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ABSTRACT OF THE THESIS

FABRICATION AND CHARACTERIZATION OF

THREE-DIMENSIONAL MAGNETIC MEDIA

by

David Doria

Florida International University, 2007

Miami, Florida

Professor Sakhrat Khizroev, Major Professor

Conventional longitudinal magnetic recording has scarcely progressed the last

couple of years, leaving the data storage industry frantically searching for alternative

ways to store information and increase memory areal density. The research was directed

towards the development of three-dimensional magnetic memory for recording purposes.

Three-dimensional memory, an alternative to longitudinal recording, would achieve well

over the current areal density of the latter. Another focus of the research was directed

towards development of the magneto-optical Kerr effect (MOKE) magnometer, an

important tool used to measure magnetic behavior through hysteresis curves.

The fabrication of three-dimensional media was prepared with the aid of a

sputtering system and focused ion beam (FIB). Amongst the metals exploited for

fabrication of three-dimensional media were cobalt, palladium, tantalum, and permalloy.

Examination of fabricated magnetic films was investigated with utilization of the

magneto-optical Kerr effect magnometer, atomic force microscope (AFM), magnetic

force microscope (MFM), and x-ray diffractometer.
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1. INTRODUCTION

The storage device industry is continuously facing the challenge to increase the

storage capacity and read and write speeds while simultaneously reducing cost

manufacturing. The trend for smaller, faster computers, high speed, huge databases for

internet applications, more capable home and supercomputers, and the rapid growth of

broadband communications promotes the storage device industry to further downscale the

areal density within memory. Magnetic longitudinal recording, the current conventional

technique for memory, has been the mainstream data storage technology for more than

four decades [1]. The growth rate of areal density has exceeded 100 percent per year in

the past, where the newest advances by leading companies are in the range of beyond 100

Gbit/in2, which corresponds to a 160 x 40 nm2 bit cell) [2]. Nonetheless, there has been a

slow progression in recent years in longitudinal magnetic recording due to the

superparamagnetic limit. The superparamagnetic limit in longitudinal recording no

longer permits the continuous downscaling of bit sizes. The halt of downscaling due to

the superparamagnetic limit is due to the thermal energy becoming comparable to the

magnetostatic energy stored for a grain, causing instability in storing information, where

the push for high accuracy is demanded by the data storage industry. New approaches

are currently being explored to continue the push for higher areal densities past the

current superparamagnetic limit. Therefore, this study becomes significant because it

provides an alternative to conventional longitudinal media which would provide higher

areal density in magnetic memory. This study will also address some issues and provide

schemes in fabrication of three-dimensional magnetic memory.
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2. BACKGROUND THEORY

A dipole is a pair of electric charges or magnetic poles that oppose each other,

separated by some distance. Dipoles can be characterized by their dipole moment, which

is a vector quanti expressed by the product of the charge or magnetic strength of one of

the poles and the distance between the two opposing poles. The direction of the dipole

moment corresponds to the direction from the magnetic south pole pointing towards the

magnetic north pole. The magnetic field generated from a magnetic dipole flows outward

from the north pole and into the south pole. Magnetic dipoles are generated by current

loops or quantum mechanical moments because of the absence of magnetic monopoles in

nature. Figure 1 illustrates the Earth's magnetic field and its magnetic poles, where the

geographical north and south poles are the reversed magnetic south and north poles,

respectively.

Figure 1: Earth's magnetic field and its geographical poles
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2.1 Physics of Magnetism

The electric field and the magnetic field can be described from Lorentz force law.

The Lorentz force law indicates that the direction of the force due to magnetism is

perpendicular to both the velocity of the moving charge and the magnetic field as shown

in Equation 1. The force F in Equation 1 is the vector sum of the electric field and the

cross product of the magnetic field with the velocity of the moving charge.

F E+ qv x C1)

Equation 2 portrays the magnetic force of two opposite poles that attract with a

force that is inversely proportional to the distance between them. The masses of the two

particles are represented by mi and m2 , with the distance r between them. The constant

p is known as the permeability of free space, 4 x 1-7 Hm1, which is the ratio of the

induction divided by an external field in a vacuum.

7 - M1M2 (2)
4n pt r2

When an external magnetic field H is applied to a material, it responds by

generating a magnetic field known the magnetization M. The magnetization of the

material is a measure of the magnetic moment per ut volume. The tot flux of

magnetic field through a unit cross sectional area, considering the external applied

magnetic field and the magnetization of the material itself, is known as magnetic

induction, B. These three parameters are related through Equation 3 in International

System of Units.

B= po(H+M) (3)



The magnetic susceptibility is a measure of how magnetizable a material is in

the presence of external magnetic field, which c be used to express the different

types of magnetism, as seen in Equation 4, described by the magnetization of the material

over the external magnetic field.

X=M/H (4)

The relative permeability of the material p also describes the effect of an external

magnetic field on its magnetisn, as seen in Equation 5, described by the ratio of the

magnetic induction over the external magnetic field.

= B/H (5)

The torque - exerted by the magnetic force is shown in Equation 6. The torque is

perpendicular to the magnetic field and the magnetic moment through the cross product

of the two.

= (6)

The Biot-Savart law completely specifies the magnetic field generated by a

current. The magnetic field can be calculated through the current density j and the radius

of the loop, detailed in Equation 7.

Br j(r) x (r-r') d3r' (7)
BN)= 

-
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2.2 Origin of Magnetism

Magnetic fields are dipolar in nature, having north and south poles, which also

applies to a single electron in an atom. When placed in a magnetic field, a magnetic

dipole tends to align itself in opposed polarity to that field, in an effort to reduce the total

energy stored. Magnetism is generated from two types of motions of the electrons within

atoms. The first type of motion of electrons inside an atom is the motion of the electrons

in an orbit around the nucleus of the atom. The second type of motion of electrons

originates from the spin of the electrons around its own axis. The orbital motion and the

spin motion independently produce an orbital magnetic moment pL and spin magnetic

moment p.s on each electron, respectively, causing them to behave similar to atomic

permanent magnets, illustrated in Figure 2. In most elements the magnetic moments of

the electrons cancel each other because of the Pauli Exclusion Principle, which states that

each electron orbit can be occupied by only two electrons of opposite spin. However, a

few elements, namely the transition metals of iron, cobalt and nickel, have magnetic

moments that do not cancel.

Orbital Magnetic Moment

Spin Magnetic Moment

r

-e
Current

V

Figure 2: Orbital magnetic moment and spin magnetic moment
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Magnetism can be generated by electric current in a loop which produces an orbital

magnetic momentum, expressed in Equation 8. The orbital magnetic moment is given by

the product of the current I and the area of the loop A.

sL = IA (8)

The orbital magnetic moment can also be described for an electron orbiting around

an atom. With an orbital radius r and an angular frequency o, the orbital magnetic

moment of an electron can be expressed, shown in Equation 9, where the charge of an

electron is 1.602 x 10-19 C.

pL =-% jet r2 (9)

The angular momentum for an electron circumnavigating in an orbit describes the

momentum about the axis of rotation. The angular momentum of an electron is

dependant on the angular frequency and the radius, presented in Equation 10, where the

mass of an electron is 9.109 x 10 3 kg.

L = m co r2  (10)

The ratio of the orbital magnetic moment and the angular momentum is known as

the gyromagnetic ratio y. The expression for the gyromagnetic ratio of an electron is

displayed in Equation 11, which is simply the ratio of the charge of an electron and the

mass of an electron.

-lei (11)
2 na

The smallest magnetic momentum quantum is known as the Bohr magnetron p.

The Bohr magnetron is the product of the gyromagnetic ratio of an electron and Plank's



constant h, 6.626 x 10-3 Js, divided by 2t, shown is Equation 12. The ratio of Plank's

constant divided by 2a is commonly represented by the symbol .

-leth (12)
2 nak

The state of electron in an atom can be conveyed by four quantum numbers.

The four quantum nurbers specify the complete and unique quantum state of a single

electron, which are known as the principal quantum number, orbital angular momentum

quantum number, magnetic quantum number, and spin quantum number, denoted as n, 1,

m, and s, respectively, detailed in Table 1.

Number Denoted Allowed Range Explanation
Principal quantum N Positive integer overall energy of orbital and distance
number from the nucleus of an electron
Orbital angular L n -- 1 orbital angular momentum number of
momentum quantum an electron
number
Magnetic quantum M integer from -l to related to the magnetic momentum of
number I an electron
Spin quantum S 2 or -'/2 intrinsic angular momentum of an
number electron

Table 1: Orbital energy diagram

The Schrtdinger wave equation describes energy eigen states that have

corresponding real numbers n, known as the principal quantum number, which define the

discrete energy levels E. The discrete energy levels are described by the first energy

level E1 divided by the square of the principal quantum number. The principal quantum

number represents the relative overall energy of each orbital, where the energy of each

orbital increases as the distance from the nucleus increases. The set of orbitals with the

same n value are referred to as electron shells or energy levels. The principal quantum

numbers are real positive numbers (1, 2, 3, 4 ... ) designated by letters (K, L, M, N ... ).

7



The orbital angular momentum quantum number represents an atomic orbital which

determines its orbital angular momentum. The orbital angular momentum quantum

number can consist of an integer from zero to one less than the principal quantum

number. These quantum numbers (0, 1, 2, 3 ... ) are designated by letters (s, p, d, f ... ,

which represent the orbitals, or subshells, as seen in Figure 3. The orbital angular

momentum L can be described by the orbital angular momentum quantum number as

seen in Equation 13.

L= i[l (1+ 1)] - (13)

6d r- Tyl

A 7s 5f 6 5f
6p 7s
5d -K--

4f6p -5
5p 6s J
5s 4d 5p

4p 5s 4d

4s3d -4p k4s
0) 3

3p 4s

3s
2p
2s 2p

2s

1s

1s

Figure 3: Orbital energy diagram
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The magnetic quantum number describes the uique quantum state of an electron.

The magnetic quantum number denotes the energy levels available contained by an

orbital. The total number of available energy levels contained by an orbit is one plus

double the orbital angular momentum q number. These available energy levels

can range from the negative orbital angular momentum quantum number to the positive

orbital angular momentum quantum number (-1, 1+ 1 ... 0 ... 1 - 1, 1).

The spin angular quantum number quantifies the intrinsic angular momentum of an

electron. The spin angular quantum number of an electron possesses a spin of /2. The

spin angular momentum S can be described by the spin angular quantum number

exemplified in Equation 14.

= [s (s+1)1 (14)

The total angular momentum quantum number j corresponds to the vector sum of

the orbital gular momentum d the spin angular momentum. The total angular

momentum J is shown in Equation 15a and Equation 15b. Filled shells have zero angular

momentum d zero magnetic moment without an external magnetic field.

= [ + 1)-' (1.5a)

JL + (5b)

Electron orbitals are filled in an ordered manner by three rules. The first rule is

Pauli's exclusion principle, which states that no two electrons may occupy the same

space, or have the same quantum numbers. Since spin angular quantum number can be +

%2, two electrons fit into one orbital. Afterwards, the second rule imposes a sequence to

inserting electrons, where orbitals are filled in order of increasing energy. H 's rule

describes the third rule of ordering, which states that electrons are added with parallel,

9



aligned spin until half the orbital is full, maximizing the spin angular momentum. After

the orbital is half full, the electrons are all inserted with opposite spin; pairing up to the

electrons of opposing spin until the orbital are completely filled, resulting in zero spin

angular momentum. Furthermore, the energies of the shells vary according to their

principle quantum number, evident when the 4s shell gives up an electron to the 3d shell,

where these elements consequently have the possibility of larger magnetic moments [3].

The magnetic moment is related to the angular momentum of a quantum state

through the Lande g-factor gj. The Lande g-factor is calculated through the total angular

momentum, orbital gul momentum, d the spin angular momentum as seen in

Equation 16.

-( 1+

2J(J+1)

From the derivations of the different quantum moments and angular moments, the

magnetic moment of an atom m can be derived, which is related to the orbital magnetic

moment of current in a loop and atomic magnetic moment described in the beginning of

the section. The magnetic moment c be calculated through the product of the Lande g-

factor, Bo magnetron, and the total angular momentum, displayed in Equation 17.

= -gj pBJ 17

10



2.3 Types of Magnetism

All materials can be classified into one of the various types of magnetism, which

describe how materials respond to magnetic fields. The five types of groups which

describe the magnetic behavior and susceptibility materials are diamagnetism,

paramagnetism, ferromagnetism, ferrimagnetism, and antiferrimagnetism, shown in

Table 2. These five classifications of magnetism are dependant on the susceptibility and

the magnetic behavior in the presence of external magnetic fields and temperature

Tye of Susceptibility Magnetic Behavior

M
no

Diamagnetism magnetic
moment

H H

randomly
Paramagnetism oriented --- \

magnetic 
4moments

X M
parallel aligned

Ferromagnetism magnetic I
moments t tft t

Tc H t t tft1 H

mixed parallel M

and anti-parallel
Anitferromagnetism aligned

Tn magnetic ___ __

_ moments t _ _ _

anti-parallel t 4 1

Ferrimagnetism magnetic

-~Tn H moments t I t i' H

Table 2: Types of magnetism, susceptibility, and magnetic behavior

11



Diamagnetism is a fundamental property of all materials. The orbital motion of

electrons creates atomic current loops which produce magnetic fields. When external

magnetic field is applied to a material, these current loops do not cooperate and tend to

oppose the applied field, though it is usually very weak, which may be viewed as an

atomic version of Lenz's law [4]. Diamagnetic materials are composed of atoms absent

of any magnetic moments, signifying that all the orbital shells are filled and all electrons

are paired. However, a negative magnetization is produced when the material is exposed

to an external magnetic field, resulting in negative susceptibility, X, which describes the

magnetization of a material in response to a magnetic field. The negative magnetic

susceptibility in diamagnetic materials is the effect of the current produced induced in the

electron orbits by the applied field. Diamagnetic materials also have the characteristic

behavior of having susceptibility independent of temperature.

Paramagnetic materials exhibit a magnetization proportional to the applied

magnetic field. These materials are composed of atoms that introduce a net magnetic

moment due to unpaired electrons in partially filled orbits. In the presence of an external

magnetic field, a partial alignment of the atomic magnetic moments is developed in the

direction of the external field, yielding a net positive magnetization and positive

susceptibility [4]. The competence of the alignment of the moments to the external field

is disordered by temperature, where this temperature dependency is known as Curie's

law. Curie's law states at the magnetization of the material is proportional to the field

divided by the temperature; hence, the susceptibility is inversely proportional to the

temperature through the Curie constant C as shown in Equation 18.

C/T(18)

12



Ferromagnetism is the type of magnetism wich exibits a practical amount of

magnetization and responsible for most of the magnetic behavior encountered in

everyday applications. Ferromagnetic materials exhibit a large exchange energy which

causes adjacent atoms to magnetize in the same direction to minimize the energy. Iron,

cobalt, and nickel are the more common materials that demonstrate the magnetic

behavior of ferromagnetism. Ferromagnetic materials have a parallel alignment of

magnetic moments that result in a large net magnetization, even with the absence of an

external magnetic field. The magnetization of ferromagnetic materials is highly

susceptible to magnetic fields which can saturate at moderate magnetic fields.

Ferromagnetic materials can retain a memory, or rem ence magnetization, of an

external applied magnetic field once it is removed. A sufficient magnetic field in the

opposite direction of its current magnetization must be applied to demagnetize the

material and eventually magnetizes the material towards the direction of the new

magnetic field. The exchange energy in ferromagnetic materials is ultimately overcome

by thermal energy at higher temperatures, where these materials behave similar to

paramagnetic materials. Due to their favorable magnetic properties, ferromagnetic

materials are widely used for transformers, permanent magnets, and data storage.

In ionic compounds, typically oxides, more complex forms of magnetic ordering

occur as a result of the crystal structure of the material. The magnetic ordering of

ferromagnetism occurs when then magnetic structure is composed of two sublattices

separated by oxygen. The oxygen mediates the exchange energy between the two

lattices, which induces a parallel but opposite alignment. The net magnetic moment is

the s of the two opposite moments, where one lattice provides a larger contribution to
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the total magnetism of the material than the other. However, ferrimagnetic materials are

similar to ferromagnetic materials since they both exhibit the same magnetic behaviors of

hysteresis, remanence, and both are affected by temperature. Beyond the Neel

temperature Tn, ferrimagnetic materials behave similar to paramagnetic materials.

tife omagnetic materials are also compounds that form complex magnetic

ordering due to the mediation of oxygen between the sublattices. However,

antiferromagnetic materials have a net magnetic moment of zero because the moments of

the different sublattices are opposite and equal. Beyond the Neel temperature,

antiferromagnetic materials behave similar to paramagnetic materials.
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2.4 Temperature on Magnetic Behavior

Temperature can influence the magnetic characteristics of materials. A raise of

the temperature yields an increase in the magnitude of the thermal vibrations of atoms

[5]. Therefore, the atomic magnetic moments become free to rotate, randomizing the

directions of any moments that may be aligned. The thermal moments counteract the

coupling forces between the adjacent dipole moments causing dipole misalignment, the

outcome effect showing a decrease in saturation magnetization [5]. As the temperature is

increased, the saturation magnetization, M,, diminishes gradually and abruptly reducing

to near zero at the Curie temperature Tc shown in Figure 4. Below the Curie temperature,

exchange interactions are strong relative to the external magnetic field. Beyond the Curie

temperature, the mutual spin coupling forces are completely destroyed, where

ferromagnetic and ferrimagnetic material behave similar to paramagnetic materials.

1.~

0.6 Magnetization ThermalEnergy
Dominant Dominant

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
T/TC

Figure 4: Saturation magnetization as a function of temperature
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2.5 Magnetic Domains and Domain Walls

Ferromagnetic and ferrimagnetic materials, below the Curie temperature, are

composed of small volume regions containing mutual alignment of all magnetic dipoles

moments called domains. Within each domain, the magnetization of that domain is

saturated. Adjacent domains are separated by domain walls, where the direction of the

magnetization gradually shifts from the alignment of one domain to the other. The

magnitude of the magnetic field for the entire solid is the vector sum of the magnetization

of all the domains, where each domain contributes a fraction weighted by its volume.

Magnetic domains in ferromagnetic materials are generated in order to minimize the sum

of energy terms, magnetostatic energy, exchange energy, anisotropy energy, and Zeemen

energy [6}. Films are separated into domains with different orientations of magnetization

to reduce the magnetostatic energy, illustrated in Figure 5.

(a) (b) (c) (d)

Figure 5: Domain division (a) single domain (b) two domains (c) four domains (d) closure domains

Domain walls separate domains, magnetized with different orientations, reducing

the energy through the width of the wall. The domain wall width is mainly determined

by the exchange energy and anisotropy energy. Magnetostatic, or dipole, energy depends

on the magnetization that arises from the alignment of magnetic dipoles, primarily from

electron spins in solids [6]. A single domain finite sample has associated with it
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significant magnetostatic energy, but the disintegration of the magnetization into domains

reduces the total magnetostatic energy. Exchange energy depends on the basic spin

interaction that causes cooperative magnetic ordering. The exchange energy tends to

make a magnetic domain wall as wide as possible since the exchange energy decreases

with decreasing angle between spins on neighboring atoms inside the wall [6].

The spins inside the wall rotate gradually, leading to a certain width of the

magnetic domain wall, illustrated in Figure 6. The exchange energy between neighboring

spins tends to increase the wall width. A larger rotation of spins between two neighbors

causes higher exchange energy. The magnetic anisotropy energy depends on the

orientation of the magnetization with respect to the crystallographic axes of the material,

resulting from spin and orbit interaction [6]. Zeemen energy is the outcome of the

interaction of the magnetization with eternal magnetic fields. The domain walls have two

main types of spin structures within them, commonly known as Bloch and Neel domain

walls. Within Bloch domain walls, the spin rotates in the plane parallel to the wall plane.

The wall width of a 1800 Bloch wall is proportional to the exchange constant and

anisotropy energy [6]. Inside Neel domain walls, the spin rotates in the plan of the film.

(a) (b)

Figure 6: Domain walls showing (a) Bloch domain wall (b) and Niel domain wall 161
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2.6 Hysteresis

The nonlinear relationship between the applied external magnetic field, H, and the

magnetization of the material, M, is known as hysteresis. If the material is initially

u agnetized, zero magnetization, the domains are randomly oriented such that there is a

net magnetization of zero. As the external magnetic field is increased, the magnetization

of the material increases as well. The domains begin to align to the external magnetic

field due to the changing of domain shapes and sizes resulting from the movement of the

domain walls. After further increasing of the external field, the magnetization of the

material reaches the saturation magnetization, where a further increase in external field

has no effect on the magnetization. At this magnetization all the domains are aligned to

the same direction as the external field, in effect becoming one domain. From saturation,

as the external magnetic field is reduced by reversal of direction, the magnetization does

not decrease through the same path as it was increased. When the external field reaches

zero, the material remains magnetized at a magnetization known as the remanence, Mr.

From saturation, additional energy is needed to reorient the domains in the opposite

direction With the absence of any external magnetic field, most of the magnetization

remains, resembling a permanent magnet. To reduce the magnetization of the material

back to zero, an opposing external magnetic field, known as the coercivity, -H, must be

applied. Upon continuation of the applied field in the reverse direction, the

magnetization of the material eventually reaches saturation in the negative end, -M, A

second reversal towards the positive end yields the same outcome as when reaching

negative saturation, where a negative remanence, -Mr, is the magnetization at the absence
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external field and the coercivity, H,, is the necessary external field to begin the increasing

of the magnetization towards positive saturation.

The hysteresis loop shows the history dependant phenomenon of magnetization of

a ferromagnetic material, shown in Figure 7. To reside within the hysteresis loop from

the unmagnetized state, the material must reach its saturation magnetization. An

unsaturated material would not have the same characteristics when opposing external

magnetic fields are applied. However, a material within the hysteresis loop may be

demagnetized by repeatedly alternating the external magnetic field while simultaneously

decreasing the magnitude.

Material magnetized
to saturation by

Magnetization alignment of domains.
of material M - -

When driving magnetic field drops Ms
to zero, the ferromagnetic material Mr
retains a considerable degree of The material follows a non-linear
magnetization magnetization curve when

mragnetized from a zero geld value.

... Hc -Applied magnetic

The driving magnetic 1ield must be
reversed and increased to a large
value to drive the magnetization to
zero aoain.

Toward saturation in
the Opposite direction

Figure 7: Hysteresis loop and its relation to domains [51
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2.7 Soft and Hard Magnetic Materials

Both ferromagnetic and ferrimagnetic materials can be classified as either a soft

or hard magnetic material based on their hysteresis characteristics. The area within the

hysteresis loop represents the magnetic energy loss per unit volume of the material per

magnetization [5]. The area inside the hysteresis loop is the distinguishing characteristic

in the hysteresis curves amongst the two, shown in Figure 8, where soft magnetic

materials exhibit small areas and hard magnetic materials display larger areas. Due to the

different variations in hysteresis, several applications have been developed which benefit

from either that smaller or larger areas in the hysteresis curves

Retains a large Narrow hysteresis loop implies
fraction of the a small amount of dissipated
saturation field Saturation energy in repeatedly reversing
when driving magnetization the magnetization.
field removed

Magnetization M M M

lApplied
Magnetic
Field i P

Desirable for permanent The area of the Desirable for transformer
magnets and magnetic hysteresis loop is and motor cores to minimize
recording and memory related to the amount the energy dissipation with
devices. of energy dissipation the alternating fields associated

upon reversal of the with AC electrical applications.
field.

Figure 8: Variations of hysteresis loops for soft and hard magnetic materials 151

Soft magnetic materials are applied to devices that are frequently exposed to

alternating magnetic fields where the energy loss must be low, transformers being a
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common exploitation of these materials. Additionally, soft magnetic materials must have

a high initial permeability, where the permeability is correlated to the slope of the

magnetization as a function of magnetic field. Low coercivities are also common to soft

magnetic materials, signifying that saturation of the material is achievable by applying a

low external magnetic field. Low values of coercivity correspond to the easy movement

of domain walls as the external magnetic field is changed [5]. Ideally, soft magnetic

materials also demonstrate remanent magnetization values of zero, indicating that

removal of an external magnetic field causes the magnetization of the material to

diminish.

Hard magnetic materials are employed in permanent magnets and data storage.

These materials have high resistance to demagnetization. Additionally, hard magnetic

materials have high remanence, coercivity, and saturation magnetization. Low initial

permeability and high hysteresis energy losses are also common to hard magnetic

materials. Low permeability is crucial for permanent magnets and magnetic recording

because it becomes vital for the material to exhibit low susceptibility to the external

applied magnetic field, resulting in a magnet or a grain representing a bit of information,

which is able to sustain the remanent magnetization with considerably higher influence of

magnetic fields. Two of the more crucial characteristics relative to applications for hard

magnetic materials are coercivity, squareness factor, and maximum energy product,

(BH)m. High coercivity magnetic materials allow for the magnetization to remain

reasonably constant with an insufficient external magnetic field to overcome the

coercivity and therefore demagnetizing or magnetizing in the opposite direction.

Squareness factor 5, calculated by the ratio of remanence by the saturation magnetization,
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is a dimensionless number between zero and one, shown in Equation 19. The value of

one denotes a perfect square; conversely, the value of zero signifies no remanence and no

hysteresis, where larger squareness factors are desired for magnetic recording.

S =Mr / MS (19)

Coercive squarenesss, shown in Equation 20, is a ratio of the magnetic field at the

intersection of the tangent line at the coercivity and the vertical line crossing through the

remenant magnetization by the coercivity, a dimensionless number between zero and one.

dM (20)

S*-H (M = dHHc)

The (BH)max is defined as the area of the largest B-H rectangle that can be

formulated within the second quadrant of the hysteresis curve, illustrated in Figure 9.

The value of the maximum energy product corresponds to the energy required to

demagnetize a permanent magnet, signifying that larger (BH)max values represents the

need for larger energy values to demagnetize the material [5].

H Magnetization

H
Applied
Magnetic
Field

Figure 9: B-H energy product within a hysteresis curve
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2.8 Superparamagnetism

Superparamagnetism is a phenomenon by which magnetic materials may exhibit a

paramagnetic behavior at temperatures below the Curie temperature. Normally, coupling

forces in ferromagnetic materials cause the magnetic moments of adjacent atoms to align,

generating very large magnetic fields. At temperatures above the Curie temperature, the

thermal energy overcomes the coupling forces, causing the atomic magnetic moments to

fluctuate randomly [3]. Because there is no longer any magnetic order, the internal

magnetic field no longer exists and the material exhibits paramagnetic behavior.

Superparamagnetism occurs when the material is composed of small grain sizes,

ranging less than 20 nm [3]. Magnetic materials with grain sizes at this range, and

temperature below the Curie temperature, where the thermal energy is not sufficient to

overcome coupling forces between adjacent atoms, the thermal energy is still sufficient to

change the direction of magnetization of the entire grain. The ensuing fluctuations in the

direction of magnetization cause the total magnetization to cancel. The material behaves

paramagnetic, except that instead of each individual atom independently influenced by an

external magnetic field, the magnetic moment of the entire crystallite tends to align with

the magnetic field. As the grain size decreases, so does anisotropy energy, consequently

decreasing the temperature at which the material becomes superparamagnetic [3]. To

ensure at least ten year stability, Equation 21 demonstrates the superparamagnetic limit

dependant on the recording layer anisotropy energy Ko, the thermal activation volume V,

Boltzmann's constant at 1.38 x 1023 m2kgs-2 Ki', and the temperature T [27].

KuV x (kaT)-l 40-60 (21)
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3. DESCRIPTION OF THREE-DIMENSIONAL MEDIA

Several technologies have been proposed and recently developed to address the

superparamagnetic limit. The near-future approaches to defer the superparamagnetic

limit have been perpendicular media, patterned media, and heat-assisted magnetic

recording (HAMR), all of which are two dimensional alternatives. However, to further

exceed well past the one terabit/in2 mark, it seems evident for the need to stack recording

layers in a vertical dimension, known as three-dimensional (3-D) magnetic recording.

The orientation of the bits in three-dimensional recording is perpendicular to the

magnetic layer. Information could be recorded through the surface, where more than one

bit can be recorded on the same unit area as compared with two-dimensional media as

illustrated in Figure 10. The effective areal density would grow by a factor of N, where

N is the number of the layers, which are separated by the non-magnetic layers, in the

multilayer stack. The concept of three-dimensional magnetic recording was

contemplated during Dr. Sakhrat Khizroev's involvement in the study of perpendicular

magnetic recording at Seagate Research and IBM Almaden Research Center.

Macnetizatiof N _ub-Iayei;
up and "down ' - II~i

j 2to 10J

Figure 10: Diagram showing (a) perpendicular media and (b) 3-D magnetic media 18]
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3.1 Perpendicular Anisotropy

Perpendicular anisotropy can be obtained by either the quantum mechanical

interactions at the interface boundaries in multilayers, or the crystalline anisotropy [9].

Multilayers present positive uniaxial anisotropy when the magnetic layer thicknesses are

reduced to a few monolayers [10]. The quantum mechanical interactions of interfacial

surface anisotropy is a consequence of surface atoms located in a different environment

than where bulk atoms would be situated in. Interfacial surface anisotropy has been

shown to originate from single-ion mechanism, dipole-dipole interaction, and surface

roughness [11].

The perpendicular anisotropy energy Ku can be generally expressed

mathematically in Equation 22 by the shape and crystalline contribution to the magnetic

anisotropy constant Kv, the interface energy Ks, resulting from broken symmetry of

interface atoms known as Neel's surface anisotropy, and the thickness t of the magnetic

layer, where smaller thicknesses promotes higher perpendicular anisotropy energy [10].

Ku= K +2Ks /t (22)

Another mathematical model for the perpendicular anisotropy energy has also

been formulated. The dependence of the perpendicular anisotropy energy due to the

orientation of magnetization of the magnetic layers is shown. This mathematical model,

as expressed in Equation 23, describes the perpendicular anisotropy energy as a function

of volume V, area S, the angle 0 between the magnetization M and the normal to the

plane, and Kv and Ks are bulk (volume) and surface constants, respectively [11].

Ku= [V (Kv -2 M2 ) + 2S Ks] sin2 0 (23)
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Shape anisotropy has a tendency to resist orientation of perpendicular to the

plane. The shape anisotropy arises from dipolar coupling of atomic moments.

Alignment of the moments, the basis of shape anisotropy, favors orientation along the

largest extent of the sample, parallel to the plane for magnetic media. The effect of shape

anisotropy is unfavorable for magnetic recording as seen in Figure 11; however, it is

reduced as the thickness of the layer is decreased from bulk thickness to monolayers and

considerably less than the interfacial surface anisotropy exhibited by multilayers.

Shape anistropy Magnetocrystalline
domincates anistropy dominates

Figure 11: Shape anisotropy and crystalline anisotropy due to thickness

Interfacial surface anisotropy is originated from thin magnetic layers bounded on

both ends. Multilayers effectively exhibit the presence of interfacial surface anisotropy

due to the extremely thin magnetic layers of approximately 0.2 nm to 1 nm, roughly one

to five monolayers. At these thin layers, interfacial surface anisotropy and

magnetocrystalline anisotropy, both oriented perpendicular to the plane, exceed the

parallel aligned surface anisotropy, shown in Figure 12a. As the thickness of the

magnetic layer is increased, surface anisotropy begins to dominate, shown in Figure 12b.
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Figure 12: (a) Interfacial and crystalline anisotropy orienting the easy axis and (b) thickness
dependence of perpendicular anisotropy due to anisotropy 112b

One of the more influential parameters on interfacial surface anisotropy is the

surface roughness between two different layers. Surface roughness strongly influences

the magnetization and hysteresis on magnetic thin films. Surface steps tend to induce an

in-plane uniaxial magnetic anisotropy, with an easy axis parallel to the step direction

[13]. The dependence of perpendicular anisotropy on surface roughness becomes more

prevalent at monolayers, identified by larger surface-to-volume ratios. The surface-to-

volume ratio corresponds to the thin magnetic layers applied in multilayers, where the

diameter of a cobalt and palladium atom is approximately 0.22 nm and 0.28 nm,

respectively.
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Crystalline structures and orientation dramatically affect the perpendicular

anisotropy of a film. Cobalt's hexagonal close packed crystalline structure promotes the

exploitation of this material due to its beneficial inherit perpendicular anisotropy

compared to iron and nickel, other ferromagnetic materials which form a cubic crystalline

structure instead. An example of cobalt hexagonal close packed crystalline structure is

shown in Figure 13, demonstrating the induced perpendicular anisotropy generated by an

alignment of the easy axis perpendicular to the plane. However, for thicker layers of

cobalt, on the order of a few nanometers, the shape anisotropy dominates and favors an

in-plane magnetization, unfavorable for perpendicular recording and three-dimensional

media [14].

Easy Direction [0001] [00011

o I

Hard Directions <1010> 1-

<1010>

Applie d Field (H)

Figure 13: Perpendicular anisotropy due to cobalt hexagonal closed packed structure
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3.2 Physics of Three-Dimensional Media

Two different modes of 3-D recording have been investigated regarding the

addressing of individual magnetic layers, referred to as multi-level 3-D and absolute 3-D

modes. In the multi-level 3-D mode, a 3-D space is occupied for recording; however, its

degree of utilization is determined by the instrument for data access during reading and

writing procedures, rendering it as a non-effective technique [8]. In multi-level 3-D

mode, when the signal recorded or read from a cell stack is defined by a recording

transducer located above the stack, the information recorded in all N layers of the cell

contribute to each signal level as shown in Figure 14a [8]. The number of signal levels L

may be considerably less than the total number of layers, determined by the capability of

the transducer to produce a signal with an adequately large signal-to-noise ratio (SNR)

for the L levels to be distinguished from each other during reading and writing, where the

areal density would increase by a factor of log 2 L [8]. When operating in absolute 3-D

recording mode, each nth layer may be accessed separately as shown in Figure 14b. The

areal density in absolute 3-D recording mode increases by a factor of N layers, providing

much larger total areal densities [8]

N lavers

coutrliine
together to n-th layer
one level adesn

(a) (b)

Figure 14: (a) 3-D multi-level and (b) 3-D absolute recording modes [81
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Three-dimensional media is fabricated as a stack of magnetic layers separated

from each other by thin non-magnetic interlayers. Within the stack, each magnetic layer

and non-magnetic interlayer is approximately 5~10 and 1-2 nm thick, respectively,

where high surface-induced perpendicular anisotropy materials are vital in generating this

effect, typically cobalt/platinum or cobalt/palladium mulitlayers. The difference between

the multilayers exploited for 3-D recording and the multilayers used for perpendicular

recording is that for 3-D recording, the significance of the non-magnetic interlayers is to

break the exchange coupling between adjacent magnetic layers, illustrated through

simulations on Figure 15.

Figure 15: Magnetic layers exchange decoupled by non-magnetic layers

The effect of the decoupling between the magnetic layers results in magnetic

layers, independently manipulated for recording, whereas in perpendicular recording, the

non-magnetic recording does not break the exchange coupling [8]. Therefore,

magnetization of the magnetic adjacent layers may be oriented in opposite directions due

to the lack of exchange coupling between the magnetic layers. Alternatively, if a thinner

non-magnetic interlayer was implemented, the exchange coupling would be sufficient to
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orient all the magnetic layers within a cell in the same direction, traditionally applied to

perpendicular recording, illustrated in Figure 16a and Figure 16b [8].

I own

(a) (b)

Recoding Profile

Figure 16: Simulations of effect of interlayer thickness where (a) the magnetic layers are coupled and

(b) the magnetic layers are decoupled 181

Thinner multilayers may also be utilized as a single magnetic layer comparable to

the single layer of the magnetic layer in a cell of 3-D multilayers. Within a stack of

multilayers, adjacent single magnetic layers (a high perpendicular anisotropic material or

a composite of cobalt/palladium multilayers) are divided by relatively thick palladium

layers to break the exchange coupling between single layers. Each single layer may

consist of either an absolute magnetic layer or a stack of cobalt/palladium multilayers

behaving similar to the absolute magnetic layer, shown in Figure 17a and Figure 17b.

However, when realizing the case where only cobalt is used for magnetic layers, surface

effects are minimized if the non-magnetic interlayers are sufficiently thick. The outcome

is that magnetic anisotropy is determined by crystalline and shape anisotropy, where

magnetization may be randomly oriented in-plane instead of perpendicular to the plane.

Alternately, cobalt/palladium multilayers have relatively small palladium interlayers, less

than roughly 1 nm, providing sufficient exchange coupling between the adjacent cobalt

layers and creating strong surface-dominated perpendicular anisotropy.

31



Cobalt 70Chromium1 8Platinum12 (Co 7 Cri 8Pt12) alloy is an additional alternative for

magnetic layer implementation due to its higher perpendicular anisotropy.

te.a

()(b) oe.s..

Figure 17: (a) Co/Pt stack for perpendicular recording and (b) 3-D multilayers Co (top) used as a
magnetic layer and Co/Pt (bottom) thin layers that constitutes a single magnetic layer 181

Due to perpendicular anisotropy, demagnetization fields are oriented normal to

the plane, where demagnetization fields are dramatically reduced, shown in Figure 18.

The demagnetization field of perpendicular media exhibits lower values compared to

longitudinal media, broadening the magnetic transitions in longitudinal media [15].

Figure 18: Simulation of demagnetization field within a perpendicular magnetic layer
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3.3 Writing on Three-Dimensional Media

There are several potential methods to write information onto 3-D media,

consisting potential implementation to forego the write process is through magnetically

induced data access using a variable current. A control for the writing process could

consist of a grid of crossing word lines. The information from a horizontal layer on the

media could be essentially recorded and read instantaneously. To identify each layer

during the writing process, a current is guided through a biasing wire on top of the media,

generating a large bias perpendicular to the 3-D media, as shown in Figure 19a. The

biasing field may be modified by varying the current in the wire. Recording is processed

sequentially, where the current is sufficient to produce a large field relative to the

coercivity of the bottom layer, illustrated in Figure 19b [8]. In succession, current

through the word lines is generated to manipulate the field in the layer, essentially

recording the field pattern generated onto the bottom layer [8]. Afterwards, the current in

the large wire is reduced and reversed to identify the next layer above, where another set

of signals is guided through the word lines and recorded onto that layer [8]. This process

is repeated sequentially until the top layer is reached.

Time Monmix 1: Time Momet ;
IK-th layer is identited (K+1)-th layer is identiied

(a) -__()_a__ _ l_-t_

Figure 19: (a) Identification of layers during writing and (b) cross-sectional diagrams showing two
time moments where field due to the biasing wire is used to identify layers [81
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The variation of the current to effectively write on different levels within a

multilayer is exemplified in Figure 20. The coercivity in the diagram is normalized to

1.00, signifying the coercivity for that magnetic layer, demonstrated in the diagram that

sufficient effective field, or correspondingly the current, to record on any layer must be

over the coercivity of that layer. The simulation shows that larger current, correlating to

higher fields, is necessary to overcome the coercivity field of a layer deep into the media.

Z 92

SB 6UL nmZ 0 2

CBS SUL :rinm

Figure 20: Multilevel recording through variation of write current

A diagram of a single grid structure located above the media is displayed in

Figure 21. The diagram consists of a section of the large wire and the bit signal wrapped

around a rod composed of a soft magnetic material with a read element attached nearby

shown in Figure 21a. The rod acts as a single pole head as implemented in perpendicular

recording [8]. Two instances of the magnetization allocation, during the writing process

in a section of the media, where the distribution is deep into the media and partially into

the media, displayed in Figure 15b and Figure 15c, respectively.
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Figure 21: (a) Single grid structure and (b) magnetization near (c) and far from the bottom layer 181

Figure 22 illustrates the effective magnetic fields penetrating though the magnetic

layers and non-magnetic layers in a multilayer sample. As the recording field is applied

to all the levels of the multilayered media, the effective field in sequentially lower layers

decreases as the field is analyzed closer to the base layers. Magnetic layers, from the air

bearing surface of the media down to a specific layer accessed, are all written on when

the recording profile overcomes the coercivity of that specific layer. It is exemplified

through the simulation that larger currents, and consequently larger fields, are necessary

to efficiently record on the lower layers closer to the bottom of the multilayered sample.

Figure 22: Field penetrating through multilayers during recording
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However, a concern for writing on the magnetic media is the overlapping of the

magnetic field when recording onto adjacent bits cells. Figure 23a demonstrates the

magnetization pattern in recording process on a saturated, or erased, media. Figure 23b

demonstrates the issues when recording onto adjacent cells. The overlapped region

defines the region where the information is ineffective. The overlapped region may be

considered ineffective because the region may have remanence magnetization from either

of the two adjacent bit cells.

Head D Q~ deffec
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Figure 23: Recording on (a) an erased media (b) and on previously recorded adjacent cells [81
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3.4 Reading on Three-Dimensional Media

The most conceptual implementation to reading from 3-D magnetic media is

direct reading of the magnetic field from above. A giant magnetoresistive (GMR) sensor

could be utilized to read the magnetic signal emitting from the media in each bit cell.

The state of the individual layers can be determined by analyzing the net magnetic field

for different magnetization patterns, illustrated in Figure 24a [8]. The calculated signal

levels decreases exponentially as the number of recording magnetic layers increases,

displayed in Figure 24b [8]. The simulation for Figure 24b assumes patterned magnetic

media on all three axial directions, neglecting any media noise, with a 10 A giant

magnetoresistive sensor [8]. It has been postulated that through more advanced encoding

schemes, a 10 dB signal-to-noise ratio magnetic recording system can be analyzed at a bit

error rate (BER) of 10-9 [8].
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Figure 24: (a) Stray field verses digital level (b) and signal-to-noise ratio -verses number of layers [81
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3.5 Patterned Media

A viable approach to extending the superparamagnetic limit past its current bound

for perpendicular and three-dimensional media is the patterning of the magnetic media,

shown in Figure 25. Patterned media enhances the thermal activation volume, increasing

the ratio which determines stability in a grain [7]. Patterning of the media decreases the

exchange coupling between adjacent grains, forcing the patterned bit to behave similar to

single domain [7]. Additionally, maximizing the bit-to-bit spacing in patterned media for

a given areal density assists minimization of influence of neighboring bits, enabling

higher efficiency write poles, and maximizing readback resolution [7]. It has also been

demonstrated through past simulations that recording on patterned media allows thicker

magnetic layers, important for the implementation of three-dimensional media, where the

magnetic spacing between the write pole and the recording layer is always in need for

minimizing so that the recording field penetrates through the media [7].

,~*.

Figure 25: Patterned media with island diameter of 50 nm by focused ion beam [81
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3.6 Patterned Soft Underlayer

A perpendicular recording system includes a single pole recording head and

magnetic media that consist of an upper recording layer and a soft magnetic underlayer,

as seen in Figure 26a without the soft magnetic underlayer and in Figure 26b with one.

The single pole head is a modification of the common ring head, utilized in longitudinal

recording, consisting of a wider gap between the leading pole and the trailing pole

trimmed down to 50 nm by a focused ion beam [16]. The purpose of the soft underlayer

is to enhance the perpendicular component of the recording field by allowing the

magnetic flux to flow back from the leading pole to the trailing pole, where the recording

takes place [17]. This effect closes the magnetic loop, head similar to fundamental

electronics, where the soft underlayer is described as a mirror effect to the real head,

essentially doubling the flux through the recording field [17].

a. b.

;;o

Figure 26: (a) Longitudinal (b) and perpendicular recording with soft underlayer [171

Soft under layer increases the effective recording field, however, it is also

accountable for several performance limiting issues. One issue is the readback signal

noise, caused by the free magnetic domain wall movement resulting in magnetic stray
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fields apparent as random high frequency noise in the giant magnetoresistive [17].

Nevertheless, the reduction of the noise level was radically reduced when biased, as

shown in Figure 27a and Figure 27b, an experimental result accomplished through a

Guzik Spinstand [18]. Biasing is accomplished by introducing a constant small magnetic

field sufficient to pin the domain walls in place, possible synchronized within the read

cycle [18].
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Figure 27: (a) Noise due to movement of domain walls (b) and reduction of noise with biasing [181

Patterning the soft underlayer is a practical solution to overcome several of the

concerns with the application of soft underlayer. In one instance, the continuous soft

underlayer would ideally create the perfect mirror image of the real recording head;

however, since the magnetic layer is located directly above the soft underlayer, the

mirroring effect is reduced, known as the spacing loss [17]. The geometrical shape of the

patterned soft underlayer affects the field magnitude and the field dynamics in the

recording process [19]. A convex pattern, similar to optical lenses, can be implemented

to shift the imaged head closer to the recording layer, by essentially directing the focal

point near the recoding layer, diminishing spacing losses, as illustrated in Figure 28 [19].

The focusing of the imaged head also provides the effect of increasing the resolution of
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the recording layer by converging the magnetic field to a smaller area, allowing for

greater areal densities.

Real Head

Recording H> H f, SUL Boundary
Layer _ _ _ -Image Head

SUL SUL

Figure 28: Convex patterned soft under layer to move image head 119]

Numerical analysis was performed on the effects of patterned soft underlayer on

the recording process. The simulation performed assumes a coercivity of 3500 Oe for the

recording layer and relative permeability of 10,000 for the recording head and the soft

underlayer. Figure 29a illustrates the field profile from the recording head air-bearing

surface (ABS), through the cross-section of the media, down to the soft underlayer. The

simulations shows increase in the field due to the soft underlayer. Additionally, the

simulation also demonstrates consistent larger recording fields throughout the media,

larger than the coercivity of the media, and double the field of the simulation without a

soft underlayer at the soft underlayer-magnetic media interface. Figure 29b exemplifies

the magnetic field for the convex patterned and continuous soft underlayer in the

direction along the track. The simulation clearly indicates that the convex patterned soft

underlayer generates a larger field and exhibits steeper fallout, favorable for smaller bit

sizes.
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Figure 29: (a) Effect of soft underlayer through the media (b) and field gradients along the track

The application of soft underlayer is also an essential part of both the read and

write process. According to the reciprocity principle, the readback sensitivity field is

enhanced by the assistance of a soft underlayer [20]. An increase in over 35% of the

sensitivity field of patterned soft underlayer, compared to unpatterned soft underlay, is

shown in Figure 30.
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Figure 31 exemplifies the magnetic fields through the magnetic layers without the

implementation of a soft underlayer. The magnetic fields through the media broaden in

the in-plane direction. This effect can dramatically reduce the areal density of the media,

due to the stray magnetic fields in the in-plane direction.

Figure 31: Fields through magnetic layers without a soft underlayer

Figure 32 illustrates the magnetic fields through the magnetic layers with the

implementation of a convex patterned soft underlayer. The effect of the convex

geometrical patterns is easily visible by the converging of the fields, caused by the

convex pattern, rendering it advantageous for the applications for magnetic media.

Figure 32: Fields through magnetic layers with convex patterned soft underlayer
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4. FABRICATION OF THREE-DIMENSIONAL MEIA

The fabrication of the three-dimensional media was accomplished through the

utilization of the sputtering system and the focused ion beam. With the aid of these

advanced mechanisms, it was possible to fabricate magnetic thin films of various metals

of a range of thicknesses. High precision etching, at scales of ten's of nanometers, was

produced by the technique commonly known as ion milling with the focused ion beam.

The fabrication of the three-dimensional memory was grown with the aid of a

sputtering system. Thin film deposition through the sputtering system is done by an

ejection of atoms from a solid surface, commonly known as the target, by energetic

atomic particles within a vacuum as seen in Figure 33. The sputtering system employed

consisted of energetic atomic particles coming from ionized Argon gas plasma. The

plasma is generated by direct current (DC) or radio frequency (RF) glow discharges of a

noble gas. The atoms ejected are then transferred from the source to the sample,

depositing the desired alloy onto the sample. Sputtering is largely driven by momentum

exchange between the ions and atoms in the material due to collisions. Sputter guns are

typically magnetrons that depend on a strong electric and magnetic field. The sputtering

process can be disrupted by other electric and magnetic fields near the target.

Additionally, small magnetic fields may leak from ferromagnetic targets, resulting in

sputter guns typically including strong permanent magnets for compensation. However,

the charge build-up can be avoided by the implementation of radio frequency power

sources and a matching network to match the impedance onto the load.

44



- Substrate and film growth

Sputterin

Gas -.

00

flO 0
0

Sputtering Target

Figure 33: Deposition through a sputtering system [31

The focused ion beam is an instrument utilized for several operations. The

focused ion beam employs a focused beam of gallium ions. Gallium is chosen because it

is simple to build a gallium liquid metal ion source (LMIS). In a gallium liquid metal ion

source, the gallium metal is placed in contact with a tungsten needle and heated. Gallium

liquefies the tungsten tip, causing a substantially large electric field, greater than 108

V/cm, to ionize and emit the gallium atoms [3]. The gallium atoms are accelerated to a

high energy, approximately 10 keV - 40 keV, and then focused onto the sample by

electrostatic lenses [3]. Focused ion beams can image the sample with a spot size on the

order of a few nanometers. The manipulation of the current in the focused ion beam may

be utilized to etch a small region of a few nanometers with high precision.
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4.1 Sputtering Process

Deposition of all materials within the fabrication of three-dimensional media was

accomplished through the sputtering system. Through the technique of sputtering, it was

possible to fabricate very thin layers for magnetic media utilization. Magnetron sputtering

sources within the sputtering system were utilized for deposition. Power supplies for

sputtering implemented were radio frequency and direct current. Direct current power

supplies are ineffective for dielectric materials, although only metal films were

fabricated.

Cleansing of silicon wafers before deposition was important for film quality.

Cleansing of the wafers involved the processes of normal cleansing, organic cleansing,

and oxide cleansing. Deionized water and nitrogen was used to wipe the chemicals and

any contaminants before and after every cleansing process and to dry the surface of the

wafer, respectively. The chemical solution of 1:5 hydrogen peroxide H20 2 and 49%

concentrated sulfuric acid (H2S04), commonly known as piranha, for metal contaminants

and organics was used for the organic cleansing. Organic cleansing removes

contaminants such as dust and grease from the silicon surface. Finally, to remove the

oxide layer on top, which is formed on the surface by contamination of the metal from

air, the wafer is submerged in a 10:1 deionized water and hydrofluoric acid (HF) for ten

seconds.

Removal of particles was achieved through the cleansing of the chamber by

inducing a low base pressure before the sputtering process. Most importantly, very low

base pressures causes water vapor and other organics to degas, decontaminating the
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chamber for proper deposition. Base pressures of 1.0 x 10-6 Torr or lower were applied

for all experimentations. Flow of argon gas into the chamber was regulated and kept

constant throughout most experiments at an appropriate rate of 20 standard cubic

centimeters per minute (sccm), the recommended rate for the sputtering system utilized.

Additionally, before base pressure was reached by the chamber, 20 sccm of argon gas

was flowed into the chamber for 20 minutes by the three sources on the mass flow

controller (MFC). The purpose of this procedure was to further decontaminate the

chamber by allowing the heavy argon ions to collide with the substrate holder and the

chamber walls, removing contaminants that may still have been situated in those areas.

Process pressures for suitable deposition in the sputtering system range from

approximately 2 mTorr to 10 mTorr. Higher processing pressures lead towards lower

rates; however, it also introduces the effect of raising the number of unwanted atoms

deposited into the sample. This effect, which may be evident for pressures as low as 10

mTorr, resulted in a process pressure of 5 mTorr implemented for most processes.

The temperature of the sample is also a controlled parameter which was

manipulated depending on the desired effect. Higher temperatures inside the chamber

before sputtering allow for contaminants to move around and become susceptible to the

force of the turbo pump due to the provided thermal energy supplied by the quartz lamp.

Larger temperatures result in better uniformity and film quality, specifically

crystallography and adhesion. Conversely, larger temperatures also effect the

magnetization of the sample, given that it is undesirable to reach temperatures near the

Curie temperature. Additionally, higher temperatures may also change the

crystallographic structure of materials, an example shown by the transformation of cobalt
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from hexagonal closed packed structure to face centered cubic structure at 722 K,

unfavorable for three-dimensional media.

The rate of deposition is also immensely dependant on the power driven through

the desired target. Larger power levels result in an increased in excited atoms,

consequently a higher amount of atoms released from the target and onto the sample.

Due to the required precision necessary to deposit thin layers with high accuracy, low

deposition rates were implemented. Achievement of low deposition rates was realized by

reducing the power driven through the target to its minimum level. However, to ensure

proper deposition and uniformity throughout the sample, the power level was increased

approximately 5 W above the threshold, for each different target correspondingly, to

ignite plasma.

Once the previously mentioned process parameters were chosen, the main

objective was to control the thickness of the deposition. Since the thickness of the

sample is simply a linear dependence on time, with set parameters, thickness was

predicted fairly accurately given that the set process parameters are known and the effect

result of deposition rate from the combination of the set process parameters is known as

well. Thicknesses deposited may vary between as thin as a few Angstroms to several

microns; however, film quality becomes an issue at larger heights, due to stress forces

and proper adhesion of the film.

The deposition rates, once all process parameters except time were made constant,

were determined for the various materials used. Investigation on the deposited height of

the material was achieved through step heights. Step heights were accomplished by

covering a small section of the sample by either tape or marker. The outcome was a
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section that does not incur deposition, from which the height between this area, and the

section that was exposed to deposition, may be compared. The step heights were

analyzed with the aid of an atomic force microscope, shown in Table 3, with

corresponding process parameters. Through software tools for the atomic force

microscope, step heights for two selected area, with and without exposure to deposition,

were analyzed, the end result an average of the difference of heights between the two.

Several samples were investigated to determine an average of each material and

consequently the average deposition rate on the different materials.

Metal Power Pressure Flow Source Rate

Chromium 60 W 10 Torr 35 scem RF 0349 nm/s

Cobaltiow 10 W 5 Torr 20 sccm RF 0.025 nm/s

Cobalt2ow 20 10 iTorr 35 sec RF 0.050 nm/s

Cobalt35 w 35 W 10 mTorr 35 sccm RF 0.144 nm/s

Co 7oCrI8PtI 2  20 W 5 Torr 20 sccm RF 0.010 nm/s

Palladium15 w 15 W 5 Torr 20 sccm DC 0.222 nm/s

Palladium 2ow 20 W 10 mTorr 35 sccm DC 0.221 n s

Palladiumsow 50W 10 mTorr 35 sccm DC 0.481 n s

Permalloy 60W 1 Torr 35 sccm RF 0.165 n s

Tantalum2ow 20 W 5 mTorr 20 sccm RF 0.047 nm/s

Tantalum3sw 35 W 10 mTorr 35 sccm RF 0.022 nm/s

Table 3: Deposition rates established for different metals
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4.2 Deposition of Soft Magnetic Underlayer

Prior to the fabrication of the magnetic layers, the soft magnetic underlayer is

deposited to take advantage of the several benefits it promotes. As mentioned before,

permalloy is employed in three-dimensional media as a soft underlayer due to its

exceptionally high relative permeability, approximately 8000 - 100,000. Several

permalloy samples were fabricated to examine the effects of thickness of the soft

underlayer, shown in Table 4. During the deposition process of the different samples for

soft derlayer utilization, two magnets of opposite poles were facing each other,

resulting in a field through the sample from one pole to the other. The magnetic field

through the deposition process caused the domains to align and become oriented along

the direction of the field. Alignment of the alternating domains in the permalloy samples

makes it a potential candidate for high frequency applications, such as ultra fast recording

and reading.

Metal Size Power Source Flow Pressure Rate Temperature

Pe alloy 40 nm 100W RF 20 seem 10 mTorr 0.187 n s 24 0 C
Pe alloy 80 100W RF 20 seem 10 mTorr 0.187 n s 240 C
Pe alloy 110 nm 100 W RF 20 seem 10 mTorr 0.187 n s 240 C

eP alloy 230 nm 100 W RF 20 seem 5 mTorr 0.187 n s 100 0 C

Permalloy 300 nm 100 W RF 20 seem 10 mTorr 0.187 n s 1000 C

Pe alloy 400 nm 100W RF 20 seem 10 mTorr 0.187 nms 100 0 C

Table 4: Deposition parameters for different permalloy samples
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4.3 Focused Ion Beam for Patterning

Permalloy was etched through a process commonly known as ion milling employed

by the focused ion beam. A pattern was generated containing a convex shape with 100

nm height and 100 nm island width within a 5 um by 5 um square. The pattern generated

of 100 nm periodicity, shown in Figure 34 was fabricated to adequately demonstrate the

advantageous effects of the pattern SUL with lower resolution. However, it is desirable

for future demonstrations to decrease the thickness of the permalloy layer and the height

of the convex shapes to approximately 30 nm or less. Additionally, it is also desirable to

decrease the periodicity to the same dimensions as the height of the convex shapes,

reducing spacing losses and increasing the resolution of the magnetic media, resulting in

smaller bit sizes and larger areal density.

S. S.

Figure 34: Image of patterned permalloy through the focused ion beam,
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4.4 Deposition of Magnetic Layers

The fabrication of the three-dimensional media was achieved through deposition

of the metals of cobalt, palladium, tantalum, and the Cobalt7oChromium 1 Platinum12 alloy

by the sputtering system. Thin cobalt layers were deposited to attain the magnetic layers,

in the multilayered samples, necessary for recording. Cobalt magnetic layers were varied

to determine dependence of magnetic behaviors on the thickness. Palladium layers were

fabricated to realize the nonmagnetic interlayers, sufficiently thin to yield strong

exchange coupling between the cobalt layers. Palladium nonmagnetic layers were also

altered to determine dependence of magnetic behaviors on the thickness. Tantalum was

utilized as a seedlayer to help promote perpendicular anisotropy within the cobalt

magnetic layers. Tantalum thicknesses for seedlayer implementation have been shown to

display minimal effects on hysteresis of the magnetic layers above the tantalum seedlayer

[21]. Cobalt7oChromium1 8Platinum1 2 layers were deposited to realize the single magnetic

layers. The dependence of magnetic behaviors on the thickness of the varying

Cobalt7oChromium 1 Platin 12 layers was also to be examined. The deposition

parameters of all the metals utilized to fabricate three-dimensional media, including their

different thicknesses for the several multilayer samples, are shown in Table 4. The

parameters described for each specific layer ideally could be reproduced and yield the

same effects,
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Metal Size Power Source Fow Pressure Rate ime

Cobalt 0.2 n 10 W RF 20 seem 5 mTorr 0.025 nm/s 8 s

Cobalt 0.3 nm 10 W RF 20 seem 5 mTorr 0.025 nm/s 12 s

Cobalt .4nm W RF 20 seem 5 mTorr 0.025 n s 16s

Cobalt 0.5 n 10 W RF 20 seem 5 mTorr 0.025 Is/ 20 s

Cobalt 0.6 nm 10 W RF 20 scm 5 mTorr 0.025 nm/s 24 s

Co70CrI8Pt12  10 20 W RF 20 seem 5 mTorr 0.010 nm/s 16 min 22 s

Co70Cr PtI 2  12nm 20W RF 20 seem 5 mTorr 0.010 nm/s 19min 38 s

Co7 Cr Pt12  14 nm 20 W RF 20 seem 5 iToff 0.010 nm/s 22 min 55 s

Co70 CrI8Pt 12  16 nm 20 W RF 20 seem 5 mTorr 0.010 nm/s 26 min 11 s

Co 70CrI8PtI2  18 nm 20 W RF 20 seem 5 mTorr 0.010 nm/s 29 min 27 s

Co7 0 Cr 8 PtI2  20 nm 20 W RF 20 scem 5 mTorr 0.010 n/s 32 min 44 s

Palladium 0.3 mn 15 W DC 20 seem 5 mTorr 0.222 nm/s 1.35 s

Palladium 0.6 nm 15 W DC 20 seem 5 iToff 0.222 nm/s 2.70 s

Palladium 0.9 n 15 W DC 20 seem 5 iToff 0.222 nm/s 4.05 s

Palladium 1.2 nm 15 W DC 20 seem 5 mTorr 0.222 n s 5.41 s

Palladium 1.5 nm 15 W DC 20 seem 5 mTorr 0.222 nm/s 6.76 s

Palladium 10 nm 15 W DC 20 seem 5 mTorr 0.222 nm/s 45.05 s

Tantalum 30 n 20W RF 20 seem 5 iTof 0.047 nm/s 10 min 38 s

Table 4: Deposition layers for different multilayer samples
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5. RESULTS - MAGNETO-OPTICAL KERR EFFECT SYSTEM SETUP

The magneto-optical Kerr effect magnometer measures the magnetization of a

desired sample by cha ging the external magnetic fiel applied to the sample. The

change in magnetization of the sample is measured by the direct change of the linear

polarized light from a laser to elliptically polarized light reflected off the sample.

Through the variation of the external applied magnetic field, proper hysteresis curves

may be derived by the system. The measured magnetic behavior, acquired from the

magneto-optical Ke effect magnometer, is obtain le for longitudinal, transverse, and

polar modes, for parallel to the plane in two different orientations and for perpendicular

to the plane measurements, resulting in a flexible system for magnetic analysis. The

magneto-optical Kerr effect magnometer contains a la r to generate the analyzed change

in light, electrical chopper to sample the light, two poles of a magnet to produce

external magnetic fields onto the sample, a quarter-wave plate to maximize the effects of

polarization, additional polarizer, a photodetector to sense the light, and a lock-in

amplifier to analyze the signal. Additionally, the LAB VIEW software is utilized to

control the field in the magnets, read the current applied field though the Hal1 effect

sensor placed between the magnets, and obtain the measurements through the lock-in

amplifier.
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5.1 Polarization of Light

Light waves are like all other electromagnetic waves, consisting of electric and

magnetic fields perpendicular to the direction of propagation. The electric and magnetic

fields of light waves are also perpendicular to each other. These simple harmonic waves

also have characteristic electric vectors that vary in a sinusoidal manner, where the two

components of the electric field, which are within a two dimensional plane perpendicular

to the direction of propagation, have the same frequency [3]. However, the two

components of the electric field may not have the same amplitude or phase. By

considering the shape traced out in a fixed plane by the electric vector as a wave passes

over it, the polarization state is obtained. The three types of polarization which a light

wave may exhibit are line polarization, circular polarization, and elliptical polarization,

where the latter is the most common of the three.

Linearly polarized light is the simplest form and a special case of propagation for

an electromagnetic wave. For linearly polarized light, the electric and magnetic fields

have the same amplitude and are also in exact phase wi each other, illustrated in Figure

34. The direction of the electric field lies within a vector with a constant angle in the

plane. Linearly polarized light may consist of electric field which has a vector, in the

plane of propagation, of any random, constant angle. The amplitude of the vector

depends on the relative amplitude of the two components, the phase of the light wave at

that specific moment.
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Figure 35: Propagation of linearly polarized light [31

Another special case of polarization of light is circular polarization. Circularly

polarized light consists of two perpendicular electromagnetic plane waves of equal

amplitude and 90 difference in phase, illustrated in Figure 35. For circularly polarized

light, at the moment when one component of the electric field is at its maximum, the

perpendicular component is always at its minimum. The two components may have two

different phase possibilities within a Cartesian coordinate system defined by the

propagation of the light aligned with the x direction. In the first case the z component is

90* ahead of the y component. In contrary, the second case has the z component 90

behind the y component. Viewing the electric vector approaching through the x

direction, a circle is formed by the alternating components, where the rotation of the

electric vector can be observed as exhibiting either a clockwise or counterclockwise

rotation, defined as right-circularly or left-circularly polarized light, respectively.
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Figure 36: Propagation of circularly polarized light [31

All other cases of polarization of light may be categorized into elliptically

polarized light. Perpendicular electrical components may be 90, similar to circular

polarization, but have different amplitudes, resulting in the electric vector forming an

ellipse. Elliptically polarized light also includes the general case in which the

perpendicular components are not in 900 phase with each other.

Yx

Figure 37: Propagation of elliptically polarized light 131
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5.2 Magneto-Optical Kerr Effect Theory

The magneto-optical Kerr effect magnometer is utilized to study the effect of

hysteresis curves as a function of applied magnetic field. The phenomenon of magneto-

optical Kerr effect is observed as a net rotation and elliptical polarization of incident

vertically polarized light reflected off a magnetized sample. The component of

magnetization parallel to the direction of propagation of the light is effective in rotating

the plane of polarization. The interaction of electric and magnetic fields of the waves

with the spin of electrons in a material modifies the polarization state of an incident

electromagnetic wave [22]. The magnitude of the change in polarization is proportional

to the magnetization of the sample. The rotation of the reflected polarized light off the

sample Ok is minimal for paramagnetic materials, however, for ferromagnetic materials,

the Kerr effect causes rotations which could be measured. The geometry of the incident

and reflected light off a magnetized sample, with magnetized components in the

transverse and longitudinal directions, is illustrated in Figure 37. The illustration also

displays the orientation of the p and s directions, both perpendicular to the direction of

propagation, as well as the polarizer angle Op, the analyzer angle 0a, and the angle of

incidence 0, which is 0 when the incident beam and the reflected beam are both

perpendicular to the plane of the sample. The external applied magnetic field is oriented

in the longitudinal or polar directions, depending on the desired measurement of

magnetic orientation.
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Figure 38: Reflection geometry off a magnetized sample and orientation of p and s directions 1221

The illustration of the geometry of incident light and reflected light interacting

with longitudinal magnetically oriented media is shown in Figure 38a and Figure 38b

through p-polarized and s-polarized incident beams, respectively. From the illustration, it

is evident that the direction of the energy vector, known as the Kerr amplitude RK, in the

reflected beam is opposite to the direction of the energy vector in the incident beam. The

direction of longitudinal magnetic orientation of the media produces the same end result

as its opposing direction counterpart.

- /

(a) (b)

Figure 39: (a) Longitudinal p-polarized (b) and s-polarized incident beams
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The illustration of the geometry of incident light and reflected light interacting

with transverse and polar magnetically oriented media is shown in Figure 39a and Figure

39b, respectively. For the transverse Kerr effect scenario, the reflected beam remains

linearly polarized with a change in amplitude only [22]. For transverse magnetically

oriented media, only a p-polarized light generates Kerr amplitude parallel to the Fresnel

amplitude RF. Media which is magnetically oriented in several directions produce a

combination effect from the different interaction of each orientation's component.

(a) (b)

Figure 40: (a) Transverse aligned (b) and polar aligned incident reflection beams
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5.3 Magneto-Optical Kerr Effect Setup

The magneto-optical Kerr effect magnometer consists of a 632.8 nm Helium-

Neon laser that directs a vertically linearly polarized focused beam towards the desired

sample. The beam is then pulsed by an optical chopper at a 1 kHz frequency. The

optical chopper and the controller for the chopper are shown in Figure 34.

Figure 41: Optical chopper to pulse the laser and the controller to adjust the frequency

After the light is chopped, it is reflected off the sample that is positioned between

two poles of a magnet. The magnets may induce a magnetic field that can vary from -2

Tesla to 2 Tesla by changing the current through the magnets. The two poles of the

magnets may be oriented for either longitudinal and transverse modes or polar mode, by

aligning the poles of the magnet parallel to the plane, or normal to the plane, respectively.

Depending on the mode which the sample is investigated, the angle of reflection of the

light on the sample is either 0.50 with the normal to the plane and a full angle of 10 to

analyze perpendicular components of the magnetization, as shown in Figure 35a, or 450
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with the normal to the plane and a full angle of 900 to analyze longitudinal components

as seen in Figure 35b
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Figure 42: (a) Magnets aligned to analyze in longitudinal mode (b) and perpendicular mode

. The beam is then reflected off the sample is directed towards a quarter-wave

plate. The quarter-wave plate divides any polarized light striking it into two components,

retarding the component with larger index of refraction by 900 in phase in respect to the

component with smaller index of refraction. The outcome is a linearly polarized light

containing the change of linear polarization from the reflection off the magnetized

sample. After the light passes through the quarter-wave plate, it is then directed through

a polarizer oriented horizontally, 900 from the original vertically polarized light. Any

light that passes through polarizer is considered the resulting Kerr effect changes from

the reflection off the magnetized sample. The outcome of complete absence of light

through the polarizer indicates that the reflected light was not polarized and that the

sample was not magnetic. Once the light passes though the polarizer, it is then sensed by

a photodetector. The photodetector converts the optical signal from the polarizer to an
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electric signal. The electrical signal is then analyzed only at the frequency generated

from the optical chopper, through the utilization of the lock-in amplifier. Through the

lock-in amplifier, all other frequency signals are filtered out except for the signal

containing the same reference frequency generated by the chopper. Once the physical

setup of the magneto-optical Kerr effect is completed, the magnetization may be derived

for any specific external field provided by the magnets, nearly 2 Tesla (20,000 Oersted).

Hysteresis of the sample is then generated by first saturating magnetization in a direction

normal to the sample by applying the largest field possible in that direction, sweeping

through the range of field until saturation magnetization and the largest field possible is

reached in the opposite direction, then attaining the original largest field again. The

physical setup of the magneto-optical Kerr effect magnometer is demonstrated in Figure

42.
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Figure 43: Magneto-optical Kerr effect magnometer layout
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6. RESULTS - CHARACTERIZATION OF MAGNETIC MEDIA

The characterization of the three-dimensional media was accomplished through

the atomic force microscope, magnetic force microscope, magneto-optical Kerr effect

magnometer, and x-ray diffraction system. With the aid of these advanced mechanisms,

it was possible to generate topography images, magnetic images, hysteresis curves, and

crystallographic structures.

The atomic force microscope is a scanning probe microscope (SPM) that maps the

topography onto an image form. The atomic force microscope consists of a cantilever

with a sharp probe, or tip, at the end, usually with tip sizes of only a few nanometers.

The cantilever utilized in the atomic force microscope is a small beam anchored at one

end and open ended at the other. The probe is then brought into close proximity with the

surface of the sample to be observed. During the scanning of the sample, while the probe

is engaged, it encounters attraction or repulsion forces from interaction of the tip and the

sample, known as Van der Waals force [3]. These forces lead to the deflection of the

cantilever that adheres to Hooke's law, where the spring constant of the cantilever is

known. The deflection of the cantilever is measured using a laser that is reflected from

the top of the cantilever into an arrangement of photodetector as illustrated in Figure 34.

The utilization of the laser reflection instead of a piezo resistive probe increases the

sensitivity of the microscope. The reflection of the laser onto the photodetectors can

determine the distance from the probe to the sample by analyzing the offset and direction

of the reflection compared to the center of the arrangement of the photodetectors.

Scanning of the sample produces an image that corresponds to numerous rows, resulting
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in an image of a small area. In most atomic force microscopes, a feedback system is

appended to adjust the distance from the probe to the sample to keep the force between

the probe and the sample constant, avoiding the risk of damaging the probe by colliding

into the surface that may not be completely flat.

Cantilever"

Figure 44: Atomic force microscope consisting of laser, cantilever, and photodetectors

Several modes of operation have been developed for the atomic force microscope.

Three common modes of operation are known as contact mode, non-contact mode, and

dynamic contact mode. In contact mode, the force between the probe and the surface is

kept constant during scanning of the sample by maintaining a constant deflection on the

cantilever. When operating in non-contact mode, the cantilever is oscillated at its

resonance frequency. Due to the interaction forces between the probe and the surface of

the sample, the oscillation is modified, providing the desired measurements concerning

the sample. Dynamic contact mode operates by oscillating the cantilever as well;
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however, the cantilever is oscillated with enough force so that it comes in contact with

the sample, where the upward force away from the sample is sufficient to separate the

probe from the surface. Several measurements, analysis techniques, and operations can

be investigated, such as topography, roughness, and step heights, making the atomic force

microscope a resourceful tool.

The magnetic force microscope is also a form of a scanning force microscope,

based only on non-contact mode. Magnetic force microscopes can map the spatial

distribution of magnetism by measuring the magnetic interaction between the probe and

the sample, displayed in Figure 35. Magnetic materials are used for the probe and the

sample, adding the capabilities to measure atomic force and magnetic interaction.

Usually, a cantilever used for atomic force microscopes is coated with a magnetic

material to assemble a probe that is susceptible to magnetic fields. With the utilization of

the magnetic force microscope, it is possible to analyze the magnetic field gradient of the

sample, read and record information onto magnetic media, any many other applications.

The measuring of the topography and magnetic image of the sample is accomplished by

executing a two-pass method. In the first pass, the topography of the sample is

determined. During the second run, the cantilever is lifted to a selected height, where the

scan is proceeded with the topography of the sample stored, keeping the distance between

the cantilever and the surface constant. At this distance away from the sample, during the

second run, the Van der Waals force no longer contributes to the attraction or repulsion of

the probe, outcome resulting in obtaining only magnetic information of the sample [23].
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Figure 45: Magnetic force microscope utilized to analyze magnetic films

Crystallography of a desired sample can be analyzed by an x-ray diffraction

system. Through the x-ray diffraction system, a crystallographic pattern is generated by

analyzing and revealing the nature of the lattice. The observed crystal lattice can be

determined by using Bragg's law. Bragg's law indicates that when x-rays hit an atomn,

they force the electronic cloud to move like an electromagnetic wave. The mnovement of

the charges re-radiates waves with the same frequency; however, they are slightly blurred

due to the phenomenon known as Rayleigh scattering, shown in Figure 37a [3}. The re-

emitted x-rays interact through either constructive or deconstructive interference shown

in Figure 37b. The interference is constructive when the phase shift is proportional to 2it,

expressed by Bragg's law in Equation 24. Bragg's law is expressed by the wavelength of

the x-rays X, the distance between each atom d, known as the lattice constant, an integer

n, and the angle between the incident x-rays and the scattering planes 0.

n= 2d sin 0 (24)
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(a)

(b)

Figure 46: X-ray diffraction (a) Rayleigh scattering and (b) interference [3]
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6.1 Magneto-Optical Kerr Effect Magnometer

The magneto-optical Kerr effect magnometer was utilized to obtain the magnetic

behavior of the fabricated films. Through the magneto-optical Kerr effect magnometer,

hysteresis curves were generated and recorded. The formulation of the hysteresis curves

produced the calculation of various magnetic characteristics, specifically the coercivity,

remanence, squareness factor, and maximum energy product. These magnetic

characteristics are vital to determining the effectiveness of the fabricated magnetic media.

The hysteresis curves of multilayered media were obtained though the magneto-

optical Kerr effect magnometer. An optimization of cobalt/palladium multilayers,

implemented as a stack and acting as one single magnetic layer, was shown through the

characterization of the magnetic behavior. The determination of the coecivity,

squareness factor, coercive squareness, remanence, and maximum energy product was

analyzed through the variation of cobalt and palladium layers within a stack and the

number of layers N within a stack.

The thickness of the cobalt magnetic layers was investigated from one monolayer,

approximately 0.2 nm, to 0.6 rm by divisions of 0.1 rm (0.2 rm, 0.3 nm, 0.4 nm, 0.5 rm,

and 0.6 rm). The thickness of the palladium nonmagnetic layers was examined from one

monolayer, approximately 0.3 rm, to 1.5 nm by divisions of 0.3 rm (0.3 nm, 0.6 rm, 0.9

rim, 1.2 nn, and 1.5 rm). The dependence of the magnetic behaviors of the magnetic

media was also examined as a function of of layers N in one stack, implemented as one

magnetic behavior. The number of layers N in one stack were varied from one layer of

cobalt and palladium up to forty layers (N = 1, 3, 5, 10, 15, 20, 25, 30, and 40).
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The magneto-optical Kerr effect magnometer was used to analyze the magnetic

properties of in-house fabricated cobalt/palladium multilayered samples. Twenty-five of

the fabricated samples were of one stack consisting of fifteen magnetic and non-magnetic

layers (N = 15). The hysteresis curves observed from the magneto-optical Kerr effect

magnometer were recorded and plotted. As an example, displayed in Figure 46 are the

plotted results from the multilayered sample consisting of a thickness of 0.5 nm and 0.9

nm cobalt and palladium layers, respectively.
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Figure 47: Hysteresis curve for fabricated multilayer sample observed from magnometer

The thickness of the Co70 CrI8Pt12 magnetic layers was investigated from 0.1 nm, to

0.9 nm by divisions of 0.1 nm (0.1 nm, 0.2 nm, 0.3 nm, 0.4 nm, 0.5 nm, 0.6 nm, 0.7 nm,

0.8 nm, and 0.9nm). The magneto-optical Kerr effect magnometer was utilized to

examine the magnetic behavior of in-house fabricated Co70 Cr1 Pt1 2 samples. The

70



hysteresis curves observed from the magneto-optical Kerr effect magnometer were

recorded and plotted. As an example, displayed in Figure 47 are the plotted results from

the Co7oCr18Pt12 sample consisting of a thickness of 5 nm.
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Figure 48: Hysteresis curve for fabricated Co7oCriSPt12 sample observed from magnometer

Coercivity of the magnetic media was collected through the data from the

investigation of hysteresis curves by the magneto-optical Kerr effect magnometer, shoen

in Table 6. However, due to the hysteresis curves measured, none or minimal coercivity

was found within the multilayered samples. Coercivity of the multilayered media ideally

possesses a dependence on the thickness of the magnetic and nonmagnetic layers, cobalt

and palladium for the implemented multilayers, respectively.
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Cobalt Coercivity Tesla)
Thickness Palladium Palladium Palladium Palladium Palladium

0.3 nm 0.6 nm 0.9 nm 1.2 nm 1.5 nm
0.2 nm 0.04 0.04 0.05 0.05 0.03

0.3 nm 0.07 0.05 0.0 0.03 0.07

0.4 nm 0.11 0.09 0.10 0.08 0.08

0.5 nm 0.15 0.12 0.13 0.14 0.12

0.6 nm 0.15 0.15 0.14 0.14 0.13

Table 6: Coercivity dependence on cobalt and palladium thicknesses

The remanence of the magnetic multilayer media, measured in Tesla, describing

the magnetization of the media without the presence of any external magnetic field, was

examined through the investigation of the hysteresis from the magneto-optical Kerr effect

magnometer. Remanence of the media was investigated to determine the dependence of

the remanence on the thickness of the cobalt and palladium layers in the multilayered

magnetic samples, shown in Table 7. However, due to the hysteresis curves measured

from the magnometer, none or minimal remanence was found within the multilayered

samples.

Cobalt Remanence Tesla)
Thickness Palladium Palladium Palladium Palladium Palladium

0.3 nm 0.6 nm 0.9 nm 1.2 mn 1.5 nm
0.2 nm 0.03 0.02 0.02 0.04 0.03
0.3 nm 0.21 0.20 0.19 0.22 0.17

0.4 nm 0.47 0.52 0.48 0.43 0.43

0.5 nm 0.85 0.79 0.78 0.69 0.73
0.6 nm 0.86 0.82 0.77 0.71 0.70

Table 7: Remanence dependence on cobalt and palladium thicknesses
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The squareness factor of the multilayered media was calculated by determining

the ratio of the remanence by the saturation magnetization obtained from the

investigation. The impact of the distinct cobalt and palladium thickness on squareness

factor of all the fabricated magnetic media is shown in Table 8. Larger squareness

factors induce thermal stability and noise reduction to magnetic media. However, due to

the hysteresis curves measured, squareness factor was minimal for all samples due to the

absence of remanence within the multilayered samples.

Cobalt Squareness Factor
Thickness Palladium Palladium Palladium Palladium Palladium

0.3 nm 0.6 nm 0.9 nm 1.2 m 1.5 nm
0.2 nm 0.03 0.02 0.02 0.04 0.03

0.3 nm 0.21 0.20 0.19 0.22 0.17

0.4 nm 0.47 0.52 0.48 0.43 0.43

0.5 nm 0.85 0.79 0.78 0.69 0.73
0.6 nm 0.86 0.82 0.77 0.71 0.70

Table 8: Squareness factor dependence on cobalt and palladium thicknesses

The coercive squareness of the magnetic media was calculated by the determining

the ratio of the magnetic field at the intersection of the tangent line at the coercivity and

the vertical line crossing through the remenant magnetization by the coercivity, obtained

from the investigation. The influence of the various cobalt and palladium thicknesses on

coercive squareness of the fabricated magnetic media is shown in Table 9. Larger

coercive squareness also induces thermal stability and noise reduction to the magnetic

media. However, due to the hysteresis curves measured, coercive squareness factor was

minimal for all samples due to the absence of remanence and coercivity within the

multilayered samples.
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Cobalt Coercive Squareness
Thickness Palladium Palladium Palladium Palladium Palladium

0.3 nm 0.6 nm 0.9 nm 1.2 nm 1.5 nm

.2nm 0 0 0 0 0

0.3 nm 0.16 0.13 0.16 0.18 0.17

0.4 nm 0.38 0.51 0.45 0.46 0.49

0.5 nm 0.66 0.64 0.69 0.63 0.65

0.6 nm 0.70 0.67 0.67 0.71 0.70

Table 9: Coercive squareness factor dependence on cobalt and palladium thicknesses

The maximum energy product was calculated by obtaining the largest fitting

rectangle in the second quadrant of the hysteresis loop. The dependence on the thickness

of the cobalt magnetic layer and palladium nonmagnetic layer is exhibited in Table 10.

Cobalt Maximum Energy Product esla2

Thickness Palladium Palladium Palladium Palladium Palladium
0.3 nm 0.6 nm 0.9 nm 1.2 nm 1.5 nm

0.2 nm 0.00 0.00 0.00 0.00 0.00

0.3 nm 0.01 0.02 0.02 0.01 0.01

0.4 nm 0.04 .05 0.05 0.05 0.05

0.5 nm 0.09 0.08 0.10 0.11 0.09

0.6 nm 0.11 0.10 0.12 0.11 0.10

Table 10: Maximum energy product dependence on cobalt and palladium thicknesses

The magnetic behaviors of coercivity, remnanence, squareness factor, and

maximum energy product all should ideally vary on the number of layer repetitions of the

magnetic and nonmagnetic layers as seen in Table 11. Layers considered for layer

repetitions consisted each of one cobalt level and one palladium level. The amount of

layer repetitions in a stack, behaving as one magnetic layer, was varied to show the

magnetic behaviors within a range that exhibited their fluctuations. Each layer repetition

represents a 0.6 nm cobalt layer stacked with a 0.9 nm palladium layer.
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Layers Coercivity Remanence Squareness Coercive Maximum
Repetitions Factor Squareness Energy Product

1 0.06 0.81 0.81 0.19 0.01

0.07 0.61 0.61 0.64 0.07

0.07 0.73 0.73 0.53 0.10

10 o.10 0.79 0.79 0.68 0.11

15 0.14 0.77 0.77 0.67 0.12

20 0.16 0.78 0.78 0.70 0.12

25 0.15 0.75 0.75 0.71 0.12

0 .18 0.68 0.68 0.68 0.13

40 0.20 0.79 0.79 0.72 0.14

Table 11: Magnetic behavior dependence on layer repetition of cobalt and palladium

The various magnetic behaviors of CooCrj 8PtI2 magnetic films are displayed in

Table 12 as a function of the thickness. The alloy was implemented as a magnetic layer,

from 1 nm to 9 nm. The nine magnetic films were all deposited on a 10 nm palladium

seedlayer. Only one magnetic layer was deposited to analyze the magnetic characteristics

without the interdependence several magnetic and non-magnetic layers may generate.

Co70Cri8 Pt1  Coercivity Remanence Squareness Coercive Maximum
Thickness Factor Squareness Energy Product

1 nm 0.00 0.00 0.00 0.00 0.00
2 nm o.00 0.00 0.00 0.00 0.00

3 nm o.0o 0.00 .0 0.00 0.00
4 nm o.00 0.00 0.00 0.00 0.00

5 nm0.00 0.00 0.00 0.00 0.00
6 nm 0.00 0.00 0.00 0.00 0.00
7 nm 0.00 0.00 0.00 0.00 0.00

8 nm o.oo 0.00 0.00 0.00 0.00

9 n0oo.00 0.00 0.00 0.00

Table 12: Magnetic behavior dependence on Co7 0Cr 1$Pt magnetic layer thickness
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The magnometer was used to analyze the magnetic properties of a cobalt/palladium

sample obtained from the University of Houston. The characteristics of the sample were

fifteen cobalt and palladium layers layers of 0.6 nm and 1.2 nm thickness, respectively.

Results for the sample displayed a typical hysteresis curve for perpendicular media, seen

in Figure 47. The observed magnetic behavior provided evidence that multilayers exhibit

magnetic features and that the magnometer functioned properly, shown in Table 13.
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Figure 49: Hysteresis curve for Co/Pd sample observed from magnometer

Unit Measurement
Coercivity (Tesla) 0.53

Remanence (Tesla) 0.95

Squareness Factor 0.95

Coercive Squareness 0.91
Maximum Energy Product (Tesla 2) 0.39

Table 13: Magnetic characteristics of Co/Pd sample
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The magneto-optical Kerr effect magnometer was also utilized to analyze the

magnetic properties of two different permalloy samples. Both samples were nearly

identical, with sputtering parameters of 100 W power, RF type sputtering, Argon flow of

20 sccm, chamber pressure of 10 mTorr, and chamber temperature of 240 C for a

thickness of 110 nm. The second permalloy sample was then patterned with the focused

ion beam, forming a periodicity pattern of 100 nm. The measured results from the

magnometer for both permalloy samples exhibited a typical hysteresis curve for soft

magnetic metals, shown in Figure 48 and Figure 49. The observed magnetic properties

provided evidence that the characteristic features for soft magnetic metals were present,

shown in Table 14.
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Figure 50: Hysteresis curve for fabricated permalloy sample without patterns
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Figure 51: Hysteresis curve for fabricated permalloy sample with patterns

Unit Measurement Measurement
Permalloy Patterned Permalloy

Coercivity (Tesla) 0.05 0.02

Remanence (Tesla) 0.24 0.15

Squareness Factor 0.24 0.15

Coercive Squareness 0.01 0.01

Maximum Energy Product (Tesla2) 0.01 0.01

Table 14: Magnetic characteristics of flat and patterned permalloy

After the results provided by the magnometer were finalized, it was clear that the

patterned permalloy did not have an effect on this type of analysis. This phenomenon

was due to the diameter of the light utilized, larger than the micrometer scale. The results

observed from the magnometer provide average magnetic behavior much larger in scale

than nanometers, causing the nanometer patterns to become negligible.
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The magnometer was utilized to analyze the magnetic properties of a different

permalloy sample. The sputtering parameters consisted of 100 W power, RF type

sputtering, Argon flow of 20 sccm, chamber pressure of 10 mTorr, and chamber

temperature of 1000 C for a thickness of 400 nm. The results from the magnometer for

the thicker permalloy samples exhibited a typical hysteresis curve for soft magnetic

metals, shown in Figure 50, and provided characteristic features, shown in Table 15.
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Figure 52: Hysteresis curve for fabricated permalloy sample of 400 nm

Unit Measurement
Permalloy

Coercivity (Tesla) 0.00

Remanence (Tesla) 0.00

Squareness Factor 0.00

Coercive Squareness 0.00
Maximum Energy Product (Tesla2 ) 0.00

Table 15: Magnetic characteristics of flat and patterned permalloy
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6.2 Atomic Force Microscopy

The atomic force microscope was mainly utilized to obtain the deposition rates of

sputtering by viewing the step heights and to observe the topography of certain samples.

Through the accurate precision of the probe, nanometer resolution was obtainable. The

resolution was sufficient to analyze nanometer thin films or larger. Computational

analysis was performed by the software, Nanoscope, providing results in an image form.

Deposition rates were obtained through the atomic force microscope. A section

of the sample was masked though the deposition process, resulting in a step from the

silicon and the desired layer. The topography of a permalloy sample with height 110 nm

is illustrated in Figure 50. Through the illustration, it is observed that the masking of a

section of the silicon provided a clear separation between the two levels.

J 
8

jr-I

Figure 53: AFM image in 3D of step coverage for rate determination
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The software for the atomic force microscope allowed for the determination of

step heights on a sample. Within the software, the step height tool calculated the

difference of heights between two distinct regions, exemplified in Figure 51 for a 230 nm

thick permalloy sample. After the two different regions within a sample are chosen for

comparison, the software calculates the average height for both regions and takes the

difference.

Stepheight

EStep height
230 29 nm

Figure 54: AFM utilization for step height measurements and rate determination

Topography of the desired samples was also obtained through the atomic force

microscope. The software allowed for the visualization of a sample in either two-

dimensional or three-dimensional mode. Figure 52a illustrates the two-dimensional

visualization and Figure 52b shows the three-dimensional mode of a patterned permalloy

sample. Through the illustration, the 100 nm periodicity etched by the focused ion beam

is clearly visible, confirmed by the calculated spectral frequency through the software.
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(a) (b)

Figure 55: (a) AFM image of a patterned permalloy sample in 2D mode (b) and in 3D mode

Topography of a sputter permalloy sample can be seen in Figure 53. It is visible

that the scan through the sample resulted in a continuous sample which is mostly flat.

The monotone image confirms that the deposited sample is not rough and contains very

few discrepancies.

Figure 56: AFM image of sputtered permalloy at 100 nm
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6.3 Magnetic Force Microscopy

The magnetic force microscope was mainly utilized to observe the magnetic

properties of the fabricated samples. Scanning of the sample generates fluctuation by the

magnetic probe, resulting in precise calculation of the magnetization throughout the

examined region. Computational analysis was also performed by the Nanoscope

software, providing results in an image form.

Permalloy was deposited on silicon to fabricate the soft underlayers for media

recording and reading enhancement. During the deposition process several permalloy

samples, magnets were aligned across the sample, inducing a field through the silicon.

The result was the phenomenon known as stripe domains. Stripe domains are very thin

domains which stretch long through the sample, seen in Figure 54. They are considered

to be practical for high speed applications, important for ultra fast reading and writing.

Figure 57: MFM image of permalloy with domains aligned
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6.4 X-Ray Diffraction

Crystallography of the deposited metals was investigated through x-ray

diffraction. By means of x-ray diffraction, the contents and crystal structure of a sample

may be analyzed. X-ray diffraction was utilized to examine and verify the structures of

the isolated metals deposited on a silicon wafer and on the same metals on multilayer

samples. The diffractometer, within an x-ray diffraction system, measures twice the

angle theta, defined by the angle of diffraction, commonly regarded as 2-theta.

Palladium was deposited through sputtering onto a silicon wafer for

crystallographic investigation. Palladium, on a silicon wafer, was observed though x-ray

diffraction, shown in Figure 55. The 2-theta scan clearly indicated a cubic face centered

crystal structure for the palladium layer, its typical crystallographic arrangement.

Figure 58: X-ray diffraction on palladium cubic face centered structure
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Tantalum was deposited by means of sputtering onto a silicon wafer for

crystallographic examination. Tantalum, isolated on a silicon wafer, was observed

though x-ray diffraction, illustrated in Figure 56. The 2-theta scan prominently revealed

a cubic body centered crystal organization for the tantalum level, its characteristic

crystallographic structure.

Figure 59: X-ray diffraction on tantalum cubic body centered structure

Cobalt was also deposited through sputtering onto a silicon wafer for

crystallographic assessment. Cobalt, isolated on a silicon wafer, was observed though x-

ray diffraction, as seen in Figure 57. Contrary to the other metals observed, a lack of

crystallographic structure for the cobalt layer was observed by the 2-theta scan.
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Figure 60: X-ray diffraction on cobalt

The analysis of a multilayer sample through x-ray diffraction is illustrated in

Figure 58. Prominent metals in the multilayer analyzed are the tantalum seedlayer,

palladium nonmagnetic layer, and silicon wafer. Tantalum employed as a thick

seedlayer, roughly 30 nm, displayed a clear peak at 320 on the scan, indicating cubic

body centered crystal structure. Palladium exploited as a nonmagnetic interlayer of

approximately 1 nm, is demonstrated by the small peaks evident near 400 on the scan.

These palladium peaks correspond to cubic face centered structure, although they were

not prevalent due to the small thicknesses of the palladium layers. The silicon wafer,

consisting of the largest thickness within the multilayer sample, was the most apparent

structure obtained, at 700 on the scan, during the x-ray diffraction process. Crystal

structure on cobalt was undistinguishable within the x-ray diffraction analysis. An

explanation for this outcome is that cobalt layers observed were of approximately

between 0.3 nm and 0.5 nm, resulting in a thickness of no larger than two atomic layers.
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At this thin thickness, insufficient cobalt atoms are available to produce a structured

crystal, lacking more atomic layers to emulate bulk properties which would resemble a

hexagonal closed packed crystal.

Silicon

Tantalum

Palladium

Figure 61: X-ray diffraction showing peaks for tantalum, silicon, and palladium
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7. CONCLUSIONS

The magneto-optical Ke effect magnometer setup was successfully developed

and completed. As shown in the results, the magnometer obtained reliable measurements

which were easily analyzed through the hysteresis curves. It was possible to measure

coercivity, remanence, maximum energy product, squareness factor, and coercive

squareness though the hysteresis curves obtained. Improvements to the magnometer

system could still be made, increasing the precision and reliability of the measured

results. A vacuum system may be placed to surround the laser, which decreases the small

deflections through air, enhancing the precision of the system. Increasing the reliability

of the system can be accomplished by placing a micro actuator between the two large

magnets, obtaining an improved, precise reflection off the sample. However, abundant

funds are required to design and assemble improvements for the magnometer.

The coercivity, remanence, and saturation magnetization of the three-dimensional

media is expected to strongly depend on the thickness of the cobalt and palladium layers.

The magnetic layers of lowest thickness are desired for the equation in perpendicular

anisotropy, where the perpendicular anisotropy is inversely proportional to the thickness.

With a constant palladium nonmagnetic layer, these magnetic characteristics of the media

is predicted to be considerably low for a 0.2 um and 0.3 nm cobalt magnetic layers. The

reason for this prediction may be explained by a few reasons due to imperfections in

depositing a perfect monolayer of cobalt, virtually impossible by today's standards. First,

imperfections in the film may cause the cobalt to separate either in the x or y axis

(considering the z axis normal to the plane). These cobalt islands, separated by
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palladium, would reduce the exchange coupling of the cobalt atoms deposited for the

same monolayer. This effect may lead to several cobalt islands which may not align in

the same direction of the net magnetization due to the lack of sufficient exchange energy

amongst the cobalt atoms. Additionally, these magnetic characteristics of the 0.2 nm and

0.3 nm cobalt layers may also be low due to imperfections of depositing thin films due to

the surface roughness between layers. Interfacial surface anisotropy has been shown to

increase as the magnetic and nonmagnetic layers are made thinner; however, surface

roughness becomes much more prominent near monolayers, identified by larger surface-

to-volume ratios. A step on the palladium or tantalum layer underneath a cobalt layer

tends to induce an in-plane uniaxial magnetic anisotropy, with an easy axis parallel to the

step direction, resulting in extremely undesirable effect for perpendicular or three-

dimensional media. Furthermore, these magnetic characteristics are expected to decrease

as the cobalt thicknesses reach near 1 nm. At this range of thicknesses of the cobalt

magnetic layers, the interfacial surface anisotropy is reduced, resulting in a decrease of

perpendicular anisotropy.

The various fabricated multilayered samples did not exhibit the predicted magnetic

behaviors. Magneto-optical Kerr effect microscopy proved unsuccessful in obtaining

valid hysteresis curves for those samples. However, it was observed that the magneto-

optical Kerr effect magnometer was functioning properly through the measurements of

other magnetic samples. One hypothesis for the absence of glaring perpendicular

magnetic characteristics might have been the sputtering system inadequate deposition for

ultra thin films. With the lack of extreme heating and rotation during the deposition

process, it becomes conceivably difficult to produce excellent quality films, necessary to
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produced multilayered media. Large amounts of thickness fluctuations of a layer

generate islands of metals and numerous steps between layers, extremely unfavorable for

magnetic recording.

With the improvements made to the deposition process, it becomes conceivable to

attain and exceed the 1 Tbit/in2 mark. Through the focused ion beam, it has already

become possible to fabricate small patterns in the order of a few nanometers, suitable for

extremely small islands sizes necessary to surpass the mentioned mark. Proper

thicknesses, in the order of a few Angstroms, have already been attained through

sputtering. The only issue arises in obtaining layers with the absence of steps and other

imperfections, which extreme heating and rotation of the sample could vastly improve.

The tools are already in place to measure and characterize the media, which include the

developed magneto-optical Kerr effect magnometer to measure magnetic characteristics

of thin films,
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