
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-25-2002

A real-time distributed analysis automation for
hurricane surface wind observations
Sonia Otero
Florida International University

DOI: 10.25148/etd.FI15103037
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer Sciences Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Otero, Sonia, "A real-time distributed analysis automation for hurricane surface wind observations" (2002). FIU Electronic Theses and
Dissertations. 3466.
https://digitalcommons.fiu.edu/etd/3466

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3466?utm_source=digitalcommons.fiu.edu%2Fetd%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A REAL-TIME DISTRIBUTED .ANALYSIS AUTOMATION FOR HURRICANE SURFACE

WIND OBSERVATIONS

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Sonia Otero

2002

To: Dean Arthur W. Herriott
College of Arts and Sciences

This thesis, written by Sonia Otero, and entitled A Real-Time Distributed Analysis
Automation For Hurricane Surface Wind Observations, having been approved in respect
to style and intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved

Date of Defense: July 25, 2002

The thesis of Sonia Otero is approved.

YiDeng

Mark Powell

Raimund Ege, Major Professor

Dean Arthur W. Herriott
College of Arts and Sciences

Dean Douglas Wartzok
University Graduate School

Florida International University, 2002

DEDICATION

I jointly dedicate this thesis to the people who benefit (scientifically or not) from the use

of this application, and to my sister, Dania, for just being there.

iii

ACKNOWLEDGMENTS

I wish to thank the stimulating instruction of Dr. Raimund Ege and Dr. Yi Deng on their

respective courses, which shaped my inclination within software engineering. Dr. Mark

Powell and scientists from the Hurricane Research Division (too many to mention), who

have devoted so much effort to this analysis model, deserve a most special recognition.

This thesis hopes to bring prominence to their arduous work.

The dedication of my team colleagues, Nicholas Carrasco, Nirva Morisseau-Leroy,

George Soukup, and Russell St. Fleur, was invaluable to achieve such degree of overall

accomplishment. I would like to express my gratitude to Luis Amat. for being my study

partner throughout the coursework and providing a well-oriented foundation for this

project

Rnally. I cannot forget those friends who helped me maintain my mental and physical

endurance during this lengthy but rewarding experience.

jv

ABSTRACT OF THE THESIS

A REAL-TIME DISTRIBUTED ANALYSIS AUTOMATION FOR HURRICANE SURFACE

WIND OBSERVATIONS

by

Sonia Otero

Florida International University, 2002

Miami, Florida

Professor Raimund Ege, Major Professor

From 1993 until 1999, the Hurricane Research Division of the National Oceanic and

Atmospheric Administration (NOAA) produced real-time analyses of surface wind

observations to help determine a storm's wind intensity and extent. Umitations of the

real-time analysis system included platform and filesystem dependency, lacking data

integrity and feasibility for Internet deployment.

In 2000, a new system was developed, built upon a Java prototype of a quality control

graphical client interface for wind observations and an object-relational database. The

objective was to integrate them in a distributed object approach with the legacy code

responsible for the actual real-time wind analysis and image product generation.

Common Object Request Broker Architecture (CORBA) was evaluated, but Java

Remote Method Invocation (AMI) offered important advantages in terms of reuse and

deployment. Even more substantial, though, were the efforts towards object-oriented re

design, implementation and testing of the quality control interface and its database

performance interaction.

As a result, a full-featured application can now be launched from the Web, potentially

accessible by tropical cyclone forecast and warning centers worldwide.

v

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION... 1
1.1 Mission of the application... 1
1.2 Origins of the application.. 2
1.3 Why was the old system obsolete?...................... 4

2. DESCR.IPTION OF THE HRD SPLINE ANALYSIS (HSA). 7

3. DISTRIBUTED OBJECTS TECHNOLOGY (DO).. 10

4. APPLICATION REQUIREMENTS... 13
4.1 User requirements.. 13
4.2 Analysis subsystem requirements.. 16

5. USE CASES............. 19
5.1 Create a quality control set... 20
5.2 Load a quality control set... 23
5.3 Perform an analysis (scientist's perspective).. 23
5.4 Perform an analysis (Analysis server's perspective)............................... 27
5.5 Store a quality control set to database........................ 28
5.6 Store an analysis to database.. 30
5.7 Flight-level surface-adjustment based on eyewall tilt corrections............... 30

6. OBJECT-ORIENTED ANALYSIS... 32

7. OBJECT-ORIENTED DESIGN... 37
7.1 Issues raised on the Quality Control subsystem.................................... 37
7.2 Issues raised on the Analysis subsystem... 47

8. IMPLEMENTATION... 52

9. OBJECT-ORIENTED TESTING... 56

10. SUMMARY AND FUTURE WORK.. 58

BIBLIOGRAPHY... 60

APPENDIX.. 62

vi

LIST OF FIGURES

FIGURE PAGE

1. Process and data flow diagram of the old WANDA .. 3

2. Generalized view of H*Wind ... 6

3. Black and white versus colored output. ... 9

4. General primary use case of H*Wind .. 19

5. General activity diagram of the Quality Control subsystem ... 22

6. Activity diagram to select analysis parameters .. 26

7. Activity diagram for the steps taken to produce an HRD Spline Analysis 27

8. High-level activity diagram for storing a quality control set ... 29

9. Class diagram of analysis results and derived products .. 34

10. Class diagram of analysis steps and related classes ... 35

11. Drawing of analysis meshes ... 36

12. Sequence of events to store a track to database __ 40

13. Sequence of events to store observations to database ... 41

14. Current geography panel ... 42

15. Current observation panel. .. 43

16. Current track panel .. 44

17. Sequence of events to query a track from database45

18. Sequence of events to query observations from database ... 46

19. Class diagram of the analysis distributed object47

20. Event sequence diagram of the analysis process ,. .. .49

21 . Typical map canvas with track and observations" ... 53

vii

1. INTRODUCnON

This thesis proposes the design and implementation of a distributed object application for the

real-time analysis of quality controlled tropical storm surface wind observations. The analysis

application will be integrated with a World-Wide Web and database based application that

handles the quality control of those wind observations.

1.1 Mission of the application

Based on Powell, et. al. [7], analyses are produced by compositing all available observations

relative to the storm center that is studied. Observations include Air Force and NOAA aircrafts,

ships, buoys, Coastal Marine Automated Network (C-MAN) platforms and surface airways

(airports). First, the data are quality controlled, and then processed to conform to a common

framework for height (10 m), exposure (marine or open terrain over land), and averaging period

(maximum sustained 1 minute wind speed). It takes several hours of collected observations to

provide sufficient data to produce an objective analysis, which represents the mean state of the

storm during the chosen time period. A typical10-hour reconnaissance mission will yield two to

three analyses. The primary product of each analysis is a streamline and isotach contour plot,

designed to convey the location and strength of the maximum wind as well as the extent of

hurricane force winds. Naturally, the analysis results help meteorologists determine the storm's

most recent measured intensity and the extent of its damaging winds, which can, in tum, help

them in issuing storm forecasts and warnings. Timely analysis results combined with geographic

information on the area affected by a hurricane or tropical storm can help identify which locations

suffer the most intense winds and severe storm surge. Early data acquisition should help

emergency managers to better organize search, rescue and recovery operations short1y after the

disaster has taken place. Given the importance of this information, some commercial and

scientific communities have also expressed interest in accessing hurricane wind fteld data in a

graphical or flat file format.

1

1 .. 2 Origins of the application

The Hurricane Research Division (HRD), located on Key Biscayne. under the National Oceanic

and Atmospheric Administration (NOAA.), has been conducting real-time analyses of tropical

storm surface wind observations since 1993 [5], on an experimental basis. The overall application

that comprised a workstation-based quality control, a partially automated analysis process, and a

graphical output was named WANDA (Wind Analysis Distributed Application). From a general

perspective, the application's operation started with the fetching of data from a flat-file repository.

FTP scripts regularly updated this repository to download near real-time data from the National

Center for Environmental Prediction (NCEP) via the National Hurricane Center (NHC}, located at

the Florida International University campus. Secondly, the data were processed and quality

controlled via a basic graphical user interface tightly tied to the format of those flat files. Then,

the reviewed data were sent to the analysis server, and finally, the output was displayed and

converted to a format that could be faxed or hard-copied to clients, such as NHC's hurricane

specialists. WANDA (fig. 1) was logically divided in three independent subsystems: 1) Quality

Control, 2) Analysis Automation, and 3} Output Generation. One could look at them as highly

cohesive decoupled components.

1) Quality Control

This was the graphical user interface to WANDA, which resided on a workstation. Through a

sequence of windows, the user selected a set of observations and an associated storm track, that

were then displayed according to the geography of the selected storm. Several inspection tools

were provided to the user to decide the validity of the data and thus make the final selection of a

satisfactory set that should be analyzed.

2} Analysis Automation

The quality·controlled data and a storm track were passed through a series of .Analysis

subsystem components. Each component was distributed over two machines, a Ne.XTSTEP

client and a VAXNMS server containing the legacy analysis programs. WANDA used state

machines to orchestrate all of the state transitions involved ln the analysis automation. Included

2

in this automation was the automatic archival of all steps of an analysis for future research

purposes. Any analysis could be traced back to its components results and data sets. The state

automata approach ensured that the execution of an analysis component could only start if no

errors had been encountered previously, which were reported accordingly.

[Wind Data/~;;ni'rracks J l~ut ua:/ lnptll

Ana sis Automation
VMS(VAX)

Analysis Server

ServerSde
Processes

a u

Fig. 1 Process and data flow diagram of the old WANDA

3) Output Generation

=Subsystem

=Subprocess

=Data Store

4tl(f--'"'"""-i... = Data.!Process Path

<Ill(, ••• ,... = Commurication
(ftp,rsh,rcp)

The Output Generation subsystem created a graphical representation of the wind fields. The

implementation of this subsystem was done with an in-house graphics package that displayed an

analysis product. on the client workstation where the user could annotate and save it to an

encapsulated postscript document.

3

1.3 Why was the old system obsolete?

One of the major drawbacks was the lack of a database common and accessible by all the

subsystems. The use of a hierarchy of flat files made the application platform specific plus

inhibited flexibility for manipulating data retrieval. Also, data integrity and security issues were

raised due to the use of ftp, rsh and rep scripts. The lack of portability was another problem,

exacerbated by the fact NeXTSTEP and VAX/VMS operating systems are no longer supported.

Regardless of the platform, however, one of the goals for WANDA was to become truly

distributed and to be used on a continuous basis both at HAD and at NHC. Because HRD is

located in Key Biscayne, a hurricane warning for Dade County would mean that the facility

housing WANDA's primary resources would have to be shutdown. There is a need for

maintaining redundant analysis and database servers at NHC as well, capable of performing the

same exact asks described earlier. Ideally, both analysis and database servers would be running

simultaneously for maximum capacity. Therefore, load balancing and concurrency factors need

to be taken into consideration. The ability to reuse portable code is crucial in order to keep this

redundancy as transparent as possible. I will attempt to describe the proposed WANDA's

replacement, now named H*Wind, which was completely reconstructed, and was first released

during hurricane season 2000, pressed partly by the fact that WANDA was also not Y2K·

compliant

H"'Wind is made up by three main areas of development, aimed to improve the drawbacks listed

above. They all have in common the exploitation of the Object Oriented paradigm:

- Incorporation of a database management system. This will greatly ease the retrieval and

storage of all the data Involved throughout all the phases of the application. H"Wind's database

design was the topic ot a Master's Thesis at Florida International University [iOJ, whose author

has remained H"'Wind's database developer during this endeavor.

• The use of the platform independent object oriented programming language (OOPL), Java, for

the Quality Control subsystem, in order to comply with the World Wide Web requirement The

4

discussion about H*Wind's Quality Control subsystem is the subject of a Master's Thesis at

Florida International University [11].

- The use of Distributed Objects (DO) technology for the Analysis Automation subsystem, for

which this thesis will be mainly responsible. The source code that involves all the steps of an

analysis run is already written and is maintained in FORTRAN 77 by expert meteorologists. It is a

task that will remain managed by them, until or if a decision is reached to port the code to OOPL.

As a result of this situation, the FORTRAN code needs to be wrapped in an OOPL (Java, to

homogenize with the rest of the project as much as possible) that not only allows database

connectivity, but more importantly, transforms each analysis step into an object that can then be

used as a distributed object. The implementation will undoubtedly include the use of a CORBA

compliant (Common Object Request Broker Architecture) IIOP (Internet Inter-Orb Protocol)

Object Request Broker (ORB), which is the Object Management Group's (OMG) well-established

and widely adopted standard for object interoperability and communication. In addition, given the

extended use of Java throughout both the Quality Control and the Analysis Automation

subsystems, it would be perfectly sound to implement a version that uses Java's own distributed

programming model, Remote Method Invocation (AMI), as it is recommended for Java-to-Java

interprocess communication.

The FORTRAN programmers/meteorologists have already adapted the V AXNMS code for

UNIX execution. Analysis Automation is inherently constrained by its FORTRAN implementation,

but once it becomes part of the distributed object infrastructure, through an Interface Definition

Language {IDL) declaration, it can be freely invoked completely independent of the programming

language, operating system or network to which it is tightly bound. This is especially important for

HAD to achieve true application distribution. CORBA's features provide many DO advantages:

transaction control, concurrency, and event notification. These characteristics take advantage of

some well-known properties of 00, like encapsulation, inheritance and polymorphism.

Besides the development of the DO section of H*Wind, additional tasks involved completion of

the analysis of the database schema for the archival of the Analysis Automation results, plus the

5

later connectivity to the database server. Also, a client GUI was provided for the acquisition of

the Analysis parameters needed to run an analysis process. Simultaneously, the distributed

Analysis Automation subsystem was integrated with H*Wind's Quality Control application and

Product Generation processes, to eventually form an architecture as shown in figure 2.

This project used the iterative and incremental software engineering methodology. The plan

was to constantly revise with the user if the requirements were being met after a certain amount

of progress. H*Wind's project team is small and the contact with relevant key users is close and

frequent, which allowed for the iterative development approach to work [12] . Upon completion of

this thesis, the 00 Analysis (OOA) and 00 Design (OOD) documents will be submitted, along

with sequence diagrams, activity diagrams and user scenarios. The UML notation is followed.

H*WIND Subsystems

Quality Control Analysis Products

Data Collection

Ships, buoys

+more

Fig. 2 Generalized view of H*Wind

6

2. DESCRIPTION OF THE HRD SPLINE ANALYSIS (HSA)

The analysis algorithm, cornerstone of this project, consists of a process of estimating the

continuous spatial field of a physical variable from a set of discrete observational data [3].. For

our purposes, the physical variables of concern are wind, pressure (or geopontential height

above surface), temperature and relative humidity. In the ideal case, in which the domain of

interest is densely covered by data of reasonable accuracy, all that is required may be

mechanical interpolation of discrete data with some smoothing. However, for most

meteorological observations, the data are collected by less-than-ideal number of irregularly

placed stations; that is, an undersampled dataset. This analysis relies heavily on the judgements

by a knowledgeable and experienced human analyst in order to ensure the resulting continuous

field will be a reasonable approximation of the true data.

The analysis numerical method is based upon the Spectral Application of Finite Element

Representation (SAFER) method, as explained in [2], [3] and [4]. In particular, a nested version

of SAFER that allows the specification of different filters for each nest that depend on the scale of

the features to be resolved; more dense sampling is needed in disturbed regions where

atmospheric variability tends to be on smaller scales. Inner meshes of the nest focus on the wind

structure of the eyewall including magnitude of highest wind and its distance from the center,

while outer meshes cover the extent of hurricane and gale force winds. The whole area of

interest is referred as the analysis domain.

There is always an elapsed time between the moment data are being collected and the actual

moment for which the analysis is performed. Even though meteorological conditions certainly

change, it can be assumed that the features close to the storm center move with the hurricane.

Therefore, to correct this space-time discrepancy, all observations are placed in a coordinate

system that moves with the specified hurricane center, i.e., a storm-relative coordinate system.

To produce an analysis, the user specifies such basic parameters as the analysis domain.

weights for each data source, pressure level, boundary conditions and filter wavelengths that

govern the resolvable scales for the analyzed fields. The HSA operates only on surfaces of

7

constant pressure; specifically, it has 19 predefined levels (surface level plus 100 through 950mb

in 50mb intervals). Nevertheless, there are many other modifiable parameters available to

maximize flexibility given the subjectivity of the process, determined by observation density and

overall meteorological conditions near and outside the domain boundaries. Several HAD

scientists combined efforts to code this whole algorithm in FORTRAN, divided in five distinct

programs:

1) Creation of bogus points - designed to minimi.ze the ill effects of poor data distribution in the

near-storm environment, by moving the area of maximum convergence closer to the storm

center.

2) Dcopy - Conversion of input ASCII observations to an unformatted record.

3) Prenest- Prepares the input parameter files for Nestanal (next step).

4) Nestanal - Performs the nested objective analysis. The essential output is a 'KR' file

containing the analyzed fields.' spline coefficients.

5) Krdecode- Reads and processes a 'KR' file to extract the information necessary to produce

plots.

Starting with the development of this thesis, important improvements have been externally

attached to the analysis algorithm package via the output generation scripts and via real-time

delivery to the Automated Tropical Cyclone Forecasting System (known as ATCF). Concretely,

the output generation scripts {coded by an HAD mathematician) can now perform an

enhancement on the 'KR' output file by more accurately exhibiting the actual storm's wind

distribution re.lative to the real observed maximum wind and to the scientist's chosen storm center

position, instead of relative to the analysis-determined maximum wind and storm center position.

It reflects the scientist's choices. If no enhancement is performed, the anafysls smoothing

process has shown to slightly underestimate the higher wind speeds. For compounded benefit,

the old black and white images still being produced have encountered the "competition" of

several new color images at different zoom scales that better depict the situation in question {Fig.

8

3). These images also provide something very useful for the forecasters' assessment: the wind

radii per quadrant, meaning the radius in nautical miles of the extent of 34-, 50- and 64-knot

surface wind speed in the northwest, northeast, southeast and southwest quadrants with respect

to the storm center. In the past, forecasters at the National Hurricane Center subjectively

determined these measurements from looking directly at computer data images, not a very

reliable or effective procedure in a deadline-constrained environment.

Joining the ATCF system makes analysis results quickly available in a common format to major

National Weather Service agencies and to Department of Defense tropical cyclone warning

centers. The Automated Tropical Cyclone Forecasting System was developed by the Naval

Research Laboratory (NRL) in 1998, designed to provide an organized framework of tools for the

forecasting process by featuring global tracking capability, construction of messages, and

dissemination of warnings [9] . For H*Wind, it serves a dual purpose: it provides a way to obtain

tropical cyclone fix positions every six hours (which we timely ingest in our database) for as long

an event is deemed relevant, and it provides a way of delivering our product: an objective,

observation-based aid, which supplies values of intensity and wind radii per quadrant.

9

3. DISTRIBUTED OBJECTS TECHNOLOGY (DO)

Described as the ultimate client/server architecture, DO is oblivious to internal implementation

details, address space, network distance, vendors, operating systems, and communication

protocols, yet it enables object invocation with the transparency of a local access. This

technology easily leads to the construction of autonomous loosely-bound components by

encouraging the separation of user interface, process, and data; therefore, promoting

collaboration and integration anywhere in the network. DO extends the advantages of object

orientation (inheritance, encapsulation and polymorphism), especially when it comes to reuse.

The Object Management Group (OMG), a consortium of over 500 major companies within the

computer industry (except Microsoft, which has its own competing model, COM), has led the way

on the set of open standard specifications that define the TCP/IP based object bus

communication infrastructure, encompassed under the name of CORBA (Common Object

Request Broker Architecture)..

How does CORBA achieve interoperability? Perhaps the secret to success lies in the fact that it

creates neutral interfaces, not code. These interfaces are written in IDL (Interface Definition

Language), announcing a component's services to potential clients. The IDL-specified methods

can be bound to high-level languages (C, C++, Java, Ada, SmaiiTa!k, etc.), responsible for the

final implementation.

The core component of CORBA consists of an Object Request Broker (ORB}. a self-describing

object bus that provides the transparent messaging mechanisms among objects regardless of

location or underlying system characteristics. By vendors offering CORBA-compliant ORBs,

universal interaction is accomplished. This basically means that vendors obey the rules of the

Internet lnter·ORB Protocol (IIOP), the common backbone protocol residing on top of TCP/IP.

There are several elements worth mentioning without describing low-level internal anatomy

details. On the client side, IDL stubs define how to invoke a service on the remote server object,

and take care of appropriately formatting the operation and its parameters into a message

understood by the server (marshalling). A unique global identifier (repository 10} is assigned per

10

component and respective interface, with no name collisions across vendors. Server-side stubs

(called, skeletons) transfer control to the actual object implementation (servant) upon request

reception. The server running environment is responsible for instantiating new server objects,

assigning them an identifier (object reference), advertise their presence and balance its supply

according to Incoming client demands.

Commercially and freely, many ORBs have emerged. If one is willing to pay the price, one can

obtain nice extra features, such as object self-discovery. location transparency or reliable

transaction support for mission-critical components. In our case, in an environment of limited

resources, these "luxuries" were out of the question and unnecessary to reach the goal. Java

was the clear choice of programming language, and so I directed my efforts to develop object

distribution with it

Originally, Java introduced its own distributed friendlier-to-use model exclusively designed for

Java-to-Java Intercommunication, called Remote Method Invocation (AMI). Contemporaneously,

the Java Development Kit, like any other vendor, provided its own CORBAIIIOP ORB

implementation. known as 'Java IDL'. Later, a version of AMI over IIOP was released, making it

CORBA-compliant by allowing access to remote CORBA objects; this combines the AMI-style

Java interface with the much desired cross-language interoperability.

An important property that tilted the balance towards an AMI versus a pure CORBA approach

was caused by the proliferation of firewalls on the Internet. Increasing security concerns did

prompt AOML to install a firewall to protect its network a few years ago, and NHC is expected to

install one in the near future. It is foreseeable that most client invocations will originate behind a

firewall; thus, it is crucial to take this scenario into consideration within H*Wind's topology. AMI

not only works on a pre-defined TCP port, which at least allows potential configuration in a

firewall, but it can also be tunnelled through HTTP, a very common protocol already allowed in

most standard Intranet security policies as part of the outbound traffic. In this world of

compromise though, this technique degrades performance due to additional overhead, but the

security benefits seem to outweigh the disadvantages. The proposed CORBA 3.0 includes a

11

sectiOn>called CORBA FirewaU Security, intended to address the issues faced in order to provide

a standard approach to handle controlled authorized inbound and outbound IIOP traffic through a

firewall, while maintaining the great degree of dynamism CORBA is famous for when it comes to

integrating enterprise-wide distributed applications.

CORBA applications and ORBs generally choose to launch objects at arbitrarily selected TCP

ports, where any object is a potential server and client simultaneously, each one with its own

interoperable object reference containing unpredictable host/port addressing information. This

situation is difficult for a firewall to conf~gure. There are several CORBA Firewall Security

compliant commercial products on the market which provide an IIOP proxy with security access

control per client and target object, tfiTP tunnelling and even support IIOP over SSL (Secure

Sockets Layer), the standard transport protocol for encrypted messages. However, due to

budget constraints, these solutions could also not be contemplated in this project. With Java AMI

{free), I can satisfactorily achieve the objective of creating a distributed object out of the Analysis

subsystem.

12

4. ARPUCAnoN REQUIREMENTS

· As stated earlier, this thesis comprises one of the 3 subsystems required for the success of the

overall project. Though the Analysis subsystem mostly exudes server behavior, there is a still a

client side that needs to be satisfied, one that collects the multiple analysis parameters and offers

visual aid to the scientist as to the location of the several domain meshes. This client portion

must be Integrated with the rest of the Quality Control subsystem, which is responsible for the

selection and validation of observations and storm track fixes involved in the analyses.

Unfortunately, after some initial testing of the Quality Control subsystem, it was clear that it was

far from being complete and trustworthy, something that deeply affected not only the progress of

the Analysis subsystem but, more importantly, the success and life expectancy of the whole

project. Therefore, the full implementation of the client application became a major unexpected

requirement. I took the core packages developed by Luis Amat [11], and proceeded to convert

the prototype he built into the full-grown application currently released. Several aspects needed

completion or creation (as scientists discovered more needs), which should be considered an

expanded and superseding list of user requirements specified for the initial prototype.

4.1 User requirements

1. Database interaction:

a) Select observations from a database given a time range, exposure, pressure level, and

ocean basin.

b) Select fiXes from a database belonging to an event, or to an already generated track.

c) Store scientist chosen set of observations and fixes (as a track) to the database in the form

of a quality control set.

d) Load a preexisting quality control set from a database, and be able to modify any content,

as it would be stored as a completely new quality control set leaving the original intact.

2. Prevent loading of duplicate observation and fix data into a quality control set

13

3. Real-time features: display current world-wide events, automated querying for newly arrived

data in a,periodic or instantaneous fashion.

4. Manipulate, track by edition, interpolation and extrapolation, obeying the following rules:

• FiXes can be extrapolated only to a time before the track's beginning fix or after the track's

ending fix. It is valid to perform extrapolation beyond an already extrapolated fix.

• Fixes can be interpolated only to a time within the track's beginning and ending fix. It is valid

to perform interpolation of an already interpolated fix.

• Interpolated and extrapolated fiXes are not editable, but they can be removed.

• Edited, interpolated and extrapolated fixes are stored in the database as derived fixes from

the original or causal fix.

• Relevant fixes marked as beginning, center or ending fixes cannot be removed.

• Removal of a fix results in recursive removal of those fDCes dependent of this fix, meaning

potential editions, interpolations or extrapolations, with their potential associated

interpolations and extrapolations as well. Consistency is paramount

5. Whenever a track exists, its date/time range prevails over the real platform date/time range.

Only observations within a track's range are considered.

6. Per platform, visually Identify the observation with maximum wind speed and the one with the

most recent arrival time.

7. Display maximum wind speed value, location, date and time among all passed observations of

the entire quality control set.

8. Certain satellite data sources are not able to provide wind direction measurements. For data

detected from those sources, automatically apply a wind direction estimation algorithm based on

the storm track. If no track is available, these observations are displayed with zero wind direction

(i.e. facing North}.

14

e. Add missing observation attributes (wind gust direction, wind gust speed, wind gust date,

unadjusted wind direction, unadjusted pressure, unadjusted temperature), whose data were

being collected, but had been neglected in the database schema and class definition. Display

their values when using the observation inspection tool.

10. Ability to draw wind barbs with either adjusted or unadjusted wind speed/wind direction per

platform.

11. Once observations have been loaded, be able to decrease the time span to a lesser amount

of hours from the initially loaded time range, per platform.

12. Since it is possible to perform upper-surface analyses, provide the ability to visually constrain

the display of observations to a certain pressure range.

13. Incorporate scientist-defined algorithms for wind surface adjustment In addition to HAD's

boundary layer default surface adjustment model, scientists want to apply other models to the

unadjusted data, each one with its own rules. At the same time, provide a way to retum to initial

unadjusted values.

14. A tool for (un)flagging an observation with one mouse click. It behaves like a toggle switch: if

the observation has a passed status, the mouse click converts it to failed, and viceversa.

15. A tool for (un)flagging certain platforms within a chosen map region. The user Is prompted

with all the platforms detected within that region, being able to select which platforms should

actually be (un)flagged.

16. While inspecting observations data, distinctly mark the observation in question on the canvas.

Also, be able to inspect multiple observations at an exact location (previously, only one could be

inspected).

17. Establish the uniqueness condition among global events as name+date+type+basin. Though

very unlikely, there is a possibility that two events with the same name and type started on the

same day on different basins; thus, we need to account for that.

15

18. When saving a quality control set, let the user choose whether or not to store the associated

analysis' and whether or not to generate the pertinent ATCF file (only valuable while in real-time

operation}.

19. Print canvas.

4.2 Analysis subsystem requirements

A. From a client perspective

1. Once a track is entered, and therefore, a track's center fix is known, draw lightly on the canvas

the location of the 5 default analysis domain mesh sizes. By the same token, provide a way to

clear off the mesh drawing if desired.

2. A graphical user interface for customizing number of meshes and their location. Naturally,

draw these meshes on canvas dynamically.

3. A graphical user interface for entering analysis parameters: type of analysis (wind, pressure,

temperature, relative humidity or a combination of them), pressure level, whether or not to

perform an enhanced version, whether or not to generate bogus points (if the presence of a

background field is detected).

If using expert mode, additionally: specifications for generating bogus points and Barnes meshes,

mesh filter wavelength.

4. Warn user if attempting to perform a surface analysis with some non-surface adjusted data and

vice versa. The warning won't prevent analysis scheduling.

5. Ability to modify platform weights, since not all offer same scientific reliability.

6. To load a marine gridded field from a previous analysis. The user is presented with a list of

analyses stored for the current event and whose center fix time dates within 24 hours of the

current storm center. Once the user makes a selection, the marine gridded field Is adjusted

space and time-wise to current storm conditions, becoming a background field for the current set.

If the user chooses a new storm center, the background field needs to be re-adjusted.

7. If a background field is detected, offer the possibility of not generating bogus points.

16

8. Offer the. possibility of tuming off the· execution of an enhancement provided on the analysis

ou1put stages.

B. From a server perspective

1. Distributed, interoperable via flOP for any other possible client application, and accessible from

anywhere in the lntemet.

2. Multi~user, meaning that simultaneous Invocations must not conflict.

3. Ability to perform analyses on all basins worldwide. It is specially tricky around meridian 180,

where the date line is located.

4. Ability to perform analyses of. any combination of types: wind, pressure, temperature and

relative humidity.

5. Determine. field by field, the necessary Information for the creation of the proper database

schema to be used for analysis storage.

6. Derived from the previous point, the natural consequence of database interaction:

a) To store each analysis parameters for future reproducibility.

b) To store each analysis results associated to the corresponding quality control set

amplitudes {original and enhanced); marine gridded field; wind radii for 35-knot, 5o-knot, 64-

knot and 100-knot wind speeds at each storm quadrant; wind maximi (observed in real-time

and analysis-estimated); minimum pressure.

c) To query a marine gridded field associated to a given analysis.

7. Generate a file following ATCF (Automated Tropical Cyclone Forecast) format based on

analysis results, to be readily available to other weather agencies.

8. Generate text content to be embedded into the final annotated ou1put, which includes:

platforms involved in analysis with their corresponding time range, mean height if any aircraft

platform was involved, type of scientific adjustment performed, minimum pressure, value and

quadrant location of the maximum wind observation, characteristics of the storm center position

(If it is an extrapolation, state chosen storm speed and direction).

17

9. Make analysis results in the form of gridded files available for the modeling community.

With this preliminary list of functional requirements and notions of what is generally desired to

achieve, the next step is to build a plan of action on how they should be combined to form a

model with a more detailed description of the envisioned purpose of the whole system. The use

case model promotes understanding of the system as it is easily related to reality and

semantically close to the users. Due to the close interaction with this projecfs domain experts,

HAD scientists, the natural strategy was to establish a constant dialog with them about the

expected sequence of steps for each scenario, and how each of them could influence or interfere

with other scenarios. Following a use case driven design, one can express several flows of

transactions resulting from the interaction among the actors representative of the problem

domain. For maintainability and documentation purposes, it turns out to be helpful and flexible for

an iterative development cycle.

18

5. USE CASES

Here I present a general use case depicting the expected actions to produce an analysis, its

derived products and database storage (fig. 4).

Evak.Ja1e da1o se1

<<e.x1end>>

Fig. 4 General primary use case of H*Wind

X
OU1put Genera'lor

"' I
<<e:xtend>> I

I
I
l

Generate ATCF tt&

~
Da1abose

Several actors interact for accomplishing the drfferent tasks expected of the system. As one

might e.xpect, the role of the scientist takes a predominant place as the person who can request

any of the major tasks, some of which are fulfilled by specialized software components. The

extended use cases can only happen if the core use case occurs; in our case, the execution of a

successful analysis denotes such a use case, which opens the possibility to generate an analysis

output, whose results in turn allow the generation of an ATCF file, but none of these optional

scenarios affect the goal of the core function. On the other hand, an inclusion use case must

happen or be true before the encompassing use case can occur. In our example, even though a

scientist could store a quality control set without an analysis associated with it. the rules stipulate

19

that it does not make any sense to store an analysis. without its corresponding quality control set

(for data consistency purposes); thus, the need to state this situation.

Details of steps inherent to the principal actions follow. As a general rule, the most regular

"happy- path is described, with its possibJe alternatives. It is desirable to state pre- and post

conditions for later verification. To achieve a greater level of clarity and understanding, several

activity diagrams are ·.supplied, which express transitions among sequence of events when

conditional and parallel behavior are relevant.

5.1 Create a quality control set

Pre-condition: The user selects to create a new set. The user is logged into the database.

Basic Path:

1. The application presents a list of active tropical cyclone events throughout the world.

2. Scientist selects one of these world-wide active events.

3. The system loads all the storm track positions (fixes) for that event, and sorts them in

chronological order.

4. Scientist inspects this list of chronologica.lly ordered fixes (a track) and decides the time range

of interest.

5. Scientist can interpolate, extrapolate, manually add fixes or load a new track altogether.

6. Scientist proceeds to load observations from the database specifying a desired time range,

exposure and pressure leveL

7. From the list of data platforms shown to the scientist, he/she includes as many as desirable.

An inclusion causes all the observations of a platform to be drawn on the canvas map. Since a

track exists, all observations shown are constrained within the track time range, and displayed

with storm-relative positions (as opposed to earth-relative).

8. Scientist decides to load a marine gridded field from a previous analysis, since the scientist

considers there is an insufficient amount of raw observations.

20

9. The system presents the user with a list of all analyses stored whose storm track center time

is within 24 hours prior to current storm center time chosen.

10. The user selects one of those analysis and the system retrieves its corresponding marine

gridded field, which is automatically adjusted in time and position to the current storm conditions,

as specified by scientist requirements.

11. Via tools such as observation scope, zoom, flagging, data inspection, distance calculation, the

scientist achieves a desired level of quality control.

12. Scientist could repeat steps (4). (5), (6), (7), (8), (9), (10) and (11) as wished, in random

order.

13. Scientist decides it is time to perform an analysis (see use case 5.3)

Post-condition: A valid quality control set is created in order to analyze it.

Alternative Paths:

a) Step 2 just shows one of the ways to load or create a track. Other ways are:

- to load a track from the database

- to load a track from a file

• to load individual storm track fix positions from the database

- to create individual storm track fix positions by manually typing the data.

All of the available methods to generate a track can be used interchangeably.

b) At step 6, if no track is present, all observations retrieved from the database are shown without

time constraints.

c) Steps 7, 8, and 9 can only happen if a track exists, since one is indispensable to be able to

adjust a marine gridded field to current storm conditions.

d) At steps 5, 6, and 7 the scientist can select to cancel the operation.

e) At step 6, if the system detects the user loaded flight-level data from aircraft, then the scientist

is allowed to apply any of the surface adjustment algorithms offered, repeatedly.

Figure 5 describes the high-level overall possibilities of the Quality Control subsystem (called

OCCiient).

21

·~
,[tldl!pby A1tm11::: mop canvas

lfaled)

Re'1ry~..g c LOgin 10 da1atxl!e
.) lfaled)

(soccessfuiCI' COI'ICeled)
(successtul Cl' cancefed)

,It
(Create an aTiptyquol!y con1ro1 set

(oonnec1ed b da1al:)ose)

' rl Re'lrieve~ecurren1 \
'l\le' even'lstrcmda1abase "" ·
Onddtspby

(one selected)

,II
/

lOad 1rOCI< fi>CBS

l.ood o 1roclc '
cnong&ocecn lxl$0

fdllpby m;; b<':lSn s mop -
l.ood obsefvotbos -

l.ood a shopefje
~

" - load 0 l:ll'!Ctnorl< fj& ...

E'>'OkJale:axm.tlog, nspect \
monpubie 11oc1e (edit, "' ,
~le. extropotrte).

\. hc~etexci.Jde dC1C pbffOITTl!. 1

j Open exmr.gqool!ycomrclset
(OOonecfed bdatabase) trandobbase

~ ·-

Ed~ 001o pbffetm we{1!1s

.... l.ood bOcltgOund fetl ..,
()' o Tracie ex!r!Sl ./

~rrorrn ~.-level od)ustnenl '
G't\111-lellel dC1C &Bt$)

(OI':>$8Natbns and track exirf)
Schedule anol'f$8 -

toonnocteo 10dC1Cbosef
SCNe quol!'t controliet bdo1ob0se ~

r-
i
I

Aroi 0(mesa oc1Mti9Scon be pei1ormed ono
repeofed n any ad91 (a iY-!li'IOppenat•:JI).

Fig. 5 General activity diagram of the Quality Control subsystem

22

{Clear ol cooten"is

_..j Cbsaquotty
(51o!1 trcm $C!C1Ch) ~ \. oon1TOI set)

··----(selected b exif) '""

5.2 Load a quality control set

Pre--condition: The user selects to load a OCSet

Basic Path

1. The system presents the user with the following interface:

By default it presents a list of events and a list of users associated to the QCSets stored for the

Atlantic basin and current year, so that the scientist can narrow down his/her search. Obviously,

a change in basin or year causes an update of the lists.

2. The scientist chooses at least an event (and optionally a user).

3. The system displays a list of all QCSets for that event (and user, if applicable) sorted in

descending chronological order by storm center fix date and time. QCSets without a track are

displayed at the end of the list. In general, scientists are interested on loading the latest OCSet

of an event

4. The scientist picks one OCSet.

5. The system loads the event information (name, ATCF code, date, category)

6. The system loads the track {if there exists one) and sorts the fixes in chronological order.

7. The system loads the observations.

Post-condition: The chosen quality control set is loaded and ready to be evaluated. The user is

free to continue on step (8) from Use Case 5.1.

Alternative Path

- At steps (1). (2) or (3), the scientist can select to cancel the operation; therefore, safeguarding

the contents of any previously loaded QCSet

5.3 Perform an analysis (scientist's perspective)

Pre-condition: A track, an event and a non-empty set of wind observations are loaded.

Basic Path

1. Scientist selects the Anatyze option from the QCCiient application.

2. Scientist chooses 'Novice' mode,

23

3. Scientist enters analysis description:

a) exposure (land or marine)

b) time frame (operational or research)

c) type (a combination of wind, pressure, temperature and relative humidity)

d) registering a minimum pressure value

e) choosing whether or not to generate bogus points (applicable only if a

background field is present)

f) choosing whether or not to perform output enhancement

4. Scientist selects a pressure level, ranging from surface (1070 milibars) to 150 milibars, in

intervals of 50 milibars.

5. The OCCiient application will. dynamically redraw the canvas map with observations limited to

the chosen pressure range, and warn whether there is an attempt to perform a surface analysis

with non-surface-adjusted observations.

6. Scientist selects one of the predetermined analysis domain sizes, based on years of

experience: 'Poorly Defined', 'Small', 'Medium' or 'Large'.

7. The QCC!ient application will display the location of the corresponding nested meshes on the

map.

8. Scientist schedules an analysis.

9. The QCCiient application invokes the execution of the analysis on the appropriate remote

server as a distributed object

10. The remote server runs through all the steps of the analysts process (use case 5.4).

11. At completion time, the QCCiient application informs the scientist whether it was a successful

run or not.

1.2. Scientist reviews analysis output.

Post-condition: An analysis has been performed providing a response about its final completion

status. If analysis execution was successful, output files have also been generated.

24

Alternative Paths

- At any time before scheduling an analysis, the scientist can select to cancel the operation, or

can trace back his/her steps.

- In all steps. if any input is incorrect, the system will prompt the scientist to correct it and will not

allow proceeding unless the scientist does so.

- In all steps, if any input is incorrect, the system will prompt the scientist to correct it and will not

allow proceeding unless the scientist does so.

- Starting at step 2:

2. Scientist chooses "Expert" mode

Continues with steps 3, 4 and 5 of basic path.

6. Scientist determines all parameters related to the generation of bogus points and Barnes

meshes.

7. Scientist enters size of innermost domain mesh, in kilometers or degrees latitude.

8. Scientist establishes the number of meshes.

9. The system informs of the size of all meshes to be involved.

10. The system presents an editable table to modify the nodal interval, the filter wavelength and

geographical coordinates of each domain mesh, and the outermost mesh boundary conditions for

northern, southern, eastern and western flanks.

11 . The system will visually display the location of the corresponding nested meshes on the map.

If the scientist modifies the size of the meshes, so will they be displayed dynamically.

Continues with steps 8, 9, 10, 11 and 12 of basic path.

Figure 6 describes the choices to select analysis parameters.

25

26

5.4 Perform an analysis (Analysis server's perspective)

Pre-condition: A client application invokes the analysis process via object distribution.

Basic Path (fig. 7)

1. The system creates a random-number-generated directory to be the area of current execution.

(Several instances can run concurrentiy without any conflicts.)

2. The system writes the input files expected.

3. The system invokes all legacy programs in the proper order.

4. The system cleans up any secondary files unnecessary for next step (to save disk space).

5. The system executes the scripts responsible for generating the postscript output.

6. The system annotates the Postscript output files and converts them to a graphical format easily

accessible via an Internet web browser.

export SfOim 1r0cl< 10 o proper
folmafled fie

Crecne FTPorch!vold~ec1oOeS ·bOSed on
year, SfOim rlO'ne. dole and ltne Of a no~

M::>ve gt:lded nes ond OUTplft l"'nCCge5
10eo<responctngorchNe occrtbns

Fig. 7 Activity diagram for the steps taken to produce an HAD Spline Analysis

27

7. The system archives the graphical files.

8. The system returns a success or failure status to client application.

Post-condition: The remote server sends analysis completion status to client. If successful,

analysis output files are available for review by the scientist.

5.5 Store a quality control set to database

Pre-condition: A track, an event and a non-empty set of wind observations are loaded, where all

observations originate from the database.

Basic Path (fig. 8)

1. The scientist selects to save a set from the QCCiient application.

2. The system presents a panel informing whether a successful analysis has been performed or

not. In the case of a valid analysis, the user is able to choose whether or not to generate an

ATCF file.

3. The scientist did perform a successful analysis and chooses to generate an ATCF file for it

4. The scientist proceeds with database committal, which consists of:

a) Saving event information, such as event name and level of cyclone development.

b) Evaluating the status of each observation (passed, flag.ged, edited):

b.1) if it is a non-edited passed observation, its database id is associated to this QCSet.

b.2) if it is an edited observation, it must be first inserted in the database to obtain an id, and

then associate that id to this QCSet.

b.3) if it is a flagged observation, then its database id should be associated to the set of failed

observations of this QCSet.

In the case of edited and flagged observations, a reason is attached as to why they were modified

from the original observation.

c) Associating all track fixes with this set id. These fixes may have diverse origin:

c.1) If a fix originated from the database, then use that given id.

28

c.2) If a ,fix was manually entered by the scientist, then it must be first inserted into the

database to obtain a unique id.

c.3) If a fix was interpolated or extrapolated, then it is inserted as an edited fix of another fix,

since they can only be created based on other fixes. (Bear in mind, that the scientist is free to

create unlimited interpolations and extrapolations of already interpolated or extrapolated fixes.)

5. The database responds with a unique identification for this quality control set.

6. Store an analysis (see Use Case 5.6).

7. The client application informs scientist about the success or failure of this operation.

Inform whe1heran analysis
has been performed or no1
fortnisset

(cancel)

(failed)

(analysis exiS1s)

(No analysis exiS1s or failed)

enable op1bn to
genera1e ATCF file

(succ9SS}/use giVen se11d

Fig. 8 High-level activity diagram for storing a quality control set and potentially the analysis
associated with it

Post-<:ondition: A quality control set is stored in the database.

Alternative Path

- At step 2, the scientist can select to cancel the operation.

- At step 2 , if no analysis has been performed prior to storing a quality control set, then step 6

does not occur.

29

5.6 Store an analysis to database

Pre-condition: A quality control set has been stored in the database; therefore, the system knows

of its unique da.tabase id. The scientist performed a successful analysis.

Basic Path

1. The client application invokes the analysis remote distributed object to start a thread for

committing to database several components of analysis results: krdfi!e, enhanced amplitude file,

marine gridded field, and wind radii.

2. The client application invokes the analysis remote object to generate the corresponding ATCF

file, and publish it for the Joint Typhoon Weather Center (JTWC).

Post-condition: An analysis and derived products are stored in the database associated with the

corresponding quality control set

Alternative Path

-If no generation of ATCF was chosen, then step 2 does not take place.

5.7 Flight-level surface-adjustment based on eyewan tilt corrections

(designed by Jason Dunton and Mark Powell, HAD)

Pre-condition: At least one flight-level data platform (AirForce or NOAA aircraft) is included in the

quali1y control set and a track exists.

Basic Path

1. The system calculates the radius of maximum wind (RMW) at each relative quadrant of the

storm center with respect to the storm motion direction. In case a RMW could not be found in a

certain quadrant, apply the following rules:

I For no RMW foundln j Use RMW found ln-(preterredorder)--l
~--=-~.--:-~·----·------,---~-·---------------·------·--------·----;

l Front R1ght (F~}.---~----------+fJ:.~r:!..~Ls:!!:- . . i
t Front Left (Fl:) _________________ j_Bf.!!_fl. ~~--- . . ________ J
1 Rear Right (RR) ____ -------i.!:!!:!._f_~_f_l:_ _______________________________ _j
I Rear Left (RL} ! FA, Rl, RR l
'-------------------···-·-----·-··-----'-----·-···---·----~-----------------------------·

2. The system presents the 4 preliminary RMWs (nautical miles) and a default sea surface

temperature {Celsius degrees} to the user, who has the freedom to edit them.

30

3. Ttte;oser accepts parameters and continues.

4. For each passed flight-level observation with 650 < pressure < 1010 milibars:

·. a) create an edited observation associated to the original one, where the changes will take

place.

b) calculate the distance from its storm relative position to the storm center fix position.

c) calculate the ratio of this distance over the RMW obtained in this observation's relative

quadrant.

d) if the pressure is between 650 and 750mb and the ratio is < 2.0, then a mean boundary

layer wind is computed based on a specific polynomial function. In all cases, a comment is

set to indicate whether the eyewall tilt has been applied or not.

e) if the resulting mean boundary layer wind speed (boosted or not) is < 55 m/s, then surface

adjust it using HAD PBL program [1]; otherwise, an empirical derived adjustment of 0.85

based on GPS dropsonde data is applied to estimate the maximum 1-minute sustained wind

at the 10 meter level.

5. The canvas map is updated, by showing the edited version of these observations, and by

distinctly pinpointing those wind observations where the RMW per quadrant was found.

Post-condition: All evaluated flight-level observation wind speeds are surface adjusted. The

adjustment type is noted for that platform.

Alternative Path

- At step 3, user might decide to cancel the operation.

31

6. OBJECT..ORIENTED ANALYSIS

Gathering requirements and eliciting use cases is an intrinsic part of determining what the

system must do, the essential preoccupation of a project's analysis phase. In addition, there is

certain modeling involved to identify the classes that fundamentally belong to the application, as

well as to express their relationships. For the most part, the basic analysis and design of the

Quality Control prototype already provided a good infrastructure. The main classes and their

associations had been well identified and established, and were well organized in meaningful

packages in [11}. Based on the requirements, clearty this project involves a complex graphical

user interface, data structures holding consistent information over the life span of use cases (with

their natural applicable operations), and actions or processes to be performed in response to the

behavior and state of the two aforementioned elements. A good effort had been made to classify

the identified objects of this problem domain into objects responsible primarily with presentation,

persistent information, or behavior characteristics; a strategy that has continued and intensified

throughout this undertaking. Current trends in object-oriented software engineering, such as the

Model-View-Controller (MVC) pattern, signal this architecture to be conducive for creating

systems that are better prepared for potential changes, which I have found to be the engine that

decides where to split functionality.

A good problem analysis should define a stable, robust, and extensible structure, resilient to the

inevitable common and significant changes the overall system will be subject to on functionality

and user interfaces as time goes on. The key to stability is to maintain changes as local as

possible, affecting as few classes as possible. The heavy and extensive testing applied to the

prototype with real data revealed certain facts that were not contemplated originally, different

associations that more accurately described the problem domain, new classes that led to more

efficient shared functional implementation, and undoubtedly new operations. Even though there

have been widespread implementation modifications, they have not notably disturbed the overall

00 analysis, and yet they have proven the benefits of the principle of locality.

32

The complete final class diagrams of the Quality Control subsystem (Appendix A) are the

product of an evolution process of more than two years of several iterations of the development

life cycle.

Since the object-oriented analysis and design of the Quality Control subsystem has already

been comprehensively explained in [11], I will concentrate on the idiosyncrasy of the Analysis

subsystem in this thesis.

The job was divided in several sections. One entailed defining the most obvious classes, such

as the ones carrying the weight of holding analysis parameters, analysis results (KR file) and

analysis products (enhanced amplitudes, wind radii, ATCF, etc.). After a long time of scientists

being used to a hardcoded inflexible operational procedure, they were disengaged of the inner

workings of the FORTRAN programs. Bits and pieces were consolidated from a few

knowledgeable individuals (Fig. 9}.

In the case of ATCF issues, I was able to contact Charles Sampson [9], a major developer of the

system. In order to maintain good synchronization between the experts and myself, I have kept a

close approximation to their structural arrangement.

Another section was dedicated to define the Spline Analysis steps. Recalling, the code consists

of fiVe separate programs or sequential steps. From a behavioral point of view, clearly, each one

of them is considered a different class, but all of them share same functional phases: 1) setup, 2)

run, and 3) cleanup. Therefore, these steps and any other potential additional ones can be

grouped under an abstract parent class called 'AnalysisStep' {Fig. 10). The 'setup' phase is

intended for those actions involved in preparing the input files needed for the current step, the

'run' phase is responsible for the actuaJ execution, and the 'cleanup' phase manages deletion of

non-essential files generated during this step to deaccelerate storage space shortage.

33

5ellafzlable
I(IConltfeadef

'IVPaQUOIIIer
meehQuall'ler J
1IIEt
hlp lOg
t.ltoto
1111:::1
levelz

Selbl.!able
KRCoiiiMalh

'IVPaQual'ler J
mestiQualller
mesh constants
submeshConstonts
mesh Boundaries

AlCF

e~~em
'hack
whdRadl
moxtnum\\lh::l

UllqueDatabcrseld
5ellafzlable

, II

I NUMVAR - UJD IJ VID
PRESSURE 10
TEIIIHRATUREJO
RELHUMOITY 10
krConsHeoder
krConsMesh
men~pec

krAmpltudes
ic.l
UMc:oci'nt.rnW'kld
"r.t:Jxtnt.rnWhd
xMaxtmmWhd
yM:Dctnt.rnWhd

1 i'nporti(R ...!.
per mesh ... exporti(R l)ermesh

axportGrl::ldedflet:t

UniqueDatabmeld
SeNiaizable

EnhancedAmplludeSet

1::1
meeoecoi&Waxi'nt.rnwtld
meeoacaleRodkJsM::JXi'nt.rnWhd
enhancedMoxtnumWtnd
enhancedRodiusM::Ixtn~.mwtld
mergedMcxt'nt.rnWhd
melgedRodiUSM::td'nt.rnWhd
wndRodil34
wr.dRodiSO
wr.<:!Rodli64
wi1dRodiiJOO
spacing
n~.mberotRows

n~.mberOfCOUnns
xCoordilafes
yCoordlnc::lfes
easti.Dn
northl.o1
wi1dAmpltudes

tnportEnhanced

1

a.:
""

Fig. 9 Class diagram of analysis results and derived products

34

5ellafliable
Meapec

eYen'IDate
proJectbn
cen1'efROsltbn
reterencelalllude
GfOYilyAcceteralbn
atnosph~

5ellafzlable
lltRAmpllllde

nt.rnberOfRows
numberoteokmns
wl'ldAmplludes
pressureAmpltudes
temperatureAmpltudes
rel-luml::lilyAmpltudes

I

a:v
5elialzable

complex

reoPort
l'nelgnaryPart

1oSirilg
to&:obr

~

pan::JrTte'!er
tempofof'JDii'ac1oly

sen.op
CleatxJp

I ltJt>

OOAf

,l

I I I I I
8ogla Oc:opy P'leD9It lfe&lanal Kldcoele I

lblld I
setup ~

setup setup setup I bu1bound run
Inn bound run run run ' cleanup itbg cleorn.Jp cJeonup cteonup I

CloAl
i::Ornl

wtup
run
cleonup

'

I

Setbfiot>.l& S<#Jcmablt?

~· Nanill.ls:t

PROGRAM> OIRE£IORY WEAK
ARCHIVty. DIRECTORY SMAlL
STORMI'RAs;;K FILENAME IVEOIUM
WEIGHT FllENAIVE LARGE
VARIABLES fll.ENAM: EXPEm
BOGUS INPUT RLEWWE GENERIC
BOGUS OUTPUf RLENAJJE SURFACE l.!::-vEL
DCOP'f INFUr AlENMJE RADIANS
PRENEST INPUT AI.ENAJ\IE I'M PER ~REE

RAWDAl Fll.ENAM: 1 l ()E(OREE f!;R I<M
TERMNAl RI.ENAA'E SIO!mTrock
HEAOOEC FILENM.'I' ono~TVJ>es
PRENE~ lOG F"ILENANE oovo
Al..I.OAT FILENAI'AE dpm
NESllN FilENAME dprx
OBSFILE FII,&NAt{ii euodb
ISBOCO!;;i INPIJl fll.!i~ti Selbi:xlbi! dme10b
I<ROCQQ!i QY11'VT F)!.€ I>WJfi &ogusPolorneler lnoutX
MAAJNE §RIOO£Q FILENAME npu1V
ENHANCED FILENAI'AE RWIN DEFAULT Jpd
ANNOTATE INPUT FII.ENAM: RMAX DEF.AULT mahc
r.anelln DaTAR DEFAULT mnernooi::
bOgUSE'aiO'Tle1ef.Asloy OlHElA_OffAULT mx
mooe I I .. •

rr£1AD DEFAULT mzbdec
expoiUI& minR<:>c:!Us nbdex
crecrteeogus ~ nswt'l
1yp9 rodb~l

l'tJ(

mi"IF'ressure aztn>Jin.:::llrrteNol prefl(
doEnhoncement ~U11'l

radbmOX
spOev

iniJbtze slcmlNcrne
510rrnSm
U1CO
•.<llbdel<
>l"J'\tttl
)J'T\!$t'l

:.OX".A\
U'IJQI..If/Oolatxnek:1 XbcWI2
~oriclble ytx.""Wll

ybcwQ
dm~ ynosh
'1/SIS!OO ·ymsn
none ~

unl!l
i::l inlibl2aRunDcrlo

col::.ubfeRunDa1o
\oOolrtteToF'Ia

Fig. 10 Class diagram of analysis steps and related classes

35

A third section dealt with the different user interfaces in charge of capturing unambiguous valid

input for editing platform weights (WeightEditor'), loading a background field

('MarineGriddedFieldQueryWizard') and entering analysis parameters ('AnalysisWizard'), as well

as the drawing of the location of the spline analysis meshes based on the parameters

('AnalysisArtist', fig. 11).

The integration of these graphical interfaces into the Quality Control subsystem mainly

constituted the inheritance from an abstract class already present ('Artist', Wizard') or the

transformation of a class into a more generic one to accommodate the cohabitation of an existing

evident extension of it and a new arrival ('Inspector', superclass of WindObservationEditor' and

WeightEditor'). See Appendix A.

36

7 •. O.BJECT-ORIENTED DESIGN

This phase is· a refinement of the ·analysis, geared to get in touch with reality, to adapt to our

implementation environment. until it is straightforward to write source code from it. My

experience has been that there is a "gray" or "blurry" area during the transition from analysis to

design. One is easily tempted to start adding complexity to the analysis model, without

distinguishing that some changes are caused by a logical change in the system and others are a

consequence of the implementation environment. In a project influenced by notable factors such

as DBMS and object distribution, certain sections of the analysis model will remain rather abstract

and informal because decisions need to be postponed for the design. It is recommended to keep

an analysis view which reflects aU the work focused on capturing the essentials, and change it if

new logical relations arise among classes due to new properties, but we should stop when we

find ourselves changing it to adapt to the environment. The conceptual view of the analysis,

being far less complex, will assist in reasoning when to incorporate changes, always remaining

the basis of the design model, which is just one specialization, an approach for a certain

implementation {14}. Not precisely an exact science, but that is where gaining experience comes

into place.

The closer we work our way to the actual source code, the greater the diversion from the original

prototype.

7.1 Issues raised on the Quality Control subsystem

A. Spatial filtering

Even though the application is oriented to deal with one storm in a specific ocean basin,

parameters in observation queries to the database did not take into account this welcomed

constraining factor, and therefore, were inefficiently retrieving observations for all basins within

only date/time limits. This imposed unnecessary processing work on the quality control client

application, and caused user complaints due to poor response time. In collaboration with the

database specialist in our development team, the situation was corrected. Currently, we are in

37

the process of taking this concept a step further: two years of use have shown that scientists are

really only interested on a geographic area of around 10x10 degrees latitude centered on the

chosen storm track center position, for even greater tuning. The database is in the midst of a

significant upgrade; we hope to offer this spatial filtering capability for the 2003 hurricane season.

B. Duplicate data

Lack of checking for loading duplicate observations and storm track positions created incoherent

quality control sets for visualization and HSA purposes. Different causes could produce this

situation. To begin with, although the real-time data collection subsystem tries to go the extra mile

to prevent malformed or meaningless data from insertion in the database, duplicate bursts of data

are occasionally ingested. Another instance could occur when a user, free to load observations

as many times as desired, loads for a time and space frame previously chosen. It is imperative

that the user interaction flexibility should never compromise the consistency of the quality control

set; therefore, proper checking was added via verification with the method 'isSame(...)', which

percolates down to the most basic constituents.

C. Optimized searches

The original strategy of using hash tables as data structures was improved. They maintain

loaded observations classified per data platform description, per date/time combination, and per a

unique 5x5-degree world region based on their earth-relative and storm-relative positions. Each

table facilitated quicker searches or more targeted operations throughout the hundreds of

potential observations. Previous methods that inefficiently looped through the whole list of

observations were replaced with methods that exploited these tables. As a matter of fact, this

global list turned out to be totally unnecessary. Drawing observations really meant drawing

observations of those included platforms (thus. the method 'drawPiatform(...)' in class

WindObservationArtist); {un)flagging a group of observations on the canvas really meant

(un)flagging observations within a mouse-selected geographic area enclosing one or more of

these 5x5-degree regions (thus, the method 'getArealndexlist()' in class GlobaiArea). A nice

optimization will be to come up with hashtable keys denoting smaller regions, not only because

38

the user will be dealing with a more limited area of interest in the future, but also because practice

tells us group operations tend to affect smaller geographic sections.

D. Efficient lookup tables

A lookup table was added to keep information of all data platforms after the first database

ob~rvation query, searchable by platform description. This is useful to obtain access to the

detaull weights assigned to all platforms, so these values can be presented in the weight editor

dialog ,window (attribute 'aiiDatabasePiatforms' in class WindObservationSet).

Another lookup table was added to keep track of the observation station names given their

station database ids. Database observation queries return the station id where the observation

was taken, but the station name is really the meaningful piece of information to the scientist while

inspecting the collected field values of an observation ('stationTable' in class

HwindObservationSet).

E. Establish correct database storage

Regarding a storm track, two hash tables were added to manage the potentially multiple

interpolations and extrapolations a storm track fiX position could be subjected to. The key is the

causal storm fix position, with an associated value of the newly derived fix ('interpolatedFixTable'

and 'extrapolatedFixTable' in class 'Track'). These tables are especially crucial at the time of

properly storing a track in the database, whose schema was constructed to ensure these kinds of

derivation relationships are not lost. and are indeed traceable. Figure 12 shows the steps to

store a track to the database. Detailed, concise activity diagrams allow expressing a

deterministic problem in a finite state machine fashion, proving an invaluable tool for the

developer during implementation.

Regarding observations, figure 13 shows the steps to store passed and flagged observations to

the database, given the fact that edited observations may also be included.

39

~

"TT
<0"
.....
1\)

It fi x lnterpot
or tun rap olltt

~':~~~ ~~~t~~ra!:dc;n':~~!:~o~.~~d·n!~~~.t~~e;; ~~c~~ t

hu dstaba.st idt (/)
(t)

.D
c

~• fgt< beginn ing

~
(t)
::I

2
2.
(t)
<
(t)
::I
fii -0
(/)

0

(YH)/ Oet nut nit

flx 't:
pl•tform?

(Sclen(lstf

{i) T
Q) r ! t lw ' "'"

-0
a.
QJ -QJ
CT !error lnUrt lngf/QuU
D> op t rMion
(/)
(t)

[olu[

lfllc 1nurtedl

IS fi X
utr.,:~olat cd 7

[No[

edttcd fi x
h .. ldl

[Yos[/ grab o dl ~ed nx

fend of tr&c.k reachtd(Jgn nx
pri or to 1st non ·l nterpol«ed
or non- utrapolm:td fix

(trTOr lnn"lng)jqult
operllt lon

(error lnstrtlng)Jqu lt
ope~ ion

(Not all fl xu proccucd(Jget
next (he

lackward loop, at backward utrapol• lons
and lnttrpol•lons dtptnd on chronologlcaUy
older nus. which were .Jre.ciy procustd bot
above uthtity diagram .

s tlx
cxtrl&)ol•ed7

(beginning of track ruched)

fsuccusful)

{Not aH flxts procuud)/ott
previous flx

(""""~lldled
~·cpeoo!i:>n

Fig. 13 Sequence of events to store observations to database

F. Enhance observation inspector tool

This tool works by displaying individual information about a selected wind barb on the canvas.

Its prototype version had failed to consider the fairly common likelihood that multiple observations

could be located at the same geographic position over a typical time range (moored buoys, land

stations). In addition, in case an observation's wind speed or direction was modified, a more

efficient method was devised to repaint it without performing a total canvas redraw. Furthermore,

when the maximum wind observation per platform was either modified or flagged, a new

maximum wind (universal and per platform) was searched among the passed status

observations, always keeping paramount the correctness premise.

41

G. Changes in GeographyView

Added table to display all the world-wide current events (fig. 14}. The selection of one of these

events forces the creation of a new quality control set, since a new default track is automatically

formed with all the fixes associated to this event.

Fig. 14. Current geography panel

H. Changes affecting WindObservationView (fig. 15}

Added 'Scope' column to WindObservationView, to constrain the time window of a certain

platform. The 'Quantity' column gets adjusted accordingly.

Re-designed the algorithm to generate not so redundant platform colors.

Displayed the location, time and value of the maximum wind speed observation of all

included platforms.

With the advent of upper-level analyses, so came the necessity to offer the ability to restrict

drawing to observations within a certain pressure level range.

42

In real-time operations, it is highly desirable to obtain the latest observations and fixes up

until it leaves enough time to run an analysis. If there is less than a 6-hour difference

between the current UTC time and the latest arrival time among all observations, the two

methods for "Checking New Data• are enabled. The user can activate a 1 0-minute periodic

database query ("Auto"), or can perform a one-time query ("Now"). The system informs the

user while the query proceeds.

11/ 04 10:02 to 11/04/2001 11:44

Pressure between '-=-lo _ _ _JI and 199999 1 mb ~ load Obs ...

Fig. 15. Current observation panel

I. Changes in TrackView (fig. 16)

Added 'Source' , 'Pressure', 'Height' and 'Edited' columns.

Added an "Update Track" capability to let the user make all then necessary changes to the

track and inform the system when it wishes to update the map. Prior, any change detected in

the track resulted on an automatic observation check and map redrawing; somewhat

annoying and counterproductive.

43

In real-time operations, it is highly desirable to obtain the latest observations and fixes up

until it leaves enough time to run an analysis. If there is less than a 6-hour difference

between the current UTC time and the latest arrival time among all observations, the two

methods for ·checking New Data• are enabled. The user can activate a 1 0-minute periodic

database query ("Auto"), or can perform a one-time query ("Now"). The system informs the

user while the query proceeds.

_Pressure between t.::.lo __ _JI and !99999 l mb ~ Load Obs ...

Maximum Wind i lOS .54 kts at 21.0, -82 .4; 11:54z __] Check New Ob s: :J Auto Nowf

Fig. 15. Current observation panel

I. Changes in TrackView (fig. 16)

Added 'Source', 'Pressure', 'Height' and 'Edited' columns.

Added an "Update Track" capability to let the user make all then necessary changes to the

track and inform the system when it wishes to update the map. Prior, any change detected in

the track resulted on an automatic observation check and map redrawing; somewhat

annoying and counterproductive.

43

To better visualize the location of the begin, center and end fixes, fonts in those rows are

colored with green, blue and red, respectively.

..._I
Remove Fix

Fig. 16 Current track panel

J. Changes in Wizards

Users mentally tend to target their searches of tracks, fixes and quality control sets in terms of

ocean basin and year, which was hard to do with interfaces and database queries that offered a

growing list of items as years went on. A common graphical interaction panel and new queries

were designed to solve th is issue. A good example is to present the process of querying a track

(fig. 17).

Initially, the criterion for querying observations was per platform, but it was more intuitive to

query per exposure (marine or land) , and later by pressure range with the introduction of flight

level data (fig. 18}. Panels in WindObservationWizard were restructured . These new criteria had

the extra advantage of improving database query performance, since making one database call is

better than making multiple ones for answers of equal size.

44

~ user: ShQut:j

current tro::ll; be
reptxed?

~ ('(esJ

Select cemury (lies or& not Y.ZK
canptmf)

(OIQ

('(es)

(cancel)

Select I &Yenttrcm 0
chi'OOOt;Q::Oldescenarg illtd
even1s fora cencm ocean
bostl end year

(I event chosen)

(conceO

seect 1 tro::ktran o
chr~ldescendi'lgilltd

ttoci<S for 1t1a1 eowent

Process resulls; etnhale dupb::1es. 1reo1
edtted. hterpobted ord ex1lopotrted
f«es. sort f)ces il chr01101::Qeolc;-der, set
begnnng.center and end tia!s

(lttockchosell)

Que-r~ dcriObase for ol ft(es d
ti'Krttroclr

Ol!pt:Jy oltKeiS Will\ positbo, dole,
ttr.e, speed,diecll:lf1,soorce.
pressure. heqrt

Fig.17 Sequence of events to query a track from database

45

Sl!bctcenlUIY (flee are
nol Y2Kccmpt:lnl)

(OIQ

___ ...,.. ___ _.,

(concel)

~tolrn01)

(>'Old IOOQ!J)

selee1 exposure
(bnd orocaoni:)

(hvCJkl chOO:e)

(cone !!I. snp resull)

Per pres.~re level and exposure.
Ollpby crnoun1 « obseNati:ln$
revieved

!.Dod ex1Jo dab flcm
001ol>c:lsao D::l1bn I'IO'TI9$,

(bod acmes rron 001obale) pblfam we9't1.

oppl'f SIJJ'foe& o::l)urtnenl on
11;111-l!Nel Clab

mlbg 1o reooi:Ub1e everrt
rebw& pasffi:xls

c lear 1roCk-t>aled Odjurtnentson o l
ptlltCAmS

Dilpby resu!ls:
~Of\:P!liZad
per pb11t:l<m. SllOioll'lg
!me ra;ve. hOur ~e.

a noum. dfCIIII'ltl cotx

Fig.18 Sequence of events to query observations from database

46

(otxt.e sur!Qce)

Enter pl'lll!rure ronge

7.21ssues raised on the Analysis subsystem

A. Operating system

The FORTRAN legacy code is compiled for a Sun Microsystems Spare architecture machine,

with an operating system Solaris 6 or above.

B. . Choice of Java's Remote Method Invocation

The foremost needed task was to prove the feasibility of object distribution with legacy code.

Design is the phase for experimentation. The release of Java 2 Standard Development Kit (SDK)

introduced a new improved mechanism to remote object invocation via AMI, one in which an

instance of the server object did not have to run all the time; rather, its implementation could be

registered with an AMI daemon ('rmid') and its stub or remote reference with 'rmiregistry', AMI's

naming directory service. Amid provides a Java Virtual Machine (JVM) from which other JVM

instances can be spawned a on demandu. Figure 19 shows the consequence of this approach.

Remote
h1e<10ca

}ovo.l:lng.Ob)ec1
}rnla.•mi.-Vfii.Siteleton

~· ~JOIIefSlel

op8(CJ1bnS

~
ntertoceHosh

ccmm~troData~:x:ne
{lfKI6tateJUCF d8palch

t

[). 11

Elf RemoteS!ub
tml.Remcta Actlvo1abl9 I ~ stUb AnalyslsCorDoll f---. ~

gene-<01e
onoif$isf'o~anefer
ano~1

UID mameGn::ldedSe!
ennoncedSet SEHio~
resull!<:R I l ~
ternporoi)'Ott;ciOty

baSa
TCF serup

! fUll

Cleonup
ono)fza tklique0alobo181d
generoteProcluc1S

l I 5e<lobob19
IAII'I!eAn~!npU!fle KR
carml1l<l0::!1atx:Jse
gene!OteATCF
WlfleW~

I I

2 I
O~t ~ld

~tal::>aseld Se<lolzol:>ls
Sellolllable Enhancedt\ttlpltucteSet

~fVCIIlon5ef

Fig. 19 Class diagram of the analysis distributed object

47

To ragst8<' n!OimoTJ::ln obOul
1h& Anoly$8Confi'Cile;-ci:Z!I!I
w!lh rrnl:l ond rntegis11Y

The interface 'AnalysisControllertnterface' must extend Java's Remote interface and declare our

beloved operationS~ schedule an'~nalysls given the necessary parameters, store an analysis in

the database associated to the respective quality control set, and generate an ATCF file. The

class 'AnalysisController' implements this interface and must extend from Java's abstract class

'Activatable'. The registration job occurs in the 'AnalysisControllerSetup' program, which must be

executed every time the implementation is updated. A client finds a remote reference by looking

up a registry with a URL of the form rmi:/lhostname:port/ServiceName.

C. Code reuse

As a subsystem being integrated with another, code reuse is sought after. One of Java's AMI

notable advantages is the ability to pass objects as parameters across the network oust by

implementing Java's 'Serializable' interface); therefore, needless to say, the same classes that

make up a quality control set are the ones sent to the analysis server object Figure 20 depicts

the sequence of steps that occurs at each server object invocation.

In order to preserve CORBA's integration capabilities with other potential applications, the

analysis IDL interface relies on basic data types {byte, integer, boolean) as arguments to

operations, as shown below:

module AnalysisController {
interface Analysisinterface {

typedef sequence<octet> Data;

} :
} ;

void initialize(};
void setBogusinput(in Data input);
void setObservationinput(in Data input);
void setStormTrackinput(in Data input);
void setPrenestinput(in Data input);
void setWeightinput(in Data input);
boolean analyze();

D .. Database integration

Database storage is straightforward upon completion of the 00 analysis phase. The resulting

database schema supersedes that found in [10].

48

I I 1 I
I I I 1

· ·~
I I I 1

U: sel I I I

·u 1 I
I I

12 cam p!lNbll r*' I I

u I
!l.~Toxt I I

l) I
!.4:tat0~ I I

·u f
1.5. m!Evern I I

u I
1.6:se!Edi!ecl ~ I

y I
I I

w.!Up I I
I I I
l I I
l I I !ll!!!pOireciC! l1.l:C!eole!QOOcm~ : I

l I l
I I I
I I I !.)
I I I
I I I I

r I. I I I
l r I I
I I I I

'fiJ,.., l I I I

: I I I

: I I
HU exp:n '"f ' bill: I I

I y I I

l !!2. aq;>:tt~• t;,l'll;l I l

I I

LS.J. -N:::rnEUs~lO .. y I I

• ' I
I I 0 I

~\O!'IisV.'i'Q'I1fie!
I I

I I I
I I I

I I I I

0 1.6 6:'\la oJslepSJ /~ I I I

I T : I
! I I

I I I I

IIJI>-"!1o<oiP9psj/~!tt'P I '
I
I .

I I I l y I I I
I I I I
I I I I I

~~J:'$l
I I I I
I I I !
I l I I ~

IQ.L~!!l.!C!1Jll I I i I

I I I I I

l
I I I I I TI 1.'12::<ll"'l'11:l''I~~ I I l I

II
! ?3oo:r.w~~m : r I I "0

I : : : 'Q I I
I ! l I I
! I I I I

I
I ! I l I I I !

~ ~~ I I I I I l
i I ; I I I
I I I I I

I I I
liQ I ~ I I I I I -- .. Q I I

,J ! I I i !
I ! I l I

I I I I I !
! I I I I I

I I

u
Fig. 20 Event sequence diagram of the analysis process

49

E. Concurrency conflicts

The HSA nature of dealing with files posed a greater challenge: each analysis step expects to

act on equally named input files whose contents are tailored for each specific run, and these files

are expected to be located on the filesystem directory where the program responsible for a

certain step was initially executed. The danger of this situation is that two or more simultaneous

users scheduling an analysis would find themselves with unreliable adulterated output, due to a

blend of randomly overwritten input fifes, as each step takes an unpredictable amount of time of

completion. In the past, it was easy for the small pool of scientists at HAD to always ensure a

single processing environment But, undoubtedly, this situation is intolerable in a global

distributed context, where flexibility is a must. To solve this conflict, a random number generator

was employed as a means to name a temporary directory for each scheduled analysis., and force

it to be that analysis' execution environment throughout all steps. Even though it is extremely

unlikely that the number generator produces repeated output, in order to guarantee absolute

conflict avoidance, an existence directory check. is performed for each name generated. If it

exists, then the previously used directory is removed and recreated from scratch, thus allowing

proper analysis execution and safe results. This method guarantees unique products for multiple

users interacting with the Analysis engine at any given single time.

F. UnanticipateJ.tpr_g.Qierp_§

An unforeseen consequence of the legacy code (not fully documented) was the discovery that

data platform ids considered by HSA are deeply hardcoded into Prenest and Nestanal programs,

accepting a maximum of 24 platforms. where 2 are reserved (bogus points and background field).

One of the expected input files is called the 'weight file', which is simply a listing of several

columns, the most important being the one specifying a data platform id and another specifying

its weight (real number in the range of [0, 1]}. Initially, think.ing that as long as I complied with the

file format, the contents could be dynamic, I naively used the same platform id stored in the

database, which resulted in observations (bogus points and background field). One of the

expected input files is called the 'weight file', which is simply a listing of several columns, the two

50

thdSUmpottant being the one specifying a data platform id and another specifying its weight (real

number in the range of [0,1]). Initially, thinking that as long as I complied with the file format, the

contents could be dynamic. t naively used the same platform id stored in the database. which

resulted in observations of those platforms to be completely ignored or misinterpreted. The

database already contains data belonging to more than 22 platforms, and the number keeps

growing. Project resources were not available to allow an HAD scientist to modify the

cumbersome FORTRAN programs to accept diverse observation platforms. Therefore. the

solution was to establish a correspondence table of weights to observation platform ids, as shown

in following table.

weight maps
to td

1.0 1
0.95 2
0.9 3
0.85 4
0.8 5
0.75 6
0.7 7
0.65 8
0.6 9
0.55 10
0.5 11
0.45 12
0.4 13
0.35 14
0.3 20
0.25 21
0.2 22
0.15 23
0.1 24
0.05 25
0.025 26
-0 52

51

8. IMPLEMENTATION

Every single Java class of the original prototype has undergone thorough revision over a three

year period. With so many repair choices, I decided to attack in a prioritized order, giving urgency

to the most basic tasks, many of them intertwined in substance and chronology:

1. Establish reliable communication with the database (via Java Database Connectivity, JDBC)

for both insertion and querying of observations and storm track fix positions. This is

indispensable for real-time data collection.

2. Impose the extension of the Java class 'DefaultTabteModel' to control all editing

manipulations, for all tabular forms of input data in the graphical user i.nterface. This allowed

Instances of creating edited observations and storm track fixes to be recorded truthfully.

3. Provide a basic AnafysisWizard for scheduling an elementary (only surface wind) analysis of

a quality control set, without expert parameterization.

4. Enable storage of a quality control set (QC set) . Poor performance under JDBC required that

the database developer provide an equivalent implementation using SQLJ (SOL embedded

in Java), which tremendously reduced QC set storage the time from hours to minutes.

5. Convert all components of the graphical interface (buttons, checkboxes, panels. drop-down

lists, frames, etc.) into Swing components . a lightweight version of the window toolkit that

guarantees same look-and-feel regardless of the JVM being used. vital for global

deployment.

6. Apply the most complicated and flexible of Java's window manager layouts, GridBaglayout,

to all GUI window panels. Positions and sizes of all GUI components (which were

hardcoded) are now relative to the size of their container. the top one being relative to the

size of the monitor screen. Again , this neutralizes visualization issues in any environment.

7. Study the memory consumption of the application, which in my opinion, abused of excessive

object instantiation, when the same procedure could be accomplished by reusing existing

variables . A total of around 35MB spared.

52

8. Lower the resolution of the contour maps up to an acceptable level to accelerate their

drawing.

9. Evaluate scenarios in which a total canvas redrawing is not necessary, such as when

changing the color of a platform, or when editing one specific observation.

10. Incorporate the drawing symbols to distinguish, per platform, the observation with the highest

maximum wind speed (a triangle) and the observation with most recent arrival time (a

square). See figure 21. If any such observation happened to be flagged by the user, a new

one had to be found and drawn among the rest of passed observations.

.. -.

...:·.J -~·

~---i""
~

<i-'jl
~
il-111

11 . Expand AnalysisWizard to add panels to input analysis expert parameters, as indicated in

use case 5.3, including mesh drawing. The ease for selecting above-surface pressure levels

or non-wind types of analysis improves the efficiency of streamlining analysis procedures.

53

12: Enable multiple-observation inspection per unique geographic position.

13. Storage of analysis results in database via SOW.

14. Translate the Mean Boundary Layer model from C to Java, fundamental part of most

scientist-designed surface adjustment algorithms. Directly associated with this, implement

Dunion-Powell's flight-level surface adjustment algorithm. Notice in figure 21 the star-shaped

polygons indicating those observations of maximum wind speed per storm-relative quadrant

15. Add the possibility to store and load a quality control set containing a background field.

16. Along with the evolution of the Java Standard Development Kit (SDK), update source code to

latest official major release, 1.3.x. In particular, I took advantage of Java's own supported

sorting procedures instead of using original bubble-sort algorithm. The classes that

constitute the ordering key implement the 'Comparable' interface.

17. Take advantage of separate threads of execution whenever concurrent activities behooves.

For example, the user is able to continue fine-tuning data quality control while an analysis is

in progress or during a check for newly arrived data.

18. Pervasive error checking, corrections of logic and miscalculations.

An accomplished application without easy vast deployment capabilities could very likely fall in

the darkness. One of the top priorities of this project is to provide global application access.

Java Web Start, designed to launch full-featured applications from a Web browser, and provide

centralized s.oftware management, satisfies the requirement of Internet-wide deployment Users

only need to install once a Java Virtual Machine and Java Web Start, both available for all major

operating systems: Sun So!aris, Unux, Microsoft Windows, HP-UX, MacOs X.

If the resources are not present in the client or are in need of update, Java Web Start takes care

of transparently downloading all the necessary resources (archived in JAR files). Otherwise, the

application is launched immediately, by just clicking on an HTML link. The ftrsHime activation is

lengthy, but the benefits of availability of a highly interactive quality control client to weather

54

forecast agencies, wortd•wlde. outweigh the disadvantage of initially waiting several minutes to

download the most current version of the application.

By default, Java Web Start will run an application in a secure sandbox or restricted environment,

but H~ind needs access to local resources (disk and network), to perhaps load observations

from a file, connect to our database server (which is not the same host JAR files originate from),

or to invoke a remote object via AMI. Code signing is an important security feature of Java Web

Start. Digital code signing guarantees that JAR files have not been tampered with since they

were last signed. Java Web Start will not run an application if it detects a signature compromise;

thus, users can trust the application's source. Java 2 SDK includes a 1arsigner' tool to sign JAR

files. In addition, another advantage of Java Web Start is accommodation of firewall proxy

settings. since it is designed to work closely with HTTP traffic.

H*Wind's official launching pad resides in http://cat5.nhc.noaa.gov.

55

9• OBJECT-ORIENTED TESnNG

ExhaustiVe testing has been an integral part of this thesis, but it usually is the most conspicuous

loss on the material covered by technical literature, with just a brief mention. It is fair to say that

the authors' expertise serves a much better purpose focused on the more critical sections of

object-oriented analysis and design. But, I can certainly attest in favor of the premise that

granularity or modularity imposed by object orientation is indeed a major benefit of this

methodology. Furthermore, encapsulation serves an extra purpose of localizing and confining

runtime errors and exceptions, which helps maintain execution stability by not compromising

unaffected sections. Though possibly underrated, the consequences of these characteristics

greatly help a programmer's morale in solo mode during a lengthy project, by being able to

provide partial but effective working versions of the system with tangible evidence of progress.

I cannot stress enough the importance of testing with real scenarios and data starting at the very

early stages of the project, due to the exponential growth of intertwined sequences of execution

caused by the interaction between the user and the system. Object oriented testing should start

as soon as a few objects collaborate. Object message-driven interaction with its non-linear

unpredictable behavior clearly and simply demands fierce integration testing from the bottom-up.

Without the desire of diminishing 00 well-known advantages, there are several factors that can

complicate matters: separation of specification (interlace) and actual implementation, and

inheritance. Interfaces can be supported by multiple implementations, and subclasses can

operate in a different context by having inherited methods and attributes overriding the parent

definition. Testing yielded changes on certain inheritance relationships where the parent class

included too much specialization for some of its subclasses, and therefore, the actual

commonality needed to be streamlined. Testing revealed much optimization in terms of searches

and explosive memory allocation. In summary, the massive repetition of the software life cycle

proved successful, whether it affected all or a subset of the stages. Though I have not kept an

exact count, I estimate I must have perlormed over a hundred developmental iterations in the last

56

three yearsi of varying breadth and depth. Each one has been pivotal for continuous rational

refinement on subsequent ones.

The distributed nature of this system in four subsystems takes integration testing a step further,

in a more complex multi-threaded environment. Delaying serious thorough testing and

debugging to more advanced stages of implementation quickly reaches an unmanageable

situation in which much more time and resources would need to be devoted to achieve a given

level of reliability.

One of the best testing techniques was to follow the use cases extracted during the analysis

phase. Use cases provide a basic infrastructure. as a systematic pattern for a task that tends to

be approached randomly and superficially. Use cases explain exactly what should happen, pre

and post-conditions explain what the state should be before and after each main activity. They

are all an excellent source to check that indeed the user requirements have been met, almost in a

contractual form. Each use case can be considered a unit for the integration testing of all its

involved objects, as an independent branch ideally designed for the developer to concentrate on

its correctness by exhaustively attacking that single issue from many angles and preventing

unacceptable behavior (i.e. bugs). It is basically an exercise in tightening the rules of each

method in each activity to yield exact expectations under universal circumstances. Following this

strict policy will facilitate and encourage reuse of classes, which is another main objective of this

object-oriented project. As a result, since other use cases will undoubtedly depend on previously

tested units (even if only partially}, the amount of testing remains relatively constant but

progressively less in proportion to the growth of functionality.

Another ingredient for success has been the close relationship of collaboration between the

developer and a group of committed scientists (primary users), pursuing the realization of their

vision. User requirements were elicited with a great deal of detail and constant feedback was

received on improvements, errors, and help on setting priorities. The software has become a

much more robust, powerful, and diversified product with much more potential than originally

envisioned.

57

10~ SUMMARY AND FUTURE WORK

,"(;he transfonnation of H'Wind application is very much a reality at the Hurricane Research

Division, which has witnessed a series of distinct accomplishments with every release. The

application received the •eest Java Implementation" award from the High Performance

Computing antl Communications (HPCC) NOAATech 2000 conference, held in Silver Spring,

Maryland, in October 1999, and the "Best Technology Transfer to Operations" award at

NOAA Tech 2002, in October 2001. In 2001, this application was rated by the National Hurricane

Center as its highest priority research tool to be transferred to their forecast operations, and so

we are involved in a two-year transition effort. The feedback of hurricane specialists and

forecasters is being integrated in the application. Strong interest has been received from the

Central Pacific Hurricane Center and the Department of Defense Joint Typhoon Warning Center.

I can safely state decisions regarding adherence to a database, to object-orientation via Java,

and to distributed objects technology have proven very suitable for achieving the project goal.

The next frontier for H*Wind is to become compliant with the Java 2 Enterprise Edition (J2EE)

architecture. Currently, the quality control client is too •tat• for the Web, meaning it contains the

built-in logic to control user interaction, to perform requested algorithms and to access database

and remote objects. The client application is not a trivial size download, and users still suffer from

noticeable network performance degradation depending on the bandwidth and/or distance from

H*Wind's production database and analysis servers.

With the incorporation of a middle-tier application server, presentation, scientific logic, and

access to remote objects and data can be clearly separated into independent components. Thus,

the complex graphical user interface would be converted into a light-weight applet Oust for

mouse/keyboard handling), and the routing of user requests would take the form of Java servlets,

which would dispatch the actual processing to Enterprise Java Beans (EJB), responsible as well

for the access to remote objects and databases. The aim will be to follow the appropriate J2EE

design patterns. J2EE containers provide services and resources (transaction. security,

deployment, naming, distribution) that allow applications to be flexibly customized. Benefits of

58

tfliS;~apRJ'JJ~ct;vinclqde greater system performance. availability, scalability and manageability. All

tbat1cl!n1s need Is a web browser, resulting in a significant reduction of network traffic. One of

the tndst positive advantages is that the vast majority of code already proficiently tested can be

~~Etd· A potential outcome will be to make tropical cyclone observations and analysis

a(:C$Ssible to developing countries.

59

[1] Powell, M. D., 1980: •evaluations of diagnostic marine boundary-layer models applied to
hurricanes". Monthly Weather Review, vol. 108, no. 6, 757-766.

[2)Lortf, S. J. and J. L. Franklin, 1987: "The Environment of Hurricane Debby (1982). Part 1:
Wind$•. Monthly Weather Review, vol. 115, No. 11, 2760-2780.

[3] Ooyama, K. V., 1987: •Scare-Controlled Objective Analysis•. Monthly Weather Review, vol.
115, No. 10, 2479-2506.

[4)DeMarfa. M~. Aberson, S.D. and K. v. Ooyama, 1991: •A Nested Spectral Model for Hurricane
Track Forecasting•. Monthly Weather Review. vol. 120, No.8, 1628-1643.

[5l R. W. Burpee, S. D. Aberson, P. G. Black, M. DeMaria, J. l. Franklin, J. S. Griffin, S. H.
Houston, J. Kaplan, S. J. Lord,, F. D. Marks, Jr., M.D. Powell, and H. E. Willoughby, 1994: Real
time guidance provided by NOAA s Hurricane Research Division to forecasters during Emily of
1993. Bulletin of the American Meteorological Society, 75, 1765-1783.

[6] Powell, M. D. and S. H. Houston, 1996: •Hurricane Andrew's landfall in South Florida. Part II:
Surface Wind Fields and Potential Real-Time Applications•. Weather Forecast., 11, 329-349.

[7] M. D. Powell, S. H. Houston, L. R. Amat, and N. Morisseau-leroy: "The HAD Real-time
Hurricane Wind Analysis System". 8th US National Conference on Wind Engineering Conference
Proceedings, 1997.

[8] Franklin, J. L, 1994: "Documentation for the HAD Spline Analysis Programs Prenest and
Nestanar. Internal Document available from NOAA/AOMLIHRD, 4301 Rickenbacker Causeway,
Miami, FL 33149.

[9] Sampson, C. R., A. Schrader, "The Automated Tropical Cyclone Forecasting System (Version
3.2)", Bulletin of the American Meteorological Society, 81, 1231-1240.

[10] N. Morisseau-Leroy, "Atmospheric Observations, Analyses, and The World Wide Web Using
a Semantic Database", Master Thesis, School of Computer Sciences, Florida International
University, Miami, FL. 1997.

[11] Amat, Luis R. Jr., "A Realtime Internet Based Quality Control Application for Hurricane
Surface Winds", Master Thesis, School of Computer Sciences, Florida International University,
Miami, FL. 1998.

[12] E. Yourdon, "Object-Oriented Systems Design: An Integrated Approach", Prentice-Hall,
Englewood Cliffs, NJ, 1994.

[1~] R. Orfali, D. Harkey, J. Edwards, "The Essential Distributed Objects Survival Guide", John
Wiley & Sons, New York, 1996.

[14] I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard, "Object-Oriented Software
Engineering, A Use Case Driven Approach•, Addison-Wesley, 1996.

[15) Schneider, G., Winters, J. P., •Applying Use Cases: a Practical Guide", Addison-Wesley
ObJect Technology Series, 1998.

60

[16] Krutchen, P., "The Rational Unified Process: An Introduction", Addison-Wesley Object
Technology Series, 2nd edition, 2000.

[17} Fowler. M., uUML Distilled", Addison-Wesley Object Technology Series, 2nd edition, 2000.

[18] Muller, P., "Instant UML", Wrox Press Ltd., 1997

[19J Vinoski, S., "New Features for CORBA 3.0", Communications of the ACM, vol. 41, no. 10,
October 1998.

[20] Curtis, D., "Java, AMI and CORBA",
hUl):/lwww.omg.org/!lbrary!wpjava.html

[21 1 Abie, H., "CORBA Firewall Security: Increasing the Security of CORBA Applications",
http:/lwww Jfl.ulo.no/-abielfw.QQf, 2000

[22] "Java Web Start: Architecture",
http:l/www.java.sun.com/products/javawebstartlarchitecture.html, 2002

61

APPENDIX A

Class diagrams fundamental to the application.

62

----J I
I
!
!
I
l
I
i

I
I

I
I

I
I

I

r
I

I
I

!

63

5etlalzable 5etlalzable Glob<JLIUea
Mapl'odlon Globall'odlon

GLOBAL AREA
b11fude <J- FORI'#.T PE NW LON upperleffGbbof'csltbn
bngtude FORI'.MT PN NE LON bwei'R~tGbbof'osltbn

ATl.ANTlC I'ASIN
J l EASTERN PAClFlC I'ASIN con1ailSflositbn

CENTRAL PACIFIC I'ASIN "' make5quore
l .. • ~ WESTERN PACIFlC e.ASIN btlludeOffereoce

SOUTHERN PACIAC e.ASIN bngtudeOffereoce
INDIAN I'ASIN tKOvertbw

ge1Araalndex!.St ~

ols1anceTo JsSane

1 heodhgTo

I CIAMap
ge1Loflludeorterence
gett.ongtudeDfterence v.ort::l-'Nd ear eo

MAXMI'J'UNE
ge1Azi'nuth

source
reb1111eAztnuthQuooron1

globoiGroupLSt
mars::::lenSquore
reb1111eQuodront

bodM:lp
ge1Areolndex
ge18osh
1oSiri1g
JsSane

loodmort

TYPE UNKNOWN
TYPE W88D
TYPE ASOS Hosh1able
M'E SUOYCMAN landm<JrlcSet
TYPE ZIPCENT
UNKNOWN SIRiNG MAXLANDMARKUNE
W88D STRING source
ASOS STRING j .. ' 1 renderSto1eToble
SUOVCMAN SIRING
ZIPCENT STRING destroy
fVpe bodFrcmURL
bbel bodFrcmFJe
oesc~tbn bodDo1o

coun'!Fo(fype

Shapelile
Hosh1able

SHAPEF!LE lD ShapelleSet

VERSION 1.: 1
NULL rende~Sto1eToble
POINT
ARC destroy

POLYGON IOO<:lF rcmFJe

MJLTlPOJNT
UNDEFINED
manHeoaer
records
ncrne

hit

64

I
r--c::ltoe"""'~=,..,

UIB!
DA.TAl!A.'£
III!8!PO!A1lON
EXTR.A.POLA'IION --,..._
~

l'l~OOl
eomopol:l1buft>nel
--.ov
~---t

1---·~

Q>
~~
I:Xldllt10lR:In""-'"'
tx>a~l'<li'M>Ut

l
OATA!IASI;
ru
CEiituRv 20
CEKI\JRV Z I
QCid
rn&~el
eenuyROne!
fi!B<!'oiWI
1--.ei
c-an1UlV
......mWo
q:Wc
condb::leTo:x:Wact:>r

T«x~

IP ->Oll9Changad
~
~
tx>dll8C!.JIIIfanew
na:t!llJt1cnCli;1:90
t>oclalllonCt::kad
fnilt1!lu1>onCk:lood

I

I

I

CANCEl S!RING
,OIC Slli!NG
CQfQ.ayOul
CO J i I iOI wJ\lnef
~~ _,.,.,
boc:l<alllal
oonceamon
CICICI\::IIlel
lbiCo«1
I:JilCaiO
l!ldiCci"Cti:ln

Q> .-
-.none ~::ked
l>oddlrJ!b>Qekad
o::n:aam:>ncl:l<ea
tn~tcted
c.ble

~~

I= I '""*"ecn

65

I
I

~
0'-D NO'IIICE
£JG'I'I1T
~
rnooel't>l>el
~~
~lypefanoJI
~.._...ef'on<N

~
~
ou!e•Me•hPonel
m""*>ld'or>lll
~

l
qcSGlld
rle!!Qn<ll
~
IJ!Je<Moy
q::SGIAtloy
_,IAtlo'f
eandl:IO!eQCSei\Mit>Vec1:><

QCSe!Quer;Mo>'C!Oll:l
Q>,,
¥OIJeC!"Qtlgld
<Xll:lt1I'!H!o::cni>O
~
~
~
t>oc~
l'lwt-~1190

~
WfndObeeNOHonArtlst

tailedCobr
ra\NCobr
platfolmM::lxWhdTable
mostRacentOate
maxmumWind
most Length
sptg..ength
rea 1\fo/k:jfh
qcSet

draw
drawPbtfolm
redrawObseN01bn
tedrawf.lbXWhdObseNOtbnSymbol
drawl\lbxWhdObseN01bnSymbol
dra"Wfl.lbs1Racen10bseN01bnSymbol
drawQuodrantM::JxWindOt>seN<rlbnSymbOI
drawObsefvatbn

Artlft

DEFAULT SCALE FACTOR
wi:les!Stroke
wi:lestroke
reguJarStroke
artl!>tGioboiAreo
gaphl:S
CObr
t'ont
t'ontCobr
scaleFac"lor
xFac1of
yFac1or

draw

Trac kArt 1st

beglnFb<Cobr
centerFlxCobr
andFbcCobr
rea1Wi:11h

draw
drawBeglnfb<
draWCen1erfbc
drawEndFb<
drawFbc

t
CIAMapArtlst

la1LonCobr
latSpaclng
bnSpaclng

draw

AnatyslsMist

prevbusEastX
prevbusWes1X
prevbusNorthV
prevbusSouthV
currentNaneli!>t

draw
eraseJ\,1esh es
drawtVIesh

Shape1llaSetArtllt

poh1Wi:lth

draw
drawshapetlle
drawshape
areoContalnsShape

landmorkSetArllsl

draw
drawlandmark

I

reset

l ChoosertoglnDialog I

CANCEL STRING
OK STRING
okButton
concel3u11on
carmondPonel
con1er11f\:Jnel
eXiiCondl!bn

g:>
rese1
oclbnPertormed
ok8uttonCi:ked
conceBut1onCik:ked

trontleffT ex!Fek:l
trontR~fTextFI9k:l
reorleffTextFed
reo~Q11TextFet!
trontlefllobel
trontR~tlobel
reorlefllobel
reo~Qitlobel

key Pressed
keyTyped
key Released

PASSED CHOICE
· FAJLED CHOICE
ORIG INALOBS CHOICE
EDITEDOBS CHOICE
orgnoWJ'ld0bseN01bn
edltedW!OdObseNOtbn
theOb$ef\la'lbn
deleteQbseNO'Ibn
nspectedObseNo1bns
obseNatbnPoneiS
S'lcrtusCh<::X: e
editedChoCe
1!1Edi1oble
fa !Reoson
needToRepoint

mouseReleOsed
mousePressed
mouseCi:ked
mouseEn16fed
mouseExiled
oc1bnPertormed
refreshPonel
redrawObseNotbo
reset

67

wei;1lfPonel
pb1tolmW~1Arroy

g:>
retresnPanel

0\
00

WhdObservotbnSet
Dbl.ltts

HwlndObservotlon:Set

altered
renderSfoteToble
dotabaseDoteRonge
leos1Recen1EndilgTme
S'lcrtbnToble
bWerPressureLev el
upperPressureLevel

destroy
bOdFranDotobose
cx:idObservotbns
addObservatbn
bOdEX'tras
i"nportObservotbns
mportTrock
bOdObservotbnsFranDo'lobase
addedNeWObservotbns
bOdTrackfranDotobase
addEdltedObJect
clearEdltedObject
commltToDo'lobose
canmltObservatbnsToDotabase
canmltTraci<To001abase
badRanderS'Iotelable
flghtleve1Do1oExls1s
contahsBackgroundField
getCobfForPtrttomDescriptbn
setCobrForPbttormDescrlptbn
getlnclusbnOptbnForPbttormOescription
settnclusbnOptbnForPtrttormOescriptbn
getBeglnnlng001eForPb1tormOescrlptbn
se18egllnlrQ)ateForPbttormDescrlptbn
getEndingD:IteForPbtfoJmDescrlptbn I setEndlngDot&ForPbttormOescrtp1bn
getE1'fectlveslzeForPb1formDescription

Hoshtable
LandmorltSet

MAXLANDMARKLINE
source
renderStoteTable

des1roy
bOdFranURL
bOdFranFile
bOd Data
countForType

' '-'

Hashtable
Shape1lleSet j

randetS'IoTeTable

des1roy
badFranFie

t~terrace

Rendei'Statetoolwp

load
geteoloiFo(Key
setColot FotKey
getlnclusionOptlonFOI Key
setJnclusJonoptlonF01Key

~
I
I Vector

I l Hash'loble .1 I Color lab!&
....... ~ RendeiStatelabl& r- ·~..-

cobrTable

l theCobrs

bOd
getCobrForl(ey RendeiSk:lte
satCobrForKey 1 0 .. :

_L getlnclusbnOptbnForKey ... dlspbyCobr -,.. setlnckJsbnOptbnForKey lslncluded

t

Obllypelnto

beglnninQJate
endlngOate
effectlveSize

--- - - --~--

JPonel
!'aile VIew Jlcmle

I I
t:lble

c8l!Toble
~

~

I
llactVIew ~lew lardn<DVlew SlqleleVIew C1119111EYe11VIew

tnilu:leCotrnnld ilcLI!txlCoUnnld ilcUSbnCoUnnld ilcllsboColmnld crtbntt:Colmnld
~eCot.rnnld PlJ11'ormColrnnld ~(!eCot.rnnk:l ranec:ounnt,j 9051PocCoUnnld
da180:trnnk:! Q!!gll!ilvCoUnnld ~!l!!!'.tColrnnld Sho(!et~QeCot.rnnld centrafucColmnld
li'n&Colmnld ~eCoUnnld cobColmnld ShoQeCoun1Colmnld wes1PocCoUnnld
~eedColmnld ronoecounnJd cobColmnld 9:lU1hl'acColmnld
di"ec:1i:lnCoUnn cobCoi..mnld ndtltlCol.rnnld
a:JUK:ecdlnnid
(!reesureCct.rnnld
hetti1Colrnnld I .

slo1usColrnnld I
colmn/b'nes I
1ltlct I
!OUICeChOOief I

Noedifi"Q
moiled

TIOCUableModel

I
~~Yabn~

I
I<Dtncll~ Slqlelil&~

I I

i

I

~

used~eno l
---- - 10l>le ir edlloble

irCeE<libble
g;IColrnnCta
setvoi.JeA.l

69

	Florida International University
	FIU Digital Commons
	7-25-2002

	A real-time distributed analysis automation for hurricane surface wind observations
	Sonia Otero
	Recommended Citation

	001_FI15103037_4
	002_FI15103037_6
	003_FI15103037_8
	004_FI15103037_10
	005_FI15103037_12
	006_FI15103037_14
	007_FI15103037_16
	008_FI15103037_18
	009_FI15103037_20
	010_FI15103037_22
	011_FI15103037_24
	012_FI15103037_26
	013_FI15103037_28
	014_FI15103037_30
	015_FI15103037_32
	016_FI15103037_34
	017_FI15103037_36
	018_FI15103037_38
	019_FI15103037_40
	020_FI15103037_42
	021_FI15103037_44
	022_FI15103037_46
	023_FI15103037_48
	024_FI15103037_50
	025_FI15103037_52
	026_FI15103037_54
	027_FI15103037_56
	028_FI15103037_58
	029_FI15103037_60
	030_FI15103037_62
	031_FI15103037_64
	032_FI15103037_66
	033_FI15103037_68
	034_FI15103037_70
	035_FI15103037_72
	036_FI15103037_74
	037_FI15103037_76
	038_FI15103037_78
	039_FI15103037_80
	040_FI15103037_82
	041_FI15103037_84
	042_FI15103037_86
	043_FI15103037_88
	044_FI15103037_90
	045_FI15103037_92
	046_FI15103037_94
	047_FI15103037_96
	048_FI15103037_98
	049_FI15103037_100
	050_FI15103037_102.1
	051_FI15103037_102
	052_FI15103037_104
	053_FI15103037_106
	054_FI15103037_108
	055_FI15103037_110
	056_FI15103037_112
	057_FI15103037_114
	058_FI15103037_116
	059_FI15103037_118
	060_FI15103037_120
	061_FI15103037_122
	062_FI15103037_124
	063_FI15103037_126
	064_FI15103037_128
	065_FI15103037_130
	066_FI15103037_132
	067_FI15103037_134
	068_FI15103037_136
	069_FI15103037_138
	070_FI15103037_140
	071_FI15103037_142
	072_FI15103037_144
	073_FI15103037_146
	074_FI15103037_148
	075_FI15103037_150
	076_FI15103037_152
	077_FI15103037_154

