P EN DD X . e e 62

vi

LIST OF FIGURES

FIGURE PAGE

1. Process and data flow diagram of the old WANDA..............ocooiiiiiiiiin 3

2. Generalized view Of HYWING. ... e 6

3. Black and white versus colored OUTPUL...........oivniieiiiiii e 9

4. General primary use case of H™WINd..........coooriiiiiii e 19

5. General activfty diagram of the Quality Control subsystem..............ccooiiiiiiin i 22

6. Activity diagram to select analysis parameters..........c.ccccciuiiiiiiiiiiiiiiniiii i 26
7. Activity diagram for the steps taken to produce an HRD Spline Analysis............ccoovenninnnnn. 27
8. High-level activity diagram for storing a quality cONtrol Set............coveueeeniiiiinereiieriiinniie 29
9. Class diagram of analysis results and derived products..........c..ocvuveneiiiiiiniiiicnni 34
10. Class diagram of analysis steps and related ClasSes...........ovveuvrimeecireiiiieiiieeine e 35
11. Drawing of analysis MeSheS.........ccouiiiiiiiiiiii e 36
12. Sequence of events to store a track to database.ccovivviviiiiiiiein e 40
13. Sequence of events to store observations to database............c..coevveiiviiieiiieiiniiiiinienn. 41
14. Current eography PANEL............ivie i et 42
15. Current ObSErVatioN PANEL.............oo it e 43
16, CUment track PANEL.. ... o e e 44
17. Sequence of events to query a track from database..................oooiiiiiii 45
18. Sequence of events to query observations from database...............c.cooveiviiiiiiiiiiiinien, 46
19. Class diagram of the analysis distributed object................cocooiiiiii i 47
20. Event sequence diagram of the analysis process............cceeevviiiiiiiciie i 49
21. Typical map canvas with track and observations................c.coo i, 53

vil

1.2 Origins of the application

The Hurricane Research Division (HRD), located on Key Biscayne, under the National Oceanic
and Atmospheric Administration (NOAA), has been conducting real-time analyses of tropical
storm surface wind observations since 1993 [5], on an experimental basis. The overall application
that comprised a workstation-based quality control, a partially automated analysis process, and a
graphical output was named WANDA (Wind Analysis Distributed Application). From a general
perspective, the application’s operation started with the fetching of data from a flat-file repository.
FTP scripts regularly updated this repository to download near real-time data from the National
Center for Environmental Prediction (NCEP) via the National Hurricane Center (NHC), located at
the Florida International University campus. Secondly, the data were processed and quality
controlled via a basic graphical user interface tightly tied to the format of those flat files. Then,
the reviewed data were sent to the analysis server, and finally, the output was displayed and
converted to a format that could be faxed or hard-copied to clients, such as NHC's hurricane
specialists. WANDA (fig. 1) was logically divided in three independent subsystems: 1) Quality
Control, 2} Analysis Automation, and 3) Output Generation. One could look at them as highly
cohesive decoupled components.
1) Quality Control
This was the graphical user interface to WANDA, which resided on a workstation. Through a
sequence of windows, the user selected a set of observations and an associated storm track, that
were then displayed according to the geography of the selected storm. Several inspection tools
were provided to the user to decide the validity of the data and thus make the final selection of a
satisfactory set that should be analyzed.
2) Analysis Automation
The quality-controlled data and a storm track were passed through a series of Analysis
subsystem components. Each component was distributed over two machines, a NeXTSTEP
client and a VAX/VMS server containing the legacy analysis programs. WANDA used state

machines to orchestrate all of the state transitions invoived in the analysis automation. Included

in this automation was the automatic archival of all steps of an analysis for future research
purposes. Any analysis could be traced back to its components results and data sets. The state
automata approach ensured that the execution of an analysis component could only start if no

errors had been encountered previously, which were reported accordingly.

Wind Data / Storm Tracks User inpm l:::l = Subsystem
L-\I"E"£__,_——-I = Subprocess
Quality Control {QC) = Data Store
Quahty Coritrol Appixcabon ‘f «4——» =Data/Process Path
‘ « - - - -» =Communication
(ftp,rsh,rop)

Aralysis Automation (AA)
VMS(VAX)

Analysis Server

ExtmctOCData

T e S e T

Craa.teBogusPomts
Convert28:nary e

B e R e s

CreateNestanalunﬁle ‘

RS Y R SRR IR

RmObjectrvenatysns 5

s e e e

RepAn alyzedF rei& ’

R S e

FiestoreAmphmde /

R R AR P RSN

;

SR R S s

i

:«@mw;@m}a@ww S T

Bt

s

e

.
i o

.
& ‘G&

Fig. 1 Process and data flow diagram of the old WANDA

3) Output Generation

The Qutput Generation subsystem created a graphical representation of the wind fields. The
implementation of this subsystem was done with an in-house graphics package that displayed an
analysis product on the client workstation where the user could annotate and save it to an

encapsulated postscript document.

%)

1.3 Why was the old system obsolete?

One of the major drawbacks was the lack of a database common and accessible by all the
subsystems. The use of a hierarchy of fiat fles made the application platform specific plus
inhibited flexibility for manipulating data retrieval. Also, data integrity and security issues were
raised due to the use of fip, rsh and rcp scripts. The lack of portability was another problem,
exacerbated by the fact NeXTSTEP and VAX/VMS operating systems are no longer supported.
Regardless of the platform, however, one of the goals for WANDA was to become truly
distributed and to be used on a continuous basis both at HRD and at NHC. Because HRD is
located in Key Biscayne, a hurricane warning for Dade County would mean that the facility
housing WANDA'’s primary resources would have to be shutdown. There is a need for
maintaining redundant analysis and database servers at NHC as well, capable of performing the
same exact asks described earlier. Ideally, both analysis and database servers would be running
simultaneously for maximum capacity. Therefore, foad balancing and concurrency factors need
to be taken into consideration. The ability to reuse portable code is crucial in order to keep this
redundancy as transparent as possible. | will attempt to describe the proposed WANDA’s
replacement, now named H*Wind, which was completely reconstructed, and was first released
during hurricane season 2000, pressed partly by the fact that WANDA was also not Y2K-

compliant.

H*Wind is made up by three main areas of development, aimed to improve the drawbacks listed
above. They all have in common the exploitation of the Object Oriented paradigm:
- Incorporation of a database management system. This will greatly ease the retrieval and
storage of all the data involved throughout alil the phases of the application. H*Wind's database
design was the topic of a Master's Thesis at Florida International University [10], whose author
has remained H*Wind’s database deveioper during this endeavor.
- The use of the platform independent object oriented programming language (OOPL), Java, for

the Quality Control subsystem, in order to comply with the World Wide Web requirement. The

constant pressure; specifically, it has 19 predefined levels (surface level plus 100 through 950mb
in 50mb intervals). Nevertheless, there are many other modifiable parameters available to
maximize flexibility given the subjectivity of the process, determined by observation density and
overall meteorological conditions near and outside the domain boundaries. Several HRD
scientists combined efforts to code this whole algorithm in FORTRAN, divided in five distinct
programs:

1) Creation of bogus points - designed to minimize the il effects of poor data distribution in the
near-storm environment, by moving the area of maximum convergence closer to the storm
center.

2) Dcopy - Conversion of input ASCH observations to an unformatted record.

3) Prenest - Prepares the input parameter files for Nestanal (next step).

4) Nestanal - Performs the nested objective analysis. The essential output is a ‘KR’ file
containing the analyzed fields’ spline coefficients.

5) Krdecode - Reads and processes a 'KR’ file to extract the information necessary to produce

plots.

Starting with the development of this thesis, important improvements have been externally
attached to the analysis algorithm package via the output generation scripts and via real-time
delivery to the Automated Tropical Cyclone Forecasting System (known as ATCF). Concretely,
the output generation scripts {coded by an HRD mathematician) can now perform an
enhancement on the ‘KR’ output file by more accurately exhibiting the actual storrm’s wind
distribution relative to the real observed maximum wind and to the scientist’'s chosen storm center
position, instead of relative to the analysis-determined maximum wind and storm center position.
It reflects the scientist's choices. If no enhancement is performed, the analysis smoothing
process has shown to slightly underestimate the higher wind speeds. For compounded benefit,
the old black and white images still being produced have encountered the *competition® of

several new color images at different zoom scales that better depict the situation in question (Fig.

3. DISTRIBUTED OBJECTS TECHNOLOGY (DO)

Described as the ultimate client/server architecture, DO is oblivious to internal implementation
details, address space, network distance, vendors, operating systems, and communication
protocols, yet it enables object invocation with the transparency of a local access. This
technology easily leads to the construction of autonomous loosely-bound components by
encouraging the separation of user interface, process, and data; therefore, promoting
collaboration and integration anywhere in the network. DO extends the advantages of object
orientation (inheritance, encapsulation and polymorphism), especially when it comes to reuse.

The Object Management Group (OMG), a consortium of over 500 major companies within the
computer industry (except Microsoft, which has its own competing model, COM), has led the way
on the set of open standard specifications that define the TCP/IP based object bus
communication infrastructure, encompassed under the name of CORBA (Common Object
Request Broker Architecture).

How does CORBA achieve interoperability? Perhaps the secret to success lies in the fact that it
creates neutral interfaces, not code. These interfaces are written in IDL {interface Definition
Language), announcing a component’s services to potential clients. The IDL-specified methods
can be bound to high-levei languages (C, C++, Java, Ada, SmaliTalk, etc.), responsible for the
final implementation.

The core component of CORBA consists of an Object Request Broker (ORB), a self-describing
object bus that provides the transparent messaging mechanisms among objects regardless of
location or underlying system characteristics. By vendors offering CORBA-compliant ORBs,
universal interaction is accomplished. This basically means that vendors obey the rules of the
Intemnet inter-ORB Protocol (IIOP), the common backbone protocol residing on top of TCP/IP.

There are several elements worth mentioning without describing low-level internal anatomy
details. On the client side, IDL stubs define how to invoke a service on the remote server object,
and take care of appropriately formatting the operation and its parameters into a message

understood by the server {(marshailing). A unique global identifier (repository 1D} is assigned per

10

component and respective interface, with no name collisions across vendors. Server-side stubs
(called skeletons) transfer control to the actual object implementation (servant) upon request
reception. The server running environment is responsible for instantiating new server objects,
assigning them an identifier (object reference), advertise their presence and balance its supply
according to incoming client demands.

Commercially and freely, many ORBs have emerged. If one is willing to pay the price, one can
obtain nice extra features, such as object self-discovery, location transparency or reliable
transaction support for mission-critical components. In our case, in an environment of limited
resources, these “luxuries” were out of the question and unnecessary to reach the goal. Java
was the clear choice of programming language, and so | directed my efforts to develop object
distribution with it.

Originally, Java introduced its own distributed friendlier-to-use model exclusively designed for
Java-to-Java intercommunication, called Remote Method Invocation (RMi). Contemporaneously,
the Java Development Kit, like any other vendor, provided its own CORBA/IIOP ORB
implementation, known as ‘Java IDL’. Later, a version of RMI over lIOP was released, making it
CORBA-compliant by allowing access to remote CORBA objects; this combines the RMi-style
Java interface with the much desired cross-language interoperability.

An important property that tilted the balance towards an RMI versus a pure CORBA approach
was caused by the proliferation of firewalls on the Internet. Increasing security concerns did
prompt AOML to install a firewall to protect its network a few years ago, and NHC is expected to
install one in the near future. It is foreseeable that most client invocations will originate behind a
firewall; thus, it is crucial to take this scenano into consideration within H*'Wind's topology. RMI
not only works on a pre-defined TCP port, which at least allows potential configuration in a
firewall, but it can also be tunnelled through HTTP, a very common protocol aiready allowed in
most standard intranet security policies as part of the outbound traffic. In this world of
compromise though, this technique degrades performance due to additional overhead, but the

security benefits seem to outweigh the disadvantages. The proposed CORBA 3.0 includes a

1§

section called CORBA Firewall Security, intended to address the issues faced in order to provide
a standard approach to handle controlfed authorized inbound and outbound HOP traffic through a
firewall, while maintaining the great degree of dynamism CORBA is famous for when it comes to
integrating enterprise-wide distributed applications.

CORBA applications and ORBs generally choose to launch objects at arbitrarily selected TCP
ports, where any object is a potential server and client simultaneously, each one with its own
interoperable object reference containing unpredictable host/port addressing information. This
situation is difficult for a firewall to configure. There are several CORBA Firewall Security
compliant commercial products on the market which provide an HOP proxy with security access
control per client and target object, HTTP tunnelling and even support IIOP over SSL (Secure
Sockets Layer), the standard transport protocol for encrypted messages. However, due to
budget constraints, these solutions could also not be contemplated in this project. With Java RMI
(free), | can satisfactorily achieve the objective of creating a distributed object out of the Analysis

subsystem.

12

4. APPLICATION REQUIREMENTS

As stated earlier, this thesis comprises one of the 3 subsystems required for the success of the
overall project. Though the Analysis subsystem mostly exudes server behavior, there is a still a
client side that needs to be satisfied, one that coliects the multiple analysis parameters and offers
visual aid to the scientist as to the location of the several domain meshes. This client portion
must be integrated with the rest of the Quality Control subsystem, which is responsible for the
selection and validation of observations and storm track fixes involved in the analyses.

Unfortunately, after some initial testing of the Quality Control subsystem, it was clear that it was
far from being complete and trustworthy, something that deeply affected not only the progress of
the Analysis subsystem but, more importantly, the success and life expectancy of the whole
project. Therefore, the full implementation of the client application became a major unexpected
requirement. | took the core packages developed by Luis Amat [11], and proceeded to convert
the prototype he built into the full-grown application currently released. Several aspects needed
completion or creation (as scientists discovered more needs), which should be considered an

expanded and superseding list of user requirements specified for the initial prototype.

4.1 User requirements
1. Database interaction:
a) Select observations from a database given a time range, exposure, pressure level, and
ocean basin,
b) Select fixes from a database belonging to an event, or to an aiready generated track.
c) Store scientist chosen set of observations and fixes (as a track) to the database in the form
of a quality control set.
d) Load a preexisting quality control set from a database, and be able to modify any content,
as it would be stored as a compietely new quality control set leaving the original intact.

2. Prevent loading of duplicate observation and fix data into a quality control set.

13

3. Real-time features: display current world-wide events, automated querying for newly arrived

data in a periodic or instantaneous fashion.

4. Manipulate track by edition, interpolation and extrapolation, obeying the following rules:

¢ Fixes can be extrapolated only to a time before the track’s beginning fix or after the track’s
ending fix. Itis valid to perform extrapolation beyond an already extrapolated fix.

» Fixes can be interpolated only to a time within the track’s beginning and ending fix. it is valid
to perform interpolation of an already interpolated fix.

* Interpolated and extrapolated fixes are not editable, but they can be removed.

» Edited, interpolated and extrapolated fixes are stored in the database as derived fixes from
the original or causal fix.

e Relevant fixes marked as beginning, center or ending fixes cannot be removed.

¢ Removal of a fix results in recursive removal of those fixes dependent of this fix, meaning
potential editions, interpolations or extrapolations, with their potential associated
interpolations and extrapolations as well. Consistency is paramount.

5. Whenever a track exists, its date/time range prevails over the real platform date/time range.

Only observations within a track’s range are considered.

6. Per platform, visually identify the observation with maximum wind speed and the one with the

most recent arrival time.

7. Display maximum wind speed value, location, date and time among all passed observations of

the entire quality control set.

8. Certain satellite data sources are not able to provide wind direction measurements. For data

detected from those sources, automatically apply a wind direction estimation algorithm based on

the storm track. If no track is available, these observations are displayed with zero wind direction

(i.e. facing North).

14

9. Add missing observation attributes (wind gust direction, wind gust speed, wind gust date,

unadjusted wind direction, unadjusted pressure, unadjusted temperature), whose data were

being collected, but had been neglected in the database schema and class definition. Display

their values when using the observation inspection tool.

10. Ability to draw wind barbs with either adjusted or unadjusted wind speed/wind direction per

platform.

11. Once observations have been loaded, be able to decrease the time span to a lesser amount
of hours from the initially loaded time range, per platform.

12. Since it is possible to perform upper-surface analyses, provide the ability to visually constrain
the display of observations to a certain pressure range.

13. Incorporate scientist-defined algorithms for wind surface adjustment. In addition to HRD’s
boundary layer default surface adjustment model, scientists want to apply other models to the
unadjusted data, each one with its own rules. At the same time, provide a way to return to initial
unadjusted values.

14. A tool for (un)flagging an observation with one mouse click. It behaves like a toggle switch: if
the observation has a passed status, the mouse click converts it to failed, and viceversa.

15. A tool for (un)flagging certain platforms within a chosen map region. The user is prompted
with all the platforms detected within that region, being able to select which platforms should
actually be {un)fiagged.

16. While inspecting observations data, distinctly mark the observation in question on the canvas.
Also, be able to inspect multiple observations at an exact location (previously, only one could be
inspected).

17. Establish the uniqueness condition among global events as name+date+type+basin. Though
very unlikely, there is a possibility that two events with the same name and type started on the

same day on different basins; thus, we need to account for that.

15

18. When saving a quality control set, let the user choose whether or not to store the associated
analysis and whether or not to generate the pertinent ATCF file {only valuable while in real-time
operation).

19. Print canvas.

4.2 Analysis subsystem requirements

A. From a client perspective

1. Once a track is entered, and therefore, a track's center fix is known, draw lightly on the canvas

the location of the 5 default analysis domain mesh sizes. By the same token, provide a way to

clear off the mesh drawing if desired.

2. A graphical user interface for customizing number of meshes and their location. Naturally,

draw these meshes on canvas dynamicalily.

3. A graphical user interface for entering analysis parameters: type of analysis (wind, pressure,

temperature, relative humidity or a combination of them), pressure level, whether or not to
perform an enhanced version, whether or not to generate bogus points (if the presence of a
background fieid is detected).

If using expert mode, additionaily: specifications for generating bogus points and Barnes meshes,
mesh filter wavelength.

4. Warn user if attempting to perform a surface analysis with some non-surface adjusted data and
vice versa. The warning won't prevent analysis scheduling.

5. Ability to modify platform weights, since not all offer same scientific reliability.

6. To load a marine gridded field from a previous analysis. The user is presented with a list of
analyses stored for the current event and whose center fix time dates within 24 hours of the
current storm center. Once the user makes a selection, the marine gridded field is adjusted
space and time-wise to current storm conditions, becoming a background field for the current set.
If the user chooses a new storm center, the background field needs to be re-adjusted.

7. If a background field is detected, offer the possibility of not generating bogus points.

16

8. Offer the possibility of tuming off the execution of an enhancement provided on the analysis

output stages.

B. From a server perspective

1. Distributed, interoperable via lIOP for any other possible client application, and accessible from
anywhere in the Internet.

2. Multi-user, meaning that simultaneous invocations must not conflict.

3. Ability to perform analyses on all basins worldwide. It is specially tricky around meridian 180,
where the date line is located.

4. Ability to perform analyses of any combination of types: wind, pressure, temperature and
relative humidity.

5. Determine, field by field, the necessary information for the creation of the proper database
schema to be used for analysis storage.

6. Derived from the previous point, the natural consequence of database interaction:

a) To store each analysis parameters for future reproducibility.

b) To store each analysis results associated to the corresponding quality controi set:
amplitudes (original and enhanced); marine gridded field; wind radii for 35-knot, 50-knot, 64-
knot and 100-knot wind speeds at each storm quadrant; wind maximi (observed in real-time
and analysis-estimated); minimum pressure.

¢} To query a marine gridded field associated to a given analysis.

7. Generate a file following ATCF (Automated Tropical Cyclone Forecast) format based on
analysis results, to be readily available to other weather agencies.

8. Generate text content to be embedded into the final annotated output, which includes:
platforms involved in analysis with their corresponding time range, mean height if any aircraft
platform was involved, type of scientific adjustment performed, minimum pressure, value and
quadrant iocation of the maximum wind observation, characteristics of the storm center position

(if it is an extrapolation, state chosen storm speed and direction).

17

that it does not make any sense to store an analysis without its corresponding quality control set
{for data consistency purposes}); thus, the need to state this situation.

Details of steps inherent to the principal actions follow. As a general rule, the most regular
"happy" path is described, with its possible alternatives. It is desirable to state pre- and post-
conditions for later verification. To achieve a greater level of clarity and understanding, several
activity diagrams are supplied, which express transitions among sequence of events when

conditional and parallel behavior are relevant.

5.1 Create a quallty control set

Pre-condition: The user selects to create a new set. The user is logged into the database.

Basic Path:

1. The application presents a list of active tropical cyclone events throughout the world.

2. Scientist selects one of these world-wide active events.

3. The system loads all the storm track positions (fixes) for that event, and sorts them in
chronological order.

4. Scientist inspects this list of chronologically ordered fixes (a track) and decides the time range
of interest.

5. Scientist can interpolate, extrapolate, manually add fixes or foad a new track altogether.

6. Scientist proceeds to load observations from the database specifying a desired time range,
exposure and pressure level.

7. From the list of data platforms shown to the scientist, he/she includes as many as desirable.
An inclusion causes ali the observations of a platform to be drawn on the canvas map. Since a
track exists, all observations shown are constrained within the track time range, and displayed
with storm-relative positions (as opposed to earth-relative).

8. Scientist decides to load a marine gridded field from a previous analysis, since the scientist

considers there is an insufficient amount of raw observations.

20

9. The system presents the user with a list of all analyses stored whose storm track center time
is within 24 hours prior to current storm center time chosen.
10. The user selects one of those analysis and the system retrieves its corresponding marine
gridded field, which is automatically adjusted in time and position to the current storm conditions,
as specified by scientist requirements.
11. Via tools such as observation scope, zoom, flagging, data inspection, distance calculation, the
scientist achieves a desired level of quality control.
12. Scientist could repeat steps (4), (5), (6), (7), (8), (9), (10) and (11) as wished, in random
order.
13. Scientist decides it is time to perform an analysis (see use case 5.3)
Post-condition: A valid quality control set is created in order to analyze it.
Altemative Paths:
a) Step 2 just shows one of the ways to load or create a track. Other ways are:

- to load a track from the database

- to load a track from a file

- to load individual storm track fix positions from the database

- to create individual storm track fix positions by manually typing the data.
All of the available methods to generate a track can be used interchangeably.
b) At step 6, if no track is present, all observations retrieved from the database are shown without
time constraints.
c) Steps 7, 8, and 9 can only happen if a track exists, since one is indispensable to be able to
adjust a marine gridded field to current storm conditions.
d) At steps 5, 6, and 7 the scientist can select to cancel the operation.
e) At step 6, if the system detects the user loaded flight-level data from aircraft, then the scientist
is allowed to apply any of the surface adjustment algorithms offered, repeatediy.

Figure 5 describes the high-level overall possibilities of the Quality Control subsystem (called

QCClient}.

21

5.2 Load a quality control set

Pre-condition: The user selects to load a QCSet.

Basic Path

1. The system presents the user with the following interface:

By default, it presents a list of events and a list of users associated to the QCSets stored for the

Atlantic basin and current year, so that the scientist can narrow down his/her search. Obviously,

a change in basin or year causes an update of the lists.

2. The scientist chooses at least an event {(and optionaily a user).

3. The system displays a list of all QCSets for that event (and user, if applicable) sorted in
descending chronological order by storm center fix date and time. QCSets without a track are
displayed at the end of the list. In general, scientists are interested on loading the latest QCSet
of an event.

4. The scientist picks one QCSet.

5. The system loads the event information (name, ATCF code, date, category)

6. The system loads the track (if there exists one) and sorts the fixes in chronological order.

7. The system loads the observations.

Post-condition: The chosen quality control set is loaded and ready to be evaluated. The user is
free to continue on step (8) from Use Case 5.1.

Alternative Path

- At steps (1), (2) or (3), the scientist can select to cancel the operation; therefore, safeguarding

the contents of any previously loaded QCSet.

5.3 Perform an analysis (scientist's perspective)

Pre-condition: A track, an event and a non-empty set of wind observations are loaded.

Basic Path

1. Scientist selects the Analyze option from the QCClient application.

2. Scientist chooses 'Novice’ mode.

AW
‘:f"’,cw*p 3 | whemer G genente
H wonced & \ bogs poisor no?
icharke expertss ever §
. Erter ORONSE Jassioton Tyow,
canced { GAPOSUTS, MISITRIT LrosarTs. ‘\
R WIS OF wthGr st DOGUS 0TS [
Z S
1
fehscnge deeceton g
;

=<

Fdareiy o Nolz:o ¥y -4 -UF-1)

HEM WBS GHR LG
1O holsde Aorertce

= KT 04 &3 MTOCH
res) \ onaysa

change presssd evel

7 Oepy, ecaable icb!s'ogahem"ex\

(o e axpactse)

iexpert

ig‘rwclc nput
DROCRS DO, MLATIDEE OF XS, \
RN RTY 230, MCTATIUT RO, }
o ntens, camarthal ntenssl H
i sorng adhom per g J

ok fpuh

s mw—lﬂa

fohonge parIeters of bogs
pcrn

IR NOeTON ﬁeﬂm

T Cegrees CHRICe) ; iﬂrwounr«

2

rrc‘\;e PRaTROS Moth B9

}
r’ 1
£ Erten numnDed Of meshios of kS .
| w78 ot outernost moeh: J i
| T i
) e ot i
% {wakd nput e]
, {
i R RGP G &Y TR :mi
OIton GF odrreses or i R 1 skocfoimeshes :
] _TIOE GO ,j A ’ R —— —
\
3
:
){, Sy e 3 :
3 (ewvee! 1 : Fattel G K o3t
L NI) i iy
§ : i K TEAr S o &70e I M
Y | i
oh & Teoge O /Bei e R R W
Fxzetens ORS¢ ASTE ATE B W e Y, 3 | @sfoud wcremeneng of ol
§ B = 2] ¥t i TICEt e L OLTNIG T K
¥ LICFIIN QRO 3 § 5, OGO
3 Sen falpan ol al }
SoRcTonn O T DT R 0Es
! Cwage, TV, en BRIy K1 i A :
%\ i R R oD NG e i i I PR
o e o i
i

{ Fectryw oiec e
t T O e

A0S e T

B £ Mehies ror
feetain

L

Mt T ety

TN LT O

A4
hY
i
A A eI I

TTENBE K (T IR O Ol

ﬁ [2ol St da T R

kY
;

Fig. 6 Activity diagram to select analysis parameters

AP TR of crenEe

5.6 Store an analysis to database

Pre-condition: A quality control set has been stored in the database; therefore, the system knows
of its unique database id. The scientist performed a successful analysis.

Basic Path

1. The client application invokes the analysis remote distributed object to start a thread for
committing to database several components of analysis results: krdfile, enhanced amplitude file,
marine gridded field, and wind radii.

2. The client application invokes the analysis remote object to generate the comesponding ATCF
file, and publish it for the Joint Typhoon Weather Center (JTWC).

Post-condition: An analysis and derived products are stored in the database associated with the
corresponding quality control set.

Altemative Path

- If no generation of ATCF was chosen, then step 2 does not take place.

5.7 Flight-level surface-adjustment based on eyewall tilt corrections

(designed by Jason Dunion and Mark Powell, HRD)

Pre-condition: At least one flight-level data platform (AirForce or NOAA aircraft) is included in the
quality control set and a track exists.

Basic Path

1. The system calculates the radius of maximum wind (RMW) at each relative quadrant of the
storm center with respect to the storm motion direction. In case a RMW could not be found in a

certain quadrant, apply the following rules:

For no RMW found in Use RMW found In (preferred order)
Front Right (FR) FL, RR, RL
Front Left (FL) RR, FL, FR
Rear Right (RR) - RL,FR, FL
Rear Left (RL) ' FR, RL, RR

2. The system presents the 4 preliminary RMWs (nautical miles) and a default sea surface

temperature (Celsius degrees) to the user, who has the freedom to edit them.

30

3. The user accepts parameters and continues.
4. For each passed flight-level observation with 650 < pressure < 1010 milibars:

a) create an edited observation associated to the original one, where the changes will take
place.

b) calculate the distance from its storm relative position to the storm center fix position.

c) calculate the ratio of this distance over the RMW obtained in this observation's relative
quadrant.

d) if the pressure is between 650 and 750mb and the ratio is < 2.0, then a mean boundary
layer wind is computed based on a specific polynomial function. In all cases, a comment is
set to indicate whether the eyewall tilt has been applied or not.

e) it the resulting mean boundary layer wind speed (boosted or not) is < 55 m/s, then surface
adjust it using HRD PBL program [1}; otherwise, an empirical derived adjustment of 0.85
based on GPS dropsonde data is applied to estimate the maximum 1-minute sustained wind
at the 10 meter level.

5. The canvas map is updated, by showing the edited version of these observations, and by
distinctly pinpointing those wind observations where the RMW per quadrant was found.
Post-condition: All evaluated flight-level observation wind speeds are surface adjusted. The
adjustment type is noted for that platform.

Altemnative Path

- At step 3, user might decide to cancel the operation.

31

6. OBJECT-ORIENTED ANALYSIS

Gathering requirements and eliciting use cases is an intrinsic part of determining what the
system must do, the essential preoccupation of a project’s analysis phase. In addition, there is
certain modeling involved to identify the classes that fundamentally belong to the application, as
well as to express their relationships. For the most par, the basic analysis and design of the
Quality Control prototype aiready provided a good infrastructure. The main classes and their
associations had been well identified and established, and were well organized in meaningful
packages in [11]. Based on the requirements, clearly this project involves a complex graphical
user interface, data structures holding consistent information over the life span of use cases (with
their natural applicable operations), and actions or processes to be performed in response to the
behavior and state of the two aforementioned elements. A good effort had been made to classify
the identified objects of this problem domain into objects responsible primarily with presentation,
persistent information, or behavior characteristics; a strategy that has continued and intensified
throughout this undertaking. Current trends in object-oriented software engineering, such as the
Model-View-Controller (MVC) pattern, signal this architecture to be conducive for creating
systems that are better prepared for potential changes, which | have found to be the engine that
decides where to split functionality.

A good problem analysis should define a stable, robust, and extensible structure, resilient to the
inevitable common and significant changes the overall system will be subject to on functionality
and user interfaces as time goes on. The key to stability is to maintain changes as local as
possible, affecting as few classes as possible. The heavy and extensive testing applied to the
prototype with real data revealed certain facts that were not contemplated originally, different
associations that more accurately described the problem domain, new classes that led to more
efficient shared functional implementation, and undoubtedly new operations. Even though there
have been widespread implementation modifications, they have not notably disturbed the overail

00 analysis, and yet they have proven the benefits of the principle of locality.

32

AT Lh&zueogg‘rab:éeb}g e Seixakzable
KRConsHeader KR spec
eventDate
npoguamer | X [proecion
fitie - S uiD | , | centerPosition
Nprog v.ib — referencelatifude
Nioio PRESSURE 1D gavityAcceleration
wid TEMPERATURE ID armosphereHeight
evel RELHUMIDITY_ID
ConsHeader
irConsiviesh
merspec
KAmMpitudes
o
uMocaimumwind
viModnumwing Setinzable
Seviaizabie xMOXImurmwWinc KRAMpiituds
KRConsMesh yModnumwind
numberOfRows
ypeQualfier 1 1 | mportkR } Q. ngnberOfCoumns
meshQualfier S Sarmes®] POTKR ®ermesn | windAmpitudes
meshConstants exportGriddedFied pressureAmpitudes
submeshConstants temmperatureAmpitudes
meshBoundarnss reHumMidityAmpitudes
1
a-
UniqueDatabaseld Seriafzable
Seriaizable Complex
ATCF EnhancedAmplifudeSet reaPart
. rnaginaryfart
event .
ock e mmaitoc tosng
windRadi : toScalkor
mumwWind enhancedMaximumwind
rodiusMaXimumWinG ergaahamomna
minrmumPressure mergedRadiuSMOXIMUMWE
winakodid4
windRadibd
windRadiloo
spacing
NuNberCMRows
numberOfColumns
xCoordnates
yCoordinates
eqsiLon
norhiat
windAmphudes
mponenhanced

Fig. 9 Class diagram of analysis results and derived products

34

7. OBJECT-ORIENTED DESIGN

This phase is a refinement of the analysis, geared to get in touch with reality, to adapt to our
implementation environment, until it is straightforward to write source code from it. My
experience has been that there is a “gray” or “blurry” area during the transition from analysis to
design. One is easily tempted to start adding complexity to the analysis model, without
distinguishing that some changes are caused by a logical change in the system and others are a
consequence of the implementation environment. In a project influenced by notable factors such
as DBMS and object distribution, certain sections of the analysis mode! will remain rather abstract
and informal because decisions need to be postponed for the design. It is recommended to keep
an analysis view which reflects all the work focused on capturing the essentials, and change it if
new logical relations arise among classes due to new properties, but we should stop when we
find ourselves changing it to adapt to the environment. The conceptual view of the analysis,
being far less complex, will assist in reasoning when to incorporate changes, aiways remaining
the basis of the design model, which is just one specialization, an approach for a certain
implementation [14]. Not precisely an exact science, but that is where gaining experience comes
into place.

The closer we work our way to the actual source code, the greater the diversion from the original

prototype.

7.1 Issues raised on the Quality Control subsystem
A. Spatial filtering

Even though the application is oriented to deal with one storm in a specific ocean basin,
parameters in observation queries to the database did not take into account this welcomed
constraining factor, and therefore, were inefficiently retrieving observations for ail basins within
only dateftime limits. This imposed unnecessary processing work on the quality controi client
application, and caused user complaints due to poor response time. In collaboration with the

database specialist in our development team, the situation was corrected. Currently, we are in

the user will be dealing with a more limited area of interest in the future, but also because practice
tells us group operations tend to affect smaller geographic sections.
D. Efficient lookup tables

A lookup table was added to keep information of all data platforms after the first database
observation query, searchable by platform description. This is useful to obtain access to the
default weights assigned to all platforms, so these values can be presented in the weight editor
dialog window (attribute 'aliDatabasePlatforms’ in class WindObservationSet).

Another lookup table was added to keep track of the observation station names given their
station database ids. Database observation queries return the station id where the observation
was taken, but the station name is really the meaningful piece of information to the scientist while
inspecting the collected field values of an observation (stationTable’ in class
HwindObservationSet).

E. Establish correct database storage

Regarding a storm track, two hash tables were added to manage the potentially multiple
interpolations and extrapolations a storm track fix position could be subjected to. The key is the
causal storm fix position, with an associated value of the newly derived fix (‘interpoiatedFixTable’
and ‘extrapolatedFixTable’ in class Track'). These tables are especially crucial at the time of
properly storing a track in the database, whose schema was constructed to ensure these kinds of
derivation relationships are not lost, and are indeed traceable. Figure 12 shows the steps to
store a track to the database. Detailed, concise activity diagrams allow expressing a
deterministic problem in a finite state machine fashion, proving an invaluable tool for the
developer during impiementation.

Regarding observations, figure 13 shows the steps to store passed and flagged observations to

the database, given the fact that edited observations may also be included.

39

The interface "AnalysisControllerinterface’ must extend Java’s Remote interface and declare our
beloved operations: schedule an analysis given the necessary parameters, store an analysis in
the database associated to the respective quality control set, and generate an ATCF file. The
class 'AnalysisController implements this interface and must extend from Java's abstract class
‘Activatable’. The registration job occurs in the 'AnalysisControllerSetup’ program, which must be
executed every time the implementation is updated. A client finds a remote reference by looking
up a registry with a URL of the form rmi://hostname:port/ServiceName.

C. Code reuse

As a subsystem being integrated with another, code reuse is sought after. One of Java’s RMI
notable advantages is the ability to pass objects as parameters across the network (just by
implementing Java’s 'Serializable’ interface); therefore, needless to say, the same classes that
make up a quality control set are the ones sent to the analysis server object. Figure 20 depicts
the sequence of steps that occurs at each server object invocation.

In order to preserve CORBA's integration capabiliies with other potential applications, the
analysis IDL interface relies on basic data types (byte, integer, boolean) as arguments to
operations, as shown below:

module AnalysisController ({
interface AnalysisInterface {
typedef sequence<octet> Data;
void initializel);
void setBogusInput (in Data input);
void setObservationInput{in Data input);
void setStormTrackInput{in Data input);
void setPrenestInput{in Data input):;

void setWeightInput{in Data input);
boolean analyzel);

o
-~

D. Database integration

Database storage is straightforward upon completion of the OO analysis phase. The resulting

database schema supersedes that found in {10}].

48

E. Concurrency conflicts

The HSA nature of dealing with files posed a greater challenge: each analysis step expects to
act on equally named input files whose contents are tailored for each specific run, and these files
are expected to be located on the filesystem directory where the program responsible for a
certain step was initially executed. The danger of this situation is that two or more simultaneous
users scheduling an analysis would find themselves with unreliable adulterated output, due to a
blend of randomly overwritten input files, as each step takes an unpredictable amount of time of
completion. In the past, it was easy for the small pool of scientists at HRD to always ensure a
single processing environment. But, undoubtedly, this situation is intolerable in a global
distributed context, where flexibility is a must. To solve this conflict, a random number generator
was employed as a means to name a temporary directory for each scheduled analysis, and force
it to be that analysis’ execution environment throughout all steps. Even though it is extremely
unlikely that the number generator produces repeated output, in order to guarantee absolute
conflict avoidance, an existance directory check is performed for each name generated. If it
exists, then the previously used directory is removed and recreated from scratch, thus allowing
proper analysis execution and safe results. This method guarantees unique products for multiple
users interacting with the Analysis engine at any given single time.

F. Unanticipated problems

An unforeseen consequence of the legacy code (not fully documented) was the discovery that
data platform ids considered by HSA are deeply hardcoded into Prenest and Nestanal programs,
accepting a maximum of 24 platforms, where 2 are reserved (bogus points and background field).
One of the expected input files is called the ‘weight file’, which is simply a listing of several
columns, the most important being the one specifying a data platform id and another specifying
its weight (real number in the range of [0,1]). Initially, thinking that as long as | complied with the
file format, the contents could be dynamic, | naively used the same platform id stored in the
database, which resuited in observations (bogus points and background field). One of the

expected input files is called the 'weight file', which is simply a listing of several columns, the two

50

most important being the one specifying a data platform id and another specifying its weight (real
number in the range of [0,1]). Initially, thinking that as long as | complied with the file format, the
contents could be dynamic, | naively used the same platform id stored in the database, which
resulted in observations of those platforms to be completely ignored or misinterpreted. The
database already contains data belonging to more than 22 platforms, and the number keeps
growing. Project resources were not available to aliow an HRD scientist to modify the
cumbersome FORTRAN programs to accept diverse observation platforms. Therefore, the
solution was to establish a correspondence table of weights to observation platform ids, as shown

in following table.

weight | maps
to id

1.0 1
0.95 2
0.9 3
0.85 4
0.8 5
0.75 6
0.7 7
0.65 8
0.6 9
0.55 10
0.5 11
0.45 12
0.4 13
0.35 14
0.3 20
0.25 21
0.2 22
0.15 23
0.1 24
0.05 25
0.025 26
~0 52

51

12.
13.

14.

15.
16.

17.

18.

Enable multiple-observation inspection per unique geographic position.

Storage of analysis results in database via SQLJ.

Translate the Mean Boundary Layer model from C to Java, fundamental part of most
scientist-designed surface adjustment algorithms. Directly associated with this, implement
Dunion-Powell’s flight-level surface adjustment algorithm. Notice in figure 21 the star-shaped
polygons indicating those observations of maximum wind speed per storm-relative quadrant.
Add the possibility to store and load a quality control set containing a background fieid.

Along with the evolution of the Java Standard Development Kit (SDK), update source code to
latest official major release, 1.3.x. In particular, | took advantage of Java's own supported
sorting procedures instead of using original bubble-sort algorithm. The classes that
constitute the ordering key implement the '‘Comparable' interface.

Take advantage of separate threads of execution whenever concurrent activities behooves.
For example, the user is able to continue fine-tuning data quality control while an analysis is
in progress or during a check for newly arrived data.

Pervasive error checking, corrections of logic and miscalcuiations.

An accomplished application without easy vast deployment capabilities could very likely fall in

the darkness. One of the top priorities of this project is to provide global appiication access.

Java Web Start, designed to launch full-featured applications from a Web browser, and provide

centralized software management, satisfies the requirement of Intemet-wide deployment. Users

only need to install once a Java Virtual Machine and Java Web Start, both available for all major

operating systems: Sun Solans, Linux, Microsoft Windows, HP-UX, MacOs X.

If the resources are not present in the client or are in need of update, Java Web Start takes care

of transparently downioading ali the necessary resources (archived in JAR files). Otherwise, the

application is launched immediately, by just clicking on an HTML link. The first-time activation is

lengthy, but the benefits of availability of a highly interactive quality control client to weather

54

forecast agencies, world-wide, outweigh the disadvantage of initially waiting several minutes to
downtoad the most current version of the application.

By default, Java Web Start will run an application in a secure sandbox or restricted environment,
but H*Wind needs access to local resources (disk and network), to perhaps load observations
from a file, connect to our database server (which is not the same host JAR files originate from),
or to invoke a remote object via RMI. Code signing is an important security feature of Java Web
Start. Digital code signing guarantees that JAR files have not been tampered with since they
were last signed. Java Web Start will not run an application if it detects a signature compromise,
thus, users can trust the application’s source. Java 2 SDK includes a jjarsigner’ tool to sign JAR
files. In addition, another advantage of Java Web Start is accommodation of firewall proxy
settings, since it is designed to work closely with HTTP traffic.

H*Wind’s official launching pad resides in http://cat5.nhc.noaa.gov.

55

9. OBJECT-ORIENTED TESTING

Exhaustive testing has been an integral part of this thesis, but it usually is the most conspicuous

loss on the material covered by technical literature, with just a brief mention. It is fair to say that
the authors’ expertise serves a much better purpose focused on the more critical sections of
object-oriented analysis and design. But, | can certainly attest in favor of the premise that
granularity or modularity imposed by object orientation is indeed a major benefit of this
methodology. Furthermore, encapsulation serves an extra purpose of localizing and confining
runtime errors and exceptions, which helps maintain execution stability by not compromising
unaffected sections. Though possibly underrated, the consequences of these characteristics
greatly help a programmer’s morale in solo mode during a lengthy project, by being able to
provide partial but effective working versions of the system with tangible evidence of progress.

I cannot stress enough the importance of testing with real scenarios and data starting at the very
early stages of the project, due to the exponential growth of intertwined sequences of execution
caused by the interaction between the user and the system. Object oriented testing should start
as soon as a few objects collaborate. Object message-driven interaction with its non-linear
unpredictable behavior clearly and simply demands fierce integration testing from the bottom-up.
Without the desire of diminishing OO well-known advantages, there are several factors that can
complicate matters: separation of specification (interface) and actual implementation, and
inheritance. Interfaces can be supported by muitiple implementations, and subclasses can
operate in a different context by having inherited methods and attributes overriding the parent
definition. Testing yielded changes on certain inheritance relationships where the parent class
included too much specialization for some of its subclasses, and therefore, the actual
commonality needed to be streamlined. Testing revealed much optimization in terms of searches
and explosive memory allocation. In summary, the massive repetition of the software life cycle
proved successful, whether it affected all or a subset of the stages. Though | have not kept an

exact count, | estimate | must have performed over a hundred developmental iterations in the last

10. SUMMARY AND FUTURE WORK

The transformation of H*Wind application is very much a reality at the Hurricane Research
Division, which has witnessed a series of distinct accomplishments with every release. The
application received the *Best Java Implementation® award from the High Performance
Computing and Communications (HPCC) NOAATech 2000 conference, held in Silver Spring,
Maryland, in October 1999, and the “Best Technology Transfer to Operations” award at
NOAATech 2002, in October 2001. In 2001, this application was rated by the National Hurricane
Center as its highest priority research tool to be transferred to their forecast operations, and so
we are involved in a two-year transition effort. The feedback of hurricane specialists and
forecasters is being integrated in the application. Strong interest has been received from the
Central Pacific Hurricane Center and the Department of Defense Joint Typhoon Warning Center.
| can safely state decisions regarding adherence to a database, to object-orientation via Java,
and to distributed objects technology have proven very suitable for achieving the project goal.

The next frontier for H*Wind is to become compliant with the Java 2 Enterprise Edition (J2EE)
architecture. Currently, the quality control client is too “fat” for the Web, meaning it contains the
built-in logic to control user interaction, to perform requested algorithms and to access database
and remote objects. The client application is not a trivial size download, and users still suffer from
noticeable network performance degradation depending on the bandwidth and/or distance from
H*Wind's production database and analysis servers.

With the incorporation of a middle-tier application server, presentation, scientific logic, and
access to remote objects and data can be clearly separated into independent components. Thus,
the complex graphical user interface would be converted into a light-weight applet (just for
mouse/keyboard handiing), and the routing of user requests would take the form of Java servlets,
which would dispatch the actual processing to Enterprise Java Beans (EJB), responsible as well
for the access to remote objects and databases. The aim will be to follow the appropriate J2EE
design patterns. J2EE containers provide services and resources (transaction, security,

deployment, naming, distribution) that allow applications to be flexibly customized. Benefits of

this approach include greater system performance, availability, scalability and manageability. All
that clients need is a web browser, resulting in a significant reduction of network trafﬁc.‘ One of
the most positive advantages is that the vast maijority of code already proficiently tested can be

reused. A potential outcome will be to make tropical cyclone observations and analysis

accessible to developing countries.

59

BIBLIOGRAPHY

[1] Powell, M. D., 1980: “Evaluations of diagnostic marine boundary-layer models applied to
hurricanes”. Monthly Weather Review, vol. 108, no. 6, 757-766.

[2] Lord, S. J. and J. L. Franklin, 1987: “The Environment of Hurricane Debby (1982). Part I:
Winds". Monthly Weather Review, vol. 115, No. 11, 2760-2780.

[3] Ooyama, K. V., 1987: "Scale-Controlled Objective Analysis”. Monthly Weather Review, vol.
115, No. 10, 2479-2506.

[4] DeMaria, M., Aberson, S. D. and K. V. Ooyama, 1991: A Nested Spectral Model for Hurricane
Track Forecasting”. Monthly Weather Review, vol. 120, No. 8, 1628-1643.

[5] R. W. Burpee, S. D. Aberson, P. G. Black, M. DeMaria, J. L. Frankli.n, J. S. Griffin, S. H.
Houston, J. Kapian, S. J. Lord, F. D. Marks, Jr., M. D. Powell, and H. E. Willoughby, .1 994: Beal-
time guidance provided by NOAA s Hurricane Research Division to forecasters during Emily of

1993. Bulletin of the American Meteorological Society, 75, 1765-1783.

[6] Powell, M. D. and S. H. Houston, 1996: “Hurricane Andrew's Landfall in South Florida. Part ii:
Surface Wind Fields and Potential Real-Time Applications®. Weather Forecast., 11, 329-349.

[7] M. D. Powell, S. H. Houston, L. R. Amat, and N. Morisseau-Leroy: “The I_-iRD Reai-time
Hurricane Wind Analysis System”. 8th US National Conference on Wind Engineering Conference

Proceedings, 1997.

[8] Franklin, J. L., 1994: “Documentation for the HRD Spline Analysis Programs Prenest and
Nestanal". Internal Document available from NOAA/AOML/HRD, 4301 Rickenbacker Causeway,
Miami, FL 33149,

[9] Sampson, C. R., A. Schrader, “The Automated Tropical Cyclone Forecasting System (Version
3.2)", Bulletin of the American Meteorological Society, 81, 1231-1240.

[10] N. Morisseau-Leroy, “Atmospheric Observations, Analyses, and The World Wide Web Using
a Semantic Database”, Master Thesis, School of Computer Sciences, Florida International

University, Miami, FL, 1997.

[11] Amat, Luis R. Jr., “A Realtime Internet Based Quality Control Application for Hurricane
Surface Winds", Master Thesis, School of Computer Sciences, Florida International University,

Miami, FL, 1998.

[12] E. Yourdon, “Object-Oriented Systems Design: An Integrated Approach”, Prentice-Hall,
Englewood Ciiffs, NJ, 1994.

[13] R. Orfali, D. Harkey, J. Edwards, “The Essential Distributed Objects Survival Guide”, John
Wiley & Sons, New York, 1996.

{14] 1. Jacobson, M. Christerson, P. Jonsson, G. Overgaard, "Object-Oriented Software
Engineering, A Use Case Driven Approach”, Addison-Wesley, 1996.

[15] Schneider, G., Winters, J. P., *Applying Use Cases: a Practical Guide", Addison-Wesley
Object Technology Series, 1998.

60

[16] Krutchen, P., "The Rational Unified Process: An Introduction®, Addison-Wesley Object
Technology Series, 2nd edition, 2000.

[17] Fowler, M., "UML Distilled", Addison-Wesley Object Technology Series, 2nd edition, 2000.

[18] Muller, P., “instant UML", Wrox Press Lid., 1997

[19] Vinoski, S., “New Features for CORBA 3.0", Communications of the ACM, vol. 41, no. 10,
October 1998,

[20] Curtis, D., “Java, RMI and CORBA”,
http://www.omg.org/library/wpjava.htm!

[21] Abie, H., “CORBA Firewall Security: Increasing the Security of CORBA Applications”,
http://www.ifi.uio.no/~abiefw.pdf, 2000

[22] “Java Web Start: Architecture”,
http//www.java.sun.com/products/iavawebstart/architecture.htmi, 2002

61

APPENDIX A

Class diagrams fundamental to the application.

Uniquel o baseio
Sexialotaie Seviokxabie
meb Por.
s mporobie
Uk Dortoaseic!
FORMAL ser Y
FORMAT HMVE : “on
EORAT WS Ooesryasion Jeacrp
foRMAL 1 STATUS PASSED 4 L | mecrregnt
%”%:“m STATUS FALED OCEUSTTIEN
FooMe Jeaonm SATUS IGHORED PASSED]
FCOHLD FER DAY TANS IGNORED FAIED
g_‘m..._..ﬂé.“_mﬂ NO DATA wSome
FECONDS FER MMNUTE odited compareto R e o o e e e
mom m;
Xxy po¥oan e e e e e o e — - S -
o P
maute IOUCE P
second ; ¢ | comment i Seobote
fota ' : ieiianad I
Emedop evanReiotveroion b Sdfion fom oo
oMo RONObLENITON =
e e name Sorotove
GobalPostion
Clabeconds CaTuBEvENRSRERcsTon
ssama wsame FORISAT PE MW LON
ssrneloy peFITOIMENC e FORMAT PN NE LON ™
aanor oot ANANTC BASN Moprost
o , GERacraGINGex 1 1 F EASTERN PACFIC BASIH
- G ! | getevantieicneseanaar CENTRAL _PACTIC BASN ouce
camporalc ; geno WESTERN PACEIC, BARH b prgiude
P> 5 SOUNERN FACFS BASN
: A A0 BATH
PRI CDSENVCIIOR ?‘
oSt
fAeoArgD
peta¥ucsetference
geLongruasDftersnse
eI
FBOVAATIUTUNANM
! MOISNSIUCER
i rekgWeSacant
FPWBRCinEen
WirniOtesrvalion Comparaio
TockFix vk
WE IO NOTS
soma
BATO M KPH o
DEGREE_ 0 UATIAN PC Trackik
XehtLlo LiH] souRCE 1R
CEANK. £ & RO E BVTERPOLATION SOURCE WOBTEX
LANG EXPORWRE SCURCE EXTRAPQLATON OB TADAE L
CCEMSC 10 ¢ EXPOSHE riamocried SORCE ATy} et
AMD 1O OCEANY EXPOSAE " prossre
OTHER & 43 TETOVANKSD 8
[0o Vi s v
adenaWng s:,g:
nashnd recron
=2) g
BIrperTRae
BRI .
: @D‘lm
gropctentabiegm P
pskohkdidvhd]
Ll 2yl =D
whdo e t
froionvec sy L
oWl e e ST
we L TETs et e e T
senlenpesTtae - 8
HpoTT MY e P
CrepiNOvePera s
MBI e e
KRCHI RlH ee O T kot “olobie
Uneruslatabaseit Spochativowe Hement
sokuctedy Cormpanent . o L Spectmivove
oEmET Conoon st X f PRl ackid
SR AT o e I o gane s K WO, ;“8\0
D erpng BRI RANTY HHQUEEY
1
i [N oTY 5ITe
&
et iorCRTeATYL |
0NN oA e s e e et At e3Pt AP PO AP e
arfrees.oe el
AT LHTVER
PRI

62

F T T o T T T e e e e Edeopie
’ : Sedatobi
: Oomerverionset
‘ itniguelaroboseid
Sesickobie
o eckr MODE _SYNOFTIC
/ . Comparabie WGDE EVENTRELATVE
¢ EciRable previrey
o
- MAX_LENGTH EVENT NAVE s
irdguetcroncesid MaX_TRACK STE name Smaincexdobis
£ ‘ cantecFuPoston ATCFCode ptcenindadats
o beghficoson oate ; i Feciveanaextabe
e o - = 4 andiRostion oo svenmRecivesendeiane
— i o eagecidone pas scedCtsarrtontable
| song InferpolatecFidcbie o mace
extrapotecFulate SO HOSSPTIOITS
S0 ; o clearFins BrenReMACOTKINIESCOk Limed
A o getBamiiame p
e et H H ; some
§ ety
i i odaRGyitepoiation compkrele
! R g:@,mpm oodfrombaicbone
i i COMarsFi 1 1 | brpor tObsee vatons
4 i fArNCwEFl
; nalausafi 300 i vt
cokuttefostonATme Fopxsthiock
exFoDorte expaoithack
anrkamteCeriafi rerrose D0 SQCKF OrTDTIObase
DeerProssas Eable aveictrerrrurmbescrpions
awaiabePotorns
rCentefic —— g miescpion
¥ Baghnf e - R COLuTtREvenPeiveCoorinaies
geEndrk 1 getfdhecObject SHTUTIBEG: ORI CoorINaios
aaginterpointasObject agdEdteaObiect oetEteaChecy
oetntemotiedOtect cler FateaCbect
<ooer % =1 getrrnberOEaeotiects A
FEaapokecOsect i
clearEcrmpotted Otject §
} as)
X !
i
!
Seriabobie
WHOOtse v ctionsol
XIWVNIC DA Ion
b
: BRIy
0ACCLEVIILNY
o - aaaltiergtnn
COMS NMGEceTTton
DOcMones radesFa
[alcasie . - gbe)e i)
BXSCIOTABNRTI0S
MecAGhseraroniachasef e
T mMpatFDoCefie . .
mpoitac : K
ok L e
L mopfosnolseDoiec
| DokpWeg!
ﬁAF\va‘M: THETHANC DOsr AT i0r
fozasdslalinlit an)otaysiad w
PRI RO ATA TV YT
PR TR L eveM NP AT
RN TP TN IR0
SETFOTONTLAOEMent
CRCTPOIT T AT e
CRCTIOCkBOsRCAT Y
| cOrUTRPT RormlanHagh
| MAGLAITON?
| S DRfCUNG rBo
| ey ATCSe SOOI Ok o
! - EPOTRDTIC RO
[CETATAITBNELCD
¢ SOME e RGN e
s s
| U
| e
; PYCIOSNTHC
H BT OPT 1
i FrINgRaD
men
meny
ey

	Florida International University
	FIU Digital Commons
	7-25-2002

	A real-time distributed analysis automation for hurricane surface wind observations
	Sonia Otero
	Recommended Citation

	001_FI15103037_4
	002_FI15103037_6
	003_FI15103037_8
	004_FI15103037_10
	005_FI15103037_12
	006_FI15103037_14
	007_FI15103037_16
	008_FI15103037_18
	009_FI15103037_20
	010_FI15103037_22
	011_FI15103037_24
	012_FI15103037_26
	013_FI15103037_28
	014_FI15103037_30
	015_FI15103037_32
	016_FI15103037_34
	017_FI15103037_36
	018_FI15103037_38
	019_FI15103037_40
	020_FI15103037_42
	021_FI15103037_44
	022_FI15103037_46
	023_FI15103037_48
	024_FI15103037_50
	025_FI15103037_52
	026_FI15103037_54
	027_FI15103037_56
	028_FI15103037_58
	029_FI15103037_60
	030_FI15103037_62
	031_FI15103037_64
	032_FI15103037_66
	033_FI15103037_68
	034_FI15103037_70
	035_FI15103037_72
	036_FI15103037_74
	037_FI15103037_76
	038_FI15103037_78
	039_FI15103037_80
	040_FI15103037_82
	041_FI15103037_84
	042_FI15103037_86
	043_FI15103037_88
	044_FI15103037_90
	045_FI15103037_92
	046_FI15103037_94
	047_FI15103037_96
	048_FI15103037_98
	049_FI15103037_100
	050_FI15103037_102.1
	051_FI15103037_102
	052_FI15103037_104
	053_FI15103037_106
	054_FI15103037_108
	055_FI15103037_110
	056_FI15103037_112
	057_FI15103037_114
	058_FI15103037_116
	059_FI15103037_118
	060_FI15103037_120
	061_FI15103037_122
	062_FI15103037_124
	063_FI15103037_126
	064_FI15103037_128
	065_FI15103037_130
	066_FI15103037_132
	067_FI15103037_134
	068_FI15103037_136
	069_FI15103037_138
	070_FI15103037_140
	071_FI15103037_142
	072_FI15103037_144
	073_FI15103037_146
	074_FI15103037_148
	075_FI15103037_150
	076_FI15103037_152
	077_FI15103037_154

