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ABSTRACT OF THE THESIS

Numerical Analysis of the Pullout Problem of a Fiber Embedded

in a Matrix: Comparison with an Approximate Analytical Solution

by

Ivan Enrique Esparragoza

Florida International University, 1993

Miami, Florida

Professor Genady P. Cherepanov, Major Professor

The classical problem of pullout of a long elastic rectilinear round bar (fiber)

embedded in an elastic half-space (matrix) is considered before and while local

debonding occurs. An approximate analytical solution derived from the

elasticity theory, the intuitive Saint Venant's principle, the idea of boundary

layer in hydrodynamics, and invariant F-integrals is presented. The problem is

analyzed numerically by means of the finite element method using the ANSYS

program. The cases of loading before and after the initiation of the debonding

are studied. Both approaches, analytical and numerical, are compared in order to

establish the concidence between them. The discrepancy is very small in the

global sense though substantial differences appear at particular points.
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CHAPTER 1. INTRODUCTION

1.1 Introduction

Composite materials have become very important in the new technology. They

are two or more materials that have been combined to create a new useful

material. The main advantage of composites is that they usually exhibit the best

qualities of their constituents and often some qualities that neither constituents

possesses. Composites are formed in order to improve some properties such as

strength, stiffness, fatigue life, conductivity and others.

Because of the inherent nature of composites materials, they are usually studied

from the macro and micro mechanics behavior. Macro mechanics behavior is the

study of composite materials wherein the material is presumed homogeneous

and the effects of the constituent materials are detected only as averaged

apparent properties of the composite. Micro mechanics is the study of the

interactions of the constituent materials.

Unfortunately, many difficulties arising in the design or employment of

composite materials are caused by the complexity and poor understanding of the

interactions between the composite components. According to Cherepanov

(1993) in the treatment of some novel approaches in mechanics of composites, so

far, there are no generally recognized theories of such phenomena as: fiber

reinforcement, adhesion/cohesion of two materials, decohesion / debonding /

delamination of fibers, and so on. Due to this fact, many researchers have been

involved in investigations in those areas. In this work, attention will be focused
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on one of the most famous problem in mechanics of composite which is the

pullout of a fiber embedded in a matrix.

In the context of solid mechanics, this type of investigation is conducive to a

better understanding of the behavior of fiber-reinforced composites, to which the

load transfer characteristics between the matrix and the reinforcement is of

importance. Of interest in this work is the response of the system under the

action of axial loading such as that incurred by axial force at the top of the fiber.

1.2 Background

As was explained above, the interactions between fibers and matrix are complex,

and imperfectly understood. Cox (1952) was probably the first who attempted to

explain the reinforcing effect, and his study was based entirely on elastic

interactions. This idea is now called the shear lag theory, and it was improved

by Kelly and Davies (1965); however, it basically explains only the behavior of

composites at low stresses.

The fundamental role of pullout problem in reinforcement and toughness of

composite materials was originally understood probably by Kelly and Davies

(1965). Muki and Sternberg (1969) were the first to study the problem

analytically. In their treatment of on an axially-loaded infinite rod embedded in

a medium of infinite extent, the influence of the deform ability of the embedment

on its mechanical interaction with the surrounding medium is illustrated. Of

greater importance, though, is their subsequent contribution to the more difficult

problem of axial load diffusion from a partially embedded rod in a semi-infinite
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medium (Muki and Sternberg, 1970). In that treatment it is shown that it is

possible to obtain a consistent formulation for the structure-medium interaction

problem on the occasion that the engineering approach of treating the rod as a

one-dimensional elastic continuum is adopted. The model by Muki and

Sternberg was used to study such problems as load-transfer to a half-space from

a partially embedded axially loaded rod and load-absorption by a semi-infinite

fiber in a remotely stressed, fully-infinite matrix (Sternberg, 1970). Muki and

Sternberg's model replaces the fiber-matrix system of the problem with an

extended matrix occupying the volume originally containing both the fiber and

the matrix and possessing the same elastic properties as the original matrix. This

extended matrix is in turn reinforced by a "fictitious stiffener" whose modulus of

elasticity when taken in sum with that of the extended matrix is equal to that of

the original fiber. This stiffener is taken to be a one-dimensional elastic

continuum bonded to the extended matrix in such a way that the axial strain in

the stiffener is equal to the average extensional strain of the extended matrix in

the volume occupied by and in the direction of the original fiber. Poisson's effect

in the stiffener, and therefore in the fiber, is not taken into account. Finally,

"bond forces" are regarded as body forces uniformly distributed over disks

perpendicular to the axis of the fiber and load carried by the original fiber is

equated with the sum of the stiffener load and the resultant load carried by the

extended matrix in the bonded region.

The model of Muki and Sternberg was modified by Pak (1989). Pak's work is

concerned with the analysis of the response of a partially embedded bar under

lateral loading. this work, the loading is assumed to be applied at the

unembedded end of the bar and may, in general, be a combination of horizontal



shear forces and moments. The concept of a "fictitious stiffener" replacing the

original fiber and treated as a one-dimensional elastic continuum was again

employed. In this case, however, lateral displacement of the stiffener was taken

to equal lateral displacement in the extended matrix along the cen oidal axis of

the original fiber and Bernoulli-Euler bending beam theory was used to describe

the behavior of the stiffener. Body-force field distributions corresponding to

laterally-loaded rigid disks embedded in the matrix along the axis of the fiber

were adopted as the "bond forces"

Another model was recently advanced by Slaughter and Sanders (1991). In this

proposed model, the effect of the fiber on the matrix is assumed to be

approximated by unknown distributions of axial forces and dilatations in an

elastic space along the line where the fiber axis would lie. Mathematically the

elastic field in the matrix is represented in terms of integrals with kernel

functions corresponding to concentrated loads and dilatations. The fiber is

modeled by a one-dimensional rod theory in which Poisson expansions and

contractions are allowed. The two unknown distributions are determined by

enforcing fiber equilibrium and continuity of tractions and displacements at the

fiber-matrix interface leading mathematically to a pair of coupled integral

equations. This model would seem to be conceptually "clean"; however, there is

a difficulty. A concentrated axial force applied to the (model) fiber necessarily

produces a discontinuity in axial strain. On the other hand, any distribution

whatever of axial forces and dilatations according to the model produces

continuous axial strains in the matrix at the fiber-matrix interface. This

fundamental inconsistency is avoided by introducing an approximate expression

for the axial strain in the matrix which has the proper discontinuity but which
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differs from the exact expression over a distance the order of a fiber radius. It is

difficult to give a rigorous assessment of the errors involved in the approximate

theory but it is thought to be accurate except within distances the order of a fiber

radius from concentrated loads or other discontinuities. In contrast to the model

used by Muki and Sternberg, this approach treats the load between the fiber and

matrix in a manner which explicitly includes tangential tractions across the

interface and therefore affords one more flexibility in examining systems where

interface conditions are an issue. Furthermore, the fundamental elastostatic

solutions in application in this model are those for a point force and a point

dilatation. These solutions are much less cumbersome than the disk of uniform

loading (or laterally-loaded rigid disk) required in Muki and Sternberg's model.

It is important to notice that the work by Slaughter and Sanders (1991) considers

only the case of =0.2, =0.5, vm=1/ 4 and vf=1/3, and this model is compared

with that studied by Muki and Sternberg (1969). Such a kind of model has no

considerable practical importance for composite materials because, for practical

purposes, k varies from 10-5 to 10- and g varies from 103 to 5.10-2.

The classical pullout problem has been studied considering its two clearly

defined stages: before and while local debonding occurs. For this case, the elastic

pullout problem is a necessary prelude to fiber debonding, see, e.g. Lawrence

(1972), Takaku and Arridge (1973), Phillips (1974), Wells and Beaumont (1985),

Budiansky, Hutchinson and Evans (1986), Delale (1988), and Becher et al. (1988),

Kerans and Parthasarathy (1991), Cherepanov and Esparragoza (1992). Besides, a

tremendous list of papers on interfacial debonding can be found in Cherepanov

(1983), Friedrich (1989), Rice, Suo and Wang (1990), Bao and Hui (1990), Hseuh
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(1990), Hutchinson and Jensen (1990), Evans (1991), Hutchinson and Suo (1992),

Cherepanov and Esparragoza (1993).

The importance of the brittle fiber/matrix interface on the mechanical behavior

of ceramic composites has led to several recent studies measuring the force

necessary to slip a fiber by pushing out its end with an indenter ( Marshall and

Oliver, (1987), Mandell et al. (1987), Brun and Singh (1988) and Morscher et al.

(1990)) and with a flat ended probe (Bright et al. (1989)). Most of the analyses

assumed the fiber/matrix interface to be fully debonded so that the only

resistance to slippage was friction. Rigorous analytical solutions to the fiber

slippage problem carried out by Dollar and Steif (1988) are restricted to cases in

which the fiber and marix have the same elastic properties and the initial

residual stress presented in the composite is a constant clamping pressure. An

analytical model for the transfer of stress between fiber and matrix at an

interface where there is either perfect bonding or where friction is governed by

Coulomb's law was given by McCartney (1989). A simplified model for fiber

pushout tests based on a shear-lag theory was proposed by Hseuh (1990).

Recently, the problem of fiber/matrix interface debonding has received much

attention. There have been two approaches to the debonding problem. One is

based on a maximum shear-stress criterion, as carried out by Hsueh (1990) and

Li et al. (1991), and the other based on a fracture mechanics (mode II crack

growth) approach, as conducted by Gao et al. (1988), Hutchinson and Jensen

(1990) and Kerans and Parth asarathy (1991). When the fiber is partially

debonded, clamping stresses due to mismatch in the thermal expansion

coefficients of the fiber and the matrix act on the fiber, giving rise to frictional
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shear stresses at the fiber/matrix interface. Gao et al. (1988) analyzed the

problem, including the effects of friction, using a model based on shear-lag

theory. However, they ignored the effects of axial or shear residual stresses in

the specimens. Effects of the axial and radial residual stresses on the fiber

pullout stresses were considered by Hsueh (1990). Hsueh (1990) also analyzed

debonding due to residual thermal stresses using the interfacial bond strength as

the criterion for debonding. Hutchinson and Jensen (1990) used a fracture

mechanics approach to give a comprehensive treatment of the fiber pullout

problem for a semi-infinite composite including all residual stresses due to

thermal cool-down. The effects of axial residual stresses on fiber pullout and

pushout problems were taken into account by Kerans and Parthasarathy (1991),

who also included the effects of fiber surface roughness in their model.

In all the analyses of fiber pushout or pullout tests in the past, the following

assumptions were made: a) In most cases the composite was assumed to be

either fully undebonded or fully debonded at the beginning of the test. The

possibility of a finite initial debonded zone was considered by Hutchinson and

Jensen (1990) and Hsueh (1990) for the fiber pullout case. b) In most analyses of

the fiber pushout or pullout tests, residual stress was taken as a constant

clamping stress, although Hsueh (1990) and Kerans and Parthasarathy (1991)

also included a constant axial residual stress term. A full residual stress field due

to thermal cool down was included by Hutchinson and Jensen (1990) in their

analysis of the fiber pullout test of a semi-infinite composite. A similar

accounting of the residual stress field was also given by McCartney (1989) for the

case of a fully debonded frictional interface. c) In all cases, the composite was

assumed to be semi-infinite.
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At this point, it is important to cite other works that have contributed to the

analysis of the pullout problem. Many new and useful suggestions taking into

account other facts such as residual stresses, non-constant interfacial bond

strength, imperfect bonding and temperature effects were studied in Brun and

Singh (1988), Mura, Brittain and Faber (1990), Chen and Hui (1990), Kishi, Ewoki

and Tsuda (1992), and Kim, Baillie and Mai (1991).

Some ideas originated in the study of the interactions between fiber and matrix

such as the shear-lag theory and the method for analyzing fiber load-diffusion

problems developed by Slaughter and Sanders (1991) have been used for the

analysis of crack-bridging problems in composites. It has been demonstrated

how a steady-state crack, growing normal to an aligned array of reinforcing

fibers, can be modeled by analyzing a configuration in which there are no fibers

but a continuous distribution of springs restraining the two crack faces

(Budiansky and Amazigo, 1989). Thus, they used a shear-lag model to

determine an equivalent spring stiffness for their model. Slaughter (1992)

proposed a self-consistent model for determining the equivalent spring constant

in fiber crack-bridging problem using the method for analyzing fiber load-

diffusion problem. Similarly, the fracture mechanics approach has been applied

to the pullout problem. See Gao et ale (1988), Hutchinson and Jensen (1990),

Stang, Li and Shah (1990), and Kerans and Parthasarathy (1991).

Many important issues of pullout problems such as friction effect, interfacial

micro-cracking and interface cracking strength were studied in Bright, Shetty,

Griffin and Limays (1989), Delale and Xu (1991), Nair (1990), Ortiz and Blume

(1990), Parthasarathy, Jero and Kerans (1991), Sutcu and Hilling (1990), Thouless
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and Evans (1988), Thouless, Sbaizero, Sigl and Evans (1989), and Zimmerman,

Langford and Dickinson (1991).

1.3 Objective and Significance

The objective of this thesis is to determine, by means of the finite element

method, the distribution of the normal stress in the cross section of the fiber and

the shear stress in the interface between the fiber and the matrix along the total

length of the fiber during the pullout process of a fiber embedded in a matrix

before and while local debonding occurs. Also it is important to determine the

maximum load that can be applied in order to start debonding and, mainly, to

determine the maximum load that can be applied until which the length of

debonding grows stable and, consequently, the fiber composite can continue

working.

The significance of this work is that this analysis allows us to have new tools for

the study of the pullout problem of a fiber embedded in a matrix, taking into

account iniial or residual, inelastic behavior of the fiber and/or the matrix,

interactions of many fibers, temperature effects and so on. In addition, because

there is no experimental data available, this work serves to establish the

coincidence between the numerical solution and a new approximate analytical

solution of this problem presented in Chapter 2 which is simpler than those

developed by other authors.
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CHAPTER 2. APPROXIMATE ANALYTICAL SOLUTION

2.1 Introduction

In this Chapter the approximate analytical solution is presented. For this

purpose a linearly elastic round cylinder embedded in a linearly elastic half-

space of another material on a finite length is considered (Fig. 1). The force F is

applied to the open end of the cylinder. The boundary of the half-space and

lateral open surface of the cylinder are considered to be free of traction. Residual

or initial stresses of technological origin are ignored in this work.

The following designations are accepted: r,, the radius of the cylinder; 1, the

length of the embedded part of the cylinder; Ef and En, the Young's modulus of

the fiber (cylinder) and matrix (the bulk material) respectively; v, and vm, the

Poisson's ratio of the fiber and matrix respectively.

The following dimensionless quantities are also introduced:

2 and ( . 2.1)11 
E f

According to the Saint Venant principle the length of the open cylinder part, not

embedded into a matrix, as well as the distribution of F along a top cross-section

of the cylinder are not essential, if the length of the open part is much greater

than the radius of the cylinder, which is assumed in the following text.
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Figure 1. The axisymmetric problem of pullout of a foreign elastic cylindrical
bar embedded in a softer elastic half-space (in is a matrix, and fis a fiber).
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The problem under consideration is close to the classical problem of a thin high

modulus fiber in a homogeneous elastic space subjected to a longitudinal

extension, or to the problem of a thin conductive cylinder in a homogeneous

dielectric matter under the longitudinal electrostatic field. Unsuccessful attempts

to solve this problem were undertaken in Landau and Lifshitz (1960),

Cherepanov (1981) and Eshelby (1982). Eshelby quoted also the earlier work by

Hallen, Sommerfield, Lorentz, Taylor, and Van-Dyke who tried to find an

efficient analytical solution to the problem. Such a solution was provided in

Cherepanov (1983) using a special approach including a fitting index

determined by a computer simulation. In Nikishkov and Cherepanov (1984),

numerical experiments on the solution of this problem were treated. The last

approach is applied in this Chapter for an efficient analytical solution to the

problem of pullout under study.

The theoretical approaches suggested by other authors for solution of pullout

problem are distinct from the approach utilized here. As a rule they do not take

a full advantage of small e and in order to combine a sufficient accuracy and a

necessary conciseness of general approach needed for the more difficult

applications.

2.2 The Elastic Pullout Problem

For this case, the following condition is assumed: there exists a perfet bonding

between the fiber and the matrix, which means that the condition of the no-slip

and no-opening bonding holds over all the interface including the lateral surface

and the bottom.
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2.2.1 Analytical Approach Description

The problem is axisymine ic and the cylindrical coordinates r and z are

convenient to use, so that z is the axis of symmetry and r is the radial distance

from the axis. The foreign cylinder occupies the domain r<r, and z<l, and the

free boundary of the half-space corresponds to z=O on Fig. 1. Across the interface

all the displacements and tractions are continuous.

The case when both and are small is under study:

X<<1 , s<<1 (2.2)

It means that the length and the elastic modulus of the cylinder (fiber) are

considered to be much greater in comparison with the radius of the fiber and the

elastic modulus of the bulk material (matrix), respectively. This is the case of

most practical relevancy to composite materials.

In this case, the approximate analytical approach brought in Cherepanov (1983)

is used. According to this approach the displacement and stress-strain field in

the fiber is described by the following three functions:

07 O-z ) , Z= z(z) and W= W(z) (2.3)

Here or is the mean normal stress, az, in a cross-section of the fiber; t is the mean

shear stress, Trz, on the lateral surface of the fiber; and W is the mean

displacement of a cross-section of the fiber along the z-axis.
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The following two equations hold according to this approach:

Equilibrium equation

2z(z)+r,(:(z)- 0 (2.4)

Hooke's law

- EfW (Z) (2.5)

(7) denotes the derivative with respect to z.

According to the same approach the perturbed field of stresses, strains and

displacements in matrix exists only inside the cylindrical domain r<rs, O<z<l

shows in Fig. 2, where r, should be found from the following equation of fitting

according to Cherepanov (1983):

S1(2.6)

Here ct is the unknown fitting index subject to be determined. Inside this

cylindrical domain the fields of strain, stress and displacement are described by

the following three functions:

; =~( o rz), rg = r( ,) , w =w(r, z) (2.7)

Here w is the z component of the displacement vector; and (7and tr, are

respective components of the stress tensor. All other components of the stress

tensor and displacement vector are considered small enough to be ignored.
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Inside the cylindrical domain r<r, O<z<1 the following three equations are

assumed to be valid:

Equilibrium equation

0-- rr =O (2.8)

Hooke's law

cre= ,,r:=6, (2.9)

i_ m

I+ vM

Outside this domain, the displacement w is postulated small enough to be

ignored for r~r., and the stress az is accepted small enough to be ignored for r<r,

and z>1.

In view of the latter conditions, the following boundary conditions should be

met by the sought solution (Fig. 2)

The conditions of equilibrium and bonding at the interface are:

r= , W when r=r, (210)

The condition of displacement continuity at r=r is:

w=0 when r = r, (2.11)

The condition of equilibrium at z=I in the fiber is:
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Z

Figure 2. The cylindrical domain of non-zero perturbed field. Outside this
domain w is zero for r r, and azz is zero for r = 0 and z > 1. Inside this domnain

z- and w are non-zero; a11 other stresses and displacements equal to zero.
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-=O when z=l (2.12)

The condition of equilibrium at z=0 in the fiber is:

= (2.13)

The system of Eqs. (2.3) to (2.13) totally describes the approach undertaken to

find the efficient analytical solution to pullout problem under study. One

additional condition necessary to define fitting index u will be elucidated below.

(It appears that the value of c very slightly depends on the choice of the

condition).

Some arguments supporting this approach are brought in Cherepanov (1983).

They are based on the ideas of the intuitive Saint Venant's theory of beams, on

the ideas of boundary layer in hydrodynamics and on invariant F-integrals.

However, it should be noted that r. is not small in comparison to 1, so that the

perturbed domain on Fig. 2 does not look like a very thin boundary layer of a

viscous fluid near stream lined bodies. Analogously to the classical theories of

beams, plates or shells, which are factually intuitive, the present approach is

substantiated, first and foremost, by excellent agreement of its analytical results

with those of numerical experiments.
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2.2.2 Approximate Analytical Solution

Substituting T,, of Eq. (2.9) in Eq. (2.8), solving the obtained equation with

respect to w and satisfying the boundary conditions in Eq. (2.10), the following

set of equations is found:

w= r )I -+ W(z) (2.14)

rr = -(Z) (2.15)
r

C =. EW'(z)+2(1+ v,,), r(z )ln- (2.16)

The last two equations were found from Eqs. (2.9) and (2.14). From Eqs. (2.11)

and (2.14), it follows:

C, .. (z) +ro -r(z) In -= (2.17)

This equation, which is basic in the problem under study according to the

approach of Section 2.2.1, can be also derived using invariant I-integral,

similarly to Cherep anov (1983).

The system of Eqs. (2.4), (2.5) and (2.17) is closed with respect to T(z), ca(z) and

W(z). Its general solution is found by means of the method of elimination. The

following results are obtained using hyperbolic functions:
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W C, sinh kz+ Ccoshkz (2.8)
/ /

kE kz kz= (C, cosh -+ C, sinh ) (2.19)

= G.W (2.20)
r, in

Here:

k =C -(2.21)

r0S(1 + v, 1n*

C1 and C2 are arbitrary constants.

Using Eqs. (2.12) and (2.13) in Eq. (2.19) C1 and C2 are found:

SC (2.22)

kEf kE, tanh(k)

Substituting Eq. (2.22) into Eqs (2.18) to (2.20) the final solution to the problem is

found:

" sh( cosh(k(1- )) (2.23)
kE. sinh(k)

0= sinh(k(1 -) (2.24)
sinh(k) 1
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Ako- z
-= k cosh(k( -)) (2.25)

2sinh(k) I

It follows that the maximum stresses in the fiber are equal to:

( ma, nd 2L at z=0 (2.26)
2 tanh(k)

In the limiting cases of small and large k it can be proved:

for k>>1 ku

for k<<1 T. = "r (2.27)
2

According to Eq. (2.23) the displacement W at the ends of the fiber equals:

u lcosh(k)
for z=0 W.~ = oh(

o'kE sinh(k)

(2.28)

Jo'
for =r Wn

kE1 sinh(k)

From Eq. (2.28) it follows that the elastic bed coefficient, B, of the force-

displacement, or F-Wx, diagram

(2.29)

where
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B= ;Ekf, tanh(k) (2.30)

This formula is reliable, at least, for k 1 when W <<«Wm.

The fitting index a defined by Eq. (2.6) can be found from a numerical or

physical experiment using a requirement of coincidence or best fitting of a

characteristic quantity of convenience in the problem. For example, it can be

required that for certain values of , , k and vm, the value tm /co determined

by Eq. (2.27) would coincide with experimental value. As shown below in

Chapter 4 the results of numerical experiments confirm very well the

approximate analytical solution Eqs. (2.23) to (2.25) if the value of the fitting

index is taken from Cherepanov (1983)

x=0.738 (2.31)

The value of . very slightly depends on the choice of fitting condition.

Substituting Eq. (2.31) into Eq. (2.6) and then Eq. (2.6) into Eq. (2.21) k can be

defined as:

1.355e
k (2.32)
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2.3 The Debonding Problem by Pullout

Here, a new designation is introduced: 1D, the length of debonding measured

from z=O.

Consequently, the following dimensionless quantity is also introduced:

10
AD- l_(2.33)

The following conditions will be assumed: (a) a part of the interface adjacent to

the free boundary of the half-space is debonded, so that, the condition of zero

fractions is assumed to hold over the former interface; and (b) the remaining part

of the interface is bonded, hence, the condition of the no-slip and no-opening is

assumed to hold over the latter interface including the bottom.

2.3.1 Analytical Approach Description

For this case the same analytical approach used in Section 2.2.1 is valid;

therefore, Eqs. (2.2) to (2.5) and Eqs. (2.7) to (2.9) will be used. It should be

noticed that for this case Eqs. (2.8) and (2.9) are valid inside the cylindrical

domain r<r, and ID<z<I.

Nevertheless, Eq. (2.6) should be rewritten taking into account the length of

debonding in the following form:
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-- = (2.34)

Now, the following boundary conditions should be met by the sought solution:

The conditions of equilibrium and bonding at the interface are:

r= r, , W = when r = r, (2.35)

The condition of displacement continuity at r=r. is:

W=0 when r= ; (2.36)

The condition at z=l in the fiber is:

U=0 when z-1 (2.37)

At the beginning of local debonding zone, the shear stress is maximum and the

normal stress is given, as follows:

r= z, and ao (u =) when zl 1 D (2.38)

where t is the limiting shear stess at the interface, which characterizes the

ultimate strength of bonding.
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The system of Eqs. (2.3) to (2.5), (2.7) to (2.9), and (2.34) to (2.38) totally describes

the approach undertaken to find the efficient analytical solution to pullout

problem considering debonding. This approach is based on the same ideas and

principles explained in Section 2.2.1.

2.3.2 Approximate Analytical Solution

Using the same procedure applied in Section 2.2.2 combining Eqs. (2.9), (2.7) and

(2.35), the same set of Eqs. (2.14) to (2.16) is found.

From Eqs. (2.14) and (2.36) it follows:

r
G.W() ) z)n -= - (2.39)

1"

Eq. (2.39) is the basic equation in the problem under study according to the

approach explained in Section 2.2.1.

The system of Eqs. (2.4), (2.5) and (2.39) is closed with respect to t(z), a(z) and

W(z). Its general solution is found by means of the method of elimination. The

following results are obtained using hyperbolic functions and taking into

account the length of debonding:

W C1 sinh k' + C cosh k (2.40)
Z-h Z --I2
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kD f kz snh kD )
o-= (C. cosh 2 + Cinh (2.41)

D- DD

= m (2.42)
r, I

r,

Here:

kD (2.43)

AD (1 + v,,)In-

C1 and C2 are arbitrary constants

Using conditions Eqs. (2.37) and (2.38) in Eqs. (2.41) and (2.42), C1 and C2 are

found:

In ri1(r, / r) sinh( k l ) (2.44)
G,, cosh(kD )

Jor 1n(r, /r)) kiC- = -- cosh( D ) (2.45)
G,, cosh(kD )D

Substituting Eqs. (2.44) and (2.45) in Eqs. (2.40), (2.41) and (2.42) provides the

following final solution to the problem:
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2cj 1 cD osh[kD(1 i)] (2.46)

IDk cosh(kD D

= sinh[kD(1 D] (2.4)
ADkD chkD)D

_______z-1

r= " coshtk(l- D)] (2.48)
cosh(kD) l

It follows that maximum stresses in the fiber are equal to:

Stanh(kD) and r= at z= (2.49)
LD D

According to Eq. (2.46) the displacement W at the ends of the fiber equals to:

for z=1 2 (bIJ))
Dk

2 E

(2.50)

forzl - ID)
m /kDE, cosh(kD)

The length of debonding, in terms of o/m, , r,/l and vim, is defined by the

equation:

2tanh(k))=kDAD (2.51)
T
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According to Eq. (2.51), debonding proceeds, at first, in a stable manner so that

lD grows with the increase of cro; after a certain maximum load is achieved

debonding becomes unstable and extends over the entire interface. The

maximum axial force is equal to z;Y' multiplied by a function of s, ro/l and vm-

The fitting index a defined by Eq. (2.34) can be found from the numerical or

physical experiment using a requirement of coincidence or best fitting of a

characteristic quantity of convenience in the problem as was explained in

Section 2.2.2. As is shown in Chapter 4 the results of numerical experiments

coincide very well with the approximate analytical solution Eqs. (2.46) to (2.48) if

the value of a, defined by Eq. (2.31) (Cherepanov, 1983 ), is taken.

Hence, substituting Eq. (2.31) into Eq. (2.34) and then this equation into Eq.

(2.43) kD can be defined as follows:

1 355s
k (2.52)
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CHAPTER 3. NUMERICAL ANALYSIS

3.1 Introduction

The pullout problem of a fiber embedded in a matrix under consideration is

analyzed numerically by means of the finite element method (FEM). The basic

concept of FEM is that the structure to be analyzed is considered to be an

assemblage of discrete pieces, called elements, that are connected together at a

finite number of points or nodes. Then, the structure can be analyzed in a

procedure similar to that used in the beam theory when the structure has been

represented by o- or three-dimensional elements. A shape function relates the

displacement within the element to the displacement of the nodes. Applying

equilibrium at every node, the individual element stiffness matrices are

assembled into a set of linear simultaneous equations. Finally, this equation set is

solved for the nodal displacements from which strains and stresses within each

element can be found.

Although this method is an approximation, its validity as a convenient way of

obtaining approximate solutions to variety of engineering problem has been

shown widely. addition, finite element method can be used with problems

where non homogeneous, anisotropic and two or more different materials are

combined. The latter fact is of special importance in the problem under study.

There are different kind of software available for the finite element analysis. For

this particular case the program ANSYS version 4.4a installed in a SUN station is

utilized.
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Having a brief background in what the finite element method is and which

program is employed in the numerical analysis of the problem, the modeling

procedure as well as the resul of the numerical calculations will be discussed in

the rest of the chapter.

3.2 Modeling Procedure

The modeling procedure corresponds to the preprocessing phase in the ANSYS

program. This phase is where all relevant data, such as geome v, material

properties, and loading, are defined to the database in preparation for solution.

This stage is made up of the following steps: laying the foundation, where the

analysis type, element type, real constants and material properties are

established; building the model, where the model geometry is defined and

described in terms of finite element entities (nodes and elements); specifying

load data, where boundary conditions are added to the geometry to complete

the model; and preparing the solution, where all the information prepared in the

first three steps is extracted, filed and cast into a form suitable for the solution

phase of the analysis.

Even though two problems are being considered in this work, both cases use the

same model described thereupon. Nevertheless, some changes are made in the

debonding problem in order to simulate the debonding process. These changes

are explained in Section 3.3.2 before the results are discussed.

It is important to notice at this point that all the data in the preprocessing phase

of the ANSYS program is specified without units. However, all the data must be
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consistent in the same system of units in order to obtain a suitable solution. For

instance, if all the input data is in the International System of Units (SI) (lengths

in meters, forces in Newton, Young's modulus in Pascal), the resul will be in

the same system of units (stresses in Pascal, and displacements in meters).

Now the modeling procedure is presented following the basic steps of the

preprocessing phase of the ANSYS program.

3.2. Laying the Foundation

This is the first step of the modeling process in the program. Here, the

foundation is set by specifying the analysis type and establishing the element

type and material properties. This work includes the analysis of different

relations Young's modulus of matrix (EXr)/Young's modulus of fiber (EXf). All

the relations considered in this work are:

= EXm /EXf=0.1, 0.2, 0.01, 0.001.

From the specification of the Poisson's ratio (see appendix A), it is observed that

both materials have the same value for this property which is 0.3.

According to Engineers' Guide to Composite Materials by Weeton, Peters and

Thomas (1987), the Poison's ratio for crystal and glass matrix varies from v=1/4

to 1/2. Due to this fact, the value of the Poisson's ratio in this work was defined

as 0.3. Besides, this value is in good agreement with that used by Hsueh (1990)

on interfacial debonding and fiber pullout stress of fiber-reinforced composite.

II: Non-constant interfacial bond strength, where a single stainless steel wire

(fiber) with material properties E 1 70 Gpa, Vf=. 3 5 embedded in an epoxy resin
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matrix with properties E,,=3.65 Gpa, v,,=0.39 is studied; with that used by Liang

and Hutchinson (1992) on mechanics of the fiber pushout test, where the analysis

of a fiber and outer region (matrix) using the following relation of material

properties v= v,= 1/3 and Ef/E,,=1 or 3 is carried out; and finally, with that

used by Cherepanov (1983) on fracture mechanics of composite materials where

a carbon fiber with material properties E=39x10 3 kg/mm 2 and v0.3 embedded

in an epoxy resin matrix with material properties E,,=350 kg/mm2 and v,=0.35

is considered. See appendix A for a complete description of this first step.

3.2.2 Building the Model

This is the second step of the modeling process. Here, using geometry

descriptions only (areas), a mathematical representation or solid model of the

structure is created. Once the solid model of the structure is completed,

parameters which describe the desired finite element mesh characteristic are

provided. The ANSYS program then creates a finite element model, made up

nodes and elements, which corresponds geometrically to the solid model.

For the analysis of this problem in the computer, a two-dimensional model is

used. The design of the geometrical grid appears in Fig. 3. This geometry

description of areas is obtained by means of the generation of points and lines

using the K command for points, L command for lines, and AL command for

areas in the program. In Fig. 3, r,, is the radius of the fiber; / is the length of the

fiber; Al represents the fiber; and A2 represents the matrix. In this work two

different relations ro/l are considered. These relations are expressed as follow:
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No small relation X was studied because of the numerical modeling limitation in

the computer. However, the small relation studied here are in better agreement

with the practical cases than that considered by Muki and Sternberg (1969) and

Slaughter and Sanders (1991).

It is important to notice that from Eq. (2.6) the cylindrical perturbed domain

field extends the distance r,.=rX (see Fig. 2). From Fig. 3 is observed that the

total length used in the numerical model for the matrix 21 is much greater than

the size of the perturbed domain r. defined above. So that, this size of the matrix

is big enough to be considered infinite modeling in this form the problem under

study.

Following that, the grid element size is defined in all the points, using the ESIZE

command, as follow (see Fig. 3):

for X=0.1 the grid element size is equal to ro/2 at points 4, 5, 6 and 7, and it is

equal to 1/2 at points 1, 2 and 3;

for X=0.01 the grid element size is equal to ro at points 4, 5, 6 and 7, and it is

equal to 21/3 at points 1, 2 and 3.
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Figure 3. Geometrical design of the numerical procedure for the analysis of the
fiber pullout problem using ANSYS version 4.4a.
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When the grid size element has been defined in all the points for each case, the

LDVA command is used to adjust the element division controls for unmeshed

lines. This means that the program automatically scales the size of the elements

in the lines. Afterwards, the MESH command is used to create the mesh

automatically in both areas.

Once the mesh is completed and all the nodes and elements are defined, the

material properties of the fiber, which have been already defined, are assigned

to the elements of area 1 (fiber); similarly, the material properties of the matrix

are assigned to the elements of area 2 (matrix).

3.2.3 Specifying the Load Data

The third step of the modeling process corresponds to the specification of the

load data. This stage refers to the configuration of boundary conditions which

include constraints or support conditions, and load such as pressure.

Boundary condition constraints are placed on the model to hold it in some way.

In other words, a constraint is applied when a degree of freedom is specified to

remain with some given motion (in this case displacement equals to zero). All

the constraints must be specified correctly, otherwise the problem is ill-posed.

For the problems under consideration, the constraints are defined using first the

NSEL command to select the nodes along the line whose motion will be

restricted of movement, and then using the UX, UY, and/or UZ command to
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specified the direction of the restriction. The following constraints are specified

(see Fig. 3):

for y=O (line Li) UY=O , UX= ;

for x=0 (line L5 and L6) UX=0 ;

for x=21 (line L2) UY= , UX

the constraint for all grid nodes UZ= is understood by the program due to the

condition of axisymmetry defined in the element selected (Section 3.2.1).

Load boundary conditions include concentrated and/or distributed loads. For

the case of the elastic pullout problem, a unique load is applied at the top of the

fiber (line L4 in Fig. 3) using the LPSF command in the following way:

LPSF, 4, -100 ,

which means that a load of -100 units of pressure is applied in line L4 (top of the

fiber). The minus sign means that this is a traction load. For the case of the

debonding problem, different loads are applied using the same command. These

values are discussed in Section 3.3.2.

3.2.4 Preparing the Solution

This is the last step of the modeling process in the computer. Here, all the data is

written into a file in a suitable form in order to be read and understood by the

solution phase of the program. First, the WSORT command is used to reorder

the elements for smaller wave front (number of linear simultaneous equations to

be solved). The first calculations of this work (elastic pullout problem) were

done using the program with a maximum capacity of 200 wave front. After

increasing the wave front capacity to 800, the last calculations (debonding
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problem) were executed. However, for both cases the wave front of the model

under study remains under 200 after the reorder instruction. Then, the command

AFWRITE is used to write a coded file which is needed for input to the solution

phase.

3.3 Numerical Solution

After the preprocessing phase is finished, the command /INPUT,27 is used to

proceed with the solution phase. Here, the program solves the problem and

sends the output data to a file. The post processing stage follows to the solution

phase. In this last phase of the whole numerical procedure, the results are read

from the postdata file by means of the /POST1 and SET commands. Next, the

command PRNSTR, COMP is used to display the components of the stresses for

each node which are the numerical results of the problem. Finally, the maximum

displacement is obtained using the PRDISP, UY command which gives the

displacements of the nodes in Y direction.

The results are based on the average nodal stresses. (Y is considered as the

average value of the stresses between the nodes in the same cross-section of the

fiber. rrz is considered as the shear stress of the nodes along the lateral line of the

fiber (line L8 in Fig. 3). W is considered as the maximum displacement of the

fiber at the top (line L4 in Fig. 3).

It is important to note that although x-y coordinate system with origin at the

bottom of the matrix is used in the ANSYS program model (Fig. 3), the

appropriate z-r coordinate system with origin at the top of the fiber is used from
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now on to present all the results. Consequently, the length of the fiber varies

from z=0 to z=l, and the radius of the fiber varies from r=0 to r=r..

3.3.1 Results of the Elastic Pullout Problem

In this section the numerical results of the elastic pullout problem are presented.

For this purpose, convenient dimensionless tables showing the values of Gz/CO

and trz/(o for the total length of the fiber with increments of 0.05 in z/I have

been designed. The values of aZ and Trz are taken from the output data file in the

post processing phase of the numerical calculations in the computer as was

explained previously, and a is the value of the nominal normal stress applied at

the top of the fiber. The advantage of presenting the results using dimensionless

quantities is that in this form the results are independent of the system of units

chosen for the numerical analysis.

Tables 1 and 2 present the results of the normal stress for the cases =0.L =0.1

and =0.1, F=0.2 respectively. The results of the normal stress for the cases for X

=0.01 and =0.1, 0.01, and 0.001 are given in Tables 3, 4, and 5 respectively. The

results of the shear stress for all the cases considered before are given in Tables 6

to 10 (see appendix B).

The maximum displacement for all the relations of and 8 considered in the

numerical analysis of the elastic pullout problem is presented in Table 11 (see

appendix B) using an appropriate dimensionless quantity.
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3.3.2 Results of the Debonding Problem by Pullout

For the analysis of the debonding problem of a fiber embedded in a matrix by

pullout, the same model explained in Section 3.3.1 and employed for the analysis

of the elastic pullout problem is used; however, a change is introduced to the

model in order to simulate the debonding process in the computer. From the

numerical results of the elastic pullout problem, which is a necessary prelude to

fiber debonding, presented in Section 3.3.2, it is expected that the maximum

shear stess occurs on the interface at the top of the fiber (see Cherepanov and

Esparragoza, 1992). Due to this fact, the debonding process starts at the free

boundary of the matrix half-space and grows along the interface. In order to

model this physical behavior in the computer, different traction loads are

applied at the top of the fiber until the first node in the interface reaches the

value of ts, which is the limiting shear stress. In the numerical analysis a value of

T =O.01E is assumed. Then, the Young's modulus of the elements of the matrix

on the interface corresponding to lD are changed to a very small value

(E=0.0O01E,,,) modeling in this way the open bond of length 1D in the interface

between the fiber and the matrix (See Fig. 4). A special numerical experiment

was conducted decreasing the Young's modulus of interface elements until this

value (E=O.00001E,,) stopped influencing the solution, which meant that the

practical zero necessary to model the interface opening was achieved. After that

a new load is applied at the top of the fiber until the first node corresponding to

z=lo reaches .c. All the procedure is repeated for different increased values of D

until lDl.
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All the numerical resul related to the debonding problem are presented in

appendix C. Here, the meaning of the parameters ay, and trz is the same

explained in Section 3.3.2. Tables 12 and 13 present the relation between the load

applied and the length of debonding for the cases of =0.1 and =0.1 and 0.2

respectively using the dimensionless quantities lD/l and G /T. The same relation

for the cases of k=0.01 and =0.1, 0.01, and 0.001 is shown in Tables 14, 15, and

16 respectively. The distribution of the normal stress along the fiber for all the

relations and studied for the case of the length of debonding IT/I=.1 are

presented in Tables 17 to 21 using the dimensionless quantities z/l, az/es. The

distribution of the shear stress along the interface for all the relations studied are

given in Tables 22 to 26 using the dimensionless parameters z/l and rz/Ts.
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lef lem

2ef 2em

Figure 4. Detail of the local debonding zone. Here, lem and 2em are the
elemens corresponding to 'D whose Young's modulus was changed in order to
model the debonding process in the finite element analysis using the program
ANSYS version 4.4a.
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CHAPTER 4. COMPARISON OF NUMERICAL AND ANALYTICAL

RESULTS

4.1 Introduction

In the two previous Chapters, two different approaches were presented in order

to find a solution to the pullout problem including its two stages: before and

after debonding occurs. Chapter 2 dealt with an approximate analytical solution

for this problem based on principles and assumptions explained before taking

into account small relations =r(/l and g=E /E. This theoretical approach is

different from those suggested by other authors such as Cox, Kelly, Muki et al,

Pak and more recently Hsueh, and Slaughter and Sanders. On the other hand, in

Chapter 3 the same problem including both its stages is analyzed numerically by

means of the finite element method. In this Chapter, these two different

approaches to the same problem are compared. Due to the fact that there is no

experimental data available for this problem, this comparison is important

because it establishes the coincidence of a new analytical solution and the

numerical solution. Also, it helps in understanding the problem under study,

and to set the discrepancies between both approaches and their possible reasons.

The comparison is based on the distribution of stresses cz and t along the fiber

basically. However, for the particular problem under study (elastic pullout

problem or debonding problem by pullout) another parameter of interest will be

compared. For this purpose, graphs and tables with dimensionless quantities are

used. These graphs and tables will be explained in Section 4.2 for the elastic

pullout problem and in Section 4.3 for the debonding problem by pullout.
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4.2 Comparison of the Elastic Pullout Problem Results

In this Section, the analytical and numerical results of the elastic pullout problem

are compared. For this purpose, two graphs with dimensionless values of az/

vs. z/l and Tz/co vs. z/l were designed. The numerical values of az/(O and trz/

CO are taken from the computer results as was explained in Section 3.3.2. These

values are compiled in Tables 1 to 10. The analytical values of aJz/( and rz/ao

are calculated using Eqs. (2.24) and (2.25) respectively, taking a fitting index a

=0.738 suggested in Section 2.2.2 (see appendix B Tables 1 to 10 ).

The results of the analytical and numerical calculations for each one of the

different relations of the dimensionless parameters k (0.1 and 0.01) and (0.1,

0.2, 0.01 and 0.001) considered in this study are plotted in a graph to compare

both methods (See Figs. 5 to 14). These relations were used because they are of

practical importance in composites. No small geometrical relation X was

considered due to the modeling limitation in the computer program. Generally

speaking, it can be observed that both approaches tend to show very close

behavior graphically with small discrepancies in general although substantial

differences can be found at particular points.

The graphic behavior of both methods studied in this work is in good agreement

with that found by Muki and Sternberg (1969) and Slaughter and Sanders (1991)

who studied a similar problem but each using a different approach respectively.
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In the analysis of this problem, another relation including the maximum

displacement is considered for comparison. This comparison is presented in

Table 27 in Appendix D.

The analysis for the normal stresses, shear stresses and displacement is

presented as follows.

4.2.1 Comparison of Normal Stresses

Figs. 5 and 7 present the relation a,/acy vs. z/l for the case of X=0.1, and =0.1

and 0.2 respectively. Figs. 9, 11, and 13 correspond to the same relation for the

cases 0.01, and =0.1, 0.01, and 0.001.

There is a point of interest related to the nature of the problem which is

important to note in Figs. 5, 7, 9, 11, and 13. Here, the normal stress decrease

from a maximum value (aj/a =1), which corresponds to the load applied, to a

minimum value very close to zero, which is one of the assumptions established

in the boundary conditions in the analytical solution. It is observed, too, that this

decrease depends on the dimensionless relations X and e. For the case of X=0.01

and s=0.1, the normal stress decrease rapidly, so that its influence is felt only in

1/4 of the total length of the fiber (See Fig. 9). This is expected because a very

thin fiber embedded in a considerably stiffer matrix is studied. Due to this fact,

the stress transfer between fiber and matrix through the interface occurs in the

first 1/4 of the total embedded length; after this point, practically no stress

transfer occurs. When =0.01 and s=0.01, the decrease of the normal stress is not

as fast as the above case, but, it is faster than the other cases, and its influence is
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important until approximately 3/4 of the total length (See Fig. 11). The other

three cases considered show no great difference of this decrease between them

(See Figs. 5, 7, and 13). From this analysis, it can be concluded that the stress

transfer behavior between fiber and matrix depends on the size of the fiber

determined by the parameter and the material properties of the components of

the composites established by the relation .

Comparing the normal stress results of the analytical and numerical results, the

following features can be observed: a) For all the relations k and F studied, the

difference among both approaches appears very small for z/l<0.5 (except for z/l

near to zero), and tends to increase from this point to z/l=1. The difference of

both curves, analytical and numerical, at the top of the fiber can be explained by

the local effects which are physically impossible to avoid. A numerical

experiment was carried out extending the fiber the distance 2r, from the free

boundary surface of the matrix and applying the load at the top of the fiber. For

this case the discrepancy at z/l=0 decreases slightly. This behavior explain the

local effect and the intuitive idea of the Saint Venant's principle. However, the

difference between both methods, analytical and numerical, at z=O using the

original model discussed is small enough to consider this model suitable to be

used. b) Although both approaches for all the cases considered show very

close behavior, the case of X=.O1 and l=0.01 show the closest correlation

between both solutions (See Fig. 9). Consequently, it can be concluded that the

coincidence of both solutions depends on the combination of the dimensionless

parameters and .
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4.2.2 Comparison of Shear Stresses

Figs. 6 and 8 present the relation rz/c2 vs. z/l for the case of k=0.1, and =0.1

and 0.2 respectively. The same relation for the cases k=0.01, and F=0.1, 0.01, and

0.001 are shown in Figs. 10, 12, and 14.

Due to the close relation between the normal stress in the fiber and the shear

stress at the interface, the graphs t/qO vs. z/I greatly resembles the graph CTz/aO

vs. z/l. Just as the normal stress decreases from a maximum value to a minimum

value, so the shear stress decreases from a maximum value at the top of the

interface to a minimum value at the end of the interface; besides, this decrease

also depends on the relations and . Here, for the case of X=0.01 and =0.1, the

shear stress decrease rapidly and its influence is considerable only in 1/4 of the

total length of the interface (See Fig. 10).

Considering the same relation X and the same load (7, it can be seen that while

the relation F decreases so does the maximum shear stress developed at the

interface. As a result, it is expected that the shear stress developed at the

interface reaches the limiting shear s ess faster while increases for the same

relation k.

Comparing the shear stress results of the analytical and numerical results, the

following characteristics can be observed: a) For the cases k=0.1, and s=0.1 and

0.2 (See Figs. 6 and 8), the numerical curve of r,/(o has a maximum peak at

z/1=0.05. This can be explained not only by the local effect but also for the nature

of the mathematical solution. The point z/1=0 is a singular point; so that, the
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shear stress at this point tends to infinity but the program solves for a finite

value showing this peak close to z/1= (see section 4.3.3 for more details about

the singularity). b) Contrary to the above cases, when =0.01, and F=0.1, 0.01,

and 0.001, the numerical curve of 'CT/c is smooth having no peak value. For

these cases, the grid element size is smaller than that of the previous cases,

which permits to have more nodes along the interface and, hence, to show this

smooth result. c) Like in the normal stress, both approaches for all the cases

considered show practically the same behavior; nevertheless, the case of X=0.01

and F=0.01 shows the closest correlation between both solutions.

4.2.3 Comparison of Displacements

Another relation that can be used in order to compare the analytical and

numerical results is one which includes the displacements and is called the bed

coefficient (B=F/ Wn). In order to present these results using a dimensionless

parameter, the following relation is defined:

- B
C) =

So that, from Eqs. (2.29) and (2.30) it follows:

anajc = ;Ak tanh(k ) ,

and from Eqs. (2.13) and (2.29) it follows:

; JO1.

E,Wma

where W,,., is taken from Table 11.
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These resul are shown in appendix D Table 27. When both analytical and

numerical results are compared, it can be shown that the difference appears

small in the general case, and the behavior of the results is the same. This bed

coefficient represents the slope of the line F=BVm.. While the composite works

in the elastic range this value must remain constant. A variation of this

coefficient means that the plasticity range or the limiting shear stress at the

interface has been reached.

4.3 Comparison of the Debonding Problem by Pullout

Here, the numerical and analytical results of the debonding problem by pullout

are compared. Similar to the comparison of the elastic pullout problem, in this

section three types of graphs with dimensionless parameters are used. The first

type uses the dimensionless quantities ao/, and l,/l, and shows the relation

between the load applied and the length of debonding (See Figs. 15 to 19). The

numerical values of ao/t, for all the cases and considered is found in Tables

12 to 16, and the analytical values are calculated using Eq. (2.51) (see appendix C

Tables 12 to 16). The second type of graphs uses the relations az/,s and z/l,

which exhibits the normal stress distribution along the fiber. The third pe uses

the relations jt/t, and z/1 showing the shear sress distribution along the

interface. The last two types of graphs correspond to a particular length of

de onding. The particular length of debonding considered in this work in order

to compare both solutions is 1/1=0.1 (See Figs. 20 to 29). Tables 22 to 26 bring

the numerical values for all the cases studied, and the analytical values of az/cr

and rz/T, are calculated using Eqs. (2.47) and (2.48) respectively taking a fitting

index a=0.738 (see Tables 22 to 26).
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The graph used to compare the shear stress considering a particular length of

debonding are in good agreement with that developed by Majudmar et al. (1993)

who analyzed the pushout tests on an SiC-fiber-reinforced reaction-bonded

Si3 N 4 composite on the basis of a model using shear-lag theory applied to a

partially debonded composite.

The comparison of the debonding problem by pullout is very much like the

comparison of the elastic pullout problem explained before in that they both

present the same elements of comparison and the behavior of the solutions have

the same form. Here likewise, both approaches tend to show very close behavior

with small discrepancies in general; however, substantial differences can be

found at particular points.

The comparison of the relation between the load applied and the length of

debonding, as well as the comparison of the distribution of normal and shear

stress for this problem are presented as follows.

4.3.1 Comparison of the Relation between the Load Applied and the Length of

Debonding

Figures 15 and 16 establish the relation between o( /, and 'D/1 for the cases of 2

=0.1, and F=0.1 and 0.2 respectively. The same relation for the case X=0.01, and E

=0.1, 0.01 and 0.001 is set in Figs. 17, 18, and 19.

From these figures, it is noticed that the numerical and analytical results present

the same behavior for the different combinations of parameters X and F studied.
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The discrepancy between both approaches appears very small for 'D less than

60% of the total length of the fiber, but, a considerable increase of this

discrepancy is observed after this point for all the cases considered except for the

case of =0.01 and =0.001 where the small discrepancy remains along the total

length of the fiber (Fig. 19). The discrepancy for the cases k=0.1 and =0.1 and g

=0.2 reaches the maximum value at l ~ 85% of the length 1. These differences

between both approaches are 42% and 47%, respectively. For the cases of k=0.01

and =0.1 and 0.01 the discrepancies between both methods are 46% and 36%

at 1D - 95% of the length 1, respectively.

From the above analysis, it can be seen that the comparison between this two

approaches is reliable for the case of LD less than 60% of 1. After this point, the

discrepancy is large enough to consider the comparison unreliable. This

discrepancy can be explained from the nature of the analytical solution. The

analytical approach is based on small relations and . For the case of the

debonding problem the dimensionless parameter X is defined as =r'/l-' t

where l-l corresponds to the effective embedded length. While 1D grows along

the interface, the relation kD increases because the effective embedded length

decreases. So that, the original assumption of <<1 is violated. It is seen for the

cases analyzed that when D reaches the value of 1( at 1D /1 =0.9 for k=0.1 and

1D /1 =1 for the case of k=0.01) no analytical solution can be found using the

analytical approach described in Chapter 2.

For k=0.1, and =0.1 and s=0.2 as well as for =0.01 and F=0.01 (Figs. 15, 16 and

18), the numerical calculations show a peak at approximately 5% of the total

length. This can be explained taking into account what was explained in Section
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4.2.2 about the singular point and the evaluation of the maximum value of shear

stress. It is important also to consider at this point not only the above reason but

also the modeling process of this problem explained in Chapter 3, and

particularly in Section 3.33.

For the cases X=0.01, and F=0.1 and s=0.01 (Figs. 17 and 18), the numerical

solution is constant from 10% to approximately 90% and 75% of the total length,

respectively. These solutions resemble the analytical solutions in that the

analytical curves decrease slightly until the same percentages and then drop

rapidly.

From these graphs (Figs. 15 to 19), it can be concluded that there is no stable

growth of 'D. This means that aO reaches amx when -rz reaches ts at z=0. After

that, debonding becomes unstable and extends on the entire interface.

4.3.2 Comparison of Normal Stresses

Figs. 20 and 22 present the results of as/t, vs. z/l for the cases X=0.1, .=0.1 and

0.2, and 1D/1=.1 respectively. Figures 24, 26 and 28 show the same results for a

=0.01, F=0.1, 0.01 and ;=0.001, and l1 /1=0.1.

From these graphs (Figs. 20, 22, 24, 26, and 28), it is observed that z2/T remains

constant from 0 to 1D/l=0.1, which is expected because of the open bond in the

interface of length equal to 'D, so the condition of no-traction holds over the open

bond. These graphs have the same form from z/= .1 to z/l=1 as the elastic

pullout graphs shown in (Figs. 5, 7, 9, 11 and 13) which means that the open
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bond at the interface of length l has been modeled adequately. Here, it can be

seen that the local effect noticed in Figs. 5 and 7 is not noticed in these graphs at

z/l>0.1. This is expected because the load is applied at the top of the fiber at

certain distance z/1=0.1 considered large enough to diminish the local effect of

the load at the debond zone tip.

From Figs. 20, 22, 24, 26 and 28 it is noticed that when the relation s decreases

the maximum value of the relation az/t increases for the same relation of X. This

means that considering the same value of the limiting shear stress when

decreases for the same relation of a larger load is necessary in order to force

the bond to break at the interface. This analysis permits us to establish the best

combination of components for the fiber-reinforced composites knowing the

working load.

Similar to the previous comparison, both approaches show the same behavior,

and all the characteristics noticed in the analysis of the normal stress in the

elastic pullout problem are observed here. Again, the discrepancies between

both methods can be explained using the arguments given previously (see

section 4.2.1).

4.3.3 Comparison of Shear Stresses

Figs. 21, 23, 25, 27 and 29 show the relation r/Ts vs. z/l for Dl/l=O.1, for all the

relations X and 8 studied.
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From theses graphs, it is observed that from 0 to 1/1=0., r/c is zero for the

analytical solution and practically zero for the numerical solution in all the cases.

Similar to the normal stress analysis, this is due to the open bond in the interface

of length equal to 1D, the condition of no-traction holds over the open bond in the

interface. After this point, these figures resemble Figs. 6, 8, 10, 12 and 14 of the

elastic pullout problem. All the features analyzed for the shear stress in the

elastic pullout problem are practically the same as those found here (see section

4.2.2). However, the role of the singularity at the debond zone tip merits an

analysis in order to understand and clarify the treatment of this point in this

work.

a. Singularity at the debond zone tip

Here, it is important to notice a particular feature related to the debond zone tip.

The graphs used to compare the shear stress show a steep increase in shear stress

at z=l/l=0.1. Although the peak shear stress values predicted by both methods

almost coincide, the location of the peak shear stress as computed by the finite

element method occurs slightly ahead of the debond zone tip (z=lD/l=0.1). Note

that away from the debond zone tip, the analytical model solution shows a very

close coincidence with the numerical results. The large and possibly singular

interfacial shear sress at z=iD/l=O. computed by the finite element method is

not predicted by the model. Any approximate model including that of Muki and

Sternberg (1970), and that of Slaughter and Sanders (1991) show certain

inaccuracy near singularities. However, this does not invalidate their usefulness

in fracture mechanics applications where path independent integrals play a
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decisive role. For this reason, stability of the debonded zone may be more

fruitfully analyzed by a compliance method based on energy analysis.

The ANSYS program has several element types available for modeling the

singular behavior at a crack tip. These elements are used in the analysis of crack

for determining the displacements and stress field in the neighborhood of the tip

crack. This information is useful in this case for the calculation of the stress

intensity factor. Nevertheless, the stresses found using the singular element,

which are an approximation because of the modeling nature, are considerable

large. No attempt was made in this work to study the nature of the singular

stress field at the debond zone tip by a more advanced finite element analysis.

Additionally, the numerical procedure and the treatment of this singular point in

this work are in good agreement with the work of Majudmar, Singh and Singh

(1992) on the analysis of pushout tests on an SiC-fiber reinforced reaction-

bonded Si 3N4 composite.
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Figure 21. Graph trz/s, vs. z/l for X=O.1, c=O.1, and .D= 1-

62



7
Numerical

6 --- _ Analytical

5

4

3

2

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 22. Graph oz/,r vs. z/l for X=0.1, F=O.2 and /D=0 -
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Figure 23. Graph rz/T vs. z/l for X=O.1, e=0.2, and ID/-=0 -1
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Figure 24. Graph az/ts vs. z/l for X=0.01, c=O.1 and ID/1 0 .1.

1.4
Numerical

1.2 Analytical

1

0.8

0.6

0.4

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 25. Graph tz/, vs. z/l for X=0.01, E=O.1, and 1D/1=0
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CHAPTER 5. CONCLUSIONS AND PERSPECTIVE

The classical problem of pullout of a long elastic fiber embedded in an elastic

half-space matrix considering the cases before and while local debonding occurs

has been studied numerically using the finite element method. This numerical

analysis has been compared with a new theoretical approach presented in

Chapter 2. The analytical solution is a completely new theoretical work different

from those developed by other authors and which is based on physical

principles and takes full advantage of the small relations k and c. This approach

differs from the shear lag theory developed by Cox in 1952, which is a well

known theory and is the basis of many works in this area, in respect to the

arrange of the fiber and the mathematical model. In the shear lag theory, the

fiber under study is surrounded by other fibers which are packed in an

hexagonal order at a finite distance. Besides, the transfer of load from the matrix

to the fiber is defined by an assumed theoretical expression which relates the

force applied at the top of the fiber with a constant and the displacements in the

fiber and matrix as follows: dF/dz=C(w-v), where F is the force; z is the axial

direction; C is a constant that depends on the geometric arrangement of fibers,

the matrix type, and the modulus of elasticity of the fiber and matrix; w is the

displacement in the fiber; v is the displacement of the matrix away from the fiber

in the z direction. On the contrary, in the analytical solution presented here, the

fiber is embedded in a infinite half-space matrix surrounded by no other fibers

and the analysis is based on the elasticity theory (Hooke's law). Analyzing both

methods, it can be concluded that the shear lag theory is the solution of a

particular problem while the analytical approach employed here is a solution

valid for more general cases. Consequently, both solutions coincide when the
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problem suggested by Cox is analyzed using the latter approach, but the

problem considered here can not be solved using the shear lag theory.

From the comparison of the results obtained here with those obtained by Muki

and Sternberg (1969) and Slaughter and Sanders (1991), it can be concluded that

all approaches show the same graphical behavior. However, due to the fact that

varies from 10-5 to 10 and s varies from O0 to 5.1O4 for practical cases of

fiber-reinforced composites, the case considered by the authors mentioned above

(X=0.2 and F=0.5) is not of practical importance for the mechanics of fiber-

reinforced composites. On the contrary, the cases studied here are in better

agreement with the practical cases. Additionally, it is not fair to compare the

results obtained by Muki et al. (1969) and Slaughter et al. (1991) with those

obtained here because the analysis presented here is based on small relations X

and g which is not taken into account in the study of the other authors. The use

of the analytical solution presented here is more practical in the classical analysis

of the pullout problem in the mechanics of composites for s all relations X and a

since this solution is much simpler than that complex solution developed by

Slaughter and Sanders (1991).

The finite element method is a numerical method whose effectiveness in solution

of engineering problems has been proved. On the other hand, the analytical

method presented in Chapter 2 is based on physical principles and on intuitive

ideas such as the Saint Venant's principle, boundary layer in hydrodynamics and

invariant F-integral. From the comparison of these two different approaches,

numerical and analytical, presented in Chapter 4, it can be concluded that both

solutions present the same beh avior. Nevertheless, based on the analysis of the
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different results studied and compared in Chapter 4, it can be added that the

correlation of both methods, analytical and numerical, depends on the

dimensionless relations X=rO/l and s=E,/E.

Although the numerical technique yields estimates that are close to the exact

analytical solution, there is a discrepancy ,or error, due to the fact that the

numerical method involved an approximation. The error can be computed

exactly if there is an exact analytical solution available. For the problem studied

here there is no exact analytical solution but an approximate analytical solution.

Therefore, the errors associated with the numerical method can not be computed

exactly. However, it is important to notice that different facts such as the

truncation error, the presence of different materials in the selected element set,

the poor aspect ratio of some elements after element meshing (mainly when ro/l

=O.1), and the modeling procedure of the debonding problem in the finite

element analysis using ANSYS should be considered to estimate the real error of

the finite element method.

It is strongly recommended that the results obtained in this investigation be

compared with physical experiments results in order to establish the real error of

the approaches studied. This comparison was not made in this work because no

such data of the pullout problem are available.

This work represents a tool to understand the mechanism of load transfer from

the matrix to the fiber through the interface when the fiber is subjected to a

pullout force. From the load transfer mechanics viewpoint, these analytical and

numerical solutions give the distribution of stresses along the fiber. They also
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show the stress state at the interface which is of special interest because the fiber-

matrix interface, which for all practical purposes consists of the bond between

the fiber and matrix, gives fiber composites their structural integrity.

From the two problems considered here, the elastic pullout problem and the

debonding problem by pullout, it can be concluded that in the elastic pullout

problem the structural integrity of the composite remains; as a result, the

composite works as a new elastic material. For this case, the bed coefficient

(B=F/W ) can be defined as an elastic constant for any pair of materials which

constitute the fiber composite. This coefficient is valid until the maximum stress

developed in the fiber reaches certain critical value producing plastic

deformation or forcing the bond to break at the interface.

In contrast, when certain maximum load is applied at the top of the ber, the

limiting shear stress is reached at the interface forcing the bond to break. Then,

the length of debonding star growing but this growth is unstable, which means

that the load decreases while the length of debonding grows. So that, the

structural integrity disappears and the composite fails. From the analysis of Figs.

5, 7, 9, 11, and 13 no stable growth of 1p is expected after the top of the interface

is reached, although the numerical results for X=0.1, =0.1 and 0.2, as well as

0.1, =0.01 show a stable growth until approximately 5% of the total length.

This effect should be due to the numerical model instead of the physical

phenomenon.

The great advantage of the results presented is that they are expressed in

dimensionless form. It is important to observe that these results are function
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only of the following dimensionless parameters: k, e, and vm (Poisson's ratio of

the matrix). From this, it can be concluded that the theoretical solution of the

pullout problem developed in Chapter 2 is independent of the Poisson's ratio of

the fiber (vf). This dimensionless analysis is not only important because any

system of units can be used but also because it helps to find in a relative simple

manner the best pair of material combination ( k, c, and vm ) in the design

process knowing the working stress ( 0).

Supplementary work can be undertaken related to the numerical analysis of this

problem by improving the debonding problem model. For this case a different

set of matrix-elements can be defined along the length of debonding on the

interface. In addition, a specific analysis of the singulari at the debond zone tip

can be made by means of a more advanced finite element method using, for

instance, a similar model to that used for crack tip analysis.

This work can be employed as a base for future investigations in this area

wherein other factors are considered such as initial or residual stresses, inelastic

behavior of a fiber and/or a matrix, interaction of many fibers, temperature and

technological effects and so on. Additionally, the theoretical ideas presented in

Chapter 2 lead to a wide range of problems that can be considered where those

ideas may be applied. These problems include magnetic and electromagnetic

effects of the fiber composite among others.
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APPENDICES

A. MODELING PROCEDURE OF THE PROBLEM

Here, all the information necessary to complete the first step of the modeling

procedure is given in extensive form in order to make clear this basic step.

Due to the fact that the full ANSYS program is able to perform different types of

analyses, a specific analysis to be performed must be indicated. Thus, the correct

equation can be solved and the program can perform various automatic checks

of the data that has been entered. For the problem under consideration the static

analysis is the suitable option. This is specified in the following form:

KAN,O

where KAN represents the analysis choice, and 0 represents the static analysis.

After that, the element type is chosen from he ANSYS element library. Because

of the specialization of the elements in some way, the element must be selected

so that it corresponds to the type of analysis which will be performed. ET

command is the instruction used to select elements from the library. The element

is selected for this work using the following command:

ET, 1, 82,, 1

which means that this is an element type I (local name), with stiffness 82 (two-

dimensional multinode isoparame ic solid element), and axisymmetric

property.

The next stage is to define the material properties. The command EX is used to

determine the Young's modulus (considering the material isotropic, only the x
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direction value needs to be defined), and the command NUXY is the label used

for Poisson's ratio.

The material properties for material 1 (fiber) are specified as follow:

EX, 1, N1

NUXY, 1, 03

The material properties for material 2 (matrix) are specified as follow:

EX, 2, N2

NUXY, 2, 0.3

Here, N1 and N2 mean the different values of Young's modulus that are

considered. The terms N1 and N2 are used because this work includes the

analysis of different relations Young's modulus of matrix (EXm)/Young's

modulus of fiber (EXf).
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B. RESULTS OF THE ELASTIC PULLOUT PROBLEM

All the results of the elastic pullout problem are presented here. The results of

the distribution of the normal stresses are given in Tables 1 to 5. The results of

the distribution of shear stresses are compiled in Tables 6 to 10. The resul of the

maximum displacement come in Table 11.
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Table 1. Results of the distribution of normalized o along the total embedded
length of the fiber for the elastic pullout problem in the case of k=0.1 and s=0.1.

z/l z /( (Numerical) cz /0 (Analytical)

0.00 1.012 1.000

0.05 0.957 0.896

0.10 0.824 0.802

0.15 0.711 0.717

0.20 0.631 0.640

0.25 0.567 0.571

0.30 0.512 0.508

0.35 0.464 0.451

0.40 0.420 0.399

0.45 0.381 0.351

0.50 0.346 0.308

0.55 0.314 0.268

0.60 0.284 0.231

0.65 0.256 0.197

0.70 0.230 0.164

0.75 0.204 0.134

0.80 0.179 0.105

0.85 0.153 0.078

0.90 0.120 0.051

0.95 0.079 0.025

1.00 0.054 0.000
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Table 2. Results of the distribution of normalized aZ along the total embedded
length of the fiber for the elastic pullout problem in the case of =0.1 and F=0.2

z/1 Uz/co (Numerical) cTZ /cO (Analytical)

0.00 1.016 1.000

0.05 0.933 0.859

0.10 0.758 0.738

0.15 0.613 0.634

0.20 0.516 0.544

0.25 0.442 0.467

0.30 0.384 0.400

0.35 0.336 0.342

0.40 0.295 0.292

0.45 0.260 0.249

0.50 0.230 0.211

0.55 0.204 0.178

0.60 0.182 0.149

0.65 0.161 0.124

0.70 0.143 0.101

0.75 0.126 0.081

0.80 0.110 0.063

0.85 0.095 0.046

0.90 0.076 0.030

0.95 0.055 0.014

1.00 0.040 0.000
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Table 3. Results of the distribution of normalized aZ along the total embedded
length of the fiber for the elastic pullout problem in the case of ?=0.01 and F=0.1.

z/l az o (Numerical) z /cO (Analytical)

0.00 1.1580 1.0000

0.05 0.3633 0.4713

0.10 0.1697 0.2221

0.15 0.0900 0.1046

0.20 0.0526 0.0493

0.25 0.0333 0.0232

0.30 0.0225 0.0109

0.35 0.0160 0.0051

0.40 0.0119 0.0024

0.45 0.0092 0.0011

0.50 0.0073 0.0005

0.55 0.0059 0.0002

0.60 0.0049 0.0001

0.65 0.0041 0.0000

0.70 0.0032 0.0000

0.75 0.0030 0.0000

0.80 0.0026 0.0000

0.85 0.0022 0.0000

0.90 0.0019 0.0000

0.95 0.0015 0.0000

1.00 0.0003 0.0000
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Table 4. Results of the distribution of normalized (YZ along the total embedded
length of the fiber for the elastic pullout problem in the case of k=0.01 and F
=0.01.

z/l acz/c (Numerical) aZ cO (Analytical)

0.00 1.051 1.000

0.05 0.764 0.788

0.10 0.598 0.621

0.15 0.473 0.489

0.20 0.378 0.386

0.25 0.304 0.304

0.30 0.247 0.239

0.35 0.202 0.188

0.40 0.166 0.148

0.45 0.137 0.116

0.50 0.114 0.091

0.55 0.095 0.072

0.60 0.079 0.056

0.65 0.066 0.043

0.70 0.055 0.033

0.75 0.046 0.025

0.80 0.038 0.018

0.85 0.030 0.013

0.90 0.022 0.008

0.95 0.015 0.004

1.00 0.000 0.000
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Table 5, Results of the distribution of normalized cGZ along the total embedded
length of the fiber for the elastic pullout problem in the case of X=0.O1 and F

=0.001.

z/I Gz/TO (Numerical) 0z 1% (Analytical)

0.00 1.013 1.000

0.05 0.928 0.919

0.10 0.860 0.844

0.15 0.796 0.774

0.20 0.736 0.708

0.25 0.679 0.646

0.30 0.626 0.588

0.35 0.575 0.533

0.40 0.527 0.481

0.45 0.481 0.432

0.50 0.437 0.385

0.55 0.394 0.341

0.60 0.353 0.298

0.65 0.313 0.257

0.70 0.274 0.218

0.75 0.235 0.179

0.80 0.1970 0.142

0.85 0.157 0.106

0.90 0.117 0.070

0.95 0.073 0.054

1.00 0.002 0.000
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Table 6. Results of the distribution of normalized rz in the interface between the
fiber and matrix along the total length of the fiber for the elastic pullout problem
in the case of =0. and F=0.1.

z/l Trz/ a (Numerical) Trz/ao (Analytical)

0.00 -0.079 -0.109

0.05 -0.125 -0.098

0.10 -0.094 -0.089

0.15 -0.074 -0.080

0.20 -0.065 -0.072

0.25 -0.056 -0.066

0.30 -0.050 -0.059

0.35 -0.044 -0.054

0.40 -0.040 -0.049

0.45 -0.036 -0.045

0.50 -0.033 -0.041

0.55 -0.030 -0.038

0.60 -0.028 -0.035

0.65 -0.026 -0.033

0.70 -0.025 -0.031

0.75 -0.024 -0.029

0.80 -0.024 -0.028

0.85 -0.024 -0.027

0.90 -0.027 -0.026

0.95 -0.032 -0.025

1.00 -0.025 -0.025
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Table 7, Results of the distribution of normalized Trz in the interface between the
fiber and matrix along the total length of the fiber for the elastic pullout problem
in the case of k=0.1 and F=0.2.

z/l trz/o (Numerical) Trz/ o (Analytical)

0.00 -0.100 -0.151

0.05 -0.176 -0.130

0.10 -0.124 -0.112

0.15 -0.093 -0.096

0.20 -0.075 -0.083

0.25 -0.061 -0.071

0.30 -0.050 -0.062

0.35 -0.042 -0.053

0.40 -0.036 -0.046

0.45 -0.031 -0.040

0.50 -0.027 -0.031

0.55 -0.023 -0.030

0.60 -0.021 -0.027

0.65 -0.018 -0.023

0.70 -0.017 -0.021

0.75 -0.015 -0.019

0.80 -0.014 -0.017

0.85 -0.014 -0.016

0.90 -0.015 -0.015

0.95 -0.018 -0.015

1.00 -0.015 -0.014
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Table 8. Results of the distribution of normalized TZ in the interface between the
fiber and matrix along the total length of the fiber for the elastic pullout problem
in the case of =0.01 and =0.1.

z/I Trz Oo (Numerical) trz/ a( (Analytical)

0.00 -0.1089 -0.0752

0.05 -0.0293 -0.0354

0.10 -0.0112 -0.0167

0.15 -0.0050 -0.0078

0.20 -0.0025 -0.0037

0.25 -0.0013 -0.0017

0.30 -0.0007 -0.0008

0.35 -0.0004 -0.0003

0.40 -0.0003 -0.0001

0.45 -0.0002 -0.0000

0.50 -0.0001 -0.0000

0.55 -0.0001 -0.0000

0.60 -0.0000 -0.0000

0.65 -0.0000 -0.0000

0.70 -0.0000 -0.0000

0.75 -0.0000 -0.0000

0.80 -0.0000 -0.0000

0.85 -0.0000 -0.0000

0.90 -0.0000 -0.0000

0.95 -0.0000 -0.0000

1.00 -0.0000 -0.0000
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Table 9, Results of the distribution of normalized tr in the interface between the
fiber and matrix along the total length of the fiber for the elastic pullout problem
in the case of k=0.01 and =0.01.

z/l tr /z (Numerical) T /y 0 (Analytical)

0.00 -0.0327 -0.0237

0.05 -0.0184 -0.0187

0.10 -0.0137 -0.0147

0.15 -0.0104 -0.0116

0.20 -0.0079 -0.0091

0.25 -0.0062 -0.0072

0.30 -0.0048 -0.0057

0.35 -0.0038 -0.0045

0.40 -0.0030 -0.0035

0.45 -0.0024 -0.0028

0.50 -0.0020 -0.0022

0.55 -0.0016 -0.0017

0.60 -0.0013 -0.0014

0.65 -0.0011 -0.0011

0.70 -0.0009 -0.0009

0.75 -0.0008 -0.0007

0.80 -0.0007 -0.0006

0.85 -0.0007 -0.0005

0.90 -0.0007 -0.0004

0.95 -0.0008 -0.0004

1.00 -0.0015 -0.0004
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Table 10. Results of the distribution of normalized trz in the interface between
the fiber and matrix along the total length of the fiber for the elastic pullout
problem in the case of =0.01 and F=0.001.

z/l Trz/Go (Numerical) trz/Oyo (Analytical)

0.00 -0.0085 -0.0083

0.05 -0.0066 -0.0077

0.10 -0.0063 -0.0072

0.15 -0.0059 -0.0068

0.20 -0.0056 -0.0063

0.25 -0.0052 -0.0060

0.30 -0.0050 -0.0056

0.35 -0.0047 -0.0053

0.40 -0.0045 -0.0050

0.45 -0.0043 -0.0047

0.50 -0.0041 -0.0045

0.55 -0.0040 -0.0043

0.60 -0.0038 -0.0041

0.65 -0.0037 -0.0040

0.70 -0.0037 -0.0038

0.75 -0.0037 -0.0037

0.80 -0.0037 -0.0036

0.85 -0.0038 -0.0036

0.90 -0.0040 -0.0035

0.95 -0.0044 -0.0035

1.00 -0.0073 -0.0035
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Table 11. Value of the normalized maximum displacement for all the relations
and F considered in the numerical analysis of the elastic pullout problem.

0.1 0.1 0.5704
0.1 0.2 0.3835
0.01 0.1 0.0616
0.01 0.01 0.2321
0.01 0.001 0.8996
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C. RESULTS OF THE DEBONDING PROBLEM

All the results of the debonding problem are presented here. The results of the

relation between the load applied and the length of debonding are given in

Tables 12 to 16. The distribution of the normal stresses are presented in Tables 17

to 21 and the distribution of the shear stesses are compiled in Tables 22 to 26.
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Table 12. Results of the relation between the normalized load applied and the
normalized length of debonding for the case of X=0.1 and =0.1.

ID/ I 1CF/,, (Numerical) c/ (Analytical)

0.00 6.660 9.137

0.05 9.280 8.988

0.10 9.135 8.825

0.15 8.590 8.646

0.20 8.129 8.449

0.25 7.843 8.231

0.30 7.655 7.990

0.35 7.500 7.721

0.40 7.356 7.422

0.45 7.210 7.088

0.50 7.065 6.715

0.55 6.900 6.297

0.60 6.700 5.830

0.65 6.466 5.308

0.70 6.173 4.725

0.75 5.779 4.076

0.80 5.268 3.353

0.85 4.412 2.530

0.90 3.370

0.95 3.104

1.00 2.660

94



Table 13. Results of the relation between the normalized load applied and the
normalized length of debonding for the case of X=0.1 and =0.2.

DIl cYo/2, (Numerical) ajt (Analytical)

0.00 4.495 6.614

0.05 6.250 6.532

0.10 6.350 6.442

0.15 6.310 6.344

0.20 6.121 6.237

0.25 5.962 6.118

0.30 5.946 5.986

0.35 5.801 5.838

0.40 5.741 5.671

0.45 5.688 5.480

0.50 5.634 5.261

0.55 5.574 5.008

0.60 5.550 4.713

0.65 5.405 4.369

0.70 5.272 3.964

0.75 5.073 3.485

0.80 4.769 2.915

0.85 4.236 2.207

0.90 3.446

0.95 3.173

1.00 2.688
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Table 14. Results of the relation between the normalized load applied and the
normalized length of debonding for the case of X=0.01 and F0.1.

'DI oC T/,, (Numerical) a /t, (Analytical)

0.00 13,252 13.293

0.05 13.205 13.219

0.10 13.140 13.141

0.15 13.100 13.057

0.20 13.090 12.967

0.25 13.085 12.872

0.30 13.083 12.768

0.35 13.081 12.656

0.40 13.079 12.535

0.45 13.076 12.401

0.50 13.074 12.252

0.55 13.074 12.086

0.60 13.074 11.898

0.65 13.074 11.680

0.70 13.074 11.424

0.75 13.074 11.111

0.80 13.050 10.709

0.85 13.025 10.137

0.90 13.000 9.137

0.95 12.413 6.715

1.00 7.390
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Table 15. Results of the relation between the normalized load applied and the
normalized length of debonding for the case of k=0.01 and =0.01.

D1/ Go/T,, (Numerical) G/T, (Analytical)

0.00 33.310 42.033

0.05 42.870 41.795

0.10 41.350 41.541

0.15 41.000 41.268

0.20 40.830 40.974

0.25 40.830 40.653

0.30 40.830 40.299

0.35 40.830 39.904

0.40 40.830 39.453

0.45 40.830 38.929

0.50 40.830 38.304

0.55 40.750 37.538

0.60 40.500 36.569

0.65 40.250 35.305

0.70 40.000 33.610

0.75 39.220 31.285

0.80 37.000 28.052

0.85 32.000 23.561

0.90 25.000 17.444

0.95 15.000 9.493

1.00 4.080
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Table 16. Results of the relation between the normalized load applied and the
nor,alized length of debonding for the case of X=0.01 and F=0.001.

lD/l o0 s (Numerical) a 0 /T, (Analytical)

0.00 126.900 120.436

0.05 117.700 118.071

0.10 108.270 115.461

015 104.200 112.583

0.20 100.100 109.407

0.25 95.740 105.906

0.30 92.500 102.049

0.35 89.000 97.805

0.40 86.100 93.144

0.45 83.200 88.037

0.50 78.950 82.456

0.55 73.000 76.379

0.60 68.500 69.787

0.65 63.800 62.671

0.70 58.500 55.031

0.75 53.430 46.879

0.80 44.000 38.242

0.85 33.500 29.162

0.90 23.500 19.703

0.95 12.500 9.943

1.00 2.940
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Table 17. Results of the distribution of normalized acZ along the total embedded
length of the fiber for the debonding problem in the case of k=0.1, =0.1 and
l=1.

z/l az /s (Numerical) cz/ (Analytical)

0.00 9.154 8.825

0.05 9.059 8.825

0.10 8.375 8.825

0.15 7.697 7.875

0.20 6.959 7.019

0.25 6.616 6.247

0.30 5.468 5.548

0.35 4.893 4.915

0.40 4.397 4.341

0.45 3.961 3.818

0.50 3.573 3.340

0.55 3.223 2.903

0.60 2.903 2.499

0.65 2.608 2.126

0.70 2.332 1.777

0.75 2.070 1.450

0.80 1.813 1.139

0.85 1.548 0.843

0.90 1.213 0.556

0.95 0.797 0.276

1.00 0.542 0.000
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Table 18. Results of the distribution of normalized az along the total embedded
length of the fiber for the debonding problem in the case of k=0.1, g=0.2 and
lD-.

z/1 / (Numerical) fzI (Analytical)

0.00 6.343 6.442

0.05 6.238 6.442

0.10 5.572 6.442

0.15 4.928 5.515

0.20 4.249 4.718

0.25 3.569 4.034

0.30 3.014 3.446

0.35 2.584 2.939

0.40 2.237 2.503

0.45 1.951 2.126

0.50 1.710 1.799

0.55 1.505 1.516

0.60 1.327 1.268

0.65 1.171 1.050

0.70 1.033 0.858

0.75 0.908 0.686

0.80 0.791 0.530

0.85 0.676 0.387

0.90 0.544 0.253

0.95 0.389 0.125

1.00 0.282 0.000
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Table 19. Results of the distribution of normalized a along the total embedded
length of the fiber for the debonding problem in the case of X=0.01, s=O.1 and
ID"

z/i Gz/t (Numerical) Gz/s (Analytical)

0.00 13.141 13.141

0.05 13.131 13.141

0.10 11.255 13.141

0.15 3.989 6.139

0.20 1.738 2.868

0.25 0.892 1.340

0.30 0.514 0.626

0.35 0.352 0.292

0.40 0.221 0.136

0.45 0.160 0.063

0.50 0.120 0.029

0.55 0.094 0.013

0.60 0.076 0.006

0.65 0.062 0.003

0.70 0.052 0.001

0.75 0.044 0.000

0.80 0.038 0.000

0.85 0.033 0.000

0.90 0.028 0.000

0.95 0.022 0.000

1.00 0.004 0.000
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Table 20. Results of the distribution of normalized (Z along the total embedded
length of the fiber for the debonding problem in the case of =0.01, F=0.01 and
lD=1.

z/l az/t (Numerical) aI/s (Analytical)

0.00 41.357 41.541

0.05 41.296 41.541

0.10 39.584 41.541

0.15 29.202 32.653

0.20 22.175 25.664

0.25 17.281 20.170

0.30 13.676 15.848

0.35 10.947 12.450

0.40 8.843 9.775

0.45 7.198 7.670

0.50 5.898 6.010

0.55 4.858 4.701

0.60 4.017 3.665

0.65 3.331 2.842

0.70 2.757 2.185

0.75 2.272 1.655

0.80 1.848 1.221

0.85 1.464 0.859

0.90 1.095 0.546

0.95 0.707 0.265

1.00 0.003 0.000
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Table 21. Results of the distribution of normalized aZ along the total embedded
length of the fiber for the debonding problem in the case of k=0.01, E=0.001 and

ID= .

z/1 Yz/ -c, (Numerical) yz tis (Analytical)

0.00 108.278 115.461

0.05 108.333 115.461

010 106.885 115.461

0.15 97.135 105.786

0.20 88.609 96.724

0.25 81.145 88.222

0.30 74.346 80.231

0.35 68.047 72.705

0.40 62.147 65.601

0.45 56.578 58.876

0.50 51.285 52.492

0.55 46.222 46.413

0.60 41.348 40.602

0.65 36.624 35.027

0.70 32.008 29.655

0.75 27.459 24.454

0.80 22.926 19.395

0.85 18.347 14.449

0.90 13.624 9.586

0.95 8.560 4.779

1.00 -1.608 0.000
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Table 22. results of the distribution of normalized crz in the interface between
the fiber and matrix along the total length of the fiber for the debonding problem
in the case of X=0.1, 6=0.1 and l=1.

z/i trZ/tS (Numerical) T,/t, (Analytical)

0.00 0.002 0.000

0.05 0.176 0.000

0.10 -0.972 -1.000

0.15 -1.000 -0.901

0.20 -0.852 -0.812

0.25 -0.698 -0.734

0.30 -0.594 -0.664

0.35 -0,513 -0.602

0.40 -0.450 -0.547

0.45 -0.400 -0.499

0.50 -0.360 -0.456

0.55 -0.327 -0.419

0.60 -0.300 -0.387

0.65 -0.278 -0.360

0.70 -0.262 -0.337

0.75 -0.251 -0.318

0.80 -0.246 -0.302

0.85 -0.248 -0.291

0.90 -0.277 -0.282

0.95 -0.328 -0.277

1.00 -0.259 -0.276
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Table 23. Results of the distribution of normalized Trz in the interface between
the fiber and matrix along the total length of the fiber for the debonding problem
in the case of k=0.1, &=0.2 and le=1.

z/l TrzT (Numerical) /rz Ts (Analytical)

0.00 -0.005 0.000

0.05 0.179 0.000

0.10 -1.000 -1.000

0.15 -0.941 -0.858

0.20 -0.741 -0.737

0.25 -0.566 -0.633

0.30 -0.451 -0.545

0.35 -0.365 -0.469

0.40 -0.302 -0.405

0.45 -0.253 -0.350

0.50 -0.215 -0.303

0.55 -0.185 -0.264

0.60 -0.161 -0.231

0.65 -0.142 -0.204

0.70 -0.128 -0.181

0.75 -0.117 -0.163

0.80 -0.109 -0.148

0.85 -0.107 -0.138

0.90 -0.113 -0.130

0.95 -0.129 -0.126

1.00 -0.106 -0.124
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Table 24. Results of the distribution of normalized trz in the interface between
the fiber and matrix along the total length of the fiber for the debonding problem
in the case of ,=0.01, s=0.1 and ID=.

z/ 'rzt ,s (Numerical) Trs(Analytical)

0.00 -0.0010 0.0000

0.05 0.0010 0.0000

0.10 -1.2236 -1.0000

0.15 -0.3614 -0.4672

0.20 -0.1231 -0.2182

0.25 -0.0518 -0.1019

0.30 -0.0247 -0.0476

0.35 -0.0130 -0.0222

0.40 -0.0075 -0.0104

0.45 -0.0046 -0.0048

0.50 -0.0030 -0.0022

0.55 -0.0020 -0.0010

0.60 -0.0014 -0.0004

0.65 -0.0011 -0.0002

0.70 -0.0008 -0.0001

0.75 -0.0006 -0.0000

0.80 -0.0005 -0.0000

0.85 -0.0004 -0.0000

0.90 -0.0004 -0.0000

0.95 -0.0007 -0.0000

1.00 -0.0023 -0.0000
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Table 25. Results of the distribution of normalized Tr, in the interface between
the fiber and matrix along the total length of the fiber for the debonding problem
in the case of ?=0.01, g=0.01 and 'D=1

z/l T,,/ T, (Numerical) trz/ , (Analytical)

0.00 -0.005 0.000

0.05 -0.002 0.000

0.10 -1.000 -1.000

0.15 -0.830 -0.786

0.20 -0.552 -0.618

0.25 -0.399 -0.486

0.30 -0.299 -0.382

0.35 -0.229 -0.300

0.40 -0.177 -0.236

0.45 -0.139 -0.186

0.50 -0.111 -0.147

0.55 -0.089 -0.116

0.60 -0.072 -0.092

0.65 -0.060 -0.073

0.70 -0.050 -0.058

0.75 -0.043 -0.047

0.80 -0.038 -0.039

0.85 -0.035 -0.034

0.90 -0.035 -0.029

0.95 -0.039 -0.027

1.00 -0.028 -0.026
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Table 26. Results of the distribution of normalized tz in the interface between
the fiber and matrix along the total length of the fiber for the debonding problem
in the case of )=O.Ol, =0.001 and D= 1 .

z/l Trz/t (Numerical) t /t (Analytical)

0.00 -0.003 0.000

0.05 -0.001 0.000

0.10 -0.754 -1.000

0.15 -0.898 -0.935

0.20 -0.758 -0.877

0.25 -0.681 -0.823

0.30 -0.627 -0.775

0.35 -0.584 -0.730

0.40 -0.550 -0.690

0.45 -0.521 -0.654

0.50 -0.496 -0.622

0.55 -0.476 -0.593

0.60 -0.460 -0.568

0.65 -0.448 -0.546

0.70 -0.439 -0.530

0.75 -0.435 -0.512

0.80 -0.436 -0.499

0.85 -0.444 -0.489

0.90 -0.465 -0.483

0.95 -0.514 -0.478

1.00 -0.028 -0.477
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D. COMPARISON OF MAXIMUM DISPLACEMENT

The results of the comparison of the bed coefficient in the elastic pullout problem

are given in Table 27.

Table 27. Comparison of maximum displacement using the dimensionless

expression of the bed coefficient for all the relations X and F considered in the

elastic pullout problem.

Banalvrc Bruneh

0. .1 0.6497 0.5506
0.1 0.2 0.9406 0.8190
0.01 0.1 0.4726 0.5096
0.01 0.01 0.1494 0.1353
0.01 0.001 0.0428 0.0349
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