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ABSTRACT OF THE THESIS

ADAPTIVE SEGMENTING OF NON-STATIONARY SIGNALS

by

Christopher Albin Edmonds

Florida International University, 1998

Miami, Florida

Professor Jean H. And rian, Major Professor

Many data compression techniques rely on the low entropy and/or the large degree of

autocorrelation exhibited by stationary signals. In non-stationary signals, however, these

characteristics are not constant, resulting in reduced data compression efficiency. An

adaptive scheme is developed that divides non-stationary signals into smaller locally

stationary segments, thereby improving overall efficiency. Two principal issues arise in

implementing this procedure. The first is practical; an exhaustive search of all possible

segmentations is in general computationally prohibitive. The concept of dynamic

programming is applied to reduce the expense of such a search. The second involves

choosing a cost function that is appropriate for a particular compression method. Two

cost functions are employed here, one based on entropy and the other on correlation. It is

shown that by using an appropriate cost function, an adaptively segmented signal offers

better data compression efficiency than an unsegmented or arbitrarily segmented signal.
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Chapter 1: Introduction

1.1 Data Compressioi and Transform Coding

Data compression is a form of data processing in which an attempt is made to

represent a given set of data by another smaller set. It is currently a very popular topic in

digital signal processing (and other fields as well), motivated by the need to store ever-

increasing amounts of information in limited space, and similarly, to transmit this

information over limited bandwidth. There are many different types of data sets that may

be compressed, this thesis, however, will be concerned in particular with sets of discretely-

valued ordinal data, hereafter referred to as signals; likewise, although many techniques

exist for attempting data compression, this thesis will concentrate on the class of

techniques known as transform coding.

Transform coding attempts to compress a signal by mapping it from one vector

space into another by means of an orthogonal transform, a simple example being the

transformation from the discrete-time domain to the discrete-frequency domain using the

discrete Fourier transform. The transformation process does not in itself achieve data

compression, however, the use of an appropriate transform may yield coefficients in the

new domain that may be more efficiently represented than the original signal. The

explanation for the this lies in the fact that if the signal is stationary, and thus highly self-

correlated, the appropriate transform will produce highly decorrelated coefficients. It will



be shown in Chapter 2 how this decorrelation may be exploited for improved data

compression performance.

In practice, however, many signals that need to be compressed are not stationary-

two common examples of this being speech and music. As a result, it may not be possible

to compress these signals as efficiently as required. To help compensate for this, many

data compression algorithms subdivide, or segment, the signal into smaller non-

overlapping signals, or segments. Although this segmenting is partially motivated by

computational constraints, it is hoped thlat this process will reduce the negative effects of

the non-stationarity of these signals by constraining the amount of variation within a given

segment. Unfortunately, this segmenting process is usually uniform and arbitrary with

respect to a particular signal, thus it may or may not be beneficial.

1.2 Overview of Proposed Methodology

In response to this, this thesis proposes a scheme for adaptively segmenting non-

stationary signals. This scheme will segment these signals into variably-sized segments that

are locally stationary, i.e. they are stationary within their local support. It is hypothesized

then that improved data compression performance may be achieved by adaptively rather

than uniformly segmenting signals. This scheme is proposed as a flexible framework that

may be easily customized for and integrated into existing data compression algorithms.

Implementation of the adaptive segmenting scheme may be divided into two areas.

A set of segment boundaries on a particular signal will be referred to as a segmentation,



and the first area is concerned with identifying different possible segmentations This

process will be referred to as the search mechanism. The second area is concerned with

how to choose the best of these segmentations, this will be done by applying appropriate

cost functions to each segmentation and comparing the results.

The overall procedure can be illustrated using a simple example. Let J(x) be a

function describing the cost of a particular signal x and let K(J", J,,...) be a function

describing the total effective cost of a series of cost functions (J, iJ,, ... Given a signal

x.~ = x{ , x> , it can be seen that x can generate a maximum of four segmentations,

shown as follows:

X(X2 =xO1xaX0 X { X},L
xI~x = xol(x)(x

The adaptive segmenting scheme would then calculate the cost of each segment within

each segmentation, and then calculate the total effective cost of each segmentation, as

illustrated next:

3



K( J(x,)2))

K(J(x ), J(xX2))

K(J(x~), I x, ), ,I x,))

The minimum value of K is then identified, indicating the best segmentation in terms of

the cost function J.

additional point that must be considered is the side information that

accompanies this procedure. Once the data has been adaptively segmented some record of

the particular segmentation must be maintained, since a later part of the process cannot

assume a known uniform segmentation. While this side information does reduce the

overall efficiency of the method, it becomes evident that this additional cost is quite

negligible in practice. This is because in general the only extra information required is the

length of the next segment.

1.3 Existing Work

This idea of generating non-uniform se mentations has been explored by a number

of authors and also exists, in a limited sens in at least one commercial data compression

algorithm. Lee, Kim, and Lee [1], Sinha and .Johnston [2], Watkinson [3], Brooks, et al.

[4], and others have proposed different methods for intelligently dividing signals into

segments of varying lengths. All of these methods, however, have been very application

4



specific, as well as relatively inflexible in their approach. Of special interest though is the

work of Xiong, et al. [5], who propose, in the specific context of wavelet packets, a

method of reducing the cost of an exhaustive search of all possible segmentations by

employing techniques borrowed from dynamic programming theory. This method will be

explored in detail in Chapter 4.

Local trigonometric bases as described by Coifman, et al. [6] and others, along

with their close relatives, the lapped orthogonal transforms of Malvar [7], can also be

considered as forms of adaptive segmenting. These techniques work by splitting a signal,

the parent, into two equally sized segments, the children, and then comparing the cost of

the parent's transform, based on the sine/cosine family of bases, with the combined cost of

the transforms of the children. If the children's cost is the lower of the two, then the

children become parents and the process is repeated again with their children: If the parent

is the winner at any stage, then further decomposition along that branch ceases. Figure 1.1

illustrates a possible segmentation of a signal of length 8, and Figure 1.2 the resulting

binary tree that this process generates.

i . O1 J X 4 X 67

Figure 1.1 A possible segmenta tion
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Figure 1.2 A binary tree leading to the segmentation of Figure 1.1

Although this method may generate segmentations that are better than uniform

ones, it suffers from several significant drawbacks. Because of its binary nature, it is

applicable only to signals of dyadic length, and it is also inflexible in the sense that this

binary division only can generate a subset of the total possible segmentations of a given

si nal. In addition, it is not shift-invariant. Finally, when the decision process halts the

decomposition at a particular level, i.e. when the parent is the winner, further

segmentations are not considered below the current children, despite the fact that better

segmentations may exist in lower levels ofthat particular branch.

The ATRAC (Adaptive Transform Acoustic Coding) algorithm is a proprietary

data compression algorithm used by MiniDisc-based audio systems It transforms

segments of data using a modified form of the discrete cosine transform, and then codes

the transform coefficients using a psychoacoustic/perceptual model. Of particular interest

though, is the segmentation technique it uses. The algorith r analyses the incoming signal

6



and alters the segment length between 1.45 ms 2,9 ms, and 11.6 ms (corresponding to 64,

128, and 512 samples at the sampling rate of 44.1 kHz), based on the transient information

present in the signal. [8]

1.4 Overview of Remaining Chapters

The remainder of this thesis is divided as follows: Chapter 2 explores data

compression and transform coding in more detail and details their relationship to the

concepts of stationarity, correlation, and entropy. Chapter 3 gives a description of the

various cost functions based on these concepts: Chapter 4 then gives an explanation and

discussion of the various search mechanisms employed.. Chapter 5 provides examples of

the performance of the adaptive segmenting method, and compares them with existing

methods. Finally, Chapter 6 offers conclusions and recommendations for further work.

7



Chapter 2: Data Compression and TrAnsform Coding

2.1 Data Compression

The term data compression refers to the process of mapping a set of discrete data

of size N to another set of size A, such that ' < N, and such that the information

contained in the new set is sufficient to reconstruct the original set if required. The data

sets of interest here will be discretely valued and ordinal, representing some sampled one-

dimnensional signal such as speech or music. This reconstruction and the associated

mapping scheme are usually categorized as either lossy or lossless. Lossy compression

implies that the reconstruction of the original set may not be exact, but is instead sufficient

for some purpose. Lossless compression implies that the reconstruction is identical to the

original set.

More explicitly, let x[ii} be a finite-energy discretely valued sequence of length

N ."The process of data compression of x[i] is then a mapping of x[n] into another

sequence y[m] of length A, such that A N . It must then be possible to generate a

reconstruction x n] of x[n] from y[m] alone. The reconstruction error r[n] is defined as:

8



The goal of lossy compression is to minimize A and r[ n] simultaneously, usually within

some constraint on the magnitude of r[n]. For lossless compression, r[n]= 0 for all n,

so the goal is simply to minimize Al Note that in practice, some error may be introduced

even in lossless schemes by finite word length effects and other processing-related

artifacts, but this error is inescapable and so will not be considered.

Before continuing, it is also useful to define one of several measures of

performance. The compression ratio ? is:

N
R = samples/samphl (2.2)

R is a measure of the efficiency of the compression scheme; a larger compression ratio

implies more efficient compression. R has the following bounds:

1 R N (2.3)

The lower bound implies the worse-case sc ario, that is no compression has taken place.

A value of less than one implies data expansion; any algorithm should of course recognize

this occurrence and react to it appropriately. The upper bound implies that M=1, that is

optimal compression has been achieved.

Often, the concern is with the lengths of x[n] and y[m] in terms of their base two

representations, thus let: R be the binary compression ratio:

9



N B bits/bit (2.4)
M,

where N. and MB are the lengths of the base two representations of x+] and m],

respectively. Note that ? will not necessarily be equal to RB.

2.2 Transform Codiing

Data compression schemes can be divided into a number of general categories, or

coding schemes, based on the approach that they take to attempt data compression. These

include predictive coding, sub-band coding, arithmetic and run-length coding, direct

entropy coding, and so on. Many schemes may actually employ more than one of these

techniques; to some degree, however, all of these attempt to exploit some form of

redundancy or predictability that may (or may not) be present in the given data. Of

particular interest is the category of transform coding.

Data compression schemes that utilize transform coding work by transforming a

signal from one vector space into another, and then processing the resulting transform

coefficients. By choosing an orthogonal transform, these coefficients may then be used to

reconstruct the original signal with a minimum of effort, although orthogonality is not

necessarily a requirement. As was mentioned in Chaipter 1, the process of transformation

does not in itself yield any data compression. Compression arises instead from the

10



processing of the transformed coefficients, on the premise that the transform operation has

yielded a sequence that may somehow be represented more efficiently. This efficiency

relies on two factors, the first is which transform is chosen, and the second is what type of

processing is applied to the resulting coefficients.

A wide variety of transforms exist to choose from, and all are application and/or

signal specific to varying degrees; in other words, there is no one transform scheme that

universally achieves optimal compression of all data. The discrete-time Karhunen-Loeve

transform [9] (KLT), also known as the Hotelling transform or principal component

transform, can be used to form an exception to this specificity, however, it will be shown

that this is only a theoretical advantage, In general, though, a particular transform is

usually chosen based on its ability to statistically decorrelate a class of signals.

2.3 Stationairity and Correlation

A stationary signal is defined as a signal that's statistical behavior does not vary

over time; in particular, it has a constant mean p a constant variance U'2, and an

autocorrelation function 1, and autocovariance function CX, that vary only with the

difference or lag k . In other words, if E.-] is the expected value operator, and if Rk and

C are defined as follows,

R [, m] = E[x[i.x[n]] (2.5)

I i



then for a stationary signal,

Rt, [n,nk = E[x[n]x[nk ]]= f [k] (2.7)

C[n n +k]= E(x[n - pi)(xin+ k]- p) = Tk] (2.8)

That is to say, I and C . depend only on k, and not on the absolute location n which

the autocorrelation or autocovariance is measured from. Note that for a zero-mean signal,

I = C, and this condition will be a smed in all further discussion.

Considering some signal xn] as a column vector , the autocovariance matrix

C, can be defined as:

It can be seen that when - represents a stationary signal, C, is symmetric and has

Toeplitz form, in which all the values alog -each diagonal are equal, as shown here:

12



CW[0] (".[1] C.[2] . . [N -1]

C([1] C[ H] C [i] -- CJN - 2]

C~. = CW[ 2} C. [] C([0] -- C[ N- 3] (2.10)

C -1 C[N] -2] C [N-3] C.[o]

The elements along the main diagonal of C indicate each sample's correlation with

itself, while the off-diagonal elements indicate the degree of correlation between different

samples.

In the context of transform coding, the statistics of the signal's transform must also

be considered. If T is an N x N matrix reprsenting some linear transform, then let X be

a column vector of the transform coeficients of , that is:

j T (2.11)

The autocovariance matrix CAX of the transform coeficients is then:

C E[Nik] = TC.T' (2.12)

The elements of the main diagonal of C,. repre sent the variances of the of the individual

transform coeficients. The off-diagonal elements represent any cross-correlation between

13



different elements of i that has not been removed by the transform; thus for an optimal

transform:

CA = diag[C J (2.13)

where diag[.] is a diagonal matrix constructed from the main diagonal of [-}. This

phenomenon is referred to as the diagonalization of the autocovariance matrix.

The aforementioned KLT is the only linear orthogonal transform that can achieve

the condition in Equation 2.13 for any signal i, however, the basis vectors of T in this

case are the eigenvectors of the input signal's autocovariance matrix CX . The

consequence of this is that the T must be recalculated for every different i, and

additionally, T, C, or i must be known to reconstruct Saving or transmitting T,

C , or i along with the compressed signal y obviously defeats the purpose of data

compiession. Rao and Yip [10], as well as others, have shown that the discrete cosine

transform (DCT) family of transforms can approach the decorrelation performance of the

KLT for many classes of stationary signals, and thus the DCT will be used in many of the

algorithms presented later. The DCT also has the advantage of being calculable using a

fast method similar to that used by the fast FOurier transform.

14



2.4 Thresholding and Quantizing

Once a signal has been transformed into a new domain using an appropriate

transform, the processing of the transform coefficients to achieve data compression still

remains. For lossy compression, two main types of processing exist, both of which may be

used exclusively or in tandem. The first of these is quantization, in which the resulting

transform coefficients are mapped into some discrete alphabet of values. The simplest

form of this is scalar quantization, in which each individual coefficient is uniformly mapped

into a discretely valued alphabet. In reality, this process occurs by default, since the

transform coefficient will already be represented by a fixed- or floating-point binary word.

This form of quantization may still be applied, however, to constrain floating-point

coefficients to fixed-point form, or to reduce the resolution of fixed-point words. Uniform

scalar quantization does not yield any data compression unless the binary resolution is

reduced; this is an example of a case where R 1 but R > R .

More advanced method include noin-'Uniform quantization and vector

quantization. In non-uniform quantization, the coeffcients are mapped to a reduced

resolution binary alphabet, however, the ranges of values corresponding to a particular

word in the new alphabet are not uniformly sized. Instead, some ranges of values are

quantized more finely than others, with this variation defined by the application. Vector

quantization works by considering a sequence of adjacent coefficients as coordinates of a

higher-dimensional vector. A predefined c odebook of vectors is then searched for the

nearest match, and an index value representing this match is what is stored or transmitted.

15



There are a very large number of vector quantization techniques, many of them are

discussed in [9] and [11].

The second type of processing is thresholding, in which only a subset of the total

set of transform coefficients are retained for storage or transmittal, and the rest are set to

zero and discarded. A number of types of thresholding exist. Hard or absolute

thresholding discards any coefficient less than some fixed threshold value -r, such that:

X[/] x (2.14)
SX[ll]j< T

Quantile thresholding [12] retains a fixed percentage of coefficients, such that:

X[tr] IX[nI]|
X~n]=(2.15)

where p is a p -quantile of X[nl]

A number of methods also exist to choose r or ). Relative energy thresholding

[6] sets T2 = 6|1X12 , where 0 < ' s I p can also be chosen to with the goal of achieving a

specific value of M or I. Obviously the class of signal, type of transform, and desired

performance will effect the choice of r p .

16



All of the preceding discussion invites the question of how quantizing and

thresholding relate to correlation and data compression. In this context, it is important to

remember Parseval's Theorem and its relation to linear orthogonal transforms, which says:

N-i N-_1

4"n( X~] (2.16)

In other words, no energy is lost or gained when transforming a signal; it is instead

redistributed among the coeflcients. An optimal transform for a particular class of signals

will redistribute the majority of the energy of the signal into only a few of the transform

coefficients; this phenomenon known as energy packing As a result, quantizing or

discarding small-valued coefficients will introduce only a negligible error into the

reconstruction . This result can be extended in a r-more general sense; quantizing or

thresholding of coefficients will introduce error into the reconstructed signal i, however,

the more decorrelated the coefficients are, the more this error will be distributed uniforly

throughout X . Careful choice of the thresholding or quantizing technique for a particular

application, e. choosing some psychoacoustic criteria for compression of audio, can

ensure this occurs.

17



2.5 Entropy

For lossless compression, and for post-processing in lossy compression, entropy-

based techniques are used. Entropy is a measure of the average information content of a

set of data. Given a set of discretely valued data x of length N, assume that each

individual element of x is drawn from some alphabet set of I possible values or symbols.

For example, in a data set whose elements consisted of B -bit binary words, each element

would be drawn from an alphabet set of I words wh ere I 2" Let Pj[i] represent the

probability of the occurrence of the i th element of th, IJphabet set in x. The entropy of

x is then defined as:

H Z 'IJlog bits/word (2.17)

Notice that a base two logarithm is used in the definition of H since the concern is with

an alphabet of binary words. When considering alphabets of different symbol forms,

Equation 2.17 must be modified appropriately. When using data compression schemes that

exploit the entropy of the data set, the binary compression ratio R, increases as

decreases, although the compression ratio itself remiains R = 1,

The entropy function can be shown to have the following bounds:

0 Hlog (1) (2.18)

18



Consider the probability function P [i] of some data set. By definition, PJi] has the

following characteristics:

0<P[i] <1 (2.19)

[r] = 1 (2.20)
i=O

Equations 2.19 and 2,20 imply that P[i] can take on two extreme forms, as shown in

Figures 2.1 and 2.2.

I I

I I

L L L

I I

I/I IT
Figure 2.1 Ex. ple of a uniform probability distribution function
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1 I

I I I

I I I

I 1 L

Figure 2.2 Example of a singular probability distribution function

In Figure 2. 1, the probability ftnction is Uniformly distributed, that is all values of P.[i]

are the same. This implies that every event in the data set has an equal probability of

occurrence, thus for a uniform distribution:

Pi - for all i (2.21)
I

Now, the entropy for a uniform probability function may be calculated:

L= ZP[iilog [ log
(2.22)

=(i) 1o2 1 l_(I) bits/word

20



Thus for a uniformly distributed probability function of size I, the entropy is simply

log (I) bits/word.

For the case of Figure 2.2, consider a probability function P]ji] such that:

S1 ;ft)/ t te unlique ivaihe of
l i~ { o (1 //cI]?vhWcf (2.23)

0 elsew1jher-e

Such a distribution will be called a singular distribution and the location of the non-zero

element of P[i] within the span i = 0, (1 - 1) is irrelevant. The entropy of this

probability function may also be explicitly calculated:

H. eZIl[i]log (1)1og 0 bits/word (2.24)

Therefore, from Equations 2.22 and 2.24, the bounds in Equation 2.19 may be assumed.

It may be postulated then that as 1[i] moves from a uniform distribution as given

in Equation 2.21 to a singular distribution as given in Equation 2.23, the value of the

entropy approaches its lower bound and vice versa. That is:

P i] a N x - 0 (2.25)

H 1 () (226)

21



The concept of entropy can now be related to data compression. Shannon's

noiseless coding theorem [13] shows that the binary compression ratio R, of an entropy-

based data compression scheme is bounded in the maximum by the reciprocal of the

entropy HZ:

(R,) log2(I) < (2.27)
H,

Therefore, reducing the entropy of a given data set, and consequently altering its

probability density function, can result in a higher compression ratio. In general, data

compression schemes exploit entropy by taking advantage of the fact that most real data

sets do not have a uniformly distributed probability function, and thus an average binary

compression ratio I, can be achieved such that , >> 1.

In practice, achieving a value of R, that approaches the entropy bound involves

choosing an appropriate encoding technique. For creating optimal binary codes for any

given input, Huffman coding can be used [14]. To measure data compression performance

in this regard, it is only necessary to calculate the binary length of a Huffman encoded data

set; this can be done without actually performing the Huffman encoding.

It is also very important to note that when the entropy of transform coefficients is

being considered, the sinJular distribution of Equation 2.23 is equivalent to achieving

optimal energy packing efficiency as discussed in the end of Section 2.4. Thus, the goal of
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improving d correlation and increasing variance benefits both thresholding and quantizing,

and entropy methods.
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Chapter 3: Cost Functions

3.1 Introduction

As outlined in Chapter 1, it is necessary to define some cost functions J(x) in

order to determine which segmentation of a particular signal is optimal. These cost

functions should be chosen with concern for the type of processing that is going to be

used. It would be appropriate, for example, to choose a cost function that measures

entropy if entropy-based coding is to be used, or a cost function that measures

decorrelation or energy packing if quantizing or threshold coding is to be used, and so on.

It is also necessary to determine how to appropriately evaluate the combined

effective costs of these cost functions, by choosing an appropriate combining function

K(, J,,. . .) In general, if the cost finction J(x) is also a function of the segment

length, K(', J,,...) will be calculated as the sUm of the individual cost functions. If the

cost function J(x) is independent of the segment length, K(J(, J ,...) will be calculated

as the mean of the individual cost functions.

3.2 Measures of Decorrelation

As discussed in Chapter 2, successful decorrelation of the input signal using

transform coding can lead to improved data compression performance. This implies that a
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cost function that measures the amount of decorrelation achieved would be appropriate to

use when thresholding or quantizing techniques are employed. Hamidi and Pearl [15]

proposed a metric of decorrelation they termed "fractional correlation," which quantifies

the amount of residual correlation remaining in the autocovariance matrix of the transform

coefficients. Formally:

!®12

JFC~x (31

C -[ T ]diagD C [] (3.2)

where IT is the N x N identity matrix, is an N x N linear orthogonal transform

matrix, and 112 is the Hilbert-Schmidt weak norm of a matrix defined as follows:

AJ N Z Z(aY (3.3)

This operation takes the difference between the autocovariance of the original signal, and

the autocovariance of a reconstruction of the original signal from only the decorrelated

elements, and then normalizes it by the denominator term. As leSs and less off-diagonal

terms of CA have significant value, thus indicating that more decorrelation has occurred,

the di ference in the numerator of Equation 3.1 will become smaller and smaller. If the
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transform perfectly decorrelates the input signal, C, will be diagonal, and thus

C = and JFCx>=0

Since JFC(X) is independent of the length of the segment x, the combining

function will be the mean of the cost functions, that is:

1 L-I
Jo, J ,..., J_=- J (3.4)

L ,

J (x) is also independent of the absolute magnitude of the segment. Although this cost

function is a very accurate measure of decorrelation, it is also very computationally

expensive, as the calculation of the various autocovariance matrices is quite costly.

3.3 Measures of Energy Packing

Another metric that may be employed is the ordered enr y packing efficiency

(OEPE), which is a modified form of the energy packing efficiency measure proposed by

Katajima [16]. The OEPE is defined as follows:

0 -1

o~~,6=- (3aZX[i]2E (x ) - )4 (3O5)

;=0
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where X is the transform of x, X' is a rearrangement of X in decreasing order of

magnitude, and 0 is some arbitrary constant. The OEPE measures the amount of energy

contained in the first 0 coefficients relative to the total energy of the segment. The result

is made negative, since all the other cost functions return lower values for improved costs.

As in the previous case, JOEPE(X) is a ratio, and its value is independent of the

absolute magnitude the segment x, as well as the length of the segment x, and so the

combining function will again be the mean as defined in Equation 3.4. Although the OEPE

cost function still requires the calculation of the transform coefficients, its computational

cost is significantly less than the cost of the fractional correlation cost function.

3.4 Measures of Entropy

When entropy coding will be employed, it may be appropriate to choose cost

functions based on entropy. One obvious measure is the direct entropy of the transform

coefficients:

J1Vo P(x) -Zpli log (PAI) (3.6)
1=o

where as defined in Chapter 2, il is the probability of occurrence of the i th symbol in

X, as drawn from an alphabet of I possible symbols. As in the previous two cases,
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Equation 3.4, the mean of the cost functions, is used as the combining function, since the

entropy of a segment x is independent of the segment length or magnitude.

In some cases, it may be beneficial to employ a cost function whose value is a

function of the segment length. Such a cost function is termed an additive measure.

Coifman, et al. [6] have proposed the so-called "norm" cost function as:

N-1

JNORM(x)= X[j) log2 X[/] (3.7)
j=o

Coifman has also shown how minimizing Equation 3.7 also minimizes the entropy as given

in Equation 3.6, while at the same time incorporating some consideration for variations in

segment lengths. Since Equation 3.7 is a function of segment length, the combining

function is defined as the sum of the cost functions, instead of the mean:

L-1

K(JO, J,..., 11)= J,2 (3.8)
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Chapter 4: Search Mechanisms

4.1 General Issues

A large number of methods exist to search through possible segmentations, in

general, however, the computational cost increases as the thoroughness and overall

flexibility of the method increases. In addition, as the size of the individual segments

becomes smaller, there is often a diminishing return in terms of performance; for example,

it is generally pointless to try to compress segments of one or two samples in length.

Considering segmentations with very short segments, which can be termed fine resolution,

can also increase the computational cost.

To reduce both the computational cost, as well as account for the diminishing

returns, a compromise is made by choosing a maximum resolution, or conversely a

minimum segment size. This minimum segment length N, will be termed the unit segment

length. An additional compromise will be made by requiring that all segments within a

particular segmentation have lengths which are integer multiples of the unit segment

length. The latter restriction greatly reduces the complexity of any search algorithm,

without sacrificing too much flexibility.
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4.2 Exhaustive Search

Given the aforementioned constraints on resolution, an exhaustive search will be

defined as a search that explicitly considers every possible segmentation of a particular

signal. For example, given a signal x of length N= 4, and choosing the fnest possible

resolution, that is a unit segment length of N = 1, then an exhaustive search of x would

consider the following segmentations:

x02 XX 1 x 23

xOxL 3  X(x2X3
(4.1)

xOx 2 3  xo0 x2x 3

x0 2x3  x 0x1x2x3

For another signal y oflength N 6, choosing N = 2 for can exhaustive search would

yield the following segmentations:

012345

Ul x2345
(4.2)

X012345

xO1x23x45

Thus the number of possible segmentations considered by an exhaustive search is:
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2(NU

The cost of this type of search can be considered by calculating the total number of unit

segments that need to be evaluated. The search cost of an exhaustive search is simply the

product of the total number of segmentations considered, as given in Equation 4.3, and the

length of the signal normalized by the unit segment length, as follows:

N

2(~ (4.4)
2N 

NU

4.3 Reducing the Cost of an Exhaustive Search

While an exhaustive search has the advantage of considering every possible

segmentation, within the restrictions listed in Section 4. 1, it has the decided disadvantage

of being extremely computational expensive. Figure 4.1 plots the search cost of an

N
exhaustive search, as given in Equation 4,4, versus the normalized signal length

N3
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Figure 4.1 Exhaustive se rci cost

It is therefore prudent to develop a search mechanisn that retains the flexibility of

the exhaustive search but reduces the computational cost. One such approach was

proposed by Xiong, et al [5] in the context of wavelet packets. This approached, termed a

dynamic programming (DP) search, borrows from the algorithmic theory of the same

name. This approach works by dividing a set of large problems into smaller problems that

can be solved independently, and then storing the solutions to the smaller problems for

reuse, where applicable, in the large problems. Essential to this method is the

characteristic of independence of the smaller problems, which in this case applies to the

cost functions of Chapter 3. All of the cost functions there cani be considered independent
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in this sense, that is, they are functions only of the particular segment being evaluated, and

are unaffected by any other segments.

Figure 4.2 provides a graphic example of the DP search approach,

winner winner

Figure 4.2 Dynamic progranming earch technique

As may be observed, instead of explicitly calculating each possible segmentation, a

graduated approach is taken. First, an exhaustive search is performed on the first two unit

segments of the signal; obviously there are only two possible secentations in the case.

The winner of this search is then introduced into a search of the first three unit segments.

In this case, the search is no longer explicitly exhaustive, as the previous search accounted

for some of the current possibilities already. This process is then repeated for the first four

unit segments, and so on.
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This method has the advantage of being just as fiexible as the exhaustive search,

that is it also considers every possible segmentation of x , but at a reduced cost. The cost

of a DP search may be calculated as:

) N

Figure 43 illustrates the cost of the DP search, and Fioure 4.4 compares the cost of the

exhaustive search with the cost of the DP search.

x 10

5

4 .- -_a . --- - - -- - -. . . . . . _ _ . _ - -

search
cost

0

-1
2 4 6 8 10 12 14 16

normalized length

Figure 4.3 Dynamic programming search cost
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Figure 4.4 Difference between exhaustive search cost and DP search cost
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Chapter 5: Examples

5.1 Evaluation of Performance

In order to evaluate the performance of the adaptive segmenting methodology, it is

necessary to implement some actual data compression algorithms and use them to process

actual data. Some metrics then need to be defined to quantify their performance. As

discussed in previous chapters, data compression can be divided into two main categories,

lossy and lossless; and so methods will be developed to consider adaptive segmenting in

both contexts. In each case, the results using adaptive segmenting will then be compared

to the results of applying the same processing using instead either uniform segmenting or

no segmenting of any kind, in order to illustrate the performance gain.

For lossy compression, the algorithm will work as follows. The adaptive

segmenting algorithm will be applied to the input signal using the appropriate cost

functions, fractional correlation or OEPE in this case, and then each segment will be

transformed using the DCT. Threshold coding will then be applied to each of these

transformed segments, and a fixed number of coefficients will be retained for each unit

segment length of each segment. For example, if 10 coefficients were being retained per

unit segment, a segment of three unit segments in length would retain 0 coefficients, a

segment of one unit segment in length would retain only 10 coefficients and so on. This

requirement will have the effect of retaining the same number of coefficients for each
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signal x, regardless of the particular segmentation chosen, thus allowing for appropriate

comparison between different segmentations of the same signal. The retained coefficients

will then be used to generate a reconstruction, and the quality of this reconstruction will

be evaluated using parameters to be defined next.

The signal-to-noise ratio (SNR) will be used to specifically quantify the

performance of the lossy algorithm by considering Equation 2.1, the reconstruction error,

as the noise signal. This is a common metric in signal processing, and evaluates the ratio of

signal power or magnitude to noise power or magnitude. The SNR will be calculated in

two ways, the first using the mean-squared error (MSE) and the second using the mean-

absolute error (MAE). These are as follows:

SNR"s = 10 log,, -- dB (5.1)

SNRMAE = 20 logK ) dB .2)

where p is the mean of the absolute value of x and u is the variance of x defined as:

-1 (.~ 3)
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While SNRSE is the more common of the two SNR measurements, the SNR, A is also

important for this application, as it penalizes less for local larger transients in the error

signal, and instead gives a good idea of the overall performance of the system.

For lossless compression, the process will be similar. The input signal will be

adaptively segmented, using in this case the entropy-based set of cost functions, and each

of the segments will then be transformed using the DCT. At this stage, though, all that

remains is to calculate the Huffman lengths, as discussed in Chapter 2, of each segment

and then sum the results. A lower total length will indicate a higher compression ratio and

a superior segmentation. Note that for evaluating lossless methods, it is not necessary to

reconstruct the signal. Letting H(x) be the total Huffman length of the transform

coefficients in bits, then the metric for lossless compression will be defined as:

RI bits/bit (5.4)
H(x)

where NB is the length of the original signal x in bits.

5.2 Test Signals

Four different signals will be used to demonstrate and evaluate a a tive

segmenting. These signals are plotted in Figure 5.1 through Figure 54.

38



,
e

,

i

giv

4

i
{

ti E

j ii

h -
1

Figure 5.1 Test signal _ x,

j

i

rt

4
. , i

i

Figure 5.2 Test signal x

9



i

1

E
i 1 3 y a a x i I

f 
yy i l

a .
7 d

i

Figure 5.3 Test signal X3

i

Figure 5. Test signal _ x,

0



x, is a signal constructed to demonstrate the reaction of the algorithm to various general

types of signals, i.e. periodic, noise, transient, and so on. x2 is a sample of speech, x3 is a

sample of music, and finally x 4 is a sample of a biomedical signal. x 4 was chosen in

particular to illustrate the performance of the algorithm with a signal that contains almost

no stationarity, even at an extremely local level.

5.3 Evaluation Using Lossy Compression

Figures 5.5 through 5.29 demonstrate the performance gain of the adaptive

segmenting methods over uniform or non-existent segmentations. For each signal, three

different unit segment sizes are employed for further comparison, and only 25% of the

coefficients are retained. Each figure contains three plots: the first is the original signal

with its respective segmentation superimposed on it; the second is the reconstruction of

the original signal after transform coding and thresholding; and the third is the error signal

r[n]. Listed below each figure is information regarding performance, specifically, the unit

segment length N, the SNR ,, and SNR, , and the compression ratio 1 . Following

each signal's set of figures is a discussion on the performance of that signal.
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Figure 5.5 Example 1 of lossy compression of x,

N 64

SNRMSE =23.3875 dB

SNRME =24.861dB

R=4
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Figure 5.8 Example 4 of lossy compression of x,
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Figure 5.9 Example 5 of lossy compression of x1
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SNRys -23.9982 dB

SNRE = 27,635 dB

R= 4.1667
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Test signal x1 , as mentioned before, was generated artificially in order to examine

the behavior of the algorithm when faced with simple periodic signals, noise, and transient

components. In all the cases of adaptive segmenting of xI, the algorithm appears to

successfully locate the point at which the signal characteristics change. This success is

verified by examining the values of the SNRM E and SNRJ F in each case. Although the

simplicity of this signal tends to restrict the opportunity for any great performance gain, it

can be observed that for every different value of N , there is at least a 1 dB gain in the

SNRMsE over the uniform segmentation, and the SNR. E gains more than 4 dB when

comparing the unsegmented signal in Figure 5.5 with the adaptive segmentation at the

finest resolution in Figure 5.11.
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Test signal x 2 is more indicative of a signal that might be encountered in practice.

As was the case with x 2 , the adaptively segmented signal with the finest resolution, shown

in Figure 5.18, has the best performance; more than double the signal power in both in

terms of SNJ? s_ and SNRE over the unsegmented signal of Figure 5.12. In fact, this

segmentation exhibits a performance gain of 1 dB to 3 dB over ever other variation listed.

Again, it is obvious from inspection that the algorithm is locating the appropriate

transition areas in the signal, which is in itself a positive affirmation of the adaptive

segmenting method. It may also be noticed, for example, that as the search resolution

becomes finer, the performance gap between the uniformly and the adaptively segmented

signal increases.
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Although test signal x3 is also an example of the type of signal that might be

encountered in practice, it appears to be much more stationary over its entire support,

whereas x 2 was relatively non-stationary, varying widely over time. For this reason, the

performance gain is slightly less; in fact, the adaptive segmentation with the coarsest

resolution, as shown in Figure 5.21, actually offers the best results. As in each previous

case, though, there is generally some improvement when using the adaptive segmenting

algorithm, albeit a smaller one in this case.
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As stated in Section 5.2, x4 was chosen not just because it was non-stationary, but

also because this non-stationarity appears to extend to the microscopic level. In other

words, it is expected that no particular segmentation of this signal will yield more

segments that are more locally stationary than the whole. The adaptive segmenting

algorithm confirms this by actually picking the unsegmented original signal as the optimal

segmentation. Figure 5.27 and 5.29 illustrate that any segmenting of the signal actually

degrades the performance of the system.

5.4 Evaluation Using Lossless Compression

Tables 5.1 through 5.4 list the lossless compression ratios RH, as given in

Equation 5.4, for each of the test signals. Each has been segmented adaptively using the

same parameters as in Section 5.3, and is then compared with a uniform segmentation and

no segmenting whatsoever.

type of segmentation compression ratio R

adaptive 3.4429

uniform 3.1429

none 2.5375

Table 5.1 Results for lossless compression of x,
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type of segmentation compression ratio R

adaptive 2.7018

uniform 2.5347

none 1.9194

Table 5.2 Results for lossless compression of x 2

type of segmentation compression ratio R

adaptive 2.0338

uniform 1.5182

none 1.6280

Table 5.3 Results for lossless compression of x3

type of segmentation compression ratio R

adaptive 27198

uniform 2.2141

none 2.7198

Table 5.4 Results for lossless compression of x

Examining the results in the lossless case reveals that in some cases, the performance gain

is relatively minimal, nevertheless, there is still a gain. In the case of x, , the adaptive

segmentation yields an improvement of approximately 36% over no segmentation and

71



10% over uniform segmentation. In the case of x2, the improvement over no

segmentation is 410%, but there is only a 7% gain over uniform segmentation. For x3 , in

which the signal is already relatively stationary over its entire support, the gain over no

segmentation was only 25%, however, the gain over uniform segmentation was 34%.

Finally for x4 , the adaptive segmenting algorithm picked no segmentation as the best

segmentation, thus there is a 0% gain over no segmentation, but there is a 23% gain over

uniform segmentation. In particular, this last result illustrates that the arbitrary uniform

segmentation incorporated by many existing techniques may sometimes reduce, instead of

improve, the performance of the system.
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Chapter 6: Conclusions and Recommendations

6.1 Conclusion

In conclusion, it has been established that by using the adaptive segmenting process, data

compression performance can be improved. In the case of lossy compression, it was shown that at

a fixed compression ratio R, the signal-to-noise ratio can often be doubled or made even greater

when adaptive segmenting was used. Inserted into another larger data compression scheme, it is

quite reasonable to expect that adaptive segmenting can yield even greater improvement. Thus for

a fixed R, more accurate representation can be achieved using adaptive segmenting, or for a fixed

signal-to-noise ratio or other measure of reconstruction error, a increase in R can be attained.

For lossless compression, e.g. those employing entropy-based schemes, a significant

reduction was achieved in the Huffman length of transform sequences by using adaptive

segmenting in place of uniform segmenting. For some of the test signals, this meant an increase in

the compression ratio of as much as 36%. Again, only the general case was presented, and it

seems quite feasible that even more substantive improvement could be made within the context of

a specific algorithm.

6.2 Recommendations for Further Study

The adaptive segmenting process was introduced as a general framework, so an obvious

extension of the methodology would be towards more application-specific areas. The type of
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transform used could be modified for a more specific class of signals, the cost function adapted

more closely to the exact coding technique, and so on. The best-basis paradigm of Coifman, et al.

[17] could be applied to the transform choice, such that an appropriate basis is chosen for each

segmentation or even each segment.

An additional area of refinement involves finding ways to reduce the computational costs

of the search mechanisms and the cost functions. The dynamic programming approach employed

in Chapter 4 to reduce the computational cost of an exhaustive search can be taken further by

employing, for example, a parallel search algorithm, or one of the many other variations on this

theme. Consider, for instance, a routine in which the dynamic programming search begins from

both ends of the signal simultaneously. For the case of the cost functions themselves, methods for

estimating the autocovariance matrices and other necessary statistics could be substituted for the

explicit and costly calculations now in place.

It is also to important to note that the utility of the adaptive segmenting algorithm is not

confined to the area of data compression alone. Time-frequency analysis, and general analysis of

non-stationary signals, could also make use of this technique. This area has advanced from the

Fourier transform and its complete lack of local time-domain information, to the uniform

segmenting of the short-time Fourier transform, to the partial flexibility of the aforementioned

local trigonometric transforms, and their frequency domain dual, wavelet packets. At the pinnacle

of their flexibility, however, all these methods are constrained to the binary tree form discussed in

Section 1.3. The approach presented in this thesis could possibly serve to improve the accuracy

and performance of these methods, notably in the area of shift-invariance.
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