Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-3-2006

Context-aware data caching for mobile computing
environments

Stylianos Drakatos

Florida International University

DOI: 10.25148/etd.F115101224
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

b Part of the Data Storage Systems Commons

Recommended Citation

Drakatos, Stylianos, "Context-aware data caching for mobile computing environments" (2006). FIU Electronic Theses and Dissertations.
3082.
https://digitalcommons.fiu.edu/etd/3082

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3082&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3082&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3082&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3082&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.fiu.edu%2Fetd%2F3082&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3082?utm_source=digitalcommons.fiu.edu%2Fetd%2F3082&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

CONTEXT-AWARE DATA CACHING
FOR MOBILE COMPUTING ENVIRONMENTS

A dissertation submitted in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY
in
ELECTRICAL ENGINEERING
by

Stylianos Drakatos

2006

To: Dean Vish Prasad
College of Engineering and Computing

This dissertation, written by Stylianos Drakatos, and entitled Context-Aware Data.
Caching for Mobile Computing Environments, having been approved in respect to
style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Kia Makki, Co-Major Professor

Kang Yen

Christos Koulamas

Christos Douligeris

Niki Pissinou, Co-Major Professor

Date of Defense: November 3, 2006

The dissertation of Stylianos Drakatos is approved.

Dean Vish Prasdd
College of Engineering and Computing

Dean George Walker
University Graduate School

Florida International University, 2006

ii

(© Copyright 2006 by Stylianos Drakatos

All rights reserved.

iii

ACKNOWLEDGMENTS

I would like to express my deep thanks and appreciation to my co-advisors pro-
fessor Dr. Niki Pissinou and professor Dr. Kia Makki for their dedicated guidance,
advisement, and support; I acknowledge that what I learned from them will benefit
my advancement in the rest of my life. I am deeply indebted to them for their pro-
fessional guidance and encouragement. My meetings with them have been extremely
rewarding because of their insight, knowledge and quick grasp of essentials of my
research area. Their excellent criticisms, and their prompt, careful reading of early
drafts of this thesis were enormously helpful in its clarification and development.

I am grateful to Dr. Christos Douligeris for his continuous support, technical
ideas and multiple paper reviews. My sincere thanks are also due to the other two
members of the committee, Dr. Kang Yen, and Dr. Christos Koulamas, for their
valuable comments and suggestions. Finally I would like to thank my parents for their
ever continuing guidance and encouragement, especially my brother Dr. Charalambos

Drakatos for never doubting the results of my efforts.

v

ABSTRACT OF THE DISSERTATION
CONTEXT-AWARE DATA CACHING
FOR MOBILE COMPUTING ENVIRONMENTS
by
Stylianos Drakatos
Florida International University, 2006
Miami, Florida
Professor Niki Pissinou, Co-Major Professor
Professor Kia Makki, Co-Major Professor

The deployment of wireless communications coupled with the popularity of portable
devices has led to significant research in the area of mobile data caching. Prior re-
search has focused on the development of solutions that allow applications to run in
wireless environments using proxy based techniques. Most of these approaches are
semantic based and do not provide adequate support for representing the context of
a user (i.e., the interpreted human intention.). Although the context may be treated
implicitly it is still crucial to data management. In order to address this challenge
this dissertation focuses on two characteristics: how to predict (i) the future location
of the user and (ii) locations of the fetched data where the queried data item has
valid answers. Using this approach, more complete information about the dynamics
of an application environment is maintained.

The contribution of this dissertation is a novel data caching mechanism for perva-
sive computing environments that can adapt dynamically to a mobile user’s context.
In this dissertation, we design and develop a conceptual model and context aware
protocols for wireless data caching management. Our replacement policy uses the

validity of the data fetched from the server and the neighboring locations to decide

which of the cache entries is less likely to be needed in the future, and therefore a
good candidate for eviction when cache space is needed. The context aware driven
prefetching algorithm exploits the query context to effectively guide the prefetch-
ing process. The query context is defined using a mobile user’s movement pattern
and requested information context. Numerical results and simulations show that the
proposed prefetching and replacement policies significantly outperform conventional
ones.

Anticipated applications of these solutions include biomedical engineering, tele-

health, medical information systems and business.

vi

TABLE OF CONTENTS
CHAPTER PAGE

1 INTRODUCTION 1
1.1 Background and Preliminaries 3
1.1.1 Data Caching Overview 3

1.1.2 Location Dependent Data Queries 6

1.1.3 Cache Management Processes 8

1.2 Motivation 9
1.3 Statement of the Problem 12
1.4 Research Goals 14
1.5 The Dissertation Environment 16
1.6 Significance and Contributions 18
1.7 Methodology e e e 19
1.8 Targeted Applications 20
1.9 Scope of Dissertation 21
1.10 Outline of the Dissertation 22
2 RELATED WORK 25
2.1 Modeling Moving Objects 25
2.2 Future Location Prediction 27
2.3 Cache Replacement, 29
2.4 Cache Prefetching o oL 31
2.5 Previous Work Summary 0oL 34
3 A FUTURE LOCATION-PREDICTION

REPLACEMENT POLICY 36
3.1 Introduction e e o 4
3.2 Wireless Infrastructure Description 38
3.2.1 Modeling User Mobility 39
3.2.2 Location Granularity 40
3.2.3 Prediction Level 0. 43
3.2.4 The Client’s Semantic Cache Description 44

3.3 Query Modelling and Augmentation 46
3.4 The Cache Replacement Policy Components 48
3.4.1 The Valid Scope Concept 48
3.4.2 Movement Pattern - Future Cells for Replacement C e 49
3.4.3 The Future Location Transition Probabilities 54
3.4.4 The Replacement Score Model, 55

3.5 Replacement Performance Evaluation 58
3.5.1 Impact of the Cache Size 60
3.5.2 Impact of the Affinity Factor. 61
3.5.3 Dataltem Types 63
3.5.4 Impact of the Query Delay 64
3.5.5 Mobile Cache Response Time 66

3.6 Replacement Policy Conclusions 68

vil

4 A CONTEXT-AWARE PREFETCHING STRATEGY
4.1 Introduction
4.2 The Cache Prefetching Components
4.2.1 Query Pattern and Cache Management
4.3 Prefetching Cost Analysis Model
4.3.1 Numerical Results
4.4 Prefetching Performance Evaluation
4.4.1 Impact of Cache Size e
4.4.2 TImpact of Affinity Factor
4.4.3 Impact of Data Item Types e
4.44 TImpact of Query Delay
4.4.5 Impact of Movement Speed e e e e e R
4.5 Prefetching Strategy Conclusions

5 THE EXPERIMENTAL ENVIRONMENT
5.1 The Client Cache Model
5.2 Cache Management Simulation Examples
5.2.1 The Physical Cache Organization
5.2.2 LRU Baseline Policy Simulation
5.2.3 The FAR Replacement Policy

6 CONCLUSIONS
6.1 Contributions of this dissertation
6.2 Impact of the Results to Mobile Computing e
6.3 Future Work e

viii

TABLE

1.1

1.2

3.1
3.2

3.3

4.1
4.2

4.3

5.1

LIST OF TABLES

PAGE
Example of dynamic semantic cache index 10
Query predicate augmentation by client 13
State of the Cache Example 46
Neighboring Valid Cells Identification 51
Example of Prime Index Table b3
Query Candidates List for Prefetching77
Candidate Queries-Attributes and Predicates Description 78
Candidate Queries’s Cost Description 79
Memory and Cache Line Addresses 105

ix

LIST OF FIGURES

FIGURE PAGE
1.1 A data caching taxonomy. 4
1.2 The shadow cluster concept([24]). 15
3.1 A mobile architecture. L 38
3.2 The shadow cluster concept-neighboring cells distribution. 41
3.3 Random walk model - next cell probability distribution. 41
3.4 Semantic cache structure and the prime list of cells. 44
3.5 A four ring cluster (7x7 grid) of valid cells. 52
3.6 Next ring neighboring cells identification model. 52
3.7 Cache hit ratio versus cache size - for various simulation times 59
3.8 Impact of cache size for different simulation time. 39

3.9 Changing the replacement query’s pattern (Affinity factor) for FLA. . 61

3.10 Affinity factor - Comparing FLA and FAR. 61
3.11 Cache hit ratio for FLA-FAR-LRU vs cache size. 62
3.12 Cache hit ratio versus the data item types factor. 63
3.13 Impact of query delay on FLA. 64
3.14 Impact of query delay for LRU, FAR and FLA. 65
3.15 Performance results based on scope distribution size. 66
3.16 Cache response time for FAR and FLA versus cache size. 66
3.17 Cache response time for FAR and FLA versus affinity factor. 67
4.1 Roaming mobileuser. L. 73
4.2 Prefetching cost (Equation 4.1 and e=10%) 83

4.3

4.4

4.5

4.6

4.7

4.8

49

4.10

411

4.12

4.13

4.14

5.1

Prefetching cost (Equation 4.1and e =25%)
Simulation work flow (res:resident query, rq:remote query).
Effect of cache size in LRU, DR, and CAPS.
Effect of cache size for RW and DIR movements.
Effect of query pattern (Affinity factor) for DR and CAPS.
Impact of data item types - Comparison chart.
Impact of data item types.
Impact of query delay on CAPS.. e e e
Impact of query delayon DR.
Impact of query delay-Average results for both CAPS and DR. . .

Changing the moving speed for CAPSand DR.

Average speed performance comparisons for CAPS, DR and LRU. .
A query random walk for the FAR policy.

Layers crossing probabilities
State diagram for the hexagonal random walk model.

Random sampling confidence interval e

xi

94

126

LIST OF ACRONYMS
ATM: Asynchronous Transfer Mode
BS: Base Station
CS: Caching Strategy
CAC: Context-Aware Cache
CA: Context-Aware
DBMS: Data Base Management System
DOMINO: Data Base for Moving Objects
LDD: Location Dependent Data
FLA: Future Location-Aware
FAR: Furthest Aware Replacement
GSM: Global System for Mobile Communications
GPS: Global Positioning Systems
LRU: Least Recently Used
LA: Local Area
LBS: Location Based Services
LDIS: Location Dependent Information Services
MOST: Moving Objects Spatio-Temporal
MRU: Most Recently Used
MSC: Mobile Switching Center
MC: Mobile Client
MOD: Moving Objects Database
MLS: Mobile Locations Systems

MANET: Mobile and Ad Hoc Networks

xii

PDA: Personal Digital Assistant

PCS: Personal Communications Services Networks
RA: Registration Area

RW: Random Walk

SA: Service Area

WLAN: Wireless Local Area Network

WAP: Wireless Architecture Protocols

xiii

Chapter 1

INTRODUCTION

The ubiquity of pervasive mobile networks combined with the capability to support
large databases promise new opportunities for mobile applications. However, in order
to efficiently support these applications, mobile platforms are required to cache por-
tions of the available data so that access over relative slow communication channels
can get accelerated and communication disruptions may be minimized.

One of the most popular mobile applications is the provisioning of services using
location information known as location-based services (LBS). LBS use the location
information of mobile users to provide them with relevant information based on their
geographical position [1, 6, 11]. Through LBS, mobile clients can access location sen-
sitive information, such as traffic reports, hotel information and weather forecasting.

Location-aware dynamic caching and prefetching computing is a widely used tech-
nique used to improve performance in mobile computing environments (3, 9]. Prior
research on data caching [12, 14] and prefetching [28, 11] has focused on the devel-
opment of solutions that allow applications to run in wireless environments using
proxy-based techniques. Even though most of these approaches are semantic-based,
they do not provide adequate support for representing the context of a user (i.e., the

interpreted human intention.). Although the context may be treated implicitly, it

is still very crucial to data management in a mobile environment, since potentially
context-sensitive and highly personalized information can be disseminated to mobile
users. Even though the location information has been used as a key field of the user’s
query context, not enough attention has been paid to the other query fields (predi-
cates) which define the user’s information context. The characteristics of the mobile
environments and the mobile user needs for dynamic provisioning of information con-
tent make most previous caching and prefetching techniques unsuitable.

This dissertation aims to solve this problem by presenting a novel data caching
mechanism for pervasive computing environments that can adapt dynamically to a
mobile user’s context. In the dissertation we design and develop a conceptual model
and context aware protocols for wireless data caching management. The presented
replacement policy uses the validity of the data fetched from the server and the neigh-
boring locations to decide which of the cache entries is less likely to be needed in the
future, and therefore a good candidate for eviction when cache space is needed. The
context aware driven prefetching algorithm exploits the query context to effectively
guide the prefetching process. The query context is defined using a mobile user’s
movement pattern and requested information context.

In this chapter the principles of data caching, with a particular emphasis on cache
management and prefetching, are first presented, then the goals, issues and assump-
tions of this dissertation are elaborated. Finally this chapter concludes with the scope

and the outline of this dissertation.

1.1 Background and Preliminaries

1.1.1 Data Caching Overview

Data caching in mobile environments can support many applications and many levels
of information systems design enhancing performance without significantly increasing
the cost and complication of the overall information system design. Caching can
occur at least at three different locations: (i) the server, (ii) the proxy server, and
(iii) the client. Of these, server caching is used not a means to reduce delays, but
as an effective way to reduce the demand for clients’ connections on a single server.
Enterprise applications where data caching is applied include the traditional client-
server distributed environment, the web and the much newer mobile and wireless
environments. Figure 1.1, shows a taxonomy of the main data caching applications,
data caching techniques and the cache main processes discussed in this chapter. In
a web environment, proxy servers deal with aggregate user demand. Caches are
commonly located at the client and at proxy servers [62], which are found within a
user’s intranet. Client data caching is particularly important in mobile computing,
because it can reduce wireless communication and has been shown to be an effective
way to handle the above problems [18, 29, 14].

In traditional legacy systems a predictive caching system makes optimal caching
decisions regarding the caching of the most important files, based on the types of
user interaction with these files [4]. Through the concept of semantic distances the
distance between files and directories is measured and quantified. The sequence in
which the files are accessed can also be taken into account. One such approach is

found in the SEER system, which was implemented as a modification to the UNIX

Figure 1.1: A data caching taxonomy.

kernel and a collection of user-level processes to calculate semantic relations among
the files. These were logged by the kernel in a trace buffer and examined later to
make optimal caching decisions.

While the traditional data dissemination systems use physical information to orga-
nize data and caching techniques based on page and tuple caching [13, 5], newer data
caching techniques maintain the associated answers (data items) of previous queries
as well as their meaning (purpose). This form of information description is called
semantic description, and makes it possible to reason about and derive knowledge
from the given description. A semantic cache was defined in [7] composed of a set
of cached items, which are called semantic segments. During a new query processing

the semantic description is used to determine what percentage of the query can be

answered locally, and what data are missing and therefore need to be fetched from
the server.

Typical caching techniques, such as page and tuple caching, maintain no semantic
information about the data being cached. This makes it difficult to manage the
cache based on the user’s interests. A semantic cache, however, maintains not only
the data in the cache but also semantic information about its contents. Semantic
caching is particularly attractive in a mobile computing environment due to the fact
that the amount of data to be cached is reduced. This in turn reduces the wireless
network traffic and resource usage at the mobile unit. Both of these are desirable in
a potentially resource poor mobile computing environment.

In a distributed heterogeneous environment, such as the mobile environment, the
semantic data caching paradigm is an important technique for improving the per-
formance of wireless data dissemination systems. Semantic caching is by nature an
ideal cache scheme for Location Dependent Data (LDD) applications due to the fol-
lowing reasons. First the semantic caching is built on the semantic locality among
queries, which perfectly fits the LDD applications where semantic rather than tem-
poral or spatial locality is exhibited [5, 7]. Secondly, continuous LDD queries can
be incrementally processed by semantic caching. With each successive request, a
much smaller trimmed LDD query is processed at the server side and only the differ-
ences are transmitted over the wireless link. Thirdly, semantic caching makes cache
management more flexible.

Another data caching technique in a mobile environment called object caching
relates to mobile objects or mobile clients who are on the move. These mobile objects

need to be constantly provided with the relevant data they need depending on their

location. This brought forward the problem of keeping track of the mobile objects
and therefore the need of databases to support moving objects and data structures
to support their functioning. These moving objects are represented in a Database for
Moving Objects (DOMINO) containing the moving objects and their location [30].
Object caching techniques have demonstrated that discrete representations could
be mapped into data structures that can be used in a DBMS environment providing
a precise base for the implementation of spatio (space predicate) - temporal (time
predicate) extension package to be added to a suitable extensible architecture. These
moving object databases have to be continuously updated and queried. The update
problem needs to determine when the location of a moving object has to be updated.
These moving objects will generate random queries depending on their position.” A
critical set of capabilities such as the support for spatial and temporal information
have to be built on top of existing databases in order to support moving objects
databases [17]. Additionally, a new data model needs also to be introduced to check

the location update policies and their performance.

1.1.2 Location Dependent Data Queries

A location dependent (LD) query is a query which is processed on location depen-
dent data, and whose results depend on the location criteria explicitly or implicitly
specified. Moreover, the result may change as the user changes location. An example
of these queries may involve a traveler who gets different gas station information as
s/he moves to different locations. Furthermore, since the same question is asked con-
tinuously, there may be a large degree of overlap in the results of consecutive queries

Clearly, continuously evaluating a query from scratch would be very inefficient. If

we keep a cache on the mobile unit, part of the new query result could be obtained
locally. By doing this, the wireless network traffic is reduced, and the system perfor-
mance is improved as well. To dynamically adapt to the query access pattern, the
cached contents are required to move as the mobile unit moves.

Mobile clients querying static objects create queries like: “Tell me where is the
nearest gas station?” and “Where is the nearest restaurant?” which are popular
queries in real-world location applications. In general the mobile clients submitting
this kind of queries are mobile and the data objects are fixed. The main challenge of
this type of queries is how to get the location of the clients and how to guarantee the
validation of the results when the client keeps moving during the query evaluation
process.

Queries such as “Report all the available hospitals within a 500-meter radius” are
an extension of this type of query. A LD query becomes more difficult to answer
when it is submitted as a continuous query. For example, a client in a moving car
may submit the query: “Tell me the room rate of all the hotels within a 500 meter
radius from me” continuously in order to find a cheap hotel. Since the client keeps
moving, the query result becomes time-sensitive in that each result corresponds to
one particular position and has a valid duration because of location dependency. The
representation of this duration and how to transmit it to the client are the major
focuses of Continuous Queries (CQ). Sistla et al. [17], employed a tuple to bind the
valid time duration of the query result.

Of course, the LDD queries listed above can also contain querying about location
independent attributes, such as: “Tell me the nearest restaurant providing Chinese

food.” Since these queries can be broken down into two parts: one for location-

dependent information and the other for location-independent attributes, we only
consider queries on location-dependent information as the others can be retrieved by
traditional query-processing methods. In particular, this dissertation focuses on the

continuous type of queries initiated by mobile users querying static objects.

1.1.3 Cache Management Processes

Regardless of the cache techniques described in the previous section and the orga-
nization model being used the following data caching main issues (shown in Figure
1.1) make the design of client cache management for wireless data disseminations a

challenge.

1. Cache replacement: Cache replacement refers to the process that takes place
when the cache becomes full and old data items (objects) must be removed to
make space for new (newly referenced) ones. An effective cache replacement
policy is needed to decide which cache entries will remain and which will be
evicted to make space for new data, since the cache is inevitably small to hold
all the data referenced and, thus, some data must be evicted when new data is
brought in. It is obvious that the cache will perform best if the data evicted is

that which is least likely to be referenced again.

2. Cache prefetching policy (also called cache hoarding): Cache prefetching au-
tomatically preloads automatically data values into the cache for possible fu-
ture access requests. Prefetching in association with replacement manages the
client’s cache, providing an effective technique to handle information provision-

ing for users with limited resources and frequent disconnections.

3. Cache coherence strategy: Cached results from previous queries may become
invalid when the mobile client moves from one location to another, or even
when the objects residing at the database server are updated. A cache coherence
strategy usually involves cache invalidation and update schemes to invalidate
and up-date an outdated cached entry. An invalidation policy maintains data
consistency between the client cache and the server. This is achieved by the
origin server notifying clients if a cached object has changed. Another approach
for cache coherence is cache validation. With cache validation, the clients verify
the validity of their cached objects with the origin server. A detailed work in

cache coherence control is presented in [29)].

1.2 Motivation

In the real world, as mobile users change locations, they most likely tend to request the
same data item a few times until switching to another one. For example considering
the case of the mobile user asking questions to find the nearest hotel. At time ¢
and location cell id = x;, the mobile user asks query @Q;: “Give me all the names of
the nearest hotels (within 5 miles)”, and then keeps on driving to the next location.
Then at time ¢5 and location cell id = x4, s/he asks query Qy: “Give me the names
and vacancy information for hotels within 5 miles which charge up to $100”.
Affinity can be defined as the preference towards a particular database data item.
Once the mobile client has demonstrated affinity towards one particular data item
type (i.e., in this case hotel), each additional data item type has a lower affinity value
for the duration of the query. Additionally, a certain user may query the same item

often, while another user may query the same item occasionally. Thus, both a user’s

Table 1.1: Example of dynamic semantic cache index

S |Sg|Ss | Sp Spr S Scv | Srs

Sl H H (Lml -5 S ha:posit’ion ,,<_ 2 La:l) Lyl 110010 tl
o |n L1+ 5)A

t a (Ly1~5S

e m hyposition < Ly+5)
1 e
S2 R RT (La:2 -5 S Trposition S 5 Lzz? Ly2 010111 tz

e ny | Lg+ 5)/\
S ap | (Lyp—5<
t me Typosz’tian <

/ e Lyg -+ 5)/\

n (6 : 00pm <
t Work — hours <9 : 00pm)
S3 H VH (Lz3 -5 _<._ hxposition S 8 L:c3a Ly3 110010 t3

o |an | Lig+5)A
t ca (Ly3‘-5§

e am hypasition <

1 |ne | Ly+5)A (price < $100)

movement pattern and the query pattern need to be considered to further improve the
effectiveness of a cache management strategy. The presented data caching strategy
can be used to incorporate dynamic attributes in existing data models and capabilities

to be added to existing query processing systems to deal with dynamic attributes.

10

Next, observe that the number of moving objects in the database may be very
large (e.g., in big cities with millions of inhabitants). Thus, for performance consid-
erations, in answering LD queries examining the location of each moving object in
the database should be avoided. In other words, it is preferable to index the location
attribute. Therefore, the location granularity will be of great importance. Using
a symbolic model based on cell granularity for location identification instead of the
(z,y) geographical location models (as seen in the example shown in Tables 1.1 and
1.2) used so far is a better approach. The problem with a straightforward use of
spatial indexing for location binding is that the continuous change of the locations
implies that the spatial index has to be continuously updated. This is clearly an un-
acceptable solution that can be mitigated with the cell granularity symbolic location
model adopted by this research.

Finally maybe the best motivation is that an increased in size cache can satisfy the
expectations of more functionality at the client site (suggested by this research). Ad-
ditional knowledge regarding the future location and query pattern of the mobile client
can be included and it would be great to have available at the client. True Relational
Data Base Management Systems (RDBMS), may now fit into 100K-150K of memory
(e.g., DB2 Everywhere by IBM, Oracle Lite and Sybase’s Ultra Lite databases). In
implementing a small size RDBMS for the client, the symbolic model stresses the rep-
resentation of relationships between logical entities rather their precise coordinates
and is more suitable for LBS at a semantic level [21]. The fact that a cache can easily
incorporate the functionality of a small database, can provide additional motivation

for the use of the symbolic location model based on cell granularity.

11

1.3 Statement of the Problem

Traditional distributed database techniques cannot efficiently support queries in mo-
bile computing environment. Consequently, query processing in mobile database,
which is conducted by some fixed hosts and several mobile hosts, has emerged as an
issue of growing importance [6]. A mobile database can be recognized as a distributed
database that supports mobile computing. In general mobile wireless networks [3],
there are two sets of entities: Base Stations (BSs) and hosts. The hosts are either
fixed or mobile (called MH). Fixed hosts communicate over the network with a fixed
topology, while mobile hosts communicate with other hosts (mobile or fixed) via a
wireless channel. With the development of mobile computing, another kind of wire-
less network, both the hosts and the BSs are mobile. Thus, query processing becomes
much more complex than that in general wireless network [10].

How to optimize mobile queries, cache and replicate data and manage transactions
are some of the key issues in mobile environments which are grouped under the query
processing cache management process. Location binding has been used as a means
to mitigate these issues. The result of an LD query is not only determined by the
selection and a projection condition specified, but also is related with a given bound
location. However, current research has adopted the geographical location which uses
the z,y location binding for the query processing (as seen in the example shown in
Tables 1.1 and 1.2).

A more effective and native to query/database processing location model is adopted
by this research. This is the symbolic location model which is based on cell gran-
ularity. Collecting information for individual mobile client at a finer level (ie., z,y

coordinates) would incur significant overhead without a significant performance im-

12

Table 1.2: Query predicate augmentation by client

id | @ | Query Predicate description Time

1 Ql (La:l - 5 S hxpositicm < La:l + 5) A (Lyl - 5 S hyposition < Lyl + 5) tl

2 Q2 (La:2 -5 _.<._ T'zposition _<.. La:2 + 5) A (LyZ -5 S Typosition < Ly2 + 5) t2

A6 : 00pm < Work — hours <9 : 00pm)

3 Q3 (Lm3 -5 S hmposition < L:cS + 5) A (Ly3 -3 S. hyposition < Ly3 + 5) t3

A(price < $100)

provement. Being discrete and well structured, location information based on sym-
bolic location models is easier to manage compared to that based on geometrical
models. For example, location data is much more amenable for database storage
and retrieval; they can help analyze location information such as individual mobility
patterns. Steadily falling costs of storage lead to caches of sizes large enough to hold
most of the additional requested data items by the presented prefetching technique.

In some cases, prefetching is only beneficial for latency reduction, but causes a cost
(ie., cost of bandwidth and memory space) increase with respect to no prefetching.
Prior research has not provided adequate support for representing the context of a
user. However both the valid scope distribution defined as the locations of the fetched
data where the queried data item has valid answers and the user’s query context can
be used as prefetching filtering mechanisms.

Finally, a significant amount of research has been conducted in future locations
prediction, however, interesting enough it has not been adequately used to improve

the cache management at the mobile client.

13

1.4 Research Goals

Based on the discussions in the previous sections the overall goal of this dissertation
is to provide a novel data caching mechanism and a prefetching strategy for perva-
sive computing environments that can adapt dynamically to a mobile user’s context.
None of the solutions proposed so far has incorporated the query context and future
locations into cache management and prefetching. This demands the design of ef-
ficient data caching mechanisms in mobile and wireless environments based on the
issues and challenges arising out of their inherent characteristics and applications.

This dissertation’s aim is twofold:

e Design a future location-aware cache replacement policy to manage a semantic
cache. The proposed replacement policy uses the validity of the data fetched
from the server and the neighboring locations to decide which of the cache
entries is less likely to be needed in the future, and therefore a good victim for

eviction when cache space is needed.

e Design a context-aware prefetching strategy that will explore the user’s query
context to predict the future query pattern on a cost effective manner. This
will enable the formation and maintenance of a context-aware cache with data

items of high benefit and at a low cost.

By meeting these goals we expect to improve the cache query processing process by
using cell_id location binding information instead of the geographical z, y coordinates
for the query augmentation. Additionally provide more intelligent caching techniques
at the mobile client for better local decision making. This will reduce the client-server

dependency and improve the network resources allocation. In view of the above issues

14

Figure 1.2: The shadow cluster concept([24]).

and challenges and keeping in mind the overall systems performance, we intend to

incorporate the following main components into our research:

e Future location prediction. A future location prediction scheme is incorporated
into the presented cache management strategy using the neighboring locations
(cells). According to the shadow cluster concept (Figure 1.2), a cluster of cells
based on the mobile user’s current cell is formed. A bordering neighboring
and the non-bordering neighboring group of cells are identified. Neighboring
cells are most likely to be visited in the near future and therefore present a
higher interest as fast as prefetching is concern. Remote cells are less likely to
be visited in the near future and therefore are best candidates for replacement
when additional cache space is needed. Even though the focus of this research
is not in cells identifications, an algorithm has been included to identify the
neighboring cells distribution and provide a number of other supplementary

functions i.e., measuring the distance between cells.

e Symbolic location model based on cell granularity location modeling: Regarding

the user’s mobility the research has mainly emphasized the use of the geograph-

15

ical location models which uses a significantly high computational overhead.
However most recent research has proven that a symbolic model is more appro-
priate for the mobile environments [21]. In this research, the symbolic model
based on cell granularity is adapted. It should be noted here that the focus
of this research is not on modeling the user’s mobility, and the presented tech-

niques can be used with other mobility model as well.

e The validity of the data concept (valid scope distribution) is adapted and used
to derive a set of future locations of interest. The data item scope is defined as
a set of cell where are the valid answers to the query and is maintained by the

database server.

e In order to identify data items with high benefit as far as the cache content is
concerned the user’s query context is exploited to limit the amount of prefetched
information within the predicted set of future cells (the prefetching zone). Two
query context criteria have to be designed based on the user’s query context
attributes and predicates. An algorithm is necessary to derive a set of candidate
queries for prefetching using the user’s previous history of the user’s information
content, then another algorithm uses two selection criteria to select the optimum
query for prefetching based on cost. Cost is defined as the used transmission

bandwidth and cache space.

1.5 The Dissertation Environment

There are several issues regarding the modeling of user movement, and the querying

process that need to be defined before the study of the proposed algorithms.

16

e Mobility model: The random walk mobility model is assumed, however the
proposed methods can easily be adapted to any other mobility model. The
used mobility model includes random movement speed capabilities and is based
on cell granularity several mobility models i.e., the Random Waypoint (RWP)
mobility model and the one by Brinkhoff have recently attracted attention.
This research has revealed that these models are still at a pretty nascent stage
going through several modifications and used for ad hoc networks protocols
simulation. Separate research streams exist on development and fine tuning of
these models. For example “The Node Distribution of the Random Waypoint
Mobility Model for Wireless Ad Hoc Networks” [86] has pointed out several
drawbacks on using Waypoint mobility. Alternatively a directional mobility

model is also used with some prefetching simulation experiments.

e Query types: The continuous LD query type is assumed and for local queries.
It can be shown that any other type of query can be broken down and analyzed
as if it was of continuous type. Local queries refer to the queries whose results
are valid based on the current cell location of the mobile user. Non-local queries
refer to the queries whose results are valid or are based in another cell which is
not the mobile user’s current location. For example “find the hotel names lower
than $200 in West Palm Beach or in cell number “23”. The presented approach

can be expanded to include the non-local queries.

e Mobile user’s location: Determining location it is assumed that MTs are equipped
with a mechanism to obtain its current location. This mechanism could either
be tied to the tracking scheme used by the static network (to setup a communi-

cation path to the client) or be completely independent of it. For example, the

17

client may determine its location via Global Positioning System (GPS) tech-
nology in terms of its absolute geographical coordinates. Alternatively, in a
environment with predefined cells, i.e. areas of wireless coverage with a com-
mon access point to the fixed network, a client’s location can only be pinned
down to the granularity of a cell, (method adapted by this research), thereby
defining its location relative to they fixed network. So, the term location has
different connotations depending on the mechanism used, with a range of gran-
ularity from a few square miles in the case of macro cellular structure (as in a
cellular/Advanced Mobile Phone System (AMPS) setting) to a cell size of the
order of meters, e.g. infrared cells within a building, “An Infrared Network for

Mobile Computers” [87].

e Valid scope maintenance: It is assumed that a client cache is symbolically or-
ganized and each cache entry contains a data item ID, the attached validity
information if any, and a pointer pointing to the real data. Note that the
cached segment has a valid scope attached to it as of the time stamp of the last
time it was accessed. When a data item is updated at the server-side, the cached
copy becomes obsolete. When an MT hand-offs to another cell, a cached data
item may also become obsolete due to the change of client location, depending

on its valid scope. This paper does not deal with cache invalidation issues [21].

1.6 Significance and Contributions

The outcome of this research in the area of caching in a mobile environment would
be used to make mobile devices more efficient in terms of the usage of their cache

memory and for a wide variety of new wireless applications. Thus mobile and wireless

18

devices implementing any kind of memory to support their usage would be a target of
this application. This research is, of course, not limited just to mobile devices; ad-hoc
devices which face the problem of constant disconnections, would also be candidates
for the use of this application. Any kind of distributed system where clients frequently
disconnect from the servers could eventually use this application to improve the way
data is cached.

The presented techniques considerably enhance the query predicate with more ac-
curate location and movement information. Hence the outcome will be the strength-
ening of the query prefetching capabilities and therefore the local processing of a larger
number of location dependent future queries. Regarding the query processing by the
client and in particular in trying to generate the probe and remainder queries, the
intelligent algorithm included, significantly improves this process by discriminating
the cached tuples based on their future location binding information.

Finally, the performance evaluation results suggest possible capabilities of the
proposed strategy in a larger design/application space, where more mobile clients
can be used to see if they interface or help each other in a peer-to-peer computing

architecture, i.e., if there is no data access via a BS or an MSS, ask your peer.

1.7 Methodology

The presented research in this dissertation involves the combination of model devel-
opment, algorithm design, analysis, simulation and experimentation. Model devel-
opment involves a critical assessment of the requirements and challenges of mobile

environments. The data caching techniques have been designed to satisfy these chal-

19

lenges and needs with concentration to emerging technologies needs rather than the
traditionally used methods.

The proposed design was evaluated using both a cost analysis model and simula-
tion techniques. Even though simulation is not quite foolproof, and only implementa-
tion in a real environment can assure the effectiveness of the design, the performance
results were mainly derived using simulation due to the complicated nature of the
mobile environment and the lack of real life testing platforms. For the same reason
there is no available simulator for mobile environments and therefore one had to be
designed for the mobile computing environments.

Despite the recent surge in research activities in the mobile and wireless infrastruc-
ture software simulation remains the primary approach to evaluate the data caching
performance, as it is fairly easy to implement and manipulate. The presented methods
for mobile environments are simple and practical for implementation and operation.
The testing parameters used are available in practical systems. In order to evaluate
the trustworthiness and overhead of the presented methods, a combination of analysis
and simulation was adopted. An obvious extension of the work will be to create a
mobile environments test bed and evaluate the presented techniques with real-time

data.

1.8 Targeted Applications

The new classes of applications for mobile computing environment namely, LBS are
expected to create a much higher user density in the future mobile networks. Also, the
updating and querying loads on the location databases are expected to be very heavy

[37]. Furthermore, with the technological improvements in pervasive computing, it is

20

expected that a large number of location-aware wireless devices will be available in the
future. The network of consumers using Personal Digital Assistants (PDAs), tourists
carrying on-line and position-aware cameras and wrist watches, and vehicles with
computing and navigation equipment will give rise to a wide variety of new wireless

applications. The list of the emerging wireless applications includes the following:
1. LBS Applications:

e Tracking and dispatching mobile resources
e Traffic coordination, and way-finding
e Location-aware advertising Tourist services, and

e Location-based games.

2. Multimedia Caching. One of the research streams of the LandMARC project
has looked at the use of multimedia caching as an effective means of supporting

intelligent load balancing and resource management.

3. Data caching in Mobile Ad-hoc Networks (MANET). This is an emerging area

of research which presents a promising future application for data caching [88].

4. Additionally emerging application. A great interest for data caching has been
created with the biomedical engineering, tele-health, medical information sys-

tems and business.

1.9 Scope of Dissertation

The scope of this dissertation is to develop a conceptual model for cache management

techniques and prefetching that could be performed for mobile devices and is focused

21

on the LDD continuous type of queries initiated by mobile clients and for fixed objects.
The scope of this dissertation demands the design of a new strategy or the enhancing
of the present algorithm for caching to use a semantic model to efficiently manage
LDD as well as answer normal queries for general data.

Other issues that fall in the scope of this dissertation are the future location pre-
diction and query pattern prediction. The client cache management includes client
side configuration parameters, cache fetching, cache replacement and cache prefetch-
ing policies. Other issues such as neighboring cells identification are also addressed to
a lesser extent, since the main thrust of the thesis is on the cache management mech-
anism used for the mobile devices. The performance of the cache models is examined
through analysis and a detailed simulation study, in order to show its effectiveness in

a mobile computing.

1.10 Outline of the Dissertation

The work reported in this dissertation focuses on developing a novel future loca-
tion prediction replacement policy and a context-aware prefetching strategy for the
emerging location-depended computing paradigm. In Chapter 2, a survey of the ma-
jor efforts conducted in recent years by the research community in the replacement
and prefetching cache management issues is presented. This chapter also includes
previous work in the associated areas of semantic caching and future locations pre-
diction.

Chapter 3 first discuss existing data caching architecture for the pervasive comput-
ing environments including the semantic cache description and the use of the shadow

cluster and the valid scope concepts for data caching. Next the design rationale of

22

the cache replacement policy and its associates components is discussed. The last
part of Chapter 3 discusses and compares our work with other protocols.

The presented Context-Aware Prefetching Strategy (CAPS) is presented in Chap-
ter 4. The main issues of prefetching are discussed and the design of two algorithms
used as context filtering mechanism is examined. The first to form a list of candidate
queries for prefetching based on the user’s current query context and the second algo-
rithm to select the optimum query for prefetching. Next, the design of the prefetch-
ing cost model based on bandwidth allocation is presented followed by the numerical
analysis and the performance results.

Chapter 5 presents the cache organization overview and the design of the simulator
which was used to simulate the presented data caching techniques and prefetching
method and derive the performance comparison results. A number of key simulation
pseudo-code modules are included, such as the random movement control module,
the cache manager module and the LRU, FAR and FLA replacement policy modules.

Chapter 6 summarizes the work of this dissertation, discusses the contributions
it makes and the impact of the results to mobile computing. The last section in this
chapter discusses suggestions for future research directions.

Finally, the appendices chapter, first, derives the formulas used by the neighboring
cells distribution algorithm, i.e., the distance among cells formula, and the formulas
used for the cell number and the reference number. Second, the transition probabili-
ties evaluation is shown. Finally, in the performance statistical comparison appendix,
we use the simulator’s output and apply sampling techniques to construct confidence
intervals (region) at specified confidence levels (i.e., 90% and 95 %), to compare the

cache hit ratio of the proposed cache management strategies (CAPS and FLA) with

23

the industry standard semantic cache management policy FAR and the baseline LRU

protocol.

24

Chapter 2

RELATED WORK

Many researchers have advocated the use of caching and prefetching to reduce latency
and improve the overall performance mainly in the traditional client-server distributed
environments and the web. There are five other research areas that address issues

discussed in this dissertation:

e Data Caching Techniques.

Modelling the User’s Mobility.

Future Location Prediction.

Cache Replacement, and

Cache Prefetching.

2.1 Modeling Moving Objects

A formal data model Moving Object Spatiotemporal(or MOST for short) to repre-
sent moving objects in a database system was introduced in [17]. They treated the
position of a moving object as a dynamic database attribute, and expressed it with

three sub-attributes, namely value, update time and function, where the function

25

indicates how the value changes over time. In [17], an effort was made to represent
the temporal development of spatial entities in certain data types such as moving
point or moving region. Moving Object Databases (MOD) have to be continuously
updated and queried and the update problem needs to determine when the location
of a moving object has to be updated. In addition, these moving objects generate
random queries depending on their position. A critical set of capabilities such as
support for spatial and temporal information, etc have to be built on top of existing
databases in order to support moving objects databases [72]. The problem of how to
index moving objects in a database is investigated in [71] and [73]. A straightforward
use of spatial indexing is inefficient and infeasible since the spatial index has to be
continuously updated when the objects are continuously moving.

In [7] a new semantic caching technique was proposed. A formal model, which
treats location dependent data as database spatial replicas tightly coupled with spe-
cific data regions, is presented. Then based on this model, research issues such as
query processing and the geographical model used for location binding are explored.
The main advantage of geometrical location models, is their compatibility across het-
erogeneous systems. However, because of the considerable cost and the complexity in-
volved in providing accurate fine-grained location information, the cost/performance
ratio of geometric models might not be promising for a large number of applications
such as the nearby restaurant example.

In this work, a symbolic location model is used, where the cell id is the unit of
location granularity. Every cached item has an attached semantic description based
on a cell granularity. In most of the emerging mobile applications the cell id number

will be the preferable granularity. This approach differs from the previous research

26

in semantic caching in that the knowledge of future location information is added as

an extra rule for filtering information to be cached.

2.2 Future Location Prediction

The knowledge of the location adds an extra rule for filtering information to be cached,
but its usability has been limited. Future location information can be used with the
replacement policy. This particular technique offers a starting point for caching. In
fact, when a mobile client is turned on, the only useful data available is its location.
Hence, the caching system will start caching information steered by its location, and
in the case this approach is feasible.

Zheng and Lee [12] have proposed to construct a Voronoi Diagram (VD) on the
data objects to serve as an index for them. A VD defines, for each data object, the
region within which the object is the nearest point to any mobile within that region,
i.e., defined by the base station. Based on the VD, a semantic scheme that records
a cached item as well as its valid range is proposed. The VD method even if, is a
suitable approach to find the nearest-neighbor, it is not a real location prediction
scheme and is seldom used in real applications because of the expensive maintenance
of the structure when updating occurs. The Dead Reckoning schemes calculate where
an object might be, instead of explicit updates. Other conventional methods on
future location prediction are based on the use of historical movement patterns of
the subscriber to calculate his possible future location. One method is based on a
table with possible reference locations and on the probability that the MT is located
in there in a deterministic period of time uses the time criteria to build the table

index. A second method stores the historical movement pattern in a database and

27

compares the recent states with these movement tracks in the database to find the
one which samples the actual states (States dependent approach). One method to
combine the time and the location information is to use the prediction characteristics
of some neural network types, or use the stochastic prediction approach adapted by
this research .

Levine et al. proposed the use of the Shadow Cluster Concept in [24] (Figure
1.2) for future location prediction and used it for resource allocation in Asynchronous
Transmission Mode (ATM)-based wireless networks. The fundamental idea of the
shadow cluster concept is that every MT with an active wireless connection exerts an
influence upon the cells in the vicinity of its current location and along its direction
of travel. As an active MT travels to other cells, the region of influence also moves,
following the MT to its new location. The base stations (and their cells) currently
being influenced are said to form a shadow cluster, because the region of influence
follows the movements of the active mobile client like a shadow.

Using the shadow cluster model a matrix of transition probabilities was proposed,
considering all possible cell locations, for a total of 3k2 43k + 1 cells, each assigned to
one state, where k is the number of rings. However, this number of states explodes as
k increases, sometimes making the simulation of such system difficult and costly. A
good amount of redundancy is built into this approach because not all of these cells
are of interest if they have no valid answers for the query. In addition the shadow
cluster model may be suitable for random walk only, in direction-based movement,
the cells behind the user should not be considered for high access probability in the

near future.

28

2.3 Cache Replacement

Cache replacement policies for the wireless broadcast environment were studied only
in push-based broadcasts schemes [15, 16]. Furthermore, the previous studies are
based on a number of unrealistic assumptions, such as, fixed data sizes, no updates,
or no disconnections. Acharya et al. [15] proposed a cache replacement policy called
PIX, in which the data item with the minimum value of p/x was evicted for replace-
ment, where p is the item’s access probability and z is its broadcast frequency. Thus,
an evicted item either has a low access probability or a short retrieval delay.

The commonly used cache replacement strategies such as such as LRU, MRU
and LFU are built on temporal locality. The least recently used (LRU) policy is an
implementation of a probability-based policy. A probability-based policy replaces the
data with the least access probability (evicts the object that has not been accessed
for the longest time). LRU is unaware of any semantic relationships among queries.
Aa a result, a significant number of queries that land in the cold region of the relation
and therefore are not likely to be accessed in the near future, they will still stay in the
cache until they age out of the LRU chain. The LRU policy works well when most
recently referenced objects are most likely to be referenced again in the near future.
However, there should be more factors to be considered in wireless communication
systems when researching data caching replacement.

An alternative to using the recency information for determining replacement val-
ues is to use the semantic distance. In this approach, the data that is farther away
from the client’s current location is removed during replacement. In [5], Shaul et al.
further utilize the semantic locality in semantic caching replacement. For each cached

semantic region, a replacement value is assigned to represent the semantic distance

29

between the “center of gravity” of that region and the “center of gravity” of the most
recent query. With this distance function, semantic regions that are semantically
“closer” to the current query are less likely to be discarded. The rationale used here
is to predict the future use patterns for the segments by examining their semantic
relationships with the current query. However, the calculation of the semantic dis-
tances has a number of issues associated with. First, the center of each region must
be determined. Second, there is a need to use estimated weights which are difficult
to determine most of the time. In a more recent research, Zheng et al. [13], proposed
the data distance and valid scope area as important factors for the data caching re-
placement policy. According to their analysis, a promising cache replacement policy
should choose its replacement data with a low access probability, a small valid scope
area, and a long distance if the data distance is also an influential factor.

A different replacement policy is used in [14], where the cached items to be evicted
are selected according to the access probabilities which are predicted by observing the
data access history. In several studies on LDD caching, data distance-based cache
replacement policies [5] utilize semantic locality in semantic caching replacement.
For each cached semantic region, a replacement value is assigned to represent the
semantic distance between the center of gravity of that region and the center of
gravity of the most recent query. With this distance function, semantic regions that
are semantically “closer” to the current query are less likely to be discarded. The
rationale used here is to predict the future use patterns for the cached entries by
examining their semantic relationships with the current query. A significant body

of research on semantic cache strategies has used the distance and the direction of

30

movement to determine replacement candidates to be evicted from the client’s cache.
This body of work implies the use of future location prediction in this process.

A mobility model that represents the moving behavior of mobile users is formally
defined by Ren et al. in [7] for LDD queries. Based on this mobility model, a
LDD semantic cache replacement policy was developed, named a Furthest Away
Replacement (FAR). FAR chooses for replacement those segments which are not
in the moving direction and are furthest away from the user. A future location
is anticipated based on the current user’s direction and speed. FAR implies future
location prediction based on the tangent velocity. However, this approach is effective
only within a short time interval, and therefore a great and frequent number of
calculations is needed throughout and during the cache replacement decision making
process. Additionally, for a small number of cells FAR would face a great difficulty to
determine which of the previous locations is the furthest away. Furthermore, sudden
changes in the direction of the MT make the FAR policy almost impractical. Xu et al.
[20] proposed a cache replacement policy called Stretch Access-rate Inverse Update-
frequency (SAIU), where the influence of data item sizes, data retrieval delays, data

access probabilities and update frequencies are considered.

2.4 Cache Prefetching

Current research on prefetching is based on the tangent velocity approach, which is
effective only within a short time interval and has a high cost for the continuous
geometric estimations. Future location information can be used together with the
prefetching strategy, a technique that offers a starting point for caching. In fact, when

a mobile client is turned on, the only useful data available is its location. Hence, the

31

caching system will start caching information steered by its location, and in this case
this approach is the only feasible one. Prefetching is not at all a new concept. Since
the very early days of microcomputer technology [58] caching and soon thereafter
prefetching or preloading were integral parts of processors and file systems. Another
early idea for file prefetching was to utilize application hints that specify future file
accesses. This deterministic prefetching was explored by Patterson et al. [67].

At around the same time, the SEER project was born at UCLA [4]. SEER allow
disconnected operations on mobile computers using automated hoarding. Following
on the earlier work, SEER was extended to provide automated hoarding for mobile
computers without the need of user intervention [4]. Whenever an imminent dis-
connection is realized by the system, a decision on the list of critical files is decided
by SEER depending on the user accesses on the files, the semantic locality of the
files and the sequence of these accesses. Then, the files are hoarded into the client
system which is about to be disconnected. This hoarding (prefetching) is usually
done periodically to ensure the availability of hoarded data in the case of involuntary
disconnections.

With the arrival of mobile computing, the anticipation of data or file accesses
is getting more and more crucial. et al. [2], were among the first to work out
an intelligent file-hoarding tool. The tool automatically detects a user’s file access
pattern and hoards the files to present them in a convenient form at disconnection
time. Hoarding provides only data that is stored while connected to the network.
Hence, it is a scheme designed to increase the likelihood that a mobile client is able to
continue working during periods of total disconnection from file servers. Prefetching

on the other hand is mainly concerned with improving performance. The file server is

32

assumed to be accessible, although the network connectivity may be weak. Although
prefetching attempts to avoid cache misses, a reasonable amount of misses may occur.
A simple consequence of a cache miss is a user based reactive information query
and thus slower data access. Many of today’s mobile information systems count on
prefetching to improve the quality of their service.

Projects like the ones described in [82], [79] and [68] are partially or entirely based
on WLAN or other high-bandwidth data access. Their approaches are based on so-
called info-stations or hot-spotted areas. The idea is to provide the mobile clients
with data at specific locations that provide access to WLAN or other high-bandwidth
infrastructure. The difficulty lies in the prediction of the data needed on the way
from one info-station to another, i.e. on the way to the next WLAN access point.
The drawback of these algorithms is related to the hoarding problem. Data that
is not present on the mobile devices can either not be accessed at all or has to be
downloaded from scratch over the WAN [79].

The work of Pensone et al. [11] examines the effectiveness of prefetching policies
in the location-aware mobile information services. It considered only the analytical
evaluation of prefetching based on a Markov model, and did not consider how to
effectively confine the prefetching information to reduce the communication costs as
a whole. Most recently Park et al. [28] have proposed prefetching policies based on
the current position and the velocity of the MT and used the value of the tangent
velocity to predict the future location of the MT. This method uses the geographical
mobility models and is effective only within a short time interval At. In order to
limit the amount of prefetched information, current research has used geographical

mobility models to focus solely on the mobile user’s movement pattern [7, 6, 13, 26].

33

The geographical mobility models inherently use continuous calculations of the tangent
velocity, which is proven to have a considerably high processing overhead [33].

In summary, most of the existing methods are aimed at finding the most probable
cell [35]. However, when an MT moves quickly in micro-cell networks, the short
residence time in a cell may not allow computations in every cell, i.e. there is a need

for next-cell prediction.

2.5 Previous Work Summary

Despite this body of research and its very important findings that to improve wireless
network communications, there are still barriers that preclude the full utilization of
the mobile computing capabilities. Most of the existing methods are aimed at finding
the most probable cell [35, 54, 55]. In addition, there are no existing studies that have
considered both the future location prediction and the validity of the data fetched
from the server (the valid scope distribution) concept. Evaluations show that there
exists no “best” replacement or prefetching strategy. Depending on the workload,
different strategies can give the best result. Function-based strategies can be made
adaptive by changing the weighting parameters.

An area that hasn’t been researched sufficiently is the combination of cache re-
placement and prefetching with cache coherence. Traditionally, cache replacement
and prefetching are treated as separate topics. Nevertheless, there is a relationship
between these main cache management mechanisms because a cache should not return
stale web objects. In order to limit the amount of prefetched information, current
research has used geographical location models to focus solely on the mobile user’s

movement pattern (26, 7]. The geographical mobility models inherently use contin-

34

uous calculations of the tangent velocity, which is proven to have considerable high
processing overhead [33, 34]. In this dissertation the location binding is based on cell
location granularity versus the z,y coordinates used by most of the previous research.
The comparison between the location models and the justification of the one adapted

by this research is given in chapters three and four.

35

Chapter 3
A FUTURE LOCATION-PREDICTION

REPLACEMENT POLICY

Data caching performance depends heavily on the replacement policy being used for
the cache management. However, future location ambiguity, limited client resources
and frequent client disconnections make cache management a challenge. The pre-
sented Future Location-Aware (FLA) replacement policy [42] uses the validity of the
data fetched from the server and the neighboring locations to decide which of the
cache entries is less likely to be needed in the future, and therefore provide a good
victim for eviction when cache space is needed. For better efficiency the overall re-
placement granularity is dynamically achieved along three levels: the ring, the cell
and the data item. Simulation study of the presented approach shows that it outper-
forms both the LRU and FAR schemes, where only temporal locality is considered.
Moreover, the presented scheme is easier to implement than the industry standard

policies.

36

3.1 Introduction

A cache replacement policy determines which data item(s) should be deleted from the
cache when the cache does not have enough free space to accommodate a new item
[52]. The choice of a particular cache replacement policy can have a significant impact
on global network traffic and on local resource utilization by making the best use of
available resources, including memory space and network bandwidth. The cache
will perform best if the data evicted is that which is least likely to be referenced
again in the near future. In effect, an effective replacement policy would enable
a larger volume of location dependent data (LDD) queries to be processed locally,
thus maximizing network bandwidth and increasing the overall cache management
performance. Location dependent data is the data whose value is determined by the
location to which it is related. Moreover, the result of a query may change as the user
randomly changes location while repeating the same query (continuous LDD query).

To adapt dynamically to the query access pattern, the cached data items are re-
quired to be reorganized, according to the mobile user’s movement pattern and query
pattern. This observation motivates the development of cache replacement strategies
using movement pattern and location, with location being a key field of the mobile
user’s context. Traditional cache replacement policies (i.e., LRU) do not perform
well in wireless data dissemination {21]. In these policies, the access probability is
considered the most important factor that affects cache performance. A probability-
based policy is used to replace the data with the least access probability. The LRU
policy removes the data items which have not been accessed for the longest period
of time. This policy works well in workloads which exhibit strong temporal locality

(i.e., recency of reference). One of the main challenges of data caching in a mobile

37

computing environment is how to predict the future location of the MT, and how to
use this information to effectively manage its cache. A substantial amount of research
has focused on location-prediction based on tangent velocity, which is effective only
within a short time interval [5, 7]. However, there have been insufficient studies in
applying future location-prediction and valid scope (locations where the queried data

has valid answers) in deriving an effective cache replacement policy.

Figure 3.1: A mobile architecture.

3.2 Wireless Infrastructure Description

In a mobile architecture (Figure 3.1), the geographical coverage area for the informa-
tion service is partitioned into service areas, with each service area attached to a data
server. The service area may cover one or multiple cells. Each service area is associ-

ated with a service_id for identification purposes. This id is broadcasted periodically

38

to all the mobile clients in that service area. The database associated with each ser-
vice area is a collection of data items. Every data server keeps a complete copy of the
database, i.e., the same data items are replicated on all the data sefvers but probably
with different values in different data servers. MTs and the fixed data servers can
communicate with each other trough wireless channels via Mobile Switching Stations
(MSSs). MSSs ar‘e the elements that control several base stations (BSs) and have the
capability to execute software that controls communications among wireless devices,
providing them with access to the wired network. MSSs exchange control and user
location information. This kind of network architecture, with the presence of MSSs,
is known as an infrastructure network. In most cases, the remote server and the cells
(e.g. base stations) are connected through wireline links, while the wireless link is

used only for the last hop between the MT and the base station.

3.2.1 Modeling User Mobility

Various mobility models may be used to analyze and emulate the behavior of mobile
users in the mobile environment. The random walk (RW) mobility model is more
suitable for personal communications applications where most of the subscribers are
likely to be pedestrians [43, 44]. In this work, the RW model is used primarily with
the directional (DIR) movement model included as a secondary model. However, the
adapted model and the pre-fetching technique are independent of the mobility model
selected in the experimental section. The motion models considered (analogous to
motion models already presented in previous works [24, 25, 26, 27, 31, 32] serve just

as examples of practical application, other models could be adopted as well.

39

Movement is considered in an area divided into adjacent “cells” (Figure 3.2).
Each cell consists of all the locations that share common information that must be
provided by the service as an answer to a user query, when the user stays within
those cells. The motion model is defined as follows: At the end of each time slot,
the user can remain in the same cell, or move to an adjacent cell through one of the
shared edges. It is assumed that a MT resides in a cell for a generally distributed
time interval before it moves on to one of the adjacent cells with a uniform probability
of —(1,; The user moves to an adjacent cell with probability 7, or remains in the same
cell with probability 1 — ~. Given this motion model, a natural prefetching strategy
is to prefetch information concerning cells that are within a given “radius” from the
current position. To this purpose, the distance between two cells is defined as the
minimum number of cells that must be traversed to pass from one cell to the other,
and as ring k the set of all cells whose distance from a given cell is equal to k. The
prefetching-strategy outlined above, for a given k (circle of radius k) prefetches all
the information associated to rings 0, 1, 2, ... k around the starting position. No
remote loading is needed until the user moves within circle &. When the user enters
a cell outside of a cluster of & rings, that cell becomes the new starting position and
a new cluster of size %k is reconstructed around this location by loading the needed
information from the remote data server (note that some of this information is already

loaded by the previous prefetching).

3.2.2 Location Granularity

Being discrete and well structured, location information based on symbolic location

models is easier to manage compared to that based on geometrical models. For ex-

40

Figure 3.3: Random walk model - next cell probability distribution.

ample, location data is much more amenable for database storage and retrieval; they
can help analyze location information such as individual mobility patterns. Steadily
falling costs of storage lead to caches of sizes large enough to hold most of the addi-
tional requested data items by the presented prefetching technique. Additionally, the
fact that a cache can easily incorporate the functionality of a small database , can
provide additional motivation for the use of the symbolic location model based on cell

granularity. The symbolic model stresses the representation of relationships between

41

logical entities rather their precise coordinates and is more suitable for LBS at a
semantic level[21]. Additionally, cell-based location identification requires neither ad-
ditional devices deployed on mobile clients nor modifications over the current cellular
network infrastructure. Thus, this is the cheapest solution[19]. With recent devel-
opments in micro-cell, pico-cell and nano-cell systems it is believed that for most
of the emerging mobile LBS applications the cell id number will be the preferable
granularity [13]. The average cell size in diameter, in a typical micro-cell system, is
100m-1km, in a typical pico-cell system is 10-100m, and in a typical nano-cell system,
is 1-10m in diameter [37].

Determining the exact location requires satellite technology which is still not
widely available in cell phone networks in many countries. Cellular communications
themselves have spawned the concept of Assisted GPS/(AGPS) where the network
assists the GPS receiver to perform its various functions. The most demanding AGPS
environments tend to be in inner-cities where cell sizes can be limited to a few kilome-
ters in radius (www.gpsworld.com). The technology to perform Mobile Positioning
(MP) under a protocol such as Wireless Access Protocol (WAP) is being exploited
to develop a variety of value-added services through a WAP mobile phone or mobile
station. A cell-shape based MP methodology using WAP has been proposed, which
can apply to the existing Global System for Mobile Communications (GSM)/Digital
Converter System (DCS) networks without doing any modification to the GSM/DCS
standard.

Cell ID is a simple method for mobile phone positioning and is widely commer-
cially deployed. The technique determines the location according to the strongest

base station signal the end-device receives and thus the approximate position of the

42

user that uses the cell area (or Cell ID) of the caller. The NTT-DoCoMo and J-phone
in Japan have been using the cell granularity (Cell ID) techniques to provide basic
LBS applications since 1999. The location sensing applications convert the Cell ID
into a symbolic location, and present it to different instant messaging networks. A
key feature of this type of application is the ability for the users themselves to define
new places as a combination of the current Cell ID and some semantic information
describing the place. A pro-active “friends finder” location sensing application pro-
vided by AT&T in U.S. and TeliaSonera in Sweden creates services based on cell
granularity.

Recent research on the emerging mobile multimedia applications QoS-based ef-
ficient resource provisioning has been also based on the current location of mobile
clients at the cell level [85]. Collecting mobility information at a finer level (i.e., for
each individual mobile client) would facilitate adaptive resource provisioning; how-

ever, it would incur significant overhead without extreme performance improvement.

3.2.3 Prediction Level

Basically, the more cells or the larger the areas considered in the prediction, the better
the approximation that can be reached, however the required computations will be
increased. According to the concept of shadow cluster (Figure 3.2), the influenced
cells are a group of cells surrounding the cell in which the MT is residing. Thus, the
current cell is used as the starting point, thus being the center of a shadow cluster.
The vicinity of the current cell can be denoted according to its distance away from
the center cell. If a cell is adjacent to the current cell, then it is in the first layer

of the current cell. The cells adjacent to the first-layer cells form the second layer

43

of the current cell. If the estimated cells cover only the cells of the first layer, then
first-level prediction is used. Similarly, the second-level prediction is associated with
both first-and second-layer cells. When a LDD query is submitted for execution, the
location where the mobile client is currently visiting instead of its whereabouts within

the cell is needed to run the replacement process.

Figure 3.4: Semantic cache structure and the prime list of cells.

3.2.4 The Client’s Semantic Cache Description

In this section a brief presentation of the semantic cache is given using a logical
model (Figure 3.4) that uses the cell granularity for location identification instead
of the (z,y) geographical mobility models used in previous work [6, 26, 7]. The

mobile client’s semantic cache stores additional information (metadata) such as query

44

results (the data items component) and the query descriptions (the index component)
which is consistent with the definition of the LDD query[7]. The metadata is used to
determine whether a new query is fully answerable using the cache contents, in which
case no communication with the server is required. If the query can be only partially
answered, then it is trimmed and sent to the server (remote query). The query part
that is satisfied by information already in the cache is called the local (explore) query.
Another form of cached metadata is the location binding information that is used for
both replacement and prefetching. The execution of the query @ will bring values
that will be maintained in the storage cache as a Semantic Segment, which can be
defined as a tuple arrangement S =< Sg, Sa, Spt, S, Sts >.

In this definition, Sg and S4 are respectively the base relation and the attributes in
S. Syt represents the link to the first page that stores the segment. Sy, is the timescale
indicating when the segment was last accessed by the cache manager. Sp = P,V BV
.... V P, indicates the criteria which the tuples in the semantic segment S satisfy. In
the Sp equation, P; is a conjunction of simple predicates, i.e., P; = b1 Abj A.... Abj.
Each bj;, where ¢ = 1,2,...,1 is a simple predicate. II is the project operation that
lists the subset (Is,) of attributes defined by the query and o is the select operation,

that selects the tuples (os,) to satisfy the predicates requested by the query.

Example 3.2.4: Continuous query - cache state. Consider a yellow pages relational
database, where the mobile user asks the following questions to find the nearest restau-
rant, the results of which are cached afterwards. At time ¢; and location cell_id = z;,
the mobile user asks query Q;: “Give me all the names of the nearest hotels (within
5 miles)”, and then keeps on driving to the next location. The results of ¢); are

cached as segment S;. Then at time ¢, and location cell_id = x2, s/he asks query (a:

45

Table 3.1: State of the Cache Example

Qi | Si | Sa Sp Sis | SL | Spt
@, | S| Hname | oz | 2
Q1 | S2 | Rname | x2/ ty | o3 | 5

Type (6 : 00pm < schedule < 9 : 00pm)
Q1 | S3 | Hname | x3 A (price < 100) ts |23 | 8

Vacancy

“Give me the names and types of the restaurants within 5 miles that are open from
6:00pm to 9:00pm”, and then keeps on driving to the next location. The result of @,
is cached as segment S, . Finally at time ¢3 and location cell_id = z3, s/he asks query
@3: “Give me the names and vacancy information for hotels within 5 miles which
charge up to $100”. The result of Q)3 is cached as segment S3. Assume that the first
pages of S, Sz and S3 are 2, 5 and 8 respectively. Table 3.1, gives a snapshot of the

cache state with the three cached segments S, S, and Ss.

3.3 Query Modelling and Augmentation

This work focuses on continuous local query types. Local queries refer to the LDD
queries where results are valid based on the current cell location of the mobile user.
Non-local queries refer to the queries where results are valid or are based in another
cell which is not the current MT location. Even though this paper focuses on local
queries, it can be expanded to include non-local queries. It is noted that the definition
of a new query language is not necessary as the existing query language is adapted

for LDD queries presented in the literature [47] (SELECT projections FROM set-of-

46

objects WHERE Boolean-conditions). Where projections is the list of attributes to
retrieve from the selected data items (objects), the set-of-attributes is a list of data
items (object classes) interesting to the query. Boolean-conditions used to select
data items by restricting their attributes values i.e., by demanding the satisfaction of
certain location-dependent constraints.

Consider a database D = {R;,1 < ¢ < n}, where R; is arelation fori = 1,2,3,...n.
Furthermore, let Ag, stand for the attributes set of R;, and let A = UAR, represent the
attribute set of the whole database. A location-dependent query () can be expressed
by a tuple arrangement,) =< Qg,Q4,p, s >, or by the relational-algebra ez-
pression Q = Tgn Qr,Qryr@r, (0Qe (F1 X B X .. X Ry)). In this definition, Qg € D,
Qa C Ag,, is the set of selected attributes, Qp is the set of query predicates, and @
is the current cell number. II is the project operation that lists the subset (IIg,) of
projected attributes defined by the query. o is the select operation (query predicates),
that selects the tuples oq,, to satisfy the predicates requested by the query. Ans(Q)
denotes the retrieved tuples (query results).

Location binding: The result of an LDD query is not only determined by the
selection (oq,,) and the projection (Tlg,)conditions specified, but it is also related
to the given location binding, that means Ans(Q) = Ilg,0q, (Qr), where Qp =
LocBind(Qp, Q). Our strategy is to treat the cell location information as a nor-
mal condition. Therefore, the first step of LDD query processing is to perform the
corresponding predicate location binding. Throughout this paper, it is assumed that
a location-dependent query is bound to a mobile user’s current location unless ex-
plicitly specified. The assumed binding granularity is the projected location based

on the movement of the MT. After the predicate location binding, an LDD query is

47

converted into a normal database query, which can be processed from the local cache

using strategies similar to the ones proposed in [7].

3.4 The Cache Replacement Policy Components

A mobility-based semantic cache replacement policy was first presented in [5] utilizing
the semantic value function. Ren et al. [7] by using the location information attached
to each segment, made it more efficient. The presented method improves this future
location awareness approach and add the query affinity factor. Additionally, the
presented method mitigates both the accuracy of the probability scores assigned to
the future predicted cell and calculations overhead [26, 24], by trimming the candidate
list of neighboring cells using the item valid scope distribution. It is noted that the
presented approach is also an improvement to the great work done in replacement
by Baihua et al [13]. Next, in this section, a detailed explanation is given of the key
components of the replacement policy and related algorithms. In addition, the query
pattern method and the replacement granularity , which are used with the presented

replacement policy, and the overall replacement model and algorithm.

3.4.1 The Valid Scope Concept

A cell is defined as a limited geographical area where a base station covers a number
of mobile clients. Each cell is surrounded by rings of cells and the innermost cell is
considered to be the center cell for analysis purposes. Combinations of cells where
the data item value has valid answers is defined to be the data item value valid scope
(uij). The data item is denoted by ¢ (e.g., restaurant), while j denotes a data item

value (e.g., Chinese restaurant). In a symbolic location model the data item value

48

valid scope is represented by a set of logical IDs (e.g., the cell_id of a cell in a cellular
communication system), where the item value has valid answers. Since a data item
may have different values in different cells, a data item is associated with a set of
valid scopes, which is called the data item valid scope distribution U; [13, 21, 42]. A
scope distribution may be shared by several data items. In a large-scale information
system, the number of scope distributions can be very large. Every data server keeps
a complete copy of the database, i.e., the same data items are replicated on all the
data servers but probably with different values in different data servers. That happens
because every data server supports different service areas. Hence, a LDD query will
produce different answers from each data server.

Ezample 3.4.1: Valid scope. For a data item (i), u; 4 denotes the valid scope
of item value A and wu; g denotes the valid scope of item value B. i = 1 denotes a
restaurant data item, (Example 3.2.4) with A to be a Chinese restaurant and B a
Latin restaurant. If item value A is found in cells 1 and 2, u; 4 = {1,2}. Likewise, if
item value B is found in cells 3 and 4, u; 5 = {3,4}. The scope distribution U; of the
restaurant database item () with only two item values A and Bis U; = uja +uip =

{1,2,3,4}.

3.4.2 Movement Pattern - Future Cells for Replacement

In order to form and maintain a cache with high value cached items, the first consid-
eration is to predict the cells that will contain the most likely future query results.
Assuming that a cluster of cells is composed of k rings, where k£ = 1,2, and 3 denote
rings 1, 2 and 3 respectively. To be consistent throughout this paper a cluster config-

uration of three rings (k = 3) of cells is used (R, g=1,Rz k=2, and Ry g—3), where z is

49

the innermost cells (center cell) of the cluster and quite often denoted by R,y = z.
Figure 3.2 depicts a cluster of three rings for a total of 3k% + 3k + 1 = 37 cells.
Using the underlying geometry, the number of cells in the k* ring, denoted by N Ri»
is given by Equation 3.1, and the number of cells in a cluster configuration with &

rings, denoted by Ng,, is given by Equation 3.2. Notice that Ng, = Ng, 1 — Ne,.

1, k=0
NRk = (31)

6k, k>1
Ne, =3xk(k+1)+1=3k+3k+1 (3.2)

Next, two groups of cells are defined, the Bordering Neighboring Group (BNC) of
cells and the Non-Bordering Neighboring (NBNC) group of cells. The cells belonging
to the BNC group are considered to be the most likely to be visited neighbors and
thus have the highest probability of being the future location of the MT. Therefore,
data items belonging to this range should be more likely to be marked for cache
prefetching. The cells belonging to the NBNC group represent the less likely to be
visited and thus, have a much smaller probability of being the next location and,
therefore, have a much smaller prefetching benefit. Nevertheless, cached segments
associated with these NBNC cells are the best candidates for eviction when the cache
has run out of space. Using the neighboring list of cells, a detailed calculation of the
probability distribution can be provided for the next possible future cells and use this
distribution to define the prefetching zone (PZ) with a given confidence level. It must
be noted though that considerable processing power is needed to do the calculations
resulting in a slow implementation and a considerable amount of memory space and

bandwidth usage associated with prefetching information from these cells. To mitigate

30

this problem and also to improve the accuracy of the future location prediction, the
presented prefetching policy uses the data item valid scope distribution (U;) as a
masking operator applied on the neighboring list of cells (C;) to derive a subset of
cells called the prime list denoted by F;, where F; = C; A U;. Next, example 3.4.2,
uses a cluster of cells composed of three rings and an arbitrary scope distribution U,

to demonstrate how the prime list of cells is derived.

Table 3.2: Neighboring Valid Cells Identification

Ryg=1 -1 2-8 -7 2z2+7 z4+8 z+15

Reg=2 2—-30 2-23 2-22 z-16 z—-14 z-1

z+1 z+14 z24+16 z+22 x+23 x+30

Ryp-3 v—45 z-38 z-37 2-31 z2-29 z-24
x—-21 z—-9 -6 z4+6 z+9 zx+21

r+24 x+29 z+31 z+37 z+38 z+45

Ezample 3.4.2: Neighboring cells identification. Table 3.2 shows the displacement
number which is added to the user’s current cell number z to identify the next cell
the MT moves to. This number depends on the mobile user’s current cell and the
movement direction selected. The values of £ = 1,2 and 3 denote rings 1, 2 and 3
respectively. The displacement is inherited by the geometrical grid and is used to
form a 15x15 grid of cells. Figure 3.5 depicts a 7x7=49 cells portion of the total grid.
The MT may move from the current cell (lets assume that z = 109) to cells located
at N,NE,SE,S,SW, NW (Figure 3.6). If the next selected direction is N, the next

step will be to cell 94 (z — 15 = 109 — 15 = 94).

51

Figure 3.6: Next ring neighboring cells identification model.

52

For the NE direction, the next cell will be 102 (z — 7 = 109 — 7 = 102). For the
SE direction, the next cell will be 117 (z + 8 = 109 4+ 8 = 117). For the S direction,
the next cell will be 124 (z + 15 = 109 + 15 = 124). For the SW direction, the
next cell will be 116 (z + 7 = 109 + 7 = 116) and finally for the NW direction, the
next cell will be 101 (z — 8 = 109 — 8 = 101). Then a valid scope distribution U; is
assumed. This distribution is the sum of all item values valid scopes requested, i.e.,
the restaurant’s scope distribution to which the continuous query is referring to. The
scope distributions of the data items are maintained and updated periodically by the
database server. The following equations show the calculations for the neighboring
and prime lists of cells.

U={z+8x+15,2+7,z+ 14,z + 16,z + 22,

z—45,2 - 38,z —29,xr — 24,z — 60,z — 53

r—52,r— 39,z — 44}

Ci = Ryp=1+ Rep=2 + Ry =3

P=C;ANU;={x+8,z+15,z+ 7,z + 14,z + 16,

x+22,x — 45,2 — 38,2 — 29,z — 24}

P, ={117,124,116,123,125,131, 64, 71,80, 85}

P = {117,124, 116 } 51 + {123,125, 131} 5 + {64, 71,80, 85} 43

Table 3.3: Example of Prime Index Table

Ring number | Prime list of cells for random cell(z = 109)

k=1 117,124,116
k=2 123,125,131
k=3 64,71,80,85

53

3.4.3 The Future Location Transition Probabilities

So far a list that contains the neighboring cells has been formed. However, only the
ones which are part of the data item scope distribution are of interest to the presented
techniques. The question is what is the probability distribution of the primary list of
cells based on the MT’s current location. To find this distribution an appropriate set
of transition probabilities needs to be adapted. There is a great number of research on
transition probabilities, some of which was presented in section two. In this section a
random movement model is presented that can be used together with our replacement
strategy.

During the replacement process the cache manager in order to efficiently locate the
candidate segment(s), it uses the prime list of cells (Table 3.3) to examine the cached
segments according to the future location transition probabilities between their bound
cell_id k and the query’s bound cell_id x initiated by the mobile user. In modelling
users mobility various movement models can be used. Each mobility model comes
with each own matrix of transition probabilities G. Liu et al. [63] have described a
number of movement models such as regular daily and weekly movement patterns
and they have used Markov Chain Model to derive the transition probabilities matrix
P, . Levine et al. in [24], have also derived a transition probabilities matrix using
the Markov Chain Model for their Shadow Cluster Concept movement model.

In Appendix B the transition probabilities are evaluated using the v movement
probability. v can be considered as a measure of the mobile user’s speed. A low value
i.e., 02,0.3, indicates slow movement while y=0.8 indicates fast movement. Then a;,
b; and ¢;, denote the probabilities that at the end of each time slot the MT moves to

ring ¢ — 1(previous ring), i + 1(next ring) or remains in the same ring i, respectively.

54

Algorithm 1 The Replacement Algorithm FLA(C, X)
/* C denotes the LDD cache and U; denotes the data
item (%) valid scope distribution. r is the cluster size
Vinin 1s the needed cache space.

x denotes the mobile user’s current cell_id

y denotes the cell_id the cached segment s; is
associated (bounded) with */

INPUT:(x,r), OUTPUT: VictimsList V

/ Step 1. Form the Prime List (P;) of Cells
Ci= R:z:,k:l + Rcc,k::Z + sz,k:Ba <y +Ra:,k:=r

Pi = Oi AN Uz

Fi={Pir=1} + {Pir=2} + {Pik=s}, s, +{Pit=r}
V « NULL

/ Step 2. Use the movement pattern to look for
/ segments associated with remote cells zooming
/ from r* ring to the 1 neighboring ring

for {int k=r, k >0, k - -} do

—
<

11: for {every segment seg (j) in C} do

12: while {V <V, and y € P;} do

13: V — V +seg(j) /discard (s;);

14: end while

15: end for

16: end for

17: / Step 3. If more cache space is needed use the query
18: / pattern factor to examine segment’s data item type (7)
19: for {every segment seg (j) in C} do

20: while {V <V, andi+# 7} do

21: V «— V +seg(j) / discard (s;)

22: end while

23: end for

24: return {free space is enough}

3.4.4 The Replacement Score Model

A cache replacement policy involves computing a utility function ¢;(¢) for each cached
data item S; that can be potentially replaced, and then replacing (expelling) the ones
from the cache (the so-called victims) that have either the minimum (replacement
value) or the maximum (replacement score) utility function value, depending on the

criterion for replacement. In the semantic region model of cache organization [5],

55

each semantic region is assigned a replacement value, those items with the lowest
values are chosen to be the replacement victims. In our case, the utility function
is the replacement score calculated for each cached data item. Based on guidelines
presented in the previous subsections. The presented Future Location-Aware (FLA)
policy assigns a replacement score to each cached segment using first the mobility
primary factor and then if more space is needed the secondary query pattern factor.

The movement pattern primary factor (m;) is calculated by forming the prime list
of cells and comparing the location bound (cell id C;) for each potential for replace-
ment cached data item within the prime list. Most of the time, but not necessarily,
the query’s bound cell C; will be the cell to which the mobile user is located when
s/he initiates the query. Assuming a cluster of K rings (k = 1,2, 3), the prime list will
most likely have three groups of cells. In the Example 3.4.2 the prime list was shown
to be formed by (117,124,116),-1 , (123,125,131);-2 and (64, 71,80, 85)k—3 groups
of cells. Depending to which group of cells (1,2,3) C; belongs to, the mobility factor
value towards the overall replacement score will be 1,2,3 respectively. The mobility
factor highest value (m; = 4) is assigned to a cached data item which is bound to a
cell that is no longer part of the data item scope distribution.

The query pattern secondary factor is formally defined by the affinity (f;) between
the current query @ and each of the candidate segments (data items) for replacement.
Affinity is the probability that the user asks for the same data item type in the
consecutive queries. In a location-aware information service, the service must be able
to refresh the answer to a query that is still active, when a change in the user context
invalidates the previously provided answer. The answer to a continuous type of query
(e.g., a moving car asking for hotels located within a radius of five miles) needs to

be updated continuously. Hence, in the real world, as mobile users are changing

56

locations, most likely they tend to ask about the same data item a few times until
switching to another one. It is possible that they could get sidetracked every now
and then - those would be the times when they query for something else.

Once the mobile client has demonstrated affinity towards one particular data
item type (i.e., restaurant), each additional data item type has a lower affinity value.
Additionally, a certain user may query the same item often, while another user may
query the same item occasionally. Thus, both a user’s movement pattern and the
query pattern may be used to further improve the effectiveness of a cache replacement

policy. Three levels of affinity are considered as follows:

e Low affinity level, (f; = Low) to denote the probability of asking the same data

item is p < 0.33.

e Medium affinity level, (f; = Medium) to denote the probability of asking the

same data item is 0.33 < p < 0.66.

e High affinity level, (f; = High) to denote the probability of asking the same

data item is p > 0.66.

Using the mobility and query pattern factors a replacement granularity is imple-
mented. The replacement mechanism first looks for potential candidate data items
for eviction associated with remote cells (i.e., data items whose cell bound is part
of the prime list outer rings). Next if more space is needed, the cached data items
bound to cell which are members of the first neighboring ring of cells are examined.
Lastly, the replacement mechanism uses the highest granularity to search for addi-
tional replacement victims in the MT’s current cell implementing the query pattern

factor(query data item type affinity).

57

3.5 Replacement Performance Evaluation

In this section, the performance of the presented cache replacement policy, namely
FLA, is evaluated using the simulation model described in the previous section. For
performance comparison the “traditional” policy LRU and the semantic policy FAR
are used. Additionally comparisons are made with the replacement policies PA and
PAID proposed in [13]. The cache hit ratio (k) is used as the primary performance
metric. This is because most of the other performance results can be derived from
the cache hit ratio, which is the percentage of all requests that can be satisfied by
searching the cache for a copy of the requested data item. Additionally, the response
time is included as an alternative performance metric.

The mobile client mobility is patterned using the random walk model. Each
iteration is simulated until the MT has completed a fixed number of movements.
Each iteration uses a set of valid cells that are defined based on the current cell. The
expected average hit ratio hayg = —Z—%—}-’—l— is estimated for each replacement strategy
of N iterations. For each run of the simulation different movement paths may be
selected. For each iteration, the values for the hit ratios are added to the previous
ones and at the end of the n** iteration (trial). The averaged results are compared for
all competing replacement policies. Only the steady-state behavior is of interest. The
results are obtained when the system has reached a stable state. For each simulation
trial a number of warm-up queries are issued so that the warm-up effect on the client
cache is eliminated before collecting the performance metrics.

In the next sub-sections, a number of experiments is described to investigate
the performance of the examined schemes focusing on the characteristics that could

impact the replacement decisions, such as cache size, simulation time, affinity factor,

58

data item types, query delay, valid scope size, and movement speed. Steadily falling
costs of storage lead to caches of sizes large enough to hold requested objects of
various sizes [48], therefore the object size factor (presented in detail in the Greedy

Policy [53]) has not been included in this study .

Figure 3.7: Cache hit ratio versus cache size - for various simulation times

Figure 3.8: Impact of cache size for different simulation time

59

3.5.1 TImpact of the Cache Size

Figure 3.7 depicts the cache hit ratio against the simulation time and Figure 3.8
depicts the cache hit ratio against the cache size variable values using a low (st1)
and high (st5) value of simulation time. For each value of the simulation time value
is averaged for the cache hit ratio results for all cache sizes. The experiments use
an increased simulation time by changing the number of random movements for each
iteration from st = 5K, sty = 10K, stz = 20K ,sty; = 30K, sty = 40K and st; =
50K.

As expected, the performance of the cache management schemes improves with
increasing cache size as well as with increasing simulation time. However, it is inter-
esting to notice in this set of experiments that the presented scheme FLA (Figure 3.8)
demonstrated an even greater performance advantage, approximately 10 — 25% for
higher simulation time, while the standard direction policy (LRU) and the semantic
replacement policy (FAR) improved by an approximate 5 — 10%. This is a result of
FLA being able to adapt itself to the data items distribution in the neighboring cells,
due mainly to its data item scope distribution factor. As the cache size increases,
more important data items having high access probability (cache benefit) are stored
in the cache. Therefore, the cache hit ratio increases sharply with the cache size
increase. Thus, the percentage of wireless bandwidth usage decreases. LRU achieves
the lowest hit rate since it does not consider enough information when making re-
placement decisions and therefore tends to make poorer choices. The positive feature
of LRU, besides its simplicity, is that it ages the object set thus preventing cache

pollution.

60

Figure 3.9: Changing the replacement query’s pattern (Affinity factor) for FLA.

Figure 3.10: Affinity factor - Comparing FLA and FAR.
3.5.2 Impact of the Affinity Factor

While wandering, a mobile user may have an affinity (preference) towards certain item
type (continuous type of query). The query pattern is simulated using the affinity

factor (i.e., from low, f; = 1, to high, f; = 6). Figure 3.9 demonstrates, as expected,

61

Figure 3.11: Cache hit ratio for FLA-FAR-LRU vs cache size.

that the higher the affinity value the better the performance results for FLA. Figure
3.10 compares the FAR with FLA cache hit ratio against the affinity using three
cache size values (10%, 30% and 50%) for each scheme. The significant performance
improvement FLA demonstrates against FAR is due to the fact there is a much
better future query prediction and, therefore, the cache management strategy does
a much better job in evaluating the data items cache score. This set of experiments
demonstrates that FLA can reach very a cache hit ratio for a 50% cache size. This
characteristic suggests the possible capabilities of the presented strategy in a larger
design/application space, where more MTs can be used to see if they interface or help
each other in a peer-to-peer computing architecture, i.e., if there is no data access via
BS or MSS, ask your peer. Note that FLA is the only policy that uses the affinity

factor, a fact that makes the comparisons with the other schemes not straightforward.

62

Figure 3.12: Cache hit ratio versus the data item types factor.
3.5.3 Data Item Types

In this set of experiments, the scalability of the presented replacement scheme is
examined under various data item types. Figure 3.11 depicts the cache hit ratio
versus the cache size using three data item types. Figure 3.12 demonstrates the
cache hit ratio performance for five data item types. For each value of the data item
type factor the hit ratio values are summarized for all cache sizes. As expected, the
performance of the replacement schemes decreases when the number of data types
increases. However, the FLA policy still shows a 5% to 25% higher performance
compared to FAR, depending on the number of different types of data items used in
the database.

An even higher improvement is shown compared to the LRU policy. This happens
because FLA explores its future location capabilities in a 360° global scope, while
FAR uses an implied future prediction mechanism (tangent velocity calculations)

only to the cells in the exact opposite direction of the movement. This scheme has

63

limited success and does not take into account probable sharp turns (really random
movements) of the MT. In addition, FAR demonstrates a significantly higher overhead
of continuous velocity calculations every At. FLA requires an insignificant overhead
to identify the mobile user’s neighboring cells and to estimate the replacement score
of the cached segments.

The results of both the affinity and data item type experiments suggest that a
cache size differentiation using a number of smaller caches (one per data item type)

instead of a single one can improve the overall cache performance.

Figure 3.13: Impact of query delay on FLA.

3.5.4 Impact of the Query Delay

The query delay is the time interval between two consecutive client queries. It is noted
that it is not necessary to query for an item each time a new movement is chosen. In
this set of experiments the impact of the query delay is evaluated on the cache hit

ratio under the contending replacement policies. A query delay of “1”, means that the

64

Figure 3.14: Impact of query delay for LRU, FAR and FLA.

query takes place with every random movement, a query delay “2”, means that the
query takes place with every other random movement, etc. As illustrated in Figures
3.13 and 3.14, when the query delay is increased from “1” to “5”, the FAR and LRU
policies demonstrates an approximate 18.5 to 25% cache hit ratio decrease. This is
expected because, for a longer query interval the client would make more movements
between two successive queries; thus the client has a lower probability of residing
in one of the valid scopes of the previously queried data items when a new query
is issued. However, interestingly enough the presented strategy responds differently
by displaying a smaller decrease in the cache hit ratio (only a 10% decrease) as the
query delay increases from “1” to “5”. This result is expected due to the fact that
FLA makes replacement decisions using broader scope i.e., cell numbers within rings

rather than continuous location (directions) estimations the competing schemes use.

65

Figure 3.16: Cache response time for FAR and FLA versus cache size.
3.5.5 Mobile Cache Response Time

In a mobile environment, whatever allocation is chosen, users will experience some
latency in getting the appropriate information when they cross the boundaries of the

current information scope. The latency or response time, is the time from the sub-

66

Figure 3.17: Cache response time for FAR and FLA versus affinity factor.

mission of the query to the time when the result is obtained. In general, this involves
three parts: the client processing time tj,., the server processing time trem (ie., a
server or a proxy) and the time spent on the wireless link. Latency is associated with
high variability in transfer times for the same data item and makes cache manage-
ment decisions more difficult. Furthermore, Cao and Irani found that maximizing the
hit rate reduced latency more effectively than policies designed to reduce response
times [53]. For this reason a response time experiment is included to examine only
the cache management latency component (toc)-

In this set of experiments FAR and FLA are compared. LRU has a much lower
cache processing overhead due to its simplistic algorithm compared to the other two
policies. Figure 3.16 depicts the cache average response time against the cache size
which varies from 10 to 50% of the database size, using three different values for the
affinity factor. Figure 3.17 depicts the cache response time average results over the

five different cache sizes while the affinity factor value changes from low to high.

67

FLA demonstrates a significant response time advantage over the FAR, approxi-
mately 20%. As it has been stated FAR almost continuously (every 4t time) calculates
a set of in-direction segments and another out-of-direction set of cached segments in
order to decide and remove the segment at the opposite direction of movement. This
process can become very time consuming and extremely confusing in small to medium
size areas of operations as it was also shown in the scope distribution experiment.
Another interesting point here is that the affinity factor used by FLA can reduce

substantially the response time in all cases.

3.6 Replacement Policy Conclusions

In this chapter, the cache replacement issues were investigated in a wireless data
dissemination environment. Noticing that the query has valid answers only within
a set of cells predefined for each data item (item valid scope), a novel approach
based on the data validity to form a prime list of future cells was presented. The
presented policy examines all cached items and forms a future location replacement
score index, comparing the cell to which each cached item is bound with the prime list
of cells. When cache space is needed, the replacement policy selects the candidates
for replacement from the tail of the replacement score index. FLA is based on an
efficient logical model that uses cell size granularity rather than the (z, y) geometrical
model used by many other works.

The simplicity of our mobility model makes the prediction algorithm highly ef-
ficient and avoids making complex calculations which are unavoidable in stochastic
models. Thus, the power required to process the cached segment and select the re-

placement candidate list used by the replacement policy is greatly reduced. FLA

68

incorporates the scope distribution associated with the cached segments for increased
accuracy of future location prediction and query pattern. Previous data caching
research treats cache replacement and cache coherence as separate topics. The pre-
sented policy takes a modest first step towards the collaboration of these two cache
management functions, by considering the valid scope distribution of the data items
provided by the database server. Results show a substantial performance improve-
ment over the existing LRU and FAR policies especially in a small to medium size of
data items valid scope distribution and in higher movement speeds.

Previous data caching research treats the three main issues - coherence, replace-
ment and prefetching individually. Studies have shown that, when combined with
caching, prefetching can improve latency by up to 60%, while caching alone offers at
best 26% latency improvement [66]. In the next chapter the prefetching strategy is

presented in a collaborative approach with the replacement strategy.

69

Chapter 4
A CONTEXT-AWARE PREFETCHING

STRATEGY

In a mobile wireless environment, the latency (time-delay) observed by a user before
s/he receives up-to-date information may be high because of the limited available
bandwidth. An efficient prefetching strategy must be tailored to the competing goals
of keeping latency low (which requires more prefetching) and reducing resource waste
in a mobile environment, which is characterized by scarce bandwidth and resource-
poor user devices. This chapter presents a new Context-Aware Prefetching Strategy
(CAPS) [41] and its components.

CAPS maintains a mobile terminal’s cache content by prefetching data items
with maximum benefit and evicting cache data entries with minimum benefit. The
data item benefit is evaluated based on the user’s query context which is defined
as a set of constraints (predicates) that define both the movement pattern and the
information context requested by the mobile user. A context-aware cache is formed
and maintained using a set of neighboring locations (called the prime list) that are
restricted by the validity of the data fetched from the server. An analytic model is

used to compare the cost versus latency. Simulation results show that the presented

70

strategy, using different levels of granularity, can greatly improve system performance

in terms of the cache hit ratio.

4.1 Introduction

Previous research in data caching has focused on the use of the location information
as the key field of the user’s query contert, but not enough attention has been paid
to the other query fields (predicates) which define the user’s information context.
Information disseminated to mobile users potentially can be context-sensitive and
highly personalized. Therefore, an effective cache management scheme needs to adapt
dynamically to the user’s query context. Additionally, both the cached data items
and the prefetched ones should be determined and adjusted according to the user’s
movement pattern and information context.

In evaluating the data item’s benefit as far as the cache content is concerned,
CAPS uses the query context as an information filtering mechanism to limit the
amount of prefetched information to the data items with maximum benefit. A main
aspect of this work involves predicting the future context that will be required by
the user. In some situations forecasting may be impossible, but in situations where
the content is changing gradually and continuously i.e., in continuous type of queries,
this may be possible and very effective. Forecasting may be done, for example, by
analyzing the user’s current query context.

The purpose of trying to predict future contexts is to anticipate the user’s future
retrieval needs, and to perform retrievals in advance of the need. Assuming the
prediction is correct, the response to retrieval requests will then be very fast, since

the necessary retrieval will have been done in advance. When a cache-miss happens,

71

the mobile terminal (MT) asks for several other items and not just the cache-missed
data item, with little additional cost. This action will prevent future cache misses
and will reduce the number of uplink requests.

A mobility-based semantic cache structure and query processing was first proposed
in [5]. Ren et al[7, 8] have extended this work to use the location information
attached to each segment, making it more efficient and they have also proposed a
cache management replacement policy. This work is based on this previous body of
research on semantic cache management, however it focuses on the cache management
prefetching strategy. To design an effective cache management strategy both the
neighboring cells and the current query information context factors are considered.

Based on these two factors, CAPS first uses the validity of the data (valid scope
distribution) based on their location to derive a set of most likely future cells called
the “prime” list of cells. Then, in order to identify data items with a high benefit
as far as the cache content is concerned the user’s query context is exploited to limit
the amount of prefetched information within the predicted set of future cells (the
prefetching zone). A direct result of the presented strategy is the formation and
maintenance of the context-aware cache of data items with a high cache value which
are included at a low cost. The context-aware cache is then updated if the mobile

user subsequently strays out of the predefined prime list of cells.

4.2 The Cache Prefetching Components

Prefetching is a technique that is mainly concerned with improving the system per-
formance. Caching alone is generally not enough to improve performance of mobile

systems. Moreover, prefetching has a broader application range than simply storing

72

Figure 4.1: Roaming mobile user.

already used data in a cache. Prefetching, together with replacement, is used to sup-
port cache management. To avoid excessive network traffic and prefetching cycles, the
prefetching mechanism has to consider different strategies to increase the efficiency
of the algorithm and the relevance of the fetched data. The prefetching mechanism

may take any of the following filter parameters into account:
e Movement pattern: A user’s movement pattern (i.e., location and direction).
e Query pattern: The priority of services defined by the user (query pattern).
e User’s profile: A user’s interests through user profiling.

In the previous chapter the user’s movement pattern was presented, in this chapter

the query pattern is explained in detail. A query pattern is a parameter which

73

together, with the user’s movement pattern, is what makes our prefetching strategy
unique compared to other proposals. The continuous type of query this study focuses
on shows an affinity towards certain data items, which are called query patterns. The
third parameter deals with the user’s profiling which is chosen to be a future direction

of this research.

4.2.1 Query Pattern and Cache Management

A context-aware prefetching action can be examined by its two components - (i)
location context and (ii) query context. In the previous section, the future cells of
interest to prefetching were determined, while in this chapter the query context is
presented and its usage is explained to granulate and filter the information inside these
chosen cells. In an LBS application, the service answer depends on the user’s context
(e.g., time and location) from which the user issues a query. In a mobile scenario,
this implies that the service must be able to refresh the answer to a query that is still
active, when a change in the user context invalidates the previously provided answer.
In the real world, as mobile users are changing locations, most likely they tend to ask
about the same data item a few times until switching to another one.

As discussed in the previous chapter affinity is a preference towards a particular
result. Once the mobile client has demonstrated affinity towards one particular data
item type (i.e., restaurant), each additional data item type has a lower affinity value
for the duration of the query. Additionally, a certain user may query the same item
often, while another user may query the same item occasionally. Thus, both a user’s
movement pattern and the query pattern need to be considered to further improve

the effectiveness of a cache prefetching policy. Assume that a new query Q, “give me

74

Algorithm 2 Candidate Queries List Formation Sub-Algorithm

/* LA denotes the list of past requested attributes for
the relation of @);, ordered by descending frequency.
L@ denotes the set of candidate for prefetching queries
LP denotes the list of past predicates for the relation
of Q;, ordered by descending frequency. */

I I T I T I I T N S ey Uy e
e B = T I R o = I L O T R N ST =)

begin
Case 1. Add one frequently requested attribute at a time
for each attribute a in @); do
Q;=add a to requested attributes of Q
end for
if Q); <> @ then
add @Q; to LQ
end if
Case 2. Add one frequently requested predicate at a time
for each predicate p in LP do
Q;=add p to predicates of Q

: end for
cif Q; <> @ then

add @; to LQ

: end if
: Case 3. Remove one predicate of Q at a time
: for each predicate p in Q do

Q;=remove p in Q
add @Q; to LQ

: end for

: Case 4. Remove a predicate from Q and at the same time
: add an attribute (combination of above cases)

: for each predicate p in Q do

for each attribute a in LA do
QQi=remove p in Q
@;=add a to requested attributes of Q
end for

: end for
: add @; to LQ
: end

all the names of the Chinese restaurants at the current location in the medium price

range” is being processed where a prefetching decision needs to be made. In trying

to design the optimum query for prefetching two main issues are identified: (i) how

75

Algorithm 3 Prefetching Overall Algorithm

/* Q; denotes the candidate queries for prefetching

@ denotes the current query

U; denotes the data item valid scope

¢1— The attributes commonality criterion

indicates (); has subset of attributes of Q (Q;4 C Q)

¢2—The tuple similarity criterion

indicates); has subset of tuples of Q (Ans(Q;) C Ans(@)). */

e T T = T T SR

—
-~J

begin
Case 1. Form the Prime List of Cells (Prefetching Zone)
P,(prime) = C;(candidate) A U;
Case 2. Form a List of Candidate Queries
Use Sub-Algorithm 2 to form the list of candidate
queries L() for prefetching.
Step 3. Select the Optimum Query Context
Use the two criteria (¢ and ¢3) to compare @Q; with @
while cache space is available do
Select queries @); that satisfy both criteria
Select queries (); that satisfy one of the two criteria
Select queries @); that partially satisfy the two criteria

: end while

: Step 4. Augment Optimum Query and Prefetch
: Use the PZ future cells to augment selected Q;— > Q);
: Prefetch using augmented queries Q)

: end

to form a list of candidate queries for prefetching and (ii) examine the candidates list

to identify the best candidates for prefetching.

o First Issue: Form a candidate queries list for prefetching based on the current
query Q semantic description. First, the query history is examined to find the
most frequently requested attributes and query predicates, and then are subject
to augment or alter the current query using this history. To limit the space
of candidate queries only the following cases are considered. These cases are
intuitive and offer good bandwidth and cache space savings: (i) augment Q by a

single requested attribute (e.g., ask for working times in addition to prices), (ii)

76

Table 4.1: Query Candidates List for Prefetching

Q: “give me all the names of the Chinese restaurants at the current

location in the medium price range”

e (J1— “give me all the names of the Chinese restaurants at the current
location that open from 6:00 p.m. to 10:00 p.m. and in the medium

price range”

e (J2— “give me all the names and price ranges of the Chinese restaurants

at the current location in the medium price range”

e ()3—“give me all the names and price ranges of the Chinese restaurants

at the next location ”

e (Q4— “give me all the names of the Latin restaurants at the current

location”

e ()5— “give me all the price ranges of all Chinese restaurants at the current

location in the medium price range”

e (J6— “give me all the names of the Chinese restaurants at the current

location”

e (Q7— “give me all the names and price ranges of the Chinese restaurants

at the current location”

add a predicate (e.g., price='medium’ in addition to the location predicate), (iii)

remove a predicate (e.g., get all local restaurants instead of only the Chinese),

77

Table 4.2: Candidate Queries-Attributes and Predicates Description

Relation: Restaurant

(ARu) AR15)

Q; Attributes Query predicates description
1 Rname p11 = current_cell(x)
(ARy) p12 = Type(Chinese)
p13 = Schedule(6 — 10p.m.)
p14 = Price(Medium)
2 Rname, Price p11 = current_cell(z)

p12 = Type(Chinese)

p1a = Price(Medium)

(AR127 ARIE)

3 Rname p1s = future.cell(k)
(Ary,) p11 = Type(Chinese)
p1a = Price(Medium)
4 Rname p11 = current_cell(z)
(Ag,,) e = Type(Latin)
5 Price p11 = current_cell(z)
(Agry;) p12 = Type(Chinese)
pra = Price(Medium)
6 Rname p11 = current_cell(x)
(Apy,) p1o = Type(Chinese)
7 Rname, Price p11 = current_cell(x)

p12 = Type(Chinese)

and (iv) remove a predicate and add a requested attribute (combination of (i)

and (iii)). Based on this described logic, the sub-algorithm (Algorithm 2) is

78

Table 4.3: Candidate Queries’s Cost Description
Qs | Qia vs Qa | Ans(Q;) vs Ans(Q)) | Bandwidth | Query Changes

(Selected | (Result-Tuples) and Space
Attributes) Savings
1 | Qua=Qa | Ans(@Q1) C Ans(Q) | Yes Qp
2 | Qa2 Qa | Ans(Q2) C Ans(Q) | Yes Qa

more attributes

3 | Q34D Qs | Ans(Qs) N Ans(Q) | No Qa,Qp, QL - new
= NULL attributes and tuples
4 | Qua=Qa | Ans(Qq) NAns(Q) | No Qp,Qr,
= NULL new tuples
5 | QsanNQa | Ans(Qs) = Ans(Q) | No Qa
=NULL new attributes
6 | Qea=Qa | Ans(Qs) D Ans(Q) | Yes Qp

some new tuples

7 1 QraDdQa | Ans(Qe) D Ans(Q) | Yes Q4, Qp - some new

attributes and tuples

designed to form a list of candidate queries LQ for prefetching. Table 4.1 lists
part of the algorithm’s output using query Q for input. Additionally, Table 4.2

lists the attributes and predicates of the candidate queries list.

e Second Issue: Ezamine the candidate queries list for the best query choice for
prefetching. In predicting the user’s next query, the following observations can

be made regarding the prefetching cost of the candidate queries list. Consider-

79

ing prefetching to be a form of caching for dynamically generated content [34],
one can also consider prefetching along a number of granularity levels such as
the cell, relation, attribute and item values (Cell — Data_item — Attribute —
Item_Value). In predicting the user’s next query, the two criteria can be de-
rived regarding the prefetching cost of the above listed candidate queries. The

following two criteria are used to determine the benefit of prefetching a query:

(1) The attributes commonality criterion is satisfied if the candidate to prefetch

query J;, shares attributes with the current query Q).

(¢2) The tuple similarity criterion is satisfied if the result tuples of @);, are a subset

of the result tuples of Q.

The best candidates for prefetching are the queries @); that satisfy both criteria
(#1, ¢2). A high affinity level is assigned to this query, i.e., f = High. If there is still
cache space available, the queries that satisfy either one of the two criteria (¢1, ¢2) are
prefetched (medium affinity level, f = Medium). Finally, the queries that partially
satisfy the two criteria can be used for prefetching (low affinity level f = Low). In
trying to anticipate the future user needs a replacement policy must also be defined
to make room for new data items when the cache becomes full. In previous work
(38, 39, 40] a compatible future location-aware replacement policy was described that
is used here with the prefetching strategy when the cache is full. Table 4.3 lists the
candidate queries using a bandwidth and space allocation cost taxonomy.

The overall steps for the presented prefetching strategy are shown in Algorithm
3. Using the above described criteria, it is noted that the first query ¢ in the
candidate list is based on the same location and data item type (relation) and it

meets both criteria. Therefore, it only marks some of the resulting tuples of). It

80

clearly represents the cheapest choice as far as network resources are concerned and
it is expected to achieve a good prediction level for the next query. As a second best
choice for prefetching query selection, queries (); and (s meet only one of the two
criteria. Q4 asks for a new attribute and ()¢ brings new tuples. As a last choice notice
that 7 asks for a new attribute and will also bring new tuples. Regarding queries
with a “NO” in the savings column, queries (3, 4 and Q5 are new queries that
ask for new attributes and that will have to retrieve new tuples at another location;
therefore, there is going to be a higher increase in saving cost and bandwidth. The
case of a join query type may be treated as multiple queries, each against a different

relation.

4.3 Prefetching Cost Analysis Model

In a mobile wireless environment, the most scarce and critical resources are those
strictly connected to the use of portable devices to access the information service,
such as disk space, processing power, wireless link bandwidth and amount of energy.
This section focuses on the bandwidth and uses it as the cost of prefetching the con-
sumption of this scarce resource. The measure of bandwidth occupancy is represented
by the number of bytes per second (W) that traverse in both directions in the wireless
link, while a query is active. In a mobile environment, the user is unaware from where
the information is received; however, two events may take place; a cache hit, and a
cache miss. For the mobile environment, an out-of-scope condition is the time the
MT has moved into a new cell outside the prefetched cluster, while an information

request is still “active”. P, is the probability of not finding the required informa-

81

tion locally when an out-of-scope condition occurs (cache miss), while the probability
of a cache hit is denoted by 1-Friss-

During a cache miss, the information is retrieved from a remote source in f,em
time units (e.g., a server or a proxy server), and during a cache hit the information
is retrieved locally in ¢;,. time units. The latency, or response time, is the time from
the submission of the query to the time when the result is obtained. The latency is
often associated with a high variability in transfer times for the same data item and
makes cache management decisions more difficult. Other factors that affect latency,
such as the time needed to detect the out-of-scope condition, are not considered
in this dissertation. Instead, the focus is on the time needed to retrieve and start
loading the information from the data server responsible for the particular information
service t,e,,. This time depends on the server load, the amount of information to be
transferred and the available bandwidth. Since the bandwidth of a wireless channel
is usually quite low, the value of #,.,, can be excessively high.

Prefetching is considered when a cache miss occurs. Clearly, if the main concern
was to reduce the overall performance, then it would be recommended to simply in-
crease the frequency of prefetching and the amount of prefetched data. A compromise
is needed between two opposite goals - (i) to keep Pss small and (ii) to optimize
resource usage i.e., to determine an ideal number of cells to be used for prefetching.
Therefore, a cost evaluation model needs to be defined to find the equilibrium between

cost and performance.

82

The average occupation of the wireless link can be expressed as W = IPC+TNM.
The IPC = W, + W,N, component, denotes the initial prefetching cost and TNM =
tobror (W, + N;W,) denotes the cost of the total number of misses. The expression

for W can be written as follows:

W = (Wq + WaNo) + tqka'k(Wq + WaNk), (41)

where Ny is the number of cells for prefetching when the ** cache miss occurs. For
a standard random movement Ny, = 3k* + 3k + 1. Ny is the number of cells used for
prefetching when the user submits the query the first time. The term ¢,br04 = t;FPniss

represents the number of missed hits during the active period of the query Q denoted

2(k—1)+1
6(k—1)

by t,. The transition from state k to state O represented by by = using the
state diagram shown in Appendix 6.3, corresponds to the exit from the cluster covered

by previously prefetched information and to the reconstruction of a new cluster.

Figure 4.2: Prefetching cost (Equation 4.1 and € = 10%)

33

Figure 4.3: Prefetching cost (Equation 4.1and e = 25%)

Next, the transition and steady state probabilities are evaluated. A discrete time
Markov model that describes the motion of the user within the area “covered” by
the prefetched information (i.e., within cluster of & rings) starting from the central
position, which is the mobile user’s current cell. The state diagram derivation of the
state transition probabilities is given in [26, 24, 11], where state i means that the user
is in a cell belonging to ring i (0 < < k), and a;, b; and ¢; are the probabilities that,
at the end of each time slot, the user moves to ring ¢ — 1, 4 + 1 or remains in ring ¢,
respectively. The user moves to an adjacent cell with probability v, or remains in the
same cell with probability 1-v. Given the uniform motion model, these values can be
calculated by counting how many edges are adjacent to each polygon that belongs to
ring i. oy denotes the steady state probability of being in ring i when a cluster of

radius k is reconstructed each time a local storage miss occurs.

34

Previous research using the Markov model [24, 11] has shown an approximate
expression for o that can be calculated in the case of the two-dimensional motion as
follows:

(2 -2P@)"

(b2 — ay — ab + ybk — yak) + (ay — ab+ a?)

Op =

Finally, Equation 4.2 is derived making the assumption that the number Ny of
cells used for prefetching when the user submits the query the first time is equal to

the number Ny of cells used for prefetching thereafter:

W = (Wq + WaNk)(l + tqka'k) (42)

It should be noted, that the above formulation represents only one possible way
to formulate the actual data traffic. For example, it does not consider explicitly the
number of bytes exchanged to set up the connection between the user device and the
data server. This number depends on the particular transport protocol used for the
connection, and could be included in the model; however, it will require more complex

formulations.

4.3.1 Numerical Results

In this subsection, the numerical results presented have been obtained by using the
following values: t;,, = 10 msec and t,.,, = 5sec. An average query duration of {; = 500
discrete time units is used. A W, = 10 Kb is used as the typical size of query results.
Figures 4.2 and 4.3, demonstrate that using clusters with radius k£ = 1 (6 cells) for
prefetching, a latency improvement is experienced with no significant performance
cost increase. However, when using clusters with a radius k& > 1 (more than 6 cells),

there is a wireless bandwidth increase for slow motion (mobility factor v = 0.2), which

85

becomes substantially more significant for fast movement (mobility factor v = 0.8).
Using the uniform random movement model a normal prefetching strategy would
prefetch information associated to a cluster of rings (0,1,2,3, ..., k) centered at the
MT’s current cell for a total number of cells given by: N(k) = 3k® + 3k + 1. These
results suggest that anticipating prefetching to prevent a cache-miss occurrence leads
to a significant performance advantage, but with an increase of wireless bandwidth
consumption, especially for k£ > 1.

The presented method, while maintaining the prefetching scope large enough for
better performance, at the same time uses a modified random movement model to
mitigate the prefetching cost performance issue. The results of this set of experiments
demonstrate that the presented modified motion model in both cases (slow and fast
motion) is able to significantly reduce the prefetching cost. This happens because, for
the same scope of prefetching (i.e. same number of rings, k), our model’s valid scope
factor will use a reduced number of cells P;(k), where P;(k) is the prime list (Section
3.4.2) of cells which is a subset of N(k). In a large-scale information system, the
number and size of scope distributions can be very large. Assuming that for a certain
data item the scope distribution size expressed as the number of cells that cover 75%
of the neighboring cells (e.g. the number of restaurants in a metropolitan location).
To quantify this prefetching cost savings, let € be the percentage of cells reduction
index, which is specific to the data item scope distribution, in this case e=25%. Then,
using Equation 4.2 the prefetching cost savings can be estimated. Figure 4.3 shows
that for e=25% the achieved decrease in prefetching cost expressed versus the number
of rings of cells used for prefetching, varies from 0% to 33% for the slow mobility case

and from 0% to 40% for the high mobility case.

86

(
" BEGIN)

1 Start random walk

7
New query Q
total=NULL

i
{res,rq)=RupQuery{Q,C)

guery is totally

satisfied locally y 7 .
i rg=NULL?
N
{ Total=res E)
rres=get rg’s result from the
Y server : Total=res+rres
Cached data Cache-miss Activate
item validation Prefetching scheme

I

| returntotaltouser |
v

enough space? >——
\\ _—

N

Run cache replacement
policy
|

| cacheQ |
i

Y

Figure 4.4: Simulation work flow (res:resident query, rq:remote query).

4.4 Prefetching Performance Evaluation

In this section, the presented location and context aware cache management strat-
egy (CAPS) is evaluated and compared to the standard directional scheme based on
tangent velocity [28] (denoted as non-CAPS or DR). The cache hit ratio (h) is used
as the primary performance metric, because most of the other performance results
can be derived from the cache hit ratio. The cache hit ratio is the percentage of
all the requests that can be satisfied by searching the cache for a copy of the re-

quested data item. Mobile client mobility is patterned using the random walk model.

87

Each simulation trial uses a set of valid cells and lasts until the MT has completed
a fixed number of movements. The expected average hit ratio is estimated for each
prefetching strategy of N iterations. For each run of the simulation different move-
ment paths may be selected. For each iteration, the values for the hit ratios are
added to the previous ones and at the end of the n® iteration (trial), the results for
CAPS and DR are averaged. The DR scheme uses FAR [7] (currently used as the
formal semantic caching replacement policy), when additional cache space is needed.
The results are obtained when the system has reached a stable state. For each sim-
ulation trial a number of warm-up queries are issued, so that the warm-up effect on
the client cache is eliminated before collecting the performance metrics. In a mobile
environment, prefetching is considered when a cache miss occurs. Figure 4.4 depicts
an overall data caching system model used for this simulation. Since it is well-known
that prefetching will benefit from a large cache size a small cache size scale from 1%
to 10% is used. However, steadily falling costs of storage lead to caches of larger sizes
[48], so additional experiments are included using larger cache size levels i.e., from
10% to 50%. In the next sub-sections, the performance of the examined schemes is
examined focusing on the characteristics that could impact the prefetching decisions,
such as the cache size, the simulation time, the query delay, the data item types, the
affinity factor, the cells numbers and the movement speed.

Finally it is noted that the presented prefetching strategy fails for uncorrelated
query patterns as expected. In such extreme cases prefetching has negative effect on
the overall system performance. As it is noted in the cache prefetching components
(Section 4), this paper focuses on the query and movement patterns. Furthermore,

the third factor, i.e., the user profile, can be included (in future work) as a means to

88

mitigate this issue by providing a control facility for purpose movement (i.e., weekly,

monthly or daily schedules of operation).

Figure 4.6: Effect of cache size for RW and DIR movements.

89

4.4.1 Impact of Cache Size

In this set of experiments the cache hit ratio is measured under five cache size settings:
2% , 4% , 6% , 8% and 10% of the database size. The mobility model used is the RW.
The duration of the experiments is 5000 movements per trial. As expected, the cache
hit ratio increases with increasing cache size for all schemes, as more important data
items having high access probability (cache benefit) are stored in the cache. CAPS
demonstrates (Figure 4.5) an even greater performance advantage, approximately 0%
to 20% compared to the standard direction policy (DR). Regarding the underlying
replacement policy used by the cache, LRU is included here as a baseline scheme. The
results for this scheme are compatible with the ones other researchers have demon-
strated from 5% to 15%. The performance advantage of CAPS is a result of CAPS
being able to adapt itself to the data items distribution in the neighboring cells, due
mainly to its data item scope distribution factor.

Figure 4.6 demonstrates that LRU outperforms DR and CAPS under the direc-
tional mobility model (DIR). This happens because under DIR, a data item no longer
accessed can be detected and removed from the cache more quickly than by LRU.
For DIR, (using FAR for replacement), the data item depends on its distance from
the current location of the user and movement direction. This result is exactly the
opposite for the RW model, where LRU might erroneously evict the items that are
to be requested by the near future queries. Both CAPS and DR are independent of
the recent access history, and therefore perform much better in this case.

In summary, CAPS has a more stable performance than the other two schemes
because it uses a larger scope (i.e. rings of cells) rather than continuous tangent
velocity calculations, which are proven to be problematic for active mobile users.

Additionally Figure 4.6 demonstrates that the cache-hit-ratio for the RW model is

90

larger than for the DIR model in all cache schemes. This is expected as RW exhibits

better query locality than DIR; so there is a significant caching benefit in this scenario.

Figure 4.7: Effect of query pattern (Affinity factor) for DR and CAPS.

4.4.2 Impact of Affinity Factor

In this set of experiments, the effect of the query pattern is simulated by changing
the affinity factor. The affinity factor (i.e., from f = Low, to f = Medium and
to f = High) determines how close the prefetching query matches the two criteria
(¢1, &) defined in section 4.2.1. While wandering, a mobile user may have an affinity
(preference) towards a certain item type (continuous type of query). It is possible
that the user could get sidetracked every now and then - those would be the times
when they query for something else. Figure 4.7 demonstrates that the higher the
affinity value the better the performance results. This is due to the fact there is a
much better future query pattern prediction and, therefore, the cache management

strategy does a much better job in evaluating the data items cache value. The results

91

of this experiment demonstrate that CAPS can reach very high cache hit ratios as
the cache size increases. This characteristic suggests the possible capabilities of the
presented strategy in a larger design/application space, where more MTs can be used
to examine if they interface with one another or help each other in a peer-to-peer
cooperative computing architecture, i.e., if there is no data access via a BS or a MSS

ask your peer.

Figure 4.8: Impact of data item types - Comparison chart.

4.4.3 Impact of Data Item Types

In this set of experiments, the scalability of the presented cache management strategy
is evaluated by varying the data item types from one to five and by comparing them to
DR. Figures 4.8 and 4.9 show the performance results when the number of data item
types is changed from “1” to “5”. The performance of CAPS shows on average a 10%
to 20% better performance compared to DR, depending on the number of different

types of data items used in the database, however, it decreases significantly as the

92

Figure 4.9: Impact of data item types.

number of data items increases. It is interesting to notice that DR is hardly affected
by the number of data item types. This happens because CAPS explores its future
location capabilities in a 360° global scope, while DR uses an implied future prediction
mechanism (tangent velocity calculations) only to the cells in the exact opposite
direction of the movement. This scheme has limited success and does not take into
account likely sharp turns (really random movements) of the MT. In addition, DR
demonstrates a significantly higher overhead of continuous velocity calculations every
At. Nevertheless, CAPS requires an insignificant overhead to identify the mobile
user’s neighboring cells and to estimate the replacement value of the cached segments.
The conclusion drawn from these results is that CAPS is more appropriate for a LBS
system where the database is partitioned to different volumes per data item types for

higher performance.

93

Figure 4.11: Impact of query delay on DR.

4.4.4 Impact of Query Delay

The query delay is the time interval between two consecutive client queries. In this
set of experiments the impact of the query delay on the cache hit ratio is evaluated

under the two contending prefetching schemes. A query delay “1”, means that the

94

query takes place with every random movement, a query delay “2”, means that the
query takes place with every other random movement, etc. As illustrated, when the
query delay is increased from “1” to “5”, the standard DR scheme demonstrates an
approximate 18.5% cache hit ratio decrease. This is expected because, for a longer
query interval the client would make more movements between two successive queries;
thus the client has a lower probability of residing in one of the valid scopes of the
previously queried data items when a new query is issued. However, interestingly
enough the presented strategy responds differently by displaying almost no change in

the cache hit ratio (only a 2% decrease) as the query delay increases from “1” to “5”.

Figure 4.12: Impact of query delay-Average results for both CAPS and DR.

DR blindly prefetches information content based on the user’s direction that needs
to keep evaluating every At, hence it cannot prefetch far enough. However, CAPS can
do more selective prefetching which allows it to prefetch at the longest distance. To
further validate these results the experiment has been run for the regular database
size (CAPS-1, DR-1) and then for a double database size (CAPS-2, DR-2) with

approximately the same results (Figure 4.12). This experiment allowed us to quantify

95

the significant advantage of CAPS in a real life random query delay scenario over the

standard DR scheme.

Figure 4.13: Changing the moving speed for CAPS and DR.

Figure 4.14: Average speed performance comparisons for CAPS, DR and LRU.

96

4.4.5 Impact of Movement Speed

The movement velocity is simulated using a maxspeed defined by the total number
of movement for the duration of the simulation, i.e. maxspeed=5000 time steps,
approximately 900 seconds. The cache hit ratio results are plotted against a scale
from 10 — 100% of the maxspeed. Figure 4.13 shows the cache average response time
against the cache sizes 10%, 30% and 50% of the database size for CAPS and DIR.
Figure 4.14 shows the cache average response time against a number of speed values
(i-e., 25%, 50% and 75% of the maxspeed) for all three competing policies DR, CAPS
and LRU. As it is expected as the speed of movement increases both DR and LRU
experience a substantial performance reduction, which of course increases as the cache
size increases. CAPS demonstrates a much less dramatic performance reduction for
higher speeds which is a significant advantage over the other policies, whereas DR
demonstrates a better performance at lower speeds. As it was noted before, DR does

not perform well in a fast moving environment.

4.5 Prefetching Strategy Conclusions

In a mobile computing paradigm, caching alone is generally not enough to improve
the performance of mobile systems. Moreover, prefetching has a broader application
range than simply storing already used data in the cache. The presented prefetching
strategy considers both the movement pattern and the query pattern. Noticing that
the query has valid answers only within a set of cells predefined for each data item
(item valid scope), an efficient future cell prediction filtering mechanism was presented

based on the valid scope concept. Next, the prediction level is improved into the most

97

likely future query pattern based on the query affinity, while the cache content with
the highest benefit is preserved.

Both the performance and simulation models are based on general “context” and
“user behavior” models. From the above performance results the conclusion drawn is
that for a context-aware information service, prefetching is highly beneficial for both
latency and traffic reduction. However, in some cases prefetching is only beneficial
for latency reduction because it causes a cost (bandwidth cost) increase with respect
to no prefetching. The presented context-aware future location prediction approach
was used to mitigate this issue based on the data items valid scope and query content

control.

98

Chapter 5

THE EXPERIMENTAL ENVIRONMENT

Despite the recent surge in research activities in the mobile and wireless infrastruc-
ture software simulation remains the primary approach to evaluate the data caching
performance, as it is fairly easy to implement and manipulate. Data caching in a real
world mobile user system is too complex to allow for an analytical evaluation through
a realistic mobility model. This chapter presents the design of a random walk simula-
tor that captures the movement of mobile users in Personal Communications Services
(PCS) networks. A novel mathematical model is used and the validity of the data
fetched from the server to identify a reduced subset of neighboring cells used to simu-
late the data caching computing paradigm for mobile computing. We demonstrate the
capabilities of the simulator by simulating three key cache management replacement
policies and measure the cache hit ratio performance.

A wireless infrastructure based network is simulated, where the simulated area in
which a mobile user’s movement takes places, is described using a NxN rectangular
area of cells, represented by fixed size hexagons (other shapes may also be used). The
same cell array was adopted in previous works [25], [26] and [36]. To set the simulation
environment, two approaches were considered; to use the network simulator (ns-
2)[49] and to develop a custom simulation environment. After analyzing the ns-2

environment, it was found that to exploit ns-2 in this dissertation, an enormous

99

amount of changes should be applied to its internal classes. Therefore it was decided
to implement a simulation environment using C4++-. The presented simulation method
includes a heuristic mathematical model which provides a number of supplementary

functions:

e Identifies the neighboring cells based on the user’s current wireless cell.
e Efficiently measures the distance between any two cells.

e Uses the valid scope distribution to reduce the number of future locations.

Cells are identified using both an absolute number, which is the cell number, and a
reference number. The expressions for cell numbers and distance d are easily derived
from the presented grid geometry and are shown in Appendix A. The distance is
recorded in terms of the number of cells travelled by a mobile user at each trial. The
simulation is carried out for the RW and DIR mobility models. The combination of
these two models can be used to simulate realistic models such as daily, weekly and
monthly movement patterns in combination with user profiling. Under the RW model
the MT selects a random cell as its destination and follows a random path to reach
it. At each cell it pauses for a random period of time and may also select a different
speed. The next step is always selected randomly. DIR restricts the selection of the
next destination so that the moving direction is roughly reserved. This characteristic
if combined with the mobile user’s profile obviously is a better model for movements

purpose.

100

5.1 The Client Cache Model

Besides the random walk process described in the previous section, the mobile client is
modelled with three independent processes: cache manager, query process and query
generator. The query process continuously generates location-dependent queries for
a number of data items types (up to ten) selected randomly. A query delay is imple-
mented between consecutive queries. The queries used for the simulation experiments
place simple equality conditions on the underlying data based on the user’s current
cell. The client is assumed to have a cache of fixed size, which is a percentage of the
database size. In order to be fair to different caching schemes, the cache contains
both the space needed for storing item parameters (e.g., the scope information for
FLA) and the space available for storing data. To answer a query, the client first
checks its local cache. If the data value for the requested item with respect to the
current location is available, the query is satisfied locally. Otherwise, additional data
is fetched from the server.

The Query Generator generates queries according to the scope distribution used by
the different experiments. It also changes the query delay patterns. Several elements
in the simulation need to be generated randomly with each request. To simulate the
affinity towards a selected query properly, the Matsumoto and Nishimura’s random
number generator ‘Mersenne Twister’ [46] is used, which generates numbers in a much
larger range.

The affinity effect is created by the query generator using a calculated query pool
(Algorithm 5). The query pool defines how large the random number needs to be. It
is simply the itemTypeCount raised to the power of the queryAffinity value. Raising

each item type number to the power of the queryAffinity value would end up with

101

extremely large range between values for each of the itemTypeCount values, thus
creating larger and larger pools of numbers that will result in selecting a particular
queryType. Next, a random number is selected in the range 1 to queryPool inclusively.
The random number is raised to the power of 1 over the queryAffinity value. This
brings us back close to the original queryltem type. Next the result needs to be
normalized so that it is exactly one of our queryltem values. This is achieved by
taking the next highest integer, i.e., 9.2 becomes 10, 4.8 becomes 5, 6 becomes 6,
etc... That value needs to be subtracted from the itemTypeCount so that the affinity
is reversed. Otherwise, an affinity towards the higher values will be Achieved. An
affinity towards the lower number is preferred. The movement process is controlled
by a number of modules i.e., Algorithm 6 which uses a random process to select the
next direction (cell). Other modules define the valid cells for each random walk.
The presented replacement algorithm implies some data item type differentiation.
A number of semantic caches are simulated by the cache management process instead
of having one single cache. This process removes and adds segments based on the
underlined replacement policy (LRU, FAR and FLA). Algorithm 4 shows the function
for creating five (10-50%) cache objects for each replacement schemes. Each object
represents a semantic cache of size equal to the 10 — 50% of the database size. Al-
gorithm 6 provides the pseudo-code for the function which returns the list of cell id’s

of (only) those cells used by the random walk.

102

Algorithm 4 Cache objects for replacement schemes

/* Create an array of caches 5 of each type policy scheme

Cache sizes vary from 10% to 50% of total DB size. */

1: forint i = 0;i < 5; i++ do

2. int cacheSize = (int)(((float)(i+1)/10) * dbSize);
3: cacheArray[i] = new LRUCache(cacheSize);

4: cacheArray[i+5] = new FARCache(cacheSize);

5 cacheArray(i+10] = new FLACache(cacheSize);
6: cacheArray[i+15] = new PAIDCache(cacheSize);
7: end for

8: End

Algorithm 5 Query generator -Affinity effect

1: queryPool = (int)pow(itemTypeCount, queryAffinity);

2: int rqt = randGen — IRandom(1, queryPool);

3: float aqt = powf((float)rqt, (1/(float)queryAffinity));

4: int qt = (itemTypeCount - ((int)ceil(aqt)));

5.2 Cache Management Simulation Examples

In this section, the simulation modules are shown for the industry standard replace-

ment policy LRU, the semantic caching policy FAR [7] and FLA policy [42].

5.2.1 The Physical Cache Organization

The cache is arranged to hold the most recently accessed segments of main memory.

A segment of memory is referred to as a line which contains a consecutive sequence

of bytes in the main memory. Typically, line lengths of 32,64 or 128 bytes are used.

103

Algorithm 6 simWorld::step() function

/* Giving a random direction (n =0,1,2,3,4,5)

corresponding to the directional vector

(N,NE,SE,S,SW, NW) the function will produce

the next cell_id number. */

1: INPUT:(direction)

2: OUTPUT:current_cell

3: bool isValidStep = false;

4: while ! isValidStep do

5:

6:

10:

11:

direction = stepValue(rand() % 6);

if validStep(currentCell + direction) then
previousCell = currentCell;
currentCell += direction;
isValidStep = true;

end if

return currentCell;

12: end while

13: End

For example, Table 5.1 shows the 16 megabytes of main memory partitioned into

lines that are 64 bytes long.

megabytes) / (64 bytes per line) = 262144 lines. A cache that has 512 lines with 64
bytes per line holds 32K bytes. As memory requests are presented to the cache, cache

hardware compares the line address of the request with the line address stored in the

In 16 megabytes of real memory there are 262144 lines of 64 bytes, that is, (16

104

Algorithm 7 World DB dynamic population module

1: void FLAWorld::populateWorld()

2:{

3: int cellNumber, itemType;

4: for int i = 0; i | _dbSize; i++ do

5 {

6: while !validStep(cellNumber (rand() % 225) + 1)); do
7: itemType = rand() % -itemTypeCount;

8: cells[cellNumber] — AddItem(i, itemType);

9: scopefitemType]++;

10: end while

11: end for
12: End
Table 5.1: Memory and Cache Line Addresses
So bytes 0 through 63 are in line number 0
51 bytes 64 through 127 are in line number 1
S bytes 128 through 191 are in line number 2
Sog21a1 | bytes 16777023 through 16777087 are in line number 262141
Soga142 | bytes 16777088 through 16777151 are in line number 262142
Soe2143 | bytes 16777152 through 16777215 are in line number 262143

105

Algorithm 8 FAR - Determine the direction priority module

1:

2:

3:

10:

11:

12:

13:

int FARCache::directionPriority
(int cell, int prevCell, int target) {
int q1 = quadrant(cell, prevCell);

int g2 = quadrant(cell, target);

: if g1 == ¢2 then

return 2;

if abs(ql — g2) == 1 then
return 1;

end if

return 0;

end if

}
End

cache directory. If the line address is found in the cache directory, a cache hit occurs.

If the address is not found, a miss occurs, and the request must be satisfied from the

main memory.

5.2.2 LRU Baseline Policy Simulation

The LRU replacement algorithm that is commonly used for cache designs is presented

as the baseline policy. Every time a cache miss occurs, the replacement algorithm is

invoked, and a line is discarded from the cache. The ultimate goal of any replacement

algorithm is to minimize the total number of misses. The strategy used by LRU is

to keep those lines that were most recently referenced and to discard the line that

was referenced the furthest in the past. To do this, each directory entry has an

106

associated age tag that identifies the chronological order of its last reference. The
LRU algorithm uses the age tags to identify the line that was referenced the furthest
time in the past. Once identified, this line is then discarded. Due to hardware
constraints, LRU is usually restricted to discarding a line that was just referenced.
Thus the age tags represent a chronological ordering relative to the lines within a
conformity class. When a miss occurs, the line with the oldest age tag is discarded.
A push-down stack is used as an abstract representation to model the replacement
decisions made by an LRU algorithm (Algorithm 9). The stack represents one line in
a cache and the stack depth corresponds to the set associativity used by the cache.
Let S;, represent a stack of elements at time ¢. Let the elements of S be given
by Si(1), Si(2),, Si(n). Let the stack S be ordered according to an age-tag that
represents the time from its last reference. At the top of the stack, S;(1), is the
most-recently-used (MRU) line, and at the bottom of the stack, Si(n), is the least-
recently-used line. Next, assume line A is a stack miss at time ¢ + 1. Then line A is
put on the top of the stack. All lines which were formerly in the stack are pushed

down one position. The last line in the stack is discarded.
SH—I(]-) — A

Spa(i+1) = (i) i=1,2,..n—1
Sy(n) s discarded

New requested elements(objects) are inserted at the head of the list. On a hit the
object is removed from its current position and inserted at the head. Replacement

takes place at the end of the list. Searching can be supported by hashing techniques.

107

Algorithm 9 LRU Replacement Algorithm

[

: char* LRUCache::getCacheType()

[Sv]

: { return “LRU 0” ; }

3: Cache::CacheElement* LRUCache::

4: replaceElement(FLAItem *item, int cell, int qty)
5 }

6: CacheElement *ce;

7: ce = popFromTail();

8: pushToHead (item, cell, qty);

9: return ce;

10: }

11: End

Cell_2 T,5, Cell 17,8,
i B ==

[4]CeloTeS,

:!:‘@/'Cell_ﬁ Te.S; (current location)
A

w]
Cell 5 T8,

-
Cell_3 Tq,S, Cell_4 T,S,

Figure 5.1: A query random walk for the FAR policy.

108

5.2.3 The FAR Replacement Policy

Ren and Dunham [7] developed a mobility model to represent the moving behavior of
mobile users and formally defined location dependent queries. Based on their mobility
model, they developed an LDD semantic cache replacement policy they name furthest
away replacement (FAR). FAR chooses for replacement those segments which are not
in the moving direction and are furthest from the user (see Figure 5.1). A future
location is anticipated based on the current user’s direction and speed. FAR presented

cache replacement policy implies future location prediction based on tangent velocity.

109

Chapter 6

CONCLUSIONS

This dissertation makes two important contributions towards designing effective cache
management architecture at the mobile client of the wireless infrastructure. The de-
signs and formulations used can reduce both latency and network costs in mobile
environments. The results obtained can form a solid foundation for future develop-
ment work. This chapter summarizes the results of this research and gives several

directions for future research on data caching in the mobile computing paradigm.

6.1 Contributions of this dissertation

The deployment of wireless communications coupled with the popularity of portable
devices has led to significant research in the area of mobile data caching. Prior
research has focused on the development of solutions that allow applications to run
in wireless environment using proxy based techniques. Most of these approaches
are semantic based and do not provide adequate support representing the context
of the user. Even though the context may be treated implicitly it is crucial to data
management.

This dissertation makes two important contributions towards designing effective

cache management architecture at the mobile client of the wireless infrastructure. The

110

designs and formulations used can reduce both latency and network costs in mobile
environments. The results obtained can form a solid foundation for future develop-
ment work. This chapter summarizes the results of this research and gives several

directions for future research on data caching in the mobile computing paradigm.

6.2 Impact of the Results to Mobile Computing

Classical cache management strategies (i.e., LRU, MRU, FAR) are not suitable for
mobile environments due to the high mobility of mobile clients. On the other hand,
other presented techniques exhibit a considerable amount of complication and pro-
cessing overhead. The presented mobility model is simple which makes the prediction
algorithm quite efficient by avoiding complex calculations. It considers both the future
prediction and the valid scope concept collaboration to efficiently implement cache
replacement and prefetching due to the location changes. The presented strategies’
results demonstrated the benefit of using an efficient symbolic model based on cell
granularity rather than the (z,y) geometrical model used by other research teams.
The use of prefetching was analyzed in a combined approach with the cache re-
placement scheme. An idealized motion model was considered. However, the con-
clusion was drawn that for a context-aware information service, prefetching is highly
beneficial for both latency and traffic reduction only when the amount of prefetched
information grows linearly with the “radius” of the area covered by such information.
A cost reduction approach was used to examine the effectiveness of this technique. It
was determined that in some cases, prefetching is only beneficial for latency reduction,

but causes a cost increase with respect to no prefetching; this issue was mitigated by

111

the use of a reduced set of future cells derived by examining the future locations of

interest to the query. In this dissertation the following contributions have been made:

e A Context-Aware Prefetching Strategy (CAPS), which first uses the validity of
the data (valid scope distribution) based on their location to derive a set of
most likely future cells called the “prime” list of cells. Next, in order to identify
data items with high benefit as far as the cache content is concerned the user’s
query context is exploited to limit the amount of prefetched information within

the predicted set of future cells (the prefetching zone).

e A Future Location-Aware (FLA) cache replacement policy, which uses future
location-prediction and the validity of the data based on location. When a
LDD query is submitted for execution, the location where the mobile client is
currently visiting is directly related to the data to be retrieved. To select the
cache entries for removal, a dynamically formed set of future cells called the
“primary” list of cells is used. Cache entries associated with cells less likely
to be visited in the future are removed first. For better efficiency, the overall
replacement granularity is achieved dynamically in a zooming mode along three

levels: remote ring users, closest neighboring cells and data items.

o A direct result of the proposed cache management strategies is the formation
and maintenance of the contert-aware cache of data items with a high cache
benefit (value) which are included at a low cost. Data items with maximum
benefit are prefetched while cache data entries with minimum benefit (highest
replacement score) are evicted. The context-aware cache is then updated if
the mobile user subsequently strays out of the predefined prime list of cells.

Alternatively a time field may also be used for the same purpose.

112

e A random walk simulator is designed and implemented, that uses a novel math-
ematical model to provide a number of supplementary functions such as neigh-

boring cells identifications and calculate the distance among cells.

e An intelligent algorithm was presented for the query processing at the client.
The presented algorithm significantly improves this process by discriminating
the cached data items based on their future location binding information, based

on cell granularity.

The presented cache management strategies improve the data caching process in
mobile computing, using future location prediction. The overall outcome of these
techniques is the strengthening of the query’s prefetching capabilities and therefore

the local processing of a larger number of location dependent future queries.

6.3 Future Work

Although the presented work is extensive and forms a solid basis for incorporating
new techniques into the data caching computing paradigm, much more is needed in
this area of research. The following are interesting and challenging areas for future

research:

1. Network composition: Cellular networks are not cost effective if they become
fully distributed. Placing caches within cells may not always be a feasible
solution to efficient data replication, since the cost of wireless bandwidth used
for prefetching could dominate over the benefits of potentially better latency
performance. Currently, caches are centralized to avoid huge costs in data

replication. Other network types need to be investigated where the scenario

113

would be more credible. In addition, the cost in moving cached data around
the network to place it closer to the mobile terminal would be huge compared to
the penalty of accessing the data at a centralized node (as is done today) over
multiple hops in the core network. In addition, the penalties involved in terms
of data movement in a cellular network to maintain such a cache structure must

be considered.

. Mobility models: 1t is clear that the benefits and cost of the presented techniques
are highly dependent on the ability of the cache management processes (i.e.,
both replacement and prefetching) to predict the mobility behavior of users.
It is for this reason that a user’s mobility, i.e., activity-based modeling, will

require further detailed study.

The movement of a mobile client could be modelled by a hybrid auto-switch
mechanism controlled by the user’s profile. Furthermore, the third factor, i.e.,
the user profile, can be included (in future work) as a means to mitigate this
issue by providing a control facility for purpose movement (i.e., weekly, monthly
or daily schedules of operation). The incorporation of the user’s profile as a third
factor for the cache management processes could provide a control facility for
purpose movement (i.e., weekly, monthly or daily schedules of operation) and
random movement. The directional movement model was shown in chapters
3 and 4 to favor the traditional LRU cache management method due to its
simplicity and the fact that past items are clearly identifiable and certain not
to be needed in the future. Other times the user’s profile would automatically
switch to the random movement model where the presented strategies would

apply. As it was shown for the random movement model LRU might erroneously

114

evict the items that are to be requested by the near future queries. However,
both CAPS and FLA are independent of the recent access history, and therefore

perform much better in this case.

. Query pattern: Regarding the future direction of this research, a more rigorous
query pattern prediction incorporating the user profile needs to be considered.
The models of user query pattern are very critical to the success of replacement
and prefetching since they have a direct relationship with the query prediction.
As a first approach the “affinity factor” was used. However, more rigorous work

is needed with the modeling of querying behavior and prediction.

. Cost of wireless bandwidth consumption: The goal of the presented prefetching
strategy is to pro-actively load information from a remote server (normally far
from the current user’s location) to neighbor cells (prefetching zone) so that the
mobile client can access this information more quickly when needed. In most
cases, the remote server and the cells (i.e. base stations) are connected through
wireline connection. The wireless link is used only for the last hop between
the mobile client and base station. However, the prefetching happens between
the remote server and base stations i.e. through wireline links. So the cost
here is the wireline bandwidth consumption. This is an important point since
an increase of wireline bandwidth consumption can be tolerated (especially
if high-speed links are available) in order to improve query performance. A
simplistic cost/benefit analysis was given and a more detailed cost model needs

to be presented in the future work.

. Cache management processes collaboration: The previous data caching research

treats cache replacement and cache coherence as separate topics. The presented

115

data caching overall strategy has taken a modest first step towards the collab-
oration of these two cache management functions by incorporating the same

factors into both cache management processes.

As it was noted in the introduction by integrating data caching replacement
and prefetching, these two techniques can complement each other since data
caching technique exploits the temporal locality whereas prefetching technique
utilizes the spatial locality of the mobile objects. However, without circumspect
design the integration of these two techniques might cause significant perfor-
mance degradation to each other. For instance, to provide the cache with rich
information, a remote server may deliberately send all possible prefetching hints
with various levels of confidences to the cache or intermediate MSS. Without
any control, a MSS will prefetch every implied object into its cache, despite that
the confidences of some prefetching rules may be low. In this case, a significant
portion of the cache content will be replaced because a MSS may concurrently
serve a large amount of client requests and each of these requests may trigger
certain prefetching rules. As a result, the state of the cache content will be-
come unstable and the cache hit ratio will drop sharply. On the contrary, if
the prefetching control is over strict, a MSS will tend to discard some benefi-
cial hints provided by the remote server, thus whittling down the advantage of
prefetching.

In view of these obeservation, the motivation for future study is to design an
innovative cache replacement algorithm, which not only considers the caching

effect in the mobile environment but also evaluates the prefetching rules pro-

vided by various prefetching schemes.

116

LIST OF REFERENCES

[1] S. Acharya, B.R. Badrinath, T. Imielinski, and J.C. Navas, “A WWW-Based
Location-Dependent Infromation Service for Mobile Clients,” In the 4th Int’l
WWW Conference, January 1994.

[2] C. Tait, H. Lei, S. Acharya and H. Chang, “Intelligent File Hoarding for Mobile
Computers,” In Proceedings of Mobile Computing and Networking Int’l Confer-
ence, Berkely, CA, pp. 119-125, 1995.

[3] D. Barbara and T. Imielinski, “Sleepers and Workaholics: Caching Strategies for
Mobile Environmnets,” In Proceedings ACM SIGMOD Conference Management
of Data, pp. 1-12, May 1994.

[4] G. Kuenning, “Design of the SEER Predictive Caching Scheme,” In Workshop
on Mobile Computing Systems and Applications, Santa Cruz, CA., US. 1994.

[5] S. Dar, M.J. Franklin, B.T. Jonsson, D. Srivastava, and M. Tan, “Semantic Data
Caching and Replacement,” In 22nd Int’l Conf. Very Large Data Base (VLDB
96), Morgan Kaufmann, San Fransisco, pp. 330-341, 1996.

[6] M.H. Duhham, V. Kumar, ”Location Dependent Data and its management in
Mobile Computing,” In 9th Int’'l Workshop on Database and Ezpert Systems
Applications, DEXA 98, pp. 414-419, Vienna, Austria, August 1998.

[7] Q.Ren, M.H. Dunham, “Using Semantic Caching to Manage Location Dependent
Data in Mobile Computing,” In 6th Annual Int’l Conference on Mobile Computing
and Networking (In Proceedings of the MobiCom 2000, New York), ACM Press,
pp. 210-221, August 6-11, 2000.

[8] Q. Ren, M.H. Dunham, V. Kumar, “Semantic Caching and Query Processing,” In
IEEE Transaction Knowledge and Data Engineering, vol. 15, no. 1, pp. 192-210,
2003.

9] Q.L. Hu , D.L. Lee, and W-C. Lee, “Data Delivery techniques in Asymettric
Communication Environments,” In Proceedings of MobiComm’99, August 1999.

[10] L.D. Fife and L. Gruenwald, “Research Issues for Data Communications in
Mobile Ad-Hoc Network database Systems,” SIGMOD Record, 32(2), June 2003

[11] V.N. Persone, V.Grassi, A. Morlupi, “Modeling and Evaluation of Prefetch-
ing Policies for Context-Aware Information Services,” In Proceedings of the 4th
Conference on Mobile Computing and Networking, pp. 55-65 1998.

[12] B. Zheng and D.L. Lee, “Semantic Caching in Location-Dependent Query Pro-
cessing,” In Proceedings of the 7th Int’l. symposium on Spatal and Temporal
Databases (SSTD 01), pp. 97-116, July 2001.

117

[13] B. Zheng, and D.L. Lee, “Cache Invalidation and Replacement Strategies for
Location Dependent Data in Mobile Environments,” In IEEE Transactions on
Computers, vol. 51, no. 10, pp. 1141-1153, October 2002.

[14] B. Y. L. Chan, A. Si, and H. V. Leong, “Cache Management for Mobile
Databases: Design and Evaluation,” In Proceedings of the 14th Intl. Conference
on Data Engineering, pp. 54-63, February 1998.

[15] S. Acharya, “Broadcast Disks: Dissemination-Based Data Management for
Asymmetric Communication Environments,” PhD dissertation, Brown Univ.,
May 1998.

[16] L. Tassiulas and C.J. Su, “Optimal Memory Management Strategies for a Broad-
cast Data Delivery System,” IEEE J. Selected Areas in Communications, vol. 15,
no. 7 pp. 1226-1238, September 1997.

[17] P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, “Modeling and querying
moving objects,” In Proceedings of the ICDE, Bermingham, U.K., pp.422-432,
April 1997.

[18] K.C.K. Lee, H.V. Leong and A. Si, “Semantic Query Caching in a mobile en-
vironment,” Mobile computing and Communications Reuview, vol. 3, no. 2, pp.
28-36, April 1999.

[19] D.L. Lee, W.C. Lee, J.Xu, and B.Zheng. “Data Management in Location-
Dependent Information Services,” IFEE Pervasive Computing, vol. 1, no. 3,
July/September 2002.

[20] J. Xu, Q. Hu, D.L. Lee and W.C. Lee, “SAIU:An Efficient Cache Replacement
Policy for Wireless On-Demand Broadcasts,” In Proceedings of the 9th ACM Int’l
Conf. Information and Knowledge Management, pp. 46-53, Nov. 2000.

[21] J. Xu, X. Tang and D.L. Lee, “Performance Analysis of Location-Dependent
Cache invalidation Scheme for mobile Environments,” IEFEE Transactions on
Knouwledge and Data Engineering (TKDE), vol. 15, no. 2, March/April 2003.

[22] J. Xu, J. Liu, B. Li and X. Jia, “Caching and Prefetching for Web Content
Distribution,” IEEE Computing in Science and Engineering Magazine:Special
Issue on Web Engineering, 2004.

[23] H. Hu, J. Xu, W.S. Wong, B. Zheng, D.L. Lee and W.C. Lee, “Proactive Caching
for Spatial Queries in Mobile Environments,” In Proceedings of the 21st Intl.
Conference on Data Engineering (ICDE 2005), 1084-4627 2005.

[24] D.A. Levine, LF. Akyildiz, and M. Naghshineh, “A Resource Estimation and
Call Admission Algorithm for Wireless Multimedia Networks Using the Shadow
Cluster Concept,” In IEEE/ACM Transactions on Networking, vol. 5, No. 1.
February 1997.

118

[25] J.S. M. Ho and I. F. Akyildiz, “Mobile User Location Update and Paging under
Delay Constraints,” ACM-Baltzer Journal of Wireless Networks, vol. 1, no. 4, pp.
413-425, December 1995.

[26] 1. F. Akyildiz, J. S. M. Ho, and Y. B. Lin, ”"Movement-based location update
and selective pagings for PCS networks,” IEEE/ACM Trans. on N etworking, vol.
4, no. 4, pp. 629-638, August 1996.

[27] L. F. Akyildiz and W. Wang, "The Predictive User Mobility Profile Framework
for Wireless Multimedia Networks,” In IEEE/ACM Transactions on Networking,
vol. 12, no. 6, pp. 1021-1035, December 2004.

[28] S. Park, D. Kim and G. Cho, “Improving prediction level of prefetching for
location-aware mobile information service,” In Future Generations Computer Sys-
tems, 20 , pp 197-203, 2004.

[29] J. Cai, K.L. Tan, B.C. Ooi, “On Incremental Cache Coherence Schemes in Mobile
Computing Environments,” In Proceedings of the ICDE, pp. 114-123, 1997.

[30] L. Forlizzi, R. H. Guting, E. Nardelli, and M. Schneider. “A Data Model and
Data Structures for Moving Objects Databases,” Technical Report Informatik
260, FernUniversitat Hagen, 1999.

[31] Z. Mao and C. Douligeris, “Two Location tracking Strategies for PCS Systems,”
In Proceedings of IEEE IC3N’99, Boston, MA, pp. 318-323, October 11-13, 1999.

[32] Z. Mao and C. Douligeris, “Group Registration with Local Anchor for Location
tracking in Mobile Networks,” IEEE Trans. on MObile Computing, vol. 5, no. 3,
May 2006.

[33] M. Satyanarayana, “Challenges in Implementing a Context-Aware System,” In
[EEE Pervasive computing, vol. 01, no. 3, pp.2, July-September, 2002.

[34] A. Datta, K. Dutta, H. Thomas, and D. VanderMeer, “World Wide Wait: A
Study of Internet Scalability and Cache-Based Approaches to Alleviate It,” In
Management Science, Vol. 49, No.10, pp. 1425-1444, October 2003.

[35] A. Aljadhai and T.F. Znati, “Predictive mobility support for QoS, provisioning
in mobile wireless environments,” In IEEE J. Select. Areas Communications, vol.
19, pp. 1915-1931, October 2001.

[36] A. Hac and X. Zhou, “Locating Strategies for Personal Communication Net-
works: A Novel Tracking Strategy,” IEEE JSAC, vol. 15, no. 8, pp. 1425-1436,
October 1997.

[37] M. Taylor, W. Waung, and M. Banan, “Internetwork Mobility: The CDPD
Approach,” N.J. :Prentice Hall, 1997

[38] S. Drakatos, N. Pissinou, K. Makki and C. Douligeris, “Future Location Aware
Semantic Caching In Mobile Computing,” In Proceedings of the World Wide
Congress (WWC) Conference, San Francisco, CA, pp 569-574, May 2004.

119

[39] S. Drakatos, N. Pissinou, K. Makki and C. Douligeris, “A Context-Aware
Prefetching Strategy for Mobile Computing Environments,” In Proceedings of
the ACE International Wireless Communications & Mobile Computing (ACE-
IWCMC 2006) Conference, Vancouver, Canada July 3-6, 2006.

[40] S. Drakatos, N. Pissinou, K. Makki and C. Douligeris, “A Future Location-
Aware Cache Management Mechanism for Mobile Computing Environments,” The
Journal of Wireless Communications and Mobile Computing. (under revision).

[41] S. Drakatos, N. Pissinou, K. Makki and C. Douligeris, “A Contezt-Aware Cache
Structure for Mobile Computing Environments,” Elsevier the Journal of Systems
and Software, November 2006.

[42] S. Drakatos, N. Pissinou, K. Makki and C. Douligeris, “A Future Location-
Prediction Replacement Strategy for Mobile Computing Environments,” In IEEE
Wireless Communications and Networking Conference (IEEE WCNC2006) Las
Vegas, NV USA, vol. 4, pp. 2252-2260, April 2006.

[43] D. Lam, D.C. Cox, and J. Widow, “Teletraffic Modeling for Personal Communi-
cations SErvices,” In IEEE Communications Magazine, vol. 35, no. 2. pp. 79-87,
February 1997.

[44] U. Madhow, M. L. Honig, and K. Steiglitz, “Optimization of Wireless Resources
for Personal Communications Mobility Tracking,” IEEE/ACM Transactions Net-
working, vol. 3, no. 6, pp. 698-707, December 1995.

[45] T. Liu, P. Bahl and L. Chlamtac, “Mobility modeling, location tracking and
trajectory prediction in wireless ATM networks,” In IEEE Select Areas of Com-
munications, vol. 16, pp. 922-936, August 1998.

[46] M. Matsumoto and T. Nishimura, “Mersenne Twister- A Random Number Gen-
erator,” In ACM transactions on Modeling and Computer Simulation, vol. 8, no.
1, pp. 3-30, August 1998.

[47] R.H Giiting, M.H. Béhlen, C.S. Jensen, N.A. Lorentzos, M. Schneider, and M.
Vazirgiannis, “A Foundation for Representing and Querying Moving Objects,”
In ACM Transactions Database Systems (TODS), vol. 25, no. 1, pp. 1-42, March
2000.

[48] S. Podlipnig and L. Bészérmenyi, “A Survey of Web Cache Replacement Strate-
gies,” ACM Compiting Surveys, vol. 35, no. 4, pp. 374-398, December 2003.

[49] The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/, June 2002.

[50] R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger, “Evaluation techniques
for Storage Hierarchies,” IBM Sys. J., vol. 9, no. 2, pp. 78-117, 1970.

[51) P. J. Denning, “Working Sets Past and Present,” IEEE Transactions Software
Engineering, vol. SE-6, no. 1, pp. 64-84, 1980.

120

[52] S. Acharya, R. Alonso, M. Franklin, and S. Zdonick, “Broadcast Disks: Data
Management for Asymmetirc Communications Environments,” In Proceedings
ACM SIGMOD Conference Management of Data, pp. 199-210, May 1995.

[53] P.Cao and S.Irani, “Cost-Aware WWW Proxy Caching Algorithms,” In Pro-
ceedings of USENIX Symposium on Internet technologies and Systems (USITS),
pp. 193-206, Monterey, CA, December 1997.

[54] A. Bhattacharya and S.K. Das, “Lazi-Update and Information-Theoritic Ap-
proach to Track Mobile Users in PCS Networks,” In Proceedings of the
ACM/IEEE Mobile Computing, Aug. 1999.

[55] T. Liu, P. Bahl and L. Chlamtac, “Mobility Modeling,Location Tracking and
Trajectory Prediction in Wireless ATM Networks,” IEEFE J. Select Arteas Com-
munications, vol. 16, pp. 922-936, August 1998.

[56] E. G. Coffman Jr. and P.J. Denning, “Operating Systems Theory,” Prentice
Hall, 1975.

[57] H. M. Taylor and S. Karlin, “An Inroduction to Stochastic Modeling ,” New
York: Academic 1984.

[58] Feiertag, R.J. & E.I. Organick, “The Multics Input/Output System,” In Pro-
ceedings of the Third Symposium on Operating Principles, pp. 35-41, Palo Alto,
CA, USA 1972.

[59] M. Carey, M. J. Franklin, M. Livny, and E. Shekita, “Data Caching Tradeoffs
in Client-Server DBMS Architectures,” In Proceedings of the ACM SIGMOD
Conference, pp. 357-366, May 1991.

[60] C. N. Lo and R. S. Wolff, “Estimated network database transaction volume to
support wireless personal data communications applications,” In Proceedings of
the IEEE intl. Conference Communications, pp. 1257-1263, May 1993.

[61] T. Imielinski and B. Badrinath, “Mobile Wireless Computing: Challenges in
Data management,” Communications of ACM, 37(10):18-28, 1994.

[62] M. Abrams, M. Standridge, C. Abdulla, G. Williams, and C. Fox, “Caching
Proxies: Limitations and Potentials”, Computer Science,” Computer Science
Department, Virginia Tech. 1995.

[63] G. Liu, G. Maguire, “A Predictive Mobility Management Scheme for Supporting
Wireless Mobile Computing,” Mobile Netwroks and Applications, pp.113-121,
1996.

[64] A. M Keller and J. Basu, “A predicate-based semantic scheme for client-server
database architectures,” The VLDB Journal, vol.5 no.2, pp.35-47, April 1996.

[65] P. Scheuermann, J. Shim and R. Vingralek, “WATCHMAN: A data warehouse
intelligent cache manager,” In Proceeding of the 22nd VLDEB Conference., pp
51-62, Mumbai, India September 1996.

121

[66] T.M. Kroeger, D.D.E. Long and J.C. Mogul, “Exploring the Bounds of Web
Latency Reduction from Caching and Prefetching,” In Proceedings of the USENIX
Symposium on Internet Technology and Systems, pp. 13-22, Monterey, California,
December 1997.

[67] A. Tomkins, R. H. Patterson and G. Gibson, “Informed multi-process prefetching
and caching,” In Proceedings of the 1997 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems,, pp 100-114, ACM Press 1997.

[68] Ye, T., H. A. Jacobsen, and R. Katz, “Mobile Awareness in a Wide Area Wireless
Network of Info-Stations,” In Proceedings of the 4th Intl. Conference in Mobile
Computing and Networking (MobiCom 98) , Dallas, TX, USA: 109-120.

[69] R. Ramakrishnan, “Database Management Systems,” WCB McGraw-Hill 1998.

[70] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang, “Moving Objects Databases:
Issues and solutions,” In Proceedings of the 10th Intl. Conference on Scientific
and Sattistical Database Management, pp. 111-122 July 1998.

[71] V. J. Tsotras, C. S. Jensen and R. T. Snodgrass, “An Extensible Notation for
Spatiotemporal Index Queries,” ACM SIGMOD Record, 27(1): 47-53, March
1998.

[72] G. Kolios, D. Gunopoulos, and V. J. Tsotras, “Indexing mobile objects,” In
Proceedings of the PODS, Philadelphia, PA, May 1999.

[73] G.B. Salzberg and V.J Tsotras, “A Comparison of Access methods for Time
Evolving Data,” ACM Computing Surveys Vol 31, No.2 , June 1999.

[74] C. Bettstetter, H. J. Vonel and J. Eberspacher, “GSM Phase 2+ General Packet
Radio Service GPRS: Architecute, Protocols, and Air Interface,” IEEE Commu-
nications Surveys, vol. 2 , no.3, third quarter, 1999.

[75] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy cache design: Algorithmms,
implementation and performance,” IEEE transactions on Knowledge and Data
Engineering, 11(4):549-562 July/August 1999.

[76] C. Aggarwal, J. L. Wolf, and P. S. Yu, “Caching on the World Wide Web,”
IEEE Transactions Knowledge and Data Eng., vol. 11, no. 1, pp. 94107, Jan-
uary/February 1999.

[77] K. Cheverst, N. Vavies, K. Mitchell, and A. Friday, “Experinecs of Developing
and Deploying a Context Aware Tourist Guide: The GUIDE Project,” In Pro-
ceedingss of the 6th Am. ACM/IEEE Int’l. Conference in Mobile Computing and
Networking, (MobiCom 2000), pp 20-31, August 2000.

(78] “Digital Cellular Telecommunicatinos System (Phase 2+); Location Services
(LCS); Location Services Management(GSM 12.71 version 8.0.1 Release 1999).”
ETSI, TS 101 513 V8.0.1 (2000-11), November 2000.

122

[79] U. Kuback, and K. Rothermel, “Exploiting Location Infromation for Infostation-
Based Hoarding,” In Proceedings of the Tth Annual Int’l. Conference in Mobile
Computing and Networking (MobiCom. 01) , Rome, Italy: 15-27.

[80] S. Hadjieftymiades, V. Matthaiou and L. Merakos, “Supporting the WWW in
Wireless Communications Through Mobile Agents,” Mobile Networks and Appli-
cations Kluwer Academic Publishers, Manufacturered in Netherlands, 7, 305-313,
2002.

[81] T. Camp, J. Boleng and V. Davies, “A Survey of Mobility Models for Ad Hoc
Network Research,” Wireless Communications Mobile Computing, vol. 2, no. 5,
pp. 483-502, 2002.

[82] C. Imai, N. H. Morikawa and T. Aoyama, “Prefethcing Architecture for Hot-
Spotted Network,” In Proceedings of the IEEE Conference in Communications
(ICC2001), Helsinki, Finland 2006-2010.

[83] Z. Naor and H. Levy, “Cell identification codes for tracking mobile users,” IEFE
Infocom’99, New York, NY, pp. 28-35, March 1999.

[84] R. Jain, Y.B. Lin, C. Lo, and S.Mohan, “A caching Strategy to Reduce Network
Impacts of PCS,” IEEE Journal on Seloected Areas in Communications, vol. 12,
no. 8, pp. 1434-1444, October 1994.

[85] Q. Han and Nalini Venkatasubramanian, “Information Collection Services for
QoS-Aware Mobile Applications,” department of computer science, university of
California at Irvine,2003.

[86] C. Bettstetter, G. Resta, and P. Santi, “The Node Distribution of the Random
Waypoint Mobility Model for Wireless Ad Hoc Networks,” IEEE Transactions on
Mobile Computing, vol. 2, no. 3, July-September 2003.

[87] N. Adams, R. Gold, B.N. Schilit, M.M. Tsok, and R. Want, “An Infrared Net-
work for Mobile Computers,”, In Proceedings of the USENIX Symposium on
Mobile and Location-Independent Computing, August, 1993.

[88] Jinbao Li, Y.L. Thai, and Jinzhong Li, “Data Caching and Query Processing in
MANETS ,”, Journal of Pervasive Cumpuiting and Communications, vol. 1, no.
3, September 2005.

123

APPENDICES
APPENDIX A. CELLS DISTRIBUTION
The distance is recorded in terms of the number of cells travelled by a mobile user
at each trial. Each cell is simulated by an object structure, which in turn contains
other objects which represent the data items of the database. Using the RW model,
each cell can be identified using both an absolute number, which is the cell number,
and a reference number as explained next.

The Cell number: Using a 15X15=225 grid, cell numbers are assigned for each cell.

For each cell number “C”, the row and column are given by the following formula.

Row(C) = int((C —1)/15) +1 (1)

‘ X %2, X <8
Col(C) = (2)

(X —8)%2+1, Otherwise
where X = C mod 15.

The relative distance number: In addition to the cell number the relative distance
number is inherent to the proposed grid structure for each cell number. Relative
distance numbers are used in the simulation to identify the neighboring cells based
on the mobile user’s current cell.

The distance d between two cells: The expression for distance d is easily derived
from the proposed grid geometry. This expression is used to determine the location
distribution of a mobile user. The distance is recorded in terms of the number of cells
travelled by a mobile user at each trial. Assuming that a cell (z1,11) is d cells away

from another cell (z,,,), d is given by:

124

|z1 — 2], if |y1—y2| =0
d=19 |y — 1l if |lzp—x|=0 (3)
|z — 22| + |1 — 2| — D, otherwise

where D denotes the ring distance between the two cells defined by:
I
D= ~2~mm(lw] — o, [y1 — ya2l)

Ezample: Cell numbers. Using equations 1 and 2 the row and column numbers for
two random cell numbers 109 and 125, are (8,8) and (10,9) respectively. Next using
equation 3, the shortest path between the two cells is given by (|8—10|+[8—9|)—1 = 2
cells. Also notice that the relative distance numbers are 0 and +16 respectively.

The motivation for using the distance factor d is two-fold. First, a mobile client
may seldom move to a cell that is far away from its shadow cluster area. Consequently,
the current and neighboring cells have a much higher prefetching benefit (and a much
less replacement probability). Second, even if a mobile client moves to a distant cell,
it takes quite some time for it to do so. During this period of time, the data may
have already been updated on the data server and, therefore, the prefetching benefit
of a data item value in distant cells is useless. However if information of distance cells

happens to be in memory it will have the highest replacement value.

APPENDIX B. TRANSITION PROBABILITIES EVALUATION
The movement probability, denoted by 7, can be considered as a measure of the
mobile user’s speed. A low price i.e., 02,0.3, indicates slow movement, while a value
of v=0.8 indicates fast movement. Then a;, b; and c;, are the probabilities that, at
the end of each time slot, the MT moves to ring 7 — 1(previous ring), i -+ 1(next ring)

or remains in the same ring i, respectively.

125

A MT moves to a neighboring ring cell with probability 1/6. In Figure 1 for the
MT in a cell marked (*) at ring ¢, where (1 <7 < d), the MT moves to a layer 1 — 1
cell with probability 1/6 (the cell has one bordering line for the (i — 1)** neighbor),
or moves to a ring ¢ neighbor with probability 1/6 + 1/6 = 1/3 (the cell has two
bordering lines with 7 neighbors), and finally moves to a neighboring higher ring i +1
with a probability 1/6 +1/6 + 1/6 = 1/2 (the cell has three bordering lines for ¢ +1

neighbors).

Figure 1: Layers crossing probabilities

Figure 2: State diagram for the hexagonal random walk model.

126

If the MT is a ring cell without the * mark at ring i (see Figure 1), then it moves
to ring (i — 1), 4, or (¢ + 1) with the same probability 1/6 +1/6 = 1/3. The following

three movement scenarios for the MT located at the ring ¢ can take place:

1. The MT moves to ring i — 1 with a probability:

@@ -8)6)-"F 5w

2. The MT moves to a higher layer (i + 1) with probability:

@60 (=555
6i/) \2 6i/\3) 6 3 6i

3. The MT moves to a cell within the same ring (i) with probability 1/3.

At the end of each timeslot, the user moves to an adjacent cell with probability v,
or remains in the same cell with probability 1 —~. a;, b; and ¢;, are the probabilities
that, at the end of each timeslot, the MT moves to ring ¢ — 1, 241 or remains in ring

i, respectively.

127

These probabilities are given below:

0, if i=0
i = 9 (4)

%"é‘lz)% if i>0

v, if 1=0

o
If
—
o
S

;(;l;-t-é;)% if i>0

11—, if i=0
C; = (6)
(L= +37 if i>0
The state diagram derivation of the state transition probabilities given in [26, 24,

11] is shown in Figure 2, where state ¢ means that the user is in a cell belonging to

ring 7, 0 <7 < k.

APPENDIX C. PERFORMANCE STATISTICAL COMPARISON
Statisticians have long used sampling techniques to draw conclusions about a large
population without having to examine the entire population. They want to be able
to state facts about the entire population with a high probability of being correct.
Large savings in cost are possible if only a small subset of the population is needed to
draw conclusions about the total population. In this section, we use the simulator’s
output and apply sampling techniques to construct a confidence interval (region) at a
specified confidence level, to compare the hit ratio of the proposed cache management
strategy (CAPS) with the industry standards semantic cache management policy

FAR.

128

Cache hit ratios comparison: The cache management strategies CAPS and FAR
were simulated for five cache sizes (10, 20, 30 ,40 and 50 % of the database) each.
The sample means for the cache hit ratio are:

Z,; = (20.50,44.92,66.92,87.19,98.00), T, = (20.48,35.13,48.77,62.67, 73.84) for
CAPS and FLA respectively, compared for a time interval defined by the number of
random walks. Suppose that p,, and p,,, are the population (i.e., all the simula-
tion outputs) mean for each policy’s cache hit ratio represented by the continuous
variables z; and z, respectively. The point estimate standard deviations are s;, and
Sz, Tespectively. Let us consider the interval estimate of d = Ty — To. When n is
sufficiently large (i.e., n > 30), we can establish a confidence interval for p4, by con-
sidering the sampling distribution of d to be approximately normally distributed with
mean jiq = fig; — fiz, and standard deviation o4 = sa/+/n. Writing z,/, for the z-value

above which we find an area of a/2 , we can see from Figure 3 that:

2'025:' -1.86 Q Z go5= 196

Figure 3: Random sampling confidence interval

129

Since in our case the sample size is small we need to use the t-distribution. A

(1 — @)100% confidence interval for pg4 is given by:

(d- tu/z,(n—l)%’ d+ ta/z,(m)“j%) (7)

The values of ¢,/3 (n—1) for any confidence interval are given by (t) statistical tables
found in regular statistical textbooks. Substituting the values for d, Sy in Equation 7
we get the following confidence intervals:

CAPS-LRU confidence intervals: We calculate a 90% confidence interval to be
[8.11, 41.390]. Thus, because for 90% Confidence interval the true mean in a range
of (8.11, 41.390) which is entirely above zero, so we can say with 90% confidence that
the FLA policy is better (higher cache hit ratio).

Next, for a 95% confidence interval, we get [3.0199, 46.460]. Thus, for 95%
Confidence interval the true mean in a range of (3.0199, 46.460) which is entirely
above zero, so we can say with 95% confidence that the FLA policy is better (higher
cache hit ratio).

CAPS-FAR confidence intervals: First for a 90% confidence interval, we get
[0.5166, 21.2547 |. Thus, for 90% Confidence interval the true mean in a range
of (0.5166, 21.2547) which is entirely above zero, so we can say with 90% confidence

that the CAPS policy is better than FAR (higher cache hit ratio).

130

VITA

STYLIANOS DRAKATOS

Education

09/2000-Present: Doctoral candidate, Electrical and Computer Engineering,
Florida International University, Miami Florida.
01/1976-12/1990: Master of Science, Electrical Engineering,
Ohio State University, Columbus, Ohio.
01/1974-12/1976: Bachelor of Science, Electrical Engineering,

New York Institute of Technology, New York.

Work Experience

2000-Present: Florida international University, in Miami Florida. Florida Interna-
tional University, College of Business Administration the department of Decision
Sciences and Information Systems, lecturer.

1998-2000: OTE (A large European Telecommunications Organization). Key ac-
counts manager, supported the key accounts management department with the design
and implementation of large telecommunications and IT infrastructure projects.
1996-1999: Price Waterhouse Management Consulting Services in New York City.
Principal Consultant, managed the Advanced Software Engineering Center(ASEC)
in New York.

1994-1996: Bell South. Telecommunications consulting and project management,
participated in the design and implementation of a number of technology integration

projects.

131

Publications

Journals

S. Drakatos, N. Pissinou, K. Makki and C. Douligeris. A Contezt-Aware Cache Struc-
ture for Mobile Computing Environments. In the Journal of Systems and Software
(Elsevier), November 2006.

S. Drakatos, N. Pissinou, K. Makki and C. Douligeris. A Future Location-Aware
Cache Management Mechanism for Mobile Computing Environments. Journal of

Wireless Communications and Mobile Computing. (under revision).

Technical Conferences

S. Drakatos, N. Pissinou, K. Makki and C. Douligeris. Future Location Aware Se-
mantic Caching In Mobile Computing. In Proceedings of the World Wide Congress
(WWC), San Francisco, CA, pp 569-574, May 2004.

S. Drakatos, N. Pissinou, K. Makki and C. Douligeris. A Future Location Aware
Prediction Replacement Strategy for Mobile Environments. In Proceedings of IEEE
Wireless Communications and Networking Conference (IEEE WCNC2006). Las Ve-
gas, NV USA, Vol 4, pp. 2252-2260, April 2006.

S. Drakatos, N. Pissinou, K. Makki and C. Douligeris. A Context-Aware Prefetching
Strategy for Mobile Computing Environments. In Proceedings of the ACE Interna-
tional Wireless Communications & Mobile Computing (ACE-IWCMC 2006) Confer-
ence. Vancouver, Canada July 3-6, 2006. In the ACE digital library (W3-B: Mobile

Computing Symposium).

132

	Florida International University
	FIU Digital Commons
	11-3-2006

	Context-aware data caching for mobile computing environments
	Stylianos Drakatos
	Recommended Citation

	tmp.1501623726.pdf.BFlWE

