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ABSTRACT OF THE THESIS 

EFFECT OF ULTRASONIC TREATMENT ON THE MICROSTRUCTURE AND 

MECHANICAL PROPERTIES OF AL 6061 ALLOY AND COMPOSITES  

by 

Ana Exime 

Florida International University, 2017 

Miami, Florida 

Professor Arvind Agarwal, Co-Major Professor 

Professor Benjamin Boesl, Co-Major Professor 

 
In this study, the effect of ultrasonic treatment (UST) parameters such as amplitude, 

sonication time, and melt temperature on microstructure and microhardness of Al 6061 

alloy is evaluated.  The effect of UST on the dispersion of tungsten disulfide (WS2) and 

carbon nanotubes (CNT) as reinforcement particles in Al 6061 during casting is also 

studied. The cast Al 6061 with UST demonstrated 32% grain size reduction and 8% 

increase in the microhardness for optimum processing conditions.  The cavitation process 

induced by UST is responsible for the refinement in microstructure and increase of 

hardness by enhancing the degassing and nucleation process. UST treated 6061 Al alloy 

demonstrated Hall-Petch relationship for all processing conditions. The UST process also 

aids in excellent dispersion of WS2 and CNT as reinforcement particles. UST treated WS2 

and CNT reinforced Al 6061 composites displayed improved wear resistance as compared 

to samples without cavitation.   
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CHAPTER 1: Introduction 

The main objective of this study is to understand the effects of ultrasonic treatment 

and its parameters (i.e. amplitude, sonication time, and temperature of the melt) on the 

resultant microstructure of Al 6061 alloy. This research will focus on performing a 

parametric study of the ultrasonic treatment process to obtain optimal processing 

conditions for highest hardness and finest grain size in Al 6061 alloy.  The second objective 

is the dispersion of micron size particles in Al 6061 alloy using ultrasonic treatment to 

obtain metal matrix composites (MMC). The uniform dispersion of micron size particles 

in the metal matrix by casting method is still a major challenge [1]. In the present work, 

the introduction of ultrasonic treatment to the casting process of pure Al6061 and its 

composites has two major goals:  

(i) improvement of the mechanical properties of the material by introducing cavitation 

mechanisms, and  

(ii) providing a uniform distribution of micro particles for the development of metal matrix 

composites.  

Tungsten disulfide (WS2) and Carbon nanotubes (CNT), are known to serve as a solid-

lubricant with excellent wear resistance in MMC.  Thus, WS2 and CNT are selected as 

additive to 6061 Al alloy via ultrasonic cavitation.  

1.1. Significance of research 

Al6061 is one of the most widely used aluminum alloys in industrial and structural 

applications due to its physical and mechanical properties [2, 3]. Advantageous properties 
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of Al6061 such as low density, excellent wear resistance and corrosion resistance makes it 

suitable for aircraft and aerospace components, automobile and military industries [4-7]. 

However, the fact that the strength of aluminum is much lower than other metals such as 

steel limits its applications [5]. In order to overcome this limitation, grain refinement is one 

of the basic method to improve the mechanical properties. This correlation is 

mathematically expressed by Hall Petch’s relationship as shown in equation 1 

 𝐻 = 𝐻𝑂 + 𝐾ℎ𝐷−1/2          Eq. (1) 

where H is the hardness of the material, Ho is the resistances for dislocation movement, Kh 

is the strengthening coefficient and D is grain size in the microstructure [8]. In order to 

improve the hardness and yield strength of Al6061, thermal, chemical and mechanical 

methods have been implemented during the casting process [9-12]. Chemical method, is a 

widely used technique which consists of the addition of grain size refiners (impurities) to 

the melt. However, the use of grain size refiners is limited to some alloys, and its addition 

could result in the contamination of the melt. These impurities will decreases the 

performance of the cast metal [13-15]. To overcome these challenges, thermal and 

mechanical methods have been introduced to the casting processes. These methods could 

include control of the cooling rate, mechanical/magnetic stirring and ultrasonic treatments 

[9-12].  

The addition of ultrasonic treatment (UST) to the casting process has proven to result 

in the elimination of columnar dendritic structures, which are detrimental to the mechanical 

properties of the material [2, 11]. Dendritic structures act as stress concentrations and can 

be considered defects in the microstructure. UST promote the formation of globular grains, 

the grain refinement and uniform distribution of grains in the microstructure.  
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One of the major contributions of the present work is the enhancement of mechanical 

properties of Al6061 by understanding the effects of the UST parameters (i.e. amplitude, 

sonication time, melt temperature) on the resultant microstructure and the dispersion of 

micro particles during solidification. A few studies have briefly investigated the effects of 

UST on Al6061 [16, 17]. However, parametric studies on the influence of UST parameters 

on the casting process of Al6061 have never been studied and reported in the literature.  

The introduction of particles in the micron and nano scale to the aluminum matrix, such 

as Aluminum oxide (Al2O3), Silicon carbide (SiC), Boron Carbide (B4C) and Carbon 

nanotubes CNT [18-22], have demonstrated significant potential to develop composites 

with low density, enhanced mechanical strength and remarkable wear and abrasion 

resistances [20]. As a result, their processing has been extensively studied for aerospace, 

automobile and military defense applications [23]. Currently, processing techniques to 

manufacture aluminum matrix composites include the casting of the metal matrix and the 

subsequent introduction of micron and nano particles into the melt, followed by vigorous 

stirring for effective dispersion. However, the agglomeration of micro and nano sized 

particles due to their high surface energy presents a challenge to the conventional casting 

methods [18]. Thus, the introduction of ultrasonic cavitation provides a great alternative  

for the dispersion of fine particles in the molten metal. Several studies have reported that 

vibration-induced cavitation in the melt would be beneficial in the development of metal 

matrix composites [23, 24]. The strong energy released during the ultrasonic cavitation is 

capable of dispersing micro particle agglomerations during the casting of composites, 

which subsequently improves the wettability between the reinforcement and the matrix 

[17, 23, 24].  
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 Tungsten disulphide (WS2), a two dimensional layered material has exhibited a great 

potential as a reinforcement in aluminum alloy to serve as solid lubricant with enhanced 

wear resistance. Previous work by our group has demonstrated that the addition of 2 vol. 

% of WS2 in the aluminum matrix would result in 54% enhanced wear resistance as 

compared with pure aluminum [25]. This is attributed to the formation of tribochemical 

film in the worn surface and weak van der Waals interactions [25]. The main processing 

method for these composites is done via the powder metallurgy route [26, 27]. However, 

the defects generated during powder metallurgy processing are detrimental to the 

mechanical and tribological properties of the resulting composite [20].  

Carbon Nanotubes (CNT) exhibit properties such as high elastic modulus and tensile 

strength and high thermal and electrical conductivity which makes them ideal to be used 

as reinforcement for MMC. However, the dispersion of CNTs is always a challenge due to 

the Van der Waals forces and poor wettability of CNT with metals [21]. In the previous 

work by Yan et al., aluminum alloy (A356) with CNTs was fabricated by high intensity 

ultrasonic processing, resulting in an increase in the microhardness, ultimate tensile 

strength and yield strength by, 27.8%, 17%, and 29.2% respectively, as compared with the 

cast sample without CNTs [22]. Therefore, the introduction of UST will allow the uniform 

dispersion of the aforementioned particles in the metal matrix, minimizing excessive 

defects during casting. 

1.2. Research Objectives 

The overall objectives of this work are to improve the mechanical properties of Al6061 

by the introduction of ultrasonic treatment during casting process and the implementation 

of ultrasonic treatment as a dispersion technique for the development of composites.  
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The following reveals the approaches taken to meet the objective: 

 Parametric studies are carried out in order to determine the influence of ultrasonic 

processing parameters on the microstructure and mechanical properties of 6061 

aluminum. This is achieved by studying: 

o Variation in the ultrasonic amplitude: Amplitude has a direct relationship with 

the intensity of cavitation. The intensity of the cavitation will determine the 

amount of cavities collapsing during the cavitation process creating nuclei sites. 

Therefore, any change on amplitude will decrease or increase the amount of 

nuclei sites created, affecting the refinement of the microstructure.  

o Variation of duration of ultrasonic treatment: Ultrasonic treatment duration will 

determinate for how long the cavitation will be induced in the melt. Increasing 

the duration of the UST process will result in a larger amount of cavities 

collapsed, generating more nuclei sites for solidification.  

o Variation in the temperature of the melt during ultrasonic treatment: 

Temperature of the melt has an effect on the intensity of cavitation. The speed 

of sound travels faster in viscous and solid media. Therefore, at temperatures 

closer to melting point of the material will result in higher speed of sound. 

Speed of sound has a direct relationship with the intensity of cavitation. 

Therefore, any change on the speed of sound will decrease or increase the 

intensity of cavitation. 

The processing parameters are labeled “optimum” for the conditions resulting in finest 

grain size, highest hardness and least porosity. Optimal processing parameters for 
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ultrasonic treatment were used to achieve the second objective of this study, which is the 

Effective dispersion of reinforcement particles during the casting of 6061 aluminum for 

the creation of metal matrix composites.  

The organization of this thesis is as following. Chapter 2 will present a review of 

Al6061 alloy, ultrasonic treatment on molten metals, influences of variation of processing 

parameters and addition of micro particles. Chapter 3 discusses the materials and 

experimental methods used to study the influences of ultrasonic treatment on the 

microstructure of Al6061. Addition of micro particles for the creation of composites will 

also be described. Chapter 4 presents the experimental results and the discussion of the 

underlying science of the ultrasonic treatment. Chapter 5 presents the major conclusion of 

this work. Chapter 6 suggests recommendations for the further research in this area.  
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CHAPTER 2: Literature review 

This chapter will present a literature review of: (i) the fundamentals and physics of 

ultrasonic treatment, and (ii) previous studies of ultrasonic treatment of molten metals and 

manufacturing of metal matrix composites.  

2.1 Ultrasonic cavitation 

The first study on the application of mechanical vibrations and ultrasonic vibrations 

in the molten metals started in the 1870s, by Chernov [28]. His research introduces the 

concept of dynamic solidification, which improves the quality of cast metals by inducing 

vibrations during the solidification process.  Since then, extensive research has been done 

based on the dynamic solidification as a result of the addition of ultrasonic vibrations into 

molten metal [29].  

The introduction of ultrasonic vibrations to the casting process, also known as 

ultrasonic treatment (UST), induces acoustic waves (17-20 kHz) to the molten metals. The 

acoustic waves promote the compression and expansion of micro-bubbles, resulting in 

acoustic cavitation [30]. The acoustic cavitation is believed to be beneficial to the grain 

refinement by introducing a higher nucleation rate, reducing the porosity and aiding in the 

homogenization of the melt [31, 32]. The ramification of UST on enhancing the mechanical 

properties of the cast metal relies on the parameters such as melt temperature, amplitude 

and frequency of the wave, sonication time and power of the treatment [33, 34]. Ultrasonic 

treatment is also known to enhance the wettability between the metal matrix and the 

reinforced micro particles allowing to create a more uniform distribution of micro particles 

[35]. Hence, UST – induced dispersion has a great potential of replacing the conventional 



8 
 

powder metallurgy route of synthesizing metal matrix micro composites that involve 

inevitable defects during sintering process.  

2.1.1 Acoustic cavitation in liquid metals 

The cavitation in liquid metals has been studied by several researchers for the past 

years. First experimental study was performed on transparent media to understand the 

cavitation mechanisms in liquids. Observed cavitation mechanisms served to create 

possible analogies for non-transparent liquids like molten aluminum [13].  Acoustic 

spectrum of different liquid environments such as water, glycerin and molten aluminum 

have been reported in the literature [36]. Tzanakis et al. reported the acoustic spectrum of 

molten aluminum as being comparable with water, establishing that both of them share the 

same dynamic and fluid behavior [37].  In a similar manner, Eskin et al. in 2005 and Xu  et 

al. in 1998  demonstrated behavior of acoustic spectrum of water and molten aluminum 

respectively [38, 39].  

Acoustic waves are generated by the introduction of high frequency vibrations 

inside the molten metal. The propagation of such waves causes an increase in pressure 

inside the molten metal, also known as sound pressure. The acoustic cavitation appears 

once the sound pressure exceeds the cavitation threshold in the molten metal. The 

cavitation process consists an intense cyclic formation, growth and collapse of micro-

cavities inside molten metal. [13, 27, 40]. The cavitation threshold (𝑃𝐴) is a measure of the 

cavitation capability of the melt and can be estimated by measuring the sound spectrum 

and intensity. It is mathematically expressed as: 

 𝑃𝐴 =  √
2𝑊𝑎𝜌𝑜𝑐𝑜

𝑆
          Eq. (2)  
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Where Wa is the acoustic power, 𝜌𝑜𝑐𝑜 refers to the acoustic impedance of the pre-

cavitation liquid, and S is the sonotrode face area. 

During the cavitation process, the cavities collapse after 2 - 3 cycles, generating 

nuclei of degassing and solidification as well as new bubbles to continue the cavitation 

process as shown in Figure 2.1. In the process of bubbles collapsing, the release of energy 

generates a local increases of temperature up to 1000 oC and pressures of 10.000 MPa [41]. 

Three types of cavities are present in the melt during the cavitation process: (i) cavities that 

are full of gas and will only oscillate with the frequency applied, (ii) cavities that grow due 

to the diffusion of H2 gas dissolved in the melt, and (iii) cavities that are not fully filled of 

gas. Cavities of type (iii) will contribute to the cavitation process, collapsing after a 

compression and expansion cycle due to the effect of the acoustic waves [42]. 

 
Figure 2. 1 Schematic presentation of acoustic cavitation yielding energy release [41] 

 

2.1.1.1. Mechanism of acoustic cavitation and propagation of acoustic waves. 

The cavitation process in a molten metal is related to the wave propagation, length 

and intensity of the acoustic waves. The wave propagation is affected by the characteristics 

of the media where they are traveling: temperature, viscosity and density. Acoustic waves 

propagated in longitudinal direction make the liquid phase experience alternative regions 

of compression and expansion.  
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 The length (𝜆) and intensity (𝐼) of the acoustic wave can be estimated from equations (3) 

and (4) respectively  

𝐼 =   
1

2
𝜌𝑐(2𝜋𝑓𝐴)2          Eq. (3) 

𝜆 =  𝑐
𝑓⁄            Eq. (4) 

Where, 𝜌 is the density of the liquid metal, c represents the velocity of the wave 

propagating, 𝑓 is the frequency, and A is the amplitude. Intensity (𝐼) and wave length (𝜆) 

depend on the density of the melt and the velocity of the wave propagating which are 

affected by the temperature of the melt. This behavior is expressed by the following 

expressions:  

𝐶 = 4730 − 0.16(𝑇 − 𝑇𝑚)        Eq. (5) 

𝜌(𝑇) = 𝜌(𝑚) − 𝑘(𝑇 − 𝑇𝑚)         Eq. (6) 

Where, T is the processing temperature, 𝑇𝑚 the melting point of the material, 

similarly in Equation (6),  𝜌(𝑚) is the density at the melting point and 𝑘 is the thermal 

conductivity of the material.  

In addition, losses in oscillation energy will be experienced by the ultrasonic waves during 

their propagation through the melt. The intensity and the amplitude of an ultrasonic wave 

decreases exponentially with the propagation distance and this relationship can be related 

by equation (7) and (8) respectively: 

𝐼 =   𝐼0𝑒−2𝑘𝑥           Eq. (7) 

𝐴 =   𝐴0𝑒−𝑘𝑥           Eq. (8) 
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Where, 𝐼0  and 𝐴0 are the initial values of intensity and amplitude of the sonication 

source, k is the thermal conductivity of the melt, and x is the distance from the sonication 

source. These mathematical relationships allow a clear comparison of the influence of UST 

parameters such as temperature, amplitude and sonication time on the resulting cavitation 

in the molten metal, which in turn will affect the microstructure.  An increase in the 

amplitude of the UST creates larger number of collapsing micro-bubbles and subsequently, 

more numbers of solidification nuclei and refined grains.   

2.1.2 Effect of ultrasonic cavitation on mechanical properties 

Is well know that the acoustic cavitation developed by UST is beneficial to the 

mechanical properties of the material. Previous studies demonstrated that ultrasonic 

cavitation in molten metals result in grain refinement, reduction of columnar grain 

structures, homogenization of the microstructure and reduction in the porosity [17, 18]  

The effects of UST on the enhanced mechanical properties are twofold: 

(i) The numerous cavities formed due to the agitation from UST can serve as 

nucleation sites for solidification. Nucleation sites prevent the formation of 

dendritic structures which are detrimental to the mechanical properties [13, 

43].  

(ii)  The excess amount of nucleation sites result in a refined microstructure 

with smaller grains after solidification.  

Aluminum and magnesium alloys are the most studied materials for metallurgical 

application of UST due to the multiple industrial applications of these materials [17, 44]. 

Chen et al. reported significant (65%) grain refinement in magnesium alloy after applying 
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UST for 600 seconds during the casting process [44]. In a separate study, Eskin et al. 

reported 50% grain size reduction and the formation of non-dendritic structures in 

aluminum- silicon alloy by introduction of UST to the casting process [45]. Matsuda et al. 

and Jian et al. also grain refinement fragmentation of columnar structures and 

homogenization of the microstructures in aluminum alloys with the addition of UST [46, 

47]. Table 2.1 summarizes effect of ultrasonic treatment on aluminum and magnesium 

alloys.  

Table 2. 1 Ultrasonic treatment and outcomes of different metals. 

  Metal Parameters of UST Outcomes  Ref. 

Al 

Power: 400 W-1600 W  

[48,49] 

Amplitude: 20  μm * Grain size reduction 

Frequency: 20 KHz * Tensile strength and elongation 
increases 

Time:15-120 S *98.5% of densification with 
UST 

Volume: 375-700 ml   

Temperature: 635-720 °C   

Al-Si 

Alloy 
Power: 400 W-1600 W * Grain size reduction 

[45-47, 
50-53] 

AlSi9Cu3 Amplitude: 20-25  μm 
* Yield strength and tensile 

strength from increases 50% and 
480% respectively. 

Al20Si Frequency: 19-20 KHz 
* Density increases from alloys 

2.755g/cm3 without to 
2.764g/cm3 with UST 

Al12Si Time: 1-120 S * Degassing of the met from 15-
21% 

  Volume: 100-2000 ml   

  Temperature: 574-800 °C   

Al- Ti  

Power: 4000-5000 W * Reduction on the grain size 

[54,55] 
Amplitude: 25-40μm * UST enhance the wetting of 

Al2O3 particles 

Frequency: 19 KHz * Cavitation induce fragmentation 
mechanism from 730 to 680 oC 
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Time: N/S   

Volume: 520 ml   

Temperature: 690-810 °C   

Al-Mg 
Alloys 

Power: 100-360 W   

[56,57] 

Amplitude: N/S  μm   

Frequency: 20 KHz 
 * Average grain sizes were 

refined by UST. Reduction of 
grain size of approximated 15% 

Time: 10-300 S * Hardness of 117 ± 3.2  HV with 
30 S of UST  

Volume: 520 ml   

Temperature: 640-850 °C   

Mg 
Alloys 

Power: 600-1000 W * Average grain sizes were 
refined by UST. 

[44,58-
60] 

Amplitude: N/S  μm * Dendritic fragmentation. 

Frequency: 20 KHz 
* Equivalent diameter of Mg 

phases decreases from 125 to 98 
nm with UST 

       Time: 30-600 S 
* Tensile strength and elongation 

increases from 30% and 67% 
respectively 

Volume: 430-3000 ml   

Temperature: 650-680 °C   

 

2.2  Ultrasonic mixing processing 

Ultrasonic processing in the molten metals consists introduction of ultrasonic 

waves, usually with frequencies below the human range of hearing. Ultrasound sources, 

also called transducers were initially designed for low temperature applications up to 

480°C. At the moment, several companies such as Reltec (Russia), Alfalina (Russia) and 

Sonic Vibracell (USA), manufacture transducers for high temperature applications 

between 675 °C-775°C. However, these transducers are limited to their applications, as 

they require the addition of a cooling system for the transducer and small range of 
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frequency to work [13]. The efficiency of ultrasonic mixing processing is related to the 

characteristic of the ultrasound equipment used.  

2.2.1. Ultrasonic equipment 

The ultrasonic equipment is usually conformed by an ultrasonic power supply that 

converts the voltage into electrical energy (converter). This alternating voltage is applied 

to piezoelectric systems within the converter, generating vibrations due to the change of 

polarity. This longitudinal vibrations are passed to the probe to be amplified and 

consequently transmitted to the melt [61], as shown in figure 2.2. 

 

Figure 2. 2 Schematic of ultrasonic equipment. (1) Ultrasonic power Supply, (2) Converter, (3) 
Waveguide, (4) Sonotrode [54]. 

 

Equipment with different specifications have been used in previous studies [50-60] to 

introduce ultrasonic treatment in molten metals. Chen et al. studied the effect of ultrasonic 

treatment on the microstructural and mechanical properties of cast magnesium with an 
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ultrasonic system that comprised of generator of 1 kW of power integrated with two water-

cooling transducers. The probe was made of titanium with a 20 mm dimeter and 245 mm 

in length [44]. Forn et al. reported the use of a 2.5 kW power generator with a frequency 

of 20 kHz and a Titanium alloy probe to study the effect of ultrasound on the solidification 

process of an aluminum alloy [62]. Tzanakis et al. reported the use of an ultrasonic 

equipment with a 5 kW generator, with a water cooler transducer and a 20 mm niobium 

probe for the characterization of the ultrasonic acoustic spectrum and pressure field in 

aluminum melt [37]. 

2.2.2. Waveguide and Sonotrode 

The system involving transmittance of the vibration from the transducer to the melt is 

integrated by a waveguide, a booster and the sonotrode. These components need to be 

designed in such a way that all of them resonate at the same frequency of the transducer 

and achieve the required amplitude. To assure that each of the element’s wavelength and 

sonotrode will be in resonance with the frequency of the transducer each element is 

required to have the length equal to half of the wavelength of the wave that is propagating 

in the melt [13]. 

Ultrasonic sonotrodes, sometimes referred as probes or horns, are one half wavelength 

long tools that amplified and transmit to the melt the vibrations generated by the converter. 

The sonotrode is specially designed to resonate at a specific frequency. The dimensions of 

the sonotrode is the most important characteristic to ensure the correct operation. 

Sonotrodes are typically fabricated from titanium alloy (TI-6Al-4V) or niobium, due to its 

resistances to cavitation erosion, low toxicity, resistance to corrosion and high tensile 
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strength. For high temperature applications titanium and niobium are the best options 

because of the higher melting point of them [61]. In addition, sonotrodes are fabricated in 

different shapes and diameters. Conical, cylindrical and disc are me most common ones.  

2.3 Ultrasonic Degassing  

The degassing process is related to the concentration of the gas dissolved in the molten 

metal. The concentration of gas dissolved is usually affected by the temperature of the melt, 

vapor pressure and limit solubility. Hydrogen is one of the most common gases dissolved 

in liquid metals, due to its ability to go through the interface between the melt and the 

atmosphere. The solubility of hydrogen during the solidification process of aluminum 

reduces by approximately half as compared to its solubility during liquid state of the 

aluminum. As a result, this reduction in the solubility, forces hydrogen to precipitate and 

get trapped between solid dendrites generating porosity [13].  

Ultrasonic degassing is an effective solution to remove H2 from the melt. Once the UST 

is applied, cavitation and degassing processes happen simultaneously inside the melt. The 

UST accelerates the growth of the H2 bubbles, due to the rapid diffusion of H2 from the 

melt to the bubbles. These bubbles quickly reach the required size to move to the top of the 

melt and are able to escape [63].  Reduction of two or more times in the content of hydrogen 

in molten metals by ultrasonic degassing has been reported in literature which is 

comparable with commercial degassing techniques such as vacuum processing [63].  

Ultrasonic degassing eliminates the excess of hydrogen (H2) in the melt, leading to 

reduction of the porosity benefiting the densification of the resulting material [13]. 
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The degassing process can be divided into three stages: It begins with the formation of 

cavities from the gaseous products around non-metallic inclusions in the melt. Followed 

by the growth of cavities due to the diffusion of H2 from the melt into the cavities. Finally, 

the migration of large cavities to the surface of the melt occurs. In addition, cavities formed 

near the ultrasonic sonotrode escape from the melt immediately along with surrounding 

dissolved gases as a result to the high intensity of the ultrasonic waves, as shown in figure 

2.3 [36, 37]. 

 
Figure 2. 3 Schematic of ultrasonic degassing. (1) Formation of cavities, (2) growth of cavities 
due to the diffusion of H2 from the melt, (3) the migration of large cavities to the surface of the 

melt. 

2.4 Microstructure Refinement 

For the refinement of microstructures the addition of grain size refiners (impurities) to 

the melt is one of the most common method reported in literature.  However, the use of 

grain size refiners is limited to some alloys, and its addition could result in the 

contamination of the melt as they may remain as impurities. As a consequence, these 

impurities will decrease the performance of the cast metal [14-16]. To overcome these 

challenges, thermal and mechanical methods have been introduced to the casting processes. 
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These methods could include the control of the cooling rate, mechanical/magnetic stirring 

and ultrasonic treatments [10-13]. 

The grain refinement of the cast metal with the addition of UST is controlled by the 

development of acoustic cavitation in the melt. As shown in Figure 2.4, the acoustic 

cavitation is believed to lead to an increase in the nucleation rate, enhancing dendrite 

fragmentation, reducing the porosity and homogenizing the melt. 

 
Figure 2. 4 (1) Resulting microstructure without UST, (2) Representation of added nuclei sites in 

the microstructure, (3) Resulting microstructure after introduction of UST in the melt 

The relationship between the grain refinement and the amplitude can be ascribed as:   

𝐷𝑔𝑟 = 5.6 (
𝐷𝑍𝑇𝑛

𝑣𝑄
) +

1

√𝑓(𝐴)𝑁𝑉
3

 
                   Eq. (9) 

Where 𝐷𝑍 is the diffusion coefficient of solute in the melt, 𝑇𝑛 is the incremental 

amount of undercooling required to activate the next nucleation ahead of the solidification 

front, 𝑣 is the growth rate of the solid-liquid interface, Q is the growth restriction factor, A 

is amplitude and 𝑁𝑉 in the number density of nucleation sites [13]. 

2.4.1. Mechanism of Grain Refinement by UST 

Grain refinement induced by UST is attributed to two mechanisms:  
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(i) Heterogeneous nucleation: The addition of ultrasonic treatment to the melting 

process introduces cavitation, leading to the formation of numerous tiny cavities. This 

cavities expand and collapse at a fast rate during the cavitation process stimulating 

heterogeneous nucleation in the melt [64]. The heterogeneous nucleation is enhanced as a 

result to the three mechanisms present during the cavitation process: (a) all molten metals 

have nonmetallic inclusion such as oxides and carbides, during the cavitation process 

gaseous phases present in the surface of these inclusions are removed. This process results 

in the wetting of inclusion particles generating more nucleation sites for solidification [46]. 

(b) With the collapsing of the cavities, a high release of energy occurs into the melt 

increasing the temperature. An increase of melting temperature leads to higher cooling 

rates enhancing nucleation. Finally, (c) higher cooling rates are experienced at the surface 

of the collapsing cavities serving as additional nucleation sites. During the expansion state 

of the cavities, the gas inside of them also expand promoting undercooling on the surface 

of the cavity resulting in the formation of nuclei sites [65]. 

 Grain refinement due to heterogeneous nucleation has been reported by several 

researches on different metals. Eskin et al., Faraji et al. and Xin-tao et al., studied this 

phenomena and concluded that addition of UST to the melting process enhances 

heterogeneous nucleation and increases the number of nuclei sites in the solidification 

front. This leads to refinement of the microstructure [66-68].  
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(ii)  Dendrite fragmentation: UST is capable of breaking dendritic structures due to the 

strong shock waves generated during the process [13]. Shock waves promote high 

temperature and strong jets of pressure into the melt inducing breakage of dendrites [13]. 

Zhang et al. report dendritic fragmentation due to acoustic cavitation, considering this as 

the main reason for grain refinement [69].  

Combining these two mechanism Jian et al. studied the effect of ultrasound on 

solidification of aluminum A356 alloy. As a result, grain refinement observed as a result 

to the introduction of acoustic cavitation was mainly dominated by the heterogeneous 

nucleation as compared to the dendritic fragmentation. 

Also non-dendritic structures have been reported due to the effect of UST. Non-

dendritic structures are characterized by globular grains with no dendritic branches. The 

condition for the formation of non-dendritic structures are accelerated nucleation and 

excess amount of solidification sites. During the UST all these conditions are satisfied. 

Eskin et al. reported the presence of non-dendritic structures in the microstructures of 

aluminum alloys after the introduction of UST during the casting process [63] 

2.4.1.1. Heat flow during solidification 

Heat flow during the solidification process contributes to the reduction of the grain size 

in the microstructure. The microstructure after solidification for a pure metal, an alloy or 

any metal with UST will be different as shown in Figure 2.5.   In a pure metal, heterogonous 

nucleation begins on the walls of the crucible with smaller grains. This behavior results 

from the heat being dissipated rapidly through the wall of the crucible. However, in the 
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middle of the melt columnar zones will be created due to the slow cooling rate experienced 

in that area. 

 
Figure 2. 5 (A) Microstructure of pure metal, (B) microstructure of an alloy and (C) 

microstructure of a metal after UST [70]. 

 

For metal alloys heterogeneous nucleation, occurs in the walls of the crucible and also 

within the melt due to the presence of secondary phases. The presence of secondary phase 

leads to the possibility of an equiaxed zone in the central part of the microstructure. 

However, columnar grains will also be present. The accelerated cooling rates experienced 

by the melt as a result of UST, in combination with the increasing heterogeneous 

nucleation, contribute to smaller grains in all the microstructure [70].  

 

2.4.1.2. Grain size reduction (Hall-Petch relationship) 

The basic principle behind the improvement of the mechanical properties is the 

grain refinement of the microstructure. This improvement is mathematically expressed by 

Hall Petch’s relationship, where a smaller grain size will result in higher resistance to 

dislocation movement and plastic deformation (Equation 1) [71].  



22 
 

However, it has been reported in literature that for values of grains lower than 20-

30 nm the yield stress of the material decreases as shown in Figure 2.6. For grains lower 

than 1 µm, the size of the dislocation is almost the same as the grain, resulting in the 

obstruction of dislocation pileup leading to grain boundary diffusion. The lattice is forced 

to diffuse the stress applied by sliding grain boundaries, and this sliding is the reason for 

the decrease of the yield stress [72].  

 
Figure 2. 6 Schematic diagram showing strength as a function of grain size [72].  

 

2.5 Addition and dispersion of reinforcements particles to Aluminum, 

The introduction of particles in the micron and nano scale to the aluminum matrix, 

such as Aluminum oxide (Al2O3), Silicon carbide (SiC), Boron Carbide (B4C) and Carbon 

nanotubes CNT[19-22], have demonstrated potential to develop metal matrix composites 

(MMC) with low density, enhanced mechanical strength and remarkable wear and abrasion 

resistances.[20]. As a result, their processing has been extensively studied for aerospace, 

automobile and military defense applications [23]. 
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The most common metals used to fabricate MMC are aluminum and magnesium 

due to their vast industrial applications. Several methods for the manufacturing of 

aluminum matrix composites have been reported in literature [17-18]. Stir casting, high 

energy ball milling, powder metallurgy and spray deposition are the most common methods 

used for manufacturing aluminum MMC [17, 73-76].  Poor wettability and agglomeration 

of the reinforcement particles are the main limitation of these techniques [13].  

The incorporation of solid particles into molten metal requires an exchange between 

the solid-gas interfaces in the particle to a solid-liquid interface interaction in the molten 

metal, leading to the activation of the particle in the melt. [77, 78]. The combination of 

high surface energy and poor wettability of reinforcing particles result in a not uniform 

distribution on the microstructure. This behavior is attributed to process experienced during 

the solidification where the particles are pushed to the intergranular and inter dendritic 

zones of the matrix due to the advance of the solidification front [79, 80]. 

To overcome these challenges, UST has been implemented as a technique to 

manufacture MMCs. Several studies revealed that during the UST process, the acoustic 

waves increased the pressure inside the molten metal leading to the formation of cavities. 

These cavities will go through a compression and expansion cycle until they finally 

collapse resulting in a high release of energy as shown on Figure 2.7 [81]. This release of 

energy generates a local increase of temperature up to 1000 oC and pressures of 10.000 

MPa [41]. It is known that the release of energy during the UST process is high enough to 

strip off the gaseous phases from the surface of the reinforcing particles forcing the melt to 

fill the surface of the particles. As a result, the exchange between the solid-gas interfaces 
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and solid-liquid interfaces of the particles occur becoming active to the melt and acting as 

solidification sites. [13, 82] 

 
Figure 2. 7 Schematic of the dispersion of particles by the addition of UST to the casting process 

[81]. 

Different feeding techniques to add the particles into molten metals for the 

manufactured of MMCs have been reported by researcher, such as spraying them in the 

surface of the melt, wrap them as capsules on metallic foil, placing them between the metal 

as a layered structure and also using perforated containers (niobium cage) placed under the 

sonotrode [13, 22, 82, 83]. Srivastava et al. reported the effect of temperature on the 

fabrication of aluminum reinforced with Al2O3 composites. Temperatures of 700oC, 725oC, 

750oC and 775oC were studied, for each experiment where 300 g of Al6061 was  melted 

and 1wt. % of Al2O3 wrapped in aluminum foil were injected into the bottom of the crucible 

[82]. The melt was manually stirred for 5 min and UST was applied for 3 min, using a 
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niobium probe with a frequency of 20 KHz and ultrasonic power of 1.5kW. The addition 

of 1wt.% of Al2O3 reduced the grain size by  41-61% as compared to the based alloy. Also 

hardness and yield strength of the composite increased between 20-61% and 20-67% 

respectively.  The improvement is attributed to the uniform dispassion and wetting of Al2O3 

particles enhancing heterogeneous nucleation [82]. 

Yan et al. reported the successful fabrication of Al365 alloy reinforced with carbon 

nanotube (CNT). 0.8 wt.% CNTs/A356 was fabricated by UST processing with a 2.1 kW 

ultrasonic equipment, titanium probe, 20 KHz frequency for about 20 min under argon 

protective atmosphere. CNTs were added to the melt as pre-fabricated CNT/A356 

extrudates that were cut into small pieces. Micro hardness, ultimate tensile strength and 

yield strength increased by 27.8, 17 and 29.2 percent respectively as compare with the base 

alloy [22]. In a separate study, Cao et al. reported the fabrication of a magnesium matrix 

nanocomposite reinforced with silicon carbides (SiC). 800 g of Magnesium was melt at 

700 oC.  Pure aluminum and Al-50 were added to created Mg-2Al-1Si and Mg-4Al-1Si 

matrices.  UST was applied to the melt using a niobium probe with a frequency of 17.5 

KHz and ultrasonic power of 4 KW. Simultaneously 2 wt.% SiC was slowly added to the 

melt using through a steel tube. Yield strength increased 52% and 33% for Mg-2Al-

1Si/2%SiC and Mg-4Al-1Si/2%SiC respectively. Grain size of both magnesium composite 

was reduced. However some clusters were found suggesting that the conditions for UST 

were not optimized [84].  Table 2.2 summarizes the MMCs synthesized by ultrasonic 

treatment.  
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Table 2. 2 MMC manufactured by the addition of UST to the casting process.    

Metal Particle  

added 

Parameters of UST Outcomes Ref. 

Al-7Si-Mg 
(A356) 

0.8 wt.% CNT 
0.5-2 Wt.% SiC 

Power:  70-2100 W 
Amplitude: N/S μm 
Frequency: 18-20 KHz 
Time: 20 min 
Volume: N/S ml 
Temperature: 610-750°C 
Feeding technique: 
- Pre-fabricated 
CNT/A356 extrudes that 
were cut into small 
pieces 
-Spray in the top  
 

* Uniform 
dispersion of the 
particles in the 
matrix 
*Strong interfacial  
bonding formed  
*Micro hardness, 
ultimate tensile 
strength  
and yield strength 
increases 27.8%, 
17% and 29.2%  

[22,85] 

Al-6061 0.5-1.5Vol.% 
SiC 
0.5Vol% B4C 
1 wt.% Al2O3 

Power:  1.5 -2 KW 
Amplitude: N/S μm 
Frequency:  20 KHz 
Time:  3-60 min 
Volume: 110 ml 
Temperature: 680-775 °C 
Feeding technique: 
- Particles wrapped in 
aluminum foil were 
injected into the bottom 
of the crucible 
-Spray in the top  
 

*Nano particles 
were successfully 
added to the melt. 
*Grain size was 
reduce between 41-
61% compared to 
the based alloy. 
*Hardness and yield 
strengths of the 
composite increases 
between 20-61% 
and 20-67% 
. 

[6,17, 
82,86] 

Mg-2Al-1Si 
Mg-4Al-1Si 

1-2 wt% SiC 
 

Power: 3.5 KW 
Amplitude: N/S μm 
Frequency: 17,5- KHz 
Time:  15 min 
Volume: 560 ml 
Temperature: 700 °C 
Feeding technique: 
- Added through a steel 
pipe to the top of the 
melt 
-Niobium cage with a 
shape of truncated cone 
was used to hold 
nanoparticles inside the 
melt  

*Nano particles 
uniform dispersed 
*Grain size 
reduction 
*Yield strength 
increase between 
33-52%  
*Micro hardness 
increase from 19 -
34%  

[76,81, 
83,84] 
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As discussed, UST has been added to the casting process to improve the mechanical 

properties on the material: enhancing grain refinement, dendrite fragmentation, reducing 

the porosity and homogenized the melt. Also UST has been introduced as a technique to 

fabricated metal matrix Composites, using aluminum and magnesium as a primarily base 

alloy. However, a parametric study of the effects of ultrasonic treatment parameters (i.e. 

amplitude, sonication time and temperature of melt) on the resultant Al6061 microstructure 

have not been reported yet. Furthermore, the MMCs described above are mainly fabricated 

with the addition of Al2O3, SiC, B4C and CNT [19-22], this work will present dispersion 

of Tungsten disulfide particles into Al6061 matrix to serve as solid lubricant material, 

resulting in a composites with enhanced mechanical properties as a function of ultrasonic 

treatment applied. 

The subsequent chapter will discusses the materials and experimental methods used 

to study the influences of ultrasonic treatment on the microstructure of Al6061. Followed 

by the addition of micro particles for the development of micro composites. 
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CHAPTER 3: MATERIAL AND METHODS 

This chapter presents the detail of the materials and experimental methods used to 

conduct the research on studying the effects of ultrasonic treatment on Al6061 

microstructure and the dispersion of fine particles during solidification.  

3.1 Materials 

3.1.1 Aluminum 6061 alloy  

 Al6061 alloy was the metal matrix selected for this study. Al6061 is one of the most 

widely used aluminum alloys for structural applications due to its physical and mechanical 

properties [3, 4]. Low density, excellent wear resistance and corrosion resistance make this 

alloy suitable for aircraft and aerospace components, automobile and military industries 

[5-8]. Al6061 was obtained from Online metals (Seattle, WA, USA), as a rod with 1,375 

in diameter and 12 in length and its chemical composition is shown in Table 3.1 [17].  

Table 3. 1 Chemical composition of Aluminum 6061 alloy 

 

3.1.2 Reinforcement Particles 

In this study, tungsten disulphide (WS2) and carbon nanotubes (CNT) are used as 

the reinforcement for Al 6061 alloy. 

Tungsten disulphide (WS2) powder was obtained from Graphene Supermarket 

(Calverton, NY, USA). SEM images of the as-received powder can be seen in Figure 3.1. 

Element Al Cr Cu Fe Mg Mn Si Ti Zn Others 

wt.% Balance 0.04-
0.35 

0.15-
0.40 0.7 0.8-

1.2 0.15 0.4-
0.8 0.15 0.25 0.15 
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The powder is characterized with an average particle size of 0.4-1µm as specified by the 

manufacture and hexagonal morphology.  

 
Figure 3. 1 SEM Images of the reinforcements: (A) Low magnification image of as-received 

WS2 and (B) High magnification image of as-received CNTs 

 

Tungsten disulfide is a two dimensional material (2D) characterized by a S-W-S 

layered structure with hexagonal crystals. The layered structures are held by weak Van der 

Waals forces, while bonding between same elements exhibit strong covalent interactions 

[25]. The properties of WS2 are shown on Table 3.2. 

Table 3. 2 Tungsten disulfide properties. 

Purity 99% 

Average particle size 0.4-1 µm 

Density 7.5 g/cm3 

Color Gray 

Morphology Hexagonal 
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Multiwall carbon nanotubes (CNT) were obtained from Nanostructure & 

Amorphous Materials Inc. (Houston, TX, USA). SEM images of CNT powder can be seen 

above in figure 3.1C. As-received CNTs are 30-50 nm diameter and 10-20 µm length with 

a purity of 95%.  

3.2 Experimental Set-up & Procedure 

The experimental set-up for the ultrasonic treatment is shown in Figure 3.2. The set 

up mainly consist of an electric furnace, the ultrasonic processing system and a graphite 

crucible.  

Al6061 was melted in a graphite crucible (30 mm inner diameter and 30 mm height) 

inside an electric furnace model ProCast 1 kg (PMC supplies, Lake Katrine, NY, USA). 

Ultrasonic treatment was performed using a Vibra-Cell VCX750 ultrasonic equipment 

(Sonic & Material, Inc., Newtown, CT, USA). The ultrasonic system consists of a 19 kHz 

and 750 W ultrasonic unit with variable operational time and amplitude of UST, converter, 

air cooling system and 6 mm diameter Niobium (Nb) sonotrode. 
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Figure 3. 2 (A) Schematic of the set-up, (B) real set-up 

 

3.2.1 Casting Process 

  6061 Al rod was sectioned in small pieces weighing 30 g. Before melting, each 

piece was grinded with silicon carbide paper to remove the oxide layer. The removal of the 

oxide layer by the grinding of the surfaces will result in the homogeneous melting of the 

aluminum. The melting process was carried out at temperature of 700oC and 750oC in an 

electric furnace using a graphite crucible.  

3.2.2 Ultrasonic Treatment 

Prior to the introduction of ultra-sonic treatment, the niobium (Nb) sonotrode was 

pre-heated inside the furnace for approximately 5 min until it reached a temperature of 

675oC. The temperature of the sonotrode was measured with a K-thermocouple, followed 
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by the immersion of the sonotrode 10 mm from the top of the melt. An air cooling system 

was activated at a pressure of 15 psi. Following parameters were varied to obtain a desired 

optimum of grain size, microhardness, and density.  

  Ultrasonication period (sec) 

  Ultrasonication Amplitude (%) 

 Temperature of the melt (°C) 

The ultrasonic equipment with the micro sonotrode is designed to work in a range 

of amplitude between 0-27µm (0- 40%). For this study, 13 µm (20%) and 20 µm (30%) 

were selected as 27 µm (40%) amp was the upper limit of the equipment. As a result of the 

high vibrations, loosening of the sonotrode from the equipment starts occurring and could 

be detrimental to the process and the equipment. One sample was made at 40% of the 

amplitude and the results shows inferior properties. Thus 40% amplitude was not selected 

for this study. Table 3.3. Shows the parametric studies carried out in the work using 

different parameters of ultrasonic treatment. 

Table 3. 3 Processing Parameters for Ultrasonic Treatment of Al 6061 alloy  

Amplitude of 
UST 
(µm)  

Processing 
temperature 

(oC)  

Time of UST 
(s)  

Control sample 
700 

0 
750 

13 
700 5 

750 30 
45 

20 
700 5 

750 
30 
45 
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3.2.2 Addition of Secondary Phase with UST 

  Two types of particles were used as reinforcement WS2 and CNT. 1 wt. % WS2 

(micron size particle) was added to the 30 g of Al6061. WS2 particles were placed between 

the aluminum pieces creating a sandwich structure. However, for the CNT addition, a hole 

was made in the center of a 30 g aluminum rod. 0.15wt. % CNT was placed inside the hole 

and sealed with another piece of aluminum as seen in Figure 3.3.  

The optimized conditions found from the parametric study were used in the 

manufacturing of Al-based composites. Therefore, UST was applied for a period of 45 

seconds, using 30% amplitude (20 µm) of UST and a casting temperature of  700oC to 

achieve the dispersion and wetting of the reinforcement with the aluminum.  

 
Figure 3. 3 Schematic of sample preparation and UST for manufacture of MMC 
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3.3 Structural and Microstructural Characterization  

Density measurement of the Al6061, Al-1wt. %WS2 and Al-0.15 wt. % CNT with 

and without UST were performed using Archimedes method.  

𝜌 =
𝑀𝑎𝑖𝑟

𝑀𝑎𝑖𝑟−𝑀𝑤𝑎𝑡𝑒𝑟
                      Eq. (10) 

Where,  𝑀𝑎𝑖𝑟 is the weight of the sample in air and 𝑀𝑤𝑎𝑡𝑒𝑟 is the weight of the 

sample in water. These measurements were compared with theoretical density of 

Aluminum 6061 and that obtained by rules of mixtures for the MMC.  

𝜌𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = 𝑓𝑊𝑆2
𝜌𝑊𝑆2

+ (1 − 𝑓𝑊𝑆2
)𝜌𝐴𝑙                Eq. (11) 

Where 𝜌𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 , 𝜌𝑊𝑆2
and, 𝜌𝐴𝑙  represent the density of the composite, WS2 

particles and aluminum respectively. Similarly, 𝑓𝑊𝑆2
 represents the weight fraction of the 

added particle. Densification was obtained dividing Archimedes density by the theoretical 

density and multiplying by 100%. 

Phase identification was performed by X-Ray diffraction using a Bruker D5000 X-

ray diffractometer (Billerica, MA, USA). The operating voltage and current used were 40 

kV and 35 mA respectively, using a Cu Kα radiation (wavelength of 1.542 Å) at  scan rate 

of 2˚/minute.  

For microstructural characterization, the cross-section of all samples were 

metallographically prepared, grinded with silicon carbide paper until 1200 grit and 

polished with 0.5 µm alumina particles.   Polished cross-sections were etched using Keller 

reagent. A Buehler Versamet 3 Optical Microscope was used to observe the resulting 

microstructure. Measurements of the grain size were performed using ImageJ software. To 
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determine the average grain size, a total of 80 measurements were made at different 

locations throughout the sample.   

Morphological studies of the powder and cast samples were carried out using 

Scanning Electron Microscopy (SEM). Using a JEOL JSM-6330 field emission scanning 

electron microscope (JEOL USA, Inc., Peabody, MA, USA) with an operating voltage of 15 

kV. SEM was used to characterize the powder, the fracture surface and polished cross-

section of the sample. Such characterizations provided information regarding the 

dispersion of particles added, the interactions between particle and matrix, and morphology 

of the metal matrix and the reinforcement particles after UST process. Compositional 

analysis of the top polished cross-section and fracture surface was performed through 

Energy-dispersive Spectroscopy (EDS) using a JEOL JIB 4500 SEM to evaluate the 

distribution of the particles throughout the cast Al composite. 

3.4 Hardness test  

Hardness of the samples were measured using a LECO LM910AT Micro hardness 

tester with a 50 gf load and dwell time of 10 seconds. To obtain the micro hardness values, 10 

indentations were performed on each sample and the average for each sample was reported. 

3.5 Evaluation of Tribological Behavior 

Wear tests were carried out using a ball-on-disk tribometer (Nanovea, Irvin, CA, 

USA) using a 3 mm diameter alumina ball. This was done to evaluate the coefficient of 

friction and wear resistance of 1 wt. % WS2 and Al-0.15wt. % CNT samples with and 

without UST. The tests were performed at room temperature using a normal load of 1 N 

with a 4 mm track diameter and a linear speed of 0.021 m/s for a period of  15 min.    
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Three tests were performed on each sample and the worn surfaces were scanned by 

a non-contact optical profilometer (Nanovea, Irvin, CA, USA) to obtain a 3D 

representation. The worn tracks were later analyzed using Scanning Probe Image Processor 

(SPIP) software (Horsholm, Denmark) to obtain the respective wear depth and width. Five 

positions on each wear track were selected to calculate the average cross-sectional area and 

compute the corresponding volume loss. Volume loss was computed by multiplying the 

average cross-sectional area by the diameter of the wear track. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

This chapter presents the results and discussions obtained from the parametric 

studies of UST on Al6061. Microstructural and morphological studies, micro hardness and 

phase determination of cast Al6061 with and without UST were performed to determine 

the effect of UST on the microstructure of Al6061. After parametric studies, ideal 

parameters were selected for the manufacture of MMC using UST as a dispersion technique 

for the reinforcement.  The addition of WS2 and CNT as reinforcements in MMC are also 

discussed.  

4.1 Effect of UST Parameters on the Microstructure and Mechanical Properties of 

Al6061 

In order to prove the presence of cavitation during the casting process, the following 

mathematical relations are used:  The sound pressure and intensity of ultrasound are given 

by the following equations (2) and (3). Where W is the acoustic power from the ultrasonic 

equipment, ρ is the density of Al6061 and c is the speed of sound in liquid, s is the 

sonotrode’s face area, A refers to the sonication amplitude and f is the frequency of the 

equipment. Table 4.1 shows the compiled results for intensity of ultrasound and sound 

pressure for all conditions of the parametric studies.  

Table 4. 1 Variation of ultrasound intensity and sound pressure with UST parameters. 

Temperature  

(oC) 

Amplitude  

(µm) 

Frequency  

(Hz) 

Speed of 

sound   

(m/s) 

Ultrasound 

intensity  

(W/cm2) 

Sound 

pressure 

(MPa) 

700 
13 

19000 

4723.6 1534.33 
17.86 

20 3631.56 

750 
13 4715.6 1531.74 

17.84 
20 3625.41 
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Eskin et al. reported that acoustic cavitation in molten aluminum begins when the 

sound-induced pressure inside of the molten metal exceeds 1 MPa, and the intensity of 

ultrasound is more than 80 Wcm-2 [13].  The addition of UST to the casting process is 

expected to cause acoustic cavitation. 

The speed of sound is affected by the processing temperature and the melting 

temperature of the material. At lower temperatures the melt is closer to its solid state. Also, 

sound travels faster on solids than liquids. Therefore, speed of sound changes as a function 

of processing temperature. For this study, the computed speed of sound for 700oC is 4723.6 

m/s and for 750oC is 4715.6 m/s.  For a density of 2.7 g/cm3, frequency of 19 kHz, 

amplitudes of 13 µm and 20 µm, and sonotrode surface area of 6x10-5m2. The evaluated 

ultrasound intensity lies between 1500 Wcm-2 and 3650 Wcm-2. While the computed sound 

pressure is 17 MPa. As a result, both conditions exceed the minimum required values to 

develop cavitation in liquid aluminum (1 MPa, 80 Wcm-2). 

Once cavitation is proven to be present during the casting process, densification of 

the cast metal and grain refinement are two expected outcomes.  

4.1.1 Densification of Cast Al6061 with and without UST   

With the addition of UST to the casting process of Al6061, the primary mechanism 

influencing the reduction of porosity is based on the degassing process which consist on 

the release of the gases trapped in the melt during the casting process. As a result the 

porosity after solidification will be reduced.  
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 Our casting process is open to the atmosphere which results in having air and 

hydrogen as the two principals sources of gases in the melt. The air comes from the gaps 

between the aluminum pieces when they were placed for melting and the H2 diffuse into 

the melt through the interface between the melt and the atmosphere. The introduction of 

UST to the casting process accelerates the growth of the gas bubbles due to the rapid 

diffusion of gases from the melt to the bubbles. These bubbles quickly reach the required 

size to move to the top of the melt and are able to escape.  

 As can be seen in Figure 4.1, porosity measurements are affected by the sonication 

time. Moreover, sonication amplitude and temperature also have influence on the intensity 

of cavitation (Eq.4) which will impact the densification of the material. However, the 

dominating parameter increasing the density of cast Al6061 is the ultrasonic processing 

time.  

 
Figure 4. 1 Porosity measurements as a function of sonication time for 700oC and 750oC melting 

temperature, (A) 20 micron sonication amplitude, (B) 13 micron sonication amplitude. 
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As can be seen in Table 4.1, the higher intensity of cavitation was exhibited at 

700oC. Higher intensity during the cavitation process results in more bubbles growing and 

escaping from the melt. Table 4.2 shows the compiled results obtained for porosity 

calculations.  The lowest percentages of porosity were observed for the cast aluminum with 

the addition of UST. Sample with UST processing time of 45 seconds, implementing 20 

microns of amplitude, and a melt temperature of 700 oC, showed 1 % of porosity resulting 

in the lowest observed with the addition of UST to the casting process. 

Table 4. 2 Porosity measurements as a function of UST parameters 

Porosity (%) 

UST time 
(Sec) 

20 µm 13 µm 
700 (°C) 750 (°C) 700 (°C) 750 (°C) 

0 2.66 2.91 2.66 2.91 

5 2.43 2.50 2.49 3.56 

30 2.08 1.71 1.96 3.23 

45 1 1.23 1.42 1.82 

 

4.1.2 Phase Determination for Cast Al6061 with and without UST  

In order to determinate if there is oxide formation (Al2O3) during the casting 

process with and without UST, X-ray diffraction was performed. 

 X-ray diffraction was performed for the following samples: 

 Al6061- Melting temperature 750oC, without UST 

 Al6061- Melting temperature 700oC, without UST 

 Al6061- Melting temperature 750oC, with UST (45 seconds, 20 micron) 

 Al6061- Melting temperature 750oC, with UST (45 seconds, 20 micron) 
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Analysis of the possible reaction products in cast specimens with UST were 

performed solely for 45 s of UST treatment. Specimens subjected to a higher UST time (45 

s) were chosen as it represents the longest exposure of the material to possible oxidation 

conditions.  

Figure 4.2 and Figure 4.3 shows the X-ray diffraction peaks of the 4 samples 

mentioned above. The index of the peaks with highest intensity corresponds to aluminum 

in all the cast samples. The presence of aluminum oxide (Al2O3) was only observed in 

samples casted at 750oC with and without UST (Figure 4.2A and 4.2B). Corresponding 

peaks of Al2O3 shown in this specimens are attributed to the higher rate of oxidation 

exhibited by aluminum at higher temperatures [87]. Al2O3 represents an impurity for the 

molten aluminum. Impurities have low wettability with the aluminum and are detrimental 

for the final properties of the material. Even though UST can improve the wettability of 

impurities with the molten metal, excess of impurities is never desired. 
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Figure 4. 2 X-ray diffraction patterns. (A) Al6061 750oC melting temperature no UST, (B) 750oC 
melting temperature with UST 
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Figure 4. 3 X-ray diffraction patterns. (A) Al6061 700oC melting temperature no UST, (B) 700oC 
melting temperature with UST 
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4.1.3 Microstructure Analysis for Cast Al6061 with and without UST 

Figure 4.4 - 4.7 shows optical images of the microstructure of cast Al6061 with and 

without UST at all the conditions of the parametric study. Cast samples at 700oC and 750oC 

without UST (Figure 4.4A and 4.6A) resulted in microstructures composed of large 

columnar dendritic structures with an average grain size of 309 µm (750oC) and 203 µm 

(700oC). In addition, non-homogeneous distribution of grain size in the microstructure is 

shown as compared with sample with UST. 

In contrast, samples with UST exhibit a microstructure with equiaxed dendritic 

structures and globular grains (non-dendritic). The microstructural changes in UST treated 

specimens are attributed to the ability of UST to break the dendritic structures. The 

formation of globular grains as function of UST are understood as an induced accelerated 

nucleation. In the presence of excessive solidification sites, the growth of dendritic 

branches is restricted, resulting in a refined microstructure dominated by globular grains.  
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Figure 4. 4 Optical images of the microstructure of Al6061 melting temperature of 750oC, 
amplitude of UST 13µm, (A) 0 seconds, (B) 5 seconds, (C) 30 seconds, (D) 45 Seconds 

 

Figure 4. 5 Optical images of the microstructure of Al6061 melting temperature of 750oC, 
amplitude of UST 20µm, (A) 0 seconds, (B) 5 seconds, (C) 30 seconds, (D) 45 Seconds 
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Figure 4. 6 Optical images of the microstructure of Al6061 melting temperature of 700oC, 
amplitude of UST 13µm, (A) 0 seconds, (B) 5 seconds, (C) 30 seconds, (D) 45 Seconds. 

 
 

Figure 4. 7 Optical images of the microstructure of Al6061 melting temperature of 700oC, 
amplitude of UST 20µm, (A) 0 seconds, (B) 5 seconds, (C) 30 seconds, (D) 45 Seconds 
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In order to demonstrate the structural change in the microstructure of caste Al6061 

at 700oC with the addition of UST, three different locations of the cross section of the 

sample with and with UST were studied. Our samples has a cylindrical shape with a radius 

of 15 mm, the three sections were selected from half of the cross section, due to the fact 

that the same behavior is expected from the other half. Section A correspond to the area 

closer to the walls of the crucible, section B correspond to the area around half of the radius 

of the sample and section C correspond to the center point of the sample.  

As can be seen in Fig 4.8, For the sample without UST, section 1 present a 

combination of finer grains, in section 2 well defined columnar structures were visible and 

a combination between columnar a shrink grains in section 3, while the casted sample at 

700oC, 45 sec and 20 µm amplitude of UST present an homogenous refined microstructure 

where columnar grains disappear due to the effect of UST.  

The resulted microstructure founded for cast Al6061 without UST is the 

characteristic microstructure of a cast metal alloy. For metal alloys shrink and finer grains 

are visible in the area closer to the walls of the crucible and also in the central part of the 

microstructure due to the fact that, heterogeneous nucleation occurs in the walls of the 

crucible and also within the melt due to the presence of secondary phases. However, the 

solidification process is slow allowing the formation of columnar grains in the direction of 

the heat flow.   

In the case of the sample treated with UST, the accelerated cooling rates 

experienced by the melt as a result of UST, in combination with the increasing 

heterogeneous nucleation, contribute to smaller grains in all the microstructure without 

columnar structures.  
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Figure 4. 8 Comparison in the microstructure of cast at 700°C Al6061 with and without UST by 

sections. 
 
Grain refinement was observed with the addition of UST to the casting process. As 

can be seen in Table 4.3, an overall reduction in grain size in the range of 14% - 43% was 

exhibited on samples with UST as compared with the base alloy.   
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Table 4. 3 Complied results of grain size measurements as a function of UST parameters (Time, 
amplitude and temperature). 
 

Grain size Al6061 (µm) 

Temperatur

e (°C) 
700 750 

Amplitude 

(µm) 
                 13 20 13 20 

T
IM

E
 (

s)
 

0 203±53.5 203±53.5 309±121.9 309±121.9 

5 179±31.9 178±50.8 267±94.8 254±43.4 

30 178±60.0 176±54.3 211±77.5 209±42.4 

45 174±26.4 138±32.0 207±66.0 175±30.1 

 
Figure 4.9, 4.11, 4.13 and 4.15, shows the grain size distributions of cast Al6061 at 

melting temperatures of 750°C and 700°C treated with UST at amplitudes of 13 micron 

and 20 micron respectively for different time periods of sonication. The grain size 

distribution plots confirm the presence of a more uniform microstructure with the addition 

of UST to the casting process due to the bell shape of the plots. The increase of the 

sonication amplitude and time, result in uniform distribution of grains due to the fact that 

UST enhances heterogeneous nucleation. Clear evidence to the enhance homogeneity of 

the resulting cast samples is observed in the reduced standard deviation as shown in  Figure 

4.9D, 4.11D, 4.13D, 4.15D. 
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During the expansion of the cavities, just before collapsing, the gas inside expands 

promoting undercooling in their surfaces. These cavities expand and collapse at a fast rate 

during the cavitation process. Consequently, when a cavity collapses, numerous small 

cavities are created and are distributed all over the melt. Some of these cavities will be 

responsible of continuing the cavitation process, while others will be responsible of 

enhancing the heterogeneous nucleation. The enhancement of heterogeneous nucleation 

with the addition of UST to the casting process of Al6061 lies on to the undercooling of 

the surface of these small cavities that start acting as nuclei sites for solidification. In 

addition, with the collapsing of the cavities during the UST, the release of energy into the 

melt increases its temperature leading to higher cooling rates during solidification. 

Therefore, nucleation is accelerated resulting in a refined microstructure.  

The effect of ultrasonic processing time on the grain refinement of the 

microstructure is visible on Figure 4.4 – 4.7. Not only columnar dendritic structures 

disappear from the microstructure, also, reduction on grain size is observed in the 

microstructure with the increase of UST time. In addition, globular grains characteristic of 

dendritic fragmentation and homogeneous microstructure were observed with the addition 

of UST.  Once cavitations begin inside the molten metal, they will continue as long as the 

sonication source is inducing vibrations to the melt. Therefore, if UST time increases, the 

number of nucleation sites for solidification will increase in the same manner. 

Confirmation of cavitation during the experimentation under the processing conditions was 

demonstrated on Table 4.1.    



51 
 

UST amplitude has a direct effect on the intensity of cavitation. Increases in the 

sonication amplitude will result in an increase of the intensity of cavitation, as it was 

reported on Table 4.1. Increases in the intensity of cavitation increases the number of 

cavities collapsing at the same time during the cavitation process. Therefore, an excessive 

amount of nucleation sites are created at a faster rate, resulting in an accelerated nucleation 

for solidification which is beneficial for the grain refinement.    

In addition, processing temperature of UST and melting temperature of the 

aluminum have an effect on the speed of sound through the molten metal. The relation 

between them is described by Eq (5). Showing that at temperatures closer to the melting 

point of aluminum, the speed of sound is higher. As was presented on Table 4.1, for 700oC 

speed of sound (4723.6 m/s) is higher than at 750oC (4715.6 m/s). 

  Figure 4.10, 4.12, 4.14 and 4.16, show the reduction of the grain size as a function 

of sonication time, presenting a maximum grain size reduction at all conditions at time 

periods of 45 seconds. As a result, with 32% reduction in grain size for melting temperature 

of 700oC and sonication amplitude of 20 µm (Figure 4.15D) was the best of all. 

Figure 4.14, shows the grain size measurement for cast Al6061 at 700°C melting 

temperature, and an amplitude of 13 micron as a function of sonication time.  The main 

parameter of UST affecting the grain refinement in the cast Aluminum is found to be the 

processing temperature. The casting of specimens at lower temperature (700oC) signifies 

that the viscosity of molten Al6061 increases. Such increase in the density of the molten 

metal represents a barrier for the sound waves to travel through the melt when the 

amplitude is too low. In samples processed at 700 oC, the UST amplitude of 13 µm was 



52 
 

not enough to generate significant differences in the grain size with the increase of 

sonication time. Even though the grain refinement due to the cavitation process is visible 

as compared with the based alloy with no UST. Increasing sonication time does not result 

in significant grain reduction as compared with samples processed at the same temperature 

(700oC) while using 20 µm sonication amplitude.   

 

Figure 4. 9 Grain size distribution Al6061 750oC melting temperature, 13 micron sonication 
amplitude as a function of sonication time, (A) 0 seconds UST, (B) 5 seconds UST, (C) 30 

seconds UST, (D) 45 seconds UST. 
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Figure 4. 10 Grain size measurement for cast Al6061, 750°C melting temperature 13 micron 

amplitude as a function of sonication time. 

 
 

Figure 4. 11 Grain size distribution Al6061 750oC melting temperature, 20 micron sonication 
amplitude as a function of sonication time, (A) 0 seconds UST, (B) 5 seconds UST, (C) 30 

seconds UST, (D) 45 seconds UST. 
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Figure 4. 12 Grain size measurement for cast Al6061, 750°C melting temperature 20 micron 

amplitude as a function of sonication time. 

 
Figure 4. 13 Grain size distribution Al6061 700oC melting temperature, 13 micron sonication 

amplitude as a function of sonication time, (A) 0 seconds UST, (B) 5 seconds UST, (C) 30 
seconds UST, (D) 45 seconds UST. 
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Figure 4. 14 Grain size measurement for cast Al6061, 700°C melting temperature 13 micron 

amplitude as a function of sonication time. 

 
Figure 4. 15 Grain size distribution Al6061 700oC melting temperature, 20 micron sonication 

amplitude as a function of sonication time, (A) 0 seconds UST, (B) 5 seconds UST, (C) 30 
seconds UST, (D) 45 seconds UST. 
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Figure 4. 16 Grain size measurement for cast Al6061, 700°C melting temperature 20 micron 

amplitude as a function of sonication time. 

Figure 4.17 presents the effect of the UST processing parameters on the final grain 

size of the microstructure of Al6061. The smallest grain size was obtained for a processing 

time of 45 seconds, at 20 microns amplitude, and with a melting temperature of 700 oC. At 

such conditions the cast sample resulted in an average grain size of 138 µm. A reduction 

of 32% was observed in comparison with the sample casted at the same temperature 

without UST. 
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Figure 4. 17 Grain size measurements as a function of UST parameters (Time, amplitude and 
temperature) 

 
4.2.1 Fracture surface of the cast Al6061 at 750°C and 700 °C with and without 

UST. 

Figure 4.17A, C represents SEM of the fracture surface of Al 6061 casted at 750oC 

and 700oC without UST respectively. The morphology of the fracture surface is dominated 

by large pores as a result of the air trapped between the aluminum pieces during casting. 

Also, intergranular porosity characteristic of H2 trapped in the melt is visible. Figure 4.18B 

and 4.18D represents SEM of the fracture surface of 750 oC and 700oC melting temperature 

with UST (sonication time 45 s and 20 µm amplitude) respectively. The morphology of the 

fracture surface is denser in comparison with samples without UST. However, small pores 
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are still visible in both samples. The reduction in the porosity is related to the degassing 

process promoted by UST. In addition globular grains, characteristic of the dendritic 

fragmentation by UST, are clearly visible on the fracture surface. 

 
 

Figure 4. 18 SEM of fracture surface of Al 6061 with 20µm UST amplitude, (A) 750 oC melting 
temperature without UST (B) 750 oC melting temperature with 45 Seconds UST, (C) 700 oC 

melting temperature without UST (D) 700oC melting temperature with 45 Seconds UST. 

In addition, the presence of needle-like structures are visible in the surface of the 

grains of sample casted at 750 oC without the introduction of UST (Figure 4.19). To 

characterize and identify this particles, Energy Dispersive Spectroscopy (EDS) was 

performed. 
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The aluminum and oxygen peaks confirmed the presence of aluminum oxide 

(Al2O3), which is related with the peaks of Al2O3 detected on XRD for the same sample. 

The formation of oxides in the cast specimens without UST are more prominent at higher 

temperatures. 

 
Figure 4. 19 SEM & EDS of fracture surface of Al 6061 750 oC melting temperature without 

UST. 

 
4.2 Effect of ultrasonic treatment on micro hardness of cast Al6061 with and 

without UST 

In order to evaluate the resulting mechanical behavior of the cast samples as a 

function of the induced UST process, cast samples at 700oC and 750oC with and without 

UST were subjected to Vickers micro hardness tests. Loads of 50 gf and dwell periods of 

10 seconds were used for all the specimens. Increase in the microhardness were observed 

with the addition of UST to the casting process. As can be seen in Table 4.4 an overall 
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increase in micro hardness in the range of 0.5% - 31.5% was exhibited on samples with 

UST as compared with the base alloy.   

Table 4. 4 Complied results of micro hardness as a function of UST parameters (Time, amplitude 
and temperature) 
 

Micro hardness (MPa) 

Temperature (°C) 700 750 

Amplitude (µm) 13 20 13 20 

TI
M

E 
(s

) 

0 647±40.01 647±40.01 496±22.56 496±40.01 

5 650±50.11 651±83.16 536±18.14 583±50.11 

30 652±49.13 667±42.17 585±17.06 630±49.13 

45 657±86.69 699±25.79 616±34.23 652±86.69 

 

Figure 4.20 presents the effect of the UST processing parameters on the final 

microhardness of Al6061. The highest microhardness was obtained for a processing time 

of 45 seconds, and 20 microns of amplitude, at a melting temperature of 700 oC, which are 

the same conditions where smallest grains size were reported. The average micro hardness 

values of 699 MPa were exhibited. An increase of 8% was observed in comparison with 

the sample casted at the same temperature without UST. 
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Figure 4. 20 Micro hardness as a function of UST parameters (Time, amplitude and temperature). 

 
 
4.3.1 Hall- Petch relationship for cast Al6061 as a function of UST parameters  

The increase number of nucleation sites in the melt as a result to the introduction 

of vibrations (UST) is responsible for the decrease in grain sizes. As a result, mathematical 

relations between the evolution of the enhanced microhardness as a function of the UST 

treatment can be utilized. One of the basic principles behind the improvement of the 

mechanical properties in cast metals is attributed to the correlation of grain refinement in 

the microstructure. According to Hall-Petch’s relationship, reduction in the grain size of 

Al alloys increases the hardness of the material, this relationship is expressed by the 

following expression Eq. (1). 

-5 0 5 10 15 20 25 30 35 40 45 50

500

550

600

650

700

750

800

Micro hardness as a function of time & amplitude

 700 
o
C-13m

 750 
o
C-13m

700 
o
C-20 m

 750 
o
C-20m

M
ic

ro
h

a
rd

n
e

s
s

 (
M

P
a

)

Time (s)



62 
 

In order to describe the relation between grain size and microhardness in all UST 

and no UST cast samples, Hall- Petch’s relationship was computed and is found in Figure 

4.21 and 4.22 as a function of sonication temperature for 13µm and 20µm sonication 

amplitude. The coefficient of determination, R2 of fitted lines for 700°C and 750°C at 13 

micron are between 0.84 and 0.98. Higher values of R2 superiors than 80% confirm that 

the variation about the mean for the values plotted follows the Hall-Petch’s equation 

obtained for each one. Values reported for Ho were in a range between 110 to 467 MPa 

and Kh in a range between 2487 to 7200 MPa for all the conditions studied.  

 

 
Figure 4. 21 Hall-Petch relationship at 700 °C melting temperature for 13µm and 20µm 

sonication amplitude. 
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Figure 4. 22 Hall-Petch relationship at 750 °C melting temperature for 13µm and 20µm 
sonication amplitude. 

In the mathematical relation, H0 represents the minimum stress required to move 

free dislocations. Such stress was explained by Peierls as lattice frictions experienced in 

the form of shear stresses moving dislocations. For materials with small grained 

microstructure, Peierls stress is higher, which is related to the minimum shear stress 

required to move a free dislocation [88]. Therefore, H0 is higher for 700°C treated samples 

which are the ones with smallest grains size due to refined microstructure obtained after 

UST. Moreover, Kh represents the barrier to dislocation motions and is also related to the 

ductility of the material, increase of Kh is correlated with reduction in ductility [89]. 
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Sonication amplitude has a direct relationship with the intensity of cavitation. 

Higher intensity of cavitation, increases the number of cavities collapsing at the same time 

during the cavitation process resulting in a refined microstructure and increase of hardness. 

In addition, increase in hardness will result in reduction of ductility. Therefore, higher 

values of Kh were obtained with the increases of sonication amplitude.  

From the parametric study performed, the UST parameters that exhibited the best 

results on grain refinement, reduction of porosity and increase of microhardness were 

selected for the manufacture of MMC. These parameters are the following:  

 Sonication time: 45 second 

 Amplitude: 20 µm 

 Melting temperature : 700 oC 

MMCs were fabricated using Ultrasonic treatment as a dispersion technique with 

the sonication parameters mentioned above.  Al6061 was used as the metal matrix, WS2 

and CNTs where used as reinforcements.  

As it was demonstrated in the parametric study, with an intensity of cavitation of 

3631.56 Wcm-2 and a sound pressure of 17 MPa (Table 4.1) corresponding to the condition 

presented above, cavitation will be developed in the melt. Therefore, the energy released 

into the melt during the cavitation process is high enough to break the agglomeration of 

particles. In addition during the cavitation process the gaseous phases on the surface of the 

reinforcement particles are ripped off, as a result the contact angle between the molten 

aluminum and these particles is reduced. Once the gaseous phases are removed from the 
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particles, the molten aluminum is forced to fill those spaces resulting in the wetting 

between the aluminum and the particles.   

In order to determine if the addition of UST as a dispersion technique to the 

manufacture of MMC was effective, characterization of Al-1 wt. % WS2 and Al-0.15 wt. 

% CNT MMC were performed. The characterization of the composites included the 

following: Densification measurements, X-ray diffraction, evaluation of fracture surface 

morphology, microstructural analysis, and microhardness test. In addition, due to the nature 

of WS2 and CNT as self-lubricant materials, wear tests was performed in order to study the 

effect of UST on the lubricious and wear resistance of the composites. 

4.3 Al-1wt. % WS2 MMC manufactured using UST as a dispersion technique. 

Theoretical density for Al6061 is 2.7 g/cm3 and WS2 is 7.5 g/cm3. Density for Al-

1wt. % WS2 MMC was calculated using the rule of mixtures resulting to be 2.71 g/cm3. 

The purpose of computing the density of the composite by rule of mixtures is to have a 

theoretical density of the composite to compute the porosity. Archimedes’ density of the 

composite with and without UST were computed resulting on 2.7079 g/cm3 and 2.6897 

g/cm3 respectively.  

As it was demonstrated from the parametric study, the addition of UST to the 

casting process results in an increment of the densification of the material. Table 4.5 reports 

porosity measurements for Al-1wt. % WS2 specimens with and without UST. The porosity 

was reduced from 1% to 0.34% with the addition of UST. 
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Table 4. 5 Porosity measurements of Al-1wt. % WS2 as a function of ultrasonic treatment  
 

Al-1wt. %WS2 Porosity (%) 

No UST 1 

UST 0.34 

 

In order to determinate the presences of WS2 or any reaction product between the 

metal matrix and the reinforcements (Al6061 and WS2) developed during the casting 

process with and without UST, X-ray diffraction was performed. 

Figure 4.23A shows the X-ray diffraction peaks of the samples mentioned above. 

The index of the peaks with highest intensity corresponds to aluminum in all the cast 

samples. Due to the small amount of WS2 added, a slow scan from 10 to 30 degrees was 

performed (Figure 4.23B-C). The index of the peaks with highest intensity for these two 

slow scans correspond to WS2 (Red dots). However, the peaks for the sample with UST are 

not as prominent as the one for the sample without UST. Due to the small amount of WS2 

(1 wt. %) added to the melt after the dispersion by UST, detection of the particles is 

difficult. On the other hand, the agglomeration of WS2 particles on the samples without 

UST makes it possible for X-rays to detect them during the slow scan. 
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Figure 4. 23 X-ray diffraction patterns. (A) Al-1wt. % WS2 with and without UST, (B) slow scan 

Al-1wt. % WS2 without UST, (C) Al-1wt. % WS2 with UST. 
 

Figure 4.24. Shows optical images of the microstructure of cast Al6061 with UST 

and Al-1wt% WS2 with and without UST.  Al6061 with UST (Figure 4.23A) and Al-1wt. 

% WS2 with UST (Figure 4.23C) exhibit a characteristic microstructure of a metal treated 

with UST, presenting equiaxed structures and globular grains (non-dendritic). However, 

the addition of WS2 particles to the Al matrix and UST treatment resulted in a more refined 

microstructure as compare with the cast Al6061 with UST and Al-1wt.% WS2 without 

UST.  

The refinement in the microstructure of Al-1wt.% WS2 with UST is shown by an 

average grain size of 96 µm, which represent 30% of reduction in grain size as compare 

with the base alloy (Al6061). The reason for this reduction is related to two factors: (i) the 

increase in number of nucleation sites as a result of the WS2 particles that get wet and 
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dispersed through the melt by UST, and (ii) WS2 particles can act as barriers to the growth 

of grains, as grains cannot move forward once they found particles blocking the path. No 

visible WS2 particles where found in optical images of the microstructure.  

 
Figure 4. 24 Optical microstructure, (A) Al6061 with UST, (b) Al-1wt. %WS2 without UST, (C) 

Al-1wt. %WS2 with UST. 
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Grain refinement was observed with the addition of WS2 to the casting process. As 

can be seen in Table 4.6. An overall reductions in grain size in the range of 27% - 30% was 

exhibited on samples with WS2 as compared with the base alloy.   

Table 4. 6 Grain size measurements of Al-1wt. % WS2 as a function of ultrasonic treatment 

Grain size (µm) 

Temperature (°C) 700 

Amplitude (µm) 20 

Time (s) 45 

Al6061 
UST 

1 wt.% WS2 1wt% WS2 –UST 

138 ± 32.04 101 ± 24.53 96 ±19.12 

 

Figure 4.25 shows a comparison between the grain size measurements Al 6061 with 

UST and Al-1wt. % WS2 with and without UST. Grain refinement due to the addition of 

WS2 particles is observed on samples without UST reporting an average grain size of 101 

µm. However, this reduction is lower than the one reported by the Al-1wt. % WS2 with 

UST (96 µm). In the lack of UST, the agglomeration of the reinforcing particles and poor 

wettability between WS2 particles and Aluminum create a non-uniform distribution on the 

microstructure.  

Wetting between solid particles by liquid is determined by the contact angle between 

them. Mathematical relation to calculated contact angle is related to interfacial tensions 

and is express on Eq. 12.   
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cos 𝜃 =
𝛾𝑠−𝛾𝑠

𝑙⁄

𝛾𝑙
                     Eq. (12) 

Where, θ is the contact angle, 𝛾𝑠 is the surface energy of the solid phase, 𝛾𝑠
𝑙⁄  is solid liquid 

interfacial tension and 𝛾𝑙 is the surface tension of the liquid phase. 

Surface tension of aluminum is dependent of temperature and it was calculated using 

Eq. 13. 

𝛾𝐴𝑙 = 1043 − 0.18𝑇 (𝑚𝑁 𝑚⁄ )                           Eq. (13) 

  Where, 𝛾𝐴𝑙 is the surface tension of Al and T is temperature. For 700 °C, surface 

tension of Aluminum will be 870 mN/m [90]. Surface energy of WS2 is 40 mJ/m2 [91]. 

Higher differences between surface tension of Al and surface energy of Ws2 accordantly 

with Eq. 11, will lead high contacts angles resulting in poor wetting between them. During 

the solidification process non- wetted particles are pushed to the intergranular and inter 

dendritic zones of the matrix due to the advance of the solidification front. 

 
Figure 4. 25 Comparison of grain size measurements of Al 6061 with UST and Al-1wt. % WS2 

with and without UST. 
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Statistical analysis was performed in order to determine if there is significant 

differences between the grain size measurement of the Al- 1 wt. % WS2 with and with UST 

samples.  

A two sample z test in SPSS software compares the means of two groups of data to 

determine if there is significant differences between the means. Z-test was done to test the 

null hypothesis, which is that both means are equal (𝜇1 − 𝜇2 = 0) with a α = 0.05 if Z 

critical falls inside of the rejection region then it can be conclude that the data provided 

sufficient evidences to claim that there is significances differences between them. The 

values obtained from the test were Z value 2.038 and Z critical 1.6448. The rejection region 

for the hypothesis is (-∞, −2.038; 2.038, +∞), Z critical values falls inside of the rejection 

region demonstrating that there is significant differences between grain size measurement 

of Al- 1 wt. %  WS2 with and without UST.  

Morphological studies on fracture surface of Al-1wt. % WS2 MMC as a function 

of UST. In order to study the dispersion of the WS2 particles on the MMC, SEM on 

backscattering mode was performed on the fracture surface of Al-1wt. % WS2 with and 

without UST. WS2 has a higher atomic weight which make them brighter on backscattering 

mode resulting on an easier detection of them on the fracture surface.  

Big clusters of particles with the morphology of WS2 were found on the fracture 

surface of specimen corresponding to Al-1wt. %WS2 without UST (Figure 4.26, 4.28A). 

EDS mapping was performed to identify the particles, as a result EDS mapping and 

spectrum of Al-1wt. % WS2 without UST (Fig 4.29-4.30) detect the presence of tungsten 

(W) and sulfur (S) corresponding to the WS2 particles added.  
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In addition, backscattering and SEM of Al-1wt. % WS2 fracture surface with UST, 

clearly show well dispersion of WS2 particles on the fracture surface, bright spots in Figure 

4.26, correspond to WS2 particles. However, some small agglomerations of WS2 particles 

are still visible on the fracture surface but not as large as the ones in sample without UST. 

Also, individual particles of WS2 are dispersed through the fracture surface due to the effect 

of UST breaking the clusters (Figure 4.28B). EDS was also performed for the fracture 

surface of Al-1wt. % WS2 with UST. EDS mapping and spectrum (Figure 4.29 - 4.30) also 

detect the presence of tungsten (W) and sulfur (S) corresponding to the WS2 particles 

added.  

 
Figure 4. 26 Backscattering and SEM of Al-1wt. % WS2 fracture surface without UST 
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Figure 4. 27 Backscattering and SEM of Al-1wt. % WS2 fracture surface with UST 

 

 

Figure 4. 28 SEM images of fracture surface of Al-1wt. % WS2, (A) Without UST, (B) With 
UST 
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Figure 4. 29 EDS mapping of fracture surface Al-1wt. % WS2 without UST 

 
Figure 4. 30 EDS spectrum of Al-1wt. % WS2 without UST 



75 
 

 

Figure 4. 31 EDS mapping of fracture surface Al-1wt. % WS2 with UST 

 
Figure 4. 32 EDS spectrum of Al-1wt. % WS2 with UST 
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4.4.1  Influence of reinforcements particles on microhardness of Al-1wt. % WS2 

MMC as a function of UST 

In order to evaluate the resulting mechanical behavior of the cast samples with the 

addition of WS2 with and without UST, cast samples were subjected to a Vickers 

microhardness test. A load of 50 gf and a dwell period of 10 seconds were used for all the 

specimens. Increase in microhardness was observed with the addition of WS2 and UST to 

the casting process. As can be seen in Table 4.7 an overall increase in microhardness of 

15% was exhibited on samples with WS2 and UST as compared with the base alloy with 

UST.   

Table 4. 7 Micro hardness of Al-1wt. % WS2 as a function of ultrasonic treatment 

Micro hardness (MPa) 

Temperature (°C) 700 

Amplitude (µm) 20 

Time (s) 45 

Al6061 
UST 1 wt.% WS2 1wt.% WS2 –

UST 

696±61.47 771 ± 68.35 817 ± 71.59 
 

In addition, sample with WS2 and no UST presents an increases in the 

microhardness (Figure 4.33) as compare with the base alloy (696 MPa). However, due to 

the agglomeration of the particles in the microstructure the improvement in microhardness 

for the sample without UST (771 MPa) is not as good as the one obtained with the 

combination of WS2 and UST (817 MPa). 
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Figure 4. 33 Comparison of microhardness of Al 6061 with UST and Al-1wt. % WS2 with and 
without UST. 

4.4.2  Influence of  reinforcements particles on wear behavior  of Al-1wt. % WS2 

MMC as a function of UST 

In order to study the wear behavior of Al-1wt. % WS2 with and without UST 

specimens, wear tests at room temperature were performed for them and cast Al6061 with 

UST (Ideal conditions).  

Wear volume loss was calculated as it was described in Chapter 2.  As can been 

seen in Figure 4.34 the wear volume loss for cast Al6061 is 0.76 mm3 and Figure 4.35 the 

wear volume loss for Al-1wt. % WS2 with UST specimen is of 0.069 mm3 and Al-1wt. % 

WS2 without UST is 0.070 mm3. The specimen with UST reports an improvement of 4.2% 

in wear resistance as compared with the one without UST. This difference in wear volume 

loss is attributed to the differences in micro hardness between the two samples (Table 4.7) 
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as expressed by Archard’s equation (Eq.13). Materials with higher hardness will result in 

better wear resistance.  

𝑑𝑉 =
𝑘𝑃

𝐻
 𝑑𝑥                     Eq. (13) 

Where dV is the wear volume loss, P and H are the load and the hardness 
respectively, k is the wear resistance and dx is the wear distance 

 

Figure 4. 34  3D optical profiles of wear track of cast Al6061 at 700°C  
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Figure 4. 35  3D optical profiles of wear tracks of Al-1wt. % WS2 with and without UST 

 

The coefficient of friction was computed for cast Al 6061 and Al-1wt. %WS2 with 

and without UST. The results of COF for Cast Al 6061 was 0.43 and for the specimen with 

UST a COF of 0.038 and a COF of 0.042 for the one without UST (Figure 4.36). The COF 

reduce as compare with the cast Al6061 specimen. However, Comparing between the 

composites Al-1wt. %WS2 with and without UST no improvement in COF was observed 

as a function of UST addition, taking in consideration the standard deviation of the COF 

measured there are statistically the same.  Therefore, no negative effect was observed in 

the lubricious properties with the addition of UST.  
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Figure 4. 36 Coefficient of friction for Al-1wt. % WS2 with and without UST 

4.4.3 SEM of the worn surface of Al-1wt. % WS2 MMC  with and without UST 

To understand the wear mechanism the samples undergo, the worn surface of 

specimens with and without UST were observed under SEM (Figure 4.37 – 4.39). The 

surfaces of both worn tracks have a rough appearance and reveal crack formation.  Large 

particles detachments were observed on the worn surface of specimen with UST (Figure 

4.37), due to the brittle behavior of the material. 

 Uniform dispersion of WS2 particles increases the hardness, enhancing the wear 

resistance of the composite. However, due to the low concentration of WS2 added to the 
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aluminum matrix the lubricious effect of WS2 on the COF was not evidenced. While UST 

enhance the wear resistances due to the increase of hardness of the composite, no damaging 

was reported on the lubricious properties. 

In Figure 4.38, WS2 particles are visible in the worn track. During the test the 

removal of material in the worn surface makes possible for the dispersed WS2 particles to 

resurface and contribute to the wear resistance. 

During the wear test the formation of cracks was visible in both samples (Figure 

4.37, 4.39). Crack formation is related to the large temperature differences generated from 

the high normal stress of the test. The formation of cracks in the surface is a sign of abrasive 

wear.  

 
Figure 4. 37 SEM of worn surface of 1wt. %. WS2 samples with UST. 
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Figure 4. 38 SEM of worn surface of 1wt. %. WS2 samples with UST. 

 
Figure 4. 39 SEM of worn surface of 1wt. %. WS2 samples without UST. 
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4.4 Characterization of Al-0.15wt. % CNT MMC manufactured using UST as a 

dispersion technique.  

4.5.1 Densification measurements of Al-0.15wt. % CNT MMC as a function of 

UST 

Following the same procedure as the previous composite, Theoretical density for 

Al-0.15 wt. % CNT MMC was calculated using rule of mixtures, resulting in a density of 

2.697 g/cm3 (CNT theoretical density 1.7 g/cm3). Density of the composites by 

Archimedes’ density in samples with and without UST results in values of 2.689 g/cm3 and 

2.678 g/cm3 respectively. 

Reduction of porosity from 0.7 % to 0.3% was observed with the addition of UST 

as can be seen on Table 4.8. 

Table 4. 8 Porosity measurements of Al-0.15wt. % CNT as a function of ultrasonic treatment  
 

Al-0.15wt. %CNT Porosity (%) 
No UST 0.7 

UST 0.3 
 

4.5.2 Microstructural analysis of Al-0.15wt. % CNT MMC as a function of UST 

Figure 4.40 shows optical images of the microstructure of cast Al6061 with UST and 

Al-0.15wt. % CNT with and without UST. Al6061 with UST (Figure 4.40A) and Al-

0.15wt. % CNT with UST (Figure 4.40C) show globular grains (non-dendritic) due to the 

UST. Al-0.15 wt. % CNT without UST (Figure 4.40B) presents refinement in the 

microstructure. However, Al-0.15wt. % CNT with UST exhibits a more refined 

microstructure as compare with cast Al6061 with UST and Al-0.15wt. % CNT without 

UST, reporting an average grain size of 97µm (Table 4.9). The refinement observed 
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represents approximately a 30% of reduction in grain size as compared with the base alloy 

(Al6061 with UST).  

 
Figure 4. 40 Optical microstructure, (A) Al6061 with UST, (b) Al-015wt. % CNT without UST, 

(C) Al-0.15wt. %CNT with UST. 
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Table 4. 9 Grain size measurements of Al-0.15wt. % CNT as a function of ultrasonic treatment 

Grain size (µm) 

Temperature (°C) 700 

Amplitude (µm) 20 

Time (s) 45 

Al6061 
UST 0.15wt. % CNT 0.15wt. % CNT-UST 

138±32.04 110±27.59 97±19.36 

    

Comparison between the grain size measurements of Al 6061 with UST and Al-

0.15wt. % CNT with and without UST can be seen on Fig 4.41. Grain refinement due to 

the addition of CNT particles is observed in sample without UST reporting an average 

grain size of 110 µm as compare with cast Al6061 with UST (138 µm). However, this 

reduction is lower than the one reported by the Al-0.15wt. % CNT with UST (97µm). The 

differences in grain refinement can be attributed in the same way to the agglomeration of 

the reinforcing particles and poor wettability in samples without UST.  Samples without 

UST experience non-uniform distribution on the microstructure and reduced survivable of 

CNT during the casting process. In addition, knowing that CNTs added to melt can act as 

barriers to the growth of grains the survivable of these to the casting process will also 

influence the refinement of the microstructure. Damaging of CNTs during the casting 

process resulting in fewer particles blocking the path of growing of the grains. 
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Figure 4. 41 Comparison of grain size measurements of Al 6061 with UST and Al-0.15wt. % 

CNT with and without UST. 

In the same manner statistical analysis was performed in order to demonstrate that 

there is significant differences in grain size measurements with the addition of UST.  

The values obtained from the test were Z value 3.2920 and Z critical 1.9599. The 

rejection region for the hypothesis is (-∞, −1.9599; 1.9599, +∞), Z critical values falls 

inside of the rejection region demonstrating that there is significant differences between 

grain size measurement of Al-0.15 wt. %  CNT with and without UST.  

4.5.3 Morphological studies on fracture surface of Al-0.15wt. % CNT MMC as a 

function of UST 

In order to study the dispersion of the CNT particles on the MMC, SEM on 

backscattering mode was performed on the fracture surface of Al-015 wt. % CNT with and 

without UST (Figure 4.42, 4.45). Dark areas in backscattering mode correspond to areas 

with CNTs.  
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Few dark areas were found in the fracture surface of the Al-0.15wt. % CNT without 

UST sample, suggesting that the CNT particles added remain as agglomerates during the 

casting process. These agglomerations are a result of high differences in surface energy 

between CNT (100 mJ/m2) [92] and Aluminum (870 mN/m). As expressed on Eq. 12 

higher differences in surface energies results in high contact angles. Contact angle between 

Al and CNT has been reported in literature as 160° [93], which results in poor wettability.  

 SEM and EDS were performed to study the dark areas, no visible CNTs were found 

on the fracture surface. However, EDS mapping was performed to confirm the presence of 

carbon in darks areas. As a result EDS mapping and spectrum of Al-0.15wt. % without 

UST (Figure 4.43 and 4.44) detect the presence of aluminum (Al) and Carbon (C) 

corresponding to the formation of Al4C3 due to the reaction of CNT during the casting 

process.  

 
Figure 4. 42 Backscattering and SEM of Al-0.15wt. % CNT fracture surface without UST 
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Figure 4. 43 EDS mapping of fracture surface Al-0.15wt. % CNT without UST 

 
Figure 4. 44 EDS spectrum of Al-0.15wt. % CNT without UST 

 

In addition, backscattering and SEM of Al-0.15wt. % CNT fracture surface with 

UST, clearly show well dispersion of CNT particles in the fracture surface. Dark spots 

correspond to areas rich in carbon concentration (Figure 4.45).  In two dark spots of the 

fracture surface, particles with the characteristic morphology of CNT were visible. These 

findings confirm that dark areas consisted in dispersed CNTs (Figure 4.45). Therefore, the 

Al/CNT interface was clear (Figure 4.45), as reported by Li and Zhou, the addition of UST 

to the casting process drops the wetting angle between carbon and aluminum to 15o 

allowing them to have a well bonded interface with the metal matrix. UST improves the 

interfacial bonding between aluminum and CNT, suppressing the formation of aluminum 

oxide [22]. 
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Figure 4. 45 Backscattering and SEM of Al-0.15wt. % CNT fracture surface with UST 

 

4.5.4  Influence of reinforcements particles on microhardness of Al-0.15wt. % 

CNT MMC as a function of UST  

The addition of CNT particles to the melt enhanced the refinement of the 

microstructure for specimens with and without UST. Due to the inverse relationship 

between grain size and micro hardness, increase in micro hardness was observed with the 

addition of CNT and UST to the casting process. Table 4.10 shows an overall increase in 

micro hardness of 12% for the sample with CNT and UST as compared with the base alloy 

(Al6061 with UST).   
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Table 4. 10 Micro hardness of Al-0.15wt. % CNT as a function of ultrasonic treatment 

Micro hardness (MPa) 

Temperature (°C) 700 

Amplitude (µm) 20 

Time (s) 45 

Al6061 

UST 0.15wt. % CNT 0.15wt. % CNT-

UST 

696 ± 61.47 757 ± 61.98  794 ± 86.79 

 

In addition, for samples with CNT and no UST, an increases in the micro hardness 

is reported (Figure 4.46) as compared with the base alloy (696MPa). However, due to the 

decreased survivable of CNT and the agglomeration of aluminum carbide particles formed 

from the reaction of CNT with aluminum, the improvement in microhardness for the 

sample without UST (757MPa) is not as good as the one obtained with the combination of 

CNT and UST (794MPa). 
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Figure 4. 46 Comparison of microhardness of Al 6061 with UST and Al-0.15wt. % CNT with 

and without UST. 

 

4.5.5 Influence of reinforcements particles on wear behavior of Al-0.15wt. % CNT 

MMC as a function of UST 

In the same manner that was calculated for previous samples wear volume and COF 

of Al-0.15wt. % CNT with and without UST was evaluated. As can been seen in Figure 

4.45, the wear volume loss for Al-0.15wt. % CNT with UST specimen is 0.07 mm3 and 

Al-0.15 wt. %. CNT without UST is 0.08 mm3. Improvement of 13% in wear resistance 

was reported with the addition of UST due to the increase of microhardness on specimen 

treated with UST.  
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Figure 4. 47  3D optical profiles of wear tracks of Al-.015wt. % CNT with and without UST 

 

The coefficient of friction was computed for specimen with and without UST, the 

results present for both specimens a COF of 0.43. By considering the standard deviation of 

the COF both samples are considered to have an almost similar lubricious effect (Figure 

4.48). In addition, COF of Al6061 with UST also have the same value. Therefore, no 

lubricious effect is shown in COF. It is important to note that the addition of UST to the 

casting of CNT composite resulted in the enhancement of its wear resistance without 

affecting its lubricious properties. 
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Figure 4. 48 Coefficient of friction for Al-0.15wt. % CNT with and without UST 

 

4.5.6 SEM of the worn surface of Al-0.15wt. % CNT MMC with and without UST 

To understand the wear mechanism, worn surfaces of specimens with and without 

UST were observed under SEM (Figure 4.49). The surfaces of both worn tracks have a 

rough appearance. Also, piled up of material was visible on the edge of the worn surface 

of specimen with and without UST. During the wear test the formation of cracks was visible 

in specimen without UST (Figure 4.49B) showing a brittle behavior of the composite. 
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Crack formation are related to the large temperature differences between the heat generated 

from the high normal stress of the test and the sample surface.  

 The addition of UST to the casting process of Al-CNT composites resulted 

beneficial in the wear resistance of the material without affecting the lubricious properties 

of the composite. Therefore, the dominant wear mechanism in the Al-0.15 wt. % CNT with 

UST associated with volume loss is attributed to the increase in hardness of the composite. 

SEM of the worn surface did not show evidence of CNT particles; this could be 

related to the low concentration on CNT added to the composite. 

 
Figure 4. 49 SEM of worn surface of Al-0.15 wt. % CNT (A) with UST, (B) without UST. 

From the parametric studies, the development of cavitation due to UST was 

mathematically and experimentally demonstrated. In addition, the effect of UST 

parameters on the degassing of the melt, grain refinement and microhardness was 

evidenced. Mayor improvement was obtained with the following ultrasonic processing 

conditions: 45 seconds of sonication time, 20 microns amplitude, and a melting 
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temperature of 700 oC. As a result, a reduction of porosity from 2.66% to 1% was obtained, 

32% reduction on grain size and increase of 8% on hardness as compare with cast sample 

without UST. 

MMCs were successfully manufactured, showing dispersion and wetting of the 

reinforcement particles. Agglomeration and poor wettability are the principal barriers for 

the incorporation of reinforcements to the metal matrix in the manufacturing of MMCs. 

The differences in surface tension between molten aluminum and reinforcement particles 

lead to high contact angles, making difficult the wetting of the particles with the matrix.  

For better wetting between Al and reinforcement particles, higher values of surface 

energy are required. Usually substrates with higher surface energy held together by bonds, 

while substrate with lower surface energy are held together by forces. In comparison WS2 

surface energy (40 mJ/m2) is much lower than CNT (100 mj/m2) due to the fact that CNTs 

are held together by the covalent bound of its carbon atoms making these particles high 

energy substrates, while WS2 are held together by van der Waals forces which make them 

low energy substrates.   

Based on Eq. 12, substrates with higher surface energy will reduce the contact angle 

between them and aluminum resulting on getting wet easily. Therefore, CNTs particles has 

better wetting with aluminum that WS2    

In addition, for both MMCs (Al – 1 wt. % WS2 & Al-0.15 wt. % CNT) wear 

resistance was improved without affecting the lubricious properties, this improvement is 

attributed to the increase of hardness in the UST treated samples.     
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CHAPTER V: CONCLUSIONS 

In this study, the addition of UST to the casting process to improve the mechanical 

properties of Al6061 and manufacture MMC was successfully accomplished. This work 

also studied the parameters of UST in order to optimize the process. The resulting 

microstructure and mechanical properties were also studied. The optimum conditions for 

UST with a maximum grain size reduction and increase in micro hardness was found for 

the following processing conditions: 45 second of sonication time, 20 micron of sonication 

amplitude and 700°C melting temperature. Also, MMC such as Al-1wt. % WS2 and Al-

0.15wt. % CNT were successfully manufactured using UST as a dispersion technique for 

the reinforcement. The major findings of this study are: 

 Grain refinement was observed with the addition of UST to the casting process. 

The average grain size at the ideal UST conditions decreases from 203 µm to 138 

µm, representing a reduction of 32% in comparison with the sample cast at the same 

temperature without UST. 

 Increase in sonication time, and amplitude resulted in more uniform microstructure. 

Samples with UST exhibited a microstructure with equiaxed dendritic structures 

and globular grains (non-dendritic). The refined microstructure results from the 

formation of excessive solidification sites restricting the growth of dendritic 

branches. 

 Porosity was reduced until 1% for the cast Al6061 with UST at ideal condition, as 

compare with the cast Al6061 without UST.  
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 An increase of 8% in microhardness from 647 MPa to 699 MPa, for the simple 

treated at optimum conditions of UST in comparison with the sample without UST.  

 The cast Al6061 process with the addition of UST follows Hall-Petch relationship 

and is reported for the first time in the literature  

 SEM showed superior dispersion of WS2 and CNT particles on the fracture surface 

with the addition of UST. Big clusters of particles were broke and particles were 

homogenously dispersed throughout the microstructure.  

  Combination of UST and the addition of reinforcements such as WS2 and CNT 

results in the reduction of grain size and increases of microhardness. For Al -1wt. 

% WS2, grain size deceases from 101µm to 98µm and micro hardness increases 

from 771 MPa to 817 MPa. For Al-0.15 wt. % CNT grain size deceases from 110 

µm to 97µm and micro hardness increases from 757 MPa to 794 MPa, as compared 

to its respective control sample without UST. 

 The wear volume loss for Al-1wt. % WS2 with UST specimen is of 0.069 mm3 and 

Al-1 wt. % WS2 without UST is 0.072 mm3. The specimen with UST reports an 

improvement of 4.2% in wear resistance as compared with the one without UST. 

The coefficient of friction was 0.048 for the sample with UST and 0.042 for the one 

without UST.  

 The wear volume loss for Al-0.15wt. % CNT with UST sample is 0.07 mm3 and 

Al-0.15 wt. %. CNT without UST is 0.08 mm3. The specimen with UST reports an 

improvement of 13% in wear resistance as compared with the one without UST. 

The coefficient of friction was for both samples 0.043.  
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CHAPTER VI: RECOMMENDATIONS AND FUTURE WORK 

The objective of this thesis was to study the effect of ultrasonic treatment parameters 

(amplitude, time and temperature) to the casting process of Al6061 in order to determine 

the ideal conditions of UST. Also, these UST conditions were implemented for the 

manufacturing of MMC using WS2 and CNT as reinforcement particles. Based on the 

conclusion of this thesis, recommendations for future work are made as follow: 

 Study longer periods of time and higher amplitudes to determinate if there is a limit 

where UST is no longer beneficial for the mechanical properties of the material.  

 Carry out the casting process with UST in a protected atmosphere like Helium in 

order to prevent oxide formation. 

 Evaluate the UST effect on the dispersion of larger quantities of reinforcement 

particles.  

 Evaluate the UST effect on the dispersion of reinforcement particles with different 

morphology.  
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