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ABSTRACT OF THE DISSERTATION 

FOLDING OF BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI) IS FASTER 

USING AROMATIC THIOLS AND THEIR CORRESPONDING DISULFIDES  

by 

Ram Prasad Marahatta 

Florida International University, 2017 

Miami, Florida 

Professor Watson J. Lees, Major Professor 

Improvement in the in vitro oxidative folding of disulfide containing 

proteins, such as extracellular and pharmaceutically important proteins, is 

required. Traditional folding methods using small molecule aliphatic thiol and 

disulfide, such as glutathione (GSH) and glutathione disulfide (GSSG) are slow 

and low yielding. Small molecule aromatic thiols and disulfides show great 

potentiality because aromatic thiols have low pKa values, close to the thiol pKa of 

protein disulfide isomerase (PDI), higher nucleophilicity and good leaving group 

ability. Our studies showed that thiols with positively charged group, quaternary 

ammonium salts (QAS), are better than thiols with negatively charged groups 

such as phosphonic acid and sulfonic acid for the folding of bovine pancreatic 

trypsin inhibitor (BPTI). An enhanced folding rate of BPTI was observed when the 

protein was folded with a redox buffer composed of a QAS thiol and its 

corresponding disulfide.  

Quaternary ammonium salt (QAS) thiols and their corresponding disulfides 

with longer alkyl side chains were synthesized. These QAS thiols and their 
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corresponding disulfides are promising small molecule thiols and disulfides to 

fold reduced BPTI efficiently because these thiols are more hydrophobic and can 

enter the core of the protein. 

  Conformational changes of disulfide containing proteins during oxidative 

folding influence the folding pathway greatly. We performed the folding of BPTI 

using targeted molecular dynamics (TMD) simulation and investigated 

conformational changes along with the folding pathway. Applying a bias force to 

all atoms versus to only alpha carbons and the sulfur of cysteines showed 

different folding pathways. The formation of kinetic traps N' and N* were not 

observed during our simulation applying bias force to all atoms of the starting 

structure. The final native conformation was obtained once the correct 

antiparallel β-sheets and subsequent Cys14-Cys38 distance was decreased to a 

bond distance level. When bias force was applied to only alpha carbons and the 

sulfur of cysteines, the distance between Cys14-Cys38 increased and decreased 

multiple times, structure similar to the conformation of N*, NSH were formed and 

native protein was ultimately obtained. We concluded that there could be multiple 

pathways of conformational folding which influence oxidative folding. 
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CHAPTER 1 

Introduction 

1.1 Structure and folding of protein 

1.1.1 Protein structure 

Gerhardus Johannes Mulder, a Dutch chemist, first described and coined 

the name ‘protein' in 1838 meaning ‘the first quality.1 Proteins are polymers of 

amino acids and are composed of nitrogen, carbon, hydrogen, oxygen and sulfur. 

In humans, protein consists of 15.1 percent of a person’s dry weight.2 Proteins 

are enzymes, hormones, antibodies, and major components of tissues such as 

hair and muscles. Proteins play a primary role in most biological processes such 

as building, repairing and replacing tissues.  

Protein structure is described in four levels - primary, secondary, tertiary, 

and quaternary (Figure 1.1). The primary structure of a protein is the actual 

sequence of amino acids in that protein which is set by DNA. The primary bonds 

of any protein are the peptide bonds between amino acids. Biosynthesis of a 

protein’s primary structure occurs on the ribosome with information provided by 

messenger RNA in a process called translation.3 The secondary structure of a 

protein is a local structural conformation, which is determined by H-bonds within 

the backbone. There are mainly two types of secondary structure in proteins: the 

a-helix and the b-sheet. The tertiary structure of a protein is the overall three-

dimensional structure of a single protein molecule which is described by distant 

interactions between groups. These interactions include H-bonding, Vander 

Waals interactions, hydrophobic packing, and disulfide bonding. The quaternary 
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structure of a protein is formed by interactions between individual protein 

subunits. These four levels of a protein structure are crucial to the stability of the 

folded native conformation of a protein. 
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tively charged sites on amino acid 
side chains, also help to stabilize the 
tertiary structure of a protein.

Quaternary Structure
Many proteins are made up of 

multiple polypeptide chains, often 
referred to as protein subunits. These 
subunits may be the same (as in a 
homodimer) or different (as in a het-
erodimer). The quaternary structure 
refers to how these protein subunits 
interact with each other and arrange 
themselves to form a larger aggregate 
protein complex. The final shape of 
the protein complex is once again 
stabilized by various interactions, in-
cluding hydrogen-bonding, disulfide-
bridges and salt bridges. The four 
levels of protein structure are shown 
in Figure 2.

Protein Stability
Due to the nature of the weak in-

teractions controlling the three-di-
mensional structure, proteins are very 
sensitive molecules. The term native 
state is used to describe the protein in 
its most stable natural conformation 
in situ. This native state can be dis-
rupted by a number of external stress 
factors including temperature, pH, re-
moval of water, presence of hydropho-
bic surfaces, presence of metal ions 
and high shear. The loss of secondary, 
tertiary or quaternary structure due to 
exposure to a stress factor is called 
denaturation. Denaturation results in 
unfolding of the protein into a random 
or misfolded shape. 

A denatured protein can have quite 
a different activity profile than the 
protein in its native form, usually los-
ing biological function. In addition to 
becoming denatured, proteins can 
also form aggregates under certain 
stress conditions. Aggregates are of-
ten produced during the manufactur-
ing process and are typically undesir-
able, largely due to the possibility of 
them causing adverse immune re-
sponses when administered. 

In addition to these physical forms 
of protein degradation, it is also im-
portant to be aware of the possible 
pathways of protein chemical deg-
radation. These include oxidation, 
deamidation, peptide-bond hydroly-
sis, disulfide-bond reshuffling and 
cross-linking. The methods used in 
the processing and the formulation of 
proteins, including any lyophilization 
step, must be carefully examined to 
prevent degradation and to increase 
the stability of the protein biophar-
maceutical both in storage and during 
drug delivery. 

Protein Structure Analysis
The complexities of protein struc-

ture make the elucidation of a com-
plete protein structure extremely dif-
ficult even with the most advanced 
analytical equipment. An amino 
acid analyzer can be used to deter-
mine which amino acids are present 
and the molar ratios of each. The 
sequence of the protein can then be 
analyzed by means of peptide map-
ping and the use of Edman degrada-
tion or mass spectroscopy. This pro-
cess is routine for peptides and small 
proteins, but becomes more complex 
for large multimeric proteins.

Peptide mapping generally entails 
treatment of the protein with different 
protease enzymes in order to chop up 
the sequence into smaller peptides 
at specific cleavage sites. Two com-
monly used enzymes are trypsin and 
chymotrypsin. Mass spectroscopy has 
become an invaluable tool for the 

analysis of enzyme digested proteins, 
by means of peptide fingerprinting 
methods and database searching. Ed-
man degradation involves the cleav-
age, separation and identification 
of one amino acid at a time from a 
short peptide, starting from the N-
terminus. 

One method used to characterize 
the secondary structure of a protein 
is circular dichroism spectroscopy 
(CD). The different types of second-
ary structure, α-helix, ß-sheet and 
random coil, all have characteristic 
circular dichroism spectra in the far-
uv region of the spectrum (190-250 
nm). These spectra can be used to 
approximate the fraction of the en-
tire protein made up of each type of 
structure.

A more complete, high-resolution 
analysis of the three-dimensional 
structure of a protein is carried out 
using X-ray crystallography or nuclear 

magnetic resonance (NMR) analysis.  
To determine the three-dimensional 
structure of a protein by X-ray diffrac-
tion, a large, well-ordered single crys-
tal is required. X-ray diffraction allows 
measurement of the short distances 
between atoms and yields a three-
dimensional electron density map, 
which can be used to build a model 
of the protein structure. 

The use of NMR to determine the 
three-dimensional structure of a pro-
tein has some advantages over X-ray 
diffraction in that it can be carried 
out in solution and thus the protein 
is free of the constraints of the crys-
tal lattice. The two-dimensional NMR 
techniques generally used are NO-
ESY, which measures the distances 
between atoms through space, and 
COESY, which measures distances 
through bonds. 

Protein Structure Stability Analysis
Many different techniques can be 

used to determine the stability of a 
protein. For the analysis of unfolding 
of a protein, spectroscopic methods 
such as fluorescence, UV, infrared 
and CD can be used. Thermodynamic 
methods such as differential scan-
ning calorimetry (DSC) can be useful 
in determining the effect of tempera-
ture on protein stability. Comparative 
peptide-mapping (usually using LC/
MS) is an extremely valuable tool in 
determining chemical changes in a 
protein such as oxidation or deami-
dation. HPLC is also an invaluable 
means of analyzing the purity of a pro-
tein. Other analytical methods such 
as SDS-PAGE, iso-electric focusing 
and capillary electrophoresis can also 
be used to determine protein stabil-
ity, and a suitable bioassay should be 
used to determine the potency of a 
protein biopharmaceutical. The state 
of aggregation can be determined by 
following “particle” size and arrayed 
instruments are now available to fol-
low this over time under various con-
ditions.  

The variety of methods for deter-
mining protein stability again empha-
sizes the complexity of the nature of 
protein structure and the importance 
of maintaining that structure for a 
successful biopharmaceutical prod-
uct.      
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Figure 1.1. Four levels of protein structure (From reference 4).4  

1.1.2 In vitro protein folding 

1.1.2.1 Process of in vitro protein production 

The advancement in recombinant DNA technology has allowed the 

production of therapeutic proteins5 in microbial hosts; Escherichia coli is the most 
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common organism used. In many cases, the protein of interest misfolds and 

forms insoluble aggregates known as inclusion bodies.6 The major desirable 

factor associated with the production of inclusion bodies either in the cytoplasm 

or in the periplasm of E. coli is the rapid formation of the desired protein.7 

Additional advantages associated with the overexpression include issues related 

to toxicity of desired protein to the host cell are eliminated by the production of 

that particular protein via inclusion bodies formation,8 the large quantity of 

inclusion bodies expressed is highly enriched with a particular protein, and 

inclusion bodies are protected from proteolytic degradation.8 But, there are still 

some disadvantages of the expression of the protein as inclusion bodies such as; 

the of inactivity and insolubility of the protein within the inclusion bodies, poising 

a difficulty in solubility for further steps of protein production.6 Inclusion body 

formation is particularly important in the case of disulfide containing proteins, as 

the disulfide bond formation requires an oxidative environment which is not found 

in the cytosol of bacteria.9 The result is the aggregation of protein. However, the 

challenge remains with the regeneration of active and soluble proteins from these 

misfolded aggregates.5,9 The recent advancement in the restoration process has 

made it possible to produce large quantities of therapeutic proteins from highly 

dense inclusion bodies which reach to 90% at optimal conditions.5  

Formation of active protein from inclusion bodies involves several steps. 

The first step is the isolation and purification of the inclusion bodies. Isolation is 

done using one of two procedures. The most common method is cell lysis 

followed by centrifugation of the resulting suspension at modest rotor speed.10 
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The other method of isolation is the separation of inclusion bodies from soluble 

proteins by filtration.8 The isolated inclusion bodies are contaminated mainly with 

membrane associated proteins. The membrane associated proteins and other 

contaminants are washed away with a mixture containing EDTA and a low 

concentration of denaturant or detergent such as deoxycholate, octylglucoside, 

or Triton X-100.8,11 The next step is the solubilization of the purified inclusion 

bodies which is commonly accomplished by using strong denaturants such as 

urea or guanidinium chloride (Gdn-HCl). During the solubilization of the inclusion 

bodies the protein is either completely unfolded or partially unfolded as the 

intramolecular and intermolecular interactions are disrupted. In the case of 

disulfide-containing proteins, proteins within the inclusion bodies contain both 

non-native inter- and intra-molecular disulfide bonds, which diminishes the 

solubility. Therefore, the addition of thiol containing reagents such as b-

mercaptoethanol, dithiothreitol (DTT), dithioerythritol, cystamine, glutathione 

(GSH), or cysteine along with the denaturants mentioned above at alkaline pH is 

required.12 These reagents are necessary to break disulfide bonds via thiol-

disulfide interchange reactions forming reduced protein which is more soluble 

than protein with mismatched or intermolecular disulfide bonds. The last step in 

the in vitro protein production via the formation of inclusion bodies is the 

renaturation of the solubilized inclusion proteins. The excess of denaturants and 

thiol reagents are first removed using different methods such as dilution, dialysis, 

gel-filtration chromatography, immobilization on a solid support, etc. followed by 

the exposure of reduced protein to oxidizing conditions. The refolding process is 
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highly dependent on pH, temperature, and ionic strength of the protein; therefore, 

these factors must be carefully considered during the optimization of the 

renaturation step.5  

The renaturation of disulfide containing proteins must be performed in a 

redox buffer containing an oxidizing agent and in the case of monothiols a 

reducing agent.5,9 For example, glutathione (GSH), the reduced form, and 

glutathione disulfide (GSSG), the oxidized form, mixed in the proper molar ratio 

can be utilized to increase the rate and yield of the formation of an active protein 

by facilitating thiol-disulfide interchange reactions. Other redox systems which 

can be used are pairs like DTT/GSSG, cysteine/cystine, cysteamine/cystamine.8 

A small amount of EDTA is added during the preparation of the redox buffer to 

prevent the oxidation of the protein thiols and redox buffer by air in the presence 

of metal ions such as Cu2+.     

S S S RSS S S
RSSR

RSSR RS

RS

RS

RS

 

Figure 1.2. Thiol-disulfide interchange reaction during renaturation of protein 
where RS- is the deprotonated reduced form and RSSR is the oxidized disulfide 
form. 
 

The renaturation process of disulfide containing proteins can be improved 

by the addition of low molecular weight additives which prevent the aggregation 

of wrongly folded species by suppressing intermolecular interactions.8 Different 

denaturants such as urea, GdnHCl, and detergents such as CHAPS, Triton X-

100, SDS, CTAB can be added as small molecule additives. 
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1.1.2.2 Importance of protein folding 

The protein folding process can potentially start in several different places: 

in the cell co-translationally during protein synthesis on the ribosomes, in the 

cytoplasm after the protein has been synthesized and released from the 

ribosome, or in a particular compartment of the cell such as the endoplasmic 

reticulum (ER) or mitochondria after the protein has been translocated through a 

membrane.13 The ER contains the specialized machinery used to fold intra-

organellar, secretary, and transmembrane proteins.14 The highly crowded milieu 

(300-400 gL-1 occupied mainly by proteins, polysaccharides, and lipids) of the 

cell increases the possibility of protein aggregation.15,16 To overcome the 

aggregation problem, molecular chaperones are present in the cell. These 

chaperones prevent aggregation by not allowing the nascent protein molecules to 

interact with other molecules in the crowded environment of the cell. The 

chaperones guide protein folding either in the initial stage or later stages of the 

process, increasing the efficiency of the folding process.13,17,18  

In the case of incorrect folding, the aggregation of protein results in the 

formation of highly ordered amyloid fibrils (Figure.1.3), which are very stable and 

are responsible for neurodegenerative diseases.15 They have been grouped 

under protein conformational disorders (PCDs). In some cases, the aggregated 

proteins deposit in tissues, including heart and brain, resulting in diseases such 

as Alzheimer's disease, Parkinson’s disease, spongiform encephalopathies, and 

type II diabetes. The misfolded proteins, as a result of a change in conformation 

lose their biological activity and acquire toxicity to the cell. 
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Figure 1.3. Mechanism of aggregation of amyloid fibrils (From reference 13).13 

The misfolded proteins associated with the protein misfolding diseases 

have an extra stability. Therefore, during in vitro protein folding, it is very 

important to fold proteins into their correct three-dimensional shape, so as to 

obtain biological function, and not toxic activity. 

The in vitro oxidative protein folding of disulfide containing proteins is done 

in the presence of a redox buffer containing both oxidizing and reducing 

equivalents. The progress of the folding process is studied by analyzing the 

intermediates formed, which can be isolated after quenching the reaction mixture 

after a certain amount of time.19 Oxidative protein folding method is applicable 

solely for the folding of disulfide containing proteins. Oxidative protein folding 

method has some advantages over the conformational protein folding process, 



	 8	

which is used to fold all types of proteins. These benefits include the use of a 

protein with clearly defined disulfide bonds, and the ease of trapping, isolation, 

and characterization of folding intermediates, as well as evaluation of the kinetics 

of the folding pathway, and control of kinetics by changing the redox reagents.19 

1.1.3 Folding of disulfide containing proteins 

Disulfide bond formation in secretary proteins is an essential process for 

their stability and biological activity as it decreases the entropy of the reduced 

form and thus increases the relative stability of the native form. However, in 

comparison with other proteins, the process of folding disulfide containing 

proteins is very slow and requires a redox environment.20 Oxidative protein 

folding in vivo is an assisted process which takes place in the ER of the cell. The 

ER contains protein disulfide isomerase (PDI), a protein involved in the 

rearrangement of mismatched disulfide bonds and oxidation-reduction of 

disulfide bonds. The ER has an oxidative environment compared to the cytosol 

as a result of the presence of different redox enzymes and small molecule 

oxidants, and also because of the secretion and uptake of thiols and disulfides, 

respectively.21  

1.1.4 Folding with Protein Disulfide Isomerase (PDI) 

1.1.4.1 General information 

The enzyme PDI belongs to the thiol-disulfide oxidoreductase family and 

is located in the endoplasmic reticulum (ER) of the cell22 It was first isolated and 

characterized by Anfinsen and co-workers.23 Protein disulfide isomerase (PDI) is 

a 55 kDa, multifunctional protein found abundantly in the lumen of ER and 
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primarily takes part in the formation of correct disulfide bonds via isomerization of 

disulfide bonds.24 The structure of PDI contains two active thioredoxin domains 

(a and a¢), two inactive thioredoxin domains (b and b¢) and an acidic C-terminal 

tail resulting in a “U” shaped structure (Figure 1.4).24 The active domains (a and 

a¢) each contain one catalytically active C-G-H-C motif located near the N 

terminus in the a domain and near the C terminus in the a¢ domain. The two C-G-

H-C motifs face each other and are separated by 20 Å (distance between sulfur 

of C61-C406).24,25 The cysteines in each active site can be either in the disulfide 

form (oxidized PDI), because of an intramolecular bond formation, or in the dithiol 

form (reduced PDI). In reduced PDI, one thiol in each active site is exposed to 

the solvent and the other thiol is buried in the hydrophobic core. The solvent 

exposed thiol is responsible for the reactivity of PDI (pKa = 6.7) with other 

disulfide bonds. Oxidized PDI contains one disulfide bond in a cyclic 14-

membered ring form (Figure 1.5) and is unstable as compared to other disulfides 

as a result of a lower redox potential (E'0 = -180 mV).26 Thus, thiol-disulfide 

interchange reactions take place rapidly with oxidized and reduced PDI, making 

PDI a model for designing small molecule thiols and disulfides. 
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Figure 1.4 Structure of human PDI(PDB ID 4EKZ).22 
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Figure 1.5 Open and closed CXXC motif of PDI.  

1.1.4.2 Oxidative protein folding with PDI 

1.1.4.2.1 Oxidative in vivo protein folding with PDI 

 Once the polypeptides are formed, these nascent structures containing 

cysteines in the reduced thiol form are translocated to the ER with the help of 

signal recognition particles as well as receptors.27 In the ER, the conditions are 

much more oxidizing than in the cytosol ([GSH]/[GSSG] = 1:1 to 1:3 in ER, 100:1 

in the cytosol), which is thermodynamically favorable for disulfide bond formation 

in proteins and hence PDI is present mostly in the oxidized form.25,28,29 The 

protein disulfide bond is formed due to the transfer of oxidizing equivalents from 

Ero1p to PDI29 (Figure 1.6). 
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Figure 1.6 Proposed mechanism of thiol-disulfide exchange between Ero1p and 
a thioredoxin-like domain of PDI.29  

The PDI itself acts as a chaperone thereby preventing proteins from 

forming an aggregation. The reduced proteins form disulfide bonds with the help 

of oxidized PDI as oxidized PDI act as an electron acceptor whereas mismatched 

disulfide bonds within proteins are isomerized to native disulfide bonds with the 

help of reduced PDI which acts as an electron donor. The isomerization of the 

mismatched disulfide bond is started by the attack of the solvent-exposed thiolate 

of PDI on disulfide bond of the substrate protein forming a mixed disulfide bond 

between the protein and PDI (Figure 1.7). Then, the resulting thiol of the 

substrate protein can attack another disulfide bond. A series of thiol-disulfide 

reaction results in the formation of native disulfide bonds in the substrate 

protein.30 The regaining of oxidized PDI will take place via the series of reactions 

involving Ero1p and its cofactor Flavin Adenine Dinucleotide (FAD), and 

molecular oxygen.  

1.1.4.3 Oxidative in vitro protein folding with PDI 

In vitro oxidative protein folding can be aided by the addition of PDI, which 

also catalyzes in vivo protein folding in the ER of the cell via a series of thiol-

disulfide interchange reactions.31 For in vitro protein folding, PDI is mixed with a 

redox buffer which improves protein folding by preventing the unfolded proteins 
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from aggregating and increasing the rate of thiol-disulfide interchange 

reaction.32,33  The use of PDI for in vitro protein folding is not efficient as a 

consequence of its high cost of production, low catalytic activity, and 

instability.32,34 However, in vivo in the ER, the concentration of PDI is high. 

PDI

S S

PDI

HS SH

PDI

HS SH

HS SH HS

S S SH

S S

SH
+ +

PD
I S

SH

S

HS

HS

Is
om
er
iz
at
io
n

Oxidation

Reduction

Oxidation
Reduction

Native 
disulfide

Mixed 
disulfide

Non-nativeative
 disulfide

Reduced 
substrate

+

  

Figure 1.7 Oxidative protein folding mechanism in vivo.35  

1.1.4.4 Folding with small molecules 

Oxidative in vitro protein folding of disulfide containing proteins is 

conventionally done using a redox buffer prepared with a small molecule aliphatic 

thiol and/or the corresponding disulfide.36,37 As these small molecules contain 

either a thiol or a disulfide group in their structure; they can react with protein 

thiols/disulfides in multiple steps until the native protein is formed. The native 

protein is a kinetically stable protein structure having only native type disulfide 
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bonds. Some of the traditional small molecule thiols and disulfides include 

glutathione (GSH) and glutathione disulfide (GSSG), reduced dithiothreitol 

(DTTred) and oxidized dithiothreitol (DTTox), reduced and oxidized b-

mercaptoethanol (BME), reduced and oxidized cysteine, reduced and oxidized 

(±) trans-1,2-bis(mercaptoacetamido)cyclohexane (BMC), reduced and oxidized 

cystamine38,39 (Figure 1.8). In general, the reduced and oxidized forms of the 

small molecules are mixed to prepare the redox buffer.40,41 Out of the above-

mentioned redox systems, only two of them have been studied extensively for 

their effect on protein folding: DTTox/DTTred and GSSG/GSH.42  

The GSSG/GSH system is found in vivo, where folding of disulfide 

containing proteins take place. Therefore, the GSSG/GSH redox system is the 

one most commonly used for oxidative protein folding experiments especially for 

proteins like BPTI, RNase A, and lysozyme.43 The optimal conditions to fold 

these proteins are: 0.2 mM GSSG and 1 mM GSG for RNase A,44 2 mM GSSG 

and 7 mM GSH for lysozyme,45,46 and 2 mM GSSG and 2 mM GSH or 5 mM 

GSSG and 5 mM GSH for BPTI.42 

Dithiothreitol (DTT) has a reduction potential (E°') of -0.327 V; therefore, it 

is a weak oxidizing agent.47 Even in the case of high molar concentration of 

oxidized DTT, the refolding rate of RNase A is very slow as compared to GSSG 

at much lower concentrations.36 The advantage of using DTT is that DTT 

catalyzes protein folding without the formation of stable mixed disulfide 

intermediates; hence, the characterization of the folding pathway becomes 

easier.36 
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Figure 1.8 Some traditional small molecule thiols and disulfides.43 
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 For the large-scale production of proteins, less expensive oxidative folding 

agents are desired. Therefore, cysteine, cystamine, and β-mercaptoethanol are 

applicable as these compounds are cheaper than glutathione. Cystamine has a  

lower thiol pKa than glutathione and has a net positive charge at pH 7; hence, it 

is more advantageous for basic proteins like BPTI.43  

 An aliphatic dithiol (±)-trans-1,2-bis(2-mercaptoacetamido)cyclohexane 

(BMC) has two thiol groups in close proximity and upon oxidation can form a 

comparatively less stable cyclic disulfide. The yield of protein folding can be 

increased significantly with BMC31 as demonstrated by Raines et al. during the 

folding of RNase A. When 1 mM BMC was added to a folding mixture containing 

1 mM GSH and 0.5 mM GSSG, the yield of protein was two-fold as compare to 

folding yield with  N-methylmercaptoacetamide (NMA),36 which is the monothiol 

analog of BMC. The additional thiol group present in BMC helps increase the 

folding yield of proteins in comparison to NMA. Therefore, it is desirable to add 

an even low concentration of BMC to the folding mixture whether in vivo or in 

vitro to increase the yield.  

 Aromatic thiols and their corresponding disulfides (Figure 1.9) can be 

utilized more efficiently as a redox buffer to fold disulfide containing proteins 

because of their enhanced reactivity at physiological pH and lower thiol pKa 

values (4-7) as compared to their aliphatic counterparts. In addition, the thiol pKa 

is similar to that of the solvent exposed thiol of protein disulfide isomerase 

(PDI).48 The enhanced reactivity is primarily dependent upon the better leaving 

group ability of the thiolate ion due to the higher stability of the thiolate anion as a 
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result of the lower pKa values of the corresponding thiols. Hence, small molecule 

aromatic thiols and disulfides enhance the thiol disulfide interchange reactions 

occurring during folding experiments.  

R SH S RSR

Aromatic thiol Aromatic disulfide  

Figure 1.9 Generic structures of aromatic thiol and disulfide. 

 The folding rates of reduced RNase A and lysozyme were increased 

multiple folds with aromatic thiols in comparison to GSH. For example, folding of 

reduced RNase A was increased by the factor of 23 at pH 6, by the factor of 12 

at pH 7 and by a factor of 8 at pH 7.7 relative to GSH.38,49 Similarly, folding 

experiments on reduced lysozyme showed that the folding rate was increased by 

the factor of 11 and yield by 40% with aromatic thiols and the corresponding 

disulfides relative to GSH and GSSG at pH 7.50 Aromatic thiols with thiol pKa 

values 1-2 units lower than the pH of the folding mixture were found to the best in 

terms of the reactivity. Therefore, we sought to synthesize aromatic thiols with 

expected thiol pKa values 5.5-6.5 as we are running folding experiments at pH 

7.3 to mimic physiological conditions. I expect to dramatically increase in the 

folding rate of reduced protein with aromatic thiols and corresponding disulfides.   

1.2 Folding of bovine pancreatic trypsin inhibitor (BPTI)  

1.2.1 Introduction of BPTI 

Bovine pancreatic trypsin inhibitor (BPTI) with 58 amino acid residues is 

one of the smallest globular proteins known, and its sole function is to bind to and 

inhibit serine proteases such as trypsin. The sequence of amino acids in  BPTI is 
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RPDFC LEPPY TGPCK ARIIR YFYNA KAGLC QTFVY GGCRA KRNNF KSAED 

CMRTC GGA.51 With 10 positively charged lysine (K) and arginine (R) residues 

and 4 negatively charged aspartate (D) and glutamates (E) residues, the protein 

is strongly basic at neutral pH and is sometimes called basic pancreatic trypsin 

inhibitor. However, as the usual source for BPTI is bovine pancreas, the protein 

is primarily referred to as bovine pancreatic trypsin inhibitor. Residue 15 of BPTI, 

which is lysine, has a long basic side chain on an exposed loop of the structure. 

Lysine is responsible for binding the specificity pocket in the active site of trypsin 

hence inhibiting its enzymatic activity. Trypsin inhibitors usually have conserved 

cysteine residues that participate in forming disulfide bonds. BPTI has α-helical 

and β-sheet regions as well as three disulfide bonds between Cys5-Cys55, 

Cys14-Cys38, and Cys30-Cys51, which stabilize the protein's tertiary structure52  

(Figure 1.10). Three disulfide bonds in 58 residues make BPTI one of the most 

stable proteins known. BPTI was first isolated as a trypsin inhibitor from bovine 

pancreas in 1936.53 The crystal structure was solved by Robert Huber in 1970.54 

The first NMR structure was determined by Kurt Wuthrich at ETH in Zurich in 

1980.55 BPTI was the first protein to be studied computationally using molecular 

dynamics.56 BPTI is also the most-studies disulfide containing protein in terms of 

folding pathway. 

BPTI is quite inert to denaturants like urea at below 100˚C but denatures 

in very acidic solutions; the midpoint for reversible denaturation is 81˚C at pH 2.1 

(Figure 1.11).57 If only one of the disulfide bonds, that formed between cysteine 

residues 14 and 38, is reduced and then carboxymethylated, the midpoint 



	 18	

decreases to 59˚C, hence denaturation becomes more facile than without 

carboxymethylation (Figure 1.11).  

5
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Figure 1.10. Structure of BPTI.58 

 

Figure 1.11. Thermal denaturation of BPTI at pH 2.1 (From reference 59).59  

When all three disulfide bonds of BPTI are reduced at room temperature, 

the protein unfolds. Upon oxidation under suitable conditions, native BPTI with its 

unique set of three disulfide bonds is formed. If BPTI were reduced to yield six 

cysteine residues and randomly re-oxidized, it would produce about 7% native 
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protein (1/15), as there are 15 possible combinations of BPTI with three disulfide 

bonds (Table 1.1). The first SH group to pick a partner will have five choices, the 

second SH group three partners, and the last SH group one partner. Therefore 

there are 5×3×1, or 15, possible combinations.60,61 

Table 1.1: 15 possible combinations of six cysteine residues in BPTI 

*native BPTI 

           

Combinations 1st Disulfide bond 2nd Disulfide bond 3rd Disulfide bond 

1 5-14 30-38 51-55 

2 5-14 30-51 38-55 

3 5-14 30-55 38-51 

4 5-30 14-38 51-55 

5 5-30 14-51 38-55 

6 5-30 14-55 38-51 

7 5-38 14-30 51-55 

8 5-38 14-51 30-55 

9 5-38 14-55 30-51 

10 5-51 14-30 38-55 

11 5-51 14-38 30-55 

12 5-51 14-55 30-38 

13 5-55 14-30 38-51 

14* 5-55 14-38 30-51 

15 5-55 14-51 30-38 
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  Previous studies of BPTI and other proteins containing disulfide bonds 

indicated that correct pairing of cysteines is achieved if appropriate conditions 

are selected and sufficient time is allowed.60 The meaning of the finding is that 

the folding path of the protein places the SH groups in position for correct pairing. 

The corollary of this statement is that the S-S bridges are not essential for proper 

refolding. But, the formation of S-S bond contributes to the extra stability of the 

protein structure once the protein is folded. A protein containing S-S bridges has 

a smaller number of conformations available in the unfolded form than does a 

comparable protein without the bridges. Consequently, it shows a lower entropy 

gain on unfolding and is therefore stabilized.60,62 

1.2.2 Traditional in vitro oxidative folding of BPTI 

 The in vitro oxidative folding of fully reduced BPTI was traditionally carried 

out in the presence of DTTox and GSSG. The folding pathways were determined 

from the study of trapped intermediates. The folding study of BPTI was originally 

examined by Creighton who refolded reduced BPTI (R) at pH 8.7 in the presence 

of DTTox followed by the trapping of folding intermediates chemically using 

iodoacetamide to alkylate free thiols.63,64 These intermediates were separated via 

ion-exchange chromatography followed by analysis using two-dimensional paper 

electrophoresis. The study identified two main 1SS (contains one disulfide bond) 

intermediates, five main 2SS (contains two disulfide bonds), intermediates and 

only one 3SS (contains three disulfide bonds) protein structures (Figure 1.12). 

Out of the two 1SS intermediates only one is native like (contains [30-51] 

disulfide bond), out of the five 2SS intermediates, three are native like, N' [30-51; 
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14-38], N* [5-55; 14-38], and NSH [30-51; 5-55], and the one 3SS containing 

structure is the native protein N [30-51; 5-55; and 14-38]. The disulfide bond 

found in the most abundant one disulfide intermediate, [30-51], is present in all 

two-disulfide intermediates identified except in N*. Two of the 2SS intermediates 

containing non-native disulfide bonds, [30-51; 5-14] and [30-51; 5-38], were 

highly populated in Creighton’s study. 

  From Creighton's work, it was revealed that the two well populated 2SS 

non-native intermediates have an important role in guiding the folding pathway to 

the native structure. These two 2SS intermediates which contain (30-51) as one 

of the two disulfide bonds have similar kinetic behavior and did not form 

substantially during the folding process but rearranged to another disulfide 

intermediate NSH [30-51; 5-55] which further rearranges rapidly to native BPTI N 

[30-51; 5-55; and 14-38]. The native like 2SS intermediate N* [5-55; 14-38] was 

found to be very stable kinetically and only very slowly rearranged to NSH [30-51; 

5-55], so the intermediate was called non-productive. The folding pathway of 

BPTI goes through two well populated non-native 2SS intermediates, [30-51; 5-

14] and [30-51; 5-38] and the route is favored kinetically. 

 Later, the oxidative folding study of reduced BPTI was studied extensively 

by Kim and his team using a modified separation technique. The folding reaction 

was quenched at certain time points using an acid to stop further thiol-disulfide 

interchange reactions. Acid quenching has the advantage over the conventional 

method in that the process is reversible and the trapped and purified 

intermediates can be used for further folding experiments so that the folding 
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process can be studied in detail. The intermediates formed were separated and 

analyzed by reverse phase HPLC (RP-HPLC).65 In his study, Kim found that only 

six different species accumulated during folding and that all contained native 

disulfide bonds: [30-51], [5-55], N' [30-51; 14-38], N* [5-55; 14-38], NSH [30-51; 5-

55], and N [30-51; 5-55; 14-38] (Figure 1.13).  
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Figure 1.12 The BPTI folding pathway proposed by Creighton.64 R is reduced 
form and N is native form of BPTI. Numbers with dash sign inside bracket 
represent the disulfide bonds present in respective structures.  
 

The fully reduced BPTI (R) was oxidized to all possible single disulfide 

intermediates which rapidly rearrange to either [30-51] or [5-55]. These single 

disulfide intermediates are converted quickly to two disulfide intermediates N', 

and N* as the thiols of Cys14 and Cys38 are solvent exposed and form a 
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disulfide bond easily. As N* has buried Cys30 and Cys51 in its interior, the thiols 

of Cys30 and Cys51 are inaccessible to oxidizing agents and hence N* cannot 

undergo either oxidation or rearrangement on the experimental time scale; 

therefore, the route that forms N* is regarded as nonproductive.66 On the other 

hand, the pathway via N', which also has two buried thiols, Cys5 and Cys55, is 

productive because this intermediate can rearrange to the more stable 

intermediates N* and NSH. The transition to NSH does not depend upon the 

concentration of oxidizing agents, which means that the transition is via an  

intramolecular thiol-disulfide interchange reaction.63,66 Conversion of N' to NSH is 

the rate determining step in protein folding.65,67 In the final step leading to the 

formation of native BPTI, oxidation of Cys14 and Cys38 takes place forming the 

(14-38) bond.  
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Figure 1.13 The folding pathway of BPTI proposed by Kim.64,65 R is reduced form 
and N is the native form of BPTI. The numbers inside the box separated by a 
dash are disulfide bonds. N', N*, and NSH are native like 2SS intermediates. Very 
fast means the process can be finished within milliseconds and very slow means 
it could take months.65  
 
 

Subsequent studies by Kim et al. of the oxidative folding of reduced BPTI 

using GSSG concluded that the slow rate of direct oxidation of N' to N is because 

of the native-like structure of N' which slows down the intermolecular reaction 
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with GSSG to form a mixed disulfide as well as the subsequent intramolecular 

reaction leading to N.68 The formation of N by direct oxidation requires high 

concentration of GSSG which also leads to the formation of a dead-end doubly 

mixed disulfide intermediate; therefore, folding via direct oxidation of N' does not 

form N in considerable amounts. During oxidative folding, two reactions were 

seen in competition. One is the formation of N from the singly mixed disulfide 

N'(SG), and the other is the formation of N'(SG)2 from N'(SG). The formation of 

singly mixed disulfide N'(SG) is from the oxidation of one of the free thiols of 

Cys5 or Cys55. At modest GSSG concentration, the formation of singly mixed 

disulfide N'(SG) is slower than the rearrangement of N' to NSH. As the rate of 

formation of N from NSH is 150 times faster than the rate of formation of singly 

mixed disulfide N'(SG) from N', the formation of N takes place via intramolecular 

rearrangement. At high GSSG concentrations (> 500 µM), formation of doubly 

mixed disulfide N'(SG)2 from singly mixed disulfide N'(SG) is 30 times faster than 

the formation of N'(SG) from N'; therefore, the process does not allow the 

formation of a considerable amount of N. The conclusion is that complete 

unfolding of native like intermediates N' and N* as seen in BPTI folding, is 

common to all disulfide containing proteins.68 

1.2.3 Updated folding pathway of BPTI 

Recent investigation by Yingsong and Lees on the folding of reduced BPTI 

via a growth type pathway and updated the BPTI folding pathway (Figure 1.14).69  

A growth type pathway is a protein folding model where the rate determining 

step(s) in the folding reaction is the nucleation of native-like conformation 
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followed by the smooth formation of conformation with native disulfide bonds,70 

The folding condition optimized previously by Kibria and Lees with GSH and 

GSSG were 5 mM GSH and 5 mM GSSG to fold reduced BPTI to 93% native 

protein in 48 h.42 Conformational kinetic trap N* and oxidative kinetic trap N'(SG)2 

which is also called doubly mixed disulfide, were observed in the reaction and 

were balanced under optimal conditions. The formation of protein doubly mixed 

disulfide with 5 mM GSH and 5 mM GSSG suggested that growth type pathways 

were needed to efficiently fold reduced BPTI. Wang et al. determined the rate 

constants for many of the steps that occur during the folding of reduced BPTI. On 

the basis of these rate constants, the best folding conditions for BPTI were 

predicted assuming only two changes to the redox buffer of GSH/GSSG were 

made during the folding process. The conversion took place via the formation of 

N*(SG). The folding of reduced BPTI was initiated with 2 mM GSSG and 5 mM 

GSH to convert all reduced BPTI to disulfide intermediates, N' and N* were 

formed as primary intermediates occupying 50% of the total concentration. Then, 

30 mM GSH was added after 15 min, total GSH concentration was 35 mM, to 

reduce the rest of the intermediates like N', N'(SG), N'(SG)2. The reduced 

proteins were converted to the thermodynamically more stable intermediate N* 

as these intermediates react with GSSG. After 1 h, 50 mM GSSG was added and 

the reaction continued for 12 h to produce 93% N. N* was previously regarded as 

a dead-end kinetic trap. The finding was helpful to increase the yield of native 

protein because folding via the productive route: N' to NSH to N or N' to N'(SG) to 

N was limited by the formation of doubly mixed disulfide N'(SG)2.  
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Figure 1.14 Updated oxidation-rearrangement BPTI folding pathway.65,68,69 

1.3 Folding of BPTI with aromatic thiols and their corresponding disulfides 

1.3.1 Introduction 

 The enhanced reactivity of aromatic thiols and their corresponding 

disulfides towards thiol-disulfide interchange reactions and the feasibility of their 

synthesis in lab are very important aspects for their application in protein folding. 

The pKa values of aromatic thiols can be altered by changing the side chain 

attached to the aromatic ring. Therefore, the synthesis of small molecule 

aromatic thiols with nearly the same thiol pKa as the free thiol of PDI, and that 

are soluble in water in both the thiol and disulfide forms, should enhance the 

reactivity of these small molecules aromatic thiols at pH 7 relative to the 

traditionally used aliphatic thiols such as glutathione. The enhancement of the 

folding rate of proteins with aromatic thiols in comparison to glutathione was 

demonstrated previously in our group. As described, aromatic thiols speed up the 

folding rate of lysozyme by 11 and 7 times and increased its yield by 40% and 
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25% at pH 7and 8 respectively.50 Additionally, the rate of folding for RNase A 

was also found to be enhanced up to 23 times at pH 6, up to 12 times at pH 7, 

and up to 8 times at pH 7.7 with aromatic thiols as compared to glutathione.37 

Therefore, replacing glutathione with aromatic thiols in the redox system can 

expedite the rate of folding of disulfide containing proteins at neutral pH and a 

further increase in relative rate can be achieved by decreasing the pH of the 

redox buffer.46 

1.3.2 Construction of the structure of small molecule aromatic thiols 

 The structure of aromatic thiols should have the following characteristics: 

these small molecule thiols should have charged side chain so that the thiols are 

soluble in buffer, the thiol group should have a pKa value very close to neutral 

pH, and the molecules should be easily separated from protein after the folding 

assay is completed so that it will not hamper the analysis. The charged groups 

are either negatively charged like sulfonic acid and phosphoric acid, or positively 

charged like quaternary ammonium salt. These groups are installed in the 

structure during their synthesis. The thiol pKa values can be calculated from the 

σp
- a value of the substituent. The Hammett plot has a slope of -1.6, ρ = -

1.6±0.1.48  

 The formation of disulfide bonds takes place via a nucleophilic substitution 

mechanism. A thiolate ion (R1S¯) attacks the disulfide bond (R2SSR3) and 

substitutes (R3S¯), as a result, a new disulfide bond (R1SSR2) is formed as 

shown in scheme 1.1. In the reaction, R1S¯ acts as a nucleophile, R3S¯ serves as 

a leaving group, and R2S¯ serves as the center of attack.34,39 The rate of the thiol-
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disulfide interchange reaction is dependent upon several factors including the 

stability of the leaving group and the nucleophilicity of the attacking group.  

Scheme 1.1 Nucleophilic substitution in thiol-disulfide interchange reaction 

S S
R2 R3

R1 S S S
R1 R2

+ R3 S+

Thiolate Disulfide bond New disulfide bond Leaving group  

Therefore, the basis for the design of small molecule aromatic thiols for 

protein folding is to enhance the rate of thiol-disulfide interchange reactions 

which take place between the small molecules and proteins during oxidative in 

vitro protein folding. The rate of rearrangement of protein disulfide bonds found in 

the folding intermediates can be a slow process, as I have observed in the 

folding of reduced BPTI; hence, aromatic thiolate ions will expedite the process 

(Scheme 1.2). Native disulfide bonds formation with aromatic thiols involve 

reduction of non-native disulfides to thiols and rearrangement of non-native 

disulfide bonds to native disulfide bonds. Aromatic disulfides also help in 

increasing the rate of formation of protein disulfide bonds (Scheme 1.3) because 

aromatic thiolates are stable leaving groups. Our aim to fold BPTI faster is highly 

dependent upon the rate of formation and rearrangement of protein disulfides 

with the aid of aromatic thiols and their corresponding disulfides.  

Scheme 1.2 Rearrangement of protein disulfide with aromatic thiolate ion 
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Scheme 1.3 Formation of protein disulfide with aromatic disulfide 
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1.4 Molecular dynamics (MD) simulation study of BPTI 

1.4.1 Importance of MD simulation 

 Molecular dynamics (MD) simulation is a computational method which is 

regarded as a primary method for the theoretical study of the biomolecules at 

their atomistic levels to insight into their structure, function, and dynamics. Atoms 

and molecules are interacted for the fixed time providing a view of the details of 

the interactions of the system. The method of MD simulation has its application in 

wide range of science including physics, chemistry, biochemistry, biophysics, and 

structural biology. Growing advancement of methodology and computer power is 

helping to study the larger systems and variety of conformational changes 

utilizing the longer time of simulation to find the details of a process going on 

inside the body which is not possible from experiments.71 The three-dimensional 

structure of proteins is predicted via the MD simulation of folding of a random coil 

of that particular proteins. 

1.4.2 Protein folding and MD simulation 

 The knowledge of a folding process of a newly synthesized protein helps 

to understand the basic principle of life at its atomistic levels.72 The field of 

medicine can take the advantages of the molecular dynamics (MD) simulation of 

protein folding process as the study can facilitate the development of the 
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treatment methods of diseases associated with protein misfolding.73 The study of 

protein folding helps the field of nanotechnology because the investigation can 

reveal the principle behind the folding.73 Both the experimental74 and 

computational75 methods have been advancing to elucidate the process of 

conformational changes of proteins. MD simulation has been improvised and 

coupled with the ultrafast, inexpensive computers to study the unfolding and 

folding of proteins in their atomistic levels.76 

1.4.3 Molecular dynamics (MD) simulation of BPTI 

 Bovine pancreatic trypsin inhibitor (BPTI) is the first protein which was 

tested with molecular dynamics (MD) simulations in vacuo.56 After eleven years, 

MD simulation of BPTI done in water at the same time was reported stating that 

the simulation was run for higher time scales and improved the results giving 

better RMSD value and reducing the number of incorrect hydrogen atoms as 

opposed to the simulation run in vacuo.77 The presence of water molecules in 

simulation provides more realistic motion of protein and structure will attain very 

close to the crystal structure.77 Later on, simulation on BPTI has been performed 

in different laboratories.78–82  

 Bovine pancreatic trypsin inhibitor (BPTI), as it contains three disulfide 

bonds, has an extra stability in its native form. During simulation, if the disulfide 

bonds are included as constraints, can reduce the conformational space. Saito 

and coworkers were the first to study the protein folding/unfolding of disulfide 

containing proteins assuming that folding starts with the formation of secondary 

structure (α-helices and β-sheets) followed by the attaining the tertiary 
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structure.83,84 The simulation on finding the role of disulfide bonds in protein 

folding revealed that folding of disulfide containing proteins undergoes with 

different pathways to the native form via the formation of native-like intermediates 

only, but the process is mediated by the formation of non-native intermediates.85 

The results were in agreement with both the conflicting experimental results by 

Creighton,86 and Weissman and Kim.65 Another study on disulfide bonds and 

protein folding by Scheraga and coworkers87 concluded that the conformational 

folding and the disulfide bond formation are extremely cooperative process as 

well as the development and breaking of disulfide bonds in the disulfide 

containing proteins takes place when certain conditions such as closeness of 

cysteine residues, orientation, and easiness of thiols to oxidizing agents are 

fulfilled. Lately, MD simulation works on BPTI revealed that the initially formed 

specifically collapsed structure of protein similar to native form guides the 

formation of disulfide bonds.88 Herein, the importance of conformations of 

intermediates during folding in the formation of disulfide bonds is described, 

taking BPTI as a model protein, and using targeted molecular dynamics (TMD)89 

simulation. Targeted MD is a great computational tool to study the conformational 

changes of starting structure to an assigned target structure with the application 

of time-dependent geometrical constraint, usually run at ordinary temperature.90 

As the process of conformational folding and disulfide bond formation are 

coupled to each other, the TMD simulation study on BPTI would give an 

opportunity to understand the mechanism of conformational changes and 

disulfide bond formation visually. 
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CHAPTER 2 

Objectives 

 The aims of my dissertation research are to synthesize aromatic thiols and 

their corresponding disulfides, and to investigate the folding of reduced BPTI 

using these compounds. 

2.1 Synthesis of different aromatic thiols and their corresponding 

disulfides for the study of folding of reduced BPTI 

 Four different QAS thiols and their corresponding disulfides as well as one 

sulfonic acid thiol and its disulfide will be prepared with the expectation that they 

will improve the efficiency and folding rate of reduced BPTI.  

2.2 Folding of reduced BPTI faster using different aromatic thiols and their 

corresponding disulfides 

 Three different aromatic thiols (PA, SA, and QAS) are used to fold 

reduced BPTI at physiological pH selecting different concentrations of the thiols 

and the corresponding disulfides to prepare the redox buffer. The best thiol in our 

folding study as well as the best condition will be determined and the results 

compared with the traditional folding buffer GSSG/GSH.  

2.3 Molecular dynamics (MD) simulation study of BPTI intermediates to 

understand the folding of BPTI at a molecular level  

 The molecular mechanism of the conformational changes at an atomistic 

level will be modeled. The software NAMD will be used for the simulation study 

and the software VMD will be used for visualization of the simulation. 
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CHAPTER 3 

Synthesis of aromatic thiols and corresponding disulfides 

3.1 Abstract 

The use of redox buffers containing an aromatic thiol and its 

corresponding disulfide were found to increase the in vitro folding rate of disulfide 

containing proteins compared to buffers composed of an aliphatic thiol and its 

corresponding disulfide. The increased folding rate with aromatic thiols at 

physiological pH, 7.3, is attributed to their lower thiol pKa values (4-7), greater 

nucleophilicity at neutral pH, and enhanced leaving group ability. Oxidative 

protein folding in the endoplasmic reticulum (ER) of a cell is aided by protein 

disulfide isomerase (PDI). The enzyme PDI contains two active sites each with a 

CXXC motif where one of the cysteine is buried and the other is solvent exposed 

and has a thiol pKa of 6.7. I synthesized five different aromatic thiols and their 

corresponding disulfides with expected pKa values close to the pKa of the 

solvent exposed thiol of PDI: Four positively charged quaternary ammonium salt 

thiols and their corresponding disulfides, and one negatively charged sulfonic 

acid thiol and its corresponding disulfide. The folding of reduced bovine 

pancreatic trypsin inhibitor (BPTI) was performed with a redox buffer composed 

of one positively charged thiol and its disulfide, and one negatively charged thiol 

and its disulfide. The results showed that the positively charged thiol folded 

reduced BPTI faster as compared to the traditional redox buffer composed of 

aliphatic thiol, glutathione (GSH), and its disulfide glutathione disulfide (GSSG). 

Although the negatively charged aromatic thiol and its disulfide were found to fold 
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reduced BPTI rapidly, the protein also precipitated. It is expected that the other 

positively charged thiols and their corresponding disulfides will also fold reduced 

BPTI more efficiently.  

3.2 Introduction 

The number, importance, and use of protein-based drugs are expected to 

increase dramatically over the next five years.91  The total number of protein 

based drugs approved worldwide is around 650.92 Out of these 650, about 400 of 

them are produced using recombinant DNA technology. An additional 1300 drugs 

are being developed.92 Almost all of these drugs contain disulfide bonds and a 

third of them are produced in E. coli. Overexpression of proteins in E. coli is 

efficient as large amounts of protein are rapidly produced. However, 

overexpressed disulfide-containing proteins tend to misfold and aggregate as 

inclusion bodies inside E. coli. The aggregated protein is then resolubilized and 

folded oxidatively in vitro to obtain active protein.8 Oxidative protein folding in 

vitro as well as in vivo involves the conformational folding of proteins combined 

with the oxidation of protein thiols to disulfides, and the reduction and 

rearrangement of protein disulfides.  During rearrangement  non-native disulfide 

bonds are rearranged to native disulfide bonds.42  

Oxidative protein folding has traditionally been performed with a redox 

buffer of glutathione (GSH) and glutathione disulfide (GSSG), as these aliphatic 

small molecules are found in the endoplasmic reticulum (ER) of eukaryotes 

where in vivo oxidative protein folding takes place.93 The slow step(s) in oxidative 

protein folding in vitro involve(s) thiol-disulfide interchange reactions. The thiol-
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disulfide interchange reactions during protein folding occur between protein 

thiol/disulfide and small molecule thiol/disulfide, where thiolate ion, deprotected 

thiol, attacks a disulfide. As the reaction goes through the nucleophilic 

substitution mechanism, the rate of the reaction depends on the concentration of 

the thiolate ion in the solution, which ultimately depends on the thiol pKa and the 

pH of a solution.38,94 In eukaryotic cells, thiol-disulfide interchange reactions are 

catalyzed by protein disulfide isomerase (PDI).31 One of the properties of PDI 

that is believed to be important for catalysis is a nucleophilic low pKa thiol in the 

active site. The PDI is effective but is expensive for in vitro oxidative protein 

folding since it needs to be added in almost stoichiometric amounts.32,44  

To improve in vitro protein folding, I sought to prepare small molecules 

with nucleophilic low pKa thiols similar to PDI. Aromatic thiols have thiol pKa 

values (pKa = 4-7) comparable to PDI and lower than those of aliphatic thiols, 

such as GSH (pKa = 8.7).48,95 In addition, aromatic thiols are more nucleophilic 

than aliphatic thiols with similar pKa values.96 Gough et al. demonstrated that a 

redox buffer composed of aromatic thiols and disulfides increased the folding rate 

of ribonuclease A 10 times in comparison to a redox buffer composed of GSH 

and GSSG.49 These redox buffers composed of small molecule disulfides and 

corresponding thiols, in variable concentrations, oxidize protein thiols to 

disulfides as well as rearrange mismatched non-native disulfide bonds within 

protein to native disulfide bonds.49  

Herein, four different quaternary ammonium salt (QAS) thiols 1-4 and their 

corresponding disulfides 5-8 (Figure 3.1), and the sulfonic acid (SA) thiol 9 and 
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its disulfide 10 (Figure 3.2) were synthesized. Compounds 1, 5, 9, and 10 were 

synthesized using previously reported methods50,97–99 and utilized for the folding 

of BPTI. The redox buffer, composed of QAS thiol 1 and its disulfide 5, folded 

reduced BPTI to about 90% completion within one hour without any indication of 

protein precipitation. The redox buffer, composed of SA thiol 9 and its disulfide 

10, folded reduced BPTI faster, but was found to be less suitable to be used as a 

redox buffer since it resulted in protein precipitation. Compounds 2-4 and 6-8 

were synthesized for the first time. 
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Figure 3.1. Quaternary ammonium salt (QAS) thiols 1-4 and their corresponding 
disulfides 5-8.  
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Figure 3.2. Sulfonic acid thiol 9 and its disulfide 10. 
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3.3 Results and discussion 

Four different quaternary ammonium thiols (1-4) and their corresponding 

disulfides (5-8), and one sulfonic acid thiol (9) and its disulfide (10) were 

synthesized. Disulfides were synthesized by dissolving the corresponding thiols 

in water and stirring in the presence of air until the disulfides were formed. The 

completion of disulfide formation was confirmed using Ellman’s reagent. 

Quaternary ammonium salt thiols with increased number of carbons in the side 

chain were selected, as thiol 1 had shown significant improvement in protein 

folding rates and yields.34,46 Increasing the hydrophobic side chain may result in 

thiols more likely to enter the hydrophobic core of proteins.  

3.3.1 Synthesis of quaternary ammonium salt thiol 1 

The QAS thiol 1 was synthesized as shown in scheme 3.1. To protect the 

SH group p-toluene thiol (11) and benzoyl chloride (12) were reacted in the 

presence of trimethylamine to form compound 13. The protected compound 13 

was then subjected to a radical bromination reaction with N-bromosuccinamide in 

the presence of light to provide bromide 14. Compound 14 reacted with 

trimethylamine to form QAS salt 15. The benzoyl protecting group was removed 

from 15 by refluxing 15 with 8% HBr.  

3.3.2 Synthesis of quaternary ammonium salt thiol 2 

The QAS thiol 2 was prepared following scheme 3.2. Benzyl bromide 14 

was reacted with b-mercaptoethanol in the presence of diisopropylethylamine 

(DIPEA) to form alcohol 16. Compound 16 was then reacted with carbon 

tetrachloride and triphenylphosphine to obtain bromide 17. Compound 17 was 
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reacted with trimethylamine and formed QAS salt 18. The benzoyl protecting 

group was removed from 18 by refluxing 18 with 8% HBr. 

Scheme 3.1. Synthesis of quaternary ammonium thiol 1 
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There were lots of challenges during the synthesis of 2. The first step was 

the formation of an alcohol. Initially, it was challenging to find the correct base 

that would initiate the reaction. Bases tried were potassium carbonate, potassium 

hydroxide, sodium carbonate, cesium carbonate, silver carbonate, sodium 

hydroxide, and DIPEA. Only potassium carbonate and DIPEA gave positive 

results, however DIPEA was selected as it gave the highest yield and was easy 

to dissolve. As the reaction should go through a SN2 mechanism, the polar 

aprotic solvent DMF was selected. There was also a regioselective issue. The 

thiolate from b-mercaptoethanol could attack either the benzylic carbon or the 
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carbonyl carbon forming two different products. The best ratio obtained was 1:1. 

Two different side products along with 42% of product were observed in the 

1HNMR spectra of the crude mixture. The proposed the following side products 

(Figure 3.3) based on the NMR.  

Scheme 3.2. Synthesis of elongated quaternary ammonium thiol 2 
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Figure 3.3. Side products of the first step in the preparation of compound 16. 
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The second step of formation of bromide 17 was attempted via the 

formation of the tosylate. The product was the chloride rather than the expected 

tosylate. The chlorinated compound did not react with trimethylamine so the 

reaction was proceeded with the Appel reaction.  

S OH

S Ph

O

S
O

O
Cl CH3

N

S Cl

S Ph

O
Chlorinated product16  

Figure 3.4. Tosylation of 16. 

3.3.3 Synthesis of quaternary ammonium salt thiol 3 

Benzyl bromide 14 was reacted with N,N-dimethylhexylamine (19) to form 

QAS salt 20. Compound 20 was refluxed for 35 h with 8% HBr to deprotect the 

benzoyl group and form QAS thiol 3, Scheme 3.3. 

Scheme 3.3. Synthesis of hexyl QAS thiol 3 
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Br
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S

N

O

Ph

Br
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N
Br

ethanol

stir, 6 h, 71%

8% HBr in H2O

reflux, 35 h, 97%

 14               19                                                 20                                           3  

3.3.4 Synthesis of quaternary ammonium salt thiol 4 

The formation of QAS thiol 4 is shown in scheme 3.4. Benzyl bromide 14 

was reacted with N,N-dimethyloctylamine (21) to form QAS salt 22. Compound 

22 on reflux with 48% HBr diluted with water for 35 h formed QAS thiol 4.  
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Scheme 3.4. Synthesis of octyl QAS thiol 4 
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3.3.5 Synthesis of sulfonic acid thiol 9 

Preparation of sulfonic acid thiol 9 is shown in scheme 3.5. The reaction 

was started by treating p-aminobenzenesulfonic acid (23) with diluted sodium 

carbonate. The resulting sodium salt of p-aminobenzenesulfonic acid (24) was 

treated with nitrous acid at low temperature forming diazonium salt (25). 

Compound 25 was then reacted with disodium disulfide which resulted in 

sodium-4,4¢-dithiobis(benzenesulfonate) (26). Compound 26 was run through an 

H+ ion exchange column to form the disulfide of sulfonic acid thiol (10). 

Compound 10 on treatment with triphenylphosphine in the presence of water 

provided sulfonic acid thiol 9. 

Scheme 3.5. Synthesis of sulfonic acid thiol 9 

S
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The following intermediates were not isolated but were formed during the 

synthetic pathway. Intermediate 10 was formed in between 26 and 9.  
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3.4 Experimental section 

3.4.1 Synthesis of 1-(4-(mercaptophenyl)-N,N,N-trimethylmethanaminium 

bromide (1) 

3.4.1.1 Synthesis of S-p-tolyl benzothiophenol (13)97 

In the 500-mL round bottom flask, 11.5 mL of benzoyl chloride (13.91 g, 

102.6 mmol), 2.39 g of p-toluene thiol (99.7 mmol), and 100 mL of ether were 

mixed. The mixture was stirred and cooled in an ice-water bath. Then 18 mL of 

triethylamine (13.07 g, 128.2 mmol) was added to an equal volume of ether (18 

mL) and the resulting solution was added dropwise to the above mixture via a 

dropping funnel over 30 min. The reaction mixture was subsequently left in the 

ice-water bath for 1.5 h and then allowed to warm to room temperature. The 

mixture was filtered and the solid washed with ether. The ether fractions were 

combined and dried with MgSO4. After rotary evaporation of the solvent, 19.00 g 

(83%) of the benzoyl derivative was obtained. 1H NMR (CDCl3, 400 MHz) δ 8.03 

(dd, J = 8.4, 1.2 Hz, 2H), 7.62 (tt, J = 7.6, 1.2 Hz, 1H), 7.50 – 7.46 (m, 2H), 7.42 

– 7.39 (m, 2H), 7.27 (d J = 8.0 Hz, 2H), 2.41 (s, 3H). 
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3.4.1.2 Synthesis of S-4-(bromomethyl)phenyl benzothiophenol (14)  

S-p-tolylbenzothiophenol (13) (10.16 g, 44.5 mmol) and N-

bromosuccinimide (7.97 g, 44.7 mmol) were mixed with deoxygenated benzene 

(63.5 mL). The reaction mixture was irradiated with a 250W GE heat lamp, which 

provided sufficient light energy to start reflux. After 30 min at reflux, the mixture 

was cooled to 0°C, filtered and concentrated under reduced pressure. The 

residue was partitioned between 300 mL of CH2Cl2 and 150 mL of water. The 

aqueous layer was washed with 125 mL of CH2Cl2. The combined organic layers 

were dried with MgSO4, filtered and concentrated. The solid was then 

recrystallized from hexanes to obtain 8.36 g (61%) of product. The product also 

contained 5% of S-4-(dibromomethyl)phenyl benzothiophenol. 1H NMR (CDCl3, 

400 MHz) δ 8.01 (dd, J = 8.4, 1.2 Hz, 2H), 7.66 – 7.60 (t, 1H), 7.54 – 7.46 (m, 

6H), 4.52 (s, 2H) 

3.4.1.3 Synthesis of 1-(4-(benzoylthio)phenyl)-N,N,N-

trimethylmethanaminium bromide (15)97 

Benzyl bromide (14) (25.0 g, 81.4 mmol) was added in a round-bottomed 

flask and cooled to 0°C. Trimethylamine (38.30 ml of a 33% solution in ethanol, 

213.8 mmol) was then quickly added to the round-bottomed flask and the 

resulting mixture was stirred for 10 min. The mixture was then concentrated 

under reduced pressure, and the residue was recrystallized from EtOAc/EtOH 

(95:5) to provide 17.1 g of quaternary ammonium salt (15), 57% yield. 1H NMR 

(CDCl3, 400 MHz) δ 7.97 (d, J = 7.6 Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H), 7.64 – 7.57 

(m, 3H), 7.48 (t, J = 8.0 Hz, 2H), 5.19 (s, 2H), 3.41 (s, 9H). 
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3.4.1.4 Synthesis of 1-(4-(mercaptophenyl)-N,N,N-trimethylmethanaminium 

bromide (1)50,97 

Quaternary ammonium salt (15) (1.86 g, 5.08 mmol) was dissolved in 6 

mL of HBr (48% w/v in water) and 30 mL of water. The mixture was then refluxed 

for 5 h. After cooling to 0°C, the mixture was filtered. The aqueous fraction was 

lyophilized several times by redissolving the residue in 10 mL of water each time. 

The quaternary ammonium salt thiol (1) was obtained quantitatively. 1H NMR 

(CD3OD, 400 MHz) δ 7.43 (s, 4H), 4.50 (s, 2H), 3.10 (s, 9H). 

3.4.2 Synthesis of 2-S-(4-mercapto)benzyl)-N,N,N-trimethylethanaminium 

bromide [extended QAS thiol] (2) 

3.4.2.1 Synthesis of 2-S-(4-(benzoylthio)benzyl)ethanol (16) 

Benzyl bromide (14) (0.77 g, 2.5 mmol), N,N-diisopropylethylamine (0.32 

g, 2.5 mmol), 2-mercaptoethanol (0.198 g, 2.5 mmol), and 10 mL of DMF were 

mixed in round-bottomed flask and stirred for 15 min. Next, 1 N HCl (100 mL) 

was added and the mixture was extracted with ethyl acetate (3 x 20 mL). The 

organic layers were combined, dried with MgSO4 and concentrated in vacuo. The 

residue was purified twice via silica gel chromatography using CH2Cl2: EtOAc 

(10:1) and then hexane: EtOAc: CH2Cl2 (3:1:1) as the eluent to provide alcohol 

(16) as a white solid, yield 0.282 g, 36%. 1H NMR (CDCl3, 400 MHz) δ 8.02 (dd, J 

= 8.0, 0.8 Hz, 2H), 7.61 (t, J = 7.6 Hz, 1H), 7.51 – 7.46 (m, 4H), 7.42 (d, J = 8.0 

Hz, 2H), 3.77 (s, 2H), 3.70 (t, J = 6.0 Hz, 2H), 2.66 (t, J = 6.0 Hz, 2H), 2.05 (brs, 

1H); 13C NMR (CDCl3, 100 MHz) δ 190.3, 139.9, 136.7, 135.4, 133.8, 129.9, 

128.9, 127.6, 126.2, 60.4, 35.5, 34.4. 
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3.4.2.2 Synthesis of 2-S-(4-(benzoylthio)benzyl)-1-bromoethane (17)100 

A mixture of an alcohol (16) (0.304 g, 1.0 mmol) and CBr4 (0.365 g, 1.1 

mmol) in CH2Cl2 (2 mL) was prepared in a 25-mL flask and cooled to 0°C. 

Triphenyl phosphine (0.289 g, 1.1 mmol) was added via a powder funnel in 

portions with vigorous stirring. Then, the mixture was stirred for 15 h at room 

temperature. The mixture was then concentrated in vacuo and the residue 

purified via silica gel chromagraphy with a mobile phase of hexane: EtOAc (3:1) 

to provide 0.28 g of bromide (17) as a white solid, yield 76%. 1H NMR 

(CD3COCD3, 400 MHz) δ 8.03 (dd, J = 8.4, 1.2 Hz, 2H), 7.73 (t, J = 7.6 Hz, 1H), 

7.60 (t, J = 8.0 Hz, 2H), 7.54 - 7.49 (m, 4H), 3.95 (s, 2H), 3.57 (t, J = 8.0 Hz, 2H), 

2.92 (t, J = 8.0 Hz, 2H); 13C NMR (CD3COCD3, 100 MHz), δ 189.8, 141.4, 137.5, 

136.1, 134.9, 130.7, 130.0, 128.1, 126.8, 35.8, 34.1, 31.6.  

3.4.2.3 Synthesis of 2-S-(4-(benzoylthio)benzyl)-N,N,N-

trimethylethanaminium bromide (18) 

Bromide 17 (0.28 g, 0.76 mmol) and 33% trimethyl amine in ethanol (0.41 

mL, 2.29 mmol) were mixed in a 25-mL flask. After 2 d at room temperature, the 

mixture was concentrated in vacuo and the residue was recrystallized from 

EtOAc: EtOH (95:1) to provide 0.246 g of crystals of elongated QAS salt (18), 

yield 75%. 1H NMR (CDCl3, 400 MHz) δ 7.98 (dd, J = 8.0, 0.8 Hz, 2H), 7.64 – 

7.59 (m, 3H), 7.51- 7.45 (m, 4H), 3.97 (s, 2H), 3.53 – 3.48 (m, 2H), 3.34 (s, 9H), 

2.89 – 2.85 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ 189.9, 138.7, 135.2, 134.8, 

133.0, 129.4, 127.9, 126.5, 125.5, 64.6, 52.4, 34.9, 22.8. 
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3.4.2.4 Synthesis of 2-S-(4-mercapto)benzyl)-N,N,N-trimethylethanaminium 

bromide (2) 

The quaternary ammonium salt (18) (1.08 g, 2.54 mmol) was dissolved in 

3 mL of 48% HBr and 15 mL of water. The mixture was refluxed for 4 h and then 

cooled to 0°C and filtered. The filtrate was then extraction with EtOAc (2 C 30 

mL). The aqueous fraction was lyophilized several times by redissolving the 

residue in 10 mL of water each time. The pure extended QAS thiol (2) was 

obtained quantitatively. 1H NMR (D2O, 400 MHz) δ 7.34 (dd, J = 15.2, 8.0 Hz, 

4H), 3.78 (s, 2H), 3.32-3.28 (m, 2H), 3.01 (s, 9H), 2.80-2.76 (m, 2H); 13C NMR 

(D2O, 100 MHz) δ 130.0, 129.9, 129.2, 128.5, 65.2. 52.8, 34.7, 22.7. 

3.4.2.5 Synthesis of 1,1¢-(4,4¢-disulfanediylbis(1,4-phenylene)bis(2-S-N,N,N-

trimethylethanaminium) bromide [Disulfide of extended QAS thiol] (6) 

The elongated QAS thiol (2) (0.0053 g, 0.016 mmol) was dissolved in 40 

mL of water and stirred rapidly in the presence of air. After a week, the solution 

was lyophilized to obtain the disulfide of elongated QAS thiol (6) quantitatively. 

1H NMR (D2O, 400 MHz) δ 7.57 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 3.80 

(s, 2H), 3.26-3.22 (m, 2H), 2.94 (s, 9H), 2.79-2.75 (m, 2H); 13C NMR (D2O, 100 

MHz) δ 137.4, 135.5, 13.0, 126.3, 65.2. 52.7, 34.9, 23.2. 

3.4.3 Synthesis of hexyl QAS thiol 

3.4.3.1 Synthesis of 1-(4-(benzoylthio)phenyl)-N,N-dimethyl-N-

hexylmethanaminium bromide (20) 

Benzyl bromide 14 (2.72 g, 8.87 mmol) and N,N-dimethylhexylamine (19) 

(1.54 mL, 8.84 mmol) were dissolved in 9 mL of ethanol and stirred for 6 h at 
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room temperature. The solvent was removed under reduced pressure and the 

residue was washed with EtOAc (2 C 20 mL) to provide 2.75 g (71%) of product. 

1H NMR (CDCl3, 400 MHz) δ 8.01 (dd, J = 8.4, 1.2 Hz, 2H), 7.79 (d, J = 8.0 Hz, 

2H), 7.66-7.60 (m, 3H), 7.50 (t, J = 8.0 Hz, 2H), 5.20 (s, 2H), 3.57-3.53 (m, 2H), 

3.31 (s, 6H), 1.82 (brs, 2H), 1.34-1.28 (m, 6H), 0.89 (t, J = 7.2 Hz, 3H); 13CNMR 

(CDCl3, 100 MHz) δ 189.2, 136.2, 135.5, 134.0, 133.9, 131.2, 128.8, 128.4, 

127.5, 66.7, 64.1, 49.7, 31.3, 25.9, 22.9, 22.4, 13.8. 

3.4.3.2 Synthesis of 1-(4-mercaptophenyl)-N,N-dimethyl-N-

hexylmethanaminium bromide (3) 

The quaternary ammonium salt 20 (2.75 g, 6.3 mmol) was mixed with 6 

mL of 48% HBr and 30 mL of water. The mixture was then refluxed for 35 h. The 

contents were cooled to room temperature. The mixture was then extracted with 

EtOAc (2 C 30 mL). The aqueous layer was then lyophilized.  The resulting 

residue was then repeatedly dissolved in water (10 mL) and lyophilized to 

provide 2.03 g of QAS thiol 3 as a white solid, 97% yield. 1H NMR (CD3OD, 400 

MHz) δ 7.42 (s, 4H), 4.49 (s, 2H), 3.33-3.29 (m, 2H), 3.01 (s, 6H), 1.87 (brs, 2H), 

1.39-1.37 (m, 6H), 0.96-0.92 (m, 3H); 13C NMR (CD3OD, 100 MHz) δ 138.2, 

134.6, 129.9, 125.3, 68.4, 65.8, 50.3, 32.4, 27.1, 23.6, 23.5, 14.3. 

3.4.4 Synthesis of octyl QAS thiol 

3.4.4.1 Synthesis of 1-(4-(benzoylthio)phenyl)-N,N-dimethyl-N-

octylmethanaminium bromide (22) 

Benzyl bromide 14 (2.73 g, 8.88 mmol) and N,N-dimethyloctylamine (21) 

(1.83 mL, 8.88 mmol) were dissolved in 9 mL of ethanol and stirred for 17 h at 
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room temperature. The solvent was removed in vacuo. The residue was washed 

with EtOAc (2 C 10 mL) to remove unreacted starting materials and provide 3.91 

g (95%) of product. 1H NMR (CDCl3, 400 MHz) δ 7.99 (d, J = 7.6 Hz, 2H), 7.79 

(d, J = 8.4 Hz, 2H), 7.65-7.57 (m, 3H), 7.49 (t, J = 8.0 Hz, 2H), 5.23 (s, 2H), 3.57-

3.53 (m, 2H), 3.31 (s, 6H), 1.81 (brs, 2H), 1.35-1.24 (m, 10H), 0.87 (t, J = 6.8 Hz, 

3H); 13C NMR (CDCl3, 100 MHz) δ 189.1, 136.2, 135.5, 134.0, 133.9, 131.2, 

128.8, 128.4, 127.5, 66.7, 64.1, 49.7, 31.6, 29.2, 29.0, 26.3, 22.9, 22.5, 14.0. 

3.4.4.2 Synthesis of 1-(4-mercaptophenyl)-N,N-dimethyl-N-

octylmethanaminium bromide (4) 

The quaternary ammonium salt 22 (3.24 g, 6.97 mmol) was mixed with 7.2 

mL of 48% HBr and 37.5 mL of water. The mixture was then refluxed for 35 h. 

The contents were cooled to room temperature. The mixture was then 

transferred to a seperatory funnel and extracted successively with EtOAc (3 C 40 

mL). The EtOAc layers were then back extracted with 20 mL of H2O. The 

combined aqueous layers were then lyophilized. Lyophilization was repeated 

several times by dissolving the residue in 10 mL of water each time. The QAS 

thiol (4) was obtained as a white solid producing 1.86 g, 74% yield. 1H NMR 

(CD3OD, 400 MHz) δ 7.42 (s, 4H), 4.49 (s, 2H), 3.33-3.28 (m, 2H), 3.01 (s, 6H), 

1.87 (brs, 2H), 1.40-1.32 (m, 10H), 0.93-0.89 (m, 3H); 13C NMR (CD3OD, 100 

MHz) δ 138.2, 134.6, 129.9, 125.3, 68.4, 65.8, 50.3, 32.9, 30.22, 30.21, 27.4, 

23.7, 23.6, 14.4. 
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3.4.5 Synthesis of 4-mercaptobenzene sulfonic acid (9) 

3.4.5.1 Preparation of sodium-4,4'-dithiobis(benzenesulfonate) (26)99 

p-Aminobenzenesulfonic acid (23) (47.5 g, 0.250 mol) and anhydrous 

Na3CO3 (13.25 g, 0.130 mol) were dissolved in water (500 mL) by warming. The 

solution was then cooled to 15°C. A solution of sodium nitrite (5 M) was prepared 

by adding NaNO2 (18.5 g, 0.250 mol) in water (50 mL) and added to the solution 

above. The mixture was then slowly added to a mixture of conc HCl (52.5 mL, 

0.640 mol) and 300 g of crushed ice. A suspension of diazo compound 25 was 

formed and then stirred for 15 min in an ice bath.  

Sodium sulfide nonahydrate (65.2 g, 0.270 mol) and powdered sulfur (8.50 

g, 0.270 mol) were dissolved in water (75 mL) by heating on a hot plate at 100°C. 

Then a 10% NaOH solution (10.0 g NaOH in 100 mL H2O) was added and the 

mixture was cooled to 0°C in an ice bath. Sodium disulfide was formed. The 

diazo solution was added to the disulfide solution over a period of 30 min, along 

with 50 g of ice to maintain the temperature below 5°C. After the addition was 

completed, the vessel was removed from the ice bath and allowed to come to 

room temperature. Once the evolution of nitrogen gas ceased, which took 2 h, 

the reaction mixture was acidified to pH 2 with conc HCl. The precipitated sulfur 

was removed by filtration and the filtrate was heated to remove hydrogen sulfide. 

The heating was continued until the volume reached ca. 500 mL. The solution 

was then cooled to room temperature and neutralized with 10% NaOH. The 

volume was concentrated to 400 mL. The precipitate was filtered off and the 

filtrate was kept overnight to provide crystallized sodium-4,4¢-
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dithiobis(benzenesulfonate) (26). The crystallized product was separated by 

filtration and recrystallized from 80% ethanol (650 mL) to provide 21.73 g of 26, 

yield 42%. 1H NMR (D2O, 400 MHz) d 7.73 (d, J = 8.0 Hz, 4H), 7.64 (d, J = 8.4 

Hz, 4H) 

3.4.5.2 Synthesis of 4-mercaptobenzene sulfonic acid (9)99 

Sodium-4,4¢-dithiobis(benzenesulfonate) (26) (4.22 g, 10 mmol) was 

dissolved in water and subjected to ion-exchange column chromatography (20 

mL of Dowex 50WC2-200 mesh, H-form) with water as eluent. The eluted acidic 

fractions (150 mL) were evaporated to 35 mL and freeze dried to provide sulfonic 

acid disulfide (10). The residue was dissolved in methanol (100 mL), and then 

triphenylphosphine (6.1 g, 23.3 mmol) and 2 mL of water were added. The 

mixture was stirred overnight at room temperature. The solution was then 

evaporated under reduced pressure. The residue was dissolved in CH2Cl2 (60 

mL) and extracted twice with water (100 mL then 50 mL). The aqueous layers 

were combined and washed with CH2Cl2 (4 C 50 mL). The aqueous layer was 

then freeze dried and the residue was recrystallized from benzene to give 1.56 g 

of 4-mercaptobenzenesulfonic acid (9) as pale yellow crystals, yield 83%. 1H 

NMR (D2O, 400 MHz) d 7.62 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H) 

3.5 Conclusion 

 We have developed and implemented efficient methods to successfully 

synthesize thiols 2-4 and their corresponding disulfides 6-8. The difficult step was 

the reaction of b-mercaptoethanol with benzyl bromide 14. During the preparation 
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of thiol 2, three products were formed which needed to be separated carefully 

using silica gel column chromatography. In addition, the thiols needed to be kept 

in the cold to prevent air oxidation, as this can occur easily if the thiols are 

dissolved in water and left at room temperature. The successful preparation of 

these thiols and disulfides will provide new opportunities for folding disulfide 

containing proteins.  
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CHAPTER 4 

Dramatic increase in the folding rate of Bovine Pancreatic Trypsin Inhibitor 

(BPTI) with the buffer composed of positively charged aromatic thiol and 

its corresponding disulfide. 

4.1 Abstract 

Many of the most important pharmaceuticals on the market today are 

proteins. A significant fraction of these proteins are produced in E. coli and need 

to be oxidatively folded in vitro to obtain active protein, as they contain disulfide 

bonds. The drawbacks of traditional oxidative protein folding in vitro are that it is 

slow and low yielding, due to protein precipitation. In vitro oxidative protein 

folding traditionally involves the use of a small molecule aliphatic thiol and 

disulfide, such as glutathione (GSH) and glutathione disulfide (GSSG), as a 

redox buffer to produce the active form of the protein. To improve oxidative 

protein folding, small molecule thiols and disulfides were proposed that mimic the 

nucleophilic low pKa thiol of protein disulfide isomerase (PDI) to fold proteins. 

PDI catalyzes the folding of disulfide containing proteins in the endoplasmic 

reticulum (ER) of eukaryotic cells. I demonstrated that aromatic thiols with 

positively charged groups improved the folding rate of a reduced protein relative 

to GSH/GSSG. The folding of BPTI was followed by reverse phase HPLC of 

samples obtained by quenching folding reactions at specific times with formic 

acid. More than 90% of native protein was obtained in an hour instead of the two 

days taken with GSH and GSSG. 
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4.2 Introduction 

Disulfide bonds play a vital role in stabilizing the biologically active form of 

numerous extracellular proteins and almost all pharmaceutically relevant 

proteins. Many of these proteins can be produced efficiently in bacteria; however, 

the proteins often aggregate as inactive inclusion bodies inside the cells. The 

advantage of expression of a protein in inclusion bodies is that they can be 

produced in large amounts, are easy to separate and are protected from 

proteolytic degradation.8 Formation of inclusion bodies may also be the best 

method of protein production if the protein of interest is toxic to the bacteria or 

host cell. To produce active protein, the protein within the inclusion bodies is re-

solubilized and then oxidized in vitro. The disadvantage of the formation of 

inclusion bodies is the need to refold the aggregated protein in vitro. Oxidative in 

vitro protein folding involves conformational folding combined with oxidation of 

protein thiols to native disulfide bonds. Formation of native disulfide bonds 

involves reduction of protein disulfides to thiols and rearrangement of non-native 

disulfide bonds to native disulfide bonds (Scheme 4.1).31 The reaction is highly 

important at it is also responsible during the enzymatic formation and breaking of 

disulfide binds in proteins.101 

Bovine pancreatic trypsin inhibitor (BPTI) with 58 amino acid residues is 

one of the smallest globular proteins known, and its sole function is to bind to and 

inhibit serine proteases such as trypsin. For example, BPTI can inhibit trypsin-like 

West Nile virus (WNV) NS2B-NS3 protease.102 Trypsin inhibitors usually have 

conserved cysteine residues that participate in forming disulfide bonds (Figure 
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1.10). Bovine pancreatic trypsin inhibitor (BPTI) has α-helical and β-sheet regions 

as well as three disulfide bonds between Cys5 - Cys55, Cys14 - Cys38 and 

Cys30 - Cys51, which stabilize the protein’s tertiary structure.52 Three disulfide 

bonds in 58 residues make BPTI one of the most stable proteins known. When 

all three disulfide bonds of BPTI are reduced at room temperature, the protein 

unfolds. Upon oxidation under suitable conditions, native BPTI with its unique set 

of three disulfide bonds is formed. 

Scheme 4.1. Intra- and intermolecular formation of disulfide bonds31 
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The folding pathway for BPTI is shown in the sketch (Figure 1.14), which 

is based on previous studies of BPTI folding using GSH/ GSSG. N' and N* are 

two disulfide-containing stable intermediates. N'(SG) and N*(SG) are singly 

mixed disulfide-containing intermediates formed when N' and N* react with 

glutathione disulfide, respectively. The intermediate N'(SG)2 is a doubly mixed 

disulfide formed when the free thiol of N'(SG) reacts with GSSG. NSH is a 

rearrangement product of N' and N* which undergoes oxidation to native protein. 

In vitro protein folding can be aided by the addition of protein disulfide 

isomerase (PDI), which is found in the endoplasmic reticulum (ER) and catalyzes 

in vivo protein folding via a series of thiol-disulfide interchange reactions.31 The 
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use of PDI for in vitro protein folding is not efficient due its high cost of 

production, low catalytic activity and instability.34 However, in vivo in the ER, the 

concentration of PDI is high. The design of small molecule thiols and disulfides 

that improve protein folding is based on PDI. PDI is composed of two active sites 

each consists of a CXXC motif required for its oxidoreductse activity where C is a 

cysteine residue and X is any other amino acid.31,49,103 In each active site, one 

cysteine thiol is exposed to solvent and other is buried in the hydrophobic core of 

PDI. The solvent exposed thiol in PDI can attack a substrate disulfide bond 

resulting in the formation of a mixed disulfide bond. The mixed disulfide bond can 

be attacked by another thiol to form a new disulfide bond with the release of PDI 

(Figure 4.1). The solvent exposed thiol has a low pKa value (6.7) and at neutral 

pH is very reactive with disulfides as compared to small molecule aliphatic 

thiols.48 Therefore, the synthesis of small molecule thiols with thiol pKa values 

similar to that of the solvent exposed thiol in PDI is likely to increase the rate of in 

vitro folding of disulfide-containing proteins. 
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Figure 4.1. Mechanism of PDI. 
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A redox buffer is composed of a small molecule disulfide and its 

corresponding thiol in variable concentrations. During protein folding, the small 

molecule disulfide oxidizes protein thiols to protein disulfides and the small 

molecule thiol rearranges non-native protein disulfide bonds to native disulfide 

bonds.49 Both processes are completed via thiol-disulfide interchange reactions 

between the protein and the small molecules. There are several different factors 

that make aromatic disulfides/thiols better redox buffer than aliphatic 

disulfides/thiols. Different types of aromatic thiols with corresponding disulfides 

are utilized to prepare a redox buffer. The thiol pKa values of aromatic thiols 

range from 4-7 which is close to pKa value of the solvent exposed thiol of PDI. 

Aromatic thiols with either electron releasing or electron withdrawing substituents 

at the para position are utilized. In addition, aromatic thiols show enhanced 

nucleophilicity at neutral pH and are better leaving group than aliphatic thiols. If 

the para substituent is charged, then the aromatic thiol should have improved 

water solubility. 

Historically, aliphatic thiols/disulfides such as GSH, GSSG and oxidized 

dithiothreitol (DTTox) were used for the oxidative folding of proteins. In vivo, GSH 

and GSSG reduce protein disulfides and oxidize cysteine thiols to disulfides 

respectively.93 Aliphatic thiols such as GSH, DDTred, β-mercaptoethanol, (±) 

trans-1, and 2-bis(mercaptoacetamido)cyclohexane (BMC) have thiol pKa values 

higher than 7.104 In comparison, aromatic thiols have a range of pKa values from 

4 to 7 and are more reactive towards disulfides than aliphatic thiols with 

comparable pKa values. Therefore, the thiol pKa value and enhanced reactivity 
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of aromatic thiols mimic the properties of PDI.49,95 Therefore, selective synthesis 

of small molecule aromatic thiols with nearly the same thiol pKa as that of the 

free thiol of PDI, which are soluble in water in both the thiol and disulfide forms, 

should enhance the reactivity of these small molecule aromatic thiols at pH 7 

relative to the traditionally used aliphatic thiol such as glutathione. 

Herein, I describe the dramatic increase in folding rate of reduced BPTI 

with a redox buffer composed of an aromatic thiol and its corresponding disulfide 

relative to the traditional folding buffer GSH/GSSG. Out of three aromatic thiols 

investigated, quaternary ammonium salt thiol and its corresponding disulfide was 

the best for folding reduced BPTI in comparison with GSH/GSSG where BPTI is 

folded to 90% native protein in 48 h with 5 mM GSH and 5 mM GSSG.42 The 

folding intermediates that accumulated during folding with aromatic thiols and 

their corresponding disulfides were not the same as those observed with 

GSH/GSSG (N' and N*).  

4.3 Results 

Three different p-substituted aromatic thiols 27, 9, 1 and their 

corresponding disulfides 28, 10, 5 were chosen for the preparation of redox 

buffers to fold reduced BPTI50,97–99,105 (Figure 4.2). These thiols and disulfides 

were selected as the pKa values of the thiols are charged at neutral pH to similar 

to the pKa value of solvent exposed thiol of PDI (6.7).106 These compounds 

enhance water solubility. Both positively and negatively charged thiols were 

selected to examine the effect of charge on protein folding at physiological pH. 
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The protein folding experiments with aromatic thiols and their 

corresponding disulfides were performed at pH 7.3 using 30 µM of reduced 

BPTI.107 Variable concentrations of disulfides and thiols were used for the 

preparation of the redox buffer along with 0.20 M KCl, 0.10 M bis-tris-propane, 

and 1 mM EDTA. The folding experiment was run at 25°C under argon.107,108 The 

reactions were quenched with formic acid at six different time points by removing 

300 µL aliquots from the reaction mixture at each time point.107 Each aliquot was 

analyzed by reverse phase HPLC.93 A pH of 7.3 was selected to mimic 

physiological conditions of protein folding and to compare the results with 

previously reported work.67,93,109 The curve of percentage native protein formed 

versus refolding time was plotted for every experiment performed and compared 

to other conditions. The highest percentage of native protein formed in the 

shortest time without observed protein precipitation was considered the best 

condition. Finally, the result was compared to the optimal conditions of the 

traditional folding buffer GSSG/GSH (5 mM/5 mM).42  
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Figure 4.2. Different aromatic thiols and their corresponding disulfides. 27: 
phosphonic acid thiol (PA); 28: phosphonic acid disulfide; 9: sulfonic acid thiol 
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(SA); 10: sulfonic acid disulfide; 1: quaternary ammonium salt thiol (QAS); 5: 
quaternary ammonium salt diuslfide.50,97–99,105 
 
4.3.1 Folding with negatively charged aromatic thiols and their 

corresponding disulfides  

Two different negatively charged aromatic thiols, phosphonic acid thiol 

(PA) 27 and sulfonic acid thiol (SA) 9, were selected to study the folding of 

reduced BPTI. Thiol 27 has two negative charges and thiol 9 has one negative 

charge. Initially, reaction mixtures were prepared by adding selected 

concentrations of thiol 27 and its disulfide 28 to the folding mixture containing 

reduced BPTI and bis-tris-propane buffer at pH 7.3. Two different concentrations 

of disulfide 28 were chosen, 0.09 and 0.25 mM. The folding experiment was first 

done using 0.09 mM disulfide 28 and 1 mM thiol 27. Protein precipitation was 

observed almost immediately after protein folding started, as the solution became 

cloudy. The precipitation was worse with higher concentrations of thiols.  

Next, the folding of reduced BPTI was investigated using aromatic thiol 9 

and its disulfide 10. For 0.09 mM disulfide 10 concentration, 1, 2, 5, and 10 mM 

thiol 9 were investigated and for 0.25 mM concentration of disulfide 10, 1, 2, 5, 

and 10 mM thiol 9 were investigated. A reaction mixture containing 0.25 mM of 

disulfide 10 in combination with 1 mM of the thiol 9 folded BPTI to 82% while a 

reaction mixture with 2 mM thiol achieved 91% in 6 h. With 5 mM and 10 mM 

thiol 9, more than 90% native protein was obtained within an hour. With thiol 9 

and 0.25 mM disulfide 10, all combinations of redox buffer precipitated protein. 

The concentration of disulfide 10 was reduced and used 0.125 mM to see if 
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protein precipitation was reduced. No precipitation was with 2 mM thiol 9 and 

folding was almost complete in 8 h forming 95% native BPTI. While with 5 mM 

thiol 9, 92% of native BPTI was formed in 4 h; however, protein precipitation was 

observed at about 6 h. The 1 mM thiol was not used as folding was slower with 2 

mM thiol and also the 10 mM thiol was not used as protein was precipitated with 

5 mM thiol. The concentration of the disulfide 10 was further reduced to 0.09 mM 

and used it in combination with 1, 2, 5, and 10 mM thiol 9. With 5 and 10 mM 

thiol 9 (Figure 4.3). The folding yield was higher with higher concentration of 

thiols and folding was faster too. 
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Figure 4.3. Folding of reduced BPTI with 0.09 mM disulfide 10 and different 
concentrations of thiol 9. 
 

The protein area obtained from the analysis is shown in Figure 4.4 which 

showed that 0.09 mM of disulfide 10 with all concentrations of thiol 9, areas of 

total protein is lower than the expected. However, 0.09 mM of disulfide 10 and 1 

mM of thiol 9, area of protein is very close to expected value, as there is no 

observed protein precipitation. Therefore, 0.09/1 mM disulfide/thiol combination 

is the best condition for these sets of experiments. The overall conclusion from 

Refolding 
time 
(min) 

1 
mM 

2 
mM 

5 
mM 

10 
mM 

15 10.7 16.2 36.0 47.1 
60 24.8 36.8 53.1 66.5 

120 58.0 72.0 82.0 92.1 
240 77.0 87.7 93.9 97.4 
360 90.0 93.5 96.2 98.3 
480 94.3 94.7 97.4 98.9 
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these folding experiments using negatively charged aromatic thiols and their 

corresponding disulfides was that the protein precipitates. Therefore, to fold basic 

proteins like BPTI faster and to obtain higher yield at shorter time, these thiols 

should not be considered. 

 

Figure 4.4. Total area of protein in different folding conditions with thiol 9 and 
disulfide 10. 
 
4.3.2 Folding with positively charged aromatic thiol 1 and its corresponding 

disulfide 5 

 It was proposed that a positively charged small molecule thiol would 

increase the net positive charge in the mixed disulfide or between the positively 

charged protein and small molecule and thus increase solubility. With negatively 

charged small molecules, the net charge of the mixed disulfide between the small 

molecule and positively charged protein is decreased. For this purpose, 

quaternary ammonium salt (QAS) thiol 1 and its disulfide 5 were used. Two 
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different disulfide concentrations, 0.09 mM and 0.25 mM, were first selected to 

optimize the condition. Eight different conditions of folding buffer were prepared 

using 0.09 and 0.25 mM disulfide 5 concentrations with 1, 2, 5, and 10 mM thiol 

1. The results are shown in the following Figures 4.5 and 4.6. With 1 mM thiol 1, 

90% folded protein was observed in 4 h. With 2 mM thiol 1, 95% folded protein 

was observed in 2 h. With 5 mM and 10 mM thiol 1, folding resulted in more than 

90% native protein in 1 h. In all these conditions, protein precipitation was not 

observed. Comparing these conditions, 0.25 mM of disulfide 5 with 5 and 10 mM 

of thiol 1 were our best conditions for folding reduced BPTI. In these 

experiments, the drawbacks of folding with QAS were the decrease of native 

protein percentage with higher thiol concentrations (Figures 4.5 and 4.6) and the 

increase in total protein area (Figure 4.7) with higher time points. Adventitious 

oxidation of thiol 1 was observed to be a problem at longer time points (Figure 

4.8). I hypothesized that this was the reason for the described drawbacks. 

Therefore, thiol oxidation needs to be controlled for better results.  

0 100 200 300 400 500
0

20

40

60

80

100

%
 N

at
iv

e 
pr

ot
ei

n

Refolding time (min)

  1 mM thiol
  2 mM thiol
  5 mM thiol
  10 mM thiol

 

Figure 4.5. Folding of reduced BPTI with 0.09 mM disulfide 5 and different 
concentrations of thiol 1. 
 

Refolding 
time 
(min) 

1 
mM 

2 
mM 

5 
mM 

10 
mM 

5 19.6 28.4 45.9 54.5 
15 34.4 47.7 73.0 76.5 
60 65.0 84.9 93.1 89.3 

120 81.4 95.2 93.0 92.4 
240 90.0 96.6 93.8 88.0 
480 95.6 96.2 90.7 86.9 
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Figure 4.6. Folding of reduced BPTI with 0.25 mM disulfide 5 and different 
concentrations of thiol 1. 
 

 

Figure 4.7. Total area of protein in different folding conditions with thiol 1 and 
disulfide 5.  
 

Two intermediates were seen during the analysis with retention times of 

38 min and 42 min, the amount of these intermediates decreased with the 

refolding time (Figures 4.9 and 4.10). These intermediates are promising for the 

determination of rate constants in the future. 

Refolding 
time 
(min) 

1 
mM 

2 
mM 

5 
mM 

10 
mM 

5 25.4 36.3 49.3 50.3 
15 42.8 59.7 72.7 74.6 
60 73.4 87.4 89.7 86.0 

120 88.6 94.6 91.2 95.7 
240 95.6 95.5 90.9 85.3 
480 95.0 95.1 90.6 85.9 
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Figure 4.8. Oxidation of thiol 1 in different folding conditions with thiol 1 and 
disulfide 5. 
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Figure 4.9. Prominent intermediate during folding of reduced BPTI with 0.25 mM 
disulfide 5 and thiol 1 at 38 min. 
 

Different experiments were performed to minimize the oxidation of thiol 1 

and to achieve a consistent protein area over different time points. When the 

reaction without protein was run, the oxidation of thiol 1 was observed, indicating 

poor quenching. The reaction with 5 mM thiol 1 only was also run and quenched 

with different concentrations of different acids and observed that 80 µL HCOOH 

was the best to quench the 300 µL reaction mixture (Figure 4.11).  
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Figure 4.10. Prominent intermediate during folding of reduced BPTI with 0.25 
mM disulfide 5 and thiol 1 at 42 min. 
 

 

Figure 4.11. Different quenching conditions. 

The experiments were performed by mixing protein, thiol, disulfide, water 

and buffer in different ways and found that mixing all components of folding 

mixture in an argon environment reduced thiol oxidation dramatically. The QAS 

reaction (0.25 mM disulfide 5 and different concentrations of thiol 1) was 

repeated again with 4 h as the last time point. All solutions were bubbled with 

argon before mixing and mixing itself was done with argon gas bubbling. The 

result is summarized in graphical form (Figure 4.12). 
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Figure 4.12. Folding of reduced BPTI with 0.25 mM disulfide 5 and different 
concentrations of thiol 1. 
 

Although the thiol oxidation was diminished, it was still observed that the 

total protein area was going up with higher time points. I proposed that the 

waiting time before the injection in HPLC was causing the increase in the total 

area of protein. Therefore, reactions were quenched at 5 min utilizing three 

different methods: analyzed by immediate injection, injection after few hours 

storing in ice bath, and inject next day storing at -20oC. It was found that total 

protein area in all samples had a close range of total area (Figure 4.13). In the 

previous experiments, where samples waited in the HPLC auto sampler for a 

long time before injection, the total protein area increased. However, the storage 

time for these samples were too long due to longer analysis time of HPLC which 

took 110 min for one sample. To minimize the storage time, the HPLC analysis 

time was decreased to 40 min by changing the HPLC gradient to 90% solvent A 

in 0 min and 60% solvent A in 40 min. Aliquots after quenching were stored at 

4oC before being injected into the HPLC. With the new program, the maximum 

waiting time was 2 h. 

Refolding 
time 
(min) 

1 
mM 

2 
mM 

5 
mM 

10 
mM 

5 21.2 34.3 46.6 56.0 
15 40.0 52.0 72.7 74.9 
30 54.7 68.2 86.5 91.4 
60 71.8 86.1 95.2 95.4 

120 87.8 94.9 95.4 95.5 
240 95.9 95.1 94.1 96.6 
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Figure 4.13. Analysis of total protein area with different storage methods. 

Then, folding reactions were run containing 0.25 mM disulfide 5 and 1, 2, 

5, and 10 mM thiol 1 concentrations to see the effect. It was observed that total 

protein area was consistent and almost no thiol oxidation was observed (Figure 

4.14). It was also observed that the native protein percentage was not going 

down with higher time points. It was concluded that the decrease in native protein 

percentage was because of the increase in total protein area with longer time 

points. The problem of decreasing native protein percentage was solved through 

the series of experiments. It was observed that reduced BPTI folds to more than 

90% native BPTI within an hour (Figure 4.15). Likewise, there was no protein 

precipitation with any concentrations of thiol 1 and disulfide 5. The observation 

showed that the protein’s total area was close to the area of native protein. It was 

concluded is that 0.25 mM disulfide 5 and 10 mM thiol 1 give the best results.  
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Figure 4.14. Total protein area in new HPLC method. 
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Figure 4.15. Folding of reduced BPTI with 0.25 mM disulfide 5 and different 
concentrations of thiol 1. 
 

The problem associated with new HPLC method was that the intermediate 

peaks were not well resolved. This did not cause any problem for the overall 

results because the focus was only on the folding yield of protein (Figures 4.16, 

4.17, 4.18, and 4.19). 

Then 10 mM thiol 1 was used and changed the disulfide 5 concentrations 

from 0.25 mM to 1 mM and 5 mM to see the effect. With 1 mM disulfide 5, the 

Refolding 
time 
(min) 

1 
mM 

2 
mM 

5 
mM 

10 
mM 

5 8.38 10.2 10.8 23.8 
15 16.4 29.8 25.9 53.3 
30 28.1 36.6 52.6 71.2 
60 45.5 60.2 70.7 90.0 

120 63.0 79.6 80.0 90.2 
240 75.4 86.0 86.0 92.2 
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result was very close to 0.25 mM, but with 5 mM disulfide concentration, the 

result was worse (Figure 4.20). 
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Figure 4.16. Chromatogram showing native protein and intermediates with 0.25 
mM disulfide 5 and 10 mM thiol 1. 
 

 

Figure 4.17. Chromatogram showing native protein and intermediates with 0.25 
mM disulfide 5 and 1 mM thiol 1. 
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Figure 4.18. Chromatogram showing native protein and intermediates with 0.25 
mM disulfide 5 and 2 mM thiol 1. 

 

Figure 4.19. Chromatogram showing native protein and intermediates with 0.25 
mM disulfide 5 and 5 mM thiol 1. 
 

Then the folding of BPTI was compared using QAS with that of 

GSSG/GSH. The results indicated that QAS is better than GSSG/GSH for folding 

reduced BPTI in terms of time and yield (Figure 4.21). 

From the folding results with reduced BPTI and positively charged 

aromatic thiol, QAS, and its corresponding disulfide, it was found that 0.25 mM 

QAS disulfide with 5 and 10 mM of its thiol as a redox buffer were the best 

conditions for BPTI folding. In this condition, BPTI can fold within 1 h to over 

90%. Therefore, the method improved significantly over the traditional method of 
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BPTI folding using GSSG/GSH, which needed 48 h to fold to 90%. To conclude, 

with the thiols that have negatively charged para-substituents, protein 

precipitation was observed resulting in the loss of protein. In addition, protein 

folding was slower than QAS. 
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Figure 4.20. Folding of reduced BPTI with 10 mM thiol 1 and different 
concentrations of disulfide 5. 
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Figure 4.21. Comparison of folding of reduced BPTI with our optimal condition 
(10 mM thiol 1 and 0.25 mM disulfide 5) with optimal condition of traditional buffer 
(5 mM GSH and 5 mM GSSG). 
 
4.4 Discussion 

Our hypothesis was that a redox buffer composed of aromatic thiol and 

the corresponding disulfide would fold protein faster than a redox buffer 
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composed of aliphatic thiol and the corresponding disulfide. To demonstrate the 

dramatic increase in the folding rate of reduced BPTI with a redox buffer 

composed of aromatic thiols and corresponding disulfides, three different 

aromatic thiols and corresponding disulfides were selected. The pKa of these 

thiols, their structure, and pH of the solution were considerefor the selection. 

Aromatic thiols have good nucleophilic character, and are better leaving groups 

than glutathione at physiological pH.94,110 Thiolates of aromatic thiols 27, 9, and 

1; and glutathione thiolate have approximately equal nucleophilic character, but 

at physiological pH, large proportions of glutathione (pKa = 8.7) is in its inactive 

thiol form while large proportions of aromatic thiols 27, 9, and 1 (pKa = 5.5-5.7) 

are in their thiolate form.48 Previous work showed that at neutral pH, the 

observed rate constant of the reaction with aromatic thiol is 6 times faster than 

glutathione, a small molecule aliphatic thiol, and its disulfide.49 Therefore, at pH 

7.3, thiolates of thiols 27, 9, and 1 are expected to react faster than glutathione. 

The leaving group ability of any thiol is inversely proportional to its pKa 

values.48,94 Hence, thiolates of 27, 9, and 1 are better leaving groups than 

glutathione as their pKa values are lower.  

During in vitro protein folding with a redox buffer containing small molecule 

aromatic thiols and disulfides, there are eight possible mechanisms of thiol-

disulfide interchange reactions, six of them are shown in scheme 4.2 where I-IV 

involves small molecules as a nucleophile and III-VI involve the small molecules 

as a central thiol.38,49 The thiolate from an aromatic thiol can attack a protein 

disulfide (reaction I), a small molecule disulfide (reaction IV), or a mixed disulfide 
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between the small molecule and protein (reaction II and III). In reactions, I-IV, 

these thiolates act as a nucleophile whereas in reactions, III-VI, the small 

molecule thiols act as a central thiol. In reaction V, the aromatic thiol acts as both 

a leaving group and a central thiol. Reactions I, III, V, and VI show a net change 

in protein disulfide bonds. Therefore, aromatic thiols are expected to involve in 

rate limiting steps in reactions I, III, V and VI. The rate constants for these 

reactions are expected to be greater than with glutathione. 

Scheme 4.2 Reactions of aromatic thiol as a nucleophile and/or central thiol in a 
redox buffer 

 

Reduced BPTI was folded using redox buffers composed of one of three 

different aromatic thiols, QAS, PA, or SA and its corresponding disulfide. It was 

determined that the redox buffer composed of the positively charged aromatic 
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thiol, QAS thiol, and its disulfide could fold reduced BPTI faster and more 

efficiently than redox buffers composed of negatively charged SA thiol/disulfide 

or PA thiol/disulfide. The decrease in the folding yield of native BPTI from 

reduced BPTI with a redox buffer composed of 27 and 28 or 9 and 10 was 

proposed to be due to the decrease in net positive charge of unfolded BPTI as 

these negatively charged small molecules form mixed disulfides with reduced 

BPTI and decrease the net positive charge of BPTI (Figure 4.22). The result is 

the formation of aggregation. Therefore, to increase in the folding yield of BPTI, a 

decrease in aggregation is required.111  

HS

SH

SH

HS

SH

HS

BPTI
+6

S

S

S

S

S

S

BPTI
+6

S

SO3

S
SO3

S

SO3
S

O3S

S
O3S

S

O3S

S

S

S

S

S

S

BPTI
+6

S

S

S
S

S

S

N

N

N
N

N

N

Net Charge  +6

Net Charge  0

Net Charge  +12

 

Figure 4.22. Effect of negatively and positively charged thiols on net charge of 
BPTI. 
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Positively charged quaternary ammonium thiol 1 and its disulfide 5 were 

used to prepare a redox buffer. The use of a positively charged thiol and disulfide 

will result in an increase in the net positive charge of reduced BPTI so that 

folding goes smoothly and rapidly. The results obtained from the folding of 

reduced BPTI using QAS thiol 1 and its disulfide 5 at pH 7.3 proved that a redox 

buffer composed of an aromatic thiol and corresponding disulfide increases the 

rate of folding dramatically relative to glutathione at their optimal conditions. Also, 

positively charged thiols and disulfides are better for BPTI folding. It is also 

noteworthy that thiols with lower pKa values undergo the thiol disulfide 

interchange reactions faster hence increasing the rate of formation of native 

protein at their optimal concentration. At higher thiol/disulfide concentrations, the 

folding rate of BPTI decreases.  

To conclude, folding of reduced BPTI increased dramatically in the 

presence of a redox buffer composed of positively charged aromatic thiol QAS 

and its corresponding disulfide as compared to traditional redox buffer composed 

of glutathione/glutathione disulfide. The folding with QAS thiol and its disulfide 

took about an hour to fold reduced BPTI to 90% while glutathione/glutathione 

took about 48 h to fold reduced BPTI to 90%. The optimal condition of QAS thiol 

was 10 mM and disulfide was 0.25 mM at pH 7.3. Use of thiols/disulfides with 

negatively and positively charged groups allowed us to understand their effect on 

protein precipitation. For BPTI, use of positively charged thiols/disulfides with 

pKa close to that of free thiol of PDI helps to fold BPTI rapidly in high yield. 

 



	 76	

4.5 Experimental section 

4.5.1 Materials  

The protein used for the folding study, BPTI, was purchased from Roche 

Applied Science under the trade name Aprotinin and was used to prepare 

reduced BPTI directly. Trizma base, guanidinium chloride (GdnHCl), bis-tris 

propane, EDTA, potassium chloride (KCl), dithiothreitol (DTT), GSH, and GSSG 

were purchased from Sigma-Aldrich. SephadexTM G-25 Fine was purchased from 

GE Healthcare and made wet for 24 h with 0.01 N HCl before packing the 

chromatographic column. Trifloroacetic acid (TFA) and acetonitrile (ACN) were 

HPLC grade and were purchased from Fischer Scientific. Concentrated 

hydrochloric acid was also purchased from Fischer scientific. Nanopure 

deionized water was prepared using a Branstead D3750 and was deoxygenated 

by bubbling argon for 30 min through it before using in each experiment. 

Aromatic thiols 27, 9, and 1 and their corresponding disulfides 28, 10, and 5 were 

prepared as described previously. The UV-Vis spectra were measured using a 

Cary 300 spectrophotometer. The HPLC analysis was performed on a Hitachi D-

7000 system, which was connected with a L-7400 UV-Vis detector and a column 

oven. The pH measurements were done using a VWR symphony SB20 pH meter 

which was calibrated before its use. BPTI was lyophilized using a Labconco 

FreeZone 2.5 L Benchtop freeze dryer. The columns used for reverse phase 

HPLC (RP-HPLC) were an Alltech Macrosphere C18 preparative column (250 ´ 

22 mm); a Vydac C18 semi-preparative column (250 ´ 10 mm); and a Vydac C18 

analytical column (250 ´ 4.6 mm). 
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4.5.2 Preparation of reduced BPTI 

Reduced BPTI was prepared from Aprotinin in Trizma buffer using 

reducing agents. The Trizma buffer was prepared by dissolving Trizma base, KCl 

and EDTA in deionized water. The pH of the buffer was adjusted to 8.7 using 

concentrated HCl. The solution was prepared on a 100 mL scale by maintaining 

the final concentration of Trizma as 0.01 M, KCl 0.20 M, and EDTA 1.0 mM. The 

reduction mixture was prepared in a 15 mL centrifuge tube using Trizma buffer in 

which GdnHCl and DTT were added. The volume of 10 mL was prepared by 

maintaining the final concentration of GdnHCl 6 M and DTT 0.05 M. The solution 

was equilibrated in 25°C water bath before its application. Aprotinin was added to 

the reduction mixture at a concentration of 6.5 mg/mL. The resulting mixture was 

kept at 25°C in a water bath for 1 h to reduce BPTI followed by the addition of 0.2 

N HCl to adjust the pH between 2-3 and quench the reduction. The reduced BPTI 

was then purified by gel filtration on a sephadex G-25 ccolumn using 0.01 N HCl 

as the mobile phase. The fractions were analyzed by a UV-Vis 

spectrophotometer at 280 nm. The fractions that contain reduced BPTI were 

combined and then lyophilized before further purification by HPLC. The dried 

reduced BPTI was then dissolved in 0.01 N HCl and purified by RP-HPLC on a 

C18 preparative column. The mobile phase used was a mixture of solvent A 

(0.1% TFA in water) and solvent B (90% acetonitrile with 0.1% TFA in water). 

The elution gradient used was 0 min, 90% solvent A; 20 min, 65% solvent A; 100 

min, 61% solvent A; 120 min, 50% solvent A with a flow rate of 5 mL/min. The 

fractions containing reduced BPTI were identified by absorbance at 280 nm. The 



	 78	

fractions were then further analyzed using a Vydac C18 analytical column by 

monitoring the absorbance at 229 nm. The flow rate of 1 mL/min was used with 

the elution gradient of 0 min, 90% solvent A; 15 min, 73% solvent A; 35 min, 71% 

solvent A; 50 min, 69% solvent A; 70 min, 65% solvent A. The pure reduced 

BPTI was then lyophilized and dissolved in 0.01 N HCl to prepare a stock 

solution of concentration 1 mg/mL. The stock solution was stored in -20°C before 

use.  

4.5.3 Oxidative folding of reduced BPTI 

To start a folding reaction, 1.5X folding buffer was first prepared. In 80 mL 

deionized water, 4.234 g of bis-tris propane, 2.236 g of potassium chloride (KCl), 

and 0.0558 g of EDTA were dissolved and the pH was adjusted to 7.3 with 

concentrated HCl. Then, deionized water was added until the volume was 100 

mL in a volumetric flask. The buffer was deoxygenated by passing argon gas 

through it for 30 min. The thiols and their corresponding disulfides were purified 

using a Vydac C18 semi-preparative HPLC column heated to 50°C before using 

them in a folding buffer. Injection of samples was done manually, 2 mL at a time, 

and a flow rate of 3 mL/min was utilized. The gradient used was 0 min, 90% 

solvent A; 15 min, 75% solvent A; 35 min, 73% solvent A; 50 min, 72% solvent A; 

100 min, 65% solvent A. The absorbance was monitored at 252 nm. Pure 

fractions of thiols and disulfides were collected, lyophilized, dissolved in 

deoxygenated buffer, and kept at -20°C before use. The final folding buffer for 

the reaction contains 0.10 M bis-tris propane, 0.20 M KCl, 1.0 mM EDTA, and 

indicated concentration of aromatic thiols and their corresponding disulfides. 
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Folding reactions were conducted under argon at 25°C. At each specific time, a 

300 μL aliquot was removed and quenched by the addition of formic acid. Initially 

20 μL formic acid was used but it was found from experiments done to improve 

folding efficiency that 80 μL formic acid quenched better than 20 μL, therefore, I 

used 80 μL in later experiments. Each aliquot was analyzed by RP-HPLC on a 

Vydac C18 analytical column. A flow rate of 1 mL/min was used. For the 

traditional HPLC analysis method, linear gradient was used: 0 min, 90% solvent 

A; 15 min, 75% solvent A; 35 min, 73% solvent A; 50 min, 72% solvent A; 110 

min, 70% solvent A. The absorbance was monitored at 229 nm and the column 

temperature was maintained at 50°C. All peak areas were summed and the total 

area was assigned a value of 100%. An improved HPLC analysis method was 

developed for the faster analysis of samples. The flow rate was 1 mL/min and 

elution gradient used was 0 min, 90% solvent A; 40 min 60% solvent A.  

4.6 Conclusion 

Folding of reduced BPTI was investigated using both negatively and 

positively charged aromatic thiols/disulfides. With the redox buffer composed of 

negatively charged thiols, phosphonic acid thiol and sulfonic acid thiol, and their 

corresponding disulfides BPTI was precipitated during folding. Therefore, the 

conclusion was that the negatively charged aromatic thiols and their 

corresponding disulfides are potentially poor folding agents for basic proteins. 

With the positively charged thiol, QAS, and its disulfide as the redox buffer, 

reduced BPTI was folded without precipitation and reached 90% native form 

within an hour. The area of native protein and total protein area were consistent 
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with no protein precipitation. The percentage of native protein in 1 h time point 

was highest with 10 mM thiol, and 0.25 mM QAS disulfide. 
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CHAPTER 5 

Targeted Molecular Dynamics (TMD) simulation study for conformational 

folding from the [5-55] like conformation to the native conformation of BPTI 

5.1 Abstract 

  Oxidative folding of extracellular proteins includes conformational folding 

and disulfide bond formation which are coupled to each other during the folding 

process until the formation of the native protein structure. Therefore, 

conformational changes of these secreted proteins during folding play an 

important role in the formation of native disulfide bond and to complete the 

folding process. Targeted molecular dynamics (TMD) was used to study the 

conformational changes and the formation of disulfide bonds in bovine pancreatic 

trypsin inhibitor (BPTI) as a model protein containing disulfide bonds. The initial 

structure was constructed with Cys5 and Cys55 close enough to form a disulfide 

bond but all other cysteines are far apart and not close enough to form disulfide 

bonds. The TMD simulations were carried out in two different ways and 

investigated the conformational changes during the simulation. The folding 

process and the formation of the native protein was studied using visual analysis, 

evolution of secondary structure, disulfide bond formation, RMSD calculation, 

radius of gyration, and hydrogen-bond formation. With the initial simulation, 

targeting all atoms of the initial structure, it was found that conformational 

changes played an important role in the formation of the disulfide bonds as seen 

for the decrease in distance of Cys14-Cys38 which was not observed until the 

last stage of the TMD. The formation of the kinetic traps N' and N* were not 
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observed during our initial simulations. The final native conformation was 

obtained once the correct antiparallel β-sheets and subsequent Cys14-Cys38 

distance came closer to form disulfide bond. In the second simulation, targeting 

only alpha carbons and sulfur of cysteines of the starting structure to the final 

structure, formation of native protein was achieved via the formation of N* 

followed by NSH. The Cys14-Cys38 distance was decreased to a value close to 

S-S distance value and observed increased many times until the final native 

structure was formed. 

5.2 Introduction 

Folding studies of disulfide containing proteins are significant because of 

the diseases associated with misfolded proteins containing disulfide bonds.112 

Experimentally, folding studies are performed by quenching the folding reaction 

at various stages and studying the formation of disulfide bonds.19,86 The 

conformational changes of these intermediates are difficult to determine with 

experimental procedures alone.113 Therefore, highly standardized computational 

methods are required to complement the experiments and understand the 

formation of disulfide bonds and protein folding.85,114 

Molecular Dynamics (MD) computational simulation is a valuable tool for 

investigating conformational changes of macromolecules because it can give 

atomic level details of conformational changes.115 Examples of TMD simulations 

used to study conformation changes include the conformational changes during 

the opening and closing of GroEL to unravel its ATP binding mechanism116, 

transition from open form to closed form of ion channels to understand their 



	 83	

function as a ion transport such as KcsA potassium ion channels117,118, and 

structural changes of the C-terminal domain (CTD) from α-form to β-form of 

RfaH.119 Targeted molecular dynamics (TMD) is a robust simulation tool used to 

examine the process of transition from one conformation to another at normal 

temperature, reducing the distance continuously to the target confirmation by 

applying time dependent geometrical constraint.120 During TMD, the root mean 

square distance (RMSD), which is a measure of physical distance between two 

structures, to the target is continuously reduced; the system forces initial state to 

find the path to final state; and the Cartesian distances between the 

conformations describes the progress of reaction.121 The RMSD between the 

current coordinates and the target structure is computed in every time step by 

aligning the target to the current coordinates. Reasons of calculating RMSD are 

to find out the time point when conformation changes and to define the folding 

procedure. The following equation is used to calculate the force on each atom. 

!"#$   = [ #$% &'() * -,-./ * ]$ ………………… . . (1)   

where, !"#$ %    is the instantaneous best-fit RMSD of the coordinates of simulated 

initial structure from the coordinates of targeted structure, and !"#$ %    is the 

linear distance from initial RMSD at the first TMD step to the final RMSD at the 

last TMD step.89 The symbol !   is the spring constant which is scaled down by the 

number !   of the targeted atoms. 

 Herein, the formation of disulfide bonded like intermediates along with the 

conformational changes was studied using bovine pancreatic trypsin inhibitor 

(BPTI) as a model protein, which contains 58 residues with three disulfide bonds. 
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Experimental work by Creighton86 on the renaturation of reduced BPTI showed 

that the non-native single-disulfide like intermediates were formed closing Cys5 

and Cys30, Cys30 and Cys55, and Cys5 and Cys51 in 1/4th of the total isolable 

intermediates. Later, Weissman and Kim reexamined the folding of the reduced 

BPTI65 using improvised techniques such as acid quenching (quenching 

technique) and reverse phase high-performance liquid chromatography (HPLC) 

(separation technique) and found that only the native-like disulfide bonds were 

present in the isolated intermediates. Simulation study using a lattice model85 

and theoretical study using proximity rule122 showed that non-native type disulfide 

bonds were formed transiently. However, only the intermediates with native type 

disulfide bonds were formed during the later stages of folding. 

 Targeted MD was used to study to see the effect of conformational 

changes in disulfide bond formation starting with the [5-55] like intermediate of 

BPTI, which is challenging to perform experimentally. The crystal structure of 

native BPTI was obtained from the protein data bank (PDB ID: 4PTI). The 

conformation was modified with pymol123  so that only the Cys5-Cys55 distance 

was close enough to form bond and all the other native Cys-Cys were far apart. 

Some important structural criteria (proximity and orientation of cysteine residues) 

of folding required by disulfide containing proteins were considered during the 

selection of the starting structure. Starting from the modified structure, TMD was 

performed, targeting the initial structure to the final native structure in explicit 

water. TMD was selected because it can provide important information on 

conformational changes and molecular motions that are hard to study in shorter 
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computational times.119 BPTI has been extensively used as a model system in 

many molecular dynamics simulation studies.80,124 However, to the best of our 

knowledge, our work represents the first investigation of the conformational 

changes in BPTI using TMD simulations. The conformational changes in BPTI 

during the folding was investigated and compared the results with previous MD 

simulations and experiments. 

5.3 Methods 

 The x-ray structure of native BPTI was obtained from the crystal structure 

of BPTI in the protein data bank (PDB ID: 4PTI). The starting structure containing 

all cysteine residues but without the presence of actual disulfide bond in the 

structure was constructed. Cysteine 5 and 55 were close enough in the model to 

form disulfide bond. All atoms were used during simulation. The change in the 

conformation of [5-55] to native structure was first simulated in explicit solvent 

with CHARMM36 force fields.125 

5.3.1 Molecular dynamics (MD) setup for equilibration and TMD 

 The initial, [5-55] like structure for running TMD was prepared from the 

native structure obtained from the protein data bank (PDB ID: 4PTI). By manually 

adjusting some of the dihedral angles, we obtained an open form structure from 

the native structure which still retains the secondary structural elements. The 

resulting protein structure was solvated in the rectangular box of water molecules 

having minimum solute-wall distance of 10 Å with TIP3 water. The system was 

neutralized by adding chloride ions using Monte-Carlo ion placing method. I 

added 0.15 M KCl which generated 30 positive and 36 negative ions. CHARM-
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GUI126 web-server was used for solvation and preparation of the input files 

needed for simulations. The dimension of the simulation box was 80×80×80 Å3 

with the total number of 34828 atoms in the system. Molecular dynamics (MD) 

simulations were performed with CHARM36125 force field using NAMD.127 The 

particle mesh Ewald method128 was used to calculate long range interactions 

using a 12 Å nonbonded cutoff. The energy minimization was done for 20 ps. 

The temperature of the system was maintained at 303.15 K using Langevin 

dynamics with a damping coefficient of 1 ps-1. The system was energy minimized 

for 20 ps and equilibrated for 180 ps with NPT run using 2 fs integration time 

step. The RATTLE and SETTLE algorithms were used to restrain protein bonds, 

and to maintain water geometry respectively. A 1 ns production run was 

performed, followed by a TMD run for 15 ns. A biasing force of force constant per 

atom of !"#$% = '
( =	  0.589 kcal/ (mol Å2) was used for the TMD simulation. 

5.4 Results and discussion 

The native structure of BPTI has two α-helix, two β-strand, and three 

disulfide bonds as shown in Figure 5.1. The first α-helix (H1 in the figure 5.1) has 

one and a half turns from Asp3 to Leu6 and is close to the N terminus. The 

second α-helix (H2 in the figure) has three turns from Ala48 to Gly56 and is close 

to the C terminus. The first β-strand (B1 in the figure) lies from Ile18 to Asn24 

and second β-strand (B2 in figure) lies from Leu29 to Tyr35. These two β-strands 

are anti-parallel to each other. Three disulfide bonds (5-55), (14-38), and (30-51) 

make the tertiary structure of BPTI stable by linking the secondary structures. 

The maximum dimension of native BPTI is 30 Å.59 
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Figure 5.1 Native structure of BPTI showing α-helices (in red), β-strands (in 
green), disulfide bonds (in yellow), and loops and turns (in blue).59,88 The crystal 
structure is taken from protein data bank (PDB ID: 4PTI). 
 

The topology of BPTI looks like a piece of string folded twice by itself as 

shown in Figure 5.2. This simplified structure indicates that the (5-55) disulfide 

bond joins the two terminal α-helices, the (14-38) disulfide bond joins the two β-

strands near the loose end of β-hairpins. The third disulfide bond (30-51) 

connects the three turn α-helix (H2) with the β-sheets; therefore, the compact 

native structure of BPTI is formed. 

5.4.1 TMD using all atoms 

5.4.1.1 Changes in structural configuration of BPTI during TMD 

The [5-55] like initial structure is an open form BPTI which has the rmsd of 

15 Å compared to the native structure. Targeted MD simulations of 5, 10, and 15 

ns length were performed and each resulted in the conversion of the [5-55] like 

initial structure to the native structure of BPTI. The process of conversion of the 
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one disulfide intermediate [5-55] to N is shown in Figure 5.3, where snapshots 

taken at various stages of structural transformation demonstrate the protein’s 

conformations at respective stages.  

(14-38)

(5-55)

(30-51)

N C

H1 H2

B2
B1

 

Figure 5.2 The secondary structure of BPTI with its three disulfide bonds.59,88 

0 ns 1 ns 5 ns3 ns 7 ns

9 ns 11 ns 13 ns 14 ns 15 ns
 

Figure 5.3 Snapshots of conformations formed at different stages of 
conformational changes during conformational folding of BPTI using TMD 
simulation. Sulfur atoms of cysteines are shown in yellow balls. 
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The graph of the evolution of the secondary structures as a function of 

time during the TMD simulation is shown below in Figure 5.4. We found that the 

residues 18-24 transforms from a coil/turn/loop-to a β-strand after 14 ns of 

simulation, which occurred after decreasing S-S distance of Cys30 and Cys51 to 

the value close to native bond. Similarly, for residues 28-36, and 44-46, in which 

turn/loop/coli-to-β-strand transitions were observed after decreasing S-S distance 

Cys30 and Cys51 close enough to form a bond (Figure 5.4). All other residues do 

not show secondary structure changes during the simulation. 

 

Figure 5.4 Evolution of secondary structure from TMD simulations of BPTI [(5-
55) to N]. 
 
5.4.1.2 Distance between CYS residues of the native disulfide bonds 

 With the use of TMD, the conversion of a single disulfide containing 

intermediate, [5-55] to native BPTI, [5-55, 14-38, 30-51], was achieved on a 15 
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ns time scale. Within 2.5 ns, the Cys30-Cys51 distance was decreased to 5.3 Å 

with from 21.5 Å in the starting structure. On the other hand, the Cys5-Cys55 

distance was increased to 11.3 Å within 2 ns from 3.73 Å in the starting structure. 

The Cys30-Cys51 distance was seen closing and then increasing multiple times 

before a compact structure of BPTI was obtained. Formation of compact native 

conformation was observed at the late stage of simulation. The Cys14-Cys38 

distance was decreased close to real S-S bond distance after the formation of 

NSH [5-55, 30-51] like conformation, which proved the experimental finding that 

NSH rearranges rapidly to N (Figure 5.5). 
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Figure 5.5 Distance between sulfur atoms in native disulfide bonds.  

5.4.1.3 Root mean square deviation during TMD  

The root mean square deviation (RMSD) was computed from the atomic 

trajectories for targeted MD run. The plot of the RMSD of all backbone and heavy 
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atoms in the TMD-simulated structure relative to the corresponding target 

structure is shown in Figure 5.6. The result showed that all backbone atoms and 

heavy atoms used in our TMD simulations reached the target structure within 15 

ns (with the accuracy of 1 Å). The initial RMSD of 8.7 Å at first trajectory 

continuously decreased to 1.12 Å at 3000th trajectory forming the native 

structure.  

 

Figure 5.6 Change in RMSD during TMD of BPTI. 

5.4.1.4 Analysis of intermediates with the change in radius of gyration 

The relationship between the conformational changes and the folding was 

studied by taking and analyzing snapshots of folding trajectories as depicted in 

Figure 5.7. The initial structure, with Cys5 and Cys55 distance close enough to 

form bond, had a radius of gyration (Rg) of 14.1 Å, was targeted to native 

structure as targeted MD simulation was started, and observed that Rg was 

reduced to 11.4 Å. The β-sheets and α-helices were already present in the initial 

structure. The folding was proceeded by crumpling up of the β-strands and 
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subsequent ordering. The folding was proceeded with the rearrangement of 

starting structure to a non-native conformation [51-55] followed by formation of 

[5-51]. During the process, Cys5-Cys55 distance was decreased and then 

increased time and forth which promoted to decrease the distance between 

Cys30 and Cys51. The distance of Cys30 and Cys51 was also seen decreasing 

and then increasing many times rearranging to some non-native like 

intermediates and compacting the structure of protein. The Cys5-Cys55 distance 

was decreased to form bond followed by the decrease in Cys30-Cys51 distance 

which lead to the formation of conformation of NSH. After the flipping of the Cys30 

and Cys51 residues, correct antiparallel β-strands formation took place followed 

by rapid closeness of Cys14-Cys38 distance leading to the compact structure of 

BPTI was observed. The most interesting observation during our simulation was 

the absence of N' and N* which were key intermediates formed during oxidative 

folding of BPTI. Once the antiparallel β-strands were seen formed correctly 

during the late stage of the simulation (after the decrease in Cys30-Cys51 

distance close to the bond real length), immediate decrease in the Cys14-Cys38 

distance was observed that ultimately led to the native structure of BPTI. An 

important observation here is that the structure of NSH is very close to the native 

form structure, and that Cys14-Cys38 distance is the last to come close enough 

to form a bond during the folding process of BPTI. The observations are 

consistent with experimental findings.   
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Figure 5.7 Folding trajectories demonstrating the BPTI folding pathway from [5-
55] conformation to folded native state. The curve shows the decrease in the 
radius of gyration (Rg) with respect to folding time. Some of the conformations of 
trajectory (a-j) were shown to show how Rg decreases along with the progress of 
folding.   

5.4.1.5 Analysis of the folding trajectories 

In folding trajectory analysis, the complete unfolding of a conformation of 

single disulfide intermediate, [5-55], was found followed by the formation of single 

non-native intermediate [51-55]. Then, [51-55] was rearranged to another non-

native like single disulfide intermediate [5-51]. The [5-51] intermediate was then 

rearranged to native single disulfide intermediate [30-51] which was found to be 

broken and formed several times. The decrease of Cys30-Cys51 distance for the 

last time flips one of the β-strand leaded the formation of native two-disulfide 
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intermediate NSH. The NSH was converted immediately to N due to the closeness 

of Cys14-Cys38 residues. Figure 5.8 demonstrates the transformation to target 

structure via the formation of different conformations.  

[51-55] [5-51]

[30-51][NSH][Native]

Initial structure

 

Figure 5.8 Snapshots of different conformations formed during TMD simulation of 
[5-55] like conformation of BPTI to native like BPTI. Sulfur atoms of cysteines are 
shown as yellow balls. 

5.4.2 TMD using Cα and sulfur of cysteines (SG) only 

5.4.2.1 Change in structural conformation during simulation 

The change in conformation of BPTI during TMD simulation is as shown in 

Figure 5.9 where the snapshots taken at different time points show the progress 

of conformational changes from initial structure to the target structure. The 15 ns 
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simulation targeting only Cα and SG atoms only was performed at this time as 

opposed to targeting all heavy atoms in previous simulation. The transformation 

to the native structure was achieved at around 13 ns simulation bringing 

cysteines close to that distance as found in native disulfide bonds. 

0 ns 1 ns 3 ns 5 ns 7 ns

9 ns 11 ns 13 ns 14 ns 15 ns
 

Figure 5.9 Snapshots of conformations formed at different stages of 
conformational changes during conformational folding of BPTI using TMD 
simulation. Sulfur atoms of cysteines are shown in yellow balls. 
 
5.4.2.2 Root mean square deviation analysis 

The root mean square deviation (RMSD) was computed from the atomic 

trajectories for TMD run. The plot of the RMSD of alpha carbons and sulfur of 

cysteine in the TMD-simulated structure relative to the corresponding target 

structure is shown in Figure 5.10. The result showed that TMD simulations 

reached the target structure within 15 ns. The initial RMSD of 8.70 Å at first 

trajectory continuously decreased to 1.17 Å at 3000th trajectory forming the native 
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structure which suggests that TMD successful to understand the conformational 

folding mechanism. 
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Figure 5.10 Change in RMSD during TMD. 

5.4.2.3 Distance analysis of native disulfide bonds 

 The formation of native BPTI [5-55, 14-38, 30-51] from the starting 

conformation [5-55] was achieved in 15 ns time scale. The Cys14-Cys38 

distance was seen closing and then increasing multiple times during simulation. 

Initially the Cys14-Cys38 distance was set 8.4 Å which was decreased to 3.4 Å 

within 2 ns. At the meantime, Cys5-Cys55 distance was increased to 12.3 Å with 

in 1 ns from 3.4 Å in the starting structure. The Cys30-Cys51 distance was 

sharply decreased to 8.4 Å from 20.1 Å of starting structure within 1.5 ns, then 

increased to 18.6 Å in 4 ns. It was then seen decreasing gradually. It was 

observed that Cys5-Cys55 and Cys14-Cys38 distances decreasing and then 

increasing multiple times to form a compact structure of BPTI. Formation of NSH 
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took place transiently at 13 ns followed by the formation of N which proved the 

experimental finding that NSH rearranges rapidly to N. Figure 5.11 shows the 

closing and increasing the Cys5-Cys55 and Cys14-Cys38 distances for bringing 

the Cys30 and Cys51 close to each other and for compacting the BPTI structure.   

2

6   

10

14

18

22

0														2														4															6														8														10												12												14

Di
st
an
ce
	(Å

)

Time	(ns)

14-38
5-55

30-51

 

Figure 5.11 Distance between sulfur atoms in native disulfide bonds.  

 Formation of few non-native intermediates were also observed in our 

simulation as shown in Figure 5.12. The first non-native intermediate [51-55] was 

supposed to form as Cys51-Cys55 distance was very small enough to form a 

bond. At around 8.5 ns, the Cys30 and Cys55 were very close, then were Cys5 

and Cys30. Rearrangement at this stage allowed formation of N* which 

rearranged to NSH for a very short time and immediately went to N.  
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Figure 5.12 Distance between cysteines during simulation. 

5.4.2.4 Analysis of intermediates with the change in radius of gyration 

The figure 5.13 shows the decrease in radius of gyration with folding time. 

The snapshots of folding trajectories (a-j) at various steps of folding shows how 

the folding of BPTI is related to the formation of disulfide bonds by considering of 

radius of gyration. The starting structure has a radius of gyration (Rg) of 13.6 Å 

which on TMD simulation reached the final native structure having Rg of 10.6 Å. 

As folding proceeded, the collapse and subsequent ordering of β-strands was 

observed. The folding was proceeded with the rearrangement of starting 

structure to non-native conformation [51-55] followed by [5-51]. The formation of 
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[14-38] was observed at about 2 ns.  During the process, Cys5-Cys55 and 

Cys14-Cys38 distances were decreased and then increased multiple times which 

helped to compact the structure and proceed towards the native like 

conformation. The Cys5 and Cys38 were seen very close at around 8.5 ns. The 

[5-30] non-native intermediate rearranges and compacts the structure of protein 

by forming native like two-disulfide intermediate N* at about 12.5 ns which further 

rearranges to another native like two-disulfide intermediate NSH transiently. 

The very native like conformation NSH has Cys5-Cys55 and Cys30-Cys51 

in the close proximity. The Cys14-Cys38 distance decreased immediately leading 

to native structure. In the present simulation, N* was formed and rearranged to 

NSH. Here too, Cys14-Cys38 distance was decreased after the formation of NSH 

which is important in the folding process of BPTI. Our finding from simulation is 

very close to the experimental findings.   

5.4.2.5 Analysis of trajectories 

The folding proceeded via the complete unfolding followed by immediate 

formation of non-native [51-55] intermediate which rearranged back to [5-55] but 

with different conformation which then rearranged to [14-38] intermediate. The 

Cys5-Cys55 and Cys14-Cys38 distances were decreasing and then increasing 

multiple times while the conformation is changing more towards the native one. 

Another single disulfide containing non-native intermediate [5-30] was observed 

which rearranged to N*. The N* intermediate was then rearranged to NSH. The 

decrease in Cys14-Cys38 distance was then observed bringing the stable 
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conformation of native BPTI. The pathway of transformation depicted in Figure 

5.14 showing the intermediate structures.      
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Figure 5.13 Folding trajectories demonstrating the BPTI folding pathway from [5-
55] conformation to folded native state. The curve shows the decrease in the 
radius of gyration (Rg) with respect to folding time. Some of the conformations of 
trajectory (a-j) were shown to show how Rg decreases along with the progress of 
folding. 
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Figure 5.14 Snapshots of different conformations formed during TMD simulation 
of [5-55] like conformation of BPTI to native like BPTI. Sulfur atoms of cysteines 
are shown as yellow balls.  

5.5 Conclusion 

The actual disulfide bonds were made absent during the preparation of 

input files for simulation for targeted MD. The role of disulfide bond in very 

important for the folding of BPTI resulting in the much better approach for the 

final native structure. Targeted MD was run for single domain for 15 ns. The 

presented TMD simulations were focused on orientation of cysteine residue for 

disulfide bond formation as a result of the conformational changes during the 

folding process. The formation of stable native structure at the end of simulation 

without the involvement of actual disulfide bonds in simulation proves that our 

model can be used for the study of conformational folding mechanism of disulfide 

containing protein. The variations of the radius of gyration (Rg) along with the 

folding trajectories analyzed to investigate the pathway of BPTI folding. 
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CHAPTER 6 

Conclusion 

 Folding of reduced BPTI was investigated oxidatively using three different 

aromatic thiols and their corresponding disulfides namely PA, SA, and QAS. The 

effect of charge(s) of the side chain group was also studied. The optimal folding 

condition using a redox buffer composed of QAS thiol and its disulfide was 

determined by plotting a graph of percentage of native protein formed versus 

refolding time for every condition selected and then comparing the graphs. 

Hence, an efficient folding method of reduced BPTI was determined and 

compared with the previously published results using GSH/GSSG. In best 

condition, the native form of BPTI was produced in over 90% yield in less than an 

hour while using GSH/GSSG under optimal condition, took 2 days to produce 

over 90% native protein. 

 As folding was most efficient using QAS thiol and its corresponding 

disulfide, it was sought to prepare different QAS thiols with more hydrophobic 

groups for further study. Three different QAS thiols (2, 3, and 4) and their 

corresponding disulfides (6, 7, and 8) were successfully prepared. The purity of 

these compounds was determined by nuclear magnetic spectroscopy and HPLC.  

 The folding of reduced BPTI was also studied by taking advantage of 

sophisticated computational programming methods developed to study molecular 

dynamics. Targeted molecular dynamics was used for our folding study. The 

folding process was studied in two different ways. In one method, all atoms of the 

initial structure were targeted to the target structure. It was seen that the correct 
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antiparallel β-sheets formation is required to form the (14-38) disulfide bond. The 

formation of N' [30-51; 14-38] and N* [5-55; 14-38] intermediates were not 

observed. The [5-55] intermediate rearranged to NSH [5-55; 30-51] after a series 

of thiol-disulfide interchange process simultaneously with the conformational 

folding. Almost at the end of simulation, flipping of one β-sheet allowed the 

protein to form NSH which immediately transformed to native protein as the (14-

38) disulfide bond was formed. In other method, only the α-carbons and sulfur 

atoms of the cysteine residues (SG) were targeted to the target structure. The 

study showed the formation and breaking of (14-38) bonds multiple times. The 

formation of native intermediate N* [5-55; 14-38] was observed followed by the 

formation of NSH [5-55; 30-51] transiently, which was transformed to native 

structure immediately. It was concluded from both of our studies that, 

conformational changes in the intermediate formed plays a crucial role to form 

disulfide bonds. 
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CHAPTER 7 

Future Works 

 Folding of BPTI was very successful using both experimental and 

computational methods. To further improve the folding rate and yield, the use of 

redox buffer made up of more hydrophobic QAS thiols 2, 3, and 4 and their 

corresponding disulfides 6, 7 and 8 is proposed. As the hydrophobicity increases, 

the pKa value decreases. It is expected that the pKa of these QAS thiols will be 

close to 7 hence folding will go more smoothly forming less intermediates. It is 

also expected that the yield will also increase even though the folding will go at a 

slower rate.  

The use of different computational methods is also proposed to investigate 

the folding process of reduced BPTI. Use of different shaped random structures 

of reduced BPTI and run simulations using different molecular dynamics is also 

suggested. One can mimic the oxidative folding conditions using computer 

programming so that better insight on the folding process can be found which will 

help experimentalists to think about setting up experiments in a different way. 
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