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ABSTRACT OF THE THESIS

BIOCHEMICAL CHARACTERIZATION OF MAMMALIAN HIGH MOBILITY

GROUP PROTEIN A2

by

Lorraine Katy Edwards

Florida International University, 2006

Miami, Florida

Professor Fenfei Leng, Major Professor

The high mobility group protein HMGA2 is an architectural transcription factor, which is

expressed during embryogenesis. Aberrant expression causes benign and malignant

tumor formation. The protein possesses three "AT hook" domains and an acidic C-

terminal. HMGA2 is natively unstructured, however it forms a homodimer. In this study

site-directed mutagenesis was used to create single methionine mutants, HMGA2Q37M,

HMGA2I71M and HMGA2Q85M. These mutants were cross-linked using EDC and then

cleaved using CNBr to determine which domains are involved in homodimer formation.

Our results indicate that the second "AT hook" domain may interact with the C-terminal.

We then labeled a peptide containing the C-terminal (CTP) with tetramethylrhodamine-5-

maleimide (TRM). We found that the CTP-TMR binds to HMGA2A95-108, which lacks

the C-terminal. These results suggest that the C-terminal is required for homodimer

formation. The techniques used within this study can be applied to forensics and with

further research HMGA2 may have a forensic application.
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CHAPTER I

INTRODUCTION

A. Forensics

The root of the word forensic isforensis in Latin meaning 'open court, public'

(Soanes and Hawker, 2005). Today forensic refers to the use of scientific or technical

methods to discern matters in relation to a crime. It means in relation or pertaining to a

court of law (Wikipedia, 2006). The job of a forensic scientist is to collect, preserve and

examine physical evidence that may be useful in determining the, who, what, when and

where a crime took place. It does not include the reason why the crime occurred.

Evidence is collected from the crime scene and then is processed by specialized

personnel in order to determine certain characteristics of the crime. There are many

specialized areas related to this field that include Chemistry, Biology and Entomology as

well as forensic accountants, computer specialists and blood spatter analysts to name a

few (Saferstein, 2003).

The job of a Forensic Biologist entails the detection, identification and subsequent

comparison of biological material found at the scene of a crime (Rudin and Inman, 2002).

Deoxyribonucleic acid (DNA) can be used to identify an individual for paternity testing

or to exclude/include a suspect as being present at the scene of a crime (Rudin and

Inman, 2002). DNA is present in all cells of the body with the exception of mature red

blood cells and is unique to every individual aside from identical twins (Rudin and

Inman, 2002). Sections of DNA contain inherent repeats of a particular sequence known

as short tandem repeats (STRs). The likelihood of having a specific repeat number at
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these locations is known. The numbers of repeats at these regions are measured and a

profile of an individual can be determined. The greater the number of regions that are

tested the more unique the profile becomes and therefore DNA can then be used for

identification purposes (Rudin and Inman, 2002).

Specific regions of DNA are known as genes and these are the functional units of

hereditary. The gene itself contains an ordered sequence of nucleotides which can be

transcribed and then translated to create an amino acid chain. This amino acid chain is

capable of folding to create a protein (Lewin, 2003). The expression of many proteins is

transient and therefore the presence or absence of that particular protein can be a useful

determinant of state of health or age (Patel et aL, 1994). Other proteins are only

expressed at specific sites in the body and may aid in the forensic detection of body

tissues (Castagnoli et al., 1994). DNA and proteins can be used in forensic science in

unique ways due to their distinctive qualities. Once tests are performed on evidence, the

results can be used in a court of law where it is the job of the analyst to present the

findings in layman's terms. The analyst teaches the jury and public the importance of the

test performed as well as the results of the test (Saferstein, 2003). This can include the

DNA profile of a suspect or victim.

Protein Forensics

A breakthrough in categorizing biological fluids came about in 1901, when Karl

Landsteiner determined that blood could be classified into four categories, namely; A, B,

AB and 0 (Saferstein, 2003). Classification was based on differences in the antigens

present on the surface of red blood cells. Landsteiner also noted that proteins known as

antibodies are found in the blood serum. Each antibody binds to a specific antigen. When
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an antibody comes in contact with a specific antigen, agglutination occurs due to the

bivalent nature of the antibody attaching to two antigens. This forms a large cross-linked

network of antigens and antibodies. The body does not produce an antibody against the

antigen, which is present on the red blood cell of that individual. Instead they produce an

antibody against the opposite antigen. Someone with antigen A will have anti-B

antibodies and a person with antigen B will have anti-A antibodies. An individual who is

described as "AB" has both A and B antigens and no anti-A nor anti-B antibodies. Those

referred to as "0" have no A, nor B antigens, but possess both anti-A and anti-B

antibodies. This prevents agglutination occurring within the body (Saferstein, 2003).

Before Karl Landsteiner's discovery many people died immediately after being

transfused with the blood of a different blood type. Since this time many blood typing

methods have been discovered that employ proteins found on red blood cells or in

plasma. The Rhesus system, found in 1937, was developed to produce an antibody

against the red blood cells of the Rhesus monkey. It was additionally found that the blood

serum of roughly 85% of the human population agglutinated to this serum (Saferstein,

2003). Therefore blood cells that do agglutinate are known as Rhesus positive

(Wikipedia, 2006). The ABO system was used for many years in forensic science as an

inclusionary or exclusionary too. This system alone did not provide the level of

discrimination required for convicting or exonerating an individual of a crime. New

classification systems were discovered based on the ABO system d included

phosphoglucomutase and adenylate kinase (Rudin and Inman, 2002). Together these

systems could be used to increase the level of discrimination and could be used to narrow

the search by excluding more individuals. In this setting, work on proteins has been
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replaced by DNA typing, which has more variance at each locus investigated and

therefore more discrimination power (Rudin and Inman, 2002). Furthermore with the

dawn of the polymerase chain reaction (PCR), minute traces of biological fluids that

contain DNA can by typed (Mullis et al., 1986). As a result DNA rather than protein

became the preferred tool of forensic scientists for human identification.

However, there are still many uses for proteins in forensic science. DNA does not

readily change due to varying environmental conditions such as heat and humidity (Rudin

and Inman, 2002). Whereas this characteristic makes DNA an ideal candidate for typing

individuals it does not provide information on the persons state of health, age or other

changing factor associated with that entity. Proteins are affected due to environmental

stresses and many factors can be discerned from the transient nature of these proteins

(Rudin and Inman, 2002). The location of proteins can also be specialized, changing

depending upon factors affecting a particular area of the body. This can provide more

information about the body part present, the environmental stresses that took place and

what bodily influences occurred based on where in the body the protein was found.

Proteins are presently used for the presumptive detection of semen (Rudin and

Inman, 2002). Semen stains may be seen with the naked eye but this is made more

difficult if there are minute traces or the garment has been washed. In 1989, an antigen

known as prostate specific antigen (PSA) was first used to aid in the detection of seminal

fluid stains (Kamenev et aL., 1989). An immunoassay was developed in 1992 for anti-

PSA antigens using a radio-labeled Protein A detection system (Rao and Kashyap, 1992).

This technique is extremely sensitive and can detect stains up to five years old (Rao and
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Kashyap, 1992). In 2002 a "SMITEST" PSA immunochromatographic membrane test

card was devised for ease of use to be utilized at the scene of a crime (Sato et al., 2001).

Other proteins, besides PSA, have been found to aid in the identification of

semen. The seminal plasma protein semenogelin and p84, a blood group substance

present on the sperm plasma membrane help determine the ABO blood-type of the

individual through their semen (Sato et al., 1995, 2001).

Protein can also aid in the identification of blood source. Miyaishi et al.

discovered that by measuring the concentrations of both FDP-D-dimer (fibrin degradation

products) and myoglobin, the origin of a bloodstain could be determined as either

peripheral or menstrual blood (Miyaishi et al., 1996). High levels of FDP-D-dimer

coupled with low levels of myoglobin can identify the stain as menstrual blood (Miyaishi

et al., 1996).

Species-specific blood tests also utilize proteins. Tests of this nature are extremely

important when dealing with hunting or illegal selling of endangered species, and/or

discrimination between animal and human blood at a crime scene. In 1993 Matsuzawa et

al. used rabbit antisera against human immunoglobulin G (IgG) in a dot blot method to

determine identity (Matsuzawa et al., 1993). The test was rapid, completed in less than 5

minutes, but was unable to differentiate between closely related species. In this case,

human and monkey would both give a positive result (Matsuzawa et al., 1993). This test

could prove useful in forensics at a crime scene where it is unlikely that two similar

species would be believed to be present. In the mid 1990's research included the use of

albumins, hemoglobin's and hair keratins for species identification using electrophoresis

(Miller et al., 1995, Folin and Contiero, 1996). In 1995, Miller et al. found differences in
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the electrophoretic mobility's of albumin and hemoglobin's using a 1-dimensional

electrophoretic technique (Miller et al., 1995). They found differences between blood of

the pheasant (Phasianus colchicus) and that of a protected species, otter (Lutra lutra)

(Miller et al., 1995). A year later Folin and Contiero discovered mobility differences

between non-human primates. They compared hair keratins on 15 % sodium dodecyl

sulfate-polyacrylamide gels (SDS-PAGE) (Folin and Contiero, 1996). Their results also

showed that neither sex nor sample age had an impact on the keratin (Folin and Contiero,

1996). Since hair keratins were fairly conserved, the quantity of each keratin was more

evident than the absence or presence of a particular type of keratin. They found the

highest differences in intensity of polypeptide bands between the non-closely related

animals (Folin and Contiero, 1996). If the sensitivity of the test is increased, members of

closely related species could be discriminated.

At a crime scene it may be necessary to determine what tissue is present; this is

just as important as identifying who the blood or tissue came from. DNA is not a helpful

factor in this case, as DNA remains constant between tissues within the body. Specific

proteins are found in regionally specialized areas of the body and can therefore help

determine the part of the body the tissue derived from. In 1996, Takahama developed a

sandwich enzyme immunoassay for use in detecting three organs. These were cardiac

troponin I to distinguish heart, liver specific antigen (LSA) for the liver and sucrase-

isomaltase to help identify the small intestine (Takahama, 1996). These assays were soon

followed by the sandwich enzyme immunoassay developed by Seo et al. for detection of

brain tissue using S-100 protein in 1997 (Seo et al., 1997). In 2004 another brain

sensitive marker was suggested, the neurofilaments NF-H, NF-M and NF-L (Takata et
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al., 2004). The detection of NF-L and NF-M however, was not always possible in the

presence of brains grey matter. It was found that from the neurofilament proteins, NF-H

was the best marker for human brain tissue. The detection of NF-H could be detected in

tissue that had been subjected to many stresses such as heating and drying. This made

NF-H a good candidate for use in a forensic setting as evidence may not be found for

several days, months or even years (Takata et al., 2004).

Another important factor in forensic science is the vitality of a wound, whether a

wound occurred pre- or post-mortally. Proteins are useful markers of wound healing and

determining the time since trauma occurred. Certain specific proteins are present at the

site at different stages of wound healing based on the human inflammatory response.

These proteins are not present or are reduced in expression at non-healing times

(Wikipedia, 2006). In the late 1990s Dressler et al. examined the time dependent

expression of intercellular adhesion molecule-I (ICAM-I) as an indication of the age of

skin wounds (Dressler et al., 1997). This was conducted using immunohistochemistry

comparing wounded and non-wounded skin sections. It was concluded that a high

expression of ICAM-I indicates that the wound was sustained more than 1.5 hrs and less

than 3.5 days before the wound was tested (Dressler et al., 1997). This same group later

determined the expression of selectins (L-, P- and E-selectins) and vascular cell adhesion

molecule-I (VCAM-I). Both E- and P-selectins are useful markers of skin wound age

with E-selectin showing a strong expression between 1 hr and 17 days after injury and P-

selectin showing a strong expression between 3 mins and 7 hrs after injury. The results of

the VCAM-I expression studies were not as useful however, as only 51 % of the skin

wounds showed expression. The strongest expression was between 3 hrs and 3.5 days
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after injury and if other markers were taken into account VCAM-I expression could

narrow the time estimation further (Dressler et al., 2000). Later studies included pro-

inflammatory c okines, ubiquitin, chemokines and vascular endothelial growth factor

(VEGF), as markers to aid in the determination of timing for skin injury (Grellner et al.,

2000, Kondo et al., 2002a, 2002b, Hayashi et al., 2004).

The role of the forensic pathologist is to determine postmortem interval (PMI) as

well as cause of death. The typical determination of time since death is investigated

through the use of body temperature (Henssge et al., 2000). However, this is an inexact

science as many factors including temperature, humidity and cause of death have an

impact on the body's temperature (al-Alousi et al., 2002). There are some protein

markers that have been investigated in an attempt to determine post mortal interval

including in 2003 an investigation of degradation of cardiac Troponin I (Sabucedo and

Furton, 2003). Western blotting of the denatured protein was visualized. The particular

banding pattern of the degrading protein reported the time since death when compared to

a known banding pattern. This banding pattern was capable of determining postmortal

interval between 0 and 5 days (Sabucedo and Furton, 2003).

In 2003 Kang et al. investigated the use of calmodulin binding proteins in

reference to postmortem interval (Kang et aL., 2003). They removed both rat lung and

skeletal muscle at 0, 24, 48 and 96 hrs after death. By performing immunoblot analysis

on lung samples, predictable patterns shown on SDS-polyacrylamide gels of both

myristoylated alanine-rich C-kinase substrate (MARCKS) and calcineurin A (CAN) were

present. This indicated that, with further analysis on these proteins, calmodulin binding
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proteins have a possible forensic use in determining short post-mortal intervals (Kang et

al., 2003).

Once the time of death is determined the cause of the death may still be unknown.

The oxygen regulated protein 150 kDa (ORP-150) was analyzed as a possible marker for

brain ischemia (Ikematsu et al., 2004). Brain tissue sections of 31 patients' whose deaths

were known to be; asphyxia, hypothermia, exsanguinations, carbon monoxide (CO)

intoxication or sudden cardiac death were taken. The group noted the number of ORP-

150 positive cells after introducing a polyclonal antibody to the tissue sections. It was

recorded that the number of ORP-150 positive cells was influenced by age. Therefore

they used a covariance method of calculating mean ORP-150 level that took into account

the age of the deceased to determine brain ischemia. A correlation between ORP-150

levels and degree of brain ischemia after the age factor was removed was discovered. It

was assumed that sudden cardiac death was rapid death and therefore no or very little

ischemia occurred. This type of death showed the lowest ORP-150 levels. Several

minutes of brain ischemia occurs in deaths of exsanguinations, CO intoxication and

asphyxiation where they determined increased ORP- 150 levels were present. Numerous

hours of brain ischemia may occur in deaths of hypothermia and ORP-150 levels were

further elevated. In conclusion ORP-150 may be a useful marker in determining the

extent of brain ischemia before death (Ikematsu et al., 2004).

Another cause of death, which creates much media attention, is meningitis, a

bacterial infection caused by Neisseria meningitides. This type of death may also be

attributable to other microorganisms such as Haemophilus influenzae or Streptococcus

pneumoniae. Rapid determination of the cause of death in this case is needed to prevent
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trasmission of the infection. DNA may be used in this instance but a faster method is

required to prevent further spread of the infection. In 2005 a screening method involving

latex agglutination was devised (Saha et aL., 2005). This test would occur prior to the use

of PCR on the DNA. The latex agglutination method uses the recognition of N.

meningitides specific antigens of serogroups A, B, C, Y and W135. Once this screening is

completed and N. meningitides is suspected, a confirmatory test using PCR could be

undertaken (Saha et al., 2005). The latex agglutination test proved a valuable tool as a

presumptive test allowing for the correct management to occur to prevent the spread of

the infection.

The use and application of proteins in forensic science is expanding. Therefore as

much as possible should be understood about the way proteins interact, their functions

and structures in order for them to be used as potential markers. In this research the high

mobility group protein 2 (HMGA2) will be used as a model protein in order to

understand the structure of this type of protein. Cross-linking studies as well as

isothermal titration calorimetry, size exclusion chromatography and gel mobility shift

assays were performed. The conformation of protein-protein interactions as well as the

binding stoichiometry of protein to DNA was determined from this research.

B. High Mobility Group Proteins

The high mobility group proteins are named due to their high mobility on SDS-

polyac lamide gels (Bustin and Reeves, 1996). Three families of high mobility group

proteins exist. These are named after the functional domains that are present within each

family member. The HMGB (old name HMG-1/2) family has the characteristic

functional group of the "HMG-box" (Bustin, 2001) The HMGN (old name HMG-14/-17)
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proteins have "nucleosomal binding domains" and the HMGA (old name HMG-I/Y)

proteins have conserved "AT hook" DNA binding domains (Bustin, 2001, Manfioletti et

aL, 1991). All family members are of low molecular weight < 30 kDa and are soluble in

5% perchloric acid (Giancotti, et aL, 1985).

High Mobiliy Group B

The mammalian HMGB protein family possesses two HMG "box" binding

domains, which are composed of three a-helices arranged in an L shape as well as an

acidic C-terminal (Weir et aL., 1993). The HMG "boxes" named A and B have structural

and functional differences, but are generally similar (Weir et aL, 1993, Hardman et aL,

1995). The boxes bind to DNA with no sequence specificity; they instead bind to the

minor groove of DNA and induce a bend (Allain et aL, 1999). Alternatively they bind to

and stabilize pre-bent DNA such as four-way junctions and cruciform structures (Bianchi

et aL, 1989, Hill et aL, 1997, 1999). The C-terminal tail controls the binding affinity for

these different DNA structures (Sheflin et aL, 1993). The HMGB proteins function as

architectural transcription factors (Zwilling et aL, 1995). Architectural transcription

factors refer to a group of proteins that do not possess transcriptional activation domains

yet these proteins still aid in transcriptional control. These architectural transcription

factors work by interacting with and changing the conformation of DNA (Wolffe, 1994).

The alteration in DNA conformation provides the correct framework for the binding of

transcription factors and the pol erase (Bustin and Reeves, 1996). Architectural

transcription factors can direct a number of transcription factors, which assemble into a

higher order nucleoprotein known as an enhanceosome (Wolffe, 1994). HMGB1 has

been shown to bind cooperatively with ZEBRA to the enhancer or promoter of the
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Epstein Barr (EB) gene and aid in the formation of the enhanceosome structure (Ellwood

et al., 2000).

High Mobility Group N

All members of the HMGN family contain nucleosomal binding domains as well

as a C-terminal domain which functions to unfold chromatin (Walker et al., 1977,

Abercrombie et al., 1978). The protein family consists of four proteins, HMGN1,

HMGN2, HMGN3 and HMGN4. HMGN3 is expressed as two forms due to alternative

splicing into proteins HMGN3a and HMGN3b, where HMGN3b lacks most of the C-

te inal domain (West et al., 2001). The function of this family of proteins in vitro is to

increase transcription and replication due to unfolding of chromatin on nucleosomes

(West, 2004). Two HMGN protein binding sites exist on each nucleosome allowing for

attachment of the nucleosomal binding domains of each protein to the inner side of

nucleosomal DNA (Sandeen et al., 1980). The in vivo functions of the protein remain less

understood as the protein family is only expressed in higher eukaryotes (West, 2004).

However, knockout studies in mice involving the Hmgn] gene suggest a role in DNA

repair as these Hmgn]i- mice are more sensitive to UV-irradiation (Birger et al., 2003).

This suggests that HMGN1 may unfold chromatin surrounding the DNA damage

allowing for DNA repair machinery to enter (Birger et al., 2003).

High Mobility Group A

The mammalian HMGA family consists of three proteins coded by HMGAI and

HMGA2. The HMGAJ gene expresses the HMGAla and HMGA1b proteins, which occur

through alternative splicing (Johnson et al., 1988). The HMGA2 gene expresses the

HMGA2 protein only (Manfioletti et al., 1991). A non-functional intron-less pseudogene
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has been identified in mice. However, no functional alternatively spliced variant of

HMGA2 has been found (Manfioletti et aL, 1995).The mammalian HMGA family of

proteins contain three conserved "AT hook" DNA binding domains and an acidic C-

terminal domain (Manfioletti et al, 1991, Reeves and Nissen, 1990). The "AT hook"

domains bind to the minor groove of AT rich DNA and alter the DNA conformation

(Reeves and Nissen, 1990). The HMGA family of proteins function as architectural

transcription factors (Wolffe, 1994). These proteins have been identified in relation to a

large number of benign and malignant tumors, mainly of mesenchymal origin (reviewed

in Fedele et aL, 2001).

HMGA1

The mammalian HMGAI proteins possess three "AT hook" DNA binding

domains (Reeves and Nissen, 1990). HMGA1b is a truncated version of HMGA1a

missing 11 amino acids from the linker region between the third "AT hook" domain and

the acidic C-terminal (Johnson et al., 1988). These proteins function in regulating the

transcription of a number of genes such as recombination activating gene 2 (RAG2) and

interferon- (Battista et al, 2005, Thanos and Maniatis, 1992). HMGA1 is normally

expressed in rapidly dividing embryonic cells, and its expression is negligible in normal

adult tissues (Johnson et aL., 1988). Overexpression of HMGAI results in the formation

of a number of malignant tumors such as breast carcinomas and epithelial ovarian

carcinomas (Baldassarre et aL, 2003, Masciullo et al., 2003). Cells overexpressing

HMGAl a protein were observed to inhibit nuclear excision repair pathways upon

exposure to UV-irradiation (Adair et aL., 2005). Despite this knowledge little is

understood about the molecular mechanism by which the HMGA1 proteins cause the
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malignant phenotype. Loss of the Hmgal gene in mice was shown to result in reduced

insulin secretion and weakened insulin signaling pathways so that the phenotype

resembled that of type II diabetes (Foti et al., 2005). Re-establishment of the protein

expression resulted in restored insulin receptor protein expression and insulin binding

capacity (Foti et aL., 2005).

HMGA2

HMGA2 is involved in the transcriptional control of a number of genes. HMGA2

upregulates the expression of cyclin A that is involved in cell cycle control (Minshull et

al., 1990). Cyclin A is a crucial factor; along with cyclin dependent kinase 2 (cdk2), for S

phase entry (Lees et al., 1992). Cyclin A also functions with cdc2 (cell division control)

for the G2/M transition (Minshull et al., 1990). Cyclin A is repressed during the

remaining cell cycle by the binding of p20E4F to the cyclic AMP (adenosine

monophosphate)-responsive element (CRE) at the cyclin A promoter (Fajas et al., 2001)

HMGA2 works by binding, via the second "AT hook" DNA binding domain to 12 0 E4F

and preventing it from binding to the CRE. This prevents the repression of transcription

by p12 0 E4F. Secondly, HMGA2 binds to the CRE and improves access of activating

transcription factor-2 (ATF-2) to the e ancer. This interaction can be achieved due to

protein-protein interactions and possibly DNA conformational changes (Tessari et al.,

2003).

HMGA2 is also involved in the prevention of apoptosis (Edelstein et al., 2003).

The protein has been shown to enhance expression of the apoptotic inhibitor Bfl-1/A1

(Edelstein et al, 2003). HMGA2 is required for the correct recruitment of a large number

of transcription factors to the Bfl-I/AI regulatory region (Edelstein et al, 2003). T-cell
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activation triggers the recruitment of HMGA2, nuclear factor-B (NF-KB), activator

protein-1 (AP-1) and CCAAT enhancer binding protein J (C/EBPp) to the region

(Edelstein et al., 2003) This is followed by binding of the co-factors TAFII250 (TBP-

associated factor 250 kDa) and p300, and by a SWI/SNF (mating-type switch/sucrose

nonfermenting) chromatin-remodeling complex. These factors drive the acetylation of

histones H3 and H4 and hence activate transcription (Edelstein et al, 2003).

The HMGA2 protein is involved in down-regulating some genes. It has been

found that both the wild type and truncated HMGA2 (C-teminal removed) proteins

down-regulated the DNA repair gene, excision repair cross-complimenting rodent repair

deficiency, complimentary group ] (.ERCC]) (Borrmann et al., 2003). ERCC1 has been

shown to be vital in the nuclear excision repair pathway to reverse DNA damage caused

by UV-light and chemical mutagens (Araujo and Wood, 1999). The HMGA2 protein in

this context worked through reversing bends in the DNA making assembly of a

nucleoprotein complex at this promoter site more difficult (Borrmann et al., 2003).

Cyclin A, Bfl-1/A1 and ERCC1 are involved in such processes as cell cycle

control, apoptosis and DNA repair, respectively (Tessari et al., 2003, Edelstein et al.,

2003, Bo a et al., 2003). Aberrant expression of HMGA2 thus involves the

deregulation of these pathways and leads to incorrect functioning of the cells. In

embryonic tissue, cells are rapidly dividing and the expressions of cell cycle control

genes as well as apoptosis inhibitor genes are necessary. In adult tissues, most cells have

become differentiated and as a result the expressions of cell cycle control and apoptosis

inhibitor genes need to be more tightly regulated. DNA repair genes are also required,
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thus the aberrant expression of HMGA2 deregulating these pathways cause diseases such

as cancer.

Overexpression and Null Expression of HMGA2

Disruption of the mouse Hmga2 gene results in a pygmy phenotype, in which

there is a decline in adult body weight that mostly affects adipose tissue and embryonic

fibroblasts (Zhou et aL., 1995). The brain region is least affected in the pygmy mouse as

this region in the developing wild-type embryo shows the least Hmga2 expression (Zhou

et aL., 1996). It has also been shown that heterozygous null mice (Hmga2+1 ) have a 50 %

reduction in expression compared to wild type mice (Zhou et al, 1995). This signifies

that the wild-type allele does not compensate for loss of function from the deleted allele

(Zhou et al., 1995). This information provided a link between Hmga2 expression and

growth. This link was further exemplified by a measurable Hmga2 expression in fat

deposits of normal mice after a weeklong high fat diet, whereas those on a standard diet

did not express the Hmga2 gene (Anand and Chada, 2000). Furthermore, genetically

altered mice that lacked leptin (Lepob/Lepob) or its receptor (LeprdbLeprdb) and are

therefore genetically obese, showed a detectable level of Hmga2 expression (Anand and

Chada, 2000). Expression was not detected in any other tissues besides fat deposits.

Further analysis using homozygous and heterozygous Hmga2-null mice on a high fat and

standard diet demonstrated a haploinsufficiency effect between wild-type and Hmga2t+

mice upon weight gain at 30 weeks of age (Anand and Chada, 2000). This demonstrated

that mice could avoid obesity after being fed a high fat diet if one or both Hmga2 alleles

are absent. The same mutations were also expressed in LepOb/Lepob mice (Anand and

Chada, 2000). The results showed that there is a reduction in weight gain of the Hmga2,
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Lep/ Lepb mice when compared to Lep /Lepb mice alone. These mice were

nevertheless heavier than their Hmga2'- counterparts indicating another pathway in fat

proliferation that is independent of Hmga2 (Anand and Chada, 2000).

Overexpression of HMGA2 can result in malignant neoplasias in human tissue.

Rdijer et al. described a carcinoma ex pleomorphic adenoma (CexPA) in which HMGA2

was amplified along with a centromeric murine double minute 2 (MDM2) gene (Roijer et

al., 2002). Pleomorphic adenoma is usually a benign tumor, which affects the salivary

glands (Wesylik et aL, 2001).The benign neoplasm can undergo malignant

transformation in select cases, with the frequency of occurrences dependent on duration

before treatment (Roijer et al., 2002, Bradley, 2005) The characteristics of CexPA

involve a high level of recurrence and risk of metastases. It has been identified that 8 %

of benign PA karyotypes involve rearrangements of 121 4-15 representing a region that

includes both HMGA2 and MDM2 genes (Roijer et al., 2002). In the case of CexPA, the

breakpoint occurred centromeric to HMGA2 and the entire gene was translocated to the

der (10) marker. In some cases both the HMGA2 and MDM2 genes were deleted from the

der (10) and formed visible extrachromasomal dmin. Further integration of these genes

into additional chromosomal sites created homogenously stained regions (hsr). Southern

blot analysis confirmed that in all of these cases the HMGA2 and MDM2 genes were

amplified without any gross rearrangements and the entire gene was therefore amplified.

Further analysis of the tumor using fluorescence in situ hybridization revealed a high

level of amplification, mainly within the carcinomatous region of the tumor. R6ijer et al

therefore concluded that overexpression of HMGA2 was linked to a malignant phenotype

(Roijer et al., 2002).
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HMGA2 is also amplified and overexpressed in cases of human prolactinomas

(Finelli et al., 2002). This relationship was evaluated using transgenic mice carrying

either the wild-type or the truncated version (lacks the C-terminal domain) of the Hmga2

gene (Finelli et al., 2002). These genes were put under the control of the cytomegalovirus

promoter. It was found that a high percentage (85 %) of the female mice acquired

pituitary adenomas which secreted growth hormones and prolactin within the first 6

months (Finelli et al., 2002). The males developed tumors at a lower rate (40 %) and

these tumors did not arise until later in development (before 18 months). These findings

led to a possible connection between Hmga2 and pituitary adenomas (Finelli et al., 2002).

In the case of human prolactin-secreting pituitary adenomas, there is a high incidence of

trisomy of chromosome 12, which contains the HMGA2 gene. Indeed, further

investigation of such prolactinomas demonstrated that there is an increased quantity of

HMGA2 mRNA and protein (Finelli et al., 2002). The entire gene was overexpressed and

no gross rearrangement was evident. A high degree of resistance to dopaminergic drugs

was also developed, which is linked to a more aggressive tumor (Finelli et al., 2002). The

temporal and spatial expression of HMGA2 is therefore important for the normal

functioning of the cell.

Truncation of HMGA2

A truncated version of the HMGA2 gene involves a breakpoint within the third

intron, separating the three "AT hook" DNA binding domains from the acidic C-terminal

domain. Two independent research groups generated transgenic mice expressing the

truncated version. The first group used a novel embryonic stem cell approach where the

transcript was transfected into the embryonic stem cell AB2.2 under the control of the
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cytomegalovirus promoter (Battista et aL., 1999). G418-resistant clones were selected and

clones expressing the highest level of truncated HMGA2 were microinjected into

C57BL6/J mouse blastocysts and subsequently transferred to pseudopre ant females.

The resultant offspring were then crossed with wild-type mice and the offspring

generated contained a high expression level of truncated HMGA2. These mice showed a

giant phenotype that exhibited increased levels of retroperitoneal and subcutaneous white

adipose tissue (Battista et aL, 1999).

Another group created transgenic mice by microinjecting the truncated HMGA2

mRNA into a fertilized mouse embryo under the control of the H-2Kb (class I major

histocompatibility complex promoter) (Arlotta et aL, 2000). Again, the mice generated

showed a giant phenotype that manifested with an early increase in adipose tissue,

inflammation of the adipose tissue and a high incidence of lipomas. These findings

demonstrated that despite the ubiquitous expression of the truncated HMGA2 transcript,

the phenotype exhibits only within the adipose tissue (Arlotta et al., 2000). This

demonstrated that HMGA2 facilitates growth of adipose tissue.

These findings, using a mouse model have also been demonstrated in human

subjects. A recent study of an 8-year-old boy showed some of the same phenotypic

observations as in the murine model (Ligon et aL 2005). This subject had a de novo

pericentric inversion of chromosome 12, inv (12) (p1 1.22q14.3). The phenotypic

observations included: multiple subcutaneous lipomas, advanced endochondral bone and

dental ages, postnatal onset of extreme somatic overgrowth, persistent thrombocytopenia,

arthritis, a stable cerebellar tumor, brachydactyly and facial dysmo hism. Breakpoint

mapping studies revealed a breakpoint at 12 14.3 resulting in truncation of the HMGA2
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gene within the third intron which separates the three "AT hook" regions from the C

terminal (Ligon et al., 2005).

Fusion Products Involving HMGA2

The human HMGA2 gene maps to chromosomal location 12q14-q15 (Ashar et aL,

1996). Rearrangements involving HMGA2 normally occur within the third intron

separating the three "AT hook" domains from the C-terinal domain and the 3'

untranslated region (UTR). Many fusion partners have been identified for HMGA2 and

these protein rearrangements have been identified in a variety of benign tumors, mainly

of mesenchymal origin.

In lipomas the vast majority of rearrangements involving HMGA2 also involve

the gene at location 3q27-q28 (Petit et al., 1996). This gene is known as the lipoma

preferred partner (LPP) and represents a proline rich protein containing a leucine zipper

and three LIM domains (named from the Lin- 11, Isl-1 and Mec-3 genes) (Petit et al.,

1996, Freyd et aL., 1990) The HMGA2/LPP fusion protein is a result of a truncation of

the HMGA2 protein through deletion of the C-terminal domain and the 3'UTR. This

product was fused to the three LIM domains of the LPP protein due to deletion up to

either intron 6 (all three LIM domains with part of proline rich domain attached) or intron

8 (two LIM domains attached) (Petit et aL., 1996). The second protein fusion partner to

be identified for lipomas involving HAGA2 was that of the lipoma HMGA2 fusion

partner (LHFP) (Petit et al., 1999). LHFP is located at chromosomal region 13q12 and

represents a 200 amino acid long protein whose functions remain unknown. The fusion

involves the first three "AT hook" binding domains of HMGA2 and the last 69 amino

acids of LHFP (Petit et aL, 1999).
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The truncation of HMGA2 rather than the fusion of functional domains from

other proteins have been shown to be important in tumor formation. In lipomas a

rearrangement involving HMGA2 and the G-protein coupled receptor gene RDCI

occurred at t(2;12)(q35-37;q13-15) (Broberg et aL, 2002). The fusion entailed the joining

of the first three "AT hook" domains of HMGA2 with only one amino acid from RDC1

(Broberg et aL, 2002). This one amino acid was due to a stop codon downstream of the

RDC1 breakpoint. The resulting fusion protein brought about mainly a truncation of the

HMGA2 protein, no additional function was gained from the fusion as the HMGA2

protein acquired only one additional amino acid (Broberg et aL, 2002). This

demonstrated that the truncation of the HMGA2 alone could cause the same phenotype as

seen when the protein is sed with another protein partner.

Other tumors have arisen from rearrangements involving HMGA2 and include

lung harmatomas, soft tissue chondromas and uterine leimyomas (Stenman, 2005). No

common functions have been identified to link the fusion partner with the type of tumor

formed. Lipomas, for example are caused by fusion of different protein partners to

HMGA2 but cause a single phenotype (Petit et al., 1996, 1999, Broberg et aL., 2002). The

protein partner LPP fused to HMGA2 has also been discovered in other benign tumors as

well as lipomas (reviewed in Ste an, 2005). Fusions with LPP have been recognized in

pulmonary chondroid harmatomas and in soft tissue chondromas (reviewed in Stenman,

2005). These findings again point to the truncation of HMGA2 rather than the fusion to

another protein as the functionally significant event in the formation of a particular

tumor. The tissue type that the truncated protein is expressed in may then result in the

variety of tumors noted.
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C. High Mobility Group Protein 2- Structure and Expression

HMGA2 Gene in Humans and Mice and its Expression Pattern

The murine Hmga2 gene resides on chromosome 10 at the pygmy locus, named

due to a null-mutation resulting in a pygmy phenotype (Zhou et al., 1995). The human

HMGA2 gene is located at 12 1 4- 15, discovered due to multiple rearrangements at this

locus in human benign lipomas (Ashar et al., 1996).

The murine HMGA2 mRNA was first evaluated in 1991 (Manfioletti et al.,

1991). At this time only 3 kb of the possible 4.1 kb transcript was found. The remaining

1.1 kb fragment was thought to be present at the very far end of the 3' UTR (Manfioletti

et al, 1995). The transcript revealed an open reading frame (ORF) that encoded a protein

of 108 amino acids, high in levels of alanine, arginine, glutamic acid, glutamine, lysine,

proline and serine. The protein also contained a single tryptophan residue allowing for

spectroscopic analysis. Using this technique the molecular weight of the protein was

found to be 11,977 Da (Manfioletti et al., 1991) (Fig. 1). The cDNA was then cloned and

exposed a gene over 50 kb in length. The gene was found to contain 5 exons and 4

introns, each intron/exon junction followed the splice junction GT/AG rule (Manfloletti

et al., 1995, Breat ach et al., 1978). Each of the exons was discovered to encode for a

separate functional domain. Exon I encodes the 5' UTR, the ATG transcription start

codon as well as amino acids 1 through 37, which includes a single DNA binding

domain. The second exon encodes amino acids 38 to 66 and includes another DNA

binding domain. Exon three gives rise to a third DNA binding domain (amino acids 67-

83) and the fourth exon transcribes a short linker domain (amino acids 84-94). Finally the

fifth exon encodes the C-terminal domain (amino acids 95-108) and the 3' UTR
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(Manfioletti et aL, 1995). The total length of cDNA is 4655 bp in length, where the 5'

UTR is 1351 bp (Manfioletti et aL, 1995). This pattern of exons is also observed in the

human cDNA, which was first cloned from a human hepatoma cell line, PLC/PRF/5

(Chau et aL, 1995, Giancotti et aL, 1991). The cDNA contains 5 exons over a span of

more than 60 kb that gives rise to a 4.1 kb transcript; the transcript size is found to be

identical in size to the murine transcript (Ashar et aL, 1996). The human cDNA was first

found to contain an ORF of 330 bp, a 5'UTR of 812 bp and a 58 bp 3' UTR (Patel et aL,

1994). This was later increased to 854 bp of 5' UTR and 2919 bp of 3' UTR (Ashar et aL,

1996). Intron 3 for both human and mice is unusually long (>25 kb in humans), and as a

result is the site for many translocation events (Ashar et aL, 1996).

Figure 1: Amino acid sequence of murine HMGA2.

MSARGEGAGQPSTSAQGPAAPVPQRGRGRPRKlQ
QQEPTCEPSPKRPRGP|SKNKSPSKAAQKKAE TIG
LKRPRGPQPOVVOKKPAO ETESSESAEE_5

The three "AT hook" DNA binding domains are boxed with solid lines. The C-terminal

domain is boxed with dashed lines.

Murine Hmga2 5'UTR

Promoter analysis of the 5' UTR for both the murine and human genes revealed

no TATA or CAAAT box (Ashar ei al., 1996, Rustighi et aL, 1999). The murine 5' UTR

revealed two transcription initiation sites as well as binding sites for many transcription

factors. The downstreamn initiation site provides the basal activity for the gene. It is

characterized by a polypyrimidine/polypur~ine (ppyr/ppur) tract and is located around 83

bp upstream of the start site (Rustighi et aL, 1999, Schiltz et aL, 2003). Within this tract
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are binding sites for the transcription factors specificity protein 1 (Sp 1) and Sp3. Near the

Sp 1 site is the sequence TGGC that is a half site for CTF/NF- 1 (CCAAT-binding

transcription factor/nuclear factor 1). Sp3 has been shown to enhance the activating

ability of Sp1 but cannot activate transcription itself (Rustighi et al., 1999). The

ppyr/ppur tract has been shown to adopt non-B-DNA conformations resulting in melting

of the DNA in this area (Kohwi and Kohwi-Shigematsu, 1993) This allows the binding of

the single strand binding protein, polypyrimidine tract binding protein (PTB) (Rustighi et

al., 2002). The binding of the PTB maintains the open conformation of DNA aiding the

entry of the RNA polymerase. A balance between SpI and PTB binding occurs

depending on the conformation of the DNA and the stresses, such as supercoiling

(Rustighi et al., 2002). Sites for the binding of other transcription factors such as ATF,

Ets (epithelium specific) and E2F (family of transcription factors in higher eukaryotes)

are also present in this minimal promoter. There is in addition a conserved site for

Huntingtin interactin protein 1 (HIP 1) binding, 3 bp from the start site (Zhou et al.,

1996). An upstream initiation site is also present and is located -8.1 to -3.7 kb upstream

of the start site (Schiltz et al. 2003). This upstream site is thought to regulate the spatial

and temporal expression of the gene (Schiltz et al., 2003).

Human HMGA2 5' UTR

The human HMGA2 5' UTR is similar to the murine 5' UTR as there are two

separate transcription initiation sites (Patel et al., 1994, 1999, Chau et al., 1995). The

start site is located within a GC rich region next to an E box (CACGTG) that

cooperatively binds the transcription factors transcription factor II-1 (TFII- ) and

upstream stimulatory factor (USF) (Ashar et al., 1996). A continuous tract of (CT)28
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located at -252 is interrupted by a single UT and omission of a single C. There is another

tract, (CA) 19 and a GC box that is located 200 bp upstream of the start site (Patel et aL.,

1994, Chau et al., 1995). The GC box is a site for binding of transcription factor Sp1 and

is the positive regulatory element for the transcription initiation site (Chau et al., 1999).

Many other binding sites for transcription factors are present throughout the 5' UTR

including AP2, NFKB, Myc, still life protein (SIF) and polyoma virus enhancer A-

binding protein (PEA) (Ashar et al., 1996). Another promoter is thought to exist between

-1125 and -868 upstream of the start site (Chau et al., 1999).

Human and Murine 3' UTR

The 3' UTR has been shown to be important in regulatory control. The fact that

the truncation of the gene, including the 3' UTR results in benign tumors, suggests that

the gene may be under regulatory control within the 3' UTR (Borrmann et al., 2001)

Upon truncation of the gene at the 3' UTR, activity using a luciferase assay increases,

which suggests that the gene may be under negative control via this region (Borrmann et

al., 2001). In fact four-tandem repeats of GGGGT followed by nine U's (one A

interruption) and two more tandem UUUUT repeats, have been found in the human 3'

UTR which are important in regulation (Chau et al., 1995).

In humans three possible polyadenylation sequences have been identified (Chau et

aL., 1995). In the mouse two possible polyadenylation sequences have been found, one 18

bp downstream of the poly(A) tail and the second 75 bp further downstream of the first.

There is a preference for the first signal due to a TUTGTTCA sequence 31bp

downstream of this first signal. Together these two sequences are important for an

effective 3' terminus of the mRNA (Manfioletti et al., 1995).
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Transcription of the gene is downregulated by histone deactylation inhibition

using the inhibitor trichostatin A (TSA). TSA decreases the expression of protein as well

as mRNA and therefore the regulation of the gene was determined to occur at the post-

transcription level (Ferguson et aL., 2003). Hmga2 is also reduced by regulation of alpha-

fetoprotein/mitogen activated or extracellular signal-regulated protein kinase/extracellular

signal-related kinase (Raf/MEK.ERK) signaling pathway (Li et al., 1997). This pathway

is involved in cellular proliferation and oncogenesis. Persistent activation of Raf-1

produces a delayed increase in Hmga2 transcription of roughly 2 hours. This is in

keeping with Hmga2 being a delayed early response gene (Li et ael., 1997).

Hmga2 expression in mice has been observed in embryos from 10.5 to 15.5 days

postcoitum (d.p.c) (Zhou et aL., 1996). Expression after this time-point dramatically

decreases, and in newborns is observed only within the stomach and large intestine This

expression is drastically reduced compared to fetal expression levels (Zhou et al., 1996).

In mature adult mice the protein was undetectable in all non-tumor tissues (Zhou et ai,

1996). Expression in the brain and spinal cord are limited and faint at all time points

(Hiring-Folz et aL., 1998). The expression in brain is observed only in the ventricularus

lateralis of the telencephalon at stages 12.5 and 14.5 d. p. c. and the ventricular lining of

the cerebellum at stage 12.5 d.p.c. (Hiring-Folz et aL, 1998). This limited expression in

the brain points to a reason why the pygmy mice (null Hmga2 expression) are 50 %

reduced in body weight yet the brain region is largely unaffected (Zhou et al., 1995). In

humans the expression is similar to that of the mouse emb o. HMGA2 is not expressed

in most adult human tissues (Rogalla et aL., 1996). The expression has been seen in tumor

tissues such as those of the hepatoma cell lines PLC/PRF/5, Hep G2 and Hep 3B (Patel et
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aL, 1994). This expression indicated that the aberrant expression of Hmga2 is involved in

tumorigenesis.

HMGA2 Protein Structure

As previously described HMGA2 belongs to the high mobility group protein A

family. HMGA2 itself has a molecular weight of around 12 kDa (Manfioletti et al.,

1991). The protein contains 23 % basic (arginine and lysine) and 11 % acidic (aspartic

acid and glutamic acid) residues. However, when examining the individual domains the

charge distribution is uneven. The "AT hook" domains contain 68 % basic amino acids

and the C-terminal domain contains 58 % acidic amino acids (Fig. 1) (Manfioletti et al,

1991). This charge distribution allows the protein to adopt unique structures upon binding

to DNA or other proteins.

The protein contains three "AT hook" DNA binding domains that bind to the

minor groove of AT rich regions of DNA (Reeves and Nissen, 1990). All "AT hook"

DNA binding domains have the consensus sequence PRGRP and are then characterized

into three types due to the flanking regions surrounding the consensus sequence (Aravind

and Landsman, 1998, Dragon et aL 2003). Type I "AT hook" DNA binding domains are

characterized by predominantly basic residues C-terminal to the core consensus

sequence. A glycine residue is also the most likely amino acid to be present two positions

downstream of this consensus sequence (Aravind and Landsman, 1998). Type II domains

characteristically have a high probability of a lysine residue rather than a glycine two

positions downstream of the consensus sequence (Aravind and Landsman, 1998). Type

III domains have features of both Types I and I. It is similar to Type II in that there is a

high probability of the presence of a lysine residue two positions downstream of the
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PRGRP core sequence. However, the Type III "AT hook" DNA binding domains also

have a high presence of basic residues much like the Type II domains (Aravind and

Landsman, 1998). For the "AT hook" DNA binding domains of HMGA2 the second "AT

hook" domain would therefore be Type I and the first and third "AT hook" domains Type

IL

The HMGA2 protein itself has been shown to have no discernable structure (Lehn

et aL, 1988, Huth et aL, 1997) The protein is mainly an extended structure with roughly

20% -sheet content (Baez and Leng, unpublished results). Nuclear magnetic resonance

(NMR) analysis has shown that upon binding to the minor groove of AT rich DNA, the

"AT hook" domain forms a structured conformation (Huth et aL, 1997). When the "AT

hook" DNA binding domain interacts with the minor groove of AT DNA it forms a C-

shaped structure (Huth et aL, 1997). The central three amino acids of the consensus

PRGRP adopt an extended structure with the arginine residues interacting with the DNA

bases deep in the helix. The flanking proline residues are considered to provide support to

maintain the structure (Huth et aL, 1997). Other residues flanking the consensus sequence

could also have loose contacts with the DNA, adding further support to the binding

(Geierstanger et a!. 1994).

Maher and Nathans reported that high affinity binding requires multivalent

attachment using two or three of the "AT hook" DNA binding domains spaced suitably

apart (Maher and Nathans, 1996). They found that two AT rich DNA sites spaced less

than 8 bp apart could be utilized as a high affinity-binding site for one HMGA protein.

Spacing between the tracts any more than 8 bp would result in two low affinity-binding

sites. Although HMGA proteins are flexible and able to bind to AT tracts with different
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length intervals the maximum length of flexibility is 8 bp (Maher and Nathans, 1996).

Two models have been proposed for the binding of a single protein to multiple AT tracts.

The first model, termed the flexible model, involves the use of the flexible polypeptide

chain between the "AT hook" domains. In this model the polypeptide chain allows the

"AT hooks" to bind to tracts of different spacing up until the maximum flexibility of the

polypeptide chain (Maher and Nathans, 1996). The second model, the alternate model

proposed that combinations of any two of the three "AT hooks" are involved in the

binding of differently spaced AT tracts (Maher and Nathans, 1996).

The binding site length of a single "AT hook" is 5 bp long and as the protein

contains three such domains, the binding site length for the entire protein was determined

to be 15 bp long (Cui et al., 2005). The HMGA2 protein has been shown to bind with

high affinity to both poly(dA-dT)2 and poly(dA)poly(dT) (Cui et al., 2005). The binding

energetics of these interactions is dissimilar. The binding of both the AT hook and the

entire HMGA2 protein to poly(dA-dT) 2 is enthalpy driven, whereas the binding to

poly(dA)poly(dT) is entropy driven (Cui et al., 2005). This difference is due to

enthalpy/entropy compensation where HMGA2 binding causes release of more water

molecules upon binding to poly(dA)poly(dT) than upon binding to poly(dA-dT) 2 (Cui et

a., 2005). The large change in heat capacity suggests that changes in hydration, as well

as protein folding due to DNA binding or charge-charge interactions could be important

factors (Cui et al., 2005).

These "AT hook" domains have also been found in other species such as

Chironomus tentans (Claus et al., 1994) and in other types of proteins, for example the

D1 protein in Drosophila melanogaster (Ashley et al. 1989) and muNTS proteins in mice
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(Wegner et aL, 1989). Proteins can artificially be formed by combining multiple copies of

the "AT hook" DNA binding domains into a single protein; these proteins are termed

multiple "AT" hook (MATH) proteins (Strick and Laemrnmli, 1995). MATH proteins have

been shown to attach to scaffold attachment regions (SARs), which are frequently

associated with enhancer elements (Girard et aL., 1998) These MATH proteins were

shown to displace scaffold proteins and ultimately prevent chromosome assembly (Stick

and Laemmli, 1995).

The earliest discovered HMGA protein known as a-protein was demonstrated as

binding to the minor groove of 5-6 bp of AT rich DNA with wide sequence variations

(Solomon et aL, 1986). Solomon et aL indicated that a-protein may therefore recognize

some conformational aspect of the minor groove of AT DNA rather than its exact

sequence (Solomon et aL, 1986). Further studies comparing binding of free DNA against

that of DNA wrapped around a nucleosome indicated that the preferred binding site for

HMGA proteins altered when the DNA conformation changed (Reeves and Wolffe,

1996). In fact, when a-satellite DNA is wrapped around a nucleosome, the AT tracts line

up in phase to allow for HMGA protein binding. Satellite DNA is composed of long

tandem repeats and proper spacing of AT tracts can phase to be ideal high affinity

binding sites for HMGA proteins (Strauss and Varshavsky, 1984). Binding of HMGA

proteins on DNA wrapped around a nucleosome results in an alteration of the number of

base pairs per turn of the DNA in the area of protein binding (Reeves and Wolffe, 1996).

Other structures on which HMGA proteins bind to include, four way junctions, such as

those of Holliday junctions (Reeves and Wolffe, 1996). Competition for binding to these

junctions occurs between HMGA proteins, HMGB 1 and the histone H1. All three
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proteins bind to the center of the junction; however, HMGA has the highest affinity for

the junction and can therefore displace both Hi and HMGB 1 from the DNA (Reeves and

Wolffe, 1996). This "AT hook" is also able to confer its binding ability on chimeric

proteins. Domain swapping experiments using HMGB1 and the "AT hook" of HMGA1

have shown that the binding abilities of the HMGB 1 protein differs from that of the

HMGA1 protein upon domain swapping of the DNA binding domains (Banks et al.,

1999). This experiment revealed that the "AT hook" domain could function in a protein

with very little structure (HMGA) and also in a structurally rigid protein (HMGB1)

(Banks et al., 1999).

Binding of the "AT hook" to DNA can induce conformational changes in the

DNA double helix. As already discussed, binding of the protein to DNA wrapped around

a core particle of a nucleosome can induce conformational changes in DNA at the area of

protein binding (Reeves and Wolffe, 1996). Changes in DNA conformation have been

shown to be influenced by protein stoichiometry (Slama-Schwok et aL., 2000). Binding of

HMGA1 to a-satellite DNA at a 1:1 ratio does not introduce any major changes into the

DNA structure. However, by increasing the protein to DNA binding ratio to 3:1, the

natural bend of the DNA can be increased or reduced depending on sequence (Slama-

Schwok et al., 2000). Alterations in DNA supercoiling can be introduced by protein

binding, which is dependent upon molar ratios (Nissen and Reeves, 1995). HMGA

binding to closed circular DNA at low molar ratios introduce positive supercoils, whereas

at higher molar ratios negative supercoils are established. It is believed that at low mol

ratios the protein introduces a bend in the DNA, and when the molar ratio increases, the

binding causes both bending and unwinding of the DNA resulting in negative supercoil
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formation (Nissen and Reeves, 1995). The negative C-terminal domain influences the

topology, as the truncated protein (without the C terminal domain) binds with a higher

affinity and only introduces negative supercoils into the DNA (Nissen and Reeves, 1995).

Previous Research

Procedures for the purification of both the wild type HMGA2 (wt HMGA2) and

the truncated mutant protein HMGA2 (HMGA2A95-108) were developed and

implemented previously in this lab (Cui et aL, 2005). Three regions composed mostly of

positively charged amino acids are present (the three "AT hook" regions) towards the N-

terminus of the protein while the C-terminus of the protein is mainly negatively charged.

These regions can be exploited in the purification process, as the protein is capable of

binding to both anion and cation exchange columns such as SP-Sepharose and Q-

Sepharose respectively (Cui et aL, 2005). The basic procedure involves using 1 mM

IPTG to induce protein expression from BLR (DE3) cells with the appropriate plasmid

containing the Hmga2 gene. Protein expression was evaluated using 15% SDS PAGE.

Cells were then lyzed and sonicated before being subjected to SP-Sepharose ion

exchange chromatography, followed by Q-Sepharose ion exchange chromatography.

The truncated protein HMGA2A95-108 lacks the C-terminal domain and would

therefore not bind to an anion exchange column such as Q-Sepharose. A DEAB-

Sepharose column was used as a replacement for the Q-Sepharose column to remove

nucleic acid contaminants. The procedure is rapid and can be completed within three

days, producing milligrams of protein. The purity of the protein c be as high as 98% for

HMGA2 and 95% for HMGA2A95-108 evaluated using 15% SDS PAGE (Baez and

Leng, unpublished results). The same procedure used for wtHMGA2, was used to purify
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the mutant proteins HMGA2Q37M, HMGA2C4IG, HMGA2I71M and HMGA2Q85M in

this current research.

Optical properties of both the wild type and truncated proteins were also

evaluated. Both proteins contain a single tryptophan residue at position 70 and therefore

give a maximum absorbance under ultra-violet light at 280 nm (Mach et al., 1992). The

extinction coefficients of both proteins were determined to be 5810 cm'M1 for both

proteins (Gill and von Hippel, 1989). Ionic strength was found to have no effect on the

extinction coefficient for either protein (Baez and Leng, unpublished results).

Circular dic oism (CD) analysis was used to study HMGA2's secondary

structure (Beaz and Leng, unpublished results). A strong peak at 200 nm was observed

and suggests an unordered structure. In addition, this data was analyzed using three CD

analysis programs, namely CONTIN, CDSSTR, and SELCON3 (Sreerama and Woody,

2000). The cumulative data from these programs suggests that HMGA2 may contain

about 15-20% -sheet conformation (Beaz and Leng, unpublished results).

Sedimentation velocity analysis was implemented to analyze the sedimentation

velocity, s, and the molecular weight of the HMGA2 protein (Grievink et al., 1974) The

sedimentation velocity was found to be 1.711 s (95% confidence interval: 1.708 s-1.715

s) and the molecular weight was calculated as 23.5 kDa (Baez and Leng, unpublished

results). The molecular weight determined by this analysis is roughly double the expected

molecular weight of 12 kDa, calculated using the HMGA2 amino acid sequence (Beaz

and Leng, unpublished results). Therefore this suggests that the protein exists as a

homodimer when free in solution.
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Gel filtration studies were performed in order to calculate the Stokes radius (Rs)

of both the wild type and truncated HMGA2 proteins (Horiike et aL, 1983). When

comparing the calculated Stokes radius for the wild type HMGA2 protein to a monomeric

globular protein, ribonuclease A, the Stokes radius is much larger. Ribonuclease A is

13.7 kDa and therefore understood to be similar to HMGA2 for comparison (Smyth et

al., 1963). The Stokes radius of 30.2 for HMGA2 compared with 16.4 A for

ribonuclease A suggests that the wtHMGA2 protein exists as a homodimer, a non-

globular protein or both. This is due to the increased size when compared to a

monomeric, globular protein. The estimated molecular weights are 45 kDa for

wtHMGA2 and 33.9 kDa for the truncated HMGA2 protein, again suggesting a non-

monomeric protein (Beaz and Leng, unpublished results).

Preliminary experiments were also performed using the chemical cross-linkers

EDC and DMS. EDC is a zero-length cross-linker while DMS is a homobifunctional

imidoester cross-linker that only allows binding between primary amines. Experiments

involving wtMGA2 and EDC show a homodimer formation as well as higher homo-

oligomers within an SDS polyacrylamide gel. The monomer also appears to run at a

faster rate than the control protein, which suggests that the C-terminal domain may

interact with other regions within the same protein. Even though the molecular weight

would be the same, the interaction would serve to alter the shape of the protein, thus

allowing it to run faster on an SDS polyacrylamide gel (Beaz and Leng, unpublished

results). Experiments involving the truncated HMGA2 protein and EDC did not show

homodimer or higher oligomer formation, suggesting that the C-terminal tail may play an

important role in homodimer formation (Beaz and Leng, unpublished results). The
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proteins were also tested using the cross-linker DMS. The same basic pattern as found

with EDC was again observed with DMS. The cross-linking ability of DMS with

HMGA2 was lower than that found with EDC. The truncated HMGA2 protein again

showed no homodimer formation. This once more suggests a role for the C-terminal in

homodimer formation (Beaz and Leng, unpublished results).

Hypothesis and Objectives

In this thesis, our central hypothesis is that HMGA2, an intrinsically unstructured

protein, is a homodimer both as a free protein and upon binding to DNA. The

electrostatic interaction between the positive charged "AT hooks" and the negatively

charged C-terminus is the mechanism of the HMGA2 homodimer formation.

The specific aims for this project are to:

* Determine that the HMGA2 protein exists as a homodimer when free in solution

* Identify the structural elements involved in the HMGA2 homodimer formation

* Determine the stoichiometry of binding between HMGA2 and duplex DNA

containing either a single or multiple AT-rich sequences.

Significance of Research

HMGA2 is a medically important protein. Aberrant expression of the full-length,

truncated or fusion protein causes benign or malignant tumors. This study involves

determining the biochemical and biophysical properties of the protein. The research is

significant since we discovered that HMGA2 is a homodimer and the homodimer

formation requires the negatively charged C-terminus. This may explain why over-

expression of the truncated HMGA2 protein without the C-terminus causes tumor

formation. These findings may be utilized in order to develop anticancer drugs, which
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target the functionally important structural properties of the protein. The HMGA2 protein

may have a potential forensic application in determining fetal age for the legal

implications of abortion or for identifying fetal tissue. The techniques used in this

research also have a role in Forensic Science in areas which include Forensic Biology and

Forensic Chemistry.
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CHAPTER II

MATERIALS AND METHODS

Materials

Phenylmethylsulphonylfluoride (PMSF), dithiothreitol (DTT), 2-

Morpholinoethanesulfonic acid (MES), sodium dibasic, sodium monobasic cyanogens

bromide, formic acid, tricine, acetic acid, and ethidium bromide were commercially

obtained from Sigma-Aldrich. Kanamycin, lysozyme, dimethyl sulfoxide (DMS0),

Magnesium chloride, agarose, Tris (hydroxymethyl) aminomethane,

ethylenediaminetetraacetic acid (EDTA), Bis acrylamide, acrylamide, ammonium

phosphate, potassium monobasic, sodium dodecyl sulphate (SDS) and N,N,N,N -

Tetramethyl-Ethylenediamine (TEMED) were commercially obtained from Omnipure,

EM Science, EMD Chemicals Inc. (Gibbstown, NJ). The QIAquicko gel extraction kit,

QIAquick® PCR purification kit and QIAprepo spin miniprep kit were purchased from

Qiagen (Valencia, CA). New England biolabs (Beverly, MA) commercially provided all

restriction enzymes, ligase, bovine serum albumin (BSA), and all ladders and buffers

provided for these enzymes. Q-Sepharose FF, SP-Sepharose FF, dNTPs, G-50 Superfine

Sephadex, Sephac 1 S-100 HR, low molecular weight gel filtration calibration kit and

poly(dA-dT)2 were purchased from Amersham Biosciences (Piscataway, NJ). Pierce

(Rockford, IL) commercially supplied cross-linkers disuccinimidyl suberate (DSS) and 1-

ethyl-3-(3-dimethylaminopropyl)-car-bodiimide (EDC) as well as sulpho-N-

hydroxysuccinimide (Sulpho-NHS). Glycerol, potassium dibasic, sodium chloride and

isopropyl-b-D-thiogalactopyranoside (IPTG) were purchased from Fisher (Fairlawn, NJ).
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MWB Biotech, Inc. (High Point, NC) commercially provided all primers and oligos, and

pET3Oa was purchased by Novagen (Madison, WI). Pfu DNA polymerase was purchased

from Stratagene Corporate (La Jolla, CA) while yeast extract and tryptone were

purchased from BD (Sparks, MD) A peptide containing the negatively charged C-

terminus (H-CETEETSSQESAEED-OH)), was custom-synthesized by Advanced

ChemTech, Inc. All dialysis tubing was commercially obtained from BioDesign Inc. of

New York (Carmel, NY) and the DNA stain Sybr Gold® and Tetramethylrhodamine-5-

maleimide (TMR) was commercially obtained from Molecular Probes (Eugene, OR)

Site-Directed Mutagenesis

The plasmid pMGMl, which contains a full length murine Hmga2 gene, was

created previously in this lab using PCR based site-directed mutagenesis and was,

described previously (Cui et al., 2005).

A brief outline of the PCR site-directed mutagenesis used in this study is as

follows. For each mutant created, a total of three PCR reactions are required in addition

to four primers. A 27mer oligonucleotide, namely FL#20 was composed and created.

This oligonucleotide is complimentary to the first 20 bases at the 5' end of the murine

Hmga2 gene. Also, at the 5' ending of this oligonucleotide are 7 bases, which contain an

NdeI restriction enzyme site. In addition, another 27mer oligonucleotide was composed

and created, namely FL#21 This oligonucleotide is complimentary to the final 15 bases

at the 3' end of the murine Hmga2 gene. Also at the 5' end of this oligonucleotide is the

final 15 bases that contain a aoI restriction enzyme site along with a TAG stop codon.

The final two primers contain the required mutation in addition to complimentary bases

either side of the mutation (Table 1).
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The DNA template pMGM1 was used for the first 2 PCR reactions. To create

pLKE4, primers FL#20 and FL#102 were used in PCR 1 and primers FL#21 and FL#101

were used in PCR 2. The reactions were carried out using an MWG-Biotech

Thermocycler primus96. The polymerase used was Pfu Turbo DNA polymerase, which is

thermostable and has proofreading capabilities to avoid unnecessary mutations. A total

reaction volume of 50 pl was used for each PCR reaction that contained 100 ng of

template DNA (pMGM 1), 20 pmol of each primer, 50 pM of each dNTP, 1x BSA, 2.5 U

of Pfu polymerase and 1 x Pfu reaction buffer supplied by the vendor. The reaction was

initially heated to 95"C for 3 minutes. This was followed by a denaturing step at 95'C for

30 seconds, annealing at 55 0C for 1 minute and finally an extension step at 72 C for 1

minute, these three steps were cycled 25 times. A further extension at 720C for 10

minutes was performed at the end of the procedure to ensure extension of the entire

region. The PCR products from both reactions were analyzed by running both a 2 %

agarose gel and using 6 % polyac lamide gel electrophoresis (PAGE). The products

were purified from the 2 % agarose gel using a Qiagen gel purification kit. A third PCR

was performed using the products of the first two PCR reactions as templates and primers

FL#20 and FL#21 that provide the complimentary sequence to the ends of the Hmga2

gene. The conditions for the third PCR reaction were as described previously. The

product of the third PCR reaction was purified using Qiagen PCR purification kit. The

purified product was digested using the restriction enzymes Ndel and XhoI and the

digested product was ligated into the vector pET30a at the NdeI and XhoI sites. The

plasmid was sequenced at MWG Biotech lab to confirm the desired mutation. This

plasmid was constructed in order to over-express the mutant protein HMGA2Q85M
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where the glutamine amino acid residue at position 85 was replaced with a methionine

residue.

Three additional mutant plasmids were constructed, pLKE5, pLKE6 and pLKE7,

which produced proteins, HMGA2I71M, HMGA2Q85M and HMGA2C41G

respectively. The template DNA pMGM1 was used for each mutant along with specific

primers for each mutation (Table 2). The PCR conditions used were the same as

described above. All PCR products were digested using the restriction enzymes NdeI and

XhoI and were subsequently ligated into the NdeI and XhoI sites of vector pET30a.

Table 1: PCR Based Site Directed Mutagenesis Primers

FL# Sequence

20 5'- CAGGATCCATATGAGCGCACGCGG TGAGGGC-3'

21 5'-CATCTCGAGCTAATCCTCCTCTGCGGA-3'

101 5'-CCCAGGAAGCAGCAGATGGAGCCAACCTGTGAGC-3'

102 5'-GCTCACAGGTTGGCTCCATCTGCTGCTTCCTGGG-3'

103 5'-GAAGAAAGCAGAGACCATGGGAGAAAAACGGCCAAG-3

104 5'-CTTGGCCGTTTTTCTCCCATGGTCTCTGCTTTCTTC-3'

105 5'-CAGACCTAGGAAATGGCCAATGCAAGTCGTTCAGAAGAAGCC-3'

106 5'-GGCTTCTTCTGAACGACTTGCATTGGCCATTTCCTAGGTCTG-3'

206 5'-CAGCAGCAAGAGCCAACCGGTGAGCCCTCTCCTAAGAGAC-3'

207 5' GTCTCTTAGGAGAGGGCTCACCGGTTGGCTCTTGCTGCTG-3'
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Table 2: Mutants created using PCR site-directed mutagenesis. The plasmid name,

mutation, primers and protein name are given for each mutant produced.

Plasmid Name Mutation Primers Protein Name

pLKE4 Q37 to M37 FL#20, 21, 101, 102 HMGA2Q37M

pLKE5 171 to M71 FL#20, 21, 103, 104 HMGA2I71M

pLKE6 Q85 to M85 FL#20, 21, 105, 106 HMGA2Q85M

pLKE7 C41 to G41 FL#20, 21, 206, 207 HMGA2C4IG

Purification of HMGA2 Mutants

The HMGA2 protein has positively charged 'AT-hook' regions and a negatively

charged C-terminal domain. These properties allow the protein to be purified by a simple

procedure. A combination of using the cation exchange resin, SP-Sepharose (binding the

positively charged region) and the anion exchange resin, Q-Sepharose (binding the

negatively charged C-terminus) results in producing pure HMGA2 protein (Cui et aL,

2005).

The mutant plasmids described above were transformed into Escherichia coli (E.

coli) host strain BLR (DE3) in order to over-express the protein. The transformed BLR

(DE3) strain was then grown overnight in Luria-Bertani (LB) broth containing 50 pg/ml

of the antibiotic kanamycin. The resultant cell stock was transferred to Terrific Broth

(TB) containing 50 pg/ml of kanamycin. Cells were grown by shaking at 37 0C and

monitored by measuring D 95 using an Amersham Ultraspec 2000 UV-VIS

spectrophotometer. Measurements were recorded every hour until the D reached 0.6-

0.7 and the protein was then expressed by adding 1 mM of isopropyl-p-D-
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thiogalactopyranoside (IPTG). The cells were incubated by shaking at 37"C for a further

3 hours and the 0Ds 95 was monitored every hour. The cell stock solution was centrifuged

at 4 C, 4,000 rpm for 25 minutes. The supernatant was discarded and the pellet air-dried.

The cell pellet was subsequently resuspended in 5 ml per gram of ice-cold lysis buffer

(50 mM sodium phosphate, pH 8.0, 300 mM NaCl, 0.5 mM PMSF, 0.1 mM DTT) and 1

mg/ml lysozyme was added. The cell solution was incubated on ice for 60 minutes before

snap-freezing in liquid nitrogen and storing in a -80"C freezer overnight. The frozen cells

were thawed on ice and the salt concentration was altered to 1 M by the addition of solid

NaCl. The solution was sonicated on ice at 300 W, 8 times for 10 seconds with a 10

second interval between each sonication or until the viscosity had significantly decreased.

The resultant solution was centrifuged at 40 C, 16,000 rpm for 20 minutes. The

supernatant was saved while the pellet was discarded. The supernatant was dialyzed

against buffer 1 (50 mM sodium phosphate, pH 8.0, 10 % glycerol, 0.5 mM PMSF, 0.1

mM DTT) plus 200 mM NaCl overnight at 4"C. A 40 ml SP-Sepharose column was

equilibrated with 500 ml buffer 1 plus 200 mM NaCl and the dialyzed solution was

loaded onto the column. The column was washed with 120 ml buffer 1 plus 300 mM

NaCl. Applying a salt gradient using 300 ml buffer 1 plus a gradient of 300 mM to 800

mM NaCl was then used to elute the HMGA2 protein. Peak fractions were first identified

by measuring 0D 2 0 and were confirmed electrophoretically using 15 % SDS-PAGE.

Peak fractions were pooled and dialyzed against buffer 2 (50 mM sodium phosphate pH

8.0, 10 % glycerol, 0.5 mM PMSF, 0.1 mM DTT) as well as 20 mM NaCI, overnight at

40C. A 40 ml Q-Sepharose column was equilibrated using 500 ml buffer 2 plus 20 mM

NaCl. The dialyzed solution was then loaded onto the Q-Sepharose column. A salt
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gradient of 20 mM to 300 mM NaCl in 300 ml of buffer 2 was used to elute the HMGA2

protein. Peak fractions were identified by measuring 0D 2 80 and were confirmed

electrophoretically using 15 % SDS-PAGE. Peak fractions were pooled and dialyzed

against buffer 1 plus 200 mM NaCl overnight at 40C. A small 5 ml SP-Sepharose column

was used to concentrate the protein. The column was equilibrated with 100 ml of buffer 1

as well as 200 mM NaCl. The dialyzed fractions were loaded onto the column. The

protein was eluted using buffer 1 plus 800 mM NaCl collecting fractions of

approximately 400 pl. The protein was identified and the concentration determined by

measuring 0D 280. Confirmation of the purity of the protein was determined using 15 %

SDS-PAGE.

Chemical Cross-linking

A zero-length cross-linker 1 -ethyl-3-(-3-dimethylaminopropyl) carbodiimide HCl

(EDC) and an 11.4 A length cross-linker disuccinimidyl suberate (DSS) were used to

cross-link HMGA2 and all the mutant proteins.

1-Ethyl-3-(-Dimethylaminopropyl) Carbodimide HCi (EDC)

HMGA2 proteins were incubated against MES buffer (100 mM MES, pH 5.5, 50

mM NaCl) overnight. A stock of 100 mM EDC was freshly prepared; 10 mM final

concentration of EDC was used along with approximately 50 pM protein in MES buffer,

The protein/EDC solution was incubated at room temperature for 2 hours. The reaction

was quenched using 100 mM Tris (pH 7.5) and then filtered by G-50 Sephadex filtration

equilibrated with MES buffer pH 5.5 to remove excess cross-linker. The resultant cross-

linked protein was evaluated using 15 % SDS PAGE. Monomers and dimers of each

protein were separated using 15 00 SDS PAGE. The dimers were extracted from the gel
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by excising the band and placing in dialysis tubing. The protein was removed into 1x

SDS PAGE running buffer by the use of 100 V of electricity for a period of 2 hours.

A duplex was formed using oligos manufactured from MWG biotech Inc. The

oligo FL123 (5'GsCAISCG 53') was duplexed with oligo FL124 (5'C 5GT 5GC53') along

with 50 mM NaCi by heating a waterbath to 950 C and allowing to cool overnight. The

duplex formation was analyzed using 20 % PAGE.

The protein HMGA2C41G and the DNA duplex were dialyzed against a 20 mM

sodium phosphate buffer (pH 7.0) plus 180 mM NaCl. A 2:0, 2:1 or 1:1 protein to DNA

ratio was used with a 20 pM protein concentration. The reaction was incubated for 30

minutes at room temperature before adding 10 mM EDC and 5 mM Sulpho-NHS. The

reaction was then continued for a further 2 hours at room temperature and was stopped by

adding 100 mM Tris (pH 7.5) followed by filtration through a Sephadex G-50 column

equilibrated with 20 mM phosphate buffer (pH 7.0) and 180 mM NaCl. The reaction was

analyzed using 15 % SDS PAGE.

The reaction was proceeded as described above except oligo FL123-124 were

replaced by poly(dA-dT) 2 . The cross-linking reaction was examined using 15 % SDS

PAGE

Disuccinimidyl Suberate (DSS)

HMGA2 proteins were incubated overnight in 10 mM sodium phosphate buffer

pH 9.0 with 50 mM NaCl. A stock solution of 100 mM DSS was freshly prepared

dissolved in DMS0. A final concentration of 10 mM DSS was used to cross-link

approximately 40 pM protein in phosphate buffer. The reaction was incubated at room
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temperature for 2 hours and quenched by the addition of 120 mM Tris (pH 7.5). The

resultant cross-linked protein was evaluated using 15 % SDS PAGE.

The protein HMGA2C41G and the DNA duplex were dialyzed against a 10 mM

sodium phosphate buffer (pH 9.0) plus 50 mM NaCl. A 2:0, 2:1 or 1:1 protein to DNA

ratio was used with a 20 pM protein concentration. The reaction was incubated for 30

minutes at room temperature before the addition of 10 mM DSS. The reaction then

proceeded for a further 2 hours at room temperature and was quenched by the addition of

120 mM Tris (pH7.5). The reaction was analyzed using 15 % SDS PAGE.

The reaction was proceeded as described above except oligo FL123-124 were

replaced by poly(dA-dT) 2 . Also a protein concentration of 23 pM was used instead of

20 pM. The reaction was examined using 15 % SDS PAGE

Cyanogens Bromide Cleavage

All cross-linked and non-cross-linked proteins were dried using a speed-vac at

30 0C. One ml of 500 mM cyanogens bromide (CNBr) in 70 % formic acid was added to

the dried proteins, the reaction was incubated in a waterbath at 37 0C in the dark

overnight. The formic acid was evaporated off using a speed-vac at 30"C and the dried

pellet was washed 3 times with 200 pl of water. The resultant cleaved proteins were

evaluated using 15-20 % Tris tricine SDS-gradient gel electrophoresis (Scagger and von

Jagow, 1987).

Labeling of HMGA2 and C-terminal Peptide with Tetramethylrhodamine-5-

maleimide (TMR) and Gel Filtration

Tetramethylrhodamine-5-maleimide was used to label both the HMGA2 protein

and the C-terminal peptide by tagging the cysteine residue. A concentration of 100 pM of
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HMGA2 or the C-terminal peptide was incubated with 200 piM of TMR, 400 M TCEP,

and 50 mM phosphate buffer (pH 7.2) plus 20 mM NaCl for 2 hours at 24"C. Labeled

HMGA2 was subjected to purification by running twice through a pre-equilibrated

Sephadex G-50 Spin column, equilibrated with 50 mM phosphate buffer (pH 7.2) plus 20

mM NaCl. To purify the CTP-TMR, the labeling mixture was loaded onto a pre-

equilibrated SP-Sepharose column (1 ml) and eluted with 50 mM phosphate buffer (pH

7.2) plus 500 mM NaCl. An extinction coefficient of 95,000 c mM4- at 541 nm in

methanol was used to determine the TMR concentration. Binding between labeled C-

terminal and HMGA2A95-108 occurred at 240 C for 30 minutes. The resulting mixture

was resolved using a Sephacryl S-100 HR filtration column (1 x 50 cm). The column was

equilibrated with BPES buffer and gravitational force was used to elute the proteins. The

column was pre-calibrated using the protein standards, ribonuclease A (Mr, 13,000),

chymotrypsin A (Mr, 25,000), ovalbumin (Mr 43,000), albumin (Mr 67,000) and Blue

Dextran 2000. Fractions of volume 534 pl were collected d TMR concentration was

determined by UV absorbance.

Gel Mobility Shift Assay

A 0.4 pM DNA duplex FL123-124 was utilized along with the specified

concentration of protein; HMGA2, HMGA2A95-108 (a version of HMGA2 which lacks

the C-terminal domain) or HMGA2C41G. The reaction proceeded in a buffer containing

10 mM Tris (pH 7.5), 0.5 mM MgCl 2 , 0.1 mM EDTA, 150 l BSA, 5 % glycerol and

either 50 mM (low salt) or 200 mM (high salt) KCl and either with or without 1 pM

DTT. The reactions were incubated at room temperature for 30 minutes before being
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analyzed on 15 % PAGE (pre-run at 100 V for 2 hours and run at 100 V). The DNA was

stained using Sybr Gold® DNA stain and photographed under UV light.

Isothermal Titration Calorimetry

ITC experiments were carried out using a VP-ITC titration calorimeter (Microcal

Inc.). Samples were extensively dialyzed against BPE buffer containing 4 mM NaCl.

Typically, the titration was set up so that 15 pl of a 75 pM HMGA2 sample (dimer

concentration) was injected every 200 seconds, up to a total of 18 injections, into a DNA

sample (1.7 ml of 10 pM) in the sample cell. The heat liberated or absorbed with each

injection of ligand is observed as a peak that corresponds to the power required to keep

the sample and reference cells at identical temperatures. The peaks produced over the

course of a titration are converted to heat output per injection by integration and corrected

for cell volume and sample concentration. Control experiments were carried out to

determine the contribution to the measurement by the heats of dilution arising from (1)

protein into buffer, and (2) buffer into DNA. The net enthalpy for each protein-DNA

interaction was determined by subtraction of the component heats of dilution.
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CHAPTER IV

RESULTS

Size Exclusion Chromatography

Preliminary experiments using the chemical cross-linkers EDC and DMS revealed

that the wtHMGA2 protein could form homodimers whereas the truncated protein

(HMGA2A95-108) could not fo homodimers (Baez and Leng, unpublished results).

We therefore assumed that the C-terminal domain may be involved in the formation of

the homodimer. We used tetramethylrhodamine-5-maleimide (TMR), to label a 14 amino

acid residue C-terminal peptide (H-CETEETSSQSAEED-OH) (the CTP) to produce the

CTP-TMR. The CTP-TMR was incubated with HMGA2A95-108 and subjected to a pre-

equilibrated gel filtration column. Figure 2 shows the elution profile of the gel filtration

experiment. Our results demonstrated that the CTP-TMR was co-eluted with

HMGA2A95-108. This is shown as the peaks in the graph representing the concentration

of the CTP-TMR (Fig. 2A) correspond to increases in concentration in the SDS-

polyacrylamide gel representing the concentration of the HMGA2A95-108 (Fig. 2B).

Interestingly, there are two co-elution peaks (Fig. 2). Possibly, the first peak represents

two CTP-TMR molecules binding to one HMGA2A95-108 and the second peak

represents one CTP-TMR molecule binding to one HMGA2A95-108. An alternative

possibility would be that the first peak contains one molecule of the CTP-TMR binding to

two molecules of HMGA2A95-108 and the second corresponds to one molecule of the

CTP-TMR binding to one molecule of HMGA2A95-108. Further studies are required to

determine the binding stoichiomet between the CTP and HMGA2A95-108 protein.
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Figure 2: The CTP-TMR and HMGA2A9-108 co-elution in gel-filtratio

chromatography.
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The CTP-TMR was prepared as described under "Materials and Methods" and incubated

with HMGA2A95-108 at 24 *C for 30 min in BPES buffer. The CTP-TMR and

HMGA2A95-108 mixture was then subjected to a Sephacryl S-100 HR filtration column

(1 x50 cm) equilibrated with BPES buffer. Gel filtration profile of the CTP-TMR binding

to HMGA2A95- 108 was monitored by a graph of GD5 s6 versus elution volume (A) and a

15% SDS PAGE gel (B). Lanes 1 to 8 of the SDS-PAGE gel (B) correspond to the

fractions 1 to 8 labeled in panel A. Free HMGA2A95-108 and the CTP-TMR were eluted

at 22 and 30 ml respectively in the column.
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Single Methionine Mutants

One unique characteristic of HMGA2 is the charge distribution over the primary

structure. The positively charged amino acids are mainly concentrated in the three "AT

hook" regions and the negatively charged amino acids are largely located at the C-

terminal end of the protein (Manfioletti et al., 1991). These features may allow the

protein to exist as a homodimer in aqueous solution.

Single methionine mutants were constructed from the wild-type HMGA2 using

PCR based site-directed mutagenesis as described previously in the Materials and

Methods section. The amino acid methionine was specifically used in order for a

chemical cleavage to occur using cyanogens bromide. No other methionine residues are

present within the HMGA2 protein. Hence, replacement of other amino acids to a

methionine residue had to be carefully considered. Previous research indicated that the C-

terminal is involved in dimerization and the three "AT hook" regions were considered as

potential C-terminal binding sites. Three mutants were created in our lab where a

methionine residue was substituted between the "AT hook" regions where homodimer

formation could occur. In the first mutant, HMGA2Q37M, a glutamine was replaced with

a methionine residue as position 37; this is located between the first and the second "AT

hook" regions. In the second mutant, HMGA2I71M, an isoleucine is replaced with a

methionine at position 71, located between the second and third "AT hook" regions. In

the third mutant, HMGA2Q85M, a glutamine is replaced with a methionine residue at

position 85, positioned between the third "AT hook" and the C terminal domain.

Three possible models were evaluated in this study as potential homodimer

formation scenarios (Fig. 3A, 3B and 3C). These represented the C-terminal interacting
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with the first "AT hook" (Fig. 3A(iii), 3B(iii), 3C(iii)), the second "AT hook" (Fig.

3A(ii), 3B(ii), 3C(ii)) or the third "AT hook" (Fig. 3A(i), 3B(i), 3C(i)). All methionine

residues could be cleaved using cyanogens bromide. However, methionine residues that

are between areas of cross-linking, would not be seen to separate as expected on a

polyacrylamide gel. This is because the cross-linking bond would hold the cut fragments

together so they would not separate as anticipated. Figures 3A(i), 3B(i) and 3C(i)

demonstrate the C-terminal domain interacting with the third "AT hook" region. In this

model all three single methionine mutants would appear on an SDS polyacrylamide gel

as being cleaved using cyanogens bromide. This is due to the location of the methionine

residues in mutants HMGA2Q37M d HMGA2I71M situated away from the areas of

chemical cross-linking (Fig. 3A(i) and 3B(i)). For the mutant HMGA2Q85M the

methionine residues are located so that when cleaved the homodimer would separate in

half as there is no cross-linking between the methionine residues of the two monomers

(Fig 3C(i)). Figure 3A(ii), 3B(ii) and 3C(ii) display the homodimer formation occurring

between the C-terminal domain and the second "AT hook" region. If this occurred, only

the mutant HMGA2Q37M would appear to be cleaved and show two bands on an SDS

polyacrylamide gel (Fig. 3A(ii)). One band would represent the majority of the

homodimer including the second and third "AT hook" regions of both monomers as well

as the C-terminal domains of the monomers. The second band would represent the very

N-terminals of the monomers including the first "AT hook" regions and would therefore

be of a smaller size (Fig. 3A(ii)). Even though HMGA2I71M and HMGA2Q85M would

also be cleaved, the cleavage site within these mutants is surrounded by areas of chemical

cross-linking and therefore would appear on a gel as one band (Fig. 3B(ii), 3C(ii)) The
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Figure 3: Models of potential homodimer formation.

Figure 3A: Models of potential homodimer formation with HMGA2Q37M mutant

protein.
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Figure shows C-te inal domain interacting with the "AT hook" DNA binding domains

between two HMGA2Q37M monomers. Panel i shows the C-terminal interacting with

the third "AT hook" DNA binding domain. Panel ii illustrates the C-terminal interacting

with the second "AT hook" DNA binding domain and panel iii shows the C-terminal

interacting with the first "AT hook" DNA binding domain. The dotted lines show

potential EDC cross-linking. Vertical striped areas represent the three "AT hook" DNA

binding domains. Horizontal striped areas represent the C-te inal domain.
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Figure 3B: Models of potential homodimer formation with HMGA2I71M mutant

protein.
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Figure shows C-terminal domain interacting with the "AT hook" DNA binding domains

between two HMGA2I71M monomers. Panel i shows the C-terminal interacting with the

third "AT hook" DNA binding domain. Panel ii illustrates the C-terminal interacting with

the second "AT hook" DNA binding domain and panel iii shows the C-terminal

interacting with the first "AT hook' DNA binding domain. The dotted lines show

potential EDC cross-linking between the two monomners. Vertical striped areas represent

the three "AT hook" DNA binding domains. Horizontal striped areas represent the C-

terminal domain.
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Figure 3B: Models of potential homodimer formation with HMGA2171M mutant

protein.
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Figure shows C-terminal domain interacting with the "AT hook" DNA binding domains

between two HMGA2Q85M monomers. Panel i shows the C-terminal interacting with

the third "AT hook" DNA binding domain. Panel ii illustrates the C-terminal interacting

with the second "AT hook" DNA binding domain and panel iii shows the C-terminal

interacting with the first "AT hook" DNA binding domain. The dotted lines show

potential EDC cross-linking between the two monomers. Vertical striped aeas represent

the three "AT hook" DNA binding domains. Horizontal striped areas represent the C-

terminal domain.

54



third model, Figure 3A(iii), 3B(iii) and 3C(iii) show the homodimer formation between

the C terminal domain and the first "AT hook" region. The mutant HMGA2I7lM would

be cleaved in this scenario as the methionine residues are located such that after cleavage

the homodimer would be separated in half and would appear on an SDS-polyacrylamide

gel as a monomer (Fig. 3B(iii)). Both mutants HMGA2Q37M and HMGA2Q85M would

appear to not be cleaved as the methionine residues are surrounded by areas of cross-

linking (Fig. 3A(iii), 3C(iii)). If the C terminal domain interacted with itself, all the

proteins, HMGA2Q37M, HMGA2I71M and HMGA2Q85M would appear to be cleaved.

These three models were tested in this study. First, the proteins were cleaved

using cyanogens bromide to confirm the cleavage was successful. All three mutants were

cleaved as expected, and only the larger of the fragments are shown within this gel (Fig 4.

HMGA2Q37M compare Lanes 1 and 2; HMGA2I71M compare Lanes 3 and 4;

HMGA2Q85M compare Lanes 5 and 6). All three mutants were then cross-linked using

the chemical EDC; all mutants had the same efficiency in cross-linking (Fig 4. Lanes 7, 8

and 9). The homodimer was purified from the gel and chemically cleaved using

cyanogens bromide as discussed previously in the "Materials and Methods" section. Only

the mutant HMGA2Q37M homodimer c be cleaved by CNBr, only the larger cleavage

product is shown representing the second and third "AT hook" domains of both

monomers as well as both C-terminal domains, the larger band represents uncleaved

homodimer (Fig 4. Lane 10). There was no visible cleavage of mutants HMGA2I71M or

HMGA2Q85M (Fig 4. Lanes 11 and 12). The most probable scenario for this protein,

inferred from the cleavage products is the second model where the C-terminal interacts

with the second "AT hook" region.
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Figure 4: CNsr cleavage analyses of the EDC cross-linked HMGA mutant proteins.
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HMGA2Q37M, HMGAI71M and HMGAQ85M EDC cross-li ned protein samples were

prepared and cleaved by CNBr as described under "Materials and Methods". Lanes 1, 3

and 5 contained untreated HMGA2Q37M, HMGAI71M and HMGAQ85M respectively;

Lanes 2, 4 and 6 respectively contained, uncross-linked HMGA2Q37M, HMGAI71M

and HMGAQ85M CNBr-cleaved; Lanes 7-9 respectively contained, the EDC cross-

linked HMGA2Q37M, HMGAI71M and HMGAQ85M proteins; Lanes 10-12 contain

EDC cross-linked HMGA2Q37M, HMGA2I71M and HMGA2Q85M dimers cleaved by

CNBr, respectively.

Chemical Cross-Linking of HMGA2C41G Mutant Protein

HMGA2 has a cysteine residue at position 41 (Manfioletti et aL., 1995). The

cysteine residue can form disulphide bonds by joining sulfur atoms together to make this

covalent bond. This can be observed in Figure 5 showing the HMGA2 protein with (Lane

1) and without (Lane 2) p-mercaptoethanol. The chemical j-mercaptoethanol reduces

disulphide bonds and so without the addition of this chemical the homodimer is observed
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(Fig. 5, Lane 2) (Berg et aL, 2002). Even though the disulphide bond creates a

homodimer, the reducing environment within the inside of a cell makes the development

of these types of bonds very unlikely (Berg et aL, 2002). Therefore, to ascertain whether

the protein forms a homodimer without the construction of this covalent bond, a mutant

was created in our lab that contained no cysteine residue. A glycine residue was

substituted for the cysteine. The human HMGA2 protein contains a glycine whereas in

the mouse a cysteine is at this residue location (Manfioletti et al., 1991, 1995). For that

reason this substitution was assumed to have the least affect on the structure of the

protein. The protein HMGA2C41G was created and purified as described under the

"Materials and Methods" section. The protein was cross-linked using both EDC and DSS.

Homodimers as well as other higher order oligomers were formed when HMGA2C41G

was cross-linked with EDC. This can be seen when comparing Lanes 1 and 2 of Figure 6.

DSS is a homobi nctional cross-linker with a spacer arm of 11.4 A that reacts using

amine-reactive N-hydroxysuccinimide (NHS) esters located on each arm (Partis et aL,

1983). The reaction involving HMGA2C41G with DSS produced dimers as well as other

higher order oligomers. This is shown when comparing Lanes 1 and 2 of Figure 7. The

ability of both EDC and DSS to cross-link the HMGA2 protein lacking a cysteine

residue, demonstrates that a homodimer between two HMGA2 proteins can occur

independent of the formation of a disulphide bond.

Isothermal Titration Calorimetry

In this study, we used a DNA oligomer, 5'G 5C(AT) 7ACG5-3'(top strand) that

contains a single 15 bp AT site in the middle, to determine how the HMGA2 homodimer

binds to the isolated AT site. Interestingly, our results from isothe al titration
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15% SDS PAGE showing disuiphide bond fomation. Lane 1 HMGA2 with p-

mercaptoethanol; Lane 2 HMGA2 without p-mercaptoethanol showing disulphide bond

Figure 6: Mutant HMGA2C41G cross-linked using EDC.

150 SDS-PAGE of HMGA2C41G cross-linked with EDC as described under "Materials

and Methods" section. Lane 1, HMGA2C41G mutant; Lane 2, HMGA2C41G cross-

linked with EDC
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Figure 7: Mutant HMGA241G coss-linked using DSS.

15% SDS-PAGE of HMGA2C41G cross-linked with DSS as described under "Materials

and Methods" section. Lane 1, HMGA2C41G mutant; lane 2, HMGA2C41G cross-linked

with DSS

calorimetry (ITC) experiments and gel mobility shift assays showed that each HMGA2

homodimer cooperatively binds to two DNA oligomers (Fig. 8). Figure 8A shows a

typical ITC experiment. There are two distinct binding processes in this titration

experiment. The first one results in a binding site size of one molecule of HMGA2

homodimer per two DNA oligomers and a binding enthalpy of -52 kcal/mol, suggesting

that each subunit binds to one DNA oligomer; the second binding reaction has a binding

stoichioretry of one HMGA2 homodimer per DNA oligomer and a binding enthalpy of

-38 kcal/mol, suggesting that increasing HMGA2 concentration results in a tetramer

binding to two DNA oligomers. Figure 8B shows the results of a gel mobility-shift assay.

At the low molar ratio of HMGA2 to DNA, the HMGA2 homodimer binds to two DNA

oligomers (Lanes 2 and 3; the first shift, D). At the high molar ratio of HMGA2 to DNA,
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the HMGA2 tetramer binds to the DNA oligomer (Lanes 4-8; the second shift, T). Our

results were confirmed by a dynamic light scatting study, demonstrating that HMGA2

binds to AT DNAs as a homodimer (Lebioda and Leng, unpublished results). The

following two-step scheme may explain the DNA binding process:

P2 + 2DNA P2-2DNA (1)

P2 + P2-2DNA P4-2DNA (2)

where P2 , P4, and DNA represent the HMGA2 dimer, tetramer, and the AT DNA

oligomer, respectively. At the low molar ratio of HMGA2 to DNA, the homodimer

cooperatively binds to two DNA oligomers (step 1). At high molar ratio, the HMGA2

Figure 8: HMGA2 binding to a DNA oligonucleotide containing a single HMGA2

DNA binding site.
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(A) Sample raw data for the titration of HMGA2 into the deoxyoligonucleotide, 5'-

GGGGGCATATATATATATATACGGGGG-3' (top strand) at 25 C in BPE buffer plus

4 mM NaCl (total 20 mM Na+). Top, each peak shows the heat produced by injection of

an aliquot of 15 l of HMGA2 (75 pM, dimer concentration) into DNA solution (1.7 ml

of 10 pM the oligonucleotide). Bottom, the binding isotherm resulting from integration

with respect to time. The X-axis represents the protein to DNA molar ratio. (B) Gel

mobility shift assay of HMGA2 binding to the DNA oligonucleotide. Binding reactions

of HMGA2 to DNA were carried out as described under "Materials and Methods." 0.4

pM DNA was used in the experiment. Lanes 1 to 8 contain, respectively, 0, 0.2, 0.4, 0.8,

1.0, 2.0, 5.0, and 10 pM of HMGA2. F, D, and T represent free DNA, HMGA2 dimer

binding to DNA, and HMGA2 tetramer binding to DNA respectively.

tetramer binds to two DNA oligomers (step 2). The binding processes are achieved by the

interactions between the "AT hooks" of HMGA2 and the minor groove of the AT DNAs.

Chemical Cross-Linking in the Presence of DNA

Cross-linking the HMGA2C41G mutant was undertaken in the presence of DNA.

Two DNA oligomers were employed; FL123-FL124 (top strand 5'GsCA15 CGs3'), used

previously in the gel mobility shift assay, and poly (dA-dT)2. Two chemical cross-linkers

were individually used, EDC and DSS, both described previously. The purpose of

chemically cross-linking the mutant HMGA2C41G with DNA was to observe whether

the band shifts in the gel mobility shift assays could potentially be homodimeric or

homotetrameric binding of the protein to the oligomer. The oligomer FL123-FL124 was

first used along with the chemical cross-linker EDC. The oligomer represents one

potential binding site for the protein per oligomer. The protein was observed to cross-link
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oligomer FL123-124.

Lane 1 HMGA2C41G protein with no DNA or EDC, lane 2 HMGA2C41G cross-linked

with EDC, Lanes 3 and 4 contain protein to DNA ratios of 2:1 and 1:1 respectively cross-

linked in the presence of EDC.

in the presence of no DNA as expected (Fig. 9, Lane 2). When the protein to DNA ratio

was altered to a 2:1 or 1:1 ratio the cross-linking ability of EDC remained (Fig. 9, Lanes

3 and 4). This demonstrates that in the presence of DNA the HMGA2 protein is still able

to form homodimers and higher homo-oligomers.

The oligomers FL123-FL124 were then cross-linked along with HMGA2C4IG

and the chemical cross-linker DSS. The cross-linker EDC reacts with closely associated

carboxyl (Glu and Asp or unmodified C-terminus) and amino groups (Lys or unmodified

N-terminus), while DSS is able to cross-link between two primary amines. Both cross-

linkers were tested in order to observe the difference in efficiency between the two and
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therefore establish which amino acids are most likely to contribute to the cross-linking

ability. A similar result was observed using the cross-linker DSS as was seen using EDC.

Cross-linking of the protein was witnessed with no DNA present as predicted (Fig. 10,

Lane 2). The results of the cross-linking with DSS were observed to be the same as that

shown with EDC. When the protein was cross-linked in the presence of DNA at both a

protein to DNA ratio of 2:1 and 1:1, cross-linking was observed. This again demonstrates

that homodimer fornation is possible in the presence of DNA (Fig. 10, Lanes 3 and 4).

The oligomer poly (dA-dT)2 represents multiple HMGA2 binding sites. It was utilized

along with the cross-linker DSS in order to determine whether a similar pattern can be

seen as was observed with a single binding site. The degree of cross-linking ability

Figure 10: Mutant HMGA2C41G cross-linked using DSS in the presence of DNA

oligomer FL123-124.

Lane 1 HMGA2C41G protein with no DNA or DSS, Lane 2 HMGA2C41G cross-liked

with DSS, Lanes 3 and 4 contain protein to DNA ratios of 2:1 and 1:1 respectively cross-

linked in the presence of DSS
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appeared to be reduced for poly (dA-dT)2 compared to that seen for the single binding

site (FL123-FL124). Cross-linking in the absence of DNA occurred as expected (Fig. 11,

lane 2). When the protein was incubated with DNA containing multiple protein binding

sites cross-linking with DSS was observed. This may imply that the protein prefers to

bind to multiple DNA binding sites as a homodimer or higher homo-oligomer.

Figure 11: Mutant HMGA2C41G cross-linked using DSS in the presence of DNA

oligomer poly(dA-dT)2.

Lane 1 HMGA2C41G protein with no DNA or DSS, Lane 2 HMGA2C41G cross-linked

with DSS, Lanes 3 and 4 contain protein to DNA ratios of 2:1 and 1:1, respectively cross-

linked in the presence of DSS.
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CHAPTER V

DISCUSSION

Earlier studies demonstrated that HMGA2, an intrinsically unstructured protein,

exists as a homodimer when free in solution (Baez and Leng unpublished results). The

current research further supports this hypothesis and provides additional insight into how

the protein behaves when bound to DNA. Five conclusions can be gained from this

research. First, based upon chemical cross-linking experiments using EDC and DSS, the

HMGA2 protein was shown to exist as a homodimer when free in solution. Second, the

C-terminal is involved in dimer formation. This was shown through size exclusion

chromatography using a truncated version of the protein lacking the C-terminal, and a

labeled C-terminal peptide. Third, using information gained by chemical cross-linking

and cutting of single methionine mutants, the structural elements involved in the

homodimer formation were identified. Fourth, by creating a mutant protein where the

single cysteine residue was replaced with a glycine, it was determined that the formation

of a disulphide bond is not important for homodimer formation. Fifth, using a

combination of isothermal titration calorimet and gel mobility shift assays the binding

stoichiometry of HMGA2 to a single or multiple AT-rich DNA sites was observed. The

forensic relevance of HMGA2 and the techniques used in this study is also discussed.

HMGA2 is a Homodimer When Free in Solution

HMGA2 has an asymmetrical charge distribution. Positively charged amino acids

are located mainly within the center, concentrated mostly within the "AT hook" domains.

The negatively charged amino acids are positioned towards the C-terminus of the protein
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Manfioletti et aL., 1991). This arrangement led us to propose that HMGA2 could

potentially exist as a homodimer or homo-oligomer.

Initial studies involved sedimentation analysis and gel filtration experiments.

These determined the physical characteristics of HMGA2, such as molecular weight and

the Stokes' radius (Horiike et aL, 1983). It was suggested that HMGA2 adopts a

homodimer arrangement when compared to ribonuclease A (Baez and Leng, unpublished

results). Ribonuclease A is a monomeric protein with a similar molecular weight to

HMGA2 of 13,700 Da but a Stokes' radius of only 16.4A compared to 30.2 A for

HMGA2 (Smyth et al., 1963). Current research tested the cross-linking ability of

HMGA2 with two chemical cross-linking agents, EDC and DSS. EDC is a zero-length

cross-linker that cross-links between the carboxyl and amino groups of closely associated

amino acids. HMGA2 has 13 carboxyl groups (11 glutamic acids, 1 aspartic acid, and one

C-terminus carboxy group), 8 of which are located within the negative C-terminus. There

are also 14 amino groups (13 lysine residues and one N-terminal NH2 group), 6 of which

are located within the "AT hook" regions and none are present in the C terminal

(Manfioletti et al., 1991). These amino acids can therefore provide linkage between the

C-terminal domain and the "AT hook" domains. The experiments using EDC show a

high percentage of cross-linking which provided evidence that amino acids located within

two HMGA2 monomers exist in close contact (Fig. 6). It is also interesting to note that

monomers of the protein remain after the cross-linking reaction (Fig. 6, Lane 2). These

monomers migrated faster on an SDS polyacrylamide gel than the untreated monomers

(no cross-linking). This may indicate that the protein bends, and links occur between
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regions within the monomer. These associations are most likely to take place between the

C-terminal and another region within the protein due to the charge distribution.

DSS is a homobifunctional cross-linking agent that has a spacer arm length of

11.4 A. This cross-linking agent cross-links two primary amines using amine-reactive N-

hydroxysuccinimide (NHS) esters (Partis et al., 1983). DSS was able to cross-link

HMGA2, but with a lower rate efficiency than EDC (Fig. 7). When the protein

concentration was high, both cross-linking agents were able to produce additional homo-

oligomers, which might represent trimers or tetramers, as judged from the position of the

bands on the gels (Figs. 6 and 7).

It is of interest to note that the enhanceosome formation at the p-interferon

promoter involves two molecules of HMGA1 (Yie et al., 1997). This indicates that a

homodimer of HMGA proteins is likely to be involved in the formation of the

enhanceosome. Each of the two proteins aids in binding to a different region of the

enhancer. One molecule binds to positive regulatory domain II (PRDII) using "AT

hooks" one and two. This reverses an intrinsic bend in the DNA, facilitating the binding

of activating transcription factor-2 (ATF-2)/c-Jun. The second molecule binds to PRDIV

using "AT hooks" two and three. This assists with the binding of nuclear factor-KB (NF-

kB) (Yie et al., 1997, 1999). The HMGA family of proteins has been shown to function

differently, as in the case of adipocyte cell growth where HMGA1 and HMGA2 have

opposing effects (Melillo et al. 2001). However, all HMGA molecules possess three "AT

hook" binding domains and an acidic C-terminal domain; and all bind to DNA via the

minor oove of AT rich DNA (Zhou et a!.1996, Solomon et al. 1986). This indicates

that the mech isms of binding are likely conserved between all HMGA proteins.
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HMGA2 has been associated with many protein partners indicating that protein-

protein interactions are able to occur with the HMGA2 protein (Sgarra et aL, 2005 and

references within). A broad spectrum of protein partners exist, they include: transcription

factors, mRNA processing proteins, chromatin-remodelling related factors and structural

proteins (Sgarra et aL, 2005). Some of these proteins bind to HMGA in the absence of

DNA demonstrating that the protein-protein interactions are not a result of close contacts

when proteins are bound to DNA. The binding of nuclear factor-Y (CCAAT binding

factor) (NF-Y (CBF)) to the CCAAT box of the a2(I) collagen promoter involves

HMGAI. No high affinity-binding site for HMGA1 exists at this promoter region, but

this protein has been shown to be essential for transcription. It was found that HMGA1

interacts with NF-Y (CBF) and stabilizes the binding of this factor to the CCAAT box

(Currie, 1997). This further illustrates that protein-protein interactions can occur free in

solution between two or more HMGA molecules and between HMGA and other proteins.

The C-Terminal is Required for Homodimer Formation

A truncated version of the HMGA2 protein, missing the C-terminal tail, has been

implicated in many benign tumors (reviewed in Fedele et aL., 2001). The mechanisms by

which this truncated HMGA2 protein operates remain unknown. Rearranged copies of

the protein also exist, where the C-terminal has been removed and replaced with various

fusion partners (reviewed in Fedele et aL, 2001). These fusion partners can contribute as

little as a few amino acids to the molecule and therefore not impart function on the fusion

protein (Kools and Van de Ven, 1996). This indicates that the loss of the C-terminal tail,

rather than the fusion to another protein contributes to the benign tumor phenotype

(Fedele et aL, 2001). The tumor formation is a result of a loss in cell cycle control. This
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implicates the C-terminal in cell cycle control regulation and therefore essential to the

correct functioning of the protein.

We proposed that the C-terminal tail is involved in the homodimer formation due

to the charge distributions within the protein. Preliminary data using truncated HMGA2

demonstrated that with the cross-linker EDC, homodimers were unable to fonn (Baez and

Leng unpublished results). This current research provides further evidence of the C-

terminal tail involvement in homodimer formation. Using truncated HMGA2 and a C-

terminal peptide labeled with tetramethylrhodamine-5-maleimide, size exclusion

chromatography was performed. The results showed that the labeled C-terminal co-eluted

with the truncated HMGA2 protein (Fig. 2). This was shown as a correlation was

observed between the peaks in the graph corresponding to the concentration of the TMR

and the concentration of the protein observed on an SDS-polyacrylamide gel. This

suggests that the C-terminal is bound to the truncated protein, and points to an

involvement of the C-terminal in protein-protein interactions. This result also explains

how the protein monomer interacts after cross-linking. The C-terminal tail must interact

with another region of the protein to produce a more compact molecule. This compact

protein is therefore able to run faster in an SDS polyacrylamide gel, as observed

previously (Baez and Leng, unpublished results).

More evidence for the C-terminal involvement in protein-protein interactions

includes in vivo experiments conceming the loss of the C-terminal, which have varying

results. In the case of transcription involving serum response factor (SRF) and HMGA1

at the SRF-responsive promoter, the loss of the C-terminal region had no effect on

transcription (Chin et al., 1998). In contrast, transcription is halted at the f-interferon
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gene when the C-terminal tail of HMGA1 is lost. Therefore the C-terminal tail was

deemed necessary for NF-KB coactivation of the f-interferon gene (Yie et al., 1997). The

binding affinity of other proteins for the HMGA family is altered after the loss of the C-

te inal domain (Sgarra et al., 2005). Proteins found to have an increased binding

affinity for HMGA when the C-terminal domain is absent include hnRNP H and K

(Sgarra et al., 2005).

The loss of the C-terminal of HMGA2 has been found to have opposing effects

for the regulation of insulin-like growth factor II mRNA binding protein (IMP2)

compared to the wild type protein (Brants et al., 2004). The wtHMGA2 protein was

found to up-regulate transcription of IMP2 in wild type mouse embryos compared to

pygmy mutant embryos not expressing HMGA2 (Brants et al., 2004). On the other hand,

the truncated HMGA2 missing its C-terminal domain down-regulated transcription

compared to that seen in pygmy mutant embryos with no HMGA2 expression (Brants et

al., 2004). These opposing effects suggest an important role for the C-terminal in

transcriptional control.

Loss of the C-terminal has implications on the transcriptional regulation of genes

such as IMP2. As the C-terminal has been proven necessary in homodimer formation, the

loss of the homodimer may facilitate protein-protein interactions with other factors and

affect their binding to promoter or enhancer elements. The opposite may also be true, in

such cases; the loss of the C-terminal and therefore the loss of the homodimer may

decrease protein-protein interactions and diminish transcription of some genes. The

presence of the C-terminal and therefore the existence of HMGA2 as a homodimer would

be necessary for the correct functioning of HMGA2 as an architectural transcription
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factor. Also, to the correct functioning of the protein to enhance or repress transcription

by altering protein-protein and protein-DNA contacts at the enhancer or promoter.

Model of Homodimer Formation

After the C-terminal was demonstrated necessary in the formation of the HMGA2

homodimer, it was logical to uncover which region it binds to in the protein. Due to

charge interactions, the region of C-terminal binding to another HMGA2 protein was

narrowed down to the three "AT hook" regions (Fig. 3).

Protein aggregation from an unstructured protein or peptide into structured

amyloid fibrils can be accomplished through unique properties of the protein including

charge interactions. Proteins that possess hydrophobic residues and therefore have a

tendency to form p-sheets, as well as amino acids that possess paired charges encourage

fibrillar formation (Tjemberg et al., 2002). It has also been found that positively and

negatively charged peptides bind together or copolymerize (Tjernberg et al., 2002).

Proteins which form a structured molecule via charge interactions include the interactions

between polycations such as spermine and polyarginine with the unstructured protein a-

synuclein (Goers et aL, 2003). This information supports the formation of a homodimer

by the HMGA2 protein, via electrostatic charge interactions between the negatively

charged C-terminal and a positively charged "AT hook".

It has been shown that the "AT hook" motifs appear essential in protein-protein

interactions with other factors implicating them in the formation of the homodimer.

Reeves found that many factors interact with the HMGA proteins (Reeves, 2001). The

sites of contact are dispersed throughout the entire length of the HMGA protein. These

contacts have a commonality; the points of association always involve at least one "AT
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hook" region along with some flanking amino acids. Reeves also noted that these "AT

hook" regions are known to be modified through phosphorylation, acetylation or

methylation, providing molecular switches for association and dissociation of protein-

protein interactions (Reeves, 2001). Proteins found to interact with HMGA via the "AT

hook" regions include NF-Y (CBF), which requires at least one "AT hook" (Currie,

1997) and SRF which specifically requires the third "AT hook" region (Chin et aL,

1998).

Three single methionine mutants were created by our lab, where a methionine

residue was placed between the "AT hook" domains, and between the third "AT hook"

and the C terminal (Fig. 3). These mutants were cross-linked using EDC and the

homodimers cleaved using cyanogens bromide. Cyanogens bromide exclusively cleaves

methionine residues on the carboxyl side (Berg et aL, 2002). Due to the specificity of the

cyanogens bromide digestion, pattern analysis from the resulting gel was achieved. Three

basic models were devised, and results suggested that the C-terminal domain interacts

with the second "AT hook" DNA binding domain (Fig. 4).

This finding confirms the importance of the second "AT hook" in protein-protein

interactions. The second "AT hook" has been shown to interact not only with DNA but

also with many other proteins (Reeves, 2001). Many protein partners of HMGA lose their

ability to interact with DNA or drive transcription if the second "AT hook" is missing.

These proteins include CCAAT / enhancer binding protein p (C / EBPs) at the leptin

promoter (Melillo et aL, 2001), and specificity protein 1(Sp 1) at the human insulin

receptor gene promoter (Foti et aL, 2003). Both of these factors interact with HMGA1.

This indicates that the loss of the homodimer may play a role in the loss of transcriptional
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control of these genes. The importance of the second "AT hook" region in HMGA2 has

also been illustrated with the protein partner p1 2 0 E4F at the cyclin A promoter (Patel et

al., 1994). Protein partners involving HMGA2 need to be further studied to demonstrate

the importance of the second "AT hook" region.

Phosphorylation sites for Cdc2 flank the second "AT hook" DNA binding domain

at Ser-43 and Ser-58, four other sites for casein kinase 2 (CK2) occur in the C-terminal at

T hr-98, Ser-99, Ser-100 and Ser-103 (Schwanbeck et al., 2000). Both of these regions are

involved in homodimer formation. Thus, it is possible that phosphorylation at one or all

of these sites mediates monomer-dimer association / dissociation. It has been shown that

phosphorylation of cAMP response element-binding protein (CREB) dimers by

calmodulin kinase II (CamKII) leads a decrease in recruitment of CREB-binding proteins

inhibiting transcription of CRE-dependent reporter genes (Wu and McMurray, 2001).

This could be biologically significant if a homodimer of HMGA2 is essential for

transcription factor recruitment, and could indicate a possible cell-cycle control

mechanism in HMGA2 mediated gene transcription.

Cysteine (C41) is Not Required for the Homodimer Formation

The presence of a cysteine residue at position 41 within HMGA2 led us to

consider the possibility of a disulphide bond contribution to the establishment of the

homodimer. In the absence of a reducing agent such as p-mercaptoethanol, a homodimer

was visualized on an SDS polyac lamide gel indicating that establishment of a

disulphide bond is possible (Fig. 5). These bonds are formed when oxidation occurs

between sulfhydryl groups particularly involving cysteine residues. Disulphide bonds

covalently attach the two cysteine residues (Berg et al., 2002). In euka otes, these bonds
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are only found within or between proteins in the lumen of the rough endoplasmic

reticulum. The reducing environment in the rest of the cell makes bond formation of this

type unfavorable (Berg et al., 2002). As HMGA2 is a nuclear protein we investigated the

establishment of the homodimer without the presence of cysteine. This determined

whether the protein could form a homodimer within the cell. A mutant protein was

created where the cysteine residue was removed and replaced with a glycine residue. This

mutant was cross-linked using EDC and DSS. Our results demonstrated that a

homodimer could occur without the need for the disulphide bond (Figs. 6 and 7). The

protein is able to establish a disulphide bond involving the cysteine residues located

between the first and second "AT hook" domains of the monomers. The homodimer

model was adjusted to reflect that the interaction between the C-terminal domain and the

second "AT hook" domain could occur as well as the disulphide bond (Fig. 12). This was

achieved by bending the homodimer allowing the cysteine residues to come in close

contact. The EDC cross-linker was also able to link amino acids surrounding the third

"AT hook" domains but these domains would then repel one another due to charge-

charge interactions.

This finding verified that the HMGA2 homodimer may exist within a cell and led

us to further investigate the homodimer interactions with DNA.

HMGA2 Binding To DNA

HMGA2 has been shown to function as an architectural factor that binds to DNA

to facilitate the recruitment of transcription factors to the promoter (reviewed in

Goodwin, 1998). Hence, it is crucial to understand what conformation the protein

achieves upon binding to DNA. Maher and Nathans have shown that HMGA binding to a
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Figure 12: Model of HMGA2 homodimer formation.

Model of HMGA2 homodimer formation with the C-terminal interacting with the second

"AT hook" DNA binding domain. The red areas represent the "AT hook" domains and

the green areas represent the C-terminal domain.

75



single AT rich tract, such as TATA boxes, occurs via univalent low affinity binding

(Maher and Nathans, 1996). By adding one or two appropriately spaced AT tracks in

close proximity to the first, multivalent, high affinity binding sites for the protein are

constructed (Maher and Nathans, 1996).

With this information we sought to uncover the stoichiometries involved in DNA

binding to single binding sites and multiple binding sites for HMGA2. Using a

combination of isothermal titration calorimet , gel mobility shift assays and chemical

cross-linking, homodimer formation in the presence of DNA was observed (Figs. 8, 9, 10

and 11). Using a single binding site either a homodimer or a homotetramer binds to two

DNA binding sites. When the molar concentration of HMGA2 is low compared to the

DNA concentration, the protein prefers to bind as a homodimer. However, when the

protein concentration increases, the protein favors binding as a homotetramer or higher

homo-oligomer.

The finding that the protein can bind to DNA as a homodimer has important

implications and may be functionally significant to allow for transcription factor binding.

The binding of a homodimer may facilitate the bending of DNA, altering its

conformation and allowing the binding of additional transcription factors. It has been

shown in the architectural factor Sox10 that there is a significant difference in DNA

bending between the DNA binding of the Sox1 dimer versus monomer (Peirano and

Wegner, 2000). Sox1 has a high mobility group binding domain and interacts with the

consensus (AIT)(A/T)CAA(A/T)G, binding to this sequence introduced a bend in the

DNA (Peirano and Wegner, 2000). Binding of a monomer introduced a bend angle of

~75-800, while binding of a dimer produced a greater bend angle of~ 010 (Peirano and
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Wegner, 2000). It was also observed that the dissociation of Soxl0 from the DNA was

much slower for the dimer than for the monomer indicating a stronger affinity of the

DNA for the dimer (Peirano and Wegner, 2000). As Sox1O is an architectural

transcription factor and contains a high mobility group binding domain, the binding

structures of this protein can be assumed similar to HMGA2. As Sox10 can fo a dimer

and this protein conformation has an affect on DNA bending, HMGA2 may have a

similar effect. This difference in DNA conformation has also been associated with the

binding of other HMG proteins due to alterations in protein stoichiometry. The binding of

HMGA1 to a-satellite DNA at high protein to DNA ratios introduced bends in the double

helix. Binding of the protein at low molar ratios introduces a smaller bend in the DNA

(Slama-Schwok et aL, 2000). Also in closed circular plasmids the binding of HMGA

proteins at high molar ratios introduced negative supercoils into the DNA, these negative

supercoils were thought to be a result of both bending and unwinding of the plasmid

(Nissen and Reeves, 1995). At lower molar ratios, positive supercoils were introduced;

these supercoils were a result of bending of the DNA, where no unwinding was observed

(Nissen and Reeves, 1995). Binding of HMGA2 at high molar ratios may have a similar

effect as that seen with both a-satellite DNA and closed circular DNA. This is due to the

DNA binding "AT hook" domains of the proteins in these studies being the same as those

within HMGA2.

The related protein HMGA1 is involved in the formation of the enhanceosome at

the human interferon-a gene promoter (Yie et al., 1999). The formation of this structure

involves two molecules of HMGA1. Both HMGA1 molecules are required in order to

produce conformational changes in the DNA. The HMGA 1 proteins are involved in
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additional protein-protein interactions with NF-KB d ATF-2/c-Jun, which stabilize the

enhanceosome (Yie et al., 1999). Whether the two HMGA1 molecules fonn a

homodimer remains unknown. Studies related to enhanceosomes involving HMGA2 are

required to discern if two molecules of this protein and hence a possible homodimer are

involved in the enhanceosome formation and what protein and DNA interactions occur.

Forensic Relevance

Proteins are essential in the field of Forensic Science. The tools used to determine

the characteristics of these proteins and the genes they are transcribed from also have

wide impacts in forensics. Some of the techniques used in this research have already

transferred over into the forensic setting. The polymerase chain reaction is now widely

used and accepted in many forensic DNA labs. Other techniques used here have potential

forensic uses that could be utilized in the future.

DNA profiling has become an integral part of any forensic laboratory. The

polymerase chain reaction (PCR); is a widely used technique that can aid in the

identification of individuals or determine paternity. The procedure involves amplifying a

region between two known primers to create multiple copies of the DNA region of

interest. The section that is amplified for these purposes contains "short tandem repeats"

(STRs). STRs are repetitions of a short sequence where the number of repeats varies

between individuals. The repeat numbers are observed at several loci and provide an

analysis of an individual with a high level of discrimination (Rudin and Inman, 2002).

Another identifying region in DNA is the single nucleotide polymorphism (SNP).

This is characterized by a single base change in a region of DNA that is polymorphic

(Rudin and Inman, 2002). It has become increasingly important for forensic techniques to
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become portable and robust enough to be used at the crime scene itself. As a result, the

SNP regions of DNA can now be tested in microassays or biosensors. Biosensors involve

immobilizing oligonucleotides on solid supports. When an evidence sample is introduced,

binding to form double stranded DNA will occur if the sequence is found to be

complimentary. A chemical cross-linker such as EDC can be utilized. The cross-linker is

able to link ssDNA to a self-assembled, thioglycolic acid (TGA) monolayer modified

gold electrode. A color indicator is then used which reacts differently with single

stranded compared to double strand DNA. The intensity of the signal is often an

indication of concentration, however, the mere presence of a signal is often the only

indication required to show the presence of the sequence tested (Ye and Ju, 2003).

Identification of biotoxins is an important aspect of Forensic Biology. Due to the

threat of bioterrorism a rapid method is required to identify an infectious disease. Size-

exclusion chromatography has been successfully used along with trypsin digestion,

desalination and reversed-phase high performance liquid chromatography, for the

identification of proteins and infectious disease agents. Size exclusion chromatography is

used to filter the protein mixture to a smaller number of proteins within a size range.

Calibration of the size exclusion column can be achieved by first using control proteins of

various known molecular weights and plotting the molecular weight against elusion time.

This produces a standard curve which unknowns can be measured against. When the

system is fully automated, it can collect the appropriate fraction of protein based on pre-

calculated elution times. Hence, a known range of molecular weights can be isolated. In

this way size exclusion chromatography can be used to make the trypsin digest analysis
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simpler and less time consuming. This technique has been successfully used for cholera

toxin and staphylococcal enterotoxin (Carol et aL, 2005).

In the discipline of Forensic Chemistry, the detection and identification of drugs

is essential. The technique of ion-exchange chromatography can be used to extract illicit

drugs and their metabolites from a matrix ready for gas chromatography/mass

spectrometry analysis (GC/MS). Cation-exchange chromatography has been used for the

extraction of many illicit drugs including cocaine, amphetamine, benzoylecgonine

(cocaine metabolite) and methamphetamine. It has been utilized in samples taken both

from urine and serum (Stout et aL, 2002, Weinmann et al., 2000). Ion-exchange

chromatography functions to separate out the drugs from the matrix. This is utilized in

order to make the analysis by GC/MS easier to interpret by sifting out the contaminants.

Finally the model protein HMGA2 used in this study may also have a forensic

application. Gestational age has come under much debate with many different

measurements being used to determine the age of the fetus. Some measurements use the

beginning of the last menstruation, others use time of fertilization and still others use time

of implantation. Time discrepancies between these measurements are in the weeks and do

not provide an accurate account of fetal age (Santee and Henshaw, 1992). This is

extremely important when considering legality of abortion. In the USA, five states, FL,

GA, IA, SC and VA prohibit abortions in the 3 rd trimester (week 27 onward), nine other

states, CA, DE, MA, NV, NY, NC, PA, SD, and VT prohibit abortions after a set number

of weeks (usually 20 or 24). A more accurate account of gestational age could be

developed by using a protein marker. HMGA2 expression is detected only within rapidly

dividing cells of the fetus (Patel et aL., 1994, Rogalla et al., 1996). The presence or
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absence, level of expression or location of expression of a protein can indicate the degree

of development of a fetus. The expression pattern of HMGA2 has been studied in both

humans and mice, as discussed previously (Patel et al. 1994, Zhou et aL, 1996). A more

detailed pattern and quantitative analysis would have to be undertaken in order to confirm

that the protein could be utilized in this way. HMGA2 expression may therefore have a

role in determining gestational age for the legal implications of abortion.

It can take many years for scientific tools to be utilized in the field of Forensic

Science. The techniques used must undergo stringent controls and peer review before

being considered as techniques that will stand up to the rigors of a court room (Saferstein,

2003). These stringent controls include a eat knowledge of the technique and many

peer reviewed articles concerning the technique and its advantages and downfalls

(Saferstein, 2003). The same is true for proteins that may be used as markers for Forensic

purposes. For example the protein marker cardiac Troponin I was discovered in 1963

(reviewed in Filatov et aL, 1999). This marker was not realized as a potential forensic

tool until 2003 when it was tested for the estimation of postmortem interval (Sabucedo

and Furton, 2003). This protein marker is still not used in court for the time since death

determination. Many more peer reviewed articles will be required before cardiac

Troponin I would be considered within a court of law. For this reason HMGA2 may also

have a forensic relevance. However, more research concerning the protein, its structure

and expression are required before its impact may be understood.
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CHAPTER VI

CONCLUSIONS

This research was performed to further understand the mammalian HMGA2

biochemical properties. Previous studies in this lab indicated that HMGA2 exists in

solution as a homodimer. Results in this thesis strongly support this hypothesis. This

research included determining if the protein exists as a homodimer when free in solution,

as well as when bound to DNA. The structural arrangement of this homodimer was also

addressed. The potential forensic impact of the protein and the techniques utilized was

also discussed.

Five conclusions concerning homodimer formation of HMGA2 were reached

1. HMGA2 exists as a homodimer when free in solution

2. The C-terminal is required for the establishment of the homodimer

3. The dimer forms between the C-terminal of one HMGA2 protein and the

second "AT hook" of another HMGA2 protein due to charge-charge

interactions

4. Homodimer formation is not dependent on the existence of a disulphide

bond

5. HMGA2 binds to AT-rich DNA as a homodimer

This research indicates that the unstructured protein HMGA2 can form a

structured homodimer. The biological implications of HMGA2 forming a homodimer are

widespread. Aberrant expressions of a truncated HMGA2 protein, as well as fusion

products involving the truncation of HMGA2 have been implicated in cell cycle
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deregulation. The C-terminal involvement in dimer formation indicates that the existence

of the homodimer may be important in normal cell functions.

The binding of a dimer to DNA has been shown to have different effects on the

DNA conformation compared to those seen during monomer DNA binding. The dimer

has been shown to effect the bending in a-satellite DNA and changes in superhelicity of

closed circular plasmids (Slama-Schwok et al., 2000, Nissen and Reeves, 1995). Binding

of a homodimer at a promoter or to DNA wrapped around a nucleosome, may introduce

greater conformational changes and allow for binding or dissociation of transcription

factors (Strauss and Varshavsky, 1984). Binding as a monomer to these sites may not

produce the desired bending, preventing the recruitment of transcription factors. HMGA2

has been shown to modulate the expression of cyclin A (cell cycle control - S phase entry

and G2/M transition), Bfl-/A1 (apoptosis inhibitor) and ERCC1 (DNA repair) (Tessari et

aL, 2003, Edelstein et aL, 2003, Bo ann et al, 2003). It remains to be seen if HMGA2

binds to these promoters as a dimer and whether this impacts transcription factor

recruitment.

The HMGA2 proteins itself, as well as the techniques utilized in this research

study, have realized or potential uses in the forensic field. The techniques used in this

research cover a wide range of forensic applications that involve Forensic Biology with

DNA and protein, and also Forensic Chemistry in the detection of drugs.
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