
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-24-1994

Meson-meson scattering in 2+1 dimensional lattice
quantum electrodynamics
Alberto Luis Domínguez
Florida International University

DOI: 10.25148/etd.FI15101213
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Physics Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Domínguez, Alberto Luis, "Meson-meson scattering in 2+1 dimensional lattice quantum electrodynamics" (1994). FIU Electronic
Theses and Dissertations. 3076.
https://digitalcommons.fiu.edu/etd/3076

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.fiu.edu%2Fetd%2F3076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3076?utm_source=digitalcommons.fiu.edu%2Fetd%2F3076&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

MESON-MESON SCATTERING

IN 2+1 DIMENSIONAL LATTICE

QUANTUM ELECTRODYNAMICS

A thesis submitted in partial satisfaction of the

requirements for the degree of

MASTER OF SCIENCE

IN

PHYSICS

by

Alberto Luis Dominguez

1994



To: Dean Arthur W. Herriott
College of Arts and Sciences

This thesis, written by Alberto Luis Dominguez, and entitled Meson-Meson Scattering in
2+1 Dimensional Lattice Quantum Electrodynamics, having been approved in respect to
style and intellectual content, is referred to you for judgement.

We have read this thesis and recommend that it be approved.

Mark Leckband

Xuewen Wang

Stephan L. Mintz

H. Rudolf Fiebig, Major Professor

Date of Defense: June 24, 1994

The thesis of Alberto Luis Dominguez is approved.

Dean Arthur W. Herriott
College of Arts and Sciences

Dr. Richard L. Campbell
Dean of Graduate Studies

Florida International University, 1994

ii



OYRIGHT 1994 by Alberto Luis Dominguez

All rights reserved

iii



DEDICATION

This thesis is dedicated to my mother, without whose financial assistance and

emotional support it could never have been written.

iv



ACKNOWLEDGEMENTS

I wish to thank all the members of my committee for their help and patience during

the completion of this thesis. Their comments and suggestions have resulted in a much

clearer presentation of my work. Thanks are also due to the friends who read rough drafts

of this work. Many of their comments and suggestions have also been incorporated into this

final draft. Needless to say, any remaining shortcomings are entirely my own responsibility.

I wish to take this opportunity to thank especially Professor Rudolf Fiebig for his

instruction, assistance and friendship over the last seven years. Without his unwavering

support and constant encouragement during my graduate work, it would not have been

possible for me to complete this thesis and finish my degree.

I also wish to acknowledge the paper "Meson-Meson Scattering in 2+1 Dimensional

Lattice Quantum Electrodynamics" by H. R. Fiebig, R. M. Woloshyn and A. L. Dominguez,

published in Nuclear Physics B (1994) 418, 637, from which the present work draws heavily.

v



ABSTRACT OF THE THESIS

MESON-MESON SCATTERING

IN 2+1 DIMENSIONAL LATTICE

QUANTUM ELECTRODYNAMICS

by

Alberto Luis Dominguez

Florida International University, 1994

Professor H. Rudolf Fiebig, Major Professor

For three-dimensional compact lattice quantum electrodynamics, the meson-meson

energy spectrum is obtained from a truncated time-correlation matrix of field operators. The

energy levels indicate a slightly attractive residual interaction between the mesons. From

the finite-volume spectrum, the scattering phase shifts can be calculated for the various

irreducible representations of the lattice symmetry group. The s-wave phase shifts indicate

short-range repulsion, while the d-wave data indicate intermediate-range attraction. This

work serves as a model for describing the strong nuclear force from basic principles.
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1. INTRODUCTION

1. Oranization o this Thesis

This thesis uses a lattice gauge theory numerical simulation to calculate the scattering

phase shifts of two mesons scattering off each other and attempts to interpret these phase

shifts in a manner consistent with nuclear physics experimental data. This work could serve

as a foundation for a fundamental explanation of the strong nuclear force in terms of gauge

fields.

The work involved in this thesis divides naturally into two parts. The first part

involves the analytic calculation of the four-point correlation functions. These correlation

functions are then used to obtain the two-body energy spectrum, from which we can then

extract the corresponding discrete set of values of the momentum. The second part involves

the numerical calculation of the energy-dependent M-matrix, which is in turn used to solve

numerically the determinant condition for the scattering phase shifts 8(k).

This manuscript is divided into seven chapters. The present Chapter I provides a

historical and theoretical introduction to this field of research, a discussion of earlier work

on our problem and related problems, a brief explanation of the "standard model" of

elementary particle physics, and an overview of our solution method. Chapter II gives a

brief review of the relevant lattice gauge theory and an explanation of the fermion matrix and

its inverse. Chapter III explains the analytic derivation of the two-point and four-point time

correlation functions, which is the endpoint of the analytical aspect of this work. Chapter

IV provides an overview of how the two-body energy spectrum and the corresponding values

1



of the momentum are calculated, discusses some of the computational difficulties, explains

the numerical procedures and parameters used in this work, and uses the four-point

correlation function to obtain the momenta. Chapter V gives the solution of the Schrdinger

equation for our problem, and derives the M-matrix from these solutions. Chapter VI

explains the method for solving the determinant condition, gives a partial wave analysis of

our problem, extracts from this partial wave analysis the scattering phase shifts, and gives

graphs of the scattering phase shifts as a function of the momentum squared, which is the

final goal of this work. Chapter VII gives a brief explanation of our numerical results,

considers directions in which this work might lead future research, and discusses how this

work could lead to an explanation of the strong nuclear force from basic principles. Each

chapter finishes with its own set of endnotes and a discussion of other work which should

be read in conjunction with that chapter.

2. The "Standard Model" of Particle Physics

Physicists presently believe that there are four basic forces in nature: the

electromagnetic force (responsible for the binding of nuclei and electrons into atoms and the

binding of atoms into molecules), the strong nuclear force (responsible for the binding of

protons and neutrons into complex nuclei and the confinement of quarks into mesons and

hadrons), the weak nuclear force (responsible for beta decay of nuclei and neutrons and the

decay of the muon), and the gravitational force (responsible for the motion of planets and

galaxies and the large-scale structure of the universe). Presently, gravity is explained by

Einstein's theory of general relativity, and the other three forces are described by the



"standard model" of particle physics.

The standard model consists of the electroweak theory and quantum

chromodynamics. The electroweak theory was developed between 1961 and 1968 by

Sheldon Glashow, Abdus Salam and Steven Weinberg. To understand how the theory was

developed, we must first discuss quantum electrodynamics, developed by Richard

Feynmann, Julian Schwinger and Shinichero Tomonaga in the 1940s. The invariance of the

equations of quantum electrodynamics under certain transformations of the electromagnetic

field (called gauge transformations) led to the formulation of the theory as a gauge field

theory where the photon is the gauge (interaction) field mediating the electromagnetic force.

In quantum electrodynamics, the gauge fields are subject to the gauge symmetry group U(1),

the unitary group in 1 dimension. Glashow, Salam and Weinberg independently discovered

that the electromagnetic and weak forces could be described by a single theory which

contained the photon as a gauge field, but also contained gauge fields capable of explaining

the weak nuclear force. Their electroweak, or GSW, theory predicted the W' and Z0 bosons

as the gauge fields mediating the weak force. These gauge fields were subject to the gauge

symmetry group SU(2), the special unitary group of 2x2 matrices. The electroweak theory

was verified when the W' and Z' were discovered at CERN in 1983. This theory unified the

electromagnetic and weak forces by showing them to be different manifestations of the same

interaction, which was subject to the gauge symmetry group SU(2)®U(1).

The foundation for quantum chromodynamics was laid by Murray Gell-Mann and

Yuval Neeman in 1961 when they proposed a grouping scheme for particles which interacted

via the strong nuclear force. Their grouping scheme was subject to the symmetry group
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SU(3), the special unitary group of 3x3 matrices. Soon thereafter, Gell-Mann and Zweig

proposed the existence of quarks as the elementary building blocks of mesons and hadrons.

In the 1960s and 1970s, it came to be known that the grouping scheme of Gell-Mann strong

nuclear force could be explained using a gauge field theory in which the gauge fields are

subject to the gauge symmetry group SU(3), the same group as in Gell-Mann's earlier theory.

This theory is quantum chromodynamics (QCD), in which quarks are the fundamental

particles, which interact through gauge fields called gluons. In QCD, mesons and hadrons

are no longer found to be fundamental, as was believed until the 1960s. The present theory

states that mesons are made up of a quark-antiquark pair and hadrons are made up of three

quarks.

Many physicists believe that there should be a single "grand unified" gauge field

theory which contains the gauge fields of both the electroweak theory and QCD and unifies

all three forces (electromagnetic, weak and strong), showing them to be different aspects of

the same theory. The gauge symmetry group of such a theory would have to contain

SU(3)oSU(2)oU(1). Until recently, the most popular candidate for a "grand unifed theory"

was based on the gauge symmetry group SU(5). However, to date, no "grand unified theory"

has made successful predictions.

3. Work on Earlier Related Problems

In particle physics, the standard model consisting of the electroweak theory and QCD

is generally believed to explain all fundamental physics at all presently accessible energies.

However, it has so far proved impossible to compare the experimental data for low-energy
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hadron-hadron scattering with the theoretical predictions of QCD, because the latter are very

difficult to obtain.

One of the most promising attempts to solve QCD at the low energies relevant to

nuclear physics is lattice gauge theory, introduced by Wilson in 1974. In Wilson's lattice

formulation of gauge theory, the fields are placed on a discrete Euclidean spacetime lattice

and the functional integral is computed by numerical simulation. This formulation is a non-

perturbative approach to gauge field theories. It involves approximating the continuous

spacetime of traditional quantum field theory (which provides the formalism on which all

gauge field theories are based) with a Euclidean lattice . This seems a very natural way of

regulating the ultraviolet divergences endemic to quantum field theory. Since no two points

can ever be closer than the lattice spacing a, the maximum momentum A correspondingly

is of the order h/a. Therefore, Wilson's lattice formulation of gauge field theory contains a

natural ultraviolet cutoff

Wilson's work was based on the concept of a gauge field as a path-dependent phase

factor. In Wilson's formulation we associate an independent element Ug of the given gauge

group G with each link between two nearest-neighbor lattice sites i and j. In the present text,

the additional indices arising from the fact that the Uj may be matrices ( as in the cases of

SU(2)oU(1) and SU(3) ) are suppressed. The mathematical details of Wilson's lattice gauge

theory are contained in Chapter IL

Wilson's lattice formulation of QCD has been extensively used to obtain hadron

masses. Furthermore, since the energy of a two-particle state on a finite-volume lattice

differs from its energy Eo=2m on an infinite-volume lattice by correction terms which
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involve the scattering length3 , the lattice formulation can also be used to calculate scattering

lengths. This method has been successfully applied to the problem of obtaining n-n and n-

N scattering lengths in lattice QCD34 .

4. Earlier Work on the Present Problem

(i) 1+1 Dimensional Non-Relativistic Quantum Mechanics

The next logical step in the lattice formulation of QCD3+1 would be to calculate

scattering phase shifts. And, indeed, it is possible to calculate phase shifts using the finite-

size effects of the lattice formulation, even though the procedure is significantly more

complex than the one for calculating scattering lengths.

In one space dimension, the scattering phase shifts 8(k) for two non-relativistic

point-like spinless bosons can be obtained from the equation'

e 286(k) _ e -ikL

where the relative momenta k can be extracted from the discrete finite-volume lattice energy

spectrum in the relative coordinate

E = (1.2)

The formal derivation of equation 1.1 has been relegated to section L6 to preserve

continuity. However, it seems useful at this point to consider a fairly intuitive physical

interpretation of this equation.
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For a given interaction potential V(LzLJ) and box size L, the Schr dinger equation

with periodic boundary conditions has a discrete set of solutions which then yields all the

possible finite-volume energy levels, E. = k /m with neN. This reminds us of the general

result of quantum mechanics that a free particle can have any energy value while a bound

particle (such as our particle in a box of length L) can have only certain discrete energy

values. However, in addition to this obvious interpretation as a quantization condition on

our system, there is a much more fundamental physical significance to this equation.

If we look at figure LI a, we see that, in the non-interacting case, the wavefunction

for the particle in the box smoothly connects to itself when the endpoints z = L /2 are

identified, which is reminiscent of the periodic boundary conditions discussed above. But

the introduction of an interaction V(LzL) distorts the wavefunction in the interaction region

around z=0 in such a way that the asymptotically free waves near the endpoints, z = L/2,

are phase shifted relative to each other by 26(k). This is illustrated in figure I. lb for the case

of an attractive potential. Looking at figure . 1 c, we see that the periodicity can be restored

by changing either k or L until the equation 28(k)=kL (mod 2n) is satisfied.

So equation 1 1 tells us that the kinematical phase shift which one picks up when

translating a free wave of momentum k by a distance L and the phase shift which results

from the scattering of the particles must exactly compensate each other to guarantee the

periodicity of the wave.

(ii) 1+1-Dimensional Quantum Field Theory

In a relativistic quantum field theory in one space dimension, equation 1.1 remains

7



the same and the relative momenta k can still be extracted from the discrete energy spectrum,

which is now given by

E=2 n 2 + k 2  (I.3)

The interpretation of the scattering phase shift equation in a relativistic quanturn field

theory is the same as the one discussed above for non-relativistic quantum mechanics. The

phase 8(x) by which a free-particle state of momentum k transforms under translations over

a distance L is kL/2. The only difference comes in the energy-momentum equation. It is

worth noting that, in the case of quantum field theory, equation I. can also be derived within

the framework of the usual Feynman diagram expansion6 . As a final comment, we note the

restrictions on the applicability of equation I.1. The equation is expected to hold in any 1+1

dimensional quantum field theory with only massive particles provided that

(1) the finite-volume two-particle states are such that mixing with other many-particle

states is suppressed,

(2) L is larger than the interaction range so that the wavefunction is free for relative

separations close to z= L/2,

(3) L is sufficiently large to avoid polarization effects from virtual particles interacting

"around-the-world" across what is actually a relative separation close to z= L (an

effect which is automatically negligible once condition 2 is satisfied), and

(4) the lattice spacing is sufficiently small so that the Euclidean lattice correction terms

(which vanish as a power of the lattice spacing) can be ignored.'



(iii) 3+1-Dimensional (and 2+1-Dimensional) Quantum Field Theory

In a relativistic quantum field theory in three space dimensions, equation 1.3 remains

valid, but the equation for obtaining S(k) is more complicated,8

det (e 2a(k) - U(k)) = 0 (1.4)

where the matrix U is a shorthand notation,

U = (M+i)-1(M-i) (1.5)

where M=M(q 2), with q=kL/2n, is an energy-dependent matrix which emerges from

constructing a Green's function for a short-ranged periodic potential'. The matrix M is a

finite linear combination of the zeta functions defined by"

S(1;q2 1 (1.6)
n -q

where

J,,() = r 'Y,(0,p) (1.7)

are harmonic polynomials. The derivations of the energy-dependent M-matrix and the

determinant condition 1.4 on the scattering phase shifts are discussed at greater length in

Chapters V and V.
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5. Our Solution Method

There are two fundamental difficulties involved in applying the procedure outlined

above to the calculation of scattering amplitudes. The first complication is that, in order to

obtain the four-point time correlation functions from a lattice simulation, the entire fermion

propagator matrix must be calculated. We dealt with this complication by using several

simplying symmetries which reduced the need for numerical computation. This solution to

the first complication is discussed at length in Chapter III. A second, even more serious,

complication is that, due to computational limitations, the lattices which have been used so

far are too small to contain two well-separated (slowly-moving) composite particles

appropriate to the problem.

In our work, we sought to circumvent this second computational limitation by

obtaining scattering data from a lattice simulation of QED 2,1 rather than of QCD3+1. Our

choice of QED2 1 is easier to deal with numerically because of its lower dimensionality (two

space dimensions instead of three) and the one-dimensional parameter space and Abelian

structure of its U(1) gauge group (as opposed to the larger parameter space and non-Abelian

structure of the SU(3) gauge group of QCD). But, despite its greater simplicity, QED2+,

shares several phenomenological characteristics with QCD3 +, such as a confinement-

deconfnement phase transition 1 , spontaneous chiral symmetry breaking 2 , and the existence

of composite mesonic (i.e. fermion-antifermion) particle states".

For these reasons, we used the QED2 +1 model to learn about the interactions of two

composite mesonic particles in the hope that the results might be suggestive of the behavior

of the physically significant QCD 311 model. Also, we hoped that we could use our work to
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learn about the usefulness and limitations of certain numerical techniques.

6. Derivation of Equation I.1

Consider two identical spinless pointlike bosons moving on a line in one space

dimension. The Schrodinger wavefunction i(x,y) depends on the positions x and y of the

two particles and must be symmetric under the interchange of x and y. If we furthemore

restrict ourselves to states with zero total momentum, then we have the condition

i(x,y)=f(x-y), where f(z)=f(-z).

The stationary Schr dinger equation in infinite volume reduces to

[ - + V(Ix)] f(z) = Ef(z) (L8)
m dz2

Since f(z) must be even, there is only one admissible linearly independent solution

for any given energy value E, which we will indicate by fE(z). If E=k 2/m with k>O, then fE(z)

is a stationary scattering solution, which can be normalized so that

f4(z) = cos(k zl +8(k)) = 0 in the limit lk loo (.9)

Now suppose that the particles are enclosed in a periodic box of length L, so that we

must take into account "around-the-world" effects. Then the stationary Schrodinger

equation becomes

1 d2

nd 2 vc V(Iz+vLI)] f(z) = Ef(z) (I.10)

The periodicity condition implies that fE'(-L/2) = fE'(L/2) = 0. Recalling the limit
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L9, we conclude that

kL + 28(k) = 0 (mod 2n) (L 1)

which can be restated as

e 2i6(k) A -ikL

which is equation L 1.

7. Notes

A discussion of the standard model can be found in Cooper & West (1988) and

Hughes (1985) at a fairly elementary level, in Aitchison & Hey (1989) at an intermediate

level, and in Renton (1990) and Cheng & Li (1984) at a fairly sophisticated level. Fiebig,

Woloshyn and Dominguez (1994) contains an excellent summary of previous work in this

field. L scher (1986) and LUscher and Wolff (1990) are the sources for equation i.

L scher (1991a) and Lischer (1991a) are the sources for equation L4.

1. Wilson (1974).

2. Creutz (1983), chapter 7.

3. Hamber et al (1983).

4. Guagnelli, Marinari and Parisi (1990).
Sharpe (1991).
Sharpe, Gupta and Kilcup (1992).

5. Luscher (1986).
LAscher and Wolff (1990).

6. Lischer (1986).
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7. LUscher and Wolff (1990).

8. Taylor (1983), chapter 11.

9. Fiebig, Woloshyn and Dominguez (1994).

10. Lischer (1991a).
L~scher (1991b).
Fiebig, Woloshyn and Dominguez (1994).

11. Coddington et al (1986).

12. Dagotto, Kogut and Kocic (1989).
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(a)

kL =4.Qx27r

(b)

= 1.2x2T

(a)

kL-:1.6x27r

-L/2 0 +L 2

FIGLURE L.i
ILLUSTFRATION OF EQUATION LI1

Generic solutions ij(x) of the Schrodinger equation
(a) with no interaction,
(b) with an attractive potential around x=O, and
(c) with decreased wave number k to restore the original phase condition1
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I. LATTICE GAUGE THEORY

1. The Wilson Gauge Action

The first step of Wilson's lattice formulation of gauge field theory is to define an

appropriate gauge action for the theory. We will consider a few obvious requirements for

this action before we attempt to write down a naive expression for it. The action, which will

be comnposed only of the link variables Ui defined above, should be real and bounded, should

be gauge invariant and should reduce to the continuum action as a-0,

The simplest gauge-invariant combination of link variables consists of four link

variables which form a closed loop, called a plaquette'. Hence, we choose our expression

for the lattice plaquette action by taking the path-dependent product of the link variables Ui

around the plaquette, which actually does possess all of the above properties. Our notation

for this plaquette is

U,(x) = Uv(x) U(x +a ) UV(x+a) U1(x) (T 1)

The reason for this notation will best be appreciated by looking at figure I. 1.

The plaquette action is then given by

1
[ = [1 -- R(Tr(U (x)))] (11.2)

where N is the dimension of the gauge group square matrices, and the constant 1 will be

determined later. Tr and R ean that we take first the trace of the matrix , and then the

real part of this trace. The total Wilson action is then given by the appropriate sum over all

15



plaquettes.

S= e[U (113)

Hereafter, we will limit our discussion to the gauge group of quantum

electrodynamics, U(1), in order to obtain the specific results needed for our simulation of

QED2 . For the U(1) gauge theory, the link variables are given by

U1(x) = ' 'goaX (114)

where A,(x) is an angle, O A,(x)<2 /g, and g is the coupling constant.

Now we need to work through the algebra resulting from the substitution of equation

IL4 into equation II 1. Aided by the fact that all the link variables commute, we arrive at

(x) - e ga [ ar4v (IL 5)

in the limit a-O.

In the U(1) case, the plaquette action IL 2 is given by

SL[11=f[ l -( 't())] (116)

which, in the limit a-0, simplifies to

SL[T = -- - (IL7)

where F,,,=aA-a, , is the usual field strength tensor.
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Two things about this action are worth noting. First, we note that, i the continuum

limit .a4 - fd4x, the total Wilson action simplifies to the usual continuum result if we

identify the constant p with 1/2g2.

S[Uj = fd~xl172  (11 8)

Second, we note that the Wilson action 11.7 is gauge invariant, as must be demanded.

2. The Kogut-Susskind Fermion Action

Fermion (matter) fields can now be introduced in two ways, using Wilson fermions3

or using Kogut-Susskind (staggered) fermions. In either case, the fermion action is written

- = E ,- - A #
SF[ JX = x)G UIx/y) (11.9)

where f=u,d are the flavours of the fermion field, "up" and "down", and the sum extends over

all lattice sites x,y. The fermions fields, x and i, are one-component Grassmann fields

which live on the lattice sites, in contrast to the gauge fields Uj, which live on the lattice

links.

In the case of staggered fermions; the Dirac operator or fermion matrix, G " [U] is5

1 13G = a f a(x)[ U (x)f-U (y) + m, , (11.10)

where 1,(x) is the staggered phase ( 1) and mF is the bare fermion mass.
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The partition function, written as a path integral, is

Z = [dL/I[dx][diJ e - U -sFUX (Ll

where dU denotes the measure for the gauge group integration.

The integration over the Grassmann fields is Gaussian and can be carried out, with

the simplified result'

Z = f[dUje -SU+1n det G

It is this last form of the partition function which is (in principle) amenable to

numerical (Monte Carlo) simulation.

3. Notes

Much of the background for this chapter can be found in Creutz (1983), where the

relevant lattice gauge theory is presented. The seminal paper on lattice field theory is

Wilson (1974). The concepts of Wick rotation and Euclidean spacetime are central to the

formulation of lattice gauge theorries. These concepts are presented in Fetter & Walecka

(1971), from an analytic point of view, and in Creutz (1983) and Ramond (1989), in a more

modem formulation for numerical work. Kogut (1979), although written from the point of

view of spin systems, is a very thorough review article. Kawamoto and Smit (1981) and

Kluberg-Ster et al (1983) provide much information on Kogut-Susskind fermions. Burden

and Burkitt (1987) considers lattice fernions in 2+1 dimensions.

1. Cheng & Li (1984), Sections 8.2 and 10.5.
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2. Jackson (1975), chapter 11.

3. Wilson (1974).
Fiebig, Woloshyn and Dominguez (1994).

4. Kogut and Susskind (1975).
Susskind (1977).
Fiebig, Woloshyn and Dominguez (1994).
Kluberg-Stern et al (1983).
Kawamoto and Smit (1981).

5. Creutz (1983), chapter 5.
Cheng & Li (1984), Section 10.5.
Kawamoto and Smit (1981).

6. Ramond (1989), page 215.
Creutz (1983), chapter 5.
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Ill. CORRELATION FUNCTIONS

1. Two-Point Correlation Function

As a preliminary to obtaining the meson-meson time-correlation matrix, we need to

obtain the two-point correlation function. And, as a first step towards this goal, the mesonic

operators are defined by

-2 27r

Pft) = e xI(xt)xdt) with pl= (Qn1, 2) (III.1)

where the sum runs over the L2 sites of the space lattice, and, as before, u and d are the

flavours of the fermion fields, x and X, which represent a quark and an antiquark,

respectively.

The two-point correlation function at zero momentum is given by

C 2(j,10) (t)Pgt0 )> - < < o> (11.2)

The expectation value contains a product of four Grassman fields which can be

expressed in terms of elements of the inverse fermion matrix G. Using a notation

reminiscent of that used in Wick's Theorem, we define

G2(XJ) <:(x)Xi): X(x)i():>v (111.3)

where

:= )) [{b (i11.4)
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is a contraction, and <>U denotes averaging over all gauge field configurations with

probability distribution e~s'I,

We then obtain for equation III.2 the expression

C 2(j, 10) = L - G2 ( s oy) I.

In general, we would now Fourier transform to momentum space because of the

needs of the numerical aspects of the calculations. However, instead of the individual

momenta, p, and p2 , we will introduce the center-of-mass and relative momenta, P and p.

This will yield the following expression for the correlation function.

C2( ) = 4 e2 (II6)

In particular, we will consider only those operators the center-of-mass momentum

of which is zero.

C(tj4 = L e(111)

If we now took the relative momentum to be zero as well, the two-point time-

correlation function would become

2
C (t~C) = L( 4  1 G(f ) (II.8)

which is identical to equation 111.5.

There is an additional simplification to this equation which is allowed by the

translational invariance of the system.
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C =jL G2 (1r, tt (11I.9)

This form of the two-point time-correlation function is the one most widely used for hadron

mass calculations because to employ it numerically one needs to calculate just one column

of the inverse fermion matrix G, . We, however, will not use this simplification because no

such simplification seems to apply to the calculation of the time-correlation matrix of the

two-meson system'.

Inserting our earlier result 11.5 into our form of the two-point time-correlation

function II.8, we obtain

C0 = Y )(G )* (II10)

When the calculation is carried out with a large enough time axis (we used L,=32), we obtain

the asymptotic result for the square of the two-point time-correlation function.

C'2{t,t)2 cosh mt- t})(I 11)

Since periodic boundary conditions are employed, the square of the two-point time-

correlation function is symmetric about the center of the time axis. This is reflected in

equation III.11 by the fact that t, = 1L, + = 17. The meson rest mass m can then be

extracted from the asymptotic behavior of the time-correlation function around tzt,=17.
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2. Four-Point Correlation Functions

In an analogous manner, we will now obtain the four-point time-correlation function.

We start in the same way by writing the mesonic four-point correlation function.

G4(xix yy2 )=<Pf(y2) +(x2) (x1)44Ji)>-<4(y 2) +(x2)>< ( 1) )> (111.12)

There is a much more natural way of writing this expression. Let us introduce the meson-

meson field operators.

=ft 4_t)cjxQ)

Then equation IlL 12 can be rewritten in terms of the meson-meson operators.

4)++(,O) = < ) ~ f(t)><( 4/ O)>u (1I1 13)

There are two results which greatly simplify our work in calculating this correlation

function. Because of the fermion flavour (ud) assignments, all separable terms in this

expression vanish. Furthermore, all contractions within each of the meson-meson operators,

P(t) or q(t,,) operator are identically zero. Therefore, we are left with only four possible

sets of contractions in the calculation.
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G4(x,x2y') = < :x(x 2) (x,): :(x 2)j(x )a XY 2)X(i) :X y2) 1) >

+ < :i(x 2)X(y1): :X(X2) ) 2)(x 1) X(y 2)x(x1): >

- K :i(x 2)x(X1): :X(X2)X i) 2) X(y2)Z(x1)

:Z(x2 )X(y1): :(X 2)i(X 1): : 2) (X1): X(Y 2)X(Yi): > (III.14)

In terms of the inverse fermion matrix G,, we have

GJ4(x~xyy 2) = <(GQ)(G, )*(G)(G)*>

+ <(G )(G )*(G ,)(G )*>

<(G )(G )*(G )( )*)>U

- <(G )(G )*(G)(G )*> (III.15)

where x, x, y and y represent 2+1 dimensional lattice spacetime points on the left-hand-

side of equation IlI.15 and the corresponding elements of the inverse fermion matrix G on

the right-hand-side of the equation.

As before, we Fourier transform and then express our result in center-of-mass

momenta, P and Q, and relative momenta, p and q.
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L e e 4(ie 2~DzG(xxv2) (I1116)

Again going to the center-of-momentum frame,

C -(1,t )= e e I2G 4(xlx2, 2) (IL 17)

Now, we substitute our previous result III.15 into equation III 17 and obtain

C 4 t'1) -L -. -. -. -e

22 Y20 X"rgte to y tly to

(G )(G )(G - )(Go )* >

(G7  )( )*)(G (G Y 1  )* > (11118)

A quite intuitive physical interpretation of this equation can easily be obtained from

looking at figure IIL1.

To simplify later discussions, equation IIL 18 will be rewritten in the form

C4 = C44 + C M - C(4Q- () (11119)

The terms C(^) and C') are separable and thus relatively easy to compute, although we do
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require the entire inverse fermion matrix G rather than just one column for this calculation.

3. Proeies of the 4-Point Time Correlation Function

The four-point time correlation matrix possesses several symmetries of which we can

later take advantage in order to greatly simplify our numerical work.

(1) The matrix is Hermitean

4 4 *
C , = C.. (111.20)

(2) Renaming the dummy summation indices simultaneously

reveals several symmetries of the individual terms

c(4A) 4A)*

4B) 4B)*

- )(111.21)

These symmetries allow us to rewrite the four-point time-correlation function in the form

C$ = C + C4 - 2R c (11122)

which makes the calculation of the matrix elements easier.
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(3) Renaming the dummy summation indices simultaneously reveals

4 4 4 4C = C = C_ = C (I1I23)
J)$/ i',i q i', -q - -(1

These last symmetries reduce the range of momenta for which matrix elements of C(4)

need to be calculated from L2 = (24)2 576 to only '2L(L+) + 1 =301.

4. The Truncated Time-Correlation Matrix

Furthermore, it is expected that low-lying energy levels will be determined mainly

by matrix elements with small momentum indices So, due to limitations of computer

resources, we will take advantage of t hs fact to calculate only a truncated matrix C for the

set of momenta

p= 2(k 1,k) where Ikj22 (111.24)

rather than calculating the full 301x301 matrix C The selected values of the momentum

are indicated in figure 111.2.

5. Notes

This discussion follows Fiebig, Woloshyn and Dominguez (1994). Fetter & Walecka

(1971) explains the concept of contraction, as well as Wick's Theorem.

1,2. Fiebig Woloshyn and Dominguez (1994).
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C( + C(4"' - C( ' C( 4D)

Y 2 , Y2

+

Y 2 J Y2

FIGURE 111.1
ILLUSTRATION OF EQUATION 3.18

Diagrammatic representation of the four types of contractions that contribute to the four-
point correlation functions C), as explained in the text in equations IIL 17 and III. 18.
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FIGURE 111.2
RANGE OF MOMENTA

The filled circles indicate the values of the momentum for which we need to calculate
C"4 once the symmetries in equations (IIL20) through (I11.23) are taken into account.

This is indicated in equation (11.24) and discussed in the text in sections III.3, 1III.4 and
IV3.
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IV. NUMERICAL RESULTS

1. Random-Source Technique

We are now faced with a prohibitive sum over L= 10" terms to obtain the correlation

matrix. It becomes necessary to introduce a random-source technique, so that we can use

a Monte Carlo statistical estimator which requires far less in the way of computing resources.

The random-source technique begins with defining random complex Gaussian vectors R

(called the random-source vectors) of length L2 on space sites xeZ2 subject to the

orthonormality condition'

<> x Ys

where <R> denotes a statistical average over an ensemble of random vectors.

Next we define vectors H (called the Fourier-modified random-source vectors) by

Hg,(pR) = L G e R (1V.2)

These vectors H have the property that

H q) R) = L G- e4-G (IV3)

2. Time Correlation Functions

Using the random-source technique described above, we can obtain an expression

for the two-point time-correlation function.2
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C(2(t,to) = \< E ( V ;R)/ (.4c x~t0t U ( A

To obtain an expression for the four-point time-correlation function requires

generating two independent random vectors R and R2 due to the presence of four G factors.

The various contributions to the four-point time-correlation functions are'

pq = <R Yje tH (0R )*H (

e H(,R 2)*H ( R2)
<R2  2 t 2 '

C (0 Qto) H (6, L* (6J 1
i < 0 R ><R2 X 0

fr2}

3. Our Choice of Parameters

The gauge field configurations were generated using the molecular dynamics

algorithm'. Although this algorithm is capable of dealing with dynamical fermions, we used

the so-called quenched approximation, in which closed fermion loops are ignored.
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Z=f[d l(det G[UJ)" " Jd&e -44

The bare fermion mass was taken to be mr = 0-1

Quantum chromodynamics is a confined theory; i. e., the particles of the theory,

quarks and gluons, do not appear free in nature. Whether a lattice theory is confined or

deconfmed depends on the value used for the coupling constant g, or p=1/2g 2. We need to

perform our calculations using a value of3 for which the quarks are confined. Otherwise,

we would have a sort of free quark gas rather than the two asymptotic bound meson-like

particles with which we want to work. Figure IV.2 provides a schematic description of

confinement and deconfinement in QED and QCD. QCD is confined for all values of the

coupling parameter p. Lattice QED 2+ 1, on the other hand, displays a confinement-

deconfinement phase transition, indicated by the value of the coupling parameter p=Pc. We

must use a value of p for QED 21 for which that theory is confined, so that it simulates the

behavior of QCD.

Confinement in a lattice theory is indicated numerically by the value of the Wilson

line <W>~e -1v(')1 The value of the Wilson line is small when the value for the potential is

large, which occurs in a bound (confined) state, and large when the value for the potential

is small, indicating a free particle state. In turn, the value of the potential depends on the

choice for coupling parameter P. On an 82x12 lattice, the value =1.5 gives a value for the

Wilson line of about 0.1 (see figure IV. 1), which marks the onset of the deconfinement phase

transition for QED 2+1. However, by using a 24 2x32 lattice, the same value 1=1.5 yields a

much lower value of about 0.03 for the Wilson line, which is now far into the confined
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region. An additional benefit of using the QED2+ model in order to accommodate a larger

lattice is thus realized.

The coupling parameter was taken to be B=L5.

Since the energy levels are extracted from the exponential decay of the correlation

matrix with time, the lattice must be fairly large along the time axis. The length of the time

axis was taken to be L, = 32.

As mentioned in the introduction, our lattice had to be large enough in the space

dimensions to accommodate two slowly-moving composite meson-like particles.

Calculations of the single-meson mass seem to indicate that a single meson is accommodated

with sufficient accuracy in a lattice with L 12 (see figure IV.3). Therefore, a lattice twice

this size should be sufficient for our purposes.

The linear dimensions of the lattice were taken to be L2=24x24,

We needed to solve the equation for the 13 values of the momentum (see Figure

III.2), while the random vector R was kept fixed. A new set of 16 random vectors was

generated for each of the 64 different gauge field configurations which we had generated.

This means we needed to call our solver subroutine a total of 13312 times. And, on our

242x32 lattice, this subroutine is being used to solve a 18432 by 18432 matrix.

4. The Lattice Simulation Procedure

We now wish to obtain the time propagation of the Fourier-modified random source

Hg ;R) .We do this by applying a conjugate gradient solver routine5 to the equation
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'-r -. -. X = L- 2e"'ILA

The solution X to this equation is related to the H-vector by

HQRJ?) = X

For the four-point time-correlation function, the minimal procedure which can be

followed is to use vectors 1 to 8 as R(' and vectors 9 to 16 as R" for one calculation of

C)(t,t0) and then assign vectors 9 to 16 as R(' and vectors 1 to 8 as R') and make a second

calculation. However, there is a more sophisticated procedure which improves the

suppression factor for the error of the R-estimator. We can subdivide the 16 vectors into

groups of four vectors. There are six independent ways of assigning 2 of these 4 groups to

R(' and the remaining 2 groups to R). The averages obtained from these six assignments

are then used to calculate the four-point time-correlation function.

5. The Numerical Results

The lattice on which we have set up our theory obeys the point symmetries of the

square symmetry group O(2,Z). The group O(2,Z) has five irreducible representations. In

chapter VI and appendix B, we will discuss the group and its representations in detail. But

for the purposes of explaining the numerical results, it will suffice to say that these

representations are denoted by A,, A2, B1, B2 and E. The first four of these are one-

dimensional representations, and the last is a two-dimensional representation.

Figures IV.4 and figure IV.5 show the various contributions to the truncated reduced
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four-point correlation matrix indicated by equation 11.22. Figure IVA shows the C4^), Cr"8

and C)c contributions in the A sector. It also shows the C(4B) contributions in the A2 sector,

where the C(4A) and C(4c) contributions are zero. Figure IV.5 shows the C(41) contribution in

the B, and B2 sectors, where the C(4A) and (4c) contributions are also zero. All the reduced

matrix elements in the two-dimensiaonal E-sector are identically zero because of the

symmetries of the reduced matrix discussed in section 11.3. This is discussed at greater

length in Chapter VI and appendix B.

The large-time behavior of the square of the two-point time-correlation function is

(see figure IV.6)

(2)
, c cosh 2nmt-ti) where t-tc=17 (IV.5)

The results obtained from the two-parameter (co and 2m) least-squares fit to equation

IV.5 are shown in table I. We now turn to the problem of finding the energy levels Wn of

the interacting two-body system.

We do this by solving the eigenvalue equation in each of the four sectors Ai, A2, B1

and B2. (Again, we will not need to solve the equation in the E sector because all the

reduced matrix elements in the B-sector are identically zero.)

2 C,22(Ito)'v (1,1t) = X 1(tt0)

qq q

The eigenvalues XJtt) behave like

,(t,t) ccosl{ J(t-t)] iher- t -rc =17 (IV.6)
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The leading correction term to this equation is of order O( AW,(t,to)sinh[W,(t-t )])

where AW~ is the distance to the next closest energy level. The eigenvalue functions ,(t,to)

are shown in figures IV.7 through IV.10. The results of the two-parameter (cn and Wn) least-

squares fit to all the eigenvalues IV.6 in each of the four sectors are also shown in table I.

Finally, from the results for Wn, we obtain the squares of the relative momenta from

the equation

S= (W (21)2)/2 (IV 7)

This gives us a total of eleven momenta usable in the phase shift calculation. The values of

k obtained from using our values of W, in equation IV.7 are shown in table I

6. Notes

A much more detailed explanation of the numerical work, including an error analysis,

can be found in Fiebig, Woloshyn and Dominguez (1994). The molecular dynamics

algorithm is explained in Gottlieb et al (1987). Most of the relevant numerical analysis

background can be found in Beckman (1960), which includes an explanation of the

conjugate-gradient solver, and Efron (1979), which includes a discussion of the error

analysis. An explanation of the Wilson line can already be found in Wilson (1974).

1. Gottlieb et al (1987).
Scalletar, Scalopino and Sugar (1986).

2. Fiebig, Woloshyn and Dominguez (1994).

3. Fiebig, Woloshyn and Dominguez (1994).
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4. Gottlieb et al (1987).
Fiebig, Woloshyn and Dominguez (1994).

5. Beckman (1960).
Fiebig, Woloshyn and Dominguez (1994).
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FIGURE IV.I
WILSON LINE VERSUS COUPLING PARAMETER

The Wilson line <W> versus the coupling parameter P for an 82x12 lattice, using the
value MrF=.1. The data were obtained from 64 gauge configurations, 128 trajectories
apart.
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Quantum Chromodynamics in 3 + 1 Dimensions:

CONFINED
p=0 =00

Quantum Electrodynamics in 2 + 1 Dimensions (on a 82x12 Lattice)

CONFINED DECONFINED

=30 p=.5 poa

Quantum Electrodynamics in 2 + 1 Dimensions (on a 24x32 Lattice)

CONFINED DECONFINED

p.0 3=L.5 p=o

FIGURE IV.2
CONFINEMENT AND DECONFINEMENT IN QCD AND QED

A schematic illustration of confinement and deconfinement in lattice QED on lattices of
two different sizes. The bold lines represent values of the coupling parameter for which

QED is confined. The significance of this is discussed in the text in section IV.3.
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FIGURE IV.3
MESONIC MASS VERSUS L

The mass m of a single meson versus L for L x32 lattices, using the values mF=O. 1 for the
bare fermion mass and p=1.5 for the coupling parameter. The data were obtained from
64 gauge configurations, 128 trajectories apart.
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FIGURE IV4
CONTRIBUTIONS TO C" IN A1 AND A2

The graph shows the traces of the squares of the various contributions C"r;4X) to the
trunc I reduced four-point correlation matrix, as discussed in sections 1113 and IV.5 of
the text. The representations for the A1 sector are given by filled plot symbols, and the
representations for the A2 sector a,. given by open plot symbols.
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FIGURE IV.5
CONTRIBUTIONS TO C_ IN B1 AND B2

The graph shows the traces of the squares of the various contributions CV;') to the
truncated reduced four-point correlation matrix, as discussed in sections 1113 and IV.5 of
the text. The representations for the B, sector are given by filled plot symbols, and the
representations for the B2 sector are given by open plot symbols.
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FIGURE IV.6
ILLUSTRATION OF EQUATION IV.5

A two-parameter least-squares fit to the square of the two-point correlation function
according to equation IV.5. The numerical results for c, and m given by this fit are
shown in table I.
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FIGURE IV.7
EIGENVALUES IN A

The graph sho s the time dependence of the eigenvalues k.(t,t,) of the four-point
correlation matrix in the A, sector for the first five energy levels. The curves are two-
parameter least-squares fits according to equation IV.6. The data for n=6 could not be fit
to a curve because of the large error bars and have therefore not been included.
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FIGURE IV.8
EIGENVALUES IN Al

The graph shows the time dependence of the eigenvalue tjo) of the four-point
correlation matrix in the A2 sector for the first energy level. The curve is two-
parameter least-squares fit according to equation IV.6.
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FIGURE IV.9
EIGENVALUES IN B1

The graph shows the time dependence of the eigenvalues A,(t,t) of the four-point
correlation matrix in the B, sector for the first three energy levels. The curves are two-
parameter least-squares fits according to equation IV.6.
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FIGURE IV.10
EIGENVALUES IN B

The graph shows the time dependence of the eigenvalues X(t,t0) of the four-paint
correlation matrix in the B sector for the first three energy levels. The cur.es are two-
parameter least-squares fits according to equation IV.6.
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TABLE I
LEAST-SQUARES FIT TO C(2)(t,t0)2

Results of the two-parameter least-squares fit to the square C11(t,t")2 of the two-point time
correlation function equation (IV.5), which yields c, and 2m, and to the eigenvalues

n(t,to) of the truncated reduced four-point correlation matrix equation (IV.6) in four
sectors, which yields the other values. See also figures IV.6 through IV.10 and section
IV.5 of the text.
Note 1. W6 and c6 in the Ai sector have not been included because the error bars on the
n=6 data were too large.
Note 2. There are no results for the B-sector because all the reduced matrix elements in
that sector are identically zero.
Note 3. Notice that the first energy level in the A sector is negative. Although the
precision does not allow us any confidence, it is possible that this is a bound state.

Sector Strength (1016) Level Energy k

None co 1.916 .049 2m 1.032 .008 0

c, 3.614 .103 1.029 .009 -0.001 .013

c2 0.684 .021 W2  1.098 .010 0.035 .003

A c3 0.155 .006 W3  1.180 .013 0.082 .005

c4 0.013 .001 W4  1.372 .034 0.204 .022

c5 0.004 001 W5  1.415 .073 0.234 .050

A, c 0.004t.001 W 1.497 .060 0.294 .046

c 0.760 .023 W 1.115 .009 0.044 .002

B1  c2 0.012 .001 W 2  1.381 .035 0.210 .024

c3 0.004 .001 W3  1.354 .079 0.192 .052

c, 0.171 .006 W1  1.209 .012 0.099 .005

B2  c2 0.003 .001 W2 1.522 .071 0.313 .054

c3 0 .001 W3  1.416 .440 0.235 .314
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V. SOLUTIONS TO THE SCURODINGER EQUATiON

1. Lschers Model in Two Space Dimensions

The stationary Schrbdinger equation in polar coordinates for two dimensions is

1 18 8 1 82
+ (r)' = El (Vl)2mu r ar 8r r 283p 2

This is solved by the usual separation of variables technique.

The solution of the azimuthal equation is'

1,((P) = e d Where /Z (V.2)

We will write these "circular harmonics" in such a way that they resemble the usual

three-dimensional spherical harmonics.

1 /n, eZt and rn= 1
Y (p) = - e 'pwhere 10 d iu= (V13)

"' % l=0 ad m=Q

The radial solution satisfies the radial SchrOdinger equation

[r2 d2 +r +(k2/2) - 2mr2V~(r)} u,(r,k) = 0 (V.4)
dr2  dr

and is uniquely defined by the normalization condition

imr ~' (~)= 1
r-O0 1(k

Outside the interaction region, where V(r) 0, the regular solution is simply
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u,(r;k) = oc(k)1(kr) + p(k)N(kr) (V.5)

where JI(kr) and N,(kr) are Bessel functions.

The ratio of the Jost coefficients a1ip is related to the scattering phase shifts 62,

I (k)® rk)

a result which is used in the derivation of the determinant equation I.4 for the phase shifts,

det(e2'6k( -i) = 0
M+i

This procedure is described in Chapter VI.

2. Singular Periodic Solutions

If we enclose our particles in a planar box of size LxL and impose periodic boundary

conditions, we are giving rise to a periodic potential

VJJF) = -2\fi| (V.7)

Q = { R2IIF+ii>R for all EZ i 2} ( )

which is not rotationally invariant. Since we have in mind a finite-range potential with somne

range R < L/2, we define an exterior region Q.

Since L(r =0 for F Q , a solution of the Schrodinger equation with the potential
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V.7 is essentially free in the region Q. Therefore, its extension to Q can be matched to some

periodic wave that has the asymptotic form V.5 everywhere in each L x L box except at, at

most, isolated points F = jL . Almost all of those periodic waves are singular.

We call a function i a singular periodic solution to the Helmholtz equation if

- (p) is a smooth function defined for all FoiL which satisfies the Helmholtz

equation

(A +k2) ( = 0 with A= -r + (V 9)
r8r r r2 2

* $(T) is periodic

$(i) = d*~(F+i7L) for~ all iicZ2  (V.10)

S* i (r) is bounded by a power of /r

7P 2. +r1$( I < 0 (V.11)

for some whole number A. The smallest A which satisfies this condition is called the degree

of j.

The singular periodic solutions play a central role in obtaining phase shifts. It is

necessary to construct all of them in practical calculations.3

Towards this goal, we define the Green's function
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Gfik) L p k(V.12)

where I is the set of allowable lattice momenta defined by equation 111.24. In the definition

V.12 we exclude singular values by assuming that k2 , p2 for all er.

We can show that

(A +k2)G(~k 2) (V13)

and since G is bounded by a power of 1/r, it is a singular periodic solution. All other

solutions can be constructed from G by using the harmonic polynomials in two dimensions'

I
,)= r ,( -(x ry) (V. 14)

to generate the solutions

Gs(fk)= .I,,(V)G(1,k 2) (V. 15)

These solutions are then used to obtain the elements of the M-matrix. This procedure is

described in Chapter VI.

3. Notes

This procedure, including a derivation of the phase shift condition, is explained in

more detail in Lscher (1991a), Luscher (1991b) and Fiebig, Woloshyn and Dominguez
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(1994). Fetter & Walecka (1980) provided the background on solving the Helmholtz

equation.. The Bessel functions, as needed in this paper, are discussed in Jackson (1975) and

Fetter & Walecka (1980). Abromowitz & Stegun (1964) and Gradshteyn & Ryzhik (1980)

provided the formulas needed. Watson (1952) provides a wealth of information on Bessel

functions and their properties. Schiff (1968) provides a discussion of Levinson's Theorem,

which is of relevance to the phase shifts if the first energy level in the A1 sector (see Table

I) is indeed a bound state.

1. Fetter and Walecka (1980), page 279.

2. Taylor (1983), chapter 11.

3. Fiebig, Woloshyn and Dominguez (1994).

4. Fiebig, Woloshyn and Dominguez (1994).
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VI. EXTRACTION OF THE PHASE SHIFTS

1. Partial Wave Analysis

The square symmetry group, O(2,Z), has eight elements in five equivalence classes.

Thus, it has five irreducible representations', which we denote by A,, A2, B,, B 2 and E. As

mentioned before, the first four of these are one-dimensional, and the last is two-

dimensional.

For fixed 1, the harmonic polynomials in two dimensions form representations of

O(2,Z).

-I(gl0 = ( ''D ) for gE(2,Z) (VI1)

with the representation matrices D(')(g) in equation VI 1 known?

We can use the explicit form of the D(')(g) and the group character table to work out

the decomposition of each of these angular momentum representations 1 in terms of the

irreducible representations of O(2,Z). For the first few values of 1, these decompositions of

the representations I are

o = A,

1=E

2=B1 eB

3 =E*

4 = A, oA 2

We are now led to define the following angular functions.
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For 1=0,

For

( () =- cos(kf)

( ) = sin()

For 1= ,6,...,

(BIO -os(l)

For 1=1,3,5,. ,

qj(0
1 2

2. The Phase Shift Condition

We now define the zeta function ( arising from our Green's function V.12.

(s;q 2) = 2 -,(h)( 2 _ q2 )S (VI2)
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Using the transformation property VI.I of the harmonic polynomials and this

definition, we can show (using Schur's Lemma of group theory) that3

,,(sq2)D (g) = ,,,(sq2) for all geO(2,Z) (VL3)

Using the explicit form of the Dmm' again, we discover that ct,(s-;q2) =0 unless

1=0,4,8,..,A, where A is some (large) angular momentum cutoff introduced for practical

reasons. We also discover that , (s;q 2) (im(s;q 2), which shows that (m(s;q 2) is real and

independent of the value of m. So, hereafter, we will write Cm(s;q 2) simply as ((s;q 2).

Now we define the function

W= )32 i 2( 2) with ki (VI)
'n 1 2x

in terms of which we can calculate all the reduced matrix elements Mu in all five sectors.

(Some formulas for the calculation of ,(I; 2) are given in appendix B.)

A Sector

00 0

0 ) l) = 2'W for 1=4,8,...,A
0/ 10

PI) II 1,1' for l,l'=4,8,,.,A
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BiSector

A, 1 2) -

WI + W111 _ j- for ,1'=2,6,...A
R, Sector

(B)

11-11 +I~ I ~Y for ll'=2,6,.,A

R1 Sector

M(2) t- Wfor l I/=2,6,,..,A

E-Sector

II'f 1-1/1'if 1l-l'l =0 (mod 4)

I - +1 if 1l-I'I=2 (mod 4)

for ,'=1,3,A.

The matrix elemzents in E all turn out to be identically zero because the 2-dimensional

representation B is ruled out by the physical symmetries of our system.'

We note that the basis transformation to the angular functions of section VI. 1 leaves

the matrix e 2
,a diagonal since only linear combinations of Y(b) with different m= 1 values

are taken. This allows us to separate eM by representation, and we obtain the determinant

condition 14 also separated by representation,

det[e' (n ] = 0 w1/h U(D=(A 1(f( I( ) (VL5)
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The phase shifts ,(O(k') for the four representations A,, A 2, B,, and B2, can now be

obtained numerically. The results are given in table II. The angular momentum cutoff was

chosen as A=8. Some of these 6j(")(k, 2) from table II were then plotted versus their

corresponding relative momentum squared (which can be found in table I). The resulting

graphs are shown in figures VI. I through V.3. In the graphs, some of the points have been

relocated modulo 1800 because the phase shift condition I. only determines the phase shifts

modulo n.

3. Notes

Hammermesh (1962) provides all the background material on group theory, including

discussions on Schur's Lemma and the square symmetry group. Taylor (1983) and Schiff

(1968) provide all the background material on scattering theory, including discussions of

phase shifts and their interpretations. LUscher (1991a), Lascher (1991b) and Fiebig,

Woloshyn and Dominguez (1994) discuss both the derivation of the determinant condition

I.4 on the phase shifts and the calculation of the reduced elements of the M-matrix..

1. Hammermesh (1962), chapter 7.

2. Hammermesh (1962), chapter 7.

3. Hammermesh (1962), chapter 7.

4. Fiebig, Woloshyn and Dominguez (1994).
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TABLE II
PHASE SHIFTS ,(F)(k7)

The phase shifts ,("'(k ) in degrees for the five representations F and their particular
dominant partial waves I (with their corresponding errors) for different energy levels.
Recall that the phase shift condition .4 only determines the phase shifts modulo i (or
1800).

r l n=2 n=3 n=4 n=5

A1  0 50.5( 8.1) -16.7( 7.9) 64.5(41.8) 28.3(37.9)

A 4 1.1(0.2) -23.1(26.4) -68.6(57.4) 35.2(80.4)

A 8 0.0( 0.0) 0.003(0.001) L08(0 62) 2.04(154)

P l n=1 n=2 n=3

A2  4 14.7(15.9)

A2  8 -7.6( 7.8)

B1  2 12.9( 1.3) 34.5(18.7) 51.8(58.3)

B1  6 0.022(0.007) 12.2( 0.8) 12.0( 24)

B2  2 238( 3.9) 12.5(25.3) 8&0(368.0)

B 6 -1.3( 0.3) -88.5(143.0) -20.7(165.0)
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FIGURE VI1
PHASE SHIFTS FOR PARTIAL WAVE L=0

This graph shows the phase shift in degrees for the partial wave =0 versus the relative
momrentum squared The data are from the A1 sector. See Table II for a tabulation of the
numerical results and chapters VI and VII for an interpretation of this graph.
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FIGURE VI,2
PHASE SHIFTS FOR PARTIAL WAVE3 L=2

This graph shows the phase shift in degrees for the partial wave l=2 versus the relative
momentum squared. The data are from the B and B sectors. See Table II for a
tabulation of the numerical results and chapters VI and VII for an interpretation f this
graph.
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FIGURE VI.3
PHASE SHIFTS FOR PARTIAL WAVE L=4

This graph shows the phase shW, in degrees for the partial wave 1=4 versus the relative
morentum squared. The filled plot symbol is from the A2 sector. See Table II 'or a
tabulation of the numerical results and chapters VI and VII for an interpretation of this
graph.
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VII. CONCLUSION

1 Explanation o Results

We can not expect equation V.5 to have a unique solution because in general there

are more parameters than determining equations (especially if the angular momentum cutoff

A is large). We solved the equation by imposing the constraint that for a fixed partial wave

1, 51F= 0 if lel. We furthermore adopted the point of view that the dominant angular

momentum is given by the smallest value of 1 within each sector P. Referring to the results

given in table II, this means that the s-wave phase shift 0o is given by So(A1), the d-wave

phase shift 62 is given by 6 2 ) and 622), and the g-wave phase shif 64 is given by 64^2.

Equation I4 does not determine the phase shifts exactly. The phase shifts are only

determined up to modulo t. This fact was used when plotting the phase shifts in figures

VI1, VL2 and VI 3.

The data points for ,, in figure VI.1 are consistent with a smooth curve which

decreases rapidly as k2 increases. This is reminiscent of the result for classical hard-sphere

scattering, and is typical for repulsive interactions. Figures VII. 1 and VIL2 show typical

scattering waves for the 1=0 and 1=2 cases, respectively. If we look at these two figures, we

see (1) that the probability amplitude for two mesons being close together is largest in the

s-wave and (2) that the probability amplitude in the s-wave is only considerable if the two

mesons are close together. This would indicate a near-static (because we only considered

small values of the momentum) repulsive interaction at small distances, a result reminiscent

of the Pauli exclusion principle.
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In figure V.2, the data suggest positive phase shifts over a broad k' interval. This

is consistent with an attractive interaction. If we again look at figures VIL 1 and VII2, we

see (1) that the probability amplitude for two mesons being at an intermediate distance is

largest in the d-wave and (2) that the probability amplitude for two mesons being close

together is strongly suppressed in the d-wave. This would indicate a near-static (as before)

attractive interaction at intermediate distance.

Despite the simple quenched QED 2+1 odel used, our simulation seems to have the

properties one would expect of nuclear physics on a lattice. We have shown that it is

possible to calculate scattering phase shifts between composite particles and that the results

can be interpreted in a way compatible with reasonable expectations. However, the

procedure is complicated and requires a lot of computational effort.

Since the meson fields in our quenched simulation are constructed from fermion-

antifermion fields which live on the same site x, it should be clear that the residual attraction

between the mesons is due to the dynamics of the gauge fields. In contrast, in traditional

nuclear theory, intermediate-range attraction is due to the exchange of elementary boson

fields. The traditional (phenomenological) boson exchange model relies on W-meson

exchange to explain the short-range repulsion, p-meson exchange to explain the

intermediate-range attraction, and n-meson exchange to explain the long-range residual

attraction. It would seem that this new model may be able to provide a much more

fundamental explanation of the strong nuclear force.
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2. Consideration of Future Work

There are three directions that future research in this field needs to take. First, our

interpretation of the phase shifts is in need of better simulations before we are able to draw

conclusions with confidence. Second, it would be desirable to obtain a static potential from

a lattice simulation, for example, extracted from the two-body energy versus distance. Such

a simulation would rely upon the computation of the four-point time correlation matrix and

would be feasible with the methods presented here. Third and most difficult, it is necessary

to repeat all of this work on scattering phase shifts for QCD3+1, which is the physically

meaningful model that is ultimately of concern to us.
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FIGURE VITA
TYPICAL SCATTERG WAVE FOR L=O

A typical scattering s-wave. Note that the probability amplitude is only large if the two

mesons are a short distance from each other. The importance of this to our results is

discussed in the text in section VII. 1.
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FIGURE VIL2
TYPICAL SCATTERING WAVE FOR L=2

A typical scattering d-wave. Note that the probability amplitude is only considerable if

the two mesons are at an intermediate distance from each other. The importance of this

to our results is discussed in the text in section VII. 1.
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APPENDIX A

Here we derive formulas for the computation of the zeta functions (l ;q 2) defined

by equation VL2, following the procedure given in L~scher (1991a). An appendix of Fiebig,

Woloshyn and Dominguez (1994) gives a numerically improved procedure for calculating

these zeta functions.

We begin by using Green's theorem in 2 dimensions to find that

(A +k2)N(kr) = 4(?) (A1)

Restricting ourselves to an open neighborhood of r=O, we can extract the singularity from

the Green's function defined by equation V.12, to obtain

G(k 2) 1N= - () + Fk2) (A.2)
4

where the remainder is nonsingular.

For convenience we rewrite (A.2) as

L2) e'k~ 1
G(f;k) = 2 + -N(kr) (A.3)

We will take - , r= p and k =2iq/L. We will also assume
L 27

that k2 is such that q2# n1 2 for all ieZ2.

For a fixed value of q2, now choose v ER such that v2 q2 . Then (A.3) can be

rewritten as
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AE (27r ) 2 e-P 1 0+ftq 2 v(5(A4
'G(f~k 2) Il Uz2 -e +-4~r+je''"1 )(A4

with the truncated heat kernel

Kv(1, P) = i ji-'"2 (A.5)

Note that the integrand in (A.4) drops off at least as fast as e ~I(V2_q 2) for large t. For

small t, we use an alternate untruncated representation of the heat kernel

K1(t(p) = th)>v t (A.6)InI>v 4nt

The truncated heat kernel can then be calculated from

Kv(,P) = K(I, P) - (2n) 2 ve (A.7)

In a neighborhood of p=O, the integrand in (A.4) is dominated by the n=0 term as

t-0.

KV(/4p) = -L-e p
2 4'+- (A.8)

Thus the integrand of(A.4) can be rewritten

fdi dt e' 2Kv(, p2) 2 d [ef 2Kv(t, p2 ) P2/At
q 41t

q( di t';2Ktp2) 02 di -I- ' (A.9)00 q 41 470
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The last integral can be expressed in terms of an incomplete gamma function

12 22 
1t

{q "di--e p2 4 ' - 4 oL )0 4xit 4x 4

= -- [ln( 2 2 ++ n= m2P

which reveals a logarithmic singularity. The logarithmic singularities contained in %N(kr)

and in this expression cancel out exactly. Expressed in a more formal manner, this means

that we have

No(qp) + {q dt--e ' -p/ 4 = -y + (p) (A.10)4 0 4t 4

where e(p) is a function of p=1 p I with e(p-0)=0.

Using (A.), (A.9) and (A. 10), we obtain

(j~r~k2  I < (2 _2e'G(?;k2 I|I<v~~,2 2 ~

+ fq dt (e' 2Kv(t, )---e ']/4
0 4it

+ ®2 di ' K'(,P)+-Y+ ) (A.11)

Having removed the singularity, the above function is now regular at r=0. We may

thus expand

G(r;k 2) = i,,,,,(kr)1,,(p) (A. 12)
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The coeflicients are given by

S lr l!( )-2 d y*( )Qk 2) (A.13)
t,, 'r-O 2 0 n1

Using the partial wave expansion

e = 2i iJ(pr)Y,,,( )Y() (A.14)

we obtain the relation

(- 2)(A 15)
22q

with the zeta function now given by

( 2 
2 2-1

+ r d2 dt ' 2KV(,) + 6 y (A.16)
72
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The functions Km,,,(t) can be computed by

v = ., (fi -" (A.17)
/ iij pv

=(i/ /* 2 - ,Q(ie T,2fl2I<v(, 4,2 (A.18)

where (A.17) is suitable for large t, and (A.18) is suitable for small t.
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APPENDIX B

Here we describe the most essential features of the square symmetry group O(2,Z).

For each n in Z define the complex number n=n +in in C. The action of the eight elements

of O(2,Z) on the vector n is then given by

En=n Rn = in R2n -n Rn= -in

Pin = n* P2n = -n* Qn=in Q2n = -in*

where R is the rotation by 90 , P and P are rotations about the real and imaginary axis,

respectively, and Q and Q are refelections about the two diagonal axis in the complex n

plane. The inversion (or parity) operator, In=-n, is identical to 2.

The eight elements of O(2,Z) fall into eight equivalence classes. These classes are

C={E} C ={R} C={R,R}

C4 = { P1, P2 } C5 = { Q1, Q2 }

Group theory tells us that for any group the number of irreducible representations

equals the number of equivalence classes. Thus, there are five irreducible representations

of O(2,Z), four of which are one-dimensional (these are traditionally named Ai, A2, B and

B2) and one of which is two-dimensional (which is traditionally named E). These irreducible

representations are most conveniently expressed in terms of basis functions which are

polynomials in n and n*
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(^I(n) = n*n

p (n)=Imn

(B2)(n)= n2+ n-2

-*() n2 
-2

,(E) 2(E) -*

We now concern ourselves with finding the transformation properties of the

harmonic polynomials in two dimensions.

Using equation (VI.1) we obtain

D (R)=6 i fork= , 1, 2,3

D ( ) S (P)= (-I)

D'm('(Qi) = m-'(ir') D'm (Q 2) = M(-im')'

More reference material on group theory, in general, and the square symmetry group, in

particular, can be found in Hammermesh (1962).
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