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ABSTRACT OF THE DISSERTATION 
 

QUANTITATIVE YTTRIUM-90 BREMSSTRAHLUNG SPECT/CT AND PET/CT 

STUDY FOR 3D DOSIMETRY IN RADIOMICROSPHERE THERAPY 

by 

Senait Aknaw Debebe 

Florida International University, 2017 

Miami, Florida 

Professor Anthony J. McGoron, Major Professor 

Liver cancer ranks the third most common cause of cancer related mortality worldwide. 

Radiomicrosphere therapy (RMT), a form of radiation therapy, involves administration of Yttrium-

90 (90Y) microspheres to the liver via the hepatic artery. 90Y microspheres bremsstrahlung 

SPECT/CT or PET/CT imaging could potentially identify an extrahepatic uptake. An early 

detection of such an uptake, thus, could initiate preventative measures early on. However, the 

quantitative accuracy of bremsstrahlung SPECT/CT images is limited by the wide and continuous 

energy spectrum of 90Y bremsstrahlung photons. 90Y PET/CT imaging is also possible but limited 

by the extremely small internal pair production decay. These limitation lead to inaccurate 

quantitation of microsphere biodistribution especially in small tumors.  

SPECT/CT and PET/CT acquisition of a Jasczak phantom with eight spherical inserts filled 

with 90Y3Cl solution were performed to measure the quantitative accuracy of the two imaging 

modalities.  90Y microsphere SPECT/CT data of 17 patients who underwent RMT for primary or 

metastatic liver cancer were acquired. Technetium-99m macroaggregated albumin (99mTc-MAA) 

SPECT/CT scans were also collected, but available for only twelve of the patients. SPECT/CT 

images from phantoms were used to determine the optimal iteration number for the iterative spatial 

resolution recovery algorithm. Methods for image based calculation of calibration factors for 
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activity estimation from the patient and phantom 90Y bremsstrahlung SPECT/CT images were 

developed. Tumor areas were segmented using an active contour method. The 99mTc-MAA and 90Y 

microsphere SPECT/CT images were co-registered a priori for correlation analysis. Comparison 

of uptake on 99mTc-MAA and 90Y microsphere SPECT/CT images was assessed using tumor to 

healthy liver ratios. Furthermore, a three dimensional absorbed dose estimation algorithm was 

developed using the voxel S-value method. Absorbed doses within the tumor and healthy part of 

the liver were investigated for correlation with administered activity. 

Improvement in contrast to noise ratio and contrast recovery coefficients (QH) on patient 

and phantom 90Y bremsstrahlung SPECT/CT images as well as PET/CT images were achieved. 

Total activity estimations in liver and phantom gave mean percent errors of -4 ± 12% and -23 ± 

41% for patient and phantom SPECT/CT studies. The pre and post-treatment images showed 

significant correlation (r = 0.9, p < 0.05) with mean TLR of 9.2 ± 9.4 and 5.0 ± 2.2 on 99mTc-MAA 

and 90Y microspheres SPECT/CT respectively. The correlation between the administered activity 

and tumor absorbed dose was weak (r = 0.5, p > 0.05), however, healthy liver absorbed dose 

increased with administered activity (r = 0.8, p < 0.05).  
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Chapter 1: Introduction 

Radiomicrosphere therapy (RMT) using Yttrium-90 (90Y) microspheres is an effective 

liver-directed therapy for treating primary or metastatic liver cancer (1,2).  The general procedure 

and the schematic of the steps are shown in Fig. 1 (I) and (II). The technique used in RMT entails 

the delivery of 90Y microspheres into the hepatic artery to obtain a degree of selective uptake into 

the hepatic tumors by virtue of their predominant hepatic arterial supply, as opposed to the 

predominant portal venous supply to the normal liver as reported previously (3). 90Y has a relatively 

long  range (mean = 2.5 mm, max = 12 mm) with minor irradiation of small tumors as these 

tumors won’t be able to absorb all the emitted electrons, but irradiates more uniformly larger tumors 

(≥ 34mm) that often display heterogeneous perfusion. There are currently two types of 

commercially available 90Y microspheres used in RMT: microspheres made of glass (Thera-

Sphere) and resin (SIR-Spheres).  In the glass microspheres, 90Y is an integral constituent of the 

insoluble and non-biodegradable glass microspheres with diameter of each microsphere 20-30µm. 

The resin microspheres have diameter 20-40 µm where 90Y is incorporated into the resin matrix 

where it is immobilized to the microspheres (4). 90Y microspheres are not metabolized, degraded 

or excreted but remain in the organ as a permanent implant (2). 

In RMT, delivery of the radioisotope containing beads or microsphere is not meant to be 

occlusive to the arteries, unlike chemoembolization where the purpose is both to deliver high 

concentration of chemotherapy as well as slow (or stop) arterial flow to malignant tissues. The 

primary goal of RMT treatment is killing of tumors due to radiation; ischemia from occlusion of 

the artery is not desired since radiation therapy is less effective in hypoxic tissues, thus hepatic 

arterial flow in RMT is maintained (3).  As a result, patient candidates for RMT treatment can also 

be those thought to be poor candidates for chemoembolization due to the fact that they are at high 

risk of mortality owing to acute liver necrosis from combined portal vein thrombosis and hepatic 
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arterial occlusion. The biodistribution of 90Y after treatment is currently assessed through 90Y 

bremsstrahlung SPECT/CT imaging (5-7).  

                       

 

Figure 1:(I) RMT procedure: (A) introduction of a catheter into the femoral artery, (B) injection 

of microspheres, (C) liver vasculature (8). (II) Process diagram of RMT. 

 

Technetium-99m macroaggregated albumin (99mTc-MAA) scanning is performed prior to 

RMT as a surrogate for 90Y microspheres. In pre-RMT planning, 99mTc-MAA planar and 

SPECT/CT imaging is used to measure the percentage of particles that shunt to the lungs (lung 

shunt fraction, LSF), to assess any extrahepatic particle deposition, and to calculate the tumor to 

normal liver ratio (1,9). However, due to the significant differences in size and shape of the MAA 
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and the microspheres (99mTc-MAA: ~10-50 μm and 90Y microspheres: 20-40 μm), and the position 

of the catheter tip between the 99mTc-MAA and 90Y microsphere procedures, differences in the 

distribution between the two procedures may result. Multiple authors have demonstrated 

discrepancies of uptake and distribution between 99mTc-MAA and 90Y microsphere SPECT/CT, 

questioning the predictive accuracy of 99mTc-MAA for RMT (9,10).  

 

Figure 2: Various positions of a catheter tip during pretreatment stage and associated with 

unintended distribution (11). 

 

Post RMT imaging of the 90Y could potentially identify extrahepatic uptake. An early 

detection of such uptake, thus, could lead to the initiation of preventative measures early on (6). 

The tumor and liver dose estimates obtained from 90Y microsphere bremsstrahlung SPECT/CT or 

PET/CT imaging could be correlated with tumor response and liver toxicity clinical data. The major 

problem with 90Y bremsstrahlung imaging is the lack of a pronounced photopeak energy due to the 

continuous and broad energy spectrum of bremsstrahlung photons resulting it poor image quality. 

As a result, various studies based on phantoms and Monte Carlo (MC) simulations have 

recommended appropriate energy windows in accordance with the collimator used (12-15). It has 

been shown, often with phantom studies, the incorporation of MC simulation to clinical images can 

provide optimally accurate bremsstrahlung images by compensating for attenuated and scattered 

photons through correction for attenuation scatter and collimator-detector response (14-16). 

Alternately, studies have demonstrated the feasibility of 90Y microsphere PET/CT imaging 

excelling in contrast and resolution compared to bremsstrahlung SPECT/CT (17,18). A recent study 



4 

 

by Yue et al. (18) concluded that both modalities are comparable for post-treatment dosimetry 

estimation if appropriate reconstruction for 90Y bremsstrahlung SPECT/CT is applied. However, 

an appropriate reconstruction method requires incorporation of MC simulation in 90Y 

bremsstrahlung SPECT/CT for quantitative improvement. But the MC based approach is not 

commercially available and is not easily applied for clinical implementation (19,20).  Siman el al. 

(19) recently developed a practical imaging protocol employing background compensation for 90Y 

microsphere SPECT/CT imaging as an alternative to the MC method.  The authors assert that their 

method doesn’t address the main image degrading factors in 90Y bremsstrahlung SPECT imaging, 

such as object scatter, septal penetration, and backscatter; nonetheless, they stated an improvement 

in recovery coefficient from 39% to 90% in a 37 mm sphere in a 10 mm volume of interest. 

The present dissertation addresses the development and application of post-reconstruction 

techniques to improve the quality and quantitation of 90Y SPECT/CT and PET/CT images. 

Different imaging windows, collimators, acquisition times and reconstruction algorithms were 

investigated with a phantom study. Issues related to calibration factor for activity estimation from 

patient and phantom 90Y SPECT/CT images as well as PET/CT images were addressed. Co-

registration methods for better alignment of 99mTc-MAA and 90Y SPECT/CT images were 

identified and evaluated. Subsequently, the correlation of the uptake pattern on the improved 90Y 

microsphere SPECT post-therapy images and on pre-treatment 99mTc-MAA SPECT images was 

evaluated. A three-dimensional (3D) absorbed dose estimation (dosimetry) algorithm using the 

voxel S-value method was developed. Thus, the association between administered activity and liver 

and tumor dosimetry in the patient study was analyzed.  

1.1 Objective, specific aims and hypotheses 

The overall objective is to achieve a quantitative improvement of 90Y bremsstrahlung SPECT and 

PET images and a subsequent comparison of uptake pattern between pretreatment 99mTc-MAA and 
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improved 90Y bremsstrahlung SPECT images, and finally to develop a 3D dosimetry method for 

estimation of 90Y absorbed dose in tumor and healthy liver.  

This objective was accomplished by addressing the following specific aims: 

1.1.1 Specific Aim 1 

Improve the quantitative quality of 90Y bremsstrahlung SPECT and PET images through evaluation 

of various imaging energy windows, collimator types, acquisition times, reconstruction algorithms 

and the development of a post-reconstruction image improvement algorithm.  

The outcome of this aim provided improved images for the subsequent analyses. This aim included 

estimation of the camera point spread function (PSF).  

1.1.2  Specific Aim 2 

Compare the uptake pattern in pre-treatment 99mTc-MAA and post-treatment 90Y microsphere 

SPECT/CT images. 

The outcome of this aim was to assess the degree of accuracy by which 99mTc-MAA SPEC/CT can 

predict treatment outcome. This aim includes co-registration of 99mTc-MAA and 90Y microsphere 

SPECT/CT images.  

1.1.3 Specific Aim 3 

Develop an algorithm using the voxel S value method to transform 90Y bremsstrahlung SPECT and 

PET image pixel values (counts per second, cps) to absorbed dose values (Gy) and generate 

absorbed dose rate distribution at the voxel level. 

The outcome of this aim was to generate images with absorbed dose values at the voxel level. This 

aim includes calculation of the camera calibration factor (sensitivity). This aim also includes 

analysis of the correlation between administered activity and absorbed doses in tumorous and 

healthy liver.  
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Chapter 2: Background 

2.2 Nuclear Medicine Imaging Modalities in Liver Cancer Management 

There are various imaging modalities used in the diagnosis, treatment planning and 

evaluation of liver cancer: ultrasound, MRI, CT, planar nuclear imaging, SPECT and PET. Among 

which planar, SPECT and PET fall under nuclear medicine imaging, which the dissertation will be 

focusing on. CT, typically used as a diagnostic tool, is also incorporated into the dual imaging 

modalities, SPECT/CT and PET/CT, and used for correcting image degrading factors. Thus, it is 

discussed in conjunction with the dual modalities.  

2.2.1 Gamma/ planar imaging 

  The Anger camera, named for its inventor Hal O Anger, or gamma/planar/scintillation 

camera is the most commonly used static imaging device in nuclear medicine, and was 

commercialized as early as mid-1960’s (21). The major components of a gamma camera are a 

collimator, a large area NaI(TI) scintillation crystal, a light guide, and an array of photomultiplier 

tubes (PMT). The basic principle how the camera works is shown in Fig 3.  The collimator consists 

of a very large lead plate with many small holes through it. Only those photons that are 

perpendicular to the collimator plane (or parallel to the axes of the holes) can pass cleanly through 

the holes to be absorbed by the scintillation crystal. There are different kinds of collimators used in 

clinical practice, depending on the type of radionuclide imaged (Table 1). The scintillation crystal 

is commonly made from sodium iodide with a small amount of thallium impurity, NaI(TI). The 

crystal emits light photons whenever it absorbs a gamma ray, where the intensity of the light is 

directly proportional to the energy of the gamma ray. The purpose of the PMT is to act as a 

transducer by changing the visible light from the crystal to electric current, which is directly 

proportional to the amount of light. The current pulses then go through a preamplifier before being 

sent for further processing. The outputs of the PMT are converted into a three-dimensional signal 

after processing. Two of the signals (X and Y) contain the spatial location of the scintillation while 
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the energy deposited in the crystal is represented in Z to portray a 3D distribution of a radioactive 

decay as a 2D image with no depth information. Due to this and the selectivity of the collimator in 

passing gamma rays, the resolution of a gamma camera is between 6.4 – 12.6 mm, with 

considerable loss of contrast and sensitivity (0.1%,  so that 99.9% photons are not detected) (22). 

The preferred emission energies of gamma () rays ranges from 80 to 500 keV with 20-25% 

window width from the photopeak (21,23). Gamma rays of these energies can sufficiently penetrate 

body tissues to be detected from internal organs, and can be stopped efficiently by dense 

scintillators. 

 

Figure 3: Basic components of gamma camera (23). 

Table 1: Collimator specification at 10cm from collimator face (22) . 

Collimator type Hole 

Diameter 

(mm) 

Septal 

Thickness 

(mm) 

Hole 

Length 

(mm) 

Resolution 

(mm)  

Sensitivity 

(cps/MBq) 

Energy 

(keV) 

Low-energy high-

resolution (LEHR) 

1.4 0.152 32.8 6.4 91 140 

Low-energy 

general purpose 

(LEGP) 

1.4 0.180 24.7 8.3 149 140 

Medium-energy 

general purpose 

(MEGP) 

2.95 1.143 48.0 10.8 140 280 

High-energy 

general purpose 

(HEGP) 

3.81 1.727 60.0 12.6 61 360 
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In liver cancer management, planar imaging (Fig. 4) is used in the ‘mapping’ phase where 

diagnostic angiography and intra-arterial administration of 99mTc-MAA microspheres is performed 

that mimic the distribution of 90Y microspheres. Diagnostic angiography is used to identify arteries 

arising from the hepatic artery to determine if coil embolization is necessary and to select the best 

catheter position for tumor targeting. 99mTc-MAA planar imaging is done for determining the 

percentage of particles that shunt to the lungs (lung shunt fraction, LSF) which might require 

adjustment of the amount of 90Y microsphere administered to reduce potential damage to the lungs. 

𝐿𝑆𝐹 =  
𝐿𝑢𝑛𝑔 𝑐𝑜𝑢𝑛𝑡𝑠

𝐿𝑢𝑛𝑔 𝑐𝑜𝑢𝑛𝑡𝑠+ 𝑙𝑖𝑣𝑒𝑟 𝑐𝑜𝑢𝑛𝑡𝑠
                                                   1 

 

 

Figure 4: Example of planar images with ROIs drawn over the anterior (a) and posterior (b) of 

lungs and liver images to determine the LSF (24). 

2.2.2 Single photon emission tomography (SPECT) 

Nowadays gamma cameras with SPECT capability of dual-head detectors is employed in 

most clinical centers. SPECT imaging overcomes the drawbacks of planar imaging by providing 

3D information with depth information by collecting views from different directions. The total 

rotation of a SPECT gantry around a patient is usually 180 о or 360 о, and the total number of 

projections may vary from 64 to 128. Although data acquired over an arc of 180 о are sufficient for 

tomographic reconstruction in SPECT, there are advantages in terms of resolution uniformity and 

correction for γ-rays attenuation in acquiring data over a full 360 degree arc. The acquisition pixel 
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matrix should be of the same order as the number of projections to avoid the appearance of artifacts, 

thus clinical SPECT images are reconstructed in a matrix of 64x64 or 128x128 pixels. Cross 

sectional images are produced for all axial locations (slices) covered by the field of view (FOV) of 

the gamma camera, resulting in a stack of contiguous 2D images that form a 3D image volume.  

The common methods to reconstruct 3D images from planar images are the filtered back-projection 

(FBP) and iterative methods such as maximum likelihood expectation maximization (MEM). 

Mathematical filters are used to obtain an image of adequate quality but since filters change raw 

images, the choice of a particular filter and its parameters depends on the physical characteristics 

of the organ under study. Several types of artifacts may appear using the SPECT techniques that 

are related to instrumentation, patient, study acquisition or data processing.    

A SPECT/CT system consists of a single unit that integrates SPECT and CT (Fig. 5), 

allowing data acquisition of each modality in a single patient study. The CT images are used both 

for attenuation correction and for anatomical location. When CT is used for SPECT attenuation 

correction, the resolution of CT data is reduced to match the SPECT. In addition, since the effective 

energy of the x-ray beam is about 70 keV and the attenuation varies with energy, the CT attenuation 

map is converted to the radionuclide photon energy used in SPECT (for example, about 140keV 

when 99mTc is used). The total time of a SPECT/CT study is significantly reduced because of the 

fast acquisition speed of CT compared to SPECT. The anatomical images acquired with CT can be 

merged with the SPECT emission images to provide functional anatomical maps for precise 

localization of radiotracer uptake. The hybrid technique allows precise localization of primary 

tumors and evaluation of extent of disease. In hybrid SPECT/CT, SPECT is performed in a 360 о 

rotation, consisting of 60 projections 6 о apart in a matrix of 128x128 (25).  
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Figure 5: SPECT/CT camera (left) and its schematic (right). 

The fundamental relationship between the projection space and the image (object) space in 

SPECT image formation (Fig. 6) is given as: 

𝑝(𝑠, 𝜃) = ∬ 𝑓(𝑥, 𝑦)𝛿(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 − 𝑠)𝑑𝑥𝑑𝑦                          2 

Where f(x,y) is object representation in image space, δ (..) is the Dirac delta function, and g(r,ϴ) 

is the projection data along ϴ and r of projection angle and line respectively. In SPECT however, 

this relationship is not linear due to image degrading factors discussed below. 

 

  

Figure 6: SPECT image formation (left) and 2D image reconstruction (right) (26). 

 

Patient table  

CT  

Gamma detector 2 

Gamma detector 1 X—ray generator 

X—ray detector 

Detector 1 Detector 1 
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Image degrading factors in SPECT 

Photon attenuation and scatter 

There are five types of x- and γ-ray interactions with matter: Compton scattering, 

photoelectric effect, pair production, Rayleigh (coherent) scattering and photonuclear interactions. 

The first three interactions are the most important as they result in the transfer of energy to electrons 

which then impart the energy to matter. But the importance of these interactions depends both on 

the photon quantum energy (Eγ = hv) and the atomic number Z of the absorbing medium (Fig 7). 

Rayleigh scattering is elastic scattering where the photon is redirected with no energy loss and 

photonuclear interactions are only significant for high energy photons (E > >MeV) where there is 

production of neutrons. The major interaction that occur in SPECT imaging are photoelectric and 

Compton scattering due to the range of photon energies detected (80 – 500 keV). Photoelectric 

effect is dominant at lower energies and mostly occurs in high Z media such as lead while the 

Compton scattering occurs at medium energy and is dominant in low Z media such as human tissue, 

water, etc.  Each of these effects contribute to photon attenuation and scatter in SPECT. Attenuation 

results from absorption by the photoelectric effect, Compton scattering, and pair production at a 

higher energy depending on the photon energy and thickness of the absorber (Eqn. 3). Scattering 

in SPECT is mainly due to Compton scatter where the photon is deflected at an angle ϴ (0 - 180°) 

from its original direction with a reduced energy due to its interaction with an outer shell electron 

of the absorber atom (Eqn. 4). For ϴ = 180°, backscattering collision results.   

𝐼𝑡 = √𝐼1×𝐼2 = √[(〖𝐼01×𝐼02)𝑒〗−𝜇(𝑎+𝑏) =    √𝐼01×𝐼02 𝑒−𝜇(𝐷/2)              3                                                                                                                      

𝐸𝑠𝑐 =  
𝐸0

[1+
𝐸0

𝑚𝑐2 (1−𝑐𝑜𝑠𝜃)]
                                                  4 
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I01 and I02 are the initial photons, a and b are source depths, It is the total attenuated photons 

transmitted from the two detectors, μ is the linear attenuation coefficient and D = a + b, thickness 

of the absorber, Esc and E0 are the scattered and initial photon energies respectively. 

 

Figure 7: The three major types of photon interactions in SPECT(27). 

Collimator detector response 

Collimator detector response (CDR) is the response of the camera from a point source 

activity where the shape of the response determines the resolution in SPECT (28,29).  CDR varies 

with distance from the detector (Fig. 8) causing different blurring at different distances but CDR is 

spatially invariant at a constant distance, d, from the detector surface. CDR in SPECT has four 

components: intrinsic response, geometrical response, septal penetration and septal scatter.  The 

last two components are particularly problematic for high energy emitters such 90Y causing 

additional loss of image contrast due to degradation of spatial resolution. The intrinsic response is 

the response of the scintillation camera, excluding the collimator, to a pencil beam of radiation. 

Intrinsic response is dependent on the energy of the incident photon, the energy window used, and 

the thickness and composition of the crystal and it represents the efficiency of the crystal in 

detecting photons. The geometric response is the total collimator response function that represents 

the distribution of the detected photons that travel through the collimator hole without interacting 

or passing through the collimator septa and is the easiest to treat theoretically. The general form of 
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the collimator-detector response function is given in Eqn. 5. Geometric collimator resolution (Rc) 

is given by Eqn. 6. 

𝑑 (𝑠, 𝐷) = 𝑖(𝑠)×(𝑔𝑐(𝑠, 𝐷) + 𝑝𝑠(𝑠, 𝐷) + 𝑠𝑠(𝑠, 𝐷))                     5 

𝑔𝑐 = 𝑑
(𝑙𝑒+𝑏)

𝑙𝑒
                                                                6 

 

Figure 8: Profile of a parallel hole collimator for a point source (23). 

Where D and b are the distance from the radiation source to the collimator, i(s) is the intrinsic point 

response function, gc(s,D), ps(s,D), and ss(t,D) are the collimator geometric, septal penetration and 

septal scatter correction respectively, and d is the diameter and le = l - 2μ-1 the effective length of 

the collimator holes. For simplicity, the septal penetration and scatter are neglected giving the 

system resolution (Rs) of SPECT camera as the combined effect of the intrinsic (Ri) and geometric 

(Rc) resolutions: 

  𝑅𝑠 = √𝑅𝑖
2+ 𝑅𝑐

2                     7 

 As a result of these image degrading factors in SPECT, the projection data in the image formation 

given by Eqn. 8 will be modified to include these effects as follows: 

𝑝(𝑠, 𝜃) = ∫ 𝑑𝑡
∞

−∞ ∫ 𝑑𝑠′×𝑓(𝑠′, 𝑡)×𝑠𝑓(𝑠′, 𝑡; 𝑠)×𝑑𝑓(𝑠′ − 𝑠; 𝐷 + 𝑡)× exp [− ∫ 𝜇(𝑠′, 𝑡′)𝑑𝑡′𝑡

𝑡𝑑
]       8 
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Where s’= (su,sv), sf(s’,t;s) is the scatter response function, df  is the collimator detector response,  

D is the distance between the collimator and the center of rotation and z=D+t, and td is the t-

coordinate of the detection plane(26). The equation is further complicated by the inclusion of 3D 

collimator-detector response. The following step of image reconstruction is to find a solution of 

f(s,t) from the projections described by Eqn. 8.  

SPECT image reconstruction 

Image reconstruction is done using mathematical algorithms to reconstruct images from 

the multiple projections of detected emissions from radionuclides within a subject, known as 

emission computed tomography (Fig. 6). Although the instrumentation in CT, SPECT and PET 

differ, the mathematics of image reconstruction are the same. There are different techniques of 

image reconstruction in tomography: simple back-projection, direct Fourier Transform, filtered- 

back-projection and iterative reconstruction algorithms. Iterative methods such as maximum 

likelihood expectation maximization (MLEM), particularly its accelerated version OSEM, offer 

potential benefits that lead to better results. The pronounced property of iterative reconstruction is 

that it can be modified to incorporate weights or penalties such as correction for photon 

attenuation, scatter and compensation for spatial resolution losses which enables the algorithm to 

be tuned for specific clinical requirements. The method is suggested for quantitative SPECT image 

analysis since it allows for optimal correction of image degrading physical effects, improving 

noise properties. In addition, compensation for physical limitations can be modelled in the 

reconstruction process of iterative methods(30).  SPECT/CT imaging in liver cancer management 

is used at two stages: pretreatment 99mTc-MAA and post-treatment 90Y imaging.  

99mTc-MAA Imaging 

Technetium-99m macroaggregated albumin (99mTc-MAA) scanning using SPECT or 

SPECT/CT modality is performed before 90Y RMT in order to detect activity outside of  the liver 
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(1). 99mTc-MAA SPECT/CT allows for an accurate volume measurement that provides a valuable 

contribution to the therapeutic planning of patients with liver cancer. It can be used to determine 

liver volume, and for quantitation of injected dose. In pre-RMT planning, dosimetry based on 

99mTc-MAA SPECT/CT can be used for selection of patients and assess any potential extrahepatic 

particle deposition. 99mTc-MAA SPECT/CT is also used to calculate the tumor to normal liver ratio 

(TLR) (9). Based on these determined values the administered 90Y activity dose (Ainj) is calculated 

from a well-defined model [Fig. 9(A)] according to the Medical Internal Radiation Dose (MIRD) 

scheme, using the empirical method given by Eqn. 9 or by the body surface area (BSA) method 

given by Eqn. 11 (31). The absorbed dose in the tumor, healthy liver and lungs is calculated using 

Eqn. 12 where the fractional uptake is the fraction of the administered activity expected to be 

deposited within the volume of interest.  

   

 

Figure 9: (A) Reference anatomic model used for conventional dose calculation (32) and (B) 
99mTc-MAA SPECT/CT scan of a patient. 

 

B   

A  
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𝐴𝑖𝑛𝑗 =  {

2𝐺𝐵𝑞,       𝑖𝑓 𝑟 < 25%,              
2.5𝐺𝐵𝑞,   𝑖𝑓 25% < 𝑟 < 50%,
3𝐺𝐵𝑞,      𝑖𝑓 𝑟 > 50%                

                               9 

Where r = (Tumor volume/Total liver volume)*100 

TLR =
Max tumor counts

Average liver counts
                                               10 

𝐴𝑖𝑛𝑗(𝐺𝐵𝑞) = 𝐵𝑆𝐴 − 0.2 +  
𝑇𝑢𝑚𝑜𝑟 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑢𝑚𝑜𝑟 𝑣𝑜𝑙𝑢𝑚𝑒+𝑙𝑖𝑣𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒
                           11 

𝐷𝑜𝑠𝑒 (𝐺𝑦) =
𝐴𝑖𝑛𝑗×49,800 ×𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑢𝑝𝑡𝑎𝑘𝑒

𝑀𝑎𝑠𝑠
                         12 

Based on 99mTc-MAA SPECT/CT imaging patients with LSF higher than 20% or absorbed dose in 

the lungs ≥ 30Gy for 90Y resin and glass microspheres respectively are disqualified for RMT 

treatment (33). 

90Y SPECT Imaging 

Post-treatment 90Y bremsstrahlung imaging is recommended by most physicians and is 

currently a routine imaging procedure performed during the first 24 hrs of treatment (5-7,34). The 

main reasons for post treatment imaging is to potentially identify the unexpected presence of 90Y 

microspheres outside the liver which will likely cause serious complications such as ulceration and 

GI tract bleeding (17,34).  The number of 90Y microspheres injected is very high compared to 99mTc-

MAA which might lead to a more powerful embolic effect that contributes to slowing down the 

blood flux or even induces transient blockade of the targeted vessels. This can significantly modify 

the arterial flow, resulting in a distribution of the 90Y microspheres different to that of the 99mTc-

MAA (35). .90Y accumulation in organs other than liver causes serious complication due to the high 

radiosensitivity of the surrounding organs. Thus early detection of extrahepatic activity will help 

in preventing development of more serious problems through aggressive pain management such as 

surgery, angioplasty or stent, supportive management, etc. based on the symptoms developed 
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(17,36). Dosimetry of tumorous and non-tumorous tissues from post-treatment imaging could be 

correlated with tumor response and liver toxicity. The major problem in bremsstrahlung 

SPECT imaging is the lack of pronounced photopeak energy due to the continuous and broad 

energy spectrum of bremsstrahlung photons (Fig. 10). The absence of a photopeak energy window 

makes it difficult to achieve window based scatter rejection, scatter correction, and attenuation 

correction which all contribute to low quality bremsstrahlung SPECT images (17).  The difficulty 

to separate the counts on the image that come from primary photons, from those that have been 

scattered, penetrated the collimator septa, or back-scatter from the camera housing and photo-

multiplying tubes make it very complex to achieve scatter correction. At any energy window, the 

ratio of primary bremsstrahlung to the total number of photons detected is < 15%, with the highest 

primary fraction occurring between 80-180 keV (37-39). Despite the wide range of energies imaged 

during bremsstrahlung SPECT, it is agreed upon by authors to use a single effective attenuation 

coefficient for attenuation correction (40,41).  However, this would result in discrepancy of the 

actual value of the attenuation coefficient and the reconstruction technique used.  It has been shown, 

often in conjunction with phantom studies, that Monte Carlo simulations help to optimize the 

accuracy of bremsstrahlung images by enabling correction for attenuation, scatter and collimator-

detector response with error less than 11% for sphere volumes about 100 ml and larger (14,16,42). 

Proper attenuation correction requires an attenuation map specific to the object being imaged, 

patient specific in a clinical case. To achieve dosimetry based on the image at hand, i.e. patient 

specific dosimetry, applying attenuation correction on the image is one of the necessities (30). 

Photon attenuation correction is especially critical in the clinical setting where thickness of tissues 

varies for different regions of the patients’ anatomy (26). 
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Figure 10: Schematic representation of the energy levels (43) and energy spectrum of 90Y(7). 

  

  Determining an optimal energy window where these effects are minimized is critical for 

accurate dosimetry. As a result different acquisition energy windows have been recommended by 

many authors (12-15). In a phantom study and Monte Carlo simulation Minarik et al. (14) suggested 

that adequate image quality can be obtained in the 105- 195keV energy window, and it was stated 

that a window with a lower limit below ~80keV will include counts for characteristics X-ray 

photons produced in the lead collimator.  Ito et al. (13) used three energy windows centered at 

75keV ± 25% (57-94keV), 120keV ± 15% (102-138keV) and 185keV ± 25% (139-232keV) in a 

phantom study.  They found that bremsstrahlung SPECT/CT acquisition centered at the 120keV 

energy window resulted in the highest spatial resolution. A wide energy window (55-285keV) with 

medium-energy collimation was used by Shen et al. (12) to optimize sensitivity, but this window 

results in loss of spatial resolution or requires high-energy collimator and restoration filters (40). 

In clinical practice, image acquisition centered on 90 keV ± 15% is currently a standard protocol. 

In addition to choosing the optimal energy window for imaging bremsstrahlung photons, various 

pre and post reconstruction optimization efforts have been done to improve bremsstrahlung image 

quality. The same groups who studied the various acquisition windows have investigated various 

scatter correction techniques (14,15). Ahmadzadehfar et al. (34) addressed the usefulness and 

significance of bremsstrahlung SPECT/CT imaging for post-treatment dosimetry. In the 
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manuscript, it is shown that 90Y bremsstrahlung imaging is feasible, despite scattering and other 

image degrading artifacts, and it was stated that this imaging could help to appropriately and timely 

manage patient wellbeing if extrahepatic tracer deposition occurs. The study showed that detection 

of extrahepatic activity with the post-treatment scan predicted GI ulcers with a sensitivity of 87% 

and a specificity of 100%. These predictions help form decisions for an appropriate and timely 

management strategy when extrahepatic deposition occurs. Minarik et al. (14) also suggested that 

with proper and accurate dosimetry based on quantitative bremsstrahlung imaging, it is possible to 

find the relationship between the real uptake relative to the estimate based on pre-treatment tracer 

to be able to modify a therapy for future treatment and to assess the treatment efficiency.   

2.2.3 Positron emission tomography (PET) 

PET imaging is used with positron-emitting radionuclides. PET detectors detect the ‘back-

to-back’ two annihilation photons that are produced when a positron interacts with an ordinary 

electron (44,45). The photons have identical energy (511 keV) and are emitted simultaneously, in 

180-degrees opposing directions. The volume from which these pairs of annihilation photons were 

emitted can be defined by a technique called annihilation coincidence detection. Because the point 

of annihilation is very close to the point of positron emission, this gives a good indication of where 

the radioactive atom was in the body. As a result, PET scanners don’t have mechanical collimation 

to localize radioactive decay as in SPECT, and hence no limit to the field of view. PET scanners 

instead use electronic collimation that depends on the line of response that passes through the point 

of annihilation joining the detected photons (Fig. 11 & 12). PET scanners are designed and 

optimized for imaging all positron-emitting radionuclides at this single energy range (511keV). By 

using computed tomography techniques to measure the total radioactivity along the lines that pass 

at many different angles through the object, two-dimensional images that reflect the concentration 

of the positron emitting radionuclide in tissues can be reconstructed. The energy of annihilation 

photons fall in the gamma ray electromagnetic spectrum and the properties of annihilation photons 
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are identical to a 511 keV gamma rays, as a result the terms photons and gamma-rays are often 

used interchangeably when referring to the annihilation photons (46). However, the origins of the 

two photons are different since annihilation photons do not come from the nucleus.  Time of flight 

(TOF) PET is a technique used to determine the location where the annihilation originated along 

the line of response (LOR). The time difference between the arrivals of the two annihilation photons 

at the opposite detectors is measured in TOF PET where annihilation events are localized more 

accurately in along the line of response (Fig. 11). If the difference in arrival times of photons is Δt, 

the location of the annihilation event with respect to the midpoint between detectors is given by 

Eqn. 13. 

 

Figure 11: Equal probability assigned to all the pixels along LOR in non-TOF PET (a) and localized 

counts along the LOR with TOF PET (b) (47). 

 

𝛥𝑑 =
Δ𝑡 ×𝑐

2
                                                                       13 
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Figure 12: The process of positron-electron annihilation and detection of the annihilation photons 

(left) and illustration of PET/CT scanner components (48) (right). 

Image degrading factors in PET 

The main image degrading factors in PET include attenuation, random coincidences and 

scatter coincidences. As is the case with SPECT, photoelectric effect and Compton scattering are 

the two major mechanisms by which 511 keV photons interact with matter and which give rise to 

photon attenuation in PET. Attenuation correction in PET is much more accurate compared to 

SPECT since the correction is independent of the location of the source in the body. With the 

inclusion of CT with PET, attenuation correction is achieved with the transmission information 

from CT although it requires a scaling before it can used since the CT scan is acquired at lower 

photon energy compared to the 511 keV photons in PET. The CT scan will also provide anatomical 

localization of PET images giving a better tumor localization compared to PET alone. Random 

coincidence events in PET occur when two photons originating from different positron decays hit 

the detector ring within a narrow timing window. Scattered coincidence occurs when one of the 

photons from an annihilation event undergoes Compton scattering, which can usually be corrected 

by using energy discrimination.  

Tumors are known for their greater metabolic activity accompanied by a greater glucose 

uptake relative to the surrounding normal tissue (49). Several tracers for glucose metabolism have 
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been investigated in PET imaging. Fluorine-18-fluorodeoxyglucose positron emission tomography 

(18F- FDG-PET) is the second most used modality in liver cancer imaging because of its 

significance in the evaluation of extrahepatic disease (50).  18F-FDG is a glucose analogue with a 

biological half-life of 110 minutes, thus accumulation of FDG in tissue is proportional to glucose 

utilization (51). Greater glucose uptake can be identified with FDG PET which allows for the 

identification of a tumor foci. However, any focal area of hypermetabolism can give false-positive 

results (52). PET has the ability to detect liver metastases comparable to MRI and is useful for 

detecting extrahepatic metastatic disease (53). The limitation of FDG PET is in detecting tumors 

smaller than 1 cm (49,54). However, the role of FDG PET/CT in the evaluation and characterization 

of liver metastases is uncertain due to the heterogeneous uptake of FDG which makes it difficult to 

exclude the presence of small metastases (49,50).   

In 2004, a study showed that 90Y generates pair production at 511 keV that can be detected 

with a PET camera (55). Various studies have since then demonstrated the feasibility of 90Y 

microsphere PET/CT imaging as an alternative to 90Y bremsstrahlung SPECT/CT imaging (17,18). 

90Y emits 32 positrons per second per MBq (32 per 1,000,000 decays) with a maximum energy of 

758 keV (56).  Though the rate of pair production is very small, there is a detectable peak of 511 

keV photons surpassing the continuous spectrum of bremsstrahlung photons (Fig 13). Despite the 

very low positron abundance, various studies have shown 90Y PET/CT images excelling in contrast 

and resolution compared to bremsstrahlung SPECT/CT (12,17,18).  Elschot et al. (17) compared 

90Y PET/CT and SPECT/CT in a phantom study with simulated activities. The PET/CT was 

performed with TOF capability and the image reconstruction included the PSF of the camera while 

the SPECT/CT was performed using a HEGP collimator with energy window centered at 150 ± 

30% and images were reconstructed with OSEM including the PSF of the detector. The study found 

that PET estimates activities more accurately than SPECT, in addition, higher contrast recovery 

coefficient was found on the PET images.  The pitfall of the study is that it was a simulated study 
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that doesn’t represent an actual clinical scenario with acquisition time of 60 min PET and 120 min 

for the SPECT, which gives the PET camera the advantage of collecting more annihilation events. 

A recent study by Yue et al. (18) investigated patient post-treatment 90Y PET/CT and 

bremsstrahlung SPECT/CT where the two scans were performed on the same day. PET/CT was 

done for 30 min per one bed position and the SPECT/CT was done on HEGP collimator with 

acquisition energy between 100-300 keV. Even though the PET/CT was performed without TOF 

and coincidence correction capability, the authors concluded that the total activity estimate in the 

liver is comparable between the two modalities, but PET/CT overestimated 90Y activity in regions 

with low or no activity. This study lacks correction for prompt coincidence between annihilation 

and bremsstrahlung photon 90Y imaging. Also, with non TOF capability of PET, the overestimation 

of photons is inevitable. Thus the total estimate inside the liver could give a satisfactory result, but 

dosimetry estimation inside tumor and healthy liver region will be compromised as the photons are 

not spatially corrected, resulting in loss of accuracy.  

 

Figure 13: Positron fraction over the continuous bremsstrahlung spectrum as measured by 

germanium spectrometer (55). 

Chapter 3: Framework for Experimental Setup, Data Acquisition and Data Collection  

3.1 Introduction 

A 90Y imaging study, although technically possible, given the inherit characteristics of 

bremsstrahlung photons current use of the post -RMT bremsstrahlung SPECT/CT is limited to the 
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qualitative assessment of the final location of the microspheres (33). Though various authors have 

come to agreement with the optimal choice of collimator type and acquisition energy window, these 

choices are not clinically employed as 90Y imaging protocol in many centers. Currently most 

clinical practices follow the American Association of Physicists in Medicine (AAPM) 

recommendation for post-treatment 90Y bremsstrahlung SPECT/CT imaging, which recommends 

the use of medium-energy collimation and energy window centered at 80 ± 15% keV (68 – 92 keV) 

(33).   

The choice and inclusion criteria for conducting patient research of 90Y bremsstrahlung 

SPECT/CT imaging varies from one author to the other (Table 2). Patient studies who had whole 

liver or single lobe treatment might present similar results due to related nomenclatures which 

requires a cautious interpretation of the presented results. As to whether the whole liver or a single 

lobe is treated, consistency in the imaging protocol is exceedingly important.  

90Y phantom studies are usually done with activity much lower than the actual patient 

administered activities with great variability across studies, different sphere-to-background ratio, 

different background concentration and different acquisition time (Table 3). But most studies try 

to replicate the sphere to background ratios comparable to tumor to healthy liver activity ratios 

encountered in clinical studies (Table 3 & 4). The fact that the activities inside the spheres and 

phantoms are much lower could result in a reduced statistical count in the reconstructed images 

compromising the accuracy of measured values.  
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Table 2: Summary of patient 90Y bremsstrahlung SPECT/CT studies. 

Author  No of 

patients 

Whole vs. single 

lobular 

treatment 

Total liver 

size (ml) 

Tumor sizes 

(treated 

volume) (ml) 

Tumor to liver 

ratio based on 
99mTc-MAA 

SPECT/CT 

Gulec et al. 

(31) 

40 Whole 898.7-

3982.0 

15 – 984.2 2.8-15.4 

Garin et al. 

(9) 

36 Single NA 187 (mean) 7.2 

Elschot et 

al. (17) 

5 Whole (4) 1230-3050 20-383 NA 

Ilhan et al. 

(10) 

502 Whole (201) and 

single (301) 

NA NA 1.65-2.61 

Yue et al. 

(18) 

15 Single NA 397-2262 NA 

Siman et 

al. (19) 

30 NA NA NA NA 

 
Table 3: Summary of 90Y bremsstrahlung SPECT/CT phantom study setups 

Autho

r  

Phanto

m  

#  of 

spheres 

Sphere 

diamete

r (mm) 

Spher

e to 

bkg. 

ratio 

Exp

. vs. 

sim. 

Acquis

ition 

energy 

(keV) 

Collimat

or 

 Reconstruct

ion alg. 

(iter/sub) & 

compensati

on  

Minar

ik et 

al. 

(14) 

Elliptica

l  

1 60 No 

backg

round 

activit

y 

Exp

. & 

sim.  

105-

195 

HEGP  OSEM 

(4/12) 

scatter & 

attn.  

Rong 

et al. 

(15) 

Elliptica

l  

3 15, 33, 

55 

10:1 a, 

20:1b   

Exp

. & 

sim. 

100-

500c 

0-

2000d 

HEGP  OSEM 

(400/16) 

scatter & 

attn.  

Elsch

ot et 

al. 

(17) 

IEC  6 10, 13, 

17, 22, 

28, 37 

9:1 Exp

. but 

sim. 

cou

nts 

105-

195 

HEGP  OSEM 

(8/8) with 

PSF & attn.  

Siman 

et al. 

(19) 

IEC  1 37 7.8:1 Exp

. 

90-

125c, 

310-

410e 

MEGP  OSEM 

(128/16)      

bkg & attn.  
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Bkg: background; Exp: Experimental; sim: simulated; iter/sub: iteration/subset; alg.: algorithm; 

attn: attenuation 

a sphere to background ratio in the large and medium sphere. 

b sphere to background ratio in the small sphere.  

c multiple energy windows were used and reported the values in the table are used for the 

phantom study 

Table 4: Summary of PET/CT studies 

 

3.2 Materials and Methods 

3.2.1 Patient study:   

 Patient data were acquired from Baptist Hospital of Miami as part of a retrospective study 

approved by the Florida International University Institutional Review Board. Therefore, written 

Author Phantom 

type 

No of 

patients 

Sphere 

diameter(

mm) 

Sphere to 

bkg. ratio 

Exp. vs. 

sim. 

TOF Scatter 

and attn. 

correction 

Elschot et 

al. (17) 

IEC 6 10, 13, 

17, 22, 

28, 37 

9:1 Exp, but 

sim. 

counts 

TOF Corrected 

Yue et al. 

(18) 

NA 15 NA NA Patient 

data 

Non-

TOF 

Corrected 

Willowson 

et al. (57) 

Attarwala 

et al. (58) 

 

 

 

IEC 

1 

 

 

NA 

 

 

10, 13, 

17, 22, 

28, 37 

 

 

8:1 

 

 

Exp. 

 

 

TOF 

 

 

Corrected 

Martí‐
Climent et 

al. (56) 

Jaszczak 10 31.3, 

28.1, 

21.8, 

16.1 13.3 

2.5 Exp. TOF, 

Non-

TOF 

Corrected 

Willowson 

et al. (59) 

IEC NA 10, 13, 

17, 22, 

28, 37 

8:1 Exp. but 

sim. 

counts 

(7 days) 

TOF, 

Non-

TOF 

Corrected 

Rowley et 

al. (60) 

IEC 10 10, 13, 

17, 22, 

28, 37 

 Exp. but 

sim. 

counts 

(12 hr) 

TOF Corrected 
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patient informed consent was not sought nor documented and image data were handled 

anonymously.  

 99mTc-MAA SPECT/CT imaging  

 All patients had undergone 99mTc-MAA SPECT/CT scan before RMT, of which twelve of 

those patients were used for comparison of tumor to liver ratios for our study as the 99mTc-MAA 

SPECT/CT data from the remaining seven patients had been transferred to a different location at 

the time of the study and so unavailable. Mean administered 99mTc-MAA was 190 MBq. SPECT/CT 

data were collected for patients whose LSF ≤ 5% to minimize error due to extrahepatic deposition 

consistent with another group (19). The acquisition energy window was centered at 140 keV for 

99mTc-MAA SPECT with 128 × 128 projection matrix over 360° for 20 seconds per azimuth and 

with a low-energy high-resolution collimator. Image reconstruction was done using the ordered 

subset expectation maximization (OSEM) algorithm with 3 iterations and 16 subsets, 132 × 132 

matrix and 4.664 × 4.664 mm2 pixel size. 

90Y microsphere SPECT/CT imaging 

  In total, SPECT/CT data of 19 patients who underwent RMT with 90Y-labeled resin 

microspheres (SIR-spheres; SIRTEX) were acquired. 90Y bremsstrahlung SPECT/CT was 

performed with a medium energy general purpose collimator energy window centered on 90 keV 

± 15%, 35 seconds per azimuth for 2x64 views over 360° (currently a standard protocol at our 

center). Image reconstruction for 90Y SPECT was performed using Astonish from Philips Medical 

Systems. Astonish is a 3D OSEM algorithm with built-in noise reduction that incorporates 

attenuation and scatter corrections using the CT attenuation map and the effective source scatter 

estimation method respectively, and also incorporates depth-dependent resolution recovery (61,62). 

The 90Y bremsstrahlung SPECT images were reconstructed with 4 iterations and 8 subsets, 132 × 

132 matrix and 4.664 × 4.664 × 4.664 mm3 voxel size.   
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Figure 14: Patient 90Y microsphere SPECT/CT images in axial (upper) and coronal (lower) views. 
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Table 5: Patient characteristics. 

Patient 90Y administered 

activity (MBq) 

99mTc-MAA SPECT/CT 

available (Y/N) 

1 547.60 N 

2 555.00 Y 

3 558.70 N 

4 569.80 Y 

5 758.50 Y 

6 780.70 Y 

7 888.00 N 

8 965.70 Y 

9 999.00 Y 

10 1061.90 N 

11 1202.50 Y 

12 1195.10 N 

13 1235.80 Y 

14 1261.70 Y 

15 1435.60 Y 

16 1517.00 Y 

17 2072.00 Y 

 

3.2.2 Phantom study: 

The Jasczak (Fig. 15) phantom (6 liter) which simulates a human torso was used.  Eight 

fillable spherical inserts of inner diameter 2, 8, 10, 12, 16, 25, 31 and 34 mm were inserted inside 

the phantom to mimic variable size tumors inside the human liver (Fig. 14). For experiment 1, the 
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spheres and background were filled with Yttrium-90 (III) chloride solution (PerkinElmer Inc., 

USA) of total activity 27 and 255 MBq respectively with an approximate sphere to background 

activity concentration ratio of 13:1. For the second experiment, 90Y was extracted from SIR-

Spheres using a saline solution. The solution was set for about 30 - 45 minutes for 90Y to separate 

from the microspheres the microspheres to settle to the bottom. The 90Y solution was then extracted 

with a needle syringe to minimize disruption of the mixture. In both experiments 90Y activity was 

diluted and measured in a 60 ml vial before adding to the spheres and the activity inside each sphere 

was also measured afterwards using a Capintec dose calibrator (read out scale factor = 10). The 

increased activity in the spheres for experiment 2 was to be able to collect enough annihilation 

events for PET/CT imaging (Table 6). The reported values in Table 6 are based on dilution 

equation. Although the reading from the dose calibrator is recorded, the calibrator has ±10 read out 

error for mCi measurement which might not give accurate measurement for activities in μCi. For 

experiment 2, the expected values from the dilution equation might not represent exact values in 

the sphere as there could be microspheres associated with 90Y invisible to the naked eye.  

 

Figure 15: Different size hollow spheres (left) and Jasczak phantom with spherical inserts (right). 
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Table 6: Phantom activity 

 

Sphere no 

 

 

Sphere size in 

diameter (mm) 

Activity (MBq) 

Experiment 1  Experiment 2  

S1 34 11.10 33.30 

S2 31 8.88 12.65 

S3 25 4.44 7.15 

S4 16 1.11 4.87 

S6  12 0.56 1.67 

S7 10 0.28 0.85 

S8 8 0.14 0.40 

S9  2 ~0 NA 

    

Image acquisition and reconstruction 

SPECT/CT imaging 

Data were acquired on a dual-head Philips Precedence 16P SPECT/CT (Philips Medical 

Systems Inc., USA) at the Baptist Hospital of Miami. Two separate experiments were performed 

for SPEC/CT imaging. The first experiment involves imaging with two different collimators, 

MEGP and HEGP. The SPECT/CT imaging setup with the MEGP collimator was identical to the 

patient studies in terms of imaging window, collimator and image reconstruction.  Details of the 

SPECT/CT experiments are presented in Table 7.  
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Table 7: SPEC/CT imaging parameters 

              Experiment 1 Experiment 2 

 Imaging 1 Imaging 2 Imaging 1 

Camera brand Philips Precedence 16 Philips Precedence 16 Philips Precedence 16 

Dual-head Yes Yes Yes 

Field of view (FOV) 60 cm 60 cm 60 cm 

Crystal type NaI(Tl) NaI(Tl) NaI(Tl) 

Collimator type MEGP HEGP MEGP 

Energy window 90 ± 15% keV 105 – 195 (150 ± 30%) 90 ± 15% keV 

Reconstruction 

algorithm 

Astonish OSEM Astonish OSEM Astonish OSEM 

Iterations/subsets 4/8 8/8 4/8 

Post reconstruction 

filter 

NONE NONE NONE 

Acquisition time 18min 18min 18min 

Matrix size CT 512 × 512 512 × 512 512 × 512 

Matrix size 132 × 132 132 × 132 132 × 132 

Voxel size 4.664×4.664×4.664 

mm3 

4.664×4.664×4.664 

mm3 

4.664×4.664×4.664 

mm3 

PET/CT imaging 

PET/CT data were acquired on a GE Discovery 690 TOF scanner equipped with FOV of 

70 cm. PET data were acquired in the identical imaging protocol as the patient 18F-FDG PET/CT 

imaging. The energy window was centered at 511 keV. Two experiments were performed; 15 or 

30 min scan times. Single bed position was chosen due to the small size of the phantom where 

major counts are detected along the center rings compared to a standard human size where 

significant detection also occurs along the edge ring detectors. The image reconstruction algorithm 

included correction for random coincidences, scatter and attenuation. Reconstructed image matrix 
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was 128×128 with 5.47×5.47×5.47 mm3 voxel size. Table 8 presents details of the imaging 

parameter for the PET/CT imaging.   

Table 8: PET/CT imaging parameters 

 Experiment 1 Experiment 2 

Camera brand GE Discovery 690 GE Discovery 690 

Crystal type Germanium Germanium 

Energy window 511keV centered 511keV centered 

FOV of CT 70cm 70cm 

Current CT  62mA 62mA 

Distance from sample 10cm 10cm 

Number of projections/views 83 83 

Bed position 1 1 

Acquisition time  15min  30min (15min per bed) 

Reconstruction algorithm Time of Flight Time of Flight 

Matrix CT 512 × 512 512 × 512 

Matrix SPECT  128 × 128 128 × 128 

3.2.3 Image processing  

 A MATLAB® algorithm was developed to import and export images for Region and 

Volumes of Interests (ROIs and VOIs) generation, semi-automatic tumor segmentation, activity 

estimation, absorbed dose estimation and statistical and mathematical analysis. For the patient 

studies, VOIs were drawn manually on the CT images slice by slice for liver segmentation. Binary 

masks from the CT images were mapped onto the respective SPECT scans. For the phantom study, 

eight circular VOIs were manually drawn on the CT slices, where knowledge of the phantom 

composition allowed us to identify the spheres and made sure the volumes in VOIs were consistent 

with the true measured volumes. Background VOIs consisted of all voxels within the phantom 

boundary excluding voxels that belong to the sphere VOIs. A single slice through the center of the 

coplanar spheres was used for generating 8 circular ROIs equal to the spheres’ inner diameter. A 
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background ROI defined in the same slice consisted of all voxels within the phantom except the 

sphere ROI.  

3.2.4 Statistical Analysis 

Quantitative parameters are presented as mean ± SD and ranges. Linear regressions were 

generated between administered activities (independent variable) and cps for predicting calibration 

factors. Slope, R-squared, standard error and 95% confidence interval of the regression models are 

reported. Pearson correlation coefficients and were used to test for significance of correlations 

between TLRs from 99mTc-MAA and 90Y SPECT and between administered activity and absorbed 

doses and p values reported. Statistical analyses were deemed significant as having a p value less 

than 0.05. All analyses were performed with Minitab® software package (version 17).  

3.3 Results and Discussion  

Five different reconstructed images from four phantom acquisitions have been used for the 

analyses. Figure 16 shows the position of the phantom during acquisition and the energy resolutions 

for the two collimators of experiment 1. For the HEGP collimator, the energy window is higher 

and has the ability of stopping the high energy bremsstrahlung photons. As a result, the visibility 

of the smaller photons has increased (Fig. 17). Although the vendor attenuation and scatter 

correction is not well optimized for 90Y imaging, based on visual inspection the inclusion of 

attenuation and scatter correction in the OSEM reconstruction algorithm appears to give a better 

resolution image compared to using the OSEM algorithm without the correction (Fig. 17).  

The PET/CT imaging of the first experiment setup didn’t give significant counts for 15min 

imaging, thus wasn’t used for analysis. The minimum count rate in PET/CT imaging of the first 

experiment could be associated with the small concentration inside the spheres (0.56 MBq/ml) in 

addition to the shorter imaging time. Tapp et al. (63) has performed sequential 90Y PET/CT imaging 

for 5 days. The authors found that the minimum detectable concentration for phantom inserts of 10 



35 

 

min PET/CT imaging was 1MBq/ml.  Elschot et al. (17) used 2.4 MBq/ml inside spherical inserts 

with 60 min PET/CT acquisition scan, though the imaging time used by the authors doesn’t 

represent actual patient scanning (10-30 min). For the second experiment, the concentration inside 

the largest spheres was approximately 1.67 MBq/ml. This change in concentration doesn’t seem to 

have an impact on the SPECT/CT imaging (Fig. 18). However, the change in concentration as well 

as a prolonged acquisition time gave better result of the PET/CT imaging; 3 out of the 7 spheres 

are distinguishable (Fig. 19). Marti-Climent et al. (56) claimed a more realistic clinical condition 

of 90Y PET/CT imaging was performed where the authors used 0.207 MBq/ml and 0.199 MBq/ml 

concentrations inside the spheres and background respectively with acquisition time of 39 min.  

There is great variability in 90Y phantom experimental designs in the literature, with 

different sphere to background concentration ratios, different background concentrations and 

different acquisition times (56). For a PET/CT study specifically these variations will impact the 

count statistics as 90Y PET is concentration dependent (18).  

          

Figure 16: SPECT/CT (left) Phantom imaging, and energy resolution of the two detectors 

centered for the MEGP (middle) and HEGP (right). 

 

Figure 17: CT (left) and SPECT reconstructed with Astonish OSEM MEGP, OSEM only MEGP 

and Astonish OSEM HEGP consecutively of experiment 1. 
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Figure 18: CT (left) and SPECT (right) scans imaged with the MEGP collimator of experiment 2. 

  

      

Figure 19: PECT/CT scanner and CT image (upper) and PET 15 & 30min images (lower). 

3.4 Conclusion  

We have collected 99mTc-MAA and 90Y microsphere SPECT/CT images for quantitative 

comparison and dosimetry purpose. Variable 90Y phantom experiments were performed to 

investigate the optimal combination of imaging window, reconstruction algorithm, collimator type 

and scan duration. A large variation was observed in 90Y experiment design among various authors. 

Although these variations don’t impact 90Y bremsstrahlung SPECT/CT study due to the satisfactory 

count statistics obtained, care must be taken while designing 90Y PECT/CT imaging as there is only 

32 ppm of annihilation events, requiring either a larger duration of scan or a high activity 

concentration compared to SPECT/CT imaging.  
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Chapter 4: Spatial Resolution Recovery algorithm 

4.1 Introduction 

Spatial resolution is the ability of an imaging device to provide a sharp (detailed) image. 

In nuclear medicine, a number factors contribute to the loss of image sharpness, such as collimator 

resolution, intrinsic resolution and patient movement. In gamma cameras with absorptive 

collimators, the major limiting factor of image resolution is the collimator resolution. In PET 

though, the intrinsic resolution of the detectors, i.e. the size of individual detector elements, limit 

the image resolution. Collimator resolution depends on the diameters of the holes and the source-

to-detector distance, which contribute to image blurring. Patient movement, such respiration and 

cardiac motion, can be troublesome when imaging is performed for a longer period, but which can 

be corrected by using gated-imaging techniques to minimize motion blurring. Spatial resolution in 

SPECT is characterized using the profile of the reconstructed image of a line source or point source, 

usually a 99mTc point source, placed in the field of view (FOV) of the camera. The profile through 

the center image of the point source gives the point spread function (PSF). Spatial resolution is then 

characterized by the full width at half maximum (FWHM) of the PSF. The intrinsic spatial 

resolution of PET is a Gaussian function with FWHM that changes with the location of the source 

from the two detectors, highest at the face of either detector. 

Image restoration or spatial resolution recovery allows for correction of collimator-detector 

blur which gives an improved spatial resolution. In image restoration the problem is finding an 

estimate of the input image f(x,y), given the noisy and blurred image g(x,y) and PSF of the detector 

written as: 

𝑔(𝑥, 𝑦) = 𝑝𝑠𝑓(𝑥, 𝑦) ⊗ 𝑓(𝑥, 𝑦)                                          14 

In 90Y bremsstrahlung SPECT and PET imaging, correction for detector response involves 

deconvolution filtering, iterative reconstruction methods that involve the PSF model of the detector 
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with or without the inclusion of post reconstruction filters such as Gaussian or Wiener filter and 

MC simulation to generate the collimator-detector response kernels which are associated in the 

iterative reconstruction algorithm. The MC method is the best suited method of correction, but is 

not widely available in the clinic to date. As a result there is a need for a more practical correction 

for the collimator-detector response in 90Y bremsstrahlung SPECT and PET imaging.  

4.2 Materials and Methods  

It was mentioned earlier that SPECT has limited resolution due to image degrading 

factors modifying the linear relationship between the projection data and the image data by 

including the effects of attenuation, scatter and collimator detector response functions. Due to the 

random nature of radioactive decay in SPECT and PET a Poisson model is appropriate for 

emission data analysis. The Poisson model provides the probability of acquiring the projection 

count distribution that was measured, P, given an estimated distribution of activity in the emission 

object, f, which can be represented by the product of probabilities for individual pixels as follows: 

g = 𝐏𝑓 ⟺ 𝑝(𝑠, 𝜃) = ∬ 𝑓(𝑥, 𝑦)𝑎(𝑥, 𝑦)𝑠(𝑥, 𝑦)𝑑(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝑐𝜃 − 𝑠)𝑑𝑥𝑑𝑦        15 

The Poisson model is well approximated by a Gaussian function provided measured counts are 

reasonably high, giving a more simplified form of Eqn. 16 as, 

𝐺~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 {𝑃𝑓 + ɛ}                                                      16 

With a Poisson distribution of λ and ɛ representing the additive noises such as scattered counts. In 

image restoration, the real image estimate is sought given the g as a reconstructed form of vector 

G.  

4.2.1 The Richardson - Lucy deconvolution method 

The Richardson–Lucy (RL) technique was used for post-reconstruction image 

deconvolution. The RL method was initially developed from Bayes’s theorem that relates 

conditional probabilities by taking into account the statistical fluctuations in a signal. The method 

is an iterative expectation maximum likelihood deconvolution algorithm (Eqn. 17) where images 
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degraded by the PSF of the detector, Poisson statistics and additive noises, are corrected (64,65). 

The choice of the maximum likelihood algorithm has the benefit of producing good quality images 

in the presence of high noise levels by preserving positive values through accounting for 

fluctuations in the signal and thus limiting noise amplification (65). This method is especially useful 

in emission tomography imaging where Poisson modeling is found to be appropriate as mentioned 

earlier. The Bayes’ theorem is stated as, 

𝑃(𝑥|𝑦) =
𝑃(𝑦|𝑥)𝑃(𝑥)

∫ 𝑃(𝑦|𝑥)𝑃(𝑥)𝑑𝑥
                                                  17 

Where P(y|x) is the conditional probability of an event y given x, P(x) is the probability of an event 

x, P(x|y) is the conditional probability of x given y (inverse probability). Relating the Bayes’ 

theorem to the emission tomography imaging explained in Eqns. 16 & 17 in isoplane, the 

probability P(x) can be related to the radioactive distribution of object f(x,y,z) in 2D, the conditional 

probability P(y|x) can be related to the PSF of the detector for a point source PSF(x,y,z,) and the 

probability P(y) can be related to the degraded image g(x,y). From the inverse relationship of f(x,y,z) 

and g(x,y,z), the iterative algorithm can be written as,  

𝑓𝑖(𝑥, 𝑦, 𝑧) = {[
𝑔(𝑥,𝑦,𝑧)

𝑓𝑖−1(𝑥,𝑦,𝑧) ⨂ 𝑃𝑆𝐹(𝑥,𝑦,𝑧)
] ⊗ 𝑃𝑆𝐹(𝑥, 𝑦, 𝑧)} 𝑓𝑖−1(𝑥, 𝑦, 𝑧)                     18 

The algorithm requires an initial guess of the f0(x,y,z) to start the iteration where f0(x,y,z) = g(x,y,z). 

In our study the PSF was fixed and the only iterative maximum likelihood estimate was the image. 

4.2.2 Modeling of the point spread function of the detector    

The PSF of the collimator-detector response was modeled by a 3D Gaussian kernel creating a 

Poisson realization for each reconstructed pixel count.  The Gaussian function for a 3D spatial is 

expressed as, 

𝑃𝑆𝐹(𝑥, 𝑦, 𝑧) =
(2𝜋)−

3
2

𝜎𝑠𝑥𝜎𝑠𝑦𝜎𝑠𝑧

× exp (−
1

2
[

𝑥2

𝜎𝑠𝑥
2 +

𝑦2

𝜎𝑠𝑦
2 +

𝑧2

𝜎𝑠𝑧
2 ])                                  19  
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Where σSx, σSy,σSz represent the standard deviation in the x, y, and z directions. For a spatially 

invariant PSF i.e. the response to a point source of activity is the same for all points in the object, 

Eqn. 19 reduces to,  

𝑃𝑆𝐹(𝑥, 𝑦, 𝑧) =
1

(2𝜋)
3
2 𝜎3

𝑒−(𝑥2+𝑦2+𝑧2)/2𝜎2
                                    20 

Since scanner spatial resolution is defined in terms of FWHM of the Gaussian function of the PSF, 

the σ was found by relating it with FWHM of the detector, 

1

2
= exp (−

1

2
(

FWHM

2σ
)

2
) ⇔ FWHM = √8 ln(2) x σ                        21 

The iteration number for the algorithm was chosen so that convergence is reached at the point 

of maximum likelihood where the resolution recovery coefficient for the 34 mm sphere was at its 

maximum value. This point also corresponded to the smallest associated root mean square error 

(RMSE) between two consecutive iterative image estimates (Fig. 20). Improvements in the 

quantitative quality 90Y SPECT images were evaluated using contrast to noise ratio (CNR) and 

contrast recovery coefficients (QH) (17) for the patient and phantom studies respectively given by 

Eqns. 22 and 23. These quantitative measures were calculated by two methods: regions of interest 

(ROIs) drawn through the centers of the spheres equal to the inner diameter of the spheres and 

volumes of interest (VOIs) drawn on CT slices that cover the entire sphere volume with equal 

diameters to the inner diameter of the spheres. This comparative measurement of quantitative 

improvement in the SPECT/CT and PET/CT images based on ROIs, as opposed to a VOI method 

was investigated to give an indication of the most appropriate approach for dosimetry application.  

𝐶𝑁𝑅 =
𝑀𝑇−𝑀𝐵

√𝑀𝐵
                                                             22 

   𝑄𝐻 =
𝐶𝑆

𝐶𝐵
⁄ −1

𝑅−1
 ×100           23 

𝑅𝑀𝑆𝐸𝑓𝑖
=  [∑

(𝑓𝑖−𝑓𝑖−1)2

𝑁
𝑁
𝑖 ]

1/2

                                              24 
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MT is the mean count in tumor VOIs, MB is the mean count in healthy liver VOIs, CS 

is the mean count in the sphere VOIs, CB is the mean count in the background VOIs 

and R is the true sphere to background ratio 

 

Figure 20: Block diagram of the RL algorithm employed. 

4.3 Results and Discussion 

4.3. 1 SPET/CT study 

Figure 21 shows the SPECT slice through the hot spheres of the phantom image 

generated using the MEGP and HEGP collimator corrected for spatial resolution using variable 

FWHM of the PSF and iterations number.  
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Figure 21: Phantom image qualities for the MEGP and HEGP collimators. Column numbers 

correspond to the iterations number of the algorithm and rows refer to the FWHM of the PSF. 

4.3.1. 1 MEGP collimator 

The QH at every iteration for 34 mm sphere measured based on ROI and VOI method is 

shown in Fig. 22. The ROI method gave a highest value of QH for the sphere at the fifteenth 

iteration while the maximum value was found at the sixth iteration for the VOI method. Table 9 

shows summary of the results of QH for the sphere sizes using the ROI and VOI methods at the 

15th and 6th iterations respectively. 
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Figure 22: ROI and VOI based contrast resolution coefficient for different iteration number, 

FWHM =5mm and the RMSE for the 34mm sphere. 

 

Table 9: QH calculated using the ROI and VOI method for the sphere sizes 

Sphere (diameter, 

mm) 

Q
H
 before (%) Q

H
 after_VOI 

(%) 

Q
H
 

after_ROI  

(%) 

34 29.9 41.0 77.0 

31 28.1 32.0 65.0 

25 22.2 30.0 90.0 

16 7.6 8.0 14.0 

12 8.7 9.0 18.0 

10 -9.1 -8.0 20.0 

Mean 14.6 18.7.0 47.0 

Std. 15.0 18.60 33.9 

 

The optimal iteration number for the subsequent application of the resolution recovery 

algorithm on patient 90Y microsphere SPEC/CT images was used from the VOIs analyses of the 

phantom images (Fig. 23). The choice of the VOI method is due to the fact that this approach 
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considers the improvement of the total reconstructed count within a volume which is required for 

accurate dosimetry estimation.  

 

 

Figure 23: (A) Phantom CT scan and SPECT images for iteration numbers 0, 6 and 15 left to 

right. (B) Plot of QH (right axis) and RMSE (left axis) vs. iteration number for the 34 mm sphere 

(upper) and QH for the 12 mm sphere peaking at different iteration number (bottom). 
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Figure 24 shows examples of improvements in the CNRs between tumor and the background for 

patient 90Y microsphere bremsstrahlung SPECT/CT images.  For the patients shown (Patients 5, 12 

and 14), the CNRs were respectively 18.9, 14.3 and 48.8 before and 24.1, 21.4 and 51.7 after spatial 

resolution recovery.  For the phantom study, improvement in QH ranged between -8.3 to 41.0%. 

For the smallest spheres (2, 8 and 10 mm), no improvement in QH was found.  Figure 23 also shows 

line profiles along the 16 and 12 mm spheres. From the profiles, it is seen that the signal in the 16 

mm sphere significantly differs from the background but the signal within the 12 mm sphere and 

the background are indistinguishable.  

Figure 24: Result of spatial resolution recovery showing the before and after 90Y microsphere 

bremsstrahlung SPECT images of patients with the respective CT scans. (B) Line profiles through 

the 16 mm (lower) and 12 mm (upper right) spheres of the phantom 90Y bremsstrahlung SPECT/CT 

image. SPECT images were resized to 512x512 for display purpose hence higher pixel position for 

the line profiles. 

4.3.1.2 HEGP collimator 

For the same FWHM (5mm) as the MEGP collimator, the following result was found for the 

34mm sphere using the VOI method. 

0 100 200 300 400 500 600
-50

0

50

100

150

200

250

300

Pixel position

cp
s

0 100 200 300 400 500 600
-20

0

20

40

60

80

100

Pixel position

cp
s

P_5 

P_14 

P_12 

Before After 

B  A  



46 

 

 

 

Figure 25: (upper) QH and RMSE with 5 mm FWHM for the 34-mm sphere by HEGP collimator 

SPECT/CT imaging and (lower) the before (left) and after images at the fifth (middle) and 

fifteenth (right) iteration.    

 

 Figure 26 summarizes the results of QH for the MEGP and HEGP collimators at the 

different sphere sizes and variable iteration number.  An overall consistent increase in the QH 
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ANOVA table for the effect of the choice of collimator and FWHM for the spatial recovery 

algorithm.  

 

Figure 26: Result of QH for varying FWHM and collimator at different iteration. 

4.3.2 PET/CT study 

For the PET/CT study a significant change in QH was observed with a change in the 

FWHM (from 5mm to 6mm) of the PSF model. FWHM of 6 mm was associated with a higher QH 

of the 34 mm sphere compared to the SPECT/CT study based on ROI analysis (Fig. 27). The 

iteration number for the highest QH values however, is similar for both modalities (15 iteration).  

QH was higher both for the ROI and VOI method for the 30min imaging.  
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Figure 27: QH (left axis) and RMSE (right axis) with 5 mm (left) and 6mm (right) FWHM for the 

34 mm sphere by PET/CT TOF imaging of 15 (upper) and 30 (lower) minute imaging. 
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The primary objective of this study was to develop a post-reconstruction algorithm to 

quantitatively improve the 90Y bremsstrahlung imaging using SPECT/CT and PET/CT. The 

challenges for our method were image degradation due to object scatter, septal penetration and 

backscatter. Despite the inherent shortcomings, we achieved a meaningful improvement in CNR 

and QH which were measured in clinical and phantom 90Y bremsstrahlung SPECT/CT images 

respectively.  The small spheres (2, 8 and 10 mm) showed indifferent results before and after 

resolution recovery. The challenge to draw the ROIs introduces extra errors in addition to the fact 

that the volumes might be highly influenced by noise. The smallest volume that gave an acceptable 

result was the 16 mm sphere with substantial signal difference from the background. Our result of 

the highest QH for the 34 mm sphere was 41% using a matching VOI. Using similar methods used 

by other authors to evaluate QH (17,66), that is using an ROI in the slice through the center of the 

spheres, we found a higher value of QH ~ 80% for the 34 mm sphere. It is worth noting that there 

are other methods of measuring the background ROI as well. Martí‐Climent el al. (56) measured 

the background from ROIs drawn similar to the sphere diameter of interest throughout the image. 

The authors studied the QH in 90Y PET/CT study of a Jasczak phantom with six spheres. The sphere 

VOIs were generated in a similar manner to our method. The authors reported QH = 60% in a 28 

mm sphere for 90Y PET/CT images reconstructed with OSEM+PSF with TOF described as the 

optimal method. In our study, the 90Y images reconstructed with OSEM algorithm with TOF 

PET/CT corrected with post-reconstruction PSF, the result of a closest sphere volume (25 mm) 

gave QH = 75%.  Although the method used by the authors is feasible, when considering a range of 

hot concentrations in a warm background that is representative of a microsphere distribution, taking 

a background measurement as small as the sphere size in different areas that could have no activity 

might not quite represent the scenario in RMT.  

A recent work to correct 90Y bremsstrahlung SPECT/CT images was done by Simen et al. 

(19). The authors used a technique called background compensation. The technique entails two 
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separate imaging of a subject for energy window based scatter correction, but the method highly 

relies on the selection of energy windows. Energy based scatter correction is different in different 

makes and models of cameras with different collimator types, thus replication of the method in the 

clinical environment is impractical. Using this method the authors reported resolution recovery 

coefficient of 90% for a 37 mm sphere in a 10 mm VOI, much less than the actual sphere VOI.  

Our spatial resolution algorithm corrects images for the effect of PSF. The statistical basis 

of the algorithm makes it suitable for application on nuclear medicine images. In addition, the 

restoration algorithm is image dependent instead of dependent on the camera make and model 

through the inclusion of the RMSE criteria between two consecutive iterative images. The 

restoration algorithm which corrects for the collimator response will also implicitly correct for 

scatter. This is due to the fact that scatter photons degrade the PSF giving it a long tail especially, 

in PET camera. Thus the restoration algorithm is capable of improving both the accuracy and 

precision of the 90Y bremsstrahlung SPECT and PET images.   

4.4 Conclusion 

The proposed spatial resolution algorithm for quantitative image improvement of 90Y 

bremsstrahlung SPECT/CT and PET/CT gave meaningful results in phantom and patient studies. 

The method utilizes current clinical 90Y imaging protocols thus can be readily applied in the clinical 

environment. For the PECT/CT study, however the method can be further tested for different 

acquisition times and activity concentrations as well as on actual patient 90Y PET/CT images.  

Chapter 5: Calibration factor and Activity estimation 

5.1 Introduction 

In nuclear medicine internal radionuclide dosimetry absolute quantification is a 

requirement (32). The objective is to provide reconstructed images with each voxel representing 

the absolute activity concentration in the corresponding region in the patient. Absolute activity 
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concentration has many uses in nuclear medicine, such as patient-specific dosimetry in radiotherapy 

treatment planning and monitoring, tumor classification, and detection of vessel diseases in cardiac 

imaging. This is achieved by conversion of voxel counts per second (cps) values to activity 

concentration (Bq) which requires determining the camera calibration factor (sensitivity). The most 

reliable method to determine the calibration factor (cps/Bq) of a detector is to perform an 

experiment such as a point source with a known activity concentration, A (Bq/ml), of the 

radionuclide of interest in a setting with minimal image degrading effects (15,32). The calibration 

factor is then determined by dividing the total reconstructed counts, C (counts/per voxel/sec), 

within the volume of interest by the known radionuclide activity. In PET though, the fraction of the 

decay, i.e. the branching fraction (B.F.), that occur via positron emission for the radionuclide of 

interest should be included in the calculation of the calibration factor (11). This is due to the fact 

that most radionuclides used in PET imaging don’t decay by 100% positron emission, thus the CF 

in PET is given as: 

𝐶𝐹 =  
𝐶 (

𝑐𝑜𝑢𝑛𝑡𝑠

𝑣𝑜𝑥𝑒𝑙×𝑠𝑒𝑐
)

𝐴 (
𝐵𝑞

𝑚𝑙
) × 𝐵.𝐹.

                                                      25 

  Applying a calibration factor calculated using a point source to a population of humans 

who exhibit variability in terms of anatomy and biokinetics introduces error (67). The error is 

exacerbated in bremsstrahlung imaging due to attenuation, scatter and collimator-detector effects. 

In addition, the CF of 90Y imaging in PET depends on the activity concentration inside a volume 

rather than total activity (18).  As a result, mostly, phantom studies more representative of humans 

are used for estimating a calibration factor in 90Y imaging. Even using a phantom (such as the IEC 

body phantom) for the calibration study has shown a substantial bias as it doesn’t accurately 

represent clinical imaging conditions in terms of bremsstrahlung photon attenuation and scatter 

(19).  A direct solution that represents the clinical scenario, i.e. using clinical studies or animal 

studies, has been suggested for calculation of a calibration factor for absolute quantification (67). 
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Animal studies, however, don’t quite represent humans in terms of size, the biokinetics and 

geometric size of the organ uptake that affect the attenuation and scattering of photons. Human 

studies on the other hand require obtaining sufficient numbers of patients under a similar 

acquisition protocol. Thus solving for calibration factor that address the unique condition in 90Y 

imaging under a clinically relevant condition to be able to provide the clinical user with absolute 

quantitative values is an active research area.  In the present chapter, we developed and evaluated 

an approach to quantitate 90Y imaging. The goal is to assure clinical practicability and to establish 

a baseline for image based calibration factor generation.  

  

Figure 28: (left) Rod phantom and (right) IEC body phantom used in calibration factor study (68). 

5.2 Materials and Methods  

5.2.1 Calibration Factor  

In order to obtain absolute quantification values from reconstructed SPECT and PET 

images, calibration of the imaging system is necessary. We propose two methods to derive absolute 

activity quantification in MBq from counts of the reconstructed images. For the SPECT/CT study 

calculation the calibration factor was done from the spatially recovered 90Y microsphere 

SPECT/CT of the 17 patients. The first approach (method 1) uses the entire total reconstructed 

counts within the field of view (FOV) of the SPECT detector (Fig. 29). The second approach 

(method 2) used counts from the liver segments only.  In this method, the liver was first segmented 

as described in the image processing section and total counts within the liver VOIs were taken. This 
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method avoids counts due to image artifacts.  Calibration curves were generated using linear 

regression analysis to derive the relationship between patient administered dose and reconstructed 

counts. The CFs were calculated from the slopes of the calibration curves.  

For the phantom study, the total reconstructed counts within the phantom boundary were 

considered. The total activity for the phantom was the sum of the activities inside the spheres and 

the background.  The CF from the phantom study was evaluated to be within the 95% confidence 

interval (CI) of the calibration curves from the 90Y microsphere SPEC/TCT patient studies to 

validate its application on the phantom images. For the PET/CT phantom study, the activity inside 

the phantom was adjusted for a B.F of 0.003% as explained earlier. 

Since we sought to investigate the distribution between pre and post-treatment images, we also 

calculated calibration factor for the 99mTc-MAA imaging using a line source both in air and water 

as shown in Fig. 30.  

The calibration factor (CF) for all the phantom studies was defined as in Eqn. 26, 

  𝐶𝐹 =
∑ 𝑓𝑗𝑗∈ 𝑉𝑂𝐼

𝐴𝑐𝑜𝑟𝑟
                                                 26 

where fj is the reconstructed counts from the corrected images in the jth voxel that belong to the 

defined VOIs, and the Acorr is the total true administered activity corrected for decay from A0 

measured at the time of activity calibration t0 (assumed to be 0) to the start time of image acquisition 

ti using a decay constant (λ) given as,  

𝐴𝑐𝑜𝑟𝑟 =  𝐴0𝑒−𝜆(𝑡𝑖−𝑡0)                                        27 

𝜆 =
𝑙𝑛2

𝑇1/2
,  
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where T1/2 is the half-life of 90Y, which is 64.0 hr. (43). Since the half-life of 90Y is much longer 

than the image acquisition time, the radioactive decay that occurs during the acquisition is not 

corrected. The decay corrected calibration factor in the VOI is then, 

𝐶𝐹 = 𝑒−𝜆(𝑡𝑖)×
∑ 𝑓𝑗𝑗∈ 𝑉𝑂𝐼

𝐴0
                                             28 

The precision of the calibration factor could of course be impacted by the dose calibrator 

measurement (±2 % as specified by the manufacturer), experimental error such as activity and 

volume measurement and statistical variations of the measured counts. Patient administered 

activities were also corrected for decay with an average time of ti = 2 hr. which is the time between 

when the injected activity is calibrated and patient imaging. There is also a discrepancy here due to 

the logistics of the clinical setup where the time of activity calibration and actual administration to 

the patient might have been recorded as similar events.  

 

 

Figure 29: Anatomical representation (transverse, coronal and sagittal view) of method 1 (upper) 

and method 2 (lower) of calculating the CFs for the patient study. 
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Figure 30: SPECT/CT imaging window of 99mTc (left), and line source filled with 99mTc solution 

in air (middle) and water media (right). 

5.2.2 Activity estimation  

The activity of 90Y at a reconstructed pixel and in a defined volume was given by Eqn. 29 

and 30 respectively. For the patient studies, total liver activity estimation was compared to the true 

administered dose. For the phantom study, activities inside the eight spherical inserts were 

compared to the activities measured using the dose calibrator. The relative percent error between 

true and estimated activity was determined by Eqn. 31.  

𝐴𝑖,𝑗,𝑘 =
𝑓𝑖,𝑗,𝑘

𝐶𝐹
,                                                                  29       

  𝐴𝑉 =  
∑ 𝑓𝑖,𝑗,𝑘𝑖,𝑗,𝑘 ∈𝑉𝑂𝐼

𝐶𝐹
                                                          30 

%𝐸𝑟𝑟𝑜𝑟 =
𝐴𝑐𝑜𝑟𝑟−𝐴𝑉

𝐴𝑐𝑜𝑟𝑟
×100                                             31 

5.3 Results and Discussion 

5.3.1 Calibration factor 

Results of the regression analyses (Fig. 31) of the relationships between cps and 

administered activity gave the following results for the patient study, the slopes being the CFs 

(cps/MBq); method 1, CF1 = 20929 cps/MBq with 95% CI 16,281 ≤ β ≤ 25,576 cps/MBq (R2 = 

0.86 and standard error (SE) = 2181) and method 2, CF2 = 8389 cps/MBq with 95% CI of 7050.7 

≤ β ≤ 9729.3 (R2 = 0.92 and SE = 628). The CF from the phantom SPECT/CT study is 9049 

cps/MBq, which doesn’t fall within 95% CI of CF1 but does fall within the 95% CI of CF2.   

Photopeak 
window 

Compton 
scatter 

Air media 

Water media 
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The HEGP collimator imaging gave a CF = 14,990 and 15,086 cps/MBq for FWHM of 5 and 6 mm 

respectively. For the PET/CT phantom study, the measured CF of the camera was 6844 cps/MBq.  

 

Figure 31:Linear regression plots of the calibration curves with the 95% CI range (green dashed 

lines) for method 1 (left) and method 2 (right). 

5.3.2 Activity estimation 

5.3.2.1 Patient Study 

The total activity inside the liver was estimated for each patient using the CFs derived from 

the two methods.  For CF1, total liver activity estimation resulted in mean percent error of 59 ± 5%. 

Applying CF2 gave the smallest error (-4 ± 12%), thus it was used for subsequent analysis. Table 9 

shows results of total activity estimation within the liver VOIs using CF2.  For 12 out of 17 patients, 

the estimated total liver activity percent errors were within ±10% giving overall satisfactory results. 

As our study is retrospective based on anonymized data, we couldn’t provide possible clinical 

reasons for the larger deviations of the estimated activities.  
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Table 10: Administered activities and total estimated activities inside liver VOI. 

 

Patient No 

Administered Activity 

(MBq) 

Estimated Activity 

(MBq) 

 

Error (%) 

Pat_1 548 598 -9 

Pat_2 555 480 14 

Pat_3 559 523 6 

Pat_4 570 652 -14 

Pat_5 759 967 -27 

Pat_6 781 788 -1 

Pat_7 888 800 10 

Pat_8 966 1251 -30 

Pat_9 999 1009 -1 

Pat_10 1062 1003 6 

Pat_11 1203 1202 0 

Pat_12 1195 1323 -11 

Pat_13 1236 1221 1 

Pat_14 1262 1288 -2 

Pat_15 1436 1350 6 

Pat_16 1517 1572 -4 

Pat_17 2072 2188 -6 

Mean 1036 1071 -4 

Std. 410 432 12 
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5.3.2.2 Phantom Study 

Table 11 shows results of activity estimates inside the spheres and background for the 

phantom study with total mean percent error of -23 ± 41% for the MEGP collimator. Table 12 

shows ANOVA study that summarizes the effect of the choice of collimator and FWHM for the 

spatial resolution recovery on accurate activity estimation.  The result shows that for the specific 

acidity used in our study, collimator choice is insignificant (p = 0.17) whereas the FWHM plays is 

an important factor for accurate activity estimation.  

Table 11: Phantom true and estimated activities. 

 

 

Diameter 

(mm) 

 

 

True 

Activity 

(MBq) 

 

 

Estimated Activity (MBq) 

 

 

% Error 

MEGP HEGP@5 HEGP@6   MEGP HEGP@5 HEGP@6 

34 11.10 11.55 9.23 9.55 -4.05 16.88 13.95 

31 8.88 9.16 8.40 8.67 -3.15 5.35 2.31 

25 4.44 4.50 4.31 4.48 -1.35 2.87 -0.82 

16 1.11 1.17 1.21 1.23 -5.41 -8.84 -10.39 

12 0.56 0.62 0.61 0.63 -10.71 -10.79 -13.80 

10 0.28 0.36 0.48 0.47 -28.57 -71.35 -67.86 

8 0.14 0.31 0.00 0.00 -121.47 100.00 100.00 

6x103 ml 255.30 282.93 183.69 183.32 -10.82 28.05 28.19 

Mean 35.23 38.83 25.99 26.04 -23.19 7.77 6.45 

Std. 89.02 98.73 59.70 59.55 40.62 47.68 47.16 
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Table 12: ANOVA for the choice of collimator and FWHM 

 

With the clinical available reconstruction method and application of spatial resolution 

recovery algorithm, total liver activity estimation gave percent error of -4 ± 12 using the CF found 

from counts within the liver VOIs with the MEGP collimator. Siman et al. (19) generated a global 

CF derived from patient studies where entire counts within the FOV were considered. The global 

CF was applied to an IEC phantom with a 37 mm sphere insert and the authors reported an error of 

-25% with respect to the true activity. For our phantom study, we used CF estimated from the total 

reconstructed counts, which fall within 95% CI of the patient calibration curve, and error as low 

1% in the 25 mm sphere was achieved with total mean percent error -23 ± 41%. Sphere volumes ≤ 

12 mm resulted in the highest error.  

The HEGP collimator study gave total mean percent error of 7.77 ± 48% and 6.45 ± 47% 

with FWHM of 5 and 6mm respectively. The overall calculated error is much less for HEGP 

compared to the MEGP collimator study estimated activity values. The activity inside the smaller 

volumes (8 & 10 mm) is overestimated in the HEGP collimator although the volumes showed an 

improved resolution compared to the MEGP collimator. The fact that attenuation and scatter 

correction of the vendor is not optimized for the HEGP collimator at the image acquisition window 

(150 ± 30%) might have contributed the higher discrepancy of activity estimation. For specified 

SPECT acquisition window, the CT transmission imaging should have to be centered at 140 keV 

to correct for the attenuation. Due to technical difficulty this wasn’t achieved in our HEGP 

collimator study.  

Analysis of Variance 

Source        DF  Adj SS  Adj MS  F-Value  P-Value 

  Collimator   2  1.0337  0.5169     4.87    0.170 

  FWHM         1  7.0064  7.0064    65.98    0.015 

Error          2  0.2124  0.1062 

Total          5  8.2525 
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The PET/CT study measurement in areas of high activity, such as the 34 and 25 mm 

spheres, gave errors of -1.1% and 6.1% respectively for the 30 min imaging. For estimates in value 

regions of low activity, such as the 12 mm sphere, error in the order of 57% was observed. The 90Y 

PET imaging gave a more accurate estimation of the true activity in areas of high activity compared 

to 90Y bremsstrahlung SPECT/CT imaging. However, the SPECT imaging gave a much lesser error 

in areas of low activity compared to similar measurement in PET.  

5.4 Conclusion 

Approaches for calculating image based CF were evaluated. For the 90Y microsphere 

patient study, CF generated counts from the liver VOIs gave a much more accurate result 

compared to a CF generated from counts within the entire FOV of the SPECT/CT camera. In the 

phantom SPECT/CT study, the HEGP collimator gave an overall lower error of activity 

estimation however, it resulted in higher discrepancy in the smaller sphere volumes. It is observed 

that SPECT images give better results in low activity areas than PET images. But the two images 

give comparable results in high activity areas.  

Chapter 6: Comparison of tumor to healthy liver ratio on 99mTc-MAA vs. 90Y microsphere 

SPECT/CT 

6.1 Introduction  

The protocol of RMT with 90Y involves a prior liver perfusion scan with 99mTc-MAA using 

planar and SPECT/CT imaging. This prior assessment serves as a surrogate of microsphere 

distribution to assess lung shunting, endovascular mapping, extrahepatic deposition, to predict 

absorbed dose in target volumes and to select the catheter position for tumoral targeting (69).  

Various authors have investigated the predicted dosimetry with the actual 90Y microsphere 

distribution in SPECT/CT or PET/CT imaging (10,69-71). Accurate tumor and healthy liver 

predictive dosimetry is essential for patient safety, and evaluation of dose response (10). But a 
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quantitative uptake analysis of tumor and nontumoral liver requires a precise calculation of the 

vascularized volume. Generally, this calculation is done on CT which is relatively easy. But in 

cases where there is anatomical variation, such as when multiple distinct arterial branches 

vascularize the liver, CT based functional liver volume calculation is problematic (30). In this case, 

depending on the radionuclide of interest, SPECT or PET is used for calculating the functional liver 

volume vascularized by each separate arterial branch. In most studies though, that compared 99mTc-

MAA and 90Y microsphere uptake distribution, tumor areas were delineated on the CT scans. In 

addition, the two images were evaluated separately, i.e. separate tumor segmentation was done on 

the CT scans of 99mTc-MAA and 90Y microspheres (70-72). The method of CT based tumor 

delineation is cumbersome for large data sets with multiple tumors per patient requiring a repetitive 

task on the separate 99mTc-MAA and 90Y-microsphere images. In addition CT based tumor 

delineation will take into account cold areas within the tumor, such as necrosis, which will 

overestimate tumor volume but underestimate tumor dose (69). Thus, a more reliable method of 

tumor delineation for dosimetry purpose and a less cumbersome method that avoids a repetitive 

task is essential in order to compare the 99mTc-MAA and 90Y microsphere distributions.  

6.2 Materials and Methods 

6.2.1 Co-registration of 99mTc-MAA vs. 90Y SPECT 

To compare the correlation between uptake distribution on 99mTc-MAA and 90Y 

microsphere SPECT/CT images, the two images were co-registered as the two SPECT/CT images 

have different number slices and voxel sizes (Fig. 32). Image registration involves estimating a 

mapping between a pair of images. One image is assumed to remain stationary (the reference 

image), whereas the other (the source image) is spatially transformed to match the stationary image.  

We have tried two approaches; taking the CT images as a reference (“fixed image”) and 

the SPECT images as a source (“moving image”). In the second method, 90Y microsphere SPECT 
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was taken as the reference image and the 99mTc-MAA SPECT and 90Y CT images provided the 

source images. The latter method was tested to preserve the counts in the 90Y microsphere SPECT 

images from being inter and/or extrapolated by the registration method. 

 

Figure 32: Variation in the number of slices and voxel sized between the CT and SPECT slices 

between the pre and post-treatment images. 

Two image registration tools were used, FMRIB's Software Library (FSL) and Statistical 

Parametric Mapping (SPM), both well-established tools extensively used in neural imaging for 

registering anatomical and functional images (73). We found visually best results using SPM thus 

the following explanation will focus on the details of SPM.  

Statistical Parametric Mapping Registration 

Statistical parametric mapping (SPM) is used to identify regionally specific effects in 

imaging data and is a suitable approach for characterizing functional anatomy and tumor related 

changes (73). SPM is a voxel-based approach that employs topological inference. The method 

entails the construction of continuous statistical processes to test hypotheses about regionally 

specific effects (73). The statistical parametric maps are image values that are distributed according 

to a probability density function under the null hypothesis, usually the Student’s t or F-distribution. 

Statistical analysis of image data corresponds to inverting generative models of the data to partition 

observed responses into components of interest, confounds and error. Inferences are then pursued 

using statistics that compare interesting effects and the error, i.e. each and every voxel is analyzed 
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using statistical test (73). The resulting statistical parameters are then assembled into an image 

which are continuous statistical processes of random fields.  Random fields model the univariate 

probabilistic characteristics of an image and non-stationary spatial covariance structure.  

Various tools in the SPM software has been tested. The most relevant to our work were: Rigid 

body registration and Non-linear registration. Rigid body registration is one of the simplest forms 

of image registration commonly used for registering within modality or different modality images 

of a single subject. Images are aligned by finding the rotations and translations that optimize some 

mutual function of the images. However, rigid body registration is limited to optimizing differences 

of the images due to subject movement.  

Our research question not only addressed subject movement but also changes in the shape of 

functional volumes from image distortion due to image degrading factors explained in the 

SPECT/CT imaging section above. These distortions can result in a significant signal accumulation 

over numerous scans. Non-linear registration addresses differences purely due to image artefacts, 

as well as interaction due to image distortion, and movement of the subject are considered in non-

linear image registration. The spatial normalization function of SPM12 uses this principle, and 

hence is applied in this work. To choose the most appropriate approach, that is, using either the CT 

or the 90Y SPECT as the reference image (Fig. 33), we calculated the mutual information between 

the co-registered 90Y microsphere and 99mTc-MAA SPECT images from the two methods. The 

mutual information between the two images is defined as: 

𝐼(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵)                                     32 

𝐻(𝐴) = − ∑ 𝑝𝐴(𝑎)𝑙𝑜𝑔𝑝𝐴(𝑎)𝑎                                                33 

𝐻(𝐵) = − ∑ 𝑝𝐵(𝑏)𝑙𝑜𝑔𝑝𝐵(𝑏)𝑏                                                34 

𝐻(𝐴, 𝐵) = − ∑ 𝑝𝐴,𝐵(𝑎, 𝑏)𝑙𝑜𝑔𝑝𝐴,𝐵(𝑎, 𝑏)𝑎,𝑏                               35 
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H (A) and H (B) are the entropy of images A and B respectively, and H (A, B) is their joint entropy, 

pA and pB are probability distributions (histogram) of image A (99mTc-MAA) and B (90Y 

microsphere) and pA,B is the joint probability distribution of A & B. The method which gave the 

highest I (A, B) was used for registering the images. Details of the calculation of mutual information 

is explained by Maes et al. (74). Mean CPU time to register two images was about 15 minutes on 

a standard PC. 

 

Figure 33: Registration via changing the fixed image: (A) CT of pre-treatment, (B) CT of post-

treatment and (C) SPECT of post-treatment. 

6.2.2 Tumor segmentation 

Tumor segmentation was important to compare the uptake patterns in the pre and post-

treatment images. Quantitative uptake analysis on 99mTc-MAA SPECT/CT for tumor delineation is 

usually done using an isocontour method with a dedicated software (9). Tumor segmentation based 

on global thresholding approach is the simplest and most popular technique in image segmentation 

(75). However, this method is not feasible for our project. Applying a global thresholding on two 

functional images with huge differences in the administered activity imposes a bias favoring either 

of the two images depending on the value of the threshold, as shown in Fig. 34. Thus, we sought a 

method that is specific to the image of interest, and also considers the noise and abrupt changes in 

image intensity values. The latter criteria are a requirement of our study due to the distribution of 

A)  B)   

C)  
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99Tc-MAA and 90Y microspheres which are expected to be localized more in tumor tissue than in 

the healthy liver (31).  Thus, the challenge here is to accurately extract tumor contours.  

  

Figure 34: Scatter plot of 90Y microsphere SPEC images for patient 10 (left) and 13 (right) with 

administered activity of 1061.90 and 1235.8 MBq respectively. 

 

To overcome these challenges tumor segmentation based on the uptake of 99mTc-MAA and 90Y 

microspheres was performed using an active contour segmentation method to delineate areas of 

high activity (tumor) from the surrounding low activity (healthy) liver.  

6.2.2.1 Active contour based tumor segmentation  

Active contour detects specified features by evolving a curve in a given image where the 

evolution stops when the curve meets a boundary (76). The magnitude of the gradient of the image 

is used to stop the curve. But the gradient based methods suffer a limitation from the fact that only 

edges defined by the gradient of the local information are detected. An alternative is to use a global 

segmentation of the image to stop the curve. Chan-Vese (CV) et al. (77) has developed an active 

contour method that addresses this limitation by introducing an energy based segmentation via a 

multi-phase level set approach (Eqn. 36). The CV method is an iterative technique that allows for 

automatic detection of interior contours, and segments images with complex topologies into 
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multiple segments (77). This technique is particularly important in tumors with a necrotic core 

where there is a minimal uptake within the core. The iteration number for the algorithm was chosen 

based on the convergence criteria where the segmented tumor volume no longer changes in size 

(Fig. 35). 

𝐶𝑉 = ∫(𝐼𝑜(𝑥, 𝑦) − 𝑐1)2 𝐻(𝜙)𝑑𝑥𝑑𝑦 + ∫(𝐼𝑜(𝑥, 𝑦) − 𝑐2)2𝑑𝑥𝑑𝑦                  36 

 

Figure 35: The iterative CV active contour segmentation method for different iteration number. 

Io (x, y) is intensity of the input image, c1 and c2 are mean intensities within the inside and outside 

contour curve respectively, and H() and ϕ are the Heaviside and level set functions respectively.  

6.2.3 Tumor to healthy liver ratio 

In order to avoid the bias of very high and very low counts we used a mean based ratio to 

calculate the TLRs. As counts are proportional to activity concentration, the TLR for a given tumor 

was defined as,  

𝑇𝐿𝑅 =  
𝑡 ̅ (𝑖,𝑗,𝑘)

𝑏𝑘𝑔̅̅ ̅̅ ̅̅ (𝑖,𝑗,𝑘)
                                                          37 

t̄ and b͞kg are the mean counts per pixel of the tumor and healthy liver respectively.  
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6.3 Results and Discussion 

6.3.1 Co-registration of 99mTc-MAA and 90Y SPECT/CT 

Figure 36 shows results of the three co-registration approaches where the CT scan of the 

post-treatment as a reference image gave the best alignment between the images. Using the 90Y 

microsphere SPECT image as a reference also gave a good result, visually comparable to the 

aforementioned result. Figure 37 shows plots of the probability distribution of the pre and post-

treatment images and their joint distribution after co-registration which were used for subsequent 

calculation of the mutual information. The mutual information is higher or equal in most patients 

where the CT scan was the reference image [Fig. 38(A)]. In other patients, for example patient 11, 

the 99mTc-MAA and 90Y microsphere SPECT images didn’t co-register correctly with the CT 

image. From the SPECT scans of this patient, we observed that the patient had a hepatic tumor with 

a necrotic core with minimal uptake inside the liver, which reduced the mutual information required 

for co-registering the SPECT and CT scans [Fig. 38(B)]. Patient 6 showed the smallest of all mutual 

information between 99mTc-MAA and 90Y microsphere SPECT scans and like the previously 

mentioned patient, the SPECT scan didn’t co-register well with the CT scan.  We observed that the 

99mTc-MAA and 90Y microsphere SPECT scans of this patient have exclusively localized activity 

in the left lobe (Fig. 39). For these patients image analyses on the 99mTc-MAA and 90Y microsphere 

SPECT/CT were performed separately. 



68 

 

 

Figure 36: Patient 9 (left) and 13 (right) co-registered CT and SPECT images of 99mTc-MAA (blue) 

and 90Y (red) for reference images of CT of post-treatment (row A), CT of diagnostic (row B) and 
90Y microsphere SPECT (row C). The arrows in (B) show the misalignment between the CT and 

SPECT images showing activity distributions outside of the liver boundary in the coronal and 

sagittal views. 

 

 

Figure 37: Plot of the probability distribution of the pre and post-treatment (upper) images and 

their joint distribution after co-registration. 
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Figure 38: (A) Mutual information between co-registered 90Y microsphere and 99mTc-MAA SPECT 

images. (B) Patient 11 CT (left), 99mTc-MAA (middle) and 90Y microsphere (right) SPECT scans 

showing a minimal uptake within the liver. 

 

 

Figure 39: Patient 6 CT (left), 99mTc-MAA (middle) and 90Y microsphere (right) SPECT that 

showed the smallest mutual information between the co-registered pre and post-treatment images. 

6.3.2 Tumor segmentation 

The 99mTc-MAA and 90Y microsphere SPECT/CT images showed variable iteration 

number of convergence (Fig. 40). For consistency of applying similar iteration number to both 

images, we applied 400 iterations. Manual segmentation of whole liver for all patients ranged 

between 1120 – 3389 (mean: 2345 ± 740) ml. For 99mTc-MAA, tumor volumes ranged between 

160 – 1010 (695 ± 275) ml. 90Y-microshpere uptake gave tumor volumes in the range of 207 – 

Pat_2 Pat_4 Pat_5 Pat_6 Pat_8 Pat_9 Pat_11 Pat_13 Pat_14 Pat_15 Pat_16 Pat_17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
u

tu
a

l i
n

fo
rm

a
tio

n

 

 

Y-90 SPECT

CT

 

 

 

 

A 

B  

 

 

 

 



70 

 

1868 (786 ± 462) ml. Figure 41 shows the Box-Whisker plot of the three volumes. 90Y-

microsphere SPECT/CT images gave an overall higher tumor volume for most patients compared 

to the 99mTc-MAA SPECT/CT images. A paired t-test of the two volumes gave insignificant 

difference (t-value = -0.82, p-value = 0.429), as shown in Table 13.   

 

Figure 40: Plot of the segmented tumor volumes at each iteration for determining optimal 

iteration number (n) at the convergence (ε) calculated between consecutive volumes (vn and vn-1)  

 

 

Figure 41: Segmented tumor in axial and coronal view. 
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Figure 42: Box plot of whole liver and tumor segmented volumes. 

      

Table 13: Minitab result of paired T-test between pre and post-treatment tumor volumes. 

 

 

6.3.3 TLR calculation and comparison 

Table 14 presents results of the TLRs for each patient. The total mean TLR was 9.2 ± 9.4 

and 5.0 ± 2.2 on 99mTc-MAA and 90Y microsphere SPECT/CT respectively.  Figure 43 shows the 

scatterplot of mean TLRs from the two images displaying a significant correlation (r = 0.9, p<0.05).  

From the plot, patient 2 is an outlier (Grubbs’ outlier test, p-value = 0.00) and taking this patient 

out of the analysis gave a reduced correlation (r = 0.6, p < 0.05).  
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Table 14: Mean TLR on 99mTc-MAA and 90Y SPECT images. 

 Tumor to liver ratio (TLR) 

Patient no. 99mTc-MAA 90Y 

Pat_2 36.3 11.5 

Pat_4 7.0 3.5 

Pat_5 4.8 4.8 

Pat_6 11.7 5.0 

Pat_8 5.6 4.3 

Pat_9 2.7 2.6 

Pat_11 3.8 4.2 

Pat_13 10.2 5.3 

Pat_14 4.4 4.8 

Pat_15 1.8 3.8 

Pat_16 7.5 4.6 

Pat_17 14.9 5.0 

Mean 9.2 5.0 

Std. 9.4 2.2 
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Figure 43: Scatterplot illustrating correlation between mean TLRs in 90Y and 99mTc-MAA 

SPECT. 

Comparing the 99mTc-MAA distribution of patient 2 with other similar patient scans (Fig. 44) 

revealed that the localized distribution might have contributed to the higher TRL ratio as there is 

minimal or no significant uptake in the healthy liver. But this scenario needs further investigation, 

which can be achieved by dividing the patient cohort into two, those who had left or right lobe 

treatment. This kind of comparison will help decide if the TLR ratio is affected by a localized vs. 

a decentralized distribution for the specific lobe treatment.   
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Figure 44: Comparison of 99mTc-MAA SPECT/CT uptake distribution between patient 2 (left) 

and patient 8 (right). 

The predictive accuracy of 99mTc-MAA regarding the actual 90Y microspheres dose distribution 

and its impact on patient outcomes is a source of controversy. Ilhan et al. (10) have studied the 

relationship between 99mTc-MAA and 90Y microspheres uptake in a retrospective study which 

involved 502 patients with various liver cancer types (10). This study found a weak correlation 

between the mean tumor to background (healthy liver) ratios of 99mTc-MAA SPECT/CT and 90Y 

microsphere SPECT/CT images. We believe a comparison of the pre and post-treatment images of 

90Y microspheres and 99mTc-MAA may help evaluate the discordance between MAA distributions 

versus actual microsphere distribution. There are known factors that could contribute to 

discrepancies. First and foremost is the variable size and shape of the macro-aggregated albumin 

particles and clusters. Additional factors may include the embolizing effect in 90Y, and differences 

in positioning of the catheter tip between the 99mTc-MAA and 90Y microsphere procedures.   

Prior to quantitative comparison, the pre and post-treatment SPECT/CT images were co-

registered. The accuracy of the comparison strongly depends on the proper matching of the two 

images in all three dimensions.  From our results, we found that this alignment depends on the 

overall content of liver activity within the SPECT scans which could be attributed to the fact that 

SPM is based on identifying regionally specific effects in the imaging data (2). As a result, the 

registration didn’t provide very accurate alignment between the CT and SPECT images in cases 

such as a necrotic tumor covering a larger portion of the liver. In these cases, manual matching of 

the 99mTc-MAA SPECT/CT and 90Y microsphere SPECT/CT images was necessary.  
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Tumor segmentation gave higher mean volumes in the post-treatment images compared to 

the respective pre-treatment images. Although the difference between the volumes is insignificant 

(p-value = 0.429), since the tumor segmentation is based on higher activity concentrations, it is 

possible that the tumor ROIs didn’t necessarily coincide with the tumorous tissues in the 90Y 

microsphere SPECT/CT images. However, it is expected in radioembolization that higher 

microsphere accumulation is to be in tumorous regions rather than the healthy liver parenchyma 

(17).  

To minimize outlier effects, we used the ratio of the mean activities between the tumorous 

and healthy liver to calculate the TLRs. The mean TLRs between 99mTc-MAA and 90Y microsphere 

SPECT/CT images showed a strong correlation with one patient as an outlier where removing this 

patient gave a much lower correlation. Although statistically correct, for the patient to be 

considered as an outlier in terms of invalid treatment the statement falls short.  Ilhan et al. (10) 

states that the TLRs from 99mTc-MAA SPECT/CT is higher in all patients compared to the 

respective 90Y microsphere SPECT/CT scans, which the authors believe to be due to the poor image 

quality of 90Y bremsstrahlung SPECT/CT. In our study, we found that after 90Y bremsstrahlung 

SPECT/CT image improvement the TRLs were higher in 99mTc-MAA SPECT/CT for most of the 

patients, and others showed a higher 90Y microspheres uptake over the 99mTc-MAA. The standard 

deviation of the TLRs on 90Y microspheres SPECT/CT images is lower than 99mTc-MAA 

SPECT/CT which could be associated with the embolizing effect of 90Y microsphere particles 

(9,10).  

6.4 Conclusion 

The objective of this study was the comparison of the uptake distributions between pre-

treatment 99mTc-MAA and post-treatment 90Y microsphere SPECT/CT images. The study 

investigated various methods and their feasibility for co-registration of the 99mTc-MAA and 90Y 
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microsphere SPECT/CT images. In addition, tumor segmentation suitable for pre and post RMT 

images was sought. In the end, we identified a substantial correlation in mean TLRs between 99mTc-

MAA and 90Y microspheres SPECT/CT uptake distribution. 

 

Chapter 7: Dosimetry algorithm 

7.1 Introduction 

Absorbed dose (dosimetry) is the mean energy imparted to target tissue per unit mass (Eqn. 

38) (78). Techniques for post-treatment 90Y microsphere imaging dosimetry have grown 

significantly in recent years.  The compartmental (partition) model by the Medical Internal 

Radiation Dose (MIRD) is the first method to characterize dose independently to target tumor and 

healthy part of the liver (79). The primary MIRD formula (non-compartmental model) used to 

determine absorbed dose from an imaging scan is given by Eqn. 38 where the anatomical volumes 

are determined based on standard human size (Fig. 45).  The compartmental model however 

partitions the liver into the normal liver and tumor (80) given by Eqn. 39-41.  

𝐷(𝐺𝑦) =
𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑓𝑟𝑜𝑚 𝐼𝑜𝑛𝑖𝑧𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 (𝐽)

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑂𝑟𝑔𝑎𝑛 (𝐾𝑔)
                                             38 

𝐷(𝐺𝑦) =
𝐴𝑖𝑛𝑗(𝐺𝐵𝑞)∗(1−𝐿𝑆𝐹)∗50

𝑊(𝑘𝑔)
                                                            39 

𝐷(𝐺𝑦)𝑁𝑜𝑟𝑚𝑎𝑙= 𝐴𝑖𝑛𝑗(𝐺𝐵𝑞) ∗
(1−𝐿𝑆𝐹)∗50

𝑚𝑛𝑜𝑟𝑚𝑎𝑙+𝑇𝐿𝑅∗𝑚𝑡𝑢𝑚𝑜𝑟
                                        40 

𝐷(𝐺𝑦)𝑇𝑢𝑚𝑜𝑟 = 𝑇𝐿𝑅 ∗ 𝐷(𝐺𝑦)𝑁𝑜𝑟𝑚𝑎𝑙                                                         41 

 

Here, Ainj is the injected activity, LSF is the lung shunt fraction and W is the weight of the 

vascularized hepatic volume, TLR is the tumor to liver ratio, mnormal is the mass of the normal liver 



77 

 

compartment, mtumor is the mass of the tumor compartment, DNormal is the radiation absorbed dose 

by the normal/healthy liver and DTumor is the absorbed dose by tumorous liver tissues.   

 

Figure 45: Human body models of older (left) and newer version (right) for standard organ sizes 

(81). 

The dose reported by these methods is, however, the mean absorbed dose in normal or 

tumor volumes based on the assumption of a uniform activity distribution within the source 

volumes (32). In RMT treatment however, the microspheres are deposited in the liver as a number 

of discrete clusters rather than as point sources that are homogeneously distributed throughout the 

tumor or healthy liver. This irregular clustering of microspheres produces a highly heterogeneous 

radiation dose distribution pattern. As a result errors in the order of 30-100% have been reported 

from the assumption of uniform distribution (30). Thus, non-uniform dosimetry methods that 

represent actual 90Y microsphere distribution in SPECT/CT or PET/CT is essential as the mean 

absorbed dose to an organ calculated by the MIRD formula doesn’t provide enough information to 

predict the potential biological effects as well as treatment efficacy. Regional or voxel-based 

dosimetry that addresses the nonuniform 90Y microsphere distribution is thus required. SPECT-

based dosimetry is more acceptable than PET since most therapeutic radionuclides are not positron 
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emitters, but rather single photon emitters suitable for SPECT imaging.  As previously explained 

in chapter 2 studies have shown the feasibility of 90Y PET/CT imaging dosimetry estimation.              

Voxel based dosimetry is the calculation of radiation absorbed dose to tissue regions with 

dimensions ranging from a few centimeters to hundreds of microns (78). Voxel based dosimetry 

has various approaches. One of the simplest approaches is the assumption that the emitted energy 

is completely absorbed locally, at the voxel where it is emitted (82). Other approaches that don’t 

require such assumption are the voxel S value method (Fig. 46), the dose point kernel and the Monte 

Carlo radiation transport methods (78).  

 

Figure 46: Illustration of voxel dosimetry 

 

The Voxel S value method and dose point kernel are considered to be better choices than 

the simplified method mentioned that assumes complete local absorption and as well as the 

computer intensive and time consuming method based on Monte Carlo radiation transport (32). S 

value is ‘the mean absorbed dose to a target organ per radioactive decay in a source organ, 

mGy/MBq s’ (83). The product of source organ cumulative activity and the corresponding S value 

(0,0,0) 

(128,128,128) 

Target 
voxel 

Source 
voxel 

(i, j, k) (i+1, j+1, k) 
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gives the target organ dose. MIRD S values calculated from Monte Carlo simulation are widely 

used for dose calculation (82). The disadvantages to using these MIRD S values are the assumption 

of uniform activity distribution in source organs and uniform deposition in target organ, use of 

anatomic models for organ sizes and shapes (Fig 44), and lack of S values for tumor volumes 

(82,83). To compensate for these limitations of the MIRD formalism, Franquiz et al. and Bolch et 

al. (78,83) have developed a method that calculates beta S values between the source and target 

voxel centroids that will help determine dose distribution at the maximal experimental resolution. 

This method helps to determine S values for a set of all possible combinations of cubical and non-

cubical pixel edges used in SPECT or PET studies. 

7.2 Materials and Methods 

The voxel S-value method was used to estimate 3D radiation absorbed dose in 90Y SPECT/CT and 

PET/CT images. Cubical voxel S values for the pixel size of 4.664 mm were determined using 

linear interpolation from 3 and 6 mm pixel sizes estimated in Franquiz et al. and Bolch et al. (83)  

using Eqn. 42;  

𝑆 (
𝑚𝐺𝑦

𝑀𝐵𝑞𝑠
) = 𝑆1 + (𝑉 − 𝑉1)(

𝑆2−𝑆1

𝑉2−𝑉1
)                                               42 

𝑆 (
𝑚𝐺𝑦

𝑀𝐵𝑞
) = 𝑆 (

𝑚𝐺𝑦

𝑀𝐵𝑞𝑠
) × 𝑇𝑒𝑓𝑓_ℎ𝑎𝑙𝑓𝑙𝑖𝑓𝑒(𝑠)                                          43 

1

𝑇𝑒𝑓𝑓_ℎ𝑎𝑙𝑓𝑙𝑖𝑓𝑒
=

1

𝑇𝑏𝑖𝑜_ℎ𝑎𝑙𝑓𝑙𝑖𝑓𝑒
 +  

1

𝑇𝑝ℎ𝑦_ℎ𝑎𝑙𝑓𝑙𝑖𝑓𝑒
                                      44 

S1, S and S2 are the S values and V1, V and V2 are the volumes for the 3, 4.66 and 6mm pixel sizes 

respectively, Teff_halflife if the effective half-life calculated from the biological half-life, Tbio_halflife 

and physical half-life, Tphy_halflife, which are 49 years and 2.67 days respectively for 90Y. A similar 

method was followed for calculating the S values for 99mTc SPECT/CT images. Figure 47 shows 

that fractions of absorbed dose for electrons (beta particles) starts out big but there is a rapid 

decrease in dose fraction after the electron range, which is 11mm for 90Y. After this point the 

fractional dose in the range of 10-7 and 10-8 is mainly due to the bremsstrahlung photons. For 
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99mTc, which is a gamma emitter, although higher dose fraction is seen within the 11mm range 

there is a substantial dose contribution well beyond this range demanding the inclusion of far 

more number of surrounding voxels in dose calculations. S values were generated for the positive 

(first) octant only due to the symmetry of values in the negative octants.   

 

Figure 47: Plots of absorbed dose fraction for electrons (left) and photons of a 6mm voxel on 

edge (78). 

Absorbed dose per voxel was estimated by convolution of the cumulative activity images with the 

corresponding voxel S values, implemented using a MATLAB® algorithm (Eqn. 45) based on the 

MIRD Pamphlet No. 17 (78).  

𝐷𝑇 = Ã ⊗ 𝑆 = Ã𝑆1×𝑆𝑇←𝑆1 + Ã𝑆2 ×  𝑆𝑇←𝑆2 + Ã𝑆3× 𝑆𝑇←𝑆3 …                      45 

DT is the absorbed dose at the target voxel (mGy), Ã (MBq) is the time-integrated cumulative 

activity in a voxel from sequential imaging, ⊗ is the 3D convolution and S is the voxel S-value 

(mGy/MBq) for each associated distance from the target voxel. For the 90Y-microshpere dosimetry 

calculation, cumulative activity isn’t used due to the permanent implant of the microsphere where 

there is no elimination, redistribution and washout phases of the radiopharmaceutical.  Thus  a 

single imaging performed after microsphere administration is used for dosimetry estimation where  

sequential imaging after day 1 isn’t usually performed (84). Thus in Eq. (45) activity from a single 
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scan, A, is used instead of Ã at each voxel. In addition to our method, we estimated dosimetry using 

the MIRD partition model (Eq.39-40) and using S values generated by a direct MC method for a 

4.8mm edge voxel (referred to here as MC method for ease of understanding) as reported elsewhere 

(85).   

  Dose-volume histogram (DVH) is a display of 3D dose distribution in relation to the target 

volume and normal structure [Fig. 48(A)]. It is a direct and informative method of assessing a 

treatment plan via representing the frequency distribution (histogram) of doses over a given volume 

(target) for each voxel in 3D. DVH provides easily interpretable 2D graphs from the vast 3D 

radiation dose information. There are two types of DVH: Differential DVH (dDVH) where the 

percentage or absolute volume receiving dose in a corresponding dose bin is calculated, and 

cumulative DVH (cDVH) where the percentage or absolute volume receiving greater than or equal 

to the value in a corresponding dose bin is calculated. Generation of DVH is only possible for a 

voxel based dosimetry thus the MIRD method can’t provide the details of dosimetry estimation 

[Fig. 48(B)]. cDVHs and Isodose curves (Eqn. 46) were generated for the tumor and healthy liver 

VOIs and fused with the SPECT/CT dose map images using a third-party software for a 3-

dimensional display called 3DSLICER, an open source software for medical image processing and 

3D visualization (86).  

𝑖𝑠𝑜𝑑𝑜𝑠𝑒 (𝑥, 𝑦, 𝑧) =  
𝐷𝑜𝑠𝑒 (𝑥,𝑦,𝑧)

𝑀𝑎𝑥_𝐷𝑜𝑠𝑒(𝑥,𝑦,𝑧)
 ×100%                                    46 



82 

 

 

Figure 48: Display of details provided by DVH (A) and its implementation from activity and dose 

map images (B) where this implementation isn’t possible for the MIRD method highlighted. 

 

7.3 Results and Discussion 

Generated voxel S-values are shown in Fig. 49 for 90Y. Figure 49 shows plots of voxel S 

values for different distances within the beta range for 90Y and 99mTc. The plots resemble Fig. 47 

of values generated by direct MC simulation. The mean absorbed doses for the tumor and healthy 

liver from 90Y microsphere SPECT/CT images were 62.6 ± 20.2 (range: 38.4 to 117.2 Gy) and 12.4 

±4.7 (range: 6 to 23.7 Gy) respectively using our method.  

 

Figure 49: S values for various voxel sizes and interpolated results for 4.664mm voxel size at 

different source coordinates. 

A) 

B) 
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Figure 50: Calculated voxel S values for 90Y (left) and 99mTc (right) within the beta range. 

The mean absorbed doses in tumor and liver volumes calculated by the three methods: 

proposed (our method), MC (voxel size = 4.8mm) and MIRD partition model are shown in Fig. 51.  

For the MIRD method mass of tumor and liver were calculated using the segmented volumes and 

density of a soft tissue (1.03 g/cm3); mass (g) = density (g/cm3) x volume (cm3). Figure 52 

summarizes the distribution of calculated absorbed doses in the tumor and liver volumes by the 

three methods. Overall higher doses are found by our method while the MC method gave the 

smallest estimated doses in both volumes.  
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Figure 51: Bar plots of tumor (upper) and liver (lower) mean absorbed doses calculated by the 

three methods. 

 

   

Figure 52: Box-Whisker plots of the calculated dose distribution in the tumor (left) and liver 

(volumes). 

 Figure 53 shows the cDVH for all patients in the tumor and liver VOIs. The tumor cDVH 

showed similar dose absorption scheme for all patients [Fig 53(A)] except for patient 3 who 

showed the highest dose per tissue volume. The isodose curves fused on the patient CT scan 

showed a much localized treatment dosimetry for a relatively low administered dose (558.7 MBq) 

with maximum absorbed dose of 500 Gy [Fig. 53(B)]. The cDVH for the liver VOIs showed that 

absorbed doses are within the maximum tolerated dose of 40 Gy by a liver tissue (87).  
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Figure 53: cDVH of tumor (A), fused isodose lines and CT scan for patient 3 (B) and cDVH of 

liver VOIs for all patients(C). 

 Dose distribution for the pre and post-treatment SPECT/CT images for patients who 

showed equal, two and three times of TRLs in their 99mTc-MAA scan than the 90Y microsphere 

uptake (Table 13) is shown in Fig. 54. The figure shows the percent distributions in accordance to 

the maximum absorbed dose. The maximum 90Y microsphere uptake were 88, 142 and 1161 Gy 

for patient 9, 13 and 17 respectively.  

 

 

 

A) 

C) 

B) 
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  Table 15: Tumor volumes and TLRs for pre and post-treatment SPECT/CT images. 

  

 

Figure 54: Fused isodose curves with the SPECT/CT of 99mTc-MAA (left) and 90Y microsphere 

(right). 

 Comparison of the dose distribution between images corrected for collimator blur using 

the developed method and those uncorrected showed a significant difference in the isodose curves 

whilst the overall difference in the cDVH per tissue volume is small, example shown in Fig. 55. 

Figure 56 shows a similar comparison for the same patient where the S values for 4.8mm were 

used for the method referred as the MC method. The dose distributions from both methods are 

similar but the major difference in the cDVH illustrated the actual absorbed doses per tissue 

volume are significantly different.  

Pat Tumor volume (ml) TLR 

99m
Tc-MAA 

90
Y microsphere 

99m
Tc-MAA 

90
Y microsphere 

Pat 9 757 865 2.7 2.6 

Pat 13 725 1008 10.2 5.3 

Pat 17 271 403 14.7 5.0 
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Figure 55: Dose distribution between 90Y microsphere images before and after correction for 

collimator detector effect (left) and difference in cDVH (right). 

 

 

Figure 56: Comparison of dose distribution calculated using developed and the MC method on 
90Y microsphere SPECT/CT images (left) and the resulting difference in cDVH (right). 

Figure 57 demonstrates the relationship between the administered activities and absorbed 

doses, there is a weak correlation with tumor absorbed dose (r = 0.5, p > 0.05) but a strong 

correlation with healthy liver absorbed dose (r = 0.8, p < 0.05). From the figure, it is observed that 

one patient appears as an outlier. Although the patient shouldn’t be considered an outlier, since the 

administered activity (x-axis) is substantially higher than the rest of the patients, i.e. the higher 

absorbed dose in the liver and the tumor is valid considering the amount of administered activity. 

For the sake of completeness, we excluded this patient and analyzed the relationship between the 

administered activity and the absorbed doses in tumor and liver volumes. The result of this analysis 
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gave a linear relationship between administered activity and liver dose (r = 0.52, p = 0.1) but the 

higher p value suggests that the correlation is not dependable as the sample size is small. And no 

correlation between the administered activity and tumor absorbed dose was found (r = 0.21, p = 

0.54).  

  

Figure 57: Correlation of administered activity with healthy liver and tumor absorbed doses. 

Accurate dosimetry requires accurate voxel S values for the image voxel size. For our 

work, we used linear interpolation to estimate the voxel S values appropriate for the SPECT images. 

The most accurate method of estimating a voxel S value is using a direct Monte Carlo method for 

the exact voxel sizes of images at hand. Although using Monte Carlo machine isn’t part of this 

dissertation, we compared dosimetry results between our developed method and S values generated 

using the MC method for a voxel size of 4.8mm, closer to our voxel size (4.66mm). For as low as 

less than 0.2mm difference in voxel edge sizes between the two methods, the reported mean dose 

values in the VOIs was substantial with the MC method giving smaller values. For 90Y, with mean 

beta particles range of 2.5mm, almost half the distance between the centroid of two voxels 
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(4.66mm), taking a large voxel edge size (4.8mm) undermines the effect of the dose from beta 

particles that traveled shorter distances, giving an overall smaller dose estimate at the target voxels, 

i.e. undermining the effect of the immediate neighborhood voxel. Although there is no gold 

standard for validating dosimetry estimates, the MIRD method is considered the standard method 

of clinical dosimetry (88). Results of mean dosimetry from our method and the MIRD partition 

model based estimate is comparable for most of the patients. It should be emphasized here that the 

parameters used, such as TRL, tumor and liver volumes were similar in both methods in addition 

to the fact that there is only one tumor volume per patient. But the result might be different if  the 

parameters were estimated for individual tumors as the TLR is dependent on overall counts/activity 

within a volume.  

For the images uncorrected and corrected for spatial resolution recovery, the mean dose 

estimate within target VOIs is higher for the latter one as the spatial resolution recovery is based 

on deconvolution giving a more heterogeneous isodose distribution.  

Comparing the pre and post-treatment dosimetry, for the small cohort patient data we 

studied we found no associations between TLRs and dose distributions. The expectation of equal 

TLR predicted from the 99mTc-MAA study and that calculated from 90Y microsphere uptake is 

taken as a guarantee of treatment success (10). But this expectation doesn’t put into consideration 

the actual dose distribution between the two images. A study by Wondergem et al. (72) stated that 

99mTc-MAA poorly predicts the distribution of 90Y resin microspheres. The authors used the Blan-

Altman analysis to compare the distribution of the two activities. The study included patients with 

catheter positions similar in both planning and treatment procedure as well as those where the 

positions of the catheter was different in the two sessions. The authors found that the positions of 

the catheter tip during administrations significantly influences the disagreements and concluded 

that 99mTc-MAA doesn’t accurately predict final 90Y microsphere distribution.  In our study, we 



90 

 

compared the two procedures in terms of TRL as well as activity distribution. Our conclusion is 

that TLR shouldn’t necessarily be the one parameter to evaluate the predictive accuracy of 99mTc-

MAA on the actual 90Y microsphere treatment outcome.  

We found no correlation between tumor dosimetry and administered activity while the liver 

dosimetry increased with an increase in the administered dose. This finding is justifiable as the 

administered activity for 90Y resin (SIR-Spheres) microspheres treatment is based on the body 

surface area (BSA) method where the prescribed activity is adjusted based on the extent of tumor 

involvement in the liver and size of the patient (Eqn. 11).  Thus, an increase in the administered 

activity may not result in an increased tumor uptake but a higher activity in the overall liver region.  

7.4 Conclusion 

A dosimetry algorithm that considers the non-uniform 90Y microsphere distribution has 

been developed. The algorithm provides a 3D estimation of full radiation dose distribution within 

liver and the surrounding organs. The algorithm improves reproducibility of radiation dose 

calculation and solely depends on the specific patient image as opposed to relying on a standard 

human organ size which doesn’t reflect individual patient biokinetic and response.   

Summary, Limitations and Future work 

90Y is pure beta emitter which makes it an effective radionuclide for radioimmunotherapy 

of cancer increasing the radiation dose to tumor from the high energy beta particles. However, due 

to their short range, these particles can’t be directly detected outside of the patient body for 

quantitative imaging. Instead secondary photons emitted as the result of the interaction between the 

beta particles and tissue are detected. SPECT/CT imaging utilizes bremsstrahlung photons emitted 

as a result of this interaction while PET/CT uses the small portion of annihilation events for 

assessing radionuclide distribution. 90Y bremsstrahlung has a continuous energy spectrum resulting 

in scattered and septal penetration of photons during detection causing very poor image quality.  
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On the other hand, the very small annihilation events for 90Y PET/CT imaging has strong presence 

of random and scattered coincidences from the associated bremsstrahlung photons.   

The first goal of this dissertation has been to employ a more realistic technique to improve 

the quantitative quality of 90Y bremsstrahlung SPECT/CT and PET/CT images for dosimetry 

purposes. The post-reconstruction quantitative image improvement technique corrects image 

degradation due to collimator-detector response. The method considers the types of noises present 

in nuclear medicine imaging making it suitable for both SPECT and PET modalities. The only 

factor that interchanges between the modalities is the FWHM. Attenuation and scatter correction 

were performed using the manufacturers’ software provided for each modality. The challenges for 

our method were image degradation due to object scatter, septal penetration and backscatter. These 

shortcomings limit the improvement in 90Y bremsstrahlung SPECT/CT imaging. However, these 

effects are not a major concern in PET/CT imaging due to the coincidence detection mechanism 

and the algorithm employed for attenuation and scatter correction. The challenge with PET/CT 

imaging is the actual representation of patient administered dose due to the reliance of the image 

accuracy on the activity concentration under study. Despite these challenges, validation of the 

developed algorithm using phantom studies and clinical images has shown meaningful quantitative 

improvement which allows accurate quantification of total administered dose to a patient for 

treatment outcome prediction. Future quantitative improvement of 90Y bremsstrahlung with ease of 

clinical application that includes compensation for the scatter, septal penetration and backscatter 

will provide complete correction of the image degrading factors. A future 90Y PECT/CT study with 

similar activity concentration as patients recruited for RMT should be performed to represent actual 

count statistics. 

The second objective of the dissertation focused on comparing the uptake distribution 

between pre-treatment 99mTc-MAA and post-treatment 90Y microsphere SPECT/CT images. 
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Accurate pre-treatment estimation of microsphere distribution within the tumor and healthy liver 

is critical for the success of RMT. Very small and diffused tumors that cannot be delineated on CT 

images can be identified using the functional SPECT images. Due to this benefit, our comparison 

of uptake between the two images was based on tumors delineated using the SPECT images. 

However, a tumor delineation technique that considers the non-uniform microspheres distribution 

within a tumor was a challenge. In addition, proper matching of the two pre and post-treatment 

SPECT/CT images in three dimensions was also investigated. Correlation analysis of the uptake 

distribution between the two images was based on cumulative tumor volumes. This comparison 

gives the entire activity distribution within the liver. Individual tumor comparison of pre and post-

treatment uptake would provide a more detailed analysis of the study which would require a tumor 

segmentation on the CT scan by a radiologist.  

In the final part of this dissertation, we developed a 3D algorithm for estimating radiation 

absorbed dose in tumor and liver VOIs. The method employs the voxel S-value method to calculate 

cumulated dose in each voxel from surrounding voxels giving absorbed dose per tissue volume. A 

future study could determine the correlation between tumor and liver dose estimates obtained from 

90Y microspheres bremsstrahlung SPECT/CT imaging with tumor response and liver toxicity. This 

correlation might help in future treatment planning by setting a linear relationship between 

administered dose and tumor response. However, tumor response depends on many factors, such 

as tumor size, vascularity (blood supply), and presence of necrotic core which are different from 

patient to patient. Thus, future research should also consider the patient specific factors for 

treatment planning.  Increasing patient population by incorporating those with higher LSF in the 

future study will enhance the dosimetry result by giving a complete perspective of treatment 

response to absorbed dose. This would require collecting extra patient data such as follow up 

studies. For patients who undergo multiple RMT, analysis of the change in tumor vasculature 
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should also be part of the study as the change might contribute to the overall activity distribution 

within the liver.     

Overall Conclusion 

Nuclear medicine quantitative methods in 90Y bremsstrahlung SPECT/CT and PET/CT 

imaging were investigated and evaluated for improved quantitation and dosimetry in RMT. The 

proposed maximum likelihood iterative spatial resolution algorithm corrects for detector response 

and Poisson statistical error using the Bayes’ theorem. Optimal iteration number (6 iteration) of the 

algorithm was found from phantom studies and the algorithm was applied on patient 90Y 

microsphere SPECT/CT images. Improvement in contrast recovery coefficients was achieved both 

in phantom and patient images. Methods for estimation of calibration factor were designed and 

implemented for activity estimation from patient and phantom images. We found that the 

calibration factor estimated using counts within liver VOIs gave the best results. Appropriate image 

co-registration methods for proper alignment of 99mTc-MAA and 90Y microsphere SPECT/CT 

images were investigated and determined. Correlation of uptake distribution between pre and post-

treatment RMT were studied and correlation was found between the 99mTc-MAA and 90Y 

microsphere SPECT/CT images. An algorithm for radiation absorbed dose estimation was 

developed. The algorithm considers the non-uniform 90Y microsphere distribution in RMT and 

estimates dose delivered in tissue per volume at a voxel level. The method was implemented in 

patient 90Y microsphere SPECT/CT images and isodose distributions were identified and aligned 

with the anatomical locations. In addition, dose volume histogram was generated for liver and 

tumor VOIs. For the moderate sample size (12 patients) studied, we found no significant similarity 

between the results of TRL and dose distribution on 99mTc-MAA and 90Y microsphere SPECT/CT 

images. This result highlights the need for more than one parameter to justify the predictive 

accuracy of 99mTc-MAA for subsequent treatment outcome of 90Y microspheres. Correlation 
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between administered activity and absorbed doses in tumor and healthy liver was studied.  The 

absorbed dose in tumors didn’t show a linear relationship with the administered activity, while 

healthy liver absorbed dose increased with administered activity. 
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