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ABSTRACT OF THE THESIS 

PALEOENVIRONMENTS, ORIGIN, AND RELATIVE MATURITY OF ORGANIC 

MATTER IN BARREMIAN-APTIAN LIMESTONES OF THE EASTERN PRADA 
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Miami, Florida 

Professor Florentin Maurrasse, Major Professor 

 This study is a multi-proxy analysis of a 30-m section of a Barremian-Aptian 

succession of interbedded, grayish black (N2) and black (N1) limestones from a quarry of 

the Sierra de Prada. Index taxa include planktic foraminifera Globigerinelloides blowi and 

Hedbergella sigali, which combined with δ13C data from Cresmina and Gorgo a Cerbara 

sections indicate a late Barremian to early Aptian age. The rocks are organic-rich with 0.67 

- 3.10 wt% total organic carbon (TOC). A marlstone interval (~1m) at 2.24 m has a low 

bioturbation index (1), TOC ~6.66 wt%, framboidal pyrite, and enrichment spikes of major, 

biolimiting, and redox-sensitive trace elements (Al, Si, Ti, P, Fe, and Mo, Cr, Cu, V, Th), 

indicating an anoxic episode. Biomarker analyses show a predominance of n-alkanes 

(≤nC20) at this level, suggesting an in situ origin of organic matter from phytoplankton. 

Pr/Phy ratios below 2 imply that organic matter did not reach overmaturity. 
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I. INTRODUCTION 

Mid-Cretaceous Global Conditions       

The Jurassic and Cretaceous Periods recorded numerous oceanic anoxic events 

(OAEs) (Schlanger and Jenkyns, 1976; Jenkyns, 1980) during a time of pronounced 

greenhouse conditions. Major paleoceanographic and tectonic changes, including the 

emplacement of Large Igneous Provinces (Larson, 1991; Stinton and Duncan, 1997; Kerr, 

1998; Larson and Erba, 1999) that developed in the latest Barremian - early Aptian (Ontong 

Java-Manihiki and Nova-Canton Trough) have been discussed as contributing factors to 

the strenuous conditions that preceded and prevailed during the prominent early Aptian 

Anoxic event 1a (OAE1a) (Erba, 2004; Li et al., 2008; Sanchez-Hernandez and Maurrasse, 

2014, 2016).  

During Cretaceous time a pulse of rapid sea floor spreading was accompanied by a 

volume increase of the mid-ocean ridge system (Hays and Pitman, 1973), leading to a 

major transgression of the sea over the low-lying coastal plains (Schlanger and Jenkyns, 

1976). This transgression resulted in the formation of 35 x 106 km2 new epicontinental seas 

less than 300 m deep in addition to the already existing 33 x 106 km2 between the 

Barremian-Aptian and Cenomanian-Turonian times (Fig. 1) (Schlanger and Jenkyns, 

1976). Under these climatic and hypsographic conditions, organic carbon production per 

year in the world oceans increased, and the amount of O2 renewal in bottom waters 

decreased, therefore enabling worldwide vertical and horizontal expansion of thick, 

widespread O2 minimum zones (Schlanger and Jenkyns, 1976).  

The development of restricted epicontinental seas and reduced ocean ventilation as 

a result of decreased oceanic circulation led to the stagnation of deep-water masses 
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(Bralower et al., 1994; Sanchez-Hernandez and Maurrasse, 2014) thus resulting in unique 

oxygen-depleted conditions that produced widespread distribution of organic-rich 

sediments.  

An extensive literature exists on the early Aptian Anoxic event 1a (OAE1a) event, 

but the paleoenvironmental transition between prevailing conditions in the latest Barremian 

to the early Aptian (Mutterlose and Böckel, 1998; Godet et al., 2008; Mutterlose et al., 

2009; Stein et al., 2011, 2012; Pauly et al., 2013, Sanchez-Hernandez and Maurrasse, 2014) 

remain to be further investigated. Hence, the mechanisms associated with this transition, 

including environmental and biological responses to changing conditions preceding 

OAE1a, are the subject of the present study. 

Project Objectives and Hypothesis 

Previous studies estimated the relative chronostratigraphic position of the 30 m 

section studied to be part of the Prada Formation, and falls approximately in the time 

interval of the latest Barremian, possibly the earliest Aptian (Berástegui et al., 1990; Caus 

et al., 1990; Bernaus, 1998; Garcia-Senz, 2002; Bernaus et al., 2003; Sanchez-Hernandez 

and Maurrasse, 2014, 2016; Socorro et al., 2017). Although that time interval does not 

include a known oceanic anoxic event in the Tethyan domain (Fig. 1), given the black color 

of the rock sequence, and based on former results from these studies (supra), I hypothesize 

that the semi-restricted Organyà Basin (Fig. 2) (Garcia-Senz, 2002; Sanchez-Hernandez 

and Maurrasse, 2014, 2016; Socorro et al., 2017) developed prevalent oxygen-deficient 

conditions that  produced black limestones locally with enhanced organic matter (OM) 

production and preservation prior to the onset of Oceanic Anoxic Event 1a (OAE1a).  
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The objective of this study is to use multiple proxies, including detailed 

petrographic analysis, total inorganic carbon (TIC), total organic carbon (TOC), stable 

isotopes, redox sensitive trace elements (RSTEs), and biomarkers to provide supporting 

evidence to characterize the sedimentological and geochemical record in the sequence at 

that time. The results will permit a better understanding of the temporal depositional 

evolution of this interval of the Organyà Basin deposits, and further shed light on the 

conditions preceding the Aptian Anoxic event 1a (OAE1a) in the basin. 
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II. STUDY AREA 

Geographic Location 

 The section studied (42°13′45.00″N, 1°19′38″E) is located on the southern flank of 

the easternmost area of the Sierra de Prada (Fig. 3) which consists of sediments 

accumulated in the Organyà Basin (Fig. 2) that is now exposed in the uppermost unit of 

the Bòixols Thrust Sheet (Berástegui et al., 1990; Caus et al., 1990; Bernaus et al., 2003; 

García-Senz, 2002; Sanchez-Hernandez and Maurrasse, 2014, 2016). 

  The studied section consists of 30 m thick grayish black (N2) and black (N1) 

(Goddard et al., 1963) limestones, which are accessible within an abandoned limestone 

quarry (Fig. 4) off the road leading to the municipal skydiving platform (Envol Organyá) 

on the south flank of the Sierra de Prada (Fig. 3) overlooking the Cabó River valley.  

Prada Formation 

Mey et al. (1968) formally described the Prada Formation which they named after 

the Sierra de Prada, a limestone mountain ridge west of the Segre River (Fig. 3) and consists 

of limestones of the Organyà Basin sediments (Berástegui et al., 1990; Caus et al., 1990; 

García-Senz, 2002; Bernaus, et al., 2003). The Prada Formation has been assigned an 

overall latest Barremian to early Aptian age, based on paleontological studies of 

ammonites, and benthic and planktic foraminifera (Peybernès and Souquet, 1973; 

Peybernès, 1976; Martínez, 1982; Caus et al., 1990; Berástegui et al., 1990; Bachmann and 

Willems, 1996; Bernaus et al., 2002, 2003). The Prada Formation underlies the organic-

rich Cabo Marls, or Cabo Formation (García-Senz, 2002), where previous studies of the El 

Pui section by Sanchez-Hernandez and Maurrasse, (2014, 2016) place the Early Aptian 
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Oceanic Anoxic Event OAE1a in the sequence of sediments  of the Organyà Basin (Garcia 

Senz, 2002; Sanchez-Hernandez and Maurrasse, 2016; Socorro et al., 2017).  

Approximately 4000 m of Lower Cretaceous marine sediments (Fig. 5) 

accumulated in a semi-restricted pull-apart basin that developed in the northern part of the 

Iberian Peninsula (Fig. 1) during extensional processes associated with the opening of the 

Bay of Biscay (Berástegui et al., 1990). The basin lasted about 38 million years: Upper 

Kimmeridgian to Albian, and compressional movements during the latest Cretaceous to 

middle Miocene caused emergence of the basin in one of the series of the Pyrenean fold-

and-thrust belt (Muñoz, 1991; Muñoz et al., 1992; Golonka, 2004). In the present geologic 

setting, the internal arrangement of the sedimentary sequence deposited in the Organyà 

Basin (Fig. 2) consists of an E–W asymmetric syncline (Santa Fe syncline) exhibiting 

various differences in thickness between the two flanks. The difference in thickness 

between the southern and northern limb of the basin is reported as a syn-depositional 

asymmetry (Bernaus et al., 2003). An E-W transversal section of the basin reveals an 

overall geometry possibly controlled by transverse or oblique basement faults (Berástegui 

et al., 1990; Bernaus et al., 2003).   

The Eastern Prada quarry section (Fig. 4) was selected because of its easy access, and 

potential to include strata between the uppermost Barremian and lower Aptian (Fig. 5).  

Regional Lithostratigraphy 

Previous studies of the sedimentary deposits of the Organyà Basin (Fig. 2) 

(Peybernès and Souquet, 1973; Peybernès, 1976; Caus et al., 1990; Berástegui et al., 1990; 

Garcia-Senz, 2002; Bernaus et al., 2003; Sanchez-Hernandez and Maurrasse, 2014; 2016) 

have shown that its stratigraphic evolution was largely controlled by the high rate of 
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accumulation coincident with high rate of subsidence modulated by eustatic fluctuations in 

sea level (Bernaus et al., 2003), hence about 1100 m of limestone and marlstone 

accumulated in approximately 5 Ma.  

The Prada sequence (Fig. 5) is reported to comprise a series of transgressive – 

regressive carbonates (Berástegui et al., 1990; Garcia-Senz, 2002; Bernaus, et al., 2003), 

including two main facies associations as follows:  

1)  Lower packstones to bioclastic-oolitic grainstones with beige-ochre to grey 

color composed of ooids, bivalves, echinoids, bryozoans, gastropods, serpulids, corals, 

benthic foraminifers (Bernaus, et al., 2003). Common internal structures are cross-laminae 

and cross-stratification: Hence, it has been interpreted as a deposit of a high energy shoal 

environment (Berástegui et al., 1990; Garcia-Senz, 2002; Bernaus, et al., 2003).   

 2) Upper dark grey mudstones to packstones with bioclasts that consist of 

Charophytes and Orbitolinids, including few ostracods, rare small thin-walled milliolids, 

bivalves, echinoids, benthic foraminifers, and annelids (Caus et al., 1990; Bernaus, et al., 

2003). As reported by Rosell and Llompart, 1982 three facies or packages can be noted 

from bottom to top:  distinct beds that are rich in agglutinated foraminifera while others 

that are rich in charophytes, barren mudstones, and lignitiferous marls at the top 

(Berástegui et al. 1990). These beds have been interpreted as deposits from lagoonal and 

shoal environments (Bernaus et al., 2003).  

Outcrop Description  

     The present study comprises a section of well-exposed, dark gray (N7) to grayish 

black (N2) and black (N1) (Goddard et al., 1963) micritic limestones and marlstone with 

beds varying in thickness from ~3 cm to 80 cm (Fig. 4). At the field scale, a horizon with 



 
  
 

7 
 

silicified lenses is observed at the 16.45 m level (Fig. 6). The homoclinal structure 

showing the beds dipping southward allowed to easily follow the superposition of the 

succession along the quarry cut approximately perpendicular to the fold axis. 
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III. METHODOLOGY 

Field Work 

     Field work was carried out for 6 days (24-30 November 2015) at the outcrops to 

systematically measure and sample different accessible beds with a sampling strategy of 

collecting 1 sample per ~ 50 cm interval. Given the overall thickness of sediments 

accumulated in the basin over a duration of 38 million years the dry bulk accumulation rate 

would fall around 10.52 cm/ky. Thus, the sampling interval is sufficiently close to provide 

data that will allow to further understand sedimentary characteristics, depositional signals, 

and conduct a high-resolution study (Fig. 4). Sixty-seven (67) samples were collected from 

a 30-m segment of the section in the eastern Prada Quarry.  

Petrographic Analysis 

     One thin section was made per sample for petrographic analysis, and eight (8) 

smear slides were made in less indurated beds in order to detect the presence of 

calcareous nannofossils in the fine matrix. Petrographic and microfacies analyses have 

been conducted on all samples with conventional transmitted and polarized light 

microscopy (Olympus BH-2 microscope). 

SEM and EDS Analyses 

SEM analyses were performed at Florida International University in the Florida 

Center for Analytical Electron Microscopy (FCAEM) using a JEOL JSM 5910LV 

scanning electron microscope with an EDAX energy dispersive spectroscope. Energy 

dispersive spectroscopy (EDS) was performed on four (4) samples to investigate the 

makeup of the rock matrix.  
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Sample preparation for the analyses included carbon coating to (150 Å) thickness, 

and processing in Compo mode under backscattered electron imaging detection (BSE). 

Areas of the slide targeted for investigation were first determined and inspected in 

secondary electron imaging (SEI), and later switched to backscatter (BSE) mode for 

qualitative elemental analysis. Specimens and bioclasts for SEM examination and imaging 

were coated using a Gold/Palladium target with purpose of reducing surface charging while 

improving conductivity.  

Total Carbon/Carbonate - TC, TOC, TIC  

 Weight percent total inorganic and organic carbon contents (percentages) were 

measured in 67 samples at Florida International University (FIU) by means of loss on 

ignition (LOI). All LOI analyses were carried out in a Barnstead Thermolyne® muffle 

furnace F62700 with digital temperature display and controlled by a microprocessor with 

a type K Chromel/Alumel Thermocouple®. Care was taken that no particles and humidity 

persisted in samples before weighing. Therefore, before any measurement was made empty 

crucibles were washed with Alconox® and rinsed with tap water, then submerged overnight 

in a 10% HCL solution and rinsed 4 times with deionized water. Afterwards, the empty 

crucibles were heated in the muffle oven for 1h at 560 °C and placed in a desiccator 

overnight. Wet sediment was oven-dried at 105 °C overnight and all samples were cooled 

to room temperature and immediately placed in a desiccator.  

The LOI method is based on sequential heating of the samples in a muffle furnace as 

proposed by Heiri et al., 1999. The powdered sediment sample (0.3g) was first oven-dried 

for ~18h to constant weight at around 105 °C; then organic matter was combusted in an 
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initial step to ash and carbon dioxide at a temperature of 550 °C for 2 hours. The LOI was 

then calculated using the following equation (1): 

(1)      LOI550 = ((DW105–DW550)/DW105)*100 

LOI550 represents LOI at 550 °C (as %), DW105 represents the dry weight (g) of the 

sample before combustion and DW550 the dry weight (g) of the sample after heating to 550 

°C. The weight loss should then be proportional to the amount of organic carbon contained 

in the sample (Dean, 1974). 

The second step entailed exposure at 950 °C for 2 hours, where carbon dioxide diffuses 

from calcium carbonate, leaving calcium oxide. The LOI was calculated using equation (2) 

as: 

(2)      LOI950 = ((DW550–DW950)/DW105)*100  

where LOI950 is the LOI at 950 °C (as a percentage), DW550 is the dry weight of the sample 

after combustion of organic matter at 550 °C, DW950 represents the dry weight of the 

sample after heating to 950 °C, and DW105 is the initial dry weight of the sample before the 

organic carbon combustion (all in grams).  

Assuming a weight of 44 g mol–1 for carbon dioxide and 100 g mol–1 for calcium 

carbonate (CaCO3) ratio (100/44 = 2.27), the weight loss by LOI at 950 °C multiplied by 

2.27 should then theoretically equal the weight of the calcium carbonate in the original 

sample (Bengtsson & Enell, 1986).  

For this study, LOI temperatures implemented were close to those proposed by 

Dean (1974) and Bengtsson & Enell (1986), i.e. 550 °C for organic matter and 950 °C for 

calcium carbonate as proposed by Heiri et al., 1999.  
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TIC/TOC are expressed as CaCO3 and C-wt% respectively of bulk sediment. TIC 

values are used to assign a lithologic classification based on the nomenclature adopted in 

our sedimentary laboratory (Gaona-Narvaez et al., 2013a, 2013b; Sanchez-Hernandez and 

Maurrasse, 2014, 2016, Socorro et al., 2017). Hence, the relative percentage of total 

measured CaCO3 (TIC) indicates: limestone, ≤65% CaCO3; marlstone, 30–60% (Sanchez-

Hernandez and Maurrasse, 2014). 

Biomarker Analysis  

      Biomarkers (n-alkanes) were analyzed from 28 samples following the analytical 

technique of our laboratory facility (Socorro et al., 2017), which is a modified version of 

the method used mainly onboard research drilling vessels of the International Ocean 

Discovery Program (IODP). Based on personal communications with Socorro (March 

2015) great care was taken to follow strict protocol of the modified procedures. The steps 

involved in lipid extraction and separation included first washing all glassware with tap 

water and soap, and then they were washed three times with deionized water. Lastly, they 

were placed in a Barnstead Thermolyne® muffle furnace F62700 for 2 h at 560 °C to ensure 

that all organic matter was removed.  

For the analysis, approximately one cubic centimeter of sample was oven dried 

overnight at 50oC, then grounded with a Bell-Art micromill to powder and homogenized 

later with a mortar and pestle. Five grams of homogenized powdered sample was used in 

a 12 dram vial that was sonicated twice for 30 min after including a 10 ml mixture of (1:9) 

methanol (MeOH)/dichloromethane (DCM). After the supernatant was removed it was 

allowed to rest in a 4 dram vial with activated copper that was used to remove undesired 

elemental sulfur. Continued step by step protocol as per Socorro et al., (2017) ensured that 
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the fraction containing the hydrocarbons (n-alkanes) was made available for GC/MS 

analysis At FIU’s Chemistry Department Laboratory by a GC (Agilent 6890) employing 

method 1506GE02.M. An Agilent 5973 single-quadrupole mass spectrometer was 

operated in positive mode for detection in a scan range from m/z 42 to m/z 500.  

Redox Sensitive Trace Elements  

Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) was 

used to determine concentrations of major and trace elements. ICP-MS analyses were 

performed at the Florida International University Forensic Center using an ELAN DRC II 

quadrupole (Perkin Elmer LAS, Shelton CT USA), in standard mode.  

Best ablation results, previously evaluated as the best precision and accuracy for 

reference standards were obtained using a depth profile ablation mode with a 200 μm spot 

size and 10 Hz with a 266 nm Nd–YAG laser (LSX 500, CETAC, USA) (Sanchez-

Hernandez and Maurrasse, 2014). As reported by these authors, for control samples, two 

sand blanks of previously known makeup were prepared using the same methodology and 

conditions as for the 31 samples. Blanks and standards were included at the beginning and 

end of the sample queue. Glitter software was used for data processing.  

Thirty-one (31) samples were analyzed for major and redox sensitive trace elements 

(RSTEs) using the methodology of Arroyo et al. (2009), and the procedures described in 

Sanchez-Hernandez and Maurrasse (2014). The samples analyzed were selected from areas 

of the beds with no visible evidence of weathering, and processed as described for TC 

preparation for this study. The present study used powdered samples weighted 1.0 g, 

included with a scandium solution (1000 ppm in 3% HNO3) as an internal standard. They 
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were dried overnight at 80 °C, homogenized with a ball-mill for 15 min, and a manual press 

was used to convert the samples into pellets. 

The study reports the concentrations of trace elements Ni, V, Cr, Cu, Mo, U, Th, 

and Co, major elements such as Al, Si and Ti, and biolimiting elements P, and Fe. 

Concentrations of these major, biolimiting and trace elements assist in the estimation of 

nutrient availability, intensity of terrestrial fluxes, and the extent of authigenic enrichment 

as a proxy for redox conditions (Wignall and Myers, 1988; Calvert and Pedersen, 1993; 

Morford and Emerson, 1999; Algeo and Maynard, 2004; Rimmer, 2004; Tribovillard et 

al., 2005). Relative temporal changes are compared to a background level taken as the 

average of all values in the studied section following the methodology of Stein et al., 

(2011). The terminology used to indicate relative oxygen-deficient conditions is after 

Tyson and Pearson (1991) as shown in the Table 1 below: 

 

Table 1. Recommended terminology for low oxygen regimes and the resulting biofacies in marine 
environments taken from Tyson and Pearson, 1991. 

 

Stable Isotopes of δ13Corg and δ15Norg  

       Carbon and nitrogen isotope analyses on the organic fraction of 67 samples were 

conducted at the Rosenstiel School of Marine and Atmospheric Science (RSMAS), 

University of Miami laboratory, on a Finnigan-MAT 251 IRMS. The large radius 

Oxygen
ml/l Facies Biofacies

Physiological
regime

Oxygenation regime
Environments

8.0-2.0
2.0-0.2

2.0-1.0
1.0-0.5
0.5-0.2
0.2-0.0

0.0  (H2S)

Oxic
Dyxoxic

moderate
severe
extreme

Suboxic

Anoxic

Aerobic
Dysaerobic

Quasi-anaerobic

Anaerobic

Normoxic
Hypoxic

Anoxic
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instrument is equipped with microsample inlet, 5 fixed collectors, and an automated sample 

inlet and multi-port with a Fairbanks automatic carbonate device with an upgraded Apple 

IIE computer system.  

The analytical technique uses 0.1-1.0 mg samples of powdered dry rock. The 

homogenized rock samples required initial dissolution of the inorganic carbon (CaCO3) in 

a 1M HCl solution. Isotopic data are corrected using the procedures of Craig (1957) 

modified for a triple collector mass spectrometer. Data are quoted relative to Vienna Pee 

Dee Belemnite (VPDB) according to the conventional notation. The analytical error is 

approximately 0.1‰.  

Carbon and nitrogen are essential elements for marine primary production 

(Marchitto, 2007), and during photosynthesis phytoplankton preferentially incorporates the 

lighter isotopes C12 and N14 by means of kinetic fractionation. Thus, increased productivity 

leads to δ13C and δ15N enrichments of their original pools (either regional or local 

depending on whether or not the basin is restricted or open). Hence, higher values of these 

isotopes provide useful insight into major biogeochemical processes in the 

paleoenvironments of the sedimentary basin that can be correlated on a regional scale (Hou 

et al., 2013). 

Differential fractionation between diverse photosynthesizers thus leave δ13C 

records that yield valuable understanding of temporal changes in paleoenvironmental 

conditions (e.g. Godet et al., 2006), the origin of organic matter (OM), the degree of 

primary productivity, and extent of organic carbon maturity. Because nitrogen is one of the 

limiting nutrients in the open ocean, δ15N records are used in determining the degree of 
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nitrate (NO3) utilization, which is employed as a paleoproductivity indicator (Altabet and 

Francois, 1994; Marchitto, 2007). 

In the present study, the chemostratigraphic record of stable carbon isotopes aids in 

establishing an approximate chronological position for my section by correlating with other 

Tethyan sections where the chemostratigraphic data is generally accepted (e.g., Godet et 

al., 2006; Menegatti et al., 1998). 
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IV. RESULTS  

Petrographic Analysis 

Thin section study of sixty-seven (67) samples of the 30-m section (Fig. 5) shows 

facies changes (Pl. 1) as follows: in the lower 4.16 m the sequence of organic-rich (<6.66% 

TOC) limestones reveals millimeter-scale laminated micrite with low bioturbation index 

(0-3) (Taylor and Goldring, 1993) and less than 20% allochems (Folk, 1962) that consist 

of minute, skeletal fragments from various organisms (Pl. 2. A, B, C, D, E). They consist 

of echinoderms, sponge spicules, ostracods, small bivalves, textularids (~200 µm) and 

miliolids benthic foraminifers (~100 µm), ammonite fragments, radiolarian (~100 µm), 

gastropods (~800 µm) and planktic foraminifers (~ 100 µm) (Pl. 3)  

The lower part of the section includes a black marlstone bed (~1m thick) with low 

bioturbation index (1), and allochems include planktic foraminifers of the G.blowi Zone 

(Figs. 5.B, 7) (Pl. 3. A, Pl. 4. F). Superjacent beds include allochems types and abundance 

that coarsen gradually up to 7.02 m of the section.  From the 11.18 m level upward facies 

change into a grayish black (N2) biomicritic limestone where calcified sponge spicules (Pl. 

5. F, Pl. 6. B, C) gradually become an important component of the bioclasts. This upper 

part of the studied section also includes radiolarian, small benthic foraminifers, planktic 

foraminifers, and echinoderm fragments (Pl. 3. B, Pl. 7. A, B, Pl. 8).   

Serpulid clusters (~ 500 µm - 1mm) (Pl. 8. C) are found intermittently within that 

interval at levels corresponding to the following samples: CC-15-43 (15.40 m); CC-15-46 

(16.96 m); CC-15-50 (18.68 m); CC-15-59 (23.69 m); CC-15-63 (27.08 m); CC-15-65 

(27.99 m).  
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Larger fragments of carbonized plant remains (~ 100µm -1mm) (Pl. 1. D, Pl. 6. A, 

Pl. 9. A, B, D) occur from the 16.45 m level where a zone of remarkable dispersive 

silicification also develops (Fig. 6). The carbonized plant materials persist among the 

biogenic constituents together with calcified sponge spicules throughout the upper 13.54 

m of the studied section (Pl. 5. F, Pl. 6. B, C).  

Starting at the 19.44 m level the uppermost part of the studied outcrop consists of 

a dark gray (N7) biomicritic limestone, moderately bioturbated (index 2-3), showing 

gradual upward coarsening (Pl. 1). Allochems include radiolarian, planktic foraminifers, 

sponge spicules, ostracods (~ 100µm), serpulids, and benthic foraminifers of the miliolid 

and textularid groups, and nondescript skeletal fragments (Pl. 6, Pl. 7, Pl. 8. A, B, C, D, E. 

Pl. 10. F). 

SEM and EDS Analyses 

 SEM imaging and smear slides (8) revealed predominance of mainly disaggregated 

nannoconid fragments and calcareous nannofossils as the main micro-carb (Fig. 8). 

Qualitative EDS analyses of four (4) samples of the Prada Quarry section CC-15-02, CC-

15-05, CC-15-12, and CC-15-18, indicate CaCO3 as predominant in the rock matrix with 

little contribution of siliciclastic material as shown in the elemental diagrams (Fig. 9). 

Photomicrographs of the areas where EDS was performed show fine micritic texture and 

isotropic distribution of grains (Fig. 9).  SEM secondary imaging revealed the presence of 

framboidal pyrite in sample CC-15-18, level 2.24 m (Pl. 9. F) and abundant quartz crystals 

in sample CC-15-42, level 14.60 m (Pl. 9. C). SEM imaging of samples CC-15-58, level 

23.29 m and CC-15-63, level 27.08 m, illustrates higher plant material in the uppermost 13 

m of the Prada Quarry section (Pl. 9. A, B, D).  
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Total Carbon/Carbonate - TC, TOC, TIC  

Total carbon (TC) content averages 92.48% throughout the whole sequence as seen 

in Appendix I, except in the interval between 1.75 m and 4.16 m in the black marlstone 

layer where it drops to 60.45% at 2.24 m. This value is in sharp contrast to the infrajacent 

level with 92.50% and the succeeding level with 94.01%. Likewise, total organic carbon 

(TOC) averages around 1.70 wt% throughout the whole sequence showing minor 

fluctuations, except at 2.24 m where it reaches a high of 6.66 wt% in the black marlstone 

layer (Fig. 10) compared to an average of 2.13 wt% below this level and 1.43 wt% above 

it.  TIC fluctuates between 99.13 wt% and 86.12 wt% with an average of 90.79 wt%, and 

it negatively correlates with TOC (R2 ~ -.83), generally following an inverse fluctuating 

correlation with TOC. As shown in Figure 10 and Appendix I, the highest TOC values 

occur within the lower 4.16 m of the section that includes the black marlstone layer.  

Noticeably there are two other smaller scale increases in the TOC, one reaching a 

high of 2.18 wt% at 17.98 m (sample CC-15-48) between the 16.96 m and 18.68 m interval 

where the average TOC is 1.24 wt% (Fig. 10). The second fluctuation occurs at 27.08 m 

with maximum value of 2.55 wt% coincident also with an increase in plant fragments. This 

TOC peak lies within the interval 26.42 m and 27.99 m where the average TOC  is 1.39 

wt% (Fig. 10). These two TOC peaks are inversely correlated with TIC with R2 ~ -.47 in 

the first, and R2 ~ -.89 in the second occurrence, respectively.   

Biomarkers Analysis 

Lipid biomarkers (n-alkanes) are used to determine provenance of organic matter 

(Giger et al., 1980; Meyers, 1997; Dumitrescu and Brassell, 2005; Peters et al., 2005, 
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Sanchez-Hernandez and Maurrasse, 2016). The analyses of 28 samples show a 

predominance of short chain n-alkanes (<nC20) in the lower part of the sequence (Fig. 11). 

The n-alkane chain lengths increase to ~ nC26 and higher above the black marlstone layer. 

At the 16.45 m-level contribution of nC20-nC30 coincides with the presence of 

carbonized plant remains which persist throughout the upper part of the studied Prada 

Quarry section (Fig. 11) (Pl. 1. D, Pl. 6. A, Pl. 9. A, B, D).  

Pristane/Phytane ratios show low values between 0.29 and 1.28, which are 

comparable to previously recorded results in the Organyà Basin (Sanchez-Hernandez & 

Maurrasse 2014; Socorro et al., 2017) (Fig. 2) (Appx. II).   

Redox Sensitive Trace Elements  

Concentrations of major, and trace elements are reported in parts per million (ppm) 

(Figs. 12-13) (Appx. III). A spike in values obtained for major, biolimiting, and RSTEs 

(Al, Si, Ti), (P, Fe), and (V, Cr, Cu, Mo, Th) occurs at 2.24 m in the black marlstone layer, 

within the interval between 1.75 m and 4.16 m (Figs. 12-13). That interval also shows 

prominent spikes for lithophile elements Al (maximum 57512 ppm) and Ti (maximum 

2561 ppm) which positively correlate (R2 ~ .99), and Si with a value of 126366 ppm or 

~126.3 ppt, (Fig. 12). However, silicon has its highest value at the 16.45 m level of the 

succession with 156805 ppm (Fig. 12) that coincides with the stratigraphic level of 

silicified lenses observed at the outcrop scale (Fig. 6).  

Maximum elemental values versus their background equivalent in the section 

yielded the following relationships: 12 times the background values for Al and Ti, and 6 

times the background values for Si. Iron also shows a strong correlation with Al, Ti, and 

Si which is R2 ~ 0.99, R2 ~ 1, and R2 ~ 0.64 respectively. At 2.24 m Fe also peaks with a 
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value of 26652 ppm, which is 11 times its background values. Although phosphorus does 

not correlate as well with Fe and the lithophile elements at the exact data point of 2.24 m,   

its second highest recorded value in the section is 126366 ppm at 2.65 m on top of the black 

marlstone layer (Fig. 12). The following elements: V, Cr, Ni, Cu, and Th also reach their 

highest values at the 2.24 m level (Fig. 13) (Appx. III), where they show good correlation 

with the lithophile elements and Fe. Similarly, at the same level V maximum value is 87.1 

ppm being 5 times more than the background value, Ni reaches 61.2, Cr 71.5, Cu 21.4, and 

Th 4.6 ppm respectively. Uranium highest values occur at two intervals:  4.5 ppm at the 

17.98 m level, and a maximum of 5.25 ppm at the 27.08 m level (Fig. 13). These peak 

values also correlate with all other trace elements as shown in Figures 12 and 13.  

  Lower U values within the first 4.88 m of the section show poor correlation (R2 ~ 

0.34) with bulk P, which can be used as a proxy for authigenic phosphate (Hoffman et al., 

1998; Algeo and Maynard, 2004), whilst in the last 15.64 m this correlation improves by 

approximately 64% between the two elements with a value of R2 ~ 0.53 (Fig. 14).   

Stable Isotopes of δ13Corg and δ15Norg 

Organic δ13C (Fig. 10) fluctuates throughout the 30 m-section studied, with an 

overall positive trend up section. The lowest value of -26.24‰ is recorded at 0.66 m to a 

high of -23.78‰, (~ 2.46‰ maximum increase) at 18.05 m. As shown in Figure 10, higher 

amplitude fluctuations occur towards the top of the section. There is a 1.44‰ δ13Corg shift 

between the 14.19 m and 19.29 m interval peaking at 18.05 m (Fig. 10). Another δ13Corg 

small positive inflection from -24.40‰ to -23.91 (0.50‰) occurs at the interval between 

25.53 m and 27.99 m peaking at 27.08 m.  



 
  
 

21 
 

The δ15Norg isotopic curve displays the same general positive trend toward the top 

of the section as does the carbon isotope curve. Its values range from 1.82‰ to 5.95‰ 

averaging 4.50‰. The lowest 3 m of the section show a range of low amplitude high-

frequency fluctuations non-concurrent with the high frequency oscillations of the δ13C 

(<1‰) and δ15Norg (<1.50‰) within the same interval (Fig. 10). From this interval, upward 

δ15Norg values approximately correlate positively (Fig. 10) with the δ13Corg profile. A sharp 

3.72‰ δ15Norg positive excursion develops from the 16.96 m level to the 18.68 m peaking 

at 17.98 m (Fig. 10) and 18.05 m concurrent with a positive shift of 1.44‰ δ13Corg. The 

highest δ15Norg value of 5.95‰ is found at the 27.08 m level, which also defines a sharp 

2.57‰ positive excursion correlative with a δ13Corg shift to -23.91‰ (Fig. 10). 
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V. DISCUSSION  

Relative Chronology  

The identification of Globigerinelloides blowi (Bolli, 1959), Hedbergella sigali 

(Moullade 1966) (Fig. 7) (Pl. 3. A, Pl. 4. F, Pl. 8. B), characteristic of the G. blowi Biozone 

in the studied section (Fig. 5) implies a biochronology between the latest Barremian and 

the early Aptian. However, because of the long range of the nominate taxon, and problems 

associated with the lack of the index species found elsewhere in sediments of the Organyà 

Basin (Sanchez-Hernandez et al., 2014), perhaps, a more definite approach to determine 

the relative geochronological position of the studied section can be done with the use of 

the δ13C data. In fact, as discussed in Sanchez-Hernandez and Maurrasse (2016) C-isotope 

signatures show a consistency and dependability despite modulation related to local or 

regional factors. Hence, the C-isotope patterns allow their use for chronologic correlation 

(e.g. Kuhnt et al., 2011; Li et al., 2016). Based on similar characteristic, the C-isotope curve 

of the studied section is here compared with sites elsewhere such as the shallow-water 

Cresmina section from the North Atlantic (Burla et al., 2008), and the pelagic Gorgo a 

Cerbara section (Stein et al., 2011) (Fig. 14).  

Three δ13Corg positive peaks can be correlated with peaks from these two sections 

in the Tethys and North Atlantic. The Cresmina section is chosen for this δ13C correlation 

as its carbon isotope curve exhibits a similar trend evident in the studied Prada Quarry 

section. Also, Burla et al., (2008) successfully correlated the coastal δ13C records of the 

Cresmina section to other Tethyan reference sections namely Cismon (Menegatti et al., 
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1998). Based on the correlation, they concluded that the upper part of the Cresmina section 

was deposited close in time and before the Early Aptian Oceanic Anoxic Event (OAE1A).  

The second site is the pelagic Gorgo a Cerbara section in central Italy (Stein et al., 

2011), in the Umbria Marche Basin, which is regarded as the OAE1a type locality (Pancost 

et al., 2004) and is proposed as a possible GSSP (Global Stratotype Section and Point) for 

the Barremian–Aptian boundary (Erba, 1996). This section also displays a δ13C trend that 

has been correlated (Stein et al., 2011) with the same Cismon reference section (Menegatti 

et al., 1998).     

Similarities in the patterns of the C-isotope curve of the studied Prada quarry 

section with these sections (Fig. 14) in the North Atlantic and Tethyan realm further 

permits to infer a relative chronological position between the late Barremian and the early 

Aptian. Segment boundaries are established by inflection patterns and/or changing 

gradients of the carbon isotope curve and have been determined in those parts of the curves 

that show distinct trends allowing approximate correlation (Fig. 14).  

The correlation strategy allowed for the identification of at least three positive 

peaks shared by the three sections.  The Prada Quarry correlative inflections are found at 

the 18.05 m, 21.49 m, and 27.08 m levels with -23.78‰, -24.50‰, and -24.91‰ δ13Corg 

values respectively. The Gorgo a Cerbara counterparts relative stratigraphic positions are 

found at the 17.98 m, 19.62 m, and 21.61m levels with isotopic values of -25.64‰, -24.9‰, 

and -24.8‰ respectively.  

The isotopic data within the stratigraphic intervals of the Prada Quarry section that 

include these positive inflections show moderate correlation (R2 ~ 0.5) with Gorgo a 

Cerbara’s values for the same proposed levels. Although there is a slight positive 
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divergence of ~ 1‰ δ13Corg from mean values of the Prada Quarry section (-24.61‰) as 

compared to (-25.88‰) of the Gorgo a Cerbara’s subsection, nonetheless both isotope 

curves display a similar pattern. Such differences may be explained by contribution of the 

organic matter from different origins (e.g. Sanchez-Hernandez and Maurrasse, 2016; 

Socorro and Maurrasse, 2017; and others herein). 

The length of the stratigraphic interval used for carbon isotope chronological 

correlation in the Prada Quarry is 9.43 m as compared to an equivalent 3.97 m in the Gorgo 

a Cerbara section. The difference stems from a sharp decrease in accumulation rate to 0.28 

cm.kyr-1 in the upper part of the Maiolica limestones at the onset of the Fucoidi marls (Fig. 

14) in the latter area (Speranza et al., 2005). In contrast, recent studies of the Organyà Basin 

at the El Pui section propose minimum accumulation rates of 5 to 7.5 cm.ky-1 (Sanchez-

Hernandez and Maurrasse, 2014).  

Based on these proposed rates, comparison of the correlated intervals for the C-

isotope curves chronology would imply that the 9.43 m Prada Quarry subsection  represents  

~ 125 kyr, while the Gorgo a Cerbara section  ~ 140 kyr. These values closely approximate 

coeval time of deposition compatible with the proposed chronological correlation based on 

δ13Corg values for these sections. 

Paleoenvironments / Lithofacies 

Microfacies showing low to moderate bioturbation (0-3 index) in biomicritic 

limestones with a mix of planktic foraminifers, abundant miliolids, textularids, serpulids, 

radiolarian and ammonite fragments, bivalves, and gastropods (Pl. 2, Pl. 5. B, C, D, Pl. 8, 

Pl. 9. E, Pl. 10. F) are interpreted as deep-platform facies in open marine setting below 
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storm-weather wave base. The presence of radiolarians (Pl. 5. B, D, Pl. 9. E) suggests some 

degree of upwelling developed in the basin.  

Facies change at the 11.18 m level (Pl. 1. C) where biomicritic limestones include 

calcified sponge spicules which become gradually more abundant together with small 

benthic foraminifers (Pl. 3. B, Pl. 7. A, Pl. 10. B), echinoderm fragments, and serpulids 

may also represent deep-platform facies under apparent low energy subsurface currents 

that sustained abundance of the filter feeders, and possibly upwelling as radiolarians are 

also found at this level. 

The 16.45 m interval (Pl. 1. D) is characterized by increased carbonized plant 

materials together with calcified sponge spicules throughout the rest of the sequence. The 

abundance of the sponge spicules provides an explanation for the provenance of 

remobilized silica in the horizon with silicified lenses (Fig. 6), which is also confirmed by 

major element data analysis, and low TIC (51.33 wt%) of sample CC-15-45 (Fig. 10, 12). 

The uppermost part of the studied section starting at the 19.44 m level with 

coarsening bioclasts (Pl. 1. E, F) and moderate bioturbation index (2-3), biomicritic 

limestone is interpreted also as a deep-platform environment of deposition with a faunal 

association including planktic foraminifers, small benthic foraminifers (textularids, 

miliolids), serpulids, radiolarians, and ammonite fragments (Pl. 6. E, F, Pl. 7. D, Pl. 8. C). 

Chemostratigraphy / Elemental Content 

Redox sensitive trace elements (RSTEs) in general are prone to be more soluble 

under oxidizing environments (Algeo and Maynard, 2004; Tribovillard et al. 2004, 2006; 

Stein et al., 2011). The mechanism of elemental uptake into the sediments in reducing 

conditions of oxygen deficiency between 2.0 to 0.2 ml/ l O2 and lower (see Table 1) is 
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partial to the formation of organo-metallic  ligands in humic acids, by surface adsorption 

(Tribovillard et al., 2004). Enrichment spikes of RSTEs (Mo, Cr, Cu, V, Th, U) shown in 

Figure 13 indicate recurrence of oxygen-deficient conditions, which is more pronounced  

between 1.75 m and 4.16 m (Fig. 12-13) (Appx. III) at the level of the black marlstone 

layer as compared to superjacent levels. RSTEs enrichment combined with the absence of 

benthic foraminifers at that level suggest an episode of stronger oxygen-deficient 

conditions surmised to be suboxic corroborated by the presence of pyrite framboids (Pl. 9. 

F). Furthermore, TOC content (<6.66 wt%), and higher Ni/Co value of ~2 1/2 times its 

background compared to the rest of the sequence lend credence to this assumption.    

Biomarkers  

The predominance of short chain n-alkanes (<nC20) in the studied section (Fig. 11) 

(Appx. IV) implies in situ origin of the OM from phytoplankton, and the increase of nC20-

nC26 before and after the onset of the black marlstone layer with diagnostic dysoxic/anoxic 

characteristics suggests a contribution from aquatic macrophytes (Ficken et al., 2000). 

Further contribution of nC20-nC30 from the 16.45 m level coincident with increased 

carbonized plant remains (Fig. 11) (Pl. 6. A, Pl. 9. A, B, D) indicates an increased origin 

of higher plant organic matter in the basin at that time.  

 The Pristane/Phytane ratios (Pr/Phy) (Appx. II) vary between 0.29 and 1.28, thus 

below the threshold level (>2.5), and since the n-alkanes are primarily from the basin, these 

values thus imply that OM did not reach an overmature state, confirming previous n-alkane 

results in the Organyà Basin (Sanchez-Hernandez & Maurrasse 2014; Socorro et al., 2017). 

The Pr/Phy values also bring additional evidence to severe oxygen-deficient conditions of 

deposition (Didyk et al., 1978), because such environments tend to preserve the C20 
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isoprenoid skeleton yielding low Pr/Phy ratios (Appx. II). Oxic conditions, on the other 

hand, cause greater degradation so that the C20 isoprenoid skeleton is less likely to remain 

intact in the sediment (Didyk et al., 1978). 
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VI. CONCLUSIONS 

The high resolution, multiproxy study of the 30-m section of the Sierra de Prada 

Quarry provides further detailed lithostratigraphic and geochemical data to improve our 

knowledge of the paleoecological conditions in the sedimentary sequence of the Organyà 

Basin exposed in the eastern Sierra de Prada Quarry. The results provide additional data to 

previous studies (Berástegui et al., 1990; Caus et al., 1990; García-Senz, 2002; Bernaus, et 

al., 2003; Sanchez-Hernandez and Maurrasse, 2014, 2015, 2016; Socorro et al., 2017. 

Index taxa include planktic foraminifera G.blowi, Hedbergella sigali, which 

combined with the δ13C data in comparison with two other sections (Cresmina and Gorgo 

a Cerbara) suggest a relative chronological level between the late Barremian and the early 

Aptian. The rocks are organic-rich (0.67 - 3.10 wt% TOC), and a single black marlstone 

layer (~1m thick) at 2.24 m which shows low bioturbation index (1), TOC up to 6.66 wt% 

coeval with framboidal pyrite, and enrichment spikes of RSTEs indicate a distinct 

dysoxic/anoxic episode within overall sustained oxygen-deficient conditions.   

Biomarker analyses show a predominance of n-alkanes (≤nC20) in the lower 4.16 

m of the section which suggest in situ origin of the OM from phytoplankton. The 

occurrence of ≤nC26 before and after the black marlstone layer reveals added contribution 

from aquatic macrophytes coincident with the onset of the anoxic/dysoxic episode. 

Contribution of ≤nC30 observed at the 16.45 m level coincides with higher concentration 

of carbonized higher plant remains.  Pr/Phy ratios below 2 (0.29 - 1.28), imply that OM 

did not reach overmaturity.  
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Sediments of the Eastern Prada Quarry section may be interpreted as hemipelagic 

marine deposits of the outer shelf environment during widespread development and 

accumulation of organic-rich sediments under greenhouse conditions. 

Recommendations for Future Research 
 

In order to further elucidate the overall paleoenvironmental conditions recorded in 

sediments of the Organyà Basin in the Eastern Sierra de Prada Quarry, a suite of three 

different proxies is proposed:  

1. - Bulk and clay mineral analyses by means of X-ray diffraction (XRD), to 

evaluate the mineralogical makeup of the rock matrix, and characterization of the detrital 

fraction. X-ray diffraction (XRD).  

2. - Rock Eval Pyrolysis can be employed to further evaluate the organic matter 

type, quantity and maturity and, the potential generation of hydrocarbon. The method will 

provide data on free hydrocarbons contained in the sample and the hydrocarbon- and 

oxygen-containing compounds (CO2) (Tissot and Welte, 1984).  

3. - Investigate the hopanoids biomarker group to evaluate the biotic sources of the 

organic matter, maturity, measures of its depositional environment, and mechanism of 

preservation (Forster et al., 2004). Hopanes are pentacyclic triterpenoids derived from cell 

membranes of prokaryotes (phototrophic cyanobacteria and also heterotrophic bacteria) 

(e.g., Ourisson et al., 1987; Ourisson and Rohmer, 1992).  

This biomarker group is distinguished by maturity-sensitive stereoisomers (Seifert 

and Moldowan, 1980; Forster et al., 2004). Thermal maturity results obtained from 

hopane’s maturity-sensitive isomers could then be correlated and corroborated with Tmax 
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results from Rock Eval Pyrolysis to confirm interpretation of the origin of organic matter 

in the Prada Quarry section. 
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FIGURES 
 

 

Figure 1. Paleogeographic reconstruction of the Tethyan realm during the mid-Cretaceous at ∼115 Ma. 
Asterisks mark location of Cresmina, Gorgo a Cerbara, and Prada Quarry sections. Map taken from Burla 

et al. (2008), originally from Masse et al. (2000). 
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Figure 2. Geological map of the Pyrenees including location of Organyà Basin. Modified after Vissers et 
al., (2016). 
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Figure 3. Sierra de Prada: south flank showing position of Prada Quarry. Quarry accessible off the road 
leading to the municipal skydiving platform (Envol Organyá) on the south flank of the Sierra de Prada 

overlooking the Cabó River valley. Google Earth images dated 31 Dec. 2008. 
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Figure 4. A) Field view of the upper 15 m of the eastern Prada Quarry section showing the beds dipping 
southward which allowed to easily follow the superposition of the succession along the quarry cut. B) View 

of sampling interval marked by orange tape shows nature of beds within lower 1m (sediment thickness). 
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Figure 5. A) Stratigraphic column of the lower Cretaceous of the Organyà Basin (modified from García-
Senz, 2002), as proposed by Sanchez-Hernandez and Maurrasse, (2014). B) Chronostratigraphic column of 

the 30 m studied at the Prada Quarry with lithologic characterization. Facies studied in the Prada Quarry 
section correspond to the mudstone classification of Dunham (1962). 
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Figure 6. Image of a silicified lens observed at the 16.45 m level stratigraphic level of the Prada Quarry 
section (CC-15-45). Hammer for scale (blue handle length 15 cm). 
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Figure 7. SEM images of two different specimens of Hedbergella sigali Moullade 1966 obtained from 
sample CC-15-18. Scale bar 100 microns where not specified. 
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Figure 8. SEM images obtained from thin section of sample CC-15-05 illustrate a significant contribution 
of disaggregated nannoconids fragments to the matrix. 
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Figure 9. SEM/EDS elemental diagrams of analyses performed on thin sections 
of the Prada Quarry section showing qualitative composition of red square areas of 

samples: (A) Sample CC-15-04. (B) Sample CC-15-05. (C) Sample CC-15-12 (D) Sample CC-15-18. The 
texture of the fine matrix and the isotropic distribution of grains are seen in micrographs on backscattered 

electron mode (BSE). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

A)   CC-15-04 B) CC-15-05

C) CC-15-12

D) CC-15-18

Element Wt% At%

  CK 17.64 42.02

 MgK 1.69 1.99

 SiK 4.46 4.54

 OsM 4.48 0.67

  SK 0.74 0.66

 CaK 69.07 49.3

 FeK 0.81 0.41

 BrK 1.09 0.39

Element Wt% At%

  CK 17.89 42.13

 MgK 1.48 1.72

 SiK 5.38 5.41

 OsM 3.46 0.51

  SK 0.46 0.4

 CaK 69.55 49.07

 FeK 0.76 0.38

 BrK 1.03 0.37

Element Wt% At%

  CK 26.3 53.6

 NaK 1.62 1.73

 MgK 2.13 2.15

 AlK 2.36 2.14

 SiK 5 4.36

  YL 3.76 1.04

  SK 1.36 1.04

 ClK 1.18 0.82

  KK 1.45 0.91

 CaK 50.35 30.75

 TiK 0.72 0.37

 CrK 0.63 0.3

 MnK 0.52 0.23

 FeK 0.73 0.32

 YbL 1.89 0.27

Element Wt% At%

 MgK 1.56 2.29

 BrL 0 0

 AlK 6.82 9.02

 SiK 18.89 23.99

  SK 3.3 3.67

  KK 1.19 1.08

 CaK 65.16 57.98

 FeK 3.08 1.97
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Figure 10. Chemostratigraphy of the Prada Quarry section showing temporal variations in: TIC, TOC, 
Carbon and Nitrogen isotope values. Light grey bands indicate positive correlation between TOC, Carbon 

and Nitrogen isotopes versus TIC. Red dashed lines representing background values are plotted for 
reference.  
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Figure 11. Lithostratigraphy of the Prada Quarry section and chromatographs of molecular biomarkers n-

alkane distribution measured in 3 samples corresponding to different levels. Compounds exhibiting carbon 
chain lengths >20 indicate OM from terrestrial origin incorporated to the basin. Compounds with lengths 

<20 indicate in situ origin of OM from phytoplankton. 
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Figure 12. Chemostratigraphic diagram including, major and biolimiting elements 
of the Prada Quarry section and their concentrations in ppm (Si in parts per thousand). Red dashed lines 

included show background levels. 
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Figure 13. Chemostratigraphic diagram including, redox-sensitive trace elements 
of the Prada Quarry section and their concentrations in ppm. Red dashed lines are plotted to indicate background levels. 
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Figure 14. Carbon isotope correlation based on data for three sections. From left to right Cresmina section from the North Atlantic (Burla et al., 2003); Prada 

Quarry section from the Organyà Basin (Tethys) (this study); and, Gorgo a Cerbara section (Tethys) (Stein et al., 2011). Asterisks (3) show common data 
points at positive shifts in the δ13C curves used for correlation. Segment boundaries (red dashed lines) are established by inflection patterns and/or changing 

gradients of the carbon isotope curve that show distinct trends allowing approximate correlation. 
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PLATES 
 
PLATE 1. Microphotographs of facies of the Prada Quarry section corresponding to 
different stratigraphic levels. 

A) Microphotograph of fine micritic matrix (mudstone) of sample CC-15-09 mag 

10X non-polarized scale bar 100 microns. Level 0.83 m. 

B) Microphotograph of fine micritic matrix of sample (mudstone) CC-15-21 mag 

10X non-polarized scale bar 100 microns. Level 4.88 m. 

C) Microphotograph of fine micritic matrix of sample (mudstone) CC-15-29 mag 

10X non-polarized scale bar 100 microns. Level 11.18 m. 

D) Microphotograph of biomicritic matrix of sample (wackestone) CC-15-45 mag 

10X non-polarized scale bar 100 microns. Level 16.45 m. 

E) Microphotograph of biomicritic matrix of sample (wackestone) CC-15-50 mag 

10X non-polarized scale bar 100 microns. Level 18.68 m. 

F) Microphotograph of biomicritic matrix of sample (wackestone) CC-15-64 mag 

10X non-polarized scale bar 100 microns. Level 27.16 m. 
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PLATE 1 
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PLATE 2. Microphotographs of slides CC-15-09 and CC-15-38. 

A) Shell debris from bivalves CC-15-09 10X scale bar 100 microns in fine micritic 

matrix. 

B) Gastropod in sample CC-15-09 4X scale bar 200 microns in fine micritic matrix. 

C) Bivalve shell debris in sample CC-15-09 4X scale bar 200 microns in fine micritic 

matrix. 

D) Bivalve shell debris in sample CC-15-09 4X scale bar 200 microns in fine micritic 

matrix. 

E) Gastropod in sample CC-15-09 4X scale bar 200 microns in fine micritic matrix. 

F) Bivalve shell fragment in sample CC-15-38 4X scale bar 200 microns in fine 

micritic matrix. 
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PLATE 2 
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PLATE 3. SEM images of benthic and planktic foraminifera obtained  
from sample CC-15-18. 

A)  SEM image of foraminifer Hedbergella sigali Moullade 1966. Scale bar 100   
microns where not specified. 

 
      B)  Arenobulimina sp. 

      C)  Neotrocholina sp?  

      D) Spirillina sp? Agglutinated specimen. 

      E) Miliolid foraminifer.  

      F) Benthic foraminifer.  
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PLATE 3 
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PLATE 4. SEM images of foraminifera obtained from sample CC-15-18. 
      A) Miliolid. 

      B) Neotrocholina sp. 

      C) Nezzazatinella sp  

      D) Lagenid.  

      E) Hedbergella sigali Moullade.  

      F) Hedbergella sigali Moullade.  
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PLATE 4 
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PLATE 5. SEM images of organisms and biogenic fragments obtained from sample CC-
15-18, CC-15-50, and CC-15-63. 

A) Uniserial benthic foraminifer. Specimen from sample CC-15-18 

B) Orbiculiforma sp? Radiolarian specimen from sample CC-15-63. 

C) Gastropod skeletal fragment sample CC-15-50 

D) Orbiculiforma sp? Radiolarian specimen from sample CC-15-63. 

E) Bioclast from sample CC-15-50. 

F) Calcified sponge spicule from sample CC-15-50. 
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PLATE 5 

 

 

 

 

 

 



 
  
 

63 
 

PLATE 6. Microphotographs of slides CC-15-49, CC-15-63, CC-15-64, and CC-15-65. 

A) Organic matter in the form of higher plant remains in sample CC-15-63 10X scale 
bar 100 microns. 
 

B) Calcified sponge spicule in sample CC-15-49 4X scale bar 200 microns. 

C) Calcified sponge spicules in sample CC-15-64 scale bar 200 microns. 

D) Ostracod in sample CC-15-65 10X scale bar 100 microns.  

E) Miliolid foraminifer. Sample CC-15-64 10X scale bar 100 microns. 

F) Miliolid foraminifer. Sample CC-15-64 10X scale bar 100 microns. 
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PLATE 6 
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PLATE 7. Microphotographs of slide CC-15-64. 

A) Glomospira sp Sample CC-15-64 10X scale bar 100 microns. 

B) Arenobulimina sp? Sample CC-15-64 10X scale bar 100 microns. 

C) Skeletal fragment of benthic organism in sample CC-15-64 10X scale bar 100 

microns. 

D) Triloculina sp? Sample CC-15-64 10X scale bar 100 microns. 

E) Spiroloculina sp? Sample CC-15-64 10X scale bar 100 microns. 

F) Benthic foraminifer. Sample CC-15-64 10X scale bar 100 microns. 
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PLATE 7 
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PLATE 8. Microphotographs of slides CC-15-12, CC-15-33, CC-15-39, CC-15-43, and 
CC-15-50. 

A) Benthic foraminifer in sample CC-15-43 4X scale bar 200 microns. 

B) Globigerinelloides blowi Bolli 1959 in sample CC-15-33 10X scale bar 100 

microns. 

C) Cluster of serpulid worm tubes in sample CC-15-50 10X scale bar 200 microns. 

D) Foraminifer in sample CC-15-39 4X scale bar 200 microns. 

E) Foraminifer in sample CC-15-39 scale bar 200 microns. 

F) Ostracod fragment in sample CC-15-12 10X scale bar 100 microns. 
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PLATE 8 
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PLATE 9. SEM images of specimens, biogenic and non-biogenic fragments CC-15-18, 
CC-15-42, CC-15-58, and CC-15-63. 
      A) Higher plant material from sample CC-15-63. 

      B) Higher plant material from sample CC-15-58 

      C) Quartz crystal from sample CC-15-42 

      D)  Higher plant material from sample CC-15-58 

      E) Spumellarian radiolarian from sample CC-15-18. 

      F) Framboidal pyrite from sample CC-15-18.   
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PLATE 9 
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PLATE 10. Microphotographs of slides CC-15-03, CC-15-05, and CC-15-50. 

A) Benthic foraminifer in sample CC-15-03 10X scale bar 100 microns. 

B) Glomospira sp? Sample CC-15-05 10X scale bar 100 microns. 

C) Bitumen filled vug in sample CC-15-05 10X scale bar 100 microns. 

D) Unidentified fragments (roveacrinid?) in sample CC-15-05 scale bar 100 microns. 
 

E) Bioclast (microbial accumulation?) in sample CC-15-05 scale bar 100 microns. 

F) Ammonite fragment in sample CC-15-50 4X scale bar 200 microns. 
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PLATE 10 
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APPENDICES 

APPENDIX I. Table reporting values for δ13Corg, δ15Norg, TOC, TIC, and TC from 
analyzed samples of the Eastern Prada Quarry section and their corresponding 
stratigraphic levels.  
 

Sample ID  Height (m) δ13C (‰) δ15N (‰) TOC (wt%) TIC (wt%) TC (%) 

CC-15-66 28.11 -24.82 4.46 0.84 94.27 95.11 

CC-15-65 27.99 -24.59 3.38 1.04 94.66 95.70 

CC-15-64 27.17 -24.45 5.29 1.04 93.53 94.56 

CC-15-63 27.08 -23.91 5.95 2.55 90.94 93.49 

CC-15-62 26.42 -24.40 4.88 0.94 96.12 97.06 

CC-15-61 25.53 -24.25 3.89 0.64 95.60 96.23 

CC-15-60 24.59 -24.35 5.05 1.04 99.13 100.17 

CC-15-59 23.69 -24.62 4.91 1.81 92.56 94.36 

CC-15-58 23.29 -25.47 4.34 1.17 92.21 93.38 

CC-15-57 22.22 -24.94 3.65 1.44 96.20 97.65 

CC-15-56 21.49 -24.51 4.58 1.00 95.12 96.12 

CC-15-55 20.59 -25.17 5.30 1.37 89.05 90.42 

CC-15-54 19.82 -25.05 5.00 1.31 89.86 91.17 

CC-15-53 19.44 -24.23 4.98 2.24 91.01 93.25 

CC-15-52 19.29 -25.35 5.30 1.54 93.45 94.99 

CC-15-51 19.05 -24.17 4.72 0.90 95.54 96.45 

CC-15-50 18.68 -24.08 2.30 0.63 86.60 87.24 

CC-15-49 18.05 -23.78 5.17 1.20 95.51 96.72 

CC-15-48 17.98 -23.94 5.54 2.18 91.87 94.05 

CC-15-47 17.34 -24.37 4.09 1.51 98.70 100.22 

CC-15-46 16.96 -24.57 1.82 0.67 90.73 91.40 

CC-15-45 16.45 -24.74 2.58 1.10 51.33 52.43 

CC-15-44 15.90 -24.70 4.11 1.17 94.40 95.57 

CC-15-43 15.40 -24.93 4.38 1.04 96.12 97.16 

CC-15-42 14.60 -24.68 4.12 1.04 95.76 96.80 

CC-15-41 14.54 -25.00 4.12 1.61 93.26 94.87 

CC-15-40 14.36 -25.14 4.26 1.17 95.40 96.57 

CC-15-39 14.23 -25.04 4.44 1.74 93.91 95.65 

CC-15-38 14.19 -25.22 3.78 1.77 94.93 96.70 

CC-15-37 13.29 -24.87 3.46 1.14 97.00 98.14 

CC-15-36 12.54 -24.61 3.42 1.34 94.83 96.17 

CC-15-35 12.39 -24.82 4.49 1.76 90.04 91.80 

CC-15-34 12.12 -24.75 4.33 1.30 89.26 90.56 

CC-15-33 11.86 -24.80 4.62 1.23 89.19 90.42 

CC-15-32 11.76 -24.18 4.53 1.53 89.07 90.60 

CC-15-31 11.60 -24.65 4.74 2.04 90.53 92.57 

CC-15-30 11.40 -24.18 4.19 2.24 90.25 92.48 

CC-15-29 11.18 -24.56 4.33 1.37 92.52 93.89 

CC-15-28 11.01 -24.70 4.95 1.70 92.42 94.12 

CC-15-27 10.82 -25.10 4.65 1.47 92.86 94.33 

CC-15-26 10.61 -24.92 4.29 1.17 92.80 93.97 

CC-15-25 10.41 -24.59 4.18 1.44 91.32 92.76 

CC-15-24 10.22 -24.93 3.24 1.57 90.11 91.68 

CC-15-23 8.42 -24.51 4.49 1.60 89.66 91.26 

CC-15-22 6.02 -24.95 3.36 1.90 86.77 88.67 

CC-15-21 4.89 -25.42 4.41 1.67 91.60 93.27 

CC-15-20 4.16 -26.13 4.82 2.43 87.27 89.71 

CC-15-19 3.04 -25.71 3.94 1.73 87.27 89.01 

CC-15-18 2.24 -25.69 4.53 6.66 53.79 60.45 

CC-15-17 2.04 -25.65 3.68 1.47 92.87 94.34 

CC-15-16 1.84 -25.81 4.71 2.30 90.76 93.06 

CC-15-15 1.75 -26.07 4.61 2.00 90.25 92.25 

CC-15-14 1.62 -25.88 3.87 2.21 90.58 92.79 

CC-15-13 1.30 -26.18 4.50 2.27 89.38 91.65 
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CC-15-12 1.16 -25.76 4.08 1.84 90.15 91.99 

CC-15-11 1.10 -26.01 4.09 1.90 91.82 93.73 

CC-15-10 0.95 -25.95 3.60 1.30 93.10 94.40 

CC-15-9 0.83 -25.92 3.75 1.17 92.61 93.78 

CC-15-8 0.66 -26.24 4.24 1.86 91.28 93.14 

CC-15-7 0.56 -26.04 4.20 2.27 90.98 93.24 

CC-15-6 0.49 -25.66 3.21 2.50 89.87 92.37 

CC-15-5 0.42 -25.57 3.73 2.59 88.33 90.92 

CC-15-4 0.37 -25.72 4.70 2.40 89.43 91.83 

CC-15-3 0.28 -25.81 3.06 2.46 90.10 92.56 

CC-15-2 0.07 -25.80 4.00 2.47 89.37 91.83 

CC-15-1 0.04 -25.53 4.62 3.10 86.12 89.22 

CC-15-0 0.00 -25.51 5.04 2.24 89.60 91.85 
 Average -25.04 4.14 1.69 90.79 92.48 
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APPENDIX II. Table reporting Pristane/Phytane ratios from biomarker analysis (18) 
samples. Pristane and Phytane determined from gas chromatograms. 
 
 

Sample ID   Height (m) Pr Phy Pr/Phy 

CC-15-65 27.99 0.38 1.32 0.29 

CC-15-64 27.17 0.91 0.72 1.26 

CC-15-63 27.08 1.02 1.04 0.98 

CC-15-62 26.42 0.46 0.82 0.56 

CC-15-52 19.29 0.66 1.59 0.42 

CC-15-51 19.05 0.44 0.66 0.67 

CC-15-49 18.05 0.39 1.26 0.31 

CC-15-48 17.98 0.53 1.06 0.50 

CC-15-35 12.39 0.68 0.78 0.87 

CC-15-18 2.24 1.36 1.06 1.28 

CC-15-16 1.84 0.8 0.46 1.74 

CC-15-15 1.75 0.24 0.64 0.38 

CC-15-11 1.10 0.34 0.21 1.62 

CC-15-10 0.95 0.44 0.64 0.69 

CC-15-09 0.83 0.22 0.47 0.47 

CC-15-08 0.66 0.51 0.82 0.62 

CC-15-03 0.28 2.16 1.49 1.45 

CC-15-01 0.04 0.66 0.9 0.73 
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APPENDIX III. Table reporting values for major, biolimiting and RSTE’s, Ni/Co ratios 
with their corresponding stratigraphic levels of the Prada Quarry section. 

 
 

Element 

Concentrations 

in (ppm) 

Sample ID Height (m) Al Si P Ti V Cr Fe Co Ni Cu Mo Th U Ni/Co 

CC-15-65 27.99 427 6489 55.8 19.3 9.2 15.2 273.5 1.2 21.9 1.5 2.2 0.0 1.2 18.7 

CC-15-63 27.08 3436 13036 63.4 173.1 30.5 18.7 1881.2 0.5 27.7 4.5 7.6 0.4 5.3 54.2 

CC-15-61 25.53 179 3493 23.7 8.7 3.6 8.9 148.5 0.8 12.9 0.9 1.2 0.0 0.6 16.4 

CC-15-60 24.59 526 4743 31.4 20.5 7.9 8.2 215.5 0.8 4.8 0.8 0.6 0.0 1.2 6.0 

CC-15-58 23.29 439 9160 41.1 20.5 6.0 10.4 258.3 2.2 8.4 1.2 0.6 0.1 0.9 3.7 

CC-15-57 22.22 204 1857 31.7 16.9 5.2 8.9 202.9 0.7 9.6 1.4 0.9 0.0 1.1 12.9 

CC-15-56 21.49 567 8519 48.9 24.7 5.0 11.1 267.6 1.5 10.4 0.9 0.9 0.1 0.7 7.1 

CC-15-52 19.29 2258 9924 77.6 94.1 19.8 11.9 948.0 1.3 9.7 1.8 2.4 0.2 1.5 7.4 

CC-15-51 19.05 578 6103 33.0 19.2 12.5 10.9 256.2 1.6 10.0 0.9 1.5 0.0 1.3 6.3 

CC-15-48 17.98 1891 7734 53.1 97.8 20.6 14.3 1234.3 1.5 15.9 3.8 5.7 0.3 4.5 10.9 

CC-15-47 17.34 292 4168 26.7 13.5 5.2 8.8 224.1 0.7 8.0 0.9 1.4 0.0 0.9 10.8 

CC-15-46 16.96 344 3233 31.6 11.8 14.2 11.2 151.1 1.7 13.0 0.7 1.4 0.0 1.8 7.7 

CC-15-45 16.45 293 156805 22.8 17.7 3.7 90.5 369.5 9.0 163.9 6.1 8.4 0.0 0.6 18.3 

CC-15-43 15.40 304 17388 16.5 17.0 3.1 5.1 260.3 1.6 7.8 1.1 2.2 0.0 0.8 4.9 

CC-15-40 14.36 491 4677 49.3 22.2 9.4 9.7 306.8 2.3 4.9 5.3 0.5 0.1 1.5 2.1 

CC-15-37 13.28 187 1600 31.3 9.8 5.7 9.1 238.2 0.7 5.0 0.7 0.7 0.0 0.9 7.2 

CC-15-35 12.38 2637 16216 105.8 131.9 21.5 17.7 1490.2 1.5 17.6 3.8 2.8 0.4 2.8 11.8 

CC-15-29 11.17 989 6784 56.4 46.8 15.5 13.4 575.8 4.4 28.7 2.0 6.7 0.1 1.5 6.5 

CC-15-24 10.21 1198 14230 58.5 58.8 6.2 18.6 747.5 0.8 25.4 1.9 2.3 0.2 0.7 30.8 

CC-15-23 8.41 1400 13417 60.8 69.0 6.3 13.8 779.8 0.5 32.0 2.2 3.2 0.2 0.8 63.9 

CC-15-22 6.01 1805 19730 71.0 89.7 11.0 14.7 1130.5 0.8 30.5 2.6 4.1 0.3 1.5 38.4 

CC-15-21 4.88 1753 9994 76.6 75.1 7.8 12.5 945.9 0.4 22.7 2.2 3.3 0.2 1.0 52.4 

CC-15-20 4.16 5142 21451 78.4 238.8 18.9 21.3 1995.8 0.6 38.6 3.5 8.6 0.5 2.4 63.0 

CC-15-19 3.03 3375 12703 122.5 159.7 16.5 14.1 2054.8 0.6 29.6 5.8 26.5 0.5 1.8 47.7 

CC-15-18 2.65 57512 126366 114.1 2561.3 87.1 71.5 26652.2 1.1 61.2 21.4 14.5 4.6 2.3 56.4 

CC-15-18-A 2.24 38554 83476 94.5 2015.2 69.1 56.6 21940.2 0.8 49.3 18.0 13.0 4.6 2.5 58.5 

CC-15-15 1.74 4580 18769 79.0 217.4 17.6 16.4 1886.7 0.7 24.8 3.2 6.3 0.5 1.9 36.0 

CC-15-12 1.16 3890 18869 90.5 184.7 14.1 14.7 2409.0 3.2 22.3 3.9 5.0 0.5 1.3 6.9 

CC-15-10 0.95 2081 12512 104.0 90.4 8.6 12.8 1317.1 0.5 20.3 2.5 7.1 0.3 0.7 39.4 

CC-15-8 0.66 2786 10150 176.0 126.1 14.8 11.1 1806.7 0.7 14.5 3.0 10.9 0.4 2.3 20.9 

CC-15-4 0.36 5255 20815 195.0 245.5 31.0 18.4 2722.2 10.9 30.0 8.1 11.4 0.6 2.3 2.7 

 Average 4689.4 21432.6 68.4 222.5 16.4 18.7 2441.6 1.8 25.2 3.8 5.3 0.5 1.6 23.5 

 
 
 
 



 
 

77 

 
 
               APPENDIX IV. Gas chromatographs for 28 samples from the Prada Quarry Section (n-alkanes). 
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