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ABSTRACT OF THE THESIS

OBJECT-ORIENTED CONCURRENT PROGRAMMING ON THE

CONNECTION MACHINE WITH COOL

(Concurrent Object-Oriented Language)

by

Maria Rosa Drake

Florida International University, 1995

Miami, Florida

Professor Raimund K. Ege, Major Professor

The quest for speed and the need to solve ever more complex problems has led to the

development of powerful computer systems, such as the Connection Machine. Concurrent

processing promises a solution to the problem. COOL (Concurrent Object-Oriented

Language) has been developed in order to provide the Connection Machine with a subset

of C" which includes several concurrent constructs. The Connection Machine has an

inherently parallel architecture which can be taken advantage of with software.
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1. INTRODUCTION

According to Ted G. Lewis [LR92] "Parallel computing is one of the most exciting

technologies to achieve prominence since the invention of electronic computers in the

1940s".

The demand for computers has risen dramatically; in addition to the number of computers

in use at this time, the demand is increasing exponentially for faster and better systems.

Not only is the amount of memory and mass storage important, but the speed of the

processor(s) involved in computations is just as important, if not more so. In addition, the

current programming trend is moving toward object-oriented languages where inheritance,

encapsulation, abstraction, information hiding and reusability are becoming prime factors

for software development.

For the most part, computer systems which are widely available today are based on a

single processor and are known as single instruction single data (SISD) systems [Dun90].

Yet as processor prices decrease, we are beginning to see more systems with more than

one processor. By having systems with more processors, performance could significantly

improve. The Connection Machine by Thinking Machines is such a system. The

Connection Machine can have 65,536 physical processors, and an unlimited number

(subject to memory limitations) of virtual processors [CM2].
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Object-oriented languages were first developed to improve software reuse and quality.

Software quality improves by making software easier to maintain. Inheritance reduces the

amount of coding, yet does not increase its complexity. Modularity allows for quick

location of code segments. Software quality also improves by allowing software

developers, via inheritance, to add new functionality without altering working software

[Lan87]. Due to the qualities found in object-oriented languages, more and more

programmers are now using them.

Programming languages have evolved from assembly languages in the 1950s to procedure-

oriented languages in the 1960s, structured programming in the 1970s, distributed,

functional and relational paradigms in the 1980s, and objected-oriented languages in the

1990s. Object-oriented programming is like structured programming was in the 1970s: it

is becoming a part of standard programming practice. [Weg90]

2. WHAT IS COOL?

The purpose of this thesis is to develop an extension to C* 6,0 (a parallel

programming language for the Connection Machine) which provides object-oriented

constructs such as classes, inheritance, modularity, information hiding, encapsulation and

reusability. This language, COOL (Concurrent Object-Oriented Language) will augment
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C* 6.0 with a subset of the functionality of C and will execute on the Connection

Machine 2 (CM-2) and the Connection Machine 5 (CM-5).

COOL has a concurrent object-oriented model, yet it's execution model is data parallel.

COOL maps objects onto processors. Objects become active when they receive a request

message from another object; therefore, there is a means of synchronization built into the

language. COOL supports standard C as well as the parallel features and constructs found

in C* 6.0. Most important of all, COOL adds object-oriented constructs to C* 6.0, thus

becoming one of the few, if not the only, object-oriented language to be used on the

Connection Machine family of computers which takes advantage of the features found in

C* 6.0.

The C* language, developed by Thinking Machines for use on their Connection Machine,

is a data parallel extension of the ANSI C programming language. C* programs are similar

to standard C programs. Parallel code looks like serial code, but is executed

simultaneously in all parallel processors [CM2].

C" is an enhanced version of the popular C programming language which was developed

at AT&T Bell Laboratories by Bjarne Stroustrup. C" provides object-oriented constructs

to C, such as classes, inheritance, information hiding, and reusability.



3. CONCEPTS AND TERMINOLOGY

Various concepts and terms need to be explained to understand COOL and its

functionality.

3.1 Parallel Programming

Parallel Programming is the 'new wave of computing' [LR92]; it allows programs

to perform tasks concurrently. There are two major paradigms in parallel programming:

synchronous and asynchronous. See Figure 1.

Synchronous Asynchronous

vector/ Aray Reduction

Figure 1 : Parallel Computing Paradigms [LR92]
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1- Synchronous implies lockstep coordination in hardware by forcing tasks to be

performed at the same time. Three of the major forms of synchronous parallel computing

include:

* Single Instruction Multiple Data (S ) involves multiple processors

simultaneously executing the same instruction on different data. For

example, all processors would execute

a=b+c

at the same time.

* Vector/Array uses a pipeline approach where each processor is working

on a task, yet tasks are different among processors. For example, bank

tellers may organize themselves into a coordinated assembly line of

workers where each teller would perform a specific task: Teller 1

would get the customer's number; teller 2 uses the account number to

validate the customer; teller 3 updates the account by posting a

transaction and teller 4 would take or return cash to the customer. The

pipeline effect comes when teller I passes its results to teller 2; teller 2

to teller 3 and finally teller 3 to teller 4. [LR92]
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* Systolic paradigm incorporates features of SIMD and the pipeline

paradigm. It is called systolic because of the tighter coordination of

processors. This paradigm addresses performance requirements of

special-purpose systems by achieving significant parallel computational

and by avoiding I/O and memory bandwidth bottlenecks. [Dun90] To

carry out the bank analogy, we reorganize bank tellers as a two-

dimensional array and circulate account folders from teller to teller with

a minimum of memory accesses. [LR92]

2.- Asynchronous implies there is no lockstep mechanism and process coordination

is done in software. This is the more general form of parallelism. Two of the major forms

of asynchronous parallel computing are:

* Multiple Instruction Multiple Data (M ) involves multiple processors

autonomously executing diverse instructions on diverse data.

* Reduction, or demand driven architecture, is based on the graph reduction

model. This is achieved with reducible expressions which are replaced by

their computed value as computation progresses. Reduction implements an

6



execution paradigm in which an instruction is enabled for execution when

it's results are required as operands for another instruction already enabled

for execution. [Dun90]

3.2 Concurrent Programming

Concurrent programming differs from parallel programming in that it allows for

asynchronous events to take place simultaneously while parallel programming allows

events to take place simultaneously, yet in lockstep fashion. Concurrent programming

implies multiple independent activities within a system, including control and

communication. [KL89]

3.3 Object-Oriented Programming

Object-oriented programming is one of the current paradigms in programming

languages. Object-oriented programming languages focus on objects, their behavior, and

their collaboration. This programming approach came about because it is more natural for

humans to think in terms of objects, and how they relate and interact with one another.

3.3.1 Object-Oriented Programming Concepts

Several concepts need to be explained in order to understand how COOL works.
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3.3.1.1 Class

A class may be considerd as a template from which new objects may be created.

Classes include a method (member function) for each type of operation its instances can

perform. Objects of the same class have common operations. Every object is an instance

of some class.

3.3.1.2 Object

Objects are autonomous entities that respond to messages by executing rmethods or

operations. Each object has a set of operations and a state that remembers the effect of the

operations. An object's private properties include the set of instance variables that make

up it's private memory and the set of methods, described by a class, which describe how

to carry out operations [Weg9O].

Figure 2I Object



3.3.1.3 Inheritance

Inheritance is a mechanism for building new classes from other existing class types

therefore creating a more specialized class from a broader existing class.

Inheritance, or class derivation, allows for organizing, building, and using reusable classes.

It makes it possible to define new classes based on existing classes, therefore creating a

hierarchical collection of classes; therefore, classes may 'inherit' operations from a base

class or super class. See Figure 3.

4 ,. HEER

anu F a uauu -

Figure 3: Inheritance
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3.3.1.4 Concurrent Objects

A concurrent object [TB90] consists of operations, local storage and a (virtual)

processor. Concurrent objects become active when receiving a request message.

Concurrent objects clearly model the real world. Each object executes different code

concurrently. Figure 4 illlustrates objects representing a man and a woman; where each

object may be executing different code based on their job.

Figure 4: Concurrent Objects

3.3.2 Obj ect-Oriented Programming Principles

In order to better understand Object-Oriented programming, several concepts and

t



principles will be explained.

3.3.2.1 Information Hiding

As a rule, the representation of a class is private, yet the fields can be public. This

private/public specification is known as information hiding. Information hiding is a formal

mechanism for restricting user access to the internal representation of a class type.

3.3.2.2 Data Abstraction

Based on Information Hiding, Data Abstraction is a type which encompasses

information hiding with a private representation and a public set of operations. [Bud9 1]

3.3.2.3 Encapsulation

Encapsulation restricts the effects of data change. Access to data is handled by

procedures specially designed to do so. This is the private internal representation of a

class.

3.3.2.4 Software Reusability

When behavior is inherited from another class, the code that provides the behavior

need not be rewritten. This is important because programmers spend a lot of time

rewriting code they had written before. Another benefit of software reusability is that the
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more code is reused the more reliable it will be since the code has been used in other

situations and the likelihood of error decreases. [Bud9 1]

3.3.3 Benefits of Object-Oriented Languages

Objects are autonomous entities and interact with other objects via messages;

therefore, objects lend themselves to greater modularity. Their behaviors are defined and

implemented within each object and are independent of the implementation of other

objects. This independence eases software development and maintenance. In addition,

since most data and variables are encapsulated within the object, the parameter passing

burden on the programmer is reduced since the appropriate methods (messages) are

encapsulated within the object and the programmer need not be aware of what parameters

need to be passed.[Pok89].

As classes inherit from superclasses, the code developed in the superclasses is reused.

When inheriting from superclasses, the programmer need only add specialization suitable

to the application.

3.3.4 Why use C++ instead of other Object-Oriented Languages

C++ is an enhanced version of the popular C programming language which was

developed at Bell Laboratories. C+ evolved to meet the following goals:
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* Retain the extremely high machine efficiency and portability that C has

been famous for.

* Retain compatibility between C" and C.

* Repair long-standing flaws, particularly C's lax treatment of types.

* Upgrade C in line with modern data-hiding principles.

C" is a proper superset of the C language, with a few incompatibilities. Its enhancements

include the ability to define classes, operations on objects of those classes, and a

comprehensive set of ways to control operations on those objects, such as operator

overloading, constructors and destructors. [Cox86]

C" has become increasingly popular not only because of the popularity of C, but because

of its own features, such as information hiding and other object-oriented features. Most C

programs need not be ported to C++ since C++ is based on Standard C.

3.4 Concurrent Object-Oriented Programming

Concurrent Object-Oriented Programming implies that we have autonomous and

concurrently executing objects which excute asynchronously.

Concurrent objects model the real world since objects in the real world are inherently

13



concurrent. Concurrent objects interact with each other via message passing mechanisms,

thus allowing objects to exploit parallelism and distributed processing. If object-oriented

programming is natural, concurrent object-oriented programming is even more natural

since it more closely resembles the 'real world'. In addition, concurrent objects allow for

effective software development and execution in open distributed systems. [TB90]

Concurrent object-oriented programming languages may be used in many fields such as

artificial intelligence, distributed databases, distributed operating systems, distributed

simulations, and language parsing.

3.5 The Connection Machine

The Connection Machine is a data parallel computer system. Data parallel

computing associates one processor with each data element. One of the major benefits of

programming in a S system such as the Connection Machine is that programming can

be done in a serial fashion, with some operations executing in parallel the same instruction

stream. The programmer need not be concerned with parallelism and some of the usual

problems associated with parallelism, such as synchronization, race conditions, and

deadlock.

14
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Figure 5: Connection Machine Configuration

C* 6.O is available on the CM-2 and the CM-5. Both compilers parse the same language

and code is for the most part portable. A few minor differences include:

* On the CM-2, a 'bool' data type is a bit; on the CM-5, it is a byte.

* On the CM-2, C* allows calls to PARIS (P allel Instruction Set);

PARIS is not supported on the CM-5.

* The CM-5 has runtime libraries for implementing MIMD.

15



3.5.1 What is the CM-2

The CM-2 is a data parallel system. Data parallel systems associate one processor

with each data element. This computing style exploits the natural computational

parallelism inherent in many data intensive problems. [CM2]

3.5.2 What is the CM-S

The CM-5 provides high performance plus ease of use for large, complex, data

intensive applications. Its architecture is designed to scale to teraflops or teraops

performance for terabyte-size problems. The CM-5 continues and extends support for the

parallel programming model of the CM-2. The CM-5 takes advantage of the latest

developments in high-speed VLSI, RISC microprocessors and networking. It includes fine

and course-grained concurrency, MIID and SIMD control, and fault tolerance. [CM5]

3.5.3 Differences between CM-2 and CM-5

The major difference between the CM-2 and the CM-5 is that the CM-5 can

execute MIMD code since each node contains a SPARC processor rather than a simple

bit-processor under strict front-end control. Furthermore, if the high-performance

arithmetic hardware is included, then node memory is partitioned into four independent

banks. The arithmetic hardware consists of four vector units. These vector units are

16



memory controllers and a computational engine controlled by a memory-mapped control-

register interface. Finally, the CM-5 can compute and move data faster than the CM-2.

3.5.3.1 Front End Processors on the CM-2

A front-end computer, usually a multi-user Sun workstation running SunOS, is the

user's gateway to the Connection Machine system. Through the front-end, users develop,

compile, debug, and execute their application programs. The front-end computer's file

system holds all system software and user programs for the Connection Machine. A

Connection Machine can have from one to four front-ends. See Figure 6.

3.5.3.2 Interprocessor Communications Network

The CM-2 supports various forms of communications within the parallel

processing unit: routing, NEWS grid, spreads, and scanning.

* The router allows any processor to communicate with any other processor.

Another way to view this communication process is that any processor may

access any memory location within the parallel processing unit, with all

processors making memory accesses at the same time.

* The NEWS (North East West South) grid is for communication operations

between processors that are nearest neighbors within a Cartesian grid.

17



* Spreads allow a value from one processor to be sent to all other

processors.

* Scanning combines communication and computation on NEWS grids.

Simultaneously, in every row of a grid along a particular dimension,

scanning computes all the partial sums of that row

3.5.3.3 Sequencer for CM-2

The task of the sequencer is to decode commands from the front-end and

broadcast the nanoinsructions to the data processors, which then execute the same

instruction simultaneously.

3.5.3.4 Data Processors CM-2

Data processors execute arithmetic and logical instruction, calculate memory

addresses, and perform interprocessor communication. In this respect, they are similar to a

serial computer. The difference is that the processors do not fetch instructions from their

respective memories; instead, the processors are collectively under the control of a single

microcoded sequencer. The CM-2 can support from 4096 to 65,536 processors, each with

either 64K or 256K of RAM.

18



3.5.3.5 CM Configuration at NRL

The CM-2 at NRL is a 16K processor system with two sequencers, two gigabytes

of RAM, and a 50MB/sec I/O bus. Each sequencer decodes instructions for 8K

processors. The data vault is a Parallel Disk array with 10 gigabytes of mass storage. The

front ends are a Sun 4/690, two Sparc2 and a Sun 4/480.

The CM-5 at NRL has 32 sparc nodes, each with 4 vector units and 128 MB of RAM for

a total of 16384 MB (32 * 4 * 128) of vector RAM; 24 2 gigabyte drives, 4 partition

managers, an I/O Control Processor, a Compile Server and backup partition manager. The

Partition Managers, I/O Control Processor, the Compile Server and File Server are all Sun

Sparcstation II.

3.5.4 What is C* (Data Parallel Language)

C* implements ANSI C; therefore, programs written in Standard C will run under

C* C* provides features and constructs which allow for data parallel computing. The

compiler will translate C* code into serial C code with calls to PARIS (PARallel

Instruction Set) on the CM-2.

19



C* is well suited for applications which require dynamic behavior, since it allows the size

and shape of parallel data to be determined at run time. For example, the sizeof operator

may be applied to a shape (a parallel data structure) or shape type in order to return the

number of bytes in a shape object. This is needed so that the programmer can use a

storage allocation system call to allocate storage for shapes. For the example,

Sptr = (shape *) malloc(sizeof(Sc)); /* shape named Sc */

and

Sptr = (shape *) malloc(sizeof(shape)); /* shape type *1

Front End

Figure 6: Computing on the Connection Machine

each allocate a new shape object which can be referenced by indirecting Sptr. [Fra9 11

20



In addition, C* 6.0 provides programmers with the standard benefits of C, such as block

structure, access to low level-facilities, string manipulation, and recursion. Furthermore,

C* provides parallel processing capabilities without requiring the programmer to indicate

synchronization explicitly in programs. [CM2] Unfortunately, C* 6.0 lacks object-oriented

language constructs.

4. RELATED WORK

Advances in hardware and Software Engineering have lead to the development of

several concurrent Object-Oriented languages, each with a different philosophy. The

concurrent Object-Oriented languages discussed below share the oncepts of independent

objects, synchronization and message passing mechanisms with COOL.

With COOL we have independent objects; objects that 'execute' independently and on

separate processors. Synchronization is totally transparent to the COOL programmer since

it takes advantage of the inherent parallelism of the Connection Machine. Finally, message

passing in COOL is the mechanism used for object activation.

4.1 Actor

The basic philosophy of the Actor model is that it organizes programs as

21



collections of active objects which communicate in parallel via message passing. [YT87]

The Actor theory specifies that everything is an actor: functions, coroutines, data,

processes, numbers, lists, databases and devices should be considered a actors and be

capable of receiving messages. [Lieb87]

Actor objects communicate via message passing. Each actor has his own behavior when

he receives a message. The script of an actor is a program which determines what the

actor will do when it receives a message.

The Actor model of computation implies [TB 90]:

* Maximal concurrency

* Bounded non-determinism

* Asynchronous processing

* Locality

* No assignment

Actor uses the concept of 'replacement behavior'. Replacement behavior is when

computing a message, the current behavior specifies it's replacement behavior, i.e., the

behavior which will compute the next message and how it will compute the next message.
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Actors have concurrent activities; actors are not passive objects. Computing messages

may be pipelined. Actions of a behavior are concurrent and message passing is

asynchronous which implies that the sender and receiver are computing concurrently.

Actor does not provide synchronization constructs. There are no message priority or

message order preservation.

4.2 ABCL/1

ABCL/1 has an object-oriented computation model designed for modeling and

describing a wide variety of concurrent systems [YTS7]. The primary scheme of

information computation is a set of abstract entities called objects and concurrent message

passing. Objects are autonomous information processing agents which become active

upon receiving a message. An object can send a message to any object as long as it knows

the name (or object id) of the target object. This implies that message passing takes place

in a point-to-point (object-to-object) fashion. Broadcasting of messages is not allowed

[YST+87].

ABCL/1 supports asynchronous and synchronous message passing. ABLC/l provides

synchronization constructs:

* Serialized Object: the activation of a serialized object takes place one at

a time and on a single first-come-first-served message queue for
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ordinary messages is associated with each object.

* Now Type Message Passing: a message passing of the now type does

not end until the result is returned.

* Select Construct: when an object executes a select construct, it changes

into the waiting mode.

* Parallel Construct: requires that its execution completes only when the

execution of all the components complete. [YST+87].

Messages are prioritized, and message order preservation is preserved. ABCL/1 also

allows for passive objects.

4.3 ConcurrentSmalltalk

ConcurrentSmalltalk incorporates concurrent constructs, a synchronization

mechanism and atomic objects to Smalltalk-80 [YT87]. Syntax and semantics of

ConcurrentSmalltalk are based on and upward compatible with Smalltalk-80.

In ConcurrentSmalltalk an object has internal states, which can only be modified by the

object itself. In order to modify the state of another object, an object sends a message to

it. The receiving object determines whether to accept the arriving message or not. When
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the receiving object receives the message, it executes the message corresponding to the

request specified in the message.

4.4 C**

C*** implemented multiple inheritance using C* 5.0 on the Connection Machine. C*

5.0 had domains, a construct very similar to classes on which multiple inheritance was

built upon, yet maintianing the data parallel model of computation. [Gij9O]

4.5 Ellie

Ellie is semantically and syntactically a rather simple language but it relies on some

sophisticated ideas that all together constitute a very general and powerful language. All

items in Ellie are objects. Ellie objects are similar in nature to Smalltalk-80 where all data

items are objects on which methods may be applied in a uniform way. Block structured

programming is supported in Ellie, but in Ellie blocks are object abstractions that locally

may define attributes and objects. Delegation and multiple inheritance is supported by an

Ellie mechanism called interface inclusion. Fine-grained parallelism and synchronization is

expressed explicitly by means of bounded and unbounded (remote) procedure/method

calls (RPC and URPC).
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Ellie compilers have been implemented and are running on MS-DOS based personal

computers, Unix based VAX systems, Sun 3 and Sun 4, and HP 9000 workstations

[And9l].

4.6 POOL-T

Is a parallel object-oriented language which is used to describe large systems on

parallel architectures. POOL-T is object based. The data stored is stored in so-called

instance variables. [Ame87]

POOL-T does not provide passive objects, yet primitive objects have no activity. Message

passing, which is the synchronization construct in POOL-T, is synchronous. There are no

message priorities, yet message ordering is preserved.

5. COOL

Providing object-oriented constructs to C* will greatly enhance the language since

software developed will be easier to update and maintain, thus improving software quality.

Code (tools) developed with object-oriented constructs will be easier to reuse for new

program development, thus increasing productivity. Programming will become more
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intuitive since the programmer will need to think only about a collection of parallel objects

instead of a collection of parallel data.

In sequential object-oriented languages objects interact with each other sequentially. By

providing object-oriented constructs to C*, objects will be able to communicate with each

other in parallel. For example, we may have ten instances of object employee which when

sent a message from single object payroll, would update ten different employee payroll

records simultaneously, with one instruction.

COOL provides synchronization constructs (wait statement, explained later), Objects may

be either synchronous or asynchronous, yet in the background all processes are

synchronous due to the data parallel nature of the Connection Machine.

5.1 Based on C*

COOL is based on C* 60. One of the reasons for this decision is that C* is well

suited for applications which require dynamic behavior, since it allows the size and shape

of parallel data to be determined at run time. COOL would allow existing C* programmers

to easily port their code to COOL in order to take advantage of COOL's concurrency and

Object-Oriented constructs.
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5.2 COOL Constructs

COOL maintains the inherent constructs found in C and C'. Furthermore, COOL

implements a subset of C* constructs (classes, inheritance, .) as well as a series of new

concurrent constructs which will be described in detail later on.

5.3 COOL Objects

A COOL object provides abstraction and encapsulation to C*. COOL objects may

be in any of the following states:

* Unitialized, which serves as a prototype for new objects

* Initializing makes an object active; it may also serve as prototype for

other objects

" Initializing an object is possible until the object receives a message from

another object

* Active implies that the object is currently executing

* Passive implies that the object is waiting for activation
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Object activation is the method of communication of COOL objects. A COOL object

becomes active when one of its methods is invoked. COOL classes may inherit from other

predefined classes or superclasses.

5.4 Concurrent Constructs Implemented in COOL

Six Concurrent Constructs have been implemented in COOL.

5.4.1 Send and Wait

This implies an synchronous object call where an object requests a result and waits

for it. For example,

shape [1024)shape name;
1* Defines shape */

class Employee: shapename employee;

/* Declares class object*/
(22)employee..raise(10);

where Employee is the class of all employee objects, and it defines an int raise(int)

method or member function. /22/employee is a single employee object which is mapped to

processor 22.

5.4.2 Send, no Wait

This implies an asynchronous object call without synchronization. For example,
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[22]employee..raise(lO)**;

where one employee object receives the message to raise it's salary by 10 percent. It

responds by acknowledging the receipt of the message, then it executes an appropriate

method concurrently.

5.4.3 Send to more than one object and wait

This implies that the receivers are all instances of the same class. For example,

shape [1024]shape name;
/* Defines shape */

class Employee:shape name some{501;
/* Declares class object*/

some..raise(5);

where what is specified within square brackets [right indexing] indicates an array. The

employees that are in the some array all get the same message. They respond collectively

by executing an appropriate method. All employee objects return an integer, which is

deposited into the array result, which needs to have the same dimension. This case is

appropriate for a data parallel model of execution.
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5.4.4 Send to more than one object, no wait

This case implies several asynchronous object calls without synchronization. For

example,

shape [1024]shape name;
/* Defines shape */

class Employee:shape name some[50};
/* Declares class object*/

some..raise(5)**;

where several employee objects receive the message to raise their salary by five percent.

They respond by acknowledging the receipt of the message, then they execute an

appropriate method concurrently.

5.4.5 Singular rendezvous

This implies the ability of sending a message to an object and not waiting for its

answer (return value) immediately. Instead, we issue an asynchronous send, perform other

operations, and then wait for the return value. For example,

update code examples to reflect COOL current syntax

while done concurrently(a = employee[23].raise(10))

{
printf ( "hello world");
. . .other statements, without involving variable a

printf("done with intermediate concurrent work");

}
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or, the above code could be written as

a = employee[23).raise(10)&
printf("hello world");
... other statements, without involving variable a

printf("done with intermediate concurrent work");

wait(a);

where a specific employee gets the message raise. The employee acknowledges receipt

and then concurrently executes its raise method. The sending program (the object where

the above code is located) continues to execute as if it was a send with no wait. Then, it

reaches the wait (a) statement: it waits until the employee object is done raising its salary

and has produced a return value. Obviously, variable a should not be touched in the

meantime.

5.4.6 Parallel rendezvous

This case is similar to cases four and five (multiple send, no wait). Messages are

sent to a set of objects, all from the same class. There is a return value. The sender does

not want to wait for the return value at the moment, but it will wait sometime in the

future. For example,

while done concurrently(result = some.raise(5))

{
printf ("hello world");

. other statements, without involving result
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printf("done with intermediate concurrent work");

}

5.5 COOL Details

As in C++, the '::' scope operator is used to indicate to COOL that the function

being defined is a method of the specified class. For example,

void Screen: :checkRange(int row, int col)
{
.... some code

}

indicates that function checkRange is a method of class Screen.

In C** inheritance is noted by the ':' operator. In COOL it was decided to use '<>' as the

inheritance operator for readability purposes. The inheritance operator implies that the

derived class inherits the members of the class it is derived from. For example,

class Employee <> Person

implies that Employee is inheriting the characteristics of superclass Person

Classes are defined as in C by using the 'class' type. Data members and function
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members are defined as in C++ with the exception that data members should be declared

first, followed by the '!!' separation operator, and then followed by function members.

The reason for defining the '!!' operator was that while parsing there was no way of

knowing when a data or function member was being defined; COOL takes the class

definition and converts it to a struct for C* Within a struct we can only have data

members, not function members.

The overload statement should be used within a class definition if function members are

expected to be used with scalar and parallel data. For example,

class Employee
{
float salary;

float raise(float salary, float rate);
overload raise;
float:current raise(float:current salary, float rate);

}

The above example initially defines function raise as a scalar function; after the overload

statement, function raise is defined as a parallel function. Therefore, based on the variables

passed into the function, the compiler will determine if the function is scalar or parallel.

As in C* 6.0, the overload statement should be at the beginning of the file that contains the
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declarations or function prototypes. Furthermore, the statement must appear before the

declaration of the second version of the function, and it must appear in the same relative

order with respect to the function declarations in a compilation unit [C*]

6. IMPLEMENTATION

6.1 Strategy Used to develop COOL

COOL has been implemented using traditional compiler construction tools: Lex

and Yacc. C was used during the code generation stage.

Since C* 6.0 and COOL are based on ANSI C, the first step was to locate versions of the

ANSI C Yacc and Lex specifications; these specifications where found in the public

domain over the Internet. With these specifications, we proceeded to generate the C* 6.0

Yacc and Lex specifications. This took some time due to our unfamiliarity with C*. Most if

not all of the C* syntax is recognized by COOL.

Once the C* grammar was completed, the necessary rules for the constructs to be

implemented in COOL were included. One of the goals for the COOL grammar was to

have class representations be similar to C'+. This will be explained later on as the syntax of

COOL is fully explained.
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When testing of the grammar was completed, the necessary C* code was generated to

support the constructs being implemented.

6.2 Object-Oriented and C* Constructs Implemented in COOL

COOL implements classes and inheritance in a similar manner as C"

6.2.1 Classes

COOL implements a simple model of classes as defined in C. All methods

(functions) are 'public'. At this time, COOL does not support 'friend' and 'private'

functions nor does it support 'constructor' and 'destructor' functions. These

enhancements are left for a future version of COOL

6..2 Inheritance

COOL implements a one level inheritance hierarchy. The reason was to prove that

inheritance was possible; multiple inheritance can be easily implemented in future versions

of COOL.

6.2.3 New Reserved Words and Operands
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Table 1 briefly describes * reserved words and operands implemented in COOL:
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>? maximum of two variables

%% modulus of it's operands

negative of the sum of values

sum of values of parallel variable elements

& bitwise AND of values

bitwise XOR of values

bitwise OR of values

Table I C Reserved Words and Operands Implemented in COOL

Table 2 briefly describes COOL reserved words and operands implemented in

COOL:

classDefine and declare a class object

wai Wat fran event before proceeding

K> I~nherit fom another class

Inherit imethod

Declare method

Table 2: COOL Reserved Words and Operands

6.3 COOL Syntax

This section describes COOL's syntax as well as its limitations and restrictions,
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6.3.1 COOL Limitations and Restrictions

Several limitations and restrictions were discovered while developing COOL:

* Definition of class function members should be defined outside of the class

body.

* As in C+, class definitions should be defined in a "class header" and a

"class body". This "class header" should also contain the function member

prototypes as well as the functions definitions themselves. The "class

header" file must reside in the current directory. Syntax for the include file

is:

#include "def.h"

* COOL assumes that include statements of the form

#include <stdio.h>

are including system specific information and will not preprocess them.

These include files will be pre-processed during final compilation on the

Connection Machine at the Naval Research Lab in Washington D.C.

Source files must be are invoked with the -P command line switch. This

parameter is from the C preprocessor and the purpose is to use CPP's

facilities for manipulating C preprocessor statements such as #define and
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#include.

When declaring a variable to represent a previously defined class, the word

class must precede the declaration. For example

class Definition d;

refers to a class which has been previously defined.

Identifiers can have a maximum of 20 characters. Supported characters are

the same as those for ANSI C.

COOL provides inheritance one level deep at this time.

Functions which will be used by both parallel and scalar (non-parallel)

variables need to be declared using C*s overloading features. Overloading

means that a different version of the function is defined for each type of

input needed. This needs to be done for class methods as well. For

example,

overload raise;

float raise (float x);
/* scalar version */
{
return(x+l);

}

float: current raise (float current x)

/* parallel version*/

{
return(x+1l);
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}

* When defining a class, data members and function members need to be

grouped together and separated as follows:

class Definition

int rate;

float money;

float raise(float);

}

6.3.1.1 COOL Notation

6.3.1.1.1 Comments

Comments in COOL are the same as in C* and C. '*' signifies the beginning of a

comment and '*/' signifies the end of a comment

6.3.1.1.2 Legal Identifiers

Identifiers may use the following characters

A through Z
a through z
0 through 9

(underscore)

As in C* and C, the first character of an identifier must be a letter or an underscore.
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6.3.1.1.3 Reserved Words and Operators

C* and C reserved words also are reserved words in COOL. For a complete list of

C* and C reserved words and operators, please see appendices A and B.

COOL reserved words include:

class
wait

COOL operators include

**

I !

6.3.1.1.4 Separators for Reserved words and Identifiers

nl/lf newline linefeed
tab
space
/* begin comment
*/ end comment

6.3.2 Scope Rules

COOL scope rules follow those of C* and therefore ANSI C; a name is known

throughout the scope in which it is declared
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6.3.3 COOL Grammar (YACC) Definition

The COOL grammar where the extensions to C* have been implemented are

included below. The complete C, C* and COOL grammar may be found in appendix....

The following YACC rules define the WAIT statement used in the constructs defined in

sections 5.5.1 and 5.5.3.

primary-expr

identifier
CONSTANT

stringliteral
'(' expr ')'

WAIT '(' identifier ')'

PCOORD '(' constant expr ')

The following YACC rules define a CLASS.

class specifier
: class def identifier ' {' classdeclaration list }'

class def '{ class declaration list '}'

class def identifier
class def identifier INHERIT identifier '{

class declaration list '}'

class def identifier ':' shape expression identifier

;

class def
: CLASS

class declaration list
classdeclaration
classdeclaration list class declaration

class declaration
: specifier list class declarator list ';
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class declarator list
class declarator

class declarator-list ', class-declarator

class declarator
: declarator

' constant-expr

The following YACC rules define a method.

function declarator
:direct declarator '(' parameter_type list')'
directdeclarator '(' ' ) '
directdeclarator '(' identifier list

list ddeclarator COLONCOLON '(' ')'

directdeclarator COLONCOLON direct-declarator

'('parametertypelist ')'

directdeclarator COLONCOLON direct-declarator

'('identifier list ')'

7. SAMPLE PROGRAM

A simple payroll system will be used to demonstrate the effectiveness of COOL

The system has an Employee class from which 16 Faculty employee objects, 16 A&P

employee objects and 16 USPS employee objects will be created. Note that A&P and

USPS are employee classifcations used at Florida International University. The program

calculates employee salaries and total salary expenditure by employee classification.
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7.1 COOL Code

This is the sample COOL program used to demonstrate COOL. The code is preceded by
a line number for clarification later on.

0 #include <stdio.h>
I #include <stdlib.h>

2 class Employee /* Class declaration */

3 {

4 int hours; /* Class member */
5 float rate; /* Class member */

6 float salary; /* Class member */

8 void doSalary(); /* Member function/method declaration */
9 }

10 void Employee::doSalary(int hours ) /* Member function definition *

11 {

12 Salary = hours * rate;

13 return;

14 1

15 main()

16
17 shape [16]shape is; /* Number of Processors to use */

18 class Employee:shape_ is faculty;

19 class Employee:shapeis ap;

20 class Employee:shapeis usps;

21 int i;

22 loat facultytotal;

23 float ap total;

24 float uspstotal;

25 faculty total=0;

26 ap total=0;

27 usps total=0;

28 with (shape-is)

29 1
30 faculty.rate=50.0; /* Data replication */

31 ap.rate=40.0; /* Data replication */

32 usps.rate=30.0; /* Data replication *

33 faculty.hours=(pcoord(0)*5);

34 ap.hours=(pcoord(0)*8);
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35 usps.hours=(pcoord(0)*10);

36 ap.doSalary()**; /* Send to more than one No Wait *

37 faculty.doSalary(); /* Send to more than one and wait

38 usps.doSalary(); /* Send to more than one and wait

39 wait(ap.salary); /* Parallel Rendezvous */
40 [10]ap.rate=45.0; /* Change rate for employee # 10 *
41 [10]ap.doSalary); /* Send, no wait */

42 printf("\nFaculty # Rate Hours Salary\n");

43 printf("========- =============================\-")-

44 for (i=0; i<16; i++)
45 printf("%d %f %d of

\n",i, [i]faculty.rate, [i]faculty.hours,[i]faculty.salary);

46 printf("\nA&P # Rate Hours Salary\n");

47 printf("========================================\n");

48 for (i=0;i<16;i++)

49 printf("%d %f %d %f
\n",i, [i] ap.rate, [i] ap.hours, [i] ap. salary);

50 printf("\nUSPS # Rate Hours Salary\n");

51 printf ("---======--=== = ====================\n");

52 for (i=0;i<16;i++)

53 printf'%d If %d %f
\n", i, [i]usps . rate, [i]usps .hours, [i]usps . salary) ;

54 facultytotal+=faculty.salary; /* Data Reduction */

55 aptotal+=ap.salary; /* Data Reduction */

56 usps_total+=usps.salary; /* Data Reduction */

57 printf("\n\nTotal Salary Expenditures\n");

58 printf("===============- =============\n");

59 printf("Faculty Total Salary = $ %f\n",faculty-total)

60 printf("A&P Total Salary = $ %f\n",aptotal);

61 printf("USPS Total Salary = $ %f\n",usps-total);

62 printf(" \n");

63 }
64 }

7.2 Explanation
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Lines two through eight are used for declaring class Employee with three members

(hours, rate and salary) and one method (doSalary). Line ten illustrates a member function

definition using the :: operator Sixteen faculty, A&P and USPS objects are created on

lines eighteen through twenty. Data replication (same value is assigned to the same

variable on all active processors) is also illustrated .

The new constructs implemented in COOL are illustrated on lines thirty-six through forty-

one. ap . doSalary () * * invokes method doS alar y for all A&P employees and does

not wait for completion before proceeding to the next statement in the program.

f acult y. doSalar y invokes method doS alar y for faculty objects and waits until

the operation is completed on all sixteen faculty objects before proceeding with the next

statement. Before we go ahead and print, we need to be sure that A&P salaries have been

computed; therefore, we issue a wait (ap . Salary) . Printing, however, may not be

done concurrently, so we use a for loop to go through each object.

7.3 Sample Program output

Faculty # Rate Hours Salary

0 50.000000 0 0.000000
1 50.000000 5 250.000000
2 50.000000 10 500.000000

3 50.000000 15 750.000000
4 50.000000 20 1000.000000

47



5 50.000000 25 1250.000000
6 50.000000 30 1500.000000
7 50.000000 35 1750.000000
8 50.000000 40 2000.000000
9 50.000000 45 2250.000000
10 50.000000 50 2500.000000
11 50.000000 55 2750.000000
12 50.000000 60 3000.000000
13 50.000000 65 3250.000000
14 50.000000 70 3500.000000
15 50.000000 75 3750.000000

A&P # Rate Hours Salary

0 40.000000 0 0.000000
1 40.000000 8 320.000000
2 40.000000 16 640.000000
3 40.000000 24 960.000000
4 40.000000 32 1280.000000
5 40.000000 40 1600.000000
6 40.000000 48 1920.000000
7 40.000000 56 2240.000000
8 40.000000 64 2560.000000
9 40.000000 72 2880.000000
10 40.000000 80 3200.000000
11 40.000000 88 3520.000000
12 40.000000 96 3840.000000
13 40.000000 104 4160.000000
14 40.000000 112 4480.000000
15 40.000000 120 4800.000000

USPS # Rate Hours Salary

0 30.000000 0 0.000000
1 30.000000 10 300.000000
2 30.000000 20 600.000000
3 30.000000 30 900.000000
4 30.000000 40 1200.000000
5 30.000000 50 1500.000000
6 30.000000 60 1800.000000
7 30.000000 70 2100.000000
8 30.000000 80 2400.000000
9 30.000000 90 2700.000000
10 30.000000 100 3000.000000
11 30.000000 110 3300.000000
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12 30.000000 120 3600.000000
13 30.000000 130 3900.000000
14 30.000000 140 4200.000000
15 30.000000 150 4500.000000

Total Salary Expenditures

Faculty Total Salary = $ 30000.000000
A&P Total Salary = $ 38400.000000
USPS Total Salary = $ 36000.000000

7.4 Timing Details

Timing was not an issued during the development of COOL. The main

consideration was the feasibility of implementing COOL. Future versions of COOL may

either user C* optimization features or implement optimization directly into COOL.

8. CONCLUSIONS

There are many benefits to be achieved by using COOL on the Connection

Machine, as will be explained shortly; there are also a variety of enhancements that can be

added to COOL to make it a richer and more versatile programming language.

8.1 Benefits of COOL

COOL combines the object-oriented and parallel paradigms. COOL combines
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classes, inheritance and encapsulation with the parallel processing capabilities of the

Connection Machine; therefore, the benefits of both 'worlds' will be available to the

prograr er. Application development for use on the Connection Machine will be easier

to develop and maintain thanks to the object-oriented constructs added to C*.

Furthermore, the inherent parallelism of the Connection Machine provides for increased

throughput.

8.2 Future Work and Enhancements to COOL

COOL could be further enhanced to become a concurrent version of C for the

Connection Machine by providing more levels of inheritance as well as multiple

inheritance. Multiple inheritance can be achieved by providing COOL with the necessary

constructs. Private, protected and public access levels would also need to be implemented

to become a concurrent version of C" for the Connection Machine. Parallel rendezvous

and other language constructs not yet defined may also be implemented for COOL in

order to make it a more flexible language.

COOL currently provides very crude error checking (ie syntax error); better error

messages and semantic error checking are features that may be included future versions of
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COOL. Optimization has not been implemented in COOL; therefore, performance could

be greatly improved be taking advantage of the optimization features of the target system

(CM-2 or CM-5).

Finally, COOL may also be enhanced to take advantage of the MIMD features of the CM-

5, not just SMD which is what this implementation currently supports. Furthermore,

performance and optimization enhancements may be added to a future version of COOL.
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Appendix A: C Reserved words used with COOL

auto break case
cdecl char const
continue default do
double else enum
extern far float
fortran goto huge
if it long
near pascal register
return short signed
sizeof static struct
switch typedef union
unsigned void volatile
while
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Appendix B: C* Reserved Words used with COOL

bool current dimof everywhere
overload pcoord physical positionsof
rankof shape shapeof where
with
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Appendix C: COOL YACC Grammar Specification

The COOL Yacc Grammar specification is submitted seperately.
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Appendix D: COOL LEX Specification

The COOL Lex specification is submitted seperately.
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Appendix E: COOL Main program and Sample Program

The COOL Main program and Sample Program code are submitted seperately.
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Appendix E: COOL Main program and Sample Program

The COOL Main program and Sample Program code are submitted seperately.
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