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ABSTRACT OF THE DISSERTATION

CRACK TIP STRESS STUDY

FOR ELASTIC-PERFECTLY PLASTIC MATERIALS

WITH SOME APPLICATIONS

by

Ivan Enrique Esparragoza

Florida International University, 1998

Miami, Florida

Professor Genady P. Cherepanov, Major Professor

The problems of plasticity and non-linear fracture mechanics have been

generally recognized as the most difficult problems of solid mechanics. The

present dissertation is devoted to some problems on the intersection of both

plasticity and non-linear fracture mechanics. The crack tip is responsible for the

crack growth and therefore is the focus of fracture science. The problem of crack

tip has been studied by an army of outstanding scholars and engineers in this

century, but has not, as yet, been solved for many important practical situations.

The aim of this investigation is to provide an analytical solution to the problem

of plasticity at the crack tip for elastic-perfectly plastic materials and to apply the

solution to a classical problems of the mechanics of composite materials.
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In this work, the stresses inside the plastic region near the crack tip in a

composite material made of two different elastic-perfectly plastic materials are

studied. The problems of an interface crack, a crack impinging an interface at the

right angle and at arbitrary angles are examined. The constituent materials are

assumed to obey the Huber-Mises yielding condition criterion. The theory of slip

lines for plane strain is utilized. For the particular homogeneous case these

problems have two solutions: the continuous solution found earlier by Prandtl

and modified by Hill and Sokolovsky, and the discontinuous solution found

later by Cherepanov. The same type of solutions were discovered in the

inhomogeneous problems of the present study. Some reasons to prefer the

discontinuous solution are provided. The method is also applied to the analysis

of a contact problem and a push-in/pull-out problem to determine the critical

load for plasticity in these classical problems of the mechanics of composite

materials.

The results of this dissertation published in three journal articles (two of which

are under revision) will also be presented in the Invited Lecture at the 76

International Conference on Plasticity (Cancun, Mexico, January 1999).
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CHAPTER 1

INTRODUCTION

1.1 Overview

Composite materials are different from conventional engineering material of the

past. In fact, composites are two or more materials combined on a macroscopic

scale to form a new useful material that exhibits the best qualities of their

constituents and often some qualities that neither constituent material possesses.

Usually, most engineering materials are homogeneous and isotropic; meanwhile,

composites are often both inhomogeneous and anisotropic.

Generally speaking, composites are studied from a macromechanics point of

view. Therefore, the composite is presumed to be a new homogeneous material,

and the effects of the constituent materials are detected only as averaged

apparent properties of the composite. On the other hand, micromechanics

analysis studies the composite behavior wherein the interaction of constituent

materials is examined on a microscopic scale.

The mechanics of failure of composite materials is a subject in the early stages of

development. Although these materials have become very important in the new

technology due to the improvement of some properties such as strength,



stiffness, fatigue life and others, there are no generally recognized theories for

the mechanics of failure.

Nevertheless, the presence of cracks in a composite material is almost impossible

to avoid. They appear as a result of the fabrication process or due to the load

applied to the composite and the interaction between the constituent materials.

The most frequent cracks are those that appear along the interface or

perpendicular to the interface of the two different materials. Now, it is well

known from the theory of fracture mechanics that the stresses become infinite at

the crack tip. Since this cannot occur in reality, plastic deformation takes place at

the crack tip and the stresses remain finite. The development of plastic zones at

the crack tip depends on the properties of each material among other factors.

This phenomenon in inhomogeneous materials is complex and poorly

understood and studied.

The theory of plasticity is still a young science and i application to the

micromechanical behavior of inhomogeneous materials is limited. It is well

understood that due to the high stress and strain concentrations which exists in

local regions like the crack tip, the elastic limit of the constituent materials at

these local regions might be exceeded before the macromechanics behavior of

the composite material exhibits a nonlinearity. Therefore, a plastic region

appears near the crack tip. This localized plastic behavior has a significant
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influence on the redistribution of stresses within the composite. The crack tip is

responsible for the crack growth and therefore is the focus of fracture science.

The problem of crack tip has been studies by an army of outstanding scholars

and engineers in this century, but has not, as yet, been solved for many practical

solutions.

Consequently, in this investigation attention will be focused in the distribution

of stresses inside the plastic zone at the crack tip of an i omogeneous material.

This analysis is carried out at a micromechanical level where the response of the

constituent materials is of importance. Additionally, the idea developed in this

work is extended to the classic punch problem in the case of an inhomogeneous

material.

Since the problems of plasticity and non-linear fracture mechanics have been

generally recognized as most difficult problems of solid mechanics, in the

context of the mechanics of materials, this type of investigation is conducive to a

better understanding of the behavior of the inhomogeneous material in the

presence of a crack, and the development of a theory to close the gap existing in

the analysis of stresses in the plastic region at the crack tip for the case of

composite materials.

3



1.2 Background

The first yield criterion is due to Tresca who in 1864 published a preliminary

account of experiments on punching and extrusion. His conclusions led to the

formulation of a yield criterion which states that a metal yields plastically when

the maximum shear stress attains a critical value. This was the first important

investigation in this area for metals. This yield criterion was later used by Saint-

Venant (1870) [2] to determine the stresses in a partially plastic tube subjected to

torsion or bending. The same year, Levy [3] proposed the three-dimensional

relations between stress and plastic strain-rate following the ideas of Saint-

Venant The method of linearisation for the plane strain problem was also

introduced by Levy.

By the beginning of this century, Haar and Karman (1909) [4] obtained plasticity

equations from a variational principle. Many experiments were performed

during the next decade which were concerned with the yielding of tubes

subjected to various stress states. From here various yield criteria were

suggested. In 1904 Huber [5], and then in 1913, independently, von Mises [6]

formulated a new yield criterion which was most satisfactory for the majority of

metals. This criterion was later interpreted by Hencky as implying that yielding

occurred when the elastic shear-strain energy attained a critical value. The
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Huber-Mises criterion is close to the Tresca criterion, but it better describes test

data. Both coincide for plane strain.

In 1920 Prandtl showed that the plane plastic strain problem is hyperbolic and

he determined the loads needed to indent a plane surface by a smooth flat

punch. Hencky in 1923 produced the general theory applicable to the special

solutions by Prandtl and also discovered the geometrical properties of the field

of slip-lines for plane plastic strain. Later Geiringer (1930) obtained the velocity

compatibility equations for flow along slip lines.

The correct approach to the solution of plane problem was clarified during the

period 1945-1949. This period was characterized by a research stimulus due to

the war. In 1950 Hill and Sokolovsky found the stresses in the plastic region at

the crack tip for a homogeneous material. It was shown that these stresses

coincide with those found previously by Prandtl at the punch edge and later

modified by Hill (see also Prager and Hodge (1951)).

In the 1950s many authors contributed to the development of the plasticity

theory. Green (1951, 53, 54) presented a series of plane strain solutions; Prager

(1953) introduced a simplification into slip line field solution; Alexander (1955)

and Johnson (1956) presented some other contributions to plane strain slip line

field solutions.
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Fracture mechanics is still a younger science than plasticity. Its main

development has occurred after 1950. However, the basic idea of fracture

mechanics was established in 1921 by Griffith. He stated that crack propagation

will occur if the energy released upon crack growth is sufficient to provide all

the energy that is required for crack growth. Minor progress was made in the

next three decades. However, some important works can be cited.

Mushkelishvili (1933) proposed a method for the solution to a plane problem for

bodies containing either rectilinear or curvilinear cracks; Westergaard (1939)

proposed a semi-reversed method of a solution to a plane problem for bodies

containing rectilinear cracks; Irwin (1948) employed the Griffith criterion to a

quasi-brittle fracture by adding the energy expended for plastic deformation of

the crack fracture. The major contribution to the contemporary fracture

mechanics was proposed by Irwin (1958). Considering the physical and

mathematical concepts of Griffith and Westergaard he proposed that, for a given

point, the coefficient of stress singularity at the incipience of both local fracture

and the crack propagation is assumed to be a constant characteristic of the

material. Then, the mechanical characteristic K, known as fracture toughness

was introduced. 1960 he formulated the length of the plastic zone appearing

in the plastic correction at the crack tip.

6



Other important contributions in the field of fracture mechanics and the plastic

zone at the crack tip can be summarized as follows: Dugdale (1960) analyzed the

length of the plastic zone ahead of the crack tip assuming the plastic zone

thickness as zero; Wells (1961) introduced the plastic crack tip opening

displacement as a measurement of a local plastic deformation at the crack tip as

well as a fracture criterion in nonlinear fracture mechanics; Cherepanov (1967)

proposed the invariant contour F-integral, and independently Rice (1968) the

path independent J-integral, as a measurement of the elastic-plastic condition at

the crack tip as well as a fracture criterion in the nonlinear fracture mechanics.

Both F-integral and J-integral coincide in common situations.

The plasticity problem at the crack tip for hardening material was treated by

Cherepanov (1967), Hutchinson (1968), and Rice and Rosengren (1968). In the

1970's many other papers regarding the plastic crack problem were published.

Among other authors it is important to mention Kahl and Reifsnider (1972),

Goldman and Hutchinson (1975), Amazigo (1975, 1978), Shih and Hutchinson

(1976), Shih (1976), McMeeking and Parks (1977), and Rice (1978).

Close to the topic under investigation, it is also important to include some works

regarding the elastoplastic behavior of composites such as those by Marcal

(1969), Adams (1970, 1973), Bert (1972), Repnau and Adams (1973). Other works

7



regarding the mechanism of failure composites can be mentioned also such as

those by Nair and Reifsnider (1974), Reifsnider et al (1976, 1977), Reifsnider

(1977), and Stinchcomb and Reifsnider (1977).

A large list of references can be cited referent to the interaction between fiber

and matrix in composite materials (see Cherepanov and Esparragoza (1995)).

However, the study of the plasticity problem at the crack tip for the case of an

inhomogeneous material is in its first step. The work by Cherepanov (1997) is

probably the first attempt to solve a problem of this kind. In the present study

special attention to this type of problems is the major objective. For this purpose,

an extensive analysis is presented and some ideas are discussed to better

understand this phenomenon.

1.3 Objective and Significance

The objectives of this investigation can be expressed as follows:

a. To study the stresses inside the plastic region at the crack tip for the case of

an inhomogeneous material.

b. To show that in the homogeneous case there exist two solutions one of which

is continuous and the other is discontinuous.

c. To analyze when each one of the solutions might be realized in practice since

it is evident that both cannot be met in practice simultaneously.



d. To extend this idea to estimate the load needed to indent a plane surface of

an inhomogeneous material by a flat smooth punch.

e. To study the plasticity region in the push-out or pull-in problem.

The significance of this work is that this analysis provides new ideas directed to

understand the mechanism of failure in an inhomogeneous material. This is also

a motivation to encourage other scientists to continue working in the

development of theories for the mechanics of failure of composite materials. A

comparison of the theoretical results of the present work with experimental data

would be a good topic for future research work.



CHAPTER 2

PLANE STRAIN SLIP LINE FIELD THEORY

2.1 Introduction

In order to avoid mathematical difficulties in many of the problems of greatest

practical interest, the elastic component of strain in the plastic region is

disregarded. For consistency, the purely elastic strain in the non-plastic region is

disregarded also. Therefore, in developing a field-type theory to provide

information about the deformation from point to point in the plastically

deforming region, strain hardening is usually neglected so that the material is

assumed to flow at constant yield stress. This hypothetical material is referred to

as rigid-perfectly plastic.

This chapter will be devoted to the behavior of a rigid-perfectly plastic material

under conditions of plane strain, and in particular with certain general

properties of the stress and velocity distribution in the plastic region.

A great deal of work has been done on solutions of this type of problem under

conditions of plain strain, using the theory of slip lines. The theory has been

shown to be very useful in many applications, despite i obvious limitations.
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2.2 Fundamental Equations for Plane Strain Problem

The plane strain model is appropriate when the flow is everywhere parallel to a

given plane (x, y) and the normal strain in the z direction and the shear strains in

xz and yz may be assumed to be zero. Here x, y, and z are Cartesian coordinates.

Since the shear stresses in the xz and yz directions are zero, then the normal

stress in the z direction is a principal stress.

The Huber-Mises yield criterion in terms of the components of the stress tensor

is:

-cr 2 +- - 7 + (C: -T + 6(r ,,+ r2 + r =6k (2.1)

where k is the yield stress in pure shear.

For plane strain deformation in the xy plane:

1
(a. + c- y2\X(2.2)

Therefore, from Eqs. (2.1) and (2.2) it can be found:

11



S(2.3)

The equilibrium equations to be satisfied are:

OCT +-- =0
4x

Y + 
(2.4)

+ 2=0

Equations (2.3) and (2.4) represent three equations in the three unknowns Cry, o%

and r,. If the boundary conditions are given in terms of stresses, these

equations are sufficient to give the stress distribution without any reference to

the stress-strain relations. Such problems are called statically determined.

The principal stresses in the plastic region are:

Q y(UX uy) L (C. UY2

=(2.5)

12



The maximum shear stress in the plane of flow is given by

1 1 2 '
Tmax = ( = (7-) = 1 - + (2.6)

Therefore, the principal stresses can be expressed as

og= p~k, o2 = = p, u = p- k (2.7)

Since the volume of an element of rigid-perfectly plastic material does not alter,

each incremental distortion in a state of plane strain consists of a pure shear.

Therefore, the sate of stresses at each point is a pure shear stress k together with

a hydrostatic pressure p.

If there is no work-hardening, and if the yielding is not influenced by

hydrostatic pressure, k must be constant and its value depends on the yield

criterion.

There is no difference between the functional relation of stresses representing

either the Huber-Mises or Tresca yield criteria under plane strain.

13



2.3 Shear Lines or Slip Lines

The magnitudes of the principal stresses in the plastically deforming field are

given by Eqs. (2.5) or, alternatively, by Eqs. (2.7) in terms of the hydrostatic

pressure p and the yield shear stress k. The first principal direction is defined as

the direction of the algebraic maximum principal stress o. Let # be the angle

between the first principal direction and the x axis as shown in Fig. 2.1.

142 /Fig. 2.1 Principal stress directions an the a an fi directions
at a point in a plastically deforming region.

14



Then from the equations for the principal directions, it follows that

2T
tan2 (2.8)

U - c

which gives two values of # differing by 900. The second principal direction is

taken 900 counterclockwise from the first. It should be noted that the

intermediate principal stress, c, has a direction which is normal to Fig. 2.1 in

the direction of zero strain.

The maximum shear stresses have the values

T i(a -1 - = -)+ k (2.9)

The maximum shear stresses act on surfaces which make angles of /4 with

the principal directions. The directions of these surfaces on which the shear

stress attains a maximum value k are usually designated the a and / directions.

a, called the first shear direction, is taken 450 clockwise from the first principal

direction, and /, the second shear direction, is 900 counterclockwise from the

first shear direction.

15



Let 0 be the angle which the first shear direction makes with the x axis

measured counterclockwise. Then,

tan20= ---- (2.10)
tan2#

and, from Eqs. (2.8) and (2.10)

tan 20 ry y (2.11)

It follows that

cos20 =
k 

(2.12)

sin 20=
2k

At every point in the plastic field, the angle which the maximum shear direction

makes with the x axis is determined by equations (2.11) or (2.12). f curves are

now drawn in the xy plane such that at every point of each curve the tangent

coincides with one of maximum shear directions, then two families of curves

called shear lines, or slip lines, will be obtained. Since the maximum and

16



minimum shear directions at a point are orthogonal to each other, the two

families of slip lines will form an orthogonal set.

It should be carefully noted that along an a line a is varying and / is constant,

and along a / line p is varying and a is constant. a and / are merely

parameters or curvilinear coordinates used to designate the point under

consideration, just as x and y designate the point.

The normal stresses acting on the maximum shear planes equals the average of

the principal stresses. Thus the stresses acting normal and tangential to the a

and / lines are given by

a4a = c-y = e - +o) p

1 (2.13)
afl 2= 1 og - k

Finally, ax, r,, and r, can be expressed in terms of p and 0 as follows:

c =p-ksin20

o = p+ksin20 (2.14)

r, =kcos20
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2.4 Hencky Stress Equations

The state of stress at a point can be expressed by equation (2.14) in terms of the

independent quantities p, k, and 0. The equilibrium equation can be written in

terms of these quantities by substituting (2.14) into (2.4). Thus,

-2k cos2 + sin20 0

(2.15)
-+ 2k cos 20-- sin2 - 0

Equations (2.15) are the partial differential equations of equilibrium for the plane

strain deformation of a rigid-perfectly plastic material and are hyperbolic. A

rigorous solution to these equations can be obtained by the method of

characteristics. The characteristic curves or characteristics of the hyperbolic, in

this case, coincide with the slip lines.

The choice of x and y in equations (2.15) is arbitrary. the and y axes are

chosen at a given point to coincide with the a and f directions at this point,

then 0 =0 and
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(2.16)

equation (2.15) become

2k =0
Oa &7a

ip 2k (2.17)
+2k -- =

Since the point for which these equations are valid is arbitrary, it follows that

equations (2.17) are applicable to all point along the slip lines. Integrating thus

produces the following relationships applicable to the slip lines

p - 2k = C, along the a curve
(2.18)

p + 2k = C2 along the # curve

where C, and C2 are constants. These equations were first derived by Hencky in

1923. It is evident that if p and 0 are prescribed on the boundary, then it may be

possible to proceed along constant a and f lines to determine the value of the

hydrostatic pressure everywhere in the slip line field. If the displacement or

velocities are prescribed over part of the boundary, as is sometimes the case,
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then the Hencky stress equations are not sufficient to obtain a solution. It is then

necessary to use the velocity equations.

2.5 Geiringer Velocity Equations

Consider an element in a plastically deforming region in the vicinity of certain

point. Let i velocity at a given instant be V and the components of this velocity

along the a and / slip lines be va and vf, respectively.

Considering the velocity components v, and v. along the slip lines in the x and

y directions gives:

vX=v cosvj sin
~ =~ ~ ~(2.19)

V, = Va sin G+v1 cos (.9

If the element crosses a slip line it may be subjected to shear deformation in the

shear direction. However, since it is assumed that only maximum shear stress

can exist along shear lines and the normal stresses are everywhere equal to the

hydrostatic pressure, no extension or contraction can occur along the slip lines

although the element can distort in pure shear. Therefore,
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a (220)

Oa
(2.21)

Differentiating (2.19) and substituting (2.21) it follows:

& 2Q-"-v -- =0
ia a

+ 0 
(2.22)

If /3 is kept constant in the first equation and a in the second equation, then

dv, -vidf = 0 along an a line
(2.23)

dv, + vadO=0 along an / line

These are the compatibility equations for velocities first derived by Geiringer in

1930.
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If the problem is statically determinate, the slip line field and the stresses can be

defined from Eqs. (2.18) and the stress boundary conditions. The velocities can

be determined from Eqs. (2.23) using the velocity boundary condition. However,

if the problem is statically indeterminate when the stress boundary conditions

are insufficient to obtain a unique slip line field then the Hencky stress

equations must be solved simultaneously with the Geiringer velocity equations

using both the stress boundary conditions and the velocity boundary condition.
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CHAPTER 3

AN INTERFACE CRACK

3.1 Introduction

In this work the mathematical model for the problem of the stresses inside the

plastic region at the crack tip for an i omogeneous material is based on the

type of materials described in chapter 2. For this purpose, a composite material

made of two different elastic-perfectly plastic materials with a crack is

considered. This study is focused in the plastic region near the crack tip. The size

of the plastic zone has the order of K2 / r and K 2 / in the first and second

materials, where K is the stress intensity factor computed for ideally elastic

incompressible material pair with zero region size, and r, and r" are the yield

stresses of the corresponding materials.

To estimate stresses at a crack tip inside the plastic region, it is convenient to use

the model of an incompressible elastic-perfectly plastic material obeying the

Huber-Mises yielding condition criterion. The second invariant of the stress

deviator tensor in the material is the only material constant in this model. For

plane strain, the Huber-Mises criterion coincides with the maximum shear stress

or Tresca criterion.
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Following Cherepanov (1997) the solution for the stresses inside the plastic

region in the case of an interface crack between two different elastic-perfectly

plastic materials is presented in this chapter. The analysis of the solution, as well

as the solution for the velocities, is given here for the first time and will be

published elsewhere.

3.2 Problem Statement

Mathematically, the problem of stresses at the crack front is reduced to the

following boundary value problem in plane strain:

+ = 0 (|xI < 0 y < ), (3.1)

+ =0 (IxI < 00, yI < 0), (3.2)

4z- when ,y > 0( ) +4r = 4< (3.3)

0 when y =0,x < 0 (3.4)

[of =[r,1=0 when y 0, x >0 . (3.5)
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Here, x and y are Cartesian rectangular coordinates, xg, r, and og are stresses,

and r, and r, are shear stress yield limits of the first and second solids

correspondingly. From now on, in the yield criterion, Eq. (2.3), k will take the

value of r, or r, depending on the material 1 or material 2 respectively. The

brackets [..] denote the discontinuity of the quantity in the bracke along the

bonded interface.

The non-linear equation system (3.1) to (3.3) belongs to the hyperbolic type with

two families of characteristic lines issuing from a free boundary under 45

degrees to the tangent at every point. As was explained in chapter 2, the

characteristics of the hyperbolic equations, in this case, coincide with the slip

lines. From here, it follows that, in the rectangular equilateral triangles OAB and

OAF (see Fig. 3.1) having traction-free crack banks as the diagonal, the only

stress field is:

cr,=z,0, x =2r, in AOAB, a =2r2 in AOAF (3.6)

The positive sign of x chosen in both triangles means aposteriori that the

opening mode tensile crack is considered (this is correct for the model under

study, but not for an elastic-brittle crack!). The crack tip, 0, is the singular point

of the boundary value problem.
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O D X

F

Fig. 3.1 The interface crack tip between two perfectly plastic materials: the
geometry of characteristic lines in the crack tip neighborhood.

The solution has the following form:

a. In curvilinear triangles OBC and OFE, the stresses o7,, o and ,, are some

functions of only 0.

b. In rectangular triangles OCD and ODE, the stresses are some constants.

Here, r and 0 are polar coordinates centered at 0, and r,, q and ;r, are the

corresponding stresses.
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The characteristic lines in AOBC and AFE form a "fan" by radial and concentric

lines (only in the first solution), and in AOCD and AODE the characteristic lines

form two rectangular grids of different orientation.

Equilibrium and yielding condition equations in polar coordinates are:

drr9 - =0 
(3.)

dO
d +2+ r, =0 

(3.8)dO

}4r~ when y >O41 h(CT -- ee)2 + 41rO (3.9
4- when y<O

Introduce the new function, f():

r - o, =2z, sin f()
Tr, = r, cos f(0)

so that, Eq. (3.9) is met in the upper triangle for i =1, and in the lower triangle

for i = 2. Substituting Eq. (3.10) into Eqs. (3.7) and (3.8) provides
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r2 - sinf (0) = 0 (3.11)

ds

d - -2r, cosf(0) (3.12)dG

As a result, we have two possible solutions for i = 1:

1. sin f(= 0, cosf()= 1; (3.13)

or

2. f=2+ C o = -r, sin(2O+C1)+C, (3.14)

The corresponding stress field is:

1. cr = +r, = ~2 z,0+ C, zr = , (3.15)

or

2. a = zr sin(20+CI)+C,

o = -r, sin(2+C,)+C (3.16)

z = r, cos(20+C 1 )

Here, CI, C; and C3 are arbitrary constants. In Eq. (3.15), either the upper or

lower sign should be taken.
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By replacing r, with -,, the solutions for AOFE can be found. Consequently, for

i=2 it follows in AOFE

1. a, = O = +2 20+C 3, Tr = (3.17)

or

2. = 72 sin(20+ C)+ C,

O =- r sin(20 + C,)+ C, (3.18)

zO= z, cos(20+ C1)

Equations (3.15) and (3.17) correspond to a continuous solution and equations

(3.16) and (3.18) correspond to a discontinuous solution.

3.3 Continuous Solution

According to Eq. (3.6), it follows:

o- =T 1 , rO = r, along 0= (OB) (3.19)
4

The stresses Ou and -r, should be continuous along OB Matching the solutions

given by Eqs. (3.15) with this condition it can be found in AOBC:
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cT, c~ = - -r C -{- -l -! Tr = i (3.20)

Similarly, we can find in AOFE:

3r
2- -+22+r1 r0=-r (3.21)

In the trian gles O C D and O D E , the c are d ifferen t an d the a, and T, are the

same due to boundary condition (3.5). Using Eq. (3.3) it follows:

-, - 2 -- (AOCD)

ak o- 2 (AODE)

Assumed here is that o, > ur in these triangles which is physically evident for

opening mode tensile cracks.

The stresses, o-, and ;,, should be continuous along OC and OE. Designate:

0= 01 along OC and 0= -0, along GE. From here, it follows that:
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- 2
T 1

0
1 + j1+ 7  (o - 2 r -<)sin 2 01 +

+a" cos 2 0, 2r, sin 0, cos0, ;

z = r sin 20, + r cos20 (3.23)

3;r-2r 202 + r2 1+ = (u 2 r - T ) sin2 2 +

+UY cos 02 2z sin 0, cos0

-r -r- sin 2 2 , + r, cos20 2 ,

There are four equations for determining 0, 0 , , and Below it will be

shown that Eqs. (3.23) have the physical meaning only when 1 T, / r ? 0.71.

Excluding ay and z, in the equation system (3.23), the following equations for

the continuous solution can be derived:

A cos20, = -cos20,

2(02 -_0 1 -(- A) 1+- sin202 -2sin20 (3-24)

where
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The stresses, o and z-, in the triangles OCD and ODE are equal to:

O- =TSin20+Z f+- '-20,
2 when 0, >0 > -0 (3.25)

T, = cos20,

and r= when0 < 0< 0, and r = - when 0> 0>-0,.

When rl = r, from Eqs. (3.24) and (3.25) it follows that 0, = 0 = 7/4, and

oy= Tz (2+ r),

o = T, s (3.26)

z" = 0,

This solution was obtained by Prandtl for the problem of a rigid smooth punch

which as was shown by Hill and Sokolovsky, is mathematically identical to the

crack problem (in homogeneous case). This solution is known as the Prandtl

solution. A modified form of this solution was also studied by Hill and

Sokolovsky.

The numerical solution of the system (3.24) provides 0, and 02 in terms of A.

This solution is shown in Table 3.1 and Figs. 3.2 and 3.3. Figures 3.4, 3.5 and 3.6
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show the graphs o / r, vs. Z, r, / r, vs. A and a / z, vs. A respectively, based

on Eqs. (3.22) and (3.25).

Table 3.1. Numerical solution of the equation system (3.24), when 1 A 0.71.

1 0.9366 0.8818 0.8351 0.7962 0.7647 0.7405 0.7234 0.7133 0.71

01 45 40 35 30 25 20 15 10 5 0

45 49.68 53.77 57.34 60.39 62.93 64.94 66.41 67.31 67.61

From the solution of the equation system (3.24) (Table 3.1), it is observed that the

solution exists only for 0.71 A 1. The upper limiting case is the homogeneous

solution and the lower limiting case is for A= 0.71, 0 = 0, and , = 67.61'.
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15 N1
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#2

0~

0.70 0.735 0.80 0.85 0.90 0.95 1.00

Fig 3.2 Graph 6 vs. 2 / /I for the continuous solution
of the inhomogeneous problem, Eq. (3.24).

70-

65

60 2

55

50

45

0.700 0.750 0.800 0.850 0.900 0.950 1.000

x

Fig 3.3 Graph 02 vs. = r / r, where , 2CS -A s2 t

for the continuous solution of the inhomogeneous problem, Eq. (3.24).
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45

4 
T

0.700 0.750 0.800 0.850 0.900 0.950 1.000

2

Fig 3.4 Graph -- vs. for 0.71 : 2 1.

The u1 is the corresponding sfress for O9 > G> -9,

0.9

0.60.7

0.6 -#24
T0.5

0.4

0.2

0.1

0-

0.700 0.750 0.800 0.850 0.900 0.950 1.000

T r
Fig 3.5 Graph 3 vs. = -' for 0.71 A I.

The - is the corresponding stress for , > 0> -, .
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4.5

C'X 4.5 #24 Z'

4

.5- - -I

35

0.700 0.750 0.800 0.850 0.900 0.950 1.000

2

Fig 3.6 Graph -and - vs. 2=-for .71 A:1 .

The is the corresponding stress for 9, > 0 >0, and

The x is the corresponding stress for 0> 9>-

3.4 Discontinuous Solution

Similar to the analysis of the continuos solution, according to Eq. (3.6) it follows

3ff
0 0 =T r T , 9 = r1  along 9= - (OB) (3.27)

4

The stresses o-, and T, should be continuous along OB. Matching the solutions

given by Eqs. (3.16) with this condition we can find in AOBC:
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q, = r, cos2+ r,,

U- = -r, cos20+ r,, (3.28)

r,,9 = -r, sin2O (AoBC)

Similarly, we can find in AOFE:

c = r (l+ cos20),

a, = r2(l -cos2O), (3.29)

r,= -r sin20. (AOFE)

In the triangles OCD and ODE, the a, are different and the u, and , are the

same due to boundary condition (3.5). Using Eq. (33) it follows:

-, - 2 r , (AOCD)
-{ -2 rr (AODE) (3.

Assumed here is that o- > o in these triangles which is physically evident for

opening mode tensile cracks.
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The stresses, o and r, should be continuous along OC and GE. Designate:

0= 0, along OC and 0= - , along GE. From here, it follows that:

r,(1- cos2,)=(u -2 ) sin , +

+a, cos 2 01 - 2 r, sin , cos ,

-r, sin 201= r - sin 20 + r, cos2 0; (3.31)

r(1- cos20)=(a -2 z-z)sin' 0+

+a cosy 02 +2r, sin 02 cos , ;

r, sing20 = - z - sin 20+ r, cos2O2

There are four equations for determining 01, 0, o, and r

Excluding o and r, in the equation system (3.31), the following equations can

be derived:

Ssin 40, = sin 40,

A(l - cos20, +2 cos401 sin0, sin 4 sin 21) = (3.32)

(1- cos202 +2 cos4O sin0 , - sin 40, sin 20) (A =r, / -).

The stresses, ou and r,, in the triangles OCD and ODE (Fig. 2) are equal to:
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r(1 - cos20 +2 cos40 sin 0- sin 40 sin 20),
(3.33)

r, = -r sin 40, when 0, > 0 > -0,,

where -= z, when 0 < <0, and T = r, when 0 > 0> -07.

The numerical analysis has shown that the equation system (3.32) has only the

following solutions:

Case 1. , =0 = 0 for any X (3.34)

Case 2. 0 = 02= for anyX (3.35)

Case 3. =02= when X=1 (homogeneous case) (3.36)

For the first and second case, from Eq. (3.31) it follows, that in these cases:

o, =r, =0, and o = -2T (in AOCD and AODE of Fig. 2) (3.37)

where r = r, when 0 < 0<0 and r = T when 0 > > -0,

which has no physical meaning.
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For a homogeneous material (Case 3), from equations (3.30), (3.33) and (3.36) it

follows that in this case:

cr = 4,

r = 217 when A2 -' =1 (3.38)

r =0,

which may have a physical meaning.

In the particular case when =0, 02 = 0, / 4 or c /2 satisfies Eqs. (3.32) for any

0, so that in this case from Eqs. (3.30), and (3.33) it follows:

(T =42,

7T
o =2r-, when 02 2, (2=0 for any 0,) (3.39)

=0,

This solution corresponds to the punch problem when the stresses in the wedge

ODE are given by Eq. (3.39).
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So, only in the cases of = 0 or A = 1 the equation system (3.32) has the

physically meaningful solutions.

The second solution at 2=1 is the discontinuous solution of the classic theory of

plasticity unnoticed by Prandtl, Hill, and Sokolovsky. The structure of

characteristic lines in this solution is shown in Fig. 3.7b while Fig. 3.7a gives the

characteristic line structure in the classic Prandtl's solution.

3.5 Velocity Distribution

The characteristic lines of the Reuss equations for velocity coincide with those

indicated above for stresses. Therefore, the velocity field is also formed by a

combination of constant velocity fields and "fan" fields when:

Vr =0 and v19 =V in " fan" , (3.40)

where Vr and v 0 are the radial and tangential velocity components respectively

(v = 0 because of a rigid radial constraint and , is a constant specified by

boundary conditions).
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The results of simple calculations are given below:

1. The con tin ous solution:

v0 = -V, = -V (in AOAB, Fig.3.1) (3.41)

vx = V sin 0, vy = -V cos0 (in AOBC, Fig.3.1) (3.42)

vx = o sin ,, v, = -VO cos01 (in AOCD, Fig 31) (3.43)

Along the interface the normal velocity is continuous. Therefore,

vx = -V cos01 tan0,, v, = -Vo cos01  (in AODE, Fig.31) (3.44)

cos02 cos02
-V cos sin0 V Y = ' cos0 (in AOEF, Fi.3.1)(3.45

os2 cos0

Vi cos 0, 2 cos0
2 cos (in AOAF, Fig.3.1) (3.46)

vx --- 2 cos 2 cos 2
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2. The discontinuous solution. (,A = 1, that is, r, z,:

v V 2 (in AOAB, and OBC, Fig.37b) (3.47)

v 2 v V (in AOCD, Fig..7b) (3.48)

_- v - V (in AODE, Fig.37b) (3.9)
2 20

V, (in AEF, and OFA, Fig.3.7b) (3.50

B 2

A,

Fig 3.7a. Characteristic lines for the first solution of the plasticity theory.

u, = z-(2 + v), ax = rU , r, =0 when <-.
4
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0

Fig 3.7b. Characteristic lines for the second solution of the plasticity theory.

6 = 4r , =2 z , r, = 0 when = 0=.-
2
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CHAPTER 4

A CRACK IMPINGING THE INTERFACE AT A RIGTH ANGLE

4.1 Introduction

In the previous chapter, the model of an incompressible elastic-perfectly plastic

material obeying the Huber-Mises yielding criterion was considered and the

condition of plane strain was assumed to estimate the stresses inside the plastic

region using the theory of shear lines or slip lines. In chapter 3 the case of an

interface crack between two different elastic-perfectly plastic solids was studied.

This chapter is devoted to the study of the stress state inside the plastic region at

the crack tip when a crack impinges the interface of two different elastic-

perfectly plastic materials under the right angle (see Fig. 4.1 below). Here the

same type of materials and assumptions used in chapter 3 are considered. The

main difference with respect to the previous chapter is the boundary condition

along the interface.
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4.2 Problem Statement

The problem of stresses at the crack front is reduced to the following boundary

value problem in plane strain:

c2'Y + 1 =< <, IYI< , (4.1)

+ + = x| < ,y< (4.2)

(a _ 2 4r; when x< 0

4-, when x>O

Y =-,=0 when y O,x<0 (4.4)

c =r,)= 0 when x=O and r, =0 when y=Ox>O. (4.5)

Here, the stress component u. and the shear stress rO should be continuous

along the interface (line OC in Fig. 4.1).
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Again, the non-linear equation system (4.1) to (4.3) belongs to the hyperbolic

type with two families of characteristic lines issuing from a free boundary under

45 degrees to the tangent at eve point. From here, it follows that, in the

rectangular equilateral triangle OAB (see Fig. 4.1) having traction-free crack

banks as the diagonal, the only stress field is:

u, = r, = 0, u = 2r, in AOAB (4.6)

The positive sign of o chosen in the triangle means aposteriori that the opening

mode tensile crack is considered (this is correct for the model under study, but

not for an elastic-brittle crack!). The crack tip, 0, is the singular point of the

boundary value problem.
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Material #1 Material #2

C

B D (0 =_ 6y

O x

Fig 4.1 The crack impinging the interface of two elastic-perfectly plastic
materials bonded along x = 0.

The solution has the following form:

a. In curvilinear triangles OBC and OCD, the stresses r, o, and r,, are some

functions of only 0.

b. In rectangular triangle ODE, the stresses are some constants.

Here, r and 0 are polar coordinates centered at 0, and r, O and Tr are the

corresponding stresses.

Equilibrium and yielding condition equations in polar coordinates are:
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d rO + a,-_CO (4.7)
dO,

d(9+ 2 -, -g = (4.7)
d6

s , 4ij when x<0
io-og r = (4.9)

L4'r when x>0

Introduce the new functionf(():

- s = 2z, sin f()
'r Cos f (0) (4.10)

so that, equation (4.9) is met in the region GAB (x < ). Substituting (4.10) into

(4.7) and (4.8) provides

2- - sin f( 0)= 

( .)0 

2 , o 0 

(4.1 2)
d6

d -r 1 cosf(9). (4.12)
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As a result, we have two possible solutions:

1. sin f(O) = 0, cosf(O) 1; (4.13)

or

2. f = 20+ C1 , = -rr sin(20+C 1)+C . (4.14)

The corresponding stress field is:

1. O-, = o = +2r,+C 3 , rO = +T (4.15)

or

2. , = r, sin(20 + C)+ C,

CIO = -r, sin(20+C,)+C , (4.16)

r, , cos(20 + C,)

Here, C,,C2 and C, are arbitrary constants. In Eq. (4.12), either the upper or

lower sign should be taken.
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4.3 Continuous Solution

According to Eq. (4.6), it follows:

-=, = r (in AOAB) (4.17)

The stresses a, and r,, should be continuous along OB. Then,

c-o =,, = r along 0 = - (OB) (4.18)4

From Eqs. (4.15) and (4.18) it follows:

3rc
'=O- -2z-0+j+ 2 (in AOBC) (4.19)

According to condition (4.5), the stresses c- and r9 should be continuous alon

0= r / 2 (OC). Then from Eqs. (4.5), (4.15) and (4.19) it follows:

S 3r
0 = -2r20+ rc(r, - ) 1 ,
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O = -2r 20+ r - 2 - -1) + 3jl ,c (in AOCD) (4.20)

From Eqs. (4.20) it can be seen that the plasticity condition is not met in the

region OCD since Tr = r, then Eq. (4.9) is not satisfied for x > 0. However, for

the homogeneous case when z, = z2, Eqs. (4.20) become

Cr = -2r,+ z -

3;rr09 = -2ri(+ z1,+ (4.21)

and condition (4.9) is met everywhere.

In the triangle ODE it follows from Eq. (4.3) for the homogeneous case:

S= U, - 2 r- (AODE) (4.22)

Assumed here is that o> a in this triangle which is physically evident for

opening mode tensile cracks.
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The stresses, cr and gr,, should be continuous along OD. Designate = 0 along

OD. Expressing the stresses in the Cartesian coordinate system it follows that:

-210 1 +jl+ = sinA + cosA-

- 2r, sin 0 cos 0 , (4.23)

ri = (oj - r) sin O cos , + r cos2, .

Substituting Eq. (4.22) into (4.23), it follows:

-2 z01 +rj+ =( -2 I + )sin0 1

+o cos 2  - 2r sin 1 cos0, , (4.24)

,2 T sin201 + cos20, (AODE)

There are two equations and the condition of r, 0 when y =0 and x >0 for

determining 01, and o

From Eq. (4.24) and the condition =0, , can be found:
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, = (4.25)

From the equation system (4.24) the continuous solution for the homogeneous

case can be derived:

3r
S=-27, + 1+- +2r sin2 O

2

3;Th
S= -2z, , + , 1 + -2r cos 0 (AODE) (4.26)

zX = U

From (4.26) and (4.25) it follows,

a = -- (2+ r),

UX=IrT,, when ,= (4.27)

S= 0,

Again, this is the first solution of the classical problem of the theory of plasticity

obtained by Prandtl for the problem of a rigid smooth punch which as was

shown by Hill and Sokolovsky, is mathematically identical to the crack problem

(in homogeneous case). This solution, known as the Prandtl solution, coincides

with that found previously in chapter 3.
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4.4 Discontinuous Solution

According to Eq. (4.6), it follows:

1r0 = zI, ro = 'I (in AGAB) (4.28)

The stresses and r should be continuous along GB. Then,

d3lc

o = i', z,, = zi along 0 = (OB) (4.29)
4

From Eqs. (4.16) and (4.29) it can be found:

U r(1+ cos20),

o. = 1-(1- cos2O), (in AOBC) (4.30)

, = -r, sin2 .

According to condition (4.5), the stresses u9 and r, should be continuous along

O= r /2 (OC). Then from Eqs. (4.5), (4.16) and (4.30) it follows:
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o-9 = -r 2(cos20+1)+2r1 , (in AOCD) (4.31)

z,,= -z2 sin 20 .

In the triangle ODE it follows from Eq. (4.3):

= - 2 T- (AODE) (4.32)

Assumed here is that v > c in this triangle which is physically evident for

opening mode tensile cracks.

The stresses, cr and r,,, should be continuous along OD. Designate 0 02 along

OD. Expressing the stresses in the Cartesian coordinate system it follows that:

- z2(cos202 +l)+2r, = . sin0 2 + U cos2
2 -

-2r sin0 2 cos2 (4.33)

- z sin2, =(o7 - u)sin cos+ ,cos2, .

Substituting Eq. (4.32) into (4.33):
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- Zj(cos2 +1)+2r, = (y- 29r -rg ) sin' 2 +

+ o, cos"02 - 2r, sin cos , (in AODE) (4.34)

-Z2 sin 202 = sin 2O, + T, cos2,

From the equation system (4.34) it follows:

cr-, = Z(2 cos40 sin20 -sin 40, sin2O- cos2 2 -1)+2r,
(4.35)7-,, = -Z, sin 462

Since r, =0 along y = 0, x> 0, substituting back into Eq. (4.35) 02 can be

determined. It follows from here that 02 has the following solutions:

Case 1. 0 =0 forany = (4.36)

Case 2. 02= for any 2 - (4.37)
4 2

Case 3. = - for any = (4.38)
2 T,

For the first and second case, from Eqs. (4.35) and (4.32) it follows that in these

cases:
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UY = 2(r, - r, , = 2(r, - 2r 1), r,= 0 (in AODE) (4.39)

From Eqs. (4.39) y and a are compression stresses since r, < r, (0 1).

Consequently, these two solutions have no physical meaning since we are

considering the opening mode tensile crack where extension stresses are

expected.

Considering the third case for 0 = 7 / 2, from Eqs. (4.35) and (4.32) it follows:

o =2(r + r 2 ),

= 2r , (in AODE) (4.40)

From here it can be concluded that points C and D in the original figure (Fig. 4.1)

coincide in the characteristic line graph. Therefore, there is a unique region for

x > 0 with constant stresses with the values expressed in Eqs. (4.40). Equations

(4.40) are valid for any from 0 to 1.

For the case of homogeneous material (Case 3) when r, = r from Eqs. (4.40) it

follows:
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2 z, when 0. = - (AODE) (4.41)

r = 0

This solution coincides with that found previously in Cherepanov (1997) [50].

The structure of the field of characteristic lines in this solution is shown in

Fig.4.2b while the Fig. 4.2a gives the characteristic line structure in the classic

Prandtl's solution.

From these results, it can be seen that this solution has a discontinuity in the

stresses along the interface (line OC in Fig. 4.2b). In the triangle OBC the stresses

are: x = 2r1 , o =0 and z, = 0 while the stresses in the ODE region are:

a = 2 -1, o= 2(r, + z2) and z = 0. The stresses in the y direction are

discontinuous. This result suggests that the velocity of the displacement along

the interface is different which is reasonable in this type of problem.

4.5 Velocity Distribution

The characteristic lines of the Reuss equations for velocity coincide with those

indicated above for stresses. Therefore, the velocity field is also formed by a

combination of constant velocity fields and "fan" fields when:
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Vr = 0 and v9 = V, in " fan" , (4.42)

where Vr and v0 are the radial and tangential velocity components respectively

(vr = 0 because of a rigid radial constraint and O is a constant specified by

boundary conditions).

The results of simple calculations are given below:

1. The continuous solution:

v = v = - V (in AOAB, Fig.4.2a) (4.3)

When 0 3 /4, the tangential velocity is continuous. Then,

v, = V sin0, v,, = -V cosO (in AOBC, Fig 4.2a) (4.44)

Along the interface (line OC in Fig. 4.2a) the tangential velocity is continuous.

Therefore,
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V = 0 cos0, 1, -V cos O (in AOCD, Fig.4.2a) (4.45)

When 0 = r / 4, the tangential velocity is continuous. Then,

v, = V, v' Y ~2V (in AODE, Fig4.2a) (46)

2 2' T'' 2

2. The discontinuous solution:

v , v, = V (in AOAB, and OBC, Fig.4.2b) (4.47)

Along the interface when 0= ; /2, the tangential velocity is continuous.

Therefore,

VX V, =- 2 (in AODE, Fig.4.2b) (4.48)

From Eqs. (4.7) and (4.48) is observed that along the interface the velocity on

the x direction is continuous while the velocity on the y direction is

discontinuous.
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CB

A

Fig 4.2a. Characteristic lines for the first solution of the plasticity theory.

, (2+ ), = r 1 ,r =0 when , = 4

A

0

Fig 4.2b. Characteristic lines for the second solution of the plasticity theory.

'V
y =z4r-, a =2r1 , = = when 62 2
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CHAPTER 5

A CRACK IMPINGING THE INTERFACE AT AN ARBITRARY ANGLE

5.1 Introduction

In the last two chapters the problems for the case of an interface crack and the

case of a crack impinging the interface at a right angle were considered. These

can be considered as limiting cases for a more general problem of a crack

impinging the interface of two different elastic-perfectly plastic materials at an

arbitrary angle (see Fig. 5.1 on page 65). This chapter is devoted to the study of

the latter general case. It will be shown that a feasible solution is found for the

case when the arbitrary angle is greater than 450. For the limiting case when the

arbitrary angle is 90', the solution coincides with that found previously in

chapter 4.

Again the materials are assumed here to be elastic-perfectly plastic solids. The

plane strain condition is also assumed and the theory of shear lines or slip lines

is applied to the solution of this problem.
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5.2 Statement of the Problem

Mathematically, the problem of stresses at the crack front is reduced to the

following boundary value problem in plane strain:

+ =0 (HI < cc, y , (5.1)

+ =0 (x < c, y < c), (5.2)

4r for material #1

2= for material #2'(53)

a y , 0 when y=O, x<0 (5.4)

[a] = [r] = 0 along the interface. (5.5)

Equation (5.5) states that the tangential stress, u , and the shear stress, soa

should be continuos along the interface.

As it has been considered in the previous chapters, the non-linear equation

system (5.1) to (5.3) belongs to the hyperbolic type with two families of

characteristic lines, that coincides with the slip lines, issuing from a free
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boundary under 45 degrees to the tangent at every point. From here, it follows

that, in the rectangular equilateral triangle OAB (see Fig. 5.1) having traction-

free crack banks as the diagonal, the only stress field is:

=r =0, cr 2,r in AOAB (5.6)

y
Interface

Material #1 Material #2

C
B D

AE

Fig. 5.1 The crack impinging the interface of two elastic-perfectly plastic
materials bonded at an arbitrary angle.

Similar to the previous cases analyzed in chapters 3 and 4 the equations (4.7) and

(4.8) in polar coordinates are the same for this case. The plasticity condition in

polar coordinates becomes:
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2 , 47, for material #1
(or - 9  f 4T 9 = (5.7)

L4r2 for material #2

Equations (4.10) to (4.14) are valid for this problem. Therefore, the

corresponding stress field for material #1 is:

1. au=or , = +2r,0+OC3 r, 9 = rl (5.8)

or

2. =r, sin(20+C')+C 2 ,

UO = -r, sin(20 + C ) + CG (5.9)

r,, = r, cos(20+ C, )

Here, C,C 2 and C, are arbitrary constants. In Eq. (5.8), either the upper or

lower sign should be taken. By replacing r with r, one can also get the

corresponding stress field for material #2.

The stress field for the continuous solution is that of Eq. (5.8) meanwhile the

stress field for the discontinuous solution is that of Eq. (5.9).
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Let be p the arbitrary angle of the interface measured from line GA (see Fig. 5.2)

in clockwise direction. Since there is a constant stress field in region GAB with a

families of characteristic lines issuing from a free boundary under 450, the cases

when /4 < p ;c/2 will be considered in this study (see Fig. 5.2).

y
Interface

Material #1 Material #2

C
D (o o)

x

Fig. 5.2 The crack impinging an interface of two different elastic-plastic solids
under an arbitrary angle p: the case when /4 7 -/2.
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5.3 Continuous Solution

According to Eq. (5.6), it follows in triangle GAB:

(7 = 71, r = 'r (in AGAB) (5.10)

The stresses u, and r,, should be continuous along GB. Then

a= hr, re = T, along 0= (OC) (5.11)
4

From Eqs. (5.8) and (5.11) in AOBC:

2 (in AOBC) (5.12)

According to condition (5.5), the stresses o, and Tr,, should be continuous along

the interface when 0= T - p (OC). Then from Eqs. (5.8) and (5.12) it can be

found in AGCD:
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a-, = or, = -2z, + 2(rr - XT)(, - z,)+ Ti 1 + r

2 9 (in AOCD) (5.13)

From (5.13) it can be seen that the plasticity condition (Eq. (5.7)) is not met in the

region OCD. Therefore, Eq. (5.13) is only valid in the case of a homogeneous

material when z, = z. Consequently, Eq. (5.3) becomes,

r- =Q g = -2rI+ r, +32 (in AOCD) (5.14)

Then, similar to the case study in chapter 4 for the continuous case the following

solution is found in triangle ODE

7r
z,= z(2+ ,, o= cr, r, =0, when 0 - (5.15)

This solution coincides with the result found previously by Prandtl which as was

shown by Hill and Sokolovsky, is mathematically identical to the crack problem

in homogeneous case.
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5.4 Discontinuous Solution

Again, according to Eq. (5.6) it follows in triangle OAB:

(9 = r, 7r = r9  (in AGAB) (5.16)

The stresses a and r,, should be continuous along GB. Then

60= ,, = r along 0=3- (OC) (5.17)
4

From Eqs. (5.9) and (5.17) it can be found in AGBC:

a,= r,(1+cos2O)

o = rT (1- cos 20) (AGBC) (5.18)

r,9 = - 1r sin 20

According to condition (5.5), the stresses o- and r,, should be continuous along

the interface when 0= - (GC). Then from Eqs. (5.9) and (5.18) it can be

found in AOCD:
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f, = z2 sin(20+ C1)+ rj (1- cos2p)+ , sin(Cl - 2)

U- = -z, sin(20+ C,) + r, (1- cos29) + 2 sin(C, - 29) (5.19)

r = 2 cos(20+ C, )

where

C1 = 29 - arccos A sin 29), and =- (5.2)

C, can be found numerically. Its solution is shown in Table 5.1.

In the triangle ODE it follows:

= -2 r - (AODE) (5.21)

Assumed here is that o > u in this triangle which is physically evident for

opening mode tensile cracks.

The stresses, u-. and rr,, should be continuous along OD. Designate 0 = along

GD. Expressing the stresses in the Cartesian coordinate system:
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Table 5.1. Numerical solution of equation (5.20)

- 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

9 C

45 0 5.7319 11.536 17.457 23.578 30 36.869 44.427 53.13 64.158 90

50 10 15.651 21.359 27.184 33.198 39.498 46.219 53.579 61.984 72.415 90

55 20 25.392 30.832 36.374 42.078 48.024 54.320 61.131 68.742 77.749 90

60 30 34.968 39.974 45.058 50.267 55.658 61.306 67.316 73.853 81.207 90

65 40 44.393 48.812 53.286 57.843 62.521 67.363 72.427 77.794 83.585 90

70 50 53.685 57.386 61.118 64.898 68.747 72.685 76.74 80.946 85.345 90

75 60 62.865 65.739 68.629 71.536 74.477 77.457 80.487 83.578 86.743 90

80 70 71.96 73922 75.889 77.863 79.846 81.841 83.851 85.879 87.927 90

85 80 80.994 81.990 82.986 83.982 84.980 85.980 86.918 87.985 88.991 90

90 90 90 90 90 90 90 90 90 90 90 90
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- z, sin(20 + C1)+ r, (1- cos29)+ z2 sin(C, - 2 ) = . sin 0 +

+ e cos2 02 - 2z sin 02 cos0, (AODE) (5.22)

r-, cos(206 + C1)= (a, - o ) sin 02 cos0, + cos20,

From Eqs. (5.21) and (5.22) it follows:

- r, sin(20, + C,)+ z-, (1- cos29) + z-, sin(C, - 29)=

= (o, - 2 r - z sin0 + ,cos20 - 2r, sin 0 cos0, (in AODE) (5.23)

T, cos(20 2 +C,) = - z- sin 2 , + z, cos 20, .

From the equation system (5.23) and the condition of r, = 0 along y = , x>,

02 can be determined. The numerical solution for 02 is shown in Table 5.2.

From equation system (5.23) and equation (5.21) we have in triangle ODE:

T - - C sin(20, + C) + z, (1 - cos29)+ r, sin(C, - 29) + 2T sin 2 0
(5.24)

u= -T, sin(202 + C,)+,r,(- cos2()+,r, sin(C, - 2p - 2r2 cos( 2

The equation system (5.24) can be easily solved numerically. The solution of this

is shown in Table 5.3a and Table 5.3b and Figs. 5.3 and 5.4 (some values of p) for

o-, / 2 and u / r 2 respectively.

73



Table 5.2. Numerical solution for 6

71/T2' 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

02

45 112.5 111.06 109.61 108.13 106.6 105 103.28 101.39 99.217 96.46 90

50 110 108.58 107.16 105.7 104.2 102.62 100.94 99.105 97.003 94.396 90

55 107.5 106.15 104.79 103.40 101.98 100.49 98.919 97.217 95.314 93.062 90

60 105 103.75 102.5 101.23 99.933 98.585 97.173 95.67 94.036 92.198 90

65 102.5 101.40 100.29 99.178 98.039 96.869 95.659 94.393 93.051 91.603 90

70 100 99.078 98.153 97.22 96.275 95.313 94.328 93.314 92.263 91.163 90

75 97.5 96.783 96.065 95.343 94.615 93.880 93.135 92.378 91.605 90.814 90

80 95 94.51 94.019 93.527 93.034 92.538 92.039 91.537 91.03 90.518 90

85 92.5 92.251 92.002 91.753 91.504 91.254 91.004 90.754 90.503 90.252 90

90 90 90 90 90 90 90 90 90 90 90 90
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Table 5.3a. Numerical solution of the equation system (5.24) for S .
T2

2=7 1/"-2 0 0.1 0.2 0.3 0.4 0.5 0,6 {,0.7 0.8 0.9 1.0

45 1.4142 1.5882 1.7693 1.9585 2.1568 2.366 2.5888 2.8297 3.0973 3.4134 4

50 1.5320 1.7158 1.9061 2.1036 2.3096 2.5253 2.7532 2.9969 3.2635 3.5697 4

55 1.6383 1.8290 2.0254 2.2281 2.4377 2.6555 2.8831 3.1230 3.3798 3.6627 4

60 1.7320 1.9275 2.1275 2.3324 2.5428 2.7594 2.9832 3.2156 3.4590 3.7176 4

65 1.8126 2.0108 2.2125 2.4178 2.6269 2.8404 3.0586 3.2824 3.5126 3.7510 4

70 1.8793 2.0790 2.2810 2.4853 2.6922 2.9017 3.1142 3.3298 3.5489 3.7721 4

75 1.9318 2.1320 2.3335 2.5364 2.7407 2.9464 3.1537 3.3625 3.5731 3.7855 4

80 1.9696 2.1698 2.3706 2.5720 2.7740 2.9767 3.1800 3.3839 3.5886 3.7939 4

85 1.9923 2.1924 2.3926 2.5930 2.7935 2.9942 3.1950 3.3960 3.5972 3.7985 4

90 2 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4
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Table 5.3b. Numerical solution of the equation system (5.24) for .

0 0.1 0.2 0.3 0.4 0.5 0. 0.7 0.8 0.9 1.0

'0 Cx/ T2

45 -0.585 -0.411 -0.230 -0.041 0.1568 0.3660 0.5888 0.8297 1.0973 1.4134 2

50 -0.467 -0.284 -0.093 0.1036 0.3096 0.5253 0.7532 0.9969 1.2635 1.5697 2

55 -0.361 -0.170 0.0254 0.2281 0.4377 0.6555 0.8831 1.1230 1.3798 1.6620 2

60 -0.267 -0.072 0.1275 0.3324 0.5428 0.7594 0.9832 1.2156 1.4590 1.7176 2

65 -0.187 0.0108 0.2125 0.4178 0.6269 0.8404 1.0586 1.2824 1.5126 1.7510 2

70 -0.120 0.0790 0.2810 0.4853 0.6922 0.9017 1.1142 1.3298 1.5489 1.7721 2

75 -0.068 0.1320 0.3335 0.5364 0.7407 0.9464 1.1537 1.3625 1.5731 1.7855 2

80 -0.030 0.1698 0.3706 0.5720 0.7740 0.9767 1.1800 1.3839 1.5886 1.7939 2

85 -0.007 0.1924 0.3926 0.5930 0.7935 0.9942 1.1950 1.3960 1.5972 1.7985 2

90 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2
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From the Eq. (5.20) it can be seen that when p= ff/2 then C, = z /2 and

02 = ; / 2. Consequently, the equation system (5.24) becomes:

cr, = 2(z, + r )
S= 2rl (5.25)

z, =

From Eq. (5.25), it can be seen that for the case of homogeneous material when

Z = 2 , it follows

acr =2r, when 02= (5.26)

r = 0

This solution coincides with that found previously in Cherepanov [50] for this

particular case.

5.5 Velocity Distribution

The characteristic of the stresses and velocity coincides; therefore, using the

Geiringer velocity equations and introducing the following velocity components,
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vr = 0 and v. = V0  in " fan" , (5.27)

where Vr and vD are the radial and tangential velocity components respectively

(vr = 0 because of a rigid radial constraint and O is a constant specified by

boundary conditions).

The results for the continuous solution are the same of those expressed in Eqs.

(4.3) to (4.46) in the previous chapter.

In the discontinuous case, the velocity components coincide with those

expressed in Eqs. (4.7) and (4.48). However, in this general case for an arbitrary

angle, the region OCD (Fig. 5.2) should be included and the velocity components

are the same of those of Eq. (4.48). From here it can be seen that velocity

components are continuous along the line GD in Fig. 5.1 but discontinuity

appears along the interface (line OC Fig. 5.1).
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CHAPTER 6

PROBLEM OF SMOOTH RIGID PUNCH

6.1 Introduction

In the previous chapters the states of stress inside the plastic region at the crack

tip for an i omogeneous material have been studied when the crack is along

the interface or impinging the interface of two different elastic-perfectly plastic

solids. However, according to Hill [11] and Sokolovsky [12], the stresses at the

crack tip in the case of a homogeneous material coincide with those at the punch

edge discovered earlier by Prandtl [8]. Analogously, this idea can be extended

for the case of an inhomogeneous material subjected to a punch force as shown

in Fig. 6.1. Therefore, in this chapter the problem of the indentation of a semi-

infinite in omogeneous body by a flat rigid punch in the form of an infinite strip

is studied (see Fig. 6.1 on Page 81).

6.2 Problem Statement

It is assumed that the surface of the punch and body are perfectly lubricated, so

that there is no friction between them (smooth surface line OE in Fig. 6.1). The

constituent materials are also assumed elastic-perfectly plastic material and the

theory of shear lines or slip lines is used in the same way that it was used in the
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previous chapters. In this case the stresses found here can be used to determine

the limiting load.

Mathematically, the problem of stresses at the punch surface is identical to the

boundary value problem of stresses at the crack tip front in plane strain.

Consequently, Eqs. (4.1) to (4.5) are valid in this case. Surface QE in Fig. 6.1 is

free of traction then o = = 0.

Rigid Punch

Smooth contact surface

BD B'

Material #1 C C Material #1

y i Material #2

Fig. 6.1 The smooth rigid punch problem for an inhomogeneous material.
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In region GAB (Fig. 6.1) the only stress field is:

ay= rl,= 0, u,= 2z, in AOAB (6.1)

Equilibrium and yielding condition equations in polar coordinates are the same

of those expressed in Eqs. (4.7) to (4.9).

Assuming the function f() in the form of Eq. (4.10) and substituting back into

(4.7) and (4.8) two possible solutions are also found for the stress field:

1. p = e 9 = 2z + C, 2r z,+ (6.2)

or

2. U= z, sin(20+C,)+C,

o =-z, sin(2+C+,)+ C, (6.3)

S= T, cos(20+C 1 )

6.3 Continuous Solution

According to Eq. (4.6), it follows:
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(r0 = r,, r, = r, (in AOAB) (6.4)

The stresses ar, and r,, should be continuous along GB. Then,

(7 = ri, r, = r, along =7 (GB) (6.5)

From Eqs. (4.15) and (6.5) it follows:

u,, -u --2r,+r 2 (iAOBC) (6.6)
TrO = r

According to condition (4.5), the stresses .0 and r, should be continuous along

0= /2 (OC). This condition and the plasticity condition (Eq. (4.9) are met only

for the homogeneous case when r, = r2-

3C

ar, = -2z + T, I+8

Og = -2r; _+ r, 1 + (2 CD_) (6.7
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In the triangle ODE it follows from Eq. (4.3) for the homogeneous case:

uo = u - 2 ;-, (AGDE) (6.8)

Assumed here is that co, > c in this triangle which is physically evident for

opening mode tensile cracks.

The stresses, o and r,,, should be continuous along GD. Designate = -,

along GD. Expressing the stresses in the Cartesian coordinate system it follows

that:

-2 z,+r 1+ (- -2 r - )sin2 O+

+u; cos2y -2r, sin , cos , (6.9)

= - r sin 20, + rz, cos20 (AODE)

There are two equations and the condition of T, = 0 when y 0 and x > 0

(smooth contact surface GE) for determining 0,, and a

From Eq. (4.9) and the condition r =0, 0 can be found:
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01=4 (6.10)
4

From the equation system (6.9) the continuous solution for the homogeneous

case can be derived,

S=r, (2+ 71-),

( c r , when - . (6.11)

Z=01

This is the first solution of the classical problem of the theory of plasticity

obtained by Prandtl for the problem of a rigid smooth punch which as was

shown by Hill and Sokolovsky, is mathematically identical to the crack problem

(in homogeneous case).

6.4 Discontinuous Solution

According to Eq. (4.6), it follows:

O= r (in AQAB) (6.12)
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The stresses o and r,, should be continuous along GB. Then,

o = rl, -,o = r, along 0 - (GB) (6.13)
4

From Eqs. (4.16) and (6.13) it can be found:

0, = z,(1+cos2t),

q, = r (1- cos20), (in AOBC) (6.14)

;r = -T, sin 2.

According to condition (4.5), the stresses - and r, should be continuous along

0 = ;T /2 (OC). Then from Eqs. (4.5), (4.16) and (6.14) it follows:

a, = r2(cos20 -l)+2r,,

o =-r(cos20+1)+2r, , (in AOCD) (6.15)

T,, = -- 2 sin 2 .

In the triangle ODE it follows from Eq. (4.3):
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The stresses, c-, and r ,l should be continuous along GD. Designate 0= 0, along

OD. Expressing the stresses in the Cartesian coordinate system it follows that:

- r (cos2O. +1)+2z, = (a% -2 j r ) sin2 0, +

+ UY cos' 0 2-r2 , sin 02cos0, (in AODE) (6.17)

- r, sin 20 = 2 sin20 +r cos20

From the equation system (6.17) it follows:

= r2(2 cos4 sin 2e0 - sin 40 sin 20 - cos2 2 -1)+2r,
(6.18)

r, =--sin 40

Since -, = 0 along y = 0, x > 0 (smooth contact surface), substituting back into

Eq. (6.18) 02 can be determined. It follows from here that 02 has the following

solution:

- for any A = 1 (6.19)
2
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Then,

CF, = 2(-rl + -,) ,

x =2r, , (in AODE) (6.20)

Z, = .

For the case of homogeneous material when ri = r, from Eqs. (6.20) it follows:

ay z1'

c = 2z-, when 0, = - (AODE) (6.21)
2

S= 0

This solution again coincides with that found previously in Cherepanov [50] for

this particular case.

From these results, it can be seen that this solution has a discontinuity in the

stresses along the interface (line OC in Fig. 6.1).
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6.5 Limiting Load

The stresses found in this work, that are identical to those found previously in

the case of a crack impinging an interface at a right angle, can be used to

determine the limiting load or P,. This limiting load per unit of length is

defined as:

Pr = o-,L (6.22)

Where o is the normal stress in the y direction in the region ODE, and L is the

length of contact of the punch (line QE in Fig. 6.1).

Using the solutions shown in this chapter, the limiting load for both solutions

can be determined in the following form:

For the homogeneous case there are two possible solutions one is discontinuous

and the other discontinuous.

a. Continuous case: From Eq. (6.11) it follows

P, = r,(2+c)L (6.23)
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b. Discontinuous case: From Eq. (6.21) it follows

P,, = 4z-,L (6.24)

From Eqs. (6.23) and (6.24) it can be seen that P,, is greater for the case of the

continuos solution than for the case of discontinuous solution.

For the i omogeneous case, there is only one possible solution given by the

discontinuous case. Substituting Eq. (6.20) into Eq. (6.22) it follows,

P = 2(r, + 2)L = 2r(A +1) (6.25)

Eq. (6.25) is valid for any A = r, / r .

6.6 Velocity Distribution

The velocity distribution is readily determined from the Geiringer equations. If

the punch is moving with the velocity V in the y direction (Fig. 6.1), then region

ODE moves as a rigid body attached to the punch with the same velocity.
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The results of simple calculations are given below:

1. The continuous solution:

v, =0, v , =Vr in AODE (6.26)

Vr 0, v8 = a in AOBCD (6.27)

v = -V0, v, = -V0  in AOAB (6.28)

2. The discontinuous solution:

Vx = 0, v = Vh in AODE (6.29)

= 0, v,= -V in AOABC (6.30)
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CHAPTER 7

THE PUSH-IN AND PULL-OUT PROBLEMS

7.1 Introduction

The push-in or pull-out problem has been considered extensively in order to

understand the reinforcing effect of fibers in aligned composites. The mechanism

of load transfer between the matrix and the reinforcement has been studied to

determine the response of the composite under the action of axial loading such

as that incurred by axial force at the top of the fiber during the push-in or pull-

out process.

In this chapter a previous result of an efficient solution of the pull-out problem

developed by Cherepanov and Esparragoza (1995) is presented. Additional, the

analysis of the stress state inside the plastic region at the crack tip during the

push-in or pull-out process is considered. This analysis is useful to determine the

critical load in this type of problem. Consequently, the type of mechanism of

failure can be predicted using this analysis.

The push-in and pull-out problems are mathematically identical the only

difference is the direction of the acting force.
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7.2 Some Results of Fiber Stress Analysis

In this section the main resul of the study by Cherepanov and Esparragoza are

summarized. For more details see the reference [51]. Consider a linearly elastic

round cylinder embedded in a linearly elastic half-space of another material on a

finite length (Fig. 7.1). The force, F, is applied to the open end of the fiber. The

boundary of the half-space and lateral open surface of the cylinder is free of

traction. Residual stresses are ignored in this work. Let us designate ro as the

radius of the fiber, 1, the length of the embedded part of the cylinder, Ef and E,

the Young's modulus of the fiber and matrix respectively, and Uf and Vm the

Poisson's ratio of the fiber and matrix respectively. Introducing the following

dimensionless quantities,

r Ef

For sufficiently low force, F, there exists a perfect bonding between the fiber and

the matrix, so that the no-slip and no-opening bonding conditions hold over all

the interface including the lateral surface and the bottom. The problem is

axisymmetric, so that z is the axis of symmetry and r is the radial distance from
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the axis. The case of most practical relevancy to composite when both 4 and e

are small is considered.

F

Fiber
r

Matrix

1
r( r

z

Fig. 7.1 The axisymmetric problem of pull-out of a foregoing elastic fiber
embedded in a softer elastic matrix. The cylindrical domain

of non-zero perturbed field.

In the case when « <1 the stress field around the fiber has a structure of a

boundary layer, in which the stress gradients across the fiber are much greater

than along the fiber. Therefore, in this case the stress gradients with respect to z

can be neglected in the equilibrium equations as comnpared with those with
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respect to x and y. As a result, a combination of anti-plane strain and plane strain

equations are obtained.

The approximate analytical approach brought in Cherepanov (1983) is used.

According to this approach the displacement and stress-strain field in the fiber

are described by the mean normal stress, u. (z), in a cross-section of the fiber, the

shear stress, -r, (z), on the lateral surface of the fiber, and the mean displacement

of the cross-section of the fiber W along the z-axis. Following the same

approach, the perturbed field of stresses, strains and displacements in matrix

exist only inside the cylindrical domain r <r, 0 <z <l shown in Fig. 7.1. r,

should be found from the following equation of fitting:

(7.2)

where z7 is taken from Cherepanov (1983) as 0.738 Inside this cylindrical

domain the fields of stress, strain, and displacement are described by the stress

components of the stress tensor c = (r,z) and r. =r,(r,z), and by the z

component of the displacement vector w = w(r,z). All other components of the

stress tensor and displacement vector are considered small enough to be

ignored.
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Taking into account the equilibrium equation in the fiber and in the matrix, the

boundary conditions and the assumptions described by Cherepanov (1983), an

efficient analytical solution to the problem of pull-out or push-in is presented in

the following form:

Tr 2 sinh(r) cohLKC l,1 j (7.4)

coshL 1 1 (7.5)
KEf sinh(K)

Eqs. (7.3) to (7.5) are valid in the fiber. Here, K iS the following expression,

1.355s
2 1 (7.5)

2(1+0,,)In

F
and O (7.6)

IZTo
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From Eqs. (7.3) and (7.4) it follows that the maximum stresses are:

max O

m KUO 1 at z . (7.7)
""a 2 tanh(K)

The elastic pull-out problem is a necessary prelude to fiber debonding .The

analytical solution for the pull-out or push-in problem for the partial debonding

without friction can be derived in the form of Eqs. (7.3) to (7.5) replacing z by

- l and 1 by 1- ID in these equations, where /, is the length of the debonding

zone of the fiber. In the case of debonding the following relation

2r, tanh(KD = DKD Uo (7.8)

holds between a,, D and maximum interface shear stress, r,, where gD and KD

correspond to 4 and K when 1 is replaced by l - Z, .

From the Eq. (7.8) it can be seen that when the length of debonding increases the

relation uO / r, decreases. From here it can be concluded that after reaching the

limiting shear stress along the interface , z,, the debonding length appears and

the crack start growing along the interface unstable.

97



The analysis presented in this numeral covers the elastic problem and the

debonding case for the case of an inhomogeneous material. The rest of this

chapter deal with the situation when the plasticity is reached in the crack tip of

two different elastic-perfectly plastic solids under the condition of plain strain

subjected to the push-in or pull-out force.

7.3 Statement of the Plasticity Problem

It is assumed that the surface of the punch and body are perfectly lubricated, so

that there is no friction between them (smooth surface line GE in Fig. 7.2). The

constituent materials are also assumed elastic-perfectly plastic material and the

theory of shear lines or slip lines is used in the same way that it was used in the

previous chapters. In this case the stresses found here can be used to determine

the limiting load.

Mathematically, the problem of stresses at the punch surface is identical to the

boundary value problem of stresses at the crack front in plane strain.

Consequently, Eqs. (4.1) to (4.5) are valid in this case. Surface GE in Fig. 7.2 is

free of traction then o = r,= 0.
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Rigid Punch

A

Material #1 Material #1

B

E

D
Smooth contact
surface

y1

Material #2

Fig. 7.2 The plasticity region in the push-in or pull out problem.

In region OAB (Fig. 7.2) the only stress field is:

C = r, = 0, cr, =2r in AOAB (7.9)

Equilibrium and yielding condition equations in polar coordinates are the same

of those expressed in Eqs. (4.7) to (4.9).
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Assuming the function f(G) in the form of Eq. (4.10) and substituting back into

(4.7) and (4.8) two possible solutions are also found for the stress field:

1. - o = +F2T,+C,3 r T, (7.10)

or

2. a- = T, si(20+C,)+C,,

o, = -z, sin(20+ C)+ C, (7.11)

r,, = r1 cos(20+ C )

7.4 Continuous Solution

According to Eq. (4.6), it follows:

o = Ti, >, = T, (in AOAB) (7.12)

The stresses o. and r, should be continuous along OB. Then,

57g.
o T = , r,, = T1 along 0=- (OB) (7.13)
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From Eqs. (4.15) and (7.13) it follows:

2 (in AOBC) (7.14)

According to condition (4.5), the stresses ur and rr, should be continuous along

O= r /2 (OC). This condition and the plasticity condition (Eq. (4.9) are met only

for the homogeneous case when z, = -

Ur=2iO+ Til1+--

o- = -2r T+ l I+- (in AOCD) (7.15)

r92

the triangle ODE it follows from Eq. (4.3) for the homogeneous case:

-2 =Q- - (AODE) (7.16)

Assumed here is that a > a., in this triangle which is physically evident for

opening mode tensile cracks.

101



The stresses, a. and zr, should be continuous along GD. Designate 0=-0

along OD. Expressing the stresses in the Cartesian coordinate system it follows

that:

-2r0 r+lr yj+ = (cr, -2 - 2 )sin" 0i +

+c, cos -2 sin ; cos01 , (717)

- - sin 20, +r cos201 (AODE)

There are two equations and the condition of r,= 0 along the smooth contact

surface (line GE in Fig. 7.2 when y = 0 and x> 0) in order to determine 0, and

Iyv

From Eq. (4.9) and the condition r, =0, 0 can be found:

01 - 7 (7.18)

From the equation system (7.17) the continuous solution for the homogeneous

case can be derived
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o =2rT, when 0, =- (7.19)4
r = 0,

This is the continuous solution for the case of push-in or pull-out problem.

Comparing Eqs. (6.11) and (7.19) it can be seen that the normal stresses in the

region ODE are greater in the case of the push-in or pull-out problem than in the

case of a smooth rigid punch.

7.5 Discontinuous Solution

According to Eq. (4.6), it follows:

9o r = r] (in AQAB) (7.20)

The stresses and and should be continuous along OB. Then,

o = , r,, = r, along = (OB) (7.21)
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From Eqs. (4.16) and (7.21) it can be found:

a, = z,(1-cos20),

. = Tr (1+ cos 20), (in AOBC) (7.22)

, z, sin 20.

According to condition (4.5), the stresses oe and Tr, should be continuous along

0 =z /2 (OC). Then from Eqs. (4.5), (4.16) and (7.22) it follows:

r = (l-cos20),

= T2 (1+ cos20), (in AOCD) (7.23)

z,, = r2 sin 20 .

In the triangle ODE it follows from Eq. (4.3):

- o - (AODE) (7.24)

The stresses, ug and r4 should be continuous along GD. Designate 0= 0, along

GD. Expressing the stresses in the Cartesian coordinate system it follows that:
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,(1l+cos206) = (%o- 2 4; - r;,) sin 0 +

+, cos2 0 - 2r sin 02 cos0, (in AODE) (7.25)

r, sin 20, = ,sin 20 + cos 20,.

From the equation system (7.25) it follows:

(, rl + cos 20 + 2cos40 sin' 0+ sin 402 sin 202 )

r = r, sin 402

Since T, 40 along y = 0, x> 0 (smooth contact surface), substituting back into

Eq. (7.26) 02 can be determined. It follows from here that 0 has the following

solution:

0. = for any 2 = (7.27)
2

Then,

uy 2 z,

ax 0 , (in AODE) (7.28)
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For the case of homogeneous material when = r, from Eqs. (7.28) it follows:

I = , when 0, (AODE) (7.29)

r = 0

This is the discontinuous solution of the stresses inside the plastic region for the

push-in or pull-out problem. Comparing Eqs. (6.20) and (6.21) with Eqs. (7.28)

and (7.29) it can be seen that the normal stresses in the region ODE are greater

for the case of the smooth rigid punch than for the case of push-in or pull-out.

7.6 Limiting Load

The stresses components found for the continuous solution Eqs. (7.19) for the

discontinuous case Eqs. (7.28) and (7.29) can be used to determine the limiting

load per unit of length , P,, which is defined as:

Pc, = L (7.30)

Where is the normal stress in the y direction in the region ODE, and L is the

length of contact of the punch (line QE in Fig. 7.2).
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For the homogeneous case there are two possible solutions: one is discontinuous

and the other discontinuous.

a. Continuous case: From Eq. (7.19) it follows

Pr= 2 z-1(I+ r)L (7.31)

b. Discontinuous case: From Eq. (7.29) it follows

Pcr = 2 l L (7.32)

From Eqs. (7.31) and (7.32) it can be seen that Pr is greater for the case of the

continuos solution than that for the case of discontinuous solution.

For the inhomogeneous case, there is only one possible solution given by the

discontinuous case. Substituting Eq. (7.28) into Eq. (7.30) it follows,

Pr = 2z L (7.33)

Eq. (7.33) is valid for any A = r1 / T1 .
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7.7 Velocity Distribution

The velocity distribution is readily determined from the Geiringer equations. If

the punch is moving with the velocity V in the y direction (Fig. 7.2), then region

ODE moves as a rigid body attached to the punch with the same velocity.

The results of simple calculations are given below:

1. The continuous solution:

vx = 0, v, =V in AODE (7.34)

Vr =0, v, =0 Vo in AOBCD (7.35)

V, = 0, =-l in AQAB (7.36)

2. The discontinuous solution:

v, =0 v, O in AODE (7.37)

vx = 0, v, = -V0  in AOCD (7.38)

V, 0, v,= _o in AOCBA (7.39)
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CHAPTER 8

DISCUSSION AND CONCLUSIONS

8.1 Introduction

This dissertation has been devoted to the study of the stress state near the crack

tip inside the plastic region for an i omogeneous material made of two

different elastic-perfectly plastic solids. Three different cases where considered:

First, the case when the interface free of tractions was studied. Then, the case of

the crack impinging the interface at a right angle was analyzed; finally, the case

of the crack impinging the interface at arbitrary angle was considered. For any

case both continuous and discontinuous solutions were presented based on the

shear line or slip line theory.

Using the same idea by Hill and Sokolovsky who showed that the stresses at the

crack tip coincides with those at the punch edge discovered by Prandtl for the

case of a homogeneous material, this study was extended to the analysis of the

stresses inside the plastic region when a rigid flat punch indents a semi-infinite

inhomogeneous material. The same approach applies for the analysis of the

push-in and pull-out problem.
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In this chapter, the discussion of the results as well as the conclusions and some

recommendations for future work are treated.

8.2 The Plasticity Problem at the Crack Tip for an Inhomogeneous Materials

In this numeral the results of chapters 3 to 5 are discussed. General speaking,

two different solutions have been found for each case: one is the continuous

solution and the other is the discontinuous solution. It is necessary to determine

which of these solutions is realized in practice because both of them cannot,

evidently, be available simultaneously. So far, authors have been working with

the continuous solutions (Prandtl's solution). However, the discontinuous

solution cannot be thrown away without any reason.

For the homogeneous case it follows from Eqs. (3.26), (3.38), (4.27), (4.41) (5.15)

and (5.26) that,

y = r,(2+ T), a, = 2r, 0 in AODE (8.1)

and

ay = z4, u 2 z, = in AODE (8.2)
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Where Eqs. (8.1) belong to the continuous solution while Eqs. (8.2) belong to

discontinuous solution. There is a reason why the discontinuous solution is

probably realized in practice, while the common continuos solution might not be

met in practice. From the analysis of both solutions it can be seen that in the case

of the homogeneous material the stresses ur, o in the wedge ODE for the

continuos solution are greater than in the case of the discontinuous solution.

Therefore, the material will yield first by the stresses of the discontinuous

solution. Another reason comes from the comparison of both solutions for the

punch problem: the discontinuous solution, with the discontinuity line issuing

from the punch corner, seems physically more realistic than the smooth

continuous solution by Prandtl. More sophisticated approaches based on the

selection principle [53] (or the maximum energy dissipation principle [53]) also

give the preference to the discontinuous solution. However, the final decision

should be provided by experiments (probably, with pure cubic crystals best

described by the elastic-perfectly plastic model).

In chapter 3, in the case of a continuous solution the equation system (3.24)has a

solution only for the case 0.71 2 1. Although different considerations were

made to find a solution for the equation system (3.24), no solution was found in

this work for 0.71 2 2 0. Experimental work is suggested to understand the

behavior of the system under these circumstances. In this chapter it was also

111



found that the discontinuous case has solution only for the limiting cases when

= 1 and when 2= 0. The homogeneous case (when 2= 1) was already

analyzed. The case when 2 = 0 corresponds to a punch problem where the

stresses in the wedge ODE (Fig. (3.1)) are those stated in Eq. (3.39).

In chapters 4 and 5, the continuos case has a solution only for the case of a

homogeneous material while the discontinuous solution is valid for any A from

0 to 1. the latter case, it is observed that the stress state in the plasticity region

is formed only by constant areas and the discontinuity appears along the

interface. It is expected from these results that the discontinuous case is the only

possible solution and it might be realized in practice.

Using the found solutions in chapter 3, the Reuss equations, and the equation of

adhesion energy in the form of path-independent integral suggested by

Cherepanov for a crack growth studies it can be shown that the adhesion energy

is equal to zero in this model similar to the homogeneous case [53]. It means

physically that the adhesion energy spent to initiate an interface crack in the

elastic-perfectly plastic model is equal to zero, analogously to the homogeneous

case [53], and the slow crack growth starts just after loading begins, and is

accompanied by crack tip blunting. In the more accurate model the crack

initiation based on the consideration of dislocation emission by a crack tip [54], it

appears that the corresponding adhesion energy at the initial stage is non-zero,
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but very small (roughly ten times less that of an ideal crack growth with no

dislocations emitted). In the well-developed crack growth range, it is necessary

to take into account unloading and residual stresses and strains, which were not

considered here. These circumstances do not allow efficient use of the elastic-

perfectly plastic model for calculation of adhesion energy characterizing the

intermediate crack growth range, where the crack growth is comparable with the

size of the plastic region near the crack tip.

8.3 The Push-in and Pull-out Problem

In the mechanics of push-in or pull-out, different situations can be considered.

The case of a i omogeneous surface indented by smooth rigid punch (chapter

6) is similar to the case of a push-in problem where one material is pushed-in

into another material from the very surface. The case considered in chapter 7

numeral 7.3 implies that the process of push-in or pull-out has started already.

Additionally, the elastic and debonding problem is also included in numeral 7.2.

First, the plasticity problem is analyzed. Since there are two different solutions

one continuous and the other discontinuous, again it is necessary to determine

which of these solutions is realized in practice because both cannot be available

simultaneously. There are two reasons why the discontinuous solution is
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probably realized in practice while the common continuous solution might not

be realized in practice. From chapter 6 Eqs. (6.23) and (6.24), it follows

1, = ir,(2+;T)L (8.3)

Pr = 4 r, L (8.4)

and from chapter 7 Eqs. (7.31) and (7.32) it follows

P,, = 2 r,(I+ c)L (8.5)

Pc = 2r1 L (8.6)

Here Eqs. (8.3) and (8.5) belong to the continuous solution and Eqs. (8.4) and

(8.6) belong to the discontinuous solution.

Therefore, the discontinuous solution provides a limiting load Pr smaller than

that provided by the continuous solution in both the contact problem and the

push-in and pull-out problem for the homogeneous case. Consequently, material

will yield first by the limiting load P,, of the discontinuous solution. Secondly,

the discontinuous solution provides a discontinuous displacement at the punch
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edge which is a more realistic profile of the local deformation than that

suggested by the continuous solution giving a non-realistic smooth profile of

local deformation near the punch ends.

For the case of an inhomogeneous material, only the discontinuous solution is

available for any 2 and it might be realized in practice.

When an embedded material is subjected to a push-in or pull-out force, the

following possible situations can be presented. First, the elastic behavior of the

system occurs. In this case, the stresses along the embedded material under plain

strain condition along the longitudinal direction are those expressed by Eqs. (7.3)

and (7.4). Next, if the push-in or pull-out force is increased, then two things can

happen. The maximum shear stress along the interface, Eq. (7.7), reaches the

limiting shear stress at the interface that characterizes the ultimate strength of

bonding forcing the bond to break. Then, the length of debonding starts growing

but this growth is unstable, which means that the load decreases while the

length of debonding grows. This behavior is predicted by Eq. (7.8) which shows

that the normal stresses along the embedded material will decrease while the

length of the debonding (the crack) grows. The other situation is that if the push-

in or pull-out force is increased, the limiting load , can be reached. Therefore,

the embedded material will yield and the Eq. (6.25) predicts this critical load.
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Comparing Eq. (6.25) with Eq. (7.33) it is observed that the case when the

bonding interface holds along the whole interface (Fig. 6.1) produces a critical

load, Eq. (6.25), greater than that for the case when the push-in or pull-out

process started Eq. (7.33) (see Fig. 7.2). This result is consistent with the

prediction of Eq. (7.8). The critical load to reach plasticity will be smaller for the

case of push-in or pull-out Eq. (7.33) than that for the contact problem Eq. (6.25).

In any case, the debond zone tip is a singular point. Therefore, high stresses are

expected at this point and plasticity zone will appear in the same form that for

the crack tip. It means that once the limiting shear at the interface is reached and

the debonding length appears a small plastic zone will develop at the debond tip

and its size and distribution of stresses were already considered in this work.

8.4 Final Remarks and Recommendations

The stresses near the crack tip inside the plastic region for an inhomogeneous

material made of two different elastic-perfectly plastic materials were studied

for different positions of the crack with respect to the interface. the

corresponding homogeneous case two solutions were found one of which is the

classical Prandtl's solution, and the other is a novel solution that was unnoticed

by Prandtl, Hill ad Sokolovsky who earlier investigated this problem.
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The ideas were extended to the push-in and pull-out problem to provide more

information to this classical problem in composite materials.

The study of a more sophisticated approach based on the selection principle (or

the maximum energy dissipation principle) is also recommended and suggested

as a complement work to this investigation to determine the preference of the

discontinuous solution. However, the final decision should be provided by

experiments (probably, with pure cubic crystals best described by the elastic-

perfectly plastic model). Then, it is also recommended to compare this resul

with experimental data. This information will be valuable to determine which

solution is realized in practice and what happens in the case of an interface crack

where there is still a range to cover for 0.71> > 0.

Additional investigation related to this type of problem such as the case of a

well-developed crack growth range taking into account unloading and residual

stresses and strains, which were not considered here, is suggested as future

research work.

The results of this dissertation published in three journal articles (two of them

under revision [55], [56]) will be presented in the Invited Lecture on the 7th

International Conference on Plasticity (Cancun, Mexico, January (1999).
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